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Abstract of the Dissertation

Optimization Techniques for Memory
Virtualization-based Resource Management

by

Jui-Hao Chiang

Doctor of Philosophy
in
Computer Science
Stony Brook University
2012

Memory virtualization abstracts the physical memory resources in
a virtualized server in such a way that offers many resource man-
agement advantages, such as consolidation, sharing, compression
and migration. The main goal of this dissertation project is to
develop optimization techniques to resource management schemes
based on memory virtualization. Although migration of virtual
machine (VM) memory state is a standard feature of most modern
hypervisors, migration of physical machine memory state is largely
non-existent. We applied the standard VM migration technique to
building the first known physical machine state migration system
for Linux servers, which significantly increases the system man-
agement flexibility for physical machine administration. Virtual
machine introspection (VMI) allows the internal states of a VM
to be analyzed. We exploited VMI to identify free memory pages,
and leverage this knowledge to significantly improve the efficiency
of memory de-duplication and memory state migration. To ana-
lyze undocumented data structures in different kernel versions, we
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developed a novel memory analysis procedure that programmati-
cally takes advantage of the availability of guest kernel source code
when it exists. To further increase memory utilization, we propose
an adaptive memory compression scheme that makes better use of
the physical memory resources of virtualized servers by accurately
and efficiently tracking the working sets of individual VMs. Fi-
nally, cloning a VM involves copying of the VM’s memory pages.
To minimize the memory copying overhead when cloning a VM
on the same physical machine, we propose a lazy memory state
creation scheme that defers the copying of a cloned VM’s memory
pages and its memory mapping tables to the last possible moment.
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Chapter 1

Introduction

In the virtualized environment, the Virtual Machine Monitor (VMM), hyper-
visor in short, manages the hardware resource for VMs running on top of
it, which resembles to the way that traditional operating system (OS) man-
ages the hardware resources for processes. The VMM abstracts the hardware
resources including CPU, memory, and I/O devices from the underlying bare-
metal hardware of the physical machine, and then allocates them as virtual
CPU, virtual memory, and virtual I/O devices to the VMs running on top
of it. The system administration in the virtualized environment requires the
same kind of flexibility for system fault tolerance, low-level maintenance, and
load balancing as that of the traditional data center without virtualization
techniques.

In the following sections, we first introduce the concept of virtualization,
and talk about various applications of it with their vanilla designs and limita-
tions. We are motivated by finding that these applications are either lacking
important features or come with poor performance mostly due to the imma-
turity of its memory virtualization technique. As a result, we proposed the
corresponding optimization mechanisms to these applications.

1.1 Server Virtualization Technology

In the traditional computer architecture as Figure 1.1 shows, the OS is running
directly on top of bare-metal hardware, which is responsible for probing hard-
ware devices, setting up communication channels and configuring them with
appropriate hardware drivers from various hardware vendors. After proper
setup of hardware, the OS provides them as system resource including CPU,
memory, and /O devices. Later on, the OS is able to allocate these system
resource to upper processes or applications (APs) based on its own policy. Tak-



. BEE

D Real hardware device/state

Figure 1.1: Software architecture of physical machine. The operating system
(OS) is running on bare-metal hardware and applications (APs) are running
as processes/threads scheduled by OS.

ing CPU as an example, the OS can allocate CPU cycles to each process using
time-sharing concept so that the process or the corresponding application can
perform its own work by sharing the CPU resource with other applications.
And the application can serve for any purpose based on the requirement of
user or system administrator, e.g., office applications for desktop users and
web server for Internet service providers.

As Figure 1.2 shows, unlike the traditional computer architecture, the vir-
tualization technology has another piece of software, the Virtual Machine Mon-
itor or hypervisor in short, to run on top of the bare-metal hardware. It sits at
the same level as the OS in the traditional architecture, and has the same kind
of responsibility to manage hardware resource. The hardware including CPU,
memory, and I/O devices are abstracted as virtual CPU, virtual memory, and
virtual I/O devices to the upper running VMs. This technique is referred to
as Hardware Abstraction Layer based or HAL-based virtualization. From
the viewpoint of hypervisor, VMs are just similar to processes or applications
in traditional computer architecture. The VMs run on these virtual hardware
have an illusion that they are running on bare-metal hardware, and have their
own OSs, processes or applications running inside as usual. The VM can also
be referred to as guest and the OS running inside VM is referred to as guest
0S.

The hypervisor schedules the virtual CPUs of VMs as its basic scheduling
unit, which is similar to scheduling processes in traditional OS. Also, the
physical memories are allocated to VMs by hypervisor as the traditional OS
assigns virtual memory to processes. Finally, all hardware I/O requests for
the VMs are served by hypervisor, and sent to or received from VMs by using
event channels.
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Figure 1.2: Software architecture of Virtual Machines. The Virtual Machine
Monitor (VMM) or hypervisor in short is running on bare-metal hardware, and
Virtual Machines are scheduled by hypervisor as processes/threads running on
the traditional OS.

In the cloud or virtualized environment, there are several important appli-
cations among the area of resource consolidation, fault-tolerance, and malware
detection for security purposes. These applications include VM migration, VM
memory de-duplication and compression, and VM state cloning. The memory
virtualization technique plays an important role in these applications, but has
various issues and open questions left. Now we first introduce the concept of
memory virtualization and then go through all these applications along with
our proposed work.

1.2 Memory Virtualization

In traditional computer architecture, OS is responsible for allocating physical
memory to processes which run inside its own process virtual address space.
When accessing memory, the process virtual address must be translated by
hardware memory management unit (MMU) to traverse the corresponding
page table setup by the OS. When running inside the hypervisor environment,
one more in-direction of memory address translation is performed.

As Figure 1.3 shows, when running on the hypervisor, the guest OS main-
tains a mapping from guest virtual addresses (GVA) to guest physical addresses
(GPA), and the hypervisor translates from guest physical to machine physical
addresses (MPA), i.e., the real physical addresses used to access the memory.
Accordingly, the Machine Frame Number (MFN) is a page number in the
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Figure 1.3: Three kinds of memory addressing mode in hypervisor context.

machine physical address space whereas the Guest Frame Number (GFN) is
a page frame number in the guest physical address space. Normally, each GFN
of a guest OS is mapped to a unique MFN allocated by the hypervisor. And
the hardware page table used by hypervisor to translate from guest physical to
machine physical address is usually referred to Guest physical to machine phys-
ical (P2M) table. In modern CPU architecture, most CPU now has hardware
support for memory virtualization techniques. Taking Intel VT (Virtualiza-
tion Technology) [1] as an example, when Extended Page Table (EPT) feature
is enabled in the Intel CPU, the hardware MMU, for each memory access from
guest VM, first walk through the page tables used by guest OS to translate
from GVA to GPA, and then walk a separate page table, i.e., EPT, setup by
hypervisor to translate from GPA to MPA. Thus, the conceptual P2M table
we have mentioned above just maps to the EPT table in the case of Intel
architecture.

1.3 Memory Resource Optimization

The virtualized environment is currently memory-bound [2—4], i.e., the physi-
cal memory is the bottleneck of the resource utilization in large data centers.
In terms of memory virtualization, the following applications are crucial to the
resource management and system administration. Each of them is summarized
as the following and detailed in later sections.

e Virtual Machine Migration: move VMs from highly-utilized hosts to
lower-utilized ones to balance the workload of physical hosts and consol-
idate hardware resource.



e Memory De-duplication of Virtual Machines: remove duplicate memory
pages between VMs to increase memory utilization.

e Memory Compression of Virtual Machines: compress memory page con-
tent to further increase memory utilization.

e Virtual Machine Cloning: clone the state of a source VM so that the
cloned VM can be used as a sandbox environment for security or software
development purposes.

The same background of these applications is that the memory resource is
difficult to share among different hosts or different VMs on the same host.
When balancing the system resource between different hosts, the memory state
can not be easily shared as the disk, e.g., iSCSI [5] technique to share disk
as the network volume, and the memory content has to be moved from one
host to another. With virtualization technique, the VM migration can easily
move the memory state between hosts due to the hardware abstraction, but
unfortunately there is no existing capability for physical machines. In addition,
the VM migration application has to copy large volume of memory through
the network and consumes a significant amount of network bandwidth.

On the other hand, the memory resource on the same host can not be eas-
ily shared among VMs as the CPU resource, whose cycles can be distributed
to each VM using the time-sharing policy, and the memory resource becomes
monopolized by each VM and the overall utilization is limited. The memory
de-duplication and compression applications try to increase the memory uti-
lization but then have bottlenecks on the VM performance degradation due
to the resource sharing. Finally, the VM cloning suffers the performance over-
head by copying the large volume of memory content from the source to cloned
VM. In the following sections, we describe these applications in detail, focus
on their problems of memory virtualization, and propose our corresponding
optimization techniques.

1.4 Virtual Machine Migration

The simplest approach to shift or balance the workload of physical hosts is to
move their corresponding VMs from highly-loaded hosts to lower ones. The
VM migration mechanism are designed to migrate the machine states of VM
from assigned source physical host to the destination one without interrupting
any ongoing services running inside the VM. Traditionally in PM, the machine
state consists of the state of CPU (e.g., registers and instruction pointer),
memory content where all the program data or OS data structures are held,



and all the state of I/O devices such as hardware registers of network interfaces.
With all these states to be consistent, a machine or the running OS on it can
work properly and provide services locally or remotely on Internet. The VM
states are consist of the same thing as regular machine states except all it
has are virtual hardware resource. Note that the disk content will not be
considered as the VM states because it is far more too large for migration.
Thus, the source and destination machine of the migration always share the
same disk for the migrated VM, e.g., using the iSCSI technique[5]. For the
rest of the VM states, the memory state is dominant because the states of
CPU and I/O devices are just bunch of registers each with a few bytes while
the memory size can go up to GBs.

The consistency is the first criteria to complete the VM migration, e.g.,
during the network transfer of the VM states, the state of the network card
should be separated from the transferred VM state. Otherwise, it can be dev-
astating to the migrated VM whose state is changed and no longer consistent
during the migration. To catch the machine state with ensured consistency
one must suspend all system activities including CPU, memory, and 1/O de-
vices, and take a snapshot of it. These steps are extremely easy for VMs with
the underlying hypervisor support where the hypervisor can suspend the VM
activity as suspending regular process in traditional OS. And the hypervisor
is able to take the snapshot of all VM states, which can be used to restore or
re-construct a VM when necessary.

The high-level procedure of VM migration is described as follows.

e First, all system activities of the migrated VM are suspended by hyper-
visor. Thus, from now on, no virtual CPU resource is given to VM, and
no I/O devices requests are served by hypervisor for the VM.

e Second, the hypervisor establishes network connection between source
and destination physical hosts, either locally if the source and destination
physical hosts are the same or remotely if they are different. Note that
the network connection of hypervisor will not make any change to the
saved states of migrated VM and thus the consistency is always kept.

e Third, take the snapshot of states of virtual CPU and I/O devices of
migrated VM. Together with the memory content of the VM, the VM
state are formed.

e The VM states are transferred to the destination machine.

e The hypervisor of destination machine constructs the system environ-
ment of the migrated VM by allocating virtual CPU, memory and 1/0
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Figure 1.4: Virtual Machine Live Migration mechanism where the migrated
VM is being moved by underlying hypervisors from source to destination ma-
chine.

devices. Afterwards, all the states of migrated VM are restored within
the newly created environment, and the VM is resumed to continue its
original work.

e The hypervisor of source machine releases all resource for the migrated
VM, and finish the entire operation.

Although the above migration mechanism guarantees the consistency of
VM states, but the applications running inside guest OS will notice disruption
during these operations, mostly due to the memory state transfer because its
size can go up to a few GBs. Thus, VM live migration or Pre-copy mechanism
is designed [6] to transfer the memory state while not causing too much
service downtime for applications. As Figure 1.4 shows, the way to achieve is
to run the migration mechanism iteratively as described in the following.

e First, all system activities of migrated VM are suspended as normal VM
migration.

e Second, all memory of migrated VM are marked as read-only, so that
any modification to the memory of VM will be trapped by hypervisor,
which is the same as Copy-on-Write (COW) as we will discussed more
details in the next section. Here, when memory is modified, they are
marked as dirtied memory.



e Third, the system activity is resumed again without interrupting the
service for too long.

e Fourth, the source machine sends all memory state that have not been
transferred to the destination including the dirtied memory since the
previous iteration.

o [f there are still lots of states left for transfer, the flow goes back to the
first step to start another iteration. Otherwise, the VM activities are
suspended again, and all left dirtied memory are transferred to destina-
tion.

e In the end, the VM states except for memory part are taken as snapshot
and sent to destination. The source machine destroys the VM environ-
ment while the destination re-constructs it as regular VM migration.

Because of the hardware abstraction of virtualization, the underlying hy-
pervisor can act as a separate software to perform the state transfer of the
VM between the source and destination physical host. Therefore, the VM mi-
gration enables this unprecedented flexibility for system administration in the
cloud by moving the VM from one physical host to another without interrupt
to any application running inside the VM.

However, no similar capability exists for physical machines. Thus we pro-
pose the Physical Machine State Migration (PMSM) mechanism to generalize
the machine state migration concept to PMs, which is more challenging than
VM migration because it cannot rely on a separate piece of software to per-
form the state transfer, e.g., the hypervisor in the case of VM migration. The
PMSM prototype proposed in this dissertation is adapted from Linux’s hiber-
nation facility.

1.5 Memory De-duplication of Virtual Machines

On the other hand, a major design goal of modern hypervisors is to run as
many VMs on a physical machine as possible. As researches and commercial
reports [2—4] indicate, the maximum number of VMs that can run on a physical
machine and still exhibit decent performance, known as the virtualization ratio,
is mostly limited by the amount of physical memory installed on that PM.
Therefore, the key to maximizing the virtualization ratio is to improve the
memory utilization efficiency for which the memory de-duplication technology
was developed with target on VMs.

Traditional memory de-duplication involves identifying common memory
pages and storing only one copy for each of these pages, and common pages
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Figure 1.5: Mapping of GFNs to MFNs in the hypervisor context where we
take two virtual machines VM1 and VM2 with limited number of GFNs and
MFNs as an example.
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Figure 1.6: Mapping of GFNs to MFNs in the hypervisor context where we
take two virtual machines VM1 and VM2 with limited number of GFNs and
MFNs as an example. The content of GFN2 from VM1 and GFNI1 of VM2
are found to be the same, and thus both of these two GFNs point to the same
MFN3.

are identified by computing the hash value from each physical memory page’s
content and checking it with the hash values of other physical memory pages on
the same machine. Taking two VMs, VM1 and VM2, as an example shown in
Figure 1.5, two MFNs 1 and 3 are being assigned to VM1 and mapped to GFN
1 and 2 respectively while MFNs 4, 5, 7 are mapped to GFN 1, 2, 3 of VM2 in
the P2M table maintained by hypervisor. Assume that after hash computation
MFN 3 and 5 are found to be the same, the corresponding mapping of these
two MFNs will be marked as read-only in the P2M table. As Figure 1.6
shows, right after the hypervisor compares their content byte-by-byte and
make sure they are exactly the same, the hypervisor discards MFN 5 and
maps both GFN 2 of VM1 and GFN1 of VM2 to MFN 3. The mechanism for
pointing multiple GFNs to a single MFN is referred to as memory sharing in the
hypervisor context. When any write access is performed to the shared MFN3,
the operation will trigger a hardware page fault and trap into hypervisor page
fault handler. Then hypervisor will assign a new MFN for the trapped VM,
and copy the content from the original MFN 3, which is referred to as the
COW mechanism similar to the traditional OS. Also the read-only protection
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Figure 1.7: Mapping of GFNs to MFNs in the hypervisor context where we
take two virtual machines VM1 and VM2 with limited number of GFNs and
MFNs as an example. Here the content of MEN3 mapped by GFN2 of VM1

is compressed to save memory space.

is removed for the new MFN.

However, the hash computation and content comparison of memory pages
consume lots of CPU cycles of hypervisor, and makes it infeasible as the
memory size of VMs increases. Thus, we propose a promising new memory-
deduplication technique that significantly improves the de-duplication gain
and speed by taking into account a physical memory page’s type in addition
to its content. More concretely, this technique focuses on the free memory
pool of guest virtual machines (VMs). Because the pages in the free memory
pool contain don’t-care contents, they could in theory be treated as dupli-
cates to a zero page, and de-duplicated accordingly, which generalizing the
content-based approach to the don’t-care page content. However, discovering
pages in a guest VM'’s free memory pool is non-trivial. In our work, we have
proposed and developed a bootstrapping VMI (Virtual Machine Introspection)
technique, and applied them to discovering free memory pages required by the
proposed generalized memory de-duplication scheme.

Moreover, In the middle of developing the bootstrapping VMI technique,
we reminded that the network bandwidth consumed by VM live migration is
mostly due to transferring memory pages. If we are able to find redundant page
without sending them to the destination machine, it may reduce the overhead
significantly with extremely low overhead from VMI technique. Thus, we have
proposed an Introspection-assisted VM Migration mechanism to identify free
memory pages during VM migration and skip them for transfer to save network
bandwidth and time consumption of the entire process.

1.6 Memory Compression of Virtual Machines

Similar to the conventional OS, the last resort to increase memory utilization
of hypervisor is to reclaim memory from guest VM by host swapping, i.e., to
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copy the memory pages of VMs to host swap disk, referred to as swap-out,
mark the corresponding PTE (Page Table Entry) of the VM’s P2M table to
be not-present, and then free the corresponding page to the free memory pool
of hypervisor. Later on, if the page is accessed again by the owner VM, page
fault is triggered and the Copy-on-Access (COA) mechanism is performed to
bring the page content from swap disk into a newly allocated memory page,
referred to as swap-in. However, the overhead is far worse than the memory
de-duplication because of the long latency of disk I/0O.

As another way to increase the memory utilization, memory compression of
VMs can be done by compressing the swapped-out pages of VMs into smaller
size of data, and putting them together in memory to save the number of
physical memory used to store the original content. The idea is that the
swapin from compressed memory, referred to as pseudo page fault, would
be faster than the swapin from disk, referred to as true page fault because
the memory access is faster than the disk access. To describe the basics, we
refer to the mechanism used by the VMware ESX server. As Figure 1.7 shows,
when GFN 2 of VM1 is compressed, the mapping in the P2M table must
be marked as not-present. When any read or write access is performed on
the compressed page, it will trap into hypervisor for COA mechanism, which
allocates a new page (MFN), decompresses the page data, and stores it to
the newly allocated MFN. The page mapping will be restored to its original
access.

However, most research works such as VMware put the compression as a
secondary choice because it not only causes the COA, which triggers hardware
trap and stops the current application execution, but also consumes the host
CPU cycles to compress and decompress the page content and incurs more
overhead than the COW of memory de-duplication. Thus, the ideal situation
is to avoid compression for the memory pages that are accessed frequently by
guest OS, i.e., the working set, but to find out the idle memory pages, i.e., the
guest memory pages outside of the working set, for memory compression.

In this dissertation, we proposed the Working Set-based Memory Alloca-
tion and Compression to identify guest working set by leveraging the page
reclamation mechanism of guest and compress pages outside of it. We aim to
pack more VMs onto the same physical host without losing the application
performance. With proper amount of compression, for example, we may be
able to turn a machine with memory size X into a machine with memory size
Y with similar performance in the application-level where Y is greater than
X. By leveraging the existing page reclamation mechanism of guest OS, e.g.,
guest swapping is one method!, we have designed and implemented a True

Tt will be detailed in Chapter 2.6.
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Working Set-based Ballooning mechanism, referred to as T'WS-ballooning, to
probe guest working set and evict idle memory pages as the target of compres-
sion. For implementation, we focus on Linux guest OS specifically and expect
the mechanisms we have designed here can be easily leveraged to other guest
OSs such as Windows.

As to compress the swapped-out guest idle memory, we leverage zram [7]
driver in Linux OS, which presents as a swap disk in guest, compresses and
stores the swapped-out pages in guest memory. With zram, a pseudo page fault
would trigger the compressed page of zram to be decompressed and stored into
a newly allocate guest memory page, which is intuitively faster than the real
page fault from swap disk. However, to store the compressed pages in zram, the
guest OS needs to consume guest memory and could bring more swap in/out
operations. To resolve this dilemma, we propose a dyn_memlimit mechanism
to dynamically adjust the zram size and address it in chapter 6.4.

Moreover, when there are multiple VMs running on a host with low free
memory, the memory distribution to VMs becomes important to the appli-
cation performance. To prevent the VMs from severe performance degrada-
tion due to insufficient memory, we have proposed several Memory BaLancing
(MBL) mechanisms to equalize the performance overhead of all VMs running
on the same host so that each VM can degrade gracefully without starving
on memory resource. To achieve this, we intercept guest kernel events, e.g,
swapin, to quantify the performance overhead of guest VM and adjust the VM
allocated memory to equalize the overhead of each VM.

1.7 Virtual Machine Cloning

As the hypervisor isolates the operations between each VM running on top
of it, the program running inside a particular VM will not affect the states
of other VMs. Thus, the confined VM environment can be used for several
purposes, and examples are listed as the following.

e Opening DRM (Digital rights management) documents without leaking
copyright information,

e Executing suspicious program and analyzing its behavior with antivirus
software without tampering the host and source VM environment, i.e.,
as a sandbox,

e Testing software patches for system upgrade or analyzing bugs for soft-
ware development,
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e Acting as honeypot [8] for production servers, i.e., a server system with
the similar environment as the production servers but is isolated and
monitored to capture information of intrusions and attacks. The gath-
ered information is used to analyze the methods of attacks to prevent
compromise on the real production system.

It can be very easy if one can lively clone a VM from the source one, and
perform the above operations inside the newly cloned VM, e.g., when a user
opens a DRM document, the application can request a live VM cloning of the
current environment, and present the document to user in the cloned VM with
networking turned off. Therefore, the user can not infringe the copyright by
distributing the DRM document to the Internet. All these require the VM
cloning to be done lively, timely, and as light-weight as possible.

In the OS-level virtualization, e.g., Jail [9] and FVM [10], the VM can be
cloned as light-weight as a process forking in the traditional OS. This is be-
cause the OS-level virtualization abstracts the important OS data structures,
e.g., file system descriptors, and leaves the VMs to run directly on the un-
derlying bare metal hardware. Comparing to HAL-based virtualization, the
OS-level virtualization is difficult for implementation and less portable because
it requires the specific domain knowledge of an OS, e.g., the structure of Linux
file system descriptors and how they are accessed, which is complicated and
different from one version of OS to another.

With the popularity of HAL-based virtualization in data centers, it is de-
sired to build up a HAL-based VM cloning mechanism which is as light-weight
as the VM cloning in OS-level virtualization, and serves as sandbox utility in
the virtualized environment. Similar to the VM migration, most of the work in
VM cloning is to clone the memory state. Without copying the entire memory
state at the moment of cloning, the cloning time can be reduced by copying
P2M table, the mapping of GFNs to MFNs, from the source VM to the cloned
one, and setting all memory pages as read-only, which is the same as sharing
memory pages between source and clone VMs. Upon a write access, either
from source or cloned VM, the COW mechanism is applied to allocate a new
page with copied content from source page to the VM which performs the ac-
cess, i.e., to synchronize the memory state in an on-demand fashion. However,
as the memory size of VM grows, the copying time of P2M table also increases
linearly, which is not scalable to VMs with large memory size. To solve this
problem, we have designed and implemented a lazy approach to clone only a
small portion of the page tables from the source VM to the cloned one, and
track the memory access from both VMs to synchronize the page table entries
as well as populate the memory page content. The time consumption of our
lazy approach is proved to be sub-second, and remains constant as the memory
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size of VM grows.

1.8 Contributions and Outline

To summarize, this dissertation makes the following research contributions:
e Propose PMSM mechanism to generalize VM migration to PMs.

e Propose Introspection-assisted Memory De-duplication to increase mem-
ory utilization using our developed bootstrapping VMI technique, which
generalizes memory de-duplication to don’t-care page content.

e Propose Introspection-assisted Virtual Machine Migration to reduce VM
migration overhead using bootstrapping VMI technique.

e Propose Working Set-based Memory Allocation and Compression based
on guest memory reclamation mechanism to increase memory utilization
while maintaining application performance, and further balancing the
memory of VMs according to their performance overhead.

e Propose Fast and Light-weight Virtual Machine Cloning as a sandbox in
HAL-based virtualized environment.

The rest of the dissertation is organized as follows. Chapter 2 reviews
the previous works on machine state migration, memory de-duplication and
compression of VMs, VMI techniques, and HAL-based VM cloning mecha-
nisms, and briefly describes the differences between previous research works
and our proposed optimization techniques. Chapter 3 describes the design,
implementation, and evaluation of PMSM mechanism. Chapter 4 details the
design, implementation, and evaluation of Introspection-assisted Memory De-
duplication with our bootstrapping VMI techniques. Based on the proposed
bootstrapping VMI techniques, Chapter 5 describes the design, implemen-
tation, and evaluation of Introspection-assisted Virtual Machine Migration.
Chapter 6 discusses and evaluates the work of Working Set-based Memory Al-
location and Compression including TWS-ballooning, dynamic adjustment of
zram size, and memory balancing mechanism. Chapter 7 describes the design,
implementation, and evaluation of the Fast and Light-weight Virtual Machine
Cloning. Chapter 8 concludes the dissertation.
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Chapter 2

Related Work

2.1 Machine State Migration

Among modern VMSM techniques, live migration in Xen virtual machine mon-
itor (VMM) [11] and VMware VMotion [12] have provided mature solutions for
migrating virtual machine (VM) instances across different physical machines.
Take Xen live migration as an example, the Xen VMM takes a snapshot of
the VM’s state, transfers the state in rounds to the destination host while
the original VM is active, stops the original VM when the size of inconsistent
VM states is within a threshold, and activates the migrated VM on the desti-
nation host. Unlike physical hardware devices used by PMSM, the hardware
device of VM is either emulated or abstracted by VMM. During the migration,
the device states of VM can be seamlessly saved, transferred, and restored by
VMM without physically suspend and resume of the hardware. Thus, VM can
quickly detach and re-attach the device without incurring too much overhead.
Similar VMSM techniques also appear in past researches such as NomadBIOS
[13] built on top of the L4 micro-kernel [14] and Self-migration [15] built atop
Xen.

Resembling to our current PMSM design, Kozuch et al. [16] have proposed
a new infrastructure for operating systems to lively migrate physical machine
states between two different hosts. Their proposed infrastructure is also based
on the hibernation facility in modern operating systems, but there is no full-
fledged implementation yet. In their work, the most challenging issues to
enable the physical machine state migration are as the following:

e The target machine must be prepared for state transfer from the source
machine,

e Devices must have the ability to be cleanly detached from the source
machine and then correctly attached to the destination machine,
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e To enable the live migration feature for state transfer, the source machine
must obtain a consistent state of the operating system from within it,
and

e If hardware devices differ on source and destination machines, the ab-

straction of device state is necessary so the difference of hardware can
be hidden.

In our current PMSM design, we solve their first three proposed issues with
Linux hibernation facility. Their last issue, the most challenging one, is not
completely solved in the current PMSM design in which we assume identical
hardware profile on source and destination machines.

As a forked project from the original Linux suspend [17], TuzOnlce is of
interest because it supports SMP, memory larger than 4 Gbytes (essential
for modern servers), and outperforms the standard swsusp code in the main-
stream Linux kernel code base, due to the use of asynchronous 1/0O, multi-
threading, read-ahead, and compression. Thus, we adapt its functionalities as
the fundamental parts of PMSM.

2.2 Memory Sharing Mechanism in Xen

To increase the memory utilization efficiency, Xen supports a memory sharing
mechanism similar to that for sharing memory among processes in a con-
ventional OS, the COW mechanism, i.e., all processes map a shared page as
read-only and, upon a write to the shared page from a process Z, a write-
protection fault happens and the kernel allocates and maps a new memory
page for Z, which is marked as read-writable and initialized with the faulted
page’s contents. This is achieved by the unshare function in Xen.

Xen introduces two new API functions for memory sharing: nominate
and share. The first function accepts a VM identifier and a GFN as input
parameters, and marks the corresponding page as read-only with a returned
handle, which uniquely identifies the page. Accesses to such a handle are
protected by a global exclusively lock. The second function takes two handles
as input parameters. If both handles are valid, Xen maps the two GFNs
associated with these two handles to the MFN associated with the first handle,
and thus frees the physical page corresponding to the MFN associated with
the second handle. Note that the share function does not perform byte-by-
byte comparison between the two pages, and leaves this task to the developer.
Because the comparison for de-duplication must be done atomically inside the
share function, we have modified the share API such that the comparison is
performed if it is called due to de-duplication. As an example, assume there
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are two VMs, VM, and VM,, where GFN, of VM, maps to MFN, and
GFN, of VM, maps to MFN,. Xen allows a privileged program, e.g., one
running on Dom0?, to take the following steps to share these two pages: (1)
nominating GF'N, and GF' N, with two separately returned handles, handle,
and handle,, and (2) sharing these two pages with handle, and handle,,, which
maps both GF'N, and GF'N, to MF'N,, and frees M FN,,.

In addition to nominate and share, Xen also allows the Dom0 kernel to
map a GFN of a DomU VM into the virtual address space of a user-level
program running on it, and to translate a given guest virtual address to its
corresponding guest physical address. With these API functions, our memory
de-duplication engine is implemented as a user-level daemon running on Dom0.

2.3 Memory De-duplication of Virtual Machines

Memory de-duplication for virtualized servers was first introduced in the ESX
hypervisor of VMware [18], which identifies common physical memory pages
shared by virtual machines running on the same physical machine, keeps one
of them, and replaces the rest with pointers to that kept copy, which is marked
as read-only. Whenever any virtual machine pointing to the kept copy writes
to it, a COW action is triggered, which creates a new copy for the writing
VM and allows the write to go through. In concrete, the ESX’s memory
de-duplication engine periodically computes the hash value of every physical
memory page, and checks if the resulting hash value is already in the page hash
value database. If it is not in, the newly computed hash value is inserted into
the database; otherwise, the physical memory page underlying the computed
hash value is a possible duplicate, which is then confirmed through a byte-by-
byte comparison. The hypervisor reclaims the physical memory page if the
confirmation turns out to be positive.

The above approach works independently of the types and versions of the
guest OSs (operating systems), and is so simple as to allow the memory de-
duplication engine to be implemented inside the hypervisor. However, this
approach is not particularly efficient because many of the hash value compu-
tation and checking steps could be wasted when the underlying memory pages
are not duplicates. Therefore, the key design issue of a memory de-duplication
engine is how to discover as many duplicate pages as possible while minimizing
the amount of computation efforts required to do so. Thus, our proposed work
will utilize our developed bootstrapping VMI technique to eliminate unneces-
sary hash computation.

'Dom0 is the privileged VM in Xen while other VMs are called DomU.
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Without directly hashing the page content, Linux’s KSM (Kernel Same-
Page Sharing) feature [19] uses the page contents as keys to construct a Red
Black tree. Each time a new page is encountered, its content is used as a key
to search the tree for a possible match. If a match is found, the new page
may be de-duplicated. In addition to storing page contents, the Difference
Engine [20] applies an additional page patching technique to store some pages
as deltas with respect to pre-chosen reference pages.

Satori [21] considers the guest OS’s page cache as a promising source for
duplicated pages. To avoid periodically scanning the memory pages in DomU
VMs, it modifies the block device layer of the guest OS (Linux) so that it is
sharing-aware and enables the Xen hypervisor to intercept all disk accesses.
Upon each disk access that populates the page cache, Satori computes the hash
values of those new pages that are pushed into the page cache and determine if
they are duplicates. In addition, Satori also maintains a list of pages containing
replaceable contents, similar to our don’t-care pages, and provides them to the
hypervisor as the new pages used in COW. However, maintaining this list
requires modifications to the guest OS, which means that it is not applicable
to closed-source OSs.

Besides of memory de-duplication, there are other approaches to increasing
the memory utilization efficiency. IBM’s Collaborative Memory Management
(CMM) system [22] modifies the guest OS to provide hints to the underlying
IBM z/VM hypervisor, so that the hypervisor can page out memory pages
of guests, called host paging, and use the reclaimed memory space for other
purposes. In addition to guest OS modification, this host paging mechanism
also requires stopping the guest whose memory is to be paged out, which incurs
noticeable performance overhead.

Transcendent [23] modifies the page cache implementation of Linux such
that the hypervisor provides a free memory pool, called precache, that serves
as a second-level cache of the guests’ page cache. Every time a guest needs to
access the disk, it first queries the precache to avoid performing any disk 1/O
operation whenever possible. On the other hand, when a page is evicted out of
a guest’s page cache, the page is stored in the precache for future accesses. The
hypervisor could dynamically shrink and expand this precache in an on-demand
fashion. Because the precache is made visible to the guest OS, significant kernel
modifications are required, which again limits its applicability.

Ballooning [24] takes away free memory pages from a guest in a way that
the guest OS is aware of the resulting shrinkage in the free memory pool. It
uses a balloon driver installed inside a guest that utilizes the standard memory
allocation API exposed by the guest OS to allocate/free (inflate/deflate) the
memory pages of guest. The memory allocated by the balloon driver is typi-
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cally put into the hypervisor’s free memory pool via hypercalls, which is the
interface for guest OS to communicate with hypervisor and similar to system
call in conventional OS. The balloon driver receives the balloon target value,
and adjusts the guest system memory to the target by inflation or deflation.
Hines et al. [25] further applied this technique to decrease the amount of VM
state that needs to be transferred and thus the total VM migration time.
However, when a guest OS receives a bulk memory allocation request, its
memory allocator may suffer from an Out-Of-Memory (OOM) problem [23]
because its free memory pool is considered exhausted at that moment, al-
though in theory the guest should still have free memory left. Thus, Hines et
al. set aside a certain amount (5% in their paper) of guest memory to prevent
the balloon driver from triggering the OOM problem. However, there is no
guarantee that this reserved amount could always avoid the OOM problem.
In addition, they chose to tune down the invocation frequency of ballooning
so as to lower the guest memory pressure. From our experience of developing
the TWS-ballooning, it requires extra carefulness to take into account the re-
served memory of guest kernel components when adjusting the balloon target,
which will be addressed in chapter 6.3. Unlike balloon drivers, which have to
be installed in guest VMs, our introspection-based mechanism is completely
transparent to and does not require any modifications to the guest OS.

2.4 Virtual Machine Introspection

Virtual machine introspection (VMI) was originally proposed to detect mal-
ware intrusion, e.g. kernel rootkits, in guests running on a virtualized server.
Pfoh et al. [26] have proposed to leverage the virtualization extension of Intel
X86 CPU, e.g. Intel VT-x [1] and AMD SVM [27], to detect in-guest events.
For example, in order to intercept context switches inside a guest, the hypervi-
sor could instruct the CPU to trap writes to the CR3 register inside the guests.
This hardware-assisted interception makes it very difficult for attackers inside
a guest to circumvent. Jiang et al. [28] proposed applying binary translation
inside QEMU [29] to intercept all system calls invoked inside a guest so as to
analyze attack behaviors in detail. However, these low-level interception meth-
ods cannot be applied to the problem of identifying free pages as required by
our project.

To narrow the semantic gap between the byte values in a guest’s mem-
ory pages and the high-level state information they contain, Dolan-Gavitt et
al. [30] proposed to log an execution trace of a guest program, extract the
instructions from the trace, create a translated program from the extracted
instructions, and run the resulting program on Dom0 of Xen outside the mon-
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itored guest. With guest running on top of QEMU, their guest program is
written to use some special instruction to signal the underlying QEMU to
start /stop logging of the execution trace. In their work, once the guest pro-
gram issues CPUID instruction with EBX register set to certain value, the
logger in QEMU starts. Also, they use CPUID and other registers as param-
eters to inform QEMU of the buffer location used by the guest program. The
logger then records the current micro-operation, its parameters, and concrete
physical memory addresses for each load and store instruction. Moreover, dur-
ing the execution of the translated program, all data memory accesses are
directed to the physical memory space of the monitored guest using a COW
mechanism. This approach leverages the exact instructions used by the guest
to interpret the bytes in its memory space, but requires a twin-memory-view
execution model that assumes data structures in the guest do not move at run
time. This may not always hold in practice because of copy-based garbage
collection. Moreover, this approach requires an OS version-specific step that
identifies the instruction sequence to be recorded, extracted and translated,
and can not be done programmatically.

In order to understand the high-level data structures embedded in a guest’s
memory pages, Garfinkel et al. [31] have leveraged the crash utility [32] to
interpret the memory pages of Linux guests and use the results in its intrusion
detection engine. The crash utility was originally used to debug the Linux
kernel, and has several hard-coded parts that are specific to each Linux kernel
version. Xenaccess [33] was developed recently to extract process and module
information of both Windows and Linux guest OS in the Xen hypervisor.
However, it does not provide support for parsing the free memory map, and
still contains many hard-coded values specific to each guest OS version.

Bryant et al. [34] also proposed to use introspection to identify free memory
pages in Linux guests and avoid copying them during VM state cloning. This
research gave another example of memory virtualization optimization that
benefits from VM introspection. However, this work did not address the issue
of how to programmatically extract the free memory map information from
different versions and configurations of Linux kernels. Our work does address
this issue and the solution is discussed in Section 4.2.2. With certain domain
knowledge, our bootstrapping VMI is developed as a systematic method that
can extract a certain class of undocumented kernel data structures, e.g. the
per-page descriptor, from both Windows and Linux guest OSs. Especially
for Linux, we leverages the availability of kernel source code to automate the
entire process of introspection.
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2.5 Memory Compression of Virtual Machines

Besides for the memory de-duplication mechanism, memory compression is
another technique to increase memory utilization. This feature has appeared
in previous researches, Transcendent [23] and Difference Engine [20], as the
last resort of increasing memory utilization. They apply memory compression
optionally on the de-duplicated memory pages to further save more memory
space.

Also, the recent update of VMware ESX server [18] has started to support
memory compression but only when the host is running very low of memory.
This feature is tied with its host swapping mechanism which swaps out the
guest VM pages to host swap disk. Different from the guest swapping which
marks the guest page table as not-present for COA, the host swapping marks
the P2M mapping of the guest VM.2. To choose the candidate page for host
swapping, the ESX server randomly picks up pages from the guest physical
address space of the target VM. If the compression ratio of the page is smaller
than 50%, it is compressed and stored in memory; otherwise, it is sent to the
host swap disk.

These researches dislike the memory compression mostly due to the insuffi-
ciency and application overhead brought from compression and decompression
of the memory pages when the compressed pages are accessed. Thus, our pro-
posed Working Set-based Memory Allocation and Compression framework is
trying to skip the working set of guest OS, and keep the guest application
performance while completing the job of increasing memory utilization. To
achieve the proposed work, we leverage page reclamation mechanism of guest
OS. For implementation purpose, we focus on the Linux guest OS.

2.6 Page Reclamation in Linux OS

For page reclamation, the Linux OS maintains two LRU (Least Recently Used)
lists, Active and Inactive, for the following two major types of memory.

e Anonymous Memory: The memory page used by the heap and stack of
user processes.

e Page Cache: The memory pages backed by disk data where the content
is cached in memory after the first access to the disk data to reduce
future disk I/0O.

2In practice, the VMware ESX server reclaims VM memory pages by sequentially acti-
vating memory de-duplication, ballooning, memory compression, and host swapping mech-
anisms when the system free memory is below 6%, 4%, 2%, and 1% respectively.
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The page in the Active list are considered to be accessed more frequently,
referred to as hot page, while the page in the Inactive list are considered to be
accessed less frequently, referred to as cold page. Upon allocation, each page
is put into the Active list by default.

The page reclamation can be triggered directly when the kernel fails to
allocate memory, e.g., a user process requests a memory page but the kernel
fails to find one from its free pool, or indirectly when a specific kernel thread
kswapd is scheduled due to low system free memory. The kernel reclaims
the memory from the Inactive list containing the memory pages which are
considered to be relatively cold so that the reclaimed memory will not be soon
accessed in the near future. When the number of pages in the Inactive list
is not sufficient to fulfill the memory allocation request, the kernel traverses
the Active list and moves the cold pages from Active to Inactive lists, i.e.,
balancing the two lists, until the request is fulfilled. The way to judge whether
a page is hot or cold is to check and clear the hardware referenced bit of PTE
for the page, which is set by hardware upon an access to the corresponding
memory page. Thus, if the referenced bit is turned on while the kernel traverses
the Active list, the bit is cleared and the page is considered as hot page and
keeps staying in the Active list. Otherwise, the page is considered as cold
page, and moved to the Inactive list.

After the two LRU lists are balanced, the page reclamation mechanism
continues to iterate the pages in the Inactive list. If the page on the Inactive
list is anonymous memory, the kernel swap-out the content to swap disk, mark
the corresponding PTE of the process to be not-present, and then free the
corresponding page. Later on, if the page is accessed again by the owner
process, COA mechanism is performed by bringing the page content from
swap disk into a newly allocated memory page, i.e., swap-in. Or if the page on
the Inactive list belongs to page cache, the kernel flushes its content to disk if
it has been dirtied, and then the page is freed. Upon the next file access, kernel
has to again perform the disk access, referred to as refault, to bring the disk
content back to a newly allocated page in the page cache. Whenever the swap-
in or refault happens, the corresponding guest process will have performance
degraded due to the disk I/O delay. From the viewpoint of page reclamation,
we quantify the performance overhead of VMs by the sum of its swapin and
refault count, referred to as overhead_count, as the following equation.

overhead_count = swapin count + refault count (2.1)
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2.7 Working Set Estimation of Virtual Ma-
chines

The VMware ESX server [18] uses sampling based mechanism to predict the
working set size of VMs. To perform the sampling, the ESX server randomly
chooses a few hundreds memory pages periodically, e.g., the default setting is
to choose 100 pages per 60-second for each VM, marks them as not-present
to detect the memory access of guest among these sampled pages with COA
mechanism. However, this mechanism only gives a rough estimation of the
VM working set size, and it can not reflect the working set size exceeding the
current allocated memory. This is because the sampling only works on the
current allocated memory of each VM but the working set exceeding allocated
memory size is hidden from the sampling result, e.g., the currently swapped-in
pages. In our proposed work, the exceeded part is reflected by detecting the
number of swapin and refault events and adjust the VM memory accordingly.

To predict the working set size more accurately, the following researches
trace guest memory access, maintain LRU statistics of guest memory pages,
and use the LRU miss ratio curve to predict the guest working set size. The
LRU miss ratio curve gives estimation of page miss when given a particular size
of allocated memory to guest. Lu et al. [35] have proposed to allocate a small
portion of memory to each VM while the rest is managed by hypervisor as an
exclusive cache. Thus, the memory access of VMs can be intercepted within
the exclusive cache, and the LRU miss ratio curve is derived to measure the
working set size. Zhao et al. [36] track the memory access of VMs by changing
the user /supervisor privilege bit of guest page table entries to supervisor mode
so that all memory access of VM will be trapped because the VM runs in user
mode. Similarly, the LRU miss ratio curve is also derived for working set size
prediction.

However, in Zhao’s method, the LRU miss ratio curve can only cover the
current allocated memory to the VMs, but not the working set size beyond
the current allocation. This is because they only track the memory that is
currently mapped to the guest VM, i.e., appeared in the P2M table, but not
the one that is reclaimed by hypervisor. Thus, they further trace the guest OS
page table modification to track the swapin event, and include the number of
swapin into their working set size estimation. However, they do not consider
the working set contributed by page cache, which is important to the workload
with heavy disk access. In addition, since the guest OS has already maintained
the LRU information of current allocated memory of VMs in its reclamation
mechanism, it becomes redundant for hypervisor to trap memory access and
maintain another LRU statistics for guest VMs. Thus, our proposed Working
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Set-based Memory Allocation and Compression directly leverages the guest
reclamation information.

2.8 Memory Balancing of Virtual Machines

The VMware ESX server [18] samples the working set size of each VM and
then determines the amount of memory allocated to each VM proportional
to the amount of its shared pages, e.g., due to memory de-duplication, and
working set size®. However, if we assign memory to VM proportional to the
working set size, the VM with larger working set size has to suffer more on
performance because the hypervisor reclaims more memory from it and its
overhead_count will be proportional to the working set size of the VM. Con-
sidering that the swapin plus refault events are the major overhead of VMs,
our proposed memory balancing mechanism tries to equalize the overhead re-
sulting from the swapin and refault events. so that each VM has the same
performance degradation. As for Lu et al. [35] and Zhao et al. [36], they both
try to balance the VM memory allocation with the goal to minimize the global
page miss rate among all VMs, i.e., the the sum of overhead to guest VMs.
However, optimizing the global page miss of VMs does not prevent any VM
from starving on memory resource because some VM may still be inferior dur-
ing the memory allocation with global optimization. Different from their goal
of memory balancing, we aim to equalize the swapin and refault overhead for
each VM.

2.9 HAL-based Virtual Machine Cloning

The VMware [18] has supported VM cloning in their latest product, but it
only performs snapshot on the disk content without concerning about the
current state of CPU, memory, and the I/O device model*. The Potemkin
framework [8] developed by Vrable et al. is aimed to facilitate the honeypot
creation in large-scale network by using VM cloning technique. They use COW
mechanism on the PTEs between source and cloned VMs, which is the same
as memory sharing. However, they do not consider about the scalability when
the page table grows up as the VM memory size grows. In addition, the state
of source VM is static and acts as a template for all cloned VMs, which is less
flexible than our mechanism to lively clone the source VM state. Also, their

3These two numbers are not added directly, but using certain formula in their paper.
4The snapshot of disk content is different from the state of 1/O device model which
contains hardware registers of I/O devices.
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system has limited support for I/O devices, e.g, the hard disk is not supported
but only ramdisk drive.

Andres et al. [37] have designed and implemented a rapid VM cloning
mechanism in Xen hypervisor to enable fast and efficient job deployment in
the cloud environment. The memory state of VM is synchronized from source
to cloned VM upon any memory access from the VMs. In order to track the
memory access from either source or cloned VMs, they traverse and mark all
page table entries of source VM as write-protected for COW mechanism while
the page table of cloned VM is kept empty and will grow up using COA mech-
anism. In addition, they have modified the guest OS, i.e., Linux, extensively
to (1) provide APIs for guest application to fork VMs to deploy new jobs, and
(2) intercept new memory allocation in guest OS to skip the synchronization
overhead between source and cloned VM for the newly allocated memory page
because the content of this page is a don’t-care and there is no need to refer
to the original content of source VM. However, these modifications restricts
their guest OS only to Linux but not to propriety guest OS such as Microsoft
Windows.

Sun et al. [38] have done similar implementation on top of Xen hypervisor
with focus on unmodified guest OSs. Similar to our discussion in Chapter 1.7,
they clone the memory state of VM by copying the P2M table from the source
VM to the cloned one, and setting all memory pages as read-only for COW
mechanism. From their experiment report, the cloning mechanism is not scal-
able when the memory size of VM grows because the time to walk through
all page table entries during cloning increases linearly with the memory size
of VM. In our paper, we have proposed to walk only a fixed portion of page
table entries, i.e., the top level of the EPT page table used by hypervisor, and
mark the table entries as not-present for COA mechanism. Upon any memory
access, we lazily propagate the changes from top to low levels of EPT page
tables to perform synchronization between source and clone VMs. The details
will be addressed more clearly in chapter 7.
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Chapter 3

Physical Machine State
Migration

3.1 Overview

In modern data centers, Virtual Machine State Migration (VMSM) [6] becomes
an essential management primitive because it minimizes the service disrup-
tion time in resource consolidation. However, virtualization has not yet been
fully embraced [39, 40] for two reasons. First, virtualization cannot achieve
the optimal performance because it does not fully leverage the capability of
physical hardware. Second, virtualization leads to reliability issues because a
single point failure of a physical machine (PM) fails all VMs on it. In con-
trast to VMSM, PMSM offers the same management flexibility without two
issues above. There are four main use cases that motivate the development
of PMSM. First, the technology underlying PMSM enables virtual machine
migration across virtualized servers that support direct 1/O access, which en-
ables a VM to enjoy native I/O performance safely and securely. Shadow
Driver [41] was proposed to achieve exactly the same goal. Second, PMSM
can complement VMSM by enabling physical-to-virtual (P2V) and virtual-
to-physical (V2P) migration. With the help of Shadow driver, P2V and V2P
migration are feasible and has the potential to combine the strength of VMSM
and PMSM. Third, PMSM can migrate those applications that run on non-
virtualized servers. Such applications include I/O-intensive applications that
choose to run in native mode directly, such as data acquisition or DBMS, and
those applications that are deployed on low power CPU-based servers (e.g.
Atom-based or ARM-based) that do not provide hardware virtualization sup-
port. Fourth, PMSM-like technology can enable the hypervisor to move all
VMs on a PM to another PM in one shot.
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Compared with VMSM, PMSM is even more challenging because a VM’s
state is captured and moved by a separate software entity, typically the hyper-
visor, whereas in PMSM, the software entity that moves a PM’s state is part
of the state being moved. Much of the complexity of a PMSM design lies in
how to cleanly separate the state associated with the state-capturing software
from the original machine state that it is being captured. Another technical
challenge in PMSM is how to put the hardware devices in proper states so
that they can be properly resumed in a device-independent way. This problem
is less an issue in VMSM because the hypervisor abstracts away many device-
specific details to isolate virtual machines from one another and consequently
simplify virtual machine migration.

The goal of this proposed work is to adapt Linux’s hibernation technology
[42] to support PMSM, which takes a snapshot of a physical machine’s state,
moves the snapshot to another machine and guides the second machine to
resume execution from the captured snapshot. This chapter describes three
design variants for a Linux-based PMSM prototype: swap disk-based, memory-
to-memory, and iterative memory-to-memory migration where the source and
destination machines have the same hardware profile. We implemented all
three variants of PMSM, which, to the best of our knowledge, is the first
working PMSM implementation that has ever been published in the open
literature. The rest of this chapter is organized as follows. Section 3.2 de-
scribes in detail the design of the 3 PMSM variants. Section 3.3 presents a
performance evaluation study on the PMSM prototype. Section 3.4 gives this
chapter a summary of research results.

3.2 Physical Machine State Migration

As shown in Figure 3.1, PMSM migrates the machine state of the source
machine M1, which runs the migrating kernel, to the target machine M2, which
starts from its own boot kernel. The machine state includes CPU, memory and
network states (e.g., TCP connections), but not states of I/O devices. After
the state is transferred, M2 resumes from M1’s suspended state. To adapt
TuzxOnlce, a disk-based suspend and resume tool, to support PMSM, we need
to address three challenges:

e How to set up the back-end storage environment so that the target ma-
chine can access all the files accessible from the source machine?

e How to transfer the snapshot of the source machine to the target machine
directly?
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Figure 3.1: Timeline of a suspend/resume operation in PMSM.
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e How to overlap the suspend operation on the source machine and the
resume operation on the target machine as much as possible?

In the following, we describe three network-based migration schemes in terms
of how they address these three issues.

3.2.1 Swap Disk-Based Migration

The simplest form of network-based migration, Swap Disk-Based Migration
(SDM), follows the same stages used in TuzOnlce, but with two differences.
In this section, we describe in details how swap disk-based migration works
and these differences. Because all our three migration schemes are based on
TuzOnlce, it is necessary to elaborate the details of TuxOnlce’s design to better
understand the three migration schemes we proposed.

The most challenging part of a suspend operation in SDM is that the
system needs to be brought to a quiescent state, i.e., no process and device
activities or even hardware interrupt, before taking a snapshot of the current
machine state and saving it to the swap disk for subsequent restore at the
resume time. To ensure the consistency of machine states, SDM performs the
following procedure, referred to as atomic-copy: allocates as many memory
pages (referred to as Puiomic) as possible so that they can be used to hold
the snapshot, stops all device activities, disables hardware interrupts, takes a
snapshot of the machine image by using a crafted piece of assembly code, and
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resumes the devices with hardware interrupts enabled. A similar mechanism,
referred to as atomic-restore, is used at resume time.

During the atomic copy /restore step, some pages stay unchanged because

they are related to frozen processes and file systems. We refer to these pages
as non-essential pages (Pyg), and the rest of used memory pages as essential
pages (Pg). SDM first saves Pyg (unchanged by atomic-copy) and then Pg
during the suspend operation, whereas the order is reversed during the resume
operation.

Suspend

As shown in Figure 3.1, there are four high-level stages involved in SDM’s
suspend operation on M1:

2)

b)

Freeze: SDM freezes all user and kernel processes at points where they do
not attempt to perform I/Os.

Prepare_Image: SDM frees as many memory pages from the page cache as
possible to hold the snapshot to be taken, and build up a list of Pyg pages,
i.e., memory pages including page cache and memory used by user/kernel
processes.

Copy_Png: SDM saves pages in Pyg to M2’s swap disk using an in-kernel
TCP-based data transport utility. These Pyg pages can be simply saved be-
fore the subsequent atomic-copy operation because they will not be changed
after all processes are frozen. In contrast, TuzrOnlce saves all memory pages,
including Pyg and Pg, to the local swap disk, which is first major difference
between SDM and TuzOnlce.

Prepare_and_Copy_Pg: SDM calculates and atomically makes a copy of Pg
to another memory region, P,iomic- To move P,iomic to M2’s swap disk, SDM
powers on [/O devices, restarts all device drivers required for normal 1/0O,
and then transfers Piomic to M2’s swap disk through the in-kernel TCP-
based data transport utility. The corresponding stage on M2 is Store_Ppg,
which is the receiver of the TCP-based data transport utility. Finally, all
drivers on M1 are called to power down all devices, and then the machine

is halted.

Resume

The resume operation consists of three steps:
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a) Start_Boot_Kernel: When M2 boots with a network-based migration option,
its boot kernel blocks in a listening call of TCP to receive M1’s suspended
snapshot image over the network.

b) Load_Pg, Load_Pyg: SDM atomically restores the Py to its original loca-
tion at the source machine. Afterwards, the kernel in control on M2 is the
magrating kernel, or the kernel that was running on M1 immediately before
the suspend operation took place. To continue, this kernel calls all drivers
to power on devices, calls drivers to restart I/O operations on all devices.
Then, pages in Pyg are loaded and copied into their original location as in
the source machine.

¢) Restore_Migrating_Kernel: Finally the migrating kernel thaws all file sys-
tems and all frozen kernel/user level processes, and eventually the entire
system resumes. In addition to M1’s suspended machine state, to success-
fully resume M2 also needs to have access to all the storage accessible from
M1. For this, M1 and M2 share the same root partition on an iSCSI stor-
age server [5]. Coping with shared network storage is the second major
difference between SDM and TuxOnlce.

3.2.2 Memory-to-Memory Migration

Copying M1’s suspended machine state to M2’s local disk and then restoring
it to M2’s memory is slow because it involves disk accesses. In contrast, the
proposed memory-to-memory version of network-based migration attempts to
directly transfer M1’s suspended machine state to M2’s memory while M2 is
under the control of the boot kernel. The main technical difficulty of this
approach is that the set of physical pages (e.g., physical pages 1-5000) on M1
used to hold M1’s suspended state may be in use by the boot kernel on M2.
Therefore, it is not always possible to send M1’s suspended state directly to
their corresponding physical pages on M2. If the physical page of a M1’s state
page is being used, this M1’s state page is first transferred to a temporary area
and then copied back to its corresponding physical page during the network-
based resume operation. Then the memory-to-memory migration scheme is

derived from SDM as follows:

1. In the beginning of Copy_Pyg, PMSM first determines the set of phys-
ical pages on M1 that holds Pyg pages, and sends their physical frame
numbers to M2.

2. The PMSM component of M2’s boot kernel first allocates as much virtual
memory as possible, and identifies the set of physical pages actually
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allocated, which is denoted as P,,.. The intersection of the physical
frame numbers of the memory pages holding Pyg in M1 with those
associated with P,j,. are called non-conflicting pages. Those in Pyg
that are not in the intersection are called conflicting pages.

3. PMSM copies the non-conflicting pages in Pyg directly to their corre-
sponding physical page frames in M2, and keeps them untouched in the
boot kernel so that they can safely reside in memory before and after the
migrating kernel is re-instantiated on M2. Then PMSM copies the con-
flicting pages to a temporary memory region in M2, denoted as Piepp.
PMSM also copies P pages from M1 to P, on M2, because it is very
likely that Pg pages conflict with pages used by M2’s boot kernel.

4. PMSM switches the kernel on M2 from the boot kernel to the migrating
kernel, and copies the conflicting pages in Pyg and all pages in Pg from
Pienp to their corresponding physical frames as they are on M1.

3.2.3 Iterative Memory-to-Memory Migration

In the previous two schemes, user-level processes and the file system on M1 are
frozen in the beginning of the suspend step, and therefore the perceived service
disruption time tends to be long because applications stop functioning during
the entire period in which Pyg pages are transferred. The iterative memory-
to-memory migration version of PMSM addresses this deficiency by deferring
the freezing of user-level process and the file system until the last possible
moment, that is, immediately before saving Pr pages and the CPU state.
As a result, this scheme greatly minimizes the perceived service disruption
time. As Figure 3.2 shows, we applied similar iterative mechanism used in the
Pre-Copy phase of VMSM to Pyg pages.

The major difference is that we use different dirty page detection technique
on page cache pages. In Pre-Copy phase of VMSM, dirty pages are detected by
write-protecting all pages with the support of hypervisor where a list of dirty
pages are built when write-protection violation happens. But in our case, we
do not have a hypervisor. The page cache is a part of the kernel address space,
and therefore leveraging page write-protection techniques requires modification
to the kernel page table and thus complicates the implementation. Thus, we
chose to implement a simpler approach. At the beginning of each iteration,
PMSM computes the 16-byte md4 checksum of each page in the page cache.
At the end of each iteration, for each page, PMSM compares its checksum
with the stored one from the previous round. Any mismatch means a changed
page in the page cache. In fact, the checksum is also applied to all memory
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Stage 0: Prepare for Iterative Transfer
Mark PTEs of user-level processes as read-only

Y
Stage 1: lterative Transfer of Non-Essential Pages
Initially transfer all pages belonging to user-level

processes and all pages in Page Cache, then iteratively
transfer dirty pages in successive rounds \)

Y

Stage 2: Stop and Copy
Freeze, and Transfer pages dirtied in the last round

Figure 3.2: Timeline of iterative state copy in the iterative memory-to-memory
migration version of PMSM.

pages exclusively used by the kernel to detect their dirtiness. Although the
checksum approach incurs a higher overhead, it is much simpler to implement
and greatly speeds up the prototype implementation.

3.3 Performance Evaluation

3.3.1 Methodology

In this section, we first evaluate the correctness of PMSM using the following
three standard benchmarks, the AB workload generator [43], which is designed
to assess a web server such as Apache, the SPEC SFS benchmark [44], which
is designed to evaluate an NF'S server, and the TPC-C benchmark [45], which
is designed to assess a DBMS server such as MySQL. We configured the AB
workload generator so that it generated a total of 500000 HTTP requests over
50 concurrent HTTP connections. The AB workload generator resides on
a client machine while the Apache server under test is on a different server
machine. We configured the SPEC SF'S benchmark so that the input rate of the
NFS requests is 100 NF'S operations/second. Again, the SPEC SF'S benchmark
runs on a client machine while the NF'S server under test is on a separate server
machine. The TPC-C benchmark is configured to run 10 concurrent ODBC
(Open DataBase Connectivity) connections with 20 warehouses in total. The
TPC-C load generator resides on a client machine while the MySQL server
under test sits on a different machine configured with 160 MB memory to
stress-test disks. For all three workloads, we used PMSM to migrate the state
of the server machine to another physical machine while continuing to run the
test benchmark on the client machine.
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The source server machine (M1) and target server machine (M2) are both
Dell PowerEdge SC1425 machines, with one 2.8GHz CPU, 1GB RAM memory,
one 250GB SATA hard drive, and two 1Gbps Ethernet NICs, one of which is
dedicated to server machine state migration while the other NIC is used to
connect the server and the test client.The test client and servers are connected
with an 8-port Netgear (Model GS805T) 1Gbit Ethernet switch. Both the
M1 and M2 machines use a 80-GB iSCSI disk as the root partition, and this
iSCSI disk is hosted on a third server machine. The M1 and M2 machines
have the same set of hardware devices, including their local hard drive, on-
board NIC and PCle-based NIC. The client machine runs Fedora 6 with Linux
kernel 2.6.22 as the operating system. The M1 and M2 machines run CentOS
5.2 with Linux kernel 2.6.25 as the operating system patched with TuzOnlce
version 3.0-rc7.

The main performance metric of concern to us is the overall service disrup-
tion time, which is defined as the interval between the time when an application
process is frozen as part of system suspend on M1 and the time when the ap-
plication process becomes operational again after system resume on M2. In
addition, we are interested in the detailed break-down of the service disruption
time among the various stages of suspend and resume. Because application
throughputs may suffer during the state migration period, we also compare
the throughputs of the three benchmarks over time under the three differ-
ent implementations of PMSM, i.e., swap disk-based, memory-to-memory and
iterative memory-to-memory.

In the fourth step, we evaluate the effectiveness of our two design decisions.
These two design decisions include (1) the number of rounds in iterative copy
cycles for the live-migration implementation PMSM scheme, and (2) the hit-
ratio in pre-loading Py g pages on M2. As the last step, we show our experience
in applying the PMSM schemes over the existing hardware.

3.3.2 Correctness

To prove the correctness of the PMSM implementations, we analyzed the
application-level logs generated during the runs of the three test benchmarks,
and made a full file system check for the target server machine after each
benchmark run. Furthermore, we also ran each test benchmark by turning off
server machine migration. That is, for each test benchmark, we have four runs
corresponding to the following four configurations: the baseline run without
any migration, swap disk-based migration, memory-to-memory migration, and
iterative memory-to-memory migration.

By analyzing the logs generated in these four runs for each of three test
benchmarks, we found that none of the twelve runs produced any failed re-
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No Iterative
Configura- | Migra- Swap Mem-to Mem-to
tion tion -Disk -Mem -Mem
Successful
Requests 500000 500000 500000 500000
Erroneous
Requests 0 0 0 0

Table 3.2: Successful and erroneous requests for the AB workload generator runs
under the four configurations: No migration, Swap disk-based migration, Memory-
to-memory (mem-to-mem) migration, and Iterative memory-to-memory (mem-to-
mem) migration

No Iterative
Configura- | Migra- Swap Mem-to Mem-to
tion tion -Disk -Mem -Mem
Successful
Requests 29910 30168 30065 29984
Erroneous
Requests 0 0 0 0

Table 3.3: Successful and erroneous requests for the SPEC SF'S benchmark runs
under the four configurations: No migration, Swap disk-based migration, Memory-
to-memory (mem-to-mem) migration, and Iterative memory-to-memory (mem-to-
mem) migration

No Iterative
Configura- | Migra- Swap Mem-to Mem-to
tion tion -Disk -Mem -Mem
Finished
Requests 1833 2099 1561 1972
Late
Requests | 89 76 76 154
Erroneous
Requests | 0 0 0 0

Table 3.4: Finished, late and erroneous requests for the TPC-C benchmark runs
with a 20-warehouse database under the four configurations: No migration, Swap
disk-based migration, Memory-to-memory migration, and Iterative memory-to-
memory migration configuration.
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quest, which is strong evidence that all three versions of PMSM are imple-
mented properly. Table 3.2 shows the numbers of successful and erroneous
requests for the AB workload generator runs under the four configurations.
None of the four configurations produces any erroneous request. Table 3.3
shows the numbers of successful requests and erroneous requests for the SPEC
SFS benchmark runs under the four configurations. The number of successful
requests is around 30000 for all four configurations because the benchmark
runs for 300 seconds and the input rate is 100 NFS operations/second. The
number of erroneous requests is 0 for all four configurations. Table 3.4 shows
the numbers of finished requests, late requests and erroneous requests for the
TPC-C benchmark runs under four configurations. In each of the four configu-
rations, the number of erroneous request is zero. Late requests for the iterative
memory-to-memory migration scheme is particularly high because the iterative
state copy mechanism lengthens the total migration period, which is defined
as the interval between when a physical machine state migration transaction
starts and when it ends, even though the service disruption time is reduced.

After each benchmark run, we also performed a full file system check on
the target server machine using Fsck [46], and found that the file system was
internally consistent in all cases, which is another strong evidence that the
three PMSM implementations are correct.

3.3.3 Service Disruption Time Breakdown

Table 3.1 shows the breakdown of the service disruption time of the three
PMSM implementations under the following three test scenarios, the AB work-
load generator for the Apache server (denoted as Apache+AB), the SPEC SFS
benchmark for the NFS server (denoted as NFS+SPEC SFS), and the TPC-C
test suite with 20 warehouses for the MySQL server (denoted as MySQL+TPC-C).

The same as Figure 3.1, the service disruption time is broken down into 7,
6 and 4 stages for swap disk-based migration, memory-to-memory migration,
and iterative memory-to-memory migration, respectively in Table 3.1. The
memory-to-memory migration scheme does not have the Load_Pyg stage be-
cause Pyg is directly transferred from M1 into M2’s memory before Pg. For
iterative memory-to-memory migration, the time spent on the Prepare_Image
and Copy_Pyg stage is excluded from the service disruption time because the
application continues to run during these two stages. As a result, the total ser-
vice disruption time of iterative memory-to-memory migration is about 42.4%,
34.2%, and 32.9% of that of swap disk-based migration under the Apache+AB,
NFS+SPEC SFS, and MySQL+TPC-C configuration, respectively, as shown in the
last row of Table 3.1.

The most time-consuming part of the Freeze stage is flushing dirty file
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system cache pages to disk or the Sync operation. For swap disk-based migra-
tion and memory-to-memory migration, the file system must be synced before
the system can be frozen. Therefore, the sync delay is included in the service
disruption time. In contrast, iterative memory-to-memory migration masks
most of the sync delay by flushing the file system as much as possible while
it transfers Pyg. Because the sync delay is a major component of the Freeze
time, the Freeze time depends largely on the number of dirty pages in the file
system cache when the system is to be frozen. Accordingly, the Freeze time
for NFS+SPEC SFS is the highest, while the F'reeze times for Apache+AB and
MySQL+TPC-C are comparable.

In the Prepare_Image stage, PMSM allocates pages for Pr and Pyg, and
copies Pyg pages to the allocated area. Because the numbers of Pyg pages
for Apache+AB, NFS+SPEC SFS and MySQL+TPC-C are 79132, 98337 and 103188,
respectively, the elapsed time of this stage is highest for MySQL+TPC-C. For the
same workload, the elapsed time of this stage is almost the same for all three
PMSM variants.

The time consumed by the Copy_Pyg stage is proportional to the number of
pages in Pyg. For example, in swap disk-based migration, the Copy_Pxg stage
takes 4126 msec for Apache+AB workload, and 5173 msec for NFS+SPEC SFS.
The time ratio 0.798 (4126/5173) matches closely with the ratio of pages in
PnE, 0.804 (79132/98337). For the same workload configuration, the Copy_Pyg
stage in memory-to-memory migration takes less time than that in swap disk-
based migration, because the former is bottlenecked by the network band-
width (121MB/sec), whereas the latter is bottlenecked by the disk bandwidth
(T6MB/sec).

The time spent on the Prepare_and_Copy_Pg stage is mainly determined
by the number of Pg pages. For example, the numbers of Pr pages for
Apache+AB, NFS+SPEC SFS and MySQL+TPC-C are 16695, 18954 and 12150, re-
spectively. For the same workload, the elapsed time of this stage is almost the
same for all three PMSM variants.

The Load_Pg stage consists of 3 steps: (1) suspend and power down all
peripheral devices, (2) copy pages in Pg to their original physical addresses
on the source machine, and (3) power up and resume all peripheral devices.
The elapsed time of the Load_Pg stage for memory-to-memory migration is
comparable to that of iterative memory-to-memory migration for all three
workload configurations, because steps (1) and (3) dominate the elapsed time,
which is about 1699 msec. In contrast, the elapsed time of the Load_Pg stage
in swap disk-based migration is much longer, because Step (2) incurs a disk
access overhead to read Pr from disk and thus is the dominant component.

Only swap disk-based migration has the Load_Pyp stage, which involves
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loading Py g pages from disk. Therefore, the elapsed time of this stage depends
on the size of Pyg. For example, the elapsed time of the Load_Pyg stage is
5158 msec for Apache+AB, and is 6391 msec for , NFS+SPEC SFS. The ratio of
their elapsed times, 0.807 (5158/6391), matches closely with the ratio of their
Py sizes, 0.804 (79132/98337).

In the Restore_Migrating_Kernel stage, the file system is first thawed,
then kernel threads and user-level processes are thawed. Thawing a file sys-
tem requires the underlying storage device to reach the ready state. In the test
set-up, the file system is based on a disk partition backed up by an iSCSI ses-
sion, the file system can only be thawed after the Ethernet NIC is ready and the
iSCSI session is re-activated. In both memory-to-memory migration and itera-
tive memory-to-memory migration, it takes at least 1600 msec for the Ethernet
NIC to enter the ready state after the migration kernel takes control. However,
this NIC resume delay is masked by the Load_Pyp delay in swap disk-based
migration. Therefore, the elapsed time for the Restore_Migrating_Kernel

stage is much smaller for swap disk-based migration than for the other two
PMSM variants.

3.3.4 Throughput Degradation

Although service disruption time is a useful metric to compare machine state
migration schemes, equally important is the total performance loss during the
entire migration period. Contrasting memory-to-memory migration and iter-
ative memory-to-memory migration, the latter reduces the service disruption
time by prolonging the running of application programs as much as possible,
even though these application programs may run in a degraded mode be-
cause the state migration takes place concurrently. So an interesting question
is whether iterative memory-to-memory migration decreases the total service
disruption time at the expense of end-to-end application throughput degrada-
tion. To answer this question, we measured the application throughputs for
the three configurations running under the three PMSM variants over a period
of time. In the figures reported below, the application’s service stops at T=30
sec, and we show the application throughputs until T=90 sec.

As shown in Figure 3.3, in iterative memory-to-memory migration, before
the Apache server stops its service at T=30 sec, its throughput already starts
dropping at around T=21 sec, from 1190 HTTP requests per second to 450
HTTP requests per second. Two factors contribute to this throughput degra-
dation. First, iterative memory-to-memory migration incurs additional CPU
overhead for detecting dirty pages in in Pyg. Second, the performance of the
Apache+AB configuration is bottlenecked at CPU as the CPU usage on the
server machine is 100% throughout the experiment. Therefore, the additional

38



‘Swap—bisk L
2000 Memory-to-Memory --o--
Iterative Memory-to-Memory -

1500 |

1000 r

500

Throughput (Unit:HTTP Requests Per Second)

40 50 60 70 80 90
Elapsed Time (Unit:Second)

Figure 3.3: Throughput of the Apache+AB configuration over time under three
PMSM variants.

CPU overhead incurred by tracking dirty Pyg pages noticeably pulls down the
throughput of Apache+AB.

After the service of the Apache server resumes, it takes roughly the same
amount of time, 6 seconds as shown in Figure 3.3, to return to the full through-
put (1550 HTTP requests per second), for all three PMSM variants. For exam-
ple, for iterative memory-to-memory migration (swap disk-based migration),
the Apache server resumes service at T=37sec (T=4Tsec), and runs at full
speed at T=43sec (T=53sec). The main factor determining the rate at which
the full throughput is recovered is the TCP congestion window. Because the
growth of the TCP congestion window is not affected by the actual state mi-
gration schemes, the time to return Apache to full speed is thus identical for
the three PMSM variants.

Astute readers may notice that the maximal throughput of the Apache
server is 1190 HTTP requests/sec on M1 and 1550 HTTP requests/sec on
M2. We investigated the root of this performance difference, and found out
that this performance difference exists even without PMSM, and mainly comes
from the fact that the NICs on M1 and M2 perform differently even though
they are advertised to have the same capability.

Unlike Apache+AB, iterative memory-to-memory migration does not ex-
hibit significant throughput degradation before the NF'S server stops service,
as shown in Figure 3.4. The main reason is that the NFS+SPEC SFS work-
load configuration is not CPU-bounded, as the CPU utilization of the server
machine throughout the experiment does not exceed 5%. As a result, the
additional CPU overhead due to tracking dirty Pyg pages does not have any
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Figure 3.4: Throughput of the NFS+SPEC SFS configuration over time under three
PMSM variants.
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Figure 3.5: Throughput of the MySQL+TPC-C configuration over time under three
PMSM variants with 20 database warehouses.
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noticeable impact on the performance of NFS+SPEC SFS. This means that the
reduction in service disruption time enabled by iterative memory-to-memory
migration does not come with any hidden performance cost.

Figure 3.5 also shows that there is no noticeable throughput drop for itera-
tive memory-to-memory migration before the MySQL server stop its service at
T=30 sec. The reason is the same as in NFS+SPEC SFS, i.e., the MySQL+TPC-C
workload configuration is disk-bounded and therefore the CPU overhead in-
curred by iterative memory-to-memory migration does not affect the perfor-
mance of MySQL+TPC-C at all.

3.3.5 Design Choices in Iterative Memory-to-Memory
Migration

In this subsection, we evaluated the impact of the amount of P,;,. memory
in M2 on the effectiveness of direct state transfer, and the optimal number of
iterations that strikes a good balance between the dirty page tracking overhead
and the state transfer overhead.

In the evaluation experiments, iterative memory-to-memory migration uses
960 MB P,j;, memory on M2 to hold Pyg pages. From our experience, if the
Puioc exceeds 960 MB on the server (1GB physical memory), some processes
will be killed by kernel because available kernel memory drops to the lowest
threshold. We can infer from this phenomenon that the boot kernel occupies
around 40 MB of memory pages. Table 3.6 shows the hit-ratio of Pyg for all
three configurations running under iterative memory-to-memory migration.
The hit-ratio is the percentage of Pyp pages that can be directly transferred
from their physical memory locations on M1 to the same physical memory
locations on M2. Because these pages do not require additional copying, the
more they are, the lower the Load_Pyg overhead. Theoretically, if the size of
Pyg is N, the lower bound of the hit-ratio should be N_Size(B]\‘;OtKemel), where
Size(BootKernel) denotes the size of the residence set of the boot kernel on
M2. Table 3.6 shows the calculated lower bounds are indeed smaller than the
observed hit-ratios.

Figure 3.5 shows the number of Pyp pages that are transferred from M1
to M2 in each iteration round for the three workload configurations when
the maximal number of iterations is set to 11. Among all three workload
configurations, the number of Pyg pages transferred drops to under 30 af-
ter three iterations. More specifically, the number of pages transferred at
the fourth iteration drops to 2, 1, and 29 for Apache+AB, NFS+SPEC SFS, and
MySQL+TPC-C, respectively. The main reason is that the rate of pages being
dirtied is much slower than the network bandwidth. More concretely, the aver-
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Hit-Ratio Apache NFS MySQL
(Unit: %) +AB | +SPEC SFS | 4+TPC-C

Experimental 93.1 94.8 98.9
Theoretical
Lower Bound 87.8 90.6 83.8

Table 3.6: Hit-ratio of pages in Py when P,j,. on M2 is equal to 960 Mbytes

age page dirty rates for Apache+AB, NFS+SPEC SFS, and MySQL+TPC-C are 680
KB/s, 480 KB/s, and 3.3 MB/s, respectively, while the raw network bandwidth
of the dedicated NIC used is 121 MB/s.

The time gap between the last iteration and the iteration before it is at-
tributed to file system flushing and is thus determined by the number of dirty
page cache pages and data locality among these pages. In our experiments, the
numbers of dirty pages observed at the beginning of the last iteration are 124,
3056, and 750 for the Apache+AB, NFS+SPEC SFS and MySQL+TPC-C, respec-
tively. Although the number of dirty page cache pages in MySQL+TPC-C is no
more than % of that in NFS+SPEC SFS, the time gap between the last iteration
and the iteration before it for NFS+SPEC SFS (1.78 seconds) is comparable to
that of MySQL+TPC-C (1.52 seconds), because the dirty pages in MySQL+TPC-C
have poorer data locality.

Figure 3.5 also shows that the net state transfer rate of Apache+AB is
smaller than those in NFS+SPEC SFS and MySQL+TPC-C. For example, it takes
4.5 seconds to transfer 310 MB for the Apache+AB workload configuration,
but it takes 4.5 seconds to transfer 451 MB for the MySQL+TPC-C workload
configuration. This is because Apache+AB is CPU-bounded and thus its state
transfer performance is affected more by the CPU overhead due to dirty Pyg
page tracking.

3.4 Summary

In this chapter, we describe the design, implementation and evaluation of the
first known physical machine state migration system (PMSM) that is capable
of migrating the state of a running OS from one physical machine to another
with the same hardware profile. Such a capability enables applications that are
not suited to run on virtualized servers to enjoy the same benefits associated
with migration as those that run on virtualized servers. We have tested the
PMSM prototype under various workloads to stress-test its correctness. Em-
pirical measurements show that PMSM is relatively fast: It can migrate a NFS
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server in 6.9 seconds and a MySQL server in 6.17 seconds. More concretely,
this work makes the following three research contributions:

e Development of three real-time physical machine state migration algo-
rithms for the Linux kernel,

e First known successful implementations of these PMSM algorithms for
homogeneous source and destination machines that have withstood tests
using real-world server applications, and

e An empirical performance study of these implementations and a detailed
analysis of their overheads and the effectiveness of various optimizations.
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Chapter 4

Introsepction-assisted Memory
De-duplication

4.1 Overview

As chapter 2 describes, most if not all existing memory de-duplication schemes
are based on memory page contents, and as a result they cannot de-duplicate
memory pages whose contents are don’t-cares, e.g. pages in the free mem-
ory pool of the guest OS or application processes. The contents of these
pages are immaterial, and could have been treated as all-zero without affect-
ing the system’s correctness. Therefore, if the memory de-duplication engine
can successfully identify these pages, it can de-duplicate them with a single
physical zero page. In other words, we are proposing a generalized memory
de-duplication engine that performs duplicate check using the contents and
type of physical memory pages. This engine not only widens the scope of
memory de-duplication, but also decreases the average amount of per-page
de-duplication computation.

To identify the free memory pools in guest OSs that run Microsoft Windows
and Linux, we applied virtual machine introspection to examining the relevant
kernel data structures in them. We have observed that a global memory map
exists in both OSs, which contains an array of memory descriptors representing
the state of each physical memory page in the guest VM. For example, the
descriptor of every free page! of a Windows XP OS’s free memory pool has its
type field set to zero [55].

Although the base location of the free memory map is available from the
debug symbol table for the guest OS and can be manually retrieved, as is

'In Windows, free pages are stored in a zeroed page list, whereas in Linux, they are
stored in a free page list.
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Figure 4.1: The workflow of the proposed Generalized Memory De-duplication
(GMD) engine, which comprises two stages: the Introspection stage to iden-
tify free memory page in guest VMs and the De-duplication stage that de-
duplicates pages using hashing and byte-by-byte comparison.

done in Xenaccess [31, 33|, the internal structures of the free memory map
are undocumented and tended to vary from one kernel version to another, for
example, the per-page descriptor size has been changed from 24 bytes in the
2006 version of Windows XP to 28 bytes in the 2009 version of Windows XP. A
major contribution of this work is a bootstrapping VM introspection technique
that can programmatically collect and assimilate all related information for
both Windows and Linux guest OSs.

The rest of this chapter is organized as follows. In Section 4.2, we present
the design of the proposed Generalized Memory De-duplication (GMD) en-
gine, and detail the bootstrapping VM introspection technique for examining
kernel data structures across multiple versions of both Windows and Linux. In
Section 4.3, we demonstrate the effectiveness of the bootstrapping VM intro-
spection technique for multiple versions of Windows and Linux guest OSs, and
present the performance gain of GMD over vanilla memory de-duplication. In
Section 4.4, we summarize the main research contributions of this chapter.

4.2 Generalized Memory De-duplication
Most existing memory de-duplication systems are based solely on the con-

tents of memory pages. In contrast, the proposed Generalized Memory De-
duplication (GMD) engine identifies pages that can be de-duplicated based on
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their type. Specifically, GMD identifies free pages in guest OSs, treats them as
duplicates of an all-zero page, and de-duplicates them accordingly. The ratio-
nale behind this approach is the contents of free memory pages are ” don’t care”
and thus could logically be considered as all zero for de-duplication purpose.
That is, if a guest OS has N free memory pages, they can all be de-duplicated
with an all-zero page, and returned to the hypervisor.

The current GMD engine prototype is implemented as a user-level program
that runs in Dom0 and implements de-duplication using the Xen hypervisor’s
primitives described in Section 2.2. As shown in Figure 4.1, the GMD engine
consists of two stages: the Introspection stage and the De-duplication stage.
In the Introspection stage, the GMD engine

1. Maps the memory map of a guest VM x into its own address space,

2. Walks through each descriptor of the memory map, marks those pages
that are free in a bitmap, free_mapl, and nominate the free pages,

3. Walks through the memory map again to check if those free pages identi-
fied in Step 2 are still free, and marks those that are still free in another
bitmap, free_map2, and

4. Shares each page is that is in both free_mapl and free_map2 with the
all-zero page without comparison.

In the De-duplication stage, for each non-free page P, the GMD engine
computes a hash for it, looks up the resulting hash value in a global page
content hash database, nominates P if a hit is found, shares P with the hit
page. If the byte-by-byte comparison comes back with the match, the share
function removes duplicate page and returns success.

The GMD engine checks twice if a memory page in a guest OS is free
during the Introspection stage, because the GMD is implemented as a user-
level program running in Dom0 and there is a potential race condition between
when it detects a guest memory page is free and when it nominates the page for
sharing. As shown in Figure 4.2 (a), if a guest page that is identified as a free
page is allocated and modified after it is nominated, the modification triggers
the COW mechanism, which in turn destroys the page’s handle returned by
the nominate call, and the following share call will abort because the handle
is invalid. If, however, the modification appears after the first free page check
but before the nominate call, as shown in Figure 4.2 (b), the page’s handle
continues to be valid when the GMD engine nominates and shares the page
with the all-zero page, and eventually the modification is lost. A usual solution
to such a problem is to ensure atomicity through locking. However, this is
infeasible because such locks are not available to the GMD engine.
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Figure 4.2: The GMD engine checks if a guest page is free twice to avoid a
race condition illustrated in (b), where a page is detected free, modified by the
guest, and then nominated and shared by the GMD engine. Checking pages
are free twice avoids the data corruption problem due to this race condition,
as shown in (c).

Instead, we solve this problem by checking free memory pages twice. With
a second free page check shown in Figure 4.2 (c¢), a guest page can only be
nominated and shared only if the second check also reports it is free. If a
guest page is still free in the second check, it means the page could be safely
de-duplicated with the all-zero page because its contents can be thrown away.

A key assumption of the GMD engine is the ability to introspect a guest OS
and derive the set of memory pages that are free and thus can be de-duplicated.
The following two subsections detail the exact mechanisms to accomplish this
for Windows and Linux virtual machines.

4.2.1 Introspecting Windows Image to Identify Free Pages

On Windows, executable files, dynamically linked libraries (DLLs), and kernel
images are all in the Portable Executable or PE format [56]. When a PE file
is loaded into memory, it is stored at a starting address known as the base
address. The virtual address of every symbol in a PE file is represented as an
offset with respect to the file’s base address, also known as the Relative Virtual
Address (RVA). Therefore, a symbol’s absolute virtual address is equal to the
sum of its RVA and the base address of where the associated PE file is loaded.
As shown on the right side of Figure 4.3, when a PE file is loaded, its headers
are also loaded. In contrast, an executable file’s header is not loaded under
Linux. The two items in the PE header that are relevant here are export data
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Figure 4.3: Introspecting a Windows Virtual Machine requires matching a
Windows kernel PE file loaded into a guest VM (on the right) with its corre-
sponding debugging PDB file fetched from Microsoft’s Symbol Server (on the
left).

directory, which contains the name of the current PE file, e.g., ntoskrnl.exe
for the Windows kernel [55], and debug data directory, which contains a 128-
bit Signature and a 32-bit Age, which together uniquely identify the PE file’s
associated debugging information.

For each PE file, the linker, e.g., Microsoft Visual C++, may optionally
produce a PDB file that contains the associated debug information, such as
the symbol table. For widely used PE files, Microsoft even publishes their
PDB (Program Database) files on its public web site. The PDB file by default
contains the name, address, and type information for functions and variables,
e.g., the RVA of a static variable declared in the program. To associate a PE
file with its PDB file, both of them include a unique combination of Signature
and Age values. In addition, Microsoft provides a Debug Interface Access
(DIA) SDK [57] that allows developers to extract detailed debug information
about a PE file, e.g., one can use a depth-first-search algorithm to query a
specific member of a user-defined structure, because the latter is stored as a
tree hierarchy inside its PDB file.

The memory map in a Windows kernel is called the PFN (Physical Frame
Number) Database, which is a statically allocated array of page descriptors,
each of type struct MMPFN, and is located in a contiguous region of the
guest physical address space [55]. The symbol name of the PFN Database is
_MmPfnDatabase.
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After a Windows OS boots up, all its free pages are in the Zeroed page list,
which is the free memory pool every page in which is all-zero. After a free
page is allocated to a process, it is taken out of the Zeroed page list. After an
in-use page is returned to the kernel, it is put in the Standby list if it is clean
or in the Modified list if it has been written while it was in use. After a process
exits, pages in its working set or in the Standby or Modified list are returned
to the Free page list. For security reasons, the Windows OS uses a zero page
thread to zero out the pages in Free list and put them into the Zeroed page list
for future reuse.

The GMD engine considers a guest page is free if it is located in the Zeroed
list, i.e., when the type of the page descriptor is equal to ZeroedPageList,
which is defined as a member of an enumeration type MMLISTS. This rule
applies to all Windows OS versions ranging from Windows XP to the latest
Windows 7 [55, 58, 59]. However, because the detailed layout of the enumer-
ation type _MMLISTS may vary from kernel version to kernel version, we have
to rely on kernel version-specific PDB files to help determine the exact layout
of this data structure and use this knowledge to perform free memory page
check.

To summarize, the GMD engine takes the following steps to programmati-
cally traverse the PFN database and inspect each page descriptor, as outlined
in Figure 4.3.

(1) Because the beginning of the first page of the PE file holding a Windows
kernel contains a magic string "MZ”, the GMD engine identifies the base
address of a Windows guest kernel by scanning the guest VM’s physical
address space range until the magic string is found. We denote the guest
kernel’s base address as Baseiernel-

(2) To confirm the PE file containing the magic string is indeed a Windows ker-
nel, the GMD engine locates the PE file’s export data directory, and from
it extracts the name of the PE file, which is supposed to be ntoskrnl.exe
if the found PE file is indeed the kernel image?.

(3) To retrieve the PDB file associated with the Windows kernel PE file, the
GMD engine extracts the Signature and Age fields from the PE file’s debug
data directory, and uses them to construct an URL that can be used to
access the PE file’s PDB file from Microsoft’s public symbol server, which
provides debug symbol information on Windows OSs for kernel developers.

All PDB files on the symbol server are structured as a file system hier-
archy. The PDB file’s URL begins with the IP address of symbol server,

2This step is leveraged from Xenaccess [33].
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followed by the PDB file’s name, then a concatenation of the correspond-
ing Signature and Age values, and finally the PDB file’s name with the
last character replaced by an underscore. However, this symbol server is
meant to be used by Windows debugging tools rather than web browsers.
We have to manipulate the User Agent field in the HTTP requests sent
to the symbol server [60] to retrieve the PDB files. In particular, we used
the curl tool [61] under Linux as follows to convince the symbol server to
work with our code:

curl --user-agent "Microsoft-Symbol-Server"\
http://msdl.microsoft.com/download/symbols\
/ntoskrnl.pdb/AB/ntoskrnl.pd_

After the kernel image’s PDB file is downloaded, we used the DIA SDK
to search for the RVA of the symbol MmPfnDatabase, which is denoted as
Basepry, and to traverse the MMPFN structure to derive the data struc-
ture’s size and the offset of its member type.

The GMD engine computes the start physical address of the PFN database
array by adding Baseppy t0 Basegerme- Although Baseppy is a guest vir-
tual address and Baseye e 18 a guest physical address, it is semantically
correct to add them together because the kernel image resides in a con-
tiguous region of the guest physical address space.

The GMD engine translates the guest physical address of the PFN ar-
ray’s base to its corresponding machine physical address, maps the array
into its own virtual address space, and examines the type field of every
PEN database entry to determine it is free using the layout information
extracted from the MMPFN structure.

4.2.2 Introspecting Linux Image to Identify Free Pages

When a Linux kernel image is built, a special file called System.map is also
generated, which contains a mapping between the symbol names of all ex-
ported variables and functions in the kernel source and their absolute virtual
addresses. A Linux kernel image (vmlinuz) is in the ELF (Executable and
Linkable Format) format and comprises two parts: (1) the real-mode kernel
image and (2) the compressed protected-mode kernel image. The first part is
loaded into memory by the disk boot loader and is responsible for retrieving the
BIOS system information, loading the second part of vmlinuz, and jumping
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to the entry point of the protected-model kernel after switching to the pro-
tected mode. By default, the Linux kernel image refers to the protected-mode
kernel image. The header of the real-mode kernel image contains detailed
Linux version information such as the kernel version, distribution, and build-
timestamp, which can be used to track down the corresponding distribution
source package.

Besides the exported symbols from System.map, kernel-level debugging in-
formation such as definitions of variables, structures, and functions, could be
embedded into the kernel image during kernel compilation, if the kernel config-
uration option CONFIG_DEBUG_INFO is turned on. Using the GDB interface [62],
one can extract these debug symbols from the kernel image.

To avoid memory fragmentation, Linux uses a buddy system memory allo-
cator, which organizes free memory pages into groups of physically contiguous
pages, each with a size that is a power of two. The first page of every free
memory page group is called a Buddy page, which represents the entire group
and uses the private field of its page descriptor to record the number of phys-
ically contiguous pages in its group. For example, if the private field of a
Buddy page’s descriptor is n, there are 2" contiguous free pages in its group.
Therefore, one can uncover free pages in a guest OS by first identifying Buddy
pages and then all other pages in their groups.

Linux supports two memory models, each of which corresponds to a dif-
ferent representation for its memory map. The exact memory model used in
a kernel is selected at the kernel configuration step, and remains fixed after
the kernel is built. In the flat memory model, the memory map, whose sym-
bol is mem map, is, like Windows, stored as a physically contiguous array of
descriptors, one for each memory page. This memory model is mostly used
in 32-bit guests that are allocated with a contiguous guest physical address
space. The sparse memory model is mainly used in 64-bit guests that are given
a larger guest physical address space but with holes. In this model, instead
of allocating a descriptor for every guest physical page in the guest OS, a two
dimensional array, whose symbol is mem_section, is allocated to avoid wasting
descriptor space on guest physical pages that are in the holes. After a kernel
is built, either mem map or mem_section appears in System.map depending on
the memory model configured.

There are many Linux distributions that are based on the same kernel
source. Some distributions, e.g., Ubuntu and Centos, add their own patches or
drivers into a vanilla (officially unmodified) Linux kernel, and publish the built
kernel image as installation packages, e.g., the deb file in Ubuntu and rpm file
in Centos. The kernel images in these packages usually do not come with any
debug information. However, we can recreate the debug information associated
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with a kernel distribution by downloading the distribution’s corresponding
kernel source and building a kernel image from it with the CONFIG_DEBUG_INFO
option enabled.

Introspecting Linux image is qualitatively different from introspecting VM
image, because the Linux kernel is highly configurable, and the same kernel
source could be compiled into kernel versions with very different structures and
configurations. For example, configuration primitives such as #ifdef could
conditionally trigger different compiler pre-processing and post the following
issues that make it difficult to identify free pages by examining the memory
map:

(a) The memory model configuration affects how the memory map is repre-
sented, a one-dimensional or two-dimensional array, as illustrated by the
following code snippet in the Linux kernel source.

#ifdef CONFIG_SPARSEMEM_EXTREME

extern struct mem_section *mem_section[NR_SECTION_ROOTS];
#else

extern struct mem_section mem_section[NR_SECTION_ROOTS]\
[SECTIONS_PER_ROOT] ;

#endif

(b) Size and layout of the page descriptor data structure may vary from one
kernel version to another.

(c) Semantics associated with data structure field values required to identify
Buddy pages vary from one kernel version to another.

The first two issues could be resolved by using the GDB interface to query
the debug information associated with the input kernel image. However, the
last issue could not be easily resolved because which data structure field is
used to identify Buddy pages changes from one kernel version to another. For
example, in Linux versions older than 2.6.18, a page is said to be a Buddy
page if the 19th bit of the flags field in the page’s descriptor is set, but in
version 2.6.38, it uses another field called _mapcount.

Fortunately, across all Linux kernel versions, there is a standard inline
function, PageBuddy (struct pagex), that takes a page descriptor structure
as the input and returns true if the page is a Buddy page. However, the
implementation of this function is different for different kernel versions. One
way to solve the Buddy page identification problem is to incorporate the logic
of the PageBuddy function for different Linux kernel versions into our engine
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as the crash utility [32] so as to identify free memory pages in guest OSs that
run different versions of Linux. However, this approach is cumbersome and
error-prone.

Instead, we directly leverage the PageBuddy function’s implementation in
each Linux kernel version by calling it from the GMD engine. More concretely,
we wrote a stub function, called GFN_is Buddy, which determines whether a
given GFN in a guest is a Buddy page or not by calling the guest’s PageBuddy
inline function. The input argument of this stub function is a GFN in a guest,
and this interface is the same across all Linux kernel versions. If the GFN
corresponds to a Buddy page, the function returns the number of free pages
starting from this GFN.

/* stub.c: guest kernel module */
int GFN_is_Buddy(unsigned long GFN)
{
struct page *page;
#ifdef CONFIG_FLATMEM
/* Flat model: use memory map as 1D array */
page = (struct page*)mem_map [GFN];
/* page->private shows the power of two for
* the free pages in the buddy system */
if (PageBuddy(page))
return 1 << page->private;
else
return O;
#else ...
}

Given a guest VM, we dynamically compiled this stub function against the
source code of the specific Linux kernel version and configuration used by the
guest, and produced an ELF file, stub.o. Then we linked this stub.o file
with the GMD engine so that the latter can call the GFN_is_Buddy function
on every guest page descriptor it examines. The above approach represents
a brand new VM introspection technique in that it pioneers the use of kernel
version-specific code to interpret kernel version-specific undocumented data
structures. All this technique needs is the source code and configuration file of
the Linux kernel version used by a guest VM, but not any a priori knowledge
of the detailed layout or semantics information associated with any kernel data
structures.

Eventually, we decided to separate the stub function from the GMD en-
gine into a separate program for the following two reasons. First, because
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the PageBuddy functions in different Linux kernel versions may use identical
variable, it is difficult to compose a general stub function that can simultane-
ously call on multiple kernel version-specific PageBuddy functions. Therefore,
it is more feasible to prepare a separate stub function for each Linux kernel
version. Second, because the stub function is complied against the source code
of a particular Linux kernel version, the resulting stub.o file could be either
32-bit or 64-bit, depending on the Linux kernel version in question. Accord-
ingly, it is impossible to run the stub function in the same address space as
the GMD engine, which is a 64-bit user-level program. The following code
snippet shows the independent free page check program (FreePageCheck.c)
that includes the GFN_is_Buddy function and services requests from the GMD
engine. The communications between the GMD engine and the free page check
program is based on a shared memory mechanism

/* FreePageCheck.c: kernel version-specific code
that checks if a page is a Buddy page */
extern int GFN_is_Buddy(unsigned long);
void check_free_page(int *free_map)
{
int num_of_free_pages;
for (gfn = 0; gfn < guest_max_gfn;)
if (num_of_free_pages = GFN_is_Buddy(gfn))

{
... /* mark free_map accordingly */
gfn += num_of_free_pages;

}

else

gfn++;

int main()
{
check_free_page(free_mapl);
... /* nominate free pages */
check_free_page(free_map2) ;
... /x share free pages after double check */

3

Figure 4.4 shows the steps taken to generate a kernel version-specific stub. o
and link it with FreePageCheck.c to form the kernel version-specific free
page check program that provides service to the GMD engine. With this
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inline int PageBuddy(struct page *page) {
return page->flags & 1<<PG_buddy;

}
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Figure 4.4: Compiling the GFN_is_Buddy function against the source code and
configuration file of a guest’s Linux kernel version to generate a stub.o file,
and linking it with FreePageCheck.c to form the independent free page check
program.

dynamic code composition mechanism, the memory de-duplication procedure
for a Linux guest work as follows:

(1) Searches the real-mode kernel image’s header of the Linux guest for the
the magic string ”HdrS”, then extracts the kernel version information, and
uses the kernel version information to either retrieve the corresponding free
page check program if it exists, or dynamically composes the corresponding
free page check program based on the kernel version’s source code and
configuration file,

(2) Extracts from the System.map file associated with the kernel version used
in the Linux guest the memory model used and the location of the memory
map, and

(3) Traverses every page descriptor in the memory map according to the mem-
ory model by calling the free page check program to determine if a page
is a Buddy page, and nominates and shares every free memory page using
the flow shown in Figure 4.1.

4.2.3 Summary of Bootstrapping VMI Technique

Traditionally, VM introspection relies on manually constructed interpretation
programs that convert byte sequences in a guest physical address space into
high-level kernel data structures. The process of building these interpretation
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programs is time-consuming and error-prone, and sometimes next to impossi-
ble, especially for closed-source OS. In the development of the GMD engine,
we have developed the following two new techniques that, to a certain extent,
automate the construction of the interpretation programs for VM introspec-
tion.

1. A technique to programmatically leverage the kernel debugging infor-
mation, which is either pre-built by the original software publisher or
dynamically built on demand from the corresponding kernel source code,
to derive the type information of variables and data structures of interest
in a guest OS.

2. A technique to programmatically leverage selected functions in a guest
OS to derive the semantic meanings (typically un-documented) of specific
byte values in the guest physical address space.

The above two techniques still require a priori knowledge of how to link
high-level information being sought after (e.g. memory page status) with spe-
cific kernel data structures (e.g. memory map), and thus do not remove manual
efforts completely. Because a kernel image is a product of the kernel source
code, the configuration file, and the compiler, the above two techniques as-
sume that the kernel image used in a guest whose state is being examined is
identical to the binary image which these two techniques draw on. In particu-
lar, any change to the source code, the configuration file, or the compiler, may
potentially render invalid the resulting interpretations.

The second technique is an instance of applying a guest OS’s own functions
to make sense of its own byte sequences. While conceptually simple, it has
two potential pitfalls. First, the guest functions used to interpret the guest
physical address space must be self-contained and do not reference other ker-
nel variables or functions that cannot link with a user-level program. Second,
as the interpretation program inspects a guest’s physical address space, the
guest’s state must not go through any modification; otherwise the interpreta-
tion program may break because of dangling pointers, e.g., a next pointer in
a linked list item becomes invalid as a result of guest state modification.

4.3 Evaluation

4.3.1 Methdology and Test Set-up

We used three metrics to evaluate the effectiveness of a memory de-duplication
scheme: (1) the number of pages it reclaims, (2) the performance overhead it
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itself incurs, and (3) the performance penalty it imposes on guest VMs. The
performance overhead of conventional memory de-duplication schemes mainly
comes from hash computation and byte-by-byte comparison, whereas that for
the proposed introspection-based memory de-duplication approach arises from
introspection. Here, (2) and (3) are different for two reasons. First, one could
minimize performance impacts on guest VMs by carefully scheduling memory
de-duplication operations when the CPUs are less loaded. Second, guest VMs
may encounter additional protection faults, context switches and hypercalls
(unshare in the case of Xen) as a result of writes to pages that are protected by
the copy-on-write mechanism. Therefore, a guest VM’s run-time performance
penalty is dependent on the number of unshare calls it triggers.

To isolate the performance benefit of hashing-based and introspection-
based memory de-duplication schemes, we compare the following four con-
figurations of the GMD engine, using the Baseline configuration as the basis
of effectiveness calculation:

e Baseline: The GMD engine is totally turned off, no memory pages are
de-duplicated and no memory de-duplication overhead is incurred.

e Intro: Only the Introspection stage of the GMD engine is turned on.
e Dedup: Only the De-duplication stage of the GMD engine is turned on.

e IntroDedup: Both stages of the GMD engine are enabled. Free pages
are de-duplicated by the Introspection stage and non-free pages are de-
duplicated by the De-duplication stage.

The test machine used in this study contains an Intel Xeon E5640 quad-
core processor with VT and EPT enabled, 24 GB physical memory, and a 500
GB hard disk. The host runs Xen-4.1 with CentOS-5.5 as the Dom0 kernel.
All our VMs are configured with 1 virtual CPU and 4 GB memory, which cor-
responds to something between the Small Instance and Large Instance classes
of Amazon’s Elastic Compute Cloud (EC2) service [63] and should be repre-
sentative for normal server or desktop applications.

We tried guest VMs running 32-bit and 64-bit versions of Windows and
Linux, including Win7-64 (64-bit Windows 7), WinXP-32 (32-bit Windows
XP with Service Pack 2 installed), Centos-64 (64-bit Centos 5.6 with the
2.6.18 Linux kernel and Sparse memory model configured), and Debian-32
(32-bit Debian-6.0.2.1-i386 with the 2.6.32 Linux kernel and Flat memory
model configured). As for input workloads, we ran the following three bench-
marks inside the guest VMs:
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e Video-Creation, E-Learning, and Office: These three workloads are
from SYSmark2007 [64] and simulate the three different classes of busi-
ness user behaviors on Windows desktop machines.

¢ Banking, Ecommerce, and Support: These three workloads are from
Specweb2009 [65] and are designed to evaluate web server performance.

e Specjbb: Specjbb2005 [66]. A SPEC benchmark that emulates a three-
tier client/server system and is designed to evaluate the performance of
server-side Java applications.

While Sysmark is a stand-alone benchmark that runs on Windows guests,
Specweb is used to generate workloads from simulated clients and require
running a web server on a Linux-based guest VM. As for Specjbb, we apply it
to both Windows and Linux guest OSs.

In this study, we mainly focused on the memory de-duplication within an
individual VM, and ignore inter-VM memory de-duplication, because most of
the gains from leveraging free memory pool information come from intra-VM
memory de-duplication. As a result, in each experiment, we ran only one
VM, on which a particular input application workload is run. Because the
GMD engine takes less than one minute to complete one de-duplication round
through a VM with 4GB of physical memory, we configured the GMD engine
to run once every minute by default. We also varied the invocation frequency
of the engine to explore the trade-off between the cost and gain of memory
de-duplication.

4.3.2 Correctness of Virtual Machine Introspection

During the process of our bootstrapping introspection, we have collected in-
formation from the each of the 4 guest VMs and listed in Table 4.1 and Ta-
ble 4.2. For Windows OS, our experiment log shows that the kernel base
address changes after each system reboot while other values stay unchanged
as we have discussed previously. As for the Linux guest, the real-mode kernel
stays unchanged for each boot at the same guest physical address. The page
descriptor structure information is necessary for Windows but not for Linux
because the PageBuddy function in the stub is used to identify free pages.
Therefore, there is no need to know the Linux page descriptor size and the
offset of flags.

In order to show the correctness of our introspection mechanism, we have
to prove two things. First, the guest data structures we have seen from the
introspection must be the same as the guest OS, e.g., size of the memory
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Win7-64 WinXP-32
Kernel base 0x260b000 0x4d7000
RVA of the MmPfnDatabase 0x2a8220 0x80b48
Memory map 0xftFfa8000000000 | 0x80c86000
Size of _MMPFN 0x2c Ox1lc
Offset of type Ox1la 0x0d

Table 4.1: Introspection results for locating Windows memory map. The
kernel base is in guest physical address while the memory map is in guest
virtual address. All addresses or size are measured in bytes.

Centos-64 Debian-32
Real-mode kernel | 0x90000 0x90000
mem_map Oxc14b7e00
mem_section OxfEE80574380
Memory map 0xftt8100007cb000 0xc14d1000
0xfft81000098b000
0xfHt810000b4b000
0xfHt810000d0b000
0xfHf810001001000
0xfHf8100011¢1000
0xftf810001381000
0xfHt810001541000

Table 4.2: Introspection results for locating Linux memory map. The address
of real-mode kernel is in guest physical address while all others are guest
virtual addresses. Centos-64 uses mem_section for sparse memory model while
Debian-32 uses mem map for flat memory model. The memory map of Centos64
contains 8 sections in this case.
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descriptor. Second, we remove the free memory of guest OS without contam-
inating guest states. Without these two facts, the guest could easily crash at
run-time especially when the guest is under stress, e.g. benchmark is running.
Thus, during the benchmarking of each guest VM we introspect, we always
double check the system integrity by looking into the logs of system, appli-
cations, and also the benchmark. So far, no error has been found during the
experiment, which shows the success of introspection.

4.3.3 Effectiveness of Introspection for Windows

Figure 4.5 shows the comparison of Win7-64 VM among the three GMD con-
figurations, intro, Dedup and IntroDedup, in terms of memory saved, de-
duplication overhead, and performance impacts on guest VMs, under four
different input workloads. Because the Windows OS zeros out a memory
page before putting it in the free memory pool, Dedup can de-duplicate any
free page that Intro can de-duplicate. So in theory, the amount of memory
saved by Dedup should be larger than that by Intro, and is equal to that by
IntroDedup,” as shown in Figure 4.5(a), where the metric is the percentage
of the test guest VM’s physical memory that is de-duplicated and shared by
the GMD engine at the end of each minute during the experiment run. How-
ever, for the E-Learning workload, the amount of memory shared by Dedup
is smaller rather than larger than that by Intro, and for the Video-Creation
workload, the amount of memory shared by Dedup is smaller than rather
than equal to that by IntroDedup. These anomalies arise mainly because
the amount of time and work required to perform one memory de-duplication
round through the test VM’s physical memory space is different for these
three configurations, as shown in Figure 4.5(b). As expected, Dedup is the
most time-consuming because it needs to perform per-page content hashing
and byte-by-byte comparison, Intro is the quickest because it only needs to
examine specific guest kernel data structures, and IntroDedup is between the
two extremes because it is a hybrid of Intro and Dedup.

Figure 4.5(c) shows the average percentage of total memory pages that are
unshared each minute by the test VM under the four workloads, and mirrors
the results in Figure 4.5(a), because the number of pages ”"unshared” is directly
correlated with the number of pages that were previously shared by the GMD
engine and later allocated and modified. Two factors affect the performance
degradation of the test VM when memory de-duplication runs in the back-
ground: (1) the overhead of the GMD engine’s own de-duplication operations,
e.g., hashing computation and locking of memory pages, and (2) the number of
copy-on-write exceptions because of the VM’s writes to shared pages. There-
fore, the test VM’s performance degradations shown in Figure 4.5(d) reflect the
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combined effects in Figure 4.5(b) and Figure 4.5(c). Because the differences
in the number of unshared pages among the three GMD configurations are
small, the performance degradation is influenced more by the de-duplication
overhead than by the amount of memory unsharing. Among the three config-
urations, Intro imposes the minimum performance penalty on the test VM.
As for WinXP-32, the results are similar as Figure 4.6 shows.

In summary, on the Windows platform, most de-duplicable pages within
an individual VM are free memory pages that are zeroed; as a result, Intro is
able to discover the majority of the de-duplicable pages that Dedup can, and
the marginal value provided by the vanilla de-duplication stage in IntroDedup
is relatively minor. On the other hand, the de-duplication overhead of Intro is
on average four times smaller than Dedup’s. In terms of performance impacts
on the test VM, Intro’s is also significantly smaller than Dedup’s. Therefore,
as far as intra-VM memory de-duplication for Windows guests is concerned,
Intro is the clear choice.

4.3.4 Effectiveness of Introspection for Linux

Unlike Windows, the Linux kernel does not zero out a memory page to be freed
before putting it in the free memory pool. Consequently, traditional memory
de-duplication schemes cannot easily identify these pages and de-duplicate
them, whereas the proposed GMD engine can. To ensure that free memory
pages are not zero, we wrote a program to allocate as many free memory
pages as possible, write random contents to them and then free all of them,
before running any experiments. As shown in Figures 4.7(a) and 4.8(a), Dedup
can barely de-duplicate any memory page, whereas by leveraging free memory
map information, Intro can still de-duplicate most of the free memory pages.
Moreover, the run time of Intro is significantly lower than that of Dedup,
because the latter blindly computes the hash values of all guest physical pages,
as shown in Figures 4.7(b) and 4.8(b), For the same reason, the marginal value
of the de-duplication stage of IntroDedup is also small when compared with
Intro. Other than the above, the conclusions drawn from Figures 4.7 and 4.8
are similar to those drawn from Figure 4.5. One notable result is that the
performance degradation when the test VM runs Specweb is close to zero,
as shown in Figures 4.7(d) and 4.8(d). This is because the memory usage of
Specweb is pretty static and hence not much memory page unsharing takes
place at run time.
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4.4 Summary

Traditionally, memory de-duplication is based on page content hashing and
byte-by-byte comparison. In this chapter, we demonstrate that it is possible
to both increase the amount of memory de-duplicated and decrease the de-
duplication performance overhead by leveraging kernel state information in
guest VMs. In particular, the proposed Generalized Memory De-duplication
(GMD) engine exploits virtual machine introspection techniques to identify
free memory pages, and de-duplcates them as if they are all-zero pages. We
have implemented a fully operational GMD prototype, and successfully tested
it against Linux and Windows guest VMs. As far as intra-VM memory
de-duplication is concerned®, when compared with traditional memory de-
duplication, the GMD engine on average runs 4 times faster, and is able to
de-duplicate a comparable amount of memory on Windows guests and a sig-
nificantly higher number of memory pages on Linux guests. More concretely,
this proposed work makes the following three research contributions:

e Development an bootstrapping VMI mechanism to identify the free mem-
ory pools of both Windows and Linux guest OSs,

e Leveraging free memory pool information in memory de-duplication, and

e A thorough study of the three configurations of the GMD engine, Intro,
Dedup, and IntroDedup, and an analysis of their de-duplication gains
and overheads.

Although the current GMD prototype is built on Xen, we believe it can
be easily ported to other hypervsiors, such as KVM [19]. Also, leveraging free
memory pool information is one example of applying VM introspection to facil-
itating memory de-duplication. For example, it is concevable to leverage loca-
tion information of DLL pages to speed up inter-VM memory de-duplication.
Finally, reducing the performance degradation due to memory de-duplication
to zero by dynamically tuning the aggressiveness of the GMD engine is another
interesting direction to explore.

3Note that our mechanism makes no difference between intra-VM or inter-VM de-
duplication because the free pages of all VMs can be mapped to a single zero page.

63



(a) Average percentage of total memory shared

Q
g\_/ 8 67 67 73 74 74
S 47 =8
8 o o 43 33 36 38
= <
[0
o
® o
E-learning Video-Creation Office Specjbb

(b) Average run time of a single de-duplication round

10 65 96 _, 8.3 8.2
4.8 4.2
S ) i i
o

E-learning Video—Creation Office Specjbb

14

Time (second)
4 8

(c) Average percentage of total memory unshared per minute

20

16

g 15
8 -:D 09413 1.3
o o

E-learning Video-Creation Office Specjbb

(d) Performance degradation of test VM

Q
Q;, S 21
8 o 12 12 14 14 62 8 &
c 2 6.8 .
e o
E-learning Video-Creation Office Specjbb
B Intro O Dedup O Intro.Dedup

Figure 4.5: Comparisons among Intro, Dedup and IntroDedup under four
different workloads running on a Win7-64 test VM with 4GB physical memory
in terms of (a) the average percentage of total memory shared by the GMD
engine per minute, (b) the average time required to perform a single memory
de-duplication round through the test VM’s physical memory space, (c) the
average percentage of total memory unshared by the test VM per minute, and
(d) the performance penalty experienced by the test VM.
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Figure 4.6: Comparisons among Intro, Dedup and IntroDedup under four dif-
ferent workloads running on a WinXP-32 test VM with 4GB physical memory
in terms of the same set of metrics as in Figure 4.5.
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Figure 4.7: Comparisons among Intro, Dedup and IntroDedup under four dif-
ferent workloads running on a Centos-64 test VM with 4GB physical memory
in terms of the same set of metrics as in Figure 4.5.
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Figure 4.8: Comparisons among Intro, Dedup and IntroDedup under four dif-
ferent workloads running on a Debian-32 test VM with 4GB physical memory
in terms of the same set of metrics as in Figure 4.5.
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Chapter 5

Introspection-assisted Virtual
Machine Migration

For resource consolidation or load balancing purposes, modern hypervisors
support VM migration, which moves a VM from one physical machine to
another. Because the source and target physical machines are assumed to
share the same storage server, most of the work involved in VM migration lies
in the moving of VM’s memory state. In addition to the time consumption of
the migration transaction, a major performance metric for VM migration is
its impact on the network due to memory state transfer. Because the contents
of the free memory pages of a VM are don’t-cares, they do not need to be
moved when the VM is migrated. Avoiding transferring free memory pages
of a migrated VM is thus an effective way to reduce the total time and the
network performance impact of a VM migration transaction.

5.1 Skipping Don’t-care Pages During VM Mi-
gration

When a VM is migrated, its CPU and I/O states are transferred once from the
source to the target machine, but its memory state is transferred iteratively
using a dirty page tracking mechanism [6]. More concretely, the system first
transfers the migrated VM’s memory pages to the target machine without
stopping the VM. During this period of time, some of the memory pages of
the migrated VM may be modified and become dirty. In the second iteration,
the system transfers those memory pages that are dirtied in the first iteration;
in the third iteration, the system transfers those memory pages that are dirtied
in the second iteration, and so on. We applied VM introspection before the
first iteration to identify memory pages that do not need to be copied, and thus
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reduce the number of memory pages that are transferred in the first iteration.

To transfer the memory state, Xen groups the migrated VM’s memory
pages into chunks of 1024 pages. In the first iteration, for each chunk, Xen
first sends to the target machine a map, pfn_type, each entry of which de-
scribes the type of each transferred memory page, e.g., invalid or reqular data
page, and then sends the contents of all valid pages in the current chunk. To
avoid transferring free (don’t-care) memory pages to the target machine, we
introduced one more type, free, to denote pages that are valid but free. By
consulting with the bootstrapping VMI program described in chapter 4, the
Xen hypervisor on the source machine identifies the guest physical pages in
a migrated VM that are free, marks the corresponding entries in the pfn_type
map as free, and skips transferring them to the target machine. For all free
pages of a migrated VM, as indicated in the received pfn_type map, Xen on the
target machine deduplicates them to an all-zero page. For the remaining iter-
ations, Xen does not leverage introspection, but focuses only on the transfer
of dirtied pages.

E-learning | Video-Creation Office Specjbb

Win7-64 77,52, 2 75, 40, 4 69, 61, 57 | 84, 73, 69

WinXP-32 | 78, 58, 17 77,43, 0 70, 65, b3 | 86, 72, 9
Banking Ecommerce Support Specjbb

Centos-64 | 93, 92, 90 93, 92, 91 92,76, 69 | 91, 81, 77
Debian-32 | 92, 91, 90 92, 91, 90 93, 75, 68 | 92, 83, 79

Table 5.1: Percentage of free pages against the test VM’s total memory size
for four test VMs each under four different workloads where each grid shows
the maximum, average, and minimum value.

5.2 Performance Analysis

We used two metrics to evaluate the effectiveness of a VM migration scheme:
(1) the amount network traffic injected by a VM migration transaction, and
(2) the total VM migration time. Conventionally, the amount of network traf-
fic injected by a VM migration transaction is directly proportional to the total
memory size of the migrated VM, i.e., 4GB in our test setup. It takes roughly
40 seconds to transfer this VM’s memory state on our Gigabit Ethernet-based
testbed, whose TCP throughput is 819.2 Mbps. By leveraging the bootstrap-
ping VMI technique to identify free memory pages in a VM that is to be mi-
grated, the hypervisor could skip transferring these free memory pages during
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the VM migration transaction, and this significantly cuts down the migration-
induced network traffic volume.

As an example, for a Win7-64 VM, Table 5.1 shows that the percentage of
available free memory on average is more than 50%; accordingly leveraging the
free memory pool information could cut down the associated network traffic
volume by more than 50%. In practice, the hypervisor tends to migrate a VM
when it is least loaded or the amount of free memory is the highest; therefore,
the actual reduction in migration-induced network traffic load is likely to be
even higher.

To assess the performance benefit of introspection-based VM migration, we
compare the following two VM migration schemes using the above two metrics:

e BaseMigrate: The conventional VM migration scheme implemented in
Xen.

e IntroMigrate: BaseMigrate with the optimization that avoids trans-
ferring free memory pages as identified via VM introspection.

In each run, we triggered a migration of the test VM at a randomly chosen
time and measured the network traffic load and migration time, and reported
the average of the measurements of multiple runs. Due to space constraint,
we only present the results of two types of test VMs, Win7-64 and Debian-32,
because WinXP-32 and Centos-64 have similar results.

Figure 5.1(a) compares the injected network traffic volumes of BaseMigrate
and IntroMigrate for a Win7-64 VM under four different test workloads.
Compared with BaseMigrate, IntroMigrate reduces the network traffic in
the first iteration of memory state transfer, depicted as ”1st-Iteration” in the
figure, by 48%, 41%, 62%, and 81% for E-learning, Video-Creation, Office, and
Specjbb, respectively. As expected, the percentage of network traffic reduc-
tion is roughly proportional to the average percentage of free pages shown in
Table 5.1, because information extracted by introspection is used only in the
first iteration.

For the remaining iterations of memory state transfer, depicted as ”Re-
maining” in the figure!, surprisingly IntroMigrate also cuts down the net-
work traffic volume by 8%, 57%, 75%, and 9% for E-learning, Video-Creation,
Office, and Specjbb, respectively, even though no introspection-derived infor-
mation is used in these iterations. This reduction originates from the fact that
when the first iteration is shortened, fewer memory pages are dirtied in the first
iteration, the second iteration is also shortened, even fewer pages are dirtied
in the second iteration, and so on. The introspection benefit to the remaining

!The CPU and I/O states are only a few KBytes and thus ignored in this discussion.
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Figure 5.1: Comparison of injected network traffic volume and total migration
time between BaseMigrate and IntroMigrate for four different workloads
running on a Win7-64 VM and a Debian-32 VM. For each workload, the left
and right bar represent the result of BaseMigrate and IntroMigrate respec-
tively. In subfigure (a) and (c), ”Ist-Iteration” and " Remaining” correspond to
the injected network traffic volume in the first and remaining iterations during
a VM migration transaction, respectively. In subfigure (b) and (d), ”Memory”
and ”"Non-memory” correspond to the memory state migration time and the
migration time for other VM states, respectively.
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iterations is apparent for the Video-Creation and Office workload, but not so
obvious for E-learning because the network traffic due to the remaining iter-
ations is small to begin with, and for Specjbb because it is memory-intensive
and introduces a large number of dirtied pages in the remaining iterations
regardless of the length of the first iteration.

Figure 5.1(b) shows that IntroMigrate cuts down the total migration time
from 40, 44, 52, and 56 seconds to 25, 29, 21, and 30 seconds, or by 38%, 34%,
60%, and 46% for E-learning, Video-Creation, Office, and Specjbb, respec-
tively. The amount of migration time reduction is proportional to the amount
of reduced network traffic or memory state transfer, which accounts for more
than 96% of the total migration time. The non-memory portion of the migra-
tion time is too small to be noticeable.

Figure 5.1(c) and 5.1(d) show similar benefits for the Debian-32 test VM.
When compared with BaseMigrate, IntroMigrate reduces the network traf-
fic load due to VM migration by 85%, 89%, 76%, and 48%, and the total
migration time by 66%, 71%, 59% and 40%, for Banking, Ecommerce, Sup-
port, and Specjbb, respectively. Unlike the Win7-64 test VM, introspection
does not benefit the remaining iterations much even when it produces a sig-
nificant benefit in the first iteration for all four test workloads running on
the Debian-32 VM. In addition, the reduction percentage in total migration
time is not as significant as the reduction percentage in memory state transfer,
and the ratio between these reduction percentages is smaller in the Debian-32
VM than in the Win7-64 VM. For example, for the Banking workload run-
ning on the Debian-32 VM, the network traffic reduction percentage due to
introspection is 85% but the migration time reduction percentage due to in-
trospection is only 66%:; for the E-learning workload running on the Win7-64
VM, the network traffic reduction percentage due to introspection is 44% but
the migration time reduction percentage due to introspection is only 38%. The
reduction percentage ratio is 0.77 (66%/85%) for the Debian-32 VM and 0.86
(38%/44%) for the Win7-64 VM.

In the current prototype implementation, the VM migration module first
asks the hypervisor to map all the pages in the migrated VM and then queries
the hypervisor for each page’s type information. This mapping and query step
incurs a fixed overhead, which accounts for the discrepancy between the reduc-
tion in amount of memory state transfer and the reduction in total migration
time. More specifically, this fixed overhead becomes relatively more signifi-
cant when the total migration time becomes smaller. Consequently, when the
performance benefit of IntroMigrate increases, the reduction in the total mi-
gration time increases, the relative importance of this fixed overhead increases
and finally the discrepancy also increases. Because the performance benefit of
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IntroMigrate is more pronounced in the Debian-32 VM than in the Win7-
64 VM, the discrepancy between network traffic volume reduction and total
migration time reduction is therefore larger in the Debian-32 VM than in the
Win7-64 VM.

5.3 Summary
Besides for the memory de-duplication in chapter 4, we have demonstrated
the VM migration as another application of the proposed bootstrapping VMI

technique. The total time and network traffic of VM migration is effectively
reduced with more guest knowledge in the hypervisor context.
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Chapter 6

Working Set-based Memory
Allocation and Compression

6.1 Working Set Estimation

To make memory compression more efficient, it is essential to identify the
working set of a guest and compress all its pages outside of the working set.
To achieve this, there exist two issues: (1) how to identify a guest’s working
set and (2) how to determine the working set size (WSS) of a guest VM, i.e.,
the number of pages in the working set.

Intuitively the working set of a guest VM is defined as the amount of
memory being actively used by the VM in the recent past [18]. One way to
determine the working set of a VM is to intercept memory accesses, which
can be achieved by marking the guest memory as not-present in the Extended
Page Table (EPT) to trap and record the number of accessed pages. Then, the
WSS of the VM at any moment is equal to the number of accessed memory
pages of the VM, and the memory that is not accessed, i.e., referred to as
cold pages, can be reclaimed by the hypervisor and used to satisfy future
memory allocation requests. However, this solution is not feasible because the
overhead of trapping on every memory read/write is simply too prohibitive to
be practically feasible.

The Self-ballooning mechanism [67] on top of the Xen hypervisor esti-
mates a guest VM’s WSS by using the the Committed_AS statistics main-
tained by Linux,! which is the total size of anonymous memory consumed by
all processes, and automatically reclaims the unused memory of the guest into
the hypervisor’s free memory pool. The Linux OS identifies a guest VM’s

'In this chapter, we focus on the Linux guest OS and thus use the terminology used in
Linux documents.
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Committed AS using the reclamation mechanism described in Chapter 2.6.
When the Self-ballooning mechanism is activated in a guest VM, it period-
ically sets the VM’s balloon target to the current Committed_AS and reclaims
unused memory pages. This approach guarantees that applications consuming
anonymous memory will not suffer from any swap-in delay because all their
stacks and heaps are likely to stay in memory. However, this approach exhibits
two deficiencies.

First, the Self-ballooning mechanism cannot take into account applications’
disk I/O activities when computing the working set because Committed AS
only focuses on consumed anonymous memory. Unlike anonymous memory,
the Linux kernel does not factor page cache need to the working set calcu-
lation. The page cache is automatically populated by the wvirtual file system
(VFS) layer of the Linux kernel upon a disk access for the first time. If a
page cache page belonging to the working set is evicted due to memory recla-
mation, a refault event occurs and thus could be used as a signal that one
more page should be added to the working set to accommodate the page cache
page. Based on this observation, the TWS-ballooning mechanism we proposed
maintains a counter for refault events in the guest, and adjusts the balloon
target according to the refault count so that the performance penalty resulting
from evicted page cache can be minimized.

Second, Committed_AS represents an upper-bound on the anonymous mem-
ory a guest VM consumes, but does not necessarily correspond to the VM’s
working set size. More specifically, Committed_AS is incremented upon the first
access to each newly allocated anonymous memory page but is decremented
only when the owner process explicitly releases the page. For example, if a
program allocates and accesses a memory page only once when the program
starts but leaves it untouched until the program exits, the Linux kernel can-
not exclude this cold page from Committed_AS even though it is clearly outside
the working set. Our TWS-ballooning algorithm gets around this limitation
by actively probing each guest VM’s true working set.

6.2 Problem Classification and Design

A generic way to leverage the guest kernel’s page reclamation mechanism is to
ask the balloon driver running in a guest to lower the balloon target (inflate)
i.e., allocate more memory pages via standard memory allocation APIs, and
return the allocated memory pages to the hypervisor. When a guest’s balloon
driver allocates more than the current size of its free memory pool, the guest’s
page reclamation mechanism is triggered to evict cold pages.

To determine the best balloon target for every guest VM running on a
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physical machine, especially when the total amount of physical memory avail-
able to them is limited, is a crucial design issue in memory virtualization. To
answer these questions, let’s review four possible physical memory allocations
for a given guest VM, from high to low.

e Baseline (BASE): a VM is allocated with its configured memory, e.g.,
the hypervisor allocates 4GB memory to a VM configured with 4GB
memory, which is generally larger than the total memory requirements of
the applications running on the VM. The performance and characteristics
of the applications running inside such a VM are treated as the baseline
for comparison.

e Committed_AS (CAS): a VM is allocated with an amount of memory
equal to its Committed_AS.

o True Working Set (TWS): a VM is allocated with an amount of memory
equal to its true working set. A guest VM’s TWS is lower than its
Committed_AS if the guest VM does not perform significant disk 1/Os,
which require additional buffer cache pages included in the working set.

e Minimum Memory Requirement (MMR): a VM is allocated with an
amount of memory equal to the minimum memory requirement, which
is generally lower than the TWS. If a guest VM’s allocated memory is
lower than MMR, the guest VM is likely to encounter Out-Of-Memory
(OOM) exceptions.

To pack more VMs into one physical host where the host memory is smaller
than the sum of the configured memory requirements of all VMs, one must
decrease the memory allocation of each VM from its BASE level to lower levels,
i.e., CAS, TWS or MMR, while keeping the application performance at the
same level.

The Self-ballooning mechanism treats a guest VM’s CAS as its true working
set size, and this estimate is inaccurate because it fails to account for idle
anonymous memory pages and page cache needs.

When a guest VM’s physical memory allocation is equal to its WSS, the
disk access overhead associated with swapin and refault should be close to
zero. To probe a VM’s true working set, we gradually increase the balloon
target of the balloon driver in the VM, and stop until the VM’s swapin and
refault counts start to become non-zero.

Based on the observation, we define the estimated working set size (EWSS)
of a VM as follows:

EWSS = allocated memory size + overhead_count (6.1)
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where the allocated memory size is the number of memory pages allocated
to a VM and overhead_count is the number of pages faulted into the VM.
Based on this estimate, the TWS-ballooning mechanism is able to cut a VM’s
allocated memory from CAS to TWS, leaving all pages outside the working
set to be evicted.

Because these evicted pages are considered cold, they make good candi-
dates for compression. To compress these cold pages, we intercept the eviction
flow of the guest’s page reclamation mechanism, and store the evicted pages
in the compressed form inside the guest VM. However, compressed memory
pages consume memory space and thus put additional pressure on the guest
VM, affecting the VM'’s application performance. Thus, we have designed an
on-line memory compression mechanism called dyn_memlimit to determine the
optimal amount of VM memory that should be compressed to minimize the
application performance overhead when the amount of physical memory allo-
cated to a VM is between its TWS and MMR. Moreover, when multiple VMs
are running on the same physical machine, our memory balancing mechanism
properly appropriates the available memory among all VMs so as to equalize
their performance overhead due to memory contention.

6.3 True Working Set-based Ballooning

When a VM’s allocated memory amount is above TWS, our TWS-ballooning
algorithm uses a customized balloon driver, referred to as zballoond, to gather
swapin and refault counts every second and adjusts the balloon target to probe
the VM’s true working set. The upper-bound of a VM’s balloon target is set
to the VM’s configured memory size? when the VM boots up, but the lower-
bound depends on the amount of memory pinned down by the VM’s OS.

2The size configured by the hypervisor when the VM is started.
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More concretely, we leverage the heuristics used in the Self-ballooning al-
gorithm to calculate the initial lower-bound value, and add to it memory
requirements reserved for system emergency and compressed pages. Without
this adjustment, a guest can easily encounter an Out-Of-Memory (OOM) ex-
ception, when its Committed_AS is low. We incorporate this adjustment into
the Self-ballooning mechanism as well.

To better approximate a VM’s true working set size, the zballoond of the
TWS-ballooning algorithm employs a finite state machine that has three run-
time states as shown in Figure 6.1, and adjusts the balloon target adaptively.
Starting from the FAST state, the zballoond initializes the balloon target to
Committed_AS?, and iteratively lowers it by 5% of its current Committed _AS.
Whenever swapin or refault events occur, zballoond raises the balloon target
by an amount of memory whose page count is equal to the combined swapin
and refault count, because each swapin or refault event suggests the need for
an additional free memory page. These swapin and refault events indicate
that either the balloon target is approaching the true working set or there is
a sudden burst in memory demand from applications; it is thus not wise to
further decrease the VM’s memory allocation.

Unlike the Self-ballooning algorithm, even when swapin or refault events
happen, the TWS-ballooning algorithm actually allows the memory allocation
to a VM to exceed its Committed _AS. This flexibility is especially important
for VMs running a disk intensive workload where their Committed_AS does
not reflect the additional memory demand due to page caching.

Whenever a swapin or refault event occurs, zballoond stops lowering the
balloon target by switching its state to COOL_DOWN, and initializing a
Cool_down counter (now arbitrarily set to 8) and decrementing it every second
from then on. When the Cool_down counter reaches zero, zballoond considers
the workload burst already gone, and then switches its state to SLOW, which
applies the same logic used in FAST state except that the balloon target is
iteratively lowered by 1% of the current Committed_AS.

When a VM’s Committed_AS changes, zballoond considers the VM’s work-
ing set size is going to change significantly, and resets itself by entering FAST
state. However, there are two things to note at this moment. First, if the bal-
loon target exceeds Committed _AS because of swapin or refault bursts, before
entering the FAST state, the balloon target is initialized to Committed _AS plus
the exceeded amount. Second, when zballoond switches from COOL_DOWN
to FAST state while the Cool_ down counter has not reached zero, zballoond
enters FAST state but continues the count-down until it reaches zero, before
resuming the working set probe.

3This is because there is no explicit information for page cache at this point.
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Pseudo Page Fault (usec) True Page Fault (usec)
zram swap-in | zram swap-out | disk swap-in | disk swap-out
86 24 D7TH 2328

Table 6.1: The comparison of pseudo page fault overhead and true page
fault overhead. Note that the actual fault overheads may vary under different
workloads and memory pressures.

6.4 TWS-aware Memory Compression

When a VM’s allocated memory is between its TWS and MMR, memory
compression could substantially mitigate the performance degradation due to
memory pressures. To compress evicted pages from a guest VM, we leverage
the zram [7] driver to intercept the VM’s swapinand swapout operations. The
zram kernel module is inserted into a guest Linux kernel as a virtual disk de-
vice, and configured as the swap disk by the system management tool, i.e.,
swapon, so that all swapin and swap-out operations enter the zram driver as
disk I/O requests. When a swapped-out page arrives at the zram driver, it is
compressed into a sub-page size by the LZO1X (Lempel-Ziv-Oberhumer) al-
gorithm and stored in a memory area allocated from the guest kernel without
being sent to the bare metal hard disk. One exception is zero evicted pages,
which zram recognizes based on the page type information and skips the com-
pression step. When a swap-in page arrives, zram uncompresses the page and
returns it to the process that causes the page fault triggering the swap-in.

Although we include buffer cache pages into a VM’s working set, we do
not compress evicted buffer cache pages in our current implementation for the
following two reasons. First, the lifetime of a process’s anonymous pages is the
same as that of the process itself because they are released when the owner
process dies. However, buffer cache pages are not explicitly owned by any
process, because they could be allocated by one process and then used to satisfy
disk accesses by another process. Second, compared with anonymous memory
pages, the buffer cache is typically backed by a larger disk volume, and thus
may require too much memory to compress it. While intercepting swap-in and
swap-out of anonymous memory pages is relatively straightforward because it
could be done through a well-defined API, the same thing cannot be said
about intercepting eviction of buffer cache pages, whose logic is embedded in
the VFS layer of the Linux kernel. In the end, we choose not to compress
evicted buffer cache pages and focus only on swap-in events associated with
anonymous memory.
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6.4.1 Pseudo Page Fault versus True Page Fault

For a VM is backed by a zram driver and a swap disk, when a page fault
occurs, this missing page could be fetched from the zram driver, in which case
the page fault leads to a pseudo page fault, or from the swap disk, in which
case the page fault leads to a true page fault. When a page is swapped in from
the zram driver, the overhead is mainly due to the time required to decompress
the page. When a page is swapped out to the zram driver, the overhead is
mainly due to the time required to compress the page. Table 6.1 shows a
quantitative comparison between the swap-in and swap-out times associated
with a pseudo page fault and a true page fault, and the difference between
their overheads is at least a factor of 50.

When a larger portion of a VM’s memory is given to its zram driver, less
memory is available to the applications running on the VM, and the pseudo
page fault rate is increased. However, as the zram driver is given more memory,
more pages are held in memory effectively due to compression and fewer page
faults result in true page faults, because they are more likely to be satisfied by
the compressed pages in the zram driver. Therefore, the amount of memory
given to the zram driver represents a trade-off between pseudo page fault rate
and true page fault rate.

Suppose the amount of memory allocated to a VM is M, C of which is
allocated to the VM’s zram driver, and the average compression ratio of the
pages stored in the zram driver is X. Then the key design question here is to
find the optimal C' such that PPFR(M, C) x Overheadppr + TPPR(M, C) *
Overheadrpr is minimized, where PPF R(M, (') is the pseudo page fault rate
of a VM when its allocated memory is M and C' of which is allocated to the
VM’s zram driver, and TPPR(M, C) is the true page fault rate of a VM when
its allocated memory size is M and C' of which is allocated to the VM’s zram
driver. Of course, the exact variations of PPFR() and TPFR() with their
arguments very much depend on applications on the VM in question, and are
not at all linear in most cases.

The technical formulation of TWS-aware memory compression becomes as
follows: Given a VM, how to automatically deduce the optimal percentage of
the VM’s allocated memory that should be assigned to its zram driver, and
the subset of memory pages evicted to the zram driver that should be sent to
the swap disk.

6.4.2 Dynamic Adjustment of Zram Size

The zram driver provides a control parameter, memlimait, which specifies the
amount of memory it can use to store compressed swapped-out pages, exclud-
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ing the zero pages. When the amount of used memory in a VM’s zram driver
exceeds memlimit, it simply directs all future swapped-out pages from the VM
to the backing swap disk without attempting to compress them. Initially, we
set the memlimit parameter of a VM to balloon target — MMR — M,.qm,
where MMR is the VM’s minimum memory requirement and M.,,,, is the
basic memory requirement of the zram driver itself.

Suppose there exists a LRU list that orders all the memory pages ever
accessed by a VM according to the last access time, where the hottest pages
are those that are actively in use and the coldest pages are those that have not
been touched for a while. Assume the number of pages available to the VM’s
applications is N1 and the number of pages allocated to the zram driver is
K. Then the hottest N1 pages in the VM’s LRU list should be uncompressed
and stay in the VM’s memory outside the zram driver. The next hottest N2
pages, whose accumulative size after compression is K, should be placed in
the VM’s zram driver. The remaining pages in the LRU list should be in the
VM'’s swap disk.

If N2 is decremented by one so that N1 is incremented by one, some of the
coldest pages in the zram driver that is stored in a compressed form now have
to reside in the swapping disk and be explicitly brought into memory when
they are accessed, and at the same time the hottest page in the zram driver
could be held in the VM’s memory. That is, the pseudo page fault rate is
decreased but the true page fault rate is increased. Therefore, it is preferable
to decrement the number of memory pages assigned to the zram driver if the
reduction in the pseudo page fault overhead out-weighs the increase in the
true page fault overhead. Similarly, it is preferable to increment the number
of memory pages assigned to the zram driver if the reduction in the true page
fault overhead out-weighs the increase in the pseudo page fault overhead.

Assume the (N1 + 1)-th page to the (N1 4 N2)-th page in a VM’s LRU
list are stored in the VM'’s zram driver, it is preferable to decrement N2 if the
condition of the following equation is met.

AccessProbability(N1+ 1) x Overheadppr >

N1+N2 (6.2)
Z AccessProbability(j) x Overheadrpr '

Jj=m

The AccessProbability(N) is the access probability of the N-th page in the
LRU list, and the sum of the sizes of the coldest N1+ N2 —m+ 1 compressed
pages is less than the page size but the sum of the sizes of the coldest N1 +
N2 —m + 2 compressed pages is larger than the page size. We continue to
decrement N2 as long as the above inequality holds, until either N2 becomes
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Figure 6.2: The LRU list maintained in the zram driver, called zram_ru,
where hotter pages are on the left and colder ones are one the right side.

zero. The above algorithm is called dyn_memlimit in the following sections.
The LRU list above includes all the memory pages accessed by a VM, and
incurs too much performance overhead to build in practice. Instead, we opt to
build a local LRU list called zram_lru based on the pages swapped out to the
zram driver. The access probability of each page in this list is estimated by
the inverse of the page’s idle time, which is defined as the difference between
the time when it is swapped out and the current time, as shown in Figure 6.2.
This estimate of a page’s idle time is an approximation because it equates a
page’s swapped-out time as its last access time. When a VM evicts pages more
frequently, this approximation is more accurate. When a VM does not evict
pages frequently, there is no need to adjust the zram memory dynamically and
the fact that this approximation is less accurate does not have much impact.

6.5 Memory Balancing of Virtual Machines

When multiple VMs run on a physical machine and the sum of their TWSs
exceed the available physical memory on that machine, the hypervisor should
allocate the physical memory among these VMs in a fair way. We call this
operation memory balancing. After memory balancing computes a memory
allocation for the VMs, each VM runs the T'WS-ballooning algorithm in the
COOL_DOWN state.

6.5.1 Evolution of Memory Balancing Mechanisms

There are multiple possible definitions of fairness. We explore the following
four in this section and see how one mechanism evolves to the next.

e Bal equal: The simplest form of memory balancing is to divide the
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available physical memory by the number of VMs, and give each VM an
equal amount of memory. However, this mechanism does not take into
account the working set size of each VM. The implicit assumption of this
approach is every VM is identical, including the applications running on
it and their input workloads.

Bal_prop: Similar to the memory allocation scheme used in VMware’s
ESX server [18], this approach assigns to each VM a percentage of the
available physical memory that is proportional to its working set size.
The intuition is to give larger memory size to the VM with larger de-
mand on memory resource. With this allocation, the difference between a
VM’s working set size and its allocated memory, i.e., the overhead_count
in Equation 6.1, is also proportional to the VM’s working set size. This
means that the additional page fault penalty when a VM’s memory allo-
cation is decreased from its working set size to a fixed percentage of its
working set size may be higher for VMs with a larger working set size.

Bal_count: To equalize the additional page fault penalty experienced
by each VM when compared with the case when its memory allocation
is its working set size, we first quantify the overhead_count for each VM,
and strive to assign each VM the same overhead_count. Towards this
goal, we make one assumption: the overhead of each swapin and refault
event is the same across different VMs with different workloads and al-
located memory size This assumption has to be true when we quantify
the overhead by overhead _count; otherwise, even if we balance the over-
head_count of each VM, the true VM overhead is not balanced.

Given a physical host with memory size M a,4;; and N VMs where each
VM V' M; has working set size WSS, we first subtract M 4,.; from the
sum of the VMs’ working set sizes, and then divide the subtraction result
by the number of VMs. Subtracting the division result from W.SS;
produces the memory allocation or balloon target for V M.

(Zi\il WSS%) - MAvail
N

BalloonTarget; = WSS, — (6.3)

Bal _time: The assumption of Bal_count is not always true because the
time cost of each swapin or refault event may vary within one VM or
between different VMs. For example, when the allocated memory of a
VM is much lower than its true working set, the guest OS’s swapping
mechanism has to work harder, due to more frequent synchronizations
between the Active and Inactive list, more frequent scheduling of the
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kswapd kernel daemon, and more modifications on the metadata of the
swap subsystem. These collectively slow down each swapin operation.

To remove this assumption, the proposed Bal_time mechanism is aimed
to balance the swapin and refault time, referred to as overhead_time,
among all VMs. Here, the sum of swapin and refault time of each
V M; is referred to as Ouwerhead_time;. The reduction in the mem-
ory allocation of the i-th VM, .S;, is proportional to the inverse of the
Overhead_time;, which is the time spent on swapin and refault, because
the higher Overhead_time; is, the smaller the cut of the memory alloca-
tion of the i-th VM:

N 1
Sz' _ ((Z WSSZ) . MAvm‘l) * ]\?Uerhead,t;mei (64)
i=1 Zi:l Overhead_time;

Then, the new balloon target of VM, can be calculated as the following.

BalloonTarget; = WSS; — S; (6.5)

6.5.2 Analysis of the Memory Balancing Mechanisms

One implicit assumption for all balancing mechanisms who depend on the
working set size, except for the Bal_equal, is that the current EWSS of a VM
is applicable to predict its EWSS for the next moment when its memory al-
location is changed. For example, when a VM is allocated with 100 memory
pages and has 100 overhead_count, if we cut 1 page from it, its memory allo-
cation is changed to 99 memory pages, and we like to see 101 overhead_count
from the VM.

Given two VMs each with working set size 600 and 300 MB as an example,
when the total host memory is 600 MB, we analyze how our memory balancing
mechanism evolves to perform the memory allocation. First, we can choose
to use Bal_equal mechanism to divide the memory into half. The VM 300 is
allocated with 300 MB which just fits to its working set size, and it can perform
natively without problem. However, the VM 600 has 300 MB deficient, and
thus has significant performance overhead, e.g, 300 MB of swapin and refault
events.

Then, we try to consider the working set size of each VM and allocate the
memory proportional to it. The VM 600 and 300 will be allocated by 400 MB
and 200 MB respectively. But the overhead_count of VM 600 is expected to
be larger because it has 200 MB deficient while the VM 300 has only 100 MB
deficient, and the overhead is not balanced.
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Figure 6.3: Software architecture of zram, zballoond and MBL components.
The modified or newly added components are drawn in shaded blocks.

Now we try the Bal_count mechanism by dividing into half the deficient
amount of total host memory, i.e., 150 MB (divide 300 MB into half), and
assigning the same deficient amount to each VM. Then, the VM 600 and 300
will be allocated by 350 MB (150 MB deficient) and 150 MB (150 MB deficient)
respectively, and we expect to see them to have the same overhead_count after
the memory allocation.

However, the true performance overhead may not be equalized even if we
balance the overhead_count of the two VMs. Assume the overhead_time ratio
of VM 600 and VM 300 is 2 to 1, we consider to apply the Bal time algorithm,
which assign the deficient amount to VMs with inverse ratio of overhead_time,
i.e., 100 MB deficient for VM 600 and 200 MB deficient for VM 300. Then,
the final memory allocation is 500 MB for VM 600 and 100 MB for VM 300.
We expect the overhead_time of the two VMs are balanced and the VM per-
formance overhead is equalized. In the evaluation section of this chapter, we
will compare and analyze the results of these mechanisms when they are used
to balance VMs with different working set size.

6.6 Software Architecture and Implementation

Figure 6.3 shows the software architecture of all the software components we
have talked about so far, including zram, zballoond and the Memory Balancing
(MBL) component in which we also implemented all three balancing mecha-
nisms described in chapter 6.5. Using the Xen hypervisor as the underlying
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platform, we describe the implementation and interaction between the above
three software components.

e zram: the zram device is configured as the default swap disk inside the
Linux guest, i.e., the domU, which services the swap 1/O requests of the
evicted anonymous pages from Linux LRU page eviction mechanism. To
dynamically adjust the zram memory size as described in chapter 6.4, We
modify the original code of Gupta [7] to add LRU list for all compressed
memory pages in zram, and record the access time of the LRU entry.
When the compressed memory has exceeded the memlimit or when we
decide to shrink zram size, the cold pages in zram LRU will be evicted
to the configured backing swap disk as the figure shows.

e zballoond: it is the major component implemented as a guest kernel
module with a kernel thread running the main function, which wakes
up every second to collect information, change the zballoond state, and
make decision of the balloon target. Also, the mechanism to adjust zram
size is also triggered by zballoond. To decide the current zballoond state
and balloon target, the zballoond requires three kinds of information.
The first one is the Committed_AS, which can be retrieved from the
exported kernel variable* vm_committed_as.

The second one is the swapin information including the number of swapin
event and the total time cost of them. While the swapin count can be
retrieved from the pswpin variable of vmstat kernel component, which
is Linux kernel statistics on its memory subsystem, the swapin time
consumption can be retrieved from the delayacct component [68], which
is a built-in kernel component of per-process delay accounting including
the time consumption of page fault. Note that we count for all processes
for the swapin time consumption.

Finally, the zballoond needs the information of refault from disk 1/0O.
The 1/0O operation of guest disks can be intercepted by modifying the
disk driver inside the Linux guest. For our testbed, we configure the
Linux guest to use the frontend disk driver, which is open-source from
the Xen community. Another alternative is to use the blktrace facility
in Linux kernel, which provides APIs to add hook point to the disk I/O
so that we can perform statistics there. Once the I/O is tracked, we
initialize a zero bitmap for each block on the disk and set one bit in the
map to one when the corresponding disk block is accessed. A refault

4The exported kernel variable in Linux can be accessed by any kernel component or
loadable kernel modules.
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event is counted when we discover a bit is already set before changing
it to one, which means the block has been accessed before, but now
requires another access, and we consider this as the performance penalty
of evicted page cache, e.g., when the TWS-ballooning moves down the
balloon target according to Committed_AS which does no account for
the page cache usage. All these information are sent to the centralized
MBL component every second.

MBL: the Memory BaLancing (MBL) component is implemented as a
user process running inside the privileged VM, dom(, and communi-
cates with the guest zballoond via the xenstore component, which is
the default event delivery subsystem in Xen hypervisor. The MBL is
activated only when it detects the memory of Xen is below 1%, which
is our configured lowerbound for emergency memory pool of hypervisor.
The MBL component receives the swapin and refault information from
the zballoond of each guest VM | decides the working set of each VM,
and calculate the new balloon target depending on the which of the four
memory balancing mechanism is chosen. In order to collaborate with the
TWS-ballooning, the MBL set the upperbound of the balloon target into
zballoond running inside each guest. When the zballoond discovers the
upperbound is lower than the current balloon target, calculated by the
algorithm of TWS-ballooning, it overwrites its decision and lowers down
the balloon target right away. On the other hand, if the upperbound is
higher than the current balloon target, the zballoond does nothing, but
depends on the TWS-ballooning mechanism to adjust the balloon target
autonomously.

From the experiment result, we found that the reported swapin and
refault sometimes go up and down with certain spikes in the statistics,
which makes it difficult for the memory balancing algorithm to converge.
Therefore, when the MBL is active, we choose to adjust the VM balloon
target every 5 seconds instead of every second, and apply moving average
on the swapin and refault information to remove the spikes so that the
memory balancing can observe the memory growing/shrinking trend of
each VM and make the right decision.

6.7 Performance Evaluation

As the discussed four levels of memory allocation to each VM, i.e., BASE,
CAS, TWS, and MMR, we evaluate our entire work starting from the scenario
with high host free memory to the one with low host free memory. The test
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machine used in this study contains an Intel Core i7 quad-core processor with
VT and EPT enabled and 16 GB physical memory. The host runs Xen-4.1 with
64-bit vanilla Linux 3.2.6 as the Dom0 kernel. All our VMs are configured with
1 virtual CPU and run Linux 3.2.6 64-bit kernel with our zram and zballoond
components. The test VMs we used here can be configured with the memory
upperbound, i.e. the upperbound of balloon target, to confine its memory
usage. When there are multiple VMs involved, the memory upperbound of
the VMs limit the sum of the balloon target of each VM.

To verify the effectiveness of the TWS-ballooning and dyn_memlimit in the
real world, we have compared them with the latest VMware ESXi 5.0 server.’
When we perform the comparison with the ESXi server, we use two identical
test machines where one hosts the Xen hypervisor with our developed mem-
ory virtualization mechanisms while the other one hosts the ESXi server. For
the ESXi server, except for the memory de-duplication that we have already
compared in chapter 4, we use the default options including all other memory
reclamation mechanisms, i.e., ballooning, compression, and swapping. To iso-
late the performance benefit of memory virtualization techniques, the memory
upperbound here only confines the memory used by the VM itself plus all
memory used to store compressed pages, but has no limitation on the memory
used by the hypervisor, i.e., all the rest of host memory are given to hypervi-
sor in both Xen and VMware ESXi server. For example, the VMware ESXi
5.0 server reserves 188 MB for a configured 2GB VM, referred to as overhead
memory, to store the code and data structures associated with VM resource
management, e.g., VM frame buffer and page tables. When we are setting the
upperbound of VM memory, the overhead memory is not taken into account.

6.7.1 Effectiveness of TWS-based Ballooning
Advantage of Probing Working Set Proactively

The TWS-ballooning could have a small amount of performance overhead
because of the periodical probe of the working set but it has performance
benefit from the earlier detection of working set when there is a sudden change
of workload on the physical host. To verify this benefit, we compare the TWS-
ballooning and the VMware ESXi 5.0 server on different host machines. On
each host, we run the following two VMs with different synthetic workloads.

e 300: this workload initializes by allocating 300 MB of memory, and
then all the memory access uniformly falls in the allocated memory,

SVMware ESXi 5.0.0 build-623860.
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Baseline | Self-ballooning | TWS-ballooning
Average latency (sec) 0.37 0.37 0.37
Latency degrade (%) N/A 0 0
Average balloon target (KB) | N / A 263344 263344
Average saved memory N/A N/A 0

to Self-ballooning (%)

Table 6.2:

Comparison of average latency and balloon target of SPECweb

Banking benchmark for Baseline, Self-ballooning, and TWS-ballooning mech-

anisms.

to Self-ballooning (%)

Baseline | Self-ballooning | TWS-ballooning
Runtime (sec) 682 710 703
Runtime degrade (%) N/A 4.11 3.08
Average balloon target (KB) | N / A 922607 783570
Average saved memory N/A N/A 15.07

Table 6.3: Comparison of runtime and average balloon target of SPEC CPU
401 benchmark for Baseline, Self-ballooning, and TWS-ballooning mecha-

nisms.

to Self-ballooning (%)

Baseline | Self-ballooning | TWS-ballooning
Runtime (sec) 1487 1755 1537
Runtime degrade (%) N/A 17.99 3.31
Average balloon target (KB) | N / A 328810 350839
Average saved memory N/A N/A -6.70

Table 6.4: Comparison of runtime and average balloon target of OLTP bench-
mark for Baseline, Self-ballooning, and TWS-ballooning mechanisms.
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The memory content we use in the two synthetic workloads has 40%
compression ratio to the LZO1X compression algorithm in zram.°

e 1200: this workload initializes by allocating 1200 MB of memory, and
then all the memory access uniformly falls in the allocated memory,
The memory content we use in the two synthetic workloads has 40%
compression ratio to the LZO1X compression algorithm in zram.

The memory upperbound of the two VMs is set to 2 GB, which is enough to
accommodate the sum of their working sets including the memory used by the
guest OS (200 MB in our test VM including system daemons). Before the
workloads starts, the balloon target of each VM in the TWS-ballooning is at
the lowerbound, i.e., 263344 MB, because there is no workload running. On
the other hand, the ESXi server allocates equal amount of memory to each VM
in the beginning, i.e., 1 GB. We let the two workloads start at the same time
and measure the time consumption for both workloads to reach their baseline
throughput.

From the result, our TWS-ballooning takes 10 seconds to reach the base-
line because it takes time for zballoond to adjust the balloon target to the
Committed_AS and there exist certain amount of working set being evicted
out to zram when the workload suddenly grows in the beginning. On the
contrary, the ESXi server takes 136 seconds because the working set detection
is not done beforehand and it takes longer for the ESXi server to sample the
VM working set and adjust the memory allocation accordingly. Thus, the
TWS-ballooning has benefit to rapidly react to working set changes between
multiple VMs but has to pay a small price on the periodic probe of the working
set.

Comparing TWS-ballooning with Self-ballooning

Similar to our TWS-ballooning, the Self-ballooning mechanism also have the
benefit mentioned above; however, it is not able to accurately probe the work-
ing set depending on Committed AS. Here, we compare our TWS-ballooning
against the Self-ballooning mechanism running benchmarks with different kinds
of characteristics and see how our mechanism probes the true working set to
save more host memory while keeping the application performance. The first
of the two performance metrics we concern is the application performance
degradation against the Baseline, i.e., when the VM is configured with mem-
ory size larger than the requirement of benchmark, e.g., here we set the VM

5From the experiment results of real workload, the compression ratio observed in zram
is about 30 to 40%. Thus, 40% is used in synthetic workload to reflect the characteristics
of real workload.
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Comparing TWS-ballooning and Self-ballooning with SPEC
CPU 401 Benchmark
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Figure 6.4: The balloon target, swapin and refault size of Spec CPU 401
workload under TWS-ballooning and Self-ballooning mechanisms.

memory size of baseline to 2 GB with all our kernel components disabled. The
other metric is the amount of saved memory against the Self-ballooning mech-
anism. While the application performance should be kept without noticeable
degradation, we expect the TWS-ballooning to save more host memory so that

the hypervisor can use it more efficiently. To perform the comparison, we look
at the following workloads.

e SPECweb Banking [65]: SPEC’s benchmark to evaluate web server per-
formance. The apache [69] is used to host web server.

e SPEC CPU: a set of SPEC’s CPU [70] benchmarks with intensive mem-
ory access and allocation of anonymous memory.

e OLTP: an Online transaction processing (OLTP) benchmark from Sys-
bench [71] test suites to test database server performance, which con-
sumes more page cache from disk access. Here we use MySQL [72] to
host the database server.

In Table 6.2, 6.3, and 6.4, we show the performance comparison of these
benchmarks running the Self-ballooning and TWS-ballooning mechanisms.
For Specweb Banking, its workload is always below the lowerbound, i.e.,
263344 KB for our 2GB test VM. Thus, we do not observe any degradation
from baseline or saved memory for both Self-ballooning and TWS-ballooning
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Comparing TWS-ballooning and Self-ballooning with
Sysbench OLTP Benchmark
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Figure 6.5: The balloon target, swapin and refault size of Sysbench OLTP
benchmark under TWS-ballooning and Selt-ballooning mechanisms.

mechanisms. As for the SPEC CPU 401 benchmark, our TWS-ballooning can
further save 15.07% of the memory comparing to the Self-ballooning because
we periodically probes down the current working set of the VM as Figure 6.4
shows but the Self-ballooning only watches the Committed_AS, which is not
accurate enough for the real working set.

Besides of memory saving, the performance degradation against the base-
line is surprisingly reduced from 4.11% of Self-ballooning to 3.08% of TWS-
ballooning. One major reason is that the Committed_AS can not reflect the
memory demand of burst swapin or refault event. As Figure 6.4 shows, the
balloon target of TWS-ballooning has been dynamically adjusted beyond the
target of Self-ballooning, i.e., Committed_AS, at certain points of the time-
line, which is caused by the sudden growth of swapin and refault event. The
performance benefit is not obvious in the SPEC CPU test suites because its
benchmarks mostly consume the anonymous memory and can be measured
directly by Committed_AS.

But for the OLTP benchmark, the performance benefit will be more obvi-
ous because the benchmark has more disk access and thus consumes more page
cache, which is outside the scope of Committed_AS. From the result of OLTP
benchmark in Table 6.4, the average balloon target of TWS-ballooning is 6.7%
higher than the Self-ballooning due to react to the occurred refault events, and
thus the TWS-ballooning can reduce the performance degradation against the

92



baseline from 17.99% of Self-ballooning to 3.31% of TWS-ballooning. From
the timeline of balloon target in Figure 6.5, we can observe that the TWS-
ballooning detects the refault events and increase the balloon target accord-
ingly so that the performance is more close to the native. As a result, our
proposed TWS-ballooning can dynamically adjust the balloon target accord-
ing to the current working set size and perform better than Self-ballooning for
various kinds of workloads discussed in this section.

6.7.2 Effectiveness of TWS-aware Memory Compres-
sion

When the host memory is low such that the true working set of the VM has
to be evicted out, the memory size used by zram becomes more important for
application performance. In this subsection, we evaluate our dyn_memlimait
mechanism, which dynamically adjusts the zram size or memlimit based on
page access probability of zram LRU list mentioned in chapter 6.4. To isolate
the performance of dyn memlimit, we disabled the TWS-ballooning mecha-
nism. The test VM we used here has configured the memory upperbound as
600000 KB (586 MB). The memory used by the workload and the guest OS
itself, i.e., 200 MB, has exceeded the upperbound. The questions to answer are
(1) whether the dyn_memlimit can adjust the memlimit to an optimal size and
(2) how well can the dyn_memlimit react when the working set changes. The
first question is pretty difficult because the optimal size of memlimit changes
dynamically when the workload is running and it is impossible to find out from
experiment.

Thus, we compare our proposed dyn_memlimit mechanism with two other
naive implementations: (1) zero_memlimit which consumes no memory in
zram by redirecting all swapped-out pages to disk except zero page and (2)
max_memlimit which uses as much memory as possible in zram with an up-
perbound described by Equation 6.2.

Evaluating dyn_memlimit with Synthetic Workloads

We introduce the following two synthetic workloads each has one of the naive
implementations as its optimal solution and run for 20 minutes to gather
results.

e 700-half: this workload initializes by allocating 700 MB of memory, and
then all the memory access uniformly falls in the first half of the allocated
memory, i.e., 350 MB is the true working set. If we number the allocated
memory from 0 to 699 with MB as the unit, then the working set we
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zero_memlimit | dyn_memlimit | max_memlimit
Throughput (MB/sec) 8027 8091 74
Zram size (MB) N/A 0.68 288
Table 6.5: Comparison of average throughput and zram size for

zero_memlimit, dyn_memlimit, and max_memlimit running 700-half workload.

are referred to here is number 0 to 349. The memory content we use in
the two synthetic workloads has 40% compression ratio to the LZO1X
compression algorithm in zram. The working set plus the 200 MB of
guest OS, i.e., 550 MB, can just fit into the memory without using zram.
Thus, zero_memlimit is an best choice among the three mechanisms.

e 95-10: this workload initializes by allocating 700 MB of memory, and
then 95% of the access uniformly falls into the first 10% of the allocated
memory while the rest 5% of the access uniformly falls into the rest 90%
of the allocate memory. The true working set plus the memory used
by guest OS is larger than the total VM memory upperbound, and the
ideal case is to put the first 10% of the working set, i.e, 70 MB (referred
to as hot working set, into memory without compression and compress
the rest 630 MB working set (cold working set) into 252 MB zram, and
all working set plus the 200 MB of guest OS can just fit into the VM
memory upperbound. Therefore, max_memlimit is the best choice.

Table 6.5 shows the average throughput and zram size of 700-half work-
load running with the three mechanisms, zero_memlimit, dyn_memlimit, and
max_memlimit. As expected, the zero_memlimit gives almost native memory
throughput” while the max_memlimit suffers because the working set is un-
necessarily compressed into zram. Our proposed dyn_memlimit adjusts the
memlimit by kicking out all pages in zram to disk, i.e., average zram size is
less than 1 MB, and leave free memory space for the true working set. From
the table, we have observed that dyn_memlimit performs slightly better than
the zero_memlimit by 64 MB/sec. When we look more closely into the ex-
periment logs, we found that during the 20 minutes of experiment, there are
some swapin and refault events occasionally. It is due to the system daemons
of guest OS, which rise and evict some of the working set. The zero_memlimit
has more degradation because evicted working set has to be swapped-in from
disk but our dyn_memlimit can use zram to buffer these evicted working set,

"The throughput here is not the baseline result because the VM memory upperbound
is smaller than the workload itself.
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zero_memlimit | dyn_memlimit | max_memlimit

Throughput (MB/sec) 14 619 652
Throughput of hot 6213 2361 2454
working set (MB/sec)

Throughput of cold 0.71 42 44
working set (MB/sec)

Zram size (MB) N/A 285 285

Table 6.6: Comparison of average throughput and zram size for

zero_memlimit, dyn_memlimit, and max_memlimit running 95-10 workload.

and has small time cost when swapin happens later on. Thus, zram has certain
benefit in this case.

Table 6.6 shows the average throughput of 95-10 workload running with the
three mechanisms, zero_memlimit, dyn_memlimit, and max_memlimit. Besides
for the average throughput, we also measure the throughput of hot working
set and cold working set. As expected, max_memlimit gives the best mem-
ory throughput while zero_memlimit suffers. The zero_memlimit forbids using
zram to store the working set so that the hot working set can be kept mostly
in memory and achieve higher throughput, i.e, 6213 MB/sec. Note that this
throughput can not be as high as the throughput shown in 700-half experi-
ment, i.e., an extreme case with 50% of the memory completely idle, because
the Linux LRU mechanism can not perform 100% accurately by keeping all
hot working set in memory. Sometimes, the guest OS may still evict out the
pages of hot working set. However, the overall throughput of zero_memlimit
suffers because the throughput of cold working set degrades severely upon the
disk swapin.

As for our proposed dyn_memlimit mechanism, it adjusts the memlimit to
achieve 95% of the throughput of max_memlimit. The 5% degradation could
be due to occasional eviction of zram because of the inaccurate estimation
of page access probability or overhead time. The average zram size for both
dyn_memlimit and max_memlimit is 285 MB, which is 33 MB higher than our
hypothetical 252 MB to compress the 630 MB cold working set. For the extra
size of zram, there should exist a portion of the guest OS memory or very few
hot working set; otherwise the throughput of the hot working set can not go
up to GBs. In short, the dyn_memlimit can adjust the memlimit well in both
of the two synthetic workloads.

To see how our dyn_memlimit react when the working set changes, we
modify the 700-half workload by shifting the working set 10 seconds after the

95



Comparing Balancing Time of zero_memlimit and
dyn_memlimit with Different Working Set Size Shift
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Figure 6.6: Balancing time comparison of zero_memlimit and dyn_memlimit
running 700-half workload with various shifting size of the working set.

workload has initialized. Note that the new working set is all evicted to disk
after the initialization, and it takes time for the exchange the old and new
working sets via disk swapin and swapout, referred to as balancing time. If
our dyn_memlimit can not react fast enough to evict old working set to disk, it
will occupy memory space and affect the performance of the new working set.
We compare the balancing time of our dyn_memlimit with the zero_memlimit
in Figure 6.6 by varying the shifting size of working set. The balancing time
increases as the shifting size increases for both of the mechanisms. As the figure
shows, the zero_memlimit shows the ideal performance and our dyn_memlimit
does not add more overhead to it but further improves the balancing time.
To analyze the reason, we explore the detailed statistics of dyn_memlimit
in figure 6.7 when the shifting size is equal to 300 MB. From the figure, the
memory throughput, directly bound by the rate of swapin at this moment,
keeps climbing from the start of the experiment and eventually to the native
throughput. The size of zram, zram size in the figure, keeps increasing without
dropping down before the 600th second. This is because the memory pages
residing in zram are mostly cold pages belonging to the old working set, and
the difference of page access probability in zram_lru is obvious, and thus the
dyn_memlimit does not actively kick cold pages to disk. After 600 second, the
new working set is almost swapped-in from disk and the memory space is not
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dyn_memlimit: Histogram of 700-half Workload with 300
MB Working Set Shift
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Figure 6.7: Histogram of memory throughput and zram statistics running 700-
half workload and 300 MB shift of working set size with the dyn_memlimit
mechanism. Using left axis, the dyn_memlimit line shows the throughput of
the workload where the zero_memlimit line is taken from other experiment for
comparison purpose. With right axis, the zram_size and zram_kick shows the
size of zram and the kicked size of cold memory in bytes.

enough for both the new working set and the compressed pages of old working
set. Thus, some of the hot pages may be evicted into zram, and it triggers the
zram to kick out cold pages where the zram kick shows the number of bytes
being kicked to disk per second.

The zero_memlimit line shows the throughput result chopped from other
experiment and increases slower than the dyn_memlimit. We consider the
reason is because the overlapped operations of swapin and swapout can reduce
the performance for each of them. In the case of zero_memlimit, the swapin
of new working set and swap-out of old working set have to be performed
at the same time, and thus reduce the performance of both disk and swap
subsystem. On the contrary, the dyn_memlimit buffered the old working set
in zram without sending to disk and let the throughput (swapin rate) climbs
faster. As a result, using the zram with dynamically adjusted size does not
add extra overhead when the working set changes, but brings extra benefit to
it.
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Performance of 401 under different upperbound of VM memory
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Figure 6.8: Runtime performance of SPEC CPU 401 bzip2 running
zero_memlimit, dyn_memlimit, and max_memlimit with various kinds of VM
memory upperbound. The upperbound 2 GB shows the baseline performance.

Evaluating dyn_memlimit with Real Benchmarks

After the analysis of synthetic workload, we now look into real benchmark and
compare the three mechanisms. Figure 6.8 and 6.9 show the runtime perfor-
mance of the three mechanisms running the two memory intensive benchmarks,
SPEC CPU 401 and 481 benchmarks. Here, we vary the memory upperbound
of VM, and see how each mechanism performs. For each of the two figures,
we put the baseline performance result on the left for comparison, i.e., the
upperbound is equal to 2 GB where TWS-ballooning is also disabled. The
runtime degrades as the upperbound decreases because of more memory pres-
sure on the benchmark. The results show that the 401 runs better when using
the zram but has poor performance when applying the zero_memlimit mecha-
nism. When the upperbound is reduced down to 460,000 KB, the runtime of
zero_memlimit is 4 times slower than the rest mechanisms. When the upper-
bound is smaller than 460,000 KB, we do not show the result of zero_memlimit
because the benchmark can not finish within 2 hours. On the contrary, the
benchmark 481 runs better when applying zero_memlimit. In both cases, the
dyn_memlimit adapts well and shows similar performance to the best mech-
anism. Especially for the 481 benchmark when the upperbound changes to
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Performance of 481 under different upperbound of VM memory
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Figure 6.9: Runtime performance of SPEC CPU 481 wrf running
zero_memlimit, dyn_memlimit, and max_memlimit with various kinds of VM
memory upperbound. The upperbound 2 GB shows the baseline performance.

480,000 KB, the zero_memlimit becomes worse than max_memlimit but our
dyn_memlimit adapts well and performs the same as the max_memlimit. Sim-
ilar to the results from synthetic workloads, we have shown that that our
dyn_memlimit can also adapt well in real benchmarks.

Comparing the Memory Virtualization Ratio with VMware ESXi
Server

Recalling our ultimate goal is to increase the memory utilization or the mem-
ory wvirtualization ratio, our TWS-ballooning and dyn_memlimit are shown to
squeeze the VM memory below its working set size while maintaining the ap-
plication performance. Taking the 401 benchmark in Figure 6.4 as an example,
it consumes average 1 GB memory while running Self-ballooning mechanism,
i.e., the memory size is equal to the Committed_AS plus the memory of guest
OS while our TWS-ballooning further suppress it to 830 MB with 3% perfor-
mance degradation comparing to baseline. As the result of Figure 6.8 shows,
With the help of dyn_memlimit, the upperbound of VM memory can further
go down to 586 MB (600,000 KB), i.e., around 60% of the memory size when
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SPEC CPU 401 Performance - dyn_memlimit vs
VMware ESXi 5.0 - 1VM
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Figure 6.10: Normalized runtime performance of SPEC' CPU 401 bzip2 on
1 VM running dyn_memlimit and VMware ESXi 5.0 with various kinds of
upperbound of balloon target.

the VM is running Self-ballooning, while the performance downgrade is bound
at 5.5%.

To verify the effectiveness of our work in the real world, we compare the
memory virtualization ratio of our dyn_memlimit with the VMware ESXi 5.0
server. As Figure 6.10 shows, we examine the normalized runtime of the
401 benchmark with dyn_memlimit on Xen hypervisor and the entire suite
of reclamation mechanisms on VMware ESXi 5.0 server by lowering down the
VM memory upperbound from 2,000,000 KB to 300,000 KB. The performance
is normalized to the baseline 682 and 657 seconds for dyn_memlimit and ESXi
server respectively, i.e., divide the baseline runtime by the corresponding run-
time result. From the figure, the normalized performance of the ESXi server
starts to degrade when the memory upperbound is at 800,000 KB while our
dyn_memlimit starts to drop at 600,000 KB. When the memory upperbound
is at 600,000 KB, the normalized performance of ESXi server has dropped to
65% while our dyn_memlimit keeps at 96%.

As for the 481 workload shown in Figure 6.11, the dyn_memlimit keeps
the normalized performance at 91% when the memory upperbound is 560,000
KB while the performance of ESXi server has dropped to 70%. However, our
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SPEC CPU 481 Performance - dyn_memlimit vs
VMware ESXi 5.0
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Figure 6.11: Normalized runtime performance of SPEC CPU 481 wrf running
dyn_memlimit and VMware ESXi 5.0 with various kinds of upperbound of
balloon target.

dyn_memlimit does not have too much performance gain against the ESXi
server when the memory upperbound keeps decreasing. This is because the
481 workload does not favor zram as we can observe from Figure 6.9 where the
zram is kept almost empty and has performance close to the zero_memlimit.

To analyze the performance when multiple VMs are running, we change
the experiment of 401 benchmark from 1 VM to 4 VMs where each VM runs
the same 401 benchmark. Note that we do not run more than 4 VMs because
there only exists 4 CPU cores on each test machine and each VM’s virtual CPU
is pinned to distinct physical CPU to isolate the performance. In addition, the
memory upperbound is equalized among all VMs so that memory balancing
mechanism is not necessary. The result is shown in Figure 6.12 where the
x-axis shows the memory upperbound per VM.

As the figure shows, the normalized performance of both the dyn_memlimit
and ESXi server has degraded comparing to the result of single VM. From the
experiment results, the average baseline performance of the 4 VMs has dropped
to 748 second and 721 second, i.e., about 10% comparing to the experiment of
1 VM, for the dyn_memlimit and ESXi server respectively. Our explanation
is that the hardware resource is multiplexed among VMs especially for (1)
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SPEC CPU 401 Performance - dyn_memlimit vs
VMware ESXi 5.0 - 4 VMs
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Figure 6.12: Normalized runtime performance of SPEC' CPU 401 bzip2 on
4 VMs running dyn_memlimit and VMware ESXi 5.0 with varied memory

upperbound per VM. Note that the memory upperbound is equalized among
the 4 VMs.

memory bandwidth because the 4 VMs are sharing certain memory banks and
(2) disk I/O bandwidth because the 4 VMs performing swapin and swapout
on the same disk.

While the normalized throughput of ESXi server is at 90% when the mem-
ory upperbound per VM is 800,000 KB, all guest OSs panic when the upper-
bound is dropped to 700,000 KB or less. From the reported message of guest
OS, some process and regular disk /O request have hung for more than 120
seconds. This is possibly due to the heavy disk swapin/swapout inside the
guest OS, which slows down the process running and normal disk 1/O sig-
nificantly. On the contrary, our dyn_memlimit has zram running inside each
VM to absorb the guest memory pressure and keeps swapin/swapout perfor-
mance. Thus, the normalized throughput of dyn_memlimit still keeps at 86%
when the upperbound drops to 600,000 KB. When the upperbound goes down
to 500,000 KB, even the normalized performance is dropped to 35%, but the
guest OS is still running properly instead of crashing as the ESXi server.
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Mechanism o :
Workload dyn_memlimit | VMware ESXi
700-half 95.12% 0.85%
95-10 7.98% 0.99%

Table 6.7: Comparing the normalized average throughput of dyn_memlimit
and VMware ESXi server running the 700-half and 95-10 workload where the
memory upperbound is 600,000KB.

Analyzing Performance Bottleneck of VMware ESXi Server

There could be two problems for the compression mechanism of VMware ESXi
server.

e By default, the maximum compression cache of VMware is arbitrarily
limited to 10% of the VM memory size. In the current experiment, the
size is 204 MB for the configured 2GB of VM memory size. We consider
the reason is that VMware currently does not have a good mechanism
to adjust the memory size of compressed memory so they choose the
percentage from experience or experiment results.

e The VMware does not carefully choose the pages for compression, but
randomly pickup the candidate page in the guest address space, which
can easily touches the pages of the true working set.

On the contrary, we carefully choose the candidate page outside of the working
set and adjust the zram memory size dynamically so that the VM performance
is kept better.

To analyze the first problem of ESXi server mentioned above, we apply
the 700-half and 95-10 synthetic workloads from the previous section to both
the dyn_memlimit and ESXi server. The result in Table 6.7% shows the aver-
age throughput of 700-half and 95-10 normalized to baseline, i.e., divide the
average throughput by the corresponding baseline result, for dyn_memlimit
and the ESXi server respectively. While dyn_memlimit maintains the base-
line throughput in 700-half and 7.98% (619 MB/sec) in 95-10, the throughput
of ESXi server is low in both cases, i.e., 0.85% (70 MB/sec) and 0.99% (76
MB/sec) for 700-half and 95-10 respectively. As we observe the system statis-
tics of the ESXi server via the console, the compressed memory is always kept
at 10% for both workloads.

8The results of dyn_memlimit are borrowed from Table 6.5 and 6.6.
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dyn_memlimit | VMware ESXi
Normalized throughput 39.34% 1.47%
Normalized throughput of 93.16% 50.81%
hot working set
Normalized throughput of 3.46% 0.09%
cold working set

Table 6.8: Normalized average throughput for dyn memlimit and VMware
ESXi server running 95-10 workload where the memory content is zero page
and the VM memory upperbound is 700,000 KB.

For the 700-half workload, we expect the compressed memory to be almost
zero, but the ESXi server consumes 10% of the VM memory, i.e., 204MB, for
compression and thus the working set can not fully reside in memory. As for the
95-10 workload, our dyn_memlimit uses 285 MB for compressed memory, i.e.,
at least 252 MB to accommodate the cold working, referring to the discussion
in chapter 6.7.2, but the ESXi server has only 204 MB maximally, which is
insufficient in this case.

To analyze the second problem of VMware ESXi server, we use 95-10 work-
load with the following two changes.

e Memory content: change the memory content of the workload from 40%
compression ratio to zero page’ because here we only want to analyze
the penalty of randomly selecting compressed pages. But if we use 40%
compression ratio as the memory content, the compressed memory will
occupy VM memory space and further trigger the dynamic zram ad-
justment in dyn_memlimit and host swapping in VMware ESXi server,
which is difficult to isolate the performance problem.

e Memory upperbound: change the VM memory upperbound to 700,000
KB so that the hot working set can be squeezed less and performs better.
In this case, if the compressed pages is randomly chosen, the performance
hit on the hot working set will be more obvious and easy to observe.

As the result in Table 6.8, our dyn_memlimit shows the normalized throughput
of hot working set, i.e., 93.16%, can be very close to the baseline but the ESXi
server can only achieve 50.81%. This is because the dyn_memlimit relies on the
Linux guest OS to evict cold pages for compression but not random selection

9The experiment result shows that VMware does use zero page optimization in com-
pression.
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as the ESXi server. The difference of cold working set is not obvious because
the working set is larger than the given VM memory upperbound and the cold
working set is evicted severely. Finally, the overall throughput also reflects
the penalty of random selection mechanism in the ESXi server. In short, the
dyn_memlimit utilizes the memory compression mechanism to the maximum
extent because it leverages the guest OS reclamation mechanism and carefully
adjusts the zram size.

6.7.3 Effectiveness of Memory Balancing

Given VMs with different working set size, we evaluate our proposed memory
balancing mechanisms by comparing the difference of the performance over-
head of each VM. For simplicity in this section, when we refer to the name of
workload or benchmark, we refer to one VM with the corresponding workload
or benchmark running on top of it. First, we use the following configuration
of two VMs, referred to as 400-700, each running different synthetic workload
to analyze the characteristics of each balancing mechanism.

e 400: the synthetic workload running inside the VM allocates 400 MB
memory as its working set with memory access normally distributed
among the working set where the standard deviation is equal to the
working set size divided by three. Here, each memory access zeros out
the page content with memset.

e 700: the synthetic workload running inside the VM allocates 700 MB
memory as its working set with memory access normally distributed
among the working set where the standard deviation is equal to the
working set size divided by three. Here, each memory access zeros out
the page content with memset.

Each of the workload is given a target amount of memory to access, and
stops execution when the amount of memory is reached. Therefore, if the two
workloads suffer from the same performance overhead, both of them should
stop at the same time, i.e., have the same runtime degradation. Because each
workload may have different runtime in reality, we force the memory resource
contention among all VMs to start in the beginning of experiment and ends
when the workload with the shortest runtime stops, i.e., after the shortest
benchmark stops, its released memory is enough for all the rest VMs to run
natively without memory balancer involved.

For a fixed configuration of VMs and memory balancing mechanism, we
gather the following performance statistics from each VM.
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e Normalized Runtime Degradation: find the runtime degradation in
seconds against the baseline,'” referred to as Tlegrade, normalize it by the
runtime of the shortest benchmark, Tsporest, as the following equation,

Tdegrade x 100

Tshortest

Normalized runtime degradation (%) = (6.6)
One can reason this as the runtime degradation percentage for each sec-
ond during the Tgpoprese period.

e Average overhead_count: for the duration of T,test, report the av-
erage overhead_count per second.

e Average overhead_time: for the duration of T,,orsest, report the aver-
age overhead _time per second.

After gathering the three kinds of statistics of all VMs, for each kind of statis-
tics, we report their standard deviation in order to see how each VM differs
from each other. For the standard deviation of each statistics, we refer them
as S_degrade, S_count, and S_time for normalized runtime degradation,
average over_count, and average overhead_time respectively. Because our ul-
timate goal is to equalize the overhead of all VMs, we use the S_degrade as
the performance metric and expect it to be as small as possible so that the
overheads of VMs are close to each other and equalized.

As for S_count, we expect the Bal count mechanism to have the small-
est number of it because its goal is to balance the overhead_count. On the
other hand, the Bal prop tries to let the VM with larger working set to suffer
more, and thus its S_count should be larger than Bal_count mechanism. For
the S_time statistics, because our Bal_time mechanism use the overhead_time
to approximate the true overhead of VM performance, we expect to see the
S_degrade to go up/down with the same trend as S_time, and the Bal_time
to have the smallest value of it.

In Figure 6.13, we compare the S_degrade of our four proposed memory
balancing mechanisms using the 400-700 VM configuration while the memory
upperbound of all VMs is varied from 1700 MB to 1000 MB. The corresponding
results of S_count and S_time are shown in Figure 6.14 and 6.15 respectively.
Looking at the results of S_degrade and S_time, if we fix the memory upper-
bound, then the S_degrade of each mechanism has the same trend as S_time,
i.e., if a mechanism has smaller S_time then its S_degrade is smaller, and thus
achieves better result in terms of overhead balancing.

101t is gathered when all workloads run with 2 GB and zram disabled.
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Standard Deviation of Normalized Runtime
Degradation for 400-700 Workloads
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Figure 6.13: Standard deviation of normalized runtime degradation of different
memory balancing mechanisms, Bal_equal, Bal_prop, Bal_count, and Bal_time
with 400-700 VM configuration. The memory upperbound of all VMs is varied
from 1700 to 1000 MB.

As for the result of S_count, it is completely contributed by swapin but not
refault events because the workload does not contain disk access. In addition,
the result of S_count has very similar trend as S_time. We consider it is
because the synthetic workloads contain all zero pages, and the time cost of
each swapin is zero-optimized, which is small and similar among all VMs.
Thus, for our synthetic workloads, if the overhead_count is balanced (smaller
S_count), then the overhead_time is likely to be balanced (smaller S_time), and
so is the runtime degradation (smaller S_degrade). One exception is when the
memory upperbound is 1200 MB, the Bal_count mechanism has the smallest
S_count but higher S _time result than Bal time, and thus Bal_count performs
worse than Bal_time in terms of S_degrade. This is also an evidence to show
that the overhead _time is a better indicator to measure the VM performance
overhead and guide the memory balancing mechanism.

Now we put focus on the comparison of different balancing mechanisms.
When applying the Bal equal mechanism, the workload 400 can enjoy the
native throughput when the memory upperbound is above 1100 MB because
it consumes around 600 MB of memory, i.e., 400 MB workload plus 200 MB
guest OS, and can fit into half of the memory upperbound. However, the
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Standard Deviation of Average overhead_count
for 400-700 Workloads
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Figure 6.14: Standard deviation of average overhead_count of different memory
balancing mechanisms, Bal equal, Bal prop, Bal_count, and Bal_time with 400-
700 VM configuration. The memory upperbound of all VMs is varied from
1700 to 1000 MB.

workload 700 degrades severely as the memory upperbound decreases, and
thus the performance gap between workload 400 and 700 keeps increasing as
observed from the S_degrade results. After the memory upperbound drops
below 1100 MB, the working set of workload 400 begins to be eaten, and the
S_degrade becomes smaller. Because this mechanism does not consider the
working set size of VMs, its statistics are the largest among all mechanisms.

As for the Bal_prop mechanism, it tries to give more overhead_count to
workload 700 than workload 400 while Bal count tries to equalize it. With
the assumption that S_count and S_time have similar trend, the S_degrade of
Bal_count is smaller than Bal_prop and thus achieve better result of overhead
balancing. Finally, the Bal_time aims to equalize the overhead_time among all
VMs and thus has the best result of S_degrade among all mechanisms.

In the following, we further analyze the balancing mechanisms on real
workloads with the following configurations. Here, we do not concern about
the Bal_equal mechanism but focus on the comparison of other three ones with
each set of VM configurations.

e 470-481: two VMs each running the SPEC CPU benchmarks 470 and
481 respectively. The memory upperbound of all VMs is fixed at 1100
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Figure 6.15: Standard deviation of average overhead_time of different memory
balancing mechanisms, Bal_equal, Bal prop, Bal_count, and Bal_time with 400-
700 VM configuration. The memory upperbound of all VMs is varied from
1700 to 1000 MB. Note that the result of Bal_equal is too large to fit into the
figure after the memory upperbound drops to 1300 MB, and thus is omitted.

MB which is smaller the sum of the true working set of benchmark 470
and 481..

e 436-459-470-481: four VMs each running SPEC CPU benchmarks 436,
459, 470, and 481 respectively. The memory upperbound of all VMs is
fixed at 2600 MB which is smaller the sum of the true working set of all
four benchmarks.

Similar to the synthetic workloads, we apply the same experiment method-
ology to gather the three performance statistics described above. In Fig-
ure 6.16 and 6.17, we show the performance statistics for the two VM con-
figurations, 470-481 and 436-459-470-481, respectively. From the results, the
S_time still holds the same trend as S_degrade, and Bal_time performs the best
as it has the smallest S_time among all three mechanisms. On the other hand,
the Bal_count mechanism does the best job for balancing the overhead_count,
and thus has the smallest S_count among all mechanisms. However, even if
the overhead_count of Bal count mechanism is balanced, its S_time is com-
paratively larger, and performs the same as the S_prop because these two
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Figure 6.16: The standard deviation of the all performance statistics of the 470-
481 VM configuration Each group of bars represents one statistics and then
the three bars within the group represents the results of the three memory
balancing mechanisms Bal _prop, Bal_count, and Bal_time respectively.

mechanisms have similar S _time among the two sets of VM configurations.
In short, to balance the VM performance overhead, it is not wise to omit
the working set size of VM as Bal_equal and one has to take it into account the
Bal_prop mechanism. However, because the performance overhead is driven by
the swapin and refault events, the Bal_count can perform better by balancing
the overhead _count of VMs. Furthermore, when the time cost of each swapin
and refault differs among different VM workloads, it is more important to take
the overhead_time into account as the Bal_time mechanism, which is proved
from the above results of both synthetic workloads and real benchmarks.

6.7.4 Potential Problem of the Memory Balancing Mech-
anism

When the memory allocation to VM is comparatively lower than its true work-

ing set, the swapin or refault operation will be slowed down due to internal

memory pressure of guest. It is possible that the swapin and refault are too
slow and can not reflect the true working set of VM. For example, if the VM can
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Figure 6.17: The standard deviation of the all performance statistics of the 436-
459-470-481 VM configuration Each group of bars represents one statistics and
then the three bars within the group represents the results of the three memory
balancing mechanisms Bal _prop, Bal_count, and Bal_time respectively.

access its deficient part of memory for R MB/sec, the real overhead_count may
not be fast enough to react and thus we may gather some value smaller than R,
and thus under-estimate the VM working set. One symptom of this scenario
is that the CPU utilization of the VM is pretty low at this moment because
most of the CPU cycles are consumed in swapin and refault operations. To
estimate the working set correctly, one should also take into account the CPU
utilization inside the guest. For the Bal time mechanism, the overhead_time
of each VM should be weighted according to the guest CPU utilization, i.e.,
divide the overhead_time by the guest CPU utilization percentage. Similarly,
the overhead_count should also be weighted in the Bal_count mechanism. This
issue is an interesting topic to be explored in the future work.
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6.8 Applying Memory Compression to Win-
dows Guest

In this section, we discuss how to apply the memory compression technique to
the Windows guest OS. In Windows OS, the memory allocated using generic
guest API, not including the disk I/O operation, corresponds to the anonymous
memory in Linux. Similar to Linux reclamation, the Windows OS also uses
the hardware access bit to look for pages outside of VM working set and evicts
idle pages [73]. To apply the memory compression technique to the Windows
OS, we have to implement the zram and zballoond components for it.

First, we could implement the zram component and provide it as faked disk
device inside the Windows guest. One small difference is that the Windows OS
uses the swap file instead of swap disk for swap in/out operations. To complete
the goal, we can simply store the swap file into the zram disk, so that every file
operation to the swap file is intercepted by the zram component. While the
swapin statistics can be gathered in the zram component, the refault statistics
needs to be collected by intercepting the regular disk 1/O operations, which
can be done by modifying the disk driver in guest. However, if there is no open
source for the disk driver, we have to intercept the operation in the hypervisor
context.!!

As for the zballoond component, same as Linux guest, there already ex-
ists open-source balloon driver for windows VM. Based on the balloon driver,
we can try to implement the zballoond component to automatically adjust
the balloon target of Windows guest, i.e., the TWS-ballooning. However,
one missing thing for Windows OS is that there is no explicit kernel param-
eter such as Committed_AS to initialize the balloon target and detect the
big change of working set. One possible solution is to write a system pro-
gram to collect the memory usage information of all processes, e.g., using the
GetProcessMemoryInfo Windows API and iterating all processes.

6.9 Summary

The memory compression is often used as the secondary resort to increase
memory utilization in the virtualized environment mostly due to its high over-
head of decompression when guest VMs access the compressed pages, i.e.,
when COA mechanism is triggered. In this chapter, we have leveraged the
memory reclamation mechanism in Linux guest OS to find out cold pages, i.e.,

UThe I/O operations are intercepted by hypervisor and mostly handled by the privileged
VM, dom0.
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pages outside of the working set, as candidates for compression.

Comparing to the on-demand working set detection of VMware ESXi server,
the periodic working set probing of TWS-ballooning can react better to the
sudden workload changes among VMs but with small amount of performance
overhead as the trade-off. As to compare with the Self-ballooning mechanism,
the TWS-ballooning is able to probe the true working set and reclaim unneces-
sary guest cold pages back to the hypervisor memory pool, e.g., we have saved
15% more memory for the SPEC CPU 401 benchmark with 1% improvement,
i.e., from 4.11% to 3.08%, on the performance degradation against the base-
line. Beyond the Committed_AS used in Self-ballooning, the TWS-ballooning
can detect the working set of disk-intensive workload which consumes more
page cache, e.g., the performance degradation of OLTP benchmark has been
reduced from 17.99% of Self-ballooning to 3.31%.

While the TWS-ballooning split the cold working set out into the zram, the
dyn_memlimit is further used to dynamically adjust the zram size by kicking
out the cold pages in zram to the swap disk. This is especially important
when the host memory goes lower than the true working set of VMs and
dyn_memlimit adjusts the zram size so that the application performance is
kept. From the experiment result, we are able to pack the 401 benchmark into
586 MB (600,000 KB) of VM memory with 5.5% performance degradation
whereas the VMware ESXi 5.0 server requires 781 MB (800,000 KB) of VM
memory to achieve the same performance, which shows our improvement on
the memory virtualization ratio.

Finally, when the host memory can not support the true working sets of
all VMs, we balance the performance overhead of each VM so that they can
degrade gracefully. We have found that the overhead_time of each VM is an
accurate estimation of the VM performance overhead, and can be used well
on the memory balancing mechanism. From the experiment results, we have
shown that the Bal_time mechanism has achieved the best for our goal.
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Chapter 7

Fast and Light-weight Virtual
Machine Cloning

7.1 Use Case and Requirements

From the use cases that we have mentioned in chapter 1.7, the software ar-
chitecture of our cloning mechanism requires the interaction between the ap-
plications running inside the guest VM and the underlying hypervisor. For
example, when the VM user starts/opens a suspicious program, the antivirus
software in guest can choose to create a cloning from the current VM, execute
and scan the suspicious program in the cloned VM, and gather the running
result to analyze the program behavior.

Using the above use case as an example, the software architecture we pro-
posed in Figure 7.1 requires a manager running inside hypervisor context to
manage the cloning operations for the physical host, and a special and secure
agent running inside each VM to communicate with the manager to perform
the corresponding actions. The manager can be implemented as a user-space
program running inside the Dom0 of Xen, and each agent can communicate
with the manager by pre-configured network socket. For the cloning operation,
we apply the following procedures.

e Similar to process fork in traditional OSs, each VM will be assigned a
unique identifier, VMID, so that the agent can identify itself and perform
the right actions. As the Figure 7.1 shows, the source VM is assigned
VMID_P while the cloned VM will be assigned VMID_C after cloning.

e The agent in source VM triggers the cloning operation by sending a
message to the manager, which performs the cloning operation. After
cloning, each agent receives its own VMID from the manager and performs
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(3) Receives VMID_P and performs (3) Receives VMID_C and performs
actions of source VM actions of cloned VM

(1) Initialized with |
VMID_P and triggers
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Hypervisor

Figure 7.1: Software architecture of Virtual Machine Cloning where the cloned
VM is acting as a sandbox with same kind of execution environment as the
source VM. The agent is responsible to invoke the cloning operation, suspend
unnecessary processes and start new processes, e.g, suspicious programs for
malware detection or security purposes.

its own operations. Taking antivirus software as an example, the agent
in cloned VM may choose to suspend or remove some original processes
to cleanup the execution environment, and then invoke the suspicious
program as new process to analyze its behavior. As for how to identify
which process is necessary for a clean OS boot environment, the appli-
cation can leverage the session or desktop manager concept from both
Windows and Linux where the manager can record/invoke /kill processes
such that the system can be brought up as the antivirus software wants.
Similarly, the agent can open a DRM document or install new software
patches and updates.

The good side of cloning is the cloned VM has exactly the same state as
the source so that we do not have to boot the guest OS, load and run the
application, or copy extra memory state in order to performs tasks. However,
referring to the article of VMware knowledge base [74], there are problems due
to the duplicate state that needs to be taken care by applications and system
software. In the following, we list these problems and discuss the solutions.

¢ MAC and IP address: After cloning, the MAC and IP address of the
cloned VM are all the same as the source. The first question is how the
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Figure 7.2: Network configuration of VM cloning. The source VM is con-
nected to a the hardware network interface via a virtual bridge, origBridge,
for outgoing network while the cloned VM is connected to a temporary bridge,
tmpBridge, without any network interface attached. Both the two bridges are
presented as virtual network interfaces in hypervisor so that the hypervisor
can talk to each VM.

manager sends a unique message, e.g., the VMID, to each VM so that
each agent knows the next step to perform. If this issue is solved, the
manager can simply send new MAC and IP address to the cloned VM
to reconfigure it if the cloned VM requires network connection to the
outside world. As Figure 7.2 shows, the source VM is connected to the
hardware network interface via a virtual network bridge, origBridge,
setup by the manager. After cloning, the cloned VM is connected to
a temporary virtual bridge, tmpBridge, without any network interface
attached, and thus all the network traffic of cloned VM is confined within
the host.

Both the two virtual bridges are presented as virtual network interfaces
inside hypervisor. To send message to the source VM, the manager
configures the default route to origBridge for the IP address of source
VM!. On the other hand, the manager changes the default route to
tmpBridge when it wants to send message to the cloned VM. Note that
the change of route does not affect the external network connection of
the source VM because there is no concern of IP routing in the level of

ISame as the cloned VM at this moment.
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virtual bridge. Once each VM receives its VMID, it can make a decision to
continue its operation depending on different use cases. To re-configure
the MAC and IP address of cloned VM, manager can send a new MAC
and IP address as message to its agent via tmpBridge. After the agent
set the new MAC and IP address, the manager can connect the cloned
VM to origBridge so that it can reach the external network. Of course,
it is not the case for opening DRM document where the network of cloned
VM could have been shutdown for security reasons.

Software Identifiers: Some applications or software require unique
identifier for each VM, and the cloned VM has to recreate a new one. For
example, Microsoft use Windows Security Identifiers (SIDs) to represent
machine identity and its security principals including user accounts and
security groups. Thus, the cloned VM has to use Sysinternal utilities [75]
to generate a new SID right after cloning. Another example is the UUID
(Universally unique identifier) which is commonly stored in the Bios of
motherboard to identify the machine itself. In the current virtualized
environment, the manager has to generate another UUID for the cloned

VM.

Software Transactions: If the running application on source VM has
certain memory state related to transactions, e.g., database server of on-
line banking, then the cloned VM can not simply use the same software
state as the source VM. The application has to take care of it by can-
celing or reseting the application state inside the cloned VM, which can
be implemented by the software architecture of manager and agent we
mentioned above.

After the above discussion, now the entire problem has been reduced to
how to perform the HAL-based VM cloning efficiently.

7.2 HAL-based Virtual Machine Cloning

A naive implementation is to consider VM cloning as a special case of VM
migration by migrating a VM from source to target without killing the source
VM after migration. Note that the migration here refers to the non-live ver-
sion, i.e., VM is paused during the entire migration, because the live migration
takes longer time for the whole procedure to complete while we need it to be
done as soon as possible. Then, the target will have the snapshot of source
VM with same virtual CPU, memory, and device I/O states. However, there
are two problems left for (1) the disk state and (2) the memory state.
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First, the migration facility does not copy the disk state but assumes the
disk is shared between source and destination VMs. After regular VM migra-
tion, only the destination VM is assumed to access the disk; otherwise, the disk
state will be in-consistent. In the current implementation of Xen hypervisor,
there exists two basic types of disk provisioning for VMs.

One type is to directly assign a raw disk partition to the VM, referred to
as data disk, and the other type is to use a file image? to host the entire disk
of VM, referred to as system disk. To use the data disk provisioning, we have
explored the LVM (Logical Volume Manager) disk snapshot support [76] to
perform snapshot of the source disk volume at the time of cloning, and assign
the snapshot version to the cloned VM. After the disk snapshot, both of the
VMs access their own disks with COW mechanism. In the following, we give
a time breakdown for the naive implementation, referred to as BasicClone
mechanism.

e Prepare cloned VM environment: each VM has certain kinds of metadata
and structures maintained by hypervisor, e.g., virtual CPU and virtual
device data structures, which costs around 100 milliseconds to create
them.

e Snapshot disk state: using the LVM snapshot costs 1.1 second.

e Copy VM state: the time cost is linearly increased with VM memory
size, e.g., copying 1 GB VM memory costs 403 milliseconds while 2 GB
VM memory costs 824 milliseconds.

e Restore CPU, I/0 states of cloned VM: this step is to restore the states
into the virtual devices and initialize the device model of the VM, which
costs 600 milliseconds for Linux VM.

However, the LVM snapshot feature costs too much time and we also no-
ticed that the performance varies as the VM memory size changes. Thus, we
choose to use the system disk provisioning and utilize the file system snapshot
mechanism supported by birfs [77] in Dom0. As for the general problem of
data disk snapshotting, it remains unsolved and is left as the future work.

As we have discussed in the chapter 1.4, the majority of VM states is the
memory, which can not be copied page-by-page directly because the size can
go up to a few GBs and make it non-scalable for the entire cloning mechanism.
In order to reduce the cloning time of memory state, one alternative is to copy
the mapping of GFNs to MFNs, i.e., the P2M table or the EPT table in Intel

2The entire VM disk is represented as a regular file in the filesystem of Dom0, btrfs in
our case, mounted as loopback device, and assigned to the VM.
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Figure 7.3: The steps of lazily cloning EPT table upon the first memory
access after cloning from either the source or cloned VM. L4, L3, L2, and L1
represents Level 4, 3, 2, and 1 EPT page table while L4E, L3E, L2E, and
LI1E shows the page table entry in L4, L3, L2, L1 page table respectively.
While traversing down from L4 to L1 of EPT, the corresponding page table
is synchronized to the cloned VM, and the page table entry in each level

corresponding to the data page will be marked as R/W gradually. Finally, a

new memory page for cloned VM is allocated, and the content is copied from
the date page of source.

architecture, from source to the cloned VM, and mark all memory pages as
write-protected, which is the same as the COW mechanism of memory sharing
in chapter 4. However, as memory size of VM increases, traversing the entire
page table entries becomes time-consuming and the total time can not be

bound to sub-second. Thus, we proposed to perform the lazy copying of the
P2M table in the following section.
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7.3 Lazy Memory State Cloning

In Intel architecture, the target platform in our work, the EPT page table
is organized as a four-level hierarchy. During the cloning, we performed the
following steps.

e Mark all highest-level entries of source EPT table as not-present.
e Copy the highest-level of EPT table from the source to cloned VM.

As Figure 7.3 shows, when either the source or the cloned VM accesses its
memory pages first time after cloning, the VM execution will be trapped into
hypervisor as the COA mechanism. We copy the EPT page table content
related to the address translation of the accessed page, from the highest level
L4 to the lowest level L1 to the cloned VM. All related page table entries
(PTEs) i.e., L4E, L3E, L2E, and L1E in the figure, will be changed from
not-present to R/W (Read-writable). A new memory page is allocated to
the cloned VM with copied content from the source VM. From now on, the
source and cloned VM can access or modify this recently accessed memory
page without affecting each other. With this kind of lazy approach, we can
skip the effort of copying the entire table at the moment of cloning and bound
the entire processing time within one second. As for implementation, now we
focus on cloning a VM on the same physical host running the Xen hypervisor.

7.4 Performance Evaluation

To evaluate the effectiveness of VM cloning, we used the cloning time as the
metric to compare the following three mechanisms.

e MigrateClone: Clone the VM with migration facility while the disk of
cloned VM is the btrfs snapshot from source VM.

e TableClone: Same as the MigrateClone mechanism except that mem-
ory pages are not copied and only the EPT page tables are copied with
level 1 entries marked as read-only. The memory pages are synchronized
between the source and cloned VM using the COW mechanism.

e LazyClone: Instead of copying the EPT page tables as T'ableClone, the
page tables are lazily synchronized from the source VM to the cloned one
using the COA mechanism described in chapter 7.3.

For the testbed setup, we use the same test machine and VM images as de-
scribed in chapter 4.3.1.
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Figure 7.4: The cloning time of Centos-64 VM with different memory size us-
ing the MigrateClone mechanism. The "Memory” part refers to time cost of
cloning the memory state while ” Non-memory” refers to other time consump-
tions including CPU and 1/0 states and the snapshot time of btrfs filesystem.

Figure 7.4 shows the cloning of Centos-64 VM with memory size 1, 2, 4,
and 6 GB using MigrateClone mechanism. The legend ”"Memory” shows the
time of cloning memory state while the ” Non-memory” part shows the cloning
time of CPU and I/O states plus the time for btrfs to perform file system
snapshot on source disk. From the result, the time of memory state cloning
has dominated the entire procedure, and the total cloning time increases from
19, 23, 30 to 41 seconds as the VM memory size increases from 1, 2, 4, to 6
GB. In short, the MigrateClone mechanism is inefficient and non-scalable to
the memory size of VM.

As for the TableClone and LazyClone mechanisms, we compare their
cloning time in Figure 7.5. For each memory size of the VM, the LazyClone
mechanism, the right bar, only costs 1 millisecond to perform the memory
state cloning, i.e., to mark and copy the top level of EPT entries, which is
bound to 512 entries in Intel architecture. Thus, only the " Non-memory” part
of cloning contributes to the total time of cloning in the LazyClone mecha-
nism, which is fixed among all results, i.e., 706 millisecond on average, because
the states of CPU and I/O are small and do not change as the memory size
changes, and the time cost of file system snapshot is also kept the same.

121



TableClone vs LazyClone

£ Memory
B Non-Memory l

Cloning Time (msec)
1000 2000 3000

1 2 4 6
Memory Size of VMs (GB)

0

Figure 7.5: Cloning time comparison of Centos-64 VM with different memory
size 1, 2, 4, and 6 GB. For each memory size, the left bar represents the
TableClone mechanism while the other one shows the result of LazyClone.
The ”"Memory” part refers to time cost of cloning the memory state while
”Non-memory” refers to other time consumptions including CPU and 1/0O
states and the snapshot time of btrfs filesystem.

On the other hand, the time of memory state cloning for the T'ableClone
mechanism, left bar for each memory size, keeps growing from 403, 824, 1614,
to 2473 milliseconds when the VM memory size increases from 1, 2, 4, to 6
GB. The growing time of memory state cloning is just proportional to the
increase of VM memory size because the number of EPT entries also increases
proportionally and becomes more time-consuming to iterate through them
during the cloning process. As a result, the total cloning time of T'ableClone
mechanism increases from 1104, 1570, 2374, to 3192 milliseconds for each VM
memory size respectively. As for the Windows VM, we have performed the
same experiment for the Win7-64 VM where the Non-memory part of cloning
time has increased for 100 milliseconds among all VM memory size. The
reason is due to an extra step for restoring the virtual sound device for the
cloned VM. Eventually, the cloning time of LazyClone is still bound within
sub-second, i.e., 807 milliseconds. To summarize, our proposed LazyClone
approach scales well when the memory size of VM goes up and retains the
sub-second performance.
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7.5 Optimizing Cloning Time by Prefabricat-
ing the Cloned VM Environment

Unlike the VM migration, right before we perform the VM cloning, we already
know the virtual hardware profile of the cloned VM, e.g., the number of virtual
CPU and the device model of virtual disk. As chapter 1.4 describes, the
cloned VM environment is constructed after the VM states are received at the
destination side, which takes a while for hypervisor to build it up before the
VM states can be restored.

Because the hardware profile of VM can be seen as an invariant for the
cloning operation, we can pre-build the environment of cloned VM, referred to
as pre-cloning mechanism, and thus save the total time of VM cloning. From
our empirical result, we are able to further reduce the cloning time by 100
milliseconds, i.e., the cloning of Centos-64 and Win7-64 test VMs can be done
in 607 and 707 milliseconds respectively.

7.6 Summary

While the VM cloning in OS-level virtualization can be easily achieved as
the process forking in traditional OS, we have designed and implemented the
corresponding HAL-based solution in this chapter. As the VM memory size
increases, our Lazy memory state cloning keeps the cloning time constant by
lazily synchronizing the EPT page tables between the source and the cloned
VMs. To be concrete, we have demonstrated that the VM cloning time can
be bound within sub-second for both Windows and Linux VMs on top of the
latest Xen hypervisor. The cloning time does not change at all when the
VM memory size rises up from 1 to 6 GB because of our lazy approach on
memory state cloning. In addition, the pre-cloning mechanism pre-constructs
the hardware environment for cloned VM and further save the entire cloning
time by 100 milliseconds. With the sub-second performance, the HAL-based
VM cloning can be easily used as a sandbox for various purposes such as DRM
document reading, virus scanning, and software testing environment.

123



Chapter 8

Conclusion

8.1 Memory Virtualization-based Applications

As the data center size grows, the resource management becomes more impor-
tant to the VM performance. The memory resource is currently the bottleneck
of resource utilization, and it is challenging in terms of performance for vari-
ous virtualization applications such as VM migration, VM de-duplication and
compression, and VM cloning. In the following, we summarize our findings for
each of them.

8.1.1 VM Migration

To consolidate system resource among PMs, VM migration is the primitive in
the virtualized environment. It can be triggered when a physical host is going
to run out of hardware resource or to be shutdown due to maintenance. At
this moment, the system administrator or the system administration program
will pickup certain VMs on the host and then choose a candidate physical
host as the target of migration, e.g., the machine with the fewest VMs or the
lowest CPU utilization. If the VM migration takes a long time, it consumes
both the system resource and network bandwidth of the source and target
physical hosts. Even worse, the VMs on the source PM may start to starve on
hardware resource.

Thus, it is time critical to move the VMs to the target PMs where reduc-
ing the memory state size of migration is the most effective way. Using the
automated VMI, the don’t-care pages can be instantly identified inside the
hypervisor space without causing any side-effect such as the overhead of COA
from compressing guest VM’s memory. On the other hand, as the resource
management of VMs becomes more important, there are more applications
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related to system administration running inside the hypervisor space. Thus,
during the system maintenance, it is also necessary to keep the entire PM
state without interrupting these application services. Therefore, our devel-
oped PMSM becomes important at this moment to migrate all applications or
VM states on a PM to the target physical host.

8.1.2 VM Deduplication

To relieve the bound of virtualization ratio on top of a physical machine,
it is important that one can effectively and efficiently increase the memory
utilization ratio among VMs. From our study, most of the pages that can be
de-duplicated are just zero pages. For a page with randomized content, it is
unlikely to find another page with exactly the same content. Some researches
try to find duplicate pages among similar VMs, e.g., both running Windows
XP Service Pack 1; however, it is not always true to assume this case on a single
physical machine. Thus, the traditional memory de-duplication could spend
a great effort to compute hash value and compare content of memory pages,
eve if the page is don’t-care, i.e., the free memory pages of guest OSs. With
the automated VMI technique, we are able to generalize the de-duplication
process from page content to page type, which is able to de-duplicate non-zero
don’t-care pages, and speeds up the de-duplication engine by four times from
empirical results.

8.1.3 VM Compression

The memory compression is more expensive than the de-duplication mecha-
nism because for each read operation of a compressed page, the COA will be
triggered to uncompress the page. In addition, while de-duplicating a page
can reclaim one page back to hypervisor, it usually takes memory compres-
sion to compress a few pages to reclaim a single page. Thus, it is reasonable
to use it as the secondary resort to increase memory utilization. In order to
reduce the overhead of this mechanism, we have tried lots of effort to detect
the cold pages of VM, i.e., pages outside of its working set, and use them as
the candidate pages for compression.

In the beginning of the compression project, for the transparency purpose
to VMs, we try to use the automated VMI technique to identify the page type
of Linux guest VM and find cold pages from the page type, e.g., the page
descriptor with PageReferenced field turned on represents that the page has
been accessed recently. However, the Linux OS only performs the reclamation
when the kernel is running out of memory, and the PageReferenced field is
only set or cleared when the reclamation mechanism is active. Thus, it is not
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possible to utilize this information outside of guest VM when there is no mem-
ory pressure internally. In the end, we found that the zram component [7] tries
to compress the swapped-out pages in order to reduce the 1/O delay of swapin,
and then realize it could be used as part of our compression mechanism. Thus,
we choose to implement the component inside the guest OS, and utilize the
TWS-ballooning mechanism to trigger the guest reclamation, which identifies
the guest working set with hardware reference bit on page table entry, and
evicts candidate pages into zram for compression. Using the access proba-
bility of pages, we solved the problem of the original zram component and
VMware when deciding the memory size used to hold the compressed pages.

The identified guest working set size is also important when memory bal-
ancing issue arises among multiple VMs. Instead of trapping the memory
access, we want to utilize the guest reclamation knowledge which already ex-
ists, and do not want to do extra work on it. While our goal is to equalize the
overhead of each VM, some other researches choose to assign the VM propor-
tional to the VM working set size. Assume there are two customer paying the
same amount of money for their VMs, the VM which consumes more memory
should suffer more performance overhead, and then the Bal_prop mechanism
can make sense in this scenario. There is no single answer for the memory
balancing mechanism, and all depends on the policy and goals of the system
administration in the data center.

8.1.4 VM Cloning

The live VM cloning has certain kinds of limitation in its usage as we have
discussed in chapter 7.1. In our developed work, we do not expect to run
a full-blown benchmark or workload inside the cloned VM. As the name of
our project suggests, the cloning is done in a light-weight fashion and the
application running inside VM will not have huge memory footprint and the
cloned VM state can even be discarded afterwards. As a result, the current
implementation with sub-second performance is very flexible to be applied on
our proposed use cases.

8.2 Future Directions

From the experience of our developed works, we consider that the following
topics could be interesting problems in the future.
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8.2.1 PMSM with Heterogeneous Hardware

Although we have not support the PMSM across machines with different hard-
ware profiles, we discuss the possible solutions when facing with heterogeneous
CPU, memory, and I/O devices on the source and target machines.

The CPU compatibility is critical in migrating a physical machine’s state
to another physical machine, and has two aspects: the Instruction Set Ar-
chitecture (ISA), and the number of CPU cores. VMSM [12, 78-80] ensures
ISA-level compatibility by presenting to VMs the least common denomina-
tor of the ISAs of all CPUs participating in VM migration. Both VMotion
and XenMotion support VM migration between different generations of CPUs
from the same vendor, either Intel or AMD [12, 78]. KVM can even migrate
between CPUs from different vendors [79]. In both cases, the ISA is the same
between the source and destination CPUs. PMSM imposes the same require-
ment. More specifically, PMSM can leverage the CPU flag masking capability
[81] to ensure that the destination CPU has the same ISA as the source CPU.

As for the number of cores in the source and destination CPUs, VMSM
[12, 78] leverages the CPU hotplug capability [82] to dynamically adjust the
number of virtual CPUs in a VM when it migrates between CPUs with a dif-
ferent number of cores. For example, VMotion can add/remove virtual CPUs
to a VM when the VM is migrated if the VM’s kernel features CPU hotplug.
Similarly, PMSM can use the CPUID instruction [81] to detect new/missing
CPU cores and then takes advantage of Linux’s hot-plug feature to add or
delete cores.

As for memory, PMSM requires that the destination machine have at least
the same amount of memory as the source machine, but the additional memory
may not be available to the migrated kernel. If the OS supports the memory
hotplug feature [82], PMSM can leverage it to allow the migrated kernel to
use all the memory on the destination machine.

To accommodate the I/O device differences between the source and des-
tination machines, a simple solution for PMSM is to unload the 1/O device
drivers and detach the corresponding devices on the source machine, and auto-
matically probe all available I/O devices on the destination machine and load
the corresponding device drivers. However, this solution is not ideal because
some kernel data structures may get reset by driver unloading and loading.
For example, when a PCI-based Ethernet NIC’s driver is unloaded and loaded,
all high-level network connections are torn down.

One way to solve this problem is to hide the device driver unloading and
loading events from the kernel. For example, the Shadow driver [41] addresses
this problem by intercepting the interactions between native device drivers
and the kernel’s /O subsystems, and presents to the kernel’s [/O subsystems
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the illusion that the device drivers are never unloaded on the source machine.
On the destination machine, the Shadow driver loads the new device drivers
in a such a way to preserve the same illusion to the kernel’s I/O subsystems.
This approach requires device-specific adaption to bridge the gap between the
illusion and reality. However, it does not deal with the management issues for
migration; for example, when the number of NICs on the source and desti-
nation machines differs, the migrated kernel may not be able to fully accom-
modate this difference. Nevertheless, PMSM can leverage the Shadow driver
technology as a migration primitive to further minimize the disruption visible
to user applications. Furthermore, Shadow driver has the potential to enable
V2P and P2V migration because it can hide the differences of underlying I/0O
devices.

8.2.2 Resource Management and Analysis with Guest
OS Information

One can leverage the guest information with introspection mechanism or generic
guest API, and then helps on the following applications.

e Switch the DRAM DIMM modules corresponding to inactive pages to
low-power mode, which is important to large data center because the
energy consumption is the major expense of the cloud operators.

e Figure out the guest performance bottleneck so that the system ad-
ministrator can identify the VM performance problem right before any
disaster happens to the customers who run important applications inside
their VMs. This issue becomes crucial to the cloud operator due to the
difficulty to analyze performance problem in large-scale data center.

8.2.3 Hardware-assisted Working Set Size Estimation

From the new Intel architecture documentation [1], the company tries to sup-
port the access bit in the EPT page table entry in its future product, which
can be used to detect page access of VMs and then determine the working
set and the size of it as the Linux reclamation mechanism. Although there
is no existing CPU product for this feature currently, it could be interesting
to explore this feature in the future and then compare with the trap-based
and our ballooning-based (TWS-ballooning) solutions. One benefit of using
this new feature is that the hypervisor is able to detect the guest working set
transparently outside the VMs, which can be more easily to apply to different
guest OSs.
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8.2.4 Extend the HAL-based VM Cloning Technique

Although our current implementation of VM cloning only works for 1-to-1
VM cloning, the lazy synchronization approach of EPT is not restricted to
this scenario. It is also possible to apply the lazy approach to support 1-to-
N or clone-of-clone VM cloning depending on the application usage. From
example, the system administrator can promptly spawn multiple VMs for web
server as the snowflock [37], so that the web service can be scaled up as fast
as possible when a burst of web requests comes in. Also, to reduce the future
traps on the memory access, one can proactively synchronize the page tables
from the source to the cloned VM in the background before the memory pages
are actually accessed, which is similar to the post-copy mechanism [25].

8.3 Summary of the Dissertation

To summarize, we have made the following contribution.

e Developed PMSM mechanism to generalize the machine migration to
PMs. The prototype has been proved in the mainstream Linux OS and
can migrate the PM state between identical machines within 6 seconds
under MySQL server workload.

e Developed bootstrapping VMI technique to gather memory state infor-
mation of un-modified Windows and Linux guest OSs.

e Developed Introspection-assisted Memory De-duplication to de-duplicate
VM memory, and our proposed Generalized Memory De-duplication can
on average runs 4 times faster than the traditional content-based de-
duplication approach while incurring negligible CPU overhead.

e Developed Introspection-assisted Virtual Machine Migration to remove
redundant memory states transfer to reduce the overall network impact
and the total time of the live migration.

e Developed Memory Compression with Working Set Estimation to com-
press memory outside of the working set so that the memory utilization
is increased while preserving application performance.

e Developed Fast and Light-weight Virtual Machine Cloning as sandbox
that can be used as a cloud tool for security. And the lazy approach of
copying P2M page table for memory state is proposed to confine the VM
cloning time to sub-second.
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e The proposed bootstrapping VMI technique has lots of foreseeable appli-
cations where the VM migration and de-duplication in this dissertation
are just witnesses. Also, we expect it can be used for other management
or debugging tools in the cloud environment.

With our proposed works, the physical memory in the cloud is virtualized
as a way that we are able to perform almost the same operations as regular
files on the physical memory, i.e. we are able to easily move (Introspection-
assisted VM migration and PMSM), share (GMD engine), compress, and
clone (VM cloning) physical memory state in the cloud. As a whole, the
management of physical memory and VMs becomes more flexible and the
entire memory utilization of the cloud is increased with low overhead.
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