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Abstract of the Dissertation

The Aspects of Sasakian Geometry

by

Weixin Guo

Doctor of Philosophy

in

Mathematics

Stony Brook University

2011

Sasakian structures are the counterparts of Kähler structures in odd di-

mensions. A Sasakian manifold is a strictly pseudo-convex CR manifold with

a Reeb vector field that generates CR automorphisms.

We first study Type I deformations of Sasakian structures, which amount

to different choices of Reeb vector field on a fixed CR manifold. Here we

show that the CR automorphism group of a Sasakian manifold is severely

constrained by mild curvature assumptions.

We then study products of pairs of compact Sasakian manifolds. Such
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products are shown to always yield compact complex manifolds that do not

admit Kähler metrics, generalizing a remarkable construction due to Cal-

abi and Eckmann. As a consequence, any product of two compact Sasaki-

Einstein manifolds yields an Einstein Hermitian metric on a compact complex

manifold which does not admit Kähler metrics. This result stands in marked

contrast to the situation in real dimension 4, where LeBrun showed that Ein-

stein Hermitian metrics on compact complex surfaces are always conformally

Kähler.
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Chapter 1

Type I deformation of Sasakian

manifolds

1.1 Sasakian manifolds

A CR-manifold (of hypersurface type) is a (2n + 1) dimensional manifold

with a fixed real rank-2n subbundle D of the tangent bundle, where D is

equipped with a (almost) complex structure J .

Let η be a 1-form on M (locally if necessary) so that D = kerη. A CR

structure is said to be strictly pseudo convex, if the Levi form dη is posi-

tive/negative definite on D. Note that this does not depend on the choice of

the 1-form η. In this case dη(·, J ·)|D defines a metric on D, which is com-

pactible with J .
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For any sections X, Y ∈ D, we have η([X, JY ]) = Xη(JY ) − JY η(X) −

2dη(X, JY ) = −η([JX, Y ]). Hence, [X, JY ] + [JX, Y ] is a also section of

D. So then the Nijenhause ’tensor’ on D can be defined, i.e. NJ(X, Y ) =

([X, Y ]− [JX, JY ])− J([X, JY ] + [JX, Y ]) for any sections X, Y ∈ D. The

CR structure is said to be integrable if this Nijenhause ’tensor’ vanishes.

A CR-manifold is sometimes defined in complex terms: A (2n + 1) dimen-

sional CR manifold is a smooth manifold with a fixed n-dimensional com-

plex subbundle H ⊂ TCM , such that H ∩ H̄ = 0. The real subbundle

D = ReH ⊕ H̄, and the integrability condition is equivalent to [H,H] ⊂ H.

In the following, a CR structure is always assume to be of hypersurface type,

integrable and strictly pseudo convex.

We will also further assume that the sub-bundle D is coorientable, equiva-

lently, we assume the manifold to be orientable (since D is natrually oriented

by its complex structure). In such a case, we can globally fix a choice of a

real 1-from η. With such a choice, (M,D, J, η) is then called a pseudo her-

mitian structure. There are several tensor fields that can be associated to a

pseudo-hermitian structure.

(1) A vector field, called the Reeb vector field is uniquely determined by
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requiring η(T ) = 1 and dη(T, ·) = 0.

(2) A Riemannian metric g is determined by requiring that g|D = dη(·, J ·),

g(T, T ) = 1 and g(T,D) = 0.

(3) The complex structure J defined on D can be also extended uniquely to a

(1,1)-tensor field, which for simplicity we will still denote by J , by requiring

J(T ) = 0. (in the literature, this (1,1) tensor field is usually denoted by Φ)

With respect to the metric g, we might take an orthonormal basis of real

covectors (η, ηα, Jηα). Let θα = ηα +
√
−1Jηα, then by definition, dη =

−
√
−1

∑
θα ∧ θᾱ.

Pseudo-hermitian structure is defined and studied by Webster [?], where he

defined the Webster connection.

Proposition 1.1.1 [?] Let (M, η) be an integral, strictly pseudo-convex,

pseudo-hermitian manifold, there exist connection forms ωβα, and torsion

forms τβ = Aβαθ
α, where Aαβ = Aβα, such that

dθβ = θα ∧ ωβα + η ∧ τβ (1.1)

ωαβ̄ + ωβ̄α = 0 (1.2)
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Let (T, Zα, Zᾱ) be a dual basis to the chosen (η, θα, θᾱ). We can set

∇̇Zα = ωβαZβ and ∇̇Zᾱ = ωβ̄ᾱZβ̄

The ∇̇ so defined is a connection for the vector bundle D over M . By def-

inition, this connection is complex, namely, ∇̇JX = J∇̇X for any X ∈ D

and by (??), it is a metric connection, ∇̇g(X, Y ) = g(∇̇X, Y ) + g(X, ∇̇Y )

for any X, Y ∈ D

Since D ⊂ TM , we might consider the ’torsion tensor’ C(X, Y ) = ∇̇XY −

∇̇YX − [X, Y ] for X, Y ∈ D. By applying Zi ∧ Zj and Zi ∧ Z̄j to (??), we

see C(X, Y ) has no component in D, In fact,

C(X, Y ) = η(∇̇XY − ∇̇YX − [X, Y ])T = 2dη(X, Y )T (1.3)

Likewise, the Webster torsion τ can be captured by the tensor

τ(X)
.
= ∇̇TX − [T,X] (1.4)

Proposition 1.1.2 [?] The Webster torsion vanishes iff the Reeb vector field

preserves the CR structure.

Proof. By applying T ∧ Zi to (??), we see
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∇̇TZα − [T, Zα] = Aβ̄αZβ̄

Note that the right hand side is anti-holomorphic, hence, the tensor τ(X) =

∇̇TX− [T,X] is J anti-invariant. Note also ∇̇TJX = J∇̇TX, hence, τ(X) is

J invariant iff [T, JX] = J [T,X], i.e. LTJX = JLTX for any X ∈ D. Thus

we conclude that τ = 0 if and only if T preserves the CR structure.

Thus, when the Reeb vector field of the pseudo-hermitian manifold is a CR

vector field, the Webster connection is a complex connection which is also

metric and with minimal torsion.

Definition 1.1.3 LetM be strictly pseudo-convex, integrable, pseudo-hermitian

manifold. M is called Sasakian if its Reeb vector field is a CR vector field.

The Webster connection ∇̇ defined for the bundle D ⊂ TM can now be ex-

tended to the Levi-Civita connection on M , which we will call the Sasakian

connection.

Proposition 1.1.4 The Sasakian connection is given by

∇XY = ∇̇XY − g(JX, Y )T, X, Y ∈ D (1.5)
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∇TX = ∇̇TX + JX, X ∈ D (1.6)

∇XT = JX,∇TT = 0 X ∈ D (1.7)

Proof. We only need to check ∇ is torsion free and metric.

By (??), we see ∇XY − ∇YX = [X, Y ] for X, Y ∈ D. Since the Webster

torsion vanishes, from (??) we have [T,X] = ∇̇TX. It is then easy to see

∇XT −∇TX = [X,T ] by the definitions. Hence, ∇ is torsion free.

Using the fact that the Webster connection is metric, it is a case by case

check that ∇ is also a metric connection.

Remark. On a manifold that is not necessarily Sasakian, we may extend

the Webster connection by requiring the Reeb vector field to be parallel, i.e

∇T = 0. The linear connection obtain in this way is called the Webster-

Tanaka connection [?] or Webster-Stanton connection [?]. It is metric, but

has torsion.

On the other hand, if we begin with the Sasakian connection, then,
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Proposition 1.1.5 the Webster connection can be reconstructed by setting:

∇̇XY = (∇XY )D (1.8)

∇̇TY = [T, Y ]D (1.9)

where the supercript D, means projecting (with respect to the metric g) to

the subbundle D ⊂ TM .

Proof. (??) is clear in view of (??). (??) is just the fact that the Webster

torsion is 0.

Since LTη = d(η(T )) − dη¬T = 0 and LTJ = 0, by definition of g(·, ·) =

dη(·, J ·) + η ⊗ η, we deduce that LTg = 0. In other words, the Reeb vector

field T is a killing field. The foliation defined by T is then a Riemanian

foliation and the metric g is bundle-like [?]. We define the transverse met-

ric gD(V,W ) = g(V D,WD) on M for any V,W ∈ TM , where supersript

D means projection to D. The transverse metric can be considered as the

metric on the leaf space M/T . Especially, when the leaves are compact, the

leaf space is a Riemanian orbifold [?], and we have a Riemanian submersion

π : M →M/T .

The induced transverse (Levi-Civita) connection ∇D for gD is defined exactly
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by (??) and (??). In other words,

Corollary 1.1.6 the Webster connection is the transverse (Levi-Civita) con-

nection on a Sasakian manifold.

Curvatures (usually called pseudo hermitian curvatures) associated with the

Webster connection are studied by various authors [?] [?], in view of the

above disscussion, they are the same as the transverse curvatures which are

defined as curvatures of the transverse metric gD, e.g.

RD(X, Y )Z = ∇D
X∇D

Y Z −∇D
Y∇D

XZ −∇D
[X,Y ]Z

All though not always a Riemanian submersion, the O’Neill formula [?] ap-

plied to the transverse curvatures. Recall the O’Neil tensors:

TVW = (∇V TWD)T + (∇V TW T )D

AVW = (∇V DWD)T + (∇V DW T )D

where V,W ∈ TM and the superscript T ,D means projection to the Reeb

direction and the subbundle D respectively.

Recall also the O’Neill formula

K(X, Y ) = KD(X, Y )− 3|AXY |3
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Ric(X) = RicD(X)− 2|AX |2 − |TX |2 + g(∇XN,X)

s = sD + sT − |A|2 − |T |2 − |N |2 − 2δDN

As ∇TT = 0 by definition, the Reeb vector field T is geodesic, and it follows

that the O’Neill T -tensor vanishes [?]. The mean-curvature vector field along

the leaves N = ∇TT also vanishes. For X, Y ∈ D being horizontal vectors,

we know [?]

AXY = 1
2
([X, Y ])T

Hence, AXJX = 1, AXY = 0 if g(JX, Y ) = 0, and |AX | = 1, |A| = 2n.

Now by the O’Neil formula and Corollary 1.1.6, let K̇, Ṙic and ṡ be the

pseudo-hermitian curvatures,

Proposition 1.1.7 The Sasakian curvatures and the pseudo-hermitian cur-

vatures are related as follows

K(X, JX) = K̇(X, JX)− 3 for X ∈ D (1.10)

K(X, Y ) = K̇(X, Y ) for X, Y ∈ D, g(JX, Y ) = 0 (1.11)

Ric(X) = Ṙic(X)− 2, for X ∈ D (1.12)

s = ṡ− 2n (1.13)
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1.2 Curvature properties

In this section, we collect some curvature properties of a Sasakian manifold.

These are developed from the the perspective of a contact metric structure

in the literature, see e.g. Blair [?], Boyer and Galicki [?]. With the help of

the Webster connection, these are evident. A key point is ∇XT = JX.

Proposition 1.2.1

∇XJY = J∇XY − g(X, Y )T for X, Y ∈ D

Proof.

∇XJY = ∇̇XJY − g(JX, JY )T

= J∇̇XY − g(JX, JY )T

= J∇XY − g(X, Y )T

Proposition 1.2.2

R(X, Y )T = 0, X, Y ∈ D

R(X,T )Y = −g(X, Y )T,X, Y ∈ D

Proof. We might assume X, Y are unit vectors.
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R(X, Y )T = ∇X∇Y T −∇Y∇XT −∇[X,Y ]T

= ∇XJY −∇Y JX − J [X, Y ]

= J∇XY − g(X, Y )T − J∇YX + g(Y,X)T − J [X, Y ] = 0

For ∀Z ∈ D we have g(R(X,T )Y, Z) = g(R(Z, Y )T,X) = 0, henceR(X,T )Y

has no component in D. The Reeb component is

g(R(X,T )Y, T ) = g(∇X∇TY −∇T∇XY −∇[X,T ]Y, T )

= (Xg(∇TY, T )− g(∇TY,∇XT ))− (Tg(∇XY, T )− g(∇XY,∇TT ))

− ([X,T ]g(Y, T )− g(Y,∇[X,T ]T ))

= −g(∇TY, JX) + g(Y, J [X,T ])

= g(Y,∇TJX) + g(∇XJY, T ) + g(JY,∇XT )

= −g(Y,X) + g(−g(X, Y )T, T ) + g(Y,X) = −g(X, Y )

Corollary 1.2.3 Let dimM = 2n+ 1, then Ric(T ) = 2n.

Proof. Let {ei} be an orthonormal basis for D. Using the previous propo-

sition, Ric(T ) =
∑

iR(T, ei, ei, T ) = 2n

The sectional curvature K(X, JX) forX ∈ D is called the Φ-sectional cur-

vature. On a Sasakian manifold, the whole curvature tensor is determined
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by the Φ-sectional cruvature. A Sasakian manifold with constant sectional

curvature is called a Sasakian space form. They are classified by Tanno [?]:

there are precisly three Sasakian space forms up to transverse homothety

(see next section)

Proposition 1.2.4 Let M(c) be a 2n+1 dimensional, complete, simply con-

nected Sasakian manifold of constant Φ-sectional curvature c. Then M(c) is

one of the following:

(1) If c > −3, M(c) is isomorphic to S2n+1(c).

(2) If c = −3, M(c) is isomorphic to R2n+1(−3).

(3) If c < −3, M(c) is isomorphic to Bn
C(k)× R , where c = k − 3.

1.3 Type I deformations

There are several ways to deform a Sasakian structure. One natrual way is

to rescale the metric via the contact form. Let (M, η,D, J) be a Sasakian

structure. We might define a new 1-form on M by η̃ = efη, where f is a

smooth function on M . Now the associate CR distribution D̃ = kerη̃ = D

does not change. We also have

dη̃|D = ef (df ∧ η + dη)|D = efdη|D

If we set J̃ = J on D̃ = D, then the metric is partially conformally related,
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i.e. g̃|D̃ = efg|D.

Definition 1.3.1 A type I deformation of a Sasakian structure (M, η, J) is

a rescale η̃ = efη and J̃ = J , so that (M, η̃, J̃) is again Sasakian.

Take an othornomal basis {Xi, Yi = JXi} for the bundle D with the back-

ground metric g|D. We can write the Reeb vector field T̃ = µT +aiXi + biYi.

Then,

1 = η̃(T̃ ) = efη(µT ) = µef

So, µ = e−f , moreover, for any vector field V , we have

0 = dη̃(T̃ , V ) = def ∧ η(T̃ ∧ V ) + efdη(T̃ ∧ V )

Let V = Xi and V = Yi respectively, we get ai = 1
2
Yi(e

−f ), bi = −1
2
Xi(e

−f ),

hence

T̃ = e−f (T − 1

2
J∇bf) (1.14)

where the sub-gradient ∇bf = ∇f − T (f)T .

T̃ is also required to preserves the structure J̃ = J . For any X ∈ D,

LT̃JX − JLT̃X = [T̃ , JX]− J [T̃ , X] = 0

13



Its component in the Reeb direction is,

η([T̃ , JX]− J [T̃ , X]) = e−f η̃([T̃ , JX]) = −2e−fdη̃(T̃ , JX) = 0

Write T̃ = e−fT + H, where H = 1
2
J∇b(e

−f ) ∈ D. Because T preserves J ,

we have

([e−fT, JX]− J [e−fT,X])D = e−f ([T, JX]− J [T,X])D = 0

hence, we should have

([H, JX]− J [H,X])D = (∇HJX −∇JXH − J∇HX + J∇XH)D = 0

By (??)

(∇HJX − J∇HX)D = ∇̇HJX − J∇̇HX = 0

Hence, T̃ preserves J if and only if, for any X, Y ∈ D

g(∇JXH − J∇XH,Y ) = 0

14



g(∇JXH, Y ) = JXg(H, Y )− g(H,∇JXY )

= −1

2
(JXg(∇be

−f , JY )− g(∇be
−f , J∇JXY ))

= −1

2
(JX(JY (e−f ))−∇∇JXJY e

−f )

= −1

2
∇2
JX,JY e

−f

(1.15)

Similarly, g(J∇XH, Y ) = −1
2
∇2
X,Y e

−f ,

Hence, we have

Proposition 1.3.2 η̃ = efη is a type I deformation if and only if∇2
JX,JY e

−f =

∇2
X,Y e

−f for any X, Y ∈ D.

Apparently, constants satisfy the above relation. When f is a constant,

the deformation is called a transverse homothety [?]. In this case, η̃ = aη,

T̃ = a−1T , and g̃ = ag + (a2 − a)η ⊗ η.

If ψ ∈ CR(D, J), the CR transformation group, then the push forward 1-

form ψ∗η = efη for some function f . Notice that ψ∗D = D and ψ∗J = J , the

push forward structure (M,ψ∗η, ψ∗J) is a type I deformation of (M, η, J). A

type I deformation arises in this way from a CR transformation is called a

pseudo-conformal rescaling [?]. Note that not all type I deformations arises
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in this way, in particular, transverse homotheties with constant a 6= 1 are

never pseudo-conformal rescalings.

1.4 Moduli of type I deformations

A Sasakian manifold (M, η, J) is natrually a contact manifold. Let con(M,D)

be the Lie algebra of the contactomorphism group Con(M,D). Denote by

con+(M,D) the set of elements in con(M,D) that is everywhere transverse

to D. With a background η being chosen,

con+(M,D) = {V |η(V ) > 0, LVD = D}

For V ∈ con+(M,D), Let µ = 1/η(V ) and η̃ = µη. Then, η̃(V ) = 1. Since

V preserves the contact distribution, we have LV η̃ = αη̃ for some smooth

function α, but,

α = (LV η̃)(V ) = d(η̃(V ))(V ) + dη̃(V, V ) = 0

Hence, dη̃¬V = LV η̃ = 0. So V is the Reeb vector field of η̃.

On the other hand, if V is a Reeb vector field of some η̃ = µη with some

positive function µ, then LV η̃ = 0, hence V belongs to con+(M,D). So, we

have
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con+(M,D) = R+(M,D) (1.16)

where R+(M,D) is all the transverse Reeb fields that is compactible with D.

Given a background contact form η, R+(M,D) is 1-1 correspondent to the

set of smooth functions by setting η̃ = efη. Hence on a Sasakian manifold,

the set of type I deformations CI is identified with a subset of R+(M,D)

that consists of those Reeb vector fields that preserves the complex struc-

ture J . Let cr(M,D, J) be the Lie algebra of the CR group, then CI =

R+(M,D) ∩ cr(M,D, J), using (??) and Proposition 3.2, we have

Proposition 1.4.1

CI = con+(M,D) ∩ cr(M,D, J)
.
= cr+(M,D, J) (1.17)

CI = {f ∈ C(M)|∇2
JX,JY e

−f = ∇2
X,Y e

−f , X, Y ∈ D}

cr+(M,D, J) is the set of CR vector fields that are everywhere transverse to

D. Thus it is not hard to see that the set of type I deformations CI is a

convex open cone in cr(D, J).

We are interested in the set of type I deformations mod out the effect of
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pseudo-conformal transformations. Fix a background Sasakian structure

(η, T ). Let ψ ∈ CR(D, J) be a pseudo-conformal transformation. Then the

type I deformation (pseudo conformal rescaling) arises from ψ corresponds to

ψ∗T via (??). Under the correspondence (??), the pseudo conformal trans-

formation acts by the differential map. This correspond to the adjoint action

of the group CR(D, J) on its Lie algebra cr(D, J). Let ξ ∈ cr+(D, J) = CI ,

then η(ψ∗ξ) = ψ∗η(ξ) = efη(ξ) > 0. So Ad(ψ)ξ ∈ CI , i.e. the set of type I

deformations are invariant under pseudo conformal transformations. So,

Definition 1.4.2 The moduli set t+(D, J) = cr+(D, J)/CR(D, J) is called

the Sasaki cone.

We defined the automorphism group of the Sasakian structure as Aut(η) =

CR(D, J) ∩ Con(η). Apparently Aut(η) ⊂ Iso(M, g). Let ψ ∈ CR(D, J) be

a CR transformation, if ψ ∈ Aut(η), then ψ∗η = η; ψ gives rise to the trivial

type I deformation. Also, ψ acts trivially on the set of type I deformations.

Conversly, if ψ correspond to the trivial type I deformation, then it preserves

the 1-form η, hence ψ ∈ Aut(η). We arrrived at,

Corollary 1.4.3 Aut(η) = CR(D, J) iff all pseudo-conformal transforma-

tions correspond to the trivial type I deformation. In that case, the Sasaki

cone is equal to the set of type I deformations.
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1.5 Curvature change formulas

In this section we calculate how curvature changes under a type I deforma-

tion.

Let (M, η, T, J,D, g) be a Sasakian manifold, and (M, η̃, T̃ , J,D, g̃) be a type

I deformation with η̃ = efη. Let ∇ and ∇̃ be the Sasakian connections re-

spectively.

Proposition 1.5.1 For X, Y ∈ D, the Sasakian connections ∇̃ and ∇ are

related by:

∇̃XY = ∇XY + 1
2
(fXY + fYX − fJXJY − fJY JX − g(X, Y )∇b(f)) (1.18)

∇̃X T̃ = JX (1.19)

∇̃T̃X = [T̃ , X] + JX (1.20)

We denote X(f), X(Y (f)) etc. by fX , fXY

Proof. Only the first relation needs to be verified, the other two follows

from the (??) , (??)

By Korzul’s formula, we have, for X, Y, Z ∈ D
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2g((∇XY ), Z) = Xg(Y, Z) + Y g(X,Z)− Zg(X, Y )

+ g([X, Y ], Z)− g([X,Z], Y )− g([Y, Z], X)

(1.21)

2g̃((∇̃XY ), Z) = Xg̃(Y, Z) + Y g̃(X,Z)− Zg̃(X, Y )

+ g̃([X, Y ], Z)− g̃([X,Z], Y )− g̃([Y, Z], X)

(1.22)

We calculate that

Xg̃(Y, Z) = X(efg(Y, Z)) = effXg(Y, Z) + efXg(Y, Z) (1.23)

and

g̃([X, Y ], Z)− efg([X, Y ], Z)

= g̃([X, Y ]D̃ − [X, Y ]D, Z)

= g̃(([X, Y ]− η̃[X, Y ]T̃ )− ([X, Y ]− η[X, Y ]T ), Z)

= g̃(2dη̃(X, Y )T̃ − 2dη(X, Y )T ), Z)

= −efdη(X, Y )g(J∇bf, Z)

= effJZg(JX, Y )

(1.24)

Multiply (??) by ef , and substract from (??), using (??) and (??), we have,
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g((∇̃XY )D̃, Z) = g((∇XY )D, Z) + 1
2
(fXg(Y, Z) + fY g(X,Z)− fZg(X, Y ))

+ 1
2
(fJZg(JX, Y )− fJY g(JX,Z)− fJXg(JY, Z))

(1.25)

So,

(∇̃XY )D̃ = (∇XY )D + 1
2
(fXY + fYX − fJXJY − fJY JX)

− 1
2
(g(X, Y )∇bf + g(JX, Y )J∇bf)

(1.26)

Lastly, the Reeb component is

(∇̃XY )T̃ = −g̃(JX, Y )T̃ = −g(JX, Y )(T − 1
2
J∇bf)

= (∇XY )T + 1
2
g(JX, Y )J∇bf

(1.27)

where we use the fact that η(∇XY ) = −g(JX, Y ) and (??)

now the result follows combining (??) and (??).

Let the Riemaniann curvature tensor for ∇ and ∇̃ be respectively, R and R̃.

Next, we calculate R̃(X, Y,X, Y ) for any horizontal vectors X and Y .

Proposition 1.5.2 Suppose X, Y ∈ D such that g(X,X) = g(Y, Y ) = 1 and
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g(Y,X) = g(Y, JX) = 0, then,

R̃(X, Y,X, Y ) = efR(X, Y,X, Y )

+ 1
4
ef (∇2

X,Xf +∇2
Y,Y f +∇2

JX,JXf +∇2
JY,JY f + |∇bf |2g)

(1.28)

Proof. Firstly, note that ∇XY ∈ D since g(∇XY, T ) = −g(Y,∇XT ) =

−g(Y, JX) = 0. Likewise, ∇YX, [X, Y ] ∈ D, thus (??) applies succesively,

we have explicitly

∇̃X∇̃YX = ∇̃X(∇YX + 1
2
(fXY + fYX − fJXJY − fJY JX))

= ∇X∇YX + 1
2
(f∇YXX + fX∇YX − fJ∇YXJX − fJXJ∇YX)

+ 1
2
(fXXY + fX∇̃XY + fXYX + fY ∇̃XX)

− 1
2
(fX,JXJY + fJX∇̃XJY + fX,JY JX + fJY ∇̃XJX)

∇̃Y ∇̃XX = ∇̃Y (∇XX + fXX − fJXJX − 1
2
∇bf)

= ∇Y∇XX + 1
2
(f∇XXY + fY∇XX − fJ∇XXJY − fJY J∇XX)

− 1
2
g(Y,∇XX)∇bf + (fY XX + fX∇̃YX)

− (fY,JXJX + fJX∇̃Y JX)− 1
2
∇̃Y (∇bf)
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∇̃[X,Y ]X = ∇[X,Y ]X + 1
2
(f[X,Y ]X + fX [X, Y ])

− 1
2
(fJ [X,Y ]JX + fJXJ [X, Y ])− 1

2
g([X, Y ], X)∇bf

By definition R̃(X, Y )X = ∇̃X∇̃YX−∇̃Y ∇̃XX−∇̃[X,Y ]X, carefully combine

terms in the previous expressions, using properties of Sasakian connection

and Proposition 1.2.1, we have

R̃(X, Y )X = R(X, Y )X + 1
2
fY (∇̃X −∇X)X − 1

2
fX(∇̃Y −∇Y )X

− 1
2
fJY (∇̃X −∇X)JX + 1

2
fJX(∇̃Y −∇Y )JX − 1

2
fJX(∇̃X −∇X)JY

+ 1
2
(∇2

X,Xf)Y − 1
2
(∇2

Y,Xf)X − 1
2
(∇2

X,JXf)JY

+ 1
2
(∇2

Y,JXf)JX − 1
2
(∇2

X,JY f)JX

+ 1
2
fJY T + 1

2
fTJY + 1

2
∇̃Y (∇bf)

Note that R(X, Y,X, T ) = 0 by Propostion 2.2, the terms on the right hand

side of the above equation is in D, except the last line. Hence, taking inner

product with Y with respect to g̃, using g̃|D = efg|D,

R̃(X, Y,X, Y ) = efR(X, Y,X, Y )− 1
4
eff 2

Y − 1
4
eff 2

X + 1
4
eff 2

JY + 1
2
ef∇2

X,Xf

+ 1
2
g̃(fJY T, Y ) + 1

2
g̃(∇̃Y (∇bf), Y )
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The last 2 terms are further calculated as follows,

g̃(fJY T, Y ) = fJY g̃(ef T̃ + 1
2
J∇bf, Y ) = 1

2
fJY g̃(J∇bf, Y )

= 1
2
effJY g(J∇bf, Y ) = −1

2
eff 2

JY

g̃(∇̃Y (∇bf), Y ) = Y (g̃(∇bf, Y )− g̃(∇bf, ∇̃Y Y )

= Y (efg(∇bf, Y ))− efg(∇bf, ∇̃Y Y )

= Y (effY )− efg(∇bf,∇Y Y + fY Y − fJY JY − 1
2
∇bf)

= ef (∇2
Y,Y f + f 2

JY + 1
2
|∇bf |2g)

where we have noticed that ∇̃Y Y ∈ D and (??) is used.

We arrived at,

R̃(X, Y,X, Y ) = efR(X, Y,X, Y ) + 1
4
ef (−f 2

Y − f 2
X + f 2

JY + f 2
JX)

+ 1
2
ef (∇2

X,Xf +∇2
Y,Y f) + 1

4
ef |∇bf |2g

finally, by Proposition 1.3.2, we may write ∇2
XXf − f 2

X + f 2
JX = ∇2

JXJXf ,

and the proposition is proved.
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Proposition 1.5.3 Suppose X ∈ D such that g(X,X) = 1, then

R̃(X, JX,X, JX) = efR(X, JX,X, JX)

+ ef (2∇2
X,Xf + 2∇2

JX,JXf + |∇bf |2g + 3(ef − 1))

(1.29)

Proof. The calculation is similar to the previous proposition, only that now

both ∇XX and [X, JX] do not lie in D. In order to utilize (??), we need to

write ∇XX = (∇XX)D + T and [X, JX] = ([X, JX])D − 2T .

∇̃X∇̃JXX = ∇̃X((∇JXX)D + T + fXJX + fJXX)

= ∇X∇JXX + 1
2
(f∇JXXX + fX∇JXX − fJ∇JXXJX − fJXJ∇JXX)

− 1
2
g(X,∇JXX)∇bf −∇XT − 1

2
(fTX + fXT ) + ∇̃XT

+ 1
2
(fXXJX + fX∇̃XJX + fXJXX + fJX∇̃XX)

∇̃JX∇̃XX = ∇JX∇XX + 1
2
(f∇XXJX + fJX∇XX + fJ∇XXX + fXJ∇XX)

− 1
2
g(JX,∇XX)∇bf + (fJX,XX + fX∇̃JXX)

− (fJX,JXJX + fJX∇̃JXJX)− 1
2
∇̃JX(∇bf)

25



∇̃[X,JX]X = ∇̃[X,JX]DX − 2∇̃TX = ∇̃[X,JX]DX + 2∇TX + 2(∇XT − ∇̃XT )

= ∇[X,JX]X + 1
2
(f[X,Y ]X + fX [X, Y ] + fTX + fXT )

− 1
2
(fJ [X,Y ]JX + fJXJ [X, Y ])− 1

2
g([X, Y ], X)∇bf + 2JX − 2∇̃XT

Carefully combine the above, we get

R̃(X, JX)X = R(X, JX)X + fJX(∇̃X −∇X)X + fJX(∇̃JX −∇JX)JX

+ (∇2
X,Xf)JX + (∇2

JX,JXf)JX

− 2fXT − 2fTX + 1
2
∇̃JX(∇bf)− 3JX + 3∇̃XT

As in the previous proposition, taking inner product with JX with respect

to g̃, notice that the first line of the right hand side of the above express lies

in D.

R̃(X, JX,X, JX) = efR(X, JX,X, JX)− eff 2
JX + ef∇2

X,Xf + ef∇2
JX,JXf

− eff 2
X + 1

2
ef (∇2

JX,JXf + f 2
X + 1

2
|∇bf |2)− 3ef + 3g̃(∇̃XT, JX)

The last term is further calculated as follows,
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g̃(∇̃XT, JX) = g̃(∇̃X(ef T̃ + 1
2
J∇bf), JX)

= g̃(effX T̃ + ef∇̃X T̃ + 1
2
∇̃X(J∇bf), JX)

= ef g̃(JX, JX) + 1
2
(∇̃X g̃(J∇bf, JX)− g̃(J∇bf, ∇̃XJX))

= e2f + 1
2
X(effX)− 1

2
g̃(J∇bf, J∇̃XX − ef T̃ )

= e2f + 1
2
X(effX)− 1

2
efg(∇bf, ∇̃XX)

= e2f + 1
2
ef (f 2

X + fXX)− 1
2
g(∇bf,∇XX + fXX − fJXJX − 1

2
∇bf)

= e2f + 1
2
ef∇2

XXf + 1
2
eff 2

JX + 1
4
|∇bf |2

We finally arrived at,

R̃(X, JX,X, JX) = efR(X, JX,X, JX) + ef (−1
2
f 2
X + 1

2
f 2
JX)

+ ef (5
2
∇2
X,Xf + 3

2
∇2
JX,JXf + 3(ef − 1) + |∇bf |2g)

Use the relation ∇2
XXf − f 2

X = ∇2
JXJXf − f 2

JX (Proposition 3.2), we see the

above formula is equivalent to the proposition.

Corollary 1.5.4 For g-unit vectorsX, Y ∈ D such that g(Y,X) = g(Y, JX) =

0, we have sectional curvautres,

K̃(X, Y ) = e−f (K(X, Y )−1
4
∇2
X,Xf−1

4
∇2
Y,Y f−1

4
∇2
JX,JXf−1

4
∇2
JY,JY f−1

4
|∇bf |2g)

(1.30)
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K̃(X, JX) = e−f (K(X, JX)− 2∇2
X,Xf − 2∇2

JX,JXf − |∇bf |2 − 3(ef − 1))

(1.31)

Proof. Note that K̃(X, Y ) = R̃(X,Y,Y,X)
|X∧Y |g̃ = e−2f R̃(X, Y, Y,X)

Corollary 1.5.5 Let dimM = 2n+ 1, then the Ricci curvatures are related

by,

R̃ic(X) = Ric(X)− n+2
2

(∇2
X,Xf +∇2

JX,JXf)− n+1
2
|∇bf |2|X|2

− 1
2
(∆bf)|X|2 − 2(ef − 1)|X|2)

(1.32)

The scalar curvatures are related by,

s̃ = e−f (s− (2n+ 2)∆bf − (n+ 1)n|∇bf |2 − 2n(ef − 1)) (1.33)

The sub-Laplacian ∆bf = ∆f −∇2
T,Tf

Proof. Take the trace, using (??) , (??), and Proposition 2.2.

In the special case of a transverse homothety, i.e. when f is a constant func-

tion, we have much simpler relations summarized in the corollary below.

Corollary 1.5.6 [?] Let η̃ = aη be a transverse homothety, then T̃ = a−1T ,
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and

(1)∇̃ − ∇ = (a− 1)(J ⊗ η + η ⊗ J)

(2)K̃(X, Y ) = a−1K(X, Y ) for X, Y ∈ D, g(X, Y ) = g(JX, Y ) = 0

(3)K(X, JX) = a−1(K(X, JX) + 3)− 3 for X ∈ D

(4)R̃ic = Ric− 2(a− 1)g + 2(a− 1)(an+ n+ 1)η ⊗ η

(5)s̃ = a−1(s+ 2n)− 2n

1.6 CR groups of certain Sasakian manifolds

1.6.1 Sasakian space forms

Recall from Section 2 that Sasakian space forms are Sasakain manifolds with

constant Φ-sectional curvature, i.e. K(X, JX) is constant for any X ∈ D.

Suppose M has constant Φ-sectional curvature K(X, JX) = c. Let φ be

a pseudo-conformal tranformation, and let η̃ = φ∗η = efη. The Sasakian

structure on (M̃, η̃) is the push forward, hence it has the same curvature

properties, i.e. K̃(X, JX) = c. Now utilize (??), we get, for any X ∈ D,

c = e−f (c− 2∇2
X,Xf − 2∇2

JX,JXf − |∇bf |2 − 3(ef − 1))

Let X run over an orthonormal basis of D, summing up, we get,

n(c+ 3)(1− ef ) = 2∆bf + n|∇bf |2 (1.34)
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If c < −3, at the minimal of f we have ∆bf ≤ 0 and ∇bf = 0. (??) then

implies 1 − ef ≤ 0, thus fmin ≥ 0. Similarly, at the maximal of f , (??)

implies 1− ef ≥ 0, thus fmax ≤ 0. Hence, ef = 1

If c = −3, the left hand side of (??) is 0. If we integrate (??) over M , we

get |∇bf | = 0, thus X(f) = 0 for all X ∈ D. As for the Reeb direction T ,

since η([X, JX]) = −dη(X, JX) = 1, we can write T = −[X, JX] + Y , for

some Y ∈ D, and hence T (f) = JX(X(f))−X(JX(f)) + Y (f) = 0. So, f

is constant. Finally, the volume of Sasakian structure doesn’t change under

a pullback, so

0 =

∫
dṽol −

∫
dvol =

∫
(e(n+1)f − 1)dvol

Hence the rescaling factor ef = 1.

Summing up the above disscusion, we have,

Theorem 1.6.1 Let M be a compact Sasakian space forms with constant

Φ-sectional curvautre c, then

(1) If c < −3 or

(2) If c = −3

then M has no non trival pseudo-conformal rescaling.
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In view of Corollary 1.4.3, we have

Corollary 1.6.2 Let M be as stated in Theorem, then CR(M,D, J) =

Aut(M, η).

Remark. for the simply connected sasakian space forms with c > −3, they

are isomorphic to transverse homotheties of the standard sphere. The under-

lying CR structures of there manifolds are the same as the standard sphere. It

is known that the CR transformation group of th standard (2n+ 1)-sphere is

SU(n+ 1, 1) which is non-compact. But the Sasakian Automorphism groups

of these sasakain space forms are subgroups of the isometry group Iso(M, g),

which is compact. So we don’t expect a similar result as Theorem 6.1 for the

case c > −3.

1.6.2 Constant scalar curvature

Let (M, η) be a compact Sasakian manifold with constant scalar curvature

s = c. Let (M, η̃) be a pseudo-conformal rescaling of (M, η), where η̃ = efη.

(M, η̃) still has constant scalar curvature s̃ = c.

According to (??)

s̃ = e−f (s− (2n+ 2)∆bf − (n+ 1)n|gradbf |2 − 2n(ef − 1))
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This implies now,

(1− ef )(c+ 2n) = (2n+ 2)∆bf + (n+ 1)n|∇bf |2 (1.35)

By a similar argument as in the previous section,

(1) If c < −2n, then f ≥ 0 at its minimal, and f ≤ 0 at its maximal, hence

f = 0. Thus the pseudo-conformal rescaling is trivial.

(2) If c = −2n, then the left hand side of (??) is 0. Integrate both sides,

we deduce that ∇bf = 0. This further implies ∇f = 0, hence f is constant.

Finally, f = 1 as the volume does not change under a pseudo-conformal

rescaling.

Theorem 1.6.3 Let M be a compact Sasakian manifold with constant scalar

curvautre c, then

(1) If c < −2n or

(2) If c = −2n

thenM has no non trival pseudo-conformal deformation. And thus CR(M,D, J) =

Aut(M, η)

By (??) compact sasakian manifolds whose transverse metric has zero scalar

curvture satisfy Theorem 6.3(2). Sasakian manifolds whose transverse metric
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with a constant scalar curvature which is negative satisfy Theorem 6.3(1). In

particular, For compact Sasakian manfolds whose transverse metric being a

(Kähler) Einstein metric of nonpositive type, we always have CR(M,D, J) =

Aut(M, η).

Charles Boyer and Krzysztof Galicki ([?] p 262 has proved that when the

transverse Ricci curvature is nonpositive, the Lie algebra of the automor-

phism group is generated by the Reeb vector field, aut(η) = {T}. Combining

this with the previous result, we have

Corollary 1.6.4 Let (M,D, J) be a compact CR manifold. If (M,D, J) ad-

mits a Sasakian structure (η, T ) whose transverse metric has constant scalar

curvature and nonpositive ricci curvature, then the Lie algebra of the CR

group is generated by the Reeb vector field, i.e. cr(D, J) = {T}. And,

(M,D, J) admits only one Sasakian struture up to transverse homothety, i.e.

(aη, a−1T ).

Proof. Note that any Reeb vector field of a sasakian structure generates

CR-automorphisms, hence lies in cr(D, J), hence the compactible Reeb vec-

tor field is unique up to scaling.

Theorem 1.6.5 Let (M, η) be a compact Sasakian manifold. Suppose its

transverse ricci curvature is nonpositive and the (transverse) scalar curvature
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is constant, then (M, η) does not admit any non trivial type I deformation,

i.e. All type I deformations are given by transverse homothety.

Proof. Let η̃ = efη be a type I deformation. By (??), T̃ = e−f (T − 1
2
∇bf).

Then, by Corollary 1.6.4, ∇bf ∈ {T}, hence ∇bf = 0. This further implies

∇f = 0. Hence f is a constant.

Remark. An interesting related result of F. Belgun [?] says any 3-dimensional

compact sperical CR manifold that admits a Sasakian struture has no type

I deformation besides transverse homothety. Note that those manifolds are

circle bundles over a Riemanian surface with positive genus.

1.7 Type I deformations of Sasaki-Einstein

manifolds

Let M be a Sasaki-Einstein manifold. let η̃ = efη be a type I deformation. It

was conjectured by K. Galicki and C. Boyer that any type I deformation that

transfer into another Sasaki-Einstein metric is a pseudo-conformal rescaling.

In other words, only the trivial element in the Sasaki cone transfers a Sasaki-

Einstein metric to a Sasaki-Einstein metric.
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Theorem 1.7.1 [?] A non-trivial transverse homothety does not relate two

Sasaki-Einstein metric.

Proof.. By Proposition 2.3, on a 2n + 1 dimensional Sasakian manifold,

Ric(T ) = 2n. Hence when the metric is Einstein, we have Ric = 2ng,

the Einstein constant is always 2n. Hence scalar curvature is a constant

2n(2n + 1). Let η̃ = aη be a transverse homothety, Then Corollary 1.5.6(5)

implies a = 1.

For a general type I deformation, recall the formula (??), plug in withR̃ic =

Ric = 2ng, we get that, if two Sasaki-Eistein are related by a type I defor-

mation, then

∇2
X,Xf +∇2

JX,JXf =
1

n+ 2
(4(n+ 1)(1− ef )− (n+ 1)|∇bf |2 −∆bf)g(X,X)

Define

S(X, Y ) = ∇2
X,Y f +∇2

JX,JY f

Λ(X, Y ) = ∇2
X,Y f −∇2

JX,JY f

Then the above formula implies S(X, Y ) is a multiple of the metric, say

S(X, Y ) = βg(X, Y ). Let {ei, Jei}ni=1 be an othonormal basis for the sub-
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bundle D, then S(ei, ei) = β, hence

∆bf =
∑
i

S(ei, ei) = nβ =
n

n+ 2
(4(n+ 1)(1− ef )− (n+ 1)|∇bf |2 −∆bf)

Simplying, we get

2n(1− ef ) = ∆bf +
n

2
|∇bf |2

β =
1

n
∆bf = 2(1− ef )− 1

2
|∇bf |2

Summing up the above and Proposition 1.3.2, we have

Proposition 1.7.2 A function ef relates two Sasaki-Eistein by a type I

deformation, if and only if for any X, Y ∈ D

(1)S(X, Y ) = βg(X, Y ), β = 2(1− ef )− 1

2
|∇bf |2 (1.36)

(2)Λ(X, Y ) = X(f)Y (f)− JX(f)JY (f)

Next, we confirm the conjecture of K.Galicki and C.Boyer in the case of the

standard sphere.
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Theorem 1.7.3 Let (S, η) be the standard sphere; η = efη be a type I de-

formation, such that (S̃, η̃) is Einstein. Then this type I deformation arises

from a pseudo-conformal transformation. i.e. there is a CR transformation

φ : S → S̃, such that η̃ = φ∗η.

Proof.. Combining (??), (??), (??), we get

K̃(X, Y )− 1 = e−f (K(X, Y )− 1)

K̃(X, JX)− 1 = e−f (K(X, JX)− 1)

Also, for 2-planes containing the Reeb directions, by Proposition 1.2.1, we

have K̃(T,X) = 1

These relations implies (S̃, η̃) still has constant sectional curvature 1, and is

again the standard sphere. Hence the standard metric is the only Einstein

metric within the type I deformation class. Moreover, according to the clas-

sification of Sasakian space forms by Tanno [?], (S̃, η̃) is isomorphic to the

standard Sasakian structure on the sphere. Hence there is a diffeomorphism

from the φ : S → S̃, such that η̃ = φ∗η, and D̃ = φ∗D, J̃ = φ∗J . But as a

type I deformation, D̃ = D, J̃ = J , thus φ is a CR automorphism.

37



Chapter 2

Products of Sasakian manifolds

2.1 Contact metric structures

Definition 2.1.1 A contact structure on a 2n + 1 dimensional manifold M

is a one form η such that η ∧ (dη)n is a nondegenerate top form on M . The

one form η is called the contact form

As indicated in the definition, η ∧ (dη)n is a volume form, and hence the

manifold M is oriented. A vetor field called the Reeb vector field T can be

uniquely determined by the following equations η(T ) = 1, dη(T, ·) = 0.

LetD ⊂ TM be the distribution that is anhiliated by η, then dη is a sympletic

form for the vector bundle D over M . It is then easy to find local 1-forms

{µi}1≤i≤n and {νi}1≤i≤n, such that dη =
∑
µi∧ νi (In fact, by a contact ver-
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sion of Darboux theorem, there exist local charts (x1, . . . , xn, y1, . . . , yn, z)

so that dη =
∑
dxi ∧ dyi). By definition of T , it is apparent that µi(T ) =

νi(T ) = 0, and hence {η, µi, νi} forms a basis for T ∗M . Let the dual be

{T,Xi, Yi}, then D is spanned by {Xi, Yi}1≤i≤n. It is easy to see the rank n

sub-distribution spanned by µi1≤i≤n is always integrable by Frobenius theo-

rem. In fact, any rank 2n distribution (of a 2n + 1 dimensional manifold)

contains rank n sub-distributions that are integrable. On the other hand, Let

E ⊂ D be a integrable sub-distribution, then we must have [E,E] ⊂ E, hence

for any V,W ∈ E, 0 = η[V,W ] = dη(V,W ), which implies E is isotropic and

hence its rank is no more than n. Hence, D contains no integrable sub-

distribution of rank n+ 1. A hyperplane distribution that has no integrable

sub-distribution of more than half of its rank is said to be maximally non-

integrable.

For the reason of the above, sometimes a contact structure (in the wider

sense) on a 2n + 1 manifold is defined as the existence of a maximally non-

integrable rank 2n distribution D. Equivalently, a contact structure in the

wider sense, is a family of local contact forms ηi on an atlas, such that

ηi = fijηj on the overlaps for some nonvanishing functions fij. When both

M and D are orientable, the contact structure in the wider sense is in fact a

contact structure (in the restricted sense) since a nonvanishing global section

of the line bundle T ∗M/D∗ give rise to a global contact form on M .
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As the bundle D over M is sympletic with sympletic form dη, there exist

compactible almost complex struture J and metric g, i.e. g(·, ) = dη(·, J ·).

One can extend J to a tensor on M by requiring J(T ) = 0, likewise, extend-

ing g to be a metric on M by requiring g(T, T ) = 1 and g(T,D) = 0.

Definition 2.1.2 The quadruple (M, η, J, g) is called a contact metric struc-

ture.

It is apparent that the triple (M,D, J) forms an almost CR structure. This

CR structure is nondegenerate and strictly pseudo convex, as it has a Levi

form dη which is positive definite

An almost Kähler structure is associated with a contact metric struture

(M, η, J, g). Namely, let C(M) = M ×R+ be equipped with the cone metric

ḡ = r2g + 4dr2, where r is the coordinate of the R factor. We can define a

almost complex structure on the cone as J̄(V, aΨ) = (J(V )− 2aT, 1
2
η(V )Ψ),

where Ψ = r ∂
∂r

is the Euler vector field. It is easy to see the almost complex

structure J̄ so defined is compactible with the cone metric ḡ. the associated

2-form is r2dη + 2rdr ∧ η = d(r2η), which is exact, and hence sympletic. We

concluded that the cone (C(M), ḡ, J̄ , d(r2η)) is a non-compact almost Kähler

manifold. The contact manifold M is identified with the r = 1 slice of M̄ .

Note that a contact metric structure by a dilation is no longer contact metric,

other slices with r 6= 1 is not identified with M
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Definition 2.1.3 (M, g, J, η) is said to be Sasakian, if the cone (C(M), ḡ, J̄ , d(r2η))

is Kähler, i.e. if J̄ is integrable.

By the Nirenberg-Newlander Theorem, J̄ is integrable if and only if the Ni-

jenhaus tensor NJ̄(U, V ) vanishes. By tensoriality and symmetry, as any

vector V = f1X + f2T + f3Ψ, where X ∈ D, the vanishing of the whole

Nijenhaus tensor is equivalent to the vanishing of the following NJ̄(X, Y ),

NJ̄(X,T ), NJ̄(X,Ψ), NJ̄(T, T ), NJ̄(T,Ψ), and NJ̄(Ψ,Ψ). The last three of

these are apparently zero.

NJ̄(X, Y ) = −[X, Y ] + [JX, JY ]− J([JX, Y ] + [X, JY ]) = NJ(X, Y ) (2.1)

NJ̄(X,T ) = −[X,T ] + [JX,
1

2
Ψ]− J([JX, T ] + [X,

1

2
Ψ])

= LTX + JLTJX = −(LTJ)JX

(2.2)

NJ̄(X,Ψ) = NJ̄(X, 2JT ) = 2J(N(X,T )) = 2(LTJ)X (2.3)

Thus, we have
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Proposition 2.1.4 A contact metric structure (M, η, J, g) is Sasakian if and

only if

(1)The almost CR struture (D, J) is integrable. i.e. NJ(X, Y ) = 0 for any

X, Y ∈ D

(2)The Reeb vector field T is an infinitesmal CR transformation. i.e. LTJ =

0

By the definition of the Reeb vector field, we have LTη = d(η(T ))−dη¬T = 0.

Hence LT (dη) = 0, and thus (2) is equivalent to LTg = 0. i.e T is a killing

vector field. A contact metric structure that satisfied (2) is usually called

K-contact.

A standard example of Sasakian manifold is the odd dimensional sphere

S2n−1 ⊂ Cn. The contact form is given by η =
∑
yidxi−xidyi. Its The Reeb

vector field is given by T =
∑
yi

∂
∂xi
−xi ∂∂yi . metric g and J is inherited from

Cn.

A famous example of complex manifold that doesn’t admit Kähler metric is

the Hopf manifold (Cn \ {0})/{z ∼ 2z}. Topologically, this is S2n−1 × S1.

We can generalize this construction by considering the action r → 2r on the

cone over Sasakian manifolds.

Definition 2.1.5 Let M be a Sasakian manifold, and let C(M) = M × R+

be the metric cone as defined above. Then C(M)/{r ∼ 2r} is called the
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quotient cone over M .

Topologically, the quotient cone is just M × S1. Note that C(M) is Kähler,

and it is a covering of the quotient cone. Hence the quotient cone is Locally

conformally Kähler.

2.2 Products of contact metric structures

In the section, we consider the product of two contact metric manifolds,

namely (M1, η1, J1, g1, D1) and (M2, η2, J2, g2, D2). The product M = M1 ×

M2 is even dimensional. It carries a family of almost complex structures

Iab defined by Iab(X1) = JX1, Iab(X2) = JX2, Iab(T1) = −a
b
T1 + 1

b
T2, and

Iab(T2) = a2+b2

b
T1 + a

b
T2, where X1 ∈ D1, X2 ∈ D2 and T1, T2 are the Reeb

vector fields for each component.

The associate metric Gab is specified by the following: Let E = span{T1, T2},

then TM = D1 + D2 + E, the three components are orthogonal under

Gab and that Gab|D1(X1, X1) = g1(X1, X1), Gab|D2(X2, X2) = g2(X2, X2),

Gab|E(T1, T1) = 1, Gab|E(T2, T2) = a2 + b2, and Gab|E(T1, T2) = a. This

gives the product M an almost hermitian structure. The associate 2-form is

ω = dη1 + dη2 + bη1 ∧ η2.
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In particular, when a = 0, b = 1, This is the standard product, where

G = g1 + g2

ω = dη1 + dη2 + η1 ∧ η2

I(V1, V2) = J1(V1) + J2(V2)− η2(V2)T1 + η1(V1)T2

The integrability of Iab depends on the vanishing of the Nijenhause tensor. As

any vector V ∈ TM can be written as V = f1X1 + f2T1 + f3X2 + f4T2 where

fi are smooth functions, X1 ∈ D1 and X2 ∈ D2, by tensorialty and symme-

try, It is easy to see we only need to check whether the following vanishes:

NI(X1, Y1), NI(X2, Y2), NI(X1, T1), NI(X1, T2), NI(X2, T1) and NI(X2, T2)

we have

NI(X1, Y1) = −[X1, Y1] + [J1X1, J1Y1]− J1([J1X1, Y1] + [X1, J1Y1])

= NJ1(X1, Y1)

(2.4)
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NI(X1, T1) = −[X1, T1] + [J1X1,−
a

b
T1 +

1

b
T2]− J1([J1X1, T1]

+ [X1,−
a

b
T1 +

1

b
T2])

= LT1X1 +
a

b
LT1J1X1 −

a

b
J1LT1X1 + J1LT1J1X1

= (LT1J1)(
a

b
X1 − J1X1)

(2.5)

NI(X1, T2) = −[X1, T2] + [J1X1,
a2 + b2

b
T1 +

a

b
T2]

− J1([J1X1, T2] + [X1,
a2 + b2

b
T1 +

a

b
T2])

= −a
2 + b2

b
LT1J1X1 +

a2 + b2

b
J1LT1J1X1

=
a2 + b2

b
(LT1J1)(J1X1)

(2.6)

Note that both (??) and (??) are equivalent to LT1J1 = 0.

Similarily, the vanishing of NI(X2, Y2), NI(X2, T1) and NI(X2, T2) are equiv-

alent to NJ2(X2, Y2) = 0 and LT2J2 = 0. Combining with Proposition 2.1.4,

we have

Proposition 2.2.1 [?] The Product (Ma,b, Ia,b, Ga,b) is a hermitian mani-

fold if and only if both the two contact metric factors (M1, η1, J1, g1) and

(M2, η2, J2, g2) are Sasakian manifolds.
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The construction in this section may be considered as a generalization of

the famous Calabi-Eckmann manifolds S2p+1 × S2q+1. As mentioned in last

section, the standard odd dimensional spheres are Sasakiam manifolds. The

Calabi-Eckmann manifolds are hermitian manifolds that carries no Kähler

structures.

2.3 The locally conformally Kähler condition

As seen in the previous sections, the metric cone over a contact metric mani-

fold and the product of two contact metric manifolds share the same type of

integrability conditions. In this section, we see while the quotient cone are

always locally conformally Kähler, However, the generalized Calabi-Eckmann

manifolds are always not.

Let ω be the standard sympletic form on Cn, it is easy to see that the map-

ping Λ1 → Λ2n−1 defined by α −→ α ∧ ωn−1 is a bijection. Hence under this

mapping, any (2n− 1) form on a complex manifold determines a 1-form.

Definition 2.3.1 Let M be a n dimmensional hermitian manifold with fun-

damental 2-form ω. The associated Lee form is the unique 1-form φ, such

that dω ∧ ωn−2 = φ ∧ ωn−1.
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Apparently, when M is Kähler, the Lee form vanishes. If M is locally con-

formally Kähler, then there is locally a function ef , such that efω is closed,

thus,

0 = d(efω) = ef (df ∧ ω + dω)

This implies that dω ∧ ωn−2 = df ∧ ωn−1, hence the Lee form φ = df , which

means the Lee form is a closed form. In particular, if M is globally confor-

mally Kahher, then φ is an exact 1-from.

Proposition 2.3.2 Let (M1, η1) and (M2, η2) be sasakian manifolds of di-

mension 2n1 + 1 and 2n2 + 1 respectively, the the Lee form of the hermitian

manifold Ma,b = M1 ×M2, whose hermitian structure are giving in Section

2, is φ = b( n1

n1+n2
η2 − n2

n1+n2
η1)

Proof. As in Section 2.1, we can take local coframes (η1, α
i
1, β

i
1) and (η2, α

i
2, β

i
2),

so that dη1 =
∑
αi1 ∧ βi1 and η2 =

∑
αi2 ∧ βi2. Write Ω =

∑
αi1 ∧ βi1 +∑

αi2 ∧ βi2, and let n = n1 + n2 + 1 be the complex dimension of Ma,b, then

the fundamental form of Ma,b is

ω = Ω + b(η1 ∧ η2)

dω = b(dη1 ∧ η2 − η1 ∧ dη2) = b(
∑

αi1 ∧ βi1 ∧ η2 −
∑

αj2 ∧ β
j
2 ∧ η1)

Then,
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dω ∧ ωn−2

= b(
∑

αi1 ∧ βi1 ∧ η2 −
∑

αj2 ∧ β
j
2 ∧ η1) ∧ (Ωn−2 + (n− 2)bη1 ∧ η2 ∧ Ωn−3)

= b(
∑

αi1 ∧ βi1 ∧ η2 −
∑

αj2 ∧ β
j
2 ∧ η1) ∧ Ωn−2

Note that n − 1 = n1 + n2 is the highest power of Ω to not be 0, it is not

hard to see that, so for any i or j,

(αi1 ∧ βi1) ∧ Ωn−2 =
1

n− 1
Ωn−1

(αj2 ∧ β
j
2) ∧ Ωn−2 =

1

n− 1
Ωn−1

So,

dω ∧ ωn−2 = b(
n1

n− 1
− n2

n− 1
) ∧ Ωn−1

On the other hand, let φ = b( n1

n1+n2
η2 − n2

n1+n2
η1), then

φ ∧ ωn−1 = b(
n1

n− 1
η2 −

n2

n− 1
η1) ∧ (Ωn−1 + (n− 1)bη1 ∧ η2 ∧ Ωn−2)

= b(
n1

n− 1
η2 −

n2

n− 1
η1) ∧ Ωn−1

It is apparent that this Lee form φ is not closed, hence

Corollary 2.3.3 The product Ma,b is not locally conformally Kähler.

48



We might think of S1 as a degenerated Sasakian manifold, and consider the

product of a Sasakian manifold and S1, i.e. Ma,b = M1×S1. All the previous

calculations and arguments still apply. In the case a = 0, b = 2, the induced

complex structure on this product is equivalent to that of the quotient cone

C̄(M) = M1 × S1. However, the metric on the quotient cone is related to

the warp product metric, and it is locally conformally Kähler. This lead us

to consider whether there is a simple way of ’warping’, so that the product

of two Sasakian manifold becomes locally conformally Kähler as in the case

of one of the component being degenerated S1. The answer is negative.

Proposition 2.3.4 On the product M1 ×M2 the local 2-form ω = fdη1 +

gdη2 + hη1 ∧ η2 is not a closed form, for any smooth function f, g, h defined

locally on M1 ×M2

Proof. Take local coframes (η1, α
i
1, β

i
1) and (η2, α

i
2, β

i
2), so that dη1 =

∑
αi1∧

βi1 and η2 =
∑
αi2 ∧ βi2. The dual frames are (T1, X

1
i , Y

1
i ) and (T2, X

2
i , Y

2
i )

where T1 and T2 are Reeb vector fields. Suppose ω is close, we have

0 = dω = df ∧ dη1 + dg ∧ dη2 + dh ∧ η1 ∧ η2 + hdη1 ∧ η2 − hη1 ∧ dη2

Evaluate at T1∧T2∧U , where U is any linear combination of X1
i , Y

1
i , X

2
i , Y

2
i ,
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we see then dh(U) = 0. Hence, dh = aη1 + bη2. Take derivative of this, we

get,

0 = ddh = da ∧ η1 + adη1 + db ∧ η2 + bdη2

Evaluate at, say X1
i ∧ Y 1

i , we see a = 0, similarly, b = 0, so dh = 0. Without

loss of generality, set h = 1, and so we can rewrite dω as

0 = dω = df ∧ dη1 + dg ∧ dη2 + dη1 ∧ η2 − η1 ∧ dη2

= (df − η2) ∧ dη1 + (dg − η1) ∧ dη2

Evaluate this at T2∧X1
i ∧Y 1

i , we get T2(f) = 1; at T1∧X1
i ∧Y 1

i , get T1(f) = 0;

Evaluate at X2
i ∧X1

i ∧Y 1
i and also Y 2

i ∧X1
i ∧Y 1

i , get X2
i (f) = Y 2

i (f) = 0, so

df = η2 +
∑

aiα
i
1 + biβ

i
1

Take derivative again, and evaluate at X2
i ∧ Y 2

i sees 0 = 1. contradiction.

2.4 The absence of Kähler metrics

In this section, we show that the quotient cone over a Sasakian manifold does

not admit any Kähler structure. We also show under very mild assumption,

that the product of two Sasakian manifolds does not admit a symmpletic
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form, thus cannot admit any Kähler metric.

Firstly, we quote a well known theorem on the betti numbers of Sasakian

manifolds. This was developed by Tachibana [?], Blair and Goldberg [?].

Lemma 2.4.1 Let M be a compact Sasakian manifold of dimension 2n+ 1.

If k is an odd number and that 1 ≤ k ≤ n, then the kth betti number is even;

If k is an even number and that n + 1 ≤ k ≤ 2n, then the kth betti number

is even.

Proposition 2.4.2 Let M be a compact Sasakian manifold, the quotient

cone C̄(M) = (M ×R+)/{r ∼ 2r} is a compact complex manifold that does

not admit any Kähler metric.

Proof. We already know the quotient cone is compact complex. Using

Lemma 2.4.1 and the Kuneth formula, we conclude that the first betti num-

ber of the quotient cone is odd, and hence topologically cannot admit any

Kähler metric.

Lemma 2.4.3 Let (M, η, g, J) be a compact K-contact manifold and α be a

harmonic 1-from, then α(T )=0, where T is the Reeb vector field.

Proof. Write α = β + fη, where β(T ) = 0. Since T is a Killing field and α
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is harmonic, we have

0 = LTα = d(α(T )) = df

Hence f is constant, and thus dβ + fdη = 0, by Stocks theorem, we have

0 =

∫
M

d(β ∧ η ∧ (dη)n−1) = −
∫
M

fη ∧ (dη)n

hence f = 0, so α(T ) = β(T ) = 0

In fact, there is a more general result for Sasakian manifold due to Tachibana

[?].

Lemma 2.4.4 Let M be a compact Sasakian manifold of dimension 2n+ 1.

Let α be a harmonic k-form (1 ≤ k ≤ n), then α¬T = 0.

Now, we consider the product of Sasakian manifolds.

Proposition 2.4.5 Let M and N be compact, simply connected, Sasakian

manifolds, then the product M ×N does not admit any Kähler metric.

Proof. We will prove that M × N has no sympletic form, so consequently

cannot admit any Kähler metric. Suppose it does admit a sympletic form ω,

then [ω] is an element of H2(M×N). By the Kunneth formula H2(M×N) =

H2(M)⊕H2(N)⊕H1(M)⊗H1(N). SinceM andN are simply connected, the
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second cohomology has the form [ω] = π∗1[ω1] + π∗2[ω2], where [ω1] ∈ H2(M)

and [ω2] ∈ H2(N). Let the dimension of M and N be respectively 2p + 1

and 2q + 1, then dimension of the product is 2n = 2(p+ q + 1)

[ω]n = (π∗1[ω1] + π∗2[ω2])p+q+1 = 0

since [ω1]p+1 = 0, [ω2]q+1 = 0. However, as a sympletic form ωn is a non-zero

top form, and hence [ω]n 6= 0. Contradiction.

Corollary 2.4.6 Let M and N be compact, Sasaki-Einstein manifolds, then

the product M × N is a hermitian Einstein manifold that does not admit

any Kähler metrics.

Proof. It is well known that the Einstein constant of a Sasaki-Einstein

manifold is 2n where 2n + 1 being the dimension of the underlying mani-

fold. Hence M and N are compact manifolds with positive Ricci curvature,

their first cohomology vanishes by a well known theorem of Bochner. Now

the same lines of argument as Proposition 4.5 goes through, so the product

M ×N does not admit any Kähler metric. On the other hand, the complex

structure Ja,b where a = 0 and b =
√

n
m

is a integrable complex structure on

M ×N . The metric g = mgm + ngn is an Einstein metric on M ×N which

is compactible with Ja,b
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A Sasakian manifold M is called η-Einstein, if its Ricci tensor Ricg =

λ1g + λ2η ⊗ η for some functions λ1, λ2. Since on a Sasakian manifold we

always have Ric(T, T ) = 2n, we see that λ1 + λ2 = 2n. Using the con-

tracted Bianchi identity [?], it is also not hard to see that λ1, λ2 must be

constant when the dimension of M is greater than 3. When λ1 > −2, An

η-Einstein manifold essentially carries Sasaki-Einstein metrics [?]. Namely,

by a transverse homothety, the quadruple (M,λ1η, J, λ1g+ (λ2
1−λ1)η⊗ η) is

Sasaki-Einstein. Thus, product of pairs of this class of η-Einstein Sasakian

manifolds provide even more examples of Einstein Hermitian manifolds that

has on Kähler metrics.

This is very different compared to the dimension 4 story. In [?], C.LeBrun

recently proved that a compact hermitian Einstein complex surface must be

Kähler Einstein, unless the metric is the Page metric or the Chen-LeBrun-

Weber metric [?] . The two exceptions are nontheless conformally Kähler.

Thus all compact hermitian Einstein complex surface must carry a Kähler

structure compactible with its underlying complex structure.

Using Lemma 2.4.4, we can prove non existence of a symplectic form on the

product under milder hypothesis.

Proposition 2.4.7 Let M and N be compact Sasakian manifolds, Then the

product M ×N doesn’t admit any Kähler metric, provided that at least one
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of the components has dimension greater than 3.

Proof. Supppose ω is the harmonic 2-form that represents the cohomology

class of a sympletic 2-form on the product. Then by Kunneth theorem, ω

can be written as

ω = ω1 + ω2 +
∑

αi ∪ βi

where ω1 ∈ H2(M), ω2 ∈ H2(N), αi ∈ H1(M) and βi ∈ H1(N)

Let the dimension of M and N be respectively 2p + 1 and 2q + 1 and

n = (p + q + 1) is the complex dimension of the product. Then ωn is a

sum of terms of the form ωl11 ∧ωl22 ∧Π(αi∧βi), which are top forms. However

by Lemma 4.4, if p + q > 2, the interior product of any terms of this form

with the Reeb vetors fields T1 and T2 is 0. Thus all these terms are 0, and it

follows ωn = 0. Contradict with the fact that ω represents the cohomology

class of a sympletic form.

In the case that p = q = 1 and both M and N has non trivial first coho-

mology. Let α and β be a harmonic 1-form on M and N respectively, then

the 2-form ω = ∗α + ∗β + α ∧ β is closed, and that ω3 = α ∧ ∗α ∧ β ∧ ∗β is

the volume form on the standard product. Thus the product does admit a

sympletic form.
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