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Abstract of the Dissertation

Probabilistic and Flux Landscapes of
the Phage λ Genetic Switch

by

Nathan Borggren

Doctor of Philosophy

in

Physics

Stony Brook University

2011

The λ phage infection of an E. coli cell has become a paradigm for understanding
the molecular processes involved in gene expression and signaling within a cell.
This system provides an example of a genetic switch, as cells with identical
DNA choose either of two cell cycles: a lysogenic cycle, in which the phage
genome is incorporated into the host and copied by the host; or a lytic cycle,
resulting in the death of the cell and a burst of viruses. The robustness of
this switch is remarkable; although the first stages of the lysogenic and lytic
cycles are identical, a lysogen virtually never spontaneously flips, and external
stressors or instantaneous cell conditions are required to induce flipping. In
particular, the cell fate decision can depend on the populations of two proteins,
Ci and Cro, as well as their oligomerization and subsequent binding affinities
to three DNA sites. These processes in turn govern the rates at which RNAp
transcribes the Ci and Cro genes to produce more of their respective proteins.

Although the biology in this case is well understood, the fundamental chemistry
and physics underlying the bistability remains elusive. In this work, a dynami-
cal model of the non-equilibrium statistical mechanics is revisited, generalized,
and explored. The low number of proteins and other sources of noise are
non-negligble and corrections to the kinetics are essential to understanding the
stability. To this end, general integral forms for advection-diffusion equations
appropriate for finite element methods have been developed and numerically
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solved for a variety of mutants and assumptions about the state of the cells.
These solutions quantify the probabilistic and flux landscapes of the ensembles’
evolution in concentration space and are used to predict the populations of
the cell states, entropy production, passage times, and potential barriers of
wild type and mutant bacteria to illuminate some structure of the configuration
space from which Nature naturally selects.
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1 Introduction
Life is an entanglement of lies to hide its basic mechanisms.

William S. Burroughs, The Place of Dead Roads

1.1 Computation, Noise and Limit Cycles in Biophysics

It is a season in which the porousness of the borders delineating the subjects that comprise
Knowledge are growing more so, or altogether vacuous. The overlap is revealing some
truths to be quite universal. It has been said that more is different Anderson [1972] and
information is physical Landauer [1961], and concepts involving emergence and entropy
are proving to be fundamental to understanding the physical basis of biological systems.
The notion of a complete and clockwork deterministic universe has been left behind, and
the necessity of dealing with probabilities, partial information, measurement, and open
systems has become essential to all of the major sciences.

Among these disciplines, the common goals have become those of elucidating which
states are possible, determining the relative probabilities or amplitudes of those states,
and examining their stability and robustness. In the subject of physics, the need for
these particular goals is most easily evidenced by the existence and necessity of quantum
mechanics, which assigns to each system a wavefunction from a spectrum of permitted
states; entanglement amongst these states; and, by measurement, results ultimately in the
collapse of the wavefunction to a single eigenstate of the spectrum. In chemistry, it has
become increasingly necessary to delineate the single pathway that a molecule may take,
as it selects a seemingly random walk in a solvent, or geometrically aligns with a catalyst
in a reaction. In biology, evolution provides a framework by which we understand how
each member in a myriad of diverse species becomes finely adapted to their single, specific
niche, and how these populations are interrelated.

Although the underlying theories are generally accepted, there remain open questions
and challenges in the implementation of these theories that are similar across disciplines.
Analogies can even be present in the mathematical formalisms that are often developed in
parallel for these subjects. For example consider time evolution in quantum mechanics,
Brownian motion, and population dynamics. The integral of a specified initial condition is
commonly implemented iteratively as a matrix operator acting on a vector which represents
the quantum state in the case of quantum mechanics, the population densities in the case
of chemical dynamics, or the population density in the case of an ecosystem.

The limit cycles are of considerable interest. Although teleological explanations in
evolution are largely vanquished Mayr [2002], at least some of the properties of living
matter can be predestined by the highly non-negligible physical and chemical constraints
placed on it by the supporting planet. Understanding physically how systems acquire
their properties through gene expression and feedback from an environment leads to
fundamental physics. However large the number of unknown degrees of freedom, they
serve as a source of energy and entropy for the system, or as a place to deposit energy and
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entropy. In some shape or form, this exchange introduces a mechanism for choice, chance,
or randomness into the time evolution of the system, which is commonly implemented as
a matrix acting on a vector.1 Be it the decoherence processes that select an eigenfunction
out of entangled quantum states or the natural selection processes that select the fittest
of a species, it is time that selects an actuality out of the sea of possibilities that could
potentially occur. That is to say, whatever the equations, it is the asymptotics of those
equations that are of interest. When the system is open, the nature of this selection speaks
equally as much of the measurement device used or the planet underfoot as it can of the
system measured or the species selected.

Assuming that we have equations that describe these phenomena, is it feasible to
imagine finding solutions to them? The question we ask is what the best models are for
the physics we can develop given the computational resources that are available, and
how we can improve the precision of the physics as our algorithms and computing power
improve. When we point our computers at the abstractions we use for these systems, the
polynomial algorithms seem nowhere to be found. While for biological problems, even
by counting only the emergent degrees of freedom (proteins) of the emergent degrees of
freedom (RNA) of the emergent degrees of freedom (DNA) of the emergent degrees of
freedom (the nucleotides) of the emergent degrees of freedom (the periodic table) of the
emergent degrees of freedom (the protons and the neutrons), our ability to directly probe
the relevant scales of length and time is limited by our current information technology.

Because many questions in one field are categorically identical to questions in another,
the achievements and methods in one science are non-negligible to the others. Often they
are the same achievement or require cooperation. The contribution of physics thus far to
biology is largely that of engineering: it is the microscopes, spectrometers and transistors
that are mainly of service. There is no evidence suggesting that the physics of biology
requires more then quantum mechanics, statistical mechanics, and classical mechanics to
operate, but the extent to which the solutions to our equations lag behind our equations
provides ample room for doubt and countless theorems remain to be demonstrated to show
this. As an example, biology has provided us with the ingenuity through experiments to
deduce the relevant underlying networks for the λ phage Ptashne [1992]2, the flexibility
of those networks Atsumi and Little [2006], Little et al. [1999], and how to introduce and
parameterize the empirical force fields that are introduced to study the dynamics Shea
and Ackers [1985]. These numbers are improved every day as better microarray data is
accumulated and understood 3.

Evolution, like gravity and thermodynamics, is so seamlessly entangled into our lives
as to often go unnoticed. Once, however, the concept is understood it is quite self-evident,
and is as readily seen as the selection of an item off of a menu or the selection of students
or employees from a pool of applicants. This interplay between chance and determinism,
the arbitrary and the necessary, and populations and their individuals provides more then
enough room for complexity to emerge, even before granting a capacity for volition to the
individuals.

1Consider, for example, ẋ = Ax, ih̄∂tΨ = HΨ, ∂tP = −∂i(Dij∂jP − Fi P) with solutions, x(t) = eAtx(0),

Ψ(t) = e−
i
h̄
∫ t

0 HdtΨ(0), and P(t) = e
∫ t

0 (Dij∂j−Fi)dtP(0) respectively. The essential problem, be it a continuous
Markov process described by A, Schrödinger’s equation, or the Fokker-Planck equation, the equation boils down
to the evaluation of an exponential of an operator.

2and references therein
3In a just universe, the models such as discussed in this thesis would be coupled with data. The rates used in

the partition functions should be fit simultaneously with the numbers used in the diffusion tensor as well. We do
not take such a course here but provide the reference Kinney et al. [2007], in addition to Shea and Ackers [1985]
to illustrate how ∆G numbers are accumulated
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The key mechanism again is emergence, be it quarks to form a proton, nucleotides to
form DNA, or cells to form an organism, the salient necessity for evolution to occur at any
hierarchy of a universe is a mechanism to build up systems of arbitrary complexity out of
simpler and readily available resources from the nearby hierarchical levels Jacob [1977],
McCoy [2010]. Unsurprisingly, we find ourselves present in such a universe, and Nature
has no shortage of mechanisms to build complex systems, and clever algorithms for their
improvement Darwin, tol4.

It has been said that the universe is a quantum computation Lloyd [2006], and it will
not resist being perceived as one, but other modes of computation the universe readily
performs, those using the counting of molecules, and are worthy of deep reflection Bennett
[1982]. These classical modes can also supply the speed up to which quantum computers
esteem. This brownian computer as he calls it is not dissimilar to a quantum computer, in
the sense that it relies on interference to decrease the probability of certain possibilities
and increase the probabilities of others. The fundamental difference is in the nature of
the interference, which for a quantum computation occurs at the amplitude level, where
numbers can be complex, and for a brownian computer this occurs at the probability
level, where the numbers are strictly positive. The fundamental similarity between the two
modes of computation is they occur essentially in parallel.

To illustrate consider an impenetrable door, nay, there is an alphabet with four letters
and one password in 4n words that will let us in were we to enter that word. The keepers of
the door also granted us a classical, quantum, and chemical keypad. The classical keypad
takes to long, qubits have their own agenda at those numbers, so how then will we ever
open the door?

What is a chemical keypad? Say we have n sites and we enter our code by binding 1
of our 4 molecules onto each site, and if we get the arrangement just right then the door
opens. A molecule will simply go away after some time if it did not fit.

Our only hope then without any more prior information is Bennett’s Brownian computer.
We simply gas the keypad with concentrations of all the molecules and wait. Sooner or
later the necessary configuration will occur and our key is found and the door is opened.

This is still a classical computation in the sense that it is no different then our fingers
punching numbers into a keypad as far as the information processing is concerned. Indeed
the speed up here is simply of scale, molecules can typically bind and unbind to sites and
each other faster then we can push buttons. The probabilistic nature of it comes only as
a result of our description of the scenario. We have only macroscopic information, the
thermodynamic variables, and may be able to tune them to some degree, but the goal is a
particular confirmation, information that is not accessible to thermodynamics proper but
we know the answer once the goal has been achieved, we read it out of the keypad only
after the door is opened. As is often the case, the key itself might fall out of the door and
this information too is lost, but sometimes just an open door is sufficient to proceed.

Evolution is such a mode of computation, a wide variety of possibilities are attempted,
and if any open doors, or are built to last, then doors open and things last. The rate
and mechanisms it achieves to do this provides curious insight into new computers and
algorithms for achieving and dealing with computational complexity, typically involving
non binary modes of thinking.

Granting a billion years from the birth of Earth to the birth of the first prokaryotes,
say 4 ∗ 106 bp (base pairs) Mayr [2002], it can be infered that the effective rate at which
natural selection processed the 44∗106

configurations is 44∗106−27 hz. This is a rephrasing of
4The notion of species-as-algorithm is evident in Toffoli [1982], where he gives the example of a typical control

function: the octopus.
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Levinthal’s paradox in protein folding for the problem of evolution. It is thus safe to infer
that natural selection is not picking numbers at random from a flat distribution.

Genes are an example of an algorithm that has provided exponential speed up to this
sampling. Genes might be a transcript for a protein and take up a thousand nucleotides of
space, and at this stage Natures trial and error processes of evolution revolve around a
sampling of the space of gene combinations; this is a considerably truncated space from
the space of permissible DNA chains. Sexual reproduction is one example exhibiting the
benefits of such a sampling, and it emerged as a means of speeding up the quest for fitness
about 2.7 billion years ago. The DNA of the resulting offspring is far removed in a symbol
space from either parents DNA, yet the genes persist. It is quite a luxury that a child
should take after their parents.

With a configuration space so vast and the demands of a niche so extreme, one can
hardly suspect a few random bits flipping to send one to a more favorable potential well.
Quite the contrary is fact and indeed the structure of DNA with the Watson-Crick pairing
and strength of the bonds are largely preventative of just this situation. Unsurprisingly,
there exist proteins and mechanisms that specialize in DNA repair to further parry these
crude attempts to debase the bases. In eukaryotes DNA is furthur protected via a profound
capacity for packing and elaborate protection from histones and proteins.

So it is genes that drive development and the space of gene configurations that DNA
prefers to play trial and error with, for exactly the reason to exponentially speedup the
search for fitness. There is a very strong and productive motive to then treat the genes and
their functions as the relevant degrees of freedom then and indeed that is the approach
and success of systems biology. Ptashne and Gann [2002], Nüsslein-Volhard [2006]

It can be seen that evolution can proceed with large steps. There are mechanisms in
which the step nature of evolution of DNA itself is evident. This revolves around the
discussion of genes, not nucleotides, where very specific and relatively long transcripts
can be inserted irreversibly into a genome. Such is the case we study now, the phage λ
infection of an E. Coli. The biological content of this thesis is well known and actively
extended, St. Pierre [2009], Ptashne [1992].

λ is not alive and requires an e. coli host cell to provide the habitat and ingredients, in
particular RNA polymerase and the Ribosome, to express and replicate the genes present
in that genome. A head provides protection to the DNA outside of a cell as the virus uses
a tail to seek out a host upon which it pierces the cell membrane and injects the DNA into
the cell. A special feature of the genome are the six bases on each end, they are unpaired
’sticky ends,’ and are dual to each other. These sticky ends sticky to to each other upon
entering a cell and form a ring. It then waits for the cell contents to regain its closest
approach to equilibrium. This tricks the RNA polymerase and ribosome in the host into
expression and synthesis 1.1 of its genes.

This can be seen in a variety of circumstances to split a cell population into different
possible fates, some cells burst into a multiplicity of phages immediately (lysis), while
the bacteria that do survive are irreversibly transformed into a new genome, now nearly
48,502 bp longer, and henceforth replicates along with its old identity and the entire phage
(lysogeny), see 1.2. This seems more akin to a jewel heist then a thermal, stochastic, or
a quantum fluctuation. It is believed that noise influences the decision at the level of
selection between fates. This noise has been studied elsewhere, Zhu et al. [2004], Wang
et al. [2010], Arkin and Ross, but the exact nature of this noise is not understood, and
is typically presumed gaussian for computational and analytic convenience. Another
luxury of FEniCS software is more complicated noise, for example as known functions of
space and time, can be easily implemented. This switch is a perfect example of a switch
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Figure 1.1: λ phage
requires a host for
RNAp and ribosome
to express its genes.

component of a brownian computer, but in the end just one component of a larger λ gene
network, presented in Arkin and Ross, St. Pierre [2009].

Figure 1.2: The two
E. coli outcomes,
lysogenic above and
lytic below, of a
λ phage infection.
The OR is yellow,
the active Ci gene
is blue, the active
Cro gene is red, and
grey are other active
genes in that stage
of the cell cycle. The
Att gene in green is
the gene responsible
for incorporating the
virus into the bacte-
ria. White regions
are DNA segments
inactive during that
stage.

The rates at which these transcriptions occur enter the models equation of motion
as simply numbers and set the time scale of the computation, i.e. the expression of
the gene, so let us revisit RNAp, and the ribosome, to first marvel at two of the most
amazing molecules this side of the big bang, and chieftains among the hyperspecialized
computational hardware in side a cell.

Indeed it was RNA polymerase that was the source of inspiration for the Brownian
computer in the first place and its functioning had been described in information theoretic
terms already in 1982 Bennett [1982]:
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To see how a molecular Brownian computer might work, we first consider
a simpler apparatus: a Brownian tape-copying machine. Such an apparatus
already exists in nature, in the form of RNA polymerase, the enzyme that
synthesizes a complementary RNA copy of one or more genes of a DNA
molecule.

He goes on to describe the RNA polymerase action in terms of a one-dimensional
random walk along a DNA chain. In the forward reaction RNA polymerase opens the
DNA to read the content and append to the growing RNA strand the nucleotide part of
the relevant nucleotide pyrophosphate ATP, GTP, CTP, or UTP and subsequently releasing
the pyrophosphate molecule into the cell, advancing a notch on the DNA chain. In the
backward reaction RNA polymerase takes a free pyrophosphate (PP) from the cell and
combines it with the last RNA bit and releases into the cell the ATP, GTP, CTP, or UTP. In
equilibrium this reaction would balance and RNA and protein synthesis would not occur.
However the metabolic processes are such that a bias in the direction of RNA synthesis
occurs by removing free PP and supplying ATP, GTP, UTP, and CTP to the vicinity of
RNA polymerase. The numbers used in his analysis are RNA polymerase advancing at 30
nucleotides/s (330 forward reactions -300 backward reactions), and dissipates 20kT per
nucleotide all while making less than one mistake per ten thousand nucleotides. Bennett
[1982]

By 1999 this one dimensional random walk was directly observed in single molecule
experiments Guthold et al. [1999]. The rates therein were much lower, 1.5 nucleotides/s
± 0.8 nucleotides/s but these processes were likely slowed down by the experimental
conditions which confined the DNA to diffuse along a 2D substrate, restricting the motions
of many degrees of freedom, to facilitate the observation of RNA polymerase moving along
the DNA as if it were a 1D chain. It had been argued that effectively diffusing in lower
dimensions enables RNA polymerase to find the premoters much more easily.

λ has developed an additional strategy that speeds up this transcription involving Ci
protein Ptashne [2011]. It involves a relatively small cooperativity (-2kcal/mol) binding
between a Ci dimer and RNAp at the premoter site, which also shortens the time RNAp
requires to diffuse to that point. This is a small number and can not alone describe the
observed factor of 10-100 increase in transcription rate when Ci is present. An explanation
I provide here is that this speed up could be a result of another complex binding process,
where Ci octamers short the DNA loop, as has been observed. That this results in a
speed up of transcription is a result of the simple fact that, if RNAp can maintain a 30
nucleotide/s rate, this rate is increased in units of m/s if the chain is shortened and there is
simply less distance to diffuse to the end of the transcript and back to the premoter. Indeed
the looping between the OR and the OL leaves RNAp again approaching in physical space
the premoter as it is finishing the transcription of Ci. This increase does not occur for the
Cro gene since the shorting of the loop does not contain the Cro gene, only the Ci gene,
and requires Ci to be occupying the premoter site for Cro anyway.

The subsequent RNA strand is fed to the ribosome which implements a many to one
dictionary, converting three consecutive nucleotides into an amino acid, the 64 4 letter
words of length 3 get mapped to 20 amino acids and aids in the formation of the protein.
This allows for a large multiplicity of DNA words that can create the same protein and
thus allow for a finer resolved selection process to occur amid the words that produce a
given protein.

Ci is a chain of 236 amino acids and cro is 66. The rates at which these processes occur
are actively measured and correspond to the value of νxi for Ci and Cro in this situation.
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The rates for the lambda phage production of Ci, Cro used in these simulations are 0.115
Ci monomers/second, for states with Ci assisting RNAp, and 0.30 Cro monomers/second.
Other impacts on the rates are the 0.01045 Ci monomers/second contribuition from certain
configurations and that the ribosome produces 20 Cro for each reading of the Cro transcript.
These numbers are chosen to correspond to the values use in Zhu et al. [2004], Wang et al.
[2010] where this dynamical system is investigated. The complete set of parameters used
in this simulation will be shown in the dynamics section.

There are two sources of non-linearity in the equations of motion, first from there
simply being multiple binding sites, but the main complication, and source of error in this
work, is that both Ci and Cro first dimerize in the cell and bind in dimer form to DNA with
a helix-bend-helix motif. Different configurations have slightly different affinities and thus
occur with different frequencies. All the configurations however have negative ∆G and as
such are spontaneous reactions; they are energy favorable in comparison with an empty
strand of DNA. In addition Ci dimers are found to bind cooperatively on adjacent sites.
This added energy bonus from cooperation aids in the competition with Cro. Cro is also
limited by the fact that both OR1 and OR2 site need to be unoccupied for RNAp to bind to
the Cro premotion site. The partition function is dominated by the triply liganded species
and the faster rates and large bursts for Cro get largely repressed by the relative scarcity of
the singly liganded states in comparison to the doubly liganded states that premote Ci.

The phage genome in a lysogen patiently waits for cell conditions to appear, a process
known as induction, that switch the genes being expressed to phage bearing ones and
result in bacteria death and phage progeny. Ultraviolet light, small cell volume, and
elevated Cro or depleted Ci protein levels are known to be able to induce the switch. It is
the object of this dissertation to furthur quantify the nature of this swith and compare with
the words nearby in simple space. These are very specific mutations in the OR, chosen so
that the binding properties can be predicted, and switch properties studied. A result of
this thesis, and a testable hypothesis, is that energetically the use of ultraviolet light for
induction is a little extreme, radiation targeted at the OR equivalent to 15kT should be
sufficient to provide the energy for some of the lysogens to flip. Indeed, NMR techniques
specialized to control Ci to the extent that it can be removed from OR1 and OR2 should
also be sufficient for induction even at larger concentrations.

1.1.1 Chemical Oscillations

That classical chemical reactions used to describe the balancing of morphogens within an
embryo is sufficient to give rise to non-trivial spatial and temporal structures was noted
carefully in the last works of Alan Turing Turing [1952]. See Kondo and Miura [2010] for a
modern review.

Classical treatment of chemical reactions is sufficient to understand many rhythms of
the body, like a heart beating, and it is wise to push the utility of such treatments as far as
possible.

Reactions are not even necessary for oscillations to occur, indeed mixtures of perfect
gases oscillate on grand scales in atmospheres in an attempt to maintain hydrostatic
equilibrium for the mean density despite tidal or other forces Niemann et al. [2005],
Müller-Wodarg et al. [2006].

The variety of chemical oscillations considered in this thesis are particular to those
believed to be relevant in gene expression which involve the binding of ligands to operator
sites resulting in the creation of more ligands.

The chemistry section states quantitatively our basic assumptions, namely the partition

7



functions, used to describe the equilibrium statistical mechanics of the protein/DNA
reactions. It is stated to a reasonable generality what shapes these partition functions can
make, facts that we will need to motivate the extent of accessible dynamics to which these
binding polynomials along with transcription factors can give rise.

At low numbers chemical oscillations take on much greater complexity, where noise
can play dominating roles. Most importantly this work relies on the discussions in Wang
et al. [2008].

1.1.2 Dynamics

Universal computation takes on a whole new meaning in chemical and quantum compu-
tation. One need not seek only classical answers to classical questions... The dynamics
resulting from gene expression could be of interest to the purest of mathematicians, and in
some sense are the n-body generalization of Hilbert’s 16th problem, which remains un-
solved, and we applaud chemistry and biology for their courage in asking such questions.
Hence it is quite appropriate to begin with the most general equations for dynamical sys-
tems. The qualitative and quantitative theories of dynamical systems is old and advanced
Liapounoff [1893], Volterra [1931], Arnold [1978], Perko [2001]5 and the need for general
methods to general equations in simulating gene expressions is noted in Zhu et al. [2004],
Wang et al. [2010], Aurell and Sneppen [2002].

The codes used for this work were written to maintain this generality and the software
can be used to study dynamical systems over real or complex fields.

1.1.3 Diffusion

Of the few equations Schrödinger reluctantly allows appear in What is Life? Schrödinger
[1992] the first is

∂tP = D∆P. (1.1)

Which he need not trouble you to explain. The gradients and diffusion of which he speaks
are in physical space whereas we will be concentrating on concentration space but the
motive and solutions are similar.

The robustness of the phage λ is of the type Schrödinger would have claimed at the
time to be impossible. He deliberates extensively on the

√
(n) law and expected that where

there is order, such as ferromagnetic order, there will be a requirement of a large number
of particles involved. Yet the order one would expect from large concentrations is still
present at the small numbers 100-300 proteins and has given rise to the so-called stability
puzzle Aurell et al. [2002].

The analogue equation of (1.1) for the case of concentration space, to which numerical
solutions herein are devoted to address is

∂tP = ∂i(Dij∂jP− FiP) (1.2)

The codes allow for Fi to take on the generality prescribed in the dynamics section and
Dij can be functions of space and time. Our mathematical analysis will proceed with the
simplest case of a positive and diagonal diffusion tensor.

A main contribution of this thesis is the adaptation of (1.2) for use with finite elements.
5a study of dynamical systems, to which noise is largely a perturbation, can on no accounts be trivialized or

neglected. Many texts on the fundamentals are available, in particular Perko [2001] illustrates the linearization
methods to understand the local, qualitative dynamics of a system.
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1.2 Computers and Phage λ

Before we posit equations and automate solutions let us not that biological systems are not
dissimilar from computers and their behavior is not dissimilar from a program. There is
no hope in putting it more eloquently then Rothstein [1982]:

‘Computers and living systems share many characteristics: they behave
selectively, show tremendous differences in response to similar inputs, and are
nonequilibrium systems, generally metastable. They usually require an ongoing
dissipation to maintain their characteristic behaviors, which depend on stored
information. Both involve loosely coupled subsystems, use elaborate internal
communication and control systems, and key interactions within them and with
their environments are typically irreversible and ‘all or nothing’ (nonlinear).

One may also add that they have already been selected and it is a vast space from
which it has been selected.

The phage λ is codeword for one of the 448502 molecules DNA could have chosen. Yet
it warrants its own name for it is unique adaptation at securing the fidelity of that same
codeword through the infection of a host cell. To do so it chooses selectively between lysis
and lysogeny and requires an ongoing interaction with RNA polymerase and the ribosome
to achieve its steady state protein concentrations through the transcription of the Ci and Cro
genes. This involves the coupled subsystems, Ci, Cro proteins and the OR, with elaborate
internal communication through oligomerization processes, and key interactions within
them are indeed nonlinear. The fate of the decision is thermodynamically irreversible. Let
us elaborate.

1.3 phage λ

The enterobacteria phage λ infection of Escherichia Coli is proving to be an insightful
example in biology of how the small scale molecular interactions involved in gene signaling
and expression lead to distinct outcomes Ptashne [2011], Ptashne and Gann [2002]. In
this case, these outcomes are the very life and death of the cell. A history of ingenious
experiments has revealed the interactions involved in this determination of cell fate in
exacting detail Ptashne [1992], and the λ phage’s strategy for reproduction is a clear
example where the molecular strategy involved in the evolution and natural selection of
the organism are well understood. The questions then remaining are the chemical and
physical questions in the cellular environment, particularly, what the interactions between
these macromolecules are, and the type of model is best used to quantify these interactions.
The timescales involved in the lambda phage genetic switch are on the order of 102 s to
104 s, thereby placing the system beyond the limits of an all-atom molecular simulation
with an empirical forcefield. Phenomenology has been introduced, and the origin of the
model herein is the formulation of Shea and Ackers [1985] with subsequent revision in
Aurell et al. [2002] and propagated by Wang et al. [2010], Ao [2004] and in the framework
of Wang et al. [2008]: the diffusion equation. This has been adapted herein for the finite
element method.

The first description of the λ phage system as a two-state switch was given by the
biologists Lwoff, Jacob, and Monod Lwoff [1972] The λ phage is a virus that recognizes
and binds to its host, the bacterium Escherichia Coli, and subsequently injects its genetic
material into the bacterium in the form of double-stranded DNA, forming a ring. After
the virus has infected the cell, there are two main mechanisms by which the viral DNA
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may be replicated: the lytic cycle, or the lysogenic cycle. In the lytic cycle, the bacterial
DNA is destroyed, and the virus takes control of the metabolic activity of the cell with the
goal of replicating its own DNA. The host cell is quickly overcrowded with new viruses,
and the cell bursts, releasing the new progeny viruses. In the lysogenic cycle, the viral
DNA is incorporated into the DNA of the host, and cellular replication occurs normally.
The host cell is not destroyed, and the virus does not produce progeny. A summary of
the genome is depicted in Fig. 1.3. The goal of the experiment of Lwoff et al. was to
understand the genesis and predictability of the lytic cycle. In their work, a collection of
E. coli cells infected with the λ phage was irradiated by a moderate dose of ultraviolet
light. In contrast to the expected scenario observed without radiation, in which many
generations of cells underwent uninterrupted reproduction, the irradiated cells stopped
growing and 90 minutes later a large fraction of the cells burst into a crop of λ viruses.
Repetition of the experiment led to reproducibility of the result, and the phenomenon was
understood to be an example of the switching on or off of a gene controlling the lytic or
lysogenic fate of the cell.

Figure 1.3: Some ba-
sic features of the λ
phage genome.

The next major step was the discovery of the OR region Ptashne [1992]. The 48502 base
pairs of the genome had been sequenced and between basepairs 37940 to 38020 experiments
showed that there exists a region, the OR, between the Ci and Cro genes and that the Ci
and Cro proteins compete on binding sites for their transcription. This region overlaps
with two RNA polymerase premoters, PRM, PR, for premoting Ci and Cro respectively.
PRM overlaps with OR3 and OR2 while PR overlaps with OR1, Fig. 1.4. This has given the
Ci protein the name λ repressor, since in lysogeny the Ci protein actively represses the
expression of the Cro gene by blocking the PR binding site from RNA polymerase. When
Cro is present the affinity is hightest to the PRM site blocking Ci premotion.

In this study, we focus on the fate of the E. coli bacterial cell at the moment that infection
with the λ phage occurs.

In the chemistry section we introduce the equilibrium assumptions used in the model
and tabulate the rates involved in some of the system kinetics, namely the binding of
dimers to DNA, and the dimerization of the proteins in the cell. The ∆G values are
the results of fits to experimental studies and is largely the focus of experimental work
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Figure 1.4: Zoom-
ing into the OR site
reveals more struc-
ture, the PR site over-
laps with OR1 and
OR2 and PRM over-
laps with OR3.

to which this model depends. All numbers have been chosen to correspond with the
numbers implicit to Wang et al. [2010] which we repeat here. With modern crystallographic
studies of these interactions and the state of empirical force fields these values could in
principle begin to be given a basis without the biological experiments. This avenue will
not be pursued here though is representative of the type of hurdle involved in getting
clinically useful information out of molecular structure based studies and we stress the
importance of such calculations to provide some atomic and molecular justification of this
phenomenology.

In the dynamics section we review the phenomenology that has been introduced. It
is interesting idea in its own right as a method for exploring non equilibrium statistical
mechanics behavior over large time scales given some understanding of the equilibrium
picture and the success with the λ phage is suggestive of rather general and powerful
methods for exploring other gene regulatory circuits and complex systems as well. The
essential content of the dynamical system of Shea and Ackers [1985] is contained in the
rate equation that follows

ẋi = νxi

Zxi (x1, ..., xn)

Z(x1, ..., xn)
− xi

τxi

. (1.3)

Here the time derivative of the xi protein is written in terms of the rate, νxi , at which RNAp
and ribosome can actively create more xi. Zxi is itself the sum over states that allow a
creation process and is weighted by a sum over all states. In the cell the protein decays at a
rate of τxi . No summation convention is employed with this equation.

The inevitable limitation of Eq. (1.3) is the presence of noise and corrections are
necessary. To this end, the diffusion section introduces an integral method for solving a
class of partial differential equations including the Fokker-Planck equation ∂tP = −∂i(FiP−
Dij∂jP). This is to provide a numerical method of solution to the general formalism for
using diffusion equations to describe noise in chemical equations, Wang et al. [2008]. This
is an analogy to stochastic methods for chemical equations Ge and Qian [2010], Qian et al.
[2002], and path integral methods for chemical equations Wang et al. [2010]. The class is
then restricted to the case of flows induced by the dynamic assumptions of the phage. This
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Figure 1.5: Depicted
are three possible
states of the ORi
site. Each of the
three DNA sites
can be either empty,
occupied by a Ci
dimer, or occupied
by a Cro dimer.

method is typical of a finite element method and its origins even predate the existence of
the computer that has made it so practical Logg et al. [2012]. The following two equations
are the main result of this thesis.

a =
∫

Ω
(vut+δt +

δt
2

∂iv[Dij∂jut+δt − Fiut+δt])dx, (1.4)

L =
∫

Ω
(vut −

δt
2

∂iv[Dij∂jut − Fiut])dx. (1.5)

The solutions ut and J = Dij∂jut − Fiut are the probabilistic and flux landscapes, respec-
tively, that appear in the title of this work.

a = L is a linear matrix equation in a function space when one specifies an initial
condition. The dimension of the space depends on the computational resources at our
disposal and the flexibility in this direction is just one luxury of FEniCS software.6 The
expression a is bilinear, in ut+δt and in v, when used for propagating time in the positive
direction. The right hand side in this equation is only linear, depends only on v, i.e. ut is
fixed by the previous time step and thus by the initial condition.

This is done by casting all the functions into a function space, or vector function space
as needed. When these expressions hold for all v in the function space, ut+dt is a solution
to the related Fokker-Planck equation if ut is. Integral nth passage time equations are
similarly introduced and first passage time equations are solved for all the mutants. The

6Various mesh sizes were used in this thesis, a 600 by 600 space of quadratic elements, corresponding to a
vector space of ≈ 720000 dimensions was about the limit of a desktop computer.
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integral equation corresponding to Fi∂it1(x)− D∂i∂it1(x) = −1 follows∫
Ω
(t(x)(Fi∂it1(x))− D∂it(x)∂it1(x))dx = −

∫
Ω

t(x)dx, (1.6)

∫
Ω
(t(x)(Fi∂itn(x))− D∂it(x)∂itn(x))dx = −n

∫
Ω

t(x)Tn−1dx. (1.7)

The passage times proceed recursively. After the first passage times are found and
inserted for T0 the second equation is rendered linear and the higher moments follow
similarly. The situation in the OR requires only the first passage time, the extreme value of
these numbers compared to the cell cycle is how the robustness is quantified here. There is
some dispersion in the literature as to what that value is, it is difficult to measure directly,
but an estimate of the upper bound is that 1 in 107±2 flip in a cell cycle, see Little et al.
[1999].

The integral equations are discussed in the diffusion section and further tabulation of
the results occurs in chapter 6. The methods were kept general and modular to quickly
facilitate deeper exploration as more computational resources are employed or parameters
changed. It is taken for granted that the models of systems that evolve should likewise
undergo evolution.

The λ phage also meets the criterium for a selective system to be worthy of intensive
study; the λ phage is a modular system, a system of interacting components that can be
systematically permuted Rothstein [1982].

He also motivates purely computational approaches to theoretical biology.

‘Progress in theoretical biology, we believe, needs help from more than
physics and biology. It needs help from computer science, where any [selective
system] that can be described by either a statistical, mathematical, or logical
theory can be modeled. In particular, reconfigurable systems consisting of
interacting subsystems should be studied intensively.’

The λ phage has proven to be a case in point of the benefits of such intensive study.
The effects of some mutations in the OR have already been experimentally realized, Little
et al. [1999], λ121, λ323 and λ323′ have been experimentally synthesised and studied. The
most successful exploration in this varietal has been by far directly from the biologists front
where DNA and proteins are directly manipulated and observed. It is the authors hope
that in time the contribution from physics, mathematics, computer science and chemistry
will provide the means to observe much more quickly and cost effectively some of the
effects possible in this vast configuration space and direct biological experiments towards
interesting possibilities. It is largely in the direction of this ideal that this thesis explores
and we will simulate those and similar mutations proposing theoretical predictions to
feasible experiments which could further constrain the models.

1.4 Evolution

Evolution, like gravity and thermodynamics, is so seamlessly entangled into our lives as
to often go unnoticed. Once, however, the concept is understood it is quite self-evident,
and is as readily seen as the selection of an item off of a menu or the selection of students
or employees from a pool of applicants. This interplay between chance and determinism,
the arbitrary and the necessary, and populations and their individuals provides more then
enough room for complexity to emerge, even before granting a capacity for volition to
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the individuals. Much confusion about evolution can be avoided by clearly seperating
what one is selecting from and selecting for, Mayr [2002]. This thesis takes leave from the
noblesse oblige, in speaking of matters in which one is not an expert,7 but the motivation of
such an investigation as this is largely rooted in Evolution, and such a discovery warrants
discussion in a physics thesis. In addition, the main methodology of this thesis is one of
tinkering; to do lots of trials and make a lot of errors, this is in correspondence with how
natural selection naturally selects, see Jacob [1977].

1.4.1 Natural Selection from...

We will be considering natural selection from the set of DNA configurations. We choose
27 of these configurations corresponding to mutations in the OR region to which present
knowledge enables a prediction for what the binding affinities would be. It is demonstrated
that just this restricted space is enough to sample both sides of a bifurcation.

1.4.2 Natural Selection for...

If biological systems are like other physical systems they seek to minimize energy and
maximize entropy. We will rank our mutants from fittest to least fit based on passage times,
energy, and entropy. Natural selection is a fine balancing of many considerations.

1.5 Three modes of Computation

Many modes of computing with molecules have been proposed and these can be split into
three overlapping categories.

Although the number of genes in the human genome has likely been constant for a few
million years, the number in the refereed literature steadily decreases with time. In the
human genome there are believed to be around 25000 protein coding genes, and much
more of the genome is understood to be dedicated to regulation and signaling processes
than initially thought.

Cooperativity, between regulatory proteins and RNAp for transcription is seeming to
be the rule rather then the exception Ptashne [2011]. The signaling involved masterfully
involves the time domain and is the major port of departure between DNA type computa-
tion and a Turing tape. Whereas a turing maching requires a head to physically transform
the bit strings along the tape, DNA strictly avoids this phenomena and instead prefers to
modify the tape through binding of ligands. This is the tragic flaw of Bennet’s proposed
DNA computer in 1982 in which a ribosome like structure alters base pairs. It may be more
easily implemented on RNA then DNA, but still the lesson to be learned is to program
with the time domain as much as possible. The paradigms of causality are being replaced
by the paradigms of synchronicity; GPU, DuoCore, QuadCore, quantum computation, and
chemical computation are all parallel computations that rely on a balancing of rates in
order for its components to sync and perform properly.

1.5.1 Binding Sites

Anything that can count can compute and RNAp transcribing a gene into a protein is
such a means of computing. This is the type of computation discussed quantitatively in
this thesis, using the phage λ as a concrete example. In the dynamics section we will

7somebody has too...Schrödinger [1992]
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discuss the rich space of analogue computation to which computation with binding sites
can simulate.

1.5.2 Polymerization

A type of computation DNA can employ, in which a large configuration space is rapidly
sampled through polymerization processes has demonstrated working, fast algorithm for
NP problems. Adleman [1994, 1998], Braich et al. [2002]

1.5.3 Solitons

A method of computation that macromolecules could employ is through solitons. The
effective field theories for some of the empirical force fields used to describe the molecular
dynamics are known to emit soliton solutions, Yakushevich et al. [2002]. The presence of
soliton solutions is sufficient to define a bit and the propagation of the soliton is a sufficient
means to transfer a signal. The empirical model used in protein folding are similar
in structure to the empirical models used in superconducting circuits. Cascading logic
implemented through solitons in superconducting circuits is the most promising approach
to superconducting based computation, Likharev and Semenov [1991], Semenov et al.
[2003], Ren et al. [2009], Ren [2011]. It will be found that biological systems have the same
physical limitations as engines or other computational devices and deep understanding of
those limitations are required, Likharev [1982].

To specify, consider the Hamiltonian used in Yakushevich et al. [2002],

H = ∑
n
(

1
2

In,1φ̇2
n,1 +

1
2

In,2φ̇2
n,2 + εn,1sin2(

φn+1,1 − φn,1

2
)

+ εn,2sin2(
φn+1,1 − φn,2

2
) + Vαβ(φn,1, φn,2)).

(1.8)

Now consider a Hamiltonian used in superconducting circuits Averin et al. [2006],

H = ∑
n
[
Q2

n
2C

+ 2Ejsin2(
φn

2
) + EL(φn+1 − φn − φ

(e)
n )2]. (1.9)

.
We can see that the correspondence is not just a matter of romance. Letting the

nucleotides correspond to junctions, and the phase of the superconducting order parameter
correspond to physical angles, one can proceed quite formally.

The solitons would then be of the sine-Gordon varietal and approachable through
standard methods, Rajaraman [1987].

It is a mystery of gene expression and cell behaviour how genes turn on and off, how
several distinct and large regions of DNA, genes, can be quiet for the majority of a cell cycle
and then be triggered for expression of certain proteins say at critical moments. Though
these processes are often known to be caused by chemical triggers, mechanical triggers are
not ruled out, and anything that can induce long-range spatial and temporal correlations
over a chain of DNA should be considered deeply. Solitons typify long-range spatial
coordination, and are at least an entertaining possibility of signaling modes available in
DNA.

The analogy is suggestive also of modeling systems via direct mimicry. Junctions could
be chosen with capacitance and junction energies to directly simulate on a transmission
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line the dynamics of a DNA chain. Similar circuits can be designed for protein folding with
a corresponce between the junctions and the amino acids. Although DNA and proteins
are brilliant, they are not particularly fast with that brilliance, and such circuits could
boast protein folding faster then proteins can fold a protein. The lesson to be learned
in superconducting circuits from DNA is a promise of diverse effects emerging from the
aperiodicity of a crystal. One might be capable of developing dramatically sophisticated
circuits, without a large number of components, by using similar-but-different junctions.
The richness of the protein functions themselves are believed to be derivative of their
structure, which itself is yet another chain, this time of geometric motifs, helices, hairpins,
and one is left curious to find analogues of these structures in the circuits.

1.6 Methods of Numerical Analysis

The rich diversity intrinsic to biological systems lends necessity towards mathematics
and computation that is equally rich and diverse. In computational terms, biophysics
necessitates modularity, code needs to be useful and applicable in a wide variety of
settings. Emphasis has been placed on exactly this throughout the design of numerical
investigations reported in this thesis. This has allowed for scanning large regimes of
parameters of particular systems as well as investigating many systems and models. It is a
well known problem of computer science that generality comes at the cost of requiring large
amounts of code to consider all possible cases. This problem has largely been circumvented
through the use of automated form compilation, in which the code written is designed
to write more specific code when a particular instance is requested, Logg et al. [2012]8.
Such a method lends to an elegant correspondence between the mathematics describing a
problem and the corresponding computer instruction.

The mathematics employed for this analysis is a modern incarnation of finite element
methods developed before computers existed to provide a general method to solve or
approximate large classes of partial differential equations from theories of hydrodynamics,
electromagnetism, elasticity, and is sufficient to solve the partial differential equations
arising from biophysics as well. We find that even in circumstances where analytic solutions
exist and can be found, numerics are more illuminating then the resulting expression and
provide greater accesibility to the particular values of a function at given points in the
domain. An analytic expression may require just as much numerical work to, say, evaluate
and sum the necessary hypergeometric functions when a particular value at a particular
point for a particular set of parameters. Thus, even in instances where symbolic analysis of
solutions are accesible we insist on numerics.

Another important necessity of computational techniques used to study biological
systems is scalability. Computer instructions, if not the computer itself, should easily adapt
as numbers of parameters, degrees of freedom, and resolution of meshes increase. Equally
as diverse as the biological systems themselves are the assertions found in the literature
about the most relevant degrees of the system, the rate of changes exhibited by the system,
the parameter values the system exhibits etc. Scalability insures that the choices made in
approximating a system can be based on physics or other considerations and not depend
exclusively on access to computational power. For example better computers should result
in better approximations but not be a prerequisite for the utility of the method, indeed
the use of these methods predates the existence of the computer. The desire for scalability

8One cannot overstate the importance of the software and contributors therein. Their achievement is momen-
tous.
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also motivated the use of FEniCS software which can be parallelized for larger systems
and meshes. The scaling that these methods utilize are suboptimal in that as the number
of system degrees of freedom are increased the computational resources required for the
same resolution increases exponentially. For an optiplex duo core, a modest priced and
performing computer, we found this to limit the size of mesh to two dimensions with 600
quadratic lagrange elements in each direction. Three dimensional queries required the
use of adaptive mesh techniques to locate the active regions of interest and localize the
resolution to these areas. The computer instructions, the human interface to the computer,
scale ideally. That is to say, the only instructions to change as the systems analyzed change
are the definitions of the system.

This partial scaling manifests in the code simply crashing when more resources are
requested then available but would continue to work on machines or clusters where the
resources are indeed available. A pleasant corrolary of the active development of FEniCS
is code already written ages like a fine wine. The benchmarks stated have changed over
time, constantly speeding up, and one only needs patience for the physical interface to be
as fast as one desires, the human interface is nearly optimized. If you want a solution, its
now as easy as a well defined question.

Another important aspect of the computation, to the author, is that all results and
methods are reproducible and extendable from open source utilities. This facilitates the
transfer of knowledge from the more fortunate to the less fortunate and simply evolves
faster than closed source analogues. That is not to say open source is better than closed
source so much as that it will be better, and contributions in the direction of automated
form compilation are quickly eliminating the gap between the quality of freely available
symbolic mathematics code and the privatized software for the same tasks.

1.6.1 FEniCS

The diffusion equations herein would never have been solved without the expertise and
their freely available software. If the code used throughout this thesis are to be used
succesfully a basic understanding of not only object oriented programming is necessary,
but also understanding and installation of the software available at www.fenicsproject.org
is necessary.

Data aequatione, spoketh Newton, quotcunque fluentes quantitae involvente fluxiones invenire
et vice versa. Which Arnold put into modern mathematical prose: It is useful to solve
differential equations. Finite elements do just that.

1.6.2 ROOT

ROOT is an open source utility developed at CERN and the standard analysis framework
used at all major particle accelerators of the world, CER [2011]. The object oriented tools
like graphing and histogramming utilities largely extend the utility and accesibility of data
generated in this thesis. The tools long since built for analysing nuclear data are readily
available for the analysis of other data as well and provide automatable procedures for say
fitting peaks and simple accounting.

In particular a pyROOT paradigm was embraced to combine this functionality with the
ease of python and integrate seemlessly with the python tools built by FEniCS.
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1.6.3 Aleph

It is taken for granted that models of systems that evolve should evolve as well and
launchpad documents the code and the evolution of this code, Borggren [2011].

1.7 Overview

This work is largely a survey; it is the study of a biological system with the techniques of
applied mathematics, engineering, computer science and chemistry, directed at an audience
of physicists and philosophers. As such it runs the risk of being neither here nor there,
to shoot three bears while only infuriating them. To this end offense is inevitable. An ISI
Web of Knowledge query reveals 170303 results for Finite Elements, λ Phage 11,445, and
genes 3,151,834. To contrast, Quantum Mechanics appears 31,673 times and Quantum Hall
Effect 6,557 times. Thus, the references are largely a matter of taste, and do not attempt a
reflection of history, so much as what I felt to be instructive accounts of the systems and
useful ports of entry to the historical literature.

A goal is maintained to provide a perspective on generality while keeping the λ phage
as a concrete example. It seeks to explain to a physical audience details of a biological
system.

The philosophy of physics and information took inspiration from many places: Ander-
son [1972, 2000], Bennett [1982], Toffoli [1982], Likharev [1996, 1982], Landauer [1961], and
Rothstein [1982].

In matters of solitons there is Yakushevich et al. [2002], Averin et al. [2006], Likharev
and Semenov [1991], Likharev [1996].

For background and data in the λ phage, see Ptashne [2011, 1992], Ptashne and Gann
[2002], Little et al. [1999], Atsumi and Little [2006].

For evolution there are good introductions, see Mayr [2002], Jacob [1977].
For mathematics, Arnold [1978], Perko [2001].
For early modeling and the head node for the taxonomy tree of the ∆G values, Ackers

et al. [1982], Shea and Ackers [1985].
Later modeling, Aurell and Sneppen [2002], Aurell et al. [2002], Zhu et al. [2004], Wang

et al. [2010].
The methods and ideas herein are largely in correspondence to: Wang et al. [2008], Zhu

et al. [2004], Wang et al. [2008, 2010], Ge and Qian [2010], Feng and Wang [2011] and have
benefited from numerous conversations with Jin Wang.

An accomplishment of this thesis is one of method; it is the computational framework
in Borggren [2011], this is but a modest interface and synthesis of tools Logg et al. [2012],
CER [2011].
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2 Binding Polynomials and the Chemistry of
the OR Region

Pray be under no constraint in this house. This is Liberty-hall, gentlemen. You
may do just as you please here.

Oliver Goldsmith, She Stoops to Conquer

2.1 ∆G Measurements

In this section we consider the partition functions used to describe the chemical binding
interactions in the OR region that must be posited before we proceed to introduce dynamics.
There is some choice so we explore multiple possibilities.

For one, the original partition functions include explicitly RNA polymerase at a fixed
concentration, whereas many new pictures also include bindings to the OL region. A
complication is that both Ci and Cro proteins bind to any of the 3 sites, on OR or OL
in their dimer form. It is also now established that up to octamers can be present and,
amazingly, Ci octamers canbind at once to the OR as the OL and short the DNA loop
exactly across the Ci gene. We will continue to use the equilibrium relationship between
dimer and monomer concentrations in our partition function, Reinitz and Vaisnys [1990],
Wang et al. [2010], Aurell and Sneppen [2002], Zhu et al. [2004].

Again x, y are Ci, Cro protein numbers and [Ci],[Cro] denote the dimer concentrations.
The simplest partition function used does not include RNAp binding affinities or concen-
tration, and consists of the 27 states permitted by having nothing, Ci, or Cro on each of
the three sights. Of these states 1 is zero liganded, 6 are singly liganded, 12 are doubly
liganded and 8 are triply liganded 1. The nature of the partition function is perhaps most
evident when written in the form

1Since ∆G values are negative and the individual processes occur at similar rates to each other, this establishes
a sort of band structure; the triply liganded configurations occur the most often, then the doubliy liganded, then
the singly liganded, and then the scarcest event is to find an open DNA configuration.
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Z = 1+

[Ci](e−
∆G001

RT + e−
∆G010

RT + e−
∆G100

RT )+

[Cro](e−
∆G002

RT + e−
∆G020

RT + e−
∆G200

RT )+

[Ci]2(e−
∆G011

RT + e−
∆G101

RT + e−
∆G110

RT )+

[Cro]2(e−
∆G022

RT + e−
∆G202

RT + e−
∆G220

RT )+

[Ci][Cro](e−
∆G012

RT + e−
∆G021

RT + e−
∆G102

RT +

e−
∆G201

RT + e−
∆G210

RT + e−
∆G120

RT )+

[Ci]3(e−
∆G111

RT )+

[Cro]3(e−
∆G222

RT )+

[Ci]2[Cro](e−
∆G112

RT + e−
∆G121

RT + e−
∆G211

RT )+

[Ci][Cro]2(e−
∆G122

RT + e−
∆G212

RT + e−
∆G221

RT )

(2.1)

This form makes it clear that it is symmetric with respect to permutation of the sites.
The argument of Aurell and Sneppen [2002] is that RNAp needs an open PR site to
premote Cro and an open PRM site to premote Ci and if the site is open RNAp will be
overwhelmingly first in line to bind and premote for such states. It is known that the PR
site overlaps with OR1 and OR2 and PRM overlaps with OR3 . This symmetry is not present
for the subspaces; the sum over the substates with a free PRM can premote x, a Ci monomer,
and the sum over the substates with a free PR site can premote y for a Cro monomer

Zx = 1+

[Ci](e−
∆G010

RT + e−
∆G100

RT )+

[Cro](e−
∆G020

RT + e−
∆G200

RT )+

[Ci]2e−
∆G110

RT +

[Cro]2e−
∆G220

RT +

[Ci][Cro](e−
∆G210

RT + e−
∆G120

RT ),

Zy = 1+

[Ci]e−
∆G001

RT +

[Cro]e−
∆G002

RT .

(2.2)
with

[Ci] = [x ∗ pnc]/2 + e∆GCi/RT)/8

− ([x ∗ pnc]
e(∆GCi/RT)

8
+

e2∆GCi/RT

64
)1/2

(2.3)
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[Cro] = [y ∗ pnc]/2 + e∆GCro/RT/8

− ([y ∗ pnc]
e(∆GCro/RT)

8
+

e2∆GCro/RT

64
)1/2

(2.4)

Interlude: On dimerization.2

The key feature to notice here is that, since all the binding affinities are negative, the
sites are dominated by the triply liganded terms. The occurence of an x premoting state is
already rare, and a y premotion state exponentially more scarce then those. The partition
function here is seen to be a sum over monomials of the forms, 1, [Ci], [Cro], [Ci]2, [Cro]2,
[Ci][Cro],[Ci]3,[Cro]3,[Ci]2[Cro], and [Cro][Ci]2. In the original Shea and Ackers contribu-
tion we note that additional monomials of the form [RNAp], [RNAp][Ci], [RNAp][Cro],
[RNAP][Ci]2, [RNAP][Cro]2, [RNAP][Ci][Cro] and [RNAp]2 were also included. This con-
tributed to 13 more states included in the partition function for a total of 40. Only 40 of the
34 states are permissible since an RNAp at PR precludes any binding to OR1 and OR2 . The
−∆Gs values for these states are also actively measured by the experimental community
and could be included in the partition function in so far as RNAp does indeed bind in the
OR so that in any given interval of time there is indeed the probability that the OR is in
a state not considered in the above partition function. The effect is said that eliminating
the RNAp is constant, though their is a continuation in the literature that prefers to keep
RNA polymerase explicitly in the partition function and no mention to what the value
of that constant. The situation is a little subtler then that and the value of this effect, as
shown here, relates to the RNAp binding energies to the PR, and PRM as well as absolute
concentrations. The benefit is still a simpler partition function and since RNAp is fixed
for the simulation, the additional monomials do not alter the algebraic structure of the
equations but only append to the weights of the already present monomials, but this effect
can still induce bifurcations and one should be careful.

It is then necessary to write the dimer concentrations in terms of the monomer number.

2

On Dimerization
1 + 1 = 1
Una goccia piú una goccia, fanno una goccia piú grande, non due!

the Tarkovsky equation and explanation, Nostalghia

Todos los fuegos el fuego
Julio Cortazar, Todos los fuegos el fuego

The dimerization equation used in this work originates from a quasi-steady state assumption for the
dimerization reaction.

[cI1]
2 = [cI2]e

∆GcI
RT , [NcI ] = [cI1] + 2[cI2] (2.5)

This gives a quadratic equation with roots give the cI dimer concentration, [cI2] in terms of the total protein
concentration, [NcI ].

[cI2] =
[NcI ]

2
+

e
∆GcI

RT ±
√

e
2∆GcI

RT + 8e
∆GcI

RT [NcI ]

8
(2.6)

The root with the positive sign is the expression stated in Wang et al. [2010], Ao [2004] and the negative
sign corresponds to the expression used in the calculations of Reinitz and Vaisnys [1990], Ao [2004], Wang
et al. [2010]. The negative sign seems to be the better physical choice in that, in the limit of zero monomer
concentration, one also has zero dimer concentration.
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λ123, wild− type OR affinities (kcal/mol) ∆Gijk

protein OR1 OR2 OR3 ref. equation monomial premotes
∆G001,∆G010,∆G100 -15 -13 -12 Zhu et al. [2004] ∆G000 = 0.0 1 Zx,Zy
∆G002,∆G020,∆G200 -18.4 -17.1 -19.5 Zhu et al. [2004] ∆G001 = −12.0 [Ci] Zy

∆G010 = −13.0 [Ci] Zx
∆G100 = −15.0 [Ci] Zx
∆G002 = −19.5 [Cro] Zy
∆G020 = −17.1 [Cro] Zx
∆G200 = −18.4 [Cro] Zx

∆Gijk(cont) ∆G011 = ∆G010 + ∆G001 + ∆Gcoop [Ci]2

∆G110 = ∆G010 + ∆G100 + ∆Gcoop [Ci]2 Zx
∆G101 = ∆G100 + ∆G001 [Ci]2

∆G022 = ∆G020 + ∆G002 [Cro]2

∆G220 = ∆G020 + ∆G200 [Cro]2 Zx
∆G202 = ∆G200 + ∆G002 [Cro]2

∆G120 = ∆G100 + ∆G020 [Ci][Cro] Zx
∆G210 = ∆G200 + ∆G010 [Ci][Cro] Zx
∆G102 = ∆G100 + ∆G002 [Ci][Cro]
∆G201 = ∆G200 + ∆G001 [Ci][Cro]
∆G012 = ∆G010 + ∆G002 [Ci][Cro]
∆G021 = ∆G020 + ∆G001 [Ci][Cro]

∆G111 = ∆G100 + ∆G010 + ∆G001 + ∆Gcoop [Ci]3

∆G222 = ∆G200 + ∆G020 + ∆G002 [Cro]3

∆G112 = ∆G100 + ∆G010 + ∆Gcoop + ∆G002 [Ci]2[Cro]
∆G121 = ∆G100 + ∆G020 + ∆G001 [Ci]2[Cro]

∆G211 = ∆G200 + ∆G001 + ∆G010 + ∆Gcoop [Ci]2[Cro]
∆G221 = ∆G200 + ∆G020 + ∆G001 [Ci][Cro]2

∆G212 = ∆G200 + ∆G010 + ∆G002 [Ci][Cro]2

∆G122 = ∆G100 + ∆G020 + ∆G002 [Ci][Cro]2

Table 2.1: Values of variables referenced by the partition function.

Here we use the expression implicit to the results of Zhu et al. [2004], Wang et al. [2010],
where we explicitly show how the number pnc, labeled as a conversion factor from number
to concentration, enters into their equation.

We note that the above equations appear with mistakes, a positive sign, in Wang et al.
[2010] and the arxiv version of Zhu et al. [2004] and use the expression from Reinitz and
Vaisnys [1990] with the insertion of the pnc, a converting factor from protein number to
concentration, and implicit assumptions about RNAp. See the note on dimerization. The
bacterial volume used in Zhu et al. [2004] is stated to be .7 ∗ 10−15L and pnc is in inverse
proportion to the volume. The value used for pnc is 1.5 ∗ 10−11. A calculation reveals and
is corroborated by a private communication that in actuality pnc = (volume ∗ NA)

−1 =
2.37 ∗ 10−9Moles/L and the listed value is a typo. Use of that number reveals unrealistic
protein concentrations and it is this authors belief that the number pnc includes implicit
assumptions about the RNAp concentrations and affinities, and provided RNAp is removed
from the partition function, a pnc value of 1.5 ∗ 10−11 is indeed more consistent with the
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numbers of experiment and was likely tuned ad hoc to the present value for that reason.
No reference is made about the value of the number or conversion in Wang et al. [2010],
though the calculations present suggest the use of the conversion from Ao with the equation
from Reinitz despite the errors in their written equation. Many calculations should be
performed twice, once with the values similar to Zhu et al. [2004] and again with RNAp in
the partition function and pnc = 2.37 ∗ 10−9 which is postponed for future work. As noted
in the introduction this equation should be modified in future work anyway as a result of
the higher order polymerization processes that occur, and we will leave it to the wise to
wrangle upon that issue.

2.2 A Partition Function; RNAp or no RNAp?

The partition function in Shea and Ackers [1985] reads, with [RNAp] the concentration
and assigning the index ′3′ to denote the RNAp occupancy.

Z = 1 + ([RNAp](e−∆G03 + e−∆G30) + [RNAp]2e−∆G33)+

[Ci](e−∆G001 + e−∆G010 + e−∆G100 + [RNAp](e−∆G31 + e−∆G103 + e−∆G130))+

[Cro](e−∆G002 + e−∆G020 + e−∆G200 + [RNAp](e−∆G32 + e−∆G203 + e−∆G230))+

[Ci]2(e−∆G011 + e−∆G101 + e−∆G110 + [RNAp]e−∆G113)+

[Cro]2(e−∆G022 + e−∆G202 + e−∆G220 + [RNAp]e−∆G223)+

[Ci][Cro](e−∆G012 + e−∆G021 + e−∆G102 + e−∆G201 + e−∆G210 + e−∆G120+

+ [RNAp](e−∆G123 + e−∆G213))+

[Ci]3(e−∆G111)+

[Cro]3(e−∆G222)+

[Ci]2[Cro](e−∆G112 + e−∆G121 + e−∆G211)+

[Ci][Cro]2(e−∆G122 + e−∆G212 + e−∆G221)

(2.7)

It is clear that the effect of [RNAp] is not constant. Three experimental numbers, the
RNAp concentration, the RNAp binding to the Ci premoter, and an RNAp binding to the
Cro premoter are entangled into this partition function.

We note that this form of the partition function would require corrections for low
numbers in that it uses the approximations n2 ≈ n ∗ (n − 1), n3 ≈ n(n − 1)(n − 2). It
is likely that some of the complexity of these systems near the axis is residual of such
an approximation. This becomes especially more important if multiple phages have
invaded the cell or the OL is included in the partition function. Implicit to the figures in
Zhu is the Tr, Trm, and Trr values reported are 1/3 of the values used in the calculation.
This is do to the inclusion of 3 phages in the cell as in Aurell and Sneppen [2002]. The
calculation left out presumes that Z′ = Z3, and the states that premote a ci for example,
are enhanced by the number of phages present 3∗Zx∗Z2

Z3 . Also it is often presumed that for
the composite system of the left and right operatior regions Z′=ZOLZOR. For a partition
function to be the product of the subsystems the subsystems must not interact. This is
not the case here and especially for low numbers. One need only plot say x9 next to
x ∗ (x− 1) ∗ (x− 2) ∗ (x− 3) ∗ (x− 4) ∗ (x− 5) ∗ (x− 6) ∗ (x− 7) ∗ (x− 8) to see that the

23



difference is considerable. This error is increased moreso with monomers present as well
since this too reduces the number of dimers and increasing the fluctuation.

We use ∆GCi = −11.1, ∆GCro = −7.0, and ∆Gcoop = −6.9. The states and their values
are collected in Table 2.1

The values for the multiply liganded states are found by summing up the values of the
constituent singly liganded states. Cooperativity gives an additional sum, ∆Gcoop = −6.9,
for the states with Ci and Ci on adjacent sites. These are the G∗11, G1∗1 configurations
where ∗ can denote 0,1, or 2. RT = .617kcal/mol is the Boltzmann factor for the 310 Kelvin
laboratory conditions which these were accumulated. When we speak of the mutant λijk
we mean that the affinity for the ith site is used in place of OR1 , jth in place of OR2 , and
kth in place of OR3 . Some of these are likely biologically unstable but it is inevitable that
different strings for the operator configurations may have similar ∆G and thus similar
dynamics.
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3 Dynamics Near Equilibrium

The key to the treasure is the treasure.
John Barth, Chimera

3.1 Gene Expression and General Dynamical Systems

Although this is a simplified model, the need for general dynamical systems is already
evident.

The number of stationary points is complicated by dimerization but in the basic case this
number is found to be in proportion to the (numbero f bindingsites+ 1)× (numbero f proteinspecies).
The positivity of the partition function and concentration insures that some of these are
physically realizable. The dimerization used here doubles the number of stationary points.
Thus it is reasonable to start from very general mathematical considerations Liapounoff
[1893], Perko [2001] and well over a century of elegant mathematics that would be required
to understand the mathematics of gene expression. One is want to introduce a modified
model that is more general and symmetric in the form in which creation and annihila-
tion processes enter. For example, consider the n equations to replace for the discussion
equation 1.3.

ẋi =
νxi Zxi (x1, ..., xn; H2O, RNAp, Ribosomes, ...)− νx†

i
Zx†

i
(x1, ..., xn; H2O, RNAp, Ribosomes, ...)

Z(x1, ..., xn; H2O, RNAp, Ribosomes, ...)
(3.1)

Here one can begin with a partition function for the n proteins and let quantities
like H20, RNAp, all the things that contribute non-negligible partial pressures in the
cell, enter as control parameters. Say, Z(x1, ..., xn; H2O, RNAp, Ribosomes, ...). Again νxi
is the rate at which transcription in the Zxi states occur. Introduced is an expression for
annihilation, νx†

i
Zx†

i
, to account for the specific events that destroy a protein. For example,

in the λ phage situation, the CI protein is destroyed by another protein, RecA, which
destroys a CI monomer by cutting it in half. In such a situation one would include a term
ZCI† ∝ [CI][RecA] governed by a rate, νCI†

i
of this destruction process.

The motivation is that the stationary points would appear at the points x1, ..., xn where
νxi Zxi (x1, ..., xn; H2O, RNAp, Ribosomes, ...)− νx†

i
Zx†

i
(x1, ..., xn; H2O, RNAp, Ribosomes, ...) = 0 for all

i. This is a set of polynomial equations in the protein variables xi. This allows one to either fit to
known systems, or construct others. Also since, Zx,y,z is positive, and any term appearing in the
numerator appears with a positive sign in the denominator, many qualitative features persist. Say
ẋ = f (x) and ẏ = f (y)/g(y). One can see that if ẋ = 0, then ẏ = 0, since g(y) is non-negative that
the stationary points in the first system are the same as in the latter. Next, in the neighborhood of a
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stationary point the dynamics are qualitatively the same as the linear system,

ẋ ≈ ∂ f
∂x

∣∣∣∣
x=xstationary

(x− xstationary), (3.2)

and

ẏ ≈
∂ f
∂y g(y)− ∂g

∂y f (y)

g(y)2

∣∣∣∣
y=ystationary

(y− ystationary). (3.3)

Since at a stationary point f (y) = 0, evidently,

ẏ ≈
∂ f
∂y

g(y)

∣∣∣∣
y=ystationary

(y− ystationary). (3.4)

The two systems have similar quantitative behaviour then too, with the dynamics simply scaled:

t t ∗ g(y)
∣∣∣∣
y=ystationary

. (3.5)

For an overview of such methods in dynamical systems many texts are available, Perko [2001].
This interlude is to motivate some of the extent to which these kinetics serve as analog circuits.

Restricting the numerators to polynomials, fi(x1, ..., xn), in which fi is non-negative when xi = 0,
that is to say we require proteins to exist before we can destroy them. Then we can always program a
set of binding-expression interactions to simulate such dynamics.

For example, say one would like to construct a circuit with dynamics similar to ẋ = x + x2− x ∗ z,
ẏ = y + y2 − x ∗ y, ż = z + z2 − y ∗ z. Weighting by Zx,y,z = 1 + x + x2 + y + y2 + z + z2 + x ∗ y + x ∗
z + y ∗ z does not change the locations of the stationary points. That is to say, one can accomplish
this circuit with three proteins, with two binding sites each, in which occupation of either would
enable their own transcription, also the z protein destroys x, y protein destroys z, and x destroys y.

To be able to fully fit the experiments of St. Pierre [2009] the phase space would partition into
more then just two states, but four states, in addition to a splitting of a cell population into lysis and
lysogeny, some cells (refractory) were immune to the phage and a small fraction of the lysogens had
daughter cells that lyse. The number and properties of lysogens that had daughters that underwent
lysis (5/100) could be useful in additional studies of robustness 1. We continue the analysis of
Zhu et al. [2004], Wang et al. [2010]. Including the OL, RNAp, tetramers, etc. could contribute this
additional complexity, codes are provided Borggren [2011] if one was inclined towards such study.

At different times in the cell cycle different genes are turned on or off. Often these genes are
transcripts for proteins that are necessary for functions in that particular interval. The concern here
is with the lysogeny decision and in this interval we have only the OR, Ci gene, and Cro gene on.

Letting x, y denote the Ci and Cro monomer numbers respectively we write for the dynamics

ẋ = νxZx(x, y)/Z(x, y)− x/τx, (3.6)

ẏ = νyZy(x, y)/Z(x, y)− y/τy. (3.7)

The creation term in the dynamics of the associated protein populations within a cell are governed
by the rates at which RNA polymerase bind and translate the DNA into mRNA together with the
rate at which the ribosome translates the mRNA into the chain of amino acids that comprise the
protein. In this way a cell seems to possess three different molecules encrypting the same message.

1An interesting explanation without requiring more basins of attraction would be, if, say, as a cell divides the
daughter cells have each taken half the CI dimers from the parent lysogen, and in so doing switch to the lytic
basin of attraction, causing the cells to lyse. (It is imaginable that whereas x, y may sit in one basin of attraction
x/2, y/2 may reside in the other)
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Categorically speaking, the fundamental biological information processing is governed by the physics
of RNAp : DNA→ RNA, Ribosome : RNA3 → amino acid. The net effective rate of these processes
enters directly into the equations of motion through the νx,y variables.

One can say much about these questions without specifying number of binding sites or which
premotional states enter into Zi(x, y) if we grant a few specifications. Firstly we assert the positivity
of τx and νx. This is also largely natural selections choice though alternatives are imaginable. For
example RNAp can indeed unscribe a transcript, the backward reaction is permissible, and it is said
for any 11 forward reactions their were 10 steps back, Bennett [1982]. The partition functions are
positive by virtue of being well behaved non-negative partition functions or subset thereof. To avoid
singularities and to insure ẋi > 0 we include at least one state that does not depend on x and y in
each of Z, Zx, and Zy. In the case of λ this is provided by the open DNA configuration. This is
the reference state ∆G000 = 0. In the original formulation, Shea and Ackers [1985], security against
singularities was also provided by the explicit inclusion of [RNAp] and [RNAp]2 states. For two
dimensional systems, say two genes expressing two proteins, this is sufficient to prove the existence
of any non-negative number of stationary points provided a sufficient supply of binding sites.

Stationary states occur when the derivatives vanishes:

xZ(x, y)− νxτxZx(x, y) = 0, (3.8)

yZ(x, y)− νyτyZy(x, y) = 0, (3.9)

This is to illustrate some of the most important aspects of the equation are and how these states
interplay to create the desired states.

When x, y are zero, ẋ,ẏ are positive since νx,y and Zx(x, y)/Z(x, y) are. As x, y go to inf the
−x/τx and -y/τy terms dominate and since τx,y are positive, the dynamics are confined to the
positive quadrant. It follows similarly for y as well as x that there exists a contour for which ẋ = 0
on their respective axis since 0 < Zx(x, y)/Z(x, y) ≤ 1; thus ẋ switches eventually to negative and
stays negative and this crossing requires at most νxτx proteins.

This provides an experimental test, or at least an avenue into parameterizing the models. For
example if one were to measure only νx,y, τx,y, and just the expectation value of Zx,y(x, y)/Z(x, y),
one already has means to predict the average number of proteins x and y. Since the expectation
value of Zx,y(x, y)/Z(x, y) is just the fraction of time RNAp is premoting, it is a much easier process
than discovering all possible states, measuring their relative affinities and then simulating.

It is empirical models fitting data that comprises the bulk of the quantitative features of biophysics.
With Ci at 236 amino acids, requiring at minimum 708 base pairs and Cro, 66 amino acids for 198

pairs, it is not surprising that Cro can be transcribed faster. The decay time in seconds is τCi = 2943
and τCro = 5194.

In this model the states that contribute to the numerator for x are those in which OR3 is
unoccupied and thus open for RNAp binding. Of these states those with a Ci dimer bound at OR2
are believed to furthur enhance the rates. Thus,

Here TRM,TRMU , and ECi are 0.115 Ci monomers/sec, 0.01045 Ci monomers/sec and 1 copy.
Next RNAp is assumed to require both OR1 and OR2 free to bind to the Cro premotion site. This
occurence is repressed in comparison with the states that premote Ci but premotions proceed with a
higher burst. TRR,ECro are 0.30 Cro monomers/sec and 20 copies respectively. These are the numbers
used in Zhu et al. [2004], Wang et al. [2010]. The situation is more complicated in that Ci premotion
occurs at 2 different rates, the states with a Ci dimer on OR2 enhance the actual rate which RNAp
transcribes, as well as binding more favorably, Ptashne [2011], and how this assistance translates
physically into the enhanced rate is an interesting open question.

To approximate the effects of specific mutations we consider mutations, λijk, by which it is meant
that new cells have been synthesized with OR1 → ORi ,OR2 → ORj and OR3 → ORk, the chemical
mutations correspond to changes in the strings shown in Fig. 1.4 which lead to changes in the
binding affinities in Table 2.1.
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3.2 Stationary Points

The stationary points of the system are found empirically and tabulated herein.
To inquire into the nature of these stabilities it is fruitful to consider the linearized equations of

motion at a stable point which approximates the flow in the neighborhood. Stable, unstable, and
saddle points have negative, positive, and mixed eigenvalues for their respective linearized equations.
An imaginary part suggests the dynamics around the point have non vanishing circulation.

For these systems the relevant matrix components are, writing x1, ..., xn as x,

D f (x1, ..., xn)ij =
νxi

Z(x1, ..., xn)2 [Z(x1, ..., xn)
∂

∂xi
Zxj (x1, ..., xn)

− Zxj (x1, ..., xn)
∂

∂xi
Z(x1, ..., xn)]

−
δij

τxi

,

(3.10)

where δij is one when i = j and is otherwise zero while the partition functions are evaluated at the
stationary point under query.

For the two by two case the eigensystem is

α1 =
1
2
(−
√

a2 − 2ad + 4bc + d2 + a + d), (3.11)

e1 = (−
√
(a2 − 2ad + 4bc + d2)− a + d

2c
, 1), (3.12)

α2 =
1
2
(
√

a2 − 2ad + 4bc + d2 + a + d, (3.13)

e2 = (

√
(a2 − 2ad + 4bc + d2) + a− d

2c
, 1), (3.14)

with

a =
νx

Z2 [Z
∂

∂x
Zx − Zx

∂

∂x
Z]− 1

τx
, (3.15)

b =
νx

Z2 [Z
∂

∂y
Zx − Zx

∂

∂y
Z], (3.16)

c =
νy

Z2 [Z
∂

∂x
Zy − Zy

∂

∂x
Z], (3.17)

d =
νy

Z2 [Z
∂

∂y
Zy − Zy

∂

∂y
Z]− 1

τy
. (3.18)

In two dimensions the quantity (ad− bc) is the determinant. The fact that this term need not
vanish is why the notion of energy landscape must be generalized into the flux framework to include
fields that are not the gradient of a potential, see Wang et al. [2008].

Understanding these equations can tell us a great deal about the type of forces at work since near
a particular point, x′ = (x1′, ..., xn′) through an expansion Perko [2001], we know that the system is
qualitatively similar to the linearized equations

ẋ ≈ f (x′) +D f (x′)x. (3.19)

If α1 < 0, α2 < 0 then the point serves as a probability sink, if α1 > 0, α2 > 0, then it is a
probability source. Mixed eigenvalues are transition states. For example, one can verify that any of
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the following conditions lend to stability:

a < 0, b = 0, d < 0

a = 0, b > 0, c < 0, d ≤ −2
√
−bc

a = 0, b < 0, c > 0, d ≤ −2
√
−bc

a > 0, b > 0, c < − a2

b , bc
a < d ≤ a− 2

√
−bc

a > 0, b < 0, c > − a2

b , bc
a < d ≤ a− 2

√
−bc

a < 0, b > 0, c ≥ 0, d < bc
a

a < 0, b > 0, − a2

b < c < 0, a + 2
√
−bc ≤ d < bc

a

a < 0, b > 0, − a2

b < c < 0, d ≤ a− 2
√
−bc.

Of the 27 mutations considered 15 had underlying dynamical systems with 3 stationary points,
11 had one stationary point, and one had two stationary points. The locations are tabulated in the
tables A.1, A.2, A.3 and A.4. In particular we note that the permutation group S3 acting on OR1,OR2,
and OR3, only six mutations, is sufficient to provide mutants with a single lytic peak λ231, λ321 a
single lysogenic peak λ132 while λ123,λ312, and λ213 retain the switch properties.

The 27 phase portraits of this model can be seen in Tables A.1, A.2, A.3. Dynamics are also
combined with the results of the diffusion section to demonstrate the importance of statistical,
trajectory based approaches. Those results are in the tables A.22, A.23, A.24 and demonstrate that
the different limit cycles correspond to regions of different entropy or energy density.

This model, however, does not probe what the downstream reactions do to the phase space
distribution given to it, it is quite likely that in the case of say λ231 lysogens will still attempt to form
but with a loss of stability. It does however probe transient phenomena and the initial impulse of the
system, even in the monostable case is, towards two states.

∂Zx

∂x
=

∂[Ci]
∂x

(e−∆G010 + e−∆G100 )+

2 ∗ [Ci] ∗ ∂[Ci]
∂x

e−∆G110+

∂[Ci]
∂x

[Cro](e−∆G210 + e−∆G120 )

,

∂Zx

∂y
=

∂[Cro]
∂y

(e−∆G020 + e−∆G200 )+

[Ci]2e−∆G110+

2[Cro]
∂[Cro]

∂y
e−∆G220+

[Ci]
∂[Cro]

∂x
(e−∆G210 + e−∆G120 )

(3.20)

∂Zy

∂x
=

∂[Ci]
∂x

e−∆G001 ,
∂Zy

∂y
=

∂[Cro]
∂y

e−∆G002 (3.21)

The robustness of the lysogenic cycle would be unsurprising if the system were wholly determin-
istic. Dynamical systems in general can partition into multiple basins of attraction and thus so to can
those arising from chemical kinetics. In two dimensions, like that presumed here, it can often be
the case that there exists some contour that partitions the phase space Perko [2001]. This contour is
unstable in the perpendicular direction and deterministic trajectories beginning on this contour take
the steepest descent to a saddle point if the system is bounded. Any crossing from one region to
the other would require an intersection with this line and is forbidden with the rules for ordinary
differential equations. Thus hopping would requre a stochastic process to change this fact for this
model. The puzzle of this stability is why their is not enough noise. Which we consider in the next
section.
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4 Diffusion; Evolution of Ensembles

Lo otro no existe: tal es la fe racional, la incurable creencia de la razón humana. Identi-
dad=realidad, como si, a fin de cuentas, todo hubiera de ser, absoluta y necesariamente, uno y
lo mismo. Pero lo otro no se deja eliminar; subsiste, persiste; es el hueso duro de roer en que la
razón se deja los dientes.

Antonio Machado, Juan de Mairena, quoted in El laberinto de la soledad, Octavio Paz

When Galileo first assissted his gaze with the telescope and directed it towards Saturn, he
discovered it’s ring and Titan. The point-like orb of the ancients revealed more structure still when
Cassini subsequently fixed his gaze upon this ring, revealing a large division; the ring was not one,
but two. Furthur query revealed yet more structure, courtesy of an in situ spacecraft, also named
Cassini, and one is now disinclined to the naming of rings, which appear with the abundance of
grooves in a phonograph.

Indeed the rings of Saturn are not rings at all, but a collection of granules of various sizes caught
in circular potential wells; the only rings are in the energy landscapes, our abstractions, and only
appear in the data in that there was a sufficient supply of granules to sample the space so that the
typical distance between stones was shorter then the resolution of our instruments.

With that said let us revisit the diffusion equation

∂tu = ∂i(Dij∂ju− Fiu). (4.1)

For example if one were to construct a Hamiltonian of the Saturn system and fill a vector, Fi,
with each of the equations of motion, then u would denote the density of granules, and in the case of
Dij being zero, the equation would describe the evolution of that initial configuration as it samples
the Saturn force field; depending on the details some fraction fall into Saturn’s core, some might
fall into Titan’s surface, other’s escape, and some get trapped into the resonances of the system, the
rings. Letting the D > 0 would allow our granules to interact with each other, although they are
small enough so as not to perturb Fi, they are of comparable sizes to each other and collisions lend
them to diffuse through space.

In the case of λ phage, the numbers of proteins involved are small, and intrinsic noise, shot noise,
is indeed a real source of diffusion for the system; the system kinetics do not behave the same with
every trial, but spread throughout the phase space. However, Eq. (4.1), can equally describe such a
situation.

4.1 Master Equations, Langevin Dynamics, or Diffusion Equation

Many approaches are used to capture the chemical kinetics or gene expression in a noisy environment.
All of which are phenomenological and have their advantages and disadvantages. The proper
approach can vary from system to system and depend on resources available. See for example Wang
et al. [2008], which this thesis follows and extends with the finite elements, and also the potential
approaches in Ao [2004], Zhu et al. [2004], for field-theoretic approaches there is Wang and Wolynes
[1996], Wang et al. [2010], Feng and Wang [2011], and for Langevin dynamics and master equations
see Wang et al. [2006], Ge and Qian [2010], Qian et al. [2002].
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4.1.1 An Integral Approach for Diffusion Equations and Passage Times

The finite element method is emerging as a universal method for the solution of differential equations
of arbitrary complexity from all walks of science, see Logg et al. [2012]. The following derivation is
typical of the procedures implemented throughout the FEniCS book (Logg et al. [2012]). In order
to use a finite element method to solve partial differential equations it is necessary to first translate
the equations into an integral equation. This integral equation can be seen as setting a bilinear
functional equal to a linear functional and solving the corresponding system by standard linear
algebraic methods. It will be described in detail for the Fokker-Planck equation and corresponding
passage time equations.

4.1.1.1 Diffusion Equations

First we seek to solve:
For numerics the function space is specified by defining a mesh over Ω and the type of element

associated with each point in the space. These specifications alter the analysis mainly in how long it
takes for a desired level of accuracy to be reached. We continue thinking of the function space as the
space of twice differentiable functions over Ω. The functional form is found by multiplying a test
function v and integrating over the mesh∫

Ω
v∂tudx =

∫
Ω

v∂i(Dij∂ju− Fiu)dx. (4.2)

Continuing with integration by parts yields∫
∂Ω

v(Dij∂ju− Fiu)nids−
∫

Ω
∂iv(Dij∂ju− Fiu)dx. (4.3)

Here Dij denotes the spatial dependance of the Diffusion, Fi , is the drift force, ni, a normal vector to
the mesh. The mesh is denoted Ω with boundary ∂Ω.

We approximate to find an expression for ut+δt given the solution at ut∫
Ω

v(ut+δt − ut)dx ≈

δt[
∫

∂Ω
v(Dij∂ju− Fiu)nids

−
∫

Ω
∂iv(Dij∂ju− Fiu)dx].

(4.4)

We take the average of the expression over time δt by asserting u ≈ ut+δt+ut
2 . Continuing gives

δt
2
[
∫

∂Ω
v(Dij∂jut+δt − Fiut+δt)nids

−
∫

Ω
∂iv(Dij∂jut+δt − Fiut+δt)dx

+
∫

∂Ω v(Dij∂jut − Fiut)nids

−
∫

Ω
∂iv(Dij∂jut − Fiut)dx].

(4.5)

Collecting terms with ut+δt on one side of equality and ut on the other gives the variational forms a
and L that we will use

a =
∫

Ω
(vut+δt +

δt
2

∂iv[Dij∂jut+δt − Fiut+δt])dx, (4.6)
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L =
∫

Ω
(vut −

δt
2

∂iv[Dij∂jut − Fiut])dx. (4.7)

a(v, u) = L(v) then defines a linear system. To see this note that if v, v′ satisfy a then so does
α(v + v′) and similarly for L for all scalars α. Since it also holds that a is linear in ut+δt, a is bilinear.
The ut in L is specified by propagating u0 and thus explicitly appears as a known function on the
right side of the equations. Thus finding the u that solves a(v, u) = L(v) for all v advances our
solution a timestep. Eq. (5.1) shows the simplicity of the lines of code to perform these calculations.
Indeed the computation is more general and concise then the notation here.

The passage times equations are much simpler. The integral equation corresponding to Fi∂it1(x)−
D∂i∂it1(x) = −1 follows by simply multiplying through by the test function and integrating∫

Ω
(t(x)(Fi∂it1(x))− D∂it(x)∂it1(x))dx = −

∫
Ω

t(x)dx, (4.8)

∫
Ω
(t(x)(Fi∂itn(x))− D∂it(x)∂itn(x))dx = −n

∫
Ω

t(x)Tn−1dx. (4.9)

One can then find the passage times recursively. The induction step is bilinear provided one has first
solved for Tn−1(x) before proceeding to find Tn(x).

To perform the simulations in this work we need still to specify a mesh and type of finite element.
We choose for Ω the domain in protein number space 0Ci1000 and 0Cro1000 . We discretize this
into at least a 50 by 50 grid and use a quadratic Lagrange element. The quadratic lagrange elements
span the surface by connecting the adjacent mesh points with a quadratic function (see Fig. 4.1).
The function space is the set of all such functions. One benefit of a finite element method over a
finite difference is the functions in the function space are continuous over Ω and we can evaluate any
function, and in particular our solutions, anywhere in the domain. We see this smoothness manifest
in the plots which evaluate the functions along the trajectories.

Figure 4.1: Finite
elements construct
a surface by com-
bining simplices
together. The
quadratic elements
used fit the func-
tion inbetween the
mesh points with a
quadratic formula.

4.1.2 On Convergence

Technically, the asymptotics of the Fokker-Planck equation take infinitely long to converge. Such
a program, see Fig. 4.2, can still be written, albeit not technically admissable into von Neumann
architectures. Taking the a and L as bilinear and linear forms, respectively, defined anywhere,
we have an infinite trajectory pursuing eternally its asymptotic states. A break can be entered by
establishing a criterium for convergence. The distributions present in the Appendix were found
using 53, 7.5 second time steps and well approximate the steady state solutions.
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Figure 4.2: This would
be an example of
a legitimate python
code that, not accesi-
ble as a Turing ma-
chine. Computation-
ally, the asymptotics
of the equations re-
quire a function that
does not terminate.

Python code

def TimeStep(u0,u1):

A = assemble(a)

while ’no your solutions have not converged’:
b = assemble(L)
bc.apply(A,b)
solve(A, u1.vector(), b)
u0.interpolate(u1)
yield u1

while InfiniteTraj:InfiniteTraj.Next()

This loop was carried out 53 times before I choose to break it in the states labeled steady in this work,
with k = 7.5 ’seconds’ the time step. By all means, if this is not converged enough, one can simply
go and produce more heat for finer answers, see Borggren [2011].

4.1.3 Choice of Gauge

It is noticed that equation (4.1) presupposes a choice of gauge and the curl of any vector field can be
added to the flux landscape, Dij∂jP− FiP + εijk∂j Ak, and still satisfy the basic equation. We choose a
gauge such that εijk∂j Ak = 0. We notice that what has been called the entropy production in Wang
et al. [2008] is a gauge dependant quantity and how it translates into entropy or heat in absolute
units is open. We note that the different kinetic paths will have different thermodynamic signatures
and understanding the connection can enable direct measurement of some of the quantities that have
been preposed.

A recent paper has elaborated on the nature of the relationship between related Fokker-Planck
equations and gauge theories, Feng and Wang [2011], this is likely to prove a rather pregnant
approach to chemical kinetics.

4.1.4 ∆x∆J

After having computed the solutions to the equations we can calculate some moments of the
distribution. So far the diffusion has been picked to correspond to the numbers believed to quantify
robustness, see Zhu et al. [2004], Wang et al. [2010], however the boundary condition can be tuned to
make this number vary over many orders of magnitude and it may be more prudent to use moments
of the distribution to parameterize D. For example when cI proteins are reported in numbers 150-250
in a cell this can suggest an expectation value of say 200 for x and a spread of 50 for the second
moment. These numbers are more easily measureable then the robustness, which has been the
subject of amendment over time.

The figure, 4.3, is to illustrate how FEniCS software can compute expectation values from the
command line, and the type of calculations that can be performed once one has solutions in hand.
Let us compute ∆x and ∆y with the distributions from A.10 and recompute the related expectation
values.

It is important to realize that it is not the mass of an electron that biologists measure. The errors
do not neccesarily go away with better measurements. The numbers are supposed to fluctuate and
this can actually be interpreted to mean the higher moments of the distribution are relevant. A
spread of 70 in the number of Ci proteins and 90 Cro proteins, is what this model predicts.
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Python code
»> exprs = [Expression("x[0]"),Expression("x[1]"),
... Expression("x[0]*x[0]"),Expression("x[1]*x[1]")]
»> ans=[
... assemble(i*u*dx,mesh=mesh)/assemble(u*dx,mesh=mesh) for i

in exprs]
»> ans
[93.076476131804114, 169.77672009751805, 13624.244707344435,

36974.455745161322]
»> sqrt(abs(pow(ans[0],2)-ans[2]))
70.434468112069482
»> sqrt(abs(pow(ans[1],2)-ans[3]))
90.279128585129428

Figure 4.3: Calcu-
lating expectation
values is straight-
forward, even on a
command line.

4.2 Passage Times

The equations again for the first passage time is∫
Ω
(t(x)(Fi∂it1(x))− D∂it(x)∂it1(x))dx = −

∫
Ω

t(x)dx, (4.10)

where we force a boundary condition of zero, in the present case a circle of radius ten is placed
around the critical point, where we want to calculate the passage time to and following we tabulate
the results for the mutants we can construct from the binding values available. First we explore
the properties of the 15 of 27 mutants that maintain the switch properties in this model. We notice
however that the illusion of bistability is manifest in the transient phenomena even for the monostable
states. That is to say, if the switch behavior is a non-equilibrium phenomena monostable mutations
may be relevant.

4.3 Noise induced stability

The dynamics picture of the previous chapter is quite idealized. Even if all the parameters were
perfectly known there is still the issue that we are discussing mesoscopic regimes and our large
N intuitions and classical assumptions are insured to break down in this limit. The constant rate
assumptions would need to be replaced with discrete events and how a unit of time splits into
subunits becomes important as well as the annihilation processes. The change to the partition
function in this model are again relevant.

It is found here that the noise added displaces to a large extent the locations of the peak from
the corresponding stable points of the underlying dynamical system. Viewing the noise as diffusion
through concentration space and developing effective field theories and path integrals have provided
interesting and useful constructions, see Wang et al. [2010]. The fact that there even exist corrections
to be made is interesting. This is the type of functionality that Schrodinger deliberates on being
prohibited for an organism, in his discussion of the

√
(n) law.

... an organism must have a comparatively gross structure in order to enjoy the benefit
of fairly accurate laws, both for its internal life and for its interplay with the external
world. For otherwise the number of co-operating particles would be too small, the ’law’
too inaccurate. The particularly exigent demand is the square root. For though a million
is a reasonably large number, an accuracy of just 1 in 1,000 is not overwhelmingly good,
if a thing claims the dignity of being a ’Law of Nature.’

Erwin Schrödinger ’What is Life’

For λ phage this is just a restatement of the stability puzzle, how then can the numbers of
proteins be within the range 0-1000, a far worse scenario then Schrodinger deemed possible? Why
does a deterministic dynamical analysis in the small concentration regime work at all? Do we retain
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Figure 4.4: The first
passage time with an
absorbing boundary
condition within
10 units of the ori-
gin. The origin is
extremely unstable;
The steepness of
the funnel of the
first passage time
landscape illustrates
the overwhelming
propensity for the
system to be driven
towards some non-
trivial state. The
numbers, ≈ 108,
appear in seconds.

Python code
...
Assembling matrix over cells [=================================

=====] 100.0%
Applying boundary conditions to linear system.
Solving linear system of size 1442401 x 1442401 (PETSc LU

solver, umfpack).

*** Warning: Using LU solver, ignoring preconditioner
"default".

evaluate at wells, [0.14175299999999999, 462.57299999999998]
112474076.373

evaluate at wells, [644.05200000000002,
0.0061165799999999999] 112473547.501

evaluate at wells, [29.979800000000001, 178.22999999999999]
112469292.141

the observed robustness when we consider noise? Is the noise really
√
(n) noise? What paths are

permissable and what are there relative probabilities? General questions and methods of this variety
are the subject of intense debate and muse to much creativity, see Wang and Wolynes [1996], Wang
et al. [2010], Stock et al. [2008a], Ghosh et al. [2006], Qian et al. [2002], and have been applied to the
λ system, see Zhu et al. [2004], Wang et al. [2010]. This debate has led to legitimate concerns and
elegant measurements to seek explanations from other variables, like volume, where the variation
across an ensemble are less severe or can be experimentally minimized, see St. Pierre [2009].

It is written that DCi,Cro = const ∗ τCi,Cro/NCI,Cro then Λ = D−1, Zhu et al. [2004], Wang et al.
[2010]. However there expression for Λ is the same as their expression for D. The calculations require

D =

(
17.85 ∗ NCi

τCi
0

0 25.0 ∗ NCro
τCro

)
. (4.11)

An NCi = 644.052 corresponds to the value at the lysogen zero and NCro = 462.573 the lytic zero.
τCi = 2943s and τCro = 5194s giving

Dwt ≈
(

3.91 0
0 2.2271

)
. (4.12)
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The numerics proceed with this diffusion tensor. If the analogy is to extend from diffusion in ordinary
space to diffusion in concentration space then the mean squared displacement is a displacement in
concentration space and the units of this D should be dNCIdNCro/ds.

Let us attempt to motivate the form of Eq. (4.11) and the scale of Eq. (4.12). If

x ⇒ x±
√

x then ẋ ⇒ ẋ± ẋ
2
√

x
≈ f (x)± f (x)

2
√

x
. (4.13)

For large x, we have seen that the term −x/τ dominates and recover fluctuations of order
√

x. Since
D goes as the square of these fluctuations we get the proportionality to x as appears in 4.11. The
situation is more subtle when x is small. For Shea and Acker type models the Dxx term, say, would
be dominated by terms of the form Z2

x/xZ2 which can diverge. We expect corrections from this end
to increase the average diffusion and therefore facilitate the crossing of a barrier, thereby reducing
the robustness of the switch more then Eq. (4.12) may suggest.

The Ci protein is found in numbers typically less then 180-350 for a healthy cell and error from
counting statistics alone contributes ±

√
(N) to the intrinsic noise. The uncertainty in ∆G and the

dimerization equation of state also induces a spread of trajectories. A convenient way to catch these
and other sources of stochasticity is to assert a diffusion tensor, Dij, with i, j twice indexing over the
protein species. This is equivalent to considering some Langevin like equation but allows us to use
partial differential equations to explore ensembles of trajectories. Noise of greater complexity then
gaussian noise can be readily studied with the software developed.

As with the other parameters in this model they are left determined by experiments and have
been given a simple form to understand the effects chance events could have on the dynamical picture.
In particular it can wash away higher resolution features which can for example remove the gap
between two nearby stabilities, facilitating perhaps the appearance of bistability when the dynamical
picture may suggest more structure. From the modeling perspective it can be useful to use large,
perhaps unphysically large (analagous to a high temperature limit), diffusion to speed up simulations
and see some of the more basic underlying features of the phase space. As diffusion gets smaller,
the steady states take exponentially longer to converge and can quickly become computationally
prohibitive. In these scenarios, where converging to a steady state from any arbitrary initial condition
is computationally prohibitive, the steady states from larger diffusion cases can serve as useful initial
conditions since they have already undergone a large degree of this convergence process and the
remaining time to equilibrium is for the finer resolution features to develop since the coarse features
were already present at the beginning of the simulation.

4.4 Little’s Mutants

Mutations in the OR region have been performed, see Little et al. [1999], and we would like to
check the performance of our model and suggest means to calibrate accordingly. The qualitative
features compare to experiment but quantitative comparison is premature, in particular the time and
concentration units need to be understood better. As is, the first passage times predict a smaller
barrier then observed.

Diffusion Tensor
mutant Dxx Dyy

λ123wild-type 3.90778 2.22668
λ121 0.775855 2.22668
λ323 2.6462 1.5024
λ323′ 2.0016 2.86862

Table 4.1: Values for diffusion tensors. λ323p in Little et al. [1999] is nearly λ222, the Ci affininities are
identical and Cro values differ by -.6 kcal/mol in the first and third site.
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4.4.1 Wild-Type Evolution

Four trajectories of distributions are depicted in Tables A.5, A.6, A.7 and A.8, corresponding to the
wild-type and mutants λ121, λ323, and λ323′ . It is evident that in the first 200 seconds, an initially
peaked distribution has developed a second peak and after about 600 seconds the distributions have
reached there steady states.

4.4.2 Steady state properties for OR Mutations

The Tables A.9, A.10, A.11, A.12, A.13, A.14, A.15, A.16, A.17, A.18, A.19, A.20, and A.21 archive the
results. Depicted are the phase space portraits alongside the Probability and Flux Landscapes and
above the passage time distributions to each of the three stationary points. Assorted expectation
values are calculated and can be compared with the wild-type.

In particular, we notice that with diffusion the peaks of the solutions are considerably displaced
towards smaller numbers from where one would expect the peaks from the deterministic equations.
This is required to satisfy the boundary condition and it would be interesting to see how a langevin
based approach can reproduce this ensemble property in that different trajectories would require
correlation.

Noise in this model seems to destabilize at least the mutants λ111, λ131, and λ312; a small or no
gap is present. The phage seems most robust in response to mutations in OR1 in that λ∗23 all have a
sizeable gap.

4.4.3 Hybrid particle and ensemble approaches

It is important to see how different paths contribute differently to the overall energy and entropy
profiles, see Seifert [2005], Stock et al. [2008b]. To illustrate the shape of these landscapes it is sufficient
to evaluate the steady state ensembles values along determinstic trajectories. These calculations are
depicted in Tables A.22, A.23, and A.24. 1 It is evident that different paths can converge to different
locations and demonstrates the motivation for a (more fundamental) dynamic partition function.

1Seifert [2005] suggests a definition of path entropy as s(τ) = −ln((x(τ), τ)), with x(τ) some stochastic
trajectory. The definition is sufficient to define a path entropy for any function x(τ), regardless of the motivation
of such functions. The principle of maximum caliber, see e.g. Stock et al. [2008b], is an effort to define a dynamic
partition function, over all such paths. There has been some success with this method for low number of states,
but in the discrete case, or the continuous case here, the implications are largely unknown.
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5 Conclusions and Future Directions

Daß es mir - oder Allen - so scheint, daraus folgt nicht, daß es so ist.
Ludwig Wittgenstein On Certainty

We have compared the probability that an unknown scientist should have found out what has
been vainly sought for so long, with the probability that there is one madman the more on the
Earth, and the latter has appeared to us the greater.

Henri Poincaré Science and Hypothesis

The particular contributions of this author towards this thesis, and towards other dynamical
systems not discussed in this thesis, are archived in Borggren [2011]. This has allowed for much
deeper quantitative inspection of the dynamical systems with noise then hitherto discussed with
the phage λ. This has allowed for the prediction of behaviour of phenotypes not yet synthesized
and furthur comparison with those that have been. Some subtlety involved with the removal of
RNA polymerase from the partition function has been discussed. The λ phage has been discussed
in physical and computational terms in hopes to present the system to a physics, mathematics,
and computational audience. The λ phage is proving to be to biophysics what hydrogen was for
quantum mechanics 1 and as such are a perfect testing grounds for empirical and ab initio physical,
computational and mathematical methods for gene expression.

Efforts should be made to link the connection with the decision portion of the cell cycle to the
bigger picture involving the upstream and downstream reactions and understand the connections
between all the parameters and variables, see St. Pierre [2009], Arkin and Ross. Solutions are only
initial conditions for the next portion of the cell cycle and our simple models are in danger of being
two simple as we are not left with much room under the rug to sweep degrees of freedom we choose
to ignore.

In particular volume should be connected into the modeling with greater care. The binding and
unbinding are in the end very specific bond types occuring at very specific times and proceeding in
terms of an idealized concentrations tends to wash out these subtleties. I can not say with confidence
if the model here can or can not corroborate the findings of St. Pierre [2009] with respect to the
sensitivity of the lysis and lysogeny decision being governed by volume. It can be said though that
the decision being sensitive to volume is not mutually exclusive to the decision also being controlled
by protein concentrations. In the mathematical sense we expect the spaces to be connected, volume is
in the end the denominator of these densities. A lot of the fluctuation can be considered fluctuation
of specific volume of cI. For example if one were to carefully wrap a cylinder around the helix bend
helix motif of the protein and associated dimerizations and tabulate the volume, that volume would
vary greatly over the course of say, a binding and unbinding process. This model lacks any specific
protein configuration and in general, specific volume can vary a great deal over this space. Discrete
jumps in that space would appear as noise in this model and would need to be tabulated as such
in the diffusion tensors for example. From a phenomenological perspective it is a useful construct
that is parameterized, ideally, by direct measurement and is a highly intuitive way to reproduce the
general features of the circuit.

1A point Jin Wang has made to motivate this study.
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Figure 5.1: Variational
forms used in this
work.

Python code
a = v*u*dx + 0.5*k*(inner(grad(v),-velocity*u)*dx +

inner(grad(v), D*grad(u))*dx)
L = v*u0*dx - 0.5*k*(inner(grad(v),-velocity*u0)*dx +

inner(grad(v), D*grad(u0))*dx)

5.0.4 On Computation and Information

It is important to realize that computers evolve simultaneously in two directions. Their is the physical
interface, the its that make the bits and the its that control them, but their is also the human interface
that establishes how we control the its that control the bits, and how the consequent bits are presented
back to us in such a way usable to our central nervous system.

5.0.4.1 The Physical Interface

The physical interface evolves in the direction of greater complexity. Moore’s law illustrates famously
that rates of (serial and electronic) computation are limited by size and heat production. Paral-
lelization, reversible logic, and quantum computation have all been under continual development
to circumvent these issues and with considerable success. Where a decade ago one would speak of
how fast there computer was, now one speaks of how many cores it has. This is parallelization’s
contribution. ℵ0 core would be the limiting case if this trend of the processor to duo − core to
quad− core to 2n core persists, but appended to the technical difficulties involved with space are
now the technical difficulties involved with time, the synchronization of the bits from all the its. The
limitation that won’t go away here is the speed of light, if A needs a signal from B before time t,
the situation is hopeless unless B is spatially located within ct of A. Multiple processors on a chip
enables a reduction in heat dissipated by providing channels for which heat can be carried away
from a processor. Cells to cells exhibit analagous, though much more sophisticated signaling, are for
closer to the ℵ0 − core limit, and being waterproof would certainly be convenient for transporting
heat elsewhere; 98.6 degrees is certainly quite a clue that bodies are quite adept at managing this
housekeeping heat. Reversible logic evades the heat issue while exacerbating the spatial issue since
intermediate steps are kept.

5.0.4.2 The Human Interface

The human interface evolves in the direction of greatest simplicity. Quantum Computer, classical
computer, topological quantum computer, chemical,... is trivia far from the concern of the user who
ultimately just wants to push a button and get a reliable answer. Contrast the fortran punch codes of
old with the following lines of python code that defines our variational forms:

These lines of code are the same no matter what mesh we choose, velocity we choose, time step,
initial condition, and diffusion tensor. When the code is called we better have defined what they
mean, but until then they are freely transferrable. See more examples in Logg et al. [2012].

A Gui was built to provide buttons to push to generate dynamical trajectories, Langevin trajecto-
ries, mesh trajectories (in which an entire domain is propagated in accordance with the flow field),
and diffusion trajectories. Systems built are the λ phage, λ phage with RNA polymerase, λ phage
approximating OL states, the cyclin system (see Wang et al. [2008]), the Lorenz attractor, and can
operate with imaginary numbers for the ode case.

Here is a screenshot showing multiple instances of the Gui from Borggren [2011].

5.1 On the importance of generality and the abstract

It is important that methods and calculations be reproducible and transferrable to different systems.
The study of dynamics in the most general settings can not be neglected for proper understanding of
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Figure 5.2: This
is the ℵ00000 Gui
demonstrating user
interaction with
equations of motion.
It reads equations of
motion of a system
and builds a Gui
to interact with that
system

the circuitry and signaling of cells.
Sun Ra says that it is laughable when knowledge is attributed to a man, Ra and Mugge [1980],

and this rings all the more true when the discussion is one that seeks to synthesize elements from
the great discoveries of physics: quantum mechanics and statistical mechanics, with the great
discoveries of biology, evolution, genes, and DNA to just begin. Chemistry has found itself central
to the discussions of biology as a result of being best positioned and adept at comprehending
the molecular basis and even the purest of mathematics at this stage can not escape its insights
from being applied to the problems of life. At this interface; engineers, medical doctors, biologists,
physicists, mathematicians, chemists, logicians, theologians and everybody else with hands and a
mind are trying to contribute to this story. The vacuousness of the borders of our disciplines has
become evident and we find Nature ready and willing to adapt to any of our biases. The wisdom of
Poincaré on mathematics equally applies to the whole of science as well:

We know very well that mathematics will continue to develop, but we have to find
out in what direction. I shall be told "in all directions," and that is partly true; but
if it were altogether true, it would become somewhat alarming. Our riches would
soon become embarrassing, and their accumulation would soon produce a mass just as
impenetrable as the unknown truth was to the ignorant.

So it is the case that Science and Method begins with a selection of facts, see Poincaré [2010]. For
Poincaré this consisted in those with the greatest chance of recurrence and to each of us our lives
come to be mirrors of our particular criterium of this selection process. Wittgenstein in his youth
would furthur require that this selection be from all the facts, see Wittgenstein [1922], but by the
end of his term he would have brushed that off to some of the symbolic games that we play, see
Wittgenstein [1975]. The world is more akin to a collection of statements then a collection of facts
and a statement can be true, false, or meaningless. Perhaps one may want to continue this line of
thinking to get a world that is a collection of words, but words require letters and something to
denote nothing to tell where one word ends and the next word begins. The statistical mechanics of
random words and strings of letters may be equally important, see Stephens and Bialek [2008, 2010].

What sets the subjects apart on this stage is no longer the content of their subject matter, it is
one in the same, but the psychological predispositions of the practitioners. What are the relevant
degrees of freedom? No two agree, but nor is it necessary for them to do so. A mutual respect is
in order, and as the tricks of noise and dynamics that can crash markets are now being applied to
the problems of life, let us walk gently into this night, none of these days have been promised to
us. Recall a giant meteor from outerspace was required to wipe out the dinosaurs and open up
our niche. Nobody can look a three-headed pterodactyl with flourescent wings in the eyes and call
themself the pinnacle of creation, and as far as I can tell, their is nothing prohibiting DNA to make
such a genome. Science is still new, our ignorance will be infinite, even while our knowledge can be
infinite too. For want of a common goal let us choose, at least, a moral one.

The only thing that could unite the planet is a united space program [health center]... the
earth becomes a space station [health center] and war is simply out, irrelevant, flatly insane
in a context of research centers, spaceports, and the exhilaration of working with people you
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like and respect toward an agreed-upon objective, an objective from which all workers will gain.
Happiness is a by-product of function. The planetary space station [health center] will give all
participants an opportunity to function.

William S. Burroughs, The Place of Dead Roads [NAB]

Toss in some clean water, money, and the cure for pain and we may asymptotically approach a
civil society. When the subject matter is infection and disease and the consequences are pain and
joy it would be imprudent for physics to wait for a topological quantum computer and all orders
of precision worked out to chime in to this story, which is still caught up in tabulating everything.
From the looks of the white house, and the dazzling noise of stock markets apparently stuck between
radio stations, the stalemate seem to persist straight up to the top.

The challenges of this century can provide an incomparable opportunity towards world scientific
collaboration as we learn to harness the resources we are enveloped in, or we can watch ourselves
fumble the oil into sea, and another mysterious earthquake, tornado and tsunami wipe out our cities,
as we choose the right color for our data points, and argue over what data points to delete.

The human genome is at least the magnitude of mystery it was a decade ago and bioinformatics
has been more successful at deciphering the code than, electricity, magnetism, statistical mechanics,
quantum mechanics, and all the other tools physicists pridefully declare universality with. Some
basic assumptions clearly need to be relinquished.

5.2 On the importance of the particular and the measurable; Case Studies

A model of the phage λ has been analyzed to illustrate how a particular system is queried. Given
that these crystal structures have been measured and good empirical force fields exist, these values
of ∆Gs can in principle begin to be predicted and compared to the values deduced from experiments.
Ab initio calculations of the OR region from first principle Hamiltonians may take some time
but until then it is exactly these types of mechanisms that motivate experiments like NSLS to do
such crystallographic measurements and empirical protein and DNA force fields are developed
to illuminate. Understanding the relation of these nanoscopic structures and dynamics to the
macroscopic flows of energy and entropy is the basic question necessary to address in order to
appreciate the full value of the accumulated data and begin to use it for clinically relevant purposes.
Nuclear magnetic resonance, NMR, is also regularly used to investigate more directly these ensemble
properties in vivo, near equilibrium, and can also be used to constrain these numbers. The difference
between in vitro and in vivo values for the weights has already been demonstrated to induce
topological changes. These numbers have a taxonomy tree of their own as measurement techniques
get refined. Our phenomenology here continues to rely on fits to the primary datum from the
biological measurements. Physics will learn a lot from the networks that make up biological systems
and the manners in which they give rise to emergent degrees of freedom. In order to address
the concerns of Little et al. [1999], and perhaps many other scientists who are typically more
concerned about large scale qualitative differences, like the difference of lysogeny and lysis, we will
scan parameters as much as we can in this volume of spacetime. The particular values of ∆G are
dependant in some complicated way to evolution, volume, temperature, ph, doping, in vitro, in vivo
and a host of other unknowns, can and do change on large scales. Schrodinger’s anthropomorphic
remark can be applied here: it is exactly robustness to these type of changes that allow it to exist at
300K for so long in the first place. Here we note a difference in the use of the terminology ‘robust’
between biologists and the use in subsequent theoretical work. For Little, robustness is the property
that two states, lytic and lysogenic, are still present after large scale mutations, changes in ∆G due
to switching say, site 3 with a copy of site 1. This is a transformation on the level of the partition
function in that the ∆G values change. This differs from the use of robustness in the sense of Zhu
et al. [2004], Wang et al. [2010], Aurell and Sneppen [2002], which uses this word to describe the
small rate at which a cell state switches spontaneously as a result of noise. The phage can be robust
in both senses. It is even robust against our attempts to model it.

Binding studies for drug docking often involve phenomenon of this sort and computational drug
design as well. This is a largely trial and error process, and perhaps some topological information is
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due. Biologists are often skeptical of the latest grand unification scheme from the physicists and the
applied mathematicians, and their skepticism is mimed here. The main point of seperation, as I see
it, between the two subjects is in a sense a question of topology. The mass of an electron is a number
with small error bars that with hard work can be made even smaller. It is repeatable and exists on
other planets too, the numbers of biology are scarce when present. The facts they prefer to select on
are topological in nature to lyse or not to lyse?

5.2.1 Robustness, robustness, stability, and stability

..., I am referring to something that mere words will never be able to express, relative, absolute,
full, empty, still alive and no longer alive, because, sir, in case you don’t know it, words move,
they change from one day to the next, they are as unstable as shadows, are themselves shadows,...

José Saramago, Death with interruptions

In the overlap of subjects it is quite expected for there to be ambiguity between the different uses
of the same word. This is all too common place and has been a perrenial source of confusion in
this study. Two examples are worthy of note, the notion robust in the title of Little et al. [1999] is
different then the use of the same word in the subsequent work of Wang et al. [2008], Zhu et al. [2004].
The first use is to denote the propensity of phage λ to maintain a working switch after particular
mutations in the OR sites. This is a change at the level of the partition function, the genome has
fundamentally changed, yet the bistability persists, it is robust. The second use refers to something
fundamentally different: the capacity of a lysogen to stay a lysogen by continuous maintenance by
Ci protein to keep, in particular, the cro gene from expression. The use of the word stability in Little
et al. [1999] is exactly what Wang et al. [2008], Zhu et al. [2004] refer to as robustness, reserving their
use of the word stability to refer to the mathematical use of describing the nature of the stationary
points. Stability and robustness are used interchangeably in Aurell and Sneppen [2002].

With a four order magnitude spread in the refereed values of the numbers quantifying robustness,
it is possible that there is some misunderstanding here. Indeed the numbers reported as experimental
in Wang et al. [2010] are not strictly speaking experimental numbers at all, they involve simulation as
well, and Little has now decreased those numbers to 10−8 or 10−9, in units of lysogens flipping per
generation, but has not published these numbers in a refereed journal and caveats the measurement
as very difficult when it arises. Finding a more realistic diffusion tensor and better oligomerization
equations of state are likely to help better quantify the robustness in the model. We note that in
the large concentration limit, where the dynamics picture is sufficient, the phase space completely
partitions into two basins of attraction and the number is simply 0. The stability puzzle is still
puzzling.

5.3 Algebraic, Analytical, or Computational Methods?

A computational approach, the finite elements, were eventually decided upon for the practical
solution of the differential equations herein Logg et al. [2012]. Other methods were available and
attempted. In particular an algebraic approach was also investigated (see Marcus [1960], Figueiredo
et al. [1998]), and a brute-force analytic approach was used in Snider [1999]. These are briefly
discussed but were found not as immediately illuminating as the numerical approach throughout.

5.3.1 Non-Associative Commutative Algebra

A differential equation is associated with a non-associative algebra such that invariant manifolds of
the differential equation correspond to invariant sub-algebras of the algebra. In particular, given a
dynamical system, expand in a form,

ẋi =
m

∑
j=1

Aij

n

∏
k=1

x
Bjk

k , (5.1)
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we can then define a matrix M = BA and a system U̇i = Ui MijUj. This is then a quadratic
system and the methods of Marcus apply; we can define an algebra by introducing a product
ui ∗ uj =

1
2 (δik Mkj + δij Mjk).

5.3.2 Recursion Equations for Expansion coefficients

In particular, a dynamical system with some noise is concisely written adopting the summation
convention

∂tP = ∂iDij∂jP− ∂i(FiP), (5.2)

Roman indices run from 1 to K over the generalized coordinates of the system. This relates the time
change of the surface P with a diffusion term and the flow field of the dynamical system. The noise
has effectively been smoothed and encoded in the surface P through the diffusion tensor Dij. To be
explicit, by ∂iDij∂jP we mean ∂i(Dij(∂jP)).

The zero is used to denote the time index and thus K + 1 indices over the non-negative integers
are summed over. Ansatz P, a polynomial expansion of the form

P(x0, x1, ..., xK) = pi0,i1,...,iK ∏
j=0,...,K

x
ij

j , (5.3)

and similarly for the components of F

Fm(x0, x1, ..., xK) = fm,i0,i1,...,iK ∏
j=0,...,K

x
ij

j . (5.4)

We have allowed the index corresponding to powers of xi to run over a countably infinite set if need
be, however the m counts only the K indices of the coordinates. In general we need an analogue
expansion for Dmn. We will soon specify to the constant diffusion case, which is lowest order of the
general case

Dmn(x0, x1, ..., xK) = Dm,n,i0,i1,...,iK ∏
j=0,...,K

x
ij

j . (5.5)

Term by term we will decipher equation (5.2),

∂tP(x0, x1, ..., xK) = pi0,i1,...,iK (i0xi0−1) ∏
j=1,...,K

x
ij

j = pi0+1,i1,...,iK (i0 + 1) ∏
j=0,...,K

x
ij

j . (5.6)

Here we specify constant diffusion tensors. For the next term in equation (5.2), the coefficients on the
diagonal are related by

Dmm∂m∂mP(x0, x1, ..., xK) = Dmm pi0,i1,...,im+2,...,iK (im + 2)(im + 1) ∏
j=1,...,K

x
ij

j , (5.7)

and off diagonal by

Dmn∂m∂nP(x0, x1, ..., xK) = pi0,i1,...,im+1,...,in+1,...,iK (im + 1)(in + 1) ∏
j=1,...,K

x
ij

j . (5.8)

The last term in equation (5.2) has two contributions through the product rule,

(∂mFm)P(x0, x1, ..., xK) = ( fm,i′0,i′1,...,i′m+1,...,i′K
(i′m + 1) ∏

j=0,...,K
x

i′j
j )pi0,i1,...,im ,...,iK ∏

j=1,...,K
x

ij

j , (5.9)

Fm∂mP(x0, x1, ..., xK) = ( fm,i′0,i′1,...,i′K ∏
j=0,...,K

x
i′j
j )pi0,i1,...,im+1,...,iK (im + 1) ∏

j=1,...,K
x

ij

j . (5.10)
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These become

(∂mFm)P(x0, x1, ..., xK) = fm,i′0,i′1,...,i′m+1,...,i′K
(i′m + 1)pi0,i1,...,im ,...,,iK ∏

j=1,...,K
x

i′j+ij

j , (5.11)

Fm∂mP(x0, x1, ..., xK) = fm,i′0,i′1,...,i′K
pi0,i1,...,im+1,...,iK (im + 1) ∏

j=1,...,K
x

i′j+ij

j . (5.12)

Let us simplify by saying the diffusion tensor is diagonal. Substituting into the differential
equation yields

pi0+1,i1,...,iK (i0 + 1) ∏
j=0,...,K

x
ij

j = Dmm pi0,i1,...,im+2,...,iK (im + 2)(im + 1) ∏
j=1,...,K

x
ij

j

− fm,i′0,i′1,...,i′m+1,...,i′K
pi′′0 ,i′′1 ,...,i′′m ,...,,i′′K

(i′m + 1) ∏
j=1,...,K

x
i′j+i′′j
j (5.13)

− fm,i′0,i′1,...,i′K
pi′′0 ,i′′1 ,...,im+1′′ ,...,i′′K

(i′′m + 1) ∏
j=1,...,K

x
i′j+i′′j
j .

Setting the coefficients of ∏j=0,...,K x
ij

j equal on both sides gives the recursion relation

pi0+1,i1,...,iK (i0 + 1) = Dmm pi0,i1,...,im+2,...,iK (im + 2)(im + 1)

− ∑
i′j+i′′j =ij

fm,i′0,i′1,...,i′m+1,...,i′K
pi′′0 ,i′′1 ,...,i′′m ,...,,i′′K

(i′m + 1) (5.14)

− ∑
i′j+i′′j =ij

fm,i′0,i′1,...,i′K
pi′′0 ,i′′1 ,...,im+1′′ ,...,i′′K

(i′′m + 1).

A steady state solution in particular requires pi0 = 0 for all i. So that the index can be dropped
altogether.

0 = Dmm pi1,...,im+2,...,iK (im + 2)(im + 1)

− ∑
i′j+i′′j =ij

fm,i′1,...,i′m+1,...,i′K
pi′′1 ,...,i′′m ,...,,i′′K

(i′m + 1) (5.15)

− ∑
i′j+i′′j =ij

fm,i′1,...,i′K
pi′′1 ,...,im+1′′ ,...,i′′K

(i′′m + 1).

The software of Borggren [2011], can also perform calculations based on these approaches.

5.4 From biology to physics to biology

Physics has always relied heavily on progress from biology for its own progress. The lung predates
the steam engine and it is unlikely the latter would have emerged without the scientific inspection of
the former. The central nervous system predates the understanding of electricity and again the latter
would not have emerged without the scrutiny of the former.

Consider the timelime of the study of metabolism, see Kilgour [1955]. Around 1500, Leonardo da
Vinci likened the burning of a candle to animal nutrition, from which he infered that an atmosphere
that could not support combustion would also not support animals. In 1648, Van Helmont coins the
word ’gas’ in a journal for medicine under the title Ortus Medicinae. The first gas described as such
was CO2, the biproduct of animal respiration. From 1660-1678 Robert Boyle developed experiments
that studied the changes in a volume of air due to respiration and combustion and similarly for
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Mayow’s Treatise on Respiration. In 1754 Black discovered fixed air, CO2. In 1766, Cavendish discovered
inflammable air, H2. In 1772, Rutherford describes residual air, N2. In 1780, with their new invention,
the calorimeter, Lavoisier and Laplace conclude that da Vinci’s hypothesis of respiration being a form
of combustion is indeed the case in their beautiful paper Memoir on Heat. Thus the groundwork had
been laid for thermodynamics and the subsequent industrial revolution, the driving force of which
having been the study of respiration.

One only need to read the bibliography of Hermann Helmholtz to see that physiology was a
driving force in the study of electricity and acoustics, see Helmholtz [1954].

Progress in physics in the 20th century, given the equipment and good mathematical abstractions
of the 19th century, managed on its own for a century without much aid from biology and chemistry,
but now it is time to revisit the old phenomena, with our new lights, and actually solve some
problems.

Biologists and chemists have handed us the structures of their molecules, the wirings of their
systems, and the phase diagrams of their compounds. If those are the answers and statistical
mechanics and quantum mechanics provide the questions, what is left but the proof?
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A Appendix; Tabulation of Results

Ineluctable modality of the visible: at least that if no more, thought through my eyes.
Signatures of all things I am here to read, seaspawn and seawrack, the nearing tide, that rusty
boot. Snotgreen, bluesilver, rust: coloured signs. Limits of the diaphane. But he adds: in bodies.
Then he was aware of them bodies before of them coloured. How? By knocking his sconce against
them, sure. Go easy. Bald he was and a millionaire, maestro di color che sanno. Limit of the
diaphane in. Why in? Diaphane, adiaphane. If you can put your five fingers through it, it is a
gate, if not a door. Shut your eyes and see.

James Joyce, Ulysses

We live, I regret to say, in an age of surfaces. Oscar Wilde, The importance of being earnest

A.1 Results

The phase portraits for the 27 mutations are shown in Tables A.1, A.2 and A.3.
The switch component of 3 of the 9 mutations in Table A.1 are destabilized: λ112,λ122,

and λ132. Transients however are still largely important for the out of equilibrium
switch properties. 3 of the 9 mutations in Table A.2 are destabilized: λ212,λ221, and
λ231. Transients however are still largely important for the out of equilibrium switch
properties. 5 of the 9 mutations in Table A.3 are destabilized: λ311,λ321, λ322, λ331 and
λ332. Transients however are still largely important for the out of equilibrium switch
properties.

The locations of the stationary points are tabulated in Tables A.1, A.2, A.3, and A.4.
Time evolution of distributions is given in Tables A.5, A.6, A.7 and A.8, corresponding

to the wild-type and mutants λ121, λ323, and λ323′ .
The Tables A.9, A.10, A.11, A.12, A.13, A.14, A.15, A.16, A.17, A.18, A.19, A.20, and

A.21 archive the results of mutants with three stationary points. Depicted are the phase
space portraits alongside the Probability and Flux Landscapes and above the passage
time distributions to each of the three stationary points. Assorted expectation values are
calculated and can be compared with the wild-type.

Representative trajectories, encoding global features, are depicted in Tables A.22,
A.23, and A.24.
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Figure A.1: Contours
with stationary Ci
and Cro production
with OR1 fixed. The
axis are in protein
numbers. 3 of the 9
mutations are desta-
bilized: λ112,λ122,
and λ132
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Figure A.2: Contours
with stationary Ci
and Cro production
with OR1 fixed. The
axis are in protein
numbers. 3 of
the 9 mutations are
destabilized:λ212,λ221,
and λ231.
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Figure A.3: Contours
with stationary Ci
and Cro production
with OR1 mutated to
OR3 . 5 of the 9 mu-
tations are destabi-
lized: λ311,λ321, λ322,
λ331 and λ332.
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Properties of the Stationary Point
Mutant x (Ci proteins) y (Cro proteins)
λ112

404.90 0.0009
λ122

404.89 0.0232
λ132

404.89 0.1173
λ212

329.88 0.02954
λ221

0.3535 712.24
λ231

1.7522 312.15
λ311

3.4415 214.70
λ321

1.7532 312.14
λ322

10.253 309.57
λ331

6.1379 153.09
λ332

20.403 152.35

Table A.1: Mutants with one stationary point.

Properties of Stationary Points
Mutant index x (Ci Proteins) y (Cro Proteins)
λ113

0 644.05 0.00023
1 0.31299 310.32500

Table A.2: Mutants with two stationary points.
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Properties of Stationary Points
Mutant index x (Ci Proteins) y (Cro Proteins)
λ111

0 5.6833 301.287
1 1.8180 310.218
2 127.87 0.03220

λ121
0 19.9875 332.348
1 0.82427 462.571
2 127.86 0.8235

λ123 wild-type
0 0.141753 462.57273
1 644.05 0.00611
2 29.979 178.229

λ131
0 30.0039 191.3784
1 3.43968 216.27658
2 127.812 4.168042

λ133
0 48.6464 130.6941
1 0.6369 216.311
2 644.043 0.0309

λ211
0 17.505 206.876
1 37.3015 4.8364
2 0.8244 462.570

λ213
0 0.14175 462.572
1 595.05 0.00679
2 29.938 177.711

λ222
0 37.234 590.517
1 2.6864 712.240
2 329.884 0.7555

Table A.3: Mutants with three stationary points.
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Stationary Points
Mutant index x (Ci Proteins) y (Cro Proteins)
λ223

0 0.06002 712.247
1 595.04 0.17382
2 83.624 103.62

λ232
0 56.762 289.227
1 10.272 312.072
2 329.829 3.82207

λ233
0 0.30934 312.153
1 146.0568 74.57208
2 594.8508 0.87984

λ312
0 19.08756 102.4368
1 13.3744 163.4361
2 158.8459 0.47835

λ313
0 44.4330 100.41068
1 0.63744 216.3115
2 436.73205 0.054279

λ323
0 0.30935 312.15312
1 133.92 52.23903
2 436.115 1.393207

λ333
0 1.24472 153.1449
1 267.603 28.44186
2 417.693 7.90558

Table A.4: Mutants with three stationary points (continued)
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Time Evolution
time +0 +100 +200

t = 1

t = 301

t = 601

t = 901

Table A.5: The time evolution of a gaussian initial condition relaxing into the steady state for the
wild type. The higher peak corresponds to lytic while the wider peak is lysogenic.
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Time Evolution
time +0 +100 +200

t = 1

t = 301

t = 601

t = 901

Table A.6: The time evolution of a gaussian initial condition relaxing into the steady state for the
121 mutant. The dominant peak is the lysogenic peak.
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Time Evolution
time +0 +100 +200

t = 1

t = 301

t = 601

t = 901

Table A.7: The time evolution of a gaussian initial condition relaxing into the steady state for the
323 mutant. The dominant peak is lytic. The gap is reduce compared to wild type.
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Time Evolution
time +0 +100 +200

t = 1

t = 301

t = 601

t = 901

Table A.8: The time evolution of a gaussian initial condition relaxing into the steady state for the
323p mutant. The dominant peak is lysogenic.
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λ121 steady state and first passage time distributions
OR1 TATCACCGCCAGAGGTA
OR2 TAACACCGTGCGTGTTG
OR3 TATCACCGCCAGAGGTA
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λ121 Assorted Expectation Values ratio to λ123

< x > (Ci protein)
∫

Ω xρ(x,y)dxdy∫
Ω ρ(x,y)dxdy 114.899 1.234

< y > (Cro protein)
∫

Ω yρ(x,y)dxdy∫
Ω ρ(x,y)dxdy 193.112 1.137

< τ0 > (seconds to ts)
∫

Ω τ0(x,y)ρ(x,y)dxdy∫
Ω ρ(x,y)dxdy 11177.264 0.527

< τ1 > (seconds to lytic)
∫

Ω τ1(x,y)ρ(x,y)dxdy∫
Ω ρ(x,y)dxdy 103986.923 1.113

< τ2 > (seconds to lysogen)
∫

Ω τ2(x,y)ρ(x,y)dxdy∫
Ω ρ(x,y)dxdy 22020.823 0.083

Table A.9: Properties of mutant λ121
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λ123 steady state and first passage time distributions
OR1 TATCACCGCCAGAGGTA
OR2 TAACACCGTGCGTGTTG
OR3 TATCACCGCAAGGGATA
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λ123 Assorted Expectation Values
< x > (Ci protein)

∫
Ω xρ(x, y)dxdy/

∫
Ω ρ(x, y)dxdy 93.076

< y > (Cro protein)
∫

Ω yρ(x, y)dxdy/
∫

Ω ρ(x, y)dxdy 169.777
< τ0 > (seconds to lytic)

∫
Ω τ0(x, y)ρ(x, y)dxdy/

∫
Ω ρ(x, y)dxdy 93387.22

< τ1 > (seconds to lysogenic)
∫

Ω τ1(x, y)ρ(x, y)dxdy/
∫

Ω ρ(x, y)dxdy 263858.749
< τ2 > (seconds to transition state)

∫
Ω τ2(x, y)ρ(x, y)dxdy/

∫
Ω ρ(x, y)dxdy 21214.802

Table A.10: Properties of wild-type λ123
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λ131 steady state and first passage time distributions
OR1 TATCACCGCCAGAGGTA
OR2 TATCACCGCAAGGGATA
OR3 TATCACCGCCAGAGGTA
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λ131 Assorted Expectation Values ratio to λ123

< x > (Ci protein)
∫

Ω xρ(x,y)dxdy∫
Ω ρ(x,y)dxdy 117.454 1.262

< y > (Cro protein)
∫

Ω yρ(x,y)dxdy∫
Ω ρ(x,y)dxdy 143.183 0.843

< τ0 > (seconds to ts)
∫

Ω τ0(x,y)ρ(x,y)dxdy∫
Ω ρ(x,y)dxdy 8084.495 0.381

< τ1 > (seconds to lysogenic)
∫

Ω τ1(x,y)ρ(x,y)dxdy∫
Ω ρ(x,y)dxdy 13499.860 0.051

< τ2 > (seconds to lytic)
∫

Ω τ2(x,y)ρ(x,y)dxdy∫
Ω ρ(x,y)dxdy 12908.285 0.138

Table A.11: Properties of mutant λ131
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λ133 steady state and first passage time distributions
OR1 TATCACCGCCAGAGGTA
OR2 TATCACCGCAAGGGATA
OR3 TATCACCGCAAGGGATA
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λ133 Assorted Expectation Values ratio to λ123

< x > (Ci protein)
∫

Ω xρ(x,y)dxdy∫
Ω ρ(x,y)dxdy 93.227 1.002

< y > (Cro protein)
∫

Ω yρ(x,y)dxdy∫
Ω ρ(x,y)dxdy 137.624 0.8106

< τ0 > (seconds to ts)
∫

Ω τ0(x,y)ρ(x,y)dxdy∫
Ω ρ(x,y)dxdy 12264.638 0.578

< τ1 > (seconds to lytic)
∫

Ω τ1(x,y)ρ(x,y)dxdy∫
Ω ρ(x,y)dxdy 21628.286 0.232

< τ2 > (seconds to lysogenic)
∫

Ω τ2(x,y)ρ(x,y)dxdy∫
Ω ρ(x,y)dxdy 198518.768 0.752

Table A.12: Properties of mutant λ133
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λ211 steady state and first passage time distributions
OR1 TAACACCGTGCGTGTTG
OR2 TATCACCGCCAGAGGTA
OR3 TATCACCGCCAGAGGTA
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λ211 Assorted Expectation Values ratio to λ123

< x > (Ci protein)
∫

Ω xρ(x,y)dxdy∫
Ω ρ(x,y)dxdy 329.760 3.543

< y > (Cro protein)
∫

Ω yρ(x,y)dxdy∫
Ω ρ(x,y)dxdy 120.570 0.710

< τ0 > (seconds to lytic)
∫

Ω τ0(x,y)ρ(x,y)dxdy∫
Ω ρ(x,y)dxdy 7388.126 0.079

< τ1 > (seconds to ts)
∫

Ω τ1(x,y)ρ(x,y)dxdy∫
Ω ρ(x,y)dxdy 39165.111 1.846

< τ2 > (seconds to lysogenic)
∫

Ω τ2(x,y)ρ(x,y)dxdy∫
Ω ρ(x,y)dxdy 122448.847 0.464

Table A.13: Properties of mutant λ211
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λ213 steady state and first passage time distributions
OR1 TAACACCGTGCGTGTTG
OR2 TATCACCGCCAGAGGTA
OR3 TATCACCGCAAGGGATA
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λ213 Assorted Expectation Values ratio to λ123

< x > (Ci protein)
∫

Ω xρ(x,y)dxdy∫
Ω ρ(x,y)dxdy 105.183 1.130

< y > (Cro protein)
∫

Ω yρ(x,y)dxdy∫
Ω ρ(x,y)dxdy 141.037 0.831

< τ0 > (seconds to lytic)
∫

Ω τ0(x,y)ρ(x,y)dxdy∫
Ω ρ(x,y)dxdy 90915.013 0.974

< τ1 > (seconds to lysogenic)
∫

Ω τ1(x,y)ρ(x,y)dxdy∫
Ω ρ(x,y)dxdy 212601.812 0.806

< τ2 > (seconds to ts)
∫

Ω τ2(x,y)ρ(x,y)dxdy∫
Ω ρ(x,y)dxdy 20741.420 0.978

Table A.14: Properties of mutant λ213
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λ222 steady state and first passage time distributions
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λ222 Assorted Expectation Values
< x > (Ci protein)

∫
Ω xρ(x, y)dxdy/

∫
Ω ρ(x, y)dxdy 230.600

< y > (Cro protein)
∫

Ω yρ(x, y)dxdy/
∫

Ω ρ(x, y)dxdy 216.398
< τ0 > (seconds)

∫
Ω τ0(x, y)ρ(x, y)dxdy/

∫
Ω ρ(x, y)dxdy 305052.530

< τ1 > (seconds)
∫

Ω τ1(x, y)ρ(x, y)dxdy/
∫

Ω ρ(x, y)dxdy 1065951
< τ2 > (seconds)

∫
Ω τ2(x, y)ρ(x, y)dxdy/

∫
Ω ρ(x, y)dxdy 13739.885

Table A.15: Properties of mutant λ222

67



λ223 steady state and first passage time distributions
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λ223 Assorted Expectation Values
< x > (Ci protein)

∫
Ω xρ(x, y)dxdy/

∫
Ω ρ(x, y)dxdy 102.346

< y > (Cro protein)
∫

Ω yρ(x, y)dxdy/
∫

Ω ρ(x, y)dxdy 202.666
< τ0 > (seconds)

∫
Ω τ0(x, y)ρ(x, y)dxdy/

∫
Ω ρ(x, y)dxdy 30623.759

< τ1 > (seconds)
∫

Ω τ1(x, y)ρ(x, y)dxdy/
∫

Ω ρ(x, y)dxdy 826935.205
< τ2 > (seconds)

∫
Ω τ2(x, y)ρ(x, y)dxdy/

∫
Ω ρ(x, y)dxdy 815868.173

Table A.16: Properties of mutant λ223
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λ232 steady state and first passage time distributions
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λ232 Assorted Expectation Values
< x > (Ci protein)

∫
Ω xρ(x, y)dxdy/

∫
Ω ρ(x, y)dxdy 231.352

< y > (Cro protein)
∫

Ω yρ(x, y)dxdy/
∫

Ω ρ(x, y)dxdy 160.462
< τ0 > (seconds)

∫
Ω τ0(x, y)ρ(x, y)dxdy/

∫
Ω ρ(x, y)dxdy 122528.722

< τ1 > (seconds)
∫

Ω τ1(x, y)ρ(x, y)dxdy/
∫

Ω ρ(x, y)dxdy 175675.148
< τ2 > (seconds)

∫
Ω τ2(x, y)ρ(x, y)dxdy/

∫
Ω ρ(x, y)dxdy 11888.417

Table A.17: Properties of mutant λ232
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λ233 steady state and first passage time distributions
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λ233 Assorted Expectation Values
< x > (Ci protein)

∫
Ω xρ(x, y)dxdy/

∫
Ω ρ(x, y)dxdy 103.439

< y > (Cro protein)
∫

Ω yρ(x, y)dxdy/
∫

Ω ρ(x, y)dxdy 149.505
< τ0 > (seconds)

∫
Ω τ0(x, y)ρ(x, y)dxdy/

∫
Ω ρ(x, y)dxdy 10320.871

< τ1 > (seconds)
∫

Ω τ1(x, y)ρ(x, y)dxdy/
∫

Ω ρ(x, y)dxdy 43522.861
< τ2 > (seconds)

∫
Ω τ2(x, y)ρ(x, y)dxdy/

∫
Ω ρ(x, y)dxdy 564417.963

Table A.18: Properties of mutant λ233
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λ312 steady state and first passage time distributions
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λ312 Assorted Expectation Values
< x > (Ci protein)

∫
Ω xρ(x, y)dxdy/

∫
Ω ρ(x, y)dxdy 159.2588

< y > (Cro protein)
∫

Ω yρ(x, y)dxdy/
∫

Ω ρ(x, y)dxdy 199.500
< τ0 > (seconds)

∫
Ω τ0(x, y)ρ(x, y)dxdy/

∫
Ω ρ(x, y)dxdy 7637.354

< τ1 > (seconds)
∫

Ω τ1(x, y)ρ(x, y)dxdy/
∫

Ω ρ(x, y)dxdy 7311.862
< τ2 > (seconds)

∫
Ω τ2(x, y)ρ(x, y)dxdy/

∫
Ω ρ(x, y)dxdy 19007.010

Table A.19: Properties of mutant λ312
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λ313 steady state and first passage time distributions
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λ313 Assorted Expectation Values
< x > (Ci protein)

∫
Ω xρ(x, y)dxdy/

∫
Ω ρ(x, y)dxdy 130.454

< y > (Cro protein)
∫

Ω yρ(x, y)dxdy/
∫

Ω ρ(x, y)dxdy 146.169
< τ0 > (seconds)

∫
Ω τ0(x, y)ρ(x, y)dxdy/

∫
Ω ρ(x, y)dxdy 10679.975

< τ1 > (seconds)
∫

Ω τ1(x, y)ρ(x, y)dxdy/
∫

Ω ρ(x, y)dxdy 13379.790
< τ2 > (seconds)

∫
Ω τ2(x, y)ρ(x, y)dxdy/

∫
Ω ρ(x, y)dxdy 129138.611

Table A.20: Properties of mutant λ313
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λ323 steady state and first passage time distributions
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λ323 Assorted Expectation Values
< x > (Ci protein)

∫
Ω xρ(x, y)dxdy/

∫
Ω ρ(x, y)dxdy 117.832

< y > (Cro protein)
∫

Ω yρ(x, y)dxdy/
∫

Ω ρ(x, y)dxdy 223.495
< τ0 > (seconds)

∫
Ω τ0(x, y)ρ(x, y)dxdy/

∫
Ω ρ(x, y)dxdy 8119.700

< τ1 > (seconds)
∫

Ω τ1(x, y)ρ(x, y)dxdy/
∫

Ω ρ(x, y)dxdy 45614.933
< τ2 > (seconds)

∫
Ω τ2(x, y)ρ(x, y)dxdy/

∫
Ω ρ(x, y)dxdy 413661.916

Table A.21: Properties of mutant λ323
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Table A.22: Entropy and Energy densities evaluated along example paths for mutations in OR2,R3
with the OR1 fixed. Different trajectories can have different limiting values of entropy and energy
density depending on the path taken.
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Table A.23: Entropy and Energy densities evaluated along example paths for mutations in OR2,R3
with the OR1 mutated into OR2. Different trajectories can have different limiting values of en-
tropy and energy density depending on the path taken.
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Table A.24: Entropy and Energy densities evaluated along example paths for mutations in OR2,R3
with the OR1 mutated into OR3. Different trajectories can have different limiting values of en-
tropy and energy density depending on the path taken.
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