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Abstract of the Dissertation

Combinatorics and Complexity in Geometric Visibility Problems

by
Justin G. Iwerks

Doctor of Philosophy
in

Applied Mathematics and Statistics
(Operations Research)

Stony Brook University
2012

Geometric visibility is fundamental to computational geometry and its ap-
plications in areas such as robotics, sensor networks, CAD, and motion plan-
ning. We explore combinatorial and computational complexity problems aris-
ing in a collection of settings that depend on various notions of visibility.

We first consider a generalized version of the classical art gallery problem
in which the input specifies the number of reflex vertices r and convex vertices
c of the simple polygon (n = r + c). This additional information better char-
acterizes the shape of the polygon. Through a lower bound construction, tight
combinatorial bounds for coverage are achieved for all r ≥ 0 and c ≥ 3.

The combinatorics of guarding polyominoes and other polyforms are stud-
ied in terms of m, the number of cells, as opposed to the traditional parameter
n. Various visibility models and guard types are considered. We establish that
finding a minimum cardinality guard set for covering a polyomino is NP-hard.

We introduce an algorithm for constructing a spiral serpentine polygoniza-
tion of a set of n ≥ 3 points in the plane. The algorithm’s behavior can
be viewed as incrementally appending a visible triangle to the triangulation
constructed so far.

We consider beacon-based point-to-point routing and coverage problems.
A beacon b is a point that can be activated to effect a gravitational pull
toward itself in a polygonal domain. Algorithms are given for computing the
attraction region of b and finding a minimum size set of beacons to route from
a source s to a destination t given a finite set of candidate beacon locations.
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We show that finding a minimum cardinality set of beacons to cover a simple
polygon or conduct certain types of routing in a simple polygon is NP-hard.
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Chapter 1

Introduction

Geometric visibility plays a fundamental role in a host of problems in the fields
of discrete and computational geometry. Applications ranging from motion
planning to sensor networks and computer-aided design all depend critically
on various models of visibility. We define the most common notion of visibility
in a domainD, say a subset of Rn, as follows: A point q ∈ D is visible to a point
p ∈ D if pq ⊂ D. We say that p ‘sees’ q and vice-versa (since the definition is
symmetric). However, there are myriad generalizations of this definition that
find appropriate application in a variety of settings. For instance, we may be
interested in more robust notions of visibility in which q is visible to p only
if p also sees a sufficiently large region containing q, or if the entire rectangle
spanned by p and q is contained in D. Alternatively, perhaps we have a robot
that can move in straight lines and make turns, but turning requires a great
deal of energy. In this case, the set of points that may be visible or ‘reachable’
for the robot are the set of points it can arrive at using at most k turns or
having a link-distance of k from the robot’s starting location.

This thesis focuses on the combinatorics and computational complexity
of a variety problems that intrinsically rely on various models of geometric
visibility. The following two vignettes provide some motivational context for
these visibility problems:

(a) A museum installs a security camera with a 360◦ viewing angle inside
its modern art gallery. Which points in the gallery does the camera see?
How many of these cameras should the museum install to ensure that
every point (and hence every work of art!) is seen? Where should the
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cameras be placed?

(b) A mobile robot located in the downtown area of a city receives a ‘return
home’ message from a signal tower. The robot subsequently attempts to
make a straight line path back to the tower. The route may involve mov-
ing along the boundaries of the domain as long as the robot’s distance
to the tower always decreases monotonically. Which locations in the city
should the robot limit itself to so that it can be guaranteed to return
to the tower without getting stuck elsewhere? In other words, which
points are in the attraction region of the tower? Furthermore, if we were
interested in routing a robot from a starting location s to a destination
location t using signal towers as ‘stepping stones’ (robot i starts at s and
visits towers b1, b2, ..., bk before reaching its final destination t), where
should they be placed?

In the first vignette, the notion of visibility is precisely the one described
above: let p be the security camera and then find the locus of points Q that
can be seen by p. Finding sometimes necessary and always sufficient bounds
on the number of cameras needed to see or cover all of a domain modeled as
a polygon with n vertices is often referred to as the Art Gallery Problem. It
was first shown by Vasek Chvátal that ⌊n

3
⌋ point guards are sometimes nec-

essary and always sufficient to cover a simple polygon with n vertices. Art
gallery problems have since developed into a significant area of research in
computational geometry and theoretical computer science with numerous ar-
ticles, several surveys and an entire book dedicated to the problem and its
generalizations [42, 47, 49].

In Chapter 2, we study one such generalization in which the input specifies
the number of reflex vertices r and convex vertices c of the simple polygon,
where n = r + c. Specification of this additional information is motivated by
attempting to provide a better description of the ‘shape’ of the polygon. For
instance, a polygon with 99 vertices may require 33 point guards according
to Chvátal’s art gallery theorem, but if only 3 of these vertices are convex,
then we actually have a pseudotriangle that never requires more than 2 point
guards! Tight combinatorial bounds for this problem have previously been
shown when 0 ≤ r ≤ ⌊ c

2
⌋ and r ≥ 5c−12. We give a lower bound construction

that matches the ⌊n
3
⌋ sufficiency condition from the art gallery theorem when

⌊ c
2
⌋ < r < 5c − 12, thus providing tight combinatorial bounds for all r ≥ 0

and c ≥ 3.
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Chapters 3 and 4 examine a significantly different kind of art gallery prob-
lem in which our domain consists of a connected union of m edge- or face-
aligned copies of some base shape, such as a square, equilateral triangle, or
cube. In particular, we study the combinatorics of guarding polyominoes (con-
nected unions of edge-aligned unit squares) in terms of the parameter m, in
contrast with the traditional parameter n, the number of vertices of P . We
show that ⌊m+1

3
⌋ point guards are always sufficient and sometimes necessary

to cover an m-polyomino. When pixels act like guards (pixel guards), we
prove that

⌊

3m
11

⌋

+1 guards are sufficient and sometimes necessary to cover an
m-polyomino. For the 3D analog of a polyomino, a polycube, we show that
⌊m+1

3
⌋ point guards are sometimes necessary and always sufficient, matching

the tight bounds previously shown for guarding an m-polyomino. Other com-
binatorial bounds are given for guarding polycubes with voxel guards (guards
that occupy entire voxels of the polycube) as well as connected unions of equi-
lateral triangles (polyiamonds) and regular hexagons (polyhexes) using both
point and pixel guards. We establish that determining the minimum number
of guards required to cover a given m-polyomino is NP-hard. We also pro-
vide polynomial-time algorithms to solve exactly some special cases in which
a polyomino is ‘thin’ (no cycles of length 4 or more in the dual graph).

In Chapter 5 we devise an algorithm for constructing a spiral serpentine
polygonization of a set S of n ≥ 3 points in the plane. A polygonization of
a planar point set S is a simple polygon having S as the set of its vertices.
This polygonization is spiral because it has exactly one polygonal chain of
convex vertices and at most one polygonal chain of reflex vertices. The serpen-
tine property implies that the polygonization has a triangulation whose dual
graph is a path. Our algorithm simultaneously gives a triangulation of the
constructed polygon at no extra cost, runs in O(n log n) time and uses O(n)
space. Both the runtime and space performance are shown to be optimal.
The algorithm’s behavior can be viewed as incrementally appending a visible
triangle to the triangulation constructed so far.

In the second vignette, we have a much different model of visibility in which
a robot is considered visible or attracted to a signal tower if the robot can make
a straight line path to the tower, perhaps involving intermediate sliding along
the boundary of the domain, without getting stuck somewhere along the way.
This model applied to coverage and routing problems in polygonal domains
is studied in Chapter 6. These problems are motivated by sensor network
applications and we generally refer to the signal towers as beacons. We show
that

⌊

n
2

⌋

− 1 beacons are sometimes necessary and always sufficient to route

3



between any pair of points in P . We demonstrate that finding a minimum
cardinality set of beacons to route from any source point s ∈ P to a given
destination t ∈ P or from a particular source to any given destination is NP-
hard. We also show how to efficiently compute the attraction region of a
beacon and use this to establish a polynomial-time algorithm for routing from
a point s to a point t using a discrete set of candidate beacons. We close by
showing that it is NP-hard to find a minimum cardinality set of beacons to
cover a simple polygon.

Each chapter provides a more thorough introduction along with a review of
related work found in the literature. We close each chapter with a conclusion
featuring open problems for further investigation.
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Chapter 2

The Art Gallery Theorem for
Simple Polygons in Terms of the
Number of Reflex and Convex
Vertices1

2.1 Introduction

The problem of determining the minimum number of point guards sufficient
to cover the interior of an art gallery represented by a simple polygon with
n vertices was originally posed by Victor Klee in 1973. The solution to this
problem was first given by Vasek Chvátal [17], who proved that ⌊n

3
⌋ guards

are sometimes necessary and always sufficient to cover an n-vertex polygon.
Art gallery problems have become a significant area of study in computational
geometry, as they are not only of theoretical interest, but also play a central
role in visibility problems arising in robotics, digital model capture, sensor
networks, motion planning, vision, and computer-aided design [47, 49].

The combinatorial complexity of a simple polygon is naturally specified in
terms of the number, n, of vertices. Vertices can be distinguished into two
categories - reflex vertices (having internal angle greater than π), and convex
vertices (having internal angle at most π). For a given simple polygon P , let
g(P ) denote the minimum number of guards required to cover P . We define
the guard number G(r, c) to be the maximum value of g(P ), over all simple
polygons P having exactly r reflex vertices and c convex vertices.

1This chapter is based on work joint with Joseph S. B. Mitchell [32].
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In this note, we establish a refined art gallery theorem, giving exactly the
function G(r, c) for the guard number in terms of the number, r ≥ 0, of reflex
vertices and the number, c ≥ 3, of convex vertices of P (n = r + c).

2.2 Previous Work

O’Rourke [42] proved that r guards are sometimes necessary and always suf-
ficient to cover a simple polygon P having r ≥ 1 reflex vertices. The upper
bound readily comes from Chazelle’s convex partitioning [14], while the lower
bound is demonstrated through O’Rourke’s shutter polygons (Figure 2.1).
O’Rourke considered the art gallery problem solely in terms of the variable
r, without consideration of the number, c, of convex vertices required to re-
alize shutter polygons. In fact, shutter polygons require approximately twice
as many convex vertices as reflex vertices. In our notation, O’Rourke showed
that

G(r, c) = r, if 1 ≤ r ≤
⌊

c

2

⌋

.

Figure 2.1: Shutter polygons require r guards

More recently, Addario-Berry et al. [2] proved that 2c− 4 guards are some-
times necessary and always sufficient to cover a simple polygon P with c con-
vex vertices. However, this tight bound is solely a function of the variable
c. The sometimes necessary condition given in their paper is a pseudotriangle
chain (Figure 2.2) that naturally requires a certain amount of reflex vertices
in order to be realized. Inspection of these pseudotriangle chains reveals that
r ≥ 5c− 12 reflex vertices are required to realize it. Combined with the result

6



of O’Rourke and the trivial observation that G(r, c) = 1 when r = 0, we have

G(r, c) =







1, if r = 0
r, if r ≤ ⌊ c

2
⌋

2c - 4, if r ≥ 5c− 12

The question remains as to what G(r, c) is when ⌊ c
2
⌋ < r < 5c − 12. In

Section 2.3 we answer this question by constructing polygons that interpolate
between Addario-Berry et al.’s pseudotriangle chains and O’Rourke’s shutter
polygons.

Figure 2.2: Pseudotriangle chain polygons require 2c − 4 guards. In the ex-
ample shown here, c = 5, r = 13 and 6 guards are required: 2 for each
pseudotriangle.

2.3 Lower Bound Constructions

In this section we complete the full specification of the guard number function
G by proving the following theorem:

Theorem 2.3.1. Given a simple polygon P with r reflex vertices and c convex
vertices (n = r + c), 2c − 4 − ⌈5c−12−r

3
⌉ = ⌊n

3
⌋ point guards are sometimes

necessary and always sufficient to cover P when ⌊ c
2
⌋ < r < 5c− 12.
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Proof. To establish this result, we present an algorithm that generates a lower
bound example for each r and c that satisfy ⌊ c

2
⌋ < r < 5c− 12. Since, by the

standard art gallery theorem, ⌊n
3
⌋ guards are always sufficient, our bound is

tight. The algorithm involves two sweeps of reflex vertex removals: the first
begins with a pseudotriangle chain and terminates with what we will call a
spiny back polygon, and the second sweep transforms our spiny back polygon
into a shutter polygon (see Figure 2.3). We observe that spiny back polygons
require a guard for each spine.

We can think of the original pseudotriangle chain as the union of two

Figure 2.3: Two sweeps are carried out in our lower bound constructions by
removing reflex vertices in a particular order. The first sweep transforms a
pseudotriangle chain into a spiny back polygon and the second transforms the
spiny back polygon into a shutter polygon.

polygonal chains. We let T denote the top chain and B denote the bottom
chain, whose vertices are all reflex, except its convex vertex endpoints, which
are shared by T and B. In order to avoid notation overuse, in our description
we let γ denote the number of convex vertices of P , since “ci” will be used
to denote the specific convex vertices. We use the following label conventions,
going from left to right along each chain (Figure 2.4):

T = (c1, r1, c2, r2,1, r2,2, r2,3, r2,4, c3, r3,1, r3,2, r3,3, r3,4, ..., cγ−1, rγ−1, cγ)

B = (c1, rB,1, rB,2, ..., rB,γ−2, cγ)

The first sweep involves the removal of reflex vertices of T in the following

8



c2 c3

c4

rB,2

rB,1

r6,2
r6,1

r7

r6,3

r3,3r1

c8

r3,4

c1

rB,3

rB,4

rB,5

r5,1

c5

r2,4

r2,1

r5,2

r5,3 c6

r4,2

r4,1

r3,1
r3,2r2,3

r6,4

r5,4

r4,3
r4,4

r2,2

rB,6

c7

Figure 2.4: Labeling of a pseudotriangle chain with 8 convex vertices

order:

First Sweep:

r1,

r2,1, r2,2, r2,4,

r3,1, r3,2, r3,4,
...

rγ−2,1, rγ−2,2, rγ−2,4,

rγ−1

It can be observed that removing the vertices listed in each row (except the
last) of the above first sweep causes the number of guards required to cover
the resulting polygon to decrease by 1. This behavior matches the functional
values given by ⌊n

3
⌋.

After the first sweep is complete, we obtain a spiny back polygon. We then
proceed with the second sweep, which removes certain reflex vertices from both

9



T and B and also slides some vertices to form barbs of the shutter polygon:

Second Sweep:

rB,1, r3,3, slide r4,3 near the interior of r2,3c3,

rB,2, rB,3, r5,3, slide r6,3 near the interior of r4,3c5,

rB,4, rB,5, r7,3, slide r8,3 near the interior of r6,3c7,
...

rB,j, rB,j+1, rj+3,3, slide rj+4,3 near the interior of rj+2,3cj+3 (j even),
...

if γ is odd

rB,γ−5, rB,γ−4, rγ−2,3

else

rB,γ−4, rB,γ−3

Again, the number of guards required to cover the resulting polygon we con-
struct upon the removal of the vertices contained in each row (except the last)
of the second sweep decreases by 1. We can think of the last row of the first
sweep and the first row of the second sweep as one row with 3 reflex vertices
being removed. Since, through both sweeps, we maintain the ratio of 3:1 be-
tween the number of vertices removed to the reduction in the number of guards
required, we continue to match the functional values of ⌊n

3
⌋ and thus provide

tight combinatorial bounds for all r and c in the range ⌊ c
2
⌋ < r < 5c− 12.

We now have tight combinatorial bounds for all r ≥ 0 and c ≥ 3:

Theorem 2.3.2. Let P be a simple polygon with r reflex vertices and c convex
vertices (n = r + c). Then,

G(r, c) =















1, if r = 0
r, if r ≤ ⌊ c

2
⌋

⌊n
3
⌋, if ⌊ c

2
⌋ < r < 5c− 12

2c−4, if r ≥ 5c− 12.

In order to illustrate the behavior of the two sweeps used to construct the
lower bound examples, we will consider the case in which c = 7 and 5c− 12 =
23 > r > 3 = ⌊ c

2
⌋ with the aid of Figure 2.5. Note that, for clarity, the vertex

labels have been omitted from Figure 2.5. Beginning with a pseudotriangle

10



chain on 7 convex vertices, 23 reflex vertices, and requiring 10 guards as shown
in Figure 2.5a., we first remove r1, yielding the polygon depicted in Figure 2.5b.
The removal of this reflex vertex eliminates the need for one of the guards in
the leftmost pseudotriangle. The remaining pseudotriangles still each require
two guards, for a total of 9. Since n = r + c = 22 + 7 = 29 and ⌊29

3
⌋ = 9, this

guard set size is tight.

We then begin removing vertices along the reflex chain between c2 and c3.
First, we remove r2,1, which yields the polygon depicted in Figure 2.5c. The
removal of this vertex creates our first spine, which requires one guard. The
remaining pseudotriangles still require 2 guards each, so we maintain a guard
set of size 9. This matches ⌊28

3
⌋ = 9.

Secondly, we remove r2,2, giving us the polygon shown in Figure 2.5d. De-
spite this reflex vertex’s removal, we still require 9 guards, and, since ⌊27

3
⌋ = 9,

we have agreement.

The third reflex vertex we remove from this chain is r2,4, which leaves
us with the polygon shown in Figure 2.5e. This final vertex removal from
the chain between c2 and c3 turns the second (original) pseudotriangle into a
spine-like structure that requires just one guard. Hence, we need only 8 guards
at this juncture, giving us agreement with ⌊26

3
⌋ = 8. The behavior of the first

sweep continues in this fashion.

After the first sweep is completed, we arrive at the spiny back polygon
depicted in Figure 2.5f, having n = r+ c = 9+7 = 16 vertices and requiring 5
guards as shown. Since ⌊16

3
⌋ = 5, our guard set size is tight. The second sweep

begins with the removal of rB,1, yielding the polygon shown in Figure 2.5g, with
15 vertices and needing 5 guards, which matches ⌊15

3
⌋ = 5.

The next vertex removed during the second sweep is r3,3, followed by mov-
ing r4,3 near the interior of r2,3c3, as depicted in Figure 2.5h. This forms the
second shutter of the shutter polygon we are working toward. Four guards
are required to cover the resulting polygon, agreeing with the ⌊14

3
⌋ = 4 upper

bound.

Subsequently, rB,2 and rB,3 are removed from the bottom polygonal chain,
as shown in Figures 2.5i and 2.5j, respectively. Four guards are required in
each case, matching our upper bounds of ⌊13

3
⌋ = 4 and ⌊12

3
⌋ = 4.

We complete the second sweep by removing r5,3, which gives us a polygon
requiring 3 guards, as shown in Figure 2.5k. Since ⌊11

3
⌋ = 3, we again have

agreement with the upper bound.
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Finally, we may observe that the removal of rB,3 allows us to form a shutter
polygon, depicted in Figure 2.5l, as desired.

(l.)

(a.) (b.) (c.)

(d.) (e.) (f.)

(g.) (h.) (i.)

(j.) (k.)

Figure 2.5: An illustration of our lower bound constructions using 7 convex
vertices. The shaded points represent possible guard sets of minimum size in
each figure.
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2.4 Conclusion

Through the systematic construction of lower bound examples, we have demon-
strated that G(r, c) = ⌊n

3
⌋ for ⌊ c

2
⌋ < r < 5c − 12. Combined with previous

results of O’Rourke and Addario-Berry et al., this gives tight combinatorial
bounds on the number of guards required to guard any simple polygon in terms
of r and c, for all cases.

An interesting extension of this result would be to give combinatorial
bounds for polygons with holes. In other words, if P has r reflex vertices,
c convex vertices and h holes, what is the worst-case minimum number of
guards to cover P , as a function of r, c, and h? A related question is to de-
termine the minimum number of guards to cover P , as a function of r, c, and
the number of reflex chains of P .

13



Chapter 3

Guarding Polyominoes1

3.1 Introduction

Victor Klee (1973) posed the problem of determining the minimum number
of guards sufficient to cover the interior of an art gallery modeled as a sim-
ple polygon P with n vertices. The solution, first given by Vasek Chvátal,
is that ⌊n

3
⌋ guards are sometimes necessary and always sufficient to cover a

polygon possessing n vertices [42]. This original problem has since grown into
a significant area of study in computational geometry and computer science.
Art gallery problems are of theoretical interest but also play a central role in
visibility problems arising in applications in robotics, digital model capture,
sensor networks, motion planning, vision, and computer-aided design [47, 49].

We explore the art gallery problem when the given gallery P is an m-
polyomino, a polyform whose cells are integral unit squares. (In other words,
an m-polyomino P is the union of m (closed) integral unit squares such that
the interior of P is connected.) We refer to the unit squares as pixels. An
example with m = 29 is shown in Figure 3.1. We often write (m) for an m-
polyomino. For example, (7) refers to any 7-polyomino. The dual graph of an
m-polyomino P has a node for each pixel of P and an edge joining two nodes
that correspond to edge-adjacent pixels. A polyomino P is simple if it has no

1This chapter is based on work joint with Therese Biedl at University of Waterloo and
Mohammed T. Irfan, Joondong Kim, and Joseph S. B. Mitchell at Stony Brook University.
A preliminary version appeared in Proceedings of the 27th Annual Symposium on Compu-
tational Geometry (SoCG 2011) [31] and a journal article focusing on the combinatorial
results with point guards appears in Discrete and Computational Geometry [33].
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Figure 3.1: A polyomino with 29 pixels. The grey region is a hole.

holes: every minimal cycle in its dual graph is a 4-cycle (i.e., the complement
of the interior of P is connected).

A point a ∈ P covers (or sees) a point b ∈ P if the line segment ab ⊂ P .
(Since P is closed, possibly ab contains points on the boundary, ∂P .) A pixel
p of P covers a point b ∈ P if there is a point a inside of p that covers b.

We introduce two types of guards: point guards and pixel guards. As its
name suggests, a point guard occupies a point location in P . A pixel guard
occupies an entire pixel. Note that, a point/pixel guard can see an unlimited
distance in every direction. If a point b ∈ P is covered by a point (pixel) p,
then p is a point (pixel) guard of b.

We let g(P ) denote the guard number of P : g(P ) is the minimum number
of guards required to cover all of a given polyomino P . Then we define G(m)
to be the maximum value of g(P ) over all m-polyominoes P . Our main com-
binatorial question is that of determining upper and lower bounds on G(m).

There are possible alternative models of visibility that one can study. One
such model is r-visibility, where two points can see each other iff the axis-
parallel rectangle defined by them is a subset of P . Another model, the all-or-
nothing model, considers a pixel p to be guarded only if a single point guard
a (or point a inside a pixel guard) sees all points of p (i.e., ab ⊂ P , for all
b ∈ P ). It is easy to see that a cover in the r-visibility model is a cover in
the all-or-nothing model, which in turn is a cover in the unrestricted model,
and none of these implications hold in reverse in general. See Figure 3.2 for
illustrations of these models.

Previous work. While ⌊n
3
⌋ guards are sufficient and sometimes necessary

to cover a simple polygon with n vertices, ⌊n
4
⌋ are sufficient and sometimes

necessary to cover an orthogonal polygon [27, 29, 34, 41]. It is NP-hard to find
the minimum number of guards for covering either a general simple polygon
[37] or an orthogonal polygon [45]. Even covering the vertices of an orthogonal
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Figure 3.2: The three models of visibility. From left to right: r-visibility model,
all-or-nothing model and unrestricted model.

polygon has been shown to be NP-hard [36].

While no approximation algorithm with better than the naive factor ⌊n
3
⌋

is known for placing the fewest guards at arbitrary points in a simple polygon,
there are results for approximation of optimal guard placement in polygons
by restricting the set of candidate guards. For instance, if we restrict guards
to lie only on vertices of a polygon or grid points, logarithmic approximations
are achievable based on set cover [19, 23, 24].

In orthogonal polygons, Nilsson [40] gives an algorithm to computeO(OPT 2)
guards, based on the constant-factor approximation for guarding 1.5D terrains
[6]. Practical methods and heuristics for placing guards in general polygonal
domains have been investigated by Amit et al. [4].

Of particular interest for guarding rectilinear polygons is a result of Wor-
man and Keil [50], which applies in the r-visibility model: They show that a
minimum guard cover in this model can be found in polynomial time. The al-
gorithm runs in time Õ(n17) and requires computing a maximum independent
set in a perfect graph as a sub-routine.

Our results.

1. Combinatorial Bounds: For point guards, we show that ⌊m+1
3

⌋ guards
are always sufficient and sometimes necessary to cover an m-polyomino
(possibly with holes). For pixel guards, we show that

⌊

3m
11

⌋

+ 1 guards
are always sufficient and sometimes necessary to cover an m-polyomino.2

The necessity bounds are in the unrestricted visibility model (and hence
also hold in the all-or-nothing and the r-visibility model.) The suffi-
ciency bounds are constructive and yield a guard set that is in the (most
restrictive) r-visibility model. See Corollary 3.2.7 and Theorem 3.2.8.

2More precisely, our lower bound construction shows that f(m) = ⌊m+1
11 ⌋ + ⌊m+5

11 ⌋ +
⌊m+9

11 ⌋ pixel guards are sometimes necessary. For certain values of m this can differ from
⌊

3m
11

⌋

+1 by at most 1. Val Pinciu outlines how to obtain a matching upper bound of f(m)
for all m in [43].
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2. Hardness: We show that determining an optimal guard placement in a
simple m-polyomino is NP-hard, even in the all-or-nothing model. See
Theorem 3.3.1. Recall that this problem is polynomial for point guards
in the r-visibility model [50].

3. Algorithms for Special Cases: We consider the special case of a thin m-
polyomino, for which the dual graph is a tree. In particular, we show that
the algorithm by Worman and Keil (for optimal cover in the r-visibility
model) in fact yields an optimal cover even in the all-or-nothing model,
but not in the general model. We give simple optimal algorithms for
guarding with point and pixel guards when the dual is a path.

3.2 Combinatorial Bounds

3.2.1 Necessary Conditions

Figure 3.3 shows a polyomino analog of Chvátal’s comb, illustrating that, for
m ≥ 2, ⌊m+1

3
⌋ guards are sometimes necessary to cover an m-polyomino.

For the pixel guard case, we can create a polyomino consisting of 22k+13
pixels (for any k ≥ 0) that requires 6k + 4 pixel-guards. Figure 3.4 illustrates
the case k = 1; polyominoes for larger k are obtained by attaching k−1 copies
of the subpolyomino inside the dotted box. For m = 22k + 13 pixels, the
number of pixel-guards is 6k + 4 = 3m+5

11
, which, by elementary calculation,

equals ⌊3m
11
⌋+ 1.

Figure 3.3: An example demonstrating that ⌊m+1
3

⌋ guards (depicted as filled
dots) are sometimes necessary to guard P , since no two of the open circles can
be covered by one guard.
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Figure 3.4: An example demonstrating that 3m+5
11

pixel-guards (depicted as
filled squares) are sometimes necessary to guard P , since no two of the circled
corners can be covered by one pixel-guard.

3.2.2 Sufficiency Conditions

Point Guards

Given an m-polyomino P (possibly with holes) where m ≥ 2, we show that
⌊m+1

3
⌋ guards are always sufficient to cover P . The proof of this sufficiency

condition is obtained by arguing that we can iteratively remove certain types
of subpolyominoes while leaving the remaining polyomino connected. The
removal process will involve creating a BFS tree of the dual graph of P , and
then iteratively clipping off small subtrees. First, we introduce a lemma to be
employed later:

Lemma 3.2.1. For 1 ≤ m ≤ 4, any m-polyomino can be covered with one
guard.

Any 5-polyomino that is not 5′ or 5′′ (see Figure 3.6) can be covered with
one guard.

For m = 6, 7, any m-polyomino can be covered with two guards.
In all cases, the polyominoes are covered even in the r-visibility model.

Proof. One could prove this simply by inspection of the finite (though large)
number of such polyominoes, but instead we give a proof based on locating
the best places for guards using a spanning tree in the dual graph.

We do not prove each time that all of our guards are at pixel corners
and that r-visibility suffices for the covering; this should be obvious from the
constructions.

The crucial insight is that if a guard v is at the corner of some pixel p, then
it guards not only p, but also all neighbors of p, even in the r-visibility model.
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Lemma 3.2.2. Any m-polyomino P , m = 1, 2, 3, 4, can be covered with one
guard.

Proof. If P is a rectangle, then any pixel corner will do. Otherwise P has a
reflex corner. Placing a guard v at this corner means that v belongs to three
pixels and covers the fourth (if any) since it is adjacent to one of the three.
See Figure 3.5(a).

(a) (b)

r

(c)

cr

(d)

r

(e)

c

Figure 3.5: Cases for covering polyominoes with up to 5 pixels.

Lemma 3.2.3. Any 5-polyomino P that is not 5′ or 5′′ can be covered with
one guard.

Proof. Compute a BFS tree T of the dual graph of P , rooted at a node r of
maximum degree. If r has degree 4, then any other pixel is a neighbor of r,
so a guard on one corner of r will do (Figure 3.5(b)). If r has degree 3, then
exactly one neighbor c of r has exactly one other neighbor (in T ), and placing
a guard at a common point of r and c will cover everything (Figure 3.5(c)).

Now assume that r has degree 2, hence the dual of P is a path. If P is a
rectangle, then placing a guard at any pixel corner will do. If P has exactly one
reflex corner, then placing a guard on it will cover everything (Figure 3.5(d)).
If it has multiple reflex corners, then let c be the middle node of this path. If
the neighbors of c are not on opposite sides of c, then the point common to
the neighbors covers everything (Figure 3.5(e)). This finally leaves the case
where c and its two neighbors form a rectangle, but P has two reflex corners.
This implies that P is 5′ or 5′′.

Lemma 3.2.4. Every (6) and (7) can be covered with two guards.

Proof. We first prove this for a 7-polyomino P . Compute a BFS tree T of
the dual graph of P , starting at a node r of maximum degree. If any child c
of r has a subtree Tc of size 3 or 4, then Tc and T − Tc form two connected
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subpolyominoes that can be covered with one guard each, and we are done.
If all children of r have subtrees of size 2 or 1, then place two guards at two
diagonally opposite corners of r; these guards are then in all children of r and
hence cover all grandchildren as well, and hence all of T .

So finally presume some child of r has a subtree of size 5 or 6. Then r can
have at most two children, so the dual of P is a path. But then P can easily
be split into a (3) and a (4) and hence be covered with two guards.

This proves the claim for a (7). For a 6-polyomino P , let q be a bottommost
pixel, i.e., a pixel with smallest y-coordinate, breaking ties arbitrarily. Attach
an extra pixel p below q to create a 7-polyomino P ′. Then cover P ′ with two
guards. If either one of them is in a bottom corner of p, then we can move it
to the top corner of p without decreasing coverage, since p is a leaf in the dual
graph. Hence the two guards will also cover P .

Hence, Lemmas 3.2.2-3.2.4 establish the validity of Lemma 3.2.1.

Figure 3.6: Special 5-polyominoes: 5′ (left) and 5′′ (right). (The labels apply
to all polyominoes that are one of the above after rotation and/or reflection.)
Each requires two point guards.

In the proof of the subsequent theorem and again in Theorem 3.2.8, a BFS
tree structure with an important construction property is utilized. Let T be
a BFS tree of the dual graph of a polyomino P , rooted at a node r that has
degree at most 2. Add the neighbors of r to the queue, with r as parent. As
long as the queue is not empty, remove the next node v from it. Then, add all
unvisited neighbors w of v to a queue in the following fashion: Assume that v
has parent p1. Then the neighbor w that is on the opposite side of v from p1
is added last to the queue (if it exists and was not already visited.) In other
words, the BFS will always give preference to “making a turn” when exploring
the dual graph. Because of this, we have the following observation, which will
be crucial later.
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v c2

p2

p1

v

c1 c2

v′
v′ p1

p2

c1

Figure 3.7: If the polyomino shown has a BFS tree rooted at p2, v
′ cannot

exist since otherwise c1 would have been made a child of v′, not v.

Lemma 3.2.5. Let v be a pixel that has a grandparent in this BFS tree T . If
v has two children c1, c2 in T that are on opposite sides of v, then v has no
sibling.

Proof. Let p1 and p2 be the parent and grandparent of v, respectively. Then
p2 must be adjacent to p1, but it cannot be adjacent to either c1 or c2, since
this would violate the BFS property. Since c1 and c2 are on opposite sides of v,
this implies that p2 and v are on on opposite sides of p1. With our method of
doing the BFS, therefore v is added last to the queue when exploring from p1.
If p1 had any other child v′, then v′ would be adjacent to c1 or c2, and would
have been added to the queue before v. So c1 or c2 would have been made a
child of v′, not v. Therefore, v has no siblings (see Figure 3.7).

Theorem 3.2.6. For an m-polyomino P0 (possibly with holes) there are poly-
ominoes P1, P2, . . . , Pf with the following properties:

(a) Pi is a connected subpolyomino of Pi−1 (1 ≤ i ≤ f).

(b) Subpolyomino Si, the difference between Pi−1 and Pi is in the set Good
Polyominoes,
GP = {(3), (4), ((5)\{5′, 5′′}), (6), (7)}.

(c) Pf has 0, 1, or 2 pixels.

Proof. Let T be a BFS tree of the dual graph of P0 obtained as explained
above. Every node in T has at most 3 children. If the height of T is less than
2, then T has at most 3 nodes since T is rooted at a node of degree 2. If T has
exactly 3 nodes, then set Sf = T (i.e., let Sf be the subpolyomino whose dual
graph is T ), set Pf = ∅ and we are done. If |T | < 3, set Pf = T and again
we’re done
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Suppose now that the height of T is at least 2, and let q be a lowest leaf
of T . If q has siblings, then let Tp1 be the subtree rooted at the parent p1 of
q. See Figure 3.8(a). Tp1 then has 3 or 4 nodes. Set S1 = Tp1 , satisfying (b).
Hence, P1 = P0 − S1 is T − Tp1 ; this is connected (so satisfies (a)) since Tp1 is
a rooted subtree of T . By induction we can split P1 as desired.

p1

(a)

q

no sibling

p2

p1

q

p2

p1

q

p3

(b) (c)

Figure 3.8: Finding a subtree that forms a Good Polyomino.

If none of the lowest leaves of T has siblings, let q be a lowest leaf and
p1, p2 be its parent and grandparent. Let Tp2 be the subtree rooted at p2. See
Figure 3.8(b). Tp2 has between 3 and 7 nodes. The minimum of 3 occurs when
p2 has no other children and the maximum of 7 occurs when p2 has 3 children,
each of whom has one child (since no leaf has siblings). If Tp2 is not 5′ or 5′′,
then set S1 = Tp2 . As before, S1 ∈ GP , satisfying (b) and since T − Tp2 is
connected, (a) holds as well and we are done by induction.

If Tp2 is 5′ or 5′′, then p2 must be the middle pixel, and we do one of the
following:

(1) If p2 has no parent, then the whole polyomino P0 is a 5′ or 5′′, and hence
can be split into a (3) and a (2).

(2) If p2 has a grandparent, then p2 has no sibling since it is the middle
node of a 5′ or 5′′ and hence has children on opposite sides (Lemma
3.2.5). Therefore, the subtree Tp3 rooted at the parent p3 of p2 is a (6).
See Figure 3.8(c). Set S1 = Tp3 and iterate as before.

(3) Finally presume p2 has a parent p3, but no grandparent. So p3 is the root
and has degree ≤ 2. Let T ′ be the (6) formed by Tp2 together with p3;
set S1 = T ′ as before, then P1 = P0−S1 is again a connected polyomino
and we are done by induction.
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Corollary 3.2.7. For m ≥ 2,
⌊

m+1
3

⌋

guards are sometimes necessary and
always sufficient to cover a connected m-polyomino P (possibly with holes),
even in the r-visibility model.

Proof. Theorem 3.2.6 shows that we can partition P into subpolyominoes
S1, . . . , Sf and Pf such that each Si is covered by ⌊ |Si|

3
⌋ point guards, and Pf

has 0, 1 or 2 pixels. We use 1 = ⌊ |Pf |+2

3
⌋ point guard for Pf if it is non-empty.

These guards cover the polyomino even in the r-visibility model by Lemma

3.2.1. Hence, the number of point guards is
∑f

i=1⌊ |Si|
3
⌋+⌊ |Pf |+2

3
⌋ ≤ m+2

3
. Since

the number of guards is an integer, this gives an
⌊

m+2
3

⌋

sufficiency condition,
but we can make a slight improvement to

⌊

m+1
3

⌋

.

If m = 2 + 3k or m = 3 + 3k with k ∈ N, then
⌊

m+1
3

⌋

and
⌊

m+2
3

⌋

are
equivalent. So assume m = 1 + 3k.

Suppose first that some Sj is not a (3) or a (6), and hence uses actually

only ⌊ |Sj |−1

3
⌋ guards. Re-doing the above equation then shows that the number

of guards is at most m+1
3

(and as before, therefore not more than ⌊m+1
3

⌋ since
it is an integer.) On the other hand, if each Si is a (3) or a (6), and m = 1+3k,
then Pf consists of exactly one pixel. Hence, Sf ∪Pf is a (4) or a (7), and can
be covered with ⌊1

3
(|Sf |+ |Pf |−1)⌋ point guards. Again re-doing the equation

shows that the number of guards is at most ⌊m+1
3

⌋.

Note that our proof is constructive and gives an algorithm to find a set
of ⌊m+1

3
⌋ guards. The time complexity of this algorithm is dominated by the

time to find the decomposition of P into good subpolyominoes. To see that
this can be done in overall linear time, observe that there is no need to re-
compute the BFS tree every time: the remainder of the BFS tree is a BFS
tree for the remaining polyomino. Thus we compute the BFS tree only once,
and enumerate the nodes in it in backward level order. For each node q, in this
order, we then find a good subpolyomino in the vicinity of q: it is either at q’s
parent, grandparent, or the great-grandparent, or at one of their children or
grandchildren. Thus we only need to check a constant number of subtrees, all
within constant distance of q. So finding a good subpolyomino takes constant
time per removed subpolyomino.
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Pixel Guards

We proved above that ⌊m+1
3

⌋ point guards are sufficient to guard any m-
polyomino. Pixel guards are more powerful than point guards, and, thus,
one would expect that fewer pixel guards are needed. Indeed, as stated in
Theorem 3.2.8 below, the sufficiency condition for pixel guards agrees with
the lower bound ⌊3m

11
⌋ + 1. As in the point guard case, the sufficiency proof

involves removing subtrees of a BFS tree of the dual of a polyomino. The
proof, which involves an extensive case analysis and many technical details,
can be found along with other related lemmas in Appendix A.

The algorithm to find these guards is similar to that for point guards:
Compute a BFS tree, process nodes in bottom-up order, and, for each q, find
a suitable subpolyomino via some subtree that has constant distance from q.
The algorithm takes linear time.

Theorem 3.2.8.
⌊

3m
11

⌋

+1 pixel guards are sufficient to cover an m-polyomino
P (possibly with holes). The same bound holds in the r-visibility model.

We note that the ‘power’ of a pixel guard is due to it being closed (in-
cluding the boundary of the pixel). For open pixel guards, the effectiveness is
dramatically weakened. Figure 3.9 shows that ⌊m

2
⌋ open pixel guards are some-

times necessary. Also, ⌊m
2
⌋ open pixel guards are always sufficient: overlay a

chessboard with black and white squares on P and place open pixel guards on
the squares with color (black or white) that overlap with P the least. We then
have the following result:

Figure 3.9: ⌊m
2
⌋ open pixel guards are sometimes necessary to cover a poly-

omino.
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Theorem 3.2.9.
⌊

m
2

⌋

open pixel guards are sometimes necessary and always
sufficient to cover an m-polyomino P (possibly with holes). The same bound
holds in the r-visibility model.

3.2.3 Generalization to Rectanglominoes

We observe that the combinatorial results described above extend to a general-
ization of polyominoes, which we will call rectanglominoes : connected unions
of m edge aligned rectangular pixels. If pixels pi and pj, with heights hi and hj

and lengths li and lj respectively, are horizontally adjacent in a rectanglomino
R, then hi = hj. Similarly, if pi and pj are vertically adjacent, then li = lj.
Any rectanglomino R has an associated polyomino PR that is obtained by set-
ting all pixel heights and lengths of R to unit length. It is possible that PR

will self-overlap, but the combinatorial results obtained for polyominoes apply
to self-overlapping polyominoes as well. Clearly, the dual graphs of R and PR

are equivalent since the number of pixels in R and PR is the same and pixel
adjacencies are preserved.

Despite having identical dual graphs, a rectanglomino and its associated
polyomino do not always have the same guard number. Consider the example
in Figure 3.10 where the rectanglomino on the left requires three point guards
while the associated polyomino on the right needs only two.

Figure 3.10: The rectanglomino (left) requires 3 point guards, while its asso-
ciated polyomino (right) requires only 2 point guards.

However, the two numbers are the same in the r-visibility model:

Lemma 3.2.10. A rectanglomino R can be covered with k guards in the
r-visibility model if and only if its associated polyomino PR (possibly self-
overlapping) can be covered with k guards in the r-visibility model.

25



Proof. We only show one direction; the other one is similar. Assume we have
a cover of PR. Map each point pr in PR to a point r in R in the natural way:
if pr is at a corner, then it is mapped to the corresponding corner, and if it
is not on a corner, then it is mapped to the linear interpolation between the
corners of the pixel that contain it. Using this mapping on the set of guards
of PR gives a set of points in R, and we must now argue that this is a cover of
R.

Since adjacent rectangles in a rectanglomino are edge-aligned, this trans-
formation maps a rectangle in PR to a rectangle in R. Hence, if point pR in PR

is guarded in the r-visibility model by guard vR, then the rectangle R spanned
by them is inside PR. Applying the transformation yields a rectangle inside R
containing the images of pR and vR; hence, any point in R is covered by some
of the chosen guards.

As a consequence, all of our upper bounds on the guard number (Corollary
3.2.7 for point guards and Theorem 3.2.8 for pixel guards) immediately transfer
to rectanglominoes, since our covers were valid even in the r-visibility model.
Of course the lower bounds transfer as well, since a polyomino is a special kind
of rectanglomino. Hence, we have:

Corollary 3.2.11. ⌊m+1
3

⌋ point guards are always sufficient and sometimes
necessary to cover an m-rectanglomino (possibly with holes). Also,

⌊

3m
11

⌋

+ 1
pixel guards are always sufficient and sometimes necessary to cover an m-
rectanglomino.

3.3 Hardness

Theorem 3.3.1. Given a simple m-polyomino P and an integer k, it is NP-
hard to determine whether k pixel guards are sufficient to cover P . The same
statement holds for point guards, and for both guard types in the all-or-nothing
visibility model.

Proof. We first give an overview. The result is shown using a reduction from
MAX2SAT(2L), which is the special case of MAX2SAT having each literal
appear at most twice. Brodén et al. [13] gave a reduction from this problem to
the Minimum Line Covering Problem (MLCP): For a given set L of lines
in the plane, find a minimum cardinality point set S such that each line in L
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has at least one point of S on it. Their reduction (intentionally) used lines
such that none are parallel. We do the same reduction, but modify the gadgets
such that all lines are in the octagonal grid, i.e., they are all horizontal, vertical
or have slope ±1. (We also correct a small error in their APX-hardness proof.)
We can also show that all intersection points are within a polynomial-sized
box. Thus we show that MLCP remains NP-hard and APX-hard even with
lines in the octagonal grid.

We then surround these lines with a rectangle, with further attachments to
enforce that guarding the polyomino with few guards is feasible only by placing
guards roughly where the lines used to be. Consequently we have a polyomino
that mimics the line arrangement of MLCP and hence proves NP-hardness.
We were unable to create a reduction that allows us to prove APX-hardness;
we give some indications as to where the difficulties were.

3.3.1 From MAX2SAT(2L) to MLCP in octagonal grids

Let Q be an instance of MAX2SAT(2L) with variables U and clauses C.
Brodén at al. [13] create out of Q a line arrangement with arbitrary slopes
such that at most 3 lines meet in a point. We use the exact same idea for
gadgets to have lines in the octagonal grid; we review the ideas here to keep
the presentation independent.

Variable gadget. A variable gadget consists of 8 lines as in Figure 3.11a. It
has 4 intersection points of 3 lines. We place the lines to make all intersections
be on grid points. The two diagonals represent the positive literal and the
two off-diagonals the negative literals of the variable. These are referred to
as literal lines. Literal lines will later be connected to lines of clause gadgets
according to their participating variables.

Two variable gadgets are placed as in Figure 3.11b. The second variable
is positioned carefully such that no new intersection of 3 lines is created. We
are able to place |U | variable gadgets in the same manner.

Nesting boxes. Let Box0 be the box containing all intersection points of
lines derived from variable gadgets. The width w0 and height h0 of Box0 are
linear in the number of variables. We now define |C| nested boxes Box0 ⊂
Box1 ⊂ · · · ⊂ Box|C|, one per clause. For k ≥ 1, box Boxk is made so much
bigger than Boxk−1 that its top intersects all literal lines, yet these intersection
points are all outside the horizontal range spanned by Boxk−1. See Figure 3.12
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(a) Single gadget with 4 intersection
points of 3 lines

xi

xj

xi xix′ix′i
x′j x′j

xj

xj

(b) Placement of two gadgets

Figure 3.11: Variable gadget

for an example with |C| = 3. One can see that it suffices for box Boxk to have
width (2k − 1)w0 + 2kh0 and height 2kw0 + (2k + 1)h0, therefore, the largest
box Box|C| has width and height O(|C||U |).

Box0

Box1

Box2

Box3

w0

h0

w1

w2

h1 h2

Figure 3.12: Nesting boxes used to place clause gadgets

Clause gadget. One clause gadget consists of 3 lines—1 horizontal and 2
vertical. Figure 3.13 provides examples. Clause gadgets have 2 intersection
points of 3 lines, each representing a participating literal of the clause.

For the k-th clause, we place its horizontal line on the top boundary of
Boxk. Then we place two vertical lines so that they create an intersection
of three lines with the diagonal or off-diagonal literal lines of the literals of
the clause. There are two possible literal lines to select from for each literal.
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x′i x′j x′i xj

(a) (b)

Figure 3.13: (a) clause gadget for two negated variables; (b) clause gadget for
a variable and a negated variable

By construction of Boxk, the vertical lines are outside Boxk−1 but intersect
Boxk. Hence the number of intersections of 3 lines introduced by each clause
is exactly 2. All other intersections are those of 2 lines.

Combination of variable and clause gadgets. Since we have equivalent
gadgets as Brodén et al.’s [13], the rest of the argument is the same. We
have a line arrangement with 8|U | + 3|C| lines, and want to cover the lines
with as few points as possible. Exactly as in [13], one shows that the instance
of MAX2SAT(2L) can have c clauses satisfied if and only if the instance of
MLCP can be covered using k = 1

2
(6|U |+3|C| − c) points. In particular, if c∗

and k∗ are the optimal solutions, then c∗ = 6|U |+ 3|C| − 2k∗ (and vice versa
k∗ = 1

2
(6|U | + 3|C| − c∗). This proves NP-hardness of MLCP in octagonal

grids.

We now briefly review the APX-hardness proof and correct a small er-
ror in Brodén et al.’s [13]. It is known [7] that it is hard to approximate
MAS2SAT(2L) within a factor of 2012

2011
−ε for any ε > 0. To avoid having to deal

with arbitrary ǫ (and because the constants will be extremely close to 1 any-
way), we will use ε = 1

4022
, and it is hence hard to approximate MAX2SAT(2L)

within a factor of 4023
4022

. In particular, if cA is the number of satisfied clauses
obtained with some polynomial-time algorithm, then cA < 4022

4023
c∗.

Now assume there exists an f -approximation algorithm for MCLP, so it
finds in polynomial time a set of kA ≤ f ·k∗ points that cover all lines. Using the
relationship between the instances, we can therefore find cA = 6|U |+3|C|−2kA
satisfied clauses. Putting it all together, we get

f ≥ kA
k∗

=
1
2
(6|U |+ 3|C| − cA)

1
2
(6|U |+ 3|C| − c∗)

>
6|U |+ 3|C| − 4023

4022
c∗

6|U |+ 3|C| − c∗

= 1 +
1

4023
· c∗

6|U |+ 3|C| − c∗
.
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To bound this, Brodén et al. use two inequalities: |U | ≤ 2|C| and c∗ ≤ |C|.
Both are correct, but the second one goes in the wrong direction to be applied.
Instead we use c∗ ≥ |C|/2 (we can always satisfy half of the clauses by using
an arbitrary variable assignment or its opposites). Therefore

f ≥ 1 +
1

4023
· c∗

6|U |+ 3|C| − c∗
≥ 1 +

1

4023
· |C|/2
12|C|+ 3|C| − |C|/2

= 1 +
1

4023 · 29 =
116668

116667
.

This proves APX-hardness of MCLP, even with lines in the octagonal grid.

3.3.2 From MLCP to Polyominoes

We now proceed to the next step: convert the line arrangement into a poly-
omino such that guarding the polyomino with guards corresponds to covering
the lines. Assume all intersection points of the instance of MLCP were inside
a rectangle of size ℓ×h (which was polynomially bounded.) The main part of
the polyomino consists of this rectangle (which we will call the main rectangle),
with so-called ray gadgets attached which emit a virtual ray that mimics a line
of the line arrangement and must contain a guard. Figure 3.16 outlines the
whole construction. Since we have vertical, horizontal and diagonal lines, two
types of ray gadgets are required.

Ray gadget. Figure 3.14 shows the gadget to generate a horizontal ray. The
bold black solid line is the boundary of the polyomino. In order to see any
portion of the open segment ab of the spike, a pixel guard must exist on or

above −→ac and on or below
−→
bd. Some possible pixel guards are shown as squares

in the figure. If we set the length of the spike to be the same as the width ℓ
of the main rectangle, then possible guard locations outside of the spike for ab
form a 3 by ℓ horizontal strip. The ray gadget for a vertical ray is symmetric.

a

b

ℓ ℓ

3

c

d

Figure 3.14: A gadget for a horizontal ray

The other type of gadget generates slant-rays as in Figure 3.15. The gadget
has lots of legs (paths of length 3 that end in a corner), and we need at least
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one guard to cover this portion. The best placement is in the third pixel
from the end. This covers almost everything of the gadget, even in the all-or-
nothing model, but (part of) one pixel near the bottom is not covered. The
uncovered part is indicated in black in Figure 3.15. We call this the bottom
region. In order to guard this bottom region, we need at least one more pixel
guard, which is either inside the gadget or along the narrow wedge defined by
the bottom region and the reflex corners near the connection of the gadget to
the main rectangle. This wedge resembles a ray of slope 2.

We choose the height of the gadget to be the same as the height of main
polyomino; then all pixels that intersect the wedge are either on the ray, or
adjacent to a pixel on the ray that the wedge mimics. We can similarly build
a gadget for a ray that has slope (roughly) -2.

main rectangle main rectangle main rectangle

Figure 3.15: A gadget for a slant-ray. We show the gadget for pixel guards
(the same gadget works for the unrestricted or the all-or-nothing model, but
the bottom region is different), and for point-guards in the unrestricted model.

Refinement of the grid. Let L be the line arrangement with horizontal,
vertical and diagonal lines, i.e., the instance of MLCP. All lines are part of
an octagonal grid G. We refine the grid by repeatedly doubling all lines until
all grid points that contain lines from L are at least 11 units apart horizon-
tally. Then we skew the drawing to double its height without changing its
width. Then all lines are now horizontal, vertical or of slope ±2. Note that by
construction any two lines of the line arrangement intersect in a grid point.

Constructing the polyomino. Let B be the box that contains all intersec-
tion points of all lines after this transformation. Now define the polyomino
by adding all pixels within B. Furthermore, for every horizontal or vertical
line in L, we attach a gadget for a horizontal/vertical ray where the line hits
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the left/bottom side of B. For any line of slope ±2, we attach the gadget for
a slant-ray where the line hits the bottom of B. Since we refined the grid,
gadgets for two lines of the same slope are sufficiently far apart so that they
do not interfere. Since all intersection points are inside B, the lines are sorted
by slope around the boundary of B and so gadgets of lines of different slopes
will not intersect each other. Further, if we make gadgets long enough then no
forced guard in one gadget can be used to cover the unguarded regions in other
gadgets and the wedges defined by the gadgets are disjoint except where cor-
responding lines intersect. Using gadgets of length l or h will suffice; this will
hence at most triple the height/width of the grid containing the construction.
Hence the polyomino has width and height O(lh).

slanted ray gadgets

B

horizontal 
ray gadgets

vertical ray gadgets

for slope −2
slanted ray gadgets
for slope +2

Figure 3.16: Place the ray gadgets around the box that contains all intersec-
tions. The width of the gadgets is not to scale.

Summary. It is now easy to see that a minimum line cover set S of k points
corresponds exactly to a placement of N + k pixel guards that cover every-
thing. Here N is the number of guards required for the gadgets for slant-rays;
this number is known a-priori and polynomial in the number of lines and the
width and height of the box bounding the instance of MLCP. Hence guarding
the polyomino with the minimum number of pixel guards corresponds to find-
ing a minimal line cover set. This proves NP-hardness of guarding a simple
polyomino with pixel-guards, both in the unrestricted model and the all-or-
nothing model. The proof for point-guards is quite similar, using the modified
slant-ray gadget.
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Remark. We note that our reduction does not also show APX-hardness as
in [13]. This is due to the N guards required for the slant-ray gadgets, which
can be large and consequently give us no guarantee of an inapproximability
ratio greater than one. APX-hardness would hold if we could construct a slant-
ray gadget that uses only a constant number of additional guards (because then
N ≤ const · k∗ since every slant line requires at least one guard.) It is not
difficult to construct such a gadget for one ray (using a rectangle with just
two attachments), but we have not been able to construct such a gadget that
is “slim enough” that we can place them next to each other for all slant-ray
gadgets without overlapping.

3.4 Algorithms for Special Cases

Since guarding polyominoes is NP-hard, we consider special cases for which
one can compute the optimum in polynomial time. In particular, consider a
thin polyomino tree, which is a polyomino for which the dual graph is a tree.
The tree structure makes it plausible that a good set of guards can be found
easily, and we show this now.

The algorithms that we found provably work in both the all-or-nothing
model and the r-visibility model; as we will see, these two concepts are the
same in a thin polyomino tree. The reason that these models are easier lies in
the following lemma, which demonstrates that there are only finitely many
point guard placement positions to consider, rendering the problem a set
cover problem (and hence immediately yielding O(logm) approximation al-
gorithms.)

Lemma 3.4.1. In the r-visibility model, in any polyomino P there exists an
optimal solution for guarding P such that the guards are placed only at pixel
corners.

Proof. Move any guard g not placed on a corner to one of the corners, g′, of
the pixel that contains it. To see that this is still a cover, consider a point p
that was guarded by g. Then the rectangle R spanned by p and g is inside P .
Round out R to the rectangle R′ consisting of all pixels of P intersected by R;
then, R′ ⊆ P . But R′ contains both g′ and p, and hence they are visible to
each other in the r-visibility model.
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Lemma 3.4.2. In a thin polyomino tree P , a point q is r-visible from a point
p if and only if q is all-or-nothing visible from p.

Proof. Suppose q is all-or-nothing visible from p, and let q′ be the pixel con-
taining q and completely seen by p. Then the four sight lines from p to the
corners of q′ are all within P . If p is not within horizontal or vertical range of q,
then these four sight lines cross at least two different neighbors of q′. Following
the sight lines, we hence walk between these neighbors of q′, using only pixels
inside P , without using pixel q′. This is impossible if the dual graph is a tree.

The other direction is straightforward using Lemma 3.4.1 and holds even
if P is not a thin polyomino tree. Let R be the rectangle spanned by p and q,
and expand it to the union of polyominoes R′ as in that proof. Since R was
in P , so must be R′. Note that R′ contains both p and the pixel containing q,
and so p guards q in the all-or-nothing model.

We note here that these lemmas are not valid in the general model (unre-
stricted visibility).

3.4.1 Guarding Thin Polyomino Trees

Consider an arbitrary thin polyomino tree P . By Lemma 3.4.2, r-visibility
is equivalent to all-or-nothing visibility in P . From [50], we can obtain in
polynomial time a minimum cardinality r-star cover. Hence, by placing a
point guard in each r-star polygon found in the cover, we obtain an optimal
solution in the all-or-nothing visibility model.

The algorithm to find this cover is polynomial, but very slow. It remains
open to devise an algorithm for optimal cover in thin polyomino trees that has
quadratic (or perhaps even linear) runtime. We also leave as an open question
as to whether the optimal number of point guards can be found in a thin
polyomino tree in the general visibility model.

3.4.2 Guarding Thin Polyomino Paths

For the special case of a thin polyomino path P , we give simple greedy algo-
rithms for placing the minimum number of point or pixel guards in P along
with proofs of optimality. The pixels of degree 2 in a thin polyomino path come
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in two varieties: bridge pixels, which have neighbors on two opposite sides, and
corner pixels, which have neighbors on two adjacent sides. The pseudocode
and proof of optimality for both the point and pixel guard versions are given
below.

Pseudocode

Algorithm: ThinPolyominoPathPointGuardCover(P )

while there are pixels remaining in P
1. Begin at a pixel with degree = 1. Set corners = 0.
2. while the next pixel (if it exists) is a bridge pixel

Append the pixel to S.
3. while the next pixel (if it exists) is a corner pixel and corners < 3

Append the pixel to S.
corners = corners + 1.

4. while the next pixel (if it exists) is a bridge pixel
Append the pixel to S.

5. if the next pixel exists
Append the pixel to S.
Remove the star-shaped thin subpolyomino S just traversed.
Place a point guard at a vertex that covers S.
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Algorithm: ThinPolyominoPathPixelGuardCover(P )

while there are more pixels remaining in P
1. Initialize S to be the the pixel with degree = 1 just created or else any leaf pixel.

Set corners = 0 and bridges = 0.
2. while the next pixel (if it exists) is a bridge pixel

Append the pixel to S.
3. while the next pixel (if it exists) is a corner pixel and corners < 5

Append the pixel to S.
corners = corners + 1.

4. while the next pixel (if it exists) is a bridge pixel
Append the pixel to S.
bridges = bridges + 1.

5. if bridges = 1 and corners ≤ 2
set corners = 0.
while the next pixel (if it exists) is a corner pixel and corners < 2

Append the pixel to S.
corners = corners + 1.

6. while the next pixel (if it exists) is a bridge pixel
Append the pixel to S.

7. if the next pixel exists
Append the pixel to S.
Remove the star-shaped thin subpolyomino S just traversed.
Place a pixel guard inside S that covers S.

3.4.3 Proofs of Optimality

Proof of Optimality for ThinPolyominoPathPointGuardCover

Lemma 3.4.3. Each subpolyomino partition created by ThinPolyominoPath-

PointGuardCover is star-shaped.

Proof. Consider one iteration of the main while loop. Step 2. of the algorithm
appends pixels along a straight path. By the end of step 2. the subpolyomino
is comprised only of bridge pixels. During step 3., up to three corner pixels
are appended in succession. If no corner pixels are appended however, then
the subpolyomino is a straight path and thus trivially star-shaped. Otherwise,
if we put a point guard at the reflex vertex of the first corner pixel appended
that is furthest from the pixel we started at, then we cover the bridge pixel(s)
appended from step 2., the corner pixels of step 3., all subsequent bridge pixels
and possibly one corner pixel appended in steps 4. and 5. (see Figure 3.17).
Thus, each subpolyomino partition is star-shaped.
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Figure 3.17: The four free subpolyomino types that can be constructed in
one iteration of the main while loop of ThinPolyominoPathPointGuardCover,
depending on whether there are 1, 2, or 3 corner pixels in the subpolyomino
(the last of which has two subcases shown in the bottom row). By placing
a point guard at the reflex vertex of the first corner pixel appended that is
furthest from the first pixel encountered as shown for each case, the entire
subpolyomino is covered.

Lemma 3.4.4. During an iteration of the main while loop, the algorithm
ThinPolyominoPathPointGuardCover appends a maximal number of pixels to
the star-shaped subpolyomino partition constructed.

Proof. Suppose the claim is false: then another pixel could have been ap-
pended at the end of the subpolyomino partition constructed while remaining
star-shaped. If there was another pixel to append, then the last pixel we ap-
pended was a corner pixel in the original pixel path according to the algorithm.
Therefore, attaching a subsequent pixel would result in either 4 corner pixels
appended in succession or two corner pixels separated by one or more bridge
pixels. Neither resulting subpolyomino can be covered with one point guard.
Hence, the number of pixels in each star-shaped subpolyomino partition con-
structed by the algorithm is maximal.

Theorem 3.4.5. After the termination of ThinPolyominoPathPoint-
GuardCover, each subpolyomino partition contains an independent witness
point at the center of the first pixel encountered by the algorithm.

Proof. If P is star-shaped, then we have just one subpolyomino partition,
which trivially has an independent witness point at the center of the first
pixel.

37



Consider the case when we have k > 1 subpolyomino partitions. We see
that no point exists in the set of pixels along the path from the first pixel of the
first subpolyomino to the first pixel of the second subpolyomino that can cover
the first pixels of both the first and second subpolyominoes in their entirety.
Otherwise, this first subpolyomino was not maximal in size. Therefore, we can
place an independent witness point at the center of the first pixel of the first
subpolyomino.

If there is a third subpolyomino partition, we observe similarly that no
point can exist in the set of pixels along the path from the first pixel of the
second subpolyomino to the first pixel of the third polyomino that covers the
first pixels of both the second and third subpolyominoes. This implies that we
can place an independent witness point at the center of the first pixel.

Continuing this line of reasoning, we observe that each of the first k − 1
subpolyomino partitions has an independent witness point at the center of its
first pixel. There is also no point along the path from the first pixel of the
(k−1)th subpolyomino to the first pixel of the kth subpolyomino that covers the
first pixels of both the (k− 1)th and kth subpolyominoes. Hence, the (k− 1)th

and kth subpolyominoes each have an independent witness point at the center
of their first pixels, respectively.

Corollary 3.4.6. ThinPolyominoPathPointGuardCover provides an optimal
solution for any polyomino path P in the all-or-nothing visibility model.

Proof. Suppose the algorithm gives us k subpolyominoes in the partition so
that k point guards are used. Since each subpolyomino has an independent
witness point by Theorem 3.4.5, k ≤ OPT . Clearly, k point guards is sufficient
to cover P . Hence, OPT = k.

Proof of Optimality for ThinPolyominoPathPixelGuardCover

Lemma 3.4.7. Each subpolyomino partition created by ThinPolyominoPath-

PixelGuardCover is star-shaped.

Proof. Consider one iteration of the main while loop. Step 2. of the algorithm
appends pixels along a straight path. By the end of step 2. the subpolyomino
is comprised only of bridge pixels, forming a rectangle, which is star-shaped.
During step 3., up to 5 corner pixels can be appended. If 3, 4 or 5 corner
pixels are appended, then we get a subpolyomino of type c, d, or e as depicted
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in Figure 3.18. All subpolyomino types in Figure 3.18 can be covered with
just one pixel guard.

If no corner pixels are appended, then the subpolyomino is a straight path
and is trivially star-shaped.

If one corner pixel is appended in step 3, then we must consider what
happens in step 4: if only one bridge pixel is appended, then we get either
subpolyomino type f or g depending on whether one or two corner pixels are
subsequently attached in step 5. If, instead, two or more bridge pixels are
appended in step 4., then step 5. is skipped and we obtain subpolyomino
type a.

Now, if two corner pixels are appended in 3., then we must again consider
what happens in step 4: if only one bridge pixel is appended, then we get either
subpolyomino type h or i depending on whether one or two corner pixels are
subsequently attached in step 5. If instead two or more bridge pixels are
appended in step 4., then step 5. is skipped and we obtain subpolyomino
type b.

Therefore we see by case analysis that every subpolyomino type produced
by one iteration of ThinPolyominoPathPixelGuardCover is star-shaped.

Lemma 3.4.8. During an iteration of the main while loop, ThinPolyomino-
PathPixelGuardCover appends a maximal number of pixels to the star-shaped
subpolyomino partition constructed.

Proof. Suppose the claim is false: then another pixel could have been ap-
pended at the end of the subpolyomino partition constructed while remaining
star-shaped. If there was another pixel to append, then the last pixel we ap-
pended was a corner pixel in the original pixel path according to the algorithm.
Therefore, attaching a subsequent pixel would result in one of the following
pixel sequences in the subpolyomino by exhaustion (where C stands for corner
pixel, B stands for bridge pixel and, ’...’ implies possibly more of the preceding
pixel type):
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i.

a. b. c. d.

e. f. g. h.

Figure 3.18: The nine possible free subpolyomino types that
can be constructed from one iteration of the main while loop in
ThinPolyominoPathPixelGuardCover. Each subpolyomino type is cov-
erable with one pixel guard as shown with the filled (solid) pixels.

1. C, C, C, C, C, C

2. C, B, ..., B, C

3. C, B, C, C, C

4. C, C, C, B, C

None of these pixel sequences can be covered with one pixel guard. Hence,
the number of pixels in each star-shaped subpolyomino partition constructed
by the algorithm is maximal.

Theorem 3.4.9. After the termination of ThinPolyominoPathPixel-
GuardCover, each subpolyomino partition contains an independent witness
point at the center of the first pixel encountered by the algorithm.

Proof. The proof is analogous to Theorem 3.4.5.

Corollary 3.4.10. ThinPolyominoPathPixelGuardCover provides an opti-
mal solution for any polyomino path P in the all-or-nothing visibility model.
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Proof. The proof is analogous to Corollary 3.4.6.

3.5 Conclusion

We have explored a variation of the art gallery problem set in a polyomino
domain, in which the input parameter, m, denotes the number of pixels found
in the polyomino as opposed to the usual parameter, n, the number of vertices
of the polygon. Using point guards, it was shown that ⌊m+1

3
⌋ guards are

sometimes necessary and always sufficient to cover a polyomino onm pixels. In
the case of pixel guards, we have that ⌊3m

11
⌋+1 guards are sometimes necessary

and always sufficient. When the polyomino is generalized to a rectanglomino,
we demonstrated that these bounds were preserved.

It should be emphasized that these conditions apply to polyominoes with
or without holes. For general polygons, ⌊n+h

3
⌋ point guards are sometimes

necessary and always sufficient where h is the number of holes [11]. For m ≤
3n
4
− 4 we have ⌊m+1

3
⌋ < ⌊n

4
⌋, yielding a strictly lower sufficiency bound for

point guards than obtained by the art gallery theorem for orthogonal polygons
[29].

We have shown that guarding an m-polyomino with pixel guards is NP-
hard in the general and all-or-nothing models, even for simple polyominoes.

For the special cases of thin polyomino paths and trees in the all-or-nothing
visibility model, we give optimal algorithms for guarding paths in linear time
and an optimal algorithm for guarding trees with unlimited visibility and with
limited pixel guard visibility. However, we conjecture that guarding thin poly-
omino trees has a polynomial-time (exact) algorithm under the general model.

It remains open whether there is any approximation algorithm for guarding
simple polyominoes.
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Chapter 4

Guarding Polyforms1

4.1 Introduction

A polyform is a plane figure or solid compound comprised of a collection of
m edge- or face-aligned copies (pixels or voxels) of a given shape. Examples
include polyominoes, polyiamonds, and polyhexes, which have base shapes of
squares, equilateral triangles and regular hexagons, respectively. We may use
the notation (m) to indicate anm-polyform (a polyform withm cells). Biedl et
al. study the combinatorics of guarding m-polyominoes [8]. Both point guards
and guards that are themselves entire pixels of the polyomino (pixel guards),
are considered in their work. A polyomino (or any polyform) P is considered
covered if every point on its interior is seen by at least one guard g of a guard
set G, i.e., ∀p ∈ P, ∃g ∈ G such that gp ⊂ P . If pixel guards are used, then
gp ⊂ P means there is a point of g such that the line segment defined by this
point and p is in P . Also, different types of visibility are explored including
the standard unrestricted model and the more restrictive all-or-nothing model.
In the latter case, a pixel p is guarded only if a single point guard a (or point
a inside a pixel guard) sees all points of p (i.e., ab ⊂ P , for all b ∈ P ). The
authors demonstrate that ⌊m+1

3
⌋ point guards and

⌊

3m
11

⌋

+ 1 pixel guards are
always sufficient and sometimes necessary to cover an m-polyomino.

The 3D analog of a polyomino, a polycube, is a connected union of face-
aligned unit cubes. An open question posed by Biedl et al. is “What are
necessary and sufficient conditions for guarding polycubes?” [8] In this study,

1A preliminary version appears in 1st Computational Geometry: Young Researchers
Forum 2012 [30].
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Polyform Guard type Lower bound Upper bound

polycube
point ⌊m+1

3 ⌋ ⌊m+1
3 ⌋

voxel ≈ 5m
17 ⌊4m13 ⌋+ 1

polyiamond
point ≈ 2m

11 ⌊2m9 ⌋+ 1

pixel ≈ m
7 ⌊3m16 ⌋+ 1

polyhex
point ⌊m2 ⌋ ⌊m2 ⌋
pixel ≈ 5m

14 ⌊3m7 ⌋+ 1

Table 4.1: Combinatorial bounds for guarding polycubes, polyiamonds, and
polyhexes

we show that ⌊m+1
3

⌋ point guards are sometimes necessary and always sufficient
to cover an m-polycube, matching the bounds for guarding an m-polyomino.
Additionally, we provide combinatorial bounds for guarding polycubes with
voxel guards and polyiamonds and polyhexes with both point and pixel guards.
We summarize our results in Table 4.1. In Section 4.2 we give constructions
that achieve the reported lower bounds. In Section 4.3 we establish upper
bounds. We conclude with a discussion and some open problems in Section 4.4.

4.2 Necessary Conditions

For each of the polyforms in consideration (polycubes, polyiamonds and poly-
hexes), we establish constructions that achieve the reported number of guards
that are sometimes necessary to cover the polyform. We begin with polycubes.

4.2.1 Polycubes

We see from Figure 4.1 (top) that ⌊m+1
3

⌋ point guards are sometimes necessary
to cover a polycube on m voxels. In the voxel guard case, we obtain a lower
bound of ≈ 5m

17
.2 We can acquire the 5m

17
bound by linking spiral-shaped 13-

2To be precise, we can use this pattern to construct polycubes that require f(m) =
⌊m+1

17 ⌋ + ⌊m+4
17 ⌋ + ⌊m+7

17 ⌋ + ⌊m+11
17 ⌋ + ⌊m+15

17 ⌋ ≈ 5m
17 voxel guards. However, this is not of

great significance since there is a gap between our lower and upper bounds and 5m/17 and
f(m) never differ by more than 1. Therefore, for this and the other cases in which we have
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polycubes via T-shaped 4-polycubes as depicted at the bottom of Figure 4.1.
The union of a spiral-shaped polycube and a T-shaped polycube gives us a
(17) that requires 5 voxel guards.

Figure 4.1: Lower bound constructions for polycubes

4.2.2 Polyiamonds

We see from Figure 4.2 (left) that ≈ 2m
11

point guards are sometimes necessary
to cover a polyiamond. Figure 4.2 (right) demonstrates that ≈ m

7
pixel guards

are sometimes necessary to cover a polyiamond.

gaps, we will not trouble ourselves with the exact functions illustrated by our lower bound
constructions.
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Figure 4.2: Lower bound constructions for polyiamonds

4.2.3 Polyhexes

We observe from Figure 4.3 that ⌊m
2
⌋ point guards (top) and ≈ 5m

14
pixel

guards (bottom) are sometimes necessary to cover an m-polyhex. The 14-
polyhex outlined on the bottom requires 5 pixel guards. Repeated copies of
this subpolyhex can give us larger lower bound constructions.

Figure 4.3: Lower bound constructions for polyhexes
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4.3 Sufficiency Conditions

Many of the sufficiency conditions for the various polyforms are obtained by
arguing that we can create a ‘smart’ BFS tree and iteratively remove certain
types of subpolyforms while leaving the remaining polyform connected (via
extensive case analysis) as in [8]. We will first study the upper bounds for
guarding polycubes.

4.3.1 Polycubes

Point Guards

Lemma 4.3.1. Every polycube P with 5 voxels is star-shaped except, 5′, 5′′

and 5′′′.

Proof. Let r be a voxel of P with maximum degree. If r has 4 neighbors, a
point placed at any corner of r will cover all of P . If r has 3 neighbors, let
p be the voxel adjacent to r that is adjacent to another voxel q. By placing
a point guard at a corner of r shared by p, all of P will be covered. Finally,
suppose r has two neighbors. In this case P is either a rectangular prism, in
which case a point guard placed at any corner of P will do, or there is exactly
one, two, or three sets of three voxels in P that each form a turn. In the one
turn case, we can simply place a guard at a corner shared by these three voxels
and P is covered. If there are two turns and the middle voxels in these turns
are adjacent, then placing a point guard at a common vertex shared by these
voxels suffices. If the two middle voxels in the two turns are not adjacent, then
P would be 5′, 5′′ or 5′′′: a contradiction. In the three turn case, we place a
point guard at a vertex shared by the center voxel of the path and its two
neighbors.

Theorem 4.3.2. For m ≥ 2, ⌊m+1
3

⌋ point guards are always sufficient to cover
a polycube P with m voxels and h holes, even in the all-or-nothing model.

Proof. We compute a BFS-tree constructed from P ’s dual graph rooted at a
vertex of degree ≤ 3 using a special rule analogous to the polyomino version
(turns are given preference; see Chapter 3). Let T be the BFS tree, and for
any node v in T , let Tv be the subtree rooted at v (v and all its descendants).
We will show that there is some rooted subtree Tv having v vertices that can
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Figure 4.4: The three (5)’s that require 2 point guards: 5′, 5′′, and 5′′′, from
left to right

be covered with ⌊m+1
3

⌋ point guards. We call such a subtree voxel-good. Note
that all vertices v ∈ T can have at most 5 children since the corresponding
voxel of v has 6 faces.

Let q be a lowest leaf of T , let p1 be its parent, p2 be its grandparent, p3 be
its great-grandparent, and generally pi be its great-great-...-great-grandparent,
where “great” is repeated i− 2 times. Through an extensive case analysis, we
will show that some rooted subtree of Tp5 is voxel-good. We begin with Tp1

and work our way up generations as needed.

Tp1 (and other subtrees of height ≤ 1): If |Tp1| ≥ 3, then we can cover
everything by placing a point guard at any corner of p1: The union of p1 and
any child is a convex rectangular prism, and hence star-shaped. Hence, Tp1 is
voxel-good. Else, |Tp1| = 2 and we go up a generation.

Tp2 (and other subtrees of height ≤ 2): If any subtree of the children of
Tp2 is voxel-good, we remove it and continue. Else, we consider several cases:

(2a) p1 has no siblings. Then |Tp2 | = 3 and we place a point guard at any
corner of p1 so that Tp2 is voxel-good.

(2b) p1 has at least one sibling and all of p1’s siblings are leaves. By placing
a point guard at a corner shared by p1 and p2, all voxels will be covered.
Thus, we use 1 point guard for between 4 and 6 voxels and Tp2 is voxel-
good.

(2c) p1 has at least one sibling and at least one of these siblings has a child
itself. Then 5 ≤ |Tp2 | ≤ 11. If p1 has one sibling so that |Tp2 | = 5, then
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Tp2 is star-shaped unless it is 5′, 5′′, or 5′′′ by Lemma 4.3.1. If Tp2 is
star-shaped in this case, then it is voxel-good. Else it is one of 5′, 5′′,
or 5′′′ and we go up a generation. Otherwise, |Tp2 | ≥ 6 and two guards
suffice: place two guards at a pair of non-adjacent corners of p2 shared by
p3 (p2’s parent). Then we have also placed a point guard in every child
of p2. Since the union of every child of p2 and that child’s (possible)
only child is a rectangular convex prism containing a point guard, Tp2 is
covered and hence voxel-good.

Tp3 (and other subtrees of height ≤ 3): If any subtree of the children of
Tp3 is voxel-good, we remove it and continue. Else, we consider several cases:

(3a) p2 has no siblings. Then we place two point guards at non-adjacent
corners of p2 shared by p3 so that Tp3 is covered and hence voxel-good.

(3b) p2 has one sibling, p′2 and p′2 is a leaf. Then by placing a pair of point
guards at non-adjacent corners of p2 shared by p3, all of Tp3 is covered
and hence voxel-good.

(3c) p2 has one sibling, p′2 and p′2 has exactly one child, p′′1. If p2-p3-p
′
2 forms

a turn or if p2-p3-p
′
2-p

′′
1 is straight, then we can place two point guards

at the corners shared by p2 and p3 and Tp3 is voxel-good. If p2-p3-p
′
2

is straight and p3-p
′
2-p

′′
1 forms a turn (see Figure 4.5), then we go up a

generation.

(3d) p2 has one sibling, p′2 and p′2 is a 5′, 5′′, or 5′′′. If p2-p3-p
′
2 forms a

turn, then we place two point guards at the vertices of the polycube
edge shared by p2 and p′2. We then find that Tp3 is covered and hence
voxel-good. Otherwise, p2-p3-p

′
2 makes a straight path and we go up a

generation (see Figure 4.6).

(3e) p2 has two siblings, p′2 and p′′2, which are both leaves. Then we place two
guards at non-adjacent corners shared by p2 and p3 and Tp3 is voxel-good.

(3f) p2 has two siblings, p′2 and p′′2 and one or both have exactly one child.
Then we have a (9) or (10) that is coverable with at most 3 point guards:
place two point guards at non-adjacent corners shared by p2 and p3 so
that Tp2 is covered and one of the trees rooted at p′2 or p′′2 is covered
(whichever forms a turn with p2 and p3). We then place a third point
guard if necessary at a corner of whichever voxel, p′2 or p

′′
2, is the root of

the possibly remaining uncovered subtree. Tp3 is then voxel-good.
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(3g) p2 has two siblings, one of which, say p′′2 without loss of generality, is a
5′, 5′′, or 5′′′ and the other, p′2 is a leaf or has exactly one child. Then
we have a polycube with 12 (or 13) voxels and by placing 4 point guards
at 4 mutually non-adjacent corners of p3, we cover all voxels and Tp3 is
voxel-good.

(3h) p2 has two siblings, both of which are a 5′, 5′′, or 5′′′. We can cover Tp3

using the same guard placement as in the previous case. Hence, Tp3 is
voxel-good in this case as well.

Figure 4.5: An example of an (8) that requires 3 point guards and is hence
not voxel-good

Tp4 (and other subtrees of height ≤ 4): If any subtree of the children of
Tp4 is voxel-good, we remove it and continue. Else, we consider several cases.
The first set of cases will involve situations where Tp3 is an (8) requiring 3
point guards (see case (3c) above).

(4a) p3 has no siblings. Then three guards suffice to cover Tp4 , which has 9
voxels and so Tp4 is voxel-good.

(4b) p3 has exactly one sibling, p′3 and p′3 is a leaf. Then we place two guards
at the two corners shared by p3, the child of p3 that is a 5′, 5′′, or 5′′′

and p4 along with a third guard at a corner shared by p3 and the child
of p3 that is a (2). Clearly, Tp4 is covered and since we use 3 guards for
|Tp4| = 10 voxels, Tp4 is voxel-good.

49



Figure 4.6: An example of an (11) that requires 4 point guards and is hence
not voxel-good

(4c) p3 has exactly one sibling, p′3, and p′3 has exactly one child. Then this
child is either covered using the previous placement of three guards or
p4-p

′
3-p

′
3’s child makes a turn and this child is not visible, which would

require us to place another guard. However, in this case, we have an (11)
requiring 4 point guards and we are forced to go up a generation (see
left image in Figure 4.7).

(4d) p3 has exactly one sibling, p′3 and T ′
p3

is a 5′, 5′′, or 5′′′. Then we have a
(14) requiring 5 point guards and so we go up a generation (see middle
image in Figure 4.7).

(4e) p3 has exactly one sibling, p′3 and T ′
p3

is an (8) requiring three point
guards. Then we have a (17) requiring 6 point guards and so again we
go up a generation (see right image in Figure 4.7).

(4f) p3 has two siblings, p′3 and p′′3, which are both leaves. Then we place two
point guards at the corners shared by p4, p3, and the child of p3 that is
a 5′, 5′′ or 5′′′, and then at one more additional guard at another corner
shared by p4 and p3. Since Tp4 has 11 voxels and requires 3 guards, it is
voxel-good.

(4g) p3 has two siblings, p′3 and p′′3, one of which is a leaf (or has a single
child) while the other is not a leaf. Then the only seemingly ‘problematic’
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Figure 4.7: Examples of cases when we need to go up a level from p4. Left:
11 voxels and 4 guards required, Middle: 14 voxels and 5 guards required, and
Right: 17 voxels and 6 guards required.

situations would be the ones similar to those illustrated in Figure 4.7,
except with an additional voxel adjacent to p4. However, Tp4 is voxel-
good in each case because the sibling that is a leaf is trivially covered
and so we have guard to voxel ratios of 12:4, 15:5, and 18:6, respectively.
It is easy to see that Tp4 is voxel-good even when the sibling that is a
leaf actually has a single child appended to it. Since not both of p′3 and
p′′3 can be the root of a 5′, 5′′ or 5′′′ or an (8) requiring 3 point guards,
some subtree of Tp4 must be voxel-good.

We now move to the case where Tp3 is an (11) requiring 4 point guards to
cover from case (3d) (see Figure 4.6).

(4h) p3 has no siblings. Then 4 guards suffice by placing them at the corners
shared by p3 and p4. Tp4 is then voxel-good.

(4i) p3 has exactly one sibling, p′3 and p′3 is a leaf. Then placing 4 guards as
before will cover Tp4 and so Tp4 is voxel-good.

(4j) p3 has exactly one sibling, p′3, which has one of the following configura-
tions: has a child that is not along a straight path through p4 and p′3, is
the root of a 5, 5′′, or 5′′′, or is an (8) requiring 3 point guards, or is an
(11) requiring 4 point guards (as p3 does). In any of these four subcases,
we go up a generation (see Figure 4.8).

(4k) p3 has two siblings, p′3 and p′′3, which are roots of subtrees of size at most
2. Then we place 4 guards at the corners shared by p3 and p4 and Tp4 is
voxel-good.
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(4l) p3 has two siblings, p′3 and p′′3 and p′3 is a 5, 5′′, or 5′′′ while p′′3 is a leaf
or has exactly one child. Then |Tp4 | = 18 or 19 and is coverable with 6
guards: place 4 at the corners shared by by p3 and p4 and then two more
at corners of p4 so that the 5, 5′′, or 5′′′ rooted at p′3 is covered. Tp4 is
then voxel-good.

(4m) p3 has two siblings, p′3 and p′′3, and p′3 is rooted at an (11) requiring 4
point guards. In this case |Tp4 | = 24 or 25 and 8 guards suffice: one at
each corner of p4. Therefore, Tp4 is voxel-good.

Figure 4.8: More examples of cases when we need to go up a level from p4.
Top left: 14 voxels and 5 guards required, Top right: 17 voxels and 6 guards
required, Bottom left: 20 voxels and 7 guards required, and Bottom right: 23
voxels and 8 guards required.

Tp5 (and other subtrees of height ≤ 5): If any subtree of the children of
Tp5 is voxel-good, we remove it and continue. Else, we consider several cases.
We first consider the cases (4c), (4d), and (4e), where Tp3 is an (8).

(5a) p4 has no siblings. Then we have one of the following ratios, all of which
show that Tp5 is voxel-good: 4:12, 5:15, or 6:18.
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(5b) p4 has exactly one sibling, p′4 (it can’t have two or more siblings due
to the geometry of Tp4), which is a leaf, and p4 − p5 − p′4 makes a turn.
Then p′4 is trivially covered with the 4, 5, or 6 guards used for the three
possible cases ((4c), (4d), or (4e), respectively) and Tp5 is voxel-good.

(5c) p4 has a sibling, p′4, which has exactly one child (it can’t have more
than one child again due to the geometry) and p4 − p5 − p′4 makes a
turn. In this case we reach a contradiction: Tp′′′

3
isn’t voxel-good, but p′′′3

has no siblings so appending one voxel (p′4) will make for a voxel-good
subpolycube as shown previously in our analysis for Tp4 .

(5d) p4 has a sibling, p′4, which is a leaf, and p4− p5− p′4 is straight. This can
be guarded with the 4, 5, or 6 guards used for guarding cases (4c), (4d)
or (4e) and Tp5 is voxel-good.

(5e) p4 has a sibling, p
′
4, which has exactly one child. We make the observation

that p′4 and p1 or p
′
1 must share a corner. Placing a guard at this corner,

say p1, along with one at the corner shared by p′1and p4, one at a corner
shared by p′′2 and p4, and at a corner shared by p′′′2 and p4 covers Tp5 with
a 4:14, 5:17, or 6:20 ratio, respectively so Tp5 is voxel-good.

(5f) p4 has a sibling, p′4 and Tp′
4
is a 5′, 5′′, or 5′′′. Then we use the same

guard placement as before and place one additional guard in Tp′
4
to cover

its other ‘prong’. This leads to a 5:17, 6:20, or 7:23 guard to voxel ratio
and so Tp5 is voxel-good.

(5g) p4 has a sibling, p′4 and Tp′
4
is an (8) requiring 3 guards to cover. Then

again we only need two new guards since a guard at the corner shared
by p1 or p′1 and p′4 will cover the everything except the (5) subtree that
needs 2 guards. This gives a 6:20, 7:23, or 7:26 guard to voxel ratio and
so Tp5 is voxel-good.

(5h) p4 has a sibling, p′4 and Tp′
4
is an (11) requiring 4 guards to cover, then

this can only be realized if Tp4 is also an (11) (as in case (4c)). This
polycube rooted at Tp5 requires 6 guards (see Figure 4.9) and is voxel-
good.

The two other possible cases of interest would be when Tp′
4
is a (14) requir-

ing 5 guards to cover or a (17) requiring 6 guards. However, neither of these
can be realized as a polycube.
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Figure 4.9: When Tp4 and Tp′
4
are both (11)’s that individually require 4 guards,

linking them by a single voxel, p5, creating a (23) requires just 6 point guards
as depicted.

Finally, we consider the four unresolved subcases when Tp3 is an (11) from
(4j). We observe that p4 can have no siblings due to the geometry of the poly-
cube. Since p5 is covered by placing all guards at appropriate corners of p4,
we have a 5:15, 6:18 or 7:21 guard to voxel ratio and so Tp5 is voxel-good.

We’ve seen that we can always recursively find a subtree that is voxel-
good. Hence we have at worst a 1:3 ratio between point guards and voxels.
Elementary calculations analogous to those done for the polyomino version in
Chapter 3 show that this implies that ⌊m+1

3
⌋ point guards always suffice. Since

the guards never needed to ‘team-up’ to cover a voxel, our bound holds in the
all-or-nothing model as well.

Corollary 4.3.3. For a polycube P with m ≥ 2 voxels and h holes, ⌊m+1
3

⌋
point guards are always sufficient and sometimes necessary to cover P , even
in the all-or-nothing model.
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Voxel Guards

We now investigate the voxel guard case. Our approach will be analogous:
use a BFS tree rooted at some vertex of degree 3 or more and iteratively
remove subtrees that are ‘voxel-good’. First we consider two lemmas that will
be useful. The three special polycubes with six voxels that require two voxel
guards can be found in Figure 4.10.

Figure 4.10: The three (6)’s that require 2 voxel guards: 6′, 6′′, and 6′′′, from
left to right. The two ‘turn’ voxels are separated by two ‘straight’ voxels in
each case.

Lemma 4.3.4. Every polycube P with 6 voxels is star-shaped except, 6′, 6′′

and 6′′′.

Proof. Let r be a voxel of P with maximum degree. If r has 3, 4 or 5 neighbors,
place a guard at r and clearly all of P will be covered. If r has two neighbors
we consider a few subcases.

First, if P has no turn voxels (a voxel with neighbors at two adjacent faces),
then it is a rectangular prism and hence star-shaped: a guard at any voxel will
do.

If P has exactly one turn voxel, then we place a guard in the turn voxel
and P is covered.

If P has exactly two turn voxels, we consider a few subcases: If these two
turn voxels are adjacent, then placing a guard in either of the turn voxels
will cover P since the guard will have points in both turn voxels and hence
cover all straight voxel paths extending from these turn voxels. If these two
turn voxels are separated by one straight voxel, then placing a guard at this
separating straight voxel will cover P . If these two turn voxels are separated
by two straight voxels, then we must have a 6′, 6′′ or 6′′′. It is not possible to
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separate two turn voxels by three or more straight voxels in a voxel path of
length 6.

Suppose P has exactly three turn voxels. Then in the subcase where two
of these turn voxels are adjacent and the third is separated by a straight voxel,
we place a guard in this separating straight voxel and P is covered since the
guard will have at least one point in all three turn voxels. Else, the three turn
voxels form a subpath of length three. By placing a guard at the middle voxel
of this subpath, all of P will again be covered for the same reason.

If P has (the maximum) four turn voxels, then placing a guard in either
of the ‘middle’ two voxels will cover P since the guard will have at least one
point in all four turn voxels.

Lemma 4.3.5. A subpolycube whose dual graph has a diameter ≤ 5 can be
covered by single voxel guard.

Proof. Let Q be a subpolycube of a polycube P with diameter ≤ 5. Find
a path γ in Q that achieves this diameter and place a voxel guard g at the
middle voxel (if the diameter is even, place the guard at either of the centermost
voxels). Clearly, g sees this center voxel and any adjacent voxels. Since points
of g are also in all of these adjacent voxels, any neighbors of these voxels are
also covered.

Theorem 4.3.6. For m ≥ 1, ⌊4m
13
⌋ + 1 voxel guards are always sufficient to

cover a polycube P with m voxels and h holes, even in the all-or-nothing model.

Proof. Again, we compute a BFS-tree constructed from P ’s dual graph rooted
at a vertex of degree ≤ 3. Through case analysis, we will show that some
rooted subtree of Tp4 is voxel-good (has at worst a 4:13 guard to voxel ratio).
We begin with Tp1 and work our way up generations as needed.

Tp1 (and other subtrees of height ≤ 1): If |Tp1| ≥ 4, then a guard placed
at p1 will cover p1 and all its children. Hence, Tp1 is voxel-good. Else, we go
up a generation.

Tp2 (and other subtrees of height ≤ 2): If |Tp2 | ≥ 4, then we can place a
guard at p2 so that points of this guard will be in the children of p2. Since the
union of one of these children and any of this child’s children is a rectangular
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prism, P is covered and Tp2 is voxel-good. Else, we go up a generation.

Tp3 (and other subtrees of height ≤ 3): If any subtree of the children of
Tp3 is voxel-good, we remove it and continue. Else, we consider several cases:

(3a) p2 has no siblings. Then |Tp3| = 4 and we place a guard at p2 and see
that Tp3 is voxel-good.

(3b) p2 has at least one sibling and all of p2’s siblings are leaves. Then we
can cover P by placing a guard at p2. Tp3 is voxel-good.

(3c) p2 has exactly one sibling and Tp3 is a path of length 6. Then Tp3 is star-
shaped unless it is a 6′, 6′′ or 6′′′, in which case we go up a generation.

(3d) p2 has exactly one sibling and |Tp3 | = 7. Then two guards suffice placed
at p2 and p′2 and Tp3 is voxel-good.

(3e) p2 has exactly two siblings, p′2 and p′′2, and one sibling, say p′2 has a single
child. Then we have a (7) that is coverable with two guards: place one
at p2 and the other at p′2. Hence, Tp3 is voxel-good.

(3f) p2 has exactly two siblings, one of which is a leaf while the other, say p′2,
is the root of a subtree of size 3. Then again, placing guards at p2 and
p′2 covers all of Tp3 so that Tp3 is voxel-good.

(3g) p2 has exactly two siblings, both of which have a single child. Then two
guards suffice by placing them at p2 and p3 so that Tp3 is voxel-good.

(3h) p2 has exactly two siblings, p′2 is the root of a subtree of size 3 while p′′2
is the root of a subtree of of size 2. Two guards suffice by placing them
at p2 and p′2 and Tp3 is voxel-good (see Figure 4.11 for an illustration).

(3i) p2 has exactly two siblings, both of which are roots of subtrees of size 3
that are both not paths. Two guards suffice: place them at p2 and p3
and Tp3 is voxel-good.

(3j) p2 has exactly two siblings, both of which are roots of subtrees of size 3
with one subtree, say the one rooted at p′2, being a path and the other
not a path. We may place two guards at p2 and p′2 and Tp3 is voxel-good.
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(3l) p2 has exactly two siblings, both of which are roots of subtrees of size
3 that are paths. In this case, we may need 3 guards, giving us a 3:10
guard to voxel ratio. However, since 3/10 < 4/13, Tp3 is voxel good.

(3m) p2 has exactly three siblings and each sibling has exactly one or two
children that are leaves. Here, one guard at p2 and p3 will suffice and
Tp3 is voxel-good.

(3n) p2 has exactly three siblings, one of these siblings is the root of a path
of length 2, and the other two siblings have exactly one or two children
that are leaves. Then 3 guards suffice: one at p2, one at p3 and a third
at p′2, the root of the path of length 3. This gives a 3:13 guard to voxel
ratio and so Tp3 is voxel-good.

(3o) p2 has exactly three siblings, two of which are roots of paths of length
3 and the third has exactly one or two children that are leaves. In this
case, 3 guards suffice placed at p2 and at the siblings that are roots of
paths of length 3. Hence Tp3 is voxel-good.

(3p) p2 has exactly three siblings, all of which are roots of paths of length 3.
In this case at most 4 guards may be necessary to cover the 13 voxels,
so Tp3 is voxel-good.

(3q) p2 has exactly four siblings, all of which are roots of subtrees with one
or two children that are leaves. Two guards suffice by placing them at
p2 and p3 and Tp3 is voxel-good.

(3r) p2 has exactly four siblings, all of which are roots of subtrees that are
paths of length 3. Then we require 5 guards to cover the 16 voxels. Since
5/16 > 4/13, we go up a generation. We observe however that p3 can
have no siblings due to our BFS convention. Hence we can achieve a 5:17
guard to voxel ratio and Tp4 is voxel-good.

We see that one can always recursively remove a subpolycube that is voxel-
good (i.e., no ratio worse than 4:13 is required). For the base case, we may need
an additional voxel guard if we have between 1 and 3 voxels left over. Hence
we have that ⌊4m

13
⌋ + 1 voxel guards always suffice. Since the guards never

needed to ‘team-up’ to cover a voxel, our bound holds in the all-or-nothing
model as well.
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Figure 4.11: An example situation described by case (3h) in which guards
placed at p2 and p′2 cover the polycube. p3 is the voxel with degree 3.

Corollary 4.3.7. For a polycube P with m ≥ 4 voxels and h holes, ≈ 5m
17

voxel guards are sometimes necessary while ⌊4m
13
⌋ + 1 voxel guards are always

sufficient to cover P , even in the all-or-nothing model.

Observation 1. As in the polyomino case using pixel guards, open voxel
guards are significantly weaker. Nearly identical arguments can be made to
show that ⌊m

2
⌋ open voxel guards are sometimes necessary and always suffi-

cient to cover an m-polycube.

Observation 2. The combinatorial bounds for polycubes extend to the case
when its voxels are more general, face-aligned rectangular prisms. The argu-
ments are entirely analgous to the extension of the combinatorial bounds of
polyominoes to rectanglominoes (see Section 3.2.3).

4.3.2 Polyiamonds

In each of the two following proofs of sufficiency, we construct a BFS tree
rooted at a some vertex of degree ≤ 2. No special preference to the order in
which children of a pixel are explored is required. Note that in the BFS tree,
a vertex v can have at most 2 children since the pixels have three sides. Our
approach in each case will be to iteratively remove subtrees that are ‘pixel-
good’ (except perhaps, during the final iteration), which in this case means
that we have at worst a 2:9 ratio and 3:16 ratio between guards used and pixels
covered in the point and pixel guard cases, respectively.
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Point Guards

We begin with a couple of useful lemmas:

Lemma 4.3.8. Let T be a BFS tree of the dual of a polyiamond P having a
root node with degree ≤ 2 and height ≤ 3. Then T can be covered with a single
point guard at the vertex of r shared by its (possibly two) children.

Proof. Consider any leaf node q in T . The unique subpolyiamond S formed
by the path in T from q up to but not including r has between 0 and 3 pixels.
Therefore, S is either empty, a single equilateral triangle, a rhombus, or a
trapezoid; all of which are convex. Since the point guard placed in r is also a
vertex of S, S is covered.

Lemma 4.3.9. Let P be an 8-polyiamond such that the dual of P is a path.
Then P can be covered with a single point guard unless P is 8′, 8′′ or 8′′′ (see
Figure 4.12).

Proof. All 15 free 8-polyiamonds with duals that are paths are shown in Fig-
ure 4.12. By inspection we see that all require a single point guard except 8′,
8′′ and 8′′′, which each require 2 point guards.

Theorem 4.3.10. For m ≥ 1, ⌊2m
9
⌋ + 1 point guards are always sufficient to

cover a polyiamond P with m pixels and h holes, even in the all-or-nothing
model.

Proof. Compute a BFS tree T constructed from P ’s dual graph rooted at a
vertex of degree ≤ 2. Let q be a lowest leaf of T , let p1 be its parent, p2 be its
grandparent, p3 be its great-grandparent, and generally pi be its great-great-
...-great-grandparent, where “great” is repeated i − 2 times. Through case
analysis, we will show that some rooted subtree of Tp6 is pixel-good. We begin
with Tp2 and work our way up generations as needed.

Tp2 (and other subtrees of height ≤ 2): If 5 ≤ |Tp2 | ≤ 7, then we place
one guard at the point of p2 shared by its (possibly two) children and by
Lemma 4.3.8, Tp2 is covered. At worst, this gives a 1:5 ratio and so Tp2 is
pixel-good. Else, |Tp2| = 3 or 4 and we go up a generation.

Tp3 (and other subtrees of height ≤ 3): If any subtree of the children of
Tp3 is pixel-good, we remove it and continue. Else, we consider several cases:
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8′′′8′ 8′′

Figure 4.12: The 15 free 8-Polyiamonds with duals that are paths. Only 8′,
8′′ and 8′′′ require 2 point guards. The shaded dots represent possible guard
placements that cover the polyiamonds.
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(3a) p3 has just a single child, p2. Then |Tp3| = 4 and we go up a generation.

(3b) p3 has two children. Then since Tp3 has height = 3, it can be covered
with a single point guard by Lemma 4.3.8. At worst, this gives a 1:5
ratio and so Tp2 is pixel-good.

Tp4 (and other subtrees of height ≤ 4): If any subtree of the children of
Tp4 is pixel-good, we remove it and continue. Else, we consider several cases:

(4a) p4 has just a single child, p3. Then Tp4 is a path of length 5. If we make
p2 the root of a new BFS tree T ′ of Tp4 , then by Lemma 4.3.8 Tp4 requires
just a single guard yielding a 1:5 ratio and so Tp4 is pixel-good.

(4b) p4 has two children p3 and p′3 with Tp′
3
having a height of 0 or 1. (In

this case, we create a new BFS tree T ′ rooted at p3). By Lemma 4.3.8
Tp4 requires just a single guard yielding a 1:6 ratio at worst and so Tp4

is pixel-good.

(4c) p4 has two children p3 and p′3 with Tp′
3
being a path of length 3. In this

case, |Tp4| = 8. If Tp4 is not 8′, 8′′ or 8′′′, then by Lemma 4.3.9, Tp4 can
be covered with a single guard and is hence pixel-good. Else, Tp4 is 8′,
8′′ or 8′′′ and we go up a generation.

(4d) p4 has two children p3 and p′3 with |Tp′
3
| = 4. Then Tp4 we place one point

guard at common vertex of p3 and p2 and another at a common vertex
of p′3 and a child p3. This gives us a 2:9 ratio and Tp4 is pixel-good.

Tp5 (and other subtrees of height ≤ 5): If any subtree of the children of
Tp5 is pixel-good, we remove it and continue. Else, we consider several cases:

(5a) Tp4 is an 8′′′. Then p5 cannot have a parent without violating the order in
which pixels were discovered by the BFS tree. We use two point guards
on this final 8-polyiamond.

(5b) Tp4 is an 8′′. Then neither p5 or even its parent (if it exists) can have
another child without violating the order in which pixels are discovered
when constructing the BFS tree. Hence, we have a 9-polyiamond that
can be covered with two point guards and Tp5 is pixel-good.
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(5c) Tp4 is an 8′ and |Tp5 | = 9, 10, 11, or 12. Place two point guards on p5:
one at the vertex shared by p5 and p3 and another at the vertex shared
by p5 and p3’s sibling, p′3. Then Tp4 and p5 are covered. If p5 has two
children, then we consider the subtree of this other child, p′4. Clearly, any
path of length 3 or less from p5 is necessarily covered since one of the
two point guards is a vertex of this convex 3-polyiamond. This implies
that Tp′

4
is covered by two point guards. At worst we have a 2:9 ratio

and so Tp5 is pixel-good.

(5d) Tp4 is an 8′, Tp′
4
has height 2 and |Tp5 | = 13. Then the guard placement

in case (5b) will cover Tp5 since one of the guards is on the convex
subpolyiamond(s) formed by p′4 and its descendants. Therefore, Tp5 is
pixel-good.

(5e) Tp4 is an 8′, Tp′
4
has height 3 and |Tp5| = 13. If p5 has no parent, then

we add a third point guard to the third vertex of p5 so that all of Tp5

is covered. This gives us a 3:13 ratio on our final iteration. If p5 has a
parent and p5 has no siblings, then we place a third guard as before and
we obtain a 3:14 ratio so Tp6 is pixel-good. If p5 has a sibling, p′5 and Tp′

5

has height ≤ 2, then we may place a third guard as before and Tp′
5
will

also be covered (see the left illustration in Figure 4.13). At worst, Tp6

has a ratio of 3:15 and is thus pixel-good. Else, we consider Tp′
5
. The

ways that Tp′
5
might not have a pixel-good subtree of Tp′

5
is if a.) Tp′

5
were

a path of length 4 with p′5 its head, b.) Tp′
5
were an 8′, 8′′, or 8′′′ with p′5

a center pixel, or Tp′
5
were equivalent in structure to Tp5 . In a.), if Tp′

5
is

covered by the guards at the vertices of p5, then we are done. Else we
have a situation such as the one depicted on the right side of Figure 4.13.
Here, a fourth guard is required, which we place at the third vertex of
p6. This results in a 4:18 = 2:9 ratio and so Tp6 is pixel-good. Both b.)
and c.) are impossible to realize since p′5 can have at most one child.

(5f) Tp4 is an 8′ and Tp′
4
is a path of length 5. Then Tp′

4
can be covered

with a single point guard and we place the other two guards as in case
(5b), covering the rest of Tp5 . This gives us a 3:14 ratio and so Tp5 is
pixel-good.

(5g) Tp4 is 8′ and Tp′
4
is 8′ or 8′′. The polyiamond can not be realized if Tp′

4

is 8′′. If Tp′
4
is 8′, then the polyiamond can only be realized in one way

and if we place 3 guards at the three vertices of p5, Tp5 is covered. We
then have a 3:17 ratio and so Tp5 is pixel-good.
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Figure 4.13: Left: The three point guards see all of Tp6 when Tp5 has height
≤ 2. Right: The four point guards see all of Tp6 . The dotted pixels on the
right form the alternate path from p′5 requiring 4 guards.

Hence, we can inductively remove a subpolyiamond that is pixel-good at
each iteration. For the base case, we may need an additional guard if one of
the terminating situations mentioned in the above analysis arises (cases (5a)
or (5e)) or, if we have between 1 and 4 pixels left over. This yields the desired
bound of ⌊2m

9
⌋ + 1 for all m ≥ 1. Since the guards never needed to ‘team-up’

to cover a pixel, our bound holds in the all-or-nothing model as well.

Corollary 4.3.11. For a polyiamond P with m ≥ 6 pixels and h holes, ≈ 2m
11

point guards are sometimes necessary while ⌊2m
9
⌋ + 1 point guards are always

sufficient to cover P , even in the all-or-nothing model.

Pixel Guards

In the pixel guard case, we have analogous lemmas to the point guard version:

Lemma 4.3.12. Let T be a BFS tree of the dual of a polyiamond P having a
root node with degree ≤ 2 and height ≤ 4. Then T can be covered with a single
pixel guard at the vertex corresponding to r.

Proof. Consider any leaf node q in T . The unique subpolyiamond S formed
by the path in G from q up to but not including r has between 0 and 4
pixels. Therefore, S is either empty, a single equilateral triangle, a rhombus,
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a trapezoid, or a path of length 4. The first three possibilities are convex and
since an edge of r is incident to S, they are covered. Otherwise S is a path of
length 4. Consider the grandchild g of r in S. g and r share a vertex so the
convex region formed by the pixels g to q, forming a trapezoid, are covered
and so S is covered.

Lemma 4.3.13. Let P be an 10-polyiamond such that the dual of P is a path.
Then there exists a subset D of P that require 2 guards (see Figure 4.14)

Proof. We can think of P as being comprised of a central 2-polyiamond C with
two subpaths, L and R (standing for left and right, respectively), of length 4
attached to the 2-polyiamond, one on each pixel. We can force a pixel guard
to be at the ‘right’ pixel of C if and only if R has one of the two configurations
shown in Figure 4.14 (left side). The 6 possible configurations of L (up to
symmetry) that can not be completely covered by the pixel guard placed in
the ‘right’ pixel of C are shown in Figure 4.14 (right side).

Figure 4.14: Left column: The two configurations of R (shaded) that require
us to place a pixel guard at the right pixel of C; Middle and right columns:
The 6 possible configurations of L, the left branches with four pixels, that force
the 10-polyiamond to require 2 pixel guards (shaded).
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Theorem 4.3.14. For m ≥ 1, ⌊3m
16
⌋ + 1 pixel guards are always sufficient to

cover a polyiamond P with m pixels and h holes, even in the all-or-nothing
model.

Proof. Compute a BFS tree T constructed from P ’s dual graph rooted at a
vertex of degree ≤ 2. Let q be a lowest leaf of T , let p1 be its parent, p2 be its
grandparent, p3 be its great-grandparent, and generally pi be its great-great-
...-great-grandparent, where “great” is repeated i − 2 times. Through case
analysis, we will show that some rooted subtree of Tp6 is pixel-good. We begin
with Tp4 and work our way up generations as needed.

Tp4 (and other subtrees of height ≤ 4): If |Tp4| ≥ 6, then since Tp4 can be
covered with a single pixel guard placed at p4 by Lemma 4.3.12, we have at
worst a 1:6 ratio and so Tp4 is pixel-good. Else, Tp4 is a path of length 5 and
we go up a generation.

Tp5 (and other subtrees of height ≤ 5): If any subtree of the children of
Tp5 is pixel-good, we remove it and continue. Else, we consider several cases:

(5a) Tp5 ’s dual is a path of length 6. Place a pixel guard at a central pixel.
This guard covers Tp5 by Lemma 4.3.12 and so Tp5 is pixel-good.

(5b) Tp′
4
has height≤ 2. Then the diameter of Tp5 is at most 9. By Lemma 4.3.12,

a pixel guard placed at p4 covers Tp5 with at worst a 1:9 ratio and so Tp5

is pixel-good.

(5c) Tp5 is a 10-polyiamond. If it is possible to cover Tp5 with 1 pixel guard we
do so and Tp5 is pixel-good. Otherwise, Tp5 is one of the free polyiamonds
depicted in Figure 4.14. If Tp5 has no parent, we place two pixel guards
giving us a 1:5 ratio on the final iteration. Else, we go up a generation.

(5d) |Tp4| = 5. Then Tp5 is an 11-polyiamond. If it is possible to cover Tp5

with 1 pixel guard we do so and Tp5 is pixel-good. Otherwise, we go up
a generation.

Tp6 (and other subtrees of height ≤ 6): If any subtree of the children of
Tp6 is pixel-good, we remove it and continue. Else, we consider several cases:
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(6a) Tp5 is a (10) requiring 2 pixel guards and p5 has no sibling. Then we
have an (11) requiring two pixel guards and we go up a generation.

(6b) Tp5 is a (10) requiring 2 pixel guards and Tp′
5
has height ≤ 4. In this case,

we place one pixel guard in p′5 and the other pixel guard in p4. As we
observe in Figure 4.15, these two guards still cover Tp5 (only one of the
4 cases is shown as they are all locally identical). The pixel guard at p′5
covers Tp′

5
and we have at worst at worst a 1:6 ratio so Tp6 is pixel-good.

(6c) Tp5 is an (11) requiring 2 pixel guards and p5 has no sibling. Then we
have a (12) requiring two pixel guards so Tp6 is pixel-good.

(6d) Tp5 is an (11) requiring 2 pixel guards and Tp′
5
has height ≤ 2. Then

place pixel guards at p4 and p′4 so that Tp5 and p6 are covered. One of
the pixel guards shares a vertex with p′5 so Tp′

5
is covered. We have at

worst a 2:13 ratio so Tp6 is pixel-good.

(6e) Tp5 is an (11) requiring 2 pixel guards and Tp′
5
has height 3 or 4. Place

pixel guards at p4 and p′4 so that Tp5 is covered. Also, place a pixel guard
at p′5 so that all of Tp′

5
is covered as well by Lemma 4.3.12. This gives

us at worst a 3:16 ratio and so Tp6 is pixel-good.

(6f) Tp5 is an (11) requiring 2 pixel guards and Tp′
5
is a (10) or (11) requiring

2 pixel guards. Then we have a 2:11 or 4:23 ratio, either of which make
Tp6 pixel-good.

p4p5 p5

p6p′
5 p6 p′

5

p4

Figure 4.15: Illustrations of pixel guard placement for case (6b). Regardless
of p6’s two possible configuration (left and right) the polyiamond defined by
Tp5 is covered by the two pixel guards placed at p4 and p′5.

Tp7 (and other subtrees of height ≤ 7): If any subtree of the children of
Tp7 is pixel-good, we remove it and continue. Else, we consider the following
case: Tp6 is an (11) requiring 2 pixel guards and p5 has no sibling. At worst
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we require a 1:5 ratio to cover Tp′
5
so guarding Tp6 requires at worst a 3:16 and

so Tp6 is pixel-good.

Hence, we can inductively remove a subpolyiamond that is pixel-good at
each iteration. For the base case, we may need an additional guard if a ter-
minating situation mentioned in the above analysis arises (case (5c)) or, if we
have between 1 and 5 pixels left over. This yields the desired bound of ⌊3m

16
⌋+1

for all m ≥ 1. Since the guards never needed to ‘team-up’ to cover a pixel, our
bound holds in the all-or-nothing model as well.

Corollary 4.3.15. For a polyiamond P with m ≥ 7 pixels and h holes, ≈ m
7

pixel guards are sometimes necessary while ⌊3m
16
⌋ + 1 pixel guards are always

sufficient to cover P .

4.3.3 Polyhexes

Point Guards

Theorem 4.3.16. ⌊m
2
⌋ point guards are sometimes necessary and always suf-

ficient to cover an m-polyhex P , even in the all-or-nothing model.

Proof. The lower bound is established through Figure 4.3. For the upper
bound, compute a BFS tree rooted at any node in the dual graph of P . 2-
color the resulting tree. Since no more than ⌊m

2
⌋ hexagons can be in the lesser

color class, we cover the polyhex with at most ⌊m
2
⌋ point guards: one placed

at the center of each hexagon in the lesser color class.

Pixel Guards

We now investigate the pixel guard case for polyhexes. Before considering the
unrestricted model, we have the following result:

Theorem 4.3.17. For m ≥ 2, ⌊m
2
⌋ pixel guards are sometimes necessary

and always sufficient to cover an m-polyhex with h holes in the all-or-nothing
model.

Proof. The lower bound is established from replacing the point guards in Fig-
ure 4.2 (top) with pixel guards. The upper bound is established in the same
way as the proof of Theorem 4.3.16.
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Construct a BFS tree rooted at a some vertex of degree ≤ 3. No special
preference to the order in which children of a pixel are explored is required.
Note that in the BFS tree, no vertex v can have more than 3 children since
a 4th or 5th potentially adjacent vertex would also be adjacent to v’s parent
and hence already have been explored. As before, our approach will be to
iteratively remove subtrees that are ‘pixel-good’ (have at worst a 3:7 ratio be-
tween pixel guards used and pixels covered). First, we introduce the following
lemma:

Lemma 4.3.18. There are 3 free 3-polyhexes and each requires one pixel guard.
All 4-polyhexes require one pixel guard except 4′ and 4′′, which each require 2
pixel guards.

Proof. For the 3-polyhex case, pick a vertex of degree 2 in the dual and place a
pixel guard there. Clearly this pixel and its two neighboring pixels are covered.
For the 4-polyhex case, we consider all 7 free 4-polyhexes in Figure 4.16 and
by inspection observe that each requires one guard, except 4′ and 4′′, which
each require 2 pixel guards.

4′′4′

Figure 4.16: The free polyhexes with 4 pixels. All require one pixel guard
except 4′ and 4′′, which each require 2 pixel guards.

Theorem 4.3.19. For m ≥ 1, ⌊3m
7
⌋ + 1 pixel guards are always sufficient to

cover a polyhex P with m pixels and h holes.

Proof. Again, we compute a BFS tree T constructed from P ’s dual graph
rooted at a vertex of degree ≤ 3. Let q be a lowest leaf of T , let p1 be its
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parent, p2 be its grandparent, p3 be its great-grandparent, and generally pi
be its great-great-...-great-grandparent, where “great” is repeated i− 2 times.
Through case analysis, we will show that some rooted subtree of Tp3 is pixel-
good. We begin with Tp1 and work our way up generations as needed.

Tp1 (and other subtrees of height ≤ 1): If |Tp1| = 3 or 4, then a pixel
guard placed at p1 will cover p1 and all its children. Hence, Tp1 is pixel-good.
Else, p1 has one child and we go up a generation.

Tp2 (and other subtrees of height ≤ 2): If any subtree of the children of
Tp2 is pixel-good, we remove it and continue. Else, we consider several cases:

(2a) |Tp2| = 3 or |Tp2| = 4 and Tp2 is not 4′ or 4′′. Then 1 pixel guard suffices
by Lemma 4.3.18 and Tp2 is pixel-good.

(2b) |Tp2| = 5 and p2 has two children. Then Tp2 is a path of length 5 and
can be covered with 2 pixel guards, one placed at each child of p2 so that
Tp2 is pixel-good.

(2c) |Tp2| = 5 and p2 has three children. Then placing a pixel guard at p1
covers everything (p2 and its three children form a star-shaped 4-polyhex
and q is adjacent to p1).

(2d) |Tp2| = 6. We can imagine removing the child of p2 that has no child,
leaving us with a path of pixels that can be covered with 2 pixel guards
placed at the other two children of p2. The leaf we ‘removed’ is necessarily
neighboring a pixel containing a pixel guard (assuming p2 has a parent)
so Tp2 is pixel-good. Even if p2 has no parent, it turns out that the two
pixel guards can ‘team up’ (in the assumed unrestricted visibility model)
to cover the leaf child if it is not adjacent to either pixel containing the
pixel guards.

(2e) |Tp2| = 7. In this case a pixel guard placed at each child of p2 suffices and
so Tp2 is pixel-good. In fact, it can be shown that only 2 pixel guards
are ever required if p2 has a parent.

In the event that Tp2 is 4′ or 4′′, we go up a generation and consider Tp3 .

Tp3 (and other subtrees of height ≤ 3): If any subtree of the children of
Tp3 is pixel-good, we remove it and continue. Else, we consider several cases:
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(3a) p3 has only one child. Then we can simply place pixel guards at p1 and
p2 so that Tp3 is pixel-good.

(3b) p3 has two children and one child is a leaf. Then we can cover Tp3 by
placing pixel guards at p1 and p3 since the subpolyhex formed by p1, p2,
p3 and p′1, p1’s sibling, is covered by these two pixel guards. In particular,
although neither of the pixel guards at p1 or p3 may be able to cover p′1 by
itself, they can ‘team up’ (in the assumed unrestricted visibility model)
to cover p′1 (see Figure 4.17).

Figure 4.17: Although neither of the dark shaded pixel guards (representing
pixel guards at p1 and p3 in case (3b)) can cover the light shaded pixel by
itself, together they cover it.

(3c) p3 has two children and one of them has only a single leaf child itself.
Here, |Tp3| = 7 and Tp3 can be covered by placing 3 pixel guards at p1,
p2 and the sibling of p2. Tp3 is then pixel-good.

(3d) p3 has two children and both of them are roots of a 4′ or 4′′. In this case,
we place pixel guards at p3, p1 and p′′1, the cousin of p1 that is not a leaf.
As in case (3b), we can be assured that all pixels including the siblings
of p1 and p′′1 are covered.

(3e) p3 has 3 children and two of them are leaves. A pixel guard placed at p3
covers itself and its two leaf children. Another pixel guard placed at p1
covers the rest as in case (3b) so Tp3 is pixel-good.

(3f) p3 has 3 children, one of which is a leaf child and another that has a
single leaf child itself. Place pixel guards at p1, p3 and p′′2, the sibling of
p2 that has a child. Then we have a 3:8 ratio and Tp3 is pixel-good.
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(3f) p3 has 3 children and two of them have a single leaf child so that |Tp3 |
= 9. Here, we place 3 pixel guards at p1 and the two siblings of p2: p′2
and p′′2. Clearly, these three pixels are covered along with q, the children
of both p′2 and p′′2, and p3. Also, assuming that p3 has a parent, one of
p′2 and p′′2 must be adjacent to p2 so that p2 is covered. We can then use
an argument identical to case (3b) to show that p1’s sibling is covered as
well. Hence, Tp3 is pixel-good. If p3 doesn’t have a parent then we may
require 4 guards, giving us a 4:9 ratio.

(3g) p3 has 3 children and each is a root of a 4′ or 4′′. This case isn’t realizable
if p3 has a parent. If p3 does not have a parent, then only 4 pixel guards
are necessary if we place them at p3, p1 and the cousins of p1 that have
a child. Same analysis from case (3b) applies and Tp3 is pixel-good.

Hence, we can always remove a subpolyhex that is pixel-good at each it-
eration except perhaps the final iteration where we may require an additional
pixel guard. This yields the desired bound of ⌊3m

7
⌋+ 1 for all m ≥ 1.

Corollary 4.3.20. For a polyhex P with m ≥ 3 pixels and h holes, ≈ 5m
14

pixel guards are sometimes necessary while ⌊3m
7
⌋ + 1 pixel guards are always

sufficient to cover P .

4.4 Conclusion

A collection of combinatorial results are given for guarding polycubes, polyi-
amonds and polyhexes. The bounds apply to both simple and non-simple
polyforms. It would be interesting to see if any of the loose bounds could be
tightened. Also, since polyominoes and polycubes have the same combinato-
rial bounds using point guards, it is natural to ask if this result extends to
polyhypercubes in d ≥ 4 dimensions.
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Chapter 5

Spiral Serpentine
Polygonization of a Planar
Point Set1

5.1 Introduction

A polygonization of a planar point set S is a simple polygon having S as the
set of its vertices. Different types of polygonizations have been investigated in
settings where objects are being constructed from limited data, such as pattern
recognition and image reconstruction [1], [18], [21]. The number of polygoniza-
tions for a given point set can be exponential in n, even when restricted to
monotone or star-shaped polygonizations [38].

The existence of a polygonization for any point set S in general position was
established by Steinhaus [48]. The Euclidean-TSP on S was shown to be sim-
ple by Quintas and Supnick, yielding the existence of a polygonization for any
planar point set S [44]. Graham demonstrated that a star-shaped polygoniza-
tion could be constructed explicitly in O(n log n) time [25]. Later, Grünbaum
showed implicitly that every point set S, where not all points are collinear,
has a monotone polygonization and that it can be computed in O(n log n)
time [26]. Agarwal et al. have discussed the attractiveness of the subset of
polygonizations that admit thin triangulations, which minimize the number of

1This chapter is based on work joint with Joseph S. B. Mitchell. A preliminary ver-
sion appeared in Proceedings of the XIV Spanish Workshop on Computational Geometry
(2011) [31] and a full version was invited to appear in Lecture Notes in Computer Science:
The Ferran Hurtado 60th Birthday Festschrift [33].
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nodes of degree three in the dual, and in particular, serpentine triangulations,
whose dual graph is a path. In [3], the authors gave an O(n log n) algorithm for
computing a monotone serpentine polygonization of a point set S of n points,
not all of them collinear.

The reflexivity of a point set S was introduced and studied by Arkin et
al. [5]; the reflexivity of S is the minimum number of reflex vertices possible
among all polygonizations of S. This paper motivated us to consider the prob-
lem of determining the inflection number of a point set S, which we define to
be the minimum number of transitions between reflex and convex vertices pos-
sible among all polygonizations of S. We show that one can always polygonize
S with zero or two transitions; the inflection number is zero if and only if S is
in convex position.

In particular, we demonstrate that any point set S has a spiral serpentine
polygonization. A spiral serpentine polygon is a simple polygon possessing
at most one chain of reflex vertices, exactly one chain of convex vertices (see
Figure 5.1) and admitting a serpentine triangulation. We note that it is trivial
to find a spiraling polygonal simple path through a set of n points in the plane
as in Figure 5.2. The task here is to construct a simple cycle through the
points that possesses the spiral and serpentine properties.

(a.) (b.)

Figure 5.1: A spiral polygon is shown in (a.) and a serpentine triangulation of
this polygon is shown in (b.), where the dual of the triangulation is the path
depicted.

We present a simple algorithm in Section 5.2 for constructing such a poly-
gonization in O(n log n) time, requiring O(n) space and explicitly giving a
serpentine triangulation at no extra cost. Both the run-time and space com-
plexities are optimal. To establish that the runtime is Ω(n log n), we can use
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Figure 5.2: A spiraling polygonal simple path is easy to construct.

the same approach as in [46] where the input S contains n− 1 collinear points
with one additional point p not collinear with the rest. If we rotate S so that p
has the lowest y-coordinate among all the points, then our algorithm will give
a unique spiral serpentine polygonization of the point set that can be used to
sort the n− 1 collinear points.

In Section 5.3, we establish the correctness of the algorithm. Section 5.4
gives examples computed from an implementation of the algorithm. Section 5.5
provides a closing discussion and some related open questions.

5.2 The Algorithm

Here we introduce the algorithm SpiralSerpentinePolygonize, which pro-
duces a spiral serpentine polygonization of a planar set S of n ≥ 3 points.
Refer to the pseudocode below.

In the first step of the algorithm, we compute the convex hull, H, of S and
initialize a semi-dynamic convex hull data structure that allows only deletion
operations2 [28]. Three arrays are also initialized: C, storing the convex chain,
R, storing the (possibly empty) reflex chain, and D, storing the set of diago-
nals for the triangulation.

After establishing the first two vertices, u and v, of the convex chain C
in step 2.) and determining the next point w of S to consider in step 3.),

2In a previous extended abstract of this paper [31], we give an alternative to using the
dynamic convex hull data structure, based on computing the convex layers [15] of all points
in S and exploiting special structure in the layers when our algorithm requires convex hull
queries.
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the algorithm enters a while loop in step 4.) that processes one remaining
point per iteration. In particular, at the start of each iteration of the loop
we check whether or not the (possibly unbounded) wedge Q formed by rays
emanating from w along the directions −→uw and −→vw contains any points of H
(see Figure 5.3). This can be determined in O(log n) time, using binary search
in the data structure storing the points H.

If Q has a point of H, the first point q encountered by rotating counter-
clockwise from the ray centered at w in the direction −→uw is located (in time
O(log n)). (In determining q, ties are again broken by picking the point closest
to w.) We then update u to be w and w to be q, append u to the reflex chain
R, and append (u, v) to the set of diagonals D.

Otherwise, the first point q encountered by rotating counterclockwise the
ray centered at u in the direction −→uw is located. We then update v to be w
and w to be q, append v to the convex chain C, and append (u, v) to the set
of diagonals D.

Once H is empty, we append w to C and if n > 3, (u, v) to D. We let the
polygonization P be stored as an array containing the concatenation of R in
reverse order to the end of C. The polygonization can be constructed by out-
putting the edges (P [i], P [i+ 1]), (0 ≤ i ≤ n− 2), along with (P [n− 1], P [0]).
The triangulation T is constructed via the polygonization P and set of diago-
nals D.
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Algorithm: SpiralSerpentinePolygonize(S)

1.) Initialize H to be CH(S), stored in a dynamic (deletion only) convex hull data structure.
Initialize the arrays C and R for the convex and reflex chains, respectively, and the array
of vertex pairs D for the set of diagonals, to be empty: C = R = D = ∅.
2.) Determine u, the vertex of H with minimum y-coordinate (breaking ties by maximizing
x-coordinate) and append it to C. Let v to be the next point on H in the counterclockwise
direction and append it to C. Delete u and v from H.
3.) Let w be the first point encountered by rotating counterclockwise the ray
emanating from u and passing through v (breaking ties by picking the point closest to u).
Delete w from H.
4.) while H is not empty

Let Q be the wedge formed by rays emanating from w along the directions−→uw and −→vw.
if Q ∩H 6= ∅

Find the next q ∈ H encountered by rotating ccw the ray
centered at w in the direction −→uw.
Set u = w
Set w = q
Append u to R
Append (u, v) to D
Delete q from H

else

Find the next q ∈ H encountered by rotating ccw the ray
centered at u in the direction −→uw.
Set v = w
Set w = q
Append v to C
Append (u, v) to D
Delete q from H

end while

5.) Append w to C and (u, v) to D. Let P be the array obtained by concatenating R in
reverse order to the end of C. The polygonization can be constructed by outputting the
edges (P [i], P [i+ 1]), (0 ≤ i ≤ n− 2), along with (P [n− 1], P [0]). The triangulation T is
constructed via the polygon P and diagonals D.
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We now summarize the important invariants of the algorithm.

a.) Except for the final point appended in step 5.), each point w is either
relabeled v and appended to the convex chain C or relabeled u and appended
to the reflex chain R.

b.) In step 4.), w (once relabeled u or v) always belongs to one single triangle
t of the current triangulation, Tk. Therefore, t is always a leaf node in the
dual graph (a path) of Tk.

c.) H is always contained in the intersection of left half-planes of edges along
the reflex chain in the counterclockwise direction and the directed line uw.
This region is the union of the light shaded region and Q, as depicted in Fig-
ure 5.3.

v w

u

v
Q

w

u

Q

Figure 5.3: The two possible cases that arise during each iteration of the
algorithm’s while loop: When the dark shaded region Q contains at least one
point of H (left) and when it contains no points of H (right).

5.3 Correctness

Lemma 5.3.1. SpiralSerpentinePolygonize constructs a spiral polygon P .

Proof. The proof is by induction on the iteration counter. After the first
iteration of the while loop, we have just one triangle, which is trivially spiral.
Assume the claim holds after k < n iterations of the while loop and consider
the state after the (k+1)th iteration. We remove the point w = qk+1 that was
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most recently discovered along with the two edges incident to qk, the point
discovered on the kth iteration. Use labels u, w, v as assigned at the end of
the kth iteration. The resulting polygon is spiral by the induction hypothesis.
We have two cases to consider: when qk+1 is in Qk+1 (the wedge Q during the
(k + 1)th iteration) and when it is not.

We first assume that qk+1 is in Qk+1. In this case we wish to show that when
qk+1 is processed, (a) v remains a convex vertex, and (b) w becomes a reflex
vertex. Let v′ be the convex vertex adjacent to v in the clockwise direction.
We observe that uvqk+1 must form a left turn (otherwise, qk+1 is not in Qk+1).
Consider the wedge formed by rays centered at v along the directions −→uv and−→
v′v (see Figure 5.4), which was previously examined after the vertex currently
labeled v was inserted into C. The subsequent point discovered, w, was not
in this wedge and so the wedge is empty. It follows then that qk+1 must be to
the left of the directed line v′v so that v remains a convex vertex. Since qk+1 is
in Qk+1, uwqk+1 must form a left turn, which implies that w becomes a reflex
vertex.

v′

Qk+1

u

w

v

qk+1

Figure 5.4: v′vqk+1 cannot form a right turn.

Next we suppose that qk+1 is not in Qk+1. Here, we show that when qk+1

is processed, (a) u retains its convexity (convex or reflex), and (b) w becomes
convex. Consider u being reflex in the kth iteration of the loop. Then on the
(k + 1)th iteration the ray −→uw is rotated counterclockwise until it encounters
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qk+1 in H. Clearly, u’s interior angle cannot decrease so it remains reflex. Next
we consider u being convex in the kth iteration. Here, u represents the point
first added to C in step 2.) of the algorithm. Since u ∈ CH(S), u must remain
convex after the (k + 1)th iteration. Finally, since qk+1 is not in Qk+1, vwqk+1

necessarily forms a left turn, indicating that w remains convex.

Lemma 5.3.2. SpiralSerpentinePolygonize constructs a triangulation of
P .

Proof. In each iteration of the while loop of the algorithm, a triangle is effec-
tively appended to an edge of the polygonization constructed so far. Specifi-
cally, a point w is relabeled as u or v and segments (one boundary edge and
one diagonal) are attached from this vertex to the most recently added vertices
along the convex and reflex chains, C and R, respectively. (If R is empty, the
second segment connects to the first point selected in S in step 2.)) By algo-
rithm invariant c.), w is to the left of all previously constructed edges along
the reflex chain in the counterclockwise direction and the directed line uw. It
follows that the new segments appended do not intersect any other bound-
ary points of the polygonization constructed so far, yielding a valid updated
triangulation.

Lemma 5.3.3. The triangulation constructed by SpiralSerpentinePolygonize
is serpentine.

Proof. After the first iteration we have a single triangle, which is trivially ser-
pentine. During each subsequent iteration, the new triangle formed is adjacent
to a leaf of the dual path of the current triangulation constructed so far. Hence,
the updated triangulation remains serpentine.

Lemmas 5.3.1, 5.3.2 and 5.3.3 yield the desired result, stated in the follow-
ing theorem:

Theorem 5.3.4. SpiralSerpentinePolygonize constructs a spiral serpen-
tine polygon.

Finally, we examine the algorithm’s runtime and space usage:

Theorem 5.3.5. SpiralSerpentinePolygonize runs in O(n log n) time and
requires O(n) space.
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Proof. The semi-dynamic convex hull data structure requires O(n log n) pre-
processing time, O(log n) amortized deletion time and O(n) space [28]. During
each iteration of the while loop, a point of S is processed, yielding at most
n − 3 iterations. For each iteration of the while loop, it takes O(log n) time
to determine if Q contains a point of H, O(log n) time to find the next vertex
q, and constant time to update the arrays storing one of the polygonal chains
(C or R) and the diagonals (D). This gives us the desired O(n log n) run time,
which is optimal. Since the semi-dynamic convex hull structure uses O(n)
space and the input points and the outputted polygon and set of diagonals
(for the triangulation) can be stored in arrays of linear size, we require just
O(n) space.

5.4 Implementation and Examples

We have implemented SpiralSerpentinePolygonize in Java3. In Figure 5
we display three different input point sets, along with corresponding spiral
polygonizations and serpentine triangulations produced by our algorithm.

In the first row of Figure 5, our input set is a cloud of 25 random points.
The second row depicts a “dumbbell shaped” point set, and the last row re-
sembles the face of Mickey Mouse. In each row, we show the point set (left),
the spiral polygonization given by the algorithm (middle), and the serpen-
tine triangulation of the spiral polygonization (right). Note that the spiral
polygonization is not a good curve reconstruction polygonization; the spiral
polygonizations we compute are not indicative of the “shape” of the point sets.

5.5 Conclusion

We have shown that every planar point set S with n ≥ 3 points admits a spi-
ral serpentine polygonization, which can be computed with its accompanying
triangulation in optimal O(n log n) time and O(n) space.

This work suggests some open questions for further study. Deneen and
Shute [18] have investigated the combinatorics of star-shaped polygonizations.
An analogous question is how many spiral polygonizations exist among all

3An interactive Java applet can be accessed at
http://www.ams.stonybrook.edu/~jsbm/SpiralSerpentinePolygonize.html
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Figure 5.5: Left to right in each row: an input point set S, a spiral polygoniza-
tion of S produced, and a serpentine triangulation of the spiral polygonization.

sets of n points in the plane? Secondly, what is the complexity of finding a
minimum length spiral serpentine polygonization or a minimum weight serpen-
tine triangulation? Finally, in 3D we pose a surface reconstruction problem:
what is the minimum number of transitions between convex patches and reflex
patches based on dihedral angles?
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Chapter 6

Beacon-Based Routing and
Coverage1

6.1 Introduction

The model of beacon-based routing in this paper is an analog of geographical
greedy routing in sensor networks in the continuous setting. In geographical
routing [12, 35], each node is given a Euclidean coordinate and a message
is delivered to the neighbor whose Euclidean distance to the destination is
the smallest. When sensor distribution is very dense (i.e., close to infinity),
geographical routing will always follow the straight line towards the destina-
tion, or, when the message hits the network boundary, may follow a boundary
edge to greedily minimize the distance to the destination. This is precisely
the model of beacon-based routing in this paper, where the destination is a
beacon.

Our model is also related to a family of routing schemes in sensor networks
that use landmarks [20, 22, 39]. A subset of nodes, called landmarks, first flood
the entire network such that each node records the distance to each landmark.
For routing towards a destination, a function based on the distance vector to
the landmarks is used to select the next hop. The one most similar to our
model is adopted in [39]. In [39], the message is routed towards one landmark

1This chapter is based on work joint with Michael Biro, Jie Gao, Irina Kostitsyna
and Joseph S. B. Mitchell. Preliminary versions appear in the 21st Fall Workshop on
Computational Geometry 2011 [9] and 1st Computational Geometry: Young Researchers
Forum 2012 [10].
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until the current node is equal distance away from the landmark as the desti-
nation. At this point another landmark is selected. The paper shows that by
carefully choosing the landmarks, the routing path is within a constant factor
of the shortest path. In this paper we examine the combinatorial structures
for landmark placement, to support this type of routing.

In our model, a beacon can occupy a point location on the interior or the
boundary of P , ∂P . When a beacon is activated, all points p ∈ P move along
straight lines toward b until they either reach b or make contact with ∂P . If
contact is made with ∂P , p will follow along ∂P as long as its straight line
distance to b decreases monotonically. p may alternate between moving in a
straight line path toward b on the interior of P and following along ∂P . If p is
unable to move so that its distance to b decreases monotonically, we say p is
‘stuck’ and has reached a local minimum or dead point on ∂P (see Figure 6.1).
If p reaches b we say that b attracts p. Two points are routed if there is a
sequence of beacons that can be activated and then deactivated, one at a time
in order, such that a point beginning at a source s would visit each beacon in
the sequence after it is activated and terminate at a destination t, which we
always assume to be a beacon itself.

y

x

b

Figure 6.1: x and y are dead points with respect to the beacon, b.

6.1.1 Our Results

We first present results pertaining to beacon-based routing (Section 6.2). We
show that

⌊

n
2

⌋

− 1 beacons are sometimes necessary and always sufficient to
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route between any pair of vertices in a simple polygon P . We show that it is
NP-hard to find a minimum cardinality set of point beacons to route from all
points s ∈ P to a given destination point t. Using an algorithm to compute
the attraction region of a beacon b (the locus of points in P that can reach
b when it is activated), we establish a polynomial time algorithm for routing
from a point s to a point t using a discrete set of candidate beacons.

Next, we investigate the complexity of beacon coverage (Section 6.3). Find-
ing a minimum sized guard set to cover a simple polygon is known to be NP-
hard [37]. We show that finding a minimum cardinality set of beacons B to
cover a simple polygon P is also NP-hard.

6.2 Beacon-Based Routing

We begin with a combinatorial result for beacon-based routing:

6.2.1 Combinatorics of All Pairs Routing in a Simple
Polygon

Theorem 6.2.1.
⌊

n
2

⌋

− 1 beacons are sometimes necessary and always suffi-
cient to route between any pair of vertices in a simple polygon P .

Proof. We can see from Figure 6.2 that
⌊

n
2

⌋

− 1 beacons are sometimes neces-
sary.

s

t

Figure 6.2:
⌊

n
2

⌋

−1 beacons are sometimes necessary to route between all pairs
of points in a simple polygon. Here, n = 19 and 8 beacons (light filled circles)
are required to route from s to t.
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To establish the upper bound, we first triangulate P and construct the
dual graph G of the resulting triangulation. Beginning with a leaf node of G,
we begin to peel off pairs of adjacent triangles. Let’s call the two triangles σ1

and σ2, where σ1 is the leaf triangle. We place a beacon at one vertex of the
common edge of the two triangles and argue that one can navigate from any
point p in either triangle to the beacon, or from the beacon to p, using greedy
routing. We conduct case analysis on the number of triangles adjacent to σ2

other than σ1:

(i) σ2 has only one additional adjacent triangle σ3. Suppose σ1 = △ABC,
σ2 = △BCD. σ3 is then either △BDE or △CDE. If σ3 = △CDE,
then we place a beacon b at the vertex C and otherwise we place b at
B. In either case, since b is contained in each of the three triangles,
any point p in these three triangles can navigate to b and vice-versa (see
Figure 6.3 (i)).

E

A

B

C

D
F

A

B

C

D

E

(i) (ii)

Figure 6.3: (i) The beacon b is placed at a vertex common to three triangles;
(ii) The beacon b is placed at vertex C since ∠FCB > 3π/2. Any point in
the four triangles can then navigate to b and vice-versa without any additional
beacons needed.

(ii) σ2 has two additional adjacent triangles σ3, σ4. Assume that σ1 =
△ABC, σ2 = △BCD, σ3 = △BDE, σ4 = △CDF . We place a bea-
con b at C if ∠FCB > 3π/2, or at B if ∠EBC > 3π/2. We note
that the two conditions cannot simultaneously be true. In particular, if
∠FCB > 3π/2, then ∠BCD must be obtuse. If ∠EBC > 3π/2, then
∠CBD must be obtuse. △BCD cannot have two obtuse angles. If nei-
ther of these conditions hold, then we place b arbitrarily at either B or
C. Now, assume that we place b at vertex C. Then it must be the case
that ∠EBC ≤ 3π/2. Therefore, all points inside △BDE can reach b
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and vice versa. Also as C is a vertex of σ1, σ2 and σ4, all points inside
theses three triangles can reach b and vice versa. Hence, the claim is
true (see Figure 6.3 (ii)).

Given the basic steps as shown above, we will place beacons in a recursive
manner: We take any leaf triangle σ1 of the triangulation of P and place a
beacon at one of the vertices of the shared edge of the pair σ1 and its adjacent
triangle, σ2.

1. If P is a single triangle, we do nothing. If P has at most one more triangle
besides σ1 and σ2 or P has only two more triangles but both are adjacent
to σ2, then we are done (see Figure 6.4 (i)). By the above arguments
we can navigate from any source point to any destination point by using
the single beacon: First route from the source to the beacon and then
route from the beacon to the destination (which is always a beacon).

σ1 σ2

σ1 σ2

σ3

· · ·
P ′

σ3

σ2

· · ·
P1

· · ·
P2σ4

σ1

(i) (ii) (iii)

Figure 6.4: Inductive placement of beacons. (i): Base case; (ii): Peeling off
σ1 and σ2 leaves a simple polygon; (iii): Peeling off σ2 partitions P into two
pieces, P1 and P2

2. Otherwise, we peel off σ1 and σ2. There are two subcases to consider:

(a) σ2 is only adjacent to one more triangle σ3 (i.e., σ2 has degree 2 in
the dual graph; see Figure 6.4 (ii)). In this case peeling off σ1 and σ2

will still leave a simple polygon P ′. We can recursively ‘beaconize’
P ′. Now we argue that one can navigate with the union of these
beacons. In particular, if the source and destination pair are both in
σ1∪σ2 or both in P ′, then we can navigate by induction hypothesis.
If the source and destination pair are separated in σ1 ∪ σ2 and P ′,
we can use the beacon x of σ2 and the beacon y of σ3 (if it is a
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different beacon) to help guide the message across the two pieces.
By the analysis of the basic case, any point inside σ3, in particular,
the beacon y, is reachable to and from the beacon x in σ2. Thus
navigation works in this case.

(b) σ2 is adjacent to two other triangles σ3 and σ4. Thus peeling off
σ1 and σ2 will partition the triangulation to two pieces, say P1 and
P2. Suppose that P1 contains σ3 and P2 contains σ4 (see Figure 6.4
(iii)). By the same argument as above, we can use beacon x in σ2

to navigate between the three pieces σ1 ∪ σ2, P1, and P2.

With the algorithm, we can see that each time we peel off two triangles
at a time and place one beacon. Thus the total number of beacons we place
would be at most ⌊n−2

2
⌋ = ⌊n

2
⌋ − 1.

In the subsequent theorem, we establish the hardness of all source routing
in a simple polygon.

Theorem 6.2.2. It is NP-hard to find a minimum cardinality set of beacons
to route from all source points s to a given destination point t in a simple
polygon.

Proof. We prove hardness by reducing from the Line Hitting problem: given
an arrangement of n lines in the plane, place a minimum cardinality set of
points S so that each line intersects (‘hits’) at least one point of S. Given
an instance of the Line Hitting problem, we construct a ‘spike box’ large
enough for its rectangular body to contain a positive length segment of each
line and all intersection points formed by the arrangement. The spike box
contains a protruding zigzag spike gadget for each line in the arrangement.
We let the destination point t be any point in the body of the spike box that
is not on any line and let there be a source point s at the end of each spike. A
zigzag spike gadget (see Figure 6.5) is constructed at either of the two locations
a line exits the body of the spike box so that activating a beacon anywhere
in the dark grey region G(s) attracts s at the top of the zigzag spike to the
beacon. Note that the light grey regions in the spike are regions in which
an activated beacon could attract a point down from the above left and right
hand horizontal edges, but not down the slanted edges. Since each beacon
must be activated once in a sequence, the most efficient way to route from s
in a zigzag spike to the body of the spike box is clearly by placing one beacon
in G(s) (else we would need to use multiple beacons to accomplish this task).
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We can make each region G(s) as narrow as we please so we will treat these
regions as line segments.

t

s

Figure 6.5: A zigzag spike gadget

Since t is in the body of the spike box, t can attract any other point in
the body, with no other beacons required. Since t is not on any line of the
arrangement, t is not in G(s). Therefore, we need a beacon in each G(s) to
route from s to the body of the spike box.

Given an arrangement of lines that can be covered with k points, we can
route to t with k beacons by placing the beacons on their corresponding lines.
Since each line is covered by a point, there is a point in each G(s) and so every
point can be routed to t. If we can route to t using k < n beacons, then we
can cover the lines with k points. Since k is small, there must be a beacon in
each G(s). Place the points on the lines corresponding to the beacons, and
there will be a point hitting every line.

We now show the hardness of routing from a particular source point s to
any destination point t in a simple polygon.

Theorem 6.2.3. It is NP-hard to find a minimum cardinality set of beacons
to route from a particular source point s to any destination point t in a simple
polygon.

Proof. We again reduce from the Line Hitting problem. The reasoning
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is nearly identical to the proof of Theorem 6.2.2 using the gadget found in
Figure 6.6 so we omit the details.

s

t

Figure 6.6: A spike gadget used for showing that all destination routing from
a given source point is NP-hard

6.2.2 Computing the Attraction Region of a Beacon

In this section we devise an algorithm for computing the attraction region of
a beacon that runs in O(n log n) time and uses O(n) space.2 We will consider
the case in which P is simple first and then generalize to the case where P has
polygonal holes. We begin with a survey of relevant properties of dead points.

Dead point properties

Definition 6.2.4. For each dead point d ∈ D(b), define the dead region of d,
R(d), to be the locus of points that reach d if the beacon at b is activated.

Lemma 6.2.5. All dead points lie on the boundary of P , ∂P .

2Biro et al. have recently improved the running time for computing the attraction region
of a beacon in a simple polygon to O(n) using a triangulation of the polygon [10].
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Proof. Assume that p is a point not in ∂P . Then, there exists a ball centered
at p contained entirely in P . When b is turned on, p is unconstrained and will
move a finite distance towards b. Therefore, p is not a dead point.

Since ∂P is a sequence of line segments, we define a vertex dead point as a
dead point lying on a vertex of the polygon and we define an edge dead point
as a dead point that lies on the interior of an edge of the polygon.

Lemma 6.2.6. If d is a dead point then the line bd crosses ∂P an even number
of times.

Proof. Take a point p such that bp crosses ∂P an odd number of times. The
boundary of P divides the line bp into segments. The segments alternate from
being inside the polygon to being outside the polygon. Since b ∈ P , the first
segment is inside the polygon, and therefore, all odd segments lie inside the
polygon. Since bp crosses ∂P an odd number of times, the final segment is
odd and lies inside the polygon. When b is activated, p is free to move along
that final segment of line bp and so p is not a dead point.

Lemma 6.2.7. A point d on the interior of an edge e of P is an edge dead

point if and only if
−→
bd ⊥ e and bd crosses ∂P an even number of times.

Proof. Take a point q on an edge e = (pi, pi+1) such that
−→
bp 6⊥ −−−→pipi+1. Then

the angle between the two vectors is either greater than, or less than, 90◦.
Suppose without loss of generality that it is more. Then, when b is activated,

q will be able to move towards b, either along
−→
bq or along −−−→pipi+1, depending

on whether e is a near or far edge. Therefore q is not a dead point. This and

Lemma 6.2.6 imply that if d is an edge dead point then
−→
bd ⊥ e and bd crosses

∂P an even number of times.

If
−→
bd ⊥ e and bd crosses ∂P an even number of times, then d is constrained

to move along e, and any movement along e moves d farther from b. Therefore
d is an edge dead point.

Lemma 6.2.8. If pi−1, p, pi+1 is a sequence of vertices of the polygon, p is a

vertex dead point if and only if
−→
bp · −−−→ppi−1 > 0 and

−→
bp · −−−→ppi+1 > 0 and bp crosses

∂P an even number of times.

Proof. Suppose not, say
−→
bp · −−−→ppi−1 < 0. Then, the angle bppi−1 < 90◦ and so

p may move toward b along −−−→ppi−1. Therefore v is not a vertex dead point, a
contradiction.
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If bp crosses ∂P an even number of times and
−→
bp·−−−→ppi−1 > 0 and

−→
bp·−−−→ppi+1 > 0,

then p is constrained to move along either −−−→ppi−1 or −−−→ppi+1. Since bppi−1 > 90◦

and bppi+1 > 90◦, this moves the point farther from b. Therefore, p is a vertex
dead point.

Corollary 6.2.9. Each edge of ∂P may contain at most 1 dead point.

Proof. If d1 and d2 are two dead points on an edge e, we have 3 cases:

1. If both are edge dead points, then by Lemma 6.2.7, ∠bd1d2 and ∠bd2d1
are both 90◦, and since d1 6= d2, ∠d1bd2 = θ > 0. Therefore, the triangle
bd1d2 has more than 180◦, a contradiction.

2. If both are vertex dead points, then by Lemma 6.2.8, we have |−→bd1| < |−→bd2|
and |−→bd2| < |−→bd1|, a contradiction.

3. If d1 is a vertex dead point and d2 is an edge dead point, then by Lemma
6.2.7, and bd2d1 = 90◦ and by Lemma 6.2.8 ∠bd1d2 > 90◦ and so, triangle
bd1d2 has more than 180◦. Again, this is a contradiction.

Lemma 6.2.10. Let P be a simple polygon on n vertices. If D(b) is the set
of dead points with respect to b, then 0 ≤ |D(b)| ≤ n− 3

Proof. If P is convex, then there are no dead points, satisfying the lower bound.
Since b ∈ P , at least 3 edges of P must have a point visible to b meaning there
would necessarily be an odd number of crossing with these edges and a ray
centered at b. By Lemma 6.2.6, this implies that these three edges cannot
have any dead points. Since no edge can have more than 1 dead point, by
corollary 6.2.9, this implies that the upper bound of n− 3 cannot be exceeded.
An example achieving the upper bound is shown in figure 6.7.

Lemma 6.2.11. The set of dead regions, R(b), along with the attraction region
of b, A(p), partitions the polygon P .

Proof. We see that every point must eventually either reach b or be forced to
stop at a dead point, so these sets cover P . We remove any ambiguity about
the movement of a point on a reflex vertex by assuming it always falls to the
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b

Figure 6.7: A simple polygon P can have at most n − 3 dead points. In this
example, n = 8, the beacon is at b and the dotted lines indicate perpendiculars
with ∂P . Since we have 5 such perpendiculars, |D(b)| = 5, which agrees with
n− 3 = 8− 3 = 5.

left of
−→
bp. Then, every point follows a unique path induced by the beacon b,

as the rules for all possible positions are fixed. It follows that a point cannot
terminate at two different dead points, d1 and d2.

Definition 6.2.12. We call a vertex p a cut-vertex if it is reflex and the

segment from p along
−→
bp until it crosses the boundary of P again lies inside

the polygon. Every cut-vertex p has associated with it a ray-vertex qp, which
is the first point of intersection of the cut-vertex ray with the polygon.

Combinatorially, there are 4 conceivable types of cut-vertices, pi, split into
3 classes; ones where pi−1 and pi+1 lie on opposite sides of line bp and the two
cases corresponding to pi−1 and pi+1 lying on the same side of bp, either left
or right, respectively. Given the requirement of parity and that the polygon
is oriented counterclockwise, only one direction is valid per class of cut-vertex,
and so there are three types of cut-vertices that are possible. Call these class
I, II, and III. See Figure 6.8.

Lemma 6.2.13. 1. A vertex is a class I cut-vertex iff it is reflex and
−→
bpi×−−−→pipi+1 < 0 and

−→
bpi ×−−−→pi−1pi < 0

2. A vertex is a class II cut-vertex iff it is reflex and
−→
bpi × −−−→pipi+1 > 0 and−→

bpi ×−−−→pi−1pi < 0

3. A vertex is a class III cut-vertex iff it is reflex and
−→
bpi ×−−−→pipi+1 < 0 and−→

bpi ×−−−→pi−1pi > 0
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pi−1

b

pi+1

pi−1

pi+1

pi
pi pi

pi−1

pi+1

b b

Figure 6.8: There are three classes of cut-vertices.

Proof. From Lemma 6.2.6, we know that in order for the ray
−→
bpi to be contained

in the polygon, it must have crossed an even number of edges of P . Since P
is oriented counterclockwise, this means that the top edge on either side of−→
bpi must be ordered from left to right. If we hold

−→
bpi as fixed vertically, this

means that the top edge has a negative cross product with
−→
bpi. Then, the class

definition simply considers all cases given that the vertices are sequentially
linked pi−1 → pi → pi+1 along the counterclockwise orientation of the polygon.

Definition 6.2.14. We make a further distinction, and say a cut-vertex is
called a split-vertex if:

1. It is class I,
−→
bpi · −−−→pipi+1 < 0, and

−→
bpi · −−−→pipi−1 < 0.

2. It is class II, and
−→
bpi · −−−→pipi−1 < 0.

3. It is class III, and
−→
bpi · −−−→pipi+1 < 0.

Definition 6.2.15. If pi is a split-vertex, with corresponding ray-vertex qi,
then the line segment piqi is called a dead edge.

Theorem 6.2.16. If P is a simple polygon and e = piqi is a dead edge, then
e is the boundary between two dead regions, or the boundary between a dead
region and A(p).
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Proof. e partitions P into two pieces, PL and PR. The convention mentioned
in Lemma 6.2.11 means that the points on e move to the left and so are part

of PL. Since e is parallel to
−→
bpi, the direct action of b can never pull a point

from PL to PR or vice versa. Therefore, the only possible way for a point to
move from one side of e to the other is to move unconstrained until reaching
∂P and then slide along an edge. In order to slide along an edge across e, it
must pass pi, and therefore must slide along pipi+1, or pi−1pi, depending on
whether it started in PL or PR. Since pi is a split-vertex, then regardless what
class cut-vertex it is, due to the angles defined for a split-vertex, a point on
edge pipi+1 or pi−1pi is pulled away from pi, and can never reach it. Therefore,
since the polygon is simple, the points on one side of e cannot terminate in the
same location as the points on the right side and so are in different regions.

Furthermore, e is the boundary of at most two regions as the unconstrained
points all travel parallel to their ray from b and terminate at the same point,
meaning that points on a given ray are in the same region. Therefore, they
are in different regions and e is their boundary.

Theorem 6.2.17. A boundary edge of a region is either an edge of P , a dead
edge, or an edge of the form (pj, qi) or (qi, pj) for some ray-vertex qi.

Proof. All edges of P are boundaries of regions by Lemma 6.2.11. We see
that edges of the form (pj, qi) or (qi, pj) are actually edges of the polygon P
that have been split by a ray vertex, which does not change the fact that they
bound P and therefore bound some regions partitioning P . We have already
seen that all dead edges are boundaries of regions by Theorem 6.2.16.

Take a boundary component c of a region that is not an edge of P , or
an edge of the form (pj, qi) or (qi, pj) for some ray-vertex qi. If some length
of c is not parallel to the ray from b, then the unconstrained attraction from
b will pull points across c, implying that the two sides share a dead region.
Therefore, c must be a straight segment parallel to the ray from b. Now, c
must intersect the polygon at two locations, say s1 and s2, with s1 closer to
b. All points on c slide down c to s1 under the influence of b. If s1 is on the
interior of an edge, there are two cases. If s1 is a dead point, then points on
both sides of the edge of s1 slide to s1, implying that c is in the interior of the
dead region of s1, contradiction. If s1 is not a dead point, then it will slide
along the edge, either left or right. In both cases, points from both sides of
c end at the same dead point, so c is not on a boundary. Therefore, s1 is a
vertex. We see that the conditions that force all points from one side of c to a
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different region than all points on the other side of c are exactly the conditions
that make c a split-vertex.

Therefore the boundary edges of regions in the attraction arrangement are
exactly the edges of P , dead edges, or edges of the form (pj, qi) or (qi, pj) for
some ray-vertex qi.

The previous theorem forms the idea for the attraction region algorithm.
First, we find the split-vertices and compute ray-shots to obtain the ray-
vertices. Then, the attraction arrangement is exactly a decomposition of P
into polygons, each of which contains a single dead point, or in the case of
the attraction region (which is also a polygon), b. The arrangement therefore
consists of the dead regions and the attraction region.

The Algorithm for Computing the Attraction Region of a Beacon

Here, we first give an algorithm for calculating the attraction region A(b) of
a beacon b in a simple polygon P and then consider the case for polygons
with holes. Presume the vertices of P are given in counterclockwise order in a
linked list, or similar data structure. Iterate through them in order. Initialize
the attraction arrangement with the polygon P .

For each reflex vertex pi ∈ P , check if one of the following holds:

1.
−→
bpi×−−−→pipi+1 < 0 and

−→
bpi×−−−→pi−1pi < 0 and

−→
bpi ·−−−→pipi+1 < 0 and

−→
bpi ·−−−→pipi−1 < 0.

2.
−→
bpi ×−−−→pipi+1 > 0 and

−→
bpi ×−−−→pi−1pi < 0 and

−→
bpi · −−−→pipi−1 < 0.

3.
−→
bpi ×−−−→pipi+1 < 0 and

−→
bpi ×−−−→pi−1pi > 0 and

−→
bpi · −−−→pipi+1 < 0.

If any of those three conditions holds, shoot a ray from pi along
−→
bpi to find

qi and update the attraction arrangement with edge (pi, qi). Do this for all
pi ∈ P and the result is a partitioning of the polygon into A(b) and the set
of dead regions R(b). We can obtain A(b) by walking counterclockwise along
∂P , beginning at a visible vertex of b and following dead edges when they are
incident to a vertex along the boundary, and stopping when the first (visible)
vertex is reached again.

We now consider the run time performance. We can check each vertex to
see if it is a split-vertex in constant time, yielding O(n) time to check all the
vertices. We can preprocess to shoot rays in O(n log n) time and then find qi

96



in O(log n) per query [16]. Since there are possibly a linear number of dead
points, this yields in total an O(n log n) runtime.

When P has h ≥ 1 holes, the algorithm for computing the attraction from
a beacon b in P is nearly identical to the simple case. We again compute ray
shots from each split-vertex of P . Every non-degenerate hole (having at least
3 vertices) has a split-vertex on it with respect to b. For degenerate holes, we
can simply eliminate holes that are points from the input and for a segment
(u, v), if b is to the left or on the perpendicular through one endpoint and to
the right or on the perpendicular of the other, then we do ray shots through
both endpoints. Else, we do a ray shot through the endpoint that is furthest
from b. These ray shots connect the entire polygon.

Once all the ray shots have been computed, we begin constructing the
boundary of A(b) by starting at a visible vertex of P from b and walking along
the boundary of P in the counterclockwise direction (or clockwise direction if
we are walking along a hole), and following ray shot edges when they arise. It
may be the case that certain edges are encountered more than once. In such
instances, we delete the edge from our construction since it is not a boundary
edge of A(b).

The run time for this generalized algorithm is dominated by the complexity
of computing O(n) ray shots in a polygon with holes. In particular, it takes

O(
√
hn+ h

3

2 log h+ n log n) time to preprocess and O(
√
h log n) to conduct a

ray shot [16]. This gives us a total running time of O(
√
hn log n).

6.2.3 Routing with a Discrete Set of Candidate Beacons

Using the above attraction region algorithm, we find a minimum beacon path
between two points s, t, where beacons are chosen from a discrete set of m
candidates. A minimum beacon path from s to t is the smallest possible
collection of points b1, b2, . . . , bk in P with the property that b1 attracts s, bi+1

attracts bi for i = 1, . . . , k − 1, and t attracts bk. The minimum beacon path
algorithm constructs a digraph G whose vertices are the candidate locations
and which has the edge (u, v) if u ∈ A(v). The minimum beacon path is then
given by the shortest s− t path in G.

Theorem 6.2.18. A minimum beacon path from s to t, chosen from a set of
m candidate locations in a polygon P can be found in time O(mn log n +m2)
for simple polygons, and O(

√
hmn log n+m2) for polygons with holes.
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6.3 Hardness of Beacon Coverage

We establish the hardness of covering a simple polygon with a minimum cardi-
nality set of becaons. The proof is again based on a reduction from the Line

Hitting problem.

Theorem 6.3.1. It is NP-hard to find a minimum cardinality set of beacons
whose union covers a simple polygon.

Proof. Given an instance of the Line Hitting problem, we construct a ‘spike
box’ large enough for its rectangular body to contain a positive length segment
of each line and all intersection points formed by the arrangement. The spike
box contains an arrow shaped spike gadget for each line in the arrangement
that protrudes from the body. We place a spike gadget at either location
where a line exits the body of the spike box. Each gadget has an arbitrarily
small entrance (see Figure 6.9. The minimum number of beacons to cover the
tip of each spike is exactly the number of beacons needed to cover the whole
spike box. This is because any beacon placed in the convex body of the spike
box covers the body of the spike box. Therefore, if any of the spike-covering
beacons are in the body, each spike is covered as well as the body, so the entire
polygon is covered. If all the spike-covering beacons are in the spikes, then
they are each in the region of points R(p) that attract exactly one tip, say p.
Since all intersections of regions R(p) for each p are contained in the body of
the spike-box, each beacon is responsible for only one tip, and so we can move
it, as long as it remains in R(p). Specifically, we can move it to the body of
the spike-box, and cover the entire polygon with the same number of beacons.

p

Figure 6.9: An ‘arrow spike’. p is attracted by all points in the grey shaded
region, which extends into the body of the spike box.

If we can cover each line in the arrangement with k points, then we can
cover the polygon with k beacons. Given an instance of k points covering the

98



lines, place k beacons in their corresponding places in the spike box. Since each
line is covered, there is a beacon in R(p) for each spike tip p, and so we can
cover the polygon with k beacons. If we can cover the polygon with k beacons,
then we can cover the lines with k points. Given the beacon placement, place
the points on the corresponding points of the lines. Since each spike-tip is
covered, there is a beacon in each R(p) and so there is a point on each line,
covering the lines with k points.

6.4 Conclusion

We have considered beacon-based point-to-point routing and coverage prob-
lems motivated by sensor network applications. We showed that

⌊

n
2

⌋

− 1 bea-
cons are sometimes necessary and always sufficient to route between any pair
of points in a simple polygon P . We developed several algorithms to compute
structures to aid in beacon routing. Using these algorithms we can approx-
imate minimum beacon paths for general beacons and find exact paths for
discrete beacon sets in polynomial time.

We demonstrated that finding a minimum cardinality set of beacons to
route from any source point s ∈ P to a given destination t ∈ P or from a
particular source point to any destination is NP-hard. We showed that it
is NP-hard to find a minimum cardinality set of beacons to cover a simple
polygon.

A remaining open question is whether there exists an exact algorithm for
computing a minimum beacon path in polynomial time or that finding such a
path is NP-hard.
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[26] B. Grünbaum. Hamiltonian polygons and polyhedra. Geombinatorics,
3:83–89, 1994.
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Appendix A

Here we prove that ⌊3m
11
⌋+1 pixel guards (we will just call these ‘guards’ in this

section) are sufficient to cover a polyomino on m pixels. We briefly introduce
some notation. Presume that a1− a2− a3 are three pixels where a1 and a3 are
different, but both adjacent to a2. We say that a1 − a2 − a3 is a corner if a1
and a3 share a point, and straight otherwise. If a1 is the parent of a2 in the
BFS tree, then we also call a3 a corner child of a2 or the straight child of a2 if
a1 − a2 − a3 is a corner or straight, respectively.

The proof of the bound will almost exclusively work on the dual graph of
the polyomino, and specifically, on the BFS tree T defined earier. As before,
we use the same notation for a pixel and for the node in the BFS tree that
represents the pixel. We first give two lemmas that are simple observations
about visibility, phrased in terms of the dual graph. Subsequent lemmas will
be nested in the body of Theorem 3.2.8’s proof.

Lemma A.0.1. If v and w are two pixels that have distance ≤ 2 in the dual
graph, then a guard at v will cover all of w.

Proof. If v and w are adjacent, then the claim is trivial. Let x be the common
neighbor of v and w. Then x contains points of the guard at v, and x ∪ w
forms a rectangle, hence a convex shape. So the points in x ∩ v cover all of
x ∪ w.

Lemma A.0.2. If v1−v2−v3−v4 is a path in the dual graph, and v1−v2−v3
is a corner, then a guard at v1 will cover v4.

Proof. Since v1−v2−v3 is a corner, v1 and v3 have one point in common. This
point, which belongs to the guard at v1, covers the convex shape v3 ∪ v4.
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Proof of Theorem 3.2.8. We prove this by induction on m. In the base case,
there exists a node that has distance ≤ 6 to all other nodes. We will deal with
this after the induction step.

Assume for the induction step that for any node r some other node has
distance ≥ 7 from r. We compute a BFS tree in the dual graph, using the
special preference search rules that were previously described in Section 3.2.2.
Let T be the BFS tree, and for any node v in T let Tv be the subtree rooted at
v, i.e., v and all its descendants. As we will show below, some rooted subtree Tv

has k nodes and can be covered with ⌊3k/11⌋ guards. We call such a subtree
pixel-good. We can remove Tv from P and the remainder is still connected
(since T −Tv is). By induction, P −Tv can be covered with ⌊(3m− k)/11⌋+1
guards, which proves the claim.

Let q be a lowest leaf of T , let p1 be its parent, p2 be its grandparent, p3 be
its great-grandparent, and generally pi be its great-great-...-great-grandparent,
where “great” is repeated i−2 times. We know that p7 exists, since some node
has distance at least 7 from r, and hence the BFS tree, which measures this
distance, has height at least 7. Through an extensive case analysis, we will
now show that some rooted subtree of Tp6 is pixel-good. We start at Tp2 , and
then work our way up the generations as needed.

Tp2 (and other subtrees of height ≤ 2): Since Tp2 has height 2, one guard
at p2 covers all of Tp2 by Claim A.0.1. So if |Tp2 | ≥ 4, then it has a guard-
pixel ratio of 1

4
< 3

11
and it is pixel-good. We state this simple observation

separately, and generalized to subtrees of any height ≤ 2, because it will be
useful later.

Lemma A.0.3. Let v be a node such that Tv has height ≤ 2. Then Tv is
pixel-good unless |Tv| = 0, 1, 2, 3.

Note that Tp2 always has height 2 and size at least 3, so by Lemma A.0.3
we are done unless Tp2 has size 3, i.e., it is a 2-path.

Tp3 (and other subtrees of height ≤ 3): If Tp2 has size 3, then we go up a
generation and study Tp3 . Let p

′
2 and p′′2 be the siblings of p2, which may or may

not exist. Let Tp′
2
and Tp′′

2
be empty subtrees if they do not exist. By Lemma

A.0.3, and after possible renaming, we can assume that |Tp′′
2
| ≤ |Tp′′

2
| ≤ 3,

otherwise there is a pixel-good polyomino in one of these subtrees and we are
done. We distinguish cases that are illustrated in Figure A.1.
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(3a) Tp′
2
and Tp′′

2
have size ≤ 1. Recall that Tp2 can be covered with one guard

at p2. Such a guard also covers p3 and all of Tp′
2
and Tp′′

2
, since they have

size ≤ 1. So Tp3 , which has at least 4 pixels, can be covered with 1 guard
and is pixel-good.

(3b) The sizes of Tp2 , Tp′
2
, Tp′′

2
are (3, 2, 0), and p3 has a sibling. Since p3 has

a sibling, p2 and p′2 cannot be on opposite sides of p3 by Lemma 3.2.5.
Hence a guard at p2 will also cover the child of p′2 by Lemma A.0.2. So
Tp3 , which has 6 pixels, can be covered with one guard and is pixel-good.

(3c) The sizes of Tp2 , Tp′
2
, Tp′′

2
are (3, 2, 0), and p3 has no sibling. In this case,

Tp3 forms a 5-path. This case can sometimes not be resolved at this level,
and we will deal with it later.

(3d) The sizes of Tp2 , Tp′
2
, Tp′′

2
are (3, 2, 1) or (3, 2, 2). In this case, p3 has three

children and hence no sibling by Lemma 3.2.5, which means that Tp4 has
one more pixel than Tp3 . Hence, Tp4 has 8 pixels and can be covered
with two guards at p2 and p3, so it is pixel-good.

(3e) The sizes of Tp2 , Tp′
2
, Tp′′

2
are (3, 3, x), for some x ∈ {0, 1, 2}, and p3 has

no sibling. Place guards at p2 and p′2. If p′′2 exists, then it must form
a corner with at least one of these guards, so this covers Tp′′

2
as well by

Lemma A.0.2. Hence, Tp4 can be covered with 2 guards, and it has at
least 8 pixels, so it is pixel-good.

(3f) The sizes of Tp2 , Tp′
2
, Tp′′

2
are (3, 3, x), for some x ∈ {0, 1, 2}, p3 has a

sibling, and Tp′
2
has height 1. Since p3 has a sibling, by Lemma 3.2.5, p3

cannot have two children on opposite sides and so actually x = 0 and p2
and p′2 are not on opposite sides of p3. By Lemma A.0.2 a guard at p2
then covers all of Tp′

2
as well as all of Tp2 . So Tp3 can be covered with

one guard and is pixel-good.

(3g) The sizes of Tp2 , Tp′
2
, Tp′′

2
are (3, 3, x), for some x ∈ {0, 1, 2}, p3 has a

sibling, and Tp′
2
has height 2. As in the previous case, one argues that

x = 0. So in this case Tp3 is a 6-path and p2 − p3 − p′2 is a corner. This
is another special case that we will deal with later.

(3h) The sizes of Tp2 , Tp′
2
, Tp′′

2
are (3, 3, 3). Since p3 has three children, it has

no siblings, so |Tp4 | = 11. We can cover p4 with three guards at p2, p
′
2

and p′′2, and hence Tp4 is pixel-good.1
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Figure A.1: The cases for a subtree of height 3. Dashed nodes need not exist.
Circled nodes are used as guards.

(6′) and (7′) and how to cover them: We have found a pixel-good subtree
in all but two cases:

• Tp3 is a 5-path with p3 one of its median nodes, and p3 has no siblings,
or

• Tp3 is a 6-path with p3 the median node, and p3 has siblings.

To deal with these special cases, we will go up one more generation to Tp4

1This is one case where the bound is tight; this is also the case that occurs in our
lower-bound example of Figure 3.4.
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and sometimes Tp5 . Before doing this, we study further the geometric structure
of Tp3 , and how to cover it.

Definition A.0.4. Let (6′) be the class of polyominoes for which the dual
graph is a 5-path v1 − · · · − v6, and v2 − v3 − v4 − v5 are straight. v3 and v4
are called the median-nodes of such a polyomino.

Let (7′) be the class of polyominoes for which the dual graph is a 6-path
v1 − · · · − v7. v4 is called the median-node of such a polyomino.

Lemma A.0.5. Any 6-polyomino P that has as its dual a 5-path v1− · · ·− v6
and is not in (6′) can be covered with one guard.

Proof. If v3 does not cover all of P , then v3 − v4 − v5 must be straight by
Lemma A.0.2. If v4 does not cover all of P , then v4 − v3 − v2 must be straight
by Lemma A.0.2. Therefore, if P cannot be covered with one guard, then
v2 − v3 − v4 − v5 is straight and it follows that P is in (6′).

Combining this lemma with the cases where we weren’t done yet tells us
exactly when considering Tp3 (or some other subtree of height ≤ 3) is not
enough.

Lemma A.0.6. Let v be a node such that Tv has height ≤ 3 and v has parent
u. Then some subtree of Tu is pixel-good unless

• |Tv| = 0, 1, 2, 3, or

• Tv is in (6′) with v one of its median nodes, and v has no siblings, or

• Tv is in (7′) with v the median node, and v has siblings.

An instance of (6′) or (7′) cannot always be covered with one guard, but we
can always find a cover with two guards such that these guards also cover many
nearby pixels. This will be the crucial insight to cover the (many!) remaining
cases. We hence state this as two separate lemmas first, and then mostly only
use the lemmas in the later proofs.

Lemma A.0.7. Let v be a node such that Tv is in (7′) with v as the median
node. Then Tv can be covered with two pixel-guards such that also all nodes of
distance ≤ 2 from v are covered.
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Proof. Place two guards at the two children of v; this covers all of Tv. At least
one of those children is a corner-child of v, and by Lemma A.0.2 hence covers
the parent of v and all its neighbors.

Lemma A.0.8. Let v be a node such that has only one child c, and c is median
node of a (6′). Then Tv can be covered with two pixel-guards such that also all
nodes of distance ≤ 2 of v are covered.

Proof. Place a guard at v and another at the other median node of the (6′).
This covers all nodes of distance ≤ 2 from v by Lemma A.0.1. Also, all
neighbors of c either have a pixel or form a corner with a neighbor of c that
has a pixel; by Lemma A.0.2 this covers Tv.

c

(a) (b)

v

v

Figure A.2: The special cover for subtrees of size 7. (a) Tv is in (7′). (b) v has
a single child whose subtree is in (6′).

Tp4 (and other subtrees of height ≤ 4): Now we work on the remaining
cases. We left off in the situation where Tp3 was either in (6′) or in (7′), and
if it was in (6′), then p3 has no sibling. In all but the last two cases to come
below, p3 has a sibling, and so Tp3 is in (7′). We will always use the covering
from Lemma A.0.7 for such a Tp3 .

Now go up a generation and consider Tp4 . Let the siblings of p3 be p′3 and
p′′3. As before, let Tp′

3
and Tp′′

3
be the (possibly empty) subtrees of the siblings.

We are done if there is a pixel-good subtree in Tp′
3
or Tp′′

3
, so by Lemma A.0.6,

we can assume that Tp′
3
and Tp′′

3
have size 0, 1, 2, 3, 6 or 7. Moreover, if Tp′

3

has size 7, then it is in (7′) with p′3 as the median. If Tp′
3
has size 6, then it

is in (6′) with p′3 as a median and p′3 has no sibling. But p′3 has a sibling, so
actually Tp′

3
cannot have size 6. Therefore Tp′

3
(and by the same argument Tp′′

3
)

has size 0, 1, 2, 3, or it is in (7′) with p′3 as the median.
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As before we distinguish cases, which are illustrated in Figure A.3. Some
of these cases could actually proved more easily (or even omitted altogether)
by arguing about the polyomino directly, but as before we will (mostly) argue
about the graph to make it possible to “re-use” the proofs for later cases.

(4a) The sizes of Tp′
3
, Tp′′

3
are (7, 7). Hence Tp3 , Tp′

3
and Tp′′

3
are all in (7′) and

we cover them with 2 guards each as in Lemma A.0.7. This also covers
p4. So we have used 6 guards for 22 pixels and Tp4 is pixel-good.2

(4b) The sizes of Tp′
3
, Tp′′

3
are (7, 3). Cover Tp3 and Tp′

3
with 2 guards each as

in Lemma A.0.7 and Tp′′
3
with 1 guard at p′′3.

3 Since p4 has three children
it has no sibling. Hence, Tp5 has 19 pixels and can be covered with 5
guards. Since 5

19
< 3

11
, Tp5 is pixel-good.

(4c) The sizes of Tp′
3
, Tp′′

3
are (7, 2). Cover Tp3 and Tp′

3
with 2 guards each

as in Lemma A.0.7. This covers p4 and p′′3, and studying the geometry
of the polyomino, we can now argue that this also coveres the (unique)
child of p′′3.

Observe that p4 has 5 grandchildren, and none of them can be adjacent to
p5 by BFS properties, leaving 5 possible locations. See Figure A.3(4c).
Since p6 exists, the corner-children of p4 are visited first in the BFS
traversal, and so they reach all but one of the grandchildren. So p3
and p′3 must be corner-children of p4, while p′′3 is the straight child of p4.
The child of p′′3 then shares a corner with two of the pixel-guards and is
covered. So Tp4 has 16 pixels and can be covered with 4 guards. Since
4
16

< 3
11
, Tp4 is pixel-good.4

(4d) The sizes of Tp′′
3
are (7, 1) or (7, 0). We cover Tp3 and Tp′

3
with two guards

each as in Lemma A.0.7. This also covers p4 and p′′3 and so Tp4 (which
has 16 pixels) is pixel-good.

(4e) The sizes of Tp′
3
, Tp′′

3
are (3, 3). Cover Tp3 with two guards as in Lemma A.0.7.

Cover Tp′
3
and Tp′′

3
with 1 guard each at p′3 and p′′3. Since p4 has three

children, it has no sibling and so Tp5 has 15 pixels and can be covered
with 4 guards. Since 4

15
< 3

11
, Tp5 is pixel-good.

(4f) The sizes of Tp′
3
, Tp′′

3
are (3, 2), and Tp4 − Tp3 (which has size 6) is not in

(6′). Cover Tp3 with two guards as in Lemma A.0.7. Tree Tp4 − Tp3 can

2This case can actually never occur as a polyomino.
3One can actually show that the guard at p′′3 is not needed, similarly as for case (4c).
4These guards even cover p5 which has no other children, so itcould be included.
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be covered with one guard (Lemma A.0.5), so Tp4 can be covered with 3
guards for 13 pixels and Tp4 is pixel-good.

(4g) The sizes of Tp′
3
, Tp′′

3
are (3, 2), and Tp4 −Tp3 is in (6′). We will show that

this case cannot happen. For if Tp4 − Tp3 is in (6′), then p′3 − p4 − p′′3
is straight. Therefore p5 − p4 − p3 is straight as well and so p3 is the
straight child of p4. By the BFS property, p′3 and p′′3 were visited before
p3.

There are only three possible locations for p2 and its sibling (shown
dashed in Figure A.3(4g)). Hence, one of these pixels is adjacent to one
of {p′3, p′′3}, and would have been made a child of that node, not p3: a
contradiction.

(4h) The sizes of Tp′
3
, Tp′′

3
are (3, 1), (3, 0), (2, 2), or (2, 1). Then Tp4 − Tp3 has

size 4 or 5. So Tp4 − Tp3 can be covered with one guard, and Tp3 can be
covered with two guards as in Lemma A.0.7. Therefore Tp4 , which has
11 or 12 pixels, can be covered with 3 guards and is pixel-good.

(4i) The sizes of Tp′
3
, Tp′′

3
are (2, 0) and p4 has no sibling. Then Tp5 has 11

pixels and can be covered with 3 guards (two in Tp3 by Lemma A.0.7
and one at p4), so it is pixel-good.

(4j) The sizes of Tp′
3
, Tp′′

3
are (2, 0) and p4 has a sibling. Cover Tp3 with two

guards at its children p2 and p′2. Similar as in case (4c), we can argue
by studying the geometry that this also covers the child of p′3, and hence
Tp4 is pixel-good.

After possible exchange of p2 and p′2, assume that p2 is a corner-child of
p3, so p2 − p3 − p4 is a corner. Since p3 has a sibling, by Lemma 3.2.5
p2 − p3 − p′2 is a corner. Applying again Lemma 3.2.5, also p3 − p4 − p′3
is a corner since p4 has a sibling. This leaves only two possible locations
for p′3. In one of them p′3 is adjacent to p2 and so the guard at p2 covers
p′3 and its child by Lemma A.0.1.

In the other case (where p′3 is right of p4 in Figure A.3(4j)), p5 − p4 − p′3
must be a corner (because p5 must not be adjacent to p2), which leaves
only two positions for the child of p′′3 (which also must not be adjacent to
p5.) Both of these pixels are covered by p2. Therefore, Tp4 has 10 pixels
and can be covered with 2 guards, making it pixel-good.

(4k) The sizes of Tp′
3
, Tp′′

3
are (1, x), with x ∈ {0, 1}. Cover Tp3 with two

guards as in Lemma A.0.7; this also covers p4, p
′
3 and p′′3. Hence we can

cover Tp4 , which has 9 or 10 pixels, with 2 guards, and it is pixel-good.
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(4l) The sizes of Tp′
3
, Tp′′

3
are (0, 0) and Tp3 is in (7′). Cover Tp3 with two

guards as in Lemma A.0.7; this also covers p4. Hence we can cover Tp4 ,
which as 8 pixels, with 2 guards, and it is pixel-good.5

(4m) The sizes of Tp′
3
, Tp′′

3
are (0, 0) and Tp3 is in (6′). Hence, p3 has no siblings

and Tp3 is in (6′) (not in (7′) as in all previous cases). This is the same
case as (3c), and the only case that we can’t resolve at this generation-
level.

We summarize the result for Tp4 , and generally any node that has a subtree
of height ≤ 4.

Lemma A.0.9. Let v be a node such that Tv has height ≤ 4 and v has parent
u. Then some subtree of Tu is pixel-good unless

• |Tv| = 0, 1, 2, 3, or

• v has a single child w, and Tw is in (6′) with w one of its median nodes.

The final case and Tp5: We resolve the one remaining case (4m) by going
up yet one more generation. We know that Tp4 has size 7 and p4 has one child
that is a median of a (6′), so Lemma A.0.8 applies with v = p4.

Consider p5 and its children p4, p
′
4 and p′′4 (not all of which must exist.) We

are done if there is a pixel-good subtree in Tp′
4
or Tp′′

4
, so by Lemma A.0.9, we

can assume that Tp′
4
and Tp′′

4
have size 0, 1, 2, 3, or 7 and if they have size 7,

they have a single child that is a median of an instance of (6′), which means
that Lemma A.0.8 applies to them.

We will always use Lemma A.0.8 to cover Tp4 . This covers many nearby
nodes in the tree, but we have to go through all cases to verify that no extra
guards are needed, or that there are enough pixels in them to allow for extra
guards. Luckily enough, most of the proofs from cases (4a-m) can be “re-used”.
More precisely, with the exception of (4c), (4g), (4j) and (4m), we did not use
geometry, and we did not use the exact structure of Tp3 (and other subtrees of
size 7): we only used that Tp3 can be covered with 2 guards by Lemma A.0.7.

In the same way, we can prove most cases now by covering Tp4 (and other
subtrees of size 7) with 2 guards as in Lemma A.0.8. We demonstrate this for
(5a) in detail and for the other cases only sketch the idea. Finally we cover all
the cases where the proof from p3 cannot be transferred.

5This case was already covered in (3e).
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Figure A.3: The cases for a subtree of height 4. Dashed nodes need not exist.
Circled nodes are used as guards.

(5a) The sizes of Tp′
4
, Tp′′

4
are (7, 7). Hence Tp4 , Tp′

4
and Tp′′

4
can be covered

with 2 guards each as in Lemma A.0.8. This also covers p5. So we have
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used 6 guards for 22 pixels and Tp5 is pixel-good.

(5X) where X ∈ {b, d, e, f, h, i, k, l}: The situation is exactly as for case (4X),
except that all indices are increased by 1.

Take the proof of case (4X) verbatim, except replace “Lemma A.0.7” by
“Lemma A.0.8” and add 1 to all indices. This finds a pixel-good subtree
of Tp6 .

(5c) The sizes of Tp′
4
, Tp′′

4
are (7, 2). Cover Tp4 and Tp′

4
as in Lemma A.0.8.

This uses p4 and p′4 as guards. One of these pixels forms a corner with
p′′4, so by Lemma A.0.2 this also covers the child of p′′4.

(5g) The sizes of Tp′
4
, Tp′′

4
are (3, 2), and Tp5 − Tp4 is in (6′). Cover Tp4 as in

Lemma A.0.8 with 2 guards, one of which is at p4. Place a third guard
at p′4. As in the previous case, one of these guards forms a corner with
p′′4, so this also covers the child of p′′4 by Lemma A.0.2.

(5j) The sizes of Tp′
4
, Tp′′

4
are (2, 0). We have two sub-cases

(5j1) p5 has no sibling. We can then cover Tp6 with 3 guards (at p2, p4, p5).
Since Tp6 has 11 pixels, it is pixel-good.

(5j2) p5 has a sibling. By Lemma A.0.8, Tp4 can be covered with guards
at p2 and p4. By Lemma 3.2.5 p4 − p5 − p′4 is a corner, so this also
covers p′4 and its child. Thus, Tp5 can be covered with 2 guards and
is pixel-good.

(5l) The sizes of Tp′
4
, Tp′′

4
are (0, 0). We can then cover Tp5 , which has 8 pixels,

with two guards at p2 and p4, making it pixel-good.

This concludes the inductive step. As for the base case, if we have a
polyomino where T has height ≤ 6, then it has O(1) pixels and hence can be
covered with O(1) guards. So a bound of ⌊3m/11⌋+O(1) is trivial. This can be
refined to ⌊3m/11⌋+ 1 by observing that a sufficiently deep tree was required
only for two occasions: to be able to go up a generation when needed, and
to use Lemma 3.2.5, which requires the existence of a grandparents. Going
through cases, one can see that in all of them one extra guard at the root
will then suffice to cover the polyomino, so at most ⌊3m/11⌋ + 1 guards are
required to cover the polyomino.
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Figure A.4: The cases for a subtree of height 5.
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