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Abstract of the Dissertation

Verification of Security Policy Administration and
Enforcement in Enterprise Systems

by
Puneet Gupta

Doctor of Philosophy
in

Computer Science
Stony Brook University

2011

The scale and complexity of security policies in enterprise systems makes
it difficult to ensure that they achieve higher-level security goals. This dis-
sertation explores two important ways in which policy analysis can help:
reachability analysis for administrative policies, and analysis of policy en-
forcement in enterprise systems.

An administrative policy specifies how each user in an enterprise may
change the policy. Fully understanding the consequences of an administra-
tive policy can be difficult, because sequences of changes by different users
may interact in unexpected ways. Administrative policy analysis helps by
answering questions such as user-permission reachability, which asks whether
specified users can together change the policy in a way that achieves a spec-
ified goal, namely, granting a specified permission to a specified user. This
dissertation presents a rule-based access control policy language, a rule-
based administrative policy model that controls addition and removal of
rules and facts, and an abductive analysis algorithm for user-permission
reachability. Abductive analysis means that the algorithm can analyze pol-
icy rules even if the facts initially in the policy (e.g., information about
users) are unavailable. The algorithm does this by computing minimal sets
of facts that, if present in the initial policy, imply reachability of the goal.

Many security requirements for enterprise systems can be expressed in
a natural way as high-level access control policies, but are not enforced
by a single mechanism that directly interprets such policies. A high-level
policy may refer to abstract information resources, independent of where
the information is stored; it controls both direct and indirect accesses to
the information; it may refer to the context of a request, i.e., the request’s
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path through the system; and its enforcement point and enforcement mech-
anism may be unspecified. Enforcement of a high-level policy may depend
on the system architecture and the configurations of a variety of security
mechanisms, such as firewalls, database access control, and application-level
access control. This dissertation presents a framework for expressing high-
level policies, a method for verifying that a high-level policy is enforced, and
an algorithm for determining a trusted computing base for each resource.
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Chapter 1

Introduction

1.1 Research Motivation

One of the most important problems for information systems is controlling
access to information. Allowing legitimate access to authorized users while
preventing unauthorized access is the purpose of an access control system.
Over the years many models have been proposed and implemented to achieve
access control, notably Discretionary Access Control (DAC), Mandatory
Access Control (MAC), and Role-based Access Control (RBAC) [SCFY96b].

An access control system provides a framework for specification and en-
forcement of security policies. Since an organization’s security policy must
evolve, an access control framework should also define operations for modi-
fying the policy and support policies that control the use of that operations.
Such policies are called administrative policies. The scale and complexity
of security policies, including administrative policies in large organizations
make it difficult to ensure that a policy achieves intended higher-level secu-
rity goals. This dissertation explores analysis techniques that help security
administrators verify that security policies are correctly formulated and en-
forced.

Security Policy Administration: The increasingly complex security
policies required by applications in large organizations cannot be expressed
in a precise and robust way using access-control lists (ACLs) or role-based
access control (RBAC). This motivated the development of attribute-based
access control frameworks with rule-based policy languages. These frame-
works allow policies to be expressed at a higher level of abstraction, making
the policies more concise and easier to administer.
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In large organizations, access control policies are managed by multi-
ple users (administrators). An administrative framework (also called ad-
ministrative model) is used to express policies that specify how each user
may change the access control policy. Several administrative frameworks
have been proposed for role-based access control, starting with the clas-
sic ARBAC97 model [SBM99]. Fully understanding the implications of an
administrative policy can be difficult, due to unanticipated interactions be-
tween interleaved sequences of changes by different users. This motivated
research on analysis of administrative policies. For example, analysis al-
gorithms for ARBAC97 and variants thereof can answer questions such as
user-permission reachability, which asks whether changes by specified users
can lead to a policy in which a specified user has a specified permission
[LT06, SYRG07, JLT+08, SYSR11, SYGR11]. Existing work on adminis-
trative frameworks for rule-based access control and analysis algorithms for
such frameworks [Bec09, BN10] consider only addition and removal of facts,
not rules.

Security Policy Enforcement: In large systems, enforcement of secu-
rity policies is distributed, not centralized: different components may be re-
sponsible for enforcing different aspects of the organization’s overall higher-
level security policy. Verifying that the system architecture and the security
configurations of the components together achieve global, high-level security
goals is an important problem. Many security requirements for enterprise
systems can be expressed in a natural way as high-level access control poli-
cies. These policies may be high-level in multiple ways. First, they may refer
to abstract information resources, independent of where the information is
stored. For example, consider the requirement that only employees in the
registrar’s office may access student transcripts. This should apply regard-
less of whether the transcripts are all stored in one DBMS, partitioned (e.g.,
by campus, college, or grad/undergrad) among multiple DBMSs, saved in
backup files, etc. Second, a high-level policy controls both direct and indi-
rect accesses to the information. For example, the above policy implies that
other users cannot read transcripts by directly accessing them in a DBMS
or by invoking operations of an application (possibly running with a dif-
ferent userid) that accesses the database and returns information from the
transcripts. Third, a high-level policy may refer to the context of a request,
i.e., the request’s path through the system. For example, a policy might
state that employees in the registrar’s office are permitted to access student
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transcripts only via a web browser running on a host in the campus net-
work and requesting the information from the Registrar Application Server.
Note that this is analogous to the use of calling context (stack introspec-
tion) in the Java security model. Fourth, the policies may be delocalized, in
the sense that the enforcement point and enforcement mechanism may be
unspecified. For example, if transcripts are stored in a DBMS, the above re-
quirement might be enforced in the DBMS or an application that connects
to the DBMS. With the latter approach, the system should be designed
so that unauthorized users cannot circumvent that application and access
the DB directly. This policy might also be enforced in part by the operat-
ing system (based on login permissions and file permissions on the relevant
servers) and the network (blocking connections to the server from hosts on
which unauthorized users have login permissions).

Each high-level policy is enforced by one or more security mechanisms
in a system (perhaps involving DBMSs, middleware, operating systems, file
systems, firewalls, etc.). Enforcement also depends on the system architec-
ture, which affects the possible paths that requests can take through the
system. We sometimes refer to the configurations of security mechanisms as
low-level policies. Ensuring that the low-level policies, together with a given
system architecture, correctly enforce given high-level policies is a challeng-
ing problem.

Since enforcement of the high-level policies that control access to an
information resource might involve multiple hardware and software compo-
nents in the system, a natural question during security analysis is to identify
a trusted computing base (TCB) for each information resource. Note that
the answer may depend on the low-level policies as well as the system ar-
chitecture.

1.2 Research Contribution

Verification of Security Policy Administration in Rule-based Ac-
cess Control: We define a rule-based access control policy language,
with a rule-based administrative framework that controls addition and re-
moval of both facts and rules. We call this policy framework ACAR (Access
Control and Administration using Rules). It allows administrative policies
to be expressed concisely and at a desirable level of abstraction. Never-
theless, fully understanding the implications of a rule-based administrative
policy in ACAR is, in some ways, even more difficult than fully understand-
ing the implications of an ARBAC policy, because in addition to considering
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interactions between interleaved sequences of changes by different adminis-
trators, one must also consider chains of inferences using the facts and rules
in each intermediate policy.

We present a symbolic analysis algorithm for answering atom-reachability
queries for ACAR policies, i.e., for determining whether changes by speci-
fied administrators can lead to a policy in which some instance of a specified
atom (an atom is like a fact except that it may contain variables), called
the goal, is derivable. The atom could be for the user-permission predicate,
indicating that a user has a particular permission, or for any other predi-
cate. To the best of our knowledge, this is the first analysis algorithm for a
rule-based policy framework that considers changes to the rules as well as
changes to the facts.

It is often desirable to be able to analyze rule-based policies with incom-
plete knowledge of the facts in the initial (i.e., current) policy. For example,
a database containing those facts might not exist yet (if the policy is part
of a system that has not been deployed), or it might be unavailable to the
policy engineer due to confidentiality restrictions. Even if a database of
facts exists and is available to the policy engineer, more general analysis
results that hold under limited assumptions about the initial facts are often
preferable to results that hold for only one given set of initial facts, e.g.,
because the policy might be deployed in other systems with different initial
facts. For example, consider the policy that a clinician at a given hospital
may treat a patient if he is a member of a hospital workgroup that is treat-
ing that patient under an encounter (an encounter is a record of a patient’s
admission to the hospital). A policy auditor might want to analyze the rules
in the hospital policy to compute all administrative action plans that may
allow a user to be a treating clinician for a patient, independent of specific
data about patient encounters, which might be incomplete or non-existent
during policy design. Further, even if there is some data on patient en-
counters, it is transient and a more thorough analysis should consider more
general scenarios.

There are two approaches to solve such an analysis problem. In the de-
ductive approach, the user specifies assumptions—in the form of constraints—
about the initial facts, and the analysis algorithm determines whether the
goal is reachable under those constraints. However, formulating appropriate
constraints might be difficult, and might require multiple iterations of anal-
ysis and feedback. We adopt an abductive approach, in which the analysis
algorithm determines conditions on the set of facts in the initial policy under
which the given goal is reachable. More specifically, our abductive analysis
determines minimal set of atoms that, if present in the initial policy, imply
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reachability of the goal. This approach is inspired by Becker and Nanz’s
abductive policy analysis for a rule-based policy language [BN08, BMD09],
and our algorithm builds on their tabling-based policy evaluation algorithm.
The main difference between their work and ours is that they analyze a fixed
access control policy: they do not consider any administrative framework
or any changes to the rules or facts in the access control policy. Also, they
do not consider constructors or negation, while our policy language allows
constructors and allows negation applied to extensional predicates.

This work is also described in the conference paper [GSX11]. The major
differences are that this presentation of the abductive analysis algorithm uses
the tabling algorithm in [BMD09], while [GSX11] uses the tabling algorithm
in [BN08], and more discussion, examples, and correctness proofs have been
added.

Verification of Security Policy Enforcement in Enterprise Systems:
Our second main research contribution is a framework to verify enforce-

ment of security requirements, which we call high-level security policies,
in enterprise systems. More specifically, our contributions include (1) ex-
plicit identification of the above characteristics of high-level policies, (2) a
framework that allows convenient and formal specification of such high-level
policies, modeling of low-level policies, and modeling of relevant aspects of
system architecture, (3) a method for verifying that the low-level policies in
a system correctly enforce (“implement”) the high-level policies, and (4) an
algorithm for computing a trusted computing base (TCB) for a component
or information resource.

Although there is a sizable literature on formal specification and analysis
of security policies, we are not aware of any previous work that explicitly
deals with high-level policies with these characteristics. The interplay be-
tween system architecture and the policies has a significant impact on our
framework. Frameworks for security policy specification and analysis gener-
ally ignore system architecture and request context (in the sense described
above), except for specialized frameworks for network (e.g., firewall) policy
analysis. Although our framework is broad and flexible enough to model rel-
evant aspects of network security and operating system security, our focus
is on application-level security policies.

This work is also described in the conference paper [GS09].
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1.3 Outline

The remainder of the thesis is structured as follows. Chapter 2 presents
a language and a framework, called ACAR, for expressing administrative
policies in a rule-based access control environment. Chapter 3 is a case study
of a policy for a healthcare network used to demonstrate the practicality and
applicability of this language. Chapter 4 presents a symbolic algorithm for
abductive atom-reachability analysis of administrative policies in ACAR.
The algorithm is evaluated on the healthcare network policy from chapter
3. Chapter 5 presents a policy framework for verification of enforcement
of high-level policies in enterprise systems. When a policy is not enforced,
the algorithm returns a counterexample that demonstrates the vulnerability.
Chapter 6 summarizes the contributions and discusses future work.

6



Chapter 2

A Language for Security
Policy Administration in
Rule-based Access Control

This chapter defines a rule-based access control framework called ACAR
(Access Control and Administration using Rules). ACAR includes a rule-
based administrative framework that controls addition and removal of both
facts and rules. ACAR allows administrative policies to be expressed con-
cisely and at a desirable level of abstraction.

2.1 Running Example

As a running example, we use a fragment of the healthcare network case
study presented in full in chapter 3. The running example focuses on the
policy for appointing a user as a treating clinician for a patient at the
getWellHosp within the healthcare network. The getWellHosp policy offi-
cer (HPO) can add rules that define membership in the
treatingClinician role. We’ll be using this example to demonstrate var-
ious aspects of the framework and the analysis problem presented in this
thesis.

The following roles and predicates are used in this example.

• Predicates: The permit(u, op) means user u has the permission to
execute operation op. The predicate memberOf(u, r) means that user
u is a member of the role r. A user u can be actively operating under
a role r that he is a member of if hasActivated(u,r) is true. For the

7



purpose of this example, we differentiate between role membership that
is “inferred” through rules and is represented by the intensional pred-
icate memberOf and role membership directly assigned to a user and
is represented by the extensional predicate directMemberOf. The dis-
tinction between these two predicates is elaborated later in section 3.3.
Note that directMemberOf(u, op) means memberOf(u, op). Other
predicates used in this example are consentToTreatment(Pat, Cli,

Fac), which means that clinician Cli has patient Pat’s consent to treat
him at facility Fac, and
encounter(EncID, Pat, Wkgp, Fac, Type), which means that there
exists a patient encounter with unique identifier EncID for patient Pat
at facility Fac of type Type and is handled by workgroup Wkgp.

• Roles: Members of the treatingClinician(Pat, Fac) role are users
who are treating clinicians for patient Pat at facility Fac. Members
of the policyOfficer(Fac) role are the policy officers at facility Fac.
Members of the clinician(Fac, Spcty) role are clinicians at facility
Fac under specialty Spcty. Members of the workgroup(Wkgp, Fac,

Spcty, WkgpType) role are members of the workgroup Wkgp, which
is of type WkgpType, under specialty Spcty at facility Fac. A work-
group is associated with a patient through the encounter predicate.
Informally, an encounter relates a patient to a workgroup treating the
patient for that encounter type. Policies for workgroup assignment, pa-
tient role assignment, agent appointment, clinician appointment and
patient-workgroup association are presented in chapter 3. Members of
the patient role are patients. Members of the agent(Pat) role are
agents to the patient Pat.

The administrative policy allows HPO to define the treatingClinician
role using the following two kinds of rules:

1. if the user has at least explicit consent to treatment for a patient, then
he can be a treating clinician for that patient

(3.5.13)

permit(User, addRule(

memberOf(Cli,

treatingClinician(Pat, getWellHosp))

:- consentToTreatment(Pat, Cli, getWellHosp)))

:- hasActivated(User, policyOfficer(getWellHosp))

8



or

2. if the user is at least a member of a workgroup that is treating the
patient, then that user can be a treating clinician for that patient

(3.5.12)

permit(User,

addRule(memberOf(Cli, treatingClinician(Pat, getWellHosp))

:- hasActivated(Cli, clinician(getWellHosp, Spcty)),

memberOf(Cli,

workgroup(Wkgp, getWellHosp, Spcty,

WkgpType)),

encounter(EncID, Pat, Wkgp, getWellHosp, Type)))

:- hasActivated(User, policyOfficer(getWellHosp))

In this description of the policy rules, “at least” indicates that the stated
requirement is the minimal one; the HPO may impose additional require-
ments if desired, as discussed in more detail later in this chapter.

The HPO may add rules that allow patients and their agents to grant
(rules 3.5.7, 3.5.9) and revoke (rules 3.5.8, 3.5.10) consent to treatment.
Patient’s are members of the patient role. An agent of a patient Pat is a
member of the agent(Pat) role.

(3.5.7)

permit(User,

addRule(

permit(Pat,

addFact(consentToTreatment(Pat, Cli,

getWellHosp)))

:- hasActivated(Pat, patient)))

:- hasActivated(User, policyOfficer(getWellHosp))

(3.5.8)

permit(User,

addRule(

permit(Pat,

removeFact(consentToTreatment(Pat, Cli,

getWellHosp)))

:- hasActivated(Pat, patient)))

:- hasActivated(User, policyOfficer(getWellHosp))

(3.5.9)

permit(User,
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addRule(

permit(Ag,

addFact(consentToTreatment(Pat, Cli,

getWellHosp)))

:- hasActivated(Ag, agent(Pat))))

:- hasActivated(User, policyOfficer(getWellHosp))

(3.5.10)

permit(User,

addRule(

permit(Ag,

removeFact(consentToTreatment(Pat, Cli,

getWellHosp)))

:- hasActivated(Ag, agent(Pat))))

:- hasActivated(User, policyOfficer(getWellHosp))

The initial policy might also contain facts, such as:

directMemberOf(joeCool, clinician(getWellHosp, surgeon)).

directMemberOf(peppermintPatty, patient).

directMemberOf(charlieBrown, policyOfficer(getWellHosp)).

2.2 Policy Language

The policy language is a rule-based language with constructors (functors)
and negation (denoted “!”). The language definition is parameterized by
the set of constructors. In examples, we take that set of constructors to be
the set of constructors that appear in the given problem instance. Predi-
cates are classified as intensional or extensional. Intensional predicates are
defined by rules. Extensional predicates are defined by facts. Constructors
are used to construct terms representing operations, rules (being added or
removed by administrative operations), parameterized roles, etc. The gram-
mar ensures that negation is applied only to extensional predicates; this is
why we distinguish intensional and extensional predicates. The grammar
appears below. p in ranges over intensional predicates, p ex ranges over
extensional predicates, c ranges over constructors (functors), and v ranges
over variables. The grammar is parameterized by the sets of predicates,
variables, and constructors; these sets may be finite or countable. Predi-
cates and constructors start with a lowercase letter; variables start with an
uppercase letter. Constants are represented as constructors with arity zero;
the empty parentheses are elided. The special symbol “ ”, called wildcard,
is used only in negative preconditions. Wildcards are discussed in more
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detail in the Negation paragraph later in this section. Subscripts in and
ex are mnemonic for intensional and extensional, respectively. t∗ denotes a
comma-separated sequence of zero or more instances of non-terminal t. A
term or atom is ground if it does not contain any variables. A substitution θ
is ground, denoted ground(θ), if it maps variables to ground terms. A policy
is a set of rules and facts.

term ::= v | c(term∗)
atomex ::= pex (term∗)
atom in ::= pin(term∗)
atomneg ::= !pex ((term | )∗)

literal ::= atomex | atomneg | atom in

rule ::= atom in :- literal∗

fact ::= ground instance of atomex

The predicate permit(user, operation) specifies permissions, includ-
ing permissions for administrative operations, as discussed below.

An example of an intensional predicate is memberOf(User, Role), since
a role can be assigned directly to a user or inferred through user attributes.
For example, a doctor Doctor can be appointed directly as a treating clini-
cian to a patient Pat, represented by a fact memberOf(Doctor,
treatingClinician(Pat, getWellHosp)) or can be inferred as a treating
clinician for Pat if he is a member of a workgroup that is treating Pat,
represented by the rule:

memberOf(Doctor, treatingClinician(Pat, getWellHosp))

:- hasActivated(Doctor, clinician(getWellHosp, Spcty)),

memberOf(Doctor, workgroup(Wkgp, getWellHosp, Spcty, WkgpType)),

encounter(EncID, Pat, Wkgp, getWellHosp, Type)

2.3 Administrative Framework

The administrative framework defines an API for modifying policies. The
operations in the API are addRule(rule), removeRule(rule), addFact(atomex ),
and removeFact(atomex ). Let AdminOp = {addRule, removeRule, addFact,
removeFact}. In addition, the framework defines how permission to perform
these operations are controlled. These permissions are expressed using the
permit predicate but given a special interpretation, as described below.

A permission rule is a rule whose conclusion has the form permit(...).
For an operation op, an op permission rule is a rule whose conclusion has the
form permit(..., op(...)). An administrative permission rule is an op
permission rule with op ∈ AdminOp. In a well-formed policy, the argument
to each occurrence of addFact and removeFact must be an extensional atom
(it does not need to be ground).
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A rule is safe if it satisfies the following conditions. (1) Every vari-
able that appears in the conclusion outside the arguments of addRule and
removeRule also appears in a positive premise. (2) Every variable that
appears in a negative premise also appears in a positive premise. (3) In
every occurrence of permit, the second argument is a constructor term, not
a variable. (4) Every occurrence of addRule or removeRule is in the second
argument of permit in the conclusion of a rule.

A policy is safe if all rules in the policy are safe.

2.4 Policy Semantics

Intuitively the semantics [[P ]] of a policy P contains all atoms deducible
from P . Formally, the semantics [[P ]] of a policy P is the least fixed-point
of FP , defined by FP (I) = {aθ | (a :- a1, . . . , am, !b1, . . . , !bn) ∈ P ∧ (∀i ∈
[1..m] : aiθ ∈ I) ∧ (∀i ∈ [1..n] : biθ 6∈ I)}. To simplify notation, this defini-
tion assumes that the positive premises appear before the negative premises;
this does not affect the semantics. This semantics is essentially the same as
the traditional semantics of derivability for logic programs. Atoms in the
semantics are ground except that arguments of addRule and removeRule

may contain variables. Limiting negation to extensional predicates ensures
that FP is monotonic. By the Knaster-Tarski theorem, the least fixed point
of FP can be calculated by repeatedly applying FP starting from the empty
set. Safety of the policy implies that, during this calculation, whenever
bi 6∈ I is evaluated, bi is ground; this simplifies the semantics of negation.
The semantics of a policy may be infinite, due to the presence of construc-
tors, which can lead to terms with arbitrary depth in the semantics. We
sometimes write P ` a (read “P derives a”) to mean a ∈ [[P ]].

Also, in the definition of FP , if bi contains wildcards, bi 6∈ I holds if I
contains no terms that match bi, where a wildcard matches any term.

2.5 Fixed Administrative Policy

Our goal in this work is to analyze a changing access control policy subject
to a fixed administrative policy. Therefore, we consider policies that satisfy
the fixed administrative policy requirement, which says that administrative
permission rules cannot be added or removed, except that addFact admin-
istrative permission rules can be added. We allow this exception because
it is useful in practice and can be accommodated easily in the reachability
analysis.
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We formalize this requirement as follows. A higher-order administrative
permission rule is an administrative permission rule whose conclusion has the
form permit(. . . , op(permit(. . . , op′(. . .))) with op ∈ AdminOp and op′ ∈
AdminOp; in other words, it is a rule that permits addition and removal
of administrative permission rules. A rule satisfies the fixed administrative
policy requirement if either it is not a higher-order administrative permission
rule or it is an administrative permission rule having the above form with
op = addRule and op′ = addFact. A policy satisfies the fixed administrative
policy requirement if all of the rules in it do.

Even in a policy with no higher-order administrative permission rules,
the available administrative permissions may vary, because addition and
removal of other rules and facts may change the truth values of the premises
of administrative permission rules.

2.6 Administrative Policy Semantics

The above semantics is for a fixed policy. We specify the semantics of admin-
istrative operations and administrative permissions by defining a transition
relation T between policies, such that 〈P, u:op, P ′)〉 ∈ T iff policy P permits
user U to perform administrative operation op thereby changing the policy
from P to P ′.

Rule R is at least as strict as rule R′ if (1) R and R′ have the same
conclusion, and (2) the set of premises of R is a superset of the set of
premises of R′. These comparisons ignore renaming of variables.
〈P,U : addRule(R), P ∪ {R}〉 ∈ T if there exists a rule R′ such that (1)

R is at least as strict as R′, (2) P ` permit(U, addRule(R′)), (3) R 6∈ P , (4)
R satisfies the fixed administrative policy requirement, and (5) R satisfies
the safe policy requirement. Note that R′ may be a partially or completely
instantiated version of the argument of addRule in the addRule permission
rule used to satisfy condition (2); this follows from the definition of `. Thus,
an administrator adding a rule may specialize the “rule pattern” in the
argument of addRule by instantiating some of the variables in it and by
adding premises to it. We call the argument of addRule or removeRule a
“rule pattern”, even though it is generated by the same grammar as rules,
to emphasize that it can be specialized in these ways.
〈P,U : removeRule(R), P \ {R}〉 ∈ T if there exists a rule R′ such that

R is as least as strict as R′, P ` permit(U, removeRule(R′)), and R ∈ P .
〈(P,U : addFact(a), P ∪ {a}〉 ∈ T if P ` permit(U, addFact(a)) and

a 6∈ P .
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〈(P,U : removeFact(a), P \ {a}〉 ∈ T if P ` permit(U, removeFact(a))
and a ∈ P .

We interpret addRule permission rules to allow addition of rules that
are stricter than the specified rule pattern because this greatly increases
flexibility for the administrator to customize the rules being added, while not
allowing the administrator to add rules that violate desired safety properties
of the policy. For example, a healthcare network-wide administrative policy
stating that a facility’s human resource (HR) manager may appoint users
who have federal certification for medical practice as clinicians at that facility
by making them direct (instead of inferred) members of the clinician role.
This rule may be added by the getWellHosp policy officer and is network-
wide.

permit(PO,

addRule(

permit(HR,

addFact(directMemberOf(Cli, clinician(Facility, Spcty))))

:- memberOf(HR, hrManager(Facility)),

federalCertifiedClinician(Cli)))

:- hasActivated(PO, policyOfficer(Facility))

The predicate directMemberOf(User, Role) means that User has been
directly assigned to Role. In our case study presented in chapter 3, the
extensional predicate directMemberOf is used in the rules defining the in-
tensional predicate memberOf (see rule 3.3.1).

Using this administrative rule, a getWellHosp policy officer might add
a rule with additional premises that restrict the HR manager to appoint
only clinicians who are also certified by the state. This could be a legal
requirement in some states. For example, policyOfficer(getWellHosp)

might add the following rule to getWellHosp policy:

permit(HR, addFact(directMemberOf(Cli, clinician(Facility, Spcty))))

:- memberOf(HR, hrManager(Facility)),

federalCertifiedClinician(Cli),

stateCertifiedClinician(Cli)

where stateCertifiedClinician(Cli) is a predicate defined under
getWellHosp policy that means the clinician is certified by the state the
getWellHosp is in. Note that the healthcare network may be a nationwide
organization with facilities in different states. Each state may have its own
clinician certification criteria. Hence it is more convenient for the policy
officers at the facilities to incorporate their state’s requirements in such
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policy rules. Note that the added rule is stricter than the rule pattern
specified in the addRule permission rule.

The statement above that allowing an administrator to add stricter rules
does not enable them to violate safety requirements, means, specifically, that
any atom reachability goal that can be reached at all can be reached by
adding rules as they appear in the addRule permission rules, i.e., without
adding premises or instantiating variables. This observation is exploited by
our analysis algorithm (see Section 4.4.). This is mainly a consequence of
prohibiting negation on intensional predicates. To see why this is the case,
suppose for a moment that we allow negation for intensional relations, and
consider the following example:

user(alice).

user(bob).

user2(alice).

permit(adam, addRule(employee(X) :- user(X))) :-

permit(eve, read(data)) :- employee(alice), ! employee(bob)

If adam adds the rule “employee(X) :- user(X)”, then eve does not
get permission to read the data. If adam adds a stricter version, such as
“employee(alice) :- user(alice)” or “employee(X) :- user(X),

user2(X)”, then eve gets permission to read the data.

2.7 Decentralized Policies

The healthcare network case study in chapter 3 involves a decentralized
policy. We express decentralized policies using an extended form of atom,
namely, term issues atom, where term represents the user that issued the
statement. Examples of such rules are rules 3.5.25, 3.5.28 presented in chap-
ter 3. We currently treat this as syntactic sugar that gets eliminated by
making the issuer an argument of the predicate in the atom. In future work,
we plan to extend our framework and analysis to thoroughly support trust
management and trust negotiation.

2.8 Negation

The grammar limits negation to extensional predicates; allowing unrestricted
use of negation would significantly complicate the semantics and the analysis
algorithm. Our experience with case studies suggests that this restriction on
negation is acceptable for many typical policies. To increase the expressive-
ness, the language allows wildcards, denoted by underscores, as arguments
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of an extensional predicate p (but not as arguments of constructors) in a
negative literal, provided the policy does not contain removeFact permis-
sion rules for predicate p. Intuitively, using a wildcard as an argument in a
negative premise represents a quantification over the value of that argument.
Section 4.4 explains why wildcards are limited to predicates for which there
are no removeFact permission rules.
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Chapter 3

Case Study: Healthcare
Network

3.1 Introduction to the Case Study

The primary motivation for this case study is to better understand the re-
quirements for a practical framework for expressing and analyzing enterprise
administrative security policies. This case study also serves as a thorough
test case for testing our algorithm. The motivation for a case study based on
healthcare information systems comes from the United States Health and
Human Services Initiative for a Nationwide Health Information Network
[The]. A healthcare network is an association of healthcare facilities with a
common governing administration.

This case study involves of four organizations: Nationwide Health In-
formation Network (NHIN), Healthcare Network, Patient Demographic Ser-
vices (PDS), and Health and Human Services (HHS). PDS maintains de-
mographic information about users, HHS is the main organization that sets
standards and approves registration authorities, which provide signed cre-
dentials to health care providers. This case study focuses on policies for
NHIN and Healthcare Network, because they are the organizations that
maintain patient health care information.

NHIN is a central nationwide body that stores patient health records.
Local health organizations interact with NHIN to obtain and report patient
information, so that the NHIN has a summary record of every patient’s
healthcare history. Part of our policy for NHIN is transcribed from the
policy for the Spine in [Bec05], which is based on the Output Based Spec-
ification Version 2.0 (OBS) [Nat03]. For completeness, we have written a
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NHIN policy for this case study. However, we chose to omit it from the
thesis because it is quite similar to the Spine policy i [Bec05], somewhat
similar to although simpler than our HCN policy, and does not motivate
or illustrate any additional features of our policy language or analysis algo-
rithm. Individual healthcare facilities maintain detailed health records for
their patients. We consider two representative facilities, a Substance Abuse
Facility getCleanSaf and a Hospital getWellHosp.

As mentioned earlier, Healthcare Network and NHIN interact with each
other to maintain an accurate record of patient healthcare history. To do
so safely, they maintain a trust relationship that requires signed credentials
from each side to prove the identity and attributes of the individual access-
ing the patient information. These credentials are issued by Registration
Authorities (RAs) who are trusted by both parties. The details of the pol-
icy rules controlling these interactions are similar to policy rules for trust
negotiation through registration authorities in [Bec05], so we omit these
from the thesis as well. However, note that the interactions between NHIN
and healthcare network motivated us to consider both organizations policies,
because they both pertain to patient information access.

The rest of the chapter is organized as follows. Section 3.2 covers part
of the Health Insurance and Portability and Accountability Act (HIPAA),
which dictates the legal use and disclosure of patient health information
in United States and is a motivating source for some of the policies in the
case study. Section 3.3 explains how Role-Based Access Control (RBAC) is
modeled in our framework, since part of the case study policy is role-based.
The remaining sections contain details of the healthcare network policy.

3.2 Patient Confidentiality Under Health Insur-
ance and Portability and Accountability Act
(HIPAA)

The purpose of the United States Health and Human Services (HHS) Privacy
Rule [Uni03] is to implement the requirements of HIPAA (1996). The Rule
addresses the use and disclosure of individuals’ health information, referred
to as “protected health information”, by organizations that are subject to
the rule, referred to as “covered entities”. One of the goals while framing the
Rule was to strike a balance that permits important uses of the information,
while protecting the privacy of people seeking health care.
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Covered Entities. Health plans, health care clearinghouses, and any
other health care provider who transmits health information in electronic
form in connection with transactions for which the Secretary to HHS has
adopted standards under HIPAA, is covered under the Rule. In our case
study, getWellHosp is a covered entity falling under the Privacy Rule def-
inition of health care provider, and the NHIN is a covered entity, falling
under the definition of health care clearinghouse as a community health in-
formation management system. Note that Registration Authorities are not
covered entities , because they do not process any individually identifiable
information and do not fall under the definition of a business associate.

Protected Health Information (PHI). As per [Uni03], “all indiviually
identifiable information held or transmitted by a covered entity or its busi-
ness associate, in any form or media, whether electronic, paper, or oral is
called protected health information (PHI)”. Individually identifiable health
information is patient information, including demographic data, that relates
to:

• the individual’s physical or mental health condition,

• the provision of health care to the individual, or

• payment for the provision of health care to the individual

• common identifiers such as name, address, birth date, Social Security
Number.

[Uni03] also defines De-Identified Health Information, which can be used
or disclosed without restrictions. It is health information that “neither iden-
tifies nor provides a reasonable basis to identify an individual”. Information
can be de-identified by the removal of the specified identifiers of the indi-
vidual and of the individual’s relatives, household members and employers.
Further details on de-identifying patient data are given under end note 15
of [Uni03]. Policy to release de-identified information to designated users in
Healthcare Network is covered under rules 3.5.32 and 3.5.33.

Permitted Uses and Disclosures. A covered entity may use or disclose
protected health information for the following (but not limited to) purposes
or situations:

1. To the individual who is the subject of the information. In our case
study, this policy has been enforced through rule 3.5.21, which allows
facility policy officers to grant access to patients to their record.
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2. For treatment, payment and health care operations. Generally, an
entity may disclose PHI to another entity for treatment operations if
both covered entities have or had a relationship with the individual
and the PHI pertains to the relationship. However, there are stricter
rules for some kinds of PHI. For example, most uses and disclosures
of psychotherapy notes for treatment and other health care operations
require the patient’s authorization, except when the covered entity is
the one that originated the notes and is using them for treatment (in
other words, the entity is currently treating the patient). We imple-
ment the second part of this policy in the NHIN policy, such as if
a patient health record item, requested by a clinician to read, is a
high confidentiality topic (such as, psychotherapy ) then the clinician
is allowed to read it only if he is both the author of the item and is
currently treating the subject patient at the organization recorded in
the item under this specialty.

3. With the individual’s consent. Therefore, the patient has the right
to authorize usage of his information. In this case study, we look
at one specific instance of this policy where the patient can grant
or revoke consent to treatment to/from appropriate clinicians making
them members of the treating clinician role for that patient, which
grants those clinicians access to some of the patient’s information (see
rules 3.5.5, 3.5.6, 3.5.7, 3.5.8, 3.5.11, 3.5.13).

4. As a special case, under the circumstances where the individual is
incapacitated (in an emergency situation), the Rule allows the covered
entity treating the individual to exercise its professional judgment in
releasing only the patient’s condition to people asking for it by patient
name. Health care personnel treating a patient in emergency may also
access patient’s PHI to obtain suitable contact information and grant
permission to view information about the patient’s condition to the
patient’s relatives. This last part of the policy is implemented in rules
3.5.23 and 3.5.24 in our healthcare network policy.

This list is not exhaustive. For example, a covered entity may also disclose
PHI under other circumstances, such as public interest and benefit activities.
Such situations are not considered in this case study.
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3.3 Representation of Role-Based Access Control

Role-based access control (RBAC) can be expressed in our framework. This
section describes how some features of RBAC are modeled in this case study.

Role Membership. Role membership is represented by the intensional
relation memberOf(User, Role). The extensional predicate
directMemberOf(User, Role) is the direct (i.e., not including inheritance)
user-role assignment. Therefore, the initial policy includes the following rule
which defines a user U as a memberOf a role R if U is a directMemberOf

R. This allows users to be directly assigned to a role by adding facts to
directMemberOf.

(3.3.1)

memberOf(User, Role) :- directMemberOf(User, Role)

Role Activation. A member of a role must activate the role to use the
permissions granted to that role [SCFY96a]. Traditionally, a role is activated
in the context of a particular session. Following [Bec05], we omit the concept
of sessions.

Activation of role Role for user User is expressed by adding the fact
hasActivated(User, Role) to the extensional relation hasActivated. Role
deactivation is expressed by removing the corresponding hasActivated fact.

A user can activate a role he is a member of and deactivated any activated
roles for himself.

(3.3.2)

permit(User, addFact(hasActivated(User, Role)))

:- memberOf(User, Role)

(3.3.3)

permit(User, removeFact(hasActivated(User, Role)))

:- hasActivated(User, Role)

3.4 Healthcare Network

The Healthcare Network is a representative case study of healthcare organi-
zations which are typically composed of several facilities sharing information
and operating under a larger organization-wide policy. We consider two spe-
cific facilities: getCleanSaf, and getWellHosp.
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The Network Policy Administrator decides the administrative policy for
all the facilities under the network. Each facility has its own Facility Policy
Officer who sets the policy for the facility, consistent with the administrative
policy set by the Network Policy Administrator.

3.4.1 Facilities

This section discusses the various facilities within the Network, and their
functions.

getCleanSafFacility

getCleanSaffacility treats patients substance abuse problems. This facil-
ity has only out-patients. Patients may undergo behavioral therapy and
pharmacological treatment. There are multiple teams within the facility,
each composed of psychiatrists, doctors and nurses. Each team may treat
multiple patients.

The access policy for patient records at this facility is stricter than the
policy at getWellHosp. Emphasis is on patient granting consent to treat-
ment to a user in order for that user to get access to more information about
the patient. Generally, only treating clinicians are granted privileges to per-
form operations that affect access to patient’s records, such as creating team
encounters.

getWellHosp

getWellHosp is a more diverse patient treatment facility. It has two kinds
of workgroups: teams and wards. A team may consist of clinicians, nurses,
and other employees of getWellHosp. getWellHosp also has multiple wards.
Each in-patient is associated with a ward. The members of a ward are
nurses, led by a head nurse. The administrative policy for getWellHosp is
less strict than for getCleanSaf. For example, at getWellHosp, all clinicians
can create patient encounters.

3.4.2 Patient Record

Records for patients of all facilities in the healthcare network are stored in
a single database. We refer to patient records at the healthcare network
level as local health records. A patient’s local health record consists of
a set of items of the form (ID, Patient, Author, Topic, HealthData,

Facility, EncounterID, Annotation), where :
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• ID is a unique identifier for the item

• Patient is the id of the patient whose record item it is

• Author is the id of the user who created the item

• Topic is the topic of the item

• HealthData is the detalied health information, possibly including symp-
toms, test results, diagnosis, prognosis, and treatment

• Facility is the facility where the patient was seen when this item was
created

• EncounterID is a unique identifier for the encounter, at Facility,
under which this item was created

• Annotation is a comment that can be added after the item was added
to the database to a patient record item. This field is typically used
by patients, agents of patients, or treating clinicians to add comments
to existing record items.

In a scalable implementation, these items are logically in the extensional
database of the policy, constituting the relation patientRecordItem stored
in a DBMS interfaced to the policy evaluation engine. Mature logic program-
ming systems such as XSB[XSB], support external storage of relations in
DBMS. Note that the HealthData field, which contains the largest amount
of data, would never need to be loaded into the policy evaluation engine,
because it is not used in the policy rules (it is mentioned but not used).
The EncounterID, together with the associated closedEncounters rela-
tion, described in section 3.5.5, is used to identify record items associated
with a currently running encounter. This is necessary to express policy
rule 3.5.23 in section 3.5.6. Record items are stored under the relation
patientRecordItem(ID, Author, Topic, HealthData, Facility,

EncounterID, Annotation). Items are added by adding facts to this rela-
tion.

3.5 Healthcare Network Policy

The Healthcare Network has a Network Policy Administrator (NPA) who
writes the initial policy for all the facilities. Note that policy initialization
is not itself controlled by any policy in the framework (this is a fundamental
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bootstrapping issue) and should be subject to other access controls and
auditing (a consequence of this is that it is preferable to keep the initial
policy small, and let the policy grow and evolve through administrative
operations permitted by the policy.). The initial policy grants privileges to
each Facility Policy Officer to modify the policy for his facility. This section
presents the initial policy written by the NPA for each facility. Some of
these rules apply to all facilities; some apply only to the specified facility.

3.5.1 Roles

There are network-wide roles that are common to all facilities within the
network. Some are parameterized by a Facility argument, indicating the
facility to which it applies. The patient role is the same for all facilities.
A user is a member of the patient role if he is a registered patient for the
network. The roles in the healthcare network policy are:

• patient

• policyOfficer(Facility) : role for policy officers at the specified
facility

• hrManager(Facility) : role for Human Resource Managers at the
specified facility. An HR Manager is responsible for creating work-
groups and appointing workgroup heads.

• clinician(Facility, Specialty) : role for clinicians with the spec-
ified specialty at the specified facility

• agent(Patient) : role for agents of the specified patient

• receptionist(Facility) : role for receptionists at the specified fa-
cility

• researcher(Facility) : role for researchers at the specified facility

• researchHead(Facility) : the head of research at the specified fa-
cility

• treatingClinician(Patient, Fac) : role for clinicians treating the
specified patient at the specified facility

• workgroup(Wkgp, Facility, Specialty, WkgpType) : a workgroup
is a collection of facility employees, of varying specialties, that work
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together on several patient encounters. Workgroup membership is rep-
resented by the membership in the workgroup role. A user is a mem-
ber of workgroup(Wkgp, Fac, Spcty, WkgpType) if he is a member
of the workgroup Wkgp at the facility Fac under specialty Spcty. The
WkgpType argument is included to provide the facilities with the flex-
ibility to further classify workgroups in to locally defined types. For
example, getWellHosp has two types of workgroups, team and ward.
A team may handle in-patients and out-patients, while a ward may
handle only in-patients. The policyOfficer(getWellHosp) may set
different policies for these two types of workgroups.

• workgroupHead(Wkgp, Facility) : role for the head of the work-
group Wkgp at facility Fac

The healthcare network allows patients to indicate their relatives. This
helps identify suitable emergency contacts. This information is captured in
the relation relative(Patient1, Patient2) implying that Patient1 listed
Patient2 as a relative. Alternatively, this property could be expressed using
a new role relative(Patient). We chose to define it as a relation, because
such a role would not need to be activated, and with such limited power
it is simpler to express it as a relation. Also, note that relative is not
necessarily a symmetric relation.

Statically Mutually Exclusive Roles (SMER) Constraints. Although
we do not use SMER constraints in this case study, they can easily be ex-
pressed in ACAR. For example, if it is required that the hrManager(Facility)
and clinician(Facility, Spcty) be statically mutually exclusive, then
this can be achieved by enforcing this premise in the addFact permission
rule for assigning a user as a direct member of these roles. This role as-
signment would be performed by a member of the hrManager(Facility)

role:

permit(HR, addFact(directMemberOf(Cli, clinician(Facility, Spcty))))

:- memberOf(HR, hrManager(Facility)),

! directMemberOf(Cli, hrManager(Facility))

permit(User, addFact(directMemberOf(HR’, hrManager(Facility))))

:- memberOf(User, hrManager(Facility)),

! directMemberOf(HR’, clinician(Facility, ))
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3.5.2 Workgroup Management Policy

As described in section 3.5.1, each facility has workgroups, which are col-
lections of facility employees that work together on patient encounters. The
network policy administrator specifies administrative policy for creation and
management of workgroups, allowing facility policy officers to add rules for
assigning users to workgroups and to appoint workgroup heads. This gives
the facility policy officer flexibility to specialize the rules (e.g., with ad-
ditional premises, representing requirements specific to the facility) when
adding them.

A policyOfficer may add rules that grant the hrManager permission
to appoint workgroup heads (3.5.1) and assign users to workgroups (3.5.2)
for his facility, while including the premise that the hrManager himself is
not a member of that workgroup. Such a permission is not granted directly
in the administrative policy, by the network policy administrator, so that
the policyOfficer can specialize it for specific workgroup types.

(3.5.1)

permit(User, addRule(

permit(HRM,

addFact(directMemberOf(Head,

workgroupHead(Wkgp, Fac))))

:- memberOf(HRM, hrManager(Fac)),

! directMemberOf(

HRM,

workgroup(Wkgp, Fac, Spcty, WkgpType)),

memberOf(Head,

workgroup(Wkgp, Fac, Spcty, WkgpType))))

:- hasActivated(User, policyOfficer(Fac))

(3.5.2)

permit(User, addRule(

permit(HRM,

addFact(directMemberOf(

Cli,

workgroup(Wkgp, Fac, Spcty,

WkgpType))))

:- memberOf(HRM, hrManager(Fac))))

:- hasActivated(User, policyOfficer(Fac))

A policyOfficer may appoint an HR manager for his facility. This is
done by assigning the role hrManager(Fac) to the user.
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(3.5.3)

permit(User, addFact(directMemberOf(HRM, hrManager(Fac)))

:- hasActivated(User, policyOfficer(Fac))

A policyOfficer may add rules that allow a workgroup head to assign
users to his workgroup.

(3.5.4)

permit(User, addRule(

permit(Head,

addFact(

directMemberOf(User’, workgroup(Wkgp,

Fac, Spcty,

WkgpType))))

:- memberOf(Head, workgroupHead(Wkgp, Fac)))

:- hasActivated(User, policyOfficer(Fac))

3.5.3 Consent To Treatment Policy

Patients, and certain designated users, may grant clinicians consent to treat
the patient. This is represented by the relation consentToTreatment(Pat,

Cli, Fac), which means that clinician Cli has consent to treat patient Pat
at facility Fac.

getCleanSaf Consent To Treatment Policy

At getCleanSaf, consent to treatment can be granted only by the patient
himself. policyOfficer(getCleanSaf) can add rules allowing patients to
add consentToTreatment (Pat, Cli, getCleanSaf) facts. Note that the
facility argument has been instantiated with getCleanSaf, which ensures
that the patient does not accidentally grant consent outside of the facility.

(3.5.5)

permit(User,

addRule(

permit(Pat,

addFact(consentToTreatment(Pat, Cli,

getCleanSaf)))

:- hasActivated(Pat, patient)))

:- hasActivated(User, policyOfficer(getCleanSaf))

Correspondingly, policyOfficer(getCleanSaf) may add rules allowing
patients to revoke consent to treatment.
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(3.5.6)

permit(User,

addRule(

permit(Pat,

removeFact(consentToTreatment(Pat, Cli,

getCleanSaf)))

:- hasActivated(Pat, patient)))

:- hasActivated(User, policyOfficer(getCleanSaf))

getWellHosp Consent To Treatment Policy

At getWellHosp, consent the treatment may be granted in a variety of
ways. The patient may grant consent to treatment, as at getCleanSaf. In
addition, an agent of the patient can grant the consent.

policyOfficer(getWellHosp) can add rules that allow patients to grant
and revoke consent to treatment to clinicians at getWellHosp.

(3.5.7)

permit(User,

addRule(

permit(Pat,

addFact(consentToTreatment(Pat, Cli, getWellHosp)))

:- hasActivated(Pat, patient)))

:- hasActivated(User, policyOfficer(getWellHosp))

(3.5.8)

permit(User,

addRule(

permit(Pat,

removeFact(consentToTreatment(Pat, Cli, getWellHosp)))

:- hasActivated(Pat, patient)))

:- hasActivated(User, policyOfficer(getWellHosp))

policyOfficer(getWellHosp) can add rules that allow patient’s agents
to grant and revoke consent to treatment to clinicians at getWellHosp.

(3.5.9)

permit(User,

addRule(

permit(Ag,

addFact(consentToTreatment(Pat, Cli, getWellHosp)))

:- hasActivated(Ag, agent(Pat))))

:- hasActivated(User, policyOfficer(getWellHosp))
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(3.5.10)

permit(User,

addRule(

permit(Ag,

removeFact(consentToTreatment(Pat, Cli, getWellHosp)))

:- hasActivated(Ag, agent(Pat))))

:- hasActivated(User, policyOfficer(getWellHosp))

getWellHosp’s policy for registering agents appears in Section 3.5.7.

3.5.4 Treating Clinician Policy

The fact that a clinician is treating a patient is represented by making that
clinician a member of an appropriate instance of the treatingClinician

role. Specifically, memberOf(Cli, treatingClinician(Pat, Fac, Spcty))

means that the clinician Cli is a treating clinician for patient Pat at facil-
ity Fac under specialty Spcty. This information is used in inferring access
control permissions to patient record, as detailed in Section 3.5.6. Differ-
ent facilities have different definitions for this relation, as described below.
Thus, there are different administrative policy rules for how a facility policy
officer may define membership in the treatingClinician role.1

getCleanSaf Treating Clinician Policy

At getCleanSaf, a clinician may be a treatingClinician for a patient if
he has been given consent to treatment for that patient. The facility policy
officer may, therefore, add policy rules defining this relation provided they
include the consentToTreatment premise.

(3.5.11)

permit(User,

addRule(

memberOf(Cli, treatingClinician(Pat, getCleanSaf))

:- consentToTreatment(Pat, Cli, getCleanSaf)))

:- hasActivated(User, policyOfficer(getCleanSaf))

getWellHosp Treating Clinician Policy

At getWellHosp, a clinician may be considered a treating clinician for a pa-
tient if he has activated the clinician role and is a member of a workgroup

1The treating clinician policy presented in this section is the same as presented earlier
in the example in Section 2.1
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which is assigned an encounter for that patient. The encounter creation pol-
icy for getWellHosp is presented in section 3.5.15. A patient encounter is
represented by the relation encounter(EncID, Pat, Wkgp, Fac, Type),
which means that there is an encounter identified by EncID of treatment
type Type for patient Pat being handled by the workgroup Wkgp at facility
Fac.

policyOfficer(getWellHosp) may add rules defining membership in
the role treatingClinician(Pat, getWellHosp) provided they include
the two premises described above.

(3.5.12)

permit(User,

addRule(

memberOf(Cli, treatingClinician(Pat, getWellHosp))

:- hasActivated(Cli, clinician(getWellHosp, Spcty)),

memberOf(Cli workgroup(Wkgp, getWellHosp, Spcty, WkgpType)),

encounter(EncID, Pat, Wkgp, getWellHosp, Type)))

:- hasActivated(User, policyOfficer(getWellHosp))

Also, policyOfficer(getWellHosp) may add rules that allow clinician
who has explicit consent to treat the patient at getWellHospto be a treating
clinician for the patient.

(3.5.13)

permit(User,

addRule(

memberOf(Cli, treatingClinician(Pat, getWellHosp))

:- consentToTreatment(Pat, Cli, getWellHosp)))

:- hasActivated(User, policyOfficer(getWellHosp))

3.5.5 Encounter Administrative Policy

When a patient arrives at a facility, a workgroup is assigned to treat the
patient by creating an encounter involving the patient and the workgroup.
An encounter is created by adding a fact encounter(EncID, Pat, Wkgp,

Facility, Type), thereby assigning Wkgp at Facility to treat patient Pat
under treatment type Type. Treatment type indicates the type of treatment
procedure being conducted under the encounter. Examples of treatment
types are mri, xray, surgery, and so on. EncID is a unique identifier that ids
an encounter at a facility. The relation closedEncounters(EncID) records
the closed encounters. Both encounter and closedEncounters are add-
only extensional relations. This is in accordance with the design of most
medical record systems, where information is added and never deleted.
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The rest of this section covers the administrative policy for creating
encounters at each facility and closing completed encounters.

getCleanSaf Encounter Administrative Policy

At getCleanSaf, only treating clinicians are permitted to create encoun-
ters for the patients they are treating. Thus, the policyOfficer for this
facility is required to include treatingClinician role membership as a
premise in the addRule permission rules for adding encounter facts. Since
membership in treatingClinician role for getCleanSafis inferred from
consentToTreatment (as per rule 3.5.11), this gives the patient more con-
trol over who can create encounters for them at the facility.

(3.5.14)

permit(User,

addRule(

permit(Cli,

addFact(encounter(EncID, Pat, Wkgp,

getCleanSaf, Type)))

:- memberOf(Cli,

treatingClinician(Pat, getCleanSaf))))

:- hasActivated(User, policyOfficer(getCleanSaf))

policyOfficer(getCleanSaf) may allow clinicians at getCleanSaf to
close an encounter. An encounter is closed by adding a fact to the
closedEncounters relation.

(3.5.15)

permit(User,

addRule(

permit(Cli,

addFact(closedEncounters(EncID)))

:- hasActivated(Cli, clinician(getCleanSaf, Spcty)),

encounter(EncID, Pat, Wkgp, getCleanSaf, Type)))

:- hasActivated(User, policyOfficer(getCleanSaf))

getWellHosp Encounter Administrative Policy

At getWellHosp, all clinicians are allowed to create encounters for patients
being treated at the facility. The reason for allowing only clinicians, not
other staff (for example, receptionists), to create encounters is to ensure
that an appropriate type of encounter, with an appropriate workgroup, is
created, based on the patient’s symptoms. Broadly speaking, creating an
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encounter gives the workgroup handling the encounter, access to some of
the items in the patient’s record.

The policyOfficer(getWellHosp) can add rules allowing addition of
encounter facts, provided the rules include the premise that the user adding
the fact has activated the clinician(getWellHosp) role.

(3.5.16)

permit(User,

addRule(

permit(Cli,

addFact(encounter(EncID, Pat, Wkgp, getWellHosp, Type)))

:- hasActivated(Cli, clinician(getWellHosp, Spcty)))

:- hasActivated(User, policyOfficer(getWellHosp))

policyOfficer(getWellHosp) may allow any clinician at getWellHosp
to close an encounter.

(3.5.17)

permit(User,

addRule(

permit(Cli, addFact(closedEncounters(EncID)))

:- hasActivated(Cli, clinician(getWellHosp, Spcty)),

encounter(EncID, Pat, Wkgp, getWellHosp, Type)))

:- hasActivated(User, policyOfficer(getWellHosp))

3.5.6 Patient Record Access Policy

The network’s administrative policy that allows facility policy officer to add
rules that grant access to patient records is the same for all facilities, so we
use a variable Fac to represent the facility in the rules below.

Record items are stored under the relation patientRecordItem(ID,

Author, Topic, HealthData, Facility, EncounterID, Annotation).
Items are added by adding facts to this relation. Items are added when a
clinician is treating a patient under an encounter.

policyOfficer can allow clinicians treating patients at their facility to
add new items for the treated patients if the associated encounter is not
closed.

(3.5.18)

permit(User,

addRule(

permit(Cli,

addFact(patientRecordItem(ID, Pat, Cli, Spcty,

HealthData, Fac,
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EncID, Anno)))

:- treatingClinician(Cli, Pat, Fact),

hasActivated(Cli, clinician(Fac, Spcty)),

!(closedEncounters(EncID)),

encounter(EncID, Pat, Wkgp, Fac),

memberOf(Cli, workgroup(Wkgp, Fac, Spcty, WkgpType))))

:- hasActivated(User, policyOfficer(Fac))

A patient record item is accessed by invoking the function
getRecordItemById(Id), where Id is the identifier for the item. The policyOfficer
can allow a clinician to access a record item if one of the following conditions
hold:

• the clinician is a treating clinician for the patient and has activated
the clinician role with the specialty which matches the topic of the
item (so that they have access only to information that is relevant to
their expertise):

(3.5.19)

permit(User,

addRule(

permit(Cli, getRecordItemById(Id))

:- hasActivated(Cli, clinician(Fac, Spcty)),

memberOf(Cli, treatingClinician(Pat, Fac)),

patientRecordItem(Id, Pat, Author, Spcty,

HealthData, Fac,

EncID, Annotation)))

:- hasActivated(User, policyOfficer(Fac))

• the clinician has activated the clinician role and is the author of the
item. This policy allows clinicians to access items they authored, even
if they are no longer treating the patient:

(3.5.20)

permit(User,

addRule(

permit(Cli, getRecordItemById(Id))

:- hasActivated(Cli, clinician(Fac, Spcty)),

patientRecordItem(Id, Pat, Cli, Spcty,

HealthData, Fac,

EncID, Annotation)))

:- hasActivated(User, policyOfficer(Fac))

policyOfficer may add rules allowing patients (3.5.21) and their agents
(3.5.22) to access the patient’s record items.
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(3.5.21)

permit(User,

addRule(

permit(Pat, getRecordItemById(Id))

:- hasActivated(Pat, patient),

patientRecordItem(Id, Pat, Cli, Spcty,

HealthData, Fac,

EncID, Annotation)))

:- hasActivated(User, policyOfficer(Fac))

(3.5.22)

permit(User,

addRule(

permit(Ag, getRecordItemById(Id))

:- hasActivated(Ag, agent(Pat)),

patientRecordItem(Id, Pat, Cli, Spcty,

HealthData, Fac,

EncID, Annotation)))

:- hasActivated(User, policyOfficer(Fac))

The Privacy Rule [Uni03] specifies that in case of an emergency, the cov-
ered entity treating the patient may release patient health information to
relatives listed by the patient in the facility directory. Under our interpre-
tation of this rule, this is achieved by adding the fact
releaseToRelatives(Id), which enables release of the health data un-
der the item with identifier Id, but only if Id is an item created under
a current encounter. The relatives can access the health data by invoking
getHealthData(Id) method. The policyOfficer may add rules allowing
users to add releaseToRelatives facts (3.5.23) and rules granting access
to relatives for released items (3.5.24)..

(3.5.23)

permit(User,

addRule(

permit(U, addFact(releaseToRelatives(Id)))

:- patientRecordItem(Id, Pat, Cli, emergency,

HealthData, Fac,

EncID, Annotation)))

:- hasActivated(User, policyOfficer(Fac))

(3.5.24)

permit(User,
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addRule(

permit(Rel, getHealthData(Id))

:- patientRecordItem(Id, Pat, Cli, emergency,

HealthData, Fac,

EncID, Annotation),

relative(Pat, Rel),

releaseToRelatives(Id)))

:- hasActivated(User, policyOfficer(Fac))

3.5.7 Registration and Appointment of Users

This section presents the policy for patient and agent registrations and clin-
ician appointments. The rules apply to all facilities.

Patient Registration: Patients are registered at a healthcare network by
a receptionist at a facility. Note that there is only one unique registration
for the patient for the entire network. A precondition for patient registration
is that the patient should be a member of patient at NHIN.

(3.5.25)

permit(Rec, addFact(directMemberOf(Pat, patient)))

:- hasActivated(Rec, receptionist),

nhin issues memberOf(Pat, patient)

Agent Registration: Patients can appoint and remove agents for them-
selves. In [Bec05] Caldicott Guardians can also register agents at local
healthcare facilities. For brevity, we omit Caldicott Guardians from our
case study.

(3.5.26)

permit(Pat, addFact(directMemberOf(Ag, agent(Pat))))

:- memberOf(Pat, patient)

(3.5.27)

permit(Pat, removeFact(directMemberOf(Ag, agent(Pat))))

:- memberOf(Pat, patient)

A user who is an agent for a patient at NHIN is automatically a member of
agent for that patient at the healthcare network.

(3.5.28)

memberOf(Ag, agent(Pat))

:- nhin issues memberOf(Ag, agent(Pat))
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Clinician and Other Employee Registration: All employees at a fa-
cility are appointed by hrManager. We present a few specific cases here:
clinician (3.5.29), receptionist (3.5.30) and researchHead (3.5.31). The
network policy administrator allows the facility policy officer to add rules
allowing members of hrManager role to appoint employees, because there
might be additional restrictions local to the facility that the facility policy
officer should impose. For example, for appointing clinicians, the network-
wide policy allows clinicians that are federally certified to be appointed.
However, the facility policy officer might need to add state-level certifica-
tion requirements that are defined under the facility’s policy and not under
the network policy. These rules were used in chapter 2 to illustrate the
policy language.

(3.5.29)

permit(User,

addRule(

permit(HR,

addFact(directMemberOf(Cli,

clinician(Facility, Spcty))))

:- memberOf(HR, hrManager(Facility)),

federalCertifiedClinician(Cli)))

:- hasActivated(User, policyOfficer(Facility))

(3.5.30)

permit(User,

addRule(

permit(HR,

addFact(directMemberOf(Cli,

receptionist(Facility))))

:- memberOf(HR, hrManager(Facility))))

:- hasActivated(User, policyOfficer(Facility))

(3.5.31)

permit(User,

addRule(

permit(HR,

addFact(directMemberOf(Cli,

researchHead(Facility))))

:- memberOf(HR, hrManager(Facility))))

:- hasActivated(User, policyOfficer(Facility))
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3.5.8 Access to De-identified Patient Information

Researchers can read de-identified information (information that does not
identify the individual it belongs to) through the readDeidentified(Query)
operation. It takes as argument a query to select aggregate information on
the record items. The current version of our policy does not explore the
details of this argument, but a more detailed policy might allow different
queries for different researchers. Permission to invoke this function, at each
facility, is granted by policyOfficer to users belonging to researcher role:

(3.5.32)

permit(User, addRule(permit(Res, readDeidentified(Query))

:- hasActivated(Res, researcher(Fac))))

:- hasActivated(User, policyOfficer(Fac))

A researchHead for a facility can assign users to the researcher role:

(3.5.33)

permit(RH, addFact(directMemberOf(Res, researcher(Fac))))

:- hasActivated(RH, researchHead(Fac))

3.6 getCleanSaf Policy

getCleanSafpolicy consists of the initial policy written by the network pol-
icy adminstrator and presented in section 3.5, plus rules added by
policyOfficer(getCleanSaf) and presented in detail in this section, after
the following overview.

The added policy rules for consentToTreatment, treatingClinician
and encounter creation are the same as the patterns in the administrative
policy rules in section 3.5 with Facility instantiated with getCleanSaf,
since no additional premises are required. However, for access to patient
record items, only clinicians who are treating clinicians under the same spe-
cialty as the topic of the items may access them. policyOfficer(
getCleanSaf) adds this rule under administrative rule 3.5.19.
policyOfficer(getCleanSaf) does not add any rules using administrative
rule 3.5.20, to ensure that if the clinician is not a current treating clini-
cian, then he cannot access patient record items, regardless of whether he
authored those items.
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Workgroup Management: getCleanSafhas teams as the sole type of
workgroups. These teams are managed by the hrManager(getCleanSaf)

consistent with the policy written by policyOfficer(getCleanSaf).
The hrManager(getCleanSaf) may appoint a workgroup head from clin-

icians who are members of the workgroup under the specialty psychiatry.

(3.6.1 ; added by policyOfficer(getCleanSaf) via 3.5.1)

permit(HR,

addFact(directMemberOf(Head,

workgroupHead(Wkgp,

getCleanSaf))))

:- memberOf(HR, hrManager(getCleanSaf)),

memberOf(Head, workgroup(Wkgp, getCleanSaf,

psychiatry, team))

The hrManager(getCleanSaf) may assign users to be members of teams.
Clinicians with specialty pharmacology (3.6.2), nursing (3.6.3), or psychiatry
(3.6.4) are allowed on the teams.

(3.6.2 ; added by policyOfficer(getCleanSaf) via 3.5.2)

permit(HR,

addFact(directMemberOf(Cli,

workgroup(Wkgp,

getCleanSaf,

pharmacology, team))))

:- memberOf(HR, hrManager(getCleanSaf))

(3.6.3 ; added by policyOfficer(getCleanSaf) via 3.5.2)

permit(HR,

addFact(directMemberOf(Cli,

workgroup(Wkgp,

getCleanSaf,

nursing, team))))

:- memberOf(HR, hrManager(getCleanSaf))

(3.6.4 ; added by policyOfficer(getCleanSaf) via 3.5.2)

permit(HR,

addFact(directMemberOf(Cli,

workgroup(Wkgp,

getCleanSaf,

psychiatry, team))))

:- memberOf(HR, hrManager(getCleanSaf))
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A workgroup head may also assign clinicians as members of his team,
if the clinicians have one of the specialties: pharmacology (3.6.5), nursing
(3.6.6), or psychiatry (3.6.7).

(3.6.5 ; added by policyOfficer(getCleanSaf) via 3.5.4)

permit(Head,

addFact(directMemberOf(Cli,

workgroup(Wkgp,

getCleanSaf,

pharmacology, team))))

:- memberOf(Head, workgroupHead(Wkgp, getCleanSaf))

(3.6.6 ; added by policyOfficer(getCleanSaf) via 3.5.4)

permit(Head,

addFact(directMemberOf(Cli,

workgroup(Wkgp,

getCleanSaf,

nursing, team))))

:- memberOf(Head, workgroupHead(Wkgp, getCleanSaf))

(3.6.7 ; added by policyOfficer(getCleanSaf) via 3.5.4)

permit(Head,

addFact(directMemberOf(Cli,

workgroup(Wkgp,

getCleanSaf,

psychiatry, team))))

:- memberOf(Head, workgroupHead(Wkgp, getCleanSaf))

Consent To Treatment: A patient may grant consent to treatment to a
clinician for getCleanSaf.

(3.6.8 ; added by policyOfficer(getCleanSaf) via 3.5.5)

permit(Pat,

addFact(consentToTreatment(Pat, Cli,

getCleanSaf)))

:- hasActivated(Pat, patient)

Treating Clinician: A clinician is a treating clinician for a patient at
getCleanSafif he has been granted consent to treatment for that patient.

(3.6.9 ; added by policyOfficer(getCleanSaf) via 3.5.11)

memberOf(Cli, treatingClinician(Pat, getCleanSaf))

:- consentToTreatment(Pat, Cli, getCleanSaf)
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Encounter Creation: A clinician may create an encounter for a patient
at getCleanSafif he is a treating clinician for that patient and there is no
existing encounter with the same encounter ID.

(3.6.10 ; added by policyOfficer(getCleanSaf) via 3.5.14)

permit(Cli,

addFact(encounter(EncID, Pat, Wkgp,

getCleanSaf, Type)))

:- memberOf(Cli, treatingClinician(Pat, getCleanSaf)),

! encounter(EncID, , , , )

Closing Encounters: Workgroup heads may close encounters involving
workgroup that they head.

(3.6.11 ; added by policyOfficer(getCleanSaf) via 3.5.15)

permit(Head, addFact(closedEncounters(EncID)))

:- hasActivated(Head, clinician(getCleanSaf, Spcty)),

encounter(EncID, Pat, Wkgp, getCleanSaf, Type),

memberOf(Head, workgroupHead(Wkgp, getCleanSaf))

Patient Record Access: Only the clinicians who are treating the patient
may obtain record items, whose topic matches their active specialty, for that
patient.

(3.6.12 ; added by policyOfficer(getCleanSaf) via 3.5.19)

permit(Cli, getRecordItemById(Id))

:- hasActivated(Cli, clinician(Fac, Spcty)),

memberOf(Cli, treatingClinician(Pat, Fac)),

patientRecordItem(Id, Pat, Author, Spcty,

HealthData, Fac, EncID, Annotation)

Only clinicians treating the patient under the specialty emergency may
release emergency healthdata items to relatives. This is done by adding
releaseToRelatives facts. Further, to ensure that information about past
emergency encounters is not released, policyOfficer(getCleanSaf) adds
an additional premise that the associated encounter is not closed.

(3.6.13 ; added by policyOfficer(getCleanSaf) via 3.5.23)

permit(Cli, addFact(releaseToRelatives(Id)))

:- patientRecordItem(Id, Pat, Cli, emergency, HealthData,

getCleanSaf, EncID,

Annotation),

memberOf(Cli, treatingClinician(Pat, getCleanSaf)),

!(closedEncounters(EncID)),
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encounter(EncID, Pat, Wkgp, getCleanSaf, emergency),

memberOf(Cli, workgroup(Wkgp, getCleanSaf,

emergency, WkgpType))

policyOfficer also adds a rule allowing relatives to invoke the
getHealthData operation on a patient’s record items which have been re-
leased.

(3.6.14 ; added by policyOfficer(getCleanSaf) via 3.5.24)

permit(Rel, getHealthData(Id))

:- patientRecordItem(Id, Pat, Cli, ‘A-and-E’, HealthData,

getCleanSaf, EncID,

Annotation),

relative(Pat, Rel),

releaseToRelatives(Id)

3.7 getWellHosp Policy

getWellHosppolicy consists of the initial policy written by the network pol-
icy administrator and presented in section 3.5, plus rules added by
policyOfficer(getWellHosp) and, presented in detail in this section after
the following overview.

The added policy rules for consentToTreatment, treatingClinician
and patient record access are the same as the patterns in the administrative
policy rules in section 3.5 with Facility instantiated with getWellHosp.
For encounter creation, policyOfficer(getWellHosp) adds two rules which
distinguish between encounters created for workgroups of type team and an-
other rule for creation of encounters for workgroups of type ward. Depend-
ing on the type of the workgroup, policyOfficer(getWellHosp) imposes
additional premises on who can create an encounter.

Workgroup Management: As mentioned in section 3.5.2, getWellHosp
has two types of workgroups: wards and teams. While a team consists of
clinicians of varying specialties, a ward consists of clinicians working under
the specialty nursing in that ward. hrManager(getWellHosp) appoints
heads for both teams and wards, and may appoint members for these work-
groups, as well. Additionally, team heads may appoint members for their
team. Ward heads are not allowed to appoint members for their ward,
because wards are typically set up by getWellHosp’s human resource ad-
ministration, represented in our policy by the HR manager.
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A member of the role hrManager(getWellHosp) may appoint heads of
workgroups from amongst the clinicians working at getWellHosp.

(3.7.1 ; added by policyOfficer(getWellHosp) via 3.5.1)

permit(HR,

addFact(directMemberOf(Head, workgroupHead(Wkgp, getWellHosp))))

:- memberOf(HR, hrManager(getWellHosp)),

memberOf(Head, clinician(getWellHosp, Spcty)),

memberOf(Head, workgroup(Wkgp, getWellHosp, Spcty, WkgpType))

The hrManager(getWellHosp) may assign getWellHosp clinicians to
workgroups, under a specialty that the clinician possesses. The workgroup
can be a team or ward.

(3.7.2 ; added by policyOfficer(getWellHosp) via 3.5.2)

permit(HR,

addFact(directMemberOf(Cli, workgroup(Wkgp, getWellHosp, Spcty,

WkgpType))))

:- memberOf(HR, hrManager(getWellHosp)),

memberOf(Cli, clinician(getWellHosp, Spcty))

For workgroups of type team, the workgroup head may assign getWellHosp

clinicians to the team he is heading, under a specialty that the clinician pos-
sesses.

(3.7.3 ; added by policyOfficer(getWellHosp) via 3.5.4)

permit(Head,

addFact(directMemberOf(Cli, workgroup(Wkgp, getWellHosp, Spcty,

team))))

:- workgroupHead(Head, Wkgp, team),

memberOf(Cli, clinician(getWellHosp, Spcty))

Consent To Treatment: A patient can grant consent to treatment for
himself to a clinician at getWellHosp.

(3.7.4 ; added by policyOfficer(getWellHosp) via 3.5.7)

permit(Pat, addFact(consentToTreatment(Pat, Cli, getWellHosp)))

:- hasActivated(Pat, patient)

An agent for a patient can also grant consent to treatment for that
patient to a clinician at getWellHosp.

(3.7.5 ; added by policyOfficer(getWellHosp) via 3.5.9)

permit(Ag, addFact(consentToTreatment(Pat, Cli, getWellHosp)))

:- hasActivated(Ag, agent(Pat))

42



Treating Clinician: A clinician is a treating clinician at getWellHospfor
a patient if his clinician role is active with a specialty under which he is a
member of a workgroup (at getWellHosp) which is handling an encounter
for that patient.

(3.7.6 ; added by policyOfficer(getWellHosp) via 3.5.12)

memberOf(Cli, treatingClinician(Pat, getWellHosp))

:- hasActivated(Cli, clinician(getWellHosp, Spcty)),

memberOf(Cli, workgroup(Wkgp, getWellHosp, Spcty, WkgpType)),

encounter(EncID, Pat, Wkgp, getWellHosp, Type),

! closedEncounters(EncID)

Encounter Creation: For workgroups of type team, any team member
may create a getWellHospencounter for a patient if they have the consent
to treat that patient, and associate it with their team, if there is no existing
encounter with the same encounter ID.

(3.7.7 ; added by policyOfficer(getWellHosp) via 3.5.16)

permit(Cli, addFact(encounter(EncID, Pat, Team, getWellHosp, Type)))

:- hasActivated(Cli, clinician(getWellHosp, Spcty)),

memberOf(Cli, workgroup(Team, getWellHosp, Spcty, team))

consentToTreatment(Pat, Cli, getWellHosp),

! encounter(EncID, , , , )

For wards, only the head of a ward may create encounters involving the
ward.

(3.7.8 ; added by policyOfficer(getWellHosp) via 3.5.16)

permit(Cli, addFact(encounter(EncID, Pat, Ward, getWellHosp, Type)))

:- hasActivated(Cli, clinician(getWellHosp, Spcty)),

memberOf(Cli, workgroupHead(Ward, getWellHosp)),

memberOf(Cli, workgroup(Ward, getWellHosp, Spcty, ward)),

! encounter(EncID, , , , )

Closing Encounters: Workgroup heads may close encounters involving
the workgroup that they head.

(3.7.9 ; added by policyOfficer(getWellHosp) via 3.5.17)

permit(Head, addFact(closedEncounters(EncID)))

:- hasActivated(Head, clinician(getWellHosp, Spcty)),

encounter(EncID, Pat, Wkgp, getWellHosp, Type),

memberOf(Head, workgroupHead(Wkgp, getWellHosp))
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Patient Record Access: A treating clinician for a patient may obtain a
record item of that patient if the clinician has activated the clinician role
with the specialty that matches the topic of the item.

(3.7.10 ; added by policyOfficer(getWellHosp) via 3.5.19)

permit(Cli, getRecordItemById(Id))

:- hasActivated(Cli, clinician(getWellHosp, Spcty)),

memberOf(Cli, treatingClinician(Pat, getWellHosp)),

patientRecordItem(Id, Pat, Author, Spcty, HealthData, getWellHosp,

EncID, Annotation)

A clinician may obtain a patient’s getWellHosprecord item if he is the
author of that item and has activated the clinician role with the specialty
matching the topic of the item.

(3.7.11 ; added by policyOfficer(getWellHosp) via 3.5.20)

permit(Cli, getRecordItemById(Id))

:- hasActivated(Cli, clinician(getWellHosp, Spcty)),

patientRecordItem(Id, Pat, Cli, Spcty, HealthData, getWellHosp,

EncID, Annotation)

getWellHosppolicy for releasing information about emergency encoun-
ters to relatives is the same as the getCleanSaf’s policy on the matter.

(3.7.12 ; added by policyOfficer(getWellHosp) via 3.5.23)

permit(Cli, addFact(releaseToRelatives(Id)))

:- patientRecordItem(Id, Pat, Cli, ‘A-and-E’, HealthData, getWellHosp,

EncID, Annotation),

memberOf(Cli, treatingClinician(Pat, getWellHosp)),

!(closedEncounters(EncID)),

encounter(EncID, Pat, Wkgp, getWellHosp, emergency),

memberOf(Cli, workgroup(Wkgp, getWellHosp, ‘A-and-E’, WkgpType))

(3.7.13 ; added by policyOfficer(getWellHosp) via 3.5.24)

permit(Rel, getHealthData(Id))

:- patientRecordItem(Id, Pat, Cli, ‘A-and-E’, HealthData, getWellHosp,

EncID, Annotation),

relative(Pat, Rel),

releaseToRelatives(Id)
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Chapter 4

Abductive Analysis of
Administrative Policies in
Rule-based Access Control

The policy language ACAR described in chapter 2 allows administrative
policies to be expressed concisely and at a desirable level of abstraction
compared to ARBAC. However, fully understanding the implications of a
rule-based administrative policy in ACAR is even more difficult than fully
understanding the implications of an ARBAC policy, because in addition
to considering interactions between interleaved sequences of changes by dif-
ferent administrators, one must consider possible chains of inferences using
rules in each intermediate policy. This chapter presents a symbolic analysis
algorithm for answering abductive atom-reachability queries for ACAR poli-
cies, i.e. for determining whether changes by a specified administrators can
lead to a policy in which some instance of a specified atom, called the goal,
is derivable. As discussed in chapter 1, abductive analysis means that the
algorithm does not require complete information about facts in the initial
policy; rather, the algorithm computes minimal set of facts that, if present
in the initial policy, imply reachability of the goal.

4.1 Background on Abduction

Philosopher Charles Peirce first introduced the notion of abduction. [KKT92]
defines abduction as the “probational adoption of a hypothesis” as expla-
nation for observed facts (results), according to known laws. Abduction is
widely used in common-sense reasoning, for instance in diagnosis, to reason
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from effect to cause [CM86, CW89]. Following is an example of abduc-
tive reasoning presented in [KKT92] and drawn from [Pea87]. Consider the
following theory T

grassIsWet← rainedLastNight

grassIsWet← sprinklerWasOn

shoesAreWet← grassIsWet.

If we observe that shoes are wet, and we want to know why this is so,
rainedLastNight is a possible explanation, that is, a set of hypotheses,
that together with the known laws in T implies the given observation.
sprinklerWasOn is another explanation.

Abduction in logic is defined as follows in [KKT92].
Given a set of rules and facts T (a theory presentation), and a fact G

(observation), to a first approximation, the abductive task can be charac-
terized as the problem of finding a set of facts ∆ (abductive explanation for
G) such that:

(1) T ∪∆ ` G,

(2) T ∪∆ is consistent.

This characterization of abduction is independent of the language in which
T , G and ∆ are formulated. A set of rules and facts S is consistent if for
any fact f , S ` f ⇒ S 6` !f . Note that with this unrestricted definition of
∆ we may get results which simply explain one effect in terms of another
effect. If we want to convey the result in terms of the “cause” of the effect,
some restrictions need to be imposed on ∆. Therefore, explanations are
often restricted to belong to a special pre-specified domain-specific class of
sentences called abducibles. We represent the abducibles as A. A set of
ground facts ∆ is abducible if it conforms to the set of facts represented
by A. We explain the specification of abducible atoms A in more detail in
section 4.2.

4.2 Abductive Reachability

This section defines abductive atom-reachability queries and their solutions.
Let a and b denote atoms, L denote a literal, and ~L denote a sequence of

literals. An atom a is subsumed by an atom b, denoted a � b, iff there exists
a substitution θ such that a = bθ. Recall from section 2.2 that the policy
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language, and hence the set of possible substitutions θ, is parameterized by
the set of constructors, and that in examples, we take that set of constructors
to be the set of constructors that appear in the given problem instance. For
an atom a and a set A of atoms, let [[a]] = {a′ | a′ � a} and [[A]] =

⋃
a∈A [[a]].

A specification of abducible atoms is a pair A = 〈Ab,nAb〉, where Ab and
nAb are sets of extensional atoms. Instances of atoms in Ab are abducible,
except instances of atoms in nAb are not abducible. More formally, an
atom a is abducible with respect to 〈Ab,nAb〉 if a ∈ [[〈Ab,nAb〉]], where
[[〈Ab,nAb〉]] = [[Ab]] \ [[nAb]].

A goal is an atom.
Given an initial policy P0 and a set U0 of users (the active administra-

tors), the state graph for P0 and U0, denoted SG(P0, U0), contains policies
reachable from P0 by actions of users in U0. Specifically, SG(P0, U0) is the
least graph (N,E) such that (1) P0 ∈ N and (2) 〈P,U : op, P ′〉 ∈ E and
P ′ ∈ N if P ∈ N ∧ U ∈ U0 ∧ 〈P,U : op, P ′〉 ∈ T .

An abductive atom-reachability query is a tuple 〈P0, U0, A,G0〉, where
P0 is a policy (the initial policy), U0 is a set of users (the users trying
to reach the goal), A is a specification of abducible atoms, and G0 is a
goal. Informally, P0 contains rules and facts that are definitely present in
the initial state, and [[A]] contains facts that might be present in the initial
state. Other facts are definitely not present in the initial state and, since
we make the closed world assumption, are considered to be false.

A ground solution to an abductive atom-reachability query 〈P0, U0, A,G0〉
is a tuple 〈∆, G〉 such that ∆ is a ground subset of [[A]], G is a ground in-
stance of G0, and SG(P0 ∪ ∆, U0) contains a policy P such that P ` G.
Informally, a ground solution 〈∆, G〉 indicates that a policy P in which G
holds is reachable from P0 ∪ ∆ through administrative actions of users in
U0.

A minimal-residue ground solution to a query is a ground solution 〈∆, G〉
such that, for all ∆′ ⊂ ∆, 〈∆′, G〉 is not a ground solution to the query.

A tuple disequality has the form 〈t1 . . . , tn〉 6= 〈t′1, . . . , t′n〉, where the ti
and t′i are terms.

A comprehensive solution to an abductive atom-reachability query 〈P0,
U0, A,G0〉 is a set S of tuples of the form 〈∆, G,D〉, where ∆ is a set of atoms
(not necessarily ground), G is an atom (not necessarily ground), and D is
a set (interpreted as a conjunction) of tuple disequalities over the variables
in ∆ and G, such that (1) Soundness: S represents ground solutions to the
query, i.e.,

⋃
s∈S [[s]] ⊆ Sgnd , where [[〈∆, G,D〉]] = {〈∆θ,Gθ〉 | ground(θ) ∧

Dθ = true} and Sgnd is the set of all ground solutions to the query, and
(2) Comprehensiveness: S represents all minimal-residue ground solutions
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to the query, i.e.,
⋃
s∈S [[s]] ⊇ Smin-gnd , where Smin-gnd is the set of minimal-

residue ground solutions to the query. Note that there may be multiple
comprehensive solutions to a query.

Example. We illustrate abductive reachability queries and our analysis
algorithm using the Treating Clinician policy presented in section 2.1, as a
running example. Specifically, we take that policy as the main part of the
initial policy P0. Note that it is a fragment of the healthcare network policy
case study in chapter 3. Additionally, we include the following facts about
prototypical users in the initial policy P0:

hasActivated(cli1, clinician(getWellHosp, surgeon)).

hasActivated(pat1, patient).

hasActivated(hpo1, policyOfficer(getWellHosp)).

These facts state that cli1 is a prototypical surgeon at getWellHosp, pat1
is a prototypical patient, and hpo1 is a prototypical getWellHosp policy
officer.

Informally, the desired query asks whether a clinician may be a treating
clinician without having the patient’s consent to treatment. To express this
query, we also add the following rule to the initial policy:

treatingWithoutConsent(Pat, Cli)

:- memberOf(Cli, treatingClinician(Pat, getWellHosp)),

! consentToTreatment(Pat, Cli, getWellHosp)

treatingWithoutConsent(Pat, Cli) implies that Cli is a treating clini-
cian for Pat without explicit consent to treatment for Pat at getWellHosp.
With this rule in P0, the goal in our reachability query can be expressed as
treatingWithoutConsent(pat1, cli1).

The entire initial policy P0 and the query appear in Figures 4.1 and 4.2,
respectively. The active administrators in the query are hpo1 and pat1. In
other words, we are asking whether the goal is reachabile through actions of
getWellHosp policy officer and the patient mentioned in the goal. The set of
abducible atoms include memberships in getWellHosp workgroups and en-
counters in the getWellHosp. It is reasonable to abduce these facts because
the workgroup composition at a facility and encounter information are fluid
and not known in advance. This allows us to obtain analysis solutions that
are not specific to one particular configuration of workgroups and patient
encounters.
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Initial Policy P0:

3.5.13

permit(User, addRule(memberOf(Cli, treatingClinician(Pat, getWellHosp))

:- consentToTreatment(Pat, Cli, getWellHosp)))

:- hasActivated(User, policyOfficer(getWellHosp))

3.5.12

permit(User, addRule(memberOf(Cli, treatingClinician(Pat, getWellHosp))

:- hasActivated(Cli, clinician(getWellHosp, Spcty)),

memberOf(Cli,

workgroup(Wkgp, getWellHosp, Spcty, WkgpType)),

encounter(EncID, Pat, Wkgp, getWellHosp, Type)))

:- hasActivated(User, policyOfficer(getWellHosp))

3.5.7

permit(User, addRule(

permit(Pat, addFact(consentToTreatment(Pat, Cli, getWellHosp)))

:- hasActivated(Pat, patient)))

:- hasActivated(User, policyOfficer(getWellHosp))

3.5.8

permit(User, addRule(

permit(Pat, removeFact(consentToTreatment(Pat, Cli, getWellHosp)))

:- hasActivated(Pat, patient)))

:- hasActivated(User, policyOfficer(getWellHosp))

3.5.9

permit(User, addRule(

permit(Ag, addFact(consentToTreatment(Pat, Cli, getWellHosp)))

:- hasActivated(Ag, agent(Pat))))

:- hasActivated(User, policyOfficer(getWellHosp))

3.5.10

permit(User, addRule(

permit(Ag, removeFact(consentToTreatment(Pat, Cli, getWellHosp)))

:- hasActivated(Ag, agent(Pat))))

:- hasActivated(User, policyOfficer(getWellHosp))

hasActivated(cli1, clinician(getWellHosp, surgeon)).

hasActivated(pat1, patient).

hasActivated(hpo1, policyOfficer(getWellHosp)).

Figure 4.1: Initial policy P0 for the all-solutions abductive reachability query
example based on the Treating Clinician policy example presented in section
2.1 and based on the Healthcare Network case study presented in chapter 3.
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• Policy P0 : See Figure 4.1.

• Set of active administrators U0 = {hpo1, pat1}

• Goal G0 = treatingWithoutConsent(pat1, cli1)

• Specification of abducible atoms: A = 〈Ab,nAb〉, where

– Ab= {memberOf(User, workgroup(Wkgp, getWellHosp,

Spcty, WkgpType)), encounter(EncID, Pat, Wkgp,

getWellHosp, Type)}
– nAb= {}

Figure 4.2: Example abductive atom-reachability query.

4.3 Becker et al.’s Algorithm for Tabled Policy Eval-
uation with Proof Construction and Abduc-
tion

This section briefly presents Becker et al.’s algorithm for tabled policy eval-
uation extended with proof construction and abduction [BN08, BMD09].
A modified version of their algorithm is used in our analysis algorithm, as
described in the next section. This section is based closely on the presen-
tation in [BMD09], however it also includes the extension for proof graph
construction described in [BN08]. Their papers contain a more thorough
exposition of this algorithm.

The algorithm appears in Figure 4.3. It is a deductive algorithm with
abductive extension. The basic idea is this: during the resolution proof,
whenever an attempt to prove a goal fails, the corresponding atom is never-
theless assumed to be true if the atom is abducible, in which case the atom
is said to be abduced, and the proof continues. The algorithm keeps track of
these assumptions, so each subgoal is associated with a set of abduced atoms
on which its proof depends. The algorithm constructs a forest of proof trees.
Each tree consists of a root node, intermediate goal nodes, and answer nodes
as leaf nodes, defined as follows.

A node is either a root node 〈G〉, where G is an atom, or a tuple of the
form 〈G; ~Q;S;~c;R; ∆〉, where G is an atom called the index (the goal whose
derivation this node is part of), ~Q is a list of subgoals that remain to be
solved in the derivation of the goal, S is the partial answer (the instance of
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resolveClause (〈P 〉)
1 Ans(P ) = ∅
2 for (Q← ~Q) ∈ Pol

3 if nd = resolve(〈P ;Q :: ~Q;Q; [];Q← ~Q; ∅〉,
〈P ; [];P ; []; ; ∅〉) exists

4 processNode (nd)
5 if P is abducible
6 processAnswer (〈P ; [];P ; []; abduction; [P ]〉)

processAnswer (nd)

11 match nd with 〈P ; []; ; ; ; 〉 in
2 if there is no nd0 ∈ Ans(P ) such that nd � nd0

3 Ans(P ) = Ans(P ) ∪ {nd}
4 for nd ′ ∈Wait(P )
5 if nd ′′ = resolve(nd ′,nd) exists
6 processNode (nd ′′)

processNode (nd)

11 match nd with 〈P ; ~Q; ; ; ; 〉 in

2 if ~Q = []
3 processAnswer (nd)

4 else match ~Q with Q0 :: in
5 if there exists Q′0 ∈ dom(Ans)
6 such that Q0 is an instance of Q′0
7 Wait(Q′0) = Wait(Q′0) ∪ {nd}
8 for nd ′ ∈ Ans(Q′0)
9 if nd ′′ = resolve(nd ,nd ′) exists

10 processNode (nd ′′)
11 else
12 Wait(Q0) = {nd}
13 resolveClause (〈Q0〉)

Auxiliary Definitions:

〈G; [];S;~c;R; ∆〉 � 〈G; [];S′;~c′;R′; ∆′〉 iff |∆| ≥ |∆′| ∧ (∃θ . S = S′θ ∧∆ ⊇ ∆′θ)

for an answer node n = 〈 ; [];Q′; ; ; ∆′〉, and Q′′ and ∆′′ fresh renamings of Q′ and ∆′,

resolve(〈G; [Q, ~Q];S;~c;R; ∆〉, n) =


{n′} if unifiable(Q,Q′′)

where θ = mostGeneralUnifier(Q,Q′′)

n′ = 〈G; ~Qθ;Sθ; [~c;n];R; ∆θ ∪∆′′θ〉
∅ otherwise

Figure 4.3: Becker et al.’s deductive evaluation algorithm with abductive
extension and proof construction
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G that can be derived using the derivation that this node is part of), ~c is
the list of child nodes of this node, R is the rule used to derive this node
from its children in the derivation of S, and ∆ is the residue (the set of
atoms abduced in this derivation). [] represents an empty list and :: is the
list constructor operator. Note that, in the definition of resolveClause in
Figure 4.3, we use “abduction” as the name of the rule used to derive an
abduced fact. If the list Q of subgoals is empty, the node is called an answer
node with answer S. Otherwise, it is called a goal node, and the first atom
in Q is its current subgoal. Each answer node is the root of a proof tree; goal
nodes (representing queries) are not in proof trees. Selectors for components
of nodes are: for n = 〈G; ~Q;S;~c;R; ∆〉, index(n) = G, subgoals(n) = ~Q,
pAns(n) = S, children(n) = ~c, rule(n) = R, and residue(n) = ∆.

An answer table is a partial function from atoms to sets of answer nodes.
The set Ans(G) contains all answer nodes for the goal G found so far.

A wait table is a partial function from atoms to sets of goal nodes. The
set Wait(G) contains all those nodes whose current subgoal is waiting for
answers from 〈G〉. Whenever a new answer for 〈G〉 is produced, the compu-
tation involving these waiting nodes is resumed.

The auxiliary definitions in the lower half of Figure 4.3 define the sub-
sumption relation� on nodes and the resolve function. Intuitively, if n � n′
(read “n is subsumed by n′”), then the answer node n provides no more in-
formation than n′, so n can be discarded. resolve(n, n′) takes a goal node
n and an answer node n′ and combines the current subgoal of n with the
answer provided by n′ to produce a new node with fewer subgoals. Construc-
tors are not considered in [BN08, BMD09], but the algorithm can handle
them if the functions for matching and unification are extended appropri-
ately. Becker et al. specify abducible atoms in a simpler way than we do,
but this has no effect on the algorithm, other than the need to adopt our
definition of “P is abducible”, given in Section 4.2.

A clause in [BMD09] is a horn clause, or a rule in the policy (also called
a program). Starting from some root node 〈G〉, resolution with program
clauses produces goal nodes with index G. As the subgoals ~Q are processed
one by one, new G-indexed goal nodes are created with the remaining sub-
goals and with increasingly instantiated variants of G as partial answer. A
proof branch ends when no subgoals are left, that is, when an answer node
is generated.
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Invoking the Algorithm. The algorithm takes as input a query G, which
is an atom, and the input policy Pol. The entry point is a call to resolve-
Clause (〈G〉). On termination, Ans(G) contains a complete set of answers
of the form 〈G; [];S;~c;R; ∆〉, where S is a (not necessarily ground) instance
of G. Such an answer can be interpreted as follows: if some ground instan-
tiation of the atoms in ∆ is added to the given policy Pol, then S, under
the same ground instantiation, is derivable.

Correctness. [BN08] presents a soundness and a completeness argument
for their algorithm. Their soundness theorem states that if the algorithm
returns a proof graph for an answer node 〈G; [];S;~c;R; ∆〉, then for all sub-
stitutions θ, such that ∆θ is ground, Sθ is subsumed by G and G is reachable
from Pol ∪∆θ. Their completeness theorem states that if an atom S is finite
state reachable from an initial policy Pol ∪A, then there exists a substitution
θ and an answer node 〈G; [];S′;~c;R; ∆〉 that can be generated by algorithm
for the query G, such that G subsumes S, S′θ = S and ∆θ = A. That is, in
terms of completeness, this algorithm returns a most general set of solutions
in terms of the subsumption relation. Note that the actual complete set of
solutions may be infinite.

4.4 Analysis Algorithm

The algorithm has three phases. Phase 1 transforms the policy to elim-
inate addRule and removeRule. Phase 2 is a modified version of Becker
et al.’s tabling algorithm described above; it produces candidate solutions.
Recall that their algorithm attempts to derive a goal from a fixed policy.
We modify the tabling algorithm, and transform its input, to enable it to
compute sets of policy updates (i.e., administrative operations) needed to
derive the goal. However, modifying the tabling algorithm to incorporate
a notion of time (i.e., a notion of the order in which updates to the policy
are performed, and of the resulting sequence of intermediate policies) would
require extensive changes, so we do not do that. Instead, we introduce a
third phase that checks all conditions that depend on the order in which ad-
ministrative operations are performed. These conditions relate to negation,
because in the absence of negation, removals are unnecessary, and additions
can be done in any order consistent with the logical dependencies that the
tabling algorithm already takes into account.
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4.4.1 Phase 1: Elimination of addRule and removeRule

The policy P ′ obtained by elimination of addRule and removeRule from a
policy P is not completely equivalent to P—in particular, the state graphs
SG(P,U0) and SG(P ′, U0) differ, and some kinds of properties, such as avail-
ability of permissions, are not preserved. However, P ′ is equivalent to P
in the weaker sense that using P ′ in place of P in an abductive atom-
reachability query does not change the answer to the query. Informally, this
is because the restriction of negation to extensional relations implies that the
answer to such a query depends only on the “upper bounds” of the derivable
facts in reachable policies, not on the exact sets of derivable facts in each
reachable policy, and this transformation preserves those upper bounds.

Elimination of removeRule. The policy elimRmRule(P ) is obtained from
P by simply deleting all removeRule permission rules (recall that policy
safety, defined in Section 2.3, allows removeRule to appear only in the
conclusion of such rules). This eliminates transitions that remove rules
defining intensional predicates, and hence eliminates transitions that make
intensional predicates smaller. Since negation cannot be applied to inten-
sional predicates, making intensional predicates smaller never makes more
facts (including instances of the goal) derivable. Therefore, every instance
of the goal that is derivable in some policy reachable from P0 is deriv-
able in some policy reachable from elimRmRule(P0). Conversely, since
SG(elimRmRule(P0), U0) is a subgraph of SG(P0, U0), every instance of the
goal that is derivable in some policy reachable from elimRmRule(P0) is
derivable in some policy reachable from P0. Therefore, the elimRmRule
transformation does not affect the answer to abductive atom-reachability
queries.

The initial policy P0 in the treating clinician example does not contain
any removeRule permission rules. Therefore, elimRmRule(P0) = P0.

Elimination of addRule. We eliminate addRule by replacing addRule

permission rules (recall that policy safety allows addRule to appear only in
the conclusion of such rules) with new rules that use addFact to “simulate”
the effect of addRule. Specifically, the policy elimAddRule(P ) is obtained
from P as follows. Let R be an addRule permission rule permit(U, addRule
(L :- ~L1)) :- ~L2 in P . Rule R is replaced with two rules. One rule is
the rule pattern in the argument of addRule, extended with an additional
premise using a fresh extensional predicate auxR that is unique to the rule:
L :- ~L1, auxR( ~X), where the vector of variables ~X is ~X = vars(L :- ~L1)∩
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(vars({U})∪vars(~L2)). The other is an addFact permission rule that allows
the user to add facts to this new predicate: permit(U, addFact(auxR( ~X)))
:- ~L2. The auxiliary predicate auxR keeps track of which instances of the
rule pattern have been added. Recall from Section 2.3 that users are per-
mitted to instantiate variables in the rule pattern when adding a rule. Note
that users must instantiate variables that appear in the rest of the addRule

permission rule, i.e., in vars({U}) ∪ vars(~L2), because if those variables are
not grounded, the permit fact necessary to add the rule will not be deriv-
able using rule R. Therefore, each fact in auxR records the values of those
variables. In other words, an addRule transition t in SG(P0, U0) in which
the user adds an instance of the rule pattern with ~X instantiated with ~c is
“simulated” in SG(elimAddRule(P0), U0) by an addFact transition t that
adds auxR(~c).

Note that SG(P0, U0) also contains transitions t′ that are similar to t
except that the user performs additional specialization of the rule pattern
by instantiating additional variables in the rule pattern or adding premises to
it. Those transitions are eliminated by this transformation, in other words,
there are no corresponding transitions in SG(elimAddRule(P0), U0). This
is sound, because those transitions lead to policies in which the intensional
predicate p that appears in literal L (i.e., L is p(. . .)) is smaller, and as
argued above, since negation cannot be applied to intensional predicates,
eliminating transitions that lead to smaller intensional predicates does not
affect the answer to abductive atom-reachability queries.

Applying this transformation to a policy satisfying the fixed administra-
tive policy requirement produces a policy containing no higher-order admin-
istrative permission rules.

Example. For example, adding a fact to the auxiliary predicate aux3.5.7()
simulates adding an addFact permission rule using addRule permission rule
3.5.7. Note that a nullary predicate may contain no facts of it may contain
a single fact represented by the 0-tuple ().

Therefore, by adding a fact for the predicate aux3.5.7(), policyOfficer(
getWellHosp) can “activate” the rule with this predicate in the premises.

Figure 4.4 presents the complete policy elimAddRule(P0) for the initial
policy P0 in the treating clinician example from Figure 4.1.

Correctness. This section presents the correctness arguments in more
detail.

First, we show that reachability of atoms is preserved when addRule
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memberOf(Cli, treatingClinician(Pat, getWellHosp))

:- consentToTreatment(Pat, Cli, getWellHosp), aux3.5.13()

permit(User, addFact(aux3.5.13()))

:- hasActivated(User, policyOfficer(getWellHosp))

memberOf(Cli, treatingClinician(Pat, getWellHosp))

:- hasActivated(Cli, clinician(getWellHosp, Spcty)),

memberOf(Cli, workgroup(Wkgp, getWellHosp, Spcty, WkgpType)),

encounter(EncID, Pat, Wkgp, getWellHosp, Type), aux3.5.12()

permit(User, addFact(aux3.5.12()))

:- hasActivated(User, policyOfficer(getWellHosp))

permit(Pat, addFact(consentToTreatment(Pat, Cli, getWellHosp)))

:- hasActivated(Pat, patient), aux3.5.7()

permit(User, addFact(aux3.5.7()))

:- hasActivated(User, policyOfficer(getWellHosp))

permit(Pat, removeFact(consentToTreatment(Pat, Cli, getWellHosp)))

:- hasActivated(Pat, patient), aux3.5.8()

permit(User, addFact(aux3.5.8()))

:- hasActivated(User, policyOfficer(getWellHosp))

permit(Ag, addFact(consentToTreatment(Pat, Cli, getWellHosp)))

:- hasActivated(Ag, agent(Pat)), aux3.5.9()

permit(User, addFact(aux3.5.9()))

:- hasActivated(User, policyOfficer(getWellHosp))

permit(Ag, removeFact(consentToTreatment(Pat, Cli, getWellHosp)))

:- hasActivated(Ag, agent(Pat)), aux3.5.10()

permit(User, addFact(aux3.5.10()))

:- hasActivated(User, policyOfficer(getWellHosp))

hasActivated(cli1, clinician(getWellHosp, surgeon)).

hasActivated(pat1, patient).

hasActivated(hpo1, policyOfficer(getWellHosp)).

Figure 4.4: elimAddRule(elimRmRule(P0)) for the policy P0 presented in
Figure 4.1.
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transitions are restricted so they don’t add premises and when removeRule

transitions are eliminated.
The restricted transition relation T− is defined the same way as the

transition relation T in Section 2.6 except (1) addRule transitions are re-
stricted so that they do not add additional premises to rule patterns, and
(2) removeRule transitions are eliminated.

The restricted state graph SG−(P0, U0) for policy P0 and set U0 of users
is defined in the same way as the state graph for P0 and U0, except using
the restricted transition relation T− instead of the transition relation T .

Policy P is at least as strict as policy P ′, denoted P ≤ P ′, if (1) P and
P ′ contain the same set of (explicitly given) facts, and (2) for every rule R
in P , P ′ contains a rule R′ such that R is at least as strict as R′.

Lemma 4.4.1. For all policies P and P ′, if P ≤ P ′, then [[P ]] ⊆ [[P ′]].

Proof. The proof is by induction on the derivation of the fact, considered
as a tree built from rules and facts. The proof relies on the restriction that
negation is applied only to extensional predicates. Consider a derivation of
a fact f from P . f can be derived from P ′ using the same derivation except
with each rule R in P replaced with its less-or-equally-strict version R′ in
P ′ (in other words, R′ is the rule in P ′ such that R is at least as strict as
R′). We need to show that each premise q of R′, instantiated using the same
substitution used to instantiate R in the derivation of f , holds in P ′. To
see this, note that R′ is less-or-equally-strict than R, so the instance of R
used in the derivation of f has the same premise q, and q holds in P . If q
is a positive premise, then the derivation of q from P is a sub-derivation of
the derivation of f , so by the induction hypothesis, q is derivable from P ′.
If q is a negative premise !a, then a must be an atom for an extensional
predicate, so it suffices to consider the facts that appear explicitly in P and
P ′. Since q holds in P , a does not appear in P . Since P ≤ P ′ implies that
P and P ′ contain the same set of facts, a does not appear in P ′, so q holds
in P ′.

Theorem 4.4.2. For every policy P0 and set U0 of users, for every policy
P in SG(P0, U0), there exists a policy P ′ in SG−(P0, U0) such that P ≤ P ′.

Proof. Let pi = P0
u0:op0−→ P1

u1:op1−→ . . .
un−1:opn−1−→ Pn be a path in SG(U0, P0)

from the initial policy to P , hence Pn = P . We show by construction that

there is a corresponding path p′i = P0
u′0:op

′
0−→ P ′1

u′1:op
′
1−→ . . .

u′n−1:op
′
n−1−→ P ′n in

SG−(P0, U0) such that for each i ∈ [0 . . . n], Pi ≤ P ′i .
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To simplify the correspondence, we allow skip transitions in p′i.
Based on the definition of the transition relation, if opi is an addRule

transition addRule(Ri), then there exists an addRule permission rule Rarpi

in Pi (“arp” is mnemonic for “addRule permission”) and a rule R′i such that
Pi derives permit(ui, addRule(R′i)) using Rarpi in the last step of the deriva-
tion, and Ri is stricter than R′i. (note: R′i already reflects instantiations of
variables.)

p′i is defined as follows.

u′i = ui

op′i =


opi if opi has the form addFact(. . .) or removeFact(. . .)
skip if opi has the form removeRule(. . .)
addRule(R′i) if opi has the form addRule(Ri),

where R′i is defined above

We prove by induction on i that (a) Pi ≤ P ′i and (b) permit(u′i, op
′
i) ∈

[[P ′i ]].

Base case. In the base case, i = 0.

(a) P0 ≤ P0 follows directly from the definition of ≤.

(b) We need to show permit(u′0, op
′
0) ∈ [[P0]].

case: op0 is removeRule. This case is trivial, because op′0 is skip, and
(as a special case) skip is always permitted.

case: op0 is addFact or removeFact. op′0 is the same as op0, so permit(
u′0, op

′
0) ∈ [[P0]] follows directly from permit(u0, op0) ∈ [[P0]].

case: op0 is addRule(R0). In this case, op′0 is addRule(R′0). The defi-
nition of R′i directly implies that permit(u0, addRule(R′0)) ∈ [[P0]].

Step case. In the step case, we assume Pi ≤ P ′i and permit(u′i, op
′
i) ∈

[[P ′i ]].

(a) We need to show Pi+1 ≤ P ′i+1. This follows directly from the induction
hypothesis and the definitions of op′i and ≤. Note that this proof does
not rely on the claim that (b) holds in the step case, so this conclusion
can be used in the following proof of (b).

(b) We need to show permit(u′i+1, op
′
i+1) ∈

[[
P ′i+1

]]
.
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case: opi+1 is removeRule. This case is trivial, because op′i+1 is skip,
and (as a special case) skip is always permitted.

case: opi+1 is addFact or removeFact. op′i+1 is the same as opi+1, so
permit(u′i+1, op

′
i+1) ∈

[[
P ′i+1

]]
follows directly from permit(ui+1,

opi+1) ∈ [[Pi+1]], Pi+1 ≤ P ′i+1, and Lemma 4.4.1.

case: opi+1 is addRule(Ri+1). In this case, op′i+1 is addRule(R′i+1), as
defined above. The definition of R′i in that paragraph directly im-
plies that permit(ui+1, addRule(R′i+1)) ∈ [[Pi+1]]. This, together
with Pi+1 ≤ P ′i+1 and Lemma 4.4.1, imply that permit(ui+1,
addRule(R′i+1)) ∈

[[
P ′i+1

]]
.

Theorem 4.4.3. For every policy P0, set U0 of users, and atom a, SG(P0, U0)
contains a policy P with a ∈ [[P ]] iff SG−(P0, U0) contains a policy P ′ with
a ∈ [[P ′]].

Proof. We prove one direction at time.
Suppose SG(P0, U0) contains a policy P such that a ∈ [[P ]]. We need to

show that there exists P ′ in SG−(P0, U0) such that a ∈ [[P ′]]. This follows
immediately from Theorem 4.4.2, the definition of ≤, Lemma 4.4.1, and the
fact that goals do not contain negative intensional literals.

Suppose SG−(P0, U0) contains a policy P ′ such that a ∈ [[P ′]]. We need
to show that SG(P0, U0) contains a policy P such that a ∈ [[P ]]. This follows
from the fact that the restricted transition relation T− is a subset of the
transition relation T , which implies that SG(P0, U0) also contains P .

Next, we show that the restricted state graph for the original policy is
similar to the (full) state graph for the transformed policy, i.e., SG−(P0, U0)
is similar to SG(elimAddRule(elimRmRule(P0)), U0) in the sense defined
below. We call predicates with names like auxR as auxiliary predicates. We
assume that the original policy does not contain auxiliary predicates.

Policies P and P ′ are similar, denoted P ' P ′, if P and P ′ contain the
same rules and facts with three exceptions: (1) P ′ contains no removeRule

permission rules, (2) P contains no rules involving auxiliary predicates, P ′

contains no addRule permission rules, and the set of rules in P ′ that involve
auxiliary predicates is exactly the set of rules obtained by transforming the
addRule permission rules in P using the elimAddRule transformation, and
(3) for every addRule permission rule permit(U, addRule(L :- ~L1)) :- ~L2

in P , for every ground substitution θ, P contains (L :- ~L1)θ iff either P ′
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contains (L :- ~L1)θ or P ′ contains auxR( ~X)θ and (L :- ~L1, auxR( ~X)),
where ~X = vars(L :- ~L1) ∩ (vars({U}) ∪ vars(~L2)).

Informally, (3) says that the facts that have been added to auxiliary
predicates in P ′ are exactly the facts needed to simulate the rules that have
been added to P .

Let excludedAtoms denote the set of atoms of the form permit(. . . ,
addRule(. . .)), permit(. . . , removeRule(. . .)), auxR(. . .), or permit(. . . ,
addFact(auxR(. . .))).

Lemma 4.4.4. If P ' P ′, and a 6∈ excludedAtoms, then a ∈ [[P ]] iff a ∈
[[P ′]].

Proof. We do a case analysis on whether a is an atom for an intensional or
extensional predicate.

case a is extensional: The definition of ' implies that P and P ′ contain
the same extensional facts except for facts for auxiliary predicate. By
hypothesis, a 6∈ excludedAtoms, so a is not a fact for an auxiliary
predicate. Therefore, a ∈ [[P ]] iff a ∈ [[P ′]].

case a is intensional: First we consider the forward direction of the “iff”,
i.e., we assume a ∈ [[P ]] and show a ∈ [[P ′]]. Let D be a derivation of
a using facts and rules in P . Without loss of generality, we assume D
does not contain uses of removeRule permission rules; since negation
cannot be applied to intensional relations, such a derivation exists for
every derivable fact. We construct a derivation D′ of a using rules and
facts in P ′ by starting with D and making the following replacements.
Consider a rule R used in D. If there exists an addRule permission rule
permit(U, addRule(L :- ~L1)) :- ~L2 in P , such that R is (L :- ~L1)θ
for some ground substitution θ, then by item (3) in the definition of ',
P ′ contains either the same rule R or an auxiliary fact and transformed
rule R′ that can be used to derive the same conclusion; in the latter
case, we replace the use of R in D with a use of R′. R is not an addRule

permission rule, because a 6∈ excludedAtoms (so the top-level rule in
D is not an addRule permission rule) and the definition of ACAR in
Chapter 2) does not allow permit to appear in premises of rules (so
addRule permission rules are not used to derive any subgoals in D). R
is not a removeRule permission rule, by the assumption above. Thus,
for any other rule R used in D, the definition of ' implies that R also
exists in P ′. The definition of ' implies that each fact in P that is
used in D also exists in P ′. Therefore, D′ is a derivation of a in P ′.
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Now we consider the reverse direction of the “iff”, i.e., we assume
a ∈ [[P ′]] and show a ∈ [[P ]]. Let D′ be a derivation of a using facts
and rules in P ′. We construct a derivation D of a using rules and
facts in P by starting with D′ and making the following replacements.
Consider a rule R′ used in D′. If one of the premises of R′ involves an
auxiliary predicate, then item (3) in the definition of ' implies that P
contains a rule R that can be used to derive the same conclusion, so
we replace the use of R′ in D′ with a use of R. By reasoning similar to
that in the previous paragraph, every other rule and every fact used
in D′ also exists in P . Therefore, D is a derivation of a in P .

Theorem 4.4.5. (1) For every policy P , P ' elimAddRule(elimRmRule(P )).
(2) For every policy P , policy P ′, and user u, if P ' P ′ then (a) for every
policy P1 and operation op such that 〈P, u:op, P1〉 ∈ T−, there exists a policy
P ′1 and operation op′ such that 〈P ′, u:op′, P ′1〉 ∈ T and P1 ' P ′1, and (b) for
every policy P ′1 and operation op′ such that 〈P ′, u:op′, P ′1〉 ∈ T , there exists
a policy P1 and operation op such that 〈P, u:op, P1〉 ∈ T− and P1 ' P ′1.

Proof. (1) This follows from the definitions of elimAddRule and elimRmRule
functions and ' relation.

(2) (a) Note that 〈P, u:op, P1〉 ∈ T− implies that permit(u, op) ∈ [[P ]]. We
perform a case analysis on the kind of administrative operation that
op is.

case op is removeRule: T− does not contain removeRule transi-
tions, so this case cannot occur.

case op is addFact or removeFact for a non-auxiliary predicate: In
this case, permit(u, op) is not in excludedAtoms, so permit(u, op) ∈
[[P ]] and P ' P ′ imply, using Lemma 4.4.4, that permit(u, op) ∈
[[P ′]], so we take op′ to be the same as op, and P ′1 to be the pol-
icy obtained by executing op′ in P ′. It is easy to show that
〈P ′, u:op′, P ′1〉 ∈ T and P1 ' P ′1.

case op is addFact for an auxiliary predicate: The definition of
' implies that P does not contain auxiliary predicates, so this
case cannot occur.

case op is removeFact for an auxiliary predicate: Item (2) in the
definition of' implies that P and P ′ do not contain removeFact

rules for auxiliary predicates, so this case cannot occur.

61



case op is addRule: permit(u, op) ∈ [[P ]] implies there is an addRule

permission ruleR of the form permit(U, addRule(L :- ~L1)) :- L2

used with a ground substitution θ to derive permit(u, op) in
P ; thus, u = Uθ, and op = addRule(L :- ~L1)θ. Item (2)
in the definition of ', and the definition of elimAddRule, to-
gether imply that P ′ contains the rules L :- ~L1, auxR( ~X) and
permit(U, addFact(auxR( ~X))) :- ~L2, where ~X = vars(L :- ~L1)∩
(vars({U}) ∪ vars(~L2)). Let R′ denote the latter rule. We take
op′ to be addFact(auxR( ~X))θ, and P ′1 to be the policy obtained
by executing op′ in P ′. To see that permit(u, op′) ∈ [[P ′]], and
hence 〈P ′, u:op′, P ′1〉 ∈ T , note that the premises of R′ are the
same as the premises of R, and they cannot be excluded atoms
(because the definition of ACAR in Chapter 2 does not allow
permissions as premises, and the definition of ' implies that
P and hence R do not contain auxiliary predicates), and these
premises are derivable in P , so Lemma 4.4.4 implies that they
are derivable in P ′. It is straightforward to show that P1 ' P ′1.

(b) Note that 〈P ′, u:op′, P ′1〉 ∈ T implies that permit(u, op′) ∈ [[P ′]].
We perform a case analysis on the kind of administrative operation
that op′ is.

case op′ is removeRule: P ' P ′ implies that there are no removeRule
permission rules in P ′, so this case cannot occur.

case op′ is addFact or removeFact for a non-auxiliary predicate: In
this case, permit(u, op′) is not in excludedAtoms, so permit(u, op) ∈
[[P ′]] and P ' P ′ imply, using Lemma 4.4.4, that permit(u, op) ∈
[[P ]], so we take op to be the same as op′, and P1 to be the pol-
icy obtained by executing op in P . It is easy to show that
〈P, u:op′ P ′1〉 ∈ T− and P1 ' P ′1.

case op′ is addRule: P ' P ′ implies that there are no addRule

permission rules in P ′, so this case cannot occur.

case op′ is addFact for an auxiliary predicate: permit(u, op) ∈
[[P ′]] implies there is an addFact permission rule R of the form
permit(U, addFact(auxR( ~X))) :- ~L2 used with a ground sub-
stitution θ to derive permit(u, op′) in P ′; thus, u = Uθ, and
op′ = addFact(auxR( ~X))θ. Item (2) in the definition of ', and
the definition of elimAddRule, together imply that P ′ also con-
tains the rule L :- ~L1, auxR( ~X), where ~X = vars(L :- ~L1) ∩
(vars({U}) ∪ vars(~L2)), and P contains the addRule permis-
sion rule permit(U, addRule(L :- ~L1)) :- L2. Let R denote
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the latter rule. We take op to be addRule(L :- ~L1)θ, and P1

to be the policy obtained by executing op in P . To see that
permit(u, op) ∈ [[P ]], and hence 〈P, u:op, P1〉 ∈ T−, note that
the premises of R are the same as the premises of R′, and they
cannot be excluded atoms (because the definition of ACAR in
Chapter 2 does not allow permissions as premises, and the def-
inition of ' implies that R was produced by the elimAddRule
transformation and hence ~L2 is copied from the original policy
and does not contain auxiliary predicates), and these premises
are derivable in P , so Lemma 4.4.4 implies that they are deriv-
able in P ′. It is straightforward to show that P1 ' P ′1.

case op′ is removeFact for an auxiliary predicate: Item (2) in the
definition of' implies that P and P ′ do not contain removeFact

rules for auxiliary predicates, so this case cannot occur.

Theorem 4.4.6. For every policy P0, set U0 of users, and atom a 6∈
excludedAtoms, SG−(P0, U0) contains a policy P with a ∈ [[P ]] iff
SG(elimAddRule(elimRmRule(P0)), U0) contains a policy P ′ with a ∈ [[P ′]].

Proof. The proof for this theorem follows from the lemma for path corre-
spondence for bisimilar states in [EMCGP99], which says that if s and s′

are two bimilar states such then for every path from s there is a correspond-
ing path starting from s′, and vice versa. Theorem 4.4.5 establishes that '
is a bisimulation relation between P0 and elimAddRule(elimRmRule(P0)).
Therefore, for every policy P0 and set U0 of users, if P ∈ SG−(P0, U0)
then there exists P ′ ∈ SG((elimAddRule(elimRmRule(P0)), U0) such that
P ' P ′, and vice versa. Therefore, from Lemma 4.4.4, for such policies P
and P ′, a ∈ [[P ]] iff a ∈ [[P ′]].

Putting these pieces together, we conclude that the transformations to
eliminate addRule and removeRule preserve atom-reachability.

Theorem 4.4.7. For every policy P0, set U0 of users, and atom a not in
excludedAtoms, SG( elimAddRule(elimRmRule(P0)), U0) contains a policy
P ′ with a ∈ [[P ′]] iff SG(P0, U0) contains a policy P with a ∈ [[P ]].

With this theorem, it is easy to show that answers to abductive atom-
reachability queries are preserved by this transformation. Therefore, sub-
sequent phases of the analysis algorithm analyze the transformed policy
elimAddRule(elimRmRule(P0)).
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4.4.2 Phase 2: Tabled Policy Evaluation

Phase 2 is a modified version of Becker et al.’s algorithm presented in Section
4.3. Phase 2 considers three ways to satisfy a positive subgoal: through an
inference rule, through addition of a fact (using an addFact permission
rule), and through abduction (i.e., by assumption that the subgoal holds in
the initial policy and still holds when the rule containing it as a premise is
evaluated).

To allow the algorithm to explore addition of facts as a way to satisfy
positive subgoals, without directly modifying the algorithm, we transform
addFact permission rules into ordinary inference rules. Specifically, each
addFact permission rule permit(U, addFact(a)) :- ~L is replaced with the
rule a :- ~L, u0(U). The transformation also introduces a new extensional
predicate u0 and, for each u ∈ U0, the fact u0(u) is added to the policy. For
example, consider the following addFact permission rule in the transformed
policy elimAddRule(elimRmRule(P0)) in Figure 4.4:

permit(Pat, addFact(consentToTreatment(Pat, Cli, getWellHosp)))

:- hasActivated(Pat, patient), aux3.5.7()

This rule is replaced with the rule:

consentToTreatment(Pat, Cli, getWellHosp)

:- hasActivated(Pat, patient), aux3.5.7(), u0(Pat)

The set of active administrators U0 = {hpo1, pat1} is represented as facts
u0(hpo1), u0(pat1) in the transformed policy.

This transformation changes the meaning of the policy: the transformed
rule means that a necessarily holds when ~L holds, while the original addFact
permission rule means that a might (or might not) be added by an adminis-
trator when ~L holds. This difference is significant if a appears negatively in
a premise of some rule. This change in meaning is acceptable in phase 2, be-
cause phase 2 does not attempt to detect conflicts between negative subgoals
and added facts. As discussed in Section ??, this change in the meanings of
rules used in phase 2 does not affect the detection of such conflicts in phase
3.

The algorithm considers two ways to satisfy a negative subgoal: through
removal of a fact (using a removeFact permission rule) and through abduc-
tion (i.e., by assumption that the negative subgoal holds in the initial policy
and still holds when the rule containing it as a premise is evaluated).

To allow the algorithm to explore removal of facts as a way to satisfy neg-
ative subgoals, removeFact permission rules are transformed into ordinary
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inference rules with negative conclusions. Specifically, each removeFact

permission rule permit(U, removeFact(a)) :- ~L is replaced with the rule
!a :- ~L, u0(U).

Let elimAddRmFact(P ) denote the policy obtained from P by trans-
forming addFact and removeFact rules as described above. An administra-
tive node (or “admin node”, for short) is a node n such that rule(n) is a
transformed addFact or removeFact permission rule. isAdmin(n) holds iff
n is an administrative node. isAddFact(n) holds iff rule(n) is a transformed
addFact permission rule. isRmFact(n) holds iff rule(n) is a transformed
removeFact permission rule. Figure 4.5 presents the policy obtained by
applying elimAddRmFact to the policy in Figure 4.4.

The algorithm can abduce a negative extensional literal !a when this is
consistent with the initial policy, in other words, when a is not in P0. To
enable this, in the definition of resolveClause , we replace “P is abducible”
with “P ∈ [[A]]∨ (∃a ∈ Atomex . a 6∈ P0 ∧ P is !a)”, where Atomex is the set
of extensional atoms. If a is not ground, disequalities in dinit in phase 3 will
ensure that the solution includes only instances of a that are not in P0.

Note that wildcards do not need any special treatment in phase 2. To es-
tablish a negative premise that contains wildcards. To establish the premise
using abduction, the negative literal is simply abduced (with wildcards in
it) into the residue. This might lead to disequalities that contain wildcards,
specifically, disequalities of the form 6= t, where t does not contain wild-
cards (because wildcards cannot appear as arguments of constructors). The
function satisfiable(d) used in Phase 3 to test satisfiability of a disequality
d handles wildcards as follows: a disequality of the form 6= t is not satisfi-
able. Recall from Section 2.8 that wildcards can be used in a negative literal
!p(. . .) only if there are no removeFact permission rules for p. This means
that we do not need to consider how to establish negative literals containing
wildcards using removals of facts. Trying to establish such a premise using
removals is difficult, because we cannot precisely determine, in phase 2, what
instances of the predicate need to be removed. Extending the algorithm to
handle this is future work and a brief summary of a scheme to do so has
been described later in section 6.2.

The tabling algorithm treats the negation symbol “!” as part of the pred-
icate name; in other words, it treats p and !p as unrelated predicates. Phase
3 interprets “!” as negation and checks appropriate consistency conditions
by detecting inconsistencies between positive and negative facts. Phase 3 is
also responsible for detecting if a removeFact operation (corresponding to
a use of a transformed removeFact rule in phase 2) falsifies a subsequent
positive subgoal.

65



treatingWithoutConsent(Pat, Cli)

:- memberOf(Cli, treatingClinician(Pat, getWellHosp)),

!consentToTreatment(Pat, Cli, getWellHosp)

memberOf(Cli, treatingClinician(Pat, getWellHosp))

:- consentToTreatment(Pat, Cli, getWellHosp), aux3.5.13()

aux3.5.13() :- u0(User), hasActivated(User, policyOfficer(getWellHosp))

memberOf(Cli, treatingClinician(Pat, getWellHosp))

:- hasActivated(Cli, clinician(getWellHosp, Spcty)),

memberOf(Cli, workgroup(Wkgp, getWellHosp, Spcty, WkgpType)),

encounter(EncID, Pat, Wkgp, getWellHosp, Type), aux3.5.12()

aux3.5.12() :- u0(User), hasActivated(User, policyOfficer(getWellHosp))

consentToTreatment(hpo1, Cli, getWellHosp)

:- u0(Pat), hasActivated(Pat, patient), aux3.5.7()

aux3.5.7() :- u0(User), hasActivated(User, policyOfficer(getWellHosp))

!consentToTreatment(hpo1, Cli, getWellHosp)

:- u0(Pat), hasActivated(Pat, patient), aux3.5.8()

aux3.5.8() :- u0(User), hasActivated(User, policyOfficer(getWellHosp))

consentToTreatment(Pat, Cli, getWellHosp)

:- u0(Ag), hasActivated(Ag, agent(Pat)), aux3.5.9()

aux3.5.9() :- u0(User), hasActivated(User, policyOfficer(getWellHosp))

!consentToTreatment(Pat, Cli, getWellHosp)

:- u0(Ag), hasActivated(Ag, agent(Pat)), aux3.5.10()

aux3.5.10() :- u0(User), hasActivated(User, policyOfficer(getWellHosp))

u0(hpo1).

u0(pat1).

hasActivated(cli1, clinician(getWellHosp, surgeon)).

hasActivated(pat1, patient).

hasActivated(hpo1, policyOfficer(getWellHosp)).

Figure 4.5: Transformed policy obtained after applying elimAddRmFact
transformation to the policy elimAddRule(elimRmRule(P0)) in Figure 4.4.
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Although phase 3 is responsible for checking satisfaction of negative
subgoals, phase 2 cannot simply ignore negative subgoals, because if a
removeFact permission rule needs to be used to satisfy a negative subgoal,
phase 2 is responsible for exploring ways to satisfy the premises of that rule.

The definition of resolve in Figure 4.3 checks whether unifiable(Q,Q′′)
holds and, if so, computes the residue of the resolve node n′ to be ∆θ ∪
∆′′θ. Since we, unlike Becker et al., allow specification of a set nAb of
not-abducible terms (which might overlap with the set Ab), instantiating a
term in the residue can move it from [[Ab]] to [[nAb]], causing it not to be
abducible. Therefore, in the definition of resolve, we replace the condition
unifiable(Q,Q′′) with the condition unifiable(Q,Q′′)∧ (∆θ ∪∆′′θ ⊆ [[A]]).
Note that it is sufficient to consider only instantiation with the most general
unifier, not less general unifiers, because nAb is closed under instantiation.

Becker et al. algorithm explores all derivations for a goal except that
the subsumption check in processAnswer in Figure 4.3 prevents use of the
derivation represented by answer node n from being added to the answer
table and thereby used as a sub-derivation of a larger derivation if the partial
answer in n is subsumed by the partial answer in an answer node n′ that
is already in the answer table. However, the larger derivation that uses
n′ as a derivation of a subgoal might turn out to be infeasible (i.e., have
unsatisfiable ordering constraints) in phase 3, while the larger derivation
that uses n as a derivation of that subgoal might turn out to be feasible.
We adopt the simplest approach to overcome this problem: we replace the
subsumption relation � in processAnswer method with the α-equality
relation =α, causing the tabling algorithm to explore all derivations of goals.
α-equality means equality modulo renaming of variables that do not appear
in the top-level goal G0.

An undesired side-effect of this change is that the algorithm may get
stuck in a cycle in which it repeatedly uses some derivation of a goal as
a sub-derivation of a larger derivation of the same goal. Exploring such
derivations is unnecessary, because the algorithm is not required to find a
representation of all sequences of administrative actions that reach the goal.
Specifically, if the algorithm has already constructed a node n, then it is
unnecessary for the algorithm to construct a node n′ that has the same
index, partial answer, and residue as n and a proof graph that contains n,
because, if n′ could be used as part of a larger derivation that is classified
as feasible in phase 3, then n could be used instead of n′, because the
constraints generated in phase 3 when n is used are satisfiable whenever the
constraints generated when n′ is used are satisfiable, because the additional
nodes in the proof of n′ just introduce additional constraints. Therefore,
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we modify the definition of resolve as follows, so that the algorithm does
not generate a node n′ corresponding to the latter derivation: we replace
unifiable(Q,Q′′) with unifiable(Q,Q′′) ∧ noCyclicDeriv(n′), where

noCyclicDeriv(n′) =6 ∃d ∈ proof(n′). isAns(d)
∧ 〈index(d),pAns(d), residue(d)〉 =α 〈index(n′),pAns(n′), residue(n′)〉

where the proof of a node n, denoted proof(n), is the set of nodes in the
proof graph rooted at node n, i.e., proof(n) = {n}∪

⋃
n′∈children(n) proof(n′),

and where isAns(n) holds iff n is an answer node. noCyclicDeriv(n′) does
not check whether rule(n′) = rule(d) or subgoals(n′) = subgoals(d), because
exploration of n′ is unnecessary, by the above argument, regardless of the
values of rule(n′) and subgoals(n′).

We extend the algorithm to store the partial answer substitution, denoted
θpa(n), in each node n. This is the substitution that, when applied to
index(n), produces pAns(n) (the pAns component is therefore redundant
and could be eliminated). In the resolveClause method, the θpa component
in both nodes passed to resolve is the empty substitution. In the resolve
function, θpa(n

′) is θ◦θfr◦θpa(n1), where θfr is the substitution that performs
the fresh renaming of Q′ and ∆′, n1 denotes the first argument to resolve,
and ◦ denotes composition of substitutions.

In summary, given an abductive atom-reachability query of the form
in Section 4.2, phase 2 applies the tabling algorithm, modified as described
above, to the policy elimAddRmFact( elimAddRule(elimRmRule(P0))) with
the given goal G0 and specification A of abducible atoms.

Example. Figures 4.6 and 4.7 present two proof graphs ψ1 and ψ2 gener-
ated for the example query in Figures 4.1 and 4.2. In both the graphs, ng rep-
resents an answer node for the goal G0 = treatingWithoutConsent(pat1,

cli1). A directed edge (n, n′) in a proof graph implies that n is an answer
node for a subgoal resulting from the rule used to derive node n′.

4.4.3 Phase 3: Ordering Constraints

Phase 3 considers constraints on the execution order of administrative op-
erations. The ordering must ensure that, for each administrative node or
goal node n, (a) each administrative operation n′ used to derive n occurs
before n (this is a “dependence constraint”) and its effect is not undone by a
conflicting operation that occurs between n′ and n (this is an “interference-
freedom constraint”), and (b) each assumption about the initial policy on
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(a) Proof graph ψ1

ng index = treatingWithoutConsent(pat1, cli1)
pAns = treatingWithoutConsent(pat1, cli1)
residue = {}

n1 index = memberOf(cli1, treatingClinician(pat1, getWellHosp))
pAns = memberOf(cli1, treatingClinician(pat1, getWellHosp))
residue = {}

n2 index = !consentToTreatment(pat1, cli1, getWellHosp)
pAns = !consentToTreatment(pat1, cli1, getWellHosp)
residue = {}

n3 index = consentToTreatment(pat1, cli1, getWellHosp)
pAns = consentToTreatment(pat1, cli1, getWellHosp)
residue = {}

n4 index = aux3.5.13()
pAns = aux3.5.13()
residue = {}

n5 index = hasActivated(pat1, patient)
pAns = hasActivated(pat1, patient)
residue = {}

n6 index = aux3.5.7()
pAns = aux3.5.7()
residue = {}

n7 index = hasActivated(hpo1, policyOfficer(getWellHosp))
pAns = hasActivated(hpo1, policyOfficer(getWellHosp))
residue = {}

n8 index = aux3.5.8()
pAns = aux3.5.8()
residue = {}

(b) Answer nodes

Figure 4.6: First proof graph ψ1 generated in phase 2 for the ex-
ample query in Figure 4.1 and 4.2 using the transformed policy
elimAddRmFact(elimAddRule(elimRmRule(P0))) in Figure 4.5.
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(a) Proof graph ψ2

ng index = treatingWithoutConsent(pat1, cli1)
pAns = treatingWithoutConsent(pat1, cli1)
residue = {memberOf(cli1, workgroup(Wkgp, getWellHosp, Spcty, WkgpType)),

encounter(EncID, pat1, Wkgp, getWellHosp, Type)}
n1 index = memberOf(cli1, treatingClinician(pat1, getWellHosp))

pAns = memberOf(cli1, treatingClinician(pat1, getWellHosp))
residue = {memberOf(cli1, workgroup(Wkgp, getWellHosp, Spcty, WkgpType)),

encounter(EncID, pat1, Wkgp, getWellHosp, Type)}
n2 index = !consentToTreatment(pat1, cli1, getWellHosp)

pAns = !consentToTreatment(pat1, cli1, getWellHosp)
residue = {}

n3 index = hasActivated(cli1, clinician(getWellHosp, Spcty))
pAns = hasActivated(cli1, clinician(getWellHosp, Spcty))
residue = {}

n4 index = memberOf(cli1, workgroup(Wkgp, getWellHosp, Spcty, WkgpType))
pAns = memberOf(cli1, workgroup(Wkgp, getWellHosp, Spcty, WkgpType))
residue = {memberOf(cli1, workgroup(Wkgp, getWellHosp, Spcty, WkgpType))}

n5 index = encounter(EncID, pat1, Wkgp, getWellHosp, Type)
pAns = encounter(EncID, pat1, Wkgp, getWellHosp, Type)
residue = {encounter(EncID, pat1, Wkgp, getWellHosp, Type)}

n6 index = aux3.5.12()
pAns = aux3.5.12()
residue = {}

n7 index = hasActivated(hpo1, policyOfficer(getWellHosp))
pAns = hasActivated(hpo1, policyOfficer(getWellHosp))
residue = {}

n8 index = hasActivated(pat1, patient)
pAns = hasActivated(pat1, patient)
residue = {}

n9 index = aux3.5.8()
pAns = aux3.5.8()
residue = {}

(b) Answer nodes

Figure 4.7: Second proof graph ψ2 generated in phase 2 for the
example query in Figure 4.1 and 4.2 using the transformed policy
elimAddRmFact(elimAddRule(elimRmRule(P0))) in Figure 4.5.
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which n relies is not undone by an operation that occurs before n (this is
an “interference-freedom constraint”).

Note that, when generating the ordering constraints in item (a) for node
n, administrative operations used to derive n′ are not considered, because the
derivation of n does not (directly) depend on the effects of those operations;
n depends on those operations only via the fact that they permit n′, and
ordering constraints that ensure they permit n′ are generated when item (a)
is considered for node n′.

The overall ordering constraint is represented as a Boolean combination
of labeled ordering edges. A labeled ordering edge is a tuple 〈n, n′, D〉,
where the label D is a conjunction of tuple disequalities or false, with the
interpretation: n must precede n′, unless D holds. if D holds, then n and n′

operate on distinct atoms, so they commute, so the relative order of n and
n′ is unimportant.

Pseudocode for phase 3 appears in Figures 4.8 and 4.9. The algorithm
generates the overall constraint, puts the Boolean expression in disjunctive
normal form (DNF), and then checks, for each clause c, whether the gen-
erated ordering constraints can be satisfied, i.e., whether they are acyclic.
If so, the disequalities labeling the ordering constraints do not need to be
included in the solution. However, if the generated ordering constraints are
cyclic, then the algorithm removes a minimal set of ordering constraints
to make the remaining ordering constraints acyclic, and includes the dise-
qualities that label the removed ordering constraints in the solution. After
constraints have been checked (including the constraint that each abduced
negative literal holds initially and still holds when the rule containing it as a
premise is evaluated), negative literals are removed from the residue; this is
acceptable, because the problem definition asks for a representation of only
minimal-residue ground solutions, not all ground solutions (note that neg-
ative literals provide information about which sets of positive literals that
are supersets of the set of positive literals in the residue are also solutions
to the query—roughly speaking, the supersets not containing the negative
literals). Additional disequalities are also added to each solution (dnAb) that
reflect that the residue must be disjoint from nAb.

Example. Figures 4.10 and 4.11 present the overall ordering constraint
and the conjunctive clauses produced by the orderingConstraints function
in Figure 4.9 for the proof graph ψ1 in Figure 4.6. The cycles in each clause
are highlighted by thicker lines. Note that none of the cycles can be removed
while maintaining satisfiability of the resulting constraint. Therefore, proof
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solutions = ∅
for each node ng ∈ Ans(G)

// consistency constraint: disequalities that ensure consistency of initial state,
// i.e., positive literals are distinct from negative literals.
dinit =

∧
{args(a) 6= args(b) | a ∈ facts(P0) ∪ residue(ng) ∧ !b ∈ residue(ng) ∧ unifiable(a, b)}

dnAb =
∧
{args(a) 6= args(b) | a ∈ residue(ng) ∧ b ∈ nAb ∧ unifiable(a, b)}

d0 = dnAb ∧ dinit
if ¬satisfiable(d0)

continue
endif
O = orderingConstraints(ng)
if (∃ clause c in O. the ordering constraints in c are acyclic)

// the ordering constraints for ng are satisfiable without imposing disequalities.
// intersect residue with Atomex (the extensional atoms) to remove negative literals.
solutions = solutions ∪ {〈pAns(ng), residue(ng) ∩Atomex , d0〉}

else
// the ordering constraints for ng are not satisfiable in general, but might
// be satisfiable if disequalities are imposed to ensure that some
// administrative operations operate on distinct atoms and therefore commute.
for each clause c in O

if mightNeedRepeatedOp(c, ng)
// the current version of the algorithm does not support repeated operations
return “repeated operations might be needed”

endif
Dord = ∅
// c is a conjunction (treated as a set) of labeled ordering constraints.
// remove some ordering constraints F from c to make the remaining ordering
// constraints acyclic, and insert in Dord the conjunction d of d0 and the
// disequalities labeling the removed ordering constraints, if d
// is satisfiable and not subsumed by an existing element of Dord.
// we use the algorithm in [RND77] to compute Cyc.
Cyc = set of all cycles in ordering constraints for clause c
FAS = {F | F contains one edge selected from each cycle in Cyc}
// smFAS is the set of ⊆-minimal feedback arc sets (FASs) for clause c
smFAS = {F ∈ FAS | 6 ∃F ′ ∈ FAS . F ′ ⊂ F}
for each F in smFAS
d = d0 ∧

∧
{d′ | 〈n1, n2, d

′〉 ∈ F}
if satisfiable(d) ∧ ¬(∃d′ ∈ Dord. d

′ ⊆ d)
Dord = Dord ∪ {d}

endif
endfor
solutions = solutions ∪ {〈pAns(ng), residue(ng) ∩Atomex , d〉 | d ∈ Dord}

endfor
endif

endfor
// return solutions that are not subsumed by other solutions
return {s ∈ solutions | ¬∃s′ ∈ solutions. s �S s

′}

Figure 4.8: Pseudo-code for Phase 3.
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function orderingConstraints(ng)
θ = θpa(ng)
// dependence constraint: an admin node ns that supports n must occur before n.
Odep =

∧
{〈ns, n, false〉 | n ∈ proof(ng) ∧ (isAdmin(n) ∨ n = ng) ∧ ns ∈ adminSupport(n)}

// all of the constraints below are interference-freedom constraints.
// a removeFact node nr that removes a supporting initial fact of a node n must occur
// after n.
Orm-init =

∧
{〈n, nr, args(a)θ 6= args(pAns(nr))θ〉 |
n ∈ proof(ng) ∧ (isAdmin(n) ∨ n = ng) ∧ nr ∈ proof(ng) ∧ isRmFact(nr)
∧ n 6= nr ∧ a ∈ supportingInitFact(n) ∧ unifiable(!a,pAns(nr))}

// an addFact node na that adds a fact whose negation is a supporting initial fact
// of a node n must occur after n.
Oadd-init =

∧
{〈n, na, args(a)θ 6= args(pAns(na))θ〉 |
n ∈ proof(ng) ∧ (isAdmin(n) ∨ n = ng) ∧ na ∈ proof(ng) ∧ isAddFact(na)
∧ n 6= na ∧ !a ∈ supportingInitFact(n) ∧ unifiable(a,pAns(na))}

// an addFact node na that adds a supporting removed fact of a node n must occur
// either before the removal of that fact or after n.
Oadd-rmvd =∧
{〈na, nr, args(pAns(na))θ 6=args(pAns(nr))θ〉 ∨ 〈n, na, args(pAns(na))θ 6=args(pAns(nr))θ〉 |
n ∈ proof(ng) ∧ (isAdmin(n) ∨ n = ng) ∧ nr ∈ adminSupport(n) ∧ isRmFact(nr)
∧ na ∈ proof(ng) ∧ isAddFact(na) ∧ n 6= na ∧ unifiable(!pAns(na), pAns(nr))}

// a removeFact node nr that removes a supporting added fact of a node n must occur
// either before the addition of that fact or after n
Orm-added =∧
{〈nr, na, args(pAns(na))θ 6=args(pAns(nr))θ〉 ∨ 〈n, nr, args(pAns(na))θ 6=args(pAns(nr))θ〉 |

n ∈ proof(ng) ∧ (isAdmin(n) ∨ n = ng) ∧ na ∈ adminSupport(n) ∧ isAddFact(na)
∧ nr ∈ proof(ng) ∧ isRmFact(nr) ∧ n 6= nr ∧ unifiable(!pAns(na),pAns(nr))}

// conjoin all ordering constraints and convert the formula to disjunctive normal form.
O = DNF(Odep ∧Orm-init ∧Oadd-init ∧Oadd-rmvd ∧Orm-added)
// for each clause c of O, merge labeled ordering constraints for the same pair of nodes,
// so the clause represents a graph with at most one edge between each pair of nodes.
for each clause c in O

while there exist n1, n2, D,D
′ such that c contains 〈n1, n2, D〉 and 〈n1, n2, D

′〉
replace 〈n1, n2, D〉 and 〈n1, n2, D

′〉 with 〈n1, n2, D ∧D′〉 in c
endwhile

endfor
return O

args(a) = a tuple containing the arguments of atom a

support(n) = {n′ ∈ proof(n) | isAns(n′) ∧ n′ 6= n
¬∃na.isAdmin(na) ∧ descendant(n, na) ∧ descendant(na, n

′)}
adminSupport(n) = {n′ ∈ support(n) | isAdmin(n′)}
supportingInitFact(n) = {pAns(n′) | n′ ∈ support(n)

∧ (rule(n′) ∈ facts(P0) ∨ rule(n′) = abduction)}

Figure 4.9: Ordering constraints for an answer node ng.
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Oψ1 = C1 ∨ C2 ∨ C3 ∨ C4

C1 = 〈n2, n3, f〉 ∧ 〈n3, n2, f〉 ∧ 〈n2, ng, f〉 ∧ 〈n4, ng, f〉∧
〈n3, ng, f〉 ∧ 〈n8, n2, f〉 ∧ 〈n6, n3, f〉

C2 = 〈n2, n3, f〉 ∧ 〈ng, n3, f〉 ∧ 〈n2, ng, f〉 ∧ 〈n4, ng, f〉∧
〈n3, ng, f〉 ∧ 〈n8, n2, f〉 ∧ 〈n6, n3, f〉

C3 = 〈ng, n2, f〉 ∧ 〈n3, n2, f〉 ∧ 〈n2, ng, f〉 ∧ 〈n4, ng, f〉∧
〈n3, ng, f〉 ∧ 〈n8, n2, f〉 ∧ 〈n6, n3, f〉

C4 = 〈ng, n2, f〉 ∧ 〈ng, n3, f〉 ∧ 〈n2, ng, f〉 ∧ 〈n4, ng, f〉∧
〈n3, ng, f〉 ∧ 〈n8, n2, f〉 ∧ 〈n6, n3, f〉

Figure 4.10: DNF representation of ordering constraint Oψ1 generated by
phase 3 function orderingConstraints for node ng in the proof graph ψ1 in
Figure 4.6. f abbreviates “false”.

graph ψ1 does not yield any satisfiable solutions for the abductive reachabil-
ity query in Figures 4.1 and 4.2. Figures 4.12 and 4.13 present the ordering
constraint and the conjunctive clause produced by the orderingConstraints
function for node ng in the proof graph ψ2 in Figure 4.7. There is only one
clause, and it is acyclic. Therefore, ψ2 yields a candidate solution to the
query.

Removal of subsumed solutions. Another consequence of replacing the
subsumption check in processAnswer with an equality check is that phase
2 may produce solutions that are subsumed by other solutions. This is
permitted by the definition of the abductive reachability problem in Section
4.2 but is undesirable nevertheless. Therefore, we define a subsumption
relation on solutions, and remove subsumed solutions from solutions near
the end of the pseudocode in Figure 4.8.

Informally, a solution 〈∆, G,D〉 is subsumed by (“is less general than”)
a solution 〈∆′, G′, D′〉 if ∆′ contains fewer or more general atoms than ∆,
G′ is more general than G, and D′ contains fewer tuple disequalities than D.
Formally, a solution 〈∆, G,D〉 is subsumed by a solution 〈∆′, G′, D′〉, denoted
〈∆, G,D〉 �S 〈∆′, G′, D′〉, iff |∆| ≥ |∆′| and there exists a substitution θ
such that G = G′θ and ∆ ⊇ ∆′θ and D ⊇ D′θ. It is easy to show that, if
s �S s′, then [[s]] ⊆ [[s′]].

Optimization. As an optimization, we implement a heuristic that can
eliminate processing of some answer nodes ng in the main loop of phase
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Figure 4.11: Conjunctive clauses in Oψ1 from Figure 4.10 represented as
labeled graphs. The unsatisfiable cycles are highlighted by thicker lines.

3 in Figure 4.8. Before starting the main loop, we construct a directed
acyclic graph (DAG) of answer nodes with an edge from n to n′ if n �node
n′, where the subsumption relation �node on answer nodes is defined by:
n �node n′ iff |residue(n)| ≥ |residue(n′)| and there exists a substitution θ
such that index(n) = index(n′)θ and pAns(n) = pAns(n′)θ and residue(n) ⊇
residue(n′)θ. After processing a node ng in the main loop of phase 3 in Figure
4.8, if ng leads to a solution with no disequalities (i.e., the third component
of the tuple is true) then we discard all nodes n′ that are reachable from ng
in the DAG, because it is easy to prove, from the definition of �node and
�S , that processing of node n′ would only yield solutions (if any) that are
subsumed (in the sense of �S) by the solutions yielded by processing of ng
(and hence if we computed the solutions from n′, they would be discarded
in the last line of Figure 4.8).
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Oψ2 = C1

C1 = 〈n6, ng, f〉 ∧ 〈n2, ng, f〉 ∧ 〈n9, n2, f〉

Figure 4.12: DNF representation of ordering constraint Oψ2 generated by
phase 3 function orderingConstraints for node ng in the proof graph ψ2 in
Figure 4.7. f abbreviates “false”.

Figure 4.13: Conjunctive clause in Oψ2 from Figure 4.12 represented as
labeled graphs. The ordering constraint is acyclic.

Repeated Administrative Operations. Tabling re-uses nodes, includ-
ing, in our setting, administrative nodes. This makes the analysis more
efficient and avoids unnecessary repetition of administrative operations in
plans. However, in some cases, administrative operations need to be re-
peated; for example, it might be necessary to add a fact, remove it, and
then add it again, in order to reach a goal. The current version of our
algorithm cannot generate plans with repeated administrative operations,
but it does identify when repeated operations might be necessary, using the
function mightNeedRepeatedOp, and returns a message indicating this (see
Figure 4.8). Specifically, mightNeedRepeatedOp(c, ng) returns true if some
node n in c is a child of multiple nodes in proof(ng); in such cases, it might
be necessary to replace n with multiple nodes, one for each parent, in order
to satisfy the ordering constraints. To achieve this, the algorithm can be
modified so that, if mightNeedRepeatedOp returns true, the algorithm re-
runs phases 2 and 3 but this time constructs new answer nodes, instead of
re-using tabled answers, for the nodes identified by mightNeedRepeatedOp
as possibly needing to be repeated.

Plan Construction. We describe how to extend the algorithm to return
plans, i.e., sequences of administrative actions that lead to a policy in which
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function nodeToAction(n)
if(isAddFact(n)) then
op = addFact(pAns(n))

else
op = removeFact(pAns(n))

n′ = the node in children(n) such that unifiable(pAns(n′), u0(U))
θ = mostGeneralUnifier(pAns(n′), u0(U))
u = Uθ
return u:op

Figure 4.14: nodeToAction function to compute actions corresponding to
an administrative answer node

an instance of the goal is derivable.
The algorithm is modified to return a set of 4-tuples 〈∆, G,D,Π〉 where

∆, G, and D are as before, and Π is a set of sequences of administrative
actions u : op (not necessarily ground), such that for every sequence π in Π
and every ground substitution θ such that satisfiable(Dθ), the sequence of
actions πθ can be executed starting from P0 ∪∆θ and leads to a policy P
such that G0θ ∈ [[P ]].

Each administrative node n in a proof graph represents an administrative
action. The plan construction algorithm uses the nodeToAction function in
Figure 4.14, which takes as input an administrative node n and returns an
administrative action u:op corresponding to that node.

The pseudo-code in Figure 4.8 is modified as follows to construct plans.
The line

solutions = solutions ∪ {〈pAns(ng), residue(ng) ∩Atomex , d0〉}

is replaced with

solutions = solutions ∪ {〈pAns(ng), residue(ng) ∩Atomex , d0, plans(ng, c)〉}

where the function plans(ng, c) is defined by

function plans(ng, c)
A = {n ∈ proof(ng) | isAdmin(n)}
Πnode = {π ∈ Perm(A) |

∀n, n′ ∈ A : ((n, n′, . . .) ∈ c)⇒ n precedes n′ in A}
return {map(nodeToAction, π) | π ∈ Πnode}
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where Perm(A) is the set of permutations of A, and map(f, o) maps the
function f along the sequence o and returns the sequence containing the
results. Also, the line

Dord = Dord ∪ {d}

is replaced with
Dord = Dord ∪ {〈d, F 〉}

and the expression ∃d′ ∈ Dord is replaced with ∃〈d′, F ′〉 ∈ Dord, and the line

solutions = solutions ∪ {〈pAns(ng), residue(ng) ∩Atomex , d〉 | d ∈ Dord}

is replaced with

solutions = solutions∪{〈pAns(ng), residue(ng) ∩Atomex , d,plans(ng, c \ F 〉 |
〈d, F 〉 ∈ Dord}

4.5 Correctness

The algorithm is sound in the sense that, when it terminates with a solution,
the solution is indeed a comprehensive solution to the given abductive atom-
reachability query. A soundness proof appears below.

The algorithm is incomplete, for two reasons. First, it might diverge, for
policies of the kind for which Becker et al.’s algorithm might diverge [BN08,
Section 3.2] and for other policies as well, due to replacement of the sub-
sumption check in processAnswer with an alpha-equality check. Second,
it might return the message that repetition of administrative actions might
be needed, as discussed in Section 4.4.3, instead of returning a solution.

Soundness of phases 2 and 3 in the extended algorithm are expressed by
the following theorem.

Theorem 4.5.1. Let P ′0 denote the policy obtained by applying elimAddRule
and elimRmRule transformations to the given initial policy P0 in phase
1. Suppose the extended phase 3 terminates and returns a set S. Let
〈∆, G,D,Π〉 be an element of S, and let π be an element of Π. For ev-
ery ground substitution θ such that satisfiable(Dθ), the sequence of actions
πθ can be executed starting from P ′0 ∪∆θ and leads to a policy P such that
Gθ ∈ [[P ]].

Proof. The proof is by induction on π. Let πi denote the i’th element of π,
indexed starting with 0. We prove by induction that, for 0 ≤ i < |π − 1|,
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πiθ is executable in P ′i , i.e., there exists a (unique) policy P ′i+1 such that
〈P ′i , πiθ, P ′i+1〉 ∈ T .

Base case: Every first action π0 in any plan returned by the algorithm is
allowed under the corresponding initial policy P ′0∪∆θ. This is because,
since we only consider addition and removal of facts, the inference rules
are immutable and can be used anywhere for derivation and, from the
construction of derivations for phase 2, the action π0θ corresponds
to an admin node in the proof graph that depends only on the facts
and rules in the initial policy and is, therefore, derivable under the
corresponding initial policy P ′0 ∪∆θ.

Step case: Suppose ni+1 is the node in proof(ng) such that πi+1 =
nodeToAction(ni+1). From the proof graph construction in phase 2,
we know that ni+1 can be proven using n0, ..., ni and additional nodes
which correspond to derivations in the proof graph and answer nodes
that use abduction. Since phase 1 eliminated addition and removal
of rules, phases 2 and 3 consider only addition and removal of facts,
so the inference rules are immutable and can be used anywhere for
derivation. Also, the answer nodes that abduce facts for the initial
policy are appropriately ordered with respect to the administrative
nodes that require them, due to the ordering constraints in Oadd-init

and Orm-init. The elimAddRmFact transformation used in phase 2
changes the semantics of the policy in the following way: facts that
were not derivable in the untransformed policy, because they were not
added to the policy by an administrator, are derivable through the
inference rules produced by this transformation. However, these facts
could be added by an administrator, so this consequence of the trans-
formation does not compromise soundness. Furthermore, phase 2 does
not interpret the negation symbol as negation, so it allows inconsis-
tent derivations to be generated as a result of using the transformed
rules. However, Phases 2 and 3 together are sound, because phase
3 eliminates inconsistent derivations generated in phase 2 because it
does not use the transformed rules; instead, phase 3 re-interprets uses
of the transformed inference rules in the proof graph as addFact and
removeFact operations, constructs ordering constraints on those op-
erations, and checks for inconsistencies in the intermediate and final
policies produced by performing those operations in an order consis-
tent with the ordering constraints.
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The requirement that the plan construction is consistent with a satis-
fiable ordering constraint O, and the assumption satisfiable(Dθ), en-
sures that πi+1θ can be executed after π0θ, . . . , πiθ, i.e., that 〈P ′i , πiθ,
P ′i+1〉 ∈ T .

Thus, for all substitution θ such that satisfiable(Dθ), the plan π is
sound with respect to the transition relation T . Since, the plan con-
struction stops when a policy is reached that derives G, the final action
πfθ ∈ πθ results in the policy P such that P ` Gθ.

Comprehensiveness of phases 2 and 3 in the extended algorithm are
expressed by the following theorem. It states that if the algorithm terminates
and returns a solution then all minimal ground solutions to the transformed
policy are instances of some solution returned by the algorithm.

Theorem 4.5.2. Let P ′0 denote the policy obtained by applying elimAddRule
and elimRmRule transformations to the given initial policy P0 in phase 1.
Suppose, there exists a set of ground facts ∆m such that there exists a se-
quence of administrative actions A from P ′0 ∪∆m to P and P ` Gm where
Gm is a ground instance of G0 and for all ∆′ ⊂ ∆m, there does not exist
any ground substitution ν such that G0ν is reachable from P0 ∪ ∆′. Then
there exists 〈∆, G,D,Π〉 ∈ S such that for some substitution θ, ∆θ = ∆m

and Gm is an instance of Gθ.

Proof. elimAddRmFact transformation changes the semantics of the policy
P ′0 such that facts that were not derivable in the untransformed policy,
because they were not added to the policy by an administrator, are derivable
through the new inference rules. These changes, however, do not cause phase
2 to overlook any possible derivations of the goal. This follows from the fact
that phase 2 ignores the semantics of negation (recall that it treats the
negation symbol as part of the predicate name) and hence may construct
proof graphs that contain both an atom and its negation. In effect, the
transformed policy used in phase 2 does not contain negation and hence is
monotonic, so increasing the set of derivable facts allows more derivations
to be considered and cannot cause any derivation not to be considered.
Of course, this also means that some of the generated derivations might
be inconsistent, i.e., they might contain both a and !a. Since, Becker et
al.’s tabling algorithm is complete and our extension to the algorithm only
increases the semantics of the transformed policy in phase 2, phase 2 is
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comprehensive in terms of preserving the minimal solutions to the input
query.

We argue that phase 3 does not eliminate the minimal solutions to the
query. This is because, if there does exist a feasible sequence of actions as
represented by the administrative nodes in one of the proof graphs from
phase 2 (which will be preserved as argued earlier) then this would be ex-
plored while considering all possible plans in the plan construction and the
resulting disequality D would be satisfiable for the corresponding minimal
ground solution. Thus, there would exist a solution 〈∆, G,D,Π〉 ∈ S such
that for some substitution θ, ∆θ = ∆m and Gm is an instance of Gθ, where
〈∆m, Gm〉 is the minimal ground solution in consideration.

Overall Correctness of the Algorithm. Next we state the correctness
of the overall algorithm when it terminates and returns a set of solutions.

Theorem 4.5.3. Let Q = 〈P0, U0, A,G0〉 be an abductive atom reachability
query. Suppose the algorithm extended with plan construction terminates
and returns a set S. Then S is a comprehensive solution to Q, that is:

Soundness:
⋃
s∈S [[s]] ⊆ Sgnd , where [[〈∆, G,D,Π〉]] = {〈∆θ,Gθ〉 | ground(θ)∧

Dθ = true} and Sgnd is the set of all ground solutions to Q, and

Comprehensiveness:
⋃
s∈S [[s]] ⊇ Smin-gnd , where [[〈∆, G,D,Π〉]] = {〈∆θ,

Gθ〉 | ground(θ) ∧ Dθ = true} and Smin-gnd is the set of minimal-
residue ground solutions to Q.

Proof. Soundness: From theorem 4.4.7 we know that the atom-reachability
for all atoms a 6∈ excludedAtoms is preserved under phase 1 of the al-
gorithm. Also, from theorem 4.5.1, we know that all solutions returned
from phases 2 and 3 are sound, i.e. they ∀s ∈ S.[[s]] ⊆ Sgnd . Therefore,⋃
s∈S [[s]] ⊆ Sgnd .

Comprehensiveness: Phase 1 of the algorithm preserves comprehensive-
ness because atom-reachability is preserved as per theorem 4.4.7. Fur-
ther, from theorem 4.5.2, we know that, if the algorithm terminates
with a solution, all minimal ground solutions to Q are instances of
some solution returned by the algorithm. Therefore, if the overall al-
gorithm returns a set S, then ∀s ∈ Smin-gnd (∃s′ ∈ S(s ∈ [[s′]])) ⇒⋃
s∈S [[s]] ⊇ Smin-gnd .
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4.6 Implementation and Experience.

We implemented the analysis algorithm in approximately 5000 lines of OCaml.
The choice of framework for the implementation was motivated by the strong
need for pattern matching and abstract syntax tree manipulation in the
program. We applied the implementation to part of the policy PHCN for
the healthcare network case study in chapter 3 with 23 administrative per-
mission rules. We included facts about a few prototypical users in PHCN:
fpo1, a member of policyOfficer(getWellHosp); clin1, a clinician at
getWellHosp; and user1, a user with no roles. A sample abductive atom-
reachability query that we evaluated has P0 = PHCN, U0 = {fpo1, user1},
A = 〈Ab = {memberOf(User, workgroup(WG, getWellHosp, Spcty, team))},
nAb = {}〉, and G0 = workgroupHead(GoalUser, cardioTeam,

getWellHosp). The analysis takes about 3 seconds, generates 2352 nodes,
and returns five solutions. For example, one solution has partial answer
workgroupHead(GoalUser, cardioTeam, getWellHosp), residue
{memberOf(GoalUser, workgroup(cardioTeam, getWellHosp, Spcty,

team))}, and tuple disequality 〈GoalUser〉 6= 〈fpo1〉. The disequality re-
flects that fpo1 can appoint himself to the hrManager(getWellHosp) role,
can then appoint himself and other users as members of cardioTeam, and
can then appoint other users as team head, but cannot then appoint himself
as team head, due to the negative premise in the rule 3.5.1.

Another query that we have tested and evaluated the implementation
for included the prototypical users fpo1, a member of policyOfficer(
getWellHosp); hhr, a member of hrManager(getWellHosp); cli1 a clin-
ician at getWellHosp; and pat1, a patient at getWellHosp. In this case,
U0 = {fpo1, hhr}, A = 〈Ab = { memberOf(User, workgroup(WG, getWellHosp,

Spcty, team)), encounter(EncID, pat1, Wkgp,

getWellHosp, Type)},nAb = {}〉, and G0 = memberOf(cli1,

treatingClinician(pat1, getWellHosp)). To summarize, the query asks
whether through action of the policy officer and HR manager, can a clinician
become the treating clinician for a patient at getWellHosp, i.e. without the
patient or the clinician’s involvement. The analysis takes about 4 seconds
and returns one solution with residue {memberOf(cli1, workgroup(WG,

getWellHosp, Spcty, team), encounter(EncID,

pat1, WG, getWellHosp, Type)} which indicates that this is possible if
hhr makes cli1 a member of a workgroup WG that is currently handling
an encounter EncID for pat1. This may not be a malicious behavior, but
from the perspective of a policy auditor, an understanding of such a scenario
helps in identifying behaviors that were not intended during policy design.

82



4.7 Related Work

Several analysis algorithms for determining user-permission reachability in
ARBAC97 [SBM99] have been proposed. [LT06] proposes state-exploration
based security analysis techniques as a means to maintain security properties
during delegation of administrative privileges.

[JLT+08] considers various classes of security analysis problems for RBAC
which ask whether an access control system preserves security policy in-
variants across policy state changes. An important goal in [JLT+08] is to
help RBAC administrators precisely understand whom they are trusting for
maintaining the desirable security properties, that is, who will be able to
compromise the security of their system. They present two approaches, one
based on model checking, and the other based on logic programming.

[SYRG07, SYGR11, SYSR11] address the user-role reachability problem
in ARBAC, which asks whether a given user can be assigned to given roles
by given administrators.

User-role reachability for ARBAC is intractable in general. [SYRG07]
presents an algorithm for user-role reachability analysis for ARBAC and
expresses its worst-case time complexity in tersm of parameters that char-
acterize the hardness of the problem instance. They show that, when these
parameters are fixed, the time complexity of the algorithm is polynomial in
terms of the overall input size. They also argue that the hardness parameters
are often small in practice.

[SYGR11] extends ARBAC to parameterized ARBAC (PARBAC), which
adds parameters to roles and permissions, thereby enhancing the scalability,
flexibility and expressiveness of ARBAC. It also presents a proof that user-
role reachability for PARBAC is undecidable in case of infinite domains for
parameters and presents a semi-decision procedure for reachability analysis
of PARBAC.

[SYSR11] addresses the worst-case time complexity for a wide range of
ARBAC analysis problems. It presents analysis for reachability, availability
(e.g., whether a user cannot be removed from a role by a group of admin-
istrators), containment (e.g., every member of one role is also a member
of another role), and information flow properties in ARBAC. It also shows
that reachability analysis for ARBAC is PSPACE-complete and then con-
siders the affect on the worst-case complexity of various restrictions on the
problem instances.

The administrative frameworks and analysis algorithms in all of these
works on ARBAC differ significanlty from our work in that the administra-
tive operations they consider correspond to addition and removal of facts,
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based on the representation of RBAC in ACAR in Section 3.3; thus, they
do not consider administrative operations that correspond to addition and
removal of rules.

[BHA11] extends UARBAC, an RBAC administration model proposed
in [LM07], to improve expressiveness and usability and proposes logic and
program verification techniques to solve a reachability problem intended to
aid legitimate users in understanding how to achieve a desired access-control
state. While their extended version of UARBAC is significantly more ex-
pressive than ARBAC97, all policies under their framework can also be
expressed in ACAR by translating their definitions for action permissions to
ACAR rules. Note that UARBAC create operation, which creates a new ob-
ject of a specified class, can be modeled in ACAR as an addFact operation
that adds a fact to a relation representing the extent of the class. UARBAC
is less expressive than ACAR, because it does not support rules, permis-
sions to add or remove rules, negative preconditions for actions, etc. The
analysis algorithm in [BHA11] allows more general goals than our analysis
algorithm, with disjunction, conjunction, and negation, with the restriction
that negation cannot occur in the scope of conjunction. On the other hand,
their analysis algorithm does not handle the above features of ACAR, and
it does not perform abductive analysis.

[KN07] proposes a decidable safety analysis problem for the HRU ac-
cess control model [HRU76]. In HRU, a policy is represented by a set of
commands, which correspond roughly to administrative permission rules in
ACAR. The general safety (reachability) analysis problem for HRU asks
whether a safety property (e.g., unreachability of a specified goal) holds for
a specified policy starting from a specified initial state (represented as an
access matrix, corresponding roughly to initial facts in ACAR). This prob-
lem is undecidable in [HRU76]. [KN07] identify a decidable variant of the
safety problem, which asks whether a temporal safety property holds for a
specified policy starting from all initial states. This is reminiscent of ab-
ductive analysis, because the initial state is unspecified; on the other hand,
it is not abductive analysis, because it does not compute conditions on the
initial state that ensure the safety property holds. Also, our definition of
abductive reachability allows the user to specify part or all of the initial
facts if desired; for example, the user can completely specify the initial facts
by including them in P0 and taking the set of abducibles to be empty.

Craven et al. [CLM+09] present policy analysis for dynamic authoriza-
tion policies. They present a rich authorization language with support for
obligations, time constraints, stratified negation (which we don’t), etc. They
motivate the use of abductive logic programming to answer policy analysis
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questions as it presents more information in an answer than simply yes and
no. They present a set of policy analysis problems that can be addressed
using abductive logic programming, such as policy comparison, which is
a comparison of two policies for equivalence or subsumption, separation of
duty, etc. However, their policy language itself does not include a rule-based
administrative model. On the other hand, one may be able to model addi-
tion and removal of facts as events in their system, which can be controlled
by the policy itself and hence serve as an administrative policy. Another
limitation in their work, particularly in the analysis algorithm, is that they
restrict abduction to ground residues. On the other hand, our algorithm
tries to address a more general problem of computing comprehensive solu-
tions and computes non-ground residues.

There is little work on administrative frameworks for rule-based access
control. [Bec09, BN10] present a framework for administration of rule-based
access control, however they consider only addition and removal of facts,
not rules. [Bec09] presents a dynamic authorization policy language and
two reachability analysis approaches for this language to present plans of
actions (addition and removal of authorization facts) that lead to the goal.
The first method is based on AI planning, however it requires the domain of
constants in the language to be finite and the policy to be tight meaning that
every rule defining an intensional predicate could be finitely unfolded down
to extensional predicates. The second method, based on theorem proving,
relaxes the finiteness restriction but makes the problem undecidable. How-
ever, as stated earlier, both approaches only deal with addition and removal
of facts and solve reachability from a given initial state. Our abductive
analysis does not require the domain of constants to be finite, or the policy
to be tight, and returns solutions that are more general in terms of the facts
in the initial policy.
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Chapter 5

Verification of Security
Policy Enforcement in
Enterprise Systems

An important problem in security policy research is verification of policy en-
forcement to ensure that, given the overall system architecture and security
configurations of various system components, a high-level security policy is
correctly enforced. Such high-level policies can be used to express security
requirements for entire systems and may refer to abstract information re-
sources, independent of where the information is stored or how the storage is
implemented. Further, such policies control both direct and indirect access
requests to the information and may refer to the request’s path through the
system (what we refer to as the request context). Such high-level policies
are enforced several security mechanisms and are distributed across differ-
ent system components. The overall system architecture may also affect the
policy enforcement by restricting the paths that an access request may take.
Ensuring that the individual components’ security configurations (low-level
policy) and the system architecture correctly enforce a high-level policy is
a difficult problem. This chapter presents our research on this problem.
Also, enforcement of the high-level policies might involve multiple hardware
and software components in the system. Therefore, a natural question dur-
ing security analysis is to identify a trusted computing base (TCB) for each
information resource. The answer to such a question may depend on the
low-level policies as well as the system architecture.

In this chapter we first explicitly identify the characteristics of high-level
policies. Next we present a framework that allows convenient and formal
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specification of such high-level policies, modeling of low-level policies, and
modeling of relevant aspects of system architecture. Finally, we describe
a method for verifying that the low-level policies in a system correctly en-
force (“implement”) the high-level policies and an algorithm for computing
a trusted computing base for a component or information resource.

5.1 Framework

5.1.1 Running Example.

We use a student information system as a running example to illustrate our
framework. Student information is classified as academic (transcript, etc.)
or personal (SSN, citizenship, etc.). The system architecture is shown in
Figure 5.1. Academic information and personal information are stored in
separate databases. solar is a web-based university information system; for
brevity, we model solar and the associated web server as a single compo-
nent.

5.1.2 Information Resources.

An information resource, abbreviated IR, represents a kind of information
handled by the system. The relation implements(C, I) means that com-
ponent C (partially or completely) implements IR I, i.e., C stores that kind
of information. For example, the student information system contains two
IRs, academicIR and personalIR, each implemented by a corresponding
database (e.g., implements (academicDB, academicIR)). The distinction
between an IR and the components that implement it is useful if the infor-
mation in the IR is partitioned, replicated, archived, etc.

The information in an IR is assumed to be structured as a set of records,
whose attributes (fields) and their types are specified in the definition of
the IR. We refer to these as attributes of the IR, although they are actually
attributes of the records in it. An attribute type can be a primitive data
type (e.g., String) or an IR, denoting a reference to a record in another IR
(recursive types are prohibited). For example, the attributes of academicIR
and studentIR include an attribute id with type String, which identifies
the student that the record is about. IRs have a straightforward API with
operations for manipulating records. For example, the API includes an
operation readField with arguments record (the record being accessed)
and field (the field being accessed).
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Figure 5.1: Architecture of student information system. Edge labels specify
the corresponding relation. The components connected on internal LAN

are related to each other via link relation.
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5.1.3 Components.

A system is built from components, which may represent software (e.g.,
solar) or hardware (e.g., a host or firewall). Each component has attributes,
accessed using the dot operator. For example, for a software component C,
C.host is the host on which C runs. Attributes can also provide infor-
mation about identity management, e.g., which authentication services and
directory services are used by the component.

Each component has an API. For example, the API for the databases
academicDB and personalDB is modeled (ignoring details of SQL) as con-
taining functions like readField, writeField, readRecord, and addRecord.
The API for solar contains getTranscript, getSSN, and getCitizenship.
We model the browser as offering its user a single function, request, which
non-deterministically sends some request to a web server (in this case, so-
lar). For brevity, we consider only the above functions; other functions can
be modeled and analyzed similarly.

Each component has a low-level permit policy that controls invocations of
functions in the component’s API and is enforced locally by the component.
The language for low-level policies is described later in this section.

5.1.4 High-Level Policies.

High-level policies are expressed in a simple rule-based language, which is
an extension of Datalog with simple data structures that can be read, but
not constructed or updated, by policy rules. A policy rule has the form
Q <- P1, . . . ,Pn and means: Q holds if P1 through Pn hold. Variables start
with an uppercase letter, constants start with a lowercase letter, and string
constants appear in single quotes. The rules define the relation hPermit

(“high-level permit”). hPermit(U, R, Op, C) holds if the system should
permit (allow) requests from user U to perform operation Op on resource
R in context C. A resource is a component or IR. The rules may also
define auxiliary relations. For convenience, the name and arguments of the
operation are modeled as attributes ofOp (this is just a modeling convention,
not an assumption about the implementation); the operation name is stored
in Op.function. The context C is a sequence of tuples (c, f)—where c is a
component or IR, and f is a function in c’s API—representing the call chain
(or “path”) by which the request propagated through the system. Figure
5.2 shows some high-level policies for the running example.
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% A Student can read any field in the records for himself or

% herself.

(P1) hPermit(User, Resource, Op, Context) <-

Resource in {academicIR, personalIR},

Op.function = readField, Op.record.id = User.id

% A Graduate School Clerk can read every student’s transcript,

% if accessed through solar from (a browser running on) an

% internal host. Note: Context.head() is the first element of

% the context. internalHost(H) is an auxiliary predicate

% (definition elided) that holds if host H is part of the campus

% network.

(P2) hPermit(User, academicIR, Op, Context) <-

Op.function = readField, Op.field = ’transcript’,

User.role = ‘GradSchlClerk’, Context.contains(solar),

runs-on(Context.head(), H), internalHost(H)

% A registrar can read a student’s personal information, if

% accessed from an internal host

(P3) hPermit(User, personalIR, Op, Context) <-

Op.function = readRecord, User.role = ’Registrar’,

runs-on(Context.head(), H), internalHost(H)

% An administrative user can add new records to academicIR

(P4) hPermit(User, academicIR, Op, Context) <-

Op.function = addRecord, User.role = ‘admin’

% An administrative user can add new records to personalIR

(P5) hPermit(User, personalIR, Op, Context) <-

Op.function = addRecord, User.role = ‘admin’

Figure 5.2: Illustrative high-level policy rules for the student information
system
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5.1.5 Call Map

A function in a component’s API may call functions provided by other com-
ponents. Such calls must be considered to determine whether the restrictions
on indirect calls expressed by high-level policies are enforced. We introduce
a function callMap that captures the possible calls made by each component
function. For simplicity and efficiency, callMap provides, and our analysis
tracks, only equalities involving function arguments. Such equalities are of-
ten needed to verify enforcement of high-level policies; for example, to verify
enforcement of (P1) in Figure 5.2, the analysis must track equalities involv-
ing the id argument, which identifies the user whose record is being accessed.
callMap represents all interactions between components, regardless of the
actual communication mechanism.

Given a component C and a function F in its API, callMap(C,F ) returns
a set of tuples of the form (calledBy , R, F ′, args), each describing a possible
call made during execution of that function. The above tuple represents a
call to function F ′ (the “target function”) of the “target” resource (com-
ponent or IR) R. calledBy is analogous to a setuid flag. If calledBy=self,
the target resource sees the user executing the calling component C as the
caller; if calledBy=caller, it sees the user that called F on C as the caller.
args characterizes the possible arguments of the call to the target function.
args is represented as a set of equalities of the form attrib = val , where attrib
is an attribute name (recall that we model function arguments as attributes
of an operation object), and val can be a constant, the name of an attribute
(meaning that attribute attrib of the target call equals attribute val of the
enclosing call to F ), or newVar (meaning that a fresh variable will be used
in the analysis to represent this value).

For example, callMap(solar, getTranscript) contains the tuple (self,
academicDB,

readField, {id=id, field=‘transcript’}). The values of callMap for
solar’s getSSN and getCitizenship functions are similar. callMap(browser1,
request) contains a tuple for every function of every other component, with
newVar arguments, reflecting that browser1 is untrusted and may make ar-
bitrary calls.

When analyzing the security of a design, the callMap for each component
is based on the component’s behavior as described in the design. For an im-
plemented system, callMap could be determined from the code. Determin-
ing it accurately might be difficult, but an over-approximation can safely be
used when verifying enforcement of high-level policies. Over-approximations
in callMap may cause false alarms, but in many cases, the low-level permit
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policy of the target component or an intervening component will block the
spurious calls or nested calls they make, preventing false alarms. If the anal-
ysis does raise false alarms, the corresponding call chains indicate exactly
what assumptions about possible calls and their arguments are needed for
enforcement of the high-level policies, and the callMap, permit policies, or
system architecture can be refined accordingly.

5.1.6 Hosts and Firewalls.

Each component has an attribute type. This attribute can have any value,
but the values host and firewall have special significance. Hosts and
firewalls are hardware components with network connections. Network con-
nectivity is modeled by the relation link(C1, C2), which means that the
network may contain a path between C1 and C2 that does not pass through
a host or firewall. This reflects the fact that we explicitly model hosts and
firewalls but not routers. By taking all paths in the network topology into
account in the link relation, we are making no assumptions about routing
(or its security), although such assumptions could be used to restrict the
link relation.

Hosts, like all components, have attributes, e.g., the set of users with
accounts on the host. Since each software component must run on a host,
we introduce a relation runs-on(C, H), which means that component C
may run on host H. Hosts provide various services, notably communication
services, to components running on them. Host-based security mechanisms
may limit the communication performed by a component, e.g., blocking con-
nections with components on untrusted hosts. Firewalls provide a similar
security mechanism, typically forwarding some messages and dropping oth-
ers, based on the firewall’s local policy. An obvious way to capture this is to
model network security mechanisms as they are implemented (e.g., at the
packet level). However, this level of detail would unnecessarily complicate
the model and slow the analysis. We adopt a higher-level view, in which
hosts and firewalls are modeled as forwarding (or dropping) inter-component
function calls, rather than packets. We include relevant network-layer infor-
mation, such as the source and destination network addresses, as attributes
of the operation object Op representing the call. With this approach, the
API of a host or firewall includes the operations (of other components) that
it forwards; its low-level permit policy allows calls that it forwards and de-
nies calls that it drops; and its callMap normally indicates that the call gets
forwarded with unchanged arguments.
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5.1.7 Low-Level Policies.

Low-level policies for all components are represented in a common rule-based
language. The actual configuration languages of the access control mech-
anisms get translated to this common language; this can be automated.
Low-level policy rules have the same form as high-level policy rules. They
define auxiliary relations (if desired) and the relation permit(U, R, Op,
M), where the user U , resource R, and operation Op are the same as for
hPermit, and M mode M describes the communication mechanism through
which the operation is invoked. The mode M enables us to model the
fact that different functions may be offered through different interfaces or
with different policies. To avoid irrelevant details and distinctions about
communication mechanisms, we define modes that reflect how the commu-
nication mechanism relates to the system architecture. A mode M has an
attribute type whose possible values are: direct, indicating that the func-
tion is called by a user directly executing/running the component; local,
indicating that the function is called via some inter-process communication
mechanism by another component on the same host; or remote, indicat-
ing that the function is called over the network via some communication
mechanism. The mode M may have additional attributes, depending on its
type. If M.type=local, M.requester identifies the calling component.
If M.type=remote, the attributes M.srcIP, M.srcPort, M.destIP, and
M.destPort represent the source IP address, source port, destination IP
address, and destination port, respectively.

We could express low-level policies in an existing language for attribute-
based access control, such as OrBAC [ABB+03], which offers useful abstrac-
tions for structuring policies. Our language is simple but flexible and ex-
pressive: those abstractions can easily be represented in our language using
auxiliary relations, and making them built-in would complicate our analysis
algorithm without providing any additional leverage.

Figure 5.3 contains low-level policies for the student information system.
campusIPaddr(IPaddr) is an auxiliary predicate that holds if the given IP
address is part of the campus network.

5.2 Verification of Enforcement

This section sketches an algorithm for verifying that the low-level policies
and system architecture together enforce the high-level policies. For simplic-
ity, the algorithm assumes that the policies does not contain recursion. This
restriction is satisfied by most policies and can easily be relaxed if necessary.
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firewall:

permit(User, Resource, Op, Mode) <-

Resource in {webServer, solar}, Mode.type = remote,

Mode.destPort = 443

solar:

permit(User, solar, Op, Mode) <-

Op.function in {getTranscript, getSSN, getCitizenship},

Op.recordId = User.id, Mode.type = remote

permit(User, solar, Op, Mode) <-

User.role = ‘GradSchlClerk’, Op.function = getTranscript,

Mode.type = remote, campusIPaddr(Mode.srcIP)

webServer:

permit(_, solar, _, _)

dbServer:

permit(User, Resource, Op, Mode) <-

Resource in {academicDB, personalDB}, Mode.type = remote,

Mode.destPort = 8000

personalDB:

permit(User, personalDB, Op, Mode) <-

User.role = ‘Registrar’, Op.function = readRecord,

Mode.type = remote, campusIPaddr(Mode.srcIP)

permit(User, personalDB, Op, Mode) <-

User.role = ‘solar’, Op.function = readField,

Mode.type = remote

permit(User, personalDB, Op, Mode) <-

User.role = ‘admin’, Op.function = addRecord,

Mode.type = direct

academicDB:

permit(User, academicDB, Op, Mode) <-

User.role = ‘solar’, Op.function = readField,

Mode.type = remote

permit(User, academicDB, Op, Mode) <-

User.role = ‘admin’, Op.function = addRecord,

Mode.type = direct

Figure 5.3: Low-level policies for student information system
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The default starting points for requests are all functions sf of all compo-
nents sr that can be directly invoked . At each starting point, the arguments
to the (top-level) function call and the identity of the user making the call
are represented by variables. The algorithm computes all possible chains
of functions call that can propagate from each starting point through the
system, based on the system architecture and callMap. Note that these call
chains, ignoring the arguments to each function, correspond to the “con-
text” argument of hPermit in the high-level policy. If the call map contains
cycles, the number of call chains may be infinite. If a possible call C would
extend a call chain with a call that is the same, modulo renaming of vari-
ables introduced by newVar, as a call already in the call chain, then that
call is not explored. To ensure this condition is sound, we include in the
policy language only selected functions for accessing the context; currently,
we include head() and contains(expr) (not, e.g., length()).

While constructing call chains, the algorithm accumulates constraints on
the values of variables (the starting variables and variables introduced by
newVar) that represent function arguments; the constraints express that the
calls in the chain are permitted by the low-level policies of the components
involved (including hosts and firewalls). Values of function arguments ob-
tained from callMap are reflected in the formula as equality conjuncts; for
example, if callMap indicates that a function call represented by Op1 has
CS as the value of the dept argument, Op1.dept = CS is conjoined to the
formula. The constraint for a call is determined by matching the conclusions
of the permit rules in the low-level policy of the component with the call,
and, for each rule that matches, instantiating the variables in the rule based
on the match and then backchaining to construct a first-order logic formula
representing conditions under which the instantiated conclusion can be de-
rived. Since we assume the policy rules are not recursive, the backchaining
always terminates. If the accumulated constraint becomes unsatisfiable, the
algorithm does not explore extensions of that call chain.

For each call chain S (including prefixes of longer call chains), the algo-
rithm checks whether the call chain is consistent with the high-level policy.
Specifically, let ΨL be the constraint computed for S, and let C be the con-
text defined by S, i.e., S[i] is a call to function first(C[i]) of component
second(C[i]), where first and second return the indicated components of a
tuple. Call chain S is consistent with the high-level policy if, for every in-
stantiation of the variables that satisfies ΨL (in other words, S is feasible),
the instantiated call last(S) with context C is permitted by the high-level
policy. To check this efficiently, we use backchaining to compute a first-order
logic formula ΨH representing the conditions (including conditions on the
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context) under which the call S[n] is permitted by the high-level policy, us-
ing a variable V to represent the call’s context, and then we check whether
the formula (V = C) ∧ ΨL ∧ ¬ΨH is satisfiable. The satisfiability of this
formula implies an inconsistency in the system. Our current prototype uses
Yices (http://yices.csl.sri.com/) for this purpose. If the satisfiability
check succeeds, the logic tool can provide an instantiation of the variables
for which the formula is true; this instantiation of S is a counterexample
that illustrates how the high-level policy can be violated.

The following example illustrates how our analysis works and how it can
identify vulnerabilities. For this example, we modify the low-level policies in
Figure 5.3 as follows: the rule for GradSchlClerk in solar’s low-level policy
is removed and replaced with the following rule in the low-level policy for
academicDB:

permit(User, academicDB, Op, Mode) <-

User.role = ‘GradSchlClerk’, Op.function = readField,

Op.field = ‘transcript’, Mode.type = remote,

campusIPaddr(Mode.srcIP)

Consider a call chain that propagates along the following path
(i.e., context) C0: [(browser2, request), (internalHost, request),

(dbServer, readField), (academicDB, readField)]. The constraint
associated with S is (note: when it is necessary to rename a variable in
a rule during backchaining, in order to avoid name collisions, the algorithm
appends the name of the component that the rule is for and/or a sequence
number; variables characterizing the top-level call, such as User and Op in
the formula below, never get renamed):

ΨL : Mode_academicDB.type = remote ∧ Mode_academicDB.destPort

= 8000 ∧ Op.function = readField ∧ Op.field = ‘transcript’

∧ User.role = ‘GradSchlClerk’ ∧
campusIPaddr(Mode_academicDB.srcIP)

The last call in this chain is to function readField of component
academicDB, which implements academicIR. The following constraint is
computed for this function call from the high-level policy:

ΨH : Op.function = readField ∧ Op.field = ‘transcript’ ∧
User.role = ‘GradSchlClerk’ ∧ Context.contains(solar) ∧
runs-on(Context.head(), H) ∧ internalHost(H)

The formula (Context = C0∧ΨL)∧¬ΨH is satisfiable; note that the conjunct
Context.contains(solar) in ΨH is not satisfied when Context = C0. This
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shows that the modified low-level policy does not enforce the high-level
policy. The significance of this violation depends on why the high-level
policy requires that solar be in the context for these accesses. For example,
solar might be responsible for logging accesses to student transcripts by
grad school clerks, for compliance with student privacy regulations. Such
an error might not be noticed during system execution, while our analysis
exposes it during the design stage.

5.3 Trusted Computing Base

In general, a trusted computing base (TCB) consists of the hardware and
software responsible for enforcing a security policy. We define a set T of
components to be a TCB for resource (component or IR) r in system S
(a system is defined by sets of components and IRs, with their attributes;
links, runs-on, and implements relations; and low-level policies for each
component) with high-level policy H if “correct” behavior by the compo-
nents in T (i.e., behavior consistent with their low-level policy and callMap)
is sufficient to ensure that all call chains that end at r are consistent with
H. Recall that consistency of a call chain with a high-level policy is defined
at the end of Section 5.2.

More formally, to check whether T is a TCB for enforcement of the high-
level policy for r in system S with high-level policy H, we construct a variant
relax(S, T̄ ) of the system, where T̄ (the complement of T ) is the set of
components of S not in T , and then use the method described in Section 5.2
to check whether call chains in that system that end at r are consistent with
H. The variant relax(S, T̄ ) is the same as system S except that, for every
component C in T̄ , the low-level permit policy of C is replaced with the
single rule permit(User, Resource, Op, Mode) <- true, and for every
function F in C’s API, callMap(C,F ) returns the set containing all tuples
of the form (calledBy , R′, F ′, args) such that calledBy ∈ {self, caller}, R′
is a component or IR of S other than C, F ′ is a function in the API of R′,
and args maps all parameters of F ′ to newVar.

Designers might want to specify conditions on the acceptable TCB for
a resource—for example, that the TCB for a resource contains only compo-
nents with specified administrators. Our TCB analysis provides a basis for
checking such properties.
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Figure 5.4: The verification algorithm on student information system returns
evidence of vulnerability along one path from browser2 to academicDB.

5.4 Implementation and Evaluation

We implemented a policy development environment based on our framework
to evaluate it on case studies based on a university. The environment was
implemented in Java with approximately 12000 lines of code. As mentioned
earlier, the implementation uses Yices [Yic] which is an SMT solver to test
satisfiability of (Context = C0 ∧ ΨL) ∧ ¬ΨH formula. In case the formula
is found satisfiable, the instantiations returned by Yices is used to generate
the counterexamples to prove system vulnerability.

The implementation was tested on some variants of the student infor-
mation system described in this chapter. For the example presented in here
the program returns a Yices evidence which demonstrates the vulnerability.
The high-level policy requires that the request context contain solar for a
readField function invocation on academicDB. However, as shown in figure
5.4, this is not the case for all possible allowed accesses.
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5.5 Related Work

5.5.1 Coordination of Policies in Distributed Systems

Firmato [BMNW99] is a higher-level language for specifying firewall poli-
cies. Firmato policies get translated into rule-sets for different models of
firewalls, insulating administrators from the details of each model’s config-
uration language. In addition, given the network topology, each firewall’s
policy can be specialized to contain only the rules relevant to traffic that
may pass through it. Work on Firmato does not consider verification of
firewall policies against overall network security requirements or analysis of
how firewall policies interact with security policies of other components.

Garćıa-Alfaro, Cuppens, and Cuppens-Boulahia [GACCB06] define and
give algorithms to detect several specific kinds of anomalies (inconsistencies
and potential errors) in network security configuration, specifically, configu-
ration of firewalls and network intrusion detection systems (NIDS). In con-
trast, our work is aimed at verification of general application-level security
requirements, taking network security configuration into account but in less
detail. Thus, the kinds of properties verified, and the analysis algorithms
used, are quite different.

Ioannidis et al. [IBI+07] propose the concept of virtual private services
(VPSs) to describe a service implemented by a collection of components
whose security policies must be configured in a coordinated way to enforce
an access control policy associated with the service. They express all access
control policies in the same language, namely KeyNote [BFK99], without
distinguishing “high-level” and “low-level” policies. A policy for a VPS
can be delocalized—in particular, its enforcement might involve multiple
components—but is otherwise basically a low-level policy, in our terminol-
ogy. They describe a system architecture for deploying and enforcing poli-
cies. They do not consider formal analysis, verification, or refinement of
policies.

Cassasa Mont, Baldwin, and Goh [MBG00] developed a general model
and tool for template-driven policy refinement. A template captures expert
knowledge about how to map policy goals of a specified form to low-level
device configuration. Their focus is on tool support for writing and applying
such templates. They do not consider automated analysis or verification of
templates or policies.

Bandara, Lupu, Moffett, and Russo [BLMR04] propose a formal method-
ology for policy refinement, based on event calculus [BLR03]. Since most
policies today are developed in ad hoc ways, not using a formal refinement
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methodology, we focus instead on verification of given low-level policies
against given higher-level policies (requirements). Also, their framework
is completely generic; in order to use it for refinement of enterprise security
policies, one would need to introduce relations and rules similar to those used
in our framework to model system architecture and access control policies.

Sheyner, Haines, Jha, Lippmann, and Wing [SHJ+02] present a method
to efficiently construct attack graphs, which represent attacks involving se-
quences of exploits of vulnerabilities in components of a system. Our work
is largely complementary to attack graph analysis. Attack graphs are based
primarily on vulnerabilities in components; access control policies and call-
ing behavior are not considered, except when they affect a vulnerability.
Also, attack graphs are generally used to find violations of system-level se-
curity requirements (e.g., who may login to a host), not application-level
security policies.

Jürgens developed UMLsec [J0̈5], a security-oriented extension of UML,
and, with collaborators, developed various analyses based on it. Among
those, the one most closely related to our work is the analysis of network
security architecture in [JSB08], which however does not consider the inter-
action of network security configuration with access control policies of other
(non-network) components to achieve application-level security goals. Our
analysis could be formulated in terms of UML or an extension of it, but we
opted to use a simpler framework for now.

Seehusen and Stølen [SS06] address behavioral refinement for systems
with information flow security requirements. Such requirements are not
preserved by standard notions of refinement. They define a more discrim-
inating notion of behavioral refinement and show that, under some con-
ditions, information flow properties are preserved by such refinement. Our
work differs from their work by considering access control, rather than infor-
mation flow, by focusing on refinement of access control policies rather than
overall system behavior, and by focusing on verification algorithms rather
than semantics.

100



Chapter 6

Conclusions and Future
Work

This chapter summarizes the contributions of this thesis and discusses di-
rections for future work.

6.1 Summary of Contributions

6.1.1 Access Control and Administration Using Rules

Administrative Model for Rule-Based Access Control. Many rule-
based access control languages have been proposed, but relatively little at-
tention has been paid to administrative models for such languages. The
administrative model in [Bec09, BN10] supports addition and removal of
facts but not rules. To the best of our knowledge, our ACAR framework
is the first that provides fine-grained administrative control of addition and
removal of rules as well as facts. This makes ACAR a substantially more
powerful administrative access control language. Even though this expres-
siveness comes at the cost of certain language restrictions, presented in chap-
ter 2, the healthcare network case study in chapter 3 demonstrates that
complex and realistic administrative policies can be expressed in ACAR. In
the healthcare network case study, a network wide administrative policy al-
lows administrators at various facilities within the network to write policies
custom-fit to their individual facilities. Further, these facility administra-
tors can add customized administrative rules that allow specific users within,
say, workgroups to act as administrators and add rules and facts that affect
their workgroups. This substantially increases the usability of ACAR as an
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administrative language for large enterprises with decentralized administra-
tion.

Algorithm for Abductive Reachability Analysis. We identified and
defined the all-solutions abductive reachability problem for administrative
rule-based access control and presented a sound but incomplete algorithm
for it. To the best of our knowledge, this is the first reachability analysis for
administrative framework that allows addition and removal of both rules and
facts. The algorithm has been implemented in Objective Caml (OCaml).
The implementation closely resembles the pseudocode in this thesis. The
prototype has been tested on part of the healthcare network case study and
runs quite efficiently.

6.1.2 Verification of Policy Enforcement in Enterprise Sys-
tems

A Framework for Expressing System Design and High-level Secu-
rity Goals. We explicitly identified the characteristics of high-level secu-
rity policies for an enterprise system and presented a framework and lan-
guage for formally specifying both high-level security goals for an enterprise
system along with low-level system design and component policies.

An Algorithm for Verification of Policy Enforcement. We devel-
oped an algorithm for verifying that the low-level policies (configurations)
and system design enforce given high-level policies. In case the enforcement
is not consistent with the high-level policies, the algorithm returns a spe-
cific example demonstrating the vulnerability. This can be used to guide
modifications to the system design and configuration to achieve the desired
high-level security policies.

Trusted Computing Base Computation. We also presented an algo-
rithm that uses our policy enforcement verification algorithm to compute a
trusted computing base for a given resource in the system. This helps the
system designer identify the components within the system that are critical
in enforcement of the high-level security policies for a given resource.
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6.2 Future Work

This section describes directions for future work on Access Control and
Administration using Rules.

Wildcards in Negative Premises. The current support for wildcards
in ACAR is somewhat limited in the sense that wildcards are allowed only
in negative premises for predicates for which there are no removeFact per-
mission rules in the policy. While our case study demonstrated that this is
acceptable for some realistic policies, this limitation is sometimes undesir-
able. The reason for imposing this restriction is to be able to derive negative
premises such as !p(. . .), with wildcards as arguments, in the analysis algo-
rithm through abduction alone. If we tried to establish such a premise using
removals, it is difficult because we cannot precisely determine, in phase 2,
what instances of the predicate need to be removed. One approach is to
match the negative premise against the positive ones in the current state,
and add the matches as new negative premises. This, however, leads to an-
other issue that other matching instances of the predicate p might get added
to the state as the algorithm continues to backchain and they would require
removals as well. An appropriate extension to the algorithm, then, would
be to detect such a situation in phase 3 and handle it by iterating phases 2
and 3 appropriately.

Repeated Administrative Operations. As mentioned in section 4.4.3,
our current abductive reachability algorithm cannot generate plans that
involve repeated administrative operations, because of the reuse of nodes in
tabling in phase 2. However, repetition of an administrative operation is
sometimes required. For example, consider a problem instance in which the
initial policy contains no facts and contains the rules

permit(U, addFact(p(X))) :- true
permit(U, addFact(q(X))) :- p(X)
permit(U, removeFact(p(X))) :- true
permit(U, addFact(r(X))) :- !p(X), q(X)
g(X) :- p(X), q(X), r(X)

To reach goal g(a) with an empty residue, administrators must add p(a),
add q(a), remove p(a), add r(a), and then add p(a) again, in that order.
The current version of the algorithm would re-use p(a) in phase 2 while
generating plans to add q(a) and to derive g(a). In phase 3, a call to

103



mightNeedRepeatedOp function would return true causing the algorithm
to return and inconclusive result. A direction for future work is to mod-
ify the algorithm such that in phase 3, if mightNeedRepeatedOp returns
true because a node n is a child of multiple parents, the algorithm replaces
n with multiple nodes, one for each parent, to try to satisfy the ordering
constraint. The algorithm would then re-run phase 2, to re-compute deriva-
tions for these new nodes, and then repeat phase 3, and so on, until no more
administrative operations need to be repeated.

Termination. Our analysis algorithm may diverge on some policies. This
is expected, because Becker and Nanz’s abductive algorithm (which solves
a simpler problem) may diverge, and because reachability for ACAR is un-
decidable. Undecidability of this problem is a corollary of the proof in
[SYGR11] that user-permission reachability is undecidable for ARBAC97 ex-
tended with parameters, since ARBAC97 policies can be encoded in ACAR
in a straightforward way. The algorithm terminates for the case studies we
have considered so far, but more work is needed to identify classes of policies
for which the algorithm is guaranteed to terminate.

Abductive Analysis Based on State Exploration. The reachability
computation at the heart of our abductive analysis algorithm is based on
tabling. A discussed above, tabling re-uses derivations, and this causes
problems if repeated administrative actions are required. A direction for
future work is to explore other techniques for reachability analysis that avoid
this problem. One such approach would be to use a state-exploration based
algorithm similar to [SYRG07], extended to handle rule-based policies and
to perform abductive analysis. It would also be interesting to compare the
performance, in terms of memory usage and running time, of tabling-based
and state-exploration-based algorithms for abductive reachability analysis.

Trust Management. The current version of the ACAR framework does
not explicitly support trust management and trust negotiation. Extending
the language to support such features is not too difficult, as mentioned in
section 2.7. Extending the abductive atom-reachability analysis algorithm
to take credential gathering and trust negotiation into account is another
direction for future work. This is a particularly important direction, because
the popularity of cloud computing and distributed systems is increasing the
need for access control frameworks that can handle decentralization, trust
management, and trust negotiation.
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