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Abstract of the Dissertation 
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by 
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in 
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(Statistics) 
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Genome-wide association studies (GWAS) are widely used to detect genotypes associated 

with complex diseases. Such GWAS studies of disease progression over time may be 

clinically significant. Longitudinal quantitative trait locus (LQTL) methods are used in 

these studies to simulate disease progression. However, population stratification (PS) can 

lead to false positive or negative findings when conducting a GWAS study. PS is induced 

by a candidate marker’s variation in allele frequency across ancestral populations. One of 

the approaches used to adjust for population stratification in GWAS is the global 

principal component analysis (PCA) approach.  

In this thesis I examine the statistical properties of GWAS analysis procedures using 

principal component adjustments across the whole genome. I use additive risk allele 

models to test the association between rare genetic variants and the longitudinal 

quantitative phenotypes across the whole genome. The genotype data are taken from the 
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Hapmap 3 dataset for 1198 unrelated individuals. The simulated quantitative phenotype 

data are estimated using the Bayesian posterior probabilities (BPPs) that a participant 

belongs to a clinically important trajectory curve. The PCA method implemented in the 

EIGENSTRAT program is then used to reduce the data to ten variables containing most 

of the genetic variability information.  

The power and rejection rates are evaluated based on 1000 simulated replicates. The 

association test follows a chi-square distribution with one degree of freedom under the 

null hypothesis of no association. The p-values of the test of the coefficient of a genotype 

with and without a PC adjustment for PS are documented. For each disease gene, I select 

25 matching SNPs (the ones with high correlation coefficient of allele frequencies with 

the disease gene across population) and 25 non-correlated SNPs (the ones with low 

correlation coefficient of allele frequencies with the disease gene across population). All 

SNPs considered are in overall Hardy Weinberg equilibrium (HWE).  

The additive risk allele model LQTL models have strong empirical power. The model 

with global PCA adjustment for PS is able to consistently maintain correct false positive 

rates.  
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Chapter 1 Introduction 
 

 

 

 

 

 

 

Genome-wide association studies (GWAS) are widely used to detect genotypes associated 

with complex diseases. GWAS studies of disease progression over time are of increasing 

clinical significance. Longitudinal quantitative trait locus (LQTL) methods are used in 

these studies to assess disease progression. It is well documented that population 

stratification (PS) can lead to false positive or negative findings when conducting a 

GWAS study (Campbell and others, 2005; Deng, 2001; Ewens and Spielman, 1995; 

Heiman and others, 2004a; Heiman and others, 2004b; Marchini and others, 2004; Tian 

and others, 2008a; Tian and others, 2008c). PS is induced by a candidate marker’s 

variation in allele frequency across ancestral populations. One of the widely used 

approaches to account for population stratification in GWAS is the global principal 
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component analysis (PCA) approach (Menozzi and others, 1978; Novembre and Stephens, 

2008; Patterson and others, 2006; Zhu and others, 2002) as calculated using the 

EIGENSTRAT software (Price and others, 2006). Bouaziz and his colleagues document 

that logistic regression using principal components as covariates is an effective tool to 

control the false positive rate in the study of a time-constant phenotype (Bouaziz and 

others, 2011b). The research questions in this dissertation are 1) Whether PS can induce 

false positive findings in the study of longitudinal traits? 2) If so, does the use of global 

PCs reduce or eliminate the effects of PS?  

In my study, I used several additive risk allele models to test the association between 

genetic variants and the longitudinal quantitative phenotypes. The genotype data were 

taken from the Hapmap 3 dataset for 1198 unrelated individuals. The synthetic 

longitudinal disease data for an individual was generated by a trajectory group model, 

with trajectory group determined principally by the individual’s genotypes. The 

longitudinal data was then analyzed using the trajectory analysis software PROC TRAJ. 

The trajectory group with greatest estimated change was used as the “clinically important” 

group. The simulated quantitative phenotype traits were the estimated Bayesian posterior 

probabilities (BPPs) that a participant belonged to the clinically important trajectory 

group. The longitudinal trajectories were simulated to represent the observed progression 

in a disease such as Adolescent Idiopathic Scoliosis (AIS) study (Wise and others, 2008). 

The PCA method implemented in the EIGENSTRAT program was then used to reduce 

the genetic data to ten variables containing most of the genetic variability information.  
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1.1 Genome-wide Association Studies (GWAS) 

 

During the past few decades, genetic research has focused more on complex human 

diseases such as asthma, Alzheimer’s disease, cardiovascular disease, and diabetes. To 

better understand the pathogenesis of such complex diseases, researchers use GWAS to 

detect the genetic loci associated with a disease. Their aim is to improve prevention and 

treatment strategies by locating the genes that are implicated with the disease and its 

progression.   

 

A single nucleotide polymorphism (SNP) is the simplest type of polymorphism and 

occurs when one nucleotide is substituted for another based on a single mutation. Nearly 

three million variants have been reported and are catalogued in a public database 

(http://www.ncbi.nlm.nih.gov/SNP/).  

 

A GWAS seeks to assess the correlations between genotype frequencies of single 

nucleotide polymorphisms (SNPs) and genetic variants and disease trait levels across 

populations. There are at least three explanations for an association between an allele and a 

phenotype (Cardon and Palmer, 2003). A first is that the allele may directly affect the 

expression of the phenotype. Second, the allele may be correlated with a causative allele 

located nearby. Third, the association may be due to confounding or selection bias.  
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There are two commonly used study designs for GWAS. One is a family-based design, 

and the other is a design based on samples of unrelated individuals. A design based on 

sampling individuals can be more powerful in detecting weak genetic effects. These 

studies include the traditional case-control studies, which are commonly used and cohort 

studies.  

 

Price et al. (2010) report that GWAS studies have identified hundreds of common 

variants associated with disease risk or related traits (Price and others, 2010). Since most 

genetic heritability remains unexplained, future work will increasingly focus on variants of 

low minor-allele frequency or rare variants (Manolio and others, 2009). I define a variant 

with low minor-allele frequency (MAF) as having MAF between 0.5% and 5%. I use the 

term “rare variant” to refer to a SNP with MAF less than 0.5%. In my study, I focus on 

variants with MAF between 1% and 5%.  

 

The genetic analyses reported here were generated by PLINK. PLINK is a freely 

available program with open-source code. It is a whole genome association analysis toolset, 

designed to perform a range of basic, large-scale analyses in a computationally efficient 

manner. The focus of PLINK is purely on analysis of genotype/phenotype data. The 

software deals with PS using a clustering approach and corresponding command codes. 

 

 



 

5 
 

1.2 Longitudinal Quantitative Trait Loci (LQTL) 

 

A quantitative trait locus (QTL) is a gene that affects a quantitative trait. In a longitudinal 

study, observations on a participant are taken at more than one time point, and associations 

are considered temporally. Longitudinal studies may be prospective, retrospective, or, 

more commonly, partially retrospective. They are useful for studying the effects of new 

interventions or possible trends in behavior. Since a longitudinal study analyzes events at 

more than one point in time, it may suggest the causal direction of associations (Bowling, 

2003).  

The case-only study is a one approach to locate a longitudinal QTL (LQTL). A second 

approach is population based. The issues for the validity of a study are the same for both 

types of studies (Caspi and others, 2003). There is one well-recognized assumption for the 

validity of such studies. The susceptibility genotypes and each confounding variable must 

be independent in the population. Possible confounding factors include environmental 

variables and population stratification. When these are present, the study may be biased. 

Wang and Lee (2008) showed that hidden stratification in the study population could also 

severely bias a case-only study (Wang and Lee, 2008). They derived formulas for PS bias 

in a study using logistic regression. The bias involves three terms: 1) the coefficient of 

variation of the exposure prevalence odds, 2) the coefficient of variation of the genotype 

frequency odds, and 3) the correlation coefficient between the exposure prevalence odds 

and the genotype frequency odds.   
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1.3 Population Stratification (PS) 

 

GWAS researchers reported that there were biases in GWAS studies and that only a few 

associations were consistently and convincingly replicated (Campbell and others, 2005; 

Tian and others, 2008a). That is, there were discoveries of spurious associations. Failure 

to account for the bias induced by population stratification (PS) is thought to be one of 

the main causes of spurious or incorrect findings (Campbell and others, 2005; Deng, 

2001; Ewens and Spielman, 1995; Heiman and others, 2004a; Heiman and others, 2004b; 

Marchini and others, 2004; Tian and others, 2008a; Tian and others, 2008c). PS occurs 

when there is a systematic difference in allele frequencies between subpopulations in a 

population. There can then be admixture among populations in a sample due to 

demographic history, natural selection, and mating between subpopulations. For example, 

there is admixture of populations of African and European descent in the United States 

(Tiwari and others, 2008).  

 

Enoch (2006) reported that population subdivision, recent admixture and sampling 

variance could lead to spurious associations between a phenotype and a marker locus, 

which may have masked true associations in case-control studies. Wang et al. (2006) 

reported that confounding by ethnicity (i.e., a type of PS) can result in bias and incorrect 

inferences in genotype-disease association studies (Wang and others, 2006). PS can lead 

to confounding in association studies, such as case-control studies, where the association 
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found could be due to the underlying structure of the population rather than a genetic locus. 

Wacholder et al. (2000, 2002) noted that both the frequency of the marker and the 

background disease prevalence must vary substantially by ethnicity for PS to be an issue 

(Wacholder and others, 2000). Replication of genetic association studies may, therefore, be 

problematic partly because of PS (Ziv and Burchard, 2003).  

Many genetic epidemiologists consider PS to be a manageable problem (Pritchard and 

Rosenberg, 1999). If the population structure is known or estimated, there are a number of 

ways to incorporate this structure into the association study to adjust for potential 

population bias (Tiwari and others, 2008). The four most widely used approaches to 

adjusting for PS are genomic control (GC), structured association methods (or as they are 

sometimes called PC based methods), regression models, and meta-analyses (Bouaziz and 

others, 2011a).  

The GC approach is a nonparametric method for controlling the inflation of test 

statistics (Devlin and Roeder, 1999; Pritchard and Rosenberg, 1999; Reich and Goldstein, 

2001). GC aims at correcting the null distribution of such statistics as the linear trend test 

by estimating an inflation factor using many markers. Researchers usually consider that 

an inflation factor less than 1.05 indicates that there is no important population 

stratification. The main assumption of GC is that the inflation factor is the same for all 

markers. Hao et al (2004) proposed GC approaches to detect and adjust for false findings 

partially due to PS (Hao and others, 2004). They tested the performance of two GC 
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approaches in different scenarios including various numbers of GC markers and different 

degrees of population stratification and conducted extensive benchmark analyses on GC 

approaches using SNPs over the whole human genome and found that GC methods can 

cluster subjects into homogeneous subgroups if there is a substantial difference in genetic 

background. The inflation factor, estimated by GC markers, can effectively adjust for the 

confounding effect of PS regardless of its extent. They also suggest that as few as 50 

random SNPs with heterozygosity >40% should be sufficient for effective GC adjustment.  

 

The structured association methods (Pritchard and others, 2000) use genetic 

information to estimate and control for population structure. These approaches aim at 

inferring the structure of the population using parametric models. Currently, the 

most-widely used structured association PC software is EIGENSTRAT, developed by 

Price and colleagues (Price and others, 2006). See descriptions in the following section 1.4. 

Other software for this approach are the STRUCTURE software (Pritchard and others, 

2000; Rosenberg and others, 2002), the STRAT software (Pritchard and others, 2000) 

and the ADMIXTURE software (Alexander and others, 2009).  

Logistic regression models are used to adjust the results of the usual association test 

to correct for stratification using the PCs as independent variables. Tsai et al. (2005) 

reported an association study of Latin Americans that is an example of how to adjust PS 

using a logistic regression strategy (Tsai and others, 2005). They studied 362 Latino 
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subjects with asthma and 359 ethnically matched controls. There were two groups of 

Latino participants—those from Mexico and those from Puerto Rico. Since they were 

concerned about PS, they genotyped each participant on 44 ancestry informative markers 

(AIMs). They compared allele frequencies of the 44 AIMs to assess whether there was any 

indication of PS. They found significant differences in allele frequencies between Puerto 

Rican cases and controls but no differences between Mexican cases and controls. They 

used logistic regression to test for associations between disease status and AIMs with age 

and gender entered as covariates. Having found evidence of PS, they adjusted for it by 

including ancestral proportions in the logistic regression model as covariates. They 

concluded that the assessment of stratification effects is critical to interpret case-control 

studies in admixed populations.   

 

Wang et al. (2006) addressed the effect of PS in gene-gene or gene-environment 

interaction studies (Wang and others, 2006). They used logistic regression models to fit 

multiplicative interactions between two dichotomous variables that represented genetic 

and/or environmental factors for a binary disease outcome in a hypothetical cohort of 

multiple ethnicities. Biases in main effects and interactions due to PS were evaluated by 

comparing regression coefficients in models that were mis-specified because they ignored 

ethnicities with coefficients in models that accounted for ethnicities. They showed that 

biases in main effects and interactions were constrained by the differences in disease risks 

across the ethnicities. Therefore, large biases due to PS are not possible when baseline 
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disease risk differences among ethnicities are small or moderate, which is consistent with 

Wacholder et al. (2000, 2002). Numerical examples of biases in genotype-genotype 

and/or genotype-environment interactions suggested that biases due to PS for main 

effects were generally small but could become large for studies of interactions, 

particularly when strong linkage disequilibriums between genes or large correlations 

between genetic and environmental factors existed. However, when linkage 

disequilibrium among genes or correlations among genes and environments were small, 

biases to main effects or interaction odds ratios were small to nonexistent.   

There are also a number of less commonly used methods for adjusting PS: the 

qualitative semi-parametric test (Chen and others, 2003), the simultaneously correcting 

method (Cheng and Lin, 2007), a simple and improved correction in case-control studies 

(Epstein and others, 2007), the genotype-based matching method (Guan and others, 2009), 

matching strategies (Hinds and others, 2004), the variance component model (Kang and 

others, 2010), a randomization test (Kimmel and others, 2007), and the propensity score 

approach (Zhao and others, 2009). 

Divers et al. (2007) used ancestry informative markers (AIMs) to obtain individual 

admixture proportion estimates (Divers and others, 2007). They used these estimates to 

reduce the false positive rate (type I error) or the loss of power due to PS or genetic 

admixture. They reported that the quadratic measurement error correction (QMEC) 
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method maintains the type I error at its nominal level and controls for the confounding 

effect of admixture in genetic association tests.  

 

The International HapMap Project has provided allele frequencies for approximately 

three million single nucleotide polymorphisms (SNPs) in Africans, Europeans and East 

Asians. SNP marker frequency variation is greatest in Africans. Statistical methods, such 

as structured association and genomic control for detecting and correcting for PS, use 

marker loci spread throughout the genome that are unlinked to the candidate locus to 

estimate the ancestry of individuals within a sample, and to test for and adjust the ethnic 

matching of cases and controls (Seldin and Price, 2008). Enoch and his colleague (2006) 

focused on the methods for selection of highly informative marker loci required to 

characterize populations that vary in substructure or the degree of admixture, and discussed 

how these theoretically desirable approaches can be put into practice effectively. 

 There are several comparative studies of approaches to correct for PS. Tsai et al. (2005) 

compared three different methods: maximum likelihood estimation, the program 

ADMIXMAP and the program STRUCTURE (Tsai and others, 2005). They used two 

simulated data sets and one real data set from a genetic study of asthma among Latino 

subjects. All three methods provided similar accuracy of ancestral estimates and similar 

control of type I error rate. They demonstrated that 100 AIMs were required since the main 
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factor affecting the accuracy of individual ancestry estimates and controlling for the type I 

error rate was the number of AIMs.   

 

Kosoy et al. (2008) organized a set of 128 AIMs in order to provide a resource for 

assessing continental ancestry in variety of genetic studies (Tian and others, 2008b). They 

chose markers for informativeness, genome-wide distribution, and genotype 

reproducibility on two platforms (TaqMans assays and Illumina arrays).  They analyzed 

different ancestry for genotyping data from 825 subjects, including Europeans, East Asians, 

Amerindians, Africans, South Asians, Mexicans, and Puerto Ricans. A complete set of 128 

AIMs and subset of 24 AIMs were found to be useful tools for identifying the origin of 

subjects from particular continents and to correct for PS in admixed population sample sets. 

Their findings can be used as general guidelines for the application of specific AIM subsets. 

The researchers concluded that Taqman assays could be used for the selected AIMs as a 

simple and relatively cheap tool to control for differences in continental ancestry when 

conducting association studies in ethnically diverse populations. Kosoy et al. reported that 

these 128 In4 AIMs and subsets of these SNPs are useful for characterizing sample sets 

from diverse population groups. Researchers can apply these markers either to identify 

those members of one continental population group from a particular study, or alternatively 

used to adjust for PS due to differences in continental population frequency in cases and 

controls.  
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1.4 Principal Components (PC) 

 

 

Principal components (PC) analysis is an approach to correct for PS using methods that 

infer genetic ancestry (Menozzi and others, 1978; Novembre and Stephens, 2008; 

Patterson and others, 2006; Zhu and others, 2002). In 2006, Price reported that the 

EIGENSTRAT method, which is based on principal components analysis, could detect and 

correct for PS in genome-wide association studies (Price and others, 2006). PC analysis 

models ancestry differences between cases and controls along continuous axes of variation. 

The resulting correction is specific to a candidate marker's variation in frequency across 

ancestral populations, minimizing spurious associations while maximizing power to detect 

true associations. The approach can easily be applied to disease studies with hundreds of 

thousands of markers. EIGENSTRAT was implemented as part of the EIGENSOFT 

package in December 2006. Researchers can get source code, documentation and 

executable program files for the EIGENSOFT package from Alkes Price’s web page 

(Price).  
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Chapter 2 Methodology  
 

 

 

 

2.1  Dataset 

 

2.1.1 Hapmap 3 and GAW17 Database 

 

Hapmap 3 database 

The International Hapmap project started in 2002 and is an international cooperation 

between Japan, the United Kingdom (UK), Canada, China, Nigeria, and the United States 

(USA). Its goals are to compare genetic sequences of people from different populations, 

to identify chromosomal regions with shared genetic variants, and to determine panels of 

tag SNPs across the whole genome. The Hapmap 3 database currently holds about 4 

million SNP genotypes for the eleven populations listed in Table 1. Table 2 gives the 

distribution of founders and non-founders in Hapmap 3 across populations.  
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Table 1. The list of populations of Hapmap 3 database.  

Populations Note 

1 ASW African ancestry in Southwest USA   

2 CEU * Utah residents with Northern and Western European 

ancestry from the CEPH collection  

3 CHB * Han Chinese in Beijing, China   

4 CHD * Chinese in Metropolitan Denver, Colorado   

5 GIH Gujarati Indians in Houston, Texas   

6 JPT * Japanese in Tokyo, Japan   

7 LWK * Luhya in Webuye, Kenya   

8 MEX Mexican ancestry in Los Angeles, California   

9 MKK Maasai in Kinyawa, Kenya   

10 TSI * Toscani in Italia   

11 YRI * Yoruba in Ibadan, Nigeria 

Note: * denotes a population that is also included in the GAW17 dataset.  

 

Four populations are considered as the African group: ASW, LWK, MKK and YRI. 

Three populations are in the Asian group: CHB, CHD and JPT. Two populations are in 

the European group: CEU and TSI. The populations GIH and MEX are in none of the 

groups above according to researchers’ work.  
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Table 2. The distribution of Hapmap 3 participants.  

Populations 
Founder 
Counts 

Non-founder 
Counts 

Total  
Counts 

1 ASW 53 34 87 

2 CEU * 112 53 165 

3 CHB * 137 0 137 

4 CHD * 109 0 109 

5 GIH 101 0 101 

6 JPT * 113 0 113 

7 LWK * 110 0 110 

8 MEX 58 28 86 

9 MKK 156 28 184 

10 TSI * 102 0 102 

11 YRI * 147 56 203 

Overall Total 1198 199 1397 

Note: * denotes a population that is also included in the GAW17 dataset. In Hapmap 3 

database, six populations, CHB, CHD, GIH, JPT, LWK and TSI, are composed of 

unrelated individuals only (672 founders). The other five populations include both 

genetically unrelated individuals (526 founders) and their children (199 non-founders). I 

select the 1198 genetically unrelated founder participants from 11 populations to be 

analyzed in my sample.  

 

I checked the genotype distribution and the extent of missing data for each of the 22 

chromosomes in the Hapmap 3 dataset. Genotyping data was available for at least 99.7% 

of SNP genotypes for each chromosome as shown in Table 3.  
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Table 3. The number of markers and missing data information by chromosome in 
Hapmap 3 database.  

Chromosome Number of Markers Average Genotyping Rate 

1 119487 99.7% 

2 119502 99.7% 

3 98971 99.7% 

4 88135 99.7% 

5 90368 99.7% 

6 93671 99.7% 

7 77377 99.7% 

8 77111 99.7% 

9 65251 99.7% 

10 75616 99.7% 

11 72993 99.7% 

12 70482 99.7% 

13 53293 99.7% 

14 46655 99.7% 

15 43309 99.7% 

16 45778 99.7% 

17 39329 99.7% 

18 41942 99.7% 

19 26953 99.7% 

20 37159 99.7% 

21 19802 99.7% 

22 20649 99.7% 

Total 1,423,833 99.7% 

Note: Genotyping data was available for at least 99.7% of SNP genotypes for each 

chromosome in Hapmap 3 database. There are almost one and a half million of markers 

recorded in Hapmap 3.  

 

 

 

  



 

18 
 

2.1.2 Sample  

 

The Hapmap 3 Data contains the genotypes of 1397 individuals from 11 populations. It 

includes both individuals and small families consisting of one or two founders and 

children. I select the 1198 genetically unrelated founder participants from the 11 

populations in Hapmap 3 database as my sample. The distribution of the populations is 

given in Table 2.  

 

 
 

2.1.3 Genotype Data  

 

For this research, I select 402,399 SNP markers from six chromosomes: chromosome 3, 6, 

11, 12, 17 and 19. Chromosome 3 and 6 represent relatively large chromosomes. 

Chromosome 11 and 12 represent medium size chromosomes. Chromosome 17 and 19 

represent smaller chromosomes. Chromosomes 1 and 2 are eliminated because they are 

too large.  

The SNPs on these six selected chromosomes have low rates of missing genotypes 

and a large number of rare variants. Specifically, each of these SNPs has missing 

genotype rate less than 0.3%, as shown in Table 3. Each of these chromosomes has 924 or 

more SNPs with MAF<0.01 in GAW17 dataset as shown in Table 1 of Appendix A. Table 

4 shows the number of markers for the six chromosomes chosen.  
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Table 4. Genotype data used in analysis.  

Chromosome Number of Markers 

3 98971 

6 93671 

11 72993 

12 70482 

17 39329 

19 26953 

Total 402,399 

 

 

Genotype Data Cleaning 

I checked the Hardy-Weinberg Equilibrium (HWE) condition on the disease SNPs, 

matching SNPs and non-correlated SNPs in my sample (see section 2.2 for more details) 

for the genetically unrelated individuals. A marker with the p-value for the HWE test less 

than 10�	 (that is, a highly significant deviation from HWE proportions) is removed 

using the HWE goodness of fit test command line options in PLINK v1.07. The PLINK 

commands are listed in Appendix B.  
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2.1.4 Phenotype Data  

 

 

The longitudinal phenotype used my study is simulated to reflect the course of 

progression of a disease with every increasing severity such as adolescent idiopathic 

scoliosis (AIS). Following Gordon et al. (in press), I specify the trajectory curve 

parameters to model the development of the preliminary longitudinal scoliosis data (Wise 

et al. 2008). Figure 1 shows some of the symptoms of scoliosis. The Cobb angle of a 

patient is a quantitative longitudinal trait that has clinical relevance in that increasing 

Cobb angle indicates greater spinal deformity.  

 

Figure 1. Signs of scoliosis.  

 

Source: (Zieve, 2011) 
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The Cobb angle is measured by first identifying the upper and lower end vertebrae. 

Then lines are drawn extending the vertebral borders. The resulting angle is the Cobb 

angle and is measured as shown in Figure 2.  

 

Figure 2. Measuring the Cobb angle.  
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There are three linear trajectory groups based on a PROC TRAJ analysis 

(implemented in the SAS program). The linear growth mixture model with the three 

linear longitudinal trajectory equations for each participant 
 used in my simulation 

study is:  

��,� � � �� � ���, ��� �� � ��� � ���� � �. ��� � ���, ��� �� � ��� � ���� � �. ��� � ���, ��� �� � ��   Equation 1 

Here, � ,! refers to the Cobb angle of a participant 
 at time " for the trajectory 

group the participant was assigned to. The groups #$ � 1,2,3 are modeled so that a 

participant 
 is in the constant, intermediate and fast groups, respectively. The genetic 

model (introduced in the next section) determines #$, the trajectory group. The time 

variable " ranges from 0.25 through 1 in intervals of 0.15 units. The random error 

follows a normal distribution with a mean of 0. The estimated standard deviation, ', is 

set to 4 in my simulations.  

 

Figure 3 presents the separation among the curves of each of the three polynomial 

trajectory functions in Equation 1 for one replicate.  
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Figure 3. The three trajectory curves for one replicate of simulated trajectory data 
(� � ����).  

 

Note: The group #$ � 3 is the clinically important group. It is also called the fast group 

as it has the most rapid growth of the disease across time (with a slope of 56). The group 

#$ � 2 has a slope of 28 and is the intermediate group. The group #$ � 1 has no 

increase in the progression of the disease and is called the constant group.  
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2.2  Longitudinal Simulations  

 

I use the Equation set 1 specified in section 2.1.4 to simulate longitudinal data for each 

participant. Each participant is assigned to one of the three trajectory groups: the slow (or 

constant), intermediate, or fast groups, according to the disease penetrance matrix (See 

section 2.3). The dependent variable at the last time point " � 1 presents the progression 

of the disease. A larger value indicates more rapid disease progression.  

A SNP that generates the disease using the longitudinal trajectory functions is called 

a disease SNP or causal SNP. A SNP that is not related to the disease is called a 

non-causal SNP. I use non-causal SNPs results as the basis of my null simulations and use 

disease SNPs for my power simulations.  

 

2.2.1 Null Simulations 

 

The empirical type I error (false-positive rate) for any SNP is the proportion of p-values 

of the association test as given in PLINK that are less than the nominal significance level 

0.05. The null hypothesis is that there is no association between this SNP’s genotype and 

the participant’s phenotype. That is, genotypes and phenotypes appear to be independent.  

��() + ),,-, ,.�) � /�,)0)1� 2�|2��� /�.44-15.�5-� �)4� / � 6.78) 9  0.05|;< =>><?@="@<;�  Equation 2 
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For example, if a SNP matching one of the disease genes has 67 out of 1000 

replicates significant in the association test at the 0.05 level, its estimated type I error rate 

is 0.067 C 0.015.  

 

For each of the combinations of population, penetrance, prevalence and PC setting, I 

generate a total of 1,000 replicates on the Hapmap dataset. The dependent variables in my 

statistical analyses are the empirical type I error rate, the empirical power and the lack of 

robustness of validity of the two statistics with or without 10 PCs adjustment. I define the 

lack of robustness of validity measure of a method on a null SNP as:  

D.1E -F G-H84��)44 -F I.75J5�� �  ���() + ),,-, ,.�) � �. ����  Equation 3 

A value of lack of robustness of validity close to 0 indicates that the type I error rate is 

close to the nominal value, while a larger value indicates a lack of robustness of validity.  

 

In my study, I specify two null simulations according to the correlation between 

non-causal SNPs and the disease SNPs. Further information for the disease loci is given 

in the power simulation section. The Pearson correlation coefficients are calculated based 

on the MAFs of the non-causal SNPs across population using MATLAB software.  

2.2.2.1 Pearson Correlation coefficient  

In my research, I calculate the sample Pearson correlation coefficient between the 

non-causal SNPs and the disease SNPs across the 11 populations. For each pair of SNPs, I 
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calculate eleven pairs of numbers that are population MAFs on 1198 participants. The 

definition is presented below.  

,K� � ∑ �K5�KM���5��M�N5O�P∑ �K5�KM��N5O� ∑ ��5��M��N5O� � ∑ �K5�KM���5��M���5O�P∑ �K5�KM����5O� ∑ ��5��M����5O�   Equation 4 

Here, QR  represents the MAF for population @ of a non-causal SNP. �R represents the 

MAF for population @ of a disease SNP. QS and �T are the average MAF of the eleven 

population MAFs of the non-causal SNP and the disease SNP. >U and >V are the sample 

standard deviations of the eleven population MAFs of the non-causal SNP and the disease 

SNP.  

 

2.2.2.2 Null Simulation I Using Uncorrelated SNPs 

Under the null hypothesis, a participant’s phenotype is independent of genotype. I 

calculate the matrix of correlation coefficients of the MAFs by populations with all the 

SNPs in my sample as the rows and the 18 disease SNPs as the columns. The MATLAB 

software is used for finding the correlation coefficients and the p-values. In my null 

simulation I, I identify a group of 25 SNPs whose MAF by population is least correlated 

with a disease locus. For example, for multi-locus simulations with 18 disease SNPs, I 

choose 450 different SNPs. Each set of 25 has the lowest absolute correlations with one of 

the 18 disease loci. The list of the low correlated SNPs is presented in the Appendix D.  
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2.2.2.3 Null Simulation II for SNPs Having MAF Correlated with Disease SNP 

In my null simulation II, I identify a group of 25 SNPs with MAF by population most 

highly correlated with the MAFs of a disease locus. I call these “matching SNPs”. They are 

the SNPs that might be confounded with the disease genes in analyses due to PS. For 

example, for multi-locus simulations with 18 disease SNPs, I choose 450 different SNPs 

that are most associated with the disease SNPs (|r| X 0.99). The list of the correlated 

matching SNPs is presented in the Appendix D.  

Since population stratification is commonly considered an important confounding 

variable in a one sample study, I will apply the PC adjustment method to detect how 

effective this approach is in dealing with the PS problem. Specifically I focus on the extent 

to which the PC adjustment distinguishes SNPs having correlated population MAFs from 

the disease SNPs.   
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2.2.2 Power Simulations 

 

Empirical power for a disease gene is defined here as the proportion of replicates that 

have p-value less than 0.05 for the disease gene. That is,  

(-�), � /�,)0)1� 2�|2.�� /�.44-15.�5-� �)4� / � 6.78) 9  0.05|Z[\[;Z[;"/=>><?@="[Z�  Equation 5 

 

I consider two types of scenarios under the alternative hypothesis, a single locus 

(gene) model and a model with multiple causal genes.  

 

2.2.2.1 Single-locus models 

 

I select the three loci with MAF 0.01 on chromosome 3 (representing the African 

populations), chromosome 17 (representing the Asian populations) and chromosome 11 

(representing the European populations). I also select three loci on chromosome 3 

representing the African populations with MAF 0.05, 0.15 and 0.30. All six selected 

single-locus disease SNPs are in apparent HWE. Each SNP has widely varying MAFs 

among the eleven populations in my sample database. Table 5 contains the list of the six 

single-locus disease SNPs.  
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Table 5. Selected single-locus disease gene. 

MAF 
Single-locus  

Disease Genes 
Chromosome  Population 

0.01 rs7355991 3 African 

0.01 rs2073868 17 Asian 

0.01 rs12790383 11 European 

0.05 

0.15 

0.30 

rs6792511 3 African 

rs11924006 3 African 

rs9810313 3 African 

 

 

2.2.2.2  Multi-locus Simulations 

I specify 18 rare disease SNPs that each has overall MAF less than 0.01 on chromosomes 

3, 6, 11, 12, 17 and 19 for the multi-locus disease model. For each chromosome, three 

genes from three general populations (African, European and Asian respectively, as 

defined in section 2.2.1) are selected in my sample. Table 6 shows the distribution of the 

18 disease genes by chromosome and general population. Table 7 contains the MAF 

statistics on these 18 SNPs. These SNP markers have p-value of HWE goodness of fit test 

greater than 0.10 and do not appear to deviate from HWE proportions.  
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Table 6. The 18 multi-locus simulation disease genes.  

Chromosome African European Asian 

3 rs7355991 rs17195948 rs3733124 

6 rs9459886 rs1259069 rs3761998 

11 rs11825331 rs12790383 rs11217935 

12 rs1696449 rs12822275 rs17117910 

17 rs9899123 rs34742396 rs2073868 

19 rs10411117 rs270771 rs3745465 
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Table 7. MAF by populations for 18 multi-locus simulation genes.  

Chr Disease SNPs 
African  European  Asian  Indian Mexican 

Overall MAF 
ASW LWK MKK YRI  CEU TSI  CHB CHD JPT  GIH MEX 

3 rs7355991 0.028 0.023 0.016 0.044  0 0  0 0 0  0 0 0.011 

3 rs17195948 0.019 0 0 0  0.054 0.044  0 0 0  0 0.009 0.010 

3 rs3733124 0 0 0 0  0 0  0.026 0.032 0.036  0 0.026 0.010 

6 rs9459886 0.038 0.009 0.016 0.048  0 0  0 0 0  0 0 0.010 

6 rs1259069 0.009 0 0 0  0.063 0.049  0 0 0  0 0.009 0.011 

6 rs3761998 0 0 0 0.003  0 0  0.055 0.014 0.031  0 0 0.011 

11 rs11825331 0.038 0.023 0.029 0.020  0 0  0 0 0  0 0 0.010 

11 rs12790383 0 0 0 0  0.067 0.049  0 0 0  0 0.009 0.011 

11 rs11217935 0 0 0 0  0 0  0.033 0.046 0.022  0 0 0.010 

12 rs17117910 0 0 0 0  0 0  0.018 0.014 0.071  0 0 0.010 

12 rs12822275 0 0 0 0  0.054 0.050  0 0 0  0.010 0 0.010 

12 rs1696449 0.028 0.032 0.013 0.041  0 0  0 0 0  0 0 0.011 

17 rs9899123 0.047 0.023 0.006 0.048  0 0  0 0 0  0 0 0.011 

17 rs2073868 0 0 0 0  0.004 0  0.022 0.023 0.054  0 0 0.010 

17 rs34742396 0 0 0 0  0.054 0.054  0 0 0  0.005 0.009 0.010 

19 rs3745465 0 0 0 0  0 0  0.022 0.050 0.035  0 0 0.010 

19 rs10411117 0.019 0.023 0.022 0.034  0 0  0 0 0  0 0 0.010 

19 rs270771 0.009 0 0 0  0.058 0.054  0 0 0  0 0.009 0.011 
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2.3  Genetic Models   

 

In my study, I used the genotype information of the selected disease SNPs as the principal 

determinant of trajectory group membership. I study both a single-locus gene model and 

models with multiple causal genes. In this section, I discuss models of complete penetrance 

with high prevalence, complete penetrance with low prevalence, partial penetrance with 

high prevalence, and partial penetrance with low prevalence.   

 

2.3.1 Disease Prevalence and Penetrance Matrix  

 

2.3.1.1 Disease Prevalence 

 

The prevalence of a disease in epidemiology is defined as the proportion of cases in a 

population. That is, the number of individuals that are with the disease symptoms divided 

by the total number of people in the population. The law of total probability specifies the 

relation between the penetrance parameters and the trait prevalence. For example with 

$^, $_ and $` denoting the three SNP genotypes,   

/�a� � /�a|���/���� � /�a|���/���� � /�a|���/����  Equation 6 

For the multi-locus model, a high prevalence model is considered in which there are 

two trajectory groups determined by the number of minor alleles. If there is any minor 
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allele in a disease gene, the participant is assigned to the fast trajectory group. Otherwise, 

the participant is assigned to the constant trajectory group.  

A low prevalence model is considered in which there are three trajectory groups 

determined by the number of minor alleles. If there are only a few minor alleles of the 

disease gene or genes for a participant, the participant is assigned to the intermediate 

trajectory group. If there are more minor alleles, the participant is assigned to the fast 

trajectory group. Otherwise, if there are no minor alleles of the disease genes for a 

participant, the participant is assigned to the constant trajectory group.  

 

2.3.1.2 Penetrance Matrix 

 

In genetics, trait penetrance of a genotype is defined as the conditional probability that a 

participant with the specified genotype has the trait being studied. A large penetrance 

value for a genotype indicates that an individual who has the genotype is likely to have 

the trait. Conversely, a small penetrance value means that an individual with the genotype 

is not likely to have the trait. For example, let d represent the total number of risk alleles 

in a given disease gene, and #$ represent the trajectory group an individual is assigned 

to. Here, #$ � 3 indicates that the individual is assigned to the group with fast disease 

development. Then, an example of complete penetrance for participants with two minor 

alleles is that b�#$ � 3|Z � 2� � 1. 
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The penetrance matrix for specified disease gene or genes is defined as:  

c /��� � �|� d e�� /��� � �|� d e�� /��� � �|� d e��/��� � �|e� 9 $ d e�� /��� � �|e� 9 $ d e�� /��� � �|e� 9 $ d e��/��� � �|� f e�� /��� � �|� f e�� /��� � �|� f e�� g �

h
ij

� � k �l k �l k�� k � � k �� k�l k �l k � � km
no  Equation 7 

Here, $ refers to the total number of risk alleles of the disease gene or genes for a 

participant. p^ and p_ are the limit bounds determined by the prevalence of the disease 

gene or genes. The penetrance parameter q � 0 indicates complete penetrance, q � 0.1 

means a high penetrance and q � 0.4 means a low penetrance. For example, a complete 

penetrance matrix for a single-locus model is defined as:  

c/��� � �|� � �� /��� � �|� � �� /��� � �|� � ��/��� � �|� � �� /��� � �|� � �� /��� � �|� � ��/��� � �|� � �� /��� � �|� � �� /��� � �|� � ��g 

� s� � �� � �� � �t  Equation 8 

Further information is provided in the next section. 
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2.3.2 Additive Model 

 

2.3.2.1  Single-locus Additive Model 

 

First, I consider a single-locus additive model in which there are three trajectory groups 

determined by the effect of a single-locus gene. The most common trajectory group has 

intercept equal to 15, and slope equal to 0 (that is, u^ � 15 and  u_ � 0). This group is 

called the flat or constant group. The second has intercept 15 and slope 28 (that is, 

u^ � 15 and u_ � 28); this group is called the intermediate group. The third has 

intercept 15 and slope 56 (that is, u^ � 15 and u_ � 56); this group is called the fast 

group. It is the clinically important group. The model is  

��,� � � �� � ���, �� �� � ��� � ���� � �. ��� � ���, �� �� � ��� � ���� � �. ��� � ���, �� �� � ��  Equation 9 

I consider three penetrance settings for a single-locus additive model: low, high and 

complete. As discussed above, the penetrance matrix is given by:  

c/��� � �|� � �� /��� � �|� � �� /��� � �|� � ��/��� � �|� � �� /��� � �|� � �� /��� � �|� � ��/��� � �|� � �� /��� � �|� � �� /��� � �|� � ��g �

h
ij

� � k �l k �l k�� k � � k �� k�l k �l k � � km
no  Equation 10 

Where q w x0,1y . The penetrance matrix with parameter q � 0  indicates complete 

penetrance. That is, it is  



 

36 
 

cb�#$ � 1|$ � 0� b�#$ � 2|$ � 0� b�#$ � 3|$ � 0�b�#$ � 1|$ � 1� b�#$ � 2|$ � 1� b�#$ � 3|$ � 1�b�#$ � 1|$ � 2� b�#$ � 2|$ � 2� b�#$ � 3|$ � 2�g 

� s� � �� � �� � �t  Equation 11 

Here, a participant with major homozygote genotype ($ � 0) is in the constant trajectory 

group with probability 1, in the intermediate increase group with probability 0 and in the 

fast increase group with probability 0. A participant with heterozygote genotype ($ � 1) 

is in the intermediate increase group with probability 1, in the constant trajectory group 

with probability 0 and in the fast increase group with probability 0. A participant with 

minor homozygote genotype ($ � 2) is in the fast increase group with probability 1, in 

the constant trajectory group with probability 0 and in the intermediate group 0.  

 

 

The penetrance matrix with q � 0.1 is called the high penetrance model, that is:  

c/��� � �|� � �� /��� � �|� � �� /��� � �|� � ��/��� � �|� � �� /��� � �|� � �� /��� � �|� � ��/��� � �|� � �� /��� � �|� � �� /��� � �|� � ��g �
s �. � �. �z� �. ����. �� �. � �. ���. ��� �. �z� �. � t   Equation 12 

Here, a participant with major homozygote genotype ($ � 0) is in the constant trajectory 

group with probability 0.9, in the intermediate increase group with probability 0.075 and 

in the fast increase group with probability 0.025. A participant with heterozygote 

genotype ($ � 1) is in the intermediate increase group with probability 0.9, in the 

constant trajectory group with probability 0.05 and in the fast increase group with 
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probability 0.05. A participant with minor homozygote genotype ($ � 2) is in the fast 

increase group with probability 0.9, in the constant trajectory group with probability 

0.025 and in the intermediate group 0.075.  

 

The penetrance matrix with q � 0.4 is called the low penetrance model, that is:  

c/��� � �|� � �� /��� � �|� � �� /��� � �|� � ��/��� � �|� � �� /��� � �|� � �� /��� � �|� � ��/��� � �|� � �� /��� � �|� � �� /��� � �|� � ��g 

� s�. � �. � �. ��. � �. � �. ��. � �. � �. �t  Equation 13 

This matrix indicates that a participant with major homozygote genotype will be in the 

constant trajectory group (#$ � 1) with probability 0.60, in the intermediate group 

(#$ � 2) with probability 0.30, and in the fast increase group (#$ � 3) with probability 

0.10. For a participant with heterozygote genotype, the probability of being in the 

intermediate trajectory group is 0.60, in the fast increase trajectory group 0.20, and in the 

constant trajectory group 0.20. For a participant with minor homozygote genotype, the 

probability of being in the fast increase trajectory group is 0.60, in the intermediate 

trajectory group 0.30, and in the constant group 0.10.  
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2.3.2.2  Multi-locus Additive Model 

 

There are 1198 unrelated participants in this Hapmap data base, and 1187 have 

non-missing genotypes on the 18 disease genes. I calculate {, the number of minor 

alleles, for the 18 disease genes for each of the 1187 participants in my sample with 

complete genotype information. I use this as the number of risk alleles R.  

The distribution of R from my sample is given below. As shown in Table 8, 833 

participants (70.2%) have no minor alleles, 270 participants (22.8%) have only one minor 

allele and 84 participants (7.1%) have more than 2 minor alleles.  

 

Table 8. The distribution of the risk alleles, R, for 18 disease genes.  

R Frequency Percentage (%) 
Cumulative 

Percentage (%) 

0 833 70.18 70.18 

1 270 22.75 92.92 

2 75 6.32 99.24 

3 8 0.67 99.92 

4 1 0.08 100.00 

Total 1187 100 ---- 

Note: Frequency missing =11.  

 

 

As in the single-locus model, each participant is assigned to a trajectory group 

according to the following general additive model and the penetrance matrix.  

The model specifies trajectory class by  
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|�� � � G � ��� � � G � ��� � � G f 1�  Equation 14 

The penetrance matrix for multi-locus disease genes model is the same as in 

single-locus disease genes model, given by  

c/��� � �|G � �� /��� � �|G � �� /��� � �|G � ��/��� � �|G � �� /��� � �|G � �� /��� � �|G � ��/��� � �|G f 1� /��� � �|G f 1� /��� � �|G f 1�g �

h
ij

� � k �l k �l k�� k � � k �� k�l k �l k � � km
no   Equation 15 

where q � 0 for complete penetrance, q � 0.1 for high penetrance and q � 0.4 for 

low penetrance as described in the last section.  
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2.3.3 Complete Penetrance with High Disease Prevalence Model  

 

There are only two trajectory groups in the complete penetrance high prevalence model. 

If there is any minor allele among the disease genes, the individual goes to the fast group. 

Otherwise, the individual is in the constant trajectory group.  

�0 � }� G X �� G � ��   Equation 16 

Here, j represents the participant and R is the number of minor alleles.  
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2.4 Methods  

2.4.1 BPP Association Testing Method 

After generating the longitudinal data, I apply the SAS TRAJ procedure to the simulated 

data. There were 1198 vectors of � values, one vector for each participant in my small 

sample dataset. The vectors are the input to SAS PROC TRAJ analysis. I run PROC TRAJ 

with number of trajectory classes being 1, 2, 3, 4, 5 and 6, and a linear trajectory pattern for 

each trajectory class. I use the global maximum Bayesian Information Criterion (BIC) 

scores to select the number of trajectory classes. That is, I chose as the number of trajectory 

classes the model with the largest BIC score.  

For example, I analyzed one replicate with SNP rs13322354 on Chromosome 3 as 

the disease gene. The data set contained 1198 subjects observed at 6 time points. There 

were three trajectory groups in the data for this replicate. The largest BIC score came 

from four trajectory classes. Table 9 presents the PROC TRAJ BIC scores and estimated 

trajectory group prevalence for settings of number of trajectory classes from 1 to 6.  
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Table 9. BIC scores with estimated trajectory class prevalence for marker 
rs13322354 on chromosome 3.  

Trajectory 

Groups 

Linear Order 

BIC Group Membership (%) 

1 -12714.10 100.00 

2 -11172.64 82.71/17.29 

3 -11185.48 0.00/82.71/17.29 

4 -10707.72 0.00/82.71/13.05/4.24 

5 -10720.55 0.00/0/82.71/13.05/4.24 

6 -10731.57 0.00/0.75/81.95/0/13.05/4.24 

 

The graph of the four trajectories is presented in Figure 4. The four group model had 

three trajectory groups with non-zero fractions. Each model with four or more groups had 

only three groups with percentage greater than 1%. Note that only three groups had 

participants assigned in Figure 4. 
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Figure 4. Four trajectory groups plot for marker rs13322354 on chromosome 3.  

 

Note: There are 0.0% of participants found in trajectory group 1.  

 

The corresponding contingency table of the four trajectories with the genotype of the 

disease gene is presented in Table 10.  

 

Table 10. Contingency row percentage table of genotype by trajectory group.  

G 
Trajectory Group Membership (%) 

1 (flat) 2 (flat) 3 (intermediate) 4 (fast) 
0 0.00 90.70 6.62 2.68 
1 0.00 0.00 87.50 12.50 
2 0.00 0.00 16.67 83.33 

Here, trajectory group 4 is clinically important.  
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Having chosen the number of classes, I select the trajectory group that is most 

important clinically. It is the one with the fastest increase in expected value of Y.  

Follow Datta and Satten et al. (2000), I use the Bayesian Posterior Probability (BPP) 

of being in the most clinically important group as my quantitative trait in the association 

test in PLINK. The p-values of the association test are recorded. The procedures were 

repeated for each of 1000 replicates.  

Here the BPP method instead of modal BPP is used for assigning individuals to a 

particular trajectory group because Lubke and Muthen (2007) documented that modal 

BPP assignment has low accuracy for simple models with groups that are close together.  

For each scenario and model in my study, I apply an association test with the BPP of 

the clinically important group as the quantitative trait. Then I apply the linear regression 

PC adjustment method to account for PS. The procedure is done by a SAS program and 

PLINK as given in Appendix B.  

 

 

2.4.2 PC Adjustment for PS and Linea Regression  

 

I use EIGENSTRAT software in EIGENSOFT to calculate 10 PCs. All 402,399 SNPs on 

the six chromosomes and 1198 unrelated participants are used. These 10 PCs and the SNP 

genotypes are considered as independent variables. The simulated quantitative traits are 

recorded as the phenotypes. A linear regression model is fit using PLINK v1.07 command 

lines to evaluate the association between each SNP studied and the phenotype. A SNP is 
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considered associated with the quantitative trait phenotype when the p-value of the 

coefficient of the SNP is less than 0.05.  

The original model fit to the quantitative trait phenotypes using an association test in 

PLINK is:  

�50 � �� � ����/50 � �50   Equation 17 

The PC adjustment model fit to the quantitative trait phenotypes using a linear 

regression option in PLINK is:  

�50 � �� � ����/50 � ��/�� � ��/�� � � � ���/��� � �50  Equation 18 

Here, � represents the �"� individual. @ represents the ith SNP, and PC� represents 

the ith global principal component.  

 

 

  



 

46 
 

2.5  Factorial Designs  

2.5.1 PC Adjustment 

For each simulation setting, I have two levels of the PC adjustment setting (no PC 

adjustment and with PC adjustment) using 10 PCs calculated from the entire sample 

space to account for population stratification.  

2.5.2 Disease Penetrance 

I specify three levels of disease penetrance for each simulation. They are low, high and 

complete penetrance. A model with low or high penetrance is also called a reduced or 

partial penetrance model. A model with complete penetrance is sometimes called a 

complete penetrance model. See descriptions in section 2.3 genetic models. 

2.5.3 Disease Prevalence 

I specify two disease prevalence models for each of the single-locus and multi-locus 

models. One is the high prevalence model. That is, if an individual has at least one minor 

allele among the genes, then the participant is in the fast trajectory group under a 

complete penetrance model. Otherwise, the participant is in the constant trajectory group. 

See descriptions in section 2.3 Genetic Models. I also specify low prevalence models. 

There are three possible trajectory groups in a low prevalence model: constant, 

intermediate and fast groups. A participant is assigned to one of the three groups 

according to the penetrance matrix and the total number of minor alleles R.  
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2.5.4 General Population 

For both the single-locus and multi-locus model, I consider a three level population factor. 

The three levels are African, Asian and European.  

2.5.5 MAF (for single-locus model only)  

For a single-locus model, I also consider an overall MAF factor which has four levels: 

0.01, 0.05, 0.15 and 0.30.  
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2.6  Experiments  

I consider three experiments under the single-locus model and two experiments under the 

multi-locus model for predicting (�) the robustness of validity of null simulations and the 

rejection rates of the power simulations. Table 11 below shows the settings for each 

experiment.  

 
Table 11. Factors used in the single and multi-locus model experiments table.  

Settings 
Degree of 
Freedom 

Single-locus 
Experiments 

 Multi-locus 
Experiments 

Exp I Exp II 
Exp 
III 

 
Exp IV Exp V 

PC 1 + + +  + + 
Penetrance 2 + + -  + - 
Population 2 + - -  + + 

MAF 2 - + +  - - 
Chromosome 5 - - -  + + 

Note: “+”: the settings are in an experiment; “-”: the settings are not in an experiment.   
 
 

2.6.1 Single-locus Experiments 

 

Experiment I has three single-locus disease SNPs with ��� � 0.01  on 

chromosome 3 representing the African population, chromosome 11 representing the 

European population, and chromosome 17 representing the Asian population factors. 

Experiment I has three factors: population, penetrance and use of PC adjustment. The 

population factor, Q^, has three levels (Af = African, As = Asian, Eu = European). The 

penetrance factor, Q_, has three levels (low, high and complete). The use of PC factor, Q`, 
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has two levels (nopc = no PC adjustment, pc = 10 PCs adjustment). Chromosome is not 

considered here as a factor because it is confounded with population. The model also 

contains all two factor interactions. I fit the generalized linear model:  

 

� � �� � ��K� � ��K� � ��K� � �lK�K� � ��K�K� � ��K�K� � � Equation 19 

 

Experiment II has three single-locus disease SNPs with MAF = 0.05, 0.15 and 0.30 

on chromosome 3 representing the African population using an additive model. 

Experiment II has three factors: MAF, penetrance and use of PC adjustment. The MAF 

factor, Q^, has three levels (��� � 0.05, 0.15, 0.30). The penetrance factor, Q_, has 

three levels (low, high and complete). The use of PC, Q`, has two levels (nopc = no PC 

adjustment, pc = 10 PCs adjustment). The model also contains all two factor interactions. 

I fit the generalized linear model given in Equation 19 above.   

 

Experiment III uses the high prevalence complete penetrance model with the same 

SNPs as in experiment II. Experiment III has two factors: MAF and use of PC adjustment. 

The MAF factor, Q^, has three levels (��� � 0.05, 0.15, 0.30). The use of PC, Q_, has 

two levels (nopc = no PC adjustment, pc = 10 PCs adjustment). The model also contains 

the interaction between MAF and PC. I fit the generalized linear model:  

 

� � �� � ��K� � ��K� � ��K�K� � �  Equation 20 
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2.6.2 Multi-locus Experiments 

 

Experiment IV has 18 multi-locus disease SNPs with MAF = 0.01 on chromosome 3, 

6, 11, 12, 17 and 19 representing the African, Asian and European population. The 

additive model is used for experiment IV. Experiment IV has four factors: population, 

penetrance, chromosome and use of PC adjustment. The population factor, Q^, has three 

levels (Af = African, As = Asian, Eu = European). The penetrance factor, Q_, has three 

levels (low, high and complete). The use of PC factor, Q`, has two levels (nopc = no PC 

adjustment, pc = 10 PCs adjustment). The chromosome factor, Q� , has six levels 

(chromosome 3, 6, 11, 12, 17 and 19). The model also contains all two factor interactions. 

I fit the generalized linear model:  

� � �� � ��K� � ��K� � ��K� � �lKl � ��K�K� � ��K�K� � �zK�Kl � ��K�K� ���K�Kl � ���K�Kl � �  Equation 21 

 

Experiment V has the same settings but using the high prevalence complete 

penetrance model. Experiment V has three factors: population, chromosome and use of 

PC adjustment. The population factor, Q^, has three levels (��� � 0.05, 0.15, 0.30). 

The chromosome factor, Q�, has six levels (chromosome 3, 6, 11, 12, 17 and 19). The use 

of PC, Q_, has two levels (nopc = no PC adjustment, pc = 10 PCs adjustment). The 

model also contains the interaction between population and PC. I fit the generalized 

linear model given in Equation 19 above. 
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2.7  Software  

I used four programs in my study: PLINK, MATLAB, SAS PROC TRAJ, and 

EIGENSTRAT as described below.  

 

2.7.1 PLINK  

 

PLINK is a freely available program with open-source code. It is a whole genome 

association analysis toolset designed to perform a range of basic, large-scale analyses in a 

computationally efficient manner. The focus of PLINK is purely on the analysis of 

genotype/phenotype data.  

I use PLINK v1.07 software to extract the data on the six chromosomes selected. I also 

use PLINK to perform the association analysis of the quantitative phenotype extracted 

from the SAS PROC TRAJ analysis described below. Specifically, I use the association 

and linear association functions in PLINK to analyze the data. PLINK –assoc option 

calculates the P-value of the association chi-square test for the disease SNPs selected and 

also the matching and non-correlated SNPs without any PC adjustments. PLINK –linear 

option calculates the P-value of linear association test for the disease SNPs selected and 

also the matching and non-correlated SNPs with 10 PCs added as covariates.  
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2.7.2 MATLAB  

 

MATLAB is a language for technical computing. It is a programming environment for 

algorithm development, data analysis, visualization, and numerical computation. It can 

solve technical computing problems faster than the traditional programming languages, 

such as C, C++, and FORTRAN. I use MATLAB to calculate the correlation coefficients 

matrix with 402,399 rows and 18 columns. Here, the 402,399 rows are all the SNPs’ 

MAFs by population. The 18 columns represent the 18 multi-locus disease SNPs.  

 

 

2.7.3 SAS TRAJ procedure 

 

SAS TRAJ procedure is widely used to model longitudinal data (Jones et al. 2001). For 

each replicate, each participant is assigned to a particular trajectory group according to the 

genotype data of the simulation (null or alternative) and scenario (single or multi-locus) 

model described in the above sections. A total of 1000 replicates are generated for each 

simulation under each scenario. The longitudinal data is generated using one of the three 

linear equations mentioned in 2.1.4 according to the trajectory group a participant is in. 

There are ; vectors of � values, one vector for each participant in the sample. Here, ; is 

the sample size. The vectors are the input to SAS PROC TRAJ analysis.  

I then perform PROC TRAJ analysis with number of trajectory classes being 1, 2, 3, 4, 

5 and 6, and a linear trajectory pattern for each trajectory class to estimate each model. The 

time points range from 0.25 through 1 in intervals of 0.15 and are used as independent 
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variables. I use the global maximum BIC score to select the number of trajectory classes. 

That is, I choose as the number of trajectory classes the model with the largest BIC score. 

Other selection rules are used in practice.  

The clinically important group is identified as the group with highest disease 

progression speed, that is, the one with the greatest slope. The BPP of the clinically 

important group is recorded to be used in the PLINK software as the quantitative trait 

phenotype input.  

 
 

2.7.4 EIGENSTRAT  

 

Price et al. (2006) created the EIGENSTRAT stratification correction software. The 

software EIGENSOFT 4.2 performs the computations and can be downloaded from the 

website: http://www.hsph.harvard.edu/faculty/alkes-price/software/. The software uses 

principal components analysis to detect and model ancestry differences, and correct for 

population stratification in genome-wide association studies. It supports several file 

formats including the PLINK PED format. The PC adjustment is specific to a candidate 

marker's variation in frequency across ancestral populations. It can be applied to disease 

studies with hundreds of thousands of markers.  

I use CONVERTF software in EIGENSOFT to convert PLINK PED format data sets 

to EIGENSTRAT formats. Then I use EIGENSTRAT software to calculate 10 PCs using 

all 402,399 SNPs on the six chromosomes in my sample.  
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Chapter 3 Results 
 

 

 

 

3.1 Single-locus Model Results 

3.1.1 Experiment I Results  

 

Table 11 presents the average empirical type I error rate and empirical power 

observed  in the AIS simulations under experiment I, which has disease SNP MAF = 

0.01, representing African, Asian and European population as described in Chapter 2 

Methodology. The table also includes 95% confidence intervals. Each single-locus 

disease SNP in the table has 25 uncorrelated SNPs (MAFs across population less 

correlated with the disease SNP) and 25 matching SNPs (MAFs across population as 

correlated as possible with the disease SNP MAFs).  
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The empirical type I error rate using the uncorrelated SNPs has a lack of robustness 

of validity appearing in the complete penetrance without PC adjustment model. For 

example, on Table 11, using nominal level of significance 0.05 and analyzing data from 

the complete penetrance model, 16% (0.160 C0.005) of the replicates for which the 25 

SNPs uncorrelated with the disease SNP rs7355991 on chromosome 3 representing the 

African population are found to be significant in the association test when there is no PC 

adjustment. With PC adjustment, the number of replicates that are significant at the 

nominal 0.05 level in a linear regression test decreases to 4% (0.040 C0.002).  

 

The empirical type I error rate using the matching SNPs shows a robustness of 

validity for the low penetrance settings both with and without PC adjustment. For 

example, the 25 SNPs matching the disease SNP rs7355991 on chromosome 3 

representing African population have an average type I error rate 0.053 C0.003 without 

PC adjustment at the nominal 0.05 level. With PC adjustment, the rate is 0.052 C0.003. 

There is a failure of robustness of validity for complete penetrance both with and without 

PC adjustment. For example, the 25 SNPs that match the disease SNP rs7377991 have an 

average type I error rate 0.560 C0.006 without PC adjustment. With PC adjustment, the 

rate decreases to 0.280 C0.006, but is still far above the nominal 0.05 level. In general, 

PC adjustment improves robustness of validity.  

 

The rejection rate for disease SNPs with PC adjustment is close to the rate without 
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PC adjustment. For example, the rejection rate without PC adjustment is 0.549 C0.031 

for the disease SNP rs2073868 on chromosome 17 representing the Asian population at the 

nominal 0.05 level. With PC adjustment, the rejection rate is 0.523 C0.031. 
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Table 12. Empirical rejection rates with 95% confidence interval for the single-locus model under experiment I (disease 
SNP MAF = 0.01) at the nominal 0.05 level (1000 replicates)  

MAF 
Single-locus 

Disease Genes 
Chr  Pop 

Penetrance 

Complete High Low 

No PC PC No PC PC No PC PC 

Uncorrelated SNPs (null I) 

0.01 

rs7355991 3 Af 0.160 C0.005 0.040 C0.002 0.053 C0.003 0.053 C0.003 0.051 C0.003 0.050 C0.003 

rs2073868 17 As 0.120 C0.004 0.040 C0.002 0.055 C0.003 0.053 C0.003 0.050 C0.003 0.052 C0.003 

rs12790383 11 Eu 0.000 C0.000 0.040 C0.002 0.045 C0.003 0.047 C0.003 0.050 C0.003 0.051 C0.003 

Matching SNPs (null II) 

0.01 

rs7355991 3 Af 0.560 C0.006 0.280 C0.006 0.074 C0.003 0.059 C0.003 0.053 C0.003 0.052 C0.003 

rs2073868 17 As 0.520 C0.006 0.160 C0.005 0.079 C0.003 0.067 C0.003 0.055 C0.003 0.051 C0.003 

rs12790383 11 Eu 0.520 C0.006 0.440 C0.006 0.070 C0.003 0.065 C0.003 0.052 C0.003 0.049 C0.003 

Disease SNPs (Power) 

0.01 

rs7355991 3 Af 1.000 C0.000 1.000 C0.000 0.259 C0.027 0.248 C0.027 0.362 C0.030 0.352 C0.030 

rs2073868 17 As 1.000 C0.000 1.000 C0.000 0.716 C0.028 0.729 C0.028 0.549 C0.031 0.523 C0.031 

rs12790383 11 Eu 1.000 C0.000 1.000 C0.000 0.165 C0.023 0.173 C0.023 0.236 C0.026 0.232 C0.026 

Note: The headings for each column are defined as follows: Chr = Chromosome on which SNP marker is located (see Methodology – Power 

Simulations). Pop = General populations, including African (Af), Asian (As) and European (Eu). The complete penetrance model is with high 

prevalence (two trajectory groups) since the MAF = 0.01 is too small. The high and low penetrance models are with low prevalence (additive 

model is used, three trajectory groups). See Methodology – Genetic Models. Type I error rates that are significantly different from the nominal 

0.05 level are in bold. For each setting 1000 replicates are generated. Africans n = 466, Asians n = 359, Europeans n = 214. 
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3.1.1.1  Null I Simulation Using Uncorrelated SNPs 

 

The ANOVA of the measure of lack of robustness of validity for the uncorrelated 

SNPs is shown in Table 12 below. The model has an R-square of 0.8924. These results 

indicate that the overall model is not statistically significant (� � 2.55, \ � �=��[ �
0.1892).  Because the smallest p-value in the ANOVA is the p-value for the factor 

penetrance and is equal to 0.0770, I conclude that there are no significant factors for the 

lack of robustness of validity. That is, the statistical analysis did not confirm the apparent 

failure of robustness of validity for data from the complete penetrance model analyzed 

without PC adjustment.  
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Table 13. The ANOVA table for the single-locus model uncorrelated SNPs under 
experiment I at the nominal 0.05 level (dependent variable: lack of robustness of 
validity).  
 

The GLM Procedure 
Dependent Variable: lack of robustness of validity  

Source DF Sum of Squares  Mean Square  F Value Pr > F 

Model 13 0.00014 0.000 2.55 0.189 

Error 4 0.00002 0.000   

Corrected Total  17 0.00015    

 

R-Square  Coeff Var  Root MSE  Lack of Robustness of Validity Mean  

0.892393 184.658 0.002 0.001 

 
 

To assist in the interpretation of these results, Figure 5 presents the plot of PC and 

penetrance interaction. The lack of robustness of validity appears in the complete 

penetrance model without PC adjustment.  
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Figure 5. Lack of robustness of validity of single-locus model uncorrelated SNPs 
under experiment I at the nominal 0.05 level.   

 

 

3.1.1.2  Null II Simulation Using Matching SNPs 

 

The ANOVA for the lack of robustness measure for the matching SNPs is shown in Table 

13 below. The model has an R-square of 0.9702. These results indicate that the overall 

model is statistically significant (� � 10.02, \ � �=��[ � 0.0194).  The value of the 

statistic � � 12.224  ( \ � �=��[ � 0.0250 ) for the factor PC and � � 43.585 

(\ � �=��[ � 0.0019) for the factor penetrance are statistically significant. Furthermore, 

because the test statistic for the interaction of PC and penetrance is� � 12.131 

(\ � �=��[ � 0.0200), I conclude that this interaction is also significant. This analysis 

documents that the use of PC adjustment significantly improves robustness of validity.  
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Table 14. The ANOVA table for the single-locus model matching SNPs under experiment I 

at the nominal 0.05 level (dependent variable: lack of robustness of validity).  
 

The GLM Procedure 
Dependent Variable: lack of robustness of validity  

Source DF Sum of Squares  Mean Square  F Value Pr > F 

Model 13 0.140 0.011 10.02 0.019 

Error 4 0.004 0.001   

Corrected Total  17 0.144    

 

R-Square  Coeff Var  Root MSE  Lack of Robustness of Validity Mean  

0.970209 64.003 0.033 0.051 
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For interpreting the results, I present the graph of the average lack of robustness of 

validity measure of the empirical type I error rate at each combination of the penetrance 

and PC in Figure 6. The lack of parallelism of the lines indicates that there is a significant 

interaction between these two factors. In general, better robustness of validity is attained 

at low and high penetrance, regardless of the use of PC adjustment. With PC adjustment, 

the robustness of validity improves for the complete penetrance model. PC adjustment 

should be applied since it maintains better robustness of validity as penetrance level 

changes.  

 

Figure 6. Lack of robustness of validity of single-locus model matching SNPs under 
experiment I at the nominal 0.05 level.   
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3.1.1.3  Power Simulation Using single-locus disease SNPs 

 

The ANOVA of the rejection rates for the disease SNPs is shown in Table 14 below. The 

model has an R-square of 0.9999. These results indicate that the overall model is 

statistically significant (� � 2605.22, \ � �=��[ 9 0.0001 ).  Since the interaction of 

population and penetrance has F � 774.95 (p � value 9 0.0001), I conclude that there is a 

significant interaction between population and penetrance. Furthermore, F � 2256.5 

( p � value 9 0.0001 ) for population and F � 13125  ( p � value 9 0.0001 ) for 

penetrance. Hence the main effects of population and penetrance are also significant. The 

most important finding is that the use of PC adjustment and interactions involving PC 

adjustment are not significant. That is, the fitted rejection rate with PC adjustment is 

statistically equal to the fitted rate without PC adjustment.   
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Table 15. The ANOVA table for the single-locus model disease SNPs under experiment I at 
the nominal 0.05 level.  
 

The GLM Procedure 
Dependent Variable: rate 

Source DF Sum of Squares  Mean Square  F Value Pr > F 

Model 13 1.993 0.153 2605.22 <.0001 

Error 4 0.0002 0.0001   

Corrected Total  17 1.993    

 

R-Square  Coeff Var  Root MSE  rate Mean  

1.000 1.309 0.008 0.586 

 

 

For interpreting the results, I present the graph of the average empirical power at 

each combination of the population and penetrance in Figure 7. The lack of parallelism of 

the lines indicates that there is a significant interaction between these two factors. In 

general, the power of the Asian population is greater than that of the African population. 

The power of the African population is also greater than that of the European population. 

Higher power is attained at complete penetrance, regardless of population.  
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Figure 7. Power of Single-locus model disease SNPs under experiment I at the 
nominal 0.05 level.   

 

 

3.1.1.4  Statistical Analysis on Experiment I 

 

Table 15 reports the averages of the rejection rate for the disease SNPs and lack of 

robustness of validity measure with or without PC adjustment. Each entry is the average 

over nine settings (three disease models time three penetrance settings). The results 

document the value of PC adjustment. When power is less than 1, PC adjustment is 

effective and has lower but still strong power. Without PC adjustment, the type I error 

rate cannot be controlled. Overall, the type I error rate with PC adjustment has substantial 

improvement but is significantly higher than the nominal significance level for matching 

SNPs.  
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Table 16. Average rejection rates and lack of robustness of validity on Factor PC.  

Overall Average 
 Rejection Rate  Lack of Robustness of Validity 

 No PC PC  No PC PC 

Uncorrelated SNPs (null I)  0.065 C0.001 0.047 C0.001  0.029 C0.001 0.013 C0.001 

Matching SNPs (null II)  0.220 C0.002 0.136 C0.001  0.162 C0.002 0.089 C0.001 

Disease SNPs (Power)  0.587 C0.002 0.584 C0.002    

 

I also calculate the average of type I error, rates power and lack of robustness of 

validity with or without PC by the three general populations: African, Asian and 

European. My hypothesis is that African population needs PC adjustment more than 

European population but less than Asian population because of the population 

immigration. The results in Table 16 indicate that global PC method adjust the type I 

error rate well overall, especially for the African and Asian population, but less 

effectively for the European population. The Asian population has the best power.  
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Table 17. Average rejection rates and lack of robustness of validity on Factors 
population and PC.  

Overall Average 
 Rejection Rate  Lack of Robustness of Validity 

 No PC PC  No PC PC 

African 

Uncorrelated SNPs (null I)  0.088 C0.001 0.048 C0.001  0.049 C0.001 0.013 C0.001 

Matching SNPs (null II)  0.229 C0.002 0.130 C0.002  0.169 C0.002 0.085 C0.001 

Disease SNPs (Power)  0.540 C0.003 0.533 C0.003    

Asian 

Uncorrelated SNPs (null I)  0.075 C0.001 0.048 C0.001  0.037 C0.001 0.013 C0.001 

Matching SNPs (null II)  0.218 C0.002 0.093 C0.001  0.158 C0.002 0.050 C0.001 

Disease SNPs (Power)  0.755 C0.002 0.751 C0.002    

European 

Uncorrelated SNPs (null I)  0.032 C0.001 0.046 C0.001  0.001 C0.000 0.013 C0.001 

Matching SNPs (null II)  0.214 C0.002 0.185 C0.002  0.157 C0.002 0.133 C0.002 

Disease SNPs (Power)  0.467 C0.003 0.468 C0.003    

 

 

I further calculate the average of the type I error rate, power and lack of robustness of 

validity with or without PC adjustment by the three penetrance levels: low, high and 

complete. As shown in Table 17, the reduced penetrance models (low and high) maintain 

a correct type I error rate compared to the rates for the complete penetrance models. The 

complete penetrance model has a larger power than the reduced penetrance models.  
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Table 18. Average rejection rates and lack of robustness of validity on Factors 
penetrance and PC.  

Overall Average 
 Rejection Rate  Lack of Robustness of Validity 

 No PC PC  No PC PC 

Low Penetrance 

Uncorrelated SNPs (null I)  0.050 C0.001 0.051 C0.001  0.000 C0.000 0.000 C0.000 

Matching SNPs (null II)  0.053 C0.001 0.050 C0.001  0.000 C0.000 0.000 C0.000 

Disease SNPs (Power)  0.382 C0.002 0.369 C0.002    

High Penetrance 

Uncorrelated SNPs (null I)  0.050 C0.001 0.051 C0.001  0.000 C0.000 0.000 C0.000 

Matching SNPs (null II)  0.074 C0.001 0.064 C0.001  0.002 C0.000 0.001 C0.000 

Disease SNPs (Power)  0.380 C0.002 0.383 C0.002    

Complete Penetrance 

Uncorrelated SNPs (null I)  0.093 C0.001 0.040 C0.001  0.087 C0.001 0.038 C0.001 

Matching SNPs (null II)  0.533 C0.003 0.293 C0.002  0.483 C0.003 0.267 C0.002 

Disease SNPs (Power)  1.000 C0.000 1.000 C0.000    

 

I calculate the average of type I error, power and lack of robustness of validity with or 

without PC by the two prevalence levels: low and high. The low prevalence model 

maintains a correct type I error rate than the high prevalence model while the high 

prevalence model has a larger power.  
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Table 19. Average rejection rates and lack of robustness of validity on Factors 
prevalence and PC.  

Overall Average 
 Rejection Rate  Lack of Robustness of Validity 

 No PC PC  No PC PC 

Low Prevalence 

Uncorrelated SNPs (null I)  0.051 C0.001 0.051 C0.001  0.000 C0.000 0.000 C0.000 

Matching SNPs (null II)  0.064 C0.001 0.057 C0.001  0.001 C0.000 0.001 C0.000 

Disease SNPs (Power)  0.381 C0.002 0.376 C0.002    

High Prevalence 

Uncorrelated SNPs (null I)  0.093 C0.001 0.040 C0.001  0.087 C0.001 0.038 C0.001 

Matching SNPs (null II)  0.533 C0.003 0.293 C0.002  0.483 C0.003 0.267 C0.002 

Disease SNPs (Power)  1.000 C0.000 1.000 C0.000    
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3.1.2 Experiment II Results  

 

 

Table 20 presents the average empirical type I error rate and empirical power 

observed in the simulations under experiment II, which has disease SNP MAF = 0.05, 

0.15, 0.30, representing the African population as described in Chapter 2 Methodology. 

The additive model is used in experiment II. The table also includes 95% confidence 

intervals. Each single-locus disease SNP in the table has 25 uncorrelated SNPs (MAFs 

across population less correlated with the disease SNP) and 25 matching SNPs (MAFs 

across population as correlated as possible with the disease SNP MAFs).  

As in experiment I, the empirical type I error rate using the uncorrelated SNPs has a 

lack of robustness of validity appearing in the complete penetrance without PC 

adjustment analysis. The high penetrance model does not show much of lack of 

robustness of validity and does not need much PC adjustment. The low penetrance model 

does not show lack of robustness of validity and does not need any PC adjustment. For 

example, on Table 20, using nominal level of significance 0.05 and analyzing data from 

the complete penetrance model, there are 11.5% (0.115 C0.004) of the replicates for 

which the 25 SNPs uncorrelated with the disease SNP rs6792511 on chromosome 3 

representing the African population are found significant in the association test when there 

is no PC adjustment. With PC adjustment, the number of replicates that are significant at 

the nominal 0.05 level in a linear regression test decreases to 4% (0.040 C0.002). There 
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are two unexpected results using uncorrelated SNPs. Analyzing data from the complete 

penetrance model, the SNP rs11924006 with MAF 0.15 has a type I error rate 0 (0.000 

C0.000) with PC adjustment, which shows a lack of robustness of validity. From the low 

penetrance model, the SNP rs9810313 with MAF 0.30 has a type I error rate 13.9% 

(0.139 C0.004) without PC adjustment.  

PS becomes a bigger problem as MAF increases for the matching SNPs. For example, 

without PC adjustment, the disease SNP rs6792511 with a low MAF 0.05 has an average 

type I error rate 0.695 C0.006. The disease SNP rs11924006 with MAF 0.15 has an 

average type I error rate 0.920 C0.003. The average type I error rate increases to 0.960 

C0.002 as MAF increases to 0.30 for the disease SNP rs9810313. The empirical type I 

error rate shows a lack of robustness of validity for all the three penetrance settings: 

complete, high and low. PC adjustment does not help much using the complete and high 

penetrance models. For example, the 25 SNPs matching the disease SNP rs9810313 on 

chromosome 3 representing the African population have an average type I error rate 

0.960 C0.002 without PC adjustment at the nominal 0.05 level. With PC adjustment, the 

rate is 0.520 C0.006. Even the low penetrance model shows a problem using PC 

adjustment. For example, the 25 SNPs that match the disease SNP rs9810313 have an 

average type I error rate 0.779 C0.005 without PC adjustment. With PC adjustment, the 

rate decreases to 0.335 C0.006, but is still far above the nominal 0.05 level. In general, 

PC adjustment improves robustness of validity.  
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The rejection rate for disease SNPs with PC adjustment is close to the rate without 

PC adjustment. For example, the rejection rate without PC adjustment is 0.849 C0.022 

for the disease SNP rs6792511 on chromosome 3 representing the African population at 

the nominal 0.05 level. With PC adjustment, the rejection rate is 0.824 C0.024. 
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Table 20. Empirical rejection rates with 95% confidence intervals of the single-locus model under experiment II 
(additive model with disease SNP MAF = 0.05, 0.15, 0.30) at the nominal 0.05 level.  

MAF 
Single-locus 

Disease Genes 
Chr  Pop 

Penetrance 

Complete High Low 

No PC PC No PC PC No PC PC 

Uncorrelated SNPs (null I) 

0.05 

0.15 

0.30 

rs6792511 3 Af 0.115 C0.004 0.040 C0.002 0.061 C0.003 0.055 C0.003 0.052 C0.003 0.050 C0.003 

rs11924006 3 Af 0.120 C0.004 0.000 C0.000 0.115 C0.004 0.045 C0.003 0.079 C0.003 0.048 C0.003 

rs9810313 3 Af 0.160 C0.005 0.037 C0.002 0.167 C0.005 0.025 C0.002 0.139 C0.004 0.067 C0.003 

Matching SNPs (null II) 

0.05 

0.15 

0.30 

rs6792511 3 Af 0.695 C0.006 0.334 C0.006 0.277 C0.006 0.167 C0.005 0.145 C0.004 0.119 C0.004 

rs11924006 3 Af 0.920 C0.003 0.280 C0.006 0.891 C0.004 0.163 C0.005 0.732 C0.005 0.104 C0.004 

rs9810313 3 Af 0.960 C0.002 0.520 C0.006 0.951 C0.003 0.446 C0.006 0.779 C0.005 0.335 C0.006 

Disease SNPs (Power) 

0.05 

0.15 

0.30 

rs6792511 3 Af 1.000 C0.000 1.000 C0.000 0.998 C0.003 0.998 C0.003 0.849 C0.022 0.824 C0.024 

rs11924006 3 Af 1.000 C0.000 1.000 C0.000 1.000 C0.000 1.000 C0.000 1.000 C0.000 1.000 C0.000 

rs9810313 3 Af 1.000 C0.000 1.000 C0.000 1.000 C0.000 1.000 C0.000 0.979 C0.009 0.994 C0.005 

Note: The headings for each column are defined as follows: Chr = Chromosome on which SNP marker is located (see Methodology – Power 

Simulations). Pop = African (Af). The complete, high and low penetrance models are with low prevalence (additive model is used, three 

trajectory groups). See Methodology – Genetic Models. Type I error rates that are significantly different from the nominal 0.05 level are in bold. 

For each setting 1000 replicates are generated. Africans n = 466. 
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3.1.2.1  Null I Simulation Using Uncorrelated SNPs 

 

The ANOVA of the measure of lack of robustness of validity for the uncorrelated 

SNPs is shown in Table 21 below. The model has an R-square of 0.7422. These results 

indicate that the overall model is not statistically significant (� � 0.89, \ � �=��[ �
0.6147).  Because the smallest p-value in the ANOVA is the p-value for the factor PC 

and is equal to 0.2732, I conclude that there are no significant factors for the lack of 

robustness of validity. That is, the statistical analysis did not confirm the apparent failure 

of robustness of validity for data from the complete penetrance model analyzed without 

PC adjustment.  
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Table 21. The ANOVA table for the single-locus model uncorrelated SNPs under 
experiment II at the nominal 0.05 level (dependent variable: lack of robustness of 
validity).   
 

The GLM Procedure 
Dependent Variable: lackrobust  

Source DF Sum of Squares  Mean Square  F Value Pr > F 

Model 13 0.012 0.0009 0.89 0.6147 

Error 4 0.004 0.001   

Corrected Total  17 0.016    

 

R-Square  Coeff Var  Root MSE  lackrobust Mean  

0.742 295.749 0.032 0.011 

 

 

To assist in the interpretation of these results, Figure 8 presents the plot of PC and 

penetrance, PC and MAF interaction. The lack of robustness of validity appears in the 

complete penetrance model without PC adjustment.  
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Figure 8. Lack of robustness of validity of single-locus model uncorrelated SNPs 
under experiment II at the nominal 0.05 level.  

 

 

 

 

3.1.2.2  Null II Simulation Using Matching SNPs 

 

The ANOVA of the measure of lack of robustness of validity for the matching SNPs is 

shown in Table 22 below. The model has an R-square of 0.9523. These results indicate 

that the overall model is statistically significant (� � 6.14, \ � �=��[ � 0.0466) at the 

nominal 0.05 level. The value of the statistic � � 51.282 (\ � �=��[ � 0.0020) for the 

factor PC is statistically significant. This analysis thus documents that the use of PC 

adjustment significantly improves robustness of validity.  
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Table 22. The ANOVA table for the single-locus model matching SNPs under experiment II 

at the nominal 0.05 level (dependent variable: lack of robustness of validity). 
 

The GLM Procedure 
Dependent Variable: lackrobust  

Source DF Sum of Squares  Mean Square  F Value Pr > F 

Model 13 2.839 0.218 6.14 0.047 

Error 4 0.142 0.036   

Corrected Total  17 2.982    

 

R-Square  Coeff Var  Root MSE  lackrobust Mean  

0.952 58.620 0.189 0.322 

 

For interpreting the results, I present the graph of the average lack of robustness of 

validity measure of the empirical type I error rate at each combination of the PC and 

penetrance, and PC and MAF in Figure 9. In general, better robustness of validity is 

attained at low MAF (0.05) and reduced penetrance (low and high). With PC adjustment, 

the robustness of validity improves for all three penetrance models: low, high and 

complete. The PC model gives the best results since it maintains better robustness of 

validity as MAF and penetrance levels change.  
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Figure 9. Lack of robustness of validity of Single-locus model matching SNPs under 
experiment II at the nominal 0.05 level.   

 

 

 

  



 

79 
 

 

3.1.2.3  Power Simulation Using single-locus disease SNPs 

 

The ANOVA of the rejection rates for the disease SNPs is shown in Table 23 below. The 

model has an R-square of 0.9942. These results indicate that the overall model is 

statistically significant (� � 52.98, \ � �=��[ � 0.0008 ).  Since  � � 82.737 

(\ � �=��[ � 0.0006) for MAF and � � 101.16 (\ � �=��[ � 0.0004) for penetrance, 

the factors of MAF and penetrance are also significant. Furthermore, since � � 79.666 

(\ � �=��[ � 0.0005) for the interaction of MAF and penetrance, this interaction is also 

significant. PC is not a significant factor in this power simulation (� � 0.081633, \ �
��=�[ � 0.7893). The most important finding is that the use of PC adjustment and 

interactions involving PC adjustment are not significant. That is, as before, the fitted 

rejection rate with PC adjustment is statistically equal to the fitted rate without PC 

adjustment.  
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Table 23. The ANOVA table for the single-locus model disease SNPs under experiment II at 
the nominal 0.05 level (dependent variable: power).  
 

The GLM Procedure 
Dependent Variable: rate rate 

Source DF Sum of Squares  Mean Square  F Value Pr > F 

Model 13 0.047 0.004 52.98 0.001 

Error 4 0.0003 0.0001   

Corrected Total  17 0.047    

 

R-Square  Coeff Var  Root MSE  rate Mean  

0.994 0.842 0.008 0.980 

 
 

To assist in the interpretation of these results, Figure 10 presents plots of the 

MAF-PC, penetrance-PC and MAF-penetrance interactions. The interaction between PC 

and MAF, PC and penetrance are fairly small, as shown by the similar shape of the curves 

in Figure 10. I conclude that the rejection rate (power) with PC adjustment is close to the 

rate without PC adjustment. The powers of the high and complete penetrance models are 

greater than that of low penetrance model, regardless of MAF. The power is lower when 

MAF is small: i.e. MAF = 0.05.  
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Figure 10. Power of Single-locus model disease SNPs under experiment II at the 
nominal 0.05 level.  
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3.1.2.4  Statistical Analysis on Experiment II  

 

I calculate the average of the overall power of Experiment II, null rejection rate and lack 

of robustness of validity with or without PC. Without PC adjustment, the null II type I 

error rate has a mean of 0.706 at the nominal 0.05 level, and the lack of robustness of 

validity has a mean of 0.565. After the PC adjustment, the average of overall type I error 

decreases to 0.274 and the lack of robustness of validity decreases to 0.183. The results 

indicate that the PC effect is smaller than no PC effect and that PC helps to maintain the 

power. 

Table 24. Average rejection rates and lack of robustness of validity on Factor PC.  

 

Overall Average 
 Rejection Rate  Lack of robustness of validity 

 No PC PC  No PC PC 

Uncorrelated SNPs (null I)  0.112 0.041  0.062 0.007 

Matching SNPs (null II)  0.706 0.274  0.565 0.183 

Disease SNPs (Power)  0.981 0.980    

 

 

I also calculate the average of type I error and lack of robustness of validity with or 

without PC by the three general populations: African, Asian and European. My 

hypothesis is that African population needs PC adjustment more than European 

population but less than Asian population because of the population immigration. The 

results indicate that global PC methods adjust the type I error rate well overall, especially 

for the African and Asian populations.  
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Table 25. Average rejection rates and lack of robustness of validity on Factors MAF 
and PC.  

 

Overall Average 
 Rejection Rate  Lack of robustness of validity 

 No PC PC  No PC PC 

MAF = 0.05 

Uncorrelated SNPs (null I)  0.076 0.048  0.022 0.006 

Matching SNPs (null II)  0.372 0.207  0.221 0.117 

Disease SNPs (Power)  0.949 0.941    

MAF = 0.15 

Uncorrelated SNPs (null I)  0.105 0.031  0.059 0.002 

Matching SNPs (null II)  0.848 0.182  0.704 0.098 

Disease SNPs (Power)  1.000 1.000    

MAF = 0.30 

Uncorrelated SNPs (null I)  0.155 0.043  0.106 0.012 

Matching SNPs (null II)  0.897 0.434  0.768 0.333 

Disease SNPs (Power)  0.993 0.998    

 

 

I further calculate the average of power and lack of robustness of validity with or 

without PC by the three penetrance levels: low, high and complete. The reduced 

penetrance models (low and high) maintain a correct type I error rate than the complete 

penetrance models.  
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Table 26. Average rejection rates and lack of robustness of validity on Factors 
penetrance and PC.  

Overall Average 
 Rejection Rate  Lack of robustness of validity 

 No PC PC  No PC PC 

Low Penetrance 

Uncorrelated SNPs (null I)  0.090 0.055  0.026 0.000 

Matching SNPs (null II)  0.552 0.186  0.385 0.086 

Disease SNPs (Power)  0.943 0.939    

High Penetrance 

Uncorrelated SNPs (null I)  0.115 0.041  0.054 0.002 

Matching SNPs (null II)  0.707 0.259  0.571 0.141 

Disease SNPs (Power)  0.999 0.999    

Complete Penetrance 

Uncorrelated SNPs (null I)  0.132 0.026  0.107 0.018 

Matching SNPs (null II)  0.858 0.378  0.737 0.320 

Disease SNPs (Power)  1.000 1.000    
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3.1.3 Experiment III Results  

 

Table 27 presents the average empirical type I error rate and empirical power 

observed in the simulations under experiment III, which has disease SNP MAF = 0.05, 

0.15, 0.30, representing the African population as described in Chapter 2 Methodology. 

The high prevalence complete penetrance model is used in experiment III. The table also 

includes 95% confidence intervals. Each single-locus disease SNP in the table has 25 

uncorrelated SNPs (MAFs across population less correlated with the disease SNP) and 25 

matching SNPs (MAFs across population as correlated as possible with the disease SNP 

MAFs).  

As in experiment I and II, the empirical type I error rate using the uncorrelated SNPs 

has a lack of robustness of validity appearing in the high prevalence complete penetrance 

without PC adjustment model. For example, on Table 27, using nominal level of 

significance 0.05, there are 16% (0.160 C0.005) of the replicates for which the 25 SNPs 

uncorrelated with the disease SNP rs6792511 on chromosome 3 representing the African 

population are found significant in the association test when there is no PC adjustment. 

With PC adjustment, the number of replicates that are significant at the nominal 0.05 level 

in a linear regression test decreases to 4% (0.040 C0.002).  

 

There is a failure of robustness of validity for high prevalence complete penetrance 

model both with and without PC adjustment. For example, the 25 SNPs that match the 

disease SNP rs6792511 have an average type I error rate 0.960 C0.002 without PC 
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adjustment. With PC adjustment, the rate decreases to 0.240 C0.005, which is still far 

above the nominal 0.05 level. In general, PC adjustment improves robustness of validity.  

 

The rejection rate for disease SNPs with PC adjustment is equal to the rate without 

PC adjustment. They are all equal to 1.000 C0.000 at the nominal 0.05 level.  
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Table 27. Empirical rejection rates with 95% confidence intervals of the single-locus model under experiment III 
(disease SNP MAF = 0.05, 0.15, 0.30) at the nominal 0.05 level.  

MAF 
Single-locus 

Disease genes 
Chr Pop 

Complete Penetrance High Prevalence 

Rate  Lack of Robustness of Validity 

No PC PC  No PC PC 

Uncorrelated SNPs (null I) 

0.05 rs6792511 3 Af 0.160 C0.005 0.040 C0.002  0.146 C0.004 0.038 C0.002 

0.15 rs11924006 3 Af 0.120 C0.004 0.040 C0.002  0.110 C0.004 0.038 C0.002 

0.30 rs9810313 3 Af 0.320 C0.006 0.040 C0.002  0.290 C0.006 0.038 C0.002 

Matching SNPs (null II) 

0.05 rs6792511 3 Af 0.960 C0.002 0.240 C0.005  0.867 C0.004 0.219 C0.005 

0.15 rs11924006 3 Af 1.000 C0.000 0.240 C0.005  0.903 C0.004 0.219 C0.005 

0.30 rs9810313 3 Af 0.960 C0.002 0.240 C0.005  0.867 C0.004 0.218 C0.005 

Disease SNPs (Power) 

0.05 rs6792511 3 Af 1.000 C0.000 1.000 C0.000    

0.15 rs11924006 3 Af 1.000 C0.000 1.000 C0.000    

0.30 rs9810313 3 Af 1.000 C0.000 1.000 C0.000    

Note: The headings for each column are defined as follows: Chr = Chromosome on which SNP marker is located (see Methodology – Power 

Simulations). Pop = African (Af). The complete penetrance model is with high prevalence (complete model, two trajectory groups). See 

Methodology – Genetic Models. Type I error rates that are significantly different from the nominal 0.05 level are in bold. For each setting 1000 

replicates are generated. Africans n = 466. 
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3.1.3.1 Statistical Analysis on Experiment III 

 

I report the average of the overall power and lack of robustness of validity with and 

without PC in Table 28. Without PC adjustment, the type I error rate cannot be controlled. 

Overall, the type I error rate of the PC analysis for matching SNPs has substantial 

improvement but is much greater than the nominal level of significance.  

 

Table 28. Average rejection rates and lack of robustness of validity on Factor PC 
(nominal significance level 0.05).  

 

Overall Average 
 Rejection Rate  Lack of Robustness of Validity 

 No PC PC  No PC PC 

Uncorrelated SNPs (null I)  0.200 0.040  0.182 0.038 

Matching SNPs (null II)  0.973 0.240  0.879 0.218 

Disease SNPs (Power)  1.000 1.000    
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3.2 Multi-locus Model Results 

3.2.1 Experiment IV Results  

 

 

Table 29 shows the empirical type I error rate and 95% confidence interval of the 450 

uncorrelated SNPs (null I) for the 18 disease genes. The results show that the low 

penetrance model does not need PC adjustment. The high penetrance model does not 

need much PC adjustment. The complete penetrance model benefits substantially from 

PC adjustment. When the type I error rate and its 95% confidence interval are in bold, the 

target α � 0.05 is not contained in the confidence interval. The number of intervals not 

containing the target α decreases when using the PC adjustment model. It also decreases 

as the penetrance decreases.  

Table 30 shows the empirical type I error rate and 95% confidence interval of the 450 

matching SNPs (null II) for the 18 disease genes. The results show that the low 

penetrance model does not need PC adjustment. The high penetrance model needs PC 

adjustment, and PC adjustment is effective. PC adjustment matters in the complete 

penetrance model and helps adjust for the PS, but the rejection rates for the matching 

SNPs are well above the nominal significance level for many SNPs. As before, when type 

I error rate and 95% confidence interval in bold, the target α � 0.05 is not contained in 

the confidence interval. As the penetrance becomes smaller, the number of intervals not 

containing the target α decreases.  
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Table 31 contains the power to detect the disease gene in the complete, high and low 

penetrance additive models (three trajectory groups are used). The power decreases as the 

penetrance is less. There is no substantial change in power after PC adjustments. For the 

complete penetrance models, all the 18 disease genes have a power of 1, that is, 100% 

disease genes are detected before and after PC adjustment. For the partial high penetrance 

model, among the 18 disease genes, 17 had power greater than 0.945 C 0.014 before 

the PC adjustment. One of the 18 disease genes, rs3761998 from chromosome 6, with 

relatively high MAF in the Asian population, has a relatively good power, 0.876 C 0.02. 

After the PC adjustment, the power of this disease gene rs3761998 increases to 

0.900 C 0.019. The other 17 disease SNPs have a power greater than 0.952 C 0.013. 

For the partial low penetrance model without PC adjustment, the power ranges from 

0.463 C 0.031 to 0.953 C 0.013. Two of the 18 genes have low power less than 0.50. 

They are rs3761998 with a power of 0.463 C 0.0310, which is the disease gene from 

chromosome 6 having a high MAF for an Asian population, and rs12822275 with a 

power of 0.464 C 0.031, which is the disease gene from chromosome 12 that has a high 

MAF for the European population. After the PC adjustment, the power range stays the 

same. One additional disease SNP rs270771 appears to have power less than 0.50. Its 

rejection rate is 0.476 C 0.031. It is on chromosome 19 and has a high MAF for a 

European population.  
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Figure 11 displays the trends and histograms of the type I error rates of the two 

partial penetrance models for the 450 non-correlated SNPs under the null I with and 

without PC adjustments. Figure 12 presents the scatter plot of the type I error rates for the 

450 non-correlated SNPs under the null I with and without PC adjustment.  

 

The models with PC adjustment have an average type I error rate closer to 0.05 than 

the models without PC adjustment. The PC adjustment models have more intervals 

containing the target α. Specifically, the partial high penetrance model has a type I error 

rate range from 0.026 C 0.01 to 0.097 C 0.018 without PC adjustment. Using PC 

adjustment, the range shifts to 0.016 C 0.008 to 0.073 C 0.016. For the partial low 

penetrance model, the type I error rates ranging from 0.044 C 0.013 to 0.066 C 0.015 

before PC adjustments. The range shrinks to 0.042 C 0.012 to 0.058 C 0.014 after PC 

adjustments. All intervals in the partial low penetrance PC adjustment model contain the 

target � � 0.05.  

 

Some of the matching SNPs in the high partial penetrance model, especially those 

representing the African population, have rejection rates above the nominal value of 0.05 

(the disease SNPs representing African population have type I error rates that range from 

0.095 to 0.165) without PC adjustment. Disease SNPs number 1, 5, 8, 10, 13 and 16 that 

represent the Asian population have lower type I error rate in high partial penetrance 

model, ranging from 0.013 C 0.007 to 0.049 C 0.013 without PC adjustment.  
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The models with PC adjustment have an average type I error rate closer to 0.05 than 

the models without PC adjustment. PC models also have more intervals containing the 

target �. Specifically, the low penetrance PC adjustment model has type I error rates that 

range 0.044 to 0.059. Before adjustment, they ranged from 0.039 to 0.077. All matching 

SNPs for this model have confidence intervals containing the target � � 0.05 with PC 

adjustment.  
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Table 29. Empirical rejection rates and 95% confidence interval of the multi-locus additive models for the uncorrelated 
SNPs (null I) under experiment IV at the nominal 0.05 level.  

# 
Disease 

Genes 
Chr Pop 

Penetrance 

Complete High Low 

No PC PC No PC PC No PC PC 

1 rs3733124 3 As 0.080 C0.017 0.000 C0.000 0.055 C0.014 0.034 C0.011 0.052 C0.014 0.046 C0.013 

2 rs7355991 3 Af 0.040 C0.012 0.040 C0.012 0.034 C0.011 0.049 C0.013 0.049 C0.013 0.050 C0.014 

3 rs17195948 3 Eu 0.080 C0.017 0.079 C0.017 0.063 C0.015 0.052 C0.014 0.055 C0.014 0.051 C0.014 

4 rs1259069 6 Eu 0.039 C0.012 0.040 C0.012 0.029 C0.010 0.039 C0.012 0.044 C0.013 0.042 C0.012 

5 rs3761998 6 As 0.040 C0.012 0.040 C0.012 0.044 C0.013 0.032 C0.011 0.044 C0.013 0.042 C0.012 

6 rs9459886 6 Af 0.040 C0.012 0.040 C0.012 0.053 C0.014 0.046 C0.013 0.051 C0.014 0.051 C0.014 

7 rs12790383 11 Eu 0.000 C0.001 0.000 C0.000 0.045 C0.013 0.021 C0.009 0.052 C0.014 0.045 C0.013 

8 rs11217935 11 As 0.040 C0.012 0.040 C0.012 0.067 C0.015 0.043 C0.013 0.066 C0.015 0.058 C0.014 

9 rs11825331 11 Af 0.040 C0.012 0.080 C0.017 0.038 C0.012 0.050 C0.014 0.048 C0.013 0.046 C0.013 

10 rs17117910 12 As 0.000 C0.000 0.000 C0.000 0.026 C0.010 0.016 C0.008 0.047 C0.013 0.043 C0.013 

11 rs12822275 12 Eu 0.000 C0.000 0.000 C0.000 0.036 C0.012 0.035 C0.011 0.049 C0.013 0.047 C0.013 

12 rs1696449 12 Af 0.040 C0.012 0.040 C0.012 0.057 C0.014 0.050 C0.014 0.053 C0.014 0.051 C0.014 

13 rs2073868 17 As 0.080 C0.017 0.160 C0.023 0.068 C0.016 0.073 C0.016 0.054 C0.014 0.054 C0.014 

14 rs9899123 17 Af 0.040 C0.012 0.040 C0.012 0.054 C0.014 0.053 C0.014 0.051 C0.014 0.048 C0.013 

15 rs34742396 17 Eu 0.120 C0.020 0.081 C0.017 0.097 C0.018 0.068 C0.016 0.059 C0.015 0.050 C0.014 

16 rs3745465 19 As 0.120 C0.020 0.079 C0.017 0.063 C0.015 0.058 C0.014 0.055 C0.014 0.054 C0.014 

17 rs10411117 19 Af 0.080 C0.017 0.040 C0.012 0.064 C0.015 0.051 C0.014 0.051 C0.014 0.049 C0.013 

18 rs270771 19 Eu 0.000 C0.000 0.040 C0.012 0.029 C0.010 0.031 C0.011 0.047 C0.013 0.045 C0.013 

Note: The headings for each column are defined as follows: Chr = Chromosome on which SNP marker is located (see Methodology – Power 

Simulations). Pop = General populations, including African (Af), Asian (As) and European (Eu). For the complete penetrance low prevalence 

model, two trajectory groups instead of three are used (see Methodology – Genetic Models). For each setting 1000 replicates are generated. 

Africans n = 466, Asians n = 359, Europeans n = 214.  
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Table 30. Empirical rejection rates and 95% confidence interval of the multi-locus gene models for the matching SNPs 
(null II).  

# Disease genes Chr Pop 

Penetrance 

Complete High  Low 

No PC No PC No PC PC No PC PC 

1 rs3733124 3 As 0.000 C0.000 0.000 C0.000 0.017 C0.008 0.023 C0.009 0.042 C0.012 0.044 C0.013 

2 rs7355991 3 Af 0.200 C0.025 0.160 C0.023 0.154 C0.022 0.095 C0.018 0.072 C0.016 0.059 C0.015 

3 rs17195948 3 Eu 0.120 C0.020 0.160 C0.023 0.123 C0.020 0.113 C0.020 0.067 C0.015 0.059 C0.015 

4 rs1259069 6 Eu 0.240 C0.026 0.120 C0.020 0.116 C0.020 0.105 C0.019 0.066 C0.015 0.058 C0.014 

5 rs3761998 6 As 0.000 C0.000 0.000 C0.000 0.013 C0.007 0.018 C0.008 0.039 C0.012 0.039 C0.012 

6 rs9459886 6 Af 0.200 C0.025 0.040 C0.012 0.132 C0.021 0.058 C0.014 0.068 C0.016 0.051 C0.014 

7 rs12790383 11 Eu 0.160 C0.023 0.120 C0.020 0.107 C0.019 0.049 C0.013 0.067 C0.015 0.059 C0.015 

8 rs11217935 11 As 0.000 C0.000 0.000 C0.000 0.027 C0.010 0.036 C0.012 0.050 C0.014 0.051 C0.014 

9 rs11825331 11 Af 0.080 C0.017 0.040 C0.012 0.110 C0.019 0.070 C0.016 0.064 C0.015 0.054 C0.014 

10 rs17117910 12 As 0.000 C0.000 0.000 C0.001 0.049 C0.013 0.037 C0.012 0.060 C0.015 0.051 C0.014 

11 rs12822275 12 Eu 0.080 C0.017 0.080 C0.017 0.075 C0.016 0.046 C0.013 0.060 C0.015 0.051 C0.014 

12 rs1696449 12 Af 0.160 C0.023 0.000 C0.000 0.095 C0.018 0.040 C0.012 0.060 C0.015 0.052 C0.014 

13 rs2073868 17 As 0.040 C0.012 0.040 C0.012 0.042 C0.012 0.037 C0.012 0.052 C0.014 0.048 C0.013 

14 rs9899123 17 Af 0.240 C0.026 0.120 C0.020 0.165 C0.023 0.093 C0.018 0.069 C0.016 0.054 C0.014 

15 rs34742396 17 Eu 0.120 C0.020 0.040 C0.012 0.082 C0.017 0.059 C0.015 0.059 C0.015 0.050 C0.014 

16 rs3745465 19 As 0.000 C0.000 0.000 C0.000 0.020 C0.009 0.025 C0.010 0.043 C0.013 0.044 C0.013 

17 rs10411117 19 Af 0.160 C0.023 0.040 C0.012 0.145 C0.022 0.063 C0.015 0.077 C0.017 0.058 C0.014 

18 rs270771 19 Eu 0.240 C0.026 0.080 C0.017 0.120 C0.020 0.067 C0.015 0.075 C0.016 0.060 C0.015 

Note: The headings for each column are defined as follows: Chr = Chromosome on which SNP marker is located (see Methodology – Power 

Simulations). Pop = General populations, including African (Af), Asian (As) and European (Eu). For the complete penetrance low prevalence 

model, two trajectory groups instead of three are used (see Methodology – Genetic Models). For each setting 1000 replicates are generated. 

Africans n = 466, Asians n = 359, Europeans n = 214. 
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Table 31. Empirical rejection rates and 95% confidence interval of the multi-locus gene complete penetrance and partial 
penetrance models.  

# Disease genes  Chr  
 
Pop 

Penetrance 

Complete High Low 

No PC PC No PC PC No PC PC 
1 rs3733124 3 As 1.000 C0.000 1.000 C0.000 0.992 C0.006 0.997 C0.003 0.652 C0.030 0.663 C0.029 

2 rs7355991 3 Af 1.000 C0.000 1.000 C0.000 0.992 C0.006 0.987 C0.007 0.636 C0.030 0.595 C0.030 

3 rs17195948 3 Eu 1.000 C0.000 1.000 C0.000 0.992 C0.006 0.984 C0.008 0.598 C0.030 0.536 C0.031 

4 rs1259069 6 Eu 1.000 C0.000 1.000 C0.000 0.987 C0.007 0.968 C0.011 0.591 C0.030 0.554 C0.031 

5 rs3761998 6 As 1.000 C0.000 1.000 C0.000 0.876 C0.020 0.900 C0.019 0.463 C0.031 0.469 C0.031 

6 rs9459886 6 Af 1.000 C0.000 1.000 C0.000 0.996 C0.004 0.996 C0.004 0.876 C0.020 0.872 C0.021 

7 rs12790383 11 Eu 1.000 C0.000 1.000 C0.000 0.992 C0.006 0.974 C0.010 0.542 C0.031 0.505 C0.031 

8 rs11217935 11 As 1.000 C0.000 1.000 C0.000 0.945 C0.014 0.967 C0.011 0.567 C0.031 0.583 C0.031 

9 rs11825331 11 Af 1.000 C0.000 1.000 C0.000 0.995 C0.004 0.995 C0.004 0.710 C0.028 0.711 C0.028 

10 rs17117910 12 As 1.000 C0.000 1.000 C0.000 0.981 C0.008 0.979 C0.009 0.630 C0.030 0.609 C0.030 

11 rs12822275 12 Eu 1.000 C0.000 1.000 C0.000 0.973 C0.010 0.957 C0.013 0.464 C0.031 0.457 C0.031 

12 rs1696449 12 Af 1.000 C0.000 1.000 C0.000 0.955 C0.013 0.952 C0.013 0.513 C0.031 0.499 C0.031 

13 rs2073868 17 As 1.000 C0.000 1.000 C0.000 0.996 C0.004 0.997 C0.003 0.707 C0.028 0.690 C0.029 

14 rs9899123 17 Af 1.000 C0.000 1.000 C0.000 0.999 C0.002 1.000 C0.000 0.819 C0.024 0.800 C0.025 

15 rs34742396 17 Eu 1.000 C0.000 1.000 C0.000 0.974 C0.010 0.975 C0.010 0.558 C0.031 0.519 C0.031 

16 rs3745465 19 As 1.000 C0.000 1.000 C0.000 0.997 C0.003 0.996 C0.004 0.953 C0.013 0.962 C0.012 

17 rs10411117 19 Af 1.000 C0.000 1.000 C0.000 0.994 C0.005 0.994 C0.005 0.691 C0.029 0.677 C0.029 

18 rs270771 19 Eu 1.000 C0.000 1.000 C0.000 0.970 C0.011 0.959 C0.012 0.509 C0.031 0.476 C0.031 

Note: The headings for each column are defined as follows: Chr = Chromosome on which SNP marker is located (see Methodology – Power 

Simulations). Pop = General populations, including African (Af), Asian (As) and European (Eu). For the complete penetrance low prevalence 

model, two trajectory groups instead of three are used (see Methodology – Genetic Models). For each setting 1000 replicates are generated. 

Africans n = 466, Asians n = 359, Europeans n = 214. 

  



 

96 
 

Figure 11. Empirical rejection rates of the two multi-locus partial penetrance models for the 450 non-correlated SNPs 
with and without PC adjustment. 
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Figure 12. Empirical rejection rate scatter plot of 450 non-correlated SNPs for each of the 18 disease SNPs at the 0.05 
nominal level.  
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3.2.1.1  Null Simulation Results Using Uncorrelated SNPs 

 

The ANOVA of the measure of lack of robustness of validity for the multi-locus 

model uncorrelated SNPs is shown in Table 32 below. Although the model has an 

R-square of 0.0457, the overall model is statistically significant (� � 2.96, \ � �=��[ 9
0.0001).  The results indicate that the statistic � � 2.69, \ � �=��[ � 0.0199 for the 

chromosome factor and F � 40.35, p � value 9 0.0001  for penetrance are both 

significant at the 0.05 significance level. The factor PC is not significant in this model. 

That is, the statistical analysis did not confirm the failure of robustness of validity for 

data from the additive multi-locus null simulation model analyzed without PC adjustment 

using uncorrelated SNPs.  
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Table 32. The ANOVA table for the multi-locus model uncorrelated SNPs under 
experiment IV at the nominal 0.05 level (dependent variable: lack of robustness of 
validity).   
 

The GLM Procedure 
Dependent Variable: lackrobust lackrobust 

Source DF  Sum of Squares  Mean Square  F Value Pr > F 

Model 43 1.606 0.037 2.96 <.0001 

Error 2656 33.546 0.013   

Corrected Total  2699 35.152    

 

R-Square  Coeff Var  Root MSE  lackrobust Mean  

0.046 616.281 0.112 0.018 

 

Source DF  Type I SS Mean Square  F Value Pr > F 

Chromosome  5 0.170 0.034 2.69 0.020 

Population 2 0.018 0.009 0.71 0.494 

Penetrance 2 1.019 0.510 40.35 <.0001 

PC 1 0.001 0.001 0.08 0.775 

pene*pc 2 0.0005 0.0002 0.02 0.981 

chr*pop 10 0.142 0.014 1.13 0.338 

chr*pene 10 0.221 0.022 1.75 0.065 

chr*pc 5 0.013 0.003 0.21 0.958 

pop*pene 4 0.020 0.005 0.39 0.816 

pop*pc 2 0.002 0.001 0.07 0.931 
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3.2.1.2  Null Simulation Results for SNPs Having MAF Correlated with Disease SNP 

 

The ANOVA of the measure of lack of robustness of validity for the matching SNPs is 

shown in Table 33 below. The model has an R-square of 0.1036. These results indicate 

that the overall model is statistically significant (� � 7.14, \ � �=��[ 9 0.0001) at the 

0.05 level. The value of the statistic � � 14.969 (\ � �=��[ � 0.0001) for the factor 

PC, � � 65.11  (\ � �=��[ 9 0.0001 ) for the factor penetrance and � � 27.638 

( \ � �=��[ 9 0.0001 ) for the factor population are statistically significant. The 

interaction between PC and penetrance, PC and population, population and penetrance 

are also statistically significant. This analysis documents that the use of PC adjustment is 

significantly associated with robustness of validity.  
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Table 33. The ANOVA table for the multi-locus model matching SNPs under experiment IV 

at the nominal 0.05 level (dependent variable: lack of robustness of validity). 

 

The GLM Procedure 
Dependent Variable: lackrobust lackrobust 

Source DF  Sum of Squares  Mean Square  F Value Pr > F 

Model 43 6.901 0.160 7.14 <.0001 

Error 2656 59.696 0.022   

Corrected Total  2699 66.597    

 

R-Square  Coeff Var  Root MSE  lackrobust Mean  

0.104 436.422 0.150 0.034 
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3.2.1.3  Power Simulation Using single-locus disease SNPs 

 

The ANOVA of the rejection rates for the disease SNPs is shown in Table 34 below. The 

model has an R-square of 0.9471. These results indicate that the overall model is 

statistically significant (� � 26.66, \ � �=��[ 9 0.0001 ).  Because � � 11.637 

( \ � �=��[ 9 0.0001 ) for population, � � 493.92  ( \ � �=��[ 9 0.0001 ) for 

penetrance and � � 3.2751 (\ � �=��[ � 0.0107) for chromosome, the factors of 

population, penetrance and chromosome are statistically significant. Furthermore, there is 

a significant interaction between population and penetrance, population and chromosome, 

penetrance and chromosome. PC is not a significant factor in the power analysis 

(� � 0.3224, \ � ��=�[ � 0.5721). The most important finding is that the use of PC 

adjustment and interactions involving PC adjustment are not significant. That is, the fitted 

rejection rate with PC adjustment is statistically equal to the fitted rate without PC 

adjustment.  
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Table 34. The ANOVA table for the multi-locus model disease SNPs under experiment IV at 
the nominal 0.05 level (dependent variable: power).  

 

The GLM Procedure 
Dependent Variable: rate rate 

Source DF  Sum of Squares  Mean Square  F Value Pr > F 

Model 43 3.607 0.084 26.66 <.0001 

Error 64 0.201 0.003   

Corrected Total  107 3.808    

 

R-Square  Coeff Var  Root MSE  rate Mean  

0.947 6.456 0.056 0.869 
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3.2.1.4  Statistical Analysis on Experiment IV 

 

 

Table 35 reports the average of the rejection rate for the disease SNPs and lack of 

robustness of validity measure with or without PC. Each entry is the average over 54 

settings (three population settings times six chromosome settings, times three penetrance 

settings). The results indicate that the PC null rejection rates are closer to the nominal 

level than the rates without PC adjustment. For disease SNPs, the rejection rate with PC 

adjustment is only slightly less than the rejection rate without PC adjustment.  

 

 

Table 35. Average rejection rates and lack of robustness of validity on Factor PC.  

Overall Average 
 Rejection Rate  Lack of Robustness of Validity 

 No PC PC  No PC PC 

Uncorrelated SNPs (null I)  0.051 0.046  0.019 0.018 

Matching SNPs (null II)  0.087 0.056  0.046 0.023 

Disease SNPs (Power)  0.872 0.866    

 

 

I also report in Table 36 the average of type I error rate, power and lack of robustness 

of validity with or without PC by the three general populations: African, Asian and 

European. My hypothesis is that the African population has a greater change with PC 

adjustment than European population but less than the Asian population because of the 

population immigration. The results indicate that global PC method adjusts the type I 

error rate well overall, especially for the African and Asian population, but less 
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effectively for the European population. The rejection rates for the disease genes are 

roughly the same for each population. More importantly, the rejection rate with PC 

adjustment is roughly equal to the rate without adjustment.  

 

 

Table 36. Average rejection rates and lack of robustness of validity on Factors 
population and PC.  

Overall Average 
 Rate  Lack of Robustness of Validity 

 No PC PC  No PC PC 

African 

Uncorrelated SNPs (null I)  0.049 0.049  0.018 0.019 

Matching SNPs (null II)  0.125 0.064  0.069 0.027 

Disease SNPs (Power)  0.899 0.893    

Asian 

Uncorrelated SNPs (null I)  0.056 0.048  0.023 0.019 

Matching SNPs (null II)  0.027 0.027  0.004 0.004 

Disease SNPs (Power)  0.876 0.878    

European 

Uncorrelated SNPs (null I)  0.047 0.043  0.015 0.015 

Matching SNPs (null II)  0.110 0.076  0.063 0.038 

Disease SNPs (Power)  0.842 0.826    

 

 

I further report in Table 37 the average of type I error rate, power and lack of 

robustness of validity with or without PC by the three penetrance levels: low, high and 

complete. The reduced penetrance models (low and high) maintain a correct type I error 

rate with PC adjustment. With the complete penetrance model, the matching SNP 

rejection rate is above the nominal rate without PC adjustment. The complete and high 
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penetrance models have larger power than the low penetrance model. As before, the 

rejection rate for disease SNPs with PC adjustment is less than but roughly equal to the 

rate without adjustment.  

 

 

Table 37. Average rejection rates and lack of robustness of validity on Factors 
penetrance and PC.  

Overall Average 
 Rejection Rate  Lack of Robustness of Validity 

 No PC PC  No PC PC 

Low Penetrance 

Uncorrelated SNPs (null I)  0.052 0.048  0.001 0.000 

Matching SNPs (null II)  0.060 0.052  0.002 0.001 

Disease SNPs (Power)  0.638 0.621    

High Penetrance 

Uncorrelated SNPs (null I)  0.051 0.044  0.010 0.008 

Matching SNPs (null II)  0.088 0.058  0.030 0.014 

Disease SNPs (Power)  0.978 0.977    

Complete Penetrance 

Uncorrelated SNPs (null I)  0.049 0.047  0.046 0.044 

Matching SNPs (null II)  0.113 0.058  0.104 0.054 

Disease SNPs (Power)  1.000 1.000    

 

 

I report in Table 38 the average of type I error rate, power and lack of robustness of 

validity with or without PC by the six chromosomes: chromosome 3, 6, 11, 12, 17 and 19. 

The medium size chromosomes, chromosome 11 and 12, have type I error rate better 

controlled with the PC adjustment. The small size chromosomes, chromosome 17 and 19, 

have a larger power both with and without PC adjustment.  



 

107 
 

 

 
Table 38. Average rejection rates and lack of robustness of validity on factor 
chromosome.  

Overall Average 
 Rejection Rate  Lack of Robustness of Validity 

 No PC PC  No PC PC 

Chromosome 3 

Uncorrelated SNPs (null I)  0.056 0.044  0.024 0.015 

Matching SNPs (null II)  0.088 0.079  0.049 0.042 

Disease SNPs (Power)  0.874 0.862    

Chromosome 6 

Uncorrelated SNPs (null I)  0.043 0.041  0.015 0.016 

Matching SNPs (null II)  0.097 0.054  0.056 0.021 

Disease SNPs (Power)  0.865 0.862    

Chromosome 11 

Uncorrelated SNPs (null I)  0.044 0.043  0.012 0.015 

Matching SNPs (null II)  0.074 0.053  0.034 0.021 

Disease SNPs (Power)  0.861 0.859    

Chromosome 12 

Uncorrelated SNPs (null I)  0.034 0.031  0.007 0.006 

Matching SNPs (null II)  0.071 0.040  0.030 0.010 

Disease SNPs (Power)  0.835 0.828    

Chromosome 17 

Uncorrelated SNPs (null I)  0.069 0.070  0.030 0.034 

Matching SNPs (null II)  0.097 0.060  0.053 0.027 

Disease SNPs (Power)  0.895 0.887    

Chromosome 19 

Uncorrelated SNPs (null I)  0.057 0.050  0.024 0.019 

Matching SNPs (null II)  0.098 0.049  0.051 0.017 

Disease SNPs (Power)  0.902 0.896    
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3.2.2 Experiment V Results  

 

Table 39 shows the empirical type I error rate and 95% confidence interval of the 450 

uncorrelated SNPs (null I) for the 18 disease genes. Table 40 shows the empirical type I 

error rate and 95% confidence interval of the 450 matching SNPs (null II) for the 18 

disease genes. The results show that PC adjustment helps adjust for PS overall, but the 

null rates are higher than the nominal level. Table 41 shows the rejection rates for the 18 

disease SNPs. The rejection rate for disease SNPs with PC adjustment is equal to the rate 

without PC adjustment. They are all equal to 1.000 C0.000 at the nominal 0.05 level. 
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Table 39. Empirical rejection rates and 95% confidence interval of the multi-locus 
high prevalence complete penetrance models for the uncorrelated SNPs (null I) 
under experiment V at the nominal 0.05 level.  

# 
Disease  

Genes  
Chr  Pop 

Complete Penetrance 

High Prevalence (Eli-2traj) 

No PC PC 

1 rs3733124 3 As 0.000 C0.000 0.040 C0.012 

2 rs7355991 3 Af 0.120 C0.020 0.040 C0.012 

3 rs17195948 3 Eu 0.080 C0.017 0.040 C0.012 

4 rs1259069 6 Eu 0.000 C0.000 0.000 C0.000 

5 rs3761998 6 As 0.000 C0.000 0.000 C0.000 

6 rs9459886 6 Af 0.080 C0.017 0.000 C0.000 

7 rs12790383 11 Eu 0.120 C0.020 0.080 C0.017 

8 rs11217935 11 As 0.120 C0.020 0.040 C0.012 

9 rs11825331 11 Af 0.080 C0.017 0.000 C0.000 

10 rs17117910 12 As 0.000 C0.000 0.040 C0.012 

11 rs12822275 12 Eu 0.040 C0.012 0.040 C0.012 

12 rs1696449 12 Af 0.080 C0.017 0.040 C0.012 

13 rs2073868 17 As 0.040 C0.012 0.040 C0.012 

14 rs9899123 17 Af 0.120 C0.020 0.040 C0.012 

15 rs34742396 17 Eu 0.080 C0.017 0.040 C0.012 

16 rs3745465 19 As 0.120 C0.020 0.160 C0.023 

17 rs10411117 19 Af 0.080 C0.017 0.000 C0.000 

18 rs270771 19 Eu 0.080 C0.017 0.040 C0.012 

Note: The headings for each column are defined as follows: Chr = Chromosome on which SNP 

marker is located (see Methodology – Power Simulations). Pop = General populations, including 

African (Af), Asian (As) and European (Eu). For the complete penetrance low prevalence model, two 

trajectory groups instead of three are used (see Methodology – Genetic Models). For each setting 1000 

replicates are generated. Africans n = 466, Asians n = 359, Europeans n = 214. 
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Table 40. Empirical rejection rates and 95% confidence interval of the multi-locus 
gene models for the matching SNPs (null II).  

# Disease genes Chr Pop 

Complete Penetrance 

High Prevalence (Eli-2traj) 

No PC No PC 

1 rs3733124 3 As 0.000 C0.000 0.000 C0.000 

2 rs7355991 3 Af 0.120 C0.020 0.080 C0.017 

3 rs17195948 3 Eu 0.200 C0.025 0.160 C0.023 

4 rs1259069 6 Eu 0.080 C0.017 0.080 C0.017 

5 rs3761998 6 As 0.000 C0.000 0.080 C0.017 

6 rs9459886 6 Af 0.200 C0.025 0.040 C0.012 

7 rs12790383 11 Eu 0.200 C0.025 0.160 C0.023 

8 rs11217935 11 As 0.080 C0.017 0.000 C0.000 

9 rs11825331 11 Af 0.040 C0.012 0.080 C0.017 

10 rs17117910 12 As 0.360 C0.030 0.120 C0.020 

11 rs12822275 12 Eu 0.160 C0.023 0.080 C0.017 

12 rs1696449 12 Af 0.040 C0.012 0.040 C0.012 

13 rs2073868 17 As 0.120 C0.020 0.080 C0.017 

14 rs9899123 17 Af 0.080 C0.017 0.080 C0.017 

15 rs34742396 17 Eu 0.080 C0.017 0.080 C0.017 

16 rs3745465 19 As 0.160 C0.023 0.080 C0.017 

17 rs10411117 19 Af 0.200 C0.025 0.120 C0.020 

18 rs270771 19 Eu 0.160 C0.023 0.120 C0.020 

Note: The headings for each column are defined as follows: Chr = Chromosome on which SNP 

marker is located (see Methodology – Power Simulations). Pop = General populations, including 

African (Af), Asian (As) and European (Eu). For the complete penetrance low prevalence model, two 

trajectory groups instead of three are used (see Methodology – Genetic Models). For each setting 1000 

replicates are generated. Africans n = 466, Asians n = 359, Europeans n = 214. 
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Table 41. Empirical rejection rates and 95% confidence interval of the multi-locus 
high prevalence complete penetrance model under experiment V at the nominal 0.05 
level.  

# Disease genes  Chr  
 
Pop 

Complete Penetrance 

High Prevalence 

No PC PC 
1 rs3733124 3 As 1.000 C0.000 1.000 C0.000 

2 rs7355991 3 Af 1.000 C0.000 1.000 C0.000 

3 rs17195948 3 Eu 1.000 C0.000 1.000 C0.000 

4 rs1259069 6 Eu 1.000 C0.000 1.000 C0.000 

5 rs3761998 6 As 1.000 C0.000 1.000 C0.000 

6 rs9459886 6 Af 1.000 C0.000 1.000 C0.000 

7 rs12790383 11 Eu 1.000 C0.000 1.000 C0.000 

8 rs11217935 11 As 1.000 C0.000 1.000 C0.000 

9 rs11825331 11 Af 1.000 C0.000 1.000 C0.000 

10 rs17117910 12 As 1.000 C0.000 1.000 C0.000 

11 rs12822275 12 Eu 1.000 C0.000 1.000 C0.000 

12 rs1696449 12 Af 1.000 C0.000 1.000 C0.000 

13 rs2073868 17 As 1.000 C0.000 1.000 C0.000 

14 rs9899123 17 Af 1.000 C0.000 1.000 C0.000 

15 rs34742396 17 Eu 1.000 C0.000 1.000 C0.000 

16 rs3745465 19 As 1.000 C0.000 1.000 C0.000 

17 rs10411117 19 Af 1.000 C0.000 1.000 C0.000 

18 rs270771 19 Eu 1.000 C0.000 1.000 C0.000 

Note: The headings for each column are defined as follows: Chr = Chromosome on which SNP 

marker is located (see Methodology – Power Simulations). Pop = General populations, including 

African (Af), Asian (As) and European (Eu). For the complete penetrance low prevalence model, two 

trajectory groups instead of three are used (see Methodology – Genetic Models). For each setting 1000 

replicates are generated. Africans n = 466, Asians n = 359, Europeans n = 214. 
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3.2.2.1  Null Simulation Results Using Uncorrelated SNPs 

 

The ANOVA of the measure of lack of robustness of validity for the multi-locus model 

uncorrelated SNPs is shown in Table 42 below. The model has an R-square of 0.0350. 

The overall model is not statistically significant (� � 1.27, \ � �=��[ � 0.1725).  The 

results indicate that the statistic � � 4.34, \ � �=��[ � 0.0375  for factor PC is 

significant at the nominal level 0.05. That is, the PC adjustment method helps improve 

the robustness of validity in the complete penetrance high prevalence model for 

uncorrelated SNPs.  

 
  



 

113 
 

Table 42. The ANOVA table for the multi-locus model uncorrelated SNPs under 
experiment V at the nominal 0.05 level (dependent variable: lack of robustness of 
validity).   
 

The GLM Procedure 
Dependent Variable: lackrobust lackrobust 

Source DF  Sum of Squares  Mean Square  F Value Pr > F 

Model 25 1.287 0.051 1.27 0.1725 

Error 874 35.519 0.041   

Corrected Total  899 36.806    

 

R-Square  Coeff Var  Root MSE  lackrobust Mean  

0.035 399.196 0.202 0.051 

 
 

Source DF  Type III SS Mean Square  F Value Pr > F 

Chromosome  5 0.356 0.071 1.75 0.120 

Population 2 0.005 0.003 0.07 0.936 

PC 1 0.176 0.176 4.34 0.038 

chr*pop 10 0.481 0.048 1.18 0.299 

chr*pc 5 0.072 0.014 0.35 0.880 

pop*pc 2 0.196 0.098 2.41 0.090 
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3.2.2.2  Null Simulation Results for SNPs Having MAF Correlated with Disease SNP 

 

The ANOVA of the measure of lack of robustness of validity for the matching SNPs is 

shown in Table 43 below. The model has an R-square of 0.0453. These results indicate 

that the overall model is statistically significant (� � 1.66, \ � �=��[ � 0.0228) at the 

nominal 0.05 level. The value of the statistic � � 4.83 (\ � �=��[ � 0.0282) for the 

factor PC, and the value � � 2.52 (\ � �=��[ � 0.0054) for the interaction between 

PC and chromosome are both statistically significant. This analysis documents that the 

use of PC adjustment significantly improves robustness of validity.  
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Table 43. The ANOVA table for the multi-locus model matching SNPs under experiment V 

at the nominal 0.05 level (dependent variable: lack of robustness of validity). 
 

The GLM Procedure 
Dependent Variable: lackrobust lackrobust 

Source DF  Sum of Squares  Mean Square  F Value Pr > F 

Model 25 3.087 0.123 1.66 0.023 

Error 874 65.101 0.074   

Corrected Total  899 68.188    

 

R-Square  Coeff Var  Root MSE  lackrobust Mean  

0.045 282.820 0.273 0.097 

 
 

Source DF  Type III SS Mean Square  F Value Pr > F 

Chromosome  5 0.396 0.079 1.06 0.379 

Population 2 0.239 0.120 1.61 0.201 

PC 1 0.360 0.360 4.83 0.028 

chr*pop 10 1.877 0.188 2.52 0.005 

chr*pc 5 0.191 0.038 0.51 0.767 

pop*pc 2 0.023 0.012 0.16 0.855 
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3.2.2.3 Statistical Analysis on Experiment IV 

 

Table 44 reports the average of the rejection rate for the disease SNPs and lack of 

robustness of validity measure with or without PC adjustment. Each entry is the average 

over 18 settings (six chromosome settings times three population settings). The results 

indicate that the PC null rejection rates are closer to the nominal level than the rates 

without PC adjustment. For disease SNPs, the rejection rate with PC adjustment is only 

slightly less than the rejection rate without PC adjustment. 

 

Table 44. Average rejection rates and lack of robustness of validity on Factor PC.  

Overall Average 
 Rejection Rate  Lack of Robustness of Validity 

 No PC PC  No PC PC 

Uncorrelated SNPs (null I)  0.069 0.038  0.065 0.037 

Matching SNPs (null II)  0.127 0.082  0.116 0.077 

Disease SNPs (Power)  1.000 1.000    

 

I also calculate the average of type I error rate, power and lack of robustness of 

validity with or without PC by the three general populations: African, Asian and 

European. As before, the results indicate that global PC method adjusts the type I error 

rate well overall, especially for the African and Asian population, but less effectively for 

the European population. The rejection rates for the disease genes are roughly the same 

for each population. More importantly, the rejection rate with PC adjustment is roughly 

equal to the rate without adjustment. 
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Table 45. Average rejection rates and lack of robustness of validity on Factors 
population and PC.  

Overall Average 
 Rejection Rate  Lack of Robustness of Validity 

 No PC PC  No PC PC 

African 

Uncorrelated SNPs (null I)  0.093 0.020  0.086 0.020 

Matching SNPs (null II)  0.113 0.073  0.104 0.069 

Disease SNPs (Power)  1.000 1.000    

Asian 

Uncorrelated SNPs (null I)  0.047 0.053  0.044 0.051 

Matching SNPs (null II)  0.120 0.060  0.110 0.057 

Disease SNPs (Power)  1.000 1.000    

European 

Uncorrelated SNPs (null I)  0.067 0.040  0.063 0.039 

Matching SNPs (null II)  0.147 0.113  0.135 0.104 

Disease SNPs (Power)  1.000 1.000    

 

 

I calculate the average of type I error rate, power and lack of robustness of validity 

with or without PC by the six chromosomes: chromosome 3, 6, 11, 12, 17 and 19. The 

small chromosome, chromosome 19, needs PC adjustment more than other chromosomes. 

Overall, PC adjustment improves robustness of validity.  
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Table 46. Average rejection rates and lack of robustness of validity on factor 
chromosome.  

Overall Average 
 Rejection Rate  Lack of Robustness of Validity 

 No PC PC  No PC PC 

Chromosome 3 

Uncorrelated SNPs (null I)  0.067 0.040  0.062 0.038 

Matching SNPs (null II)  0.107 0.080  0.099 0.075 

Disease SNPs (Power)  1.000 1.000    

Chromosome 6 

Uncorrelated SNPs (null I)  0.027 0.000  0.026 0.003 

Matching SNPs (null II)  0.093 0.067  0.087 0.062 

Disease SNPs (Power)  1.000 1.000    

Chromosome 11 

Uncorrelated SNPs (null I)  0.107 0.040  0.099 0.038 

Matching SNPs (null II)  0.107 0.080  0.099 0.075 

Disease SNPs (Power)  1.000 1.000    

Chromosome 12 

Uncorrelated SNPs (null I)  0.040 0.040  0.038 0.038 

Matching SNPs (null II)  0.187 0.080  0.170 0.075 

Disease SNPs (Power)  1.000 1.000    

Chromosome 17 

Uncorrelated SNPs (null I)  0.080 0.040  0.075 0.038 

Matching SNPs (null II)  0.093 0.080  0.087 0.075 

Disease SNPs (Power)  1.000 1.000    

Chromosome 19 

Uncorrelated SNPs (null I)  0.093 0.067  0.087 0.063 

Matching SNPs (null II)  0.173 0.107  0.158 0.099 

Disease SNPs (Power)  1.000 1.000    
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Chapter 4  Discussion and 

Conclusion 

 

 

In this dissertation, I assessed whether PC adjustment was necessary in longitudinal 

data and whether PC adjustment reduced the inflation of the significance level resulting 

from PS. The BPP of participants of the clinically important group was used as the 

quantitative trait. I simulated two types of disease models, the single-locus disease model 

and the multi-locus disease model. In the single-locus disease model, I assumed that the 

disease was caused by a single gene, and I used six SNPs across three general populations 

(African, Asian and European) as disease SNPs: with three MAFs at 0.01, one MAF at 0.05, 

one at 0.15 and one at 0.30 respectively. In the multi-locus disease model, I assumed that 

the disease was caused by 18 SNPs, each with MAF smaller than 0.01. I conducted null 

simulations and power simulations. I considered data simulated under five experiments: 1. 

the single-locus complete penetrance high prevalence model experiment with disease 
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SNPs MAFs at 0.01; 2. the single-locus additive model experiment with disease SNPs 

MAFs at 0.05, 0.15 and 0.30; 3. the complete penetrance high prevalence model 

experiment with disease SNPs MAFs at 0.05, 0.15 and 0.30; 4. the multi-locus additive 

model experiment; 5. the multi-locus complete penetrance high prevalence model 

experiment. I reported the empirical type I error rates and powers to detect the disease 

SNPs using these genetic models.  

The null simulations suggested that the global PC adjustment method helped adjust for 

PS. The PC method significantly improved robustness of validity of this association 

procedure. The PC method maintained correct type I error rates with SNPs that have 

MAFs across population uncorrelated with the disease SNPs. However, the PC method 

may be problematic with the SNPs that have MAFs across populations that match the 

disease SNPs. The PC adjustment method had rejection rates above the nominal level for 

these correlated non-causal SNPs when the genetic association was strong.  

The power simulations in this work indicated that multi-locus models both with and 

without PC adjustment had high power to detect the disease SNPs (>86.6% for multi-locus 

model). For the single-locus models, the power to detect the disease SNPs increased as the 

MAF increased. For example, with MAFs 0.01, the power of both models was greater than 

56.4%, while with MAFs 0.05, 0.15 and 0.30, the powers were greater than 98.0%.  

 

The questions in my research were: 1. Is PS an issue in longitudinal studies? 2. Does 

PC correct it? My conclusions are: 1. Yes, PS was an issue in longitudinal studies. 2. Yes, 
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PC corrected PS quite substantially, but not completely. The PC adjustment method helps 

improve the robustness of validity in the uncorrelated null simulations. The use of PC 

adjustment significantly improves robustness of validity in a null simulation with SNPs 

that have MAF across population matching the disease SNPs. The use of PC adjustment 

and interactions involving PC adjustment in the power simulations are not significant. 

That is, the fitted rejection rate with PC adjustment is statistically equal to the fitted rate 

without PC adjustment in a power simulation.  

 

There are alternate rules for choosing the number of trajectory groups. For example, 

many researchers only consider models in which each trajectory group exceeds a 

threshold, often 10% of the sample. These rules were not used here. 

 

In future work, there are multiple issues that I plan to explore. Specifically, is the 

inflation of rejection rate for matching SNPs a practical problem? Many correlated SNPs 

may appear marginally significant. But will there be a uniquely strong association that 

obscures the true association? Secondly, I will consider the use of genomic control or 

other methods of adjustment for further study. For example, admixture methods, 

propensity scores and the local PC adjustment method could also be used. Further study 

may also observe the effect of gene-environment interactions through the use of 

environmental covariates.  

 



 

122 
 

References 

 

Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in 

unrelated individuals. Genome Research 19(9):1655-1664. 

Bouaziz M, Ambroise C, Guedj M. 2011a. Accounting for population stratification in 

practice: a comparison of the main strategies dedicated to genome-wide 

association studies. PLOS ONE 6. 

Bouaziz M, Ambroise C, Guedj M. 2011b. Accounting for Population Stratification in 

Practice: A Comparison of the Main Strategies Dedicated to Genome-Wide 

Association Studies. Plos One 6(12). 

Campbell CD, Ogburn EL, Lunetta KL, Lyon HN, Freedman ML, Groop LC, Altshuler D, 

Ardlie KG, Hirschhorn JN. 2005. Demonstrating stratification in a European 

American population. Nature Genetics 37(8):868-872. 

Cardon LR, Palmer LJ. 2003. Population stratification and spurious allelic association. 

Lancet 361(9357):598-604. 

Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, 

Martin J, Braithwaite A and others. 2003. Influence of life stress on depression: 

Moderation by a polymorphism in the 5-HTT gene. Science 301(5631):386-389. 

Chen HS, Zhu X, Zhao H, Zhang S. 2003. Qualitative semi-parametric test for genetic 

associations in case-control designs under structured populations. Annals of 

Human Genetics 67:250-264. 

Cheng KF, Lin WJ. 2007. Simultaneously correcting for population stratification and for 

genotyping error in case-control association studies. American Journal of Human 

Genetics 81(4):726-743. 

Deng H. 2001. Population admixture may appear to mask, change or reverse genetic 

effects of genes underlying complex traits. Genetics 159:1319-1323. 

Devlin B, Roeder K. 1999. Genomic control for association studies. Biometrics 



 

123 
 

55(4):997-1004. 

Divers J, Vaughan LK, Padilla MA, Fernandez JR, Allison DB, Redden DT. 2007. 

Correcting for measurement error in individual ancestry estimates in structured 

association tests. Genetics 176(3):1823-1833. 

Epstein MP, Allen AS, Satten GA. 2007. A simple and improved correction for population 

stratification in case-control studies. American Journal of Human Genetics 

80(5):921-930. 

Ewens WJ, Spielman RS. 1995. THE TRANSMISSION DISEQUILIBRIUM TEST - 

HISTORY, SUBDIVISION AND ADMIXTURE. American Journal of Human 

Genetics 57(2):455-464. 

Guan WH, Liang LM, Boehnke M, Abecasis GR. 2009. Genotype-Based Matching to 

Correct for Population Stratification in Large-Scale Case-Control Genetic 

Association Studies. Genetic Epidemiology 33(6):508-517. 

Hao K, Li C, Rosenow C, Wong WH. 2004. Detect and adjust for population 

stratification in population-based association study using genomic control markers: 

an application of Affymetrix Genechip (R) Human Mapping 10K array. European 

Journal of Human Genetics 12(12):1001-1006. 

Heiman GA, Hodge SE, Gorroochurn P, Zhang J, Greenberg DA. 2004a. Effects of 

population stratification on false positive rates in association analysis: A 

simulation study. American Journal of Epidemiology 159(11):S25-S25. 

Heiman GA, Hodge SE, Gorroochurn P, Zhang JY, Greenberg DA. 2004b. Effect of 

population stratification on case-control association studies - I. Elevation in false 

positive rates and comparison to confounding risk ratios (a simulation study). 

Human Heredity 58(1):30-39. 

Hinds DA, Stokowski RP, Patil N, Konvicka K, Kershenobich D, Cox DR, Ballinger DG. 

2004. Matching strategies for genetic association studies in structured populations. 

American Journal of Human Genetics 74(2):317-325. 



 

124 
 

Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E. 

2010. Variance component model to account for sample structure in genome-wide 

association studies. Nature Genetics 42(4):348-U110. 

Kimmel G, Jordan MI, Halperin E, Shamir R, Karp RM. 2007. A Randomization test for 

controlling population stratification in whole-genome association studies. 

American Journal of Human Genetics 81(5):895-905. 

Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, 

Ramos EM, Cardon LR, Chakravarti A and others. 2009. Finding the missing 

heritability of complex diseases. Nature 461(7265):747-753. 

Marchini J, Cardon MS, Phillips P, Donnelly P. 2004. The effects of human population 

structure on large genetic asociation studies. Nat Genet 36:512-517. 

Menozzi P, Piazza A, Cavallisforza L. 1978. SYNTHETIC MAPS OF HUMAN 

GENE-FREQUENCIES IN EUROPEANS. Science 201(4358):786-792. 

Novembre J, Stephens M. 2008. Interpreting principal component analyses of spatial 

population genetic variation. Nature Genetics 40(5):646-649. 

Patterson N, Price AL, Reich D. 2006. Population structure and eigenanalysis. Plos 

Genetics 2(12):2074-2093. 

Price A. Eigensoft software. 

Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. 2006. 

Principal components analysis corrects for stratification in genome-wide 

association studies. Nat Genet 38(8):904-909. 

Price AL, Zaitlen NA, Reich D, Patterson N. 2010. New approaches to population 

stratification in genome-wide association studies. Nature Reviews Genetics 

11:459-463. 

Pritchard JK, Rosenberg NA. 1999. Use of unlinked genetic markers to detect population 

stratification in association studies. American Journal of Human Genetics 

65(1):220-228. 



 

125 
 

Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using 

multilocus genotype data. Genetics 155(2):945-959. 

Reich DE, Goldstein DB. 2001. Detecting association in a case-control study while 

correcting for population stratification. Genetic Epidemiology 20(1):4-16. 

Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman 

MW. 2002. Genetic structure of human populations. Science 

298(5602):2381-2385. 

Seldin MF, Price AL. 2008. Application of ancestry informative markers to association 

studies in European Americans. Plos Genetics 4(1). 

Tian C, Gregersen PK, Seldin MF. 2008a. Accounting for ancestry: population 

substructure and genome-wide association studies. Human Molecular Genetics 

17:R143-R150. 

Tian C, Kosoy R, Lee A, Ransom M, Belmont JW, Gregersen PK, Seldin MF. 2008b. 

Analysis of East Asia Genetic Substructure Using Genome-Wide SNP Arrays. 

Plos One 3(12). 

Tian C, Plenge RM, Ransom M, Lee A, Villoslada P, Selmi C, Klareskog L, Pulver AE, 

Qi LH, Gregersen PK and others. 2008c. Analysis and application of European 

genetic substructure using 300 KSNP information. Plos Genetics 4(1). 

Tiwari HK, Barnholtz-Sloan J, Wineinger N, Padilla MA, Vaughan LK, Allison DB. 2008. 

Review and evaluation of methods correcting for population stratification with a 

focus on underlying statistical principles. Human Heredity 66(2):67-86. 

Tsai HJ, Choudhry S, Naqvi M, Rodriguez-Cintron W, Burchard EG, Ziv E. 2005. 

Comparison of three methods to estimate genetic ancestry and control for 

stratification in genetic association studies among admixed populations. Human 

Genetics 118(3-4):424-433. 

Wacholder S, Rothman N, Caporaso N. 2000. Population stratification in epidemiologic 

studies of common genetic variants and cancer: Quantification of bias. J Natl 



 

126 
 

Cancer Inst 92(14):1151-1158. 

Wang LY, Lee WC. 2008. Population stratification bias in the case-only study for 

gene-environment interactions. American Journal of Epidemiology 

168(2):197-201. 

Wang YT, Localio R, Rebbeck TR. 2006. Evaluating bias due to population stratification 

in epidemiologic studies of gene-gene or gene-environment interactions. Cancer 

Epidemiology Biomarkers & Prevention 15(1):124-132. 

Wise CA, Gao X, Shoemaker S, Gordon D, Herring JA. 2008. Understanding genetic 

factors in idiopathic scoliosis, a complex disease of childhod. Curr Genom, 

9:51-59. 

Zhao HQ, Rebbeck TR, Mitra N. 2009. A Propensity Score Approach to Correction for 

Bias due to Population Stratification Using Genetic and Non-Genetic Factors. 

Genetic Epidemiology 33(8):679-690. 

Zhu XF, Zhang SL, Zhao HY, Cooper RS. 2002. Association mapping, using a mixture 

model for complex traits. Genetic Epidemiology 23(2):181-196. 

Zieve D. 2011. Signs of scoliosis. ADAM. 

Ziv E, Burchard EG. 2003. Human population structure and genetic association studies. 

Pharmacogenomics 4(4):431-441. 

 

 

  



 

127 
 

 

 

Appendix A 
 

1. Table 1. Number of rare variants by chromosome in GAW 17 database. 

 

Chromosome 

Number of markers 

with MAF<0.01 

Total number 

of markers 

Percentage of markers 

with MAF<0.01 

1 1713 2237 76.6% 

2 1225 1599 76.6% 

3 970 1211 80.1% 

4 745 944 78.9% 

5 814 1074 75.8% 

6 1059 1425 74.3% 

7 794 1063 74.7% 

8 705 982 71.8% 

9 794 1166 68.1% 

10 1003 1396 71.8% 

11 1408 2102 67.0% 

12 1022 1435 71.2% 

13 330 425 77.6% 

14 638 795 80.3% 

15 738 933 79.1% 

16 641 844 75.9% 

17 924 1223 75.6% 

18 496 634 78.2% 

19 1092 1649 66.2% 

20 431 591 72.9% 

21 195 251 77.7% 

22 394 508 77.6% 

Total 18131 24487 ---- 
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2. Table 2. Missing data information for the Hapmap 3 database.  

Chromosome Total number of Markers 

Average Genotyping rate 

in remain individuals 

1 119487 0.997255 

2 119502 0.997144 

3 98971 0.997186 

4 88135 0.997014 

5 90368 0.997191 

6 93671 0.997199 

7 77377 0.997078 

8 77111 0.99704 

9 65251 0.997159 

10 75616 0.997296 

11 72993 0.997152 

12 70482 0.997273 

13 53293 0.997071 

14 46655 0.996875 

15 43309 0.997363 

16 45778 0.997478 

17 39329 0.997446 

18 41942 0.997068 

19 26953 0.997271 

20 37159 0.997184 

21 19802 0.997007 

22 20649 0.997386 

Overall 1423833 0.997188 
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Appendix B 
 

PLINK Codes 

1. Basic Information 

PLINK is a C/C++ command line program. At the command prompt, one should type in 

"plink" followed by “--options” to specify the data inputs or analysis to be used. The 

references for all options in PLINK is given in the link below: 

http://pngu.mgh.harvard.edu/~purcell/plink/reference.shtml  

To read in data files, the command is "plink --file mydata”. The data files are in two 

formats: the ped file and the map file. i.e., mydata.ped and mydata.map. If the PED and 

MAP file names are different, one should specify them separately using the command: 

"plink --ped mydata1.ped --map mydata2.map". 

The PED file contains the pedigree and gene information for each individual in a 

sample. It is a space/tab delimited file including the following columns: family ID, 

individual ID, paternal ID, maternal ID, sex (1=male; 2=female; other=unknown), 

phenotype (0=missing; 1=unaffected; 2=affected). The phenotype could be quantitative 

traits (QT) instead of case-controls. Researchers could specify QTs with certain options 

in PLINK if the phenotypes are not case-controls. The first six columns are fixed and 

required in PLINK. But one can use commands to indicate certain missing fields. i.e., 

"--no-fid" indicates there is no Family ID column; "--no-parents" indicates there are no 
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paternal and maternal ID columns; "--no-sex"indicates there is no sex field; "--no-pheno" 

indicates there is no phenotype column. 

The MAP file contains the genotype location information. Each line of the MAP file 

describes a single marker and must contain exactly 4 columns: chromosome (1-22, X, Y 

or 0 if unplaced), marker name, genetic distance (in morgan), base-pair position. If the 

genetic distance is missing, a flag of "--map3" can be added.  

 

2. Summary Statistics 

(1) Hardy-Weinberg Equilibrium 

The command of testing HWE is "plink --file data --hardy". An output file of plink.hwe 

will be created. It has the following columns:  

SNP: SNP identifier; TEST: code indicating sample; A1: minor allele code; A2: major 

allele code; GENO: genotype counts: A1A1/A1A2/A2A2; O(HET): observed 

heterozygosity; E(HET): expected heterozygosity; P: HW p-value.  

If the p-value of HWE test is significant, the SNP considered is not in HWE.  

 

(2) Minor Allele Frequency (MAF) 

PLINK could generate the MAF for each SNP under study using the commands "plink 

--file data --freq". An output file of plink.frq will be created with five columns:  
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CHR: chromosome; SNP: SNP identifier; A1: allele 1 code (minor allele); A2: allele 2 

code (major allele); MAF: minor allele frequency; NCHROBS: non-missing allele count. 

 

3. Association Analysis 

(1) Case-control Association Test 

The case-control association test could be performed using commands "plink --file 

mydata --assoc". An output file of plink.assoc will be created with columns:  

CHR: chromosome; SNP: SNP ID; BP: base-pair; A1: minor allele name; F_A: frequency 

of this allele in cases; F_U: frequency of this allele in controls; A2: major allele name; 

CHISQ: basic allelic test chi-square (1df); P: asymptotic p-value for this test; OR: 

estimated odds ratio. 

A SNP with significant p-value is considered to be associated with the disease. In 

addition, when the option "--ci 0.95" is added, the columns "L95: lower bound of 95% CI 

for odds ratio" and "U95: upper bound of 95% CI for odds ratio" will be included in the 

output.  

 

(2) Quantitative Trait Association 

If the phenotype in the 6th column of the PED file is quantitative, with the same 

commands given in a case-control association study, a quantitative trait analysis will be 
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automatically performed in PLINK. An output file of plink.assoc will include the 

following columns: 

CHR: chromosome; SNP: SNP ID; BP: base-pair; NMISS: # of non-missing genotypes; 

BETA: regression coefficient; SE: standard error; R2: regression r-squared; T: Wald test 

t-statistic; P: Wald test asymptotic p-value.  

In my study, I used BPPs of the clinically important group as the quantitative traits.  
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Appendix C 
 

SAS Codes 

 

/* MULTI LOCI PARTIAL PENETRANCE MODEL WITH 2 TRAJ GROUPS: C(50%), F(50%) */ 

 

LIBNAME TRAJ "C:\hapmap\yifan"; 

 

/* READ IN 'COUNTALLIID' WITH JUST IID AND SUMCT VARIABLES */ 

 

DATA CURVE; 

 SET TRAJ.COUNTALLIID; 

 U=UNIFORM(0); 

 IF SUMCT=. THEN DELETE;          

 ELSE IF SUMCT=0 OR SUMCT=1 AND U<=0.9 THEN GRP='C'; 

 ELSE IF SUMCT=0 OR SUMCT=1 AND 0.9<U=<1 THEN GRP='F'; 

 ELSE IF SUMCT>1 AND U<=0.1 THEN GRP='C'; 

 ELSE IF SUMCT>1 AND 0.1<U<=1 THEN GRP='F'; 

 T1=0.25; 

 T2=0.4; 

 T3=0.55; 

 T4=0.7; 

 T5=0.85; 

 T6=1; 

 IF GRP='C' THEN DO; 

  CURVE1=15+4*RANNOR(0); 

  CURVE2=15+4*RANNOR(0); 

  CURVE3=15+4*RANNOR(0); 

  CURVE4=15+4*RANNOR(0); 

  CURVE5=15+4*RANNOR(0); 

  CURVE6=15+4*RANNOR(0); 

  END; 

 ELSE IF GRP='F' THEN DO; 

  CURVE1=15+56*(T1-0.25)+4*RANNOR(0); 

  CURVE2=15+56*(T2-0.25)+4*RANNOR(0); 

  CURVE3=15+56*(T3-0.25)+4*RANNOR(0); 

  CURVE4=15+56*(T4-0.25)+4*RANNOR(0); 

  CURVE5=15+56*(T5-0.25)+4*RANNOR(0); 
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  CURVE6=15+56*(T6-0.25)+4*RANNOR(0); 

  END; 

RUN; 

 

 

/* PROC TRAJ FOR 2 CLASSES */ 

PROC TRAJ DATA=CURVE OUTPLOT=OP OUTSTAT=OS OUT=OF2 OUTEST=OE2 ITDETAIL; 

   ID IID; VAR CURVE1-CURVE6; INDEP T1-T6;  

   MODEL CNORM; MAX 1000; MIN -1000; NGROUPS 2; ORDER 2 2;  

RUN;   

/*%TRAJPLOT(OP,OS,'MULTI CMPLT PENETRANCE MODEL II-1 2Q CLASSES','Cnorm 

Model','Dependent Variable','Scaled time') 

 

/* PROC TRAJ FOR 3 CLASSES */ 

PROC TRAJ DATA=CURVE OUTPLOT=OP OUTSTAT=OS OUT=OF3 OUTEST=OE3 ITDETAIL; 

   ID IID; VAR CURVE1-CURVE6; INDEP T1-T6;  

   MODEL CNORM; MAX 1000; MIN -1000; NGROUPS 3; ORDER 2 2 2;  

RUN;   

/*%TRAJPLOT(OP,OS,'MULTI CMPLT PENETRANCE MODEL II-1 3Q CLASSES','Cnorm 

Model','Dependent Variable','Scaled time') 

 

/* PROC TRAJ FOR 4 CLASSES */ 

PROC TRAJ DATA=CURVE OUTPLOT=OP OUTSTAT=OS OUT=OF4 OUTEST=OE4 ITDETAIL; 

   ID IID; VAR CURVE1-CURVE6; INDEP T1-T6;  

   MODEL CNORM; MAX 1000; MIN -1000; NGROUPS 4; ORDER 2 2 2 2;  

RUN;   

/*%TRAJPLOT(OP,OS,'MULTI CMPLT PENETRANCE MODEL II-1 4Q CLASSES','Cnorm 

Model','Dependent Variable','Scaled time') 

 

/* PROC TRAJ FOR 5 CLASSES */ 

PROC TRAJ DATA=CURVE OUTPLOT=OP OUTSTAT=OS OUT=OF5 OUTEST=OE5 ITDETAIL; 

   ID IID; VAR CURVE1-CURVE6; INDEP T1-T6;  

   MODEL CNORM; MAX 1000; MIN -1000; NGROUPS 5; ORDER 2 2 2 2 2;  

RUN;   

/*%TRAJPLOT(OP,OS,'MULTI CMPLT PENETRANCE MODEL II-1 5Q CLASSES','Cnorm 

Model','Dependent Variable','Scaled time') 

 

/* PROC TRAJ FOR 6 CLASSES */ 

PROC TRAJ DATA=CURVE OUTPLOT=OP OUTSTAT=OS OUT=OF6 OUTEST=OE6 ITDETAIL; 

   ID IID; VAR CURVE1-CURVE6; INDEP T1-T6;  

   MODEL CNORM; MAX 1000; MIN -1000; NGROUPS 6; ORDER 2 2 2 2 2 2;  
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RUN;   

/*%TRAJPLOT(OP,OS,'MULTI CMPLT PENETRANCE MODEL II-1 6Q CLASSES','Cnorm 

Model','Dependent Variable','Scaled time') 

 

 

/* MAKE PHENOTYPE FILE TO INPUT TO PLINK */ 

DATA FIDIID; 

 SET TRAJ.FIDIID; 

    KEEP FID IID; 

RUN; 

 

/* READ IN ALL 'OF' DATA, KEEP BPP COLUMN---GRPPROB. ADD 'GRP' COLUMN TO KEEP 

A COLUMN POSITION BEFORE MERGE */ 

DATA PHENO; 

 MERGE FIDIID OF2 (KEEP = IID GRP2PRB) OF3 (KEEP = IID GRP3PRB) 

                     OF4 (KEEP = IID GRP4PRB) OF5 (KEEP = IID GRP5PRB) OF6 (KEEP = 

IID GRP6PRB); 

 BY IID; 

 GRP=0; 

RUN; 

 

/* TAKE THE FIRST ROW, PARMS, OF THE _TYPE_ COLUMN, DATASET OEE ONLY HAS 

ONE ROW */ 

/* SAS CAN'T RECOGNIZE _TYPE_ IN 'OE', SO I USED 'OBS=1' TO READ ONLY THE VERY 

FIRST ROW */ 

DATA OEE; 

    MERGE OE2 (KEEP=_BIC1_ RENAME=(_BIC1_=BIC2) OBS=1)  

          OE3 (KEEP=_BIC1_ RENAME=(_BIC1_=BIC3) OBS=1) OE4 (KEEP=_BIC1_ 

RENAME=(_BIC1_=BIC4) OBS=1)  

          OE5 (KEEP=_BIC1_ RENAME=(_BIC1_=BIC5) OBS=1) OE6 (KEEP=_BIC1_ 

RENAME=(_BIC1_=BIC6) OBS=1); 

RUN; 

 

/* FIND THE LARGEST BIC FROM 1 TO 6 CLASSES. THERE IS ONLY ONE VALUE IN 

VARIABLE 'BIG' */ 

DATA BIG; 

    SET OEE; 

                        BIG=BIC1; N=1; 

 IF BIC2>BIG THEN DO BIG=BIC2; N=2; END; 

 IF BIC3>BIG THEN DO BIG=BIC3; N=3; END; 

        IF BIC4>BIG THEN DO BIG=BIC4; N=4; END; 
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 IF BIC5>BIG THEN DO BIG=BIC5; N=5; END; 

 IF BIC6>BIG THEN DO BIG=BIC6; N=6; END; 

 KEEP N; 

RUN; 

 

/* MAKE A 613 ROWS MATRIX, WITH ID AND N VALUES */ 

DATA BIG613; 

    SET BIG; 

    DO ID=1 TO 613; 

    OUTPUT; 

    END; 

RUN; 

 

/* MAKE A QT TABLE, PUT THE BPP--GRPPRB DATA INTO 'GRP', KEEP THE 'N' COLUMN 

FOR REFERENCE */ 

DATA QT; 

    MERGE PHENO BIG613; 

                 GRP= GRP1PRB; 

    IF N=2 THEN  GRP= GRP2PRB; 

    IF N=3 THEN  GRP= GRP3PRB; 

    IF N=4 THEN  GRP= GRP4PRB; 

    IF N=5 THEN  GRP= GRP5PRB; 

    IF N=6 THEN  GRP= GRP6PRB;  

    IF GRP = . THEN GRP = -9;  

    KEEP FID IID GRP N; 

RUN;  

 

PROC EXPORT DATA= WORK.QT  

            OUTFILE= "C:\hapmap\yifan\QT.txt"  

            DBMS=TAB REPLACE; 

RUN; 
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Appendix D 
 

List of Uncorrelated and Matching SNPs for Multi-locus Model 

num group 
uncorrelated 

SNPs 

matching 

SNPs 

1 snp01-01 rs9384246 rs16887596 

2 snp01-02 rs9496769 rs766797 

3 snp01-03 rs8182554 rs16889893 

4 snp01-04 rs483574 rs9353978 

5 snp01-05 rs2397132 rs9342347 

6 snp01-06 rs956952 rs16870107 

7 snp01-07 rs9834682 rs2034153 

8 snp01-08 rs16884048 rs17062802 

9 snp01-09 rs1551524 rs16963260 

10 snp01-10 rs6798416 rs16964551 

11 snp01-11 rs3772547 rs4955653 

12 snp01-12 rs750438 rs17071850 

13 snp01-13 rs9365263 rs12490747 

14 snp01-14 rs1603537 rs1362525 

15 snp01-15 rs12226382 rs3018622 

16 snp01-16 rs11032481 rs3960851 

17 snp01-17 rs4932691 rs2362191 

18 snp01-18 rs4431401 rs4363010 

19 snp01-19 rs4858960 rs12488302 

20 snp01-20 rs11129414 rs17148932 

21 snp01-21 rs10877383 rs12485909 

22 snp01-22 rs7966445 rs16935493 

23 snp01-23 rs9397313 rs3794077 

24 snp01-24 rs11025588 rs4688741 

25 snp01-25 rs562516 rs4688682 

26 snp02-01 rs9404115 rs6445618 

27 snp02-02 rs4387423 rs16860782 

28 snp02-03 rs202069 rs11833193 

29 snp02-04 rs937761 rs6926129 

30 snp02-05 rs4801702 rs699637 

31 snp02-06 rs4959793 rs6791183 

32 snp02-07 rs6939425 rs12311968 



 

138 
 

33 snp02-08 rs687660 rs16829583 

34 snp02-09 rs11918801 rs1366244 

35 snp02-10 rs11867497 rs9447191 

36 snp02-11 rs9813221 rs9877433 

37 snp02-12 rs2356046 rs4992086 

38 snp02-13 rs379977 rs7258703 

39 snp02-14 rs6937313 rs12293932 

40 snp02-15 rs523179 rs1776450 

41 snp02-16 rs807858 rs9848710 

42 snp02-17 rs4470547 rs13434278 

43 snp02-18 rs13091924 rs2700221 

44 snp02-19 rs12451743 rs7111830 

45 snp02-20 rs4796835 rs12284508 

46 snp02-21 rs9472686 rs17035243 

47 snp02-22 rs2876586 rs1349434 

48 snp02-23 rs814022 rs17079769 

49 snp02-24 rs515246 rs6505497 

50 snp02-25 rs726610 rs17026647 

51 snp03-01 rs16933427 rs12201208 

52 snp03-02 rs3884325 rs12201692 

53 snp03-03 rs1596071 rs17660589 

54 snp03-04 rs4767174 rs11130981 

55 snp03-05 rs7954843 rs12208647 

56 snp03-06 rs9284357 rs6937229 

57 snp03-07 rs11104708 rs11922676 

58 snp03-08 rs9873052 rs4686787 

59 snp03-09 rs9273012 rs497704 

60 snp03-10 rs7138898 rs1146240 

61 snp03-11 rs17068440 rs11023888 

62 snp03-12 rs2143071 rs17365525 

63 snp03-13 rs3138289 rs12977468 

64 snp03-14 rs11552205 rs1542123 

65 snp03-15 rs7610823 rs2327748 

66 snp03-16 rs9504044 rs2044124 

67 snp03-17 rs2495964 rs17526236 

68 snp03-18 rs4789846 rs17606030 

69 snp03-19 rs2303146 rs17280334 

70 snp03-20 rs6807356 rs1013426 

71 snp03-21 rs1687310 rs11669191 

72 snp03-22 rs1502380 rs35765580 

73 snp03-23 rs2201438 rs12806315 
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74 snp03-24 rs885398 rs17443031 

75 snp03-25 rs2236543 rs17421687 

76 snp04-01 rs307223 rs17517058 

77 snp04-02 rs4889835 rs17260403 

78 snp04-03 rs16937972 rs33988791 

79 snp04-04 rs2061185 rs1047841 

80 snp04-05 rs9484448 rs2184925 

81 snp04-06 rs12575969 rs17730847 

82 snp04-07 rs12790182 rs41457949 

83 snp04-08 rs12227286 rs11042572 

84 snp04-09 rs13059911 rs11222105 

85 snp04-10 rs1841704 rs9268219 

86 snp04-11 rs7639226 rs17377726 

87 snp04-12 rs6502546 rs13212023 

88 snp04-13 rs10936033 rs1934793 

89 snp04-14 rs7213831 rs12948969 

90 snp04-15 rs4688381 rs4122113 

91 snp04-16 rs789224 rs11047534 

92 snp04-17 rs563385 rs17194345 

93 snp04-18 rs3826301 rs12950551 

94 snp04-19 rs9311833 rs11651302 

95 snp04-20 rs12577984 rs7252322 

96 snp04-21 rs33936986 rs1788279 

97 snp04-22 rs1535708 rs568131 

98 snp04-23 rs332496 rs3132453 

99 snp04-24 rs9736016 rs8100439 

100 snp04-25 rs2061907 rs17303478 

101 snp05-01 rs1101834 rs4685047 

102 snp05-02 rs719365 rs17144371 

103 snp05-03 rs1945318 rs6266 

104 snp05-04 rs16881458 rs12580498 

105 snp05-05 rs870601 rs2306882 

106 snp05-06 rs10501851 rs3744234 

107 snp05-07 rs11033093 rs2234376 

108 snp05-08 rs1547589 rs2280523 

109 snp05-09 rs9364689 rs310467 

110 snp05-10 rs11229425 rs2302644 

111 snp05-11 rs28360477 rs11871642 

112 snp05-12 rs12190869 rs2286406 

113 snp05-13 rs2099015 rs3800370 

114 snp05-14 rs11819769 rs2306260 
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115 snp05-15 rs11236449 rs11025368 

116 snp05-16 rs13061863 rs12631683 

117 snp05-17 rs2144425 rs17831672 

118 snp05-18 rs2116984 rs11068493 

119 snp05-19 rs4235835 rs12582287 

120 snp05-20 rs12709501 rs12665305 

121 snp05-21 rs9366653 rs13306166 

122 snp05-22 rs10505891 rs16928868 

123 snp05-23 rs2971566 rs2293433 

124 snp05-24 rs35684970 rs588048 

125 snp05-25 rs8178408 rs3799931 

126 snp06-01 rs12216227 rs4389808 

127 snp06-02 rs9481950 rs6915517 

128 snp06-03 rs9841691 rs470414 

129 snp06-04 rs9828938 rs7633529 

130 snp06-05 rs4513814 rs7207508 

131 snp06-06 rs11079280 rs7507584 

132 snp06-07 rs2685054 rs11030936 

133 snp06-08 rs2633703 rs1280826 

134 snp06-09 rs2878960 rs16923710 

135 snp06-10 rs577298 rs9503462 

136 snp06-11 rs986819 rs10423596 

137 snp06-12 rs673547 rs10426529 

138 snp06-13 rs2071468 rs584884 

139 snp06-14 rs11659000 rs4447137 

140 snp06-15 rs11048450 rs12306371 

141 snp06-16 rs1569355 rs1400965 

142 snp06-17 rs4923544 rs9911743 

143 snp06-18 rs3861401 rs7120161 

144 snp06-19 rs7950646 rs12321864 

145 snp06-20 rs7101994 rs7248452 

146 snp06-21 rs11177946 rs11212915 

147 snp06-22 rs12205626 rs9466392 

148 snp06-23 rs10861761 rs9917063 

149 snp06-24 rs1045764 rs8189127 

150 snp06-25 rs12611099 rs7218045 

151 snp07-01 rs6511401 rs11023498 

152 snp07-02 rs8065026 rs17823624 

153 snp07-03 rs1413524 rs12812119 

154 snp07-04 rs2238099 rs11068315 

155 snp07-05 rs6809063 rs35679149 
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156 snp07-06 rs3851994 rs12193743 

157 snp07-07 rs11706015 rs2012061 

158 snp07-08 rs6918702 rs11057392 

159 snp07-09 rs1237027 rs4151031 

160 snp07-10 rs12427294 rs4135255 

161 snp07-11 rs4234594 rs3101943 

162 snp07-12 rs1433127 rs9658069 

163 snp07-13 rs3730363 rs17301388 

164 snp07-14 rs17009261 rs16940655 

165 snp07-15 rs12495014 rs742310 

166 snp07-16 rs11219534 rs17216646 

167 snp07-17 rs4294874 rs10832384 

168 snp07-18 rs1317850 rs7301331 

169 snp07-19 rs9845429 rs1805753 

170 snp07-20 rs6444386 rs11023253 

171 snp07-21 rs9914748 rs11235726 

172 snp07-22 rs1491631 rs1148551 

173 snp07-23 rs12207182 rs12205241 

174 snp07-24 rs2053623 rs34166957 

175 snp07-25 rs7932866 rs3134712 

176 snp08-01 rs2102928 rs11220691 

177 snp08-02 rs9472773 rs242560 

178 snp08-03 rs10412222 rs11218980 

179 snp08-04 rs2508822 rs12574726 

180 snp08-05 rs4458393 rs3762701 

181 snp08-06 rs13192116 rs3823112 

182 snp08-07 rs6941603 rs3759383 

183 snp08-08 rs1516715 rs16868725 

184 snp08-09 rs7356965 rs11042961 

185 snp08-10 rs324555 rs11039260 

186 snp08-11 rs6919521 rs3778487 

187 snp08-12 rs11654323 rs12574939 

188 snp08-13 rs1866822 rs12573925 

189 snp08-14 rs6922753 rs12661985 

190 snp08-15 rs3815612 rs2276347 

191 snp08-16 rs10773486 rs12578246 

192 snp08-17 rs2214449 rs3826972 

193 snp08-18 rs17709409 rs11023825 

194 snp08-19 rs12812640 rs17179770 

195 snp08-20 rs11609192 rs17164598 

196 snp08-21 rs1063155 rs17147781 
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197 snp08-22 rs28897680 rs17087009 

198 snp08-23 rs2879889 rs9388409 

199 snp08-24 rs7939071 rs9395524 

200 snp08-25 rs2068192 rs17073524 

201 snp09-01 rs9381118 rs13320561 

202 snp09-02 rs6900447 rs11057084 

203 snp09-03 rs3781998 rs17069461 

204 snp09-04 rs10834358 rs12313698 

205 snp09-05 rs2510757 rs11835574 

206 snp09-06 rs534858 rs9891296 

207 snp09-07 rs385203 rs1274494 

208 snp09-08 rs12216323 rs237967 

209 snp09-09 rs13064262 rs6503958 

210 snp09-10 rs6903998 rs4490677 

211 snp09-11 rs267482 rs16924252 

212 snp09-12 rs2511509 rs1883734 

213 snp09-13 rs9459954 rs2872833 

214 snp09-14 rs13064823 rs4623860 

215 snp09-15 rs7128974 rs7926603 

216 snp09-16 rs7610345 rs16922432 

217 snp09-17 rs1453584 rs7962923 

218 snp09-18 rs11226057 rs7406278 

219 snp09-19 rs10501367 rs9870541 

220 snp09-20 rs16929851 rs2041458 

221 snp09-21 rs2069214 rs1869548 

222 snp09-22 rs11214769 rs11836913 

223 snp09-23 rs4386846 rs12305245 

224 snp09-24 rs11652704 rs11112801 

225 snp09-25 rs851987 rs7110328 

226 snp10-01 rs6800770 rs4714999 

227 snp10-02 rs7480678 rs2269347 

228 snp10-03 rs11220520 rs11219461 

229 snp10-04 rs2699061 rs2270966 

230 snp10-05 rs2099048 rs12224420 

231 snp10-06 rs9636146 rs4147617 

232 snp10-07 rs441116 rs3741668 

233 snp10-08 rs2397215 rs11104947 

234 snp10-09 rs9866640 rs3772208 

235 snp10-10 rs9451194 rs3864111 

236 snp10-11 rs1920610 rs16910660 

237 snp10-12 rs12460798 rs35773539 
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238 snp10-13 rs2388788 rs3741506 

239 snp10-14 rs9275595 rs2074176 

240 snp10-15 rs902557 rs1077521 

241 snp10-16 rs12208401 rs11168709 

242 snp10-17 rs9480502 rs2285060 

243 snp10-18 rs9347140 rs3828741 

244 snp10-19 rs9834678 rs9384252 

245 snp10-20 rs1204331 rs3745327 

246 snp10-21 rs810912 rs2291931 

247 snp10-22 rs2066951 rs3763944 

248 snp10-23 rs11177368 rs16881056 

249 snp10-24 rs7108229 rs3734265 

250 snp10-25 rs4964963 rs2306800 

251 snp11-01 rs6414595 rs35191042 

252 snp11-02 rs7117433 rs11021266 

253 snp11-03 rs6916028 rs17578530 

254 snp11-04 rs1532720 rs17207518 

255 snp11-05 rs1939066 rs1463298 

256 snp11-06 rs953730 rs1607394 

257 snp11-07 rs4857926 rs12192975 

258 snp11-08 rs8078764 rs485118 

259 snp11-09 rs2245897 rs7647281 

260 snp11-10 rs9386508 rs17769930 

261 snp11-11 rs12819780 rs10510943 

262 snp11-12 rs2455799 rs1489107 

263 snp11-13 rs7383248 rs1493593 

264 snp11-14 rs11172162 rs8109030 

265 snp11-15 rs10791048 rs4134950 

266 snp11-16 rs11825966 rs11039758 

267 snp11-17 rs10492338 rs12804520 

268 snp11-18 rs3891724 rs41420445 

269 snp11-19 rs41463648 rs11542187 

270 snp11-20 rs9876212 rs3687 

271 snp11-21 rs2458304 rs12817914 

272 snp11-22 rs12529487 rs11650611 

273 snp11-23 rs845891 rs12426207 

274 snp11-24 rs8073910 rs11064748 

275 snp11-25 rs537225 rs17787343 

276 snp12-01 rs9344315 rs7134845 

277 snp12-02 rs225676 rs7760797 

278 snp12-03 rs9847394 rs16924539 
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279 snp12-04 rs6590683 rs10877755 

280 snp12-05 rs4687420 rs9825867 

281 snp12-06 rs1868500 rs6767873 

282 snp12-07 rs759679 rs17136321 

283 snp12-08 rs760827 rs7955386 

284 snp12-09 rs2227371 rs7968828 

285 snp12-10 rs669776 rs7216862 

286 snp12-11 rs7741797 rs7956459 

287 snp12-12 rs6793160 rs17045159 

288 snp12-13 rs7254543 rs9310100 

289 snp12-14 rs16830730 rs711176 

290 snp12-15 rs4931083 rs6782165 

291 snp12-16 rs12419421 rs9880895 

292 snp12-17 rs7124639 rs7135641 

293 snp12-18 rs6539676 rs28438465 

294 snp12-19 rs2617688 rs9893918 

295 snp12-20 rs1861419 rs16827421 

296 snp12-21 rs7953305 rs6806316 

297 snp12-22 rs7252828 rs7108570 

298 snp12-23 rs6457737 rs4611190 

299 snp12-24 rs10049314 rs1454014 

300 snp12-25 rs10945649 rs6907480 

301 snp13-01 rs11111391 rs12222269 

302 snp13-02 rs149942 rs4684678 

303 snp13-03 rs3016500 rs12632557 

304 snp13-04 rs8113142 rs3815405 

305 snp13-05 rs7771441 rs17045968 

306 snp13-06 rs4275668 rs11035319 

307 snp13-07 rs9385629 rs2273012 

308 snp13-08 rs6344 rs3748261 

309 snp13-09 rs11825972 rs11040226 

310 snp13-10 rs7224296 rs2277634 

311 snp13-11 rs6901717 rs2241775 

312 snp13-12 rs4792900 rs2301755 

313 snp13-13 rs9328513 rs3814729 

314 snp13-14 rs4789352 rs3792292 

315 snp13-15 rs17834692 rs11525594 

316 snp13-16 rs2301570 rs3744451 

317 snp13-17 rs7950661 rs28372821 

318 snp13-18 rs7224601 rs2291932 

319 snp13-19 rs407056 rs11218773 
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320 snp13-20 rs9275374 rs16924079 

321 snp13-21 rs7302533 rs3773639 

322 snp13-22 rs588952 rs2279449 

323 snp13-23 rs2166909 rs12660257 

324 snp13-24 rs328486 rs9397997 

325 snp13-25 rs6483748 rs1077646 

326 snp14-01 rs17021512 rs7637778 

327 snp14-02 rs9856266 rs16967585 

328 snp14-03 rs385521 rs17079656 

329 snp14-04 rs1729594 rs4767988 

330 snp14-05 rs8078351 rs12284342 

331 snp14-06 rs3744132 rs16967580 

332 snp14-07 rs11234925 rs9676310 

333 snp14-08 rs9367137 rs12318030 

334 snp14-09 rs1879883 rs963803 

335 snp14-10 rs12286721 rs1481459 

336 snp14-11 rs10431559 rs9897023 

337 snp14-12 rs901816 rs12327812 

338 snp14-13 rs7119188 rs11925097 

339 snp14-14 rs9819360 rs41426851 

340 snp14-15 rs7224763 rs11829043 

341 snp14-16 rs4485669 rs7971725 

342 snp14-17 rs9322528 rs7948832 

343 snp14-18 rs833670 rs12111139 

344 snp14-19 rs11666111 rs7940727 

345 snp14-20 rs1265067 rs9894979 

346 snp14-21 rs6456397 rs9889821 

347 snp14-22 rs7967594 rs9897155 

348 snp14-23 rs812149 rs9303627 

349 snp14-24 rs2272891 rs9913571 

350 snp14-25 rs3898124 rs17077048 

351 snp15-01 rs1784500 rs11228158 

352 snp15-02 rs5004021 rs12194408 

353 snp15-03 rs7751661 rs7246367 

354 snp15-04 rs7312492 rs11216799 

355 snp15-05 rs7750841 rs10440825 

356 snp15-06 rs17077267 rs11658083 

357 snp15-07 rs2117018 rs2847182 

358 snp15-08 rs2000560 rs11058042 

359 snp15-09 rs7937892 rs11752309 

360 snp15-10 rs11060863 rs17513072 
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361 snp15-11 rs12270081 rs387233 

362 snp15-12 rs6549049 rs2564915 

363 snp15-13 rs9871261 rs4764628 

364 snp15-14 rs11111146 rs17593921 

365 snp15-15 rs3781839 rs11717208 

366 snp15-16 rs10502030 rs17455493 

367 snp15-17 rs4930597 rs214585 

368 snp15-18 rs17061176 rs13199373 

369 snp15-19 rs9381402 rs7178 

370 snp15-20 rs6458958 rs1925791 

371 snp15-21 rs17009623 rs3935910 

372 snp15-22 rs1388206 rs2420543 

373 snp15-23 rs3821525 rs13218115 

374 snp15-24 rs11753865 rs35598292 

375 snp15-25 rs12361586 rs11708369 

376 snp16-01 rs6936123 rs2272325 

377 snp16-02 rs8105273 rs3777674 

378 snp16-03 rs9818739 rs2045018 

379 snp16-04 rs2304819 rs3746293 

380 snp16-05 rs1347104 rs9362034 

381 snp16-06 rs4711738 rs3811068 

382 snp16-07 rs2268846 rs3814444 

383 snp16-08 rs6485673 rs16860184 

384 snp16-09 rs6458115 rs17289925 

385 snp16-10 rs1043898 rs12637276 

386 snp16-11 rs3782120 rs11066280 

387 snp16-12 rs11880539 rs11114646 

388 snp16-13 rs7935908 rs2232217 

389 snp16-14 rs2139077 rs2273568 

390 snp16-15 rs1229933 rs3751958 

391 snp16-16 rs6804121 rs28372785 

392 snp16-17 rs7303170 rs3759313 

393 snp16-18 rs12193001 rs4327695 

394 snp16-19 rs4686667 rs12665064 

395 snp16-20 rs10511022 rs3782886 

396 snp16-21 rs16964191 rs2290054 

397 snp16-22 rs3760843 rs11066132 

398 snp16-23 rs1466235 rs9658068 

399 snp16-24 rs9302994 rs279808 

400 snp16-25 rs9843433 rs11236583 

401 snp17-01 rs2359367 rs7611753 
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402 snp17-02 rs4680887 rs9830017 

403 snp17-03 rs11718449 rs669300 

404 snp17-04 rs11219688 rs9474681 

405 snp17-05 rs3773935 rs864461 

406 snp17-06 rs12494282 rs6932090 

407 snp17-07 rs12494110 rs16957396 

408 snp17-08 rs7313688 rs6916736 

409 snp17-09 rs613197 rs16932733 

410 snp17-10 rs6799479 rs4002154 

411 snp17-11 rs12213009 rs9465456 

412 snp17-12 rs11966093 rs7207237 

413 snp17-13 rs3903688 rs2610736 

414 snp17-14 rs9296733 rs11021700 

415 snp17-15 rs9348055 rs6596984 

416 snp17-16 rs1711957 rs11828768 

417 snp17-17 rs1793051 rs10422231 

418 snp17-18 rs4794291 rs9463381 

419 snp17-19 rs3794970 rs16944991 

420 snp17-20 rs34430583 rs4297462 

421 snp17-21 rs308194 rs17066711 

422 snp17-22 rs3860828 rs7117182 

423 snp17-23 rs4894850 rs7769577 

424 snp17-24 rs2623945 rs11966336 

425 snp17-25 rs10744889 rs1864897 

426 snp18-01 rs4549 rs11068535 

427 snp18-02 rs12202106 rs11653020 

428 snp18-03 rs9898132 rs1483121 

429 snp18-04 rs543876 rs12818313 

430 snp18-05 rs159268 rs13205266 

431 snp18-06 rs11657217 rs6936632 

432 snp18-07 rs7109038 rs17646359 

433 snp18-08 rs2659610 rs1782449 

434 snp18-09 rs13068339 rs1802668 

435 snp18-10 rs9826798 rs4607423 

436 snp18-11 rs17375799 rs10444560 

437 snp18-12 rs1397881 rs2243368 

438 snp18-13 rs4856154 rs2272450 

439 snp18-14 rs12215495 rs11171407 

440 snp18-15 rs10501960 rs12211424 

441 snp18-16 rs12290811 rs17802736 

442 snp18-17 rs10848907 rs1482442 
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443 snp18-18 rs4945151 rs12825841 

444 snp18-19 rs7613917 rs10513541 

445 snp18-20 rs13320885 rs9403910 

446 snp18-21 rs7980273 rs12818059 

447 snp18-22 rs1401454 rs11673632 

448 snp18-23 rs4802723 rs1124303 

449 snp18-24 rs8108921 rs17657473 

450 snp18-25 rs334535 rs12487951 

 

 


