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Genome-wide association studies (GWAS) are widely used to detect gereggpemted
with complex diseases. Such GWAS studies of disease progressiotinogemay be
clinically significant. Longitudinal quantitative trait locus (LQ) methods are used in
these studies to simulate disease progression. However, populatditation (PS) can
lead to false positive or negative findings when conducting a G8#®,. PS is induced
by a candidate marker’s variation in allele frequency acnossséral populations. One of
the approaches used to adjust for population stratification in GVEASha global
principal component analysis (PCA) approach.

In this thesis | examine the statistical properties ofASVdnalysis procedures using
principal component adjustments across the whole genome. | use additialele
models to test the association between rare genetic variadtsth@ longitudinal

guantitative phenotypes across the whole genome. The genotype dateearéom the



Hapmap 3 dataset for 1198 unrelated individuals. The simulated queetpagnotype
data are estimated using the Bayesian posterior probabilitlBs{Bthat a participant
belongs to a clinically important trajectory curve. The PCAhmétimplemented in the
EIGENSTRAT program is then used to reduce the data to ten w&iabhtaining most
of the genetic variability information.

The power and rejection rates are evaluated based on 1000 simejdiemtes. The
association test follows a chi-square distribution with one degiré®edom under the
null hypothesis of no association. The p-values of the test of thiectdfof a genotype
with and without a PC adjustment for PS are documented. For eacbedigree, | select
25 matching SNPs (the ones with high correlation coefficientleiedrequencies with
the disease gene across population) and 25 non-correlated SNPs (th&itbniesv
correlation coefficient of allele frequencies with the disege®e across population). All
SNPs considered are in overall Hardy Weinberg equilibrium (HWE).

The additive risk allele model LQTL models have strong empirical power. ddelm
with global PCA adjustment for PS is able to consistently ragirdorrect false positive

rates.
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Chapter 1 Introduction

Genome-wide association studies (GWAS) are widely used to detect geratgpemted

with complex diseases. GWAS studies of disease progressiotirageare of increasing
clinical significance. Longitudinal quantitative trait locus (LQTmethods are used in
these studies to assess disease progression. It is well doednteat population
stratification (PS) can lead to false positive or negative firmdwden conducting a
GWAS study (Campbell and others, 2005; Deng, 2001; Ewens and Spielman, 1995
Heiman and others, 2004a; Heiman and others, 2004b; Marchini and, @b@4s Tian

and others, 2008a; Tian and others, 2008c). PS is induced by a candidete’sma
variation in allele frequency across ancestral populations. Ondeofwidely used

approaches to account for population stratification in GWAS is thbaglprincipal



component analysis (PCA) approach (Menozzi and others, 1978; Novembre and $tephens
2008; Patterson and others, 2006; Zhu and others, 2002) as calculated hasing t
EIGENSTRAT software (Price and others, 2006). Bouaziz and hisagpies document

that logistic regression using principal components as covailigten effective tool to
control the false positive rate in the study of a time-congihehotype (Bouaziz and
others, 2011b). The research questions in this dissertation are 1)eWR& can induce

false positive findings in the study of longitudinal traits?fXa, does the use of global

PCs reduce or eliminate the effects of PS?

In my study, | used several additive risk allele models tatlesassociation between
genetic variants and the longitudinal quantitative phenotypes. The gerddigpavere
taken from the Hapmap 3 dataset for 1198 unrelated individuals. The &ynthet
longitudinal disease data for an individual was generated by attngjegroup model,
with trajectory group determined principally by the individual’s ggpes. The
longitudinal data was then analyzed using the trajectory sinapftware PROC TRAJ.
The trajectory group with greatest estimated change vesassthe “clinically important”
group. The simulated quantitative phenotype traits were the estirBatyesian posterior
probabilities (BPPs) that a participant belonged to the cligidatiportant trajectory
group. The longitudinal trajectories were simulated to reprekerdliserved progression
in a disease such as Adolescent Idiopathic Scoliosis (AIS) iMide and others, 2008).
The PCA method implemented in the EIGENSTRAT program was thehtaseduce

the genetic data to ten variables containing most of the genetic variabitynatfon.

2



1.1 Genome-wide Association Studies (GWAS)

During the past few decades, genetic research has focusedoma@mplex human
diseases such as asthma, Alzheimer’'s disease, cardioveadicelase, and diabetes. To
better understand the pathogenesis of such complex diseaseshesease GWAS to
detect the genetic loci associated with a disease. Theilsamnimprove prevention and
treatment strategies by locating the genes that are irtgaicaith the disease and its

progression.

A single nucleotide polymorphism (SNP) is the simplest type ofnpotghism and
occurs when one nucleotide is substituted for another based on ansutgteon. Nearly
three million variants have been reported and are cataloguedpublec database

(http://www.ncbi.nlm.nih.gov/SNP/).

A GWAS seeks to assess the correlations between genotypeniceguef single
nucleotide polymorphisms (SNPs) and genetic variants and disedskevets across
populations. There are at least three explanations for an agsobietiveen an allele and a
phenotype (Cardon and Palmer, 2003). A first is that the alleledinagtly affect the
expression of the phenotype. Second, the allele may be correltiteal @ausative allele

located nearby. Third, the association may be due to confounding or selection bias.



There are two commonly usetlidy designs for GWAS. One is a family-based design,
and the other is a design based on samples of unrelated individualsigA dased on
sampling individuals can be more powerful in detecting weak gemétcts. These
studies include the traditional case-control studies, which are commsed and cohort

studies.

Price et al. (2010) report that GWAS studies have identified hundfecsmmon
variants associated with disease risk or related traitse(Rrid others, 2010). Since most
genetic heritability remains unexplained, future work will insnegly focus on variants of
low minor-allele frequency or rare variants (Manolio and otH069). | define a variant
with low minor-allele frequency (MAF) as having MAF between 0.&8d 5%. | use the
term “rare variant” to refer to a SNP with MAF less than Q.5%my study, | focus on

variants with MAF between 1% and 5%.

The genetic analyses reported here were generated byKPPINNK is a freely
available program with open-source code. It is a whole genomeatsso analysis toolset,
designed to perform a range of basic, large-scale anatysesamputationally efficient
manner. The focus of PLINK is purely on analysis of genotype/pheaatata. The

software deals with PS using a clustering approach and corresponding command code



1.2 Longitudinal Quantitative Trait Loci (LQTL)

A quantitative trait locus (QTL) is a gene that affects agjtaive trait. In a longitudinal
study, observations on a participant are taken at more than ongoiimheand associations
are considered temporally. Longitudinal studies may be prospectivespective, or,
more commonly, partially retrospective. They are useful foryatgdthe effects of new
interventions or possible trends in behavior. Since a longitudinal stadlyzas events at
more than one point in time, it may suggest the causal directiassotiations (Bowling,
2003).

The case-only study is a one approach to locate a longitudina(l(@QILL). A second
approach is population based. The issues for the validity of a steidiyeasame for both
types of studies (Caspi and others, 2003). There is one well-recogszemption for the
validity of such studies. The susceptibility genotypes and each confouratiagle must
be independent in the population. Possible confounding factors include envirdnmenta
variables and population stratification. When these are presemtutie may be biased.
Wang and Lee (2008) showed that hidden stratification in the study popwatld also
severely bias a case-only study (Wang and Lee, 2008). They desivedlds for PS bias
in a study using logistic regression. The bias involves tleemast 1) the coefficient of
variation of the exposure prevalence odds, 2) the coefficient of variatithe genotype
frequency odds, and 3) the correlation coefficient between the expgoswadence odds

and the genotype frequency odds.



1.3 Population Stratification (PS)

GWAS researchers reported that there were biases in G\WldEsand that only a few
associations were consistently and convincingly replicated (Cahgoitlothers, 2005;
Tian and others, 2008a). That is, there were discoveries of spuriaesatiess. Failure

to account for the bias induced by population stratification (P#)aught to be one of

the main causes of spurious or incorrect findings (Campbell and of#@£5S; Deng,
2001; Ewens and Spielman, 1995; Heiman and others, 2004a; Heiman and others, 2004b;
Marchini and others, 2004; Tian and others, 2008a; Tian and others, 2088mcits
when there is a systematic difference in allele frequer@aseen subpopulations in a
population. There can then be admixture among populations in a sampleo due t
demographic history, natural selection, and mating between subpopulatoesafmple,
there is admixture of populations of African and European descehe ibnited States

(Tiwari and others, 2008).

Enoch (2006) reported that population subdivision, recent admixture and sampling
variance could lead to spurious associations between a phenotype anken lotars,
which may have masked true associations in case-control studieg & al. (2006)
reported that confounding by ethnicity (i.e., a type of PS) csultrim bias and incorrect
inferences in genotype-disease association studies (Wang ans| @b@6). PS can lead

to confounding in association studies, such as case-control studies,thn@ssociation



found could be due to the underlying structure of the population ratimea tienetic locus.
Wacholder et al. (2000, 2002) noted that both the frequency of the nearlethe

background disease prevalence must vary substantially by egHfoicPS to be an issue
(Wacholder and others, 2000). Replication of genetic association stuayetherefore, be

problematic partly because of PS (Ziv and Burchard, 2003).

Many genetic epidemiologists consider PS to be a manageablermr(Pritchard and
Rosenberg, 1999). If the population structure is known or estimated, teex@amber of
ways to incorporate this structure into the association study testatyr potential
population bias (Tiwari and others, 2008). The four most widely used a@hesodo
adjusting for PS are genomic control (GC), structured association méth@dsthey are
sometimes called PC based methods), regression models, and metesafiBdysiziz and

others, 2011a).

The GC approach is a nonparametric method for controlling the inflafidest
statistics (Devlin and Roeder, 1999; Pritchard and Rosenberg, 1988;adRd Goldstein,
2001). GC aims at correcting the null distribution of such statiaidbe linear trend test
by estimating an inflation factor using many markers. Rebeses usually consider that
an inflation factor less than 1.05 indicates that there is no inmogapulation
stratification. The main assumption of GC is that the inflatewtidr is the same for all
markers. Hao et al (2004) proposed GC approaches to detect andadpise findings

partially due to PS (Hao and others, 2004). They tested the perfmgnodriwo GC



approaches in different scenarios including various numbers of @Gk&raand different
degrees of population stratification and conducted extensive benchmargeanah GC
approaches using SNPs over the whole human genome and found that l@@snoain
cluster subjects into homogeneous subgroups if there is a suddsdéference in genetic
background. The inflation factor, estimated by GC markers, daatigely adjust for the
confounding effect of PS regardless of its extent. They alggest that as few as 50

random SNPs with heterozygosity >40% should be sufficient foctefeeGC adjustment.

The structured association methods (Pritchard and others, 2000) usé genet
information to estimate and control for population structure. These aph@®aim at
inferring the structure of the population using parametric modelsrefily, the
most-widely used structured association PC software is EIGRRS, developed by
Price and colleagues (Price and others, 2006). See descriptibresfollowing section 1.4.
Other software for this approach are the STRUCTURE softwrrnitctiard and others,
2000; Rosenberg and others, 2002), the STRAT software (Pritchard ams, @0@0)

and the ADMIXTURE software (Alexander and others, 2009).

Logistic regression models are used to adjust the result afsual association test
to correct for stratification using the PCs as independent vesiablsai et al. (2005)
reported an association study of Latin Americans that is anm&ashhow to adjust PS

using a logistic regression strategy (Tsai and others, 2005). Stheied 362 Latino



subjects with asthma and 359 ethnically matched controls. Theee twergroups of
Latino participants—those from Mexico and those from Puerto RicwmeShey were
concerned about PS, they genotyped each participant on 44 ancestraiiviemmarkers
(AIMs). They compared allele frequencies of the 44 AlMs tosssadether there was any
indication of PS. They found significant differences in alledgjfiencies between Puerto
Rican cases and controls but no differences between Mexicanasase®sntrols. They
used logistic regression to test for associations between dsesiseand AIMs with age
and gender entered as covariates. Having found evidence of PSdjphsted for it by
including ancestral proportions in the logistic regression modetoasriates. They
concluded that the assessment of stratification effectstisatto interpret case-control

studies in admixed populations.

Wang et al. (2006) addressed the effect of PS in gene-gene cemgeranment
interaction studies (Wang and others, 2006). They used logigtiesggon models to fit
multiplicative interactions between two dichotomous variables thmesented genetic
and/or environmental factors for a binary disease outcome in a hypathethort of
multiple ethnicities. Biases in main effects and interactouesto PS were evaluated by
comparing regression coefficients in models that were mis-spétiGcause they ignored
ethnicities with coefficients in models that accounted for ettisci They showed that
biases in main effects and interactions were constrained by the diffsrentisease risks

across the ethnicities. Therefore, large biases due to PS apessible when baseline
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disease risk differences among ethnicities are small or @medevhich is consistent with
Wacholder et al. (2000, 2002). Numerical examples of biases in gergeypéeype
and/or genotype-environment interactions suggested that biases due fto P&in
effects were generally small but could become large for etudif interactions,
particularly when strong linkage disequilibriums between genekarge correlations
between genetic and environmental factors existethwever, when linkage
disequilibrium among genes or correlations among genes and envirorveeatsmall,

biases to main effects or interaction odds ratios were small to nonexistent.

There are also a number of less commonly used methods for adjBSinthe
gualitative semi-parametric test (Chen and others, 2003), the swenlisly correcting
method (Cheng and Lin, 2007), a simple and improved correction in casetstudies
(Epstein and others, 2007), the genotype-based matching method (Guan and others, 2009),
matching strategies (Hinds and others, 2004), the variance comporagit (lKang and
others, 2010), a randomization test (Kimmel and others, 2007), and the propeasst

approach (Zhao and others, 2009).

Divers et al. (2007) used ancestry informative markers (AIMg)btain individual
admixture proportion estimates (Divers and others, 2007). They usedeigsates to
reduce the false positive rate (type | error) or the loss ofepaue to PS or genetic

admixture. They reported that the quadratic measurement erractoomr (QMEC)
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method maintains the type | error at its nominal level and corfoplhe confounding

effect of admixture in genetic association tests.

The International HapMap Project has provided allele frequenmiesgpproximately
three million single nucleotide polymorphisms (SNPs) in Africangspfeans and East
Asians. SNP marker frequency variation is greatest in &fdgc Statistical methods, such
as structured association and genomic control for detecting@anecting for PS, use
marker loci spread throughout the genome that are unlinked to theda@nébcus to
estimate the ancestry of individuals within a sample, and tdaeand adjust the ethnic
matching of cases and controls (Seldin and Price, 2008). Enoch arudlésgge (2006)
focused on the methods for selection of highly informative marker remuired to
characterize populations that vary in substructure or the degadenofture, and discussed

how these theoretically desirable approaches can be put into practevefy.

There are several comparative studies of approaches totd¢orrieé8. Tsai et al. (2005)
compared three different methods: maximum likelihood estimatibe, grogram
ADMIXMAP and the program STRUCTURE (Tsai and others, 2005). Thed o0
simulated data sets and one real data set from a geneticaftadthma among Latino
subjects. All three methods provided similar accuracy of amtesttimates and similar

control of type | error rate. They demonstrated that 100 AIMs vegpgired since the main
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factor affecting the accuracy of individual ancestry estimatelscontrolling for the type |

error rate was the number of AIMs.

Kosoy et al. (2008) organized a set of 128 AIMs in order to provideoaness for
assessing continental ancestry in variety of genetic studies (Tiantemnd, @008b). They
chose markers for informativeness, genome-wide distribution, and ygenot
reproducibility on two platforms (TagMans assays and lllumina syrayrhey analyzed
different ancestry for genotyping data from 825 subjects, inclUglimgpeans, East Asians,
Amerindians, Africans, South Asians, Mexicans, and Puerto Ricarsnplete set of 128
AlMs and subset of 24 AlMs were found to be useful tools for identifyhe origin of
subjects from particular continents and to correct for PS in adhpigpulation sample sets.
Their findings can be used as general guidelines for the apphcdtspecific AIM subsets.
The researchers concluded that Tagman assays could be usedskdetied AlMs as a
simple and relatively cheap tool to control for differences inigental ancestry when
conducting association studies in ethnically diverse populations. Kosbyegiated that
these 128 In4 AIMs and subsets of these SNPs are useful fortehamag sample sets
from diverse population groups. Researchers can apply these meitkersto identify
those members of one continental population group from a particudiys, st alternatively
used to adjust for PS due to differences in continental population frgquecases and

controls.
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1.4 Principal Components (PC)

Principal components (PC) analysis is an approach to correct fasiR¢g methods that
infer genetic ancestry (Menozzi and others, 1978; Novembre and Ste[@€gs,
Patterson and others, 2006; Zhu and others, 2002). In 2006, Price reported that the
EIGENSTRAT method, which is based on principal components analysis,d=dattt and
correct for PS in genome-wide association studies (Price anc,0B@96). PC analysis
models ancestry differences between cases and controls alomgioostaxes of variation.
The resulting correction is specific to a candidate markeriatia in frequency across
ancestral populations, minimizing spurious associations while margpower to detect
true associations. The approach can easily be applied to diedss with hundreds of
thousands of markers. EIGENSTRAT was implemented as part of IBENSOFT
package in December 2006. Researchers can get source code, documanithtion
executable program files for the EIGENSOFT package from Alke’'® web page

(Price).
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Chapter 2 Methodology

2.1 Dataset

2.1.1 Hapmap 3 and GAW17 Database
Hapmap 3 database

The International Hapmap project started in 2002 and is an internatioopération
between Japan, the United Kingdom (UK), Canada, China, Nigeridharnhited States
(USA). Its goals are to compare genetic sequences of peoplaiif@nent populations,
to identify chromosomal regions with shared genetic variants,caddtérmine panels of
tag SNPs across the whole genome. The Hapmap 3 database curoéglyabout 4
million SNP genotypes for the eleven populations listed in Table HleTagives the

distribution of founders and non-founders in Hapmap 3 across populations.
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Table 1. Thelist of populations of Hapmap 3 database.

Populations  Note

1 ASW African ancestry in Southwest USA
2 CEU* Utah residents with Northern and Western European

ancestry from the CEPH collection

3 CHB* Han Chinese in Beijing, China

4 CHD* Chinese in Metropolitan Denver, Colorado
5 GIH Guijarati Indians in Houston, Texas

6 JPT* Japanese in Tokyo, Japan

7 LWK* Luhyain Webuye, Kenya

8 MEX Mexican ancestry in Los Angeles, California
9 MKK Maasai in Kinyawa, Kenya

10 TSI * Toscani in Italia

11 YRI* Yoruba in Ibadan, Nigeria

Note: * denotes a population that is also included in the GAW17 dataset.

Four populations are considered as the African group: ASW, LWK, MK& YRI.
Three populations are in the Asian group: CHB, CHD and JPT. Two paomslare in
the European group: CEU and TSI. The populations GIH and MEX are in nohe of t

groups above according to researchers’ work.
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Table 2. Thedistribution of Hapmap 3 participants.

Populations Founder Non-founder Total
Counts Counts Counts

1 ASW 53 34 87

2 CEU* 112 53 165
3 CHB* 137 0 137
4 CHD* 109 0 109
5 GIH 101 0 101
6 JPT* 113 0 113
7 LWK* 110 0 110
8 MEX 58 28 86

9 MKK 156 28 184
10 TSI * 102 0 102
11 YRI* 147 56 203
Overall Total 1198 199 1397

Note: * denotes a population that is also included in the GAW17 dataset. Indgapm
database, six populations, CHB, CHD, GIH, JPT, LWK and TSI, are caudpok
unrelated individuals only (672 founders). The other five populations include bot
genetically unrelated individuals (526 founders) and their chil@it8@ non-founders). |
select the 1198 genetically unrelated founder participants from pdlgtimns to be

analyzed in my sample.

| checked the genotype distribution and the extent of missing dagadbrof the 22
chromosomes in the Hapmap 3 dataset. Genotyping data was avViaitaditléeast 99.7%

of SNP genotypes for each chromosome as shown in Table 3.
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Table 3. The number of markers and missing data information by chromosome in
Hapmap 3 database.

Chromosome Number of Markers  Average Genotyping Rate

1 119487 99.7%
2 119502 99.7%
3 98971 99.7%
4 88135 99.7%
5 90368 99.7%
6 93671 99.7%
7 77377 99.7%
8 77111 99.7%
9 65251 99.7%
10 75616 99.7%
11 72993 99.7%
12 70482 99.7%
13 53293 99.7%
14 46655 99.7%
15 43309 99.7%
16 45778 99.7%
17 39329 99.7%
18 41942 99.7%
19 26953 99.7%
20 37159 99.7%
21 19802 99.7%
22 20649 99.7%
Total 1,423,833 99.7%

Note: Genotyping data was available for at least 99.7% of SNP genotgpe=ach
chromosome in Hapmap 3 database. There are almost one and allwadfohinarkers

recorded in Hapmap 3.
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2.1.2 Sample

The Hapmap 3 Data contains the genotypes of 1397 individuals from 11 pausildti
includes both individuals and small families consisting of one or wumders and
children. | select the 1198 genetically unrelated founder participiotn the 11
populations in Hapmap 3 database as my sample. The distribution mdgh&ations is

given in Table 2.

2.1.3 Genotype Data

For this research, | select 402,399 SNP markers from six chromasthmasosome 3, 6,
11, 12, 17 and 19. Chromosome 3 and 6 represent relatively large cbrnoesos
Chromosome 11 and 12 represent medium size chromosomes. Chromosome 17 and 19
represent smaller chromosomes. Chromosomes 1 and 2 are eliminzdeadebthey are
too large.

The SNPs on these six selected chromosomes have low ratessofgrgenotypes
and a large number of rare variants. Specifically, each c&fetf&NPs has missing
genotype rate less than 0.3%, as shown in Table 3. Each of these chromosomes has 924 or
more SNPs with MAF<0.01 in GAW17 dataset as shown in Table 1 of Appendix A. Table

4 shows the number of markers for the six chromosomes chosen.
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Table4. Genotype data used in analysis.

Chromosome Number of Markers

3 98971
6 93671
11 72993
12 70482
17 39329
19 26953
Total 402,399

Genotype Data Cleaning

| checked the Hardy-Weinberg Equilibrium (HWE) condition on the adiseSNPs,
matching SNPs and non-correlated SNPs in my sample (seens2@ifor more details)
for the genetically unrelated individuals. A marker with the p-vidu¢he HWE test less
than 107° (that is, a highly significant deviation from HWE proportionsyamoved
using the HWE goodness of fit test command line options in PLINK vIIl0& PLINK

commands are listed in Appendix B.
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2.1.4 Phenotype Data

The longitudinal phenotype used my study is simulated to refleet course of
progression of a disease with every increasing severity suetasscent idiopathic
scoliosis (AlS). Following Gordon et al. (in press), | specify thegectory curve
parameters to model the development of the preliminary longitudiokbsis data (Wise
et al. 2008). Figure 1 shows some of the symptoms of scoliosisCohe angle of a
patient is a quantitative longitudinal trait that has clinicévwance in that increasing

Cobb angle indicates greater spinal deformity.

Figure 1. Signs of scoliosis.

Signs of scoliosis

Uneven
shoulders

Curve in spine

Uneven hips

FADAM.

Source: (Zieve, 2011)
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The Cobb angle is measured by first identifying the upper and lower end vertebra
Then lines are drawn extending the vertebral borders. The resultilegiatige Cobb

angle and is measured as shown in Figure 2.

Figure 2. Measuring the Cobb angle.

MEASURING THE COBB ANGLE

From the top, the
~ most displaced
vertebrae

From the bottom, the
most displaced
vertebrae

Source: e-radiography.net and core concepts
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There are three linear trajectory groups based on a PROC TRAJYsia
(implemented in the SAS program). The linear growth mixture muadlél the three
linear longitudinal trajectory equations for each participanused in my simulation
study is:

15 + N(0, 0?) TG =1

Ywe =115+ 28(t — 0.25) + N(0,6%) TG =2 Equation 1
15 +56(t —0.25) + N(0,6%) TG =3

Here, y,, . refers to the Cobb angle of a participamtat time ¢t for the trajectory
group the participant was assigned to. The grdli@s= 1,2,3 are modeled so that a
participantw is in the constant, intermediate and fast groups, respectivelygértetic
model (introduced in the next section) determifiés the trajectory group. The time
variable t ranges from 0.25 through 1 in intervals of 0.15 units. The random error
follows a normal distribution with a mean of 0. The estimated stdrdkviation, g, is

set to 4 in my simulations.

Figure 3 presents the separation among the curves of each tbfébepolynomial

trajectory functions in Equation 1 for one replicate.
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Figure 3. The three trajectory curves for one replicate of ssmulated trajectory data
(n = 1198).
60
55 Ve (TG = 3) /
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Cobb Angle Measure
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Timein t years

Note: The groupTG = 3 is the clinically important group. It is also called the fast group
as it has the most rapid growth of the disease across tirtitegwlope of 56). The group
TG =2 has a slope of 28 and is the intermediate group. The dgféup 1 has no

increase in the progression of the disease and is called the constant group.
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2.2 Longitudinal Simulations

| use the Equation set 1 specified in section 2.1.4 to simulatéudimal data for each

participant. Each participant is assigned to one of the tragetory groups: the slow (or
constant), intermediate, or fast groups, according to the diseastgmee matrix (See
section 2.3). The dependent variable at the last time pointl presents the progression

of the disease. A larger value indicates more rapid disease progression.

A SNP that generates the disease using the longitudinaittwjdunctions is called
a disease SNP or causal SNP. A SNP that is not related tdighase is called
non-causal SNP. | use non-causal SNPs results as the basis of my nullsims@atl use

disease SNPs for my power simulations.

2.2.1 Null Simulations

The empirical type | error (false-positive rate) for @\YP is the proportion of p-values
of the association test as given in PLINK that are lessttifenominal significance level
0.05. The null hypothesis is that there is no association betweerNtRis §enotype and

the participant’s phenotype. That is, genotypes and phenotypes appear to be independent.

Type I error rate = P(reject Hy|H)

S o Eauation 2
= P(association test P — value < 0.05|no association) quation
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For example, if a SNP matching one of the disease genes hast G ©000
replicates significant in the association test at the 0.05, lesy@lstimated type | error rate

is 0.067 + 0.015.

For each of the combinations of population, penetrance, prevalence a&tting, |
generate a total of 1,000 replicates on the Hapmap dataset. The depandbétds in my
statistical analyses are the empirical type | erra, rile empirical power and the lack of
robustness of validity of the two statistics with or without 10 Bdjgstment. | define the

lack of robustness of validity measure of a method on a null SNP as:

Lack of Robustness of Validity = (typel error rate — 0.05)? Equation 3

A value of lack of robustness of validity close to O indicates ttiatype | error rate is

close to the nominal value, while a larger value indicates a lack of robustrveadislity.

In my study, | specify two null simulations according to the cati@h between
non-causal SNPs and the disease SNPs. Further information fis¢lase loci is given
in the power simulation section. The Pearson correlation coefBcaatcalculated based

on the MAFs of the non-causal SNPs across population using MATLAB software.

2.2.2.1 Pearson Correlation coefficient

In my research, | calculate the sample Pearson correlatioficcodf between the

non-causal SNPs and the disease SNPs across the 11 populations. Far eA&8Nps, |
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calculate eleven pairs of numbers that are population MAFs on 1198igaarts. The

definition is presented below.

_ M0y SEinGi-y)
xy = m -\2 y'm )2 B 11 2 yv11 )2
\/Zi:1(xi_x) Zi:l(yi_y) \/Zizl(xi_x) Zi:1(J’i_Y)

r Equation 4

Here, x; represents the MAF for populatianof a non-causal SNBj; represents the

MAF for populationi of a disease SNFX andy are the average MAF of the eleven
population MAFs of the non-causal SNP and the disease §N&hd s, are the sample
standard deviations of the eleven population MAFs of the non-causal SNP and the disease

SNP.

2.2.2.2 Null Simulation | Using Uncorrelated SNPs

Under the null hypothesis, a participant’'s phenotype is independent ofygendat
calculate the matrix of correlation coefficients of the MAfyspopulations with all the
SNPs in my sample as the rows and the 18 disease SNPs akithesc The MATLAB
software is used for finding the correlation coefficients andptvalues. In my null
simulation 1, | identify a group of 25 SNPs whose MAF by populatoleast correlated
with a disease locus. For example, for multi-locus simulatiatis 8 disease SNPs, |
choose 450 different SNPs. Each set of 25 has the lowest absolulatiomsavith one of

the 18 disease loci. The list of the low correlated SNPs is presented in the Appendix D
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2.2.2.3 Null Simulation 11 for SNPs Having MAF Correlated with Disease SNP

In my null simulation 1l, | identify a group of 25 SNPs with MAK population most
highly correlated with the MAFs of a disease locus. | cafiglfenatching SNPs”. They are
the SNPs that might be confounded with the disease genes in andiyséo PS. For
example, for multi-locus simulations with 18 disease SNPs, | chtsdelifferent SNPs
that are most associated with the disease SNP% (0.99). The list of the correlated

matching SNPs is presented in the Appendix D.

Since population stratification is commonly considered an impodantounding
variable in a one sample study, | will apply the PC adjustmesthod to detect how
effective this approach is in dealing with the PS problem. Sgaty | focus on the extent
to which the PC adjustment distinguishes SNPs having corrglafgdation MAFs from

the disease SNPs.
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2.2.2 Power Simulations

Empirical power for a disease gene is defined here as the poopoirtreplicates that

have p-value less than 0.05 for the disease gene. That is,

power = P(reject Hy|H,)
= P(association test P — value < 0.05|dependent/associated)

Equation 5
| consider two types of scenarios under the alternative hypatteesimgle locus

(gene) model and a model with multiple causal genes.

2.2.2.1 Single-locus models

| select the three loci with MAF 0.01 on chromosome 3 (representi@gAfrican
populations), chromosome 17 (representing the Asian populations) and chremtisom
(representing the European populations). | also select threeomo@hromosome 3
representing the African populations with MAF 0.05, 0.15 and 0.30. All secteel
single-locus disease SNPs are in apparent HWE. Each SNPidelg warying MAFs
among the eleven populations in my sample database. Table 5 coméaliss of the six

single-locus disease SNPs.
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Table 5. Selected single-locus disease gene.

Single-locus .
MAF _ Chromosome  Population
Disease Genes

0.01 rs7355991 3 African

0.01 rs2073868 17 Asian

0.01 rs12790383 11 European

0.05 rs6792511 3 African

0.15 rs11924006 3 African

0.30 rs9810313 3 African

2.2.2.2 Multi-locus Simulations

| specify 18 rare disease SNPs that each has overall MARHas 0.01 on chromosomes
3, 6, 11, 12, 17 and 19 for the multi-locus disease model. For each chromts@me,
genes from three general populations (African, European and Asipactigsly, as
defined in section 2.2.1) are selected in my sample. Table 6 shewlsstribution of the
18 disease genes by chromosome and general population. Table 7 ctiaaMAF
statistics on these 18 SNPs. These SNP markers have p-value of HWE gadihésst

greater than 0.10 and do not appear to deviate from HWE proportions.
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Table 6. The 18 multi-locus ssmulation disease genes.

Chromosome African European Asian
3 rs7355991 rs17195948 rs3733124
6 rs9459886 rs1259069 rs3761998
11 rs11825331 rs12790383 rs11217935
12 rs1696449 rs12822275 rs17117910
17 rs9899123 rs34742396 rs2073868
19 rs10411117 rs270771 rs3745465
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Table 7. MAF by populationsfor 18 multi-locus simulation genes.

African

European

Indian Mexican

Chr Disease SNPs Overall MAF
ASW LWK MKK YRI CEU TSI CHB CHD JPT GIH MEX
3 rs7355991 0.028 0.023 0.016 0.044 0 0 0 0 0 0 0 0.011
3 rs17195948 0.019 0 0 0 0.054 0.044 0 0 0 0 0.009 0.010
3 rs3733124 0 0 0 0 0 0 0.026 0.032 0.036 0 0.026 0.010
6 rs9459886 0.038 0.009 0.016 0.048 0 0 0 0 0 0 0 0.010
6 rs1259069 0.009 0 0 0 0.063 0.049 0 0 0 0 0.009 0.011
6 rs3761998 0 0 0 0.003 0 0 0.055 0.014 0.031 0 0 0.011
11  rs11825331 0.038 0.023 0.029 0.020 0 0 0 0 0 0 0 0.010
11  rs12790383 0 0 0 0 0.067 0.049 0 0 0 0 0.009 0.011
11  rs11217935 0 0 0 0 0 0 0.033 0.046 0.022 0 0 0.010
12 rs17117910 0 0 0 0 0 0 0.018 0.014 0.071 0 0 0.010
12 rs12822275 0 0 0 0 0.054 0.050 0 0 0 0.010 0 0.010
12 rs1696449 0.028 0.032 0.013 0.041 0 0 0 0 0 0 0 0.011
17 rs9899123 0.047 0.023 0.006 0.048 0 0 0 0 0 0 0 0.011
17 rs2073868 0 0 0 0 0.004 0 0.022 0.023 0.054 0 0 0.010
17  rs34742396 0 0 0 0 0.054 0.054 0 0 0 0.005 0.009 0.010
19 rs3745465 0 0 0 0 0 0 0.022 0.050 0.035 0 0 0.010
19 rs10411117 0.019 0.023 0.022 0.034 0 0 0 0 0 0 0 0.010
19 rs270771 0.009 0 0 0 0.058 0.054 0 0 0 0 0.009 0.011
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2.3 Genetic Models

In my study, | used the genotype information of the selected disease SNPprasctpal
determinant of trajectory group membership. | study both a slogls- gene model and
models with multiple causal genes. In this section, | discuss mofledbmplete penetrance
with high prevalence, complete penetrance with low prevalencgalgaenetrance with

high prevalence, and partial penetrance with low prevalence.

2.3.1 Disease Prevalence and Penetrance Matrix

2.3.1.1 Disease Prevalence

The prevalence of a disease in epidemiology is defined as the twapoir cases in a
population. That is, the number of individuals that are with the disgasetoms divided
by the total number of people in the population. The law of total protyagiiecifies the
relation between the penetrance parameters and the traitgorexaFor example with

G,, G, andG; denoting the three SNP genotypes,
P(D) = P(D|G{)P(G,) + P(D|G,)P(G,) + P(D|G3)P(G3) Equation 6

For the multi-locus model, a high prevalence model is consideretiahnwhere are

two trajectory groups determined by the number of minor allelébett is any minor
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allele in a disease gene, the participant is assigned fagshe&ajectory group. Otherwise,

the participant is assigned to the constant trajectory group.

A low prevalence model is considered in which there are thegectory groups
determined by the number of minor alleles. If there are origmwaminor alleles of the
disease gene or genes for a participant, the participassignad to the intermediate
trajectory group. If there are more minor alleles, the partitigmassigned to the fast
trajectory group. Otherwise, if there are no minor alleles ofdisease genes for a

participant, the participant is assigned to the constant trajectory group.

2.3.1.2 Penetrance Matrix

In genetics, trait penetrance of a genotype is defined as the oaatiprobability that a
participant with the specified genotype has the trait being studidarge penetrance
value for a genotype indicates that an individual who has the genstyigely to have

the trait. Conversely, a small penetrance value means that amduadiwith the genotype

is not likely to have the trait. For example, detepresent the total number of risk alleles
in a given disease gene, afid represent the trajectory group an individual is assigned
to. Here, TG = 3 indicates that the individual is assigned to the group with fasaghse
development. Then, an example of complete penetrance for participémntsvey minor

alleles is thatP(TG = 3|d = 2) = 1.
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The penetrance matrix for specified disease gene or genes is defined as:

P(TG = 1|G < B,) P(TG = 2|G < B,) P(TG = 3|G < B,)
P(TG=1|B;<G<B,) PTG=2|B;<G<B,) P(TG=3|B;<G<B,) |=
P(TG = 1|G > B,) P(TG = 2|G > B,) P(TG = 3|G > B,)

3 1
1-p P 2P \
1, 1-, 1

P p 5P
s /
2P 2P p

Equation 7

Here, G refers to the total number of risk alleles of the disease gergenes for a
participant. B; and B, are the limit bounds determined by the prevalence of the disease
gene or genes. The penetrance parameter0 indicates complete penetrange= 0.1
means a high penetrance apd= 0.4 means a low penetrance. For example, a complete

penetrance matrix for a single-locus model is defined as:

P(TG=1|6=0) P(TG=2|G6=0) P(TG=3|G=0)
P(TG=1/6=1) P(T6=2|6=1) P(TG=3|6=1)
P(TG=1|6=2) P(TG=2|6=2) P(TG=3|G=2)

1 0 0
=0 1 O Equation 8

0 0 1

Further information is provided in the next section.
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2.3.2 Additive Model

2.3.2.1 Single-locus Additive Model

First, | consider a single-locus additive model in which therghaee trajectory groups
determined by the effect of a single-locus gene. The most conmajentory group has
intercept equal to 15, and slope equal to O (thafjss= 15 and B, = 0). This group is
called the flat or constant group. The second has intercept 15 and28lofpleat is,

B =15 and S, = 28); this group is called the intermediate group. The third has
intercept 15 and slope 56 (that |8, = 15 and 8, = 56); this group is called the fast

group. It is the clinically important group. The model is

15 + N(0, o) TG =1
Ywe =115 +28(t — 0.25) + N(0,0) TG =2 Equation 9
15 + 56(t — 0.25) + N(0,6) TG =3

| consider three penetrance settings for a single-locus \agldiiodel: low, high and

complete. As discussed above, the penetrance matrix is given by:

P(TG=1|6=0) P(TG=2|G=0) P(TG=3|G=0)
P(TG=1|6=1) P(TG=2|6=1) P(TG=3|6=1) |=
P(TG=1|6=2) P(TG=2|6=2) P(TG=3|G=2)

3 1
/1—P 2P ;P\
P

1 1 1 .

\ 3P -p 5 ) Equation 10
T
P 5P p

Where p € [0,1]. The penetrance matrix with paramejer= 0 indicates complete

penetrance. That is, it is
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P(TG=1|G=0) P(TG=2|G=0) P(TG=3|G=0)
P(TG=16G=1) P(TG=2|6=1) P(TG=3|G=1)
P(TG=1|G=2) P(TG=2|G=2) P(TG=3|G=2)

1 0 0
=0 1 O Equation 11

0 0 1

Here, a participant with major homozygote genotype=(0) is in the constant trajectory
group with probability 1, in the intermediate increase group with pibtya0 and in the
fast increase group with probability 0. A participant with hetegoiy genotyped = 1)

is in the intermediate increase group with probability 1, in thetanhsrajectory group
with probability 0 and in the fast increase group with probability (ha/icipant with
minor homozygote genotyp& = 2) is in the fast increase group with probability 1, in

the constant trajectory group with probability O and in the intermediate group O.

The penetrance matrix witp = 0.1 is called the high penetrance model, that is:

P(TG=1|6=0) P(TG=2|G=0) P(TG=3|G=0)
P(TG=1|6=1) P(TG=2|6=1) P(TG=3|6=1) |=
P(TG=1|6=2) P(TG=2|6=2) P(TG=3|G=2)

< 0.9 0.075 0.025)

0.05 0.9 0.05
0.025 0.075 0.9

Equation 12

Here, a participant with major homozygote genotype=(0) is in the constant trajectory
group with probability 0.9, in the intermediate increase group pvibbability 0.075 and
in the fast increase group with probability 0.025. A participant \igterozygote
genotype ¢ = 1) is in the intermediate increase group with probability 0.9, in the

constant trajectory group with probability 0.05 and in the fast iseregoup with
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probability 0.05. A participant with minor homozygote genotyGe=(2) is in the fast
increase group with probability 0.9, in the constant trajectory graitip pvobability

0.025 and in the intermediate group 0.075.

The penetrance matrix with = 0.4 is called the low penetrance model, that is:

P(TG=1/6=0) P(TG=2|6=0) P(TG=3|G=0)
P(T6=1/6=1) P(T6G=2|6=1) P(TG=3|G=1)
P(TG=1/6=2) P(TG=2|6=2) P(TG=3|G=2)

0.6 0.3 0.
=10.2 0.6 0.
0.3 0.

0.1

AN =

) Equation 13

This matrix indicates that a participant with major homozygmeteotype will be in the
constant trajectory groupl'¢ = 1) with probability 0.60, in the intermediate group
(TG = 2) with probability 0.30, and in the fast increase grali@ € 3) with probability
0.10. For a participant with heterozygote genotype, the probability ofyhei the
intermediate trajectory group is 0.60, in the fast increasectaay group 0.20, and in the
constant trajectory group 0.20. For a participant with minor homozggtetype, the
probability of being in the fast increase trajectory group is 0.6@henintermediate

trajectory group 0.30, and in the constant group 0.10.
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2.3.2.2 Multi-locus Additive Model

There are 1198 unrelated participants in this Hapmap data base, andhaus7
non-missing genotypes on the 18 disease genes. | caldulatee number of minor
alleles, for the 18 disease genes for each of the 1187 participamtg sample with
complete genotype information. | use this as the number of risk dleles

The distribution ofR from my sample is given below. As shown in Table 8, 833
participants (70.2%) have no minor alleles, 270 participants (22.8%) haveraiminor

allele and 84 patrticipants (7.1%) have more than 2 minor alleles.

Table 8. Thedistribution of therisk alleles, R, for 18 disease genes.

R Frequency Percentage (%) Cumulative
Percentage (%)

0 833 70.18 70.18

1 270 22.75 92.92

2 75 6.32 99.24

3 8 0.67 99.92

4 1 0.08 100.00

Total 1187 100

Note: Frequency missing =11.

As in the single-locus model, each participant is assigned tajecttory group
according to the following general additive model and the penetrance matrix.

The model specifies trajectory class by

38



TG=1 R=0
TG=2 R=1 Equation 14
TG=3 R>1

The penetrance matrix for multi-locus disease genes moddieissame as in

single-locus disease genes model, given by

P(TG=1|R=0) P(TG=2|R=0) P(TG=3|R=0)
P(TG=1R=1) P(TG=2R=1) P(TG=3|R=1) |=
P(TG=1R>1) P(TG=2|R>1) P(TG=3|R>1)

3 1
/1—P 2P ;P\
1 1
P

\ 2P 1-p 5 ) Equation 15
T
2P 2P P

where p = 0 for complete penetrance, = 0.1 for high penetrance and = 0.4 for

low penetrance as described in the last section.
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2.3.3 Complete Penetrance with High Disease Prevalence Model

There are only two trajectory groups in the complete penettagheprevalence model.
If there is any minor allele among the disease genesydihadual goes to the fast group.

Otherwise, the individual is in the constant trajectory group.

Gj = {O R=0 Equation 16

Here, j represents the participant adis the number of minor alleles.
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2.4 Methods

2.4.1 BPP Association Testing Method

After generating the longitudinal data, | apply the SAS TRAJ phaeeto the simulated
data. There were 1198 vectors lbfvalues, one vector for each participant in my small
sample dataset. The vectors are the input to SAS PROC TRK&ianbrun PROC TRAJ
with number of trajectory classes being 1, 2, 3, 4, 5 and 6, and attajeatory pattern for
each trajectory class. | use the global maximum Bayesiamntation Criterion (BIC)
scores to select the number of trajectory classes. Thatissé as the number of trajectory

classes the model with the largest BIC score.

For example, | analyzed one replicate with SNP rs13322354 on Chrom@8same
the disease gene. The data set contained 1198 subjects observedeap@iriis. There
were three trajectory groups in the data for this replicate. [argest BIC score came

from four trajectory classes. Table 9 presents the PROC BRA®cores and estimated

trajectory group prevalence for settings of number of trajectoryeddssm 1 to 6.
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Table 9. BIC scores with estimated trajectory class prevalence for marker
rs13322354 on chromosome 3.

Trajectory Linear Order
Groups BIC Group Membership (%)

1 -12714.10 100.00
2 -11172.64 82.71/17.29
3 -11185.48 0.00/82.71/17.29
4 -10707.72 0.00/82.71/13.05/4.24
5 -10720.55 0.00/0/82.71/13.05/4.24
6 -10731.57 0.00/0.75/81.95/0/13.05/4.24

The graph of the four trajectories is presented in Figure 4.fduregroup model had
three trajectory groups with non-zero fractions. Each model withdioomore groups had
only three groups with percentage greater than 1%. Note that oely ¢lmoups had

participants assigned in Figure 4.
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Figure 4. Four trajectory groups plot for marker rs13322354 on chromosome 3.

Dependent Variable vs. Scaled Time 4 Quadratic Classes

Cnorm Model

Dependent Variable
60.00]

50,007

40.007

30.007

20.00

10'007\ T T T T T T T T
0.20 0.30 0.40 0.60 0.60 0.70 0.30 0.90 100

Scaled time

Group Percents Tt 0.0 T 82,7 e < T+ 4.2

Note: There are 0.0% of participants found in trajectory group 1.

The corresponding contingency table of the four trajectories witlgéinetype of the

disease gene is presented in Table 10.

Table 10. Contingency row percentage table of genotype by trajectory group.

Trajectory Group Membership (%)

G 1 (flat) 2 (flat) 3 (intermediate) 4 (fast)

0 0.00 90.70 6.62 2.68
1 0.00 0.00 87.50 12.50
2 0.00 0.00 16.67 83.33

Here, trajectory group 4 is clinically important.
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Having chosen the number of classes, | select the trajectory gnatips most
important clinically. It is the one with the fastest increase in expectad wal.

Follow Datta and Satten et al. (2000), | use the Bayesian Pogteoioability (BPP)
of being in the most clinically important group as my quantitatia in the association
test in PLINK. The p-values of the association test arerdecd. The procedures were
repeated for each of 1000 replicates.

Here the BPP method instead of modal BPP is used for assigwiivgduals to a
particular trajectory group because Lubke and Muthen (2007) documenteahdtiak
BPP assignment has low accuracy for simple models with groups tledbsedogether.

For each scenario and model in my study, | apply an associationitteshe BPP of
the clinically important group as the quantitative trait. Then lyag® linear regression
PC adjustment method to account for PS. The procedure is done by pr&#&n and

PLINK as given in Appendix B.

2.4.2 PC Adjustment for PS and Linea Regression

| use EIGENSTRAT software in EIGENSOFT to calculate 10.0s402,399 SNPs on

the six chromosomes and 1198 unrelated participants are used. These 10 PCs and the SNP
genotypes are considered as independent variables. The simulatathtiummtaits are
recorded as the phenotypes. A linear regression model is fit using PLINK v1.07 cdmma

lines to evaluate the association between each SNP studied gttetioeype. A SNP is
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considered associated with the quantitative trait phenotype whep-ithtie of the
coefficient of the SNP is less than 0.05.

The original model fit to the quantitative trait phenotypes usingsaocéation test in
PLINK is:

Yij = Bo+ B1SNP;; + & Equation 17

The PC adjustment model fit to the quantitative trait phenotysesg a linear
regression option in PLINK is:

Yij = ﬁo + ﬁ]_SNPl] + ﬁzPCl + ﬁ3PC2 + .-+ ﬁuPCw + Eij Equation 18

Here, j represents thgth individual. i represents théth SNP, andPC; represents

theith global principal component.
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2.5 Factorial Designs
2.5.1 PCAdjustment

For each simulation setting, | have two levels of the PC adjustseting (no PC
adjustment and with PC adjustment) using 10 PCs calculated tfrenentire sample

space to account for population stratification.

2.5.2 Disease Penetrance

| specify three levels of disease penetrance for each sionuldthey are low, high and
complete penetrance. A model with low or high penetrance is dled @areduced or
partial penetrance model. A model with complete penetrancentsnes called a

complete penetrance model. See descriptions in section 2.3 genetic models.

2.5.3 Disease Prevalence

| specify two disease prevalence models for each of the domie and multi-locus
models. One is the high prevalence model. That is, if an individisahthleast one minor
allele among the genes, then the participant is in the fgstctyey group under a
complete penetrance model. Otherwise, the participant is irotig¢amt trajectory group.
See descriptions in section 2.3 Genetic Models. | also specify levalpnce models.
There are three possible trajectory groups in a low prevalence :moaestant,

intermediate and fast groups. A participant is assigned to one othtee groups

according to the penetrance matrix and the total number of minor aleles
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2.5.4 General Population

For both the single-locus and multi-locus model, | consider a threlegplepelation factor.

The three levels are African, Asian and European.

2.5.5 MAF (for single-locus model only)

For a single-locus model, | also consider an overall MAF factoctwhas four levels:

0.01, 0.05, 0.15 and 0.30.
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2.6 Experiments

| consider three experiments under the single-locus model and pgareents under the
multi-locus model for predictingy] the robustness of validity of null simulations and the
rejection rates of th@ower simulations. Table 11 below shows the settings for each

experiment.

Table 11. Factors used in the single and multi-locus model experimentstable.

Single-locus Multi-locus
) Experiments Experiments
satings o e -
Expl Expll ”Ip ExplV ExpV
PC 1 + + + + +
Penetrance 2 + + - + -
Population 2 + - - + +
MAF 2 - + + - -
Chromosome 5 - - - + +

Note: “+”: the settings are in an experiment; “-": the settings are not in anieqrer

2.6.1 Single-locus Experiments

Experiment | has three single-locus disease SNPs W#F =~ 0.01 on
chromosome 3 representing the African population, chromosome 11 reprgsteti
European population, and chromosome 17 representing the Asian population factors.
Experiment | has three factors: population, penetrance and use dalji&brent. The
population factor,x;, has three levels (Af = African, As = Asian, Eu = European). The
penetrance factory,, has three levels (low, high and complete). The use of PC fagtor,
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has two levels (nopc = no PC adjustment, pc = 10 PCs adjustmkrigm@ome is not
considered here as a factor because it is confounded with populatiomotat also

contains all two factor interactions. | fit the generalized linear model:

y = ﬂo + lel + Bzxz + B3X3 + ﬂ4x1x2 + ﬂsx1x3 + ﬂ6x2x3 + & Equation 19

Experiment Il has three single-locus disease SNPs with MAS, 0.15 and 0.30
on chromosome 3 representing the African population using an additive model.
Experiment Il has three factors: MAF, penetrance and us€addjustment. The MAF
factor, x;, has three levelsMAF = 0.05,0.15,0.30). The penetrance factox,, has
three levels (low, high and complete). The use of ¢ has two levels (nopc = no PC
adjustment, pc = 10 PCs adjustment). The model also contains aldteo ihteractions.

| fit the generalized linear model given in Equation 19 above.

Experiment 1l uses the high prevalence complete penetrance mvidbethe same
SNPs as in experiment Il. Experiment 11l has two factorsAvid use of PC adjustment.
The MAF factor, x;, has three levels/AF = 0.05,0.15, 0.30). The use of PCx,, has
two levels (nopc = no PC adjustment, pc = 10 PCs adjustment). The atealebntains

the interaction between MAF and PC. | fit the generalized linear model:

Y=o+ P1x1+ P2x3 + P3x1x; + & Equation 20
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2.6.2 Multi-locus Experiments

Experiment IV has 18 multi-locus disease SNPs with MAF = 0.0hoomwosome 3,
6, 11, 12, 17 and 19 representing the African, Asian and European population. The
additive model is used for experiment IV. Experiment IV has fagtofs: population,
penetrance, chromosome and use of PC adjustment. The population factas three
levels (Af = African, As = Asian, Eu = European). The penetraact®f, x,, has three
levels (low, high and complete). The use of PC factgr,has two levels (nopc = no PC
adjustment, pc = 10 PCs adjustment). The chromosome fagiprhas six levels
(chromosome 3, 6, 11, 12, 17 and 19). The model also contains all two factor interactions.

| fit the generalized linear model:

Y =PBo+ B1x1+ B2xz + B3xs + Baxs + PsX1Xz + PeX1X3 + B7X1X4 + PgXXx3 +
ﬁgx2x4 + Blox3X4 + & Equation 21

Experiment V has the same settings but using the high prevalemplete
penetrance model. Experiment V has three factors: population, chroma@saruse of
PC adjustment. The population factas, has three levelsMAF = 0.05,0.15,0.30).
The chromosome factor,, has six levels (chromosome 3, 6, 11, 12, 17 and 19). The use
of PC, x,, has two levels (nopc = no PC adjustment, pc = 10 PCs adjustment). The
model also contains the interaction between population and PC. | figetieralized

linear model given in Equation 19 above.
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2.7 Software

| used four programs in my study: PLINK, MATLAB, SAS PROIRAJ, and

EIGENSTRAT as described below.

2.7.1 PLINK

PLINK is a freely available program with open-source code. It is aewvgehome
association analysis toolset designed to perform a rangeiof lzage-scale analyses in a
computationally efficient manner. The focus RIEINK is purely on the analysis of
genotype/phenotype data.

I use PLINK v1.07 software to extract the data on the six chsomes selected. | also
use PLINK to perform the association analysis of the quanttathenotype extracted
from the SAS PROC TRAJ analysis described below. Spdbjfidause the association
and linear association functions in PLINK to analyze the dataNRLtassoc option
calculates the P-value of the association chi-square tetbtefalisease SNPs selected and
also the matching and non-correlated SNPs without any PC adpistr?e INK —linear
option calculates the P-value of linear association test fadiiease SNPs selected and

also the matching and non-correlated SNPs with 10 PCs added as covariates.
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2.7.2 MATLAB

MATLAB is a language for technical computing. It is a progmang environment for
algorithm development, data analysis, visualization, and numerical catmoputlt can
solve technical computing problems faster than the traditional progreyrianguages,
such as C, C++, and FORTRAN. | use MATLAB to calculate theetation coefficients
matrix with 402,399 rows and 18 columns. Here, the 402,399 rows are aIN®P& S

MAFs by population. The 18 columns represent the 18 multi-locus disease SNPs.

2.7.3 SAS TRA] procedure

SAS TRAJ procedure is widely used to model longitudinal data (Jetnals 2001). For
each replicate, each participant is assigned to a particajecttry group according to the
genotype data of the simulation (null or alternative) and sce(sngle or multi-locus)
model described in the above sections. A total of 1000 replicategeaeeated for each
simulation under each scenario. The longitudinal data is gedarsitgy one of the three
linear equations mentioned in 2.1.4 according to the trajectory groupi@paeut is in.
There aren vectors ofY values, one vector for each participant in the sample. hierg,

the sample size. The vectors are the input to SAS PROC TRAJ analysis.

I then perform PROC TRAJ analysis with number of trajectagses being 1, 2, 3, 4,
5 and 6, and a linear trajectory pattern for each trajectasg tb estimate each model. The

time points range from 0.25 through 1 in intervals of 0.15 and are usedependent
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variables. | use the global maximum BIC score to select the nurhbrjectory classes.
That is, | choose as the number of trajectory classes the mikdehe largest BIC score.

Other selection rules are used in practice.

The clinically important group is identified as the group witighest disease
progression speed, that is, the one with the greatest slope. The BR® a@inically
important group is recorded to be used in the PLINK software aquhsetitative trait

phenotype input.

2.7.4 EIGENSTRAT

Price et al. (2006) created the EIGENSTRAT stratification emtion software. The
software EIGENSOFT 4.2 performs the computations and can be downlvadethe

website: http://www.hsph.harvard.edu/faculty/alkes-price/softwarbe software uses

principal components analysis to detect and model ancestryedifies, and correct for
population stratification in genome-wide association studies. It sigppeveral file
formats including the PLINK PED format. The PC adjustmemspiscific to a candidate
marker's variation in frequency across ancestral populations1 heapplied to disease
studies with hundreds of thousands of markers.

| use CONVERTF software in EIGENSOFT to convert PLINKDOPformat data sets
to EIGENSTRAT formats. Then | use EIGENSTRAT softwaredlrwaate 10 PCs using

all 402,399 SNPs on the six chromosomes in my sample.
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Chapter 3 Results

3.1 Single-locus M odel Results

3.1.1 ExperimentI Results

Table 11 presents the average empirical type | error madeeapirical power
observed in the AIS simulations under experiment |, which has diSMNBeVIAF =
0.01, representing African, Asian and European population as describdthieC 2
Methodology. The table also includes 95% confidence intervals. Eacle-kicgk
disease SNP in the table has 25 uncorrelated SNPs (Méfessapopulation less
correlated with the disease SNP) and 25 matching SNPs (MAfess population as

correlated as possible with the disease SNP MAFs).
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The empirical type | error rate using the uncorrelated SNiBsa lack of robustness
of validity appearing in the complete penetrance without PC adjmstimodel. For
example, on Table 11, using nominal level of significance 0.05 argzampdata from
the complete penetrance model, 163460 +0.005) of the replicates for which the 25
SNPs uncorrelated with the disease SNP rs7355991 on chromosome 8ntepgebe
African population are found to be significant in the association teshhere is no PC
adjustment. With PC adjustment, the number of replicates thatigmdicant at the

nominal 0.05 level in a linear regression test decreases t6.@40 (+0.002).

The empirical type | error rate using the matching SNPs slowsbustness of
validity for the low penetrance settings both with and without PC tugrg. For
example, the 25 SNPs matching the disease SNP rs7355991 on chromosome 3
representing African population have an average type | erro0.1@88 +0.003 without
PC adjustment at the nominal 0.05 level. With PC adjustment, thes rai@52 +0.003.

There is a failure of robustness of validity for complete franee both with and without
PC adjustment. For example, the 25 SNPs that match the did¢ase7377991 have an
average type | error ra@560 +0.006 without PC adjustment. With PC adjustment, the
rate decreases 280 +0.006, but is still far above the nominal 0.05 level. In general,

PC adjustment improves robustness of validity.

The rejection rate for disease SNPs with PC adjustmembss to the rate without
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PC adjustment. For example, the rejection rate without PC adjusten@549 +0.031
for the disease SNP rs2073868 on chromosome 17 representing the Asiatiqgroatilae

nominal 0.05 level. With PC adjustment, the rejection rabeb3 +0.031.
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Table 12. Empirical regjection rates with 95% confidence interval for the single-locus model under experiment | (disease
SNP MAF = 0.01) at the nominal 0.05 level (1000 replicates)

] Penetrance
MAF S.mglelocus Chr  Pop Complete High Low
Disease Genes
No PC PC No PC PC No PC PC
Uncorrelated SNPs (null I)
rs7355991 3 Af 0.160 +0.005 0.040 +£0.002 0.053 +0.003  0.053+0.003  0.051+0.003  0.050+0.003
0.01 rs2073868 17 As 0.120 £0.004 0.040 +0.002 0.055 +0.003 0.053 +0.003 0.050+0.003 0.05240.003
rs12790383 11 Eu 0.000 £0.000 0.040 +0.002 0.045 +0.003 0.047 £0.003  0.0504+0.003  0.051+0.003
Matching SNPs (null II)
rs7355991 3 Af 0560 +0.006 0.280 +0.006 0.074 +0.003 0.059 +0.003 0.053 +£0.003  0.052+0.003
0.01 rs2073868 17 As 0520 +0.006 0.160 +0.005 0.079 +0.003 0.067 +0.003 0.055 +0.003  0.051 +0.003
rs12790383 11 Eu 0.520 +0.006 0.440 +0.006 0.070 £0.003 0.065 +0.003 0.052 +£0.003  0.049+0.003
Disease SNPs (Power)
rs7355991 3 Af  1.000 +0.000 1.000+0.000 0.259+0.027 0.2484+0.027 0.362+0.030 0.352+0.030
0.01 rs2073868 17 As 1.000 +0.000 1.000+0.000 0.716+0.028 0.729+0.028 0.549+0.031 0.523+0.031
rs12790383 11 Eu 1.000 +0.000 1.000+0.000  0.165+0.023 0.173+0.023 0.236+0.026 0.232+0.026

Note: The headings for each column are defined as follows: Chr = Chromasombkich SNP marker is located (see Methodology — Power
Simulations). Pop = General populations, including African (Af), A¢Rs) and European (Eu). The complete penetrance model is with high
prevalence (two trajectory groups) since the MAF = 0.01 is tal.sirhe high and low penetrance models are with low prevalencdiyaddi
model is used, three trajectory groups). See Methodology — Géfediels. Type | error rates that are significantly differeatrfrthe nominal

0.05 level are in bold. For each setting 1000 replicates are generated. Africans Asiat&6n = 359, Europeans n = 214,
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3.1.1.1 Null I Simulation Using Uncorrelated SNPs

The ANOVA of the measure of lack of robustness of validity for uheorrelated
SNPs is shown in Table 12 below. The model haR-aquare of 0.8924. These results
indicate that the overall model is not statistically signiftcé = 2.55, p — value =
0.1892). Because the smalleptvalue in the ANOVA is thep-value for the factor
penetrance and is equal to 0.0770, | conclude that there are no sigriditars for the
lack of robustness of validity. That is, the statistical analyisisiot confirm the apparent
failure of robustness of validity for data from the complete paneé model analyzed

without PC adjustment.
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Table 13. The ANOVA table for the single-locus model uncorrelated SNPs under
experiment | at the nominal 0.05 level (dependent variable: lack of robustness of
validity).

The GLM Procedure
Dependent Variable: lack of robustness of validity

Source DF || Sum of Squares | Mean Square | F Value | Pr>F
Model 13 0.00014 0.000 255 (| 0.189
Error 4 0.00002 0.000

Corrected Total 17 0.00015

R-Square | Coeff Var | Root MSE | Lack of Robustness of Validity Mean

0.892393 184.658 0.002 0.001
Effect OF Sum of Squares [Mean 55 F Ratio P Value
POP 2 0,000 0.000 0.996 0.445
PEHMETRAHN 2 0.00004 0.00002 5.200 0.077
PC 1 000002 0.00002 4932 0,090
POP*PENETRAN 4 0.0000°2 0.000 1.001 0.499
POP*PC 2 0,004 0.000 0,998 0.445
PENETRAN*PC 2 0.00004 0.00002 4914 0,083

To assist in the interpretation of these results, Figure 5 psegenplot of PC and
penetrance interaction. The lack of robustness of validity appeatbei complete

penetrance model without PC adjustment.
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Figure 5. Lack of robustness of validity of single-locus model uncorrelated SNPs
under experiment | at the nominal 0.05 level.
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3.1.1.2 Null II Simulation Using Matching SNPs

The ANOVA for the lack of robustness measure for the matchirflgsS&ishown in Table
13 below. The model has &isquare of 0.9702. These results indicate that the overall
model is statistically significantF(= 10.02, p — value = 0.0194). The value of the
statistic F = 12.224 (p —value = 0.0250) for the factor PC andF = 43.585

(p — value = 0.0019) for the factor penetrance are statistically significiatthermore,
because the test statistic for the interaction of PC and pecetraF = 12.131

(p — value = 0.0200), | conclude that this interaction is also significant. This \ansl

documents that the use of PC adjustment significantly improves robustness of. validity
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Table 14. The ANOVA table for the single-locus model matching SNPs under experiment |

at the nominal 0.05 level (dependent variable: lack of robustness of validity).

The GLM Procedure
Dependent Variable: lack of robustness of validity

Source DF || Sum of Squares | Mean Square | F Value | Pr>F
Model 13 0.140 0.011 10.02 | 0.019
Error 4 0.004 0.001
Corrected Total 17 0.144
R-Square | Coeff Var | Root MSE | Lack of Robustness of Validity Mean
0.970209 64.003 0.033 0.051
Effect OF Sum of Squares [Mean 55 F Ratio P Value
POP 2 0.001 0.0003 0.75% 0.525
PEMETRAHN 2 0.093 0.046 43.585 0.004
PC 1 0.013 0.013 12.224 0.025
POP*PENETRARN 4 0.003 0.0003 0.769 0.597
POP*PC 2 0.002 0,001 1.008 0.442
PEMETRAN"PC 2 0.026 0.013 12131 0.020
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For interpreting the results, | present the graph of the avémageof robustness of
validity measure of the empirical type | error rate at eawhbination of the penetrance
and PC in Figure 6. The lack of parallelism of the lines indidatgsthere is a significant
interaction between these two factors. In general, better rosasthealidity is attained
at low and high penetrance, regardless of the use of PC adjustnitbnPQ\adjustment,
the robustness of validity improves for the complete penetrance ni@dehdjustment
should be applied since it maintains better robustness of validitgenetrance level

changes.

Figure 6. Lack of robustness of validity of single-locus model matching SNPs under
experiment | at the nominal 0.05 level.
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3.1.1.3 Power Simulation Using single-locus disease SNPs

The ANOVA of the rejection rates for the disease SNPhasvs in Table 14 below. The
model has arR-square of 0.9999. These results indicate that the overall model is
statistically significant F = 2605.22, p — value < 0.0001). Since the interaction of
population and penetrance hBs= 774.95 (p — value < 0.0001), | conclude that there is a
significant interaction between population and penetrance. Fudheri= 2256.5

(p — value < 0.0001) for population andF = 13125 (p — value < 0.0001) for
penetrance. Hence the main effects of population and penetrandésoasigaificant. The
most important finding is that the use of PC adjustment and interadhvolving PC
adjustment are not significant. That is, the fitted rejectate with PC adjustment is

statistically equal to the fitted rate without PC adjustment.
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Table 15. The ANOVA table for the single-locus model disease SNPs under experiment | at

the nominal 0.05 level.

Dependent Variable: rate

The GLM Procedure

Source DF | Sum of Squares | Mean Square | F Value | Pr>F
Model 13 1.993 0.153 | 2605.22 || <.0001
Error 4 0.0002 0.0001
Corrected Total 17 1.993
R-Square | Coeff Var | Root MSE | rate Mean
1.000 1.309 0.008 0.586
Effect OF Sum of Squares lMean 55 F Ratio P Value
POP 2 0.265 0132 22586.5 <, 0001
PEMETRAN 2 1.544 0772 13128 <, 0004
PC 1 0. 0000E 0. 00005 {1,549 0.408
POP*PENETRAHN 4 0182 0.045 77495 <, 0001
POPPC 2 0.00005 0.00002 0.46176 0.660
PENETRAN'PC i 0.0002 0.0004 1,983 0.262

For interpreting the results, | present the graph of theageeempirical power at
each combination of the population and penetrance in Figure 7. The lackltdlizan of
the lines indicates that there is a significant interactiowdst these two factors. In
general, the power of the Asian population is greater tharothihe African population.
The power of the African population is also greater than that dEtwhepean population.

Higher power is attained at complete penetrance, regardless of population.
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Figure 7. Power of Single-locus model disease SNPs under experiment | at the
nominal 0.05 level.
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3.1.1.4 Statistical Analysis on Experiment I

Table 15 reports the averages of the rejection rate for geask SNPs and lack of
robustness of validity measure with or without PC adjustment. Eachisrthe average
over nine settings (three disease models time three penetsatioeys). The results
document the value of PC adjustment. When power is less than 1, &Eneajt is
effective and has lower but still strong power. Without PC adjustntiee type | error
rate cannot be controlled. Overall, the type | error rate Witlaéjustment has substantial
improvement but is significantly higher than the nominal signifiedeeel for matching

SNPs.
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Table 16. Averageregection rates and lack of robustness of validity on Factor PC.

Rejection Rate Lack of Robustness of Validity

Overall Average
No PC PC No PC PC

Uncorrelated SNPs (null )  0.065 +£0.001  0.047+0.001 0.029 +0.001  0.013+0.001
Matching SNPs (null Il) 0.220 £0.002  0.136+0.001 0.162 £0.002  0.089+0.001
Disease SNPs (Power) 0.587 £0.002  0.584+0.002

| also calculate the average of type | error, rates power akddf robustness of
validity with or without PC by the three general populations: Afric Asian and
European. My hypothesis is that African population needs PC adjustnogat than
European population but less than Asian population because of the population
immigration. The results in Table 16 indicate that global P@hoteadjust the type |
error rate well overall, especially for the African and Asiopulation, but less

effectively for the European population. The Asian population has the best power.
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Table 17. Average regection rates and lack of robustness of validity on Factors

population and PC.

Rejection Rate Lack of Robustness of Validity
Overall Average
No PC PC No PC PC
African
Uncorrelated SNPs (null I) 0.088 +0.001 0.048+0.001 0.049 +0.001 0.013+0.001
Matching SNPs (null Il) 0.229 +0.002 0.13040.002 0.169 +0.002 0.08540.001
Disease SNPs (Power) 0.540 +0.003 0.533+0.003
Asian
Uncorrelated SNPs (null 1) 0.075 +£0.001 0.048+0.001 0.037 £0.001 0.013+0.001
Matching SNPs (null Il) 0.218 +£0.002 0.093+0.001 0.158 +0.002 0.05040.001
Disease SNPs (Power) 0.755 +0.002 0.751+0.002
European
Uncorrelated SNPs (null 1) 0.032 +0.001 0.04640.001 0.001 +0.000 0.013+0.001
Matching SNPs (null II) 0.214 +0.002 0.185+0.002 0.157 £0.002 0.133+0.002
Disease SNPs (Power) 0.467 +0.003 0.468+0.003

| further calculate the average of the type | error rate, pawd lack of robustness of

validity with or without PC adjustment by the three penetrdagels: low, high and

complete. As shown in Table 17, the reduced penetrance models (Idwghhdhaintain

a correct type | error rate compared to the rates focdh®plete penetrance models. The

complete penetrance model has a larger power than the reduced penetrance models
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Table 18. Average regection rates and lack of robustness of validity on Factors

penetrance and PC.

Rejection Rate Lack of Robustness of Validity
Overall Average
No PC PC No PC PC
L ow Penetrance
Uncorrelated SNPs (null 1) 0.050 +0.001 0.051+0.001 0.000 +0.000 0.000+0.000
Matching SNPs (null II) 0.053 £0.001 0.050+0.001 0.000 +0.000 0.000+0.000
Disease SNPs (Power) 0.382 +0.002 0.369+0.002
High Penetrance
Uncorrelated SNPs (null I) 0.050 +£0.001 0.051+0.001 0.000 +0.000 0.00040.000
Matching SNPs (null I) 0.074 +0.001 0.064+0.001 0.002 +0.000 0.001+0.000
Disease SNPs (Power) 0.380 +0.002 0.383+0.002
Complete Penetrance
Uncorrelated SNPs (null 1) 0.093 +0.001 0.040+0.001 0.087 £0.001 0.038+0.001
Matching SNPs (null Il) 0.533 £0.003 0.293+0.002 0.483 +£0.003 0.267+0.002
Disease SNPs (Power) 1.000 +0.000 1.00040.000

| calculate the average of type | error, power and laclolofistness of validity with or

without PC by the two prevalence levels: low and high. The low [mes@ model

maintains a correct type | error rate than the high preealenodel while the high

prevalence model has a larger power.
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Table 19. Average regection rates and lack of robustness of validity on Factors

prevalence and PC.

Rejection Rate Lack of Robustness of Validity
Overall Average
No PC PC No PC PC
Low Prevalence
Uncorrelated SNPs (null 1) 0.051 +0.001 0.051+0.001 0.000 £0.000 0.000£0.000
Matching SNPs (null II) 0.064 +0.001 0.057+0.001 0.001 +£0.000 0.001+0.000
Disease SNPs (Power) 0.381 +0.002 0.376+0.002
High Prevalence
Uncorrelated SNPs (null I) 0.093 £0.001 0.040+0.001 0.087 £0.001 0.038+0.001
Matching SNPs (null 1) 0.533 +£0.003 0.29340.002 0.483 +£0.003 0.2674+0.002
Disease SNPs (Power) 1.000 +0.000 1.00040.000
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3.1.2 Experiment II Results

Table 20 presents the average empirical type | error rate rupditical power
observed in the simulations under experiment I, which has diseaBavVa¥ = 0.05,
0.15, 0.30, representing the African population as described in Chaptehaddiey.
The additive model is used in experiment Il. The table alsaudesl 95% confidence
intervals. Each single-locus disease SNP in the table has 25ealatdrSNPs (MAFs
across population less correlated with the disease SNP) and 2&ingeBiNPs (MAFs
across population as correlated as possible with the disease SNP MAFs).

As in experiment |, the empirical type | error rate usimg wincorrelated SNPs has a
lack of robustness of validity appearing in the complete penetrantwut PC
adjustment analysis. The high penetrance model does not show muelekobf
robustness of validity and does not need much PC adjustment. The lovapeaehodel
does not show lack of robustness of validity and does not need any Ptthadjug-or
example, on Table 20, using nominal level of significance 0.05 and analyzandyalat
the complete penetrance model, there are 11GWS +0.004) of the replicates for
which the 25 SNPs uncorrelated with the disease SNP rs6792511 on chron®osome
representing the African population are found significant in the dgctest when there
is no PC adjustment. With PC adjustment, the number of repliteteare significant at

the nominal 0.05 level in a linear regression test decreases t0.3¥® (t0.002). There
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are two unexpected results using uncorrelated SNPs. Analyziadrdat the complete
penetrance model, the SNP rs11924006 with MAF 0.15 has a type raed (0.000
+0.000) with PC adjustment, which shows a lack of robustness of validity the low
penetrance model, the SNP rs9810313 with MAF 0.30 has a type | er0ot38%
(0.139 +0.004) without PC adjustment.

PS becomes a bigger problem as MAF increases for the matching SNPsarRplegx
without PC adjustment, the disease SNP rs6792511 with a low MAF 0.@H lsa®rage
type | error rate0.695 +0.006. The disease SNP rs11924006 with MAF 0.15 has an
average type | error ra®920 +0.003. The average type | error rate increase@.960
+0.002 as MAF increases to 0.30 for the disease SNP rs9810313. The entppeal
error rate shows a lack of robustness of validity for all theetlp@netrance settings:
complete, high and low. PC adjustment does not help much using theete@pd high
penetrance models. For example, the 25 SNPs matching the diddase9810313 on
chromosome 3 representing the African population have an average ¢éypm rate
0.960 +0.002 without PC adjustment at the nominal 0.05 level. With PC adjustment, the
rate is 0.520 +0.006. Even the low penetrance model shows a problem using PC
adjustment. For example, the 25 SNPs that match the diseasesSNP313 have an
average type | error rat@779 +0.005 without PC adjustment. With PC adjustment, the
rate decreases 335 +0.006, but is still far above the nominal 0.05 level. In general,

PC adjustment improves robustness of validity.
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The rejection rate for disease SNPs with PC adjustmembss to the rate without
PC adjustment. For example, the rejection rate without PC adjusten@849 +0.022
for the disease SNP rs6792511 on chromosome 3 representing then Afopulation at

the nominal 0.05 level. With PC adjustment, the rejection r&t&24 +0.024.
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Table 20. Empirical reection rates with 95% confidence intervals of the single-locus model
(additive model with disease SNP M AF = 0.05, 0.15, 0.30) at the nominal 0.05 level.

under experiment Il

Single-locus Penefrance
MAF Chr Pop Complete High L ow
Disease Genes
No PC PC No PC PC No PC PC
Uncorrelated SNPs (null I)
0.05 rs6792511 3 Af 0115 +£0.004 0.040 +0.002 0.061 +0.003 0.055 +0.003 0.052 +0.003  0.050+0.003
0.15  rs11924006 3 Af 0120 +0.004 0.000 £0.000 0.115 +0.004 0.045 +0.003 0.079 +0.003 0.048 +0.003
0.30 rs9810313 3 Af 0160 +0.005 0.037 +0.002 0.167 +0.005 0.025 +0.002 0.139 +0.004 0.067 +0.003
Matching SNPs (null II)
0.05 rs6792511 3 Af 0695 +0.006 0.334 +0.006 0.277 +0.006 0.167 +0.005 0.145 +0.004 0.119 +0.004
0.15  rs11924006 3 Af  0.920 +0.003 0.280 +0.006 0.891 +0.004 0.163 +0.005 0.732 +0.005 0.104 +0.004
0.30 rs9810313 3 Af 0960 +0.002 0.520 +0.006 0.951 +0.003 0.446 +0.006 0.779 +0.005 0.335 +0.006
Disease SNPs (Power)
0.05 rs6792511 3 Af 1.000 +£0.000 1.000+0.000  0.998+0.003  0.998+0.003  0.849+0.022  0.824+0.024
0.15  rs11924006 3 Af 1.000 £0.000 1.000+0.000 1.0004+0.000  1.000+0.000  1.000+0.000  1.000+0.000
030  rs9810313 3 Af 1.00040.000 1.000+0.000  1.000+0.000  1.000+0.000  0.979+0.009  0.994+0.005

Note: The headings for each column are defined as follows: Chr = Chromasombkich SNP marker is located (see Methodology — Power
Simulations). Pop = African (Af). The complete, high and low penetramogels are with low prevalence (additive model is used, three
trajectory groups). See Methodology — Genetic Models. Type | extes that are significantly different from the nominal 0.05llaxe in bold.

For each setting 1000 replicates are generated. Africans n = 466.
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3.1.2.1 Null I Simulation Using Uncorrelated SNPs

The ANOVA of the measure of lack of robustness of validity for uheorrelated
SNPs is shown in Table 21 below. The model haR-aquare of 0.7422. These results
indicate that the overall model is not statistically signiftcé = 0.89, p — value =
0.6147). Because the smallgstvalue in the ANOVA is thep-value for the factor PC
and is equal to 0.2732, | conclude that there are no significant fdototise lack of
robustness of validity. That is, the statistical analysis did ofircn the apparent failure
of robustness of validity for data from the complete penetrance raodbjzed without

PC adjustment.
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Table 21. The ANOVA table for the single-locus model uncorrelated SNPs under
experiment Il at the nominal 0.05 level (dependent variable: lack of robustness of
validity).

The GLM Procedure
Dependent Variable: lackrobust

Source DF || Sum of Squares | Mean Square | F Value | Pr>F
Model 13 0.012 0.0009 0.89 | 0.6147
Error 4 0.004 0.001

Corrected Total | 17 0.016

R-Square || Coeff Var | Root MSE | lackrobust Mean

0.742 295.749 0.032 0.011
Effect CF Sum of Squares llean 55 F Ratio P Yalue
IAF 2 0.001 00007 0.734 0.634
PENETRAN 2 0,001 0.0007 0.764 0.524
PC 1 0,001 0.001 1.610 0.273
IMAF*PENETRAN 4 0.004 0.004 1.021 0.4
MAF*PC 2 0.001 00008 0,786 0.515
PENETRAN*PC 2 0,001 00006 0.625 0.550

To assist in the interpretation of these results, Figure 8 psegenplot of PC and
penetrance, PC and MAF interaction. The lack of robustness of yadigitears in the

complete penetrance model without PC adjustment.
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Figure 8. Lack of robustness of validity of single-locus model uncorrelated SNPs
under experiment Il at the nominal 0.05 level.
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3.1.2.2 Null II Simulation Using Matching SNPs

The ANOVA of the measure of lack of robustness of validity forrfaching SNPs is
shown in Table 22 below. The model hasRasguare of 0.9523. These results indicate
that the overall model is statistically significaft€ 6.14, p — value = 0.0466) at the
nominal 0.05 level. The value of the statisic= 51.282 (p — value = 0.0020) for the
factor PC is statisticallyignificant. Thisanalysis thus documents that the use of PC

adjustment significantly improves robustness of validity
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Table 22. The ANOVA table for the single-locus model matching SNPs under experiment |1
at the nominal 0.05 level (dependent variable: lack of robustness of validity).

The GLM Procedure
Dependent Variable: lackrobust

Source DF || Sum of Squares | Mean Square | F Value | Pr>F
Model 13 2.839 0.218 6.14 | 0.047
Error 4 0.142 0.036

Corrected Total | 17 2.982

R-Square || Coeff Var | Root MSE | lackrobust Mean

0.952 58.620 0.189 0.322
Effect OF Sum of Squares lMean &5 F Ratio P VYalue
MAF 2 0.255 0.127 3.585 0.123
PEMETRAN 2 0.180 0.090 2,539 0.194
PC 1 1.825 1.625 81,282 0.002
MAF*PENETRAN 4 0.145 0035 1.018 0.493
MAFPC 2 0,281 0.125 3.536 0,130
PENETRANPC 2 0.181 0.090 2.546 0.193

For interpreting the results, | present the graph of the avémageof robustness of
validity measure of the empirical type | error rate atheeombination of the PC and
penetrance, and PC and MAF in Figure 9. In general, better robusiheslidity is
attained at low MAF (0.05) and reduced penetrance (low and higt).R& adjustment,
the robustness of validity improves for all three penetrance miot®b, high and
complete. The PC model gives the best results since it mairiiattes robustness of

validity as MAF and penetrance levels change.
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Figure 9. Lack of robustness of validity of Single-locus model matching SNPs under
experiment Il at the nominal 0.05 level.
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3.1.2.3 Power Simulation Using single-locus disease SNPs

The ANOVA of the rejection rates for the disease SNPhasvs in Table 23 below. The
model has arR-square of 0.9942. These results indicate that the overall model is
statistically significant (F = 52.98, p — value = 0.0008 ). Since F = 82.737

(p — value = 0.0006) for MAF and F = 101.16 (p — value = 0.0004) for penetrance,
the factors of MAF and penetrance are also significant. FurtterrsinceF = 79.666

(p — value = 0.0005) for the interaction of MAF and penetrance, this interac8aiso
significant. PC is not a significant factor in this power simola(F = 0.081633, p —
vlaue = 0.7893). The most important finding is that the use of PC adjustment and
interactions involving PC adjustment are not significant. That ife&sre, the fitted
rejection rate with PC adjustment is statistically equakhte fitted rate without PC

adjustment.

79



Table 23. The ANOVA table for the single-locus model disease SNPs under experiment |1 at
the nominal 0.05 level (dependent variable: power).

The GLM Procedure
Dependent Variable: rate rate

Source DF || Sum of Squares | Mean Square | F Value | Pr>F
Model 13 0.047 0.004 52.98 | 0.001
Error 4 0.0003 0.0001

Corrected Total | 17 0.047

R-Square | Coeff Var | Root MSE | rate Mean

0.994 0.842 0.008 0.980
Effect [ Sum of Squares lMean 55 F Ratio P VYalue
[AF 2 0.011 0,008 832,737 0.0006
PEHETRAH 2 0.013 0,006 101.16 0.0004
PC 1 0,000 0.000 0.081 0.75%
IMAF*PENETRAN 4 0.021 0,005 79,666 0.0005
MAF*PC 2 0.0001 000006 1 0444
PENETRANPC 2 000001 0.000 0.081 0.923

To assist in the interpretation of these results, Figure 10 misegdots of the
MAF-PC, penetrance-PC and MAF-penetrance interactions. Thedtiverdetween PC
and MAF, PC and penetrance are fairly small, as shown by the similarcfithpecurves
in Figure 10. | conclude that the rejection rate (power) withaBjidstment is close to the
rate without PC adjustment. The powers of the high and completegeetmodels are
greater than that of low penetrance model, regardless of MAd-pdwer is lower when

MAF is small: i.e. MAF = 0.05.
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Figure 10. Power of Single-locus model disease SNPs under experiment Il at the
nominal 0.05 level.
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3.1.2.4 Statistical Analysis on Experiment II

| calculate the average of the overall power of Experimemntll,rejection rate and lack
of robustness of validity with or without PC. Without PC adjustmentnthiell type |
error rate has a mean of 0.706 at the nominal 0.05 level, and theflamBustness of
validity has a mean of 0.565. After the PC adjustment, the avefamyerall type | error
decreases to 0.274 and the lack of robustness of validity decre@s&830The results
indicate that the PC effect is smaller than no PC effecttaatd®C helps to maintain the

power.

Table 24. Averageregection rates and lack of robustness of validity on Factor PC.

Rejection Rate Lack of robustness of validity
Overall Average
No PC PC No PC PC
Uncorrelated SNPs (null I) 0.112 0.041 0.062 0.007
Matching SNPs (null II) 0.706 0.274 0.565 0.183
Disease SNPs (Power) 0.981 0.980

| also calculate the average of type | error and lack of robsstof validity with or
without PC by the three general populations: African, Asian and Eamopkly
hypothesis is that African population needs PC adjustment more thespdan
population but less than Asian population because of the population immigrBtien
results indicate that global PC methods adjust the type Iteouvell overall, especially

for the African and Asian populations.
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Table 25. Average rgection rates and lack of robustness of validity on Factors MAF
and PC.

Rejection Rate Lack of robustness of validity
Overall Average
No PC PC No PC PC
MAF =0.05
Uncorrelated SNPs (null I) 0.076 0.048 0.022 0.006
Matching SNPs (null II) 0.372 0.207 0.221 0.117
Disease SNPs (Power) 0.949 0.941
MAF =0.15
Uncorrelated SNPs (null 1) 0.105 0.031 0.059 0.002
Matching SNPs (null Il) 0.848 0.182 0.704 0.098
Disease SNPs (Power) 1.000 1.000
MAF =0.30
Uncorrelated SNPs (null I) 0.155 0.043 0.106 0.012
Matching SNPs (null II) 0.897 0.434 0.768 0.333
Disease SNPs (Power) 0.993 0.998

| further calculate the average of power and lack of robustnegalidity with or
without PC by the three penetrance levels: low, high and compléte reduced
penetrance models (low and high) maintain a correct type il &xt® than the complete

penetrance models.
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Table 26. Average regection rates and lack of robustness of validity on Factors

penetrance and PC.

Overall Average

Uncorrelated SNPs (null I)
Matching SNPs (null I)
Disease SNPs (Power)

Uncorrelated SNPs (null I)
Matching SNPs (null II)
Disease SNPs (Power)

Uncorrelated SNPs (null I)
Matching SNPs (null 1)
Disease SNPs (Power)

Rejection Rate Lack of robustness of validity
No PC PC No PC PC
L ow Penetrance
0.090 0.055 0.026 0.000
0.552 0.186 0.385 0.086
0.943 0.939
High Penetrance
0.115 0.041 0.054 0.002
0.707 0.259 0.571 0.141
0.999 0.999
Complete Penetrance
0.132 0.026 0.107 0.018
0.858 0.378 0.737 0.320
1.000 1.000
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3.1.3 Experiment III Results

Table 27 presents the average empirical type | error rate apdicah power
observed in the simulations under experiment Ill, which has diseaBdvEiW = 0.05,
0.15, 0.30, representing the African population as described in Chaptehaddieyy.
The high prevalence complete penetrance model is used in expelim€hée table also
includes 95% confidence intervals. Each single-locus disease rENie itable has 25
uncorrelated SNPs (MAFs across population less correlated withisgeese SNP) and 25
matching SNPs (MAFs across population as correlated as posdibléheidisease SNP
MAFS).

As in experiment | and I, the empirical type | error ratexgshe uncorrelated SNPs
has a lack of robustness of validity appearing in the high pres@leomplete penetrance
without PC adjustment model. For example, on Table 27, using nomwell &
significance 0.05, there are 16@160 +0.005) of the replicates for which the 25 SNPs
uncorrelated with the disease SMB792511on chromosome 3 representing the African
population are found significant in the association test when thei@ BC adjustment.
With PC adjustment, the number of replicates that are signifatahe nominal 0.05 level

in a linear regression test decreases to@94Q +0.002).

There is a failure of robustness of validity for high prevadec@mplete penetrance
model both with and without PC adjustment. For example, the 25 SNPwmaket the

disease SNRs6792511have an average type | error r&1®60 +0.002 without PC
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adjustment. With PC adjustment, the rate decreasé46 +0.005, which is still far

above the nominal 0.05 level. In general, PC adjustment improves robustness of validity

The rejection rate for disease SNPs with PC adjustmeijuisl €0 the rate without

PC adjustment. They are all equal to 1.080.000 at the nominal 0.05 level.
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Table 27. Empirical reection rates with 95% confidence intervals of the single-locus model under experiment 11|
(disease SNP MAF = 0.05, 0.15, 0.30) at the nominal 0.05 level.

Complete Penetrance High Prevalence
Chr  Pop Rate Lack of Robustness of Validity
No PC PC No PC PC
Uncorrelated SNPs (null I)
0.05 rs6792511 3 Af  0.160 +0.005 0.040 +0.002 0.146 +0.004  0.03840.002
0.15 rs11924006 3 Af  0.120 +0.004 0.040 +0.002 0.110 £0.004  0.03840.002
0.30 rs9810313 3 Af  0.320 +0.006 0.040 +0.002 0.290 +£0.006  0.038+0.002
Matching SNPs (null I)
0.05 rs6792511 3 Af  0.960 +0.002 0.240 +0.005 0.867 £0.004  0.2194+0.005

0.15 rs11924006 3 Af  1.000 +0.000 0.240 +0.005 0.903 £0.004  0.219+0.005
0.30 rs9810313 3 Af  0.960 +0.002 0.240 +0.005 0.867 £0.004  0.218+0.005

Single-locus

Disease genes

Disease SNPs (Power)
0.05 rs6792511 3 Af  1.000 +0.000 1.000+0.000
0.15 rs11924006 3 Af  1.000 +0.000 1.000+0.000
0.30 rs9810313 Af  1.000 +0.000 1.000+0.000

w

Note: The headings for each column are defined as follows: Chr = Chromasombkich SNP marker is located (see Methodology — Power
Simulations). Pop = African (Af). The complete penetrance maelith high prevalence (complete model, two trajectory groups). See
Methodology — Genetic Models. Type | error rates that are signifiy different from the nominal 0.05 level are in bold. For eattingel 000
replicates are generated. Africans n = 466.
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3.1.3.1 Statistical Analysis on Experiment III

| report the average of the overall power and lack of robustnesalidity with and
without PC in Table 28. Without PC adjustment, the type | error rate cannot ballednt
Overall, the type | error rate of the PC analysis for mag SNPs has substantial

improvement but is much greater than the nominal level of significance.

Table 28. Average regection rates and lack of robustness of validity on Factor PC
(nominal significance level 0.05).

Rejection Rate Lack of Robustness of Validity
Overall Average
No PC PC No PC PC
Uncorrelated SNPs (null I) 0.200 0.040 0.182 0.038
Matching SNPs (null II) 0.973 0.240 0.879 0.218
Disease SNPs (Power) 1.000 1.000
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3.2 Multi-locus M odel Results

3.2.1 Experiment IV Results

Table 29 shows the empirical type | error rate and 95% confidaeter®al of the 450
uncorrelated SNPs (null 1) for the 18 disease genes. Thetsreshdw that the low
penetrance model does not need PC adjustment. The high penetrancedossdabt

need much PC adjustment. The complete penetrance model benefitmtsalhstrom

PC adjustment. When the type | error rate and its 95% confiderceahéare in bold, the
target o« = 0.05 is not contained in the confidence interval. The number of intervals not
containing the targetx decreases when using the PC adjustment model. It also decreases
as the penetrance decreases.

Table 30 shows the empirical type | error rate and 95% confidence interkial 46@
matching SNPs (null 1l) for the 18 disease genes. The results #ratwthe low
penetrance model does not need PC adjustment. The high penetrancaeneeddePC
adjustment, and PC adjustment is effective. PC adjustment maitéh&e complete
penetrance model and helps adjust for the PS, but the rejecsnfoatthe matching
SNPs are well above the nominal significance level for many SNPs fére pbe&hen type
| error rate and 95% confidence interval in bold, the tasget0.05 is not contained in
the confidence interval. As the penetrance becomes smaller, theenomntervals not
containing the targett decreases.
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Table 31 contains the power to detect the disease gene in théetmrhigh and low
penetrance additive models (three trajectory groups are usedjpolver decreases as the
penetrance is less. There is no substantial change in powelP@ftjustments. For the
complete penetrance models, all the 18 disease genes haveeragbdw that is, 100%
disease genes are detected before and after PC adjustment. pantigthdnigh penetrance
model, among the 18 disease genes, 17 had power greated.9dant 0.014 before
the PC adjustment. One of the 18 disease genes, rs3761998 from chromosathe 6, w
relatively high MAF in the Asian population, has a relatively good po@&76 + 0.02.

After the PC adjustment, the power of this disease gene rs37619%Aasesr to
0.900 + 0.019. The other 17 disease SNPs have a power greater0thaa + 0.013.

For the partial low penetrance model without PC adjustment, the panwges from
0.463 + 0.031 to 0.953 £+ 0.013. Two of the 18 genes have low power less than 0.50.
They are rs3761998 with a power @#63 + 0.0310, which is the disease gene from
chromosome 6 having a high MAF for an Asian population, and rs12822275 with a
power of 0.464 + 0.031, which is the disease gene from chromosome 12 that has a high
MAF for the European population. After the PC adjustment, the pcavegyerstays the
same. One additional disease SNP rs270771 appears to have powbkane8%0. Its
rejection rate is0.476 + 0.031. It is on chromosome 19 and has a high MAF for a

European population.
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Figure 11 displays the trends and histograms of the typeol etes of the two
partial penetrance models for the 450 non-correlated SNPs undaulthewith and
without PC adjustments. Figure 12 presents the scatter plot typenhé error rates for the

450 non-correlated SNPs under the null I with and without PC adjustment.

The models with PC adjustment have an average type | errasioate to 0.05 than
the models without PC adjustment. The PC adjustment models have memels
containing the target.. Specifically, the partial high penetrance model has a typ®n er
rate range from0.026 + 0.01 to 0.097 £+ 0.018 without PC adjustment. Using PC
adjustment, the range shifts @016 + 0.008 to 0.073 + 0.016. For the partial low
penetrance model, the type | error rates ranging féodd4 + 0.013 to 0.066 + 0.015
before PC adjustments. The range shrink8.t32 + 0.012 to 0.058 + 0.014 after PC
adjustments. All intervals in the partial low penetrance PC ad@rdtmodel contain the

target a = 0.05.

Some of the matching SNPs in the high partial penetrance magekially those
representing the African population, have rejection rates above the heaiuof 0.05
(the disease SNPs representing African population have typer Irates that range from
0.095 to 0.165) without PC adjustment. Disease SNPs number 1, 5, 8, 10, 13 and 16 that
represent the Asian population have lower type | error rate in gagial penetrance

model, ranging from0.013 £+ 0.007 to 0.049 + 0.013 without PC adjustment.
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The models with PC adjustment have an average type | errasioate to 0.05 than
the models without PC adjustment. PC models also have more inteovdigsning the
target a. Specifically, the low penetrance PC adjustment model has smperlrates that
range 0.044 to 0.059. Before adjustment, they ranged from 0.039 to 0.077. Alingatc
SNPs for this model have confidence intervals containing tigettar= 0.05 with PC

adjustment.
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Table 29. Empirical regection rates and 95% confidence interval of the multi-locus additive models for the uncorrelated
SNPs (null 1) under experiment IV at the nominal 0.05 level.

Penetrance
Disease
# Chr | Pop Complete High Low
Genes
No PC PC No PC PC No PC PC

1 | rs3733124 3 As| 0.080 +0.017 0.000 #0.000 0.055 +0.014 0.034 +0.011 0.052 +0.014 0.046+0.013
2 | rs7355991 3 Af 0.04@0.012 0.040+0.012 0.034 +0.011 0.049 +0.013 0.049+0.013 0.050+0.014
3 | rs17195948 3 Eu 0.080 +0.017 0.079 +0.017 0.063 £0.015 0.052+0.014 0.055+0.014 0.051+0.014
4 | rs1259069 6 Eu 0.03%0.012 0.040+0.012 0.029 +0.010 0.039 +0.012 0.044+0.013 0.0424+0.012
5 | rs3761998 6 As 0.048-0.012 0.040+0.012 0.044+0.013 0.032 +0.011 0.044 +0.013 0.0424+0.012
6 | rs9459886 6 Af 0.0430.012 0.040+0.012 0.053+£0.014 0.046+0.013 0.051+0.014 0.051+0.014
7 | rs12790383 11| EY 0.000 +0.001 0.000 +0.000 0.045 +£0.013 0.021 +0.009 0.052 +0.014 0.045+0.013
8 | rs11217935 11| AS 0.0480.012 0.040+0.012 0.067 +0.015 0.043 £0.013 0.066 +0.015 0.058 +0.014
9 | rs11825331 11| Af 0.048-0.012 0.080 +0.017 0.038 £0.012 0.050+0.014 0.048+0.013 0.046+0.013
10| rs17117910 12| As 0.000 +0.000 0.000 +0.000 0.026 +0.010 0.016 +0.008 0.047 £0.013 0.043+0.013
11| rs12822275 12| Eu 0.000 +0.000 0.000 +0.000 0.036 +0.012 0.035 +0.011 0.049 +0.013 0.047+0.013
12| rs1696449| 12| Af 0.04@0.012 0.040+0.012 0.057+0.014 0.050+0.014 0.053+0.014 0.051+0.014
13| rs2073868| 17| Ag 0.080 +0.017 0.160 +0.023 0.068 +0.016 0.073 £0.016 0.054 +0.014 0.054+0.014
14| rs9899123| 17| Af 0.04@0.012 0.040+0.012 0.054+0.014 0.053+0.014 0.051+0.014 0.048+0.013
15| rs34742396 17| Eu 0.120 +0.020 0.081 +0.017 0.097 +0.018 0.068 +0.016 0.059 +0.015 0.050+0.014
16 | rs3745465| 19| As 0.120 +0.020 0.079 +0.017 0.063 £0.015 0.058+0.014 0.055+0.014 0.054+0.014
17 | rs10411117 19| Af] 0.080 +0.017 0.040 +£0.012 0.064+0.015 0.051+0.014 0.051+0.014 0.049+0.013
18| rs270771 19| Edu 0.000 +0.000 0.040 +£0.012 0.029 +0.010 0.031 +0.011 0.047 £0.013 0.045+0.013

Note: The headings for each column are defined as follows: Chr = Chromasombkich SNP marker is located (see Methodology — Power
Simulations). Pop = General populations, including African (Af), Agias) and European (Eu). For the complete penetrance low prevalence
model, two trajectory groups instead of three are used (see MethpdolGenetic Models). For each setting 1000 replicates are geherate
Africans n = 466, Asians n = 359, Europeans n = 214.
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Table 30. Empirical regection rates and 95% confidence interval of the multi-locus gene models for the matching SNPs

(null IT).
Penetrance
# | Diseasegenes | Chr | Pop Complete High Low
No PC No PC No PC PC No PC PC

1 rs3733124 3 As| 0.000 +0.000 0.000 +0.000 0.017 +0.008 0.023 +0.009 0.042 +0.012 0.04440.013
2 rs7355991 3 Af| 0.200 +0.025 0.160 +£0.023 0.154 +0.022 0.095 +0.018 0.072 +0.016 0.059 +£0.015
3 | rs17195948 3 Eu 0.120 +0.020 0.160 +£0.023 0.123 +0.020 0.113 £0.020 0.067 +0.015 0.059 +£0.015
4 rs1259069 6 Eul 0.240 +0.026 0.120 +£0.020 0.116 +0.020 0.105 +0.019 0.066 +0.015 0.058 £0.014
5 rs3761998 6 As| 0.000 +0.000 0.000 +0.000 0.013 +0.007 0.018 +0.008 0.039 +£0.012 0.039+0.012
6 rs9459886 6 Af| 0.200 +0.025 0.04040.012 0.132 +0.021 0.058 +£0.014 0.068 +0.016 0.051 +£0.014
7 | rsl2790383 11} EY 0.160 +0.023 0.120 +£0.020 0.107 +0.019 0.049 +£0.013 0.067 +0.015 0.059 £0.015
8 | rs11217935 11} A9 0.000 +0.000 0.000 +0.000 0.027 +0.010 0.036 +0.012 0.050 +£0.014 0.051+0.014
9 | rs11825331 11} Af| 0.080 +0.017 0.04040.012 0.110 +0.019 0.070 +0.016 0.064 +£0.015 0.054+0.014
10| rs17117910 12| A 0.000 +0.000 0.000 +0.001 0.049 +£0.013 0.037 +0.012 0.060 +£0.015 0.051+0.014
11| rs12822275 12| EUY 0.08£0.017 0.080 +0.017 0.075 +0.016 0.046 +£0.013 0.060+0.015 0.051+0.014
12| rs1696449 12| Af| 0.160 +0.023 0.000 +0.000 0.095 +0.018 0.040 +£0.012 0.060+0.015 0.052+0.014
13| rs2073868 17|  As 0.040 £0.012 0.040+0.012 0.042+0.012 0.037 +£0.012 0.052 +0.014 0.048+0.013
14| rs9899123 17| Af| 0.240 +0.026 0.120 +£0.020 0.165 +0.023 0.093 +0.018 0.069 +0.016 0.054 £0.014
15| rs34742396 17|  EuU 0.120 +£0.020 0.040+0.012 0.082 +0.017 0.059 +£0.015 0.059+0.015 0.050+0.014
16 | rs3745465 19| As 0.000 +0.000 0.000 +0.000 0.020 +0.009 0.025 +0.010 0.043 £0.013 0.04440.013
17| rs10411117 19 Af 0.1680.023 0.040+0.012 0.145 +0.022 0.063 +£0.015 0.077 +£0.017 0.058 £0.014
18 rs270771 19| Eu 0.2460.026 0.080 +0.017 0.120 +0.020 0.067 +0.015 0.075 +0.016 0.060 +0.015

Note: The headings for each column are defined as follows: Chr = Chromasombkich SNP marker is located (see Methodology — Power
Simulations). Pop = General populations, including African (Af), Agias) and European (Eu). For the complete penetrance low prevalence
model, two trajectory groups instead of three are used (see MethpdolGenetic Models). For each setting 1000 replicates are geherate
Africans n = 466, Asians n = 359, Europeans n = 214.
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Table31. Empirical rejection rates and 95% confidence interval of the multi-locus gene complete penetrance and partial

penetrance models.
Penetrance
# | Diseasegenes | Chr Pop Complete High L ow
No PC PC No PC PC No PC PC

1 rs3733124 3 As| 1.000+0.000 1.000+0.000 0.992+0.006 0.997+0.003 0.652+0.030 0.663+0.029
2 rs7355991 3 Af| 1.000+0.000 1.000+0.000 0.992+0.006 0.987+0.007 0.636+0.030 0.595+0.030
3 rs17195948 3 Eu 1.000+0.000 1.000+0.000 0.992+0.006 0.984+0.008 0.598+0.030 0.536+0.031
4 rs1259069 6 Eu| 1.000+0.000 1.000+0.000 0.987+0.007 0.968+0.011 0.591+0.030 0.554+0.031
5 rs3761998 6 As| 1.000+0.000 1.000+0.000 0.876+0.020 0.900+0.019 0.463+0.031 0.469+0.031
6 rs9459886 6 Af| 1.000+0.000 1.000+0.000 0.99610.004 0.99610.004 0.87610.020 0.87240.021
7 rs12790383 11 Eu 1.000+0.000 1.000+0.000 0.992+0.006 0.974+0.010 0.542+0.031 0.505+0.031
8 rs11217935 11| As 1.000+0.000 1.000+0.000 0.9451+0.014 0.96740.011 0.567+0.031 0.583+0.031
9 rs11825331 11 Af|  1.000+0.000 1.000+0.000 0.995+0.004 0.995+0.004 0.710+0.028 0.711+0.028
10 rs17117910 12 As 1.000+0.000 1.000+0.000 0.981+0.008 0.979+0.009 0.630+0.030 0.609+0.030
11 rs12822275 12 EU 1.000+0.000 1.000+0.000 0.973+0.010 0.957+0.013 0.464+0.031 0.457+40.031
12 rs1696449 12| Af| 1.000+0.000 1.000+0.000 0.955+0.013 0.952+0.013 0.513+0.031 0.499+0.031
13 rs2073868 17/ As 1.000+0.000 1.000+0.000 0.996+0.004 0.997+0.003 0.707+0.028 0.690+0.029
14 rs9899123 17|  Af| 1.000+0.000 1.000+0.000 0.999+0.002 1.000+0.000 0.819+0.024 0.800+0.025
15| rs34742396 17 Ey 1.000+0.000 1.000+0.000 0.974+0.010 0.975+0.010 0.558+0.031 0.519+0.031
16 rs3745465 19| As 1.000+0.000 1.000+0.000 0.997+0.003 0.996+0.004 0.953+0.013 0.962+0.012
17 rs10411117 19| Afl 1.000+0.000 1.000+0.000 0.994+0.005 0.994+0.005 0.691+0.029 0.677+0.029
18 rs270771 19 Eu 1.000+0.000 1.000+0.000 0.97040.011 0.959+0.012 0.509+0.031 0.476+0.031

Note: The headings for each column are defined as follows: Chr = Chromasombkich SNP marker is located (see Methodology — Power
Simulations). Pop = General populations, including African (Af), Agias) and European (Eu). For the complete penetrance low prevalence
model, two trajectory groups instead of three are used (see MethpdolGenetic Models). For each setting 1000 replicates are geherate
Africans n = 466, Asians n = 359, Europeans n = 214.




Figure 11. Empirical regection rates of the two multi-locus partial penetrance models for the 450 non-correlated SNPs

with and without PC adjustment.
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Figure 12. Empirical reection rate scatter plot of 450 non-correlated SNPs for each of the 18 disease SNPs at the 0.05
nominal level.
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3.2.1.1 Null Simulation Results Using Uncorrelated SNPs

The ANOVA of the measure of lack of robustness of validity ttee multi-locus
model uncorrelated SNPs is shown in Table 32 below. Although the modelnhas
R-square of 0.0457, the overall model is statistically significaht< 2.96, p — value <
0.0001). The results indicate that the statistic= 2.69, p — value = 0.0199 for the
chromosome factor and® = 40.35, p — value < 0.0001 for penetrance are both
significant at the 0.05 significance level. The factor P@asignificant in this model.
That is, the statistical analysis did not confirm the failoirgobustness of validity for
data from the additive multi-locus null simulation model analyzildout PC adjustment

using uncorrelated SNPs.
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Table 32. The ANOVA table for the multi-locus model uncorrelated SNPs under
experiment IV at the nominal 0.05 level (dependent variable: lack of robustness of

validity).

The GLM Procedure
Dependent Variable: lackrobust lackrobust

Source DF | Sum of Squares || Mean Square | F Value | Pr>F
Model 43 1.606 0.037 2.96 | <.0001
Error 2656 33.546 0.013
Corrected Total | 2699 35.152
R-Square || Coeff Var | Root MSE | lackrobust Mean
0.046 616.281 0.112 0.018
Source DF | Type | SS | Mean Square | FValue | Pr>F
Chromosome 5 0.170 0.034 2.69 | 0.020
Population 2 0.018 0.009 0.71 | 0.494
Penetrance 2 1.019 0.510 40.35 | <.0001
PC 1 0.001 0.001 0.08 | 0.775
pene*pc 2 0.0005 0.0002 0.02 | 0.981
chr*pop 10 0.142 0.014 1.13 | 0.338
chr*pene 10 0.221 0.022 1.75| 0.065
chr*pc 5 0.013 0.003 0.21| 0.958
pop*pene 4 0.020 0.005 0.39 | 0.816
pop*pc 2 0.002 0.001 0.07 | 0.931
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3.2.1.2 Null Simulation Results for SNPs Having MAF Correlated with Disease SNP

The ANOVA of the measure of lack of robustness of validity forrtaching SNPs is
shown in Table 33 below. The model hasRasguare of 0.1036. These results indicate
that the overall model is statistically significaft€ 7.14, p — value < 0.0001) at the
0.05 level. The value of the statistit= 14.969 (p — value = 0.0001) for the factor

PC, F =65.11 (p —value <0.0001) for the factor penetrance and = 27.638

(p —value < 0.0001) for the factor population are statistically significant. The
interaction between PC and penetrance, PC and population, population andnpenetra
are also statistically significant. This analysis documérasthe use of PC adjustment is

significantly associated with robustness of validity.
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Table 33. The ANOVA table for the multi-locus model matching SNPs under experiment 1V
at the nominal 0.05 level (dependent variable: lack of robustness of validity).

The GLM Procedure

Dependent Variable: lackrobust lackrobust

Source DF | Sum of Squares | Mean Square | F Value | Pr>F
Model 43 6.901 0.160 7.14 | <.0001
Error 2656 59.696 0.022
Corrected Total | 2699 66.597
R-Square || Coeff Var | Root MSE | lackrobust Mean
0.104 436.422 0.150 0.034

Effect CF Sum of Squares Mean 55 F Ratio P Value

POP 2 1.242 0.621 27.638 =, 0001

CHRHPA 5 0.189 0.037 1.664 0.134

PENETRAHN 2 2.926 1.463 65.11 =, (001

P 1 0.336 0.336 14,969 0,000

POP*CHRMNEA 10 0,309 0,030 1.3761 0.154

POP"PENETRAHN 4 1.194 0,298 13.283 =, (001

POPPC 2 0.19% 0.09% 4.430 0.012

CHRHM*PENETRAN 10 0.146 0.014 0.651 0.770

CHRHM*PC 5 0.074 0014 0.664 0.650

PENETRAN PC 2 0.252 0141 G.291 0.001
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3.2.1.3 Power Simulation Using single-locus disease SNPs

The ANOVA of the rejection rates for the disease SNPhasvs in Table 34 below. The
model has arR-square of 0.9471. These results indicate that the overall model is
statistically significant ( = 26.66, p — value < 0.0001 ). BecauseF = 11.637

( p —value < 0.0001 ) for population, F =493.92 ( p — value < 0.0001) for
penetrance and” = 3.2751 (p —value = 0.0107) for chromosome, the factors of
population, penetrance and chromosome are statistically signifiaattiermore, there is

a significant interaction between population and penetrance, population and chrenosom
penetrance and chromosome. PC is not a significant factor in ther pavalysis

(F = 0.3224, p — vlaue = 0.5721). The most important finding is that the use of PC
adjustment and interactions involving PC adjustment are not significant. T et fited
rejection rate with PC adjustment is statistically equakhte fitted rate without PC

adjustment.
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Table 34. The ANOVA table for the multi-locus model disease SNPs under experiment 1V at
the nominal 0.05 level (dependent variable: power).

The GLM Procedure
Dependent Variable: rate rate

Source DF | Sum of Squares | Mean Square | F Value | Pr>F
Model 43 3.607 0.084 26.66 | <.0001
Error 64 0.201 0.003

Corrected Total | 107 3.808

R-Square | Coeff Var | Root MSE | rate Mean

0.947 6.456 0.056 0.869

Effect OF Sum of Squares IMean 55 F Ratio P Walue
POP 2 0.073 0.036 11.637 <. 0004
PEMETRAR 2 3407 1.554 493,92 <0001
PC 1 0.004 0.004 0.322 0.572
CHRHRM 5 0.051 0.040 3.275 0.040
POP*PENETRAN 4 0.130 0.032 10.385 <0001
POP*PC 2 0.001 0.0008 0.254 0,776

| PoP-CHRUM 10 0.159 0.015 5,079 <0001 |
PENETRAN*PC 2 0.001 0.0007F 0.245 0.783

| PEMETRAN CHRHR 10 0.078 0.007F 2.508 0.013 |
PC*CHRNI 5 0.0002 000005 0.016 0,999
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3.2.1.4 Statistical Analysis on Experiment IV

Table 35reports the average of the rejection rate for the diseBid®s &nd lack of
robustness of validity measure with or without PC. Each entry isibeage over 54
settings (three population settings times six chromosome setiimgs three penetrance
settings). The results indicate that the PC null rejectiors rate closer to the nominal
level than the rates without PC adjustment. For disease SNRsjebion rate with PC

adjustment is only slightly less than the rejection rate without PC adjpistme

Table 35. Averageregection rates and lack of robustness of validity on Factor PC.

Rejection Rate Lack of Robustness of Validity
Overall Average
No PC PC No PC PC
Uncorrelated SNPs (null 1) 0.051 0.046 0.019 0.018
Matching SNPs (null II) 0.087 0.056 0.046 0.023
Disease SNPs (Power) 0.872 0.866

| also report in Table 36 the average of type | error pateer and lack of robustness
of validity with or without PC by the three general populationsicafr, Asian and
European. My hypothesis is that the African population has a grelaege with PC
adjustment than European population but less than the Asian population becthese of
population immigration. The results indicate that global PC methagstadihe type |

error rate well overall, especially for the African and Asiopulation, but less
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effectively for the European population. The rejection rates Herdisease genes are
roughly the same for each population. More importantly, the rejectiten with PC

adjustment is roughly equal to the rate without adjustment.

Table 36. Average regection rates and lack of robustness of validity on Factors
population and PC.

Rate Lack of Robustness of Validity
Overall Average
No PC PC No PC PC
African
Uncorrelated SNPs (null I) 0.049 0.049 0.018 0.019
Matching SNPs (null II) 0.125 0.064 0.069 0.027
Disease SNPs (Power) 0.899 0.893
Asian
Uncorrelated SNPs (null I) 0.056 0.048 0.023 0.019
Matching SNPs (null Il) 0.027 0.027 0.004 0.004
Disease SNPs (Power) 0.876 0.878
European
Uncorrelated SNPs (null 1) 0.047 0.043 0.015 0.015
Matching SNPs (null II) 0.110 0.076 0.063 0.038
Disease SNPs (Power) 0.842 0.826

| further report in Table 37 the average of type | error rateyer and lack of
robustness of validity with or without PC by the three penetrasadd: low, high and
complete. The reduced penetrance models (low and high) maintaireatdgpe | error
rate with PC adjustment. With the complete penetrance modelm#iehing SNP

rejection rate is above the nominal rate without PC adjustmentcdrhplete and high
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penetrance models have larger power than the low penetrance. lAsdeéfore, the

rejection rate for disease SNPs with PC adjustment ighessbut roughly equal to the

rate without adjustment.

Table 37. Average regjection rates and lack of robustness of validity on Factors

penetrance and PC.

Regjection Rate Lack of Robustness of Validity
Overall Average
No PC PC No PC PC
L ow Penetrance
Uncorrelated SNPs (null I) 0.052 0.048 0.001 0.000
Matching SNPs (null Il) 0.060 0.052 0.002 0.001
Disease SNPs (Power) 0.638 0.621
High Penetrance
Uncorrelated SNPs (null I) 0.051 0.044 0.010 0.008
Matching SNPs (null II) 0.088 0.058 0.030 0.014
Disease SNPs (Power) 0.978 0.977
Complete Penetrance
Uncorrelated SNPs (null I) 0.049 0.047 0.046 0.044
Matching SNPs (null Il) 0.113 0.058 0.104 0.054
Disease SNPs (Power) 1.000 1.000

| report in Table 38 the average of type | error rate, powerack of robustness of

validity with or without PC by the six chromosomes: chromosome 3, 6, 11, 12, 17 and 19.

The medium size chromosomes, chromosome 11 and 12, have type | errbettat

controlled with the PC adjustment. The small size chromosomes, cloorads and 19,

have a larger power both with and without PC adjustment.
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Table 38. Average rejection rates and lack of robustness of validity on factor

chromosome.
Rejection Rate Lack of Robustness of Validity
Overall Average
No PC PC No PC PC
Chromosome 3
Uncorrelated SNPs (null I) 0.056 0.044 0.024 0.015
Matching SNPs (null Il) 0.088 0.079 0.049 0.042
Disease SNPs (Power) 0.874 0.862
Chromosome 6
Uncorrelated SNPs (null 1) 0.043 0.041 0.015 0.016
Matching SNPs (null Il) 0.097 0.054 0.056 0.021
Disease SNPs (Power) 0.865 0.862
Chromosome 11
Uncorrelated SNPs (null 1) 0.044 0.043 0.012 0.015
Matching SNPs (null II) 0.074 0.053 0.034 0.021
Disease SNPs (Power) 0.861 0.859
Chromosome 12
Uncorrelated SNPs (null I) 0.034 0.031 0.007 0.006
Matching SNPs (null II) 0.071 0.040 0.030 0.010
Disease SNPs (Power) 0.835 0.828
Chromosome 17
Uncorrelated SNPs (null I) 0.069 0.070 0.030 0.034
Matching SNPs (null II) 0.097 0.060 0.053 0.027
Disease SNPs (Power) 0.895 0.887
Chromosome 19
Uncorrelated SNPs (null I) 0.057 0.050 0.024 0.019
Matching SNPs (null Il) 0.098 0.049 0.051 0.017
Disease SNPs (Power) 0.902 0.896
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3.2.2 Experiment V Results

Table 39 shows the empirical type | error rate and 95% confidence interkal 456@
uncorrelated SNPs (null 1) for the 18 disease genes. Tableots she empirical type |
error rate and 95% confidence interval of the 450 matching ShNHisIK) for the 18
disease genes. The results show that PC adjustment helps adjg$t éverall, but the
null rates are higher than the nominal level. Table 41 shows twtiogj rates for the 18
disease SNPs. The rejection rate for disease SNPs witdj@€Inaent is equal to the rate

without PC adjustment. They are all equal to 1.@8@000 at the nominal 0.05 level.
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Table 39. Empirical reection rates and 95% confidence interval of the multi-locus
high prevalence complete penetrance models for the uncorrelated SNPs (null 1)

under experiment V at the nominal 0.05 level.

) Complete Penetrance
# Disease Chr | Pop High Prevalence (Eli-2traj)
Genes
No PC PC
1 | rs3733124 3 As| 0.000 +0.000 | 0.040 +0.012
2 | rs7355991 3 Af| 0.120 +£0.020 | 0.040 +0.012
3 | rs171959484 3 Eu 0.080 +0.017 | 0.040 +£0.012
4 | rs1259069 6 Eu/ 0.000 +0.000 | 0.000 +0.000
5 | rs3761998 6 As| 0.000 +0.000 | 0.000 +0.000
6 | rs9459886 6 Af| 0.080 +0.017 | 0.000 +0.000
7 | rs12790383 11| EY 0.120 +0.020 | 0.080 +0.017
8 | rs11217935 11| As 0.120 +0.020 | 0.040 +0.012
9 | rs11825331 11| Af| 0.080 +0.017 | 0.000 +0.000
10| rs1711791Q0 12) Ag 0.000 +0.000 | 0.040 +0.012
11| rs1282227% 12 EY 0.0460.012| 0.040+0.012
12| rs1696449| 12| Af| 0.080 +0.017 | 0.040 +0.012
13| rs2073868| 17| As 0.0480.012| 0.040+0.012
14| rs9899123| 17| Af| 0.120 +0.020 | 0.040 +0.012
15| rs34742396 17| Ey 0.080 +0.017 | 0.040 +0.012
16| rs3745465| 19| As 0.120 +0.020 | 0.160 +0.023
17| rs10411117 19| Af| 0.080 +0.017 | 0.000 +0.000
18| rs270771 19 Eu 0.080 +0.017 | 0.040 £0.012

Note: The headings for each column are defined as follows: Chr = Chromasomédnich SNP
marker is located (see Methodology — Power Simulations). Pop = @eapulations, including
African (Af), Asian (As) and European (Eu). For the complete panetrlow prevalence model, two
trajectory groups instead of three are used (see Methodology — Genetic)Medeéach setting 1000
replicates are generated. Africans n = 466, Asians n = 359, Europeans n = 214.
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Table 40. Empirical reection rates and 95% confidence interval of the multi-locus

gene modelsfor the matching SNPs (null I1).

Complete Penetrance
# | Diseasegenes | Chr | Pop High Prevalence (Eli-2traj)
No PC No PC

1 rs3733124 3 As 0.000 +0.000 0.000 #0.000
2 rs7355991 3 Af 0.120 +0.020 0.080 +0.017
3 | rs17195948 3 Eu 0.200 +0.025 0.160 +0.023
4 rs1259069 6 Eu 0.080 +0.017 0.080 +0.017
5 rs3761998 6 As 0.000 +0.000 0.080 +0.017
6 rs9459886 6 Af 0.200 +0.025 0.040 £0.012
7 | rs12790383 11| EU 0.200 +0.025 0.160 +0.023
8 | rs11217935 11| As 0.080 +0.017 0.000 #0.000
9 | rs11825331 11|  Af 0.0480.012 0.080 +0.017
10| rs17117910 12| A9 0.360 +0.030 0.120 +0.020
11| rs12822275 12| EJ 0.160 +0.023 0.080 +0.017
12| rs1696449 12| Af 0.0480.012 0.040+0.012
13| rs2073868 17| As 0.120 +0.020 0.080 +0.017
14| rs9899123 17|  Af 0.080 +0.017 0.080 +0.017
15| rs34742396 17| EJ 0.080 +0.017 0.080 +0.017
16 | rs3745465 19| As 0.160 +0.023 0.080 +0.017
17 | rs10411117 19 Af 0.200 +0.025 0.120 £0.020
18 rs270771 19| Eu 0.160 +0.023 0.120 +0.020

Note: The headings for each column are defined as follows: Chr = Chromasomédnich SNP
marker is located (see Methodology — Power Simulations). Pop = @eapulations, including
African (Af), Asian (As) and European (Eu). For the complete panetrlow prevalence model, two
trajectory groups instead of three are used (see Methodology — Genetic)Medietsach setting 1000
replicates are generated. Africans n = 466, Asians n = 359, Europeans n = 214.
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Table 41. Empirical reection rates and 95% confidence interval of the multi-locus
high prevalence complete penetrance model under experiment V at the nominal 0.05

level.
Complete Penetrance
# | Diseasegenes | Chr Pop High Prevalence
No PC PC

1 rs3733124 3 As| 1.000 +0.000 1.000 +0.000
2 rs7355991 3 Af 1.000 +0.000 1.000 +0.000
3 rs17195948 3 Eu 1.000 +0.000 1.000 +0.000
4 rs1259069 6 Eu| 1.000 +0.000 1.000 +0.000
5 rs3761998 6 As| 1.000 +0.000 1.000 +0.000
6 rs9459886 6 Af 1.000 +0.000 1.000 +0.000
7 rs12790383 11 Eu 1.000 +0.000 1.000 +0.000
8 rs11217935 11 As  1.000 +0.000 1.000 +0.000
9 rs11825331 11 Af|  1.000 £0.000 1.000 +0.000
10 rs17117910 12 As 1.000 +0.000 1.000 +0.000
11 rs12822275 12 Ey 1.000 +0.000 1.000 +0.000
12 rs1696449 12 Af|  1.000 £0.000 1.000 £0.000
13 rs2073868 17 As| 1.000 +0.000 1.000 +0.000
14 rs9899123 17 Af|  1.000 £0.000 1.000 £0.000
15 rs34742396 17 Ey 1.000 +£0.000 1.000 £0.000
16 rs3745465 19 As| 1.000 +0.000 1.000 £0.000
17 rs10411117 19 Af|  1.000 +0.000 1.000 £0.000
18 rs270771 19 Eu 1.000 +0.000 1.000 +0.000

Note: The headings for each column are defined as follows: Chr = Chromasomédnich SNP
marker is located (see Methodology — Power Simulations). Pop = @eapulations, including
African (Af), Asian (As) and European (Eu). For the complete panetrlow prevalence model, two
trajectory groups instead of three are used (see Methodology — Genetic)Medietach setting 1000
replicates are generated. Africans n = 466, Asians n = 359, Europeans n = 214.
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3.2.2.1 Null Simulation Results Using Uncorrelated SNPs

The ANOVA of the measure of lack of robustness of validity forrthéti-locus model
uncorrelated SNPs is shown in Table 42 below. The model h&ssaquare of 0.0350.
The overall model is not statistically significaft € 1.27, p — value = 0.1725). The
results indicate that the statisti€ = 4.34, p — value = 0.0375 for factor PC is
significant at the nominal level 0.05. That is, the PC adjustmetitathdnelps improve
the robustness of validity in the complete penetrance high prevaleodel for

uncorrelated SNPs.
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Table 42. The ANOVA table for the multi-locus model uncorrelated SNPs under
experiment V at the nominal 0.05 level (dependent variable: lack of robustness of
validity).

The GLM Procedure
Dependent Variable: lackrobust lackrobust

Source DF | Sum of Squares | Mean Square || F Value | Pr>F
Model 25 1.287 0.051 1.27 | 0.1725
Error 874 35.519 0.041

Corrected Total | 899 36.806

R-Square || Coeff Var | Root MSE | lackrobust Mean

0.035 | 399.196 0.202 0.051
Source DF | Type lll SS | Mean Square | F Value | Pr>F
Chromosome 5 0.356 0.071 1.75| 0.120
Population 2 0.005 0.003 0.07 | 0.936
PC 1 0.176 0.176 4.34 | 0.038
chr*pop 10 0.481 0.048 1.18 | 0.299
chr*pc 5 0.072 0.014 0.35| 0.880
pop*pc 2 0.196 0.098 2.41 | 0.090
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3.2.2.2 Null Simulation Results for SNPs Having MAF Correlated with Disease SNP

The ANOVA of the measure of lack of robustness of validity forriaching SNPs is
shown in Table 43 below. The model hasRasguare of 0.0453. These results indicate
that the overall model is statistically significaft€ 1.66, p — value = 0.0228) at the
nominal 0.05 level. The value of the statisic= 4.83 (p — value = 0.0282) for the
factor PC, and the valug = 2.52 (p — value = 0.0054) for the interaction between
PC and chromosomare both statistically significant. This analysis documents that the

use of PC adjustment significantly improves robustness of validity.
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Table 43. The ANOVA table for the multi-locus model matching SNPs under experiment V
at the nominal 0.05 level (dependent variable: lack of robustness of validity).

The GLM Procedure
Dependent Variable: lackrobust lackrobust

Source DF | Sum of Squares | Mean Square | F Value | Pr>F
Model 25 3.087 0.123 1.66 | 0.023
Error 874 65.101 0.074

Corrected Total | 899 68.188

R-Square || Coeff Var | Root MSE | lackrobust Mean

0.045 282.820 0.273 0.097
Source DF | Type lll SS | Mean Square | F Value | Pr>F
Chromosome 5 0.396 0.079 1.06 | 0.379
Population 2 0.239 0.120 1.61 | 0.201
PC 1 0.360 0.360 4.83 | 0.028
chr*pop 10 1.877 0.188 2.52 | 0.005
chr*pc 5 0.191 0.038 0.51 | 0.767
pop*pc 2 0.023 0.012 0.16 | 0.855
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3.2.2.3 Statistical Analysis on Experiment IV

Table 44 reports the average of the rejection rate for theasksSNPs and lack of
robustness of validity measure with or without PC adjustment. Eachigrihe average
over 18 settings (six chromosome settings times three populatiotgse The results
indicate that the PC null rejection rates are closer to themabrigvel than the rates
without PC adjustment. For disease SNPs, the rejection ratdP®@ithdjustment is only

slightly less than the rejection rate without PC adjustment.

Table 44. Averageregection rates and lack of robustness of validity on Factor PC.

Rejection Rate Lack of Robustness of Validity
Overall Average
No PC PC No PC PC
Uncorrelated SNPs (null 1) 0.069 0.038 0.065 0.037
Matching SNPs (null II) 0.127 0.082 0.116 0.077
Disease SNPs (Power) 1.000 1.000

| also calculate the average of type | error rate, power akddfarobustness of
validity with or without PC by the three general populations: Afric Asian and
European. As before, the results indicate that global PC methodsattjastype | error
rate well overall, especially for the African and Asian popafatbut less effectively for
the European population. The rejection rates for the disease genesighly the same
for each population. More importantly, the rejection rate with PC tmdarg is roughly

equal to the rate without adjustment.
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Table 45. Average regection rates and lack of robustness of validity on Factors
population and PC.

Rejection Rate Lack of Robustness of Validity
Overall Average
No PC PC No PC PC
African
Uncorrelated SNPs (null I) 0.093 0.020 0.086 0.020
Matching SNPs (null Il) 0.113 0.073 0.104 0.069
Disease SNPs (Power) 1.000 1.000
Asian
Uncorrelated SNPs (null 1) 0.047 0.053 0.044 0.051
Matching SNPs (null Il) 0.120 0.060 0.110 0.057
Disease SNPs (Power) 1.000 1.000
European
Uncorrelated SNPs (null 1) 0.067 0.040 0.063 0.039
Matching SNPs (null II) 0.147 0.113 0.135 0.104
Disease SNPs (Power) 1.000 1.000

| calculate the average of type | error rate, power and lactiboistness of validity
with or without PC by the six chromosomes: chromosome 3, 6, 11, 12, 11Pafidhe
small chromosome, chromosome 19, needs PC adjustment more tharhaihesomes.

Overall, PC adjustment improves robustness of validity.
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Table 46. Average rejection rates and lack of robustness of validity on factor

chromosome.
Rejection Rate Lack of Robustness of Validity
Overall Average
No PC PC No PC PC
Chromosome 3
Uncorrelated SNPs (null I) 0.067 0.040 0.062 0.038
Matching SNPs (null Il) 0.107 0.080 0.099 0.075
Disease SNPs (Power) 1.000 1.000
Chromosome 6
Uncorrelated SNPs (null 1) 0.027 0.000 0.026 0.003
Matching SNPs (null Il) 0.093 0.067 0.087 0.062
Disease SNPs (Power) 1.000 1.000
Chromosome 11
Uncorrelated SNPs (null 1) 0.107 0.040 0.099 0.038
Matching SNPs (null II) 0.107 0.080 0.099 0.075
Disease SNPs (Power) 1.000 1.000
Chromosome 12
Uncorrelated SNPs (null I) 0.040 0.040 0.038 0.038
Matching SNPs (null II) 0.187 0.080 0.170 0.075
Disease SNPs (Power) 1.000 1.000
Chromosome 17
Uncorrelated SNPs (null I) 0.080 0.040 0.075 0.038
Matching SNPs (null 1) 0.093 0.080 0.087 0.075
Disease SNPs (Power) 1.000 1.000
Chromosome 19
Uncorrelated SNPs (null I) 0.093 0.067 0.087 0.063
Matching SNPs (null Il) 0.173 0.107 0.158 0.099
Disease SNPs (Power) 1.000 1.000
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Chapter 4 Discussion and

Conclusion

In this dissertation, | assessed whether PC adjustment wasamgceslongitudinal
data and whether PC adjustment reduced the inflation of the sagtiédevel resulting
from PS. The BPP of participants tife clinically important group was used as the
guantitative trait. | simulated two types of disease modelsitigge-locus disease model
and the multi-locus disease model. In the single-locus disease madslimed that the
disease was caused by a single gene, and | used six SNPs acragsnbralepopulations
(African, Asian and European) as disease SNPs: with thrdesMA0.01, one MAF at 0.05,
one at 0.15 and one at 0.30 respectively. In the multi-locus diseast hasdeimed that
the disease was caused by 18 SNPs, each with MAF sniele0t01. | conducted null
simulations and power simulations. | considered data simulated undexfieements: 1.

the single-locus complete penetrance high prevalence modelimgpemwith disease
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SNPs MAFs at 0.01; 2. the single-locus additive model experimehtdisgease SNPs
MAFs at 0.05, 0.15 and 0.30; 3. the complete penetrance high prevalence model
experiment with disease SNPs MAFs at 0.05, 0.15 and 0.30; 4. the mudtiddditive
model experiment; 5. the multi-locus complete penetrance high ereealmodel
experiment. | reported the empirical type | error rates ancepoww detect the disease
SNPs using these genetic models.

The null simulations suggested that the global PC adjustment niethpeal adjust for
PS. The PC method significantly improved robustness of validityhisf dssociation
procedure. The PC method maintained correct type | error ratesShiPs that have
MAFs across population uncorrelated with the disease SNPs. Howesd?Ct method
may be problematic with the SNPs that have MAFs across populdtiansnatch the
disease SNPs. The PC adjustment method had rejection rates aboumihal level for
these correlated non-causal SNPs when the genetic association was strong.

The power simulations in this work indicated that multi-locus models Wwih and
without PC adjustment had high power to detect the disease S8826%>for multi-locus
model). For the single-locus models, the power to detect thesdiS&Ps increased as the
MAF increased. For example, with MAFs 0.01, the power of both modslgreater than

56.4%, while with MAFs 0.05, 0.15 and 0.30, the powers were greater than 98.0%.

The questions in my research were: 1. Is PS an issue in longitstlides? 2. Does

PC correct it? My conclusions are: 1. Yes, PS was anisdargitudinal studies. 2. Yes,
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PC corrected PS quite substantially, but not completely. The R&tadint method helps
improve the robustness of validity in the uncorrelated null simulatibhe use of PC
adjustment significantly improves robustness of validity in a noukation with SNPs
that have MAF across population matching the disease SNPs. Thé R€eadjustment
and interactions involving PC adjustment in the power simulations arsigroficant.
That is, the fitted rejection rate with PC adjustment igssidlly equal to the fitted rate

without PC adjustment in a power simulation.

There are alternate rules for choosing the number of trajegtonps. For example,
many researchers only consider models in which each trajegrayp exceeds a

threshold, often 10% of the sample. These rules were not used here.

In future work, there are multiple issues that | plan to exp®pecifically, is the
inflation of rejection rate for matching SNPs a practical proBléMany correlated SNPs
may appear marginally significant. But will there be a unigttong association that
obscures the true association? Secondly, | will consider the ugenomic control or
other methods of adjustment for further study. For example, admixtutbodse
propensity scores and the local PC adjustment method could alsodbd-udber study
may also observe the effect of gene-environment interactions thrthey use of

environmental covariates.

121



References

Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation ofyaircest
unrelated individuals. Genome Research 19(9):1655-1664.

Bouaziz M, Ambroise C, Gued] M. 2011a. Accounting for population stratification in
practice: a comparison of the main strategies dedicated to genome-wide
association studies. PLOS ONE 6.

Bouaziz M, Ambroise C, Guedj M. 2011b. Accounting for Population Stratification in
Practice: A Comparison of the Main Strategies Dedicated to Genome-Wide
Association Studies. Plos One 6(12).

Campbell CD, Ogburn EL, Lunetta KL, Lyon HN, Freedman ML, Groop LC, Altstjer
Ardlie KG, Hirschhorn JN. 2005. Demonstrating stratification in a European
American population. Nature Genetics 37(8):868-872.

Cardon LR, Palmer LJ. 2003. Population stratification and spurious allelic dssuocia
Lancet 361(9357):598-604.

Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClMill J,

Martin J, Braithwaite A and others. 2003. Influence of life stress on depression:
Moderation by a polymorphism in the 5-HTT gene. Science 301(5631):386-389.

Chen HS, Zhu X, Zhao H, Zhang S. 2003. Qualitative semi-parametric test focgeneti
associations in case-control designs under structured populations. Annals of
Human Genetics 67:250-264.

Cheng KF, Lin WJ. 2007. Simultaneously correcting for population stratificaticoa
genotyping error in case-control association studies. American Journal of Human
Genetics 81(4):726-743.

Deng H. 2001. Population admixture may appear to mask, change or reverse genetic
effects of genes underlying complex traits. Genetics 159:1319-1323.

Devlin B, Roeder K. 1999. Genomic control for association studies. Biometrics

122



55(4):997-1004.

Divers J, Vaughan LK, Padilla MA, Fernandez JR, Allison DB, Redden DT. 2007.
Correcting for measurement error in individual ancestry estimatesiatistd
association tests. Genetics 176(3):1823-1833.

Epstein MP, Allen AS, Satten GA. 2007. A simple and improved correction for population
stratification in case-control studies. American Journal of Human Genetics
80(5):921-930.

Ewens WJ, Spielman RS. 1995. THE TRANSMISSION DISEQUILIBRIUMSTE
HISTORY, SUBDIVISION AND ADMIXTURE. American Journal of Human
Genetics 57(2):455-464.

Guan WH, Liang LM, Boehnke M, Abecasis GR. 2009. Genotype-Based Matching to
Correct for Population Stratification in Large-Scale Case-Control @enet
Association Studies. Genetic Epidemiology 33(6):508-517.

Hao K, Li C, Rosenow C, Wong WH. 2004. Detect and adjust for population
stratification in population-based association study using genomic contianstar
an application of Affymetrix Genechip (R) Human Mapping 10K array. European
Journal of Human Genetics 12(12):1001-1006.

Heiman GA, Hodge SE, Gorroochurn P, Zhang J, Greenberg DA. 2004a. Effects of
population stratification on false positive rates in association analysis:
simulation study. American Journal of Epidemiology 159(11):S25-S25.

Heiman GA, Hodge SE, Gorroochurn P, Zhang JY, Greenberg DA. 2004b. Effect of
population stratification on case-control association studies - I. Elevatiatsén f
positive rates and comparison to confounding risk ratios (a simulation study).
Human Heredity 58(1):30-39.

Hinds DA, Stokowski RP, Patil N, Konvicka K, Kershenobich D, Cox DR, Ballinger DG.
2004. Matching strategies for genetic association studies inwsgdgbopulations.

American Journal of Human Genetics 74(2):317-325.

123



Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti KinEs
2010. Variance component model to account for sample structure in genome-wide
association studies. Nature Genetics 42(4):348-U110.

Kimmel G, Jordan MI, Halperin E, Shamir R, Karp RM. 2007. A Randomization test for
controlling population stratification in whole-genome association studies.
American Journal of Human Genetics 81(5):895-905.

Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy Ml
Ramos EM, Cardon LR, Chakravarti A and others. 2009. Finding the missing
heritability of complex diseases. Nature 461(7265):747-753.

Marchini J, Cardon MS, Phillips P, Donnelly P. 2004. The effects of human population
structure on large genetic asociation studies. Nat Genet 36:512-517.

Menozzi P, Piazza A, Cavallisforza L. 1978. SYNTHETIC MAPS OF HUMAN
GENE-FREQUENCIES IN EUROPEANS. Science 201(4358):786-792.

Novembre J, Stephens M. 2008. Interpreting principal component analyses of spatial
population genetic variation. Nature Genetics 40(5):646-649.

Patterson N, Price AL, Reich D. 2006. Population structure and eigenanalysis. Plos
Genetics 2(12):2074-2093.

Price A. Eigensoft software.

Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. 2006.
Principal components analysis corrects for stratification in genome-wide
association studies. Nat Genet 38(8):904-9009.

Price AL, Zaitlen NA, Reich D, Patterson N. 2010. New approaches to population
stratification in genome-wide association studies. Nature Reviews Geneti
11:459-463.

Pritchard JK, Rosenberg NA. 1999. Use of unlinked genetic markers to detect population
stratification in association studies. American Journal of Human Genetics

65(1):220-228.

124



Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using
multilocus genotype data. Genetics 155(2):945-959.

Reich DE, Goldstein DB. 2001. Detecting association in a case-control study while
correcting for population stratification. Genetic Epidemiology 20(1):4-16.
Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman
MW. 2002. Genetic structure of human populations. Science

298(5602):2381-2385.

Seldin MF, Price AL. 2008. Application of ancestry informative markersso@ation
studies in European Americans. Plos Genetics 4(1).

Tian C, Gregersen PK, Seldin MF. 2008a. Accounting for ancestry: population
substructure and genome-wide association studies. Human Molecular Genetics
17:R143-R150.

Tian C, Kosoy R, Lee A, Ransom M, Belmont JW, Gregersen PK, Seldin MF. 2008b.
Analysis of East Asia Genetic Substructure Using Genome-Wide Sfsdi?sA
Plos One 3(12).

Tian C, Plenge RM, Ransom M, Lee A, Villoslada P, Selmi C, Klareskog L, PAler
Qi LH, Gregersen PK and others. 2008c. Analysis and application of European
genetic substructure using 300 KSNP information. Plos Genetics 4(1).

Tiwari HK, Barnholtz-Sloan J, Wineinger N, Padilla MA, Vaughan LK, Allisdd.2008.
Review and evaluation of methods correcting for population stratification with a
focus on underlying statistical principles. Human Heredity 66(2):67-86.

Tsai HJ, Choudhry S, Naqgvi M, Rodriguez-Cintron W, Burchard EG, Ziv E. 2005.
Comparison of three methods to estimate genetic ancestry and control for
stratification in genetic association studies among admixed populations. Human
Genetics 118(3-4):424-433.

Wacholder S, Rothman N, Caporaso N. 2000. Population stratification in epidemiologic

studies of common genetic variants and cancer: Quantification of bias. J Natl

125



Cancer Inst 92(14):1151-1158.

Wang LY, Lee WC. 2008. Population stratification bias in the case-only study for
gene-environment interactions. American Journal of Epidemiology
168(2):197-201.

Wang YT, Localio R, Rebbeck TR. 2006. Evaluating bias due to population stratification
in epidemiologic studies of gene-gene or gene-environment interactions. Cancer
Epidemiology Biomarkers & Prevention 15(1):124-132.

Wise CA, Gao X, Shoemaker S, Gordon D, Herring JA. 2008. Understanding genetic
factors in idiopathic scoliosis, a complex disease of childhod. Curr Genom,
9:51-59.

Zhao HQ, Rebbeck TR, Mitra N. 2009. A Propensity Score Approach to Correction for
Bias due to Population Stratification Using Genetic and Non-Genetic Factors
Genetic Epidemiology 33(8):679-690.

Zhu XF, Zhang SL, Zhao HY, Cooper RS. 2002. Association mapping, using a mixture
model for complex traits. Genetic Epidemiology 23(2):181-196.

Zieve D. 2011. Signs of scoliosis. ADAM.

Ziv E, Burchard EG. 2003. Human population structure and genetic association studies.

Pharmacogenomics 4(4):431-441.

126



Appendix A

1. Table 1. Number of rare variants by chromosome in GAW 17 database.

Number of markers Total number  Percentage of markers

Chromosome  with MAF<0.01 of markers with MAF<0.01
1 1713 2237 76.6%
2 1225 1599 76.6%
3 970 1211 80.1%
4 745 944 78.9%
5 814 1074 75.8%
6 1059 1425 74.3%
7 794 1063 74.7%
8 705 982 71.8%
9 794 1166 68.1%

10 1003 1396 71.8%
11 1408 2102 67.0%
12 1022 1435 71.2%
13 330 425 77.6%
14 638 795 80.3%
15 738 933 79.1%
16 641 844 75.9%
17 924 1223 75.6%
18 496 634 78.2%
19 1092 1649 66.2%
20 431 591 72.9%
21 195 251 77.7%
22 394 508 77.6%
Total 18131 24487
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2. Table2. Missing data information for the Hapmap 3 database.

Average Genotyping rate

Chromosome Total number of Markers in remain individuals
1 119487 0.997255
2 119502 0.997144
3 98971 0.997186
4 88135 0.997014
5 90368 0.997191
6 93671 0.997199
7 77377 0.997078
8 77111 0.99704
9 65251 0.997159
10 75616 0.997296
11 72993 0.997152
12 70482 0.997273
13 53293 0.997071
14 46655 0.996875
15 43309 0.997363
16 45778 0.997478
17 39329 0.997446
18 41942 0.997068
19 26953 0.997271
20 37159 0.997184
21 19802 0.997007
22 20649 0.997386

Overall 1423833 0.997188
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Appendix B

PLINK Codes

1. Basic Information
PLINK is a C/C++ command line program. At the command promptshoald type in
"plink" followed by “--options” to specify the data inputs or arssdyto be used. The
references for all options in PLINK is given in the link below:

http://pngu.mgh.harvard.edu/~purcell/plink/reference.shtml

To read in data files, the command is "plink --file mydafdie data files are in two
formats: the ped file and the map file. i.e., mydata.ped and mydgialf the PED and
MAP file names are different, one should specify them sepgrasghg the command:
"plink --ped mydatal.ped --map mydata2.map".

The PED file contains the pedigree and gene information for eathidual in a
sample. It is a space/tab delimited file including the followawdgumns: family ID,
individual ID, paternal ID, maternal ID, sex (1=male; 2=femadher=unknown),
phenotype (0O=missing; 1=unaffected; 2=affected). The phenotype couwjddnitative
traits (QT) instead of case-controls. Researchers could sg@c€gywith certain options
in PLINK if the phenotypes are not case-controls. The firstcelumns are fixed and
required in PLINK. But one can use commands to indicate certasingifields. i.e.,

"--no-fid" indicates there is no Family ID column; "--no-pasgnindicates there are no
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paternal and maternal ID columns; "--no-sex"indicates theve gex field; "--no-pheno”
indicates there is no phenotype column.

The MAP file contains the genotype location information. Each lirke@MAP file
describes a single marker and must contain exactly 4 colummsnatome (1-22, X, Y
or O if unplaced), marker name, genetic distance (in morgan),paaspesition. If the

genetic distance is missing, a flag of "--map3" can be added.

2. Summary Statistics

(1) Hardy-Weinberg Equilibrium

The command of testing HWE is "plink --file data --hardy". An outidatof plink.hwe
will be created. It has the following columns:

SNP: SNP identifier; TEST: code indicating sample; Al: miatgle code; A2: major
allele code; GENO: genotype counts: A1A1/A1A2/A2A2; O(HET): obskrve
heterozygosity; E(HET): expected heterozygosity; P: HW p-value.

If the p-value of HWE test is significant, the SNP considered is not in HWE

(2) Minor Allele Frequency (MAF)

PLINK could generate the MAF for each SNP under study usingdhemands "plink

--file data --freq". An output file of plink.frq will be created with figelumns:
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CHR: chromosome; SNP: SNP identifier; Al: allele 1 code (mallete); A2: allele 2

code (major allele); MAF: minor allele frequency; NCHROBS: non-mgssilele count.

3. Association Analysis

(1) Case-control Association Test

The case-control association test could be performed using comrialitds --file
mydata --assoc". An output file of plink.assoc will be created with columns:
CHR: chromosome; SNP: SNP ID; BP: base-pair; Al: minor allele namde;ffrequency
of this allele in cases; F_U: frequency of this allele in st A2: major allele name;
CHISQ: basic allelic test chi-square (1df); P: asymptptealue for this test; OR:
estimated odds ratio.

A SNP with significant p-value is considered to be associatéd twe disease. In
addition, when the option "--ci 0.95" is added, the columns "L95: Itmend of 95% ClI
for odds ratio” and "U95: upper bound of 95% CI for odds ratio" willnotuded in the

output.

(2) Quantitative Trait Association

If the phenotype in the "6column of the PED file is quantitative, with the same

commands given in a case-control association study, a quantitaitvertalysis will be
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automatically performed in PLINK. An output file of plink.assocll wnclude the
following columns:

CHR: chromosome; SNP: SNP ID; BP: base-pair; NMISS: # ofmissing genotypes;
BETA: regression coefficient; SE: standard error; R2: regnesssquared; T: Wald test
t-statistic; P: Wald test asymptotic p-value.

In my study, | used BPPs of the clinically important group as the quantitatitee tr
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Appendix C

/* MULTI LOCI PARTIAL PENETRANCE MODEL WITH 2 TRAJ GROPBS: C(50%), F(50%) */
LIBNAME TRAJ "C:\hapmap\yifan";
/* READ IN 'COUNTALLIID' WITH JUST IID AND SUMCT VARIABLES */

DATA CURVE;

SET TRAJ.COUNTALLIID;

U=UNIFORM(0);

IF SUMCT=. THEN DELETE;

ELSE IF SUMCT=0 OR SUMCT=1 AND U<=0.9 THEN GRP='C";

ELSE IF SUMCT=0 OR SUMCT=1 AND 0.9<U=<1 THEN GRP="F';

ELSE IF SUMCT>1 AND U<=0.1 THEN GRP='C’;

ELSE IF SUMCT>1 AND 0.1<U<=1 THEN GRP='F;

T1=0.25;

T2=0.4;

T3=0.55;

T4=0.7;

T5=0.85;

T6=1;

IF GRP='C' THEN DO;

CURVE1=15+4*RANNOR(0);
CURVE2=15+4*RANNOR(0);
CURVE3=15+4*RANNOR(0);
CURVE4=15+4*RANNOR(0);
CURVE5=15+4*RANNOR(0);
CURVE6=15+4*RANNOR(0);
END;

ELSE IF GRP="F' THEN DO;
CURVE1=15+56%(T1-0.25)+4*RANNOR(0);
CURVE2=15+56%(T2-0.25)+4*RANNOR(0);
CURVE3=15+56%(T3-0.25)+4*RANNOR(0);
CURVE4=15+56%(T4-0.25)+4*RANNOR(0);
CURVES5=15+56%(T5-0.25)+4*RANNOR(0);

133



CURVEG6=15+56%(T6-0.25)+4*RANNOR(0);
END;
RUN;

/* PROC TRAJ FOR 2 CLASSES */
PROC TRAJ DATA=CURVE OUTPLOT=0P OUTSTAT=0S OUT=0F2 OEHT=0E2 ITDETAIL;
ID 1ID; VAR CURVE1-CURVES; INDEP T1-T6;
MODEL CNORM; MAX 1000; MIN -1000; NGROUPS 2; ORDER 2 2;
RUN;
*%TRAJPLOT(OP,0S,'MULTI CMPLT PENETRANCE MODEL I1I-12Q CLASSES','Cnorm
Model','Dependent Variable','Scaled time")

/* PROC TRAJ FOR 3 CLASSES */
PROC TRAJ DATA=CURVE OUTPLOT=0P OUTSTAT=0S OUT=0F3 OEHT=0E3 ITDETAIL;
ID 1ID; VAR CURVE1-CURVES; INDEP T1-T6;
MODEL CNORM; MAX 1000; MIN -1000; NGROUPS 3; ORDER 2 2 2;
RUN;
*%TRAJPLOT(OP,0S,'MULTI CMPLT PENETRANCE MODEL I1I-13Q CLASSES','Cnorm
Model','Dependent Variable','Scaled time")

/* PROC TRAJ FOR 4 CLASSES */
PROC TRAJ DATA=CURVE OUTPLOT=0P OUTSTAT=0S OUT=0F4 OEHT=0E4 ITDETAIL;
ID 1ID; VAR CURVE1-CURVES; INDEP T1-T6;
MODEL CNORM; MAX 1000; MIN -1000; NGROUPS 4; ORDER 2 2 2 2;
RUN;
*%TRAJPLOT(OP,0S,'MULTI CMPLT PENETRANCE MODEL I1I-14Q CLASSES','Cnorm
Model','Dependent Variable','Scaled time")

/* PROC TRAJ FOR 5 CLASSES */
PROC TRAJ DATA=CURVE OUTPLOT=0P OUTSTAT=0S OUT=0F5 OEHT=0E5 ITDETAIL;
ID 1ID; VAR CURVE1-CURVES; INDEP T1-T6;
MODEL CNORM; MAX 1000; MIN -1000; NGROUPS 5; ORDER 22 2 2 2;
RUN;
*%TRAJPLOT(OP,0S,'MULTI CMPLT PENETRANCE MODEL I11-15Q CLASSES','Cnorm
Model','Dependent Variable','Scaled time’)

/* PROC TRAJ FOR 6 CLASSES */

PROC TRAJ DATA=CURVE OUTPLOT=0P OUTSTAT=0S OUT=0F6 OEHT=0EG6 ITDETAIL;
ID 1ID; VAR CURVE1-CURVES; INDEP T1-T6;
MODEL CNORM; MAX 1000; MIN -1000; NGROUPS 6; ORDER 2222 2 2;
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RUN;
*%TRAJPLOT(OP,0S,'MULTI CMPLT PENETRANCE MODEL I1I-16Q CLASSES','Cnorm
Model','Dependent Variable','Scaled time")

/* MAKE PHENOTYPE FILE TO INPUT TO PLINK */
DATA FIDIID;

SET TRAJ.FIDIID;

KEEP FID IID;
RUN;

/* READ IN ALL 'OF' DATA, KEEP BPP COLUMN---GRPPROB. ADD ®P' COLUMN TO KEEP
A COLUMN POSITION BEFORE MERGE */
DATA PHENO;

MERGE FIDIID OF2 (KEEP = 1ID GRP2PRB) OF3 (KEEP = IID GRP3PRB)

OF4 (KEEP = 1ID GRP4PRB) OF5 (KEE IID GRP5PRB) OF6 (KEEP =

IID GRP6PRB);

BY IID;

GRP=0;
RUN;

/* TAKE THE FIRST ROW, PARMS, OF THE _TYPE_ COLUMN, DASET OEE ONLY HAS
ONE ROW */
/* SAS CAN'T RECOGNIZE _TYPE_ IN 'OE', SO | USED 'OBBIO READ ONLY THE VERY
FIRST ROW */
DATA OEE;
MERGE OE2 (KEEP=_BIC1_RENAME=(_BIC1_=BIC2) OBS=1)

OE3 (KEEP=_BIC1_ RENAME=( BIC1_=BIC3) OBS=1)E® (KEEP= BIC1_
RENAME=(_BIC1_=BIC4) OBS=1)

OE5 (KEEP=_BIC1_ RENAME=( BIC1_=BIC5) OBS=1)E® (KEEP= BIC1_
RENAME=(_BIC1_=BIC6) OBS=1);
RUN;

/* FIND THE LARGEST BIC FROM 1 TO 6 CLASSES. THERE ISNLY ONE VALUE IN
VARIABLE 'BIG' */
DATA BIG;

SET OEE;

BIG=BIC1; N=1;
IF BIC2>BIG THEN DO BIG=BIC2; N=2; END;
IF BIC3>BIG THEN DO BIG=BIC3; N=3; END;
IF BIC4>BIG THEN DO BIG=BIC4; N=4; END;
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IF BIC5>BIG THEN DO BIG=BIC5; N=5; END;
IF BIC6>BIG THEN DO BIG=BIC6; N=6; END;
KEEP N;

RUN;

/* MAKE A 613 ROWS MATRIX, WITH ID AND N VALUES */
DATA BIG613;

SET BIG;

DO ID=1TO 613;

OUTPUT,;

END;
RUN;

/* MAKE A QT TABLE, PUT THE BPP--GRPPRB DATA INTO 'BP', KEEP THE 'N' COLUMN

FOR REFERENCE */

DATA QT;
MERGE PHENO BIG613;

GRP= GRP1PRB;

IFN=2 THEN GRP= GRP2PRB;
IFN=3 THEN GRP= GRP3PRB;
IFN=4 THEN GRP= GRP4PRB;
IFN=5 THEN GRP= GRP5PRB;
IFN=6 THEN GRP= GRP6PRB;
IF GRP = . THEN GRP = -9;
KEEP FID 1ID GRP N;

RUN;

PROC EXPORT DATA= WORK.QT
OUTFILE= "C:\hapmap\yifan\QT.txt"
DBMS=TAB REPLACE;

RUN;

136



Appendix D

List of Uncorrelated and Matching SNPsfor M ulti-locus M odel

>
LDOO\ICDU'I-bUUNI—\g

W W W NNNNNNNNNNRRRPRRPRRPRRPR
N P O OO0 NOUBWNEROWOLOKLONOODO WD WNRLR O

group

snp01-01
snp01-02
snp01-03
snp01-04
snp01-05
snp01-06
snp01-07
snp01-08
snp01-09
snp01-10
snp01-11
snp01-12
snp01-13
snp01-14
snp01-15
snp01-16
snp01-17
snp01-18
snp01-19
snp01-20
snp01-21
snp01-22
snp01-23
snp01-24
snp01-25
snp02-01
snp02-02
snp02-03
snp02-04
snp02-05
snp02-06
snp02-07

uncorrelated
SNPs
rs9384246
rs9496769
rs8182554
rs483574
rs2397132
rs956952
rs9834682
rs16884048
rs1551524
rs6798416
rs3772547
rs750438
rs9365263
rs1603537
rs12226382
rs11032481
rs4932691
rs4431401
rs4858960
rs11129414
rs10877383
rs7966445
rs9397313
rs11025588
rs562516
rs9404115
rs4387423
rs202069
rs937761
rs4801702
rs4959793
rs6939425

matching
SNPs
rs16887596
rs766797
rs16889893
rs9353978
rs9342347
rs16870107
rs2034153
rs17062802
rs16963260
rs16964551
rs4955653
rs17071850
rs12490747
rs1362525
rs3018622
rs3960851
rs2362191
rs4363010
rs12488302
rs17148932
rs12485909
rs16935493
rs3794077
rs4688741
rs4688682
rs6445618
rs16860782
rs11833193
rs6926129
rs699637
rs6791183
rs12311968
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33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

snp02-08
snp02-09
snp02-10
snp02-11
snp02-12
snp02-13
snp02-14
snp02-15
snp02-16
snp02-17
snp02-18
snp02-19
snp02-20
snp02-21
snp02-22
snp02-23
snp02-24
snp02-25
snp03-01
snp03-02
snp03-03
snp03-04
snp03-05
snp03-06
snp03-07
snp03-08
snp03-09
snp03-10
snp03-11
snp03-12
snp03-13
snp03-14
snp03-15
snp03-16
snp03-17
snp03-18
snp03-19
snp03-20
snp03-21
snp03-22
snp03-23

rs687660
rs11918801
rs11867497
rs9813221
rs2356046
rs379977
rs6937313
rs523179
rs807858
rs4470547
rs13091924
rs12451743
rs4796835
rs9472686
rs2876586
rs814022
rs515246
rs726610
rs16933427
rs3884325
rs1596071
rs4767174
rs7954843
rs9284357
rs11104708
rs9873052
rs9273012
rs7138898
rs17068440
rs2143071
rs3138289
rs11552205
rs7610823
rs9504044
rs2495964
rs4789846
rs2303146
rs6807356
rs1687310
rs1502380
rs2201438

rs16829583
rs1366244
rs9447191
rs9877433
rs4992086
rs7258703
rs12293932
rs1776450
rs9848710
rs13434278
rs2700221
rs7111830
rs12284508
rs17035243
rs1349434
rs17079769
rs6505497
rs17026647
rs12201208
rs12201692
rs17660589
rs11130981
rs12208647
rs6937229
rs11922676
rs4686787
rs497704
rs1146240
rs11023888
rs17365525
rs12977468
rs1542123
rs2327748
rs2044124
rs17526236
rs17606030
rs17280334
rs1013426
rs11669191
rs35765580
rs12806315
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74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9%
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

snp03-24
snp03-25
snp04-01
snp04-02
snp04-03
snp04-04
snp04-05
snp04-06
snp04-07
snp04-08
snp04-09
snp04-10
snp04-11
snp04-12
snp04-13
snp04-14
snp04-15
snp04-16
snp04-17
snp04-18
snp04-19
snp04-20
snp04-21
snp04-22
snp04-23
snp04-24
snp04-25
snp05-01
snp05-02
snp05-03
snp05-04
snp05-05
snp05-06
snp05-07
snp05-08
snp05-09
snp05-10
snp05-11
snp05-12
snp05-13
snp05-14

rs885398
rs2236543
rs307223
rs4889835
rs16937972
rs2061185
rs9484448
rs12575969
rs12790182
rs12227286
rs13059911
rs1841704
rs7639226
rs6502546
rs10936033
rs7213831
rs4688381
rs789224
rs563385
rs3826301
rs9311833
rs12577984
rs33936986
rs1535708
rs332496
rs9736016
rs2061907
rs1101834
rs719365
rs1945318
rs16881458
rs870601
rs10501851
rs11033093
rs1547589
rs9364689
rs11229425
rs28360477
rs12190869
rs2099015
rs11819769

rs17443031
rs17421687
rs17517058
rs17260403
rs33988791
rs1047841
rs2184925
rs17730847
rs41457949
rs11042572
rs11222105
rs9268219
rs17377726
rs13212023
rs1934793
rs12948969
rs4122113
rs11047534
rs17194345
rs12950551
rs11651302
rs7252322
rs1788279
rs568131
rs3132453
rs8100439
rs17303478
rs4685047
rs17144371
rs6266
rs12580498
rs2306882
rs3744234
rs2234376
rs2280523
rs310467
rs2302644
rs11871642
rs2286406
rs3800370
rs2306260
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115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

snp05-15
snp05-16
snp05-17
snp05-18
snp05-19
snp05-20
snp05-21
snp05-22
snp05-23
snp05-24
snp05-25
snp06-01
snp06-02
snp06-03
snp06-04
snp06-05
snp06-06
snp06-07
snp06-08
snp06-09
snp06-10
snp06-11
snp06-12
snp06-13
snp06-14
snp06-15
snp06-16
snp06-17
snp06-18
snp06-19
snp06-20
snp06-21
snp06-22
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