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Abstract of the Dissertation 
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by 

Jing Jin 

Doctor of Philosophy 

in 
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Stony Brook University 

2012 

 

A genome wide association study may have spurious or misleading results due to population 

stratification. This research evaluated the properties of global principal components and local 

principal components to adjust for population stratification. Principal components were 

calculated using both common variants (with minor allele frequency greater than 0.05) and rare 

variants (with minor allele frequency between 0.0005 and 0.05). One genetic model considered 

was from the Genetic Analysis Workshop 17 (GAW17). Additional genetic models developed in 

these analyses used the genotypes in the International Hapmap data. Phenotypes were simulated 

using these genotypes. Both type I error rates and powers of different models for identifying 

genetic variants associated with a phenotype were assessed. The four models in these analyses 

were: (1) using the number of minor alleles as the predictor variable for the phenotype; (2) using 

the number of minor alleles and 10 global principal components as the predictor variables for the 

phenotype; (3) using the number of minor alleles and 10 local principal components as the 
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predictor variables for the phenotype; (4) using the number of minor alleles and the self-reported 

population of the participants as the predictor variables for the phenotype. Both the global PC 

adjustment model and local PC adjustment model had null hypothesis rejection rate roughly 

equal to the nominal significance level and comparable power to detect the causal genes. Both 

had better rejection rates than the model using the self-reported population indicators.   
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Chapter1 General Introduction 

1-1 Research Background  

The human genome contains millions of single-nucleotide polymorphisms (SNPs) which is a 

DNA sequence variation occurring when a single nucleotide — A, T, C or G — in the genome 

(or other shared sequence) differs among members of a biological species or paired 

chromosomes in an individual. These SNPs may either directly influence individual phenotype 

variations or indirectly cause changes by affecting nearby mutations that are associated with 

phenotypes, including disease. Many diseases have been identified as associated with genetic 

variation, such as cancer, autism, and schizophrenia. Thus, as more information about human 

genome is found, greater understanding of human disease can be developed.  More importantly, 

researchers might be able to predict, control and prevent genetically related diseases. 

However, genome databases are usually extremely large which makes the study of the 

human genome difficult. The Human Genome Project (launched in 2003) 
[1]

 and the International 

HapMap Project (launched in 2005) 
[2]

 contain research useful for deciphering the human 

genome. Scientists have developed a set of research tools that can be used to manipulate the 

gigabytes of data contained in genome database. These tools include computerized databases that 

contain the reference human genome sequence, a map of human genetic variation, and a set of 

new technologies that can quickly and accurately analyze whole-genome samples for genetic 

variations that contribute to the onset of a disease. 
[3]

 Using these modern tools, researchers all 

over the world are developing methods and algorithms to accelerate the speed and increase the 

accuracy of detecting specific polymorphisms whose variation is truly associated with a disease.  
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1-2 Genome-Wide Studies 

1-2-1 Genome-Wide Association Studies 

Genome-wide association studies (GWAS) are used to identify common genetic factors that 

influence health and disease 
[4]

. The main task of GWAS includes: scanning a large number of 

markers across the complete set of DNA or genomes of large samples of affected and unaffected 

participants and searching for genetic variations associated with a specified disease. With the 

results of a GWAS as a foundation, researchers can develop better strategies to detect the 

presence of disease based on the genetic associations identified and to treat or prevent the disease. 

These studies are particularly useful in finding genetic loci that contribute to common, complex 

diseases, such as asthma, cancer, diabetes, heart disease and mental illnesses 
[3]

. GWAS has 

discovered associations with as many as 40 common diseases since 2005
[5]

. These findings may 

have a substantial impact on medical care.  

The typical GWAS approach includes four steps: (1) select a large number of participants 

with or without the disease or trait of interest; (2) get DNA from each participant, genotype the 

DNA with high genotyping quality; (3) perform statistical analyses to detect associations 

between the SNPs and the disease or trait of interest; and (4) repeat the same approach on an 

independent sample to confirm the results
 [5]

. Among all the study designs, the most frequently 

one used in GWAS is the case-control design. Minor allele frequency is defined as the lowest 

allele frequency at a locus that is observed within a population. In case-control studies, genotype 

frequencies in the case group are compared to the frequencies in the control group for each gene 

with genotype data. Statistical techniques then evaluate whether any set of differences is large 

enough to merit further study.   
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1-2-2 Genetic Analysis Workshop 

The Genetic Analysis Workshops (GAWs) are collaborative workshops among researchers 

from all over the world. Each GAW focuses on one of the hottest topic in genetic epidemiology 

and distributes a set of real or computer-simulated data to all registered researchers. Researchers 

apply different statistical approaches to the data set. Results of analyses are discussed and 

compared at conferences held in even-numbered years. 
[6]

 

1-2-3 Limitations of Recent Genome-Wide Studies 

GWAS studies have three main challenges: obtaining adequate data, controlling the cost of 

sequencing or genotyping the DNA, and analyzing the statistical data to obtain correct 

conclusions.  In principle, GWAS studies require a large number of participants to achieve 

statistical significance. However, the reality is that the number of cases with a disease may be 

relatively small, especially for a rare disease (i.e, one with low prevalence, such as 

schizophrenia). Although hospitals all over the world are collaborating more closely, it is still 

hard to collect enough cases to develop an effective GWAS.  For some extreme scenarios, the 

number of cases available may be less than five. (i.e, for the case I studied about copy number 

variation in Mount Sinai School of Medicine, only three participants from one family were 

available) Thus, better statistical methods are needed. Additionally, the expense for sequencing 

the genome of a participant or processing a modern SNP platform is high. Improved technology 

and procedures can reduce the genotyping or sequencing error, thus improving data quality. 

However, even when a high quality data set with large sample size is available, there still can be 

a high false positive and false negative result rate in GWAS.   
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One possible cause for misleading results is population structure in the genotype data. Most 

genetic variations are associated with the geographical and historical populations in which the 

mutations first arose. Because of this, studies must take account of the geographical and 

historical background of participants—controlling for what is called population stratification. As 

the people of the world have migrated and inter-married over many generations, these 

geographical variations also have mixed over time and have become more complex. As a result, 

it is more challenging to interpreting the results of testing for association between candidate 

SNPs and disease. 

1-3  Introduction to  Population Stratification 

1-3-1 Causes of Population Stratification (PS) 

The basic cause of population stratification is non-random mating between groups, often due 

to their physical separation (e.g., for populations of African and European descent) followed by 

genetic drift of allele frequencies in each group. In some regions (e.g., in Europe), individuals in 

a population can be divided into mutually exclusive subpopulations by location. That is, the 

minor allele frequencies vary with location. In the modern world, however, population admixture 

is a realistic scenario. Admixture results in a new mixed population (as in children with an 

African American and Caucasian parents).  PS is mainly due to the demographic history of a 

population, natural selection and random fluctuations resulting from admixture. From a statistical 

point of view, PS is the result of systematic ancestry differences in allele frequencies between 

cases and controls. 

 

http://en.wikipedia.org/wiki/Population_stratification
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1-3-2 Impact on Association Studies 

GWAS studies have identified hundreds of common variants associated with disease risk or 

related traits 
[7]

. One limitation of GWAS studies is that PS can be a source of confounding. That 

is, the association found by some statistical models might be due to the underlying population 

structure. This kind of association is not a real association between disease and SNPs but a 

misleading signal caused by the mixture of genotype data from different populations. 

Meanwhile, some real associations between the genotyped SNPs and disease may not be found if 

the associations with genotype frequency have opposite signs in the different populations so that 

the test statistic would lead to a non-significant result when combining the results from multiple 

populations. Thus, if not corrected, PS may cause false-positive and/or false-negative findings 
[8]

 

and produce spurious associations 
[9]

.
     

 

1-4 Methods to adjust for Population Stratification 

1-4-1 Genomic Control 

Devlin and Roeder
[10]

 developed the genomic control method in 1999. Theoretically, this 

method extends the linear trend test (LTT) which has inflated Type I error rate when PS occurs. 

It corrects the test statistic by estimating an inflation factor using a Bayesian approach which can 

be appropriate in some cases dealing with a large number of candidate genes using the linear 

trend test. A second test that genetic researchers use is the chi-square test for allelic frequencies. 

These two statistics should be approximately equal if the sample is in Hardy-Weinberg 

equilibrium. Under this assumption, the allelic test statistic approximately follows a chi-square 

distribution with one degree of freedom. A population inflation factor is estimated by comparing 

the two test statistics. The null hypothesis is that there is no population stratification. When the 
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null distribution of the LTT is inflated by a constant factor λ due to population stratification, the 

test statistics are multiplied by λ. If the value of λ is approximately 1, there is apparently no 

population stratification in the data. A value of λ greater than 1 indicates there exists population 

stratification or other confounders, such as family structure in the data. 
[10]

 Devlin and Roeder 

considered α = 0.05 and did not study the properties of genomic control at genome wide level of 

significance (    ). 

Besides the estimator mentioned above, scientists have proposed different estimator of λ. For 

example, Reich and Goldstein 
[11]

 suggested using the mean of the statistics instead of the median 

in the test statistic. With this correction the overall type I error rate should be approximately 

equal to α (nominal level) even when the population is stratified.  

1-4-2  Structured Association 

When PS is the only confounding issue, methods inferring genetic ancestry often lead to an 

effective adjustment. To do this, accurate separation of the samples into sub-populations is 

essential. The definition of a population may include aspects such as linguistic, cultural or 

physical characteristics and the geographic location of the population. However, it may be 

inaccurate to assign individuals to different subpopulation only using these factors. Genetic 

information should be considered as well.  

Structured association was designed to assign each individual to a subpopulation. Pritchard 

and Rosenberg 
[12]

 considered the use of genetic information to detect population structure in 

1999. Their method successfully tested association with good adjustment for PS using unlinked 

genetic markers.  
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Later, Pritchard and Stephens (2000) 
[13-14] 

suggested a Bayesian clustering approach based 

method to assign participants into different sub-populations. They assumed there were K 

populations (K may be unknown) in the sample and that each population was characterized by a 

set of allele frequencies at each locus. The Markov Chain Monte Carlo (MCMC) algorithm was 

used to calculate parameters involved. They also developed software called STRUCTURE 
[15-18]

 

to perform the calculations.  

In the same year, Pritchard and his collaborators 
[15]

 also developed a method for case-control 

association studies in structured populations. They used unlinked genetic markers. Individuals 

were assigned to unstructured subpopulations which did not have association between these 

unlinked markers. They used a two-stage procedure. The first step was to assign each individual 

to an unstructured subpopulation. The second step was to test association within subpopulations. 

They argued that there should not be association due to population structure in these 

subpopulations. Program STRAT 
[15] 

was developed to execute this method. However, since the 

computational cost was relatively high, the applicability of this approach to large genome-wide 

was limited. 

Alexander (2009) 
[19]

  developed a method that used maximum likelihood estimates of 

underlying admixture coefficients and ancestral allele frequencies rather than the Bayesian 

estimates and created software called ADMIXTURE 
[19]

 to do association tests.  

1-4-3 Principal Components Analysis  

Principal components Analysis (PCA) was first applied to genetic data by Cavalli-Sforza
[20]

 

and colleagues. They published a paper discussing using principal component to identify 

population structure. Patterson 
[21]

 used global PCs calculated using all SNPs with a minor allele 
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frequency greater than 0.05 across the whole genome in his paper. These PCs provide each 

participant’s coordinates along axes of variation rather than classifying all participants into 

discrete population or linear combinations of populations. Novembre and Stephen 
[25]

 also 

published a paper about applying PCA on spatial genetic data based on Cavalli-Sforza et al.’s 

genetic maps.   Global PCs adjustment 
[20-25]

 is widely used to adjust for ancestry when dealing 

with admixture data. Researchers choose a relatively small number of global PCs that contain the 

most information about genetic ancestry, usually according to the linkage disequilibrium ( LD) 

pattern of the population of interest. Linkage disequilibrium was one kind of association between 

markers that two nearby markers tend to be together on the same gamete with the disease allele. 

Therefore, if a marker was in LD with a disease marker, and association between this marker and 

disease was found, this particular marker can be used to test for association. 

The general approach to calculate Principal Components using genetic data is as follows. Let 

            be a matrix of genotypes for SNP i and individual j, where i=1 to m and j=1 to n;       

is the minor allele count at SNP i. Each row represents an individual, and each column represents 

a SNP position. The mean of each SNP is: 

    
       

 
 

Normalize each entry by:     
       

         
 

where   is an estimate of the allele frequency of SNP i defined as: 
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Missing entries are usually excluded when calculating the mean for each marker and set to be 0 

when calculating PCs.
[21]

 There are some other different but similar ways to normalize the 

sample matrix. For instant, Price 
[22]

 used 
         

      
  as   .

 

Sankararaman and Sridhar
[26] 

 introduced local principal component ancestry adjustment, 

which was to calculate PCs using SNPs within a region on the genome. They proved that the 

local method was significantly more accurate and more efficient than existing methods for 

inferring locus-specific ancestries, enabling it to handle large-scale datasets. Kang and Larkin
[27]

 

used regression models with both global principal components and local principal components to 

adjust for ancestry and successfully reduced type I error for Framingham Heart Study. They 

suggested that local ancestry adjustment was especially useful for the scenarios where the 

ancestral populations in a region of genome are significantly different from the rest of the 

genome.  
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Chapter 2: Method 

2-1  Global Principal Components Analysis 

In previous studies using global ancestry adjustment, PCs were calculated using all SNPs 

with minor allele frequency (MAF) greater than 0.05, and ancestry was represented by the first 

few PCs. Minor allele frequency was defined as the percentage of the less common allele of the 

two alleles in the same loci. Most studies plotted the first two PCs to show the clusters of 

population. Other studies used the first few PC scores as covariates in regression models to 

adjust for population stratification. 
[26-28]

 

 

2-2 Local Principal Components Analysis 

In previous studies using local ancestry adjustment, the genome was cut into several 

regions based on linkage disequilibrium (LD) pattern; e.g. 20MB length. Local PCs were 

calculated using all the SNPs with MAF>0.05 within these regions. Ancestry for each region is 

represented by the first few local PCs. These local PCs were used as covariates in regression 

models to adjust for PS within this region. 

Sankararaman
[26]

 introduced a method and developed a software program called Local 

Ancestry in adMixed Population (LAMP), which inferred the ancestry of each individual at 

every SNP. LAMP used overlapping windows of contiguous SNPs and used a majority vote to 

decide ancestry. They used LAMP to test a real dataset from the HapMap project. They used the 

SNPs of chromosome 1 from the 500K Affymetrix GeneChip assay from each of the four 

HapMap populations: Yorubans from Ibadan, Nigeria (YRI), Japanese from the Tokyo area 
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(JPT), Han Chinese from Beijing (CHB), and Utah residents with European ancestry (CEU). 

Sankararaman proved that LAMP was more accurate compared to other procedures. 

Sankararaman also suggested a way to calculate the length of the window. Breakpoint refers to a 

recombination event that results in a change in ancestry of the adjacent SNPs. In order for the 

local predictions to achieve reasonable accuracy, the length of the window should be short 

enough so that most individuals do not have a breakpoint in the window and long enough so that 

the SNPs provide sufficient information for the observation of a difference between the 

populations. He suggested a maximum window length is based on the breakpoints in the 

window. 

Kang
[27]

 et al. applied local principal component analysis to the 500 k single-nucleotide 

polymorphism data from the Framingham Offspring Cohort of GAW16 data. They selected 

unrelated adults from each family (i.e., spouses) based on an algorithm that prioritized 

individuals with higher genotyping rates, selecting individuals at random when needed. They 

regressed height on age and age squared across all visits separately for each gender, with the 

resultant average standardized residuals used as the outcome of interest. They excluded SNPs 

that failed the filtering criteria on completeness of each SNP and minor allele frequency. They 

calculated the first 10 local PCs to represents local ancestry. Chromosomes were divided into 

non-overlapping windows with a length of 20MB. Local PCs were calculated for each window 

and used as covariates in the regression model. They found that adjusting for local PC may 

control the false-positive rate due to the population stratification underlying the Framingham 

Heart Studies sample.  
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Local ancestry adjustment, however, had a major problem. For SNPs near the boundary, 

local PCs are calculated only using SNPs on its left or its right which may lead to a loss of 

information and might lead to spurious results on the boundaries of each region.  

Qin et al. 
[28] 

modified this procedure to deal with this problem. Chromosomes were 

divided into overlapping windows with a length of 20MB as before. Local PCs were calculated 

using all the common SNPs in each window. However, the first 10 PCs are only used to 

represent the ancestry for the SNPs in the middle 4 MB as shown in figure 1 below. This sliding 

window approach would best ensure that there were enough SNPs surrounding the target SNP. 

The sliding window approach yielded better adjustment for SNPs near the boundary of each 

window in previous studies.  

 

Figure:1 An example of a local window.  

  Target SNPs                        |<  4MB  >|<  4MB   >|<   4MB  >|<   4MB  >|<  4MB  >|< 4MB   >| 

 
  Windows                                               |<                                                         20MB                                                     >|       

                                                                                         |<                                                         20MB                                                     >|       

Each color represents a window with its target SNPs. Color above the chromosome indicates the region 

for target SNPs, and the color below the chromosome indicates the region for SNPs which are used to 

calculated local PCs for its target SNPs. For example, all the common SNPs in the yellow window below 

the chromosomes are used to calculate local PCs to adjust for the SNPs under the yellow region above 

the chromosome. All the common SNPs in the green window below are used to calculate local PCs to 

adjust for the SNPs under the green region above. 

Using this sliding window approach, each SNP was covered with the complete information in the 

local region around it except for the very beginning and ending SNPs in a chromosome. This 

approach successfully reduced most of the spurious association due to the insufficient of ancestry 

information for SNPs near boundary. 

My study used these ideas with some modifications.  
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CHAPTER 3:  METHODOLOGY 

3-1 Part 1: Methods using Global PC adjustment 

3-1-1 Data 

The GAW17 (2010) genetic data was mini-exome data using 697 subjects from the 1000 

Genomes Project 
[29]

. The Exome was the coding region on the DNA sequences. The data 

provided 200 replicates of simulated phenotypes. It included a dichotomized disease status and 

quantitative risk factors named Q1, Q2, Q4, and smoking status. The disease status 

(affected/unaffected) and the values of Q1, Q2, and Q4 were generated by the SNP variants. The 

disease status was simulated using a liability threshold model that was a function of Q1, Q2, and 

Q4
[30]

 . The top 30% of the liability values was declared affected and reported in the GAW17 

data. Sex and age was also provided in the data.  Sex was taken from the 1000 genomes project. 

Age was simulated in the family data set, the other data set provided by GAW17. The 

quantitative phenotypes Q1 and Q2 were generated as normally distributed phenotypes in the 

200 replicates. I document the level of significance of the test of the coefficient of a genotype 

with and without population stratification adjustment in selected genes known not to be 

associated with the phenotypes Q1 and Q2.  

The values of trait Q1 were simulated to be associated with the minor alleles of 39 SNPs in 9 

genes. These genes were on Chromosomes 1, 4, 5, 6, 14 and 19. The values of trait Q2 were 

simulated to be associated with the minor alleles of 72 SNPs in 13 genes. These genes were on 

Chromosome 2, 3, 6, 7, 8, 9, 10, 11, 12 and 17. A full list of the SNPs that were associated with 

Q1 and Q2 can be found in appendices. I also studied selected non-associated SNPs to estimate 

null distribution properties. SNPs on chromosomes 12, 21, and 22 were used as SNPs not 
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associated with Q1. SNPs on chromosomes 21 and 22 were used as SNPs not associated with 

Q2. Table 1 lists the distribution of minor allele frequencies of SNPs studied.  

Table 1: Distribution of Minor Allele Frequencies of SNPs in the Genes studied in GAW17 

Data. 

Genes SNPs 

MAF<0.005 0.005<MAF<0.01 0.01<MAF<0.05 0.05<MAF<0.5 Total 

Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 

Associated  
Genes 

Non-associated  60 100 5 9 12 15 9 15 86 139 

Associated  32 61 0 5 5 4 2 2 39 72 

Non-associated Genes Non-associated 1422 532 189 57 295 90 288 80 2194 759 

Note: The Q1 associated genes were ARNT, ELAVL4, FLT1, FLT4, HIF1A, HIF3A, KDR, VEGFA and VEGFC. The 

Q2 associated genes were BCHE, GCKR, INSIG1, LPL, PDGFD, PLAT, RARB, SIRT1, SREBF1, VLDLR, VNN1, 

VNN3 and VWF. A non-associated gene was any gene on chromosome 21 , 22 and any other gene on chromosome 

12 that were known to be not associated with Q1 and Q2. 

3-1-2 Modeling 

I dichotomized the quantitative measures Q1 and Q2 so that the top 25% of each replicate was 

scored as affected (1) and others as unaffected (0). The dichotomized measures and quantitative 

measures were dependent variables in the analyses. 

The independent variables in these analyses were selected from the number of minor alleles in 

the ith SNP genotype (    ), the participant’s age (AGE) and smoking status (SMOKING), and 

the ten ancestry adjustment principal component scores (called GPC1, …, GPC10 ). I used the 

FamCC software 
[31]

 to calculate these ten PCs.   

I used the PLINK software 
[32]

 to fit two logistic regression models to assess the association 

between each SNP in the genes studied and the dichotomized phenotype. The ith SNP was 
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considered associated with the phenotype when the permutation p-value of the coefficient of 

     reported in the PLINK logistic regression analysis was less than 0.05. For Q1, since it was 

affected by age and smoking, the models considered were:  

No adjustment:  

SMOKINGAGESNPi 3210    

Global PC adjustment (SNP adjusted for age, smoking, and ancestry adjustment PCs): 

1013143210 GPCGPCSMOKINGAGESNPi   
 

Since Q2 was not associated with either age or smoking, age and smoking were not used in the 

Global PC adjustment model of Q2. I also fit the models above to the continuous phenotypes Q1 

and Q2 using PLINK. Each model was fit to the 200 replicates provided. 

 

Similar approach of Global PC adjustment was applied to the International HapMap III 

data for further comparison. The comparison results can be found in results part, section 4-2. 

 

I also fit the model to both dichotomized and quantitative phenotype with population 

reported by participants as covariates for further comparison. The comparison results can be 

found in discussion part of  section 5-1. 

3-2 Part 2: Methods using Local PC adjustment 

3-2-1  Data 

The HapMap III genotype data was downloaded from its website 
[33]

. This SNP genotype data 

was generated from 1,397 participants using two platforms: the Illumina Human1M (by the 

Wellcome Trust Sanger Institute) and the Affymetrix SNP 6.0 (by the Broad Institute). The data 
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from these two platforms were merged to create the HapMap III genotype data. The HapMap III 

genotype data had information on 613 participants from the 697 used in the GAW 17 data. The 

HapMap III data also had genotypes for a larger number of SNPs so that using local adjustment 

techniques were possible for the subset of 613. The genotyping rates of HapMap data were 

greater than 0.99. Table 2 contains summary information for the SNPs included in this research.  

Table 2 Distribution of SNPs in HapMap III Genotype Data 

 Overall MAF>=0.05 MAF<0.05 

Number of SNPs 1,457,897 1,256,096 201,801 

 

The participants in this study were from seven populations. These were Utah residents 

with Northern and Western European ancestry from the CEPH collection (CEU), Chinese in 

Metropolitan Denver, Colorado (CHD), Yoruba in Ibadan, Nigeria (YRI), Han Chinese in 

Beijing, China (CHB), Japanese in Tokyo, Japan (JPT), Luhya in Webuye, Kenya (LWK), and 

Tuscans in Italy(TSI). Figure 2 shows the distribution of participants. 

Figure 2 Distribution of Overlapping Samples in HapMap Project and GAW 17 Project 

(n=613) 
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http://ccr.coriell.org/Sections/Collections/NIGMS/CEPHResources.aspx?PgId=525&coll=GM
http://ccr.coriell.org/Sections/Collections/NIGMS/CEPHResources.aspx?PgId=525&coll=GM
http://ccr.coriell.org/Sections/Collections/NHGRI/DenverChinese.aspx?PgId=361&coll=HG
http://ccr.coriell.org/Sections/Collections/NHGRI/DenverChinese.aspx?PgId=361&coll=HG
http://ccr.coriell.org/Sections/Collections/NHGRI/Yoruba.aspx?PgId=128&coll=HG
http://ccr.coriell.org/Sections/Collections/NHGRI/HanChinese.aspx?PgId=432&coll=HG
http://ccr.coriell.org/Sections/Collections/NHGRI/HanChinese.aspx?PgId=432&coll=HG
http://ccr.coriell.org/Sections/Collections/NHGRI/Japanese.aspx?PgId=359&coll=HG
http://ccr.coriell.org/Sections/Collections/NHGRI/Luhya.aspx?PgId=360&coll=HG
http://ccr.coriell.org/Sections/Collections/NHGRI/Toscani.aspx?PgId=363&coll=HG
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3-2-2 Modeling 

Since only genotype data was available in the HapMap database, I had to generate disease 

models using the genotype data. I created both a rare causal SNP disease model and a common 

causal SNP disease model. 

a. Choose Disease SNPs 

In order to reduce the size of the database for this research, I focused on five chromosomes 

that supported local adjustment. I chose chromosome 12 since many GAW 17 conference 

participants found high false positive rates for SNPs on this chromosome. After I examined my 

GAW 17 analyses, I  chose chromosomes 1, 6, 9, and 14  because the permutation results of my 

regression models with global PC as covariates had low type I error rates and relatively high 

power for some of the causal genes on these four chromosomes. Table 3 shows the distribution 

of MAFs on the 5 chromosomes chosen.  

Table 3 Information of 5 chromosomes chosen to provide disease SNPs using HapMap III 

genotype data. 

Chromosome Gene in 

GAW17 

Number of SNP with 

MAF<0.05 

Number of SNP with 

MAF>0.05 

Total number of 

SNPs 

1 ARNT, 

ELAVL4 

8,626 110,861 119,487 

6 VEGFA 6,302 87,369 93,671 

14 HIF1A 2,727 43,928 46,655 

19 HIF3A 2,154 24,799 26,953 

12 Null genes 5,155 65,327 70,482 

Total  24,964 332,284 357,248 

 

 For each chromosome, I chose 200 rare SNPs (i.e., those with MAF less than 0.05) and 200 

common SNPs (i.e., those with MAF greater than 0.05) so that I had a total of 1000 rare SNPs 

and 1000 common SNPs. I studied two sets of disease SNPs, common disease SNPs and rare 

disease SNPs. I chose 10 common disease SNPs and 10 rare disease SNPs from these 2000 
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SNPs. In order to test the effects of PC adjustment, population stratification should be an issue in 

the disease mechanism. My ideal 20 candidate disease SNPs should have the following two 

properties: 

1. There was no interaction effect (SNPi*SNPj or so) among multiple disease SNPs. That is, 

the disease SNPs were relatively independent with each other. Thus, when calculating the 

correlation based on the genotype matrix of the 10 SNPs (two sets, 10 common disease 

SNPs and 10 rare disease SNPs), the value should be low.  

2. There was population stratification in the data so that population stratification was a 

potential source for false-positive and false-negative results, and ancestry adjustment was 

required when performing an association test. Thus, when calculating the correlation of 

any two of the 10 disease SNPs (two sets, 10 common disease SNPs and 10 rare disease 

SNPs) based on population MAF, the value should be high. Besides, the 10 disease SNPs 

(two sets, 10 common disease SNPs and 10 rare disease SNPs) should be correlated with 

some other non causal markers so that these correlated non causal markers might have 

significant results when performing association tests.  

Table 4 lists the 10 rare SNPs that I selected to be causal with their overall MAF and 

MAFs by population. Table 5 lists the 10 common SNPs that were selected. They come from 

five different chromosomes. The distribution of MAF by population is quite different for 

different populations. Clearly population stratifications exist among the data. That is, for 

each selected SNP, MAF is high in some population while quite low, even zero, in others.   
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Table 4 Minor Allele Frequencies by Population for the Ten Rare SNPs chosen to be 

Disease SNPs using HapMap III Genotype Data.  

SNPs Chromosome 

Minor Allele Frequencies  

Overall CEU CHD YRI CHB JPT LWK TSI 

rs7553321 1 0.011 0 0 0.053 0 0 0.015 0 

rs17035549 1 0.046 0.043 0.022 0.077 0.034 0.022 0.087 0.025 

rs6693629 1 0.032 0 0.028 0.058 0.028 0.022 0.061 0.008 

rs11811671 1 0.010 0 0 0.038 0 0 0.020 0 

rs4512698 1 0.040 0.128 0.006 0.048 0 0 0.031 0.090 

rs12401645 1 0.015 0.037 0.011 0.029 0 0.011 0.010 0 

rs17358725        1 0.007 0.012 0.022 0 0.006 0 0 0.008 

rs12215941        6 0.032 0.043 0.028 0 0.011 0.096 0.005 0.057 

rs17044864 12 0.016 0.024 0 0.053 0 0 0.005 0.033 

rs28651257 19 0.048 0 0 0.154 0 0 0.138 0 

Table 5 Minor Allele Frequencies by Population for the Ten Common SNPs chosen to be 

Disease SNPs using HapMap III Genotype Data. 

SNPs Chromosome 

Minor Allele Frequencies 

Overall CEU CHD YRI CHB JPT LWK TSI 

rs1888991 1 0.235 0.073 0 0.726 0 0.006 0.571 0.090 

rs1390333 1 0.223 0.364 0.178 0.236 0.146 0.169 0.189 0.328 

rs10498665 6 0.299 0.402 0.478 0.043 0.433 0.444 0.010 0.385 

rs9376923 6 0.201 0.329 0.194 0.139 0.208 0.191 0.077 0.353 

rs7296827 12 0.393 0.610 0.261 0.375 0.332 0.348 0.362 0.533 

rs7300747 12 0.223 0.427 0.017 0.351 0.017 0.006 0.383 0.393 

rs17100963 14 0.259 0.055 0.356 0.240 0.343 0.348 0.280 0.131 

rs3759670 14 0.314 0.177 0.264 0.456 0.278 0.172 0.510 0.271 

rs6509333 19 0.265 0.512 0.211 0.216 0.185 0.202 0.153 0.484 

rs17207579 19 0.179 0.366 0.122 0.178 0.112 0.073 0.158 0.303 

 

Table 6 lists the MAF and MAFs by population for a random set of 10 general SNPs 

which do not have a population stratification effect and therefore not a good set for causal SNPs. 

For both rare and common SNPs in this table, MAF is relatively uniformly distributed across the 

seven populations. PS was less likely a major problem for these 10 randomly selected SNPs. 
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Table 6  MAF and MAF by Population for Ten Randomly Selected SNPs using HapMap 

III Genotype Data 

SNPs Chromosome Minor Allele Frequencies 

Overall CEU CHD YRI CHB JPT LWK TSI 

rs12749138 1  0.312 0.323 0.315 0.327 0.309 0.326 0.217 0.402 

rs28583821 1  0.276 0.232 0.239 0.418 0.253 0.253 0.209 0.320 

rs2395663 6  0.292 0.201 0.306 0.311 0.337 0.287 0.347 0.213 

rs736795 6  0.222 0.171 0.239 0.279 0.273 0.267 0.134 0.172 

rs9474391 6  0.064 0.018 0.078 0.048 0.084 0.051 0.117 0.033 

rs4427625 12  0.046 0.030 0.011 0.115 0.028 0.022 0.061 0.041 

rs1111662 12  0.484 0.463 0.467 0.572 0.567 0.478 0.561 0.475 

rs2273708 14  0.017 0.018 0.011 0.038 0.017 0.006 0.015 0.008 

rs1952151 14  0.427 0.494 0.411 0.346 0.449 0.483 0.357 0.492 

rs4805440 19  0.353 0.329 0.361 0.365 0.376 0.438 0.327 0.238 

NOTE: Among the 10 SNPs shown in this table, 8 are common SNPs and 2 are rare SNPs which do not have 

population stratification effect. That is the alleles are commonly uniformly distributed among different populations.  

Additionally, these selected disease SNPs were highly correlated with some non causal 

SNPs which was a relationship that might result in spurious association and misleading results. 

Table 7 shows the top five SNPs that are correlated with the 10 rare disease SNPs. The non 

causal SNPs were from the whole genome. Since most individuals would have two common 

homozygotes at two rare loci, only a few participants had score 1 or 2 at these rare SNPs. As a 

result, it was more common for a rare SNP to be correlated with a SNP that was far away from it, 

even from different chromosomes. Common causal SNPs were also correlated with some other 

non causal SNPs.   
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Table 7 Non Causal SNPs Highly Correlated with Causal SNPs for Rare Disease Model 

using HapMap III Genotype Data. 

Causal SNPs 

non- causal SNPs 

SNP CHR MAF 

rs11811671,chromosome 1,MAF=0.01 

rs10137145 14 0.04 

rs10413708 19 0.04 

rs11807413 1 0.01 

rs12068423 1 0.01 

rs12083753 1 0.03 

rs7553321,chromosome 1,MAF=0.01 

rs17100268 14 0.31 

rs4902439 14 0.49 

rs1124417 12 0.37 

rs262825 6 0.49 

rs1045217 19 0.49 

rs17035549,chromosome 1, MAF=0.05 

rs10415814 19 0.17 

rs10424089 19 0.44 

rs10862007 12 0.34 

rs11882235 19 0.03 

rs1381029 12 0.27 

rs12401645,chromosome 1, MAF=0.01 

rs10499001 6 0.07 

rs10777181 12 0.21 

rs10860589 12 0.01 

rs11160249 14 0.05 

rs11571537 1 0.02 

rs4512698, chromosome 1, MAF=0.05 

rs1046248 14 0.04 

rs11084665 19 0.42 

rs11578776 1 0.29 

rs11610422 12 0.1 

rs11832143 12 0.25 
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Table 7 Non Causal SNPs Highly Correlated with Causal SNPs for Rare Disease Model 

using HapMap III Genotype Data (continued). 

Causal SNPs 

non- causal SNPs 

SNP CHR MAF 

rs17358725,chromosome 1, MAF=0.01 

rs10424162 19 0.3 

rs10498338 14 0.1 

rs11108860 12 0.03 

rs11157383 14 0.22 

rs11583984 1 0.1 

rs6693629,chromosome 1, MAF=0.03 

rs10415814 19 0.17 

rs10424089 19 0.44 

rs10862007 12 0.34 

rs11882235 19 0.03 

rs1381029 12 0.27 

rs12215941,chromosome 6,MAF=0.04 

rs10405607 19 0.13 

rs11062710 12 0.05 

rs1145813 6 0.33 

rs11624508 14 0.04 

rs11625625 14 0.19 

rs17044864,chromosome 12, MAF=0.02 

rs1004968 12 0.34 

rs10499001 6 0.07 

rs11063099 12 0.1 

rs11106394 12 0.47 

rs11107705 12 0.04 

rs28651257,chromosome 19, MAF=0.04 

rs7148786 14 0.46 

rs35672141 1 0.3 

rs2080087 14 0.32 

rs17305332 19 0.28 

rs4805131 19 0.2 

NOTE: Each causal SNP was correlated with hundreds of non causal SNPs. All the non causal 

SNPs listed in this table were highly correlated with the causal SNP that most of the absolute 

correlation value between the non causal SNP and causal SNP was greater than 0.95.  

Table 8 and Table 9 describe the correlations by genotype for common and rare causal 

SNPs respectively. The correlations shown have maximum absolute 0.2. Other words, these 

selected SNPs can be treated as independent SNPs. Criteria I was satisfied. 
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Table 8 Correlation of the Ten Rare Disease SNPs based on Genotype using HapMap III Genotype Data (n=613).  

Corr rs 

4512698 

rs 

7553321 

rs 

17035549 

rs 

6693629 

rs 

11811671 

rs 

17358725 

rs 

12401645 

rs 

12215941 

rs 

17044864 

rs 

28651257 

rs 

4512698 
1 -0.01 0.03 -0.05 0.04 0.07 -0.02 0.07 -0.02 0.04 

rs 

7553321 
  1 0.10 -0.04 0.14 -0.02 0.04 -0.04 0.03 0.10 

rs 

17035549 
    1 0.01 -0.01 0.01 0.01 -0.08 -0.03 0.08 

rs 

6693629 
      1 0.01 -0.03 0.03 -0.04 0.03 0.03 

rs 

11811671 
        1 -0.02 -0.03 -0.04 -0.03 0.07 

rs 

17358725 
          1 -0.02 -0.03 -0.02 -0.04 

rs 

12401645 
           1 -0.01 0.08 -0.06 

rs 

12215941 
            1 -0.01 -0.08 

rs 

17044864 
             1 0.03 

rs 

28651257 
              1 

Note: The max|corr|is 0.14; most correlations have absolute values less than 0.1. Each has MAF less than 0.05 

 

Table 9 Correlation of the Ten Common Disease SNPs based on Genotype using HapMap III Genotype Data (n=613). 

  

rs 

1888991 

rs 

1390333 

rs 

10498665 

rs 

9376923 

rs 

7296827 

rs 

7300747 

rs 

17100963 

rs 

3759670 

rs 

6509333 

rs 

17207579 

rs 

1888991 1 0.03 -0.45 -0.16 -0.05 0.27 -0.05 0.26 -0.10 0.00 
rs 

1390333   1 0.00 0.13 0.03 0.14 -0.08 0.03 0.11 0.05 
rs 

10498665     1 0.09 0.05 -0.18 -0.02 -0.16 0.09 0.06 
rs 

9376923       1 0.01 0.00 -0.05 -0.14 0.09 0.10 
rs 

7296827         1 0.13 -0.09 -0.04 0.12 0.09 
rs 

7300747           1 -0.17 0.07 0.07 0.09 
rs 

17100963             1 0.01 -0.09 -0.11 
rs 

3759670               1 0.00 -0.03 
rs 

6509333                 1 0.15 
rs 

17207579                   1 
Note: Most correlations have absolute values less than 0.2. Each SNP has MAF greater than 0.05 

 

Table 10 and Table 11 are the correlation by population for common and rare causal 

SNPs respectively. Each SNP is highly correlated with one or more SNPs with an absolute 

correlation larger than 0.6. Some pairs have a correlation greater than 0.9 which indicates the two 

SNPs are highly associated by population, such as rs7553321 and rs11811671 in Table 9 and 

rs1390333 and rs3759670 in Table 10. Therefore, criteria II was satisfied. 
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Table 10 Correlation of the Ten Rare Disease SNPs based on Population using HapMap III Genotype Data(P=7).  

NOTE: Any one of these 10 SNPs was highly correlated with one or more other SNPs, with absolute correlation greater than 

0.5.The highlight values were high correlations (|corr|>0.5). 

Table 11 Correlation of the Ten Common Disease SNPs based on Population using HapMap III Genotype Data(P=7). 

  rs1888991 rs1390333 rs10498665 rs9376923 rs7296827 rs7300747 rs17100963 rs3759670 rs6509333 rs17207579 

rs1888991 1 -0.01 -0.98 -0.61 -0.08 0.56 -0.07 0.90 -0.31 0.00 

rs1390333   1 0.03 0.75 0.94 0.78 -0.98 -0.24 0.95 0.98 

rs10498665     1 0.64 0.06 -0.58 0.06 -0.93 0.33 0.01 

rs9376923       1 0.75 0.22 -0.68 -0.71 0.91 0.72 

rs7296827         1 0.74 -0.97 -0.30 0.92 0.94 

rs7300747           1 -0.83 0.40 0.57 0.80 

rs17100963             1 0.15 -0.91 -0.99 

rs3759670               1 -0.48 -0.17 

rs6509333                 1 0.93 

rs17207579                   1 
NOTE: Any one of these 10 SNPs was highly correlated with one or more other SNPs, with absolute correlation greater than 

0.5.The highlight values were high correlations (|corr|>0.7). 

Figures 3-5 below show the population structure for selected SNPs. Principle Component 

Analysis was performed on the set of 10 randomly selected SNPs shown in Table 6 as well as the 

set of selected common and rare causal SNPs. Figure 3 is a plot of the first two PCs calculated on 

the genotype matrix of the 10 randomly selected SNPs. Different color indicates different 

population. The dots with different colors are randomly distributed in the space. That is, no 

clusters exist for these 10 SNPs.  

SNPs rs 

4512698 

rs 

7553321 

rs 

17035549 

rs 

6693629 

rs 

11811671 

rs 

17358725 

rs 

12401645 

rs 

12215941 

rs 

17044864 

rs 

28651257 

rs 

4512698 
1 0.01 0.10 -0.49 -0.02 0.14 0.54 0.06 0.61 -0.05 

rs 

7553321 
  1 0.74 0.72 0.97 -0.48 0.44 -0.56 0.71 0.87 

rs 

17035549 
    1 0.79 0.86 -0.55 0.37 -0.69 0.38 0.95 

rs 

6693629 
      1 0.82 -0.50 -0.01 -0.64 0.09 0.89 

rs 

11811671 
        1 -0.54 0.39 -0.61 0.61 0.96 

rs 

17358725 
          1 0.03 0.01 -0.22 -0.57 

rs 

12401645 
           1 -0.13 0.50 0.30 

rs 

12215941 
            1 -0.23 -0.64 

rs 

17044864 
             1 0.45 

rs 

28651257 
              1 
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Figure 3 Plot of the first two PCs calculated using the 10 randomly selected SNPs

 
NOTE: Black-CEU; Pink-TSI; Light Blue-LWK; Yellow-YRI; Green-CHD; Red-CHB; Blue-JPT. 

 

Figure 4 and Figure 5 are plots for the first two PCs calculated on the genotype of the 

common and rare disease SNPs. There are clear clusters present in the figure describing the 

disease SNPs.  

In Figure 4, there are three major groups: 1
st
 group contains Luhya in Webuye, Kenya 

(LWK, light blue in the plot) and Yoruba in Ibadan, Nigeria (YRI, yellow), both African; 2
nd

 

group contains Utah residents with Northern and Western European ancestry from the CEPH 

http://ccr.coriell.org/Sections/Collections/NHGRI/Luhya.aspx?PgId=360&coll=HG
http://ccr.coriell.org/Sections/Collections/NHGRI/Yoruba.aspx?PgId=128&coll=HG
http://ccr.coriell.org/Sections/Collections/NIGMS/CEPHResources.aspx?PgId=525&coll=GM
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collection (CEU, black) and Tuscans in Italy (TSI, pink), both from Europe; and last group 

contains Chinese in Metropolitan Denver, Colorado (CHD, green), Han Chinese in Beijing, 

China (CHB, red) and Japanese in Tokyo, Japan (JPT, blue), all have Asian ancestry.  

Figure 4: Plot of the first two PCs calculated using the 10 common causal SNPs  

 
NOTE: Light Blue-LWK; Yellow-YRI; Black-CEU; Pink-TSI; Green-CHD; Red-CHB; Blue-JPT 

 

 

Figure 5 show population structure for the 10 rare causal SNPs. For rare SNPs, only a 

few participants carry the disease alleles so that most people have a score 0, which indicates the 

number of disease allele, in one or more of these positions. As a result, there are many dots 

http://ccr.coriell.org/Sections/Collections/NHGRI/Toscani.aspx?PgId=363&coll=HG
http://ccr.coriell.org/Sections/Collections/NHGRI/DenverChinese.aspx?PgId=361&coll=HG
http://ccr.coriell.org/Sections/Collections/NHGRI/HanChinese.aspx?PgId=432&coll=HG
http://ccr.coriell.org/Sections/Collections/NHGRI/HanChinese.aspx?PgId=432&coll=HG
http://ccr.coriell.org/Sections/Collections/NHGRI/Japanese.aspx?PgId=359&coll=HG
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overlapping with each other. Yoruba in Ibadan, Nigeria (YRI, yellow) and Luhya in Webuye, 

Kenya (LWK, light blue) make the major group. It overlaps with some Europeans and Asians. 

Utah residents with Northern and Western European ancestry from the CEPH collection (CEU) 

and Tuscans in Italy(TSI) are near each other. Chinese (CHD, CHB) and Japanese (JPT) are 

close to each other although TSI seems also close to JPT.   

Figure 5: Plot of the first two PCs calculated using the 10 rare causal SNPs  

 

NOTE: Yellow-YRI; Light Blue-LWK; Black-CEU; Pink- TSI; Blue-JPT ; Green- CHD; Red-CHB; 

 

Unlike the random 10 SNPs, these two set of selected SNPs carry ancestry information. As a 

result, the ancestry distance among participants can be recognized using PCs 

http://ccr.coriell.org/Sections/Collections/NHGRI/Yoruba.aspx?PgId=128&coll=HG
http://ccr.coriell.org/Sections/Collections/NHGRI/Luhya.aspx?PgId=360&coll=HG
http://ccr.coriell.org/Sections/Collections/NHGRI/Luhya.aspx?PgId=360&coll=HG
http://ccr.coriell.org/Sections/Collections/NIGMS/CEPHResources.aspx?PgId=525&coll=GM
http://ccr.coriell.org/Sections/Collections/NHGRI/Toscani.aspx?PgId=363&coll=HG
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b. Disease Model 

Assume that the probability a person has a disease when he or she has a single disease allele 

is 0.03, and this probability is the same for each of the 10 disease SNPs. Additionally, assume 

that the probability a person has the disease is proportional to the number of alleles he or she has. 

Then, the probability that a person with n disease alleles has the disease is 0.03n. For example, 

suppose that a person  has genotypes Aa, AA, AA, AA, AA, AA, aa, Aa, AA, AA,where a is the 

disease allele. Then the probability that this person, who has four a (disease) alleles, has the 

disease is 0.12. 

For each of the 613 GAW17 participants who were also in the HapMap III data, I found the 

number of disease alleles. There were 372 participants who had 0 disease alleles; 177 

participants who had 1 disease allele; 57 participants who had 2 disease alleles; 4 participants 

who had 3 disease alleles; and 3 participants who had 4 disease alleles. There were no 

individuals who have more than 4 disease alleles.  

For each number of disease alleles, I used the R 
[34]

 statistical package rbern(n,p) function to 

generate the disease phenotype. Table 12 contains the expected number of affected participants 

in each category and the parameter settings for generating the phenotypes. The expected number 

of cases among the whole population was 9.45, which was 1.5% of the 613 participants.   
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Table 12 Parameter Settings for Phenotype Generating for Rare Disease SNPs using Hapmap Genotype Data. (N=613) 

Number of 

disease alleles 

Number of 

participants 

P(Disease|number of 

alleles) 

Expected 

number of 

cases 

Phenotype generator 

0 372 0 0 0 

1 177 0.03 5.31 Binomial(177,0.03) 

2 57 0.03*2=0.06 3.42 Binomial(57,0.06) 

3 4 0.03*3=0.09 0.36 Binomial(4,0.09) 

4 3 0.03*4=0.12 0.36 Binomial(3,0.12) 
Note: Participants are grouped into 5 categories based on the number of disease alleles a person has. Phenotypes are generated 

in each category using the R package. 

I generated 100 replicates using these 10 SNPs.   

I used the same approach for the common disease SNP model. There were 10 disease 

SNPs. The minor allele of each contributed to the risk of having the disease. I counted the 

number of minor alleles among the 613 individuals. The counts ranged from 0 to 12. The 

probability that an individual with 12 disease alleles has the disease was 0.36. Table 13 shows 

the parameter settings for phenotype generating for this model. The expected number of cases 

among the whole population of 613 was 95.13 which was a prevalence of 15.5%.  

Table 13 Parameter Settings for Phenotype Generating for Common Disease SNPs using Hapmap Genotype Data. (N=613) 

Number of disease 

alleles 

Number of 

samples 

P(Disease|number 

of alleles) 

Expected  

number of 

cases Phenotype Generator 

0 3 0 0 0 

1 17 0.03 0.51 Binomial(17,0.03) 

2 39 0.06 2.34 Binomial(39,0.06) 

3 81 0.09 7.29 Binomial(81,0.09) 

4 99 0.12 11.88 Binomial(99,0.12) 

5 111 0.15 16.65 Binomial(111,0.15) 

6 92 0.18 16.56 Binomial(92,0.18) 

7 86 0.21 18.06 Binomial(86,0.21) 

8 54 0.24 12.96 Binomial(54,0.24) 

9 20 0.27 5.4 Binomial(20,0.27) 

10 6 0.3 1.8 Binomial(6,0.3) 

11 4 0.33 1.32 Binomial(4,0.33) 

12 1 0.36 0.36 Binomial(1,0.36) 
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c. Local PC Calculation 

I used the software FamCC 
[31]

 to calculate local PCs, using all SNPs available in the five 

chromosomes chosen, (i.e., chromosomes 1, 6, 12, 14 and 19), including rare variants. Local PC 

required that I split a chromosome into “windows,” which were non-overlapping segments of a 

chromosome. I first created a set of windows of length 20 MB. Since SNPs near the boundary of 

a window may not have the same quality of adjustment, I created a second set of windows with 

length 20 MB for those SNPs near boundary as shown in Figure 6.  I call this set the set of 

boundary windows. Any SNP that was near the boundary of a window was then in the middle of 

a boundary window. Splits started from the front part of the chromosome (according to genomic 

position) and proceeded from left to right. The precise endpoints were set such that each SNP 

was in the middle region of at least one window.  For SNPs in each window, ten PCs were 

calculated using all SNPs within the window. For SNPs that were in a 4MB window around 

either the right or left boundary (that is, for a total of 8MB), the analysis PCs were set to be the 

PCs calculated using the boundary windows. Figure 6 is an example of how local PCs were 

calculated using the two sets of windows.    
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Figure 6: An example of Local PC Calculation. 

 

Split 1:              |<                  20MB                 >|<                20MB                 >|<         …….                  >| 

 
Split 2:                                          |<boundary-20MB-windows>|                   

                                                                                   

                                               A                           B              

                                                             ↓ 

                                                                                   B 

               ……|< 4 >|<          12MB            >|<  4  > <4  >|<      12MB       >|< 4 >|…….                    

  

Boundary Windows                 |< 6MB   >|<   8MB     >|<  6MB  >| 

                                                   A  

 

NOTE: This piece of genome was split into two sets of windows. PCs were calculated using all SNPs within a 

window of 20 MB (as point A). For SNPs within a band of 4 MB on each side of the window, the results from the 

boundary window were used. More specifically, for all SNPs in dark red, PCs were calculated using SNPs under 

yellow bar; for all SNPs in orange, PCs were calculated using SNPs under blue bar.  

d.  Test for Genetic Association 

The independent variables in these analyses were the number of minor alleles in the ith SNP 

genotype (    ), and the ten local principal component scores (LPCs). The dependent variable 

was the disease status, which was 1 for an affected individual and 0 for an unaffected individual. 

The ith SNP was considered associated with the phenotype when the p-value of the coefficient of 

SNPi reported in the PLINK logistic regression analysis was less than 0.05.  

I used two logistic regression models which included local PCs as covariates as specified 

below. 

    No Adjustment: iSNP10    

          Local PC Adjustment:    10111210 LPCLPCSNPi   
 

 

 



 

32 

 

3-3 Part 3: Comparison of GPC adjustment and LPC adjustment 

In order to make the results of global PC adjustment and local PC adjustment 

comparable, I applied the same approach I used for analysing GAW17 dataset to HapMap phase 

III data set, that was global PC adjustment, but with the disease SNPs I chose in previous 

analysis for local PC adjustment.  

Global PCs were calculated using Eigensoft software 
[35]

 and applied to the same five 

chromosomes of HapMap data. I analyzed both the rare SNP disease model and the common 

SNP disease model generated above. The Global PC adjustment model I used was  

10111210 GPCGPCSNPi     

The comparison results of global PC adjustment and local PC adjustment can be found in 

result part of section 4-2. 
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Chapter 4 Results 

4-1 Results of Global PC adjustment for GAW 17 phenotype 

The Type I error rate (i.e., false-positive rate) for non-associated genes was the fraction 

of replicates that had permutation p-value for the non-associated genes less than 0.05. Table 14 

and Table 15 show the Type I error rates for Q1 and Q2 respectively. The model with global PC 

adjustment had a Type I error rate closer to 0.05 than the Type I error rate for SNP only model. 

For Q2, Type I error rates were relatively close to the nominal value 0.05 for each model. 

Table 14: Type I error rates for Q1 in GAW17 Data Using All Non-Associated SNPs in Non-Associated Genes. α=0.05 

MAF MAF<0.005 0.005<MAF<0.01 0.01<MAF<0.05 0.05<MAF<0.5 Total 

Phenotypes D Q D Q D Q D Q D Q 

No 

Adjustment 7.6% 5.6% 8.6% 9.0% 16.2% 19.0% 18.6% 21.7% 10.3% 9.8% 

PC 

Adjustment 6.6% 5.7% 6.3% 6.4% 6.8% 6.9% 5.7% 6.7% 6.5% 6.0% 

Note: D represents the dichotomized phenotype, Q represents the quantitative phenotype. Non-associated SNPs came from 

chromosome 12, 21 and 22.  

Table 15: Type I error rates for Q2 in GAW17 Data Using All Non-Associated SNPs in Non-Associated Genes. α=0.05 

MAF MAF<0.005 0.005<MAF<0.01 0.01<MAF<0.05 0.05<MAF<0.5 Total 

Phenotypes D Q D Q D Q D Q D Q 

No 

Adjustment 5.9% 5.6% 6.8% 7.0% 5.9% 5.8% 6.7% 7.9% 6.1% 6.0% 

PC  

Adjustment 5.7% 5.4% 6.0% 6.0% 5.3% 5.0% 4.8% 4.9% 5.6% 5.4% 

Note: D represents the dichotomized phenotype, Q represents the quantitative phenotype. Non-associated SNPs came from 

chromosome 21 and 22.  

Table 16 contains the results for Q1, using all associated and non-associated SNPs in 

genes that determine Q1. Table 17 shows the parallel results for Q2. For non-associated SNPs in 

associated genes in both Q1 and Q2, Global PC adjustment had permutation Type I error rates 

which were closer to 0.05, although the Type I error rates were slightly above the nominal value 

of 0.05. In Q1 the PC adjustment model had the lowest rejection rate for associated SNPs, 



 

34 

 

possibly due to better control of the rejection rate. For Q2, where all rejection rates were 

relatively close to the nominal rate of 0.05, the rejection rates for associated SNPs were slightly 

lower for the PC adjustment model. 

Table 16: Type I error rates for Q1 in GAW17 Data Using All Non-Associated and Associated SNPs in Associated Genes. 

α=0.05 

MAF MAF<0.005 0.005<MAF<0.01 0.01<MAF<0.05 0.05<MAF<0.5 Total 

Phenotypes D Q D Q D Q D Q D Q 

Non-Associated SNPs 

SNP  

Only 9.4% 6.9% 10.6% 13.3% 14.3% 12.4% 13.5% 16.1% 10.6% 9.0% 

PC  

Adjustment 5.7% 6.3% 5.4% 9.3% 6.1% 4.2% 7.6% 8.9% 5.9% 6.4% 

Associated SNPs 

SNP  

Only 14.1% 19.2% NA NA 87.5% 93.9% 76.3% 91.5% 26.7% 32.5% 

PC  

Adjustment 14.3% 19.8% NA NA 64.0% 75.6% 64.5% 85.5% 23.2% 30.3% 

Note: D represents the dichotomized phenotype, and Q represents the quantitative phenotype.  

Table 17: Type I error rates for Q2 in GAW17 Data Using All Non-Associated and Associated SNPs in Associated Genes. 

α=0.05 

MAF MAF<0.005 0.005<MAF<0.01 0.01<MAF<0.05 0.05<MAF<0.5 Total 

Phenotypes D Q D Q D Q D Q D Q 

Non-Associated SNPs 

SNP  

Only 5.2% 5.9% 7.3% 6.1% 5.8% 6.5% 5.5% 6.0% 5.4% 6.0% 

PC  

Adjustment 5.4% 5.6% 6.9% 4.1% 5.2% 5.3% 4.9% 5.2% 5.4% 5.4% 

Associated SNPs 

SNP  

Only 11.9% 13.3% 30.4% 31.5% 39.8% 45.6% 55.8% 80.8% 16.0% 18.2% 

PC  

Adjustment 11.2% 12.7% 26.5% 24.5% 36.5% 44.4% 45.3% 69.8% 14.6% 16.9% 

Note: D represents the dichotomized phenotype, and Q represents the quantitative phenotype.  

 

For the genes reported here, Global PC adjustment had an empirical Type I error rate 

apparently closer to the nominal level for SNPs in genes not associated with the phenotype and 
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for non-associated SNPs in associated genes, especially for genes determining Q1. The level of 

significance for Q2 was much closer to the nominal 0.05 level for each of the two models. This 

may be due to the way the Q2 phenotype was generated.  

The power of the PC adjustment model was relatively strong and increased as the MAF 

increased, as expected. The power of regression modeling for the quantitative phenotype was 

greater than the power of logistic regression modelling of the dichotomized phenotype for both 

Q1 and Q2, as expected. 

These findings of GAW17 data had been published. 
[36-37]

 

4-2 Comparison results of Local PC adjustment to Global PC 

adjustment using generated phenotype and HapMap III genotype 

The type I error rate was the fraction of non-associated SNPs that had p-value less than 

0.05. Table 18 and Table 19 show the type I error rates for the model with common disease SNPs 

and the model with rare disease SNPs respectively. For the model with common disease SNPs, 

the type I error rate without adjustment for population stratification was above 8%, higher than 

the nominal 5% rate. Both the global PC adjustment and local PC adjustment with common 

causal SNPs had type I error rates below the nominal level of 5%. Global PC adjustment had a 

type I error rate between 4.6% and 4.8%, while local PC adjustment also had a type I error rate 

between 4.6% and 4.8%. Similar results held for the model with rare causal SNPs. The type I 

error rate without adjustment for population stratification was almost 7%, higher than nominal 

level 5% while the type I error rate for the model with global PC adjustment controlled the type I 

error rate to be 3.5. The type I error rate for the model with local PC adjustment had a type I 

error rate to be between 3.1% and 3.6%. For the model with common causal SNPs, both global 
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PC adjustment and local PC adjustment had 95% confidence intervals that contain the nominal 

level of 5% for chromosome 14 and chromosome19.     
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Table 18 Comparison of Type I Error Rate for Common Causal SNPs using Generated Phenotype - HapMap III 

Genotype Data. 

Common Causal SNPs (α=0.05) 

Chromosome 

no adjustment Global PC adjustment Local PC adjustment 

Observed 

Type I 

error 

Confidence 

Interval 

Observed 

Type I 

error 

Confidence 

Interval 

Observed 

Type I 

error 

Confidence 

Interval 

1 8.2% 8.1% 8.4% 4.7% 4.6% 4.8% 4.6% 4.2% 5.0% 

6 8.1% 8.0% 8.3% 4.6% 4.4% 4.7% 4.7% 4.5% 4.9% 

12 8.5% 8.3% 8.7% 4.8% 4.7% 5.0% 4.8% 4.6% 4.9% 

14 8.3% 8.0% 8.5% 4.8% 4.6% 5.0% 4.8% 4.6% 5.0% 

19 8.1% 7.6% 8.6% 4.7% 4.4% 5.1% 4.7% 4.3% 5.1% 

NOTE: The observed p_value and confidence interval are calculated for 100 replicates. The highlighted intervals contain the 

nominal level 0.05. 

Table 19 Comparison of Type I Error Rate for Rare Causal SNPs using Generated Phenotype - HapMap III Genotype 

Data.  

Rare Causal SNPs (α=0.05) 

 Chromosome 

No Adjustment Global Adjustment Local Adjustment 

Observed 

Type I 

error 

Confidence 

Interval 

Observed 

Type I 

error 

Confidence 

Interval 

Observed 

Type I 

error 

Confidence 

Interval 

1 7.0% 6.8% 7.1% 3.5% 3.3% 3.6% 3.6% 3.5% 3.8% 

6 6.7% 6.3% 7.0% 3.5% 3.3% 3.6% 3.3% 3.2% 3.5% 

12 6.8% 6.6% 7.0% 3.5% 3.3% 3.7% 3.2% 3.5% 3.4% 

14 7.0% 6.7% 7.2% 3.5% 3.3% 3.7% 3.3% 3.1% 3.5% 

19 7.0% 6.5% 7.4% 3.5% 3.0% 3.9% 3.1% 2.7% 3.6% 

NOTE: The observed p_value and confidence interval are calculated for 100 replicates. 

 

Figure 7 and Figure 8 show the qqplot of observed p_values against the expected uniform 

distribution for all non causal SNPs in chromosome 19 for the model with common causal SNPs 

and the model with rare causal SNPs for a randomly selected replicate respectively. For the 

model with common causal SNPs, the observed p_values without any adjustment for population 

were divergent from the uniform distribution. Both the model with global adjustment and the 

model with local adjustment had a uniform distribution as expected. For the model with rare 

causal SNPs, the observed p_value with no adjustment for population stratification was not 

uniform at all. The model with global PCs and local PCs adjusted the distribution so that it was 
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closer to uniform. That is, local PC adjustment seems to be better than global PC adjustment with 

regard to the distribution of the observed p_values.   
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Figure 7 QQPlot for observed p_value against expected uniform distribution for all non causal SNPs in chr19 with common 

causal SNPs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model: No adjustment 

Model: Global PC adjustment 
Model: Local PC adjustment 
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Figure 8 QQPlot for observed p_value against expected uniform distribution for all non causal SNPs in chr19 with rare 

causal SNPs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The qqplot for other chromosomes can be found in appendices. 

Model: No adjustment 

Model: Global PC adjustment Model: Local PC adjustment 
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Table 20 and Table 21 show the power of no adjustment, global PC adjustment, and local 

PC adjustment. 

Table 20 Comparison of Power for Rare Causal SNPs using Generated Phenotype - HapMap III Genotype Data. α=0.05 

Rare Causal SNPs 

model chr1 chr6 chr12 chr14 chr19 

number of causal SNPs 7 1 1 0 1 

no adjustment 26.9% 22.0% 27.0% NA 43.0% 

Global PC 18.3% 25.3% 18.0% NA 16.0% 

Local PC 31.4% 0.0% 16.0% NA 13.1% 
NOTE: The power was calculated based on 100 replicates. There are no causal SNPs on chromosome 14. The highlighted value 

was the largest power among the results for the three models. 

Table 21 Comparison of Power for Common Causal SNPs using Generated Phenotype - HapMap III Genotype Data. 

α=0.05 

 

Common Causal SNPs 

model chr1 chr6 chr12 chr14 chr19 

number of SNPs 2 2 2 2 2 

no adjustment 28.5% 15.0% 50.0% 14.5% 42.5% 

Global PC 14.5% 22.1% 19.0% 19.5% 21.0% 

Local PC 20.0% 28.0% 21.5% 17.5% 22.0% 
NOTE: The power was calculated based on 100 replicates. The highlighted value was the largest power among the results for 

the three models. 

 

The power was not impressive generally. The model without any adjustment seems to 

have higher power according to the tables above. However, considering the type I error rate 

performance, it was not as good as models with global or local adjustment. Table 22 shows the 

results of McNemar’s test for the 20 causal SNPs for global and local models. 
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Table 22 Results for McNemar’s Test, Comparing Local PC Performance to Global PC Performance using Generated 

Phenotype - HapMap III Genotype Data 

Type chromosome SNP McNemar’s Test Statistic p_value of McNemar's Test 

Common 

1 rs1888991 0.27 0.61 

1 rs1390333 0.21 0.64 

6 rs10498665 13.08 3E-04 

6 rs9376923 0 1 

12 rs7296827 0.06 0.8 

12 rs7300747 0.44 0.51 

14 rs17100963 0 1 

14 rs3759670 1.13 0.29 

19 rs6509333 0.31 0.58 

19 rs17207579 0 1 

Rare 

1 rs7553321  0.9 0.34  

1 rs17035549  0.06 0.8  

1 rs6693629  0.13 0.7  

1 rs11811671  1.8 0.18  

1 rs4512698  1.9 0.17  

1 rs12401645 0.6  0.4  

1 rs17358725         2.1 0.15  

6 rs12215941         0.57  0.4 

12 rs17044864  0.13  0.72 

19 rs28651257  0.8 0.4  

 

For common causal SNPs, nine out of ten SNPs had a p_value for McNemar’s test above 

0.05. For rare causal SNPs, all of the ten SNPs had a p_value above 0.05. No significant 

difference exists between global adjustment and local adjustment. That is, global PC adjustment 

and local PC adjustment had similar power, except for rs10498665 on chromosome 6. 
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Chapter 5 Discussion 

5-1 PC Adjustment vs. Population Adjustment 

The population of origin for each participant was reported in the GAW17 data. I 

estimated the effects of adjustment for the self reported populations. The dependent variables in 

these analyses were the same as in the global test for GAW17 data (see section 3-1-2). The 

independent variables were the number of minor alleles in the ith SNP genotype (    ), the 

participant’s age (AGE) and smoking status (SMOKING), and the seven indicator variables of the 

populations (called POP1 … POP6 respectively). I used the population adjustment model given 

by: 

69143210 ... POPPOPSMOKINGAGESNPi  
                       

For Q2, age and smoking were not used as covariates. 

Table 23 and Table 24 shows the Type I error rates for Q1 and Q2 respectively, 

comparing PC adjustment to population adjustment. For Q2, all three models have similar Type I 

error rate. For Q1, the model with no adjustment resulted in a Type I error rate between 5.6% 

and 21.7%; and the model with population adjustment had a Type I error rate between 5.8% and 

23.6%. Both models showed a high inflation of type I error rate. The model with global PC 

adjustment, however, had a Type I error rate between 5.7% and 6.9% which was much closer to 

the nominal level of 5%.  
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Table 23: Type I error rates for Q1 in GAW 17 Data using All Non-Associated SNPs in Non-Associated Genes. α=0.05 

MAF MAF<0.005 0.005<MAF<0.01 0.01<MAF<0.05 0.05<MAF<0.5 Total 

Phenotypes D Q D Q D Q D Q D Q 

No adjustment 7.6% 5.6% 8.6% 9.0% 16.2% 19.0% 18.6% 21.7% 10.3% 9.8% 

Population 

Adjustment 9.1% 5.8% 9.0% 8.5% 16.3% 17.9% 20.0% 23.6% 11.5% 10.0% 

Global PC 

Adjustment 6.6% 5.7% 6.3% 6.4% 6.8% 6.9% 5.7% 6.7% 6.5% 6.0% 

Note: D represents the dichotomized phenotype, Q represents the quantitative phenotype. Non-associated SNPs came from 

chromosome 12, 21 and 22.  

Table 24: Type I error rates for Q2 Using All Non-Associated SNPs in Non-Associated Genes. α=0.05 

MAF MAF<0.005 0.005<MAF<0.01 0.01<MAF<0.05 0.05<MAF<0.5 Total 

Phenotypes D Q D Q D Q D Q D Q 

SNP  

Only 5.9% 5.6% 6.8% 7.0% 5.9% 5.8% 6.7% 7.9% 6.1% 6.0% 

Population  

Adjustment 6.1% 5.6% 7.7% 7.1% 5.9% 5.6% 5.6% 5.7% 6.2% 5.7% 

Global PC  

Adjustment 5.7% 5.4% 6.0% 6.0% 5.3% 5.0% 4.8% 4.9% 5.6% 5.4% 

Note: D represents the dichotomized phenotype, Q represents the quantitative phenotype. Non-associated SNPs came from 

chromosome 21 and 22.  

Table 25 contains the results for Q1, using all associated and non-associated SNPs in 

genes that determine Q1. Table 26 shows the corresponding results for Q2. With regard to 

power, the rejection rates with both population adjustment and global PC adjustment had slightly 

decreases from the rejection rates without adjustment. 
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Table 25: Rejection rates for Q1 in GAW17 Data using All Non-Associated and Associated SNPs in Associated Genes. 

α=0.05 

MAF MAF<0.005 0.005<MAF<0.01 0.01<MAF<0.05 0.05<MAF<0.5 Total 

Phenotypes D Q D Q D Q D Q D Q 

Non-Associated SNPs 

SNP  

Only 9.4% 6.9% 10.6% 13.3% 14.3% 12.4% 13.5% 16.1% 10.6% 9.0% 

Population  

Adjustment 11.3% 7.8% 10.0% 11.7% 15.8% 14.4% 8.1% 9.7% 11.5% 9.1% 

Global PC  

Adjustment 5.7% 6.3% 5.4% 9.3% 6.1% 4.2% 7.6% 8.9% 5.9% 6.4% 

Associated SNPs 

SNP  

Only 14.1% 19.2% NA NA 87.5% 93.9% 76.3% 91.5% 26.7% 32.5% 

Population  

Adjustment 22.6% 21.7% NA NA 91.3% 97.7% 85.3% 98.3% 34.7% 35.4% 

Global PC  

Adjustment 14.3% 19.8% NA NA 64.0% 75.6% 64.5% 85.5% 23.2% 30.3% 

Note: D represents the dichotomized phenotype, and Q represents the quantitative phenotype.  

Table 26: Rejection rates for Q2 in GAW17 Data using All Non-Associated and Associated SNPs in Associated Genes. 

α=0.05 

MAF MAF<0.005 0.005<MAF<0.01 0.01<MAF<0.05 0.05<MAF<0.5 Total 

Phenotypes D Q D Q D Q D Q D Q 

Non-Associated SNPs 

SNP  

Only 5.2% 5.9% 7.3% 6.1% 5.8% 6.5% 5.5% 6.0% 5.4% 6.0% 

Population  

Adjustment 6.3% 5.7% 11.2% 7.8% 6.1% 5.4% 4.9% 5.7% 6.5% 5.8% 

Global PC  

Adjustment 5.4% 5.6% 6.9% 4.1% 5.2% 5.3% 4.9% 5.2% 5.4% 5.4% 

Associated SNPs 

SNP  

Only 11.9% 13.3% 30.4% 31.5% 39.8% 45.6% 55.8% 80.8% 16.0% 18.2% 

Population  

Adjustment 11.2% 12.9% 31.1% 29.1% 39.4% 46.5% 48.0% 70.8% 15.2% 17.5% 

Global PC  

Adjustment 11.2% 12.7% 26.5% 24.5% 36.5% 44.4% 45.3% 69.8% 14.6% 16.9% 

Note: D represents the dichotomized phenotype, and Q represents the quantitative phenotype.  

As a conclusion, global PC adjustment worked better than adjustment with the indicators 

of the original populations. Both population adjustment and global PC adjustment showed a 

slightly decrease in power compared to using the nominal level of 0.05 and making no 
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adjustment. However, considering the type I error rate performance, global PC adjustment 

reported a comparable power while the population adjustment worked badly here.  

I have some conjectures about the causes of these patterns. Firstly, the population 

information was collected by an employee or reported by the patients themselves. There might 

have been misleading information or errors in reporting. Secondly, the population the 

participants reported only reflected their racial or national information. It was not satisfactory for 

adjustment due to stratification on genotype level. That is, the physical population did not fully 

explain the genotype stratification due to population drift. The participant’s genotype data better 

reflected the population structure. Since the PCs were calculated directly from the genotypes, 

they were a more effective representation of the distance of genotype among the participants.   

 

5-2 Computing Time 

For global PC adjustment, the most difficult task was to get the PCs from the whole 

genome matrix, which had one row for each participant and one column for each SNP. 

Sometimes, this matrix was so large that the computer ran out of memory and crashed. For 

example, FAMCC software did not work for HapMap Data due to the large number of SNPs in 

the database. Even Eigenstrat took a whole day to read in the data and calculate the PCs.  

  The local PC adjustment software worked well because there were a relatively small 

number of SNPs within each local window. The hash time for Local PC adjustment was the time 

you had to wait until PLINK returned the results of logistic regression. The hash time for local 

PC adjustment was much longer than for global PC adjustment simply because local PC 

adjustment splits the genome into windows so that the work to be done in one window (the 
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whole genome) was to be applied to multiple windows, and the time associated with this was 

multiplied.  

In this analysis, local PC adjustment usually took about a week to get all the logistic 

regression results out of PLINK for one chromosome. Global PC adjustment could finish five 

chromosomes within one day. 
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Chapter 6 Conclusion 

PC adjustment using logistic regression had controlled type I error rate when population 

stratification was an issue. PC adjustment was better than population adjustment and was able to 

reduce the type I error rate to the nominal level of 0.05 while achieving some power. For SNPs 

with MAF less than 0.05 (rare SNPs), however, PC adjustment had a type I error rate less than 

the nominal level.   

Generally, there was no significant difference between local PC adjustment and global 

PC adjustment, on both type I error rate and power. Global PC adjustment was easy to 

understand and manipulate, although it may take a long time to calculate the global PCs. On the 

other hand, local PC adjustment had a similar adjustment and less demands on computer. 

Therefore, for a study focused on local region, considering the computing time and cost, local PC 

adjustment may be better than global PC adjustment.  
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Chapter 7 Future Work 

The real meaning of these PCs can be explored. In most scenarios, the first two or three 

PCs were able to describe more than 90% genetic information and successfully recognized the 

clusters. The use of 10 PCs worked better than 3 PCs in these analyses. The extra seven PCs may 

hold important ancestry information. To better understand the meaning of these PCs is necessary. 

Further approaches on choosing best number of PCs will be explored.  

Since both GPCs and LPCs can be used to adjust for PS and had similar results, 

combining both GPCs and LPCs as covariates in regression model might have a better 

adjustment. The model would be: 

 102111210111210 ... GPCLPCGPCGPCSNPi     

The disease model used in the analyses of HapMap data was simple multilocus model 

that unrelated causal SNPs were selected as disease SNPs. More complex model might reflect 

more realistic scenarios. Applying global PC adjustment and local PC adjustment to a more 

complex model might enable us to explore GWAS significance level and have a more significant 

comparison results. 
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Appendices 

Table 27: Effects on Q1 in GAW17 Data 

GENE SNP MAF BETA 

ARNT C1S6533 0.011478 0.5619 

ARNT C1S6537 0.000717 0.64454 

ARNT C1S6540 0.001435 0.24129 

ARNT C1S6542 0.002152 0.46026 

ARNT C1S6561 0.000717 0.65721 

ELAVL4 C1S3181 0.000717 0.76911 

ELAVL4 C1S3182 0.000717 0.30432 

FLT1 C13S320 0.001435 0.19605 

FLT1 C13S399 0.000717 0.39602 

FLT1 C13S431 0.017217 0.74136 

FLT1 C13S479 0.000717 0.75946 

FLT1 C13S505 0.000717 0.4485 

FLT1 C13S514 0.000717 0.56643 

FLT1 C13S522 0.027977 0.6183 

FLT1 C13S523 0.066714 0.64997 

FLT1 C13S524 0.004304 0.62223 

FLT1 C13S547 0.000717 0.52601 

FLT1 C13S567 0.000717 0.17493 

FLT4 C5S5133 0.001435 0.15986 

FLT4 C5S5156 0.000717 0.4301 

HIF1A C14S1718 0.000717 0.15382 

HIF1A C14S1729 0.002152 0.28532 

HIF1A C14S1734 0.012195 0.21203 

HIF1A C14S1736 0.000717 0.21716 

HIF3A C19S4799 0.000717 0.28351 

HIF3A C19S4815 0.000717 0.53114 

HIF3A C19S4831 0.000717 0.29287 

KDR C4S1861 0.002152 0.56311 

KDR C4S1873 0.000717 0.58301 

KDR C4S1874 0.000717 0.47262 

KDR KDR 0.000717 1.07706 

KDR C4S1878 0.164993 0.13573 

KDR C4S1879 0.000717 0.6183 

KDR C4S1884 0.020803 0.29558 

KDR C4S1887 0.000717 0.29558 

KDR C4S1889 0.000717 0.94133 
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KDR C4S1890 0.002152 0.42407 

VEGFA C6S2981 0.002152 1.20645 

VEGFC C4S4935 0.000717 1.35726 

 

Table 28: Effects on Q2 in GAW17 Data 

GENE SNP MAF BETA 

BCHE C3S4834 0.000717 0.24092 

BCHE C3S4836 0.000717 0.23749 

BCHE C3S4856 0.000717 0.22027 

BCHE C3S4859 0.002152 0.59302 

BCHE C3S4860 0.000717 0.25057 

BCHE C3S4862 0.000717 1.01672 

BCHE C3S4867 0.000717 0.65326 

BCHE C3S4869 0.000717 1.01569 

BCHE C3S4873 0.002869 0.59096 

BCHE C3S4874 0.000717 1.0057 

BCHE C3S4875 0.000717 1.09484 

BCHE C3S4876 0.000717 0.75583 

BCHE C3S4880 0.001435 0.20651 

GCKR C2S354 0.012195 0.37757 

INSIG1 C7S5132 0.000717 0.19962 

INSIG1 C7S5133 0.000717 0.19618 

INSIG1 C7S5144 0.000717 0.19275 

LPL C8S442 0.015782 0.49459 

LPL C8S476 0.000717 0.63365 

LPL C8S530 0.001435 0.72864 

PDGFD C11S5292 0.008608 0.5827 

PDGFD C11S5299 0.000717 0.82157 

PDGFD C11S5301 0.000717 0.87904 

PDGFD C11S5302 0.001435 0.81502 

PLAT C8S1741 0.003587 0.68079 

PLAT C8S1742 0.000717 0.8491 

PLAT C8S1758 0.001435 0.92516 

PLAT C8S1770 0.000717 0.62916 

PLAT C8S1772 0.001435 0.26296 

PLAT C8S1773 0.001435 0.55792 

PLAT C8S1799 0.005739 0.20651 

PLAT PLAT 0.001435 0.13767 
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RARB C3S635 0.000717 0.70936 

RARB C3S679 0.005022 0.63502 

SIRT1 C10S3048 0.002152 0.83224 

SIRT1 C10S3050 0.002152 0.9706 

SIRT1 C10S3058 0.000717 0.36621 

SIRT1 C10S3092 0.000717 0.43608 

SIRT1 C10S3093 0.000717 0.5352 

SIRT1 C10S3107 0.000717 0.93549 

SIRT1 C10S3108 0.000717 0.5328 

SIRT1 C10S3109 0.000717 0.51421 

SIRT1 C10S3110 0.002152 0.10326 

SREBF1 C17S1007 0.002152 0.53073 

SREBF1 C17S1009 0.000717 0.64568 

SREBF1 C17S1024 0.004304 0.45329 

SREBF1 C17S1030 0.000717 0.80366 

SREBF1 C17S1043 0.004304 0.49941 

SREBF1 C17S1045 0.003587 0.33524 

SREBF1 C17S1046 0.002869 0.62779 

SREBF1 C17S1048 0.001435 0.28739 

SREBF1 C17S1055 0.001435 0.87767 

SREBF1 C17S1056 0.000717 0.51524 

VLDLR C9S367 0.000717 0.58476 

VLDLR C9S376 0.002869 0.5328 

VLDLR C9S377 0.001435 1.21565 

VLDLR C9S391 0.000717 0.52694 

VLDLR C9S430 0.000717 0.55551 

VLDLR C9S443 0.001435 0.62642 

VLDLR C9S444 0.001435 0.86528 

VLDLR C9S497 0.000717 0.65808 

VNN1 C6S5378 0.005739 0.45811 

VNN1 C6S5380 0.170732 0.24437 

VNN3 C6S5412 0.000717 0.64431 

VNN3 C6S5426 0.032999 0.10326 

VNN3 C6S5439 0.000717 0.10326 

VNN3 C6S5441 0.098278 0.27053 

VNN3 C6S5446 0.000717 0.48014 

VNN3 C6S5448 0.000717 0.54036 

VNN3 C6S5449 0.010043 0.66909 

VWF C12S181 0.000717 0.74757 

VWF C12S211 0.005739 0.33661 
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Figure 9 qqplot for all non causal SNPs in chromosome 1 with common causal SNPs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Model: No adjustment 

Model: Global PC adjustment Model: Local PC adjustment 
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Figure 10 qqplot for all non causal SNPs in chromosome 6 with common causal SNPs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model: No adjustment 

Model: Global PC adjustment Model: Local PC adjustment 
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Figure 11 qqplot for all non causal SNPs in chromosome 12 with common causal SNPs 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model: No adjustment 

Model: Global PC adjustment Model: Local PC adjustment 
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Figure 12 qqplot for all non causal SNPs in chromosome 14 with common causal SNPs 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model: No adjustment 

Model: Global PC adjustment Model: Local PC adjustment 
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Figure 13 qqplot for all non causal SNPs in chromosome 1 with rare causal SNPs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model: No adjustment 

Model: Global PC adjustment Model: Local PC adjustment 
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Figure 14 qqplot for all non causal SNPs in chromosome 6 with rare causal SNPs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model: No adjustment 

Model: Global PC adjustment 
Model: Local PC adjustment 
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Figure 15 qqplot for all non causal SNPs in chromosome 12 with rare causal SNPs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model: No adjustment 

Model: Global PC adjustment 
Model: Local PC adjustment 
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Figure 16 qqplot for all non causal SNPs in chromosome 14 with rare causal SNPs 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model: No adjustment 

Model: Global PC adjustment Model: Local PC adjustment 
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Code-PLINK 

--file filename --from startSNP --to endSNP2 --covar covariates, such as age, smoking, sex, 

GPC, PLC --logistic –out outfile 

 

Code-R 

a. transform genotype matrix ATCG to 0,1,2 

X=read.table("D:/Research/HapMap_data/rare1000.frq",header=T,sep=""); 

Y=read.table("D:/Research/HapMap_data/rare1000.ped",header=F,sep=""); 

R=length(X[,1]); 

C=length(Y[,1]); 

ind=factor(Y[,1]); 

for (i in 1:R){ 

snpcol=as.vector(factor(X[i,2])) 

m=X[i,3] 

M=X[i,4] 

     for (j in 1:C){ 

                if (identical(factor(Y[j,6+(2*i-1)]),factor(m))==T) k1=1 else k1=0; 

                if (identical(factor(Y[j,6+2*i]),factor(m))==T) k2=1 else k2=0; 

                count=k1+k2; 

                snpcol=rbind(snpcol,count) 

                    } 

ind=cbind(ind,snpcol) 

} 

snp=ind[2:(C+1),2:(R+1)] 
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six=Y[,1:6]; 

geno=cbind(six,snp) 

 

write.table(geno, 

            file=paste("D:/Research/HapMap_data/rare1000.txt",sep=" "), 

            quote=FALSE,sep=" ",row.names=FALSE,col.names=FALSE) 

 

b. generate global adjustment results 

chr<-6 

type<-"common" 

path0<-"c:/Users/Jing/Perl/perl/bin/result/" 

data<-

read.table(paste(path0,type,"/global/chr",chr,"/chr",chr,"_global_1.assoc.logistic",sep=""),header

=T,sep="") 

data<-data[,c("CHR","SNP","BP","A1","TEST","P")] 

  for (i in 2:100){ 

add<-

read.table(paste(path0,type,"/global/chr",chr,"/chr",chr,"_global_",i,".assoc.logistic",sep=""),hea

der=T,sep="") 

add<-add[,c("P")] 

data<-cbind(data,add) 

} 

data<-data[which(data$TEST=="ADD"),] 

k<-dim(data)[1] 

cat(paste("number of SNP is:",k,sep="")) 

data<-data[!is.na(data$P),] 

m<-dim(data)[1] 
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cat(paste("number of SNP after filtering is:",m,sep="")) 

write.table(data,paste(path0,"result_summary/",type,"_chr",chr,"_global100.txt",sep=""),quote=F

,col.names=T,sep="\t") 

 

c. generate local adjustment result 

## 

chr<-6 

type<-"common" 

path0<-paste("c:/Users/Jing/Perl/perl/bin/",sep="") 

##spli1+chr19 

split<-"split1" 

#split<-"split2" 

##read window plan 

window<-

read.table(paste(path0,"LPC/chr",chr,"/",split,"_chr",chr,".txt",sep=""),header=F,sep="\t") 

colnames(window)<-c("start","end") 

##read result 

start0<-window$start[1] 

end0<-window$end[1] 

##chr19 

##path<-paste(path0,"result/",type,"/chr",chr,"/chr",chr,"_",start0,"_",end0,sep="") 

##others 

path<-paste(path0,"result/",type,"/chr",chr,"/chr",chr,"_",split,"_",start0,"_",end0,sep="") 

data0<-read.table(paste(path,"_1.assoc.logistic",sep=""),header=T,sep="") 

data0<-data0[,c("CHR","SNP","BP","A1","TEST","P")] 

  for (i in 2:100){ 
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add<-read.table(paste(path,"_",i,".assoc.logistic",sep=""),header=T,sep="") 

add<-add[,c("P")] 

data0<-cbind(data0,add) 

} 

data0<-data0[which(data0$TEST=="ADD"),] 

 

for (j in 2:dim(window)[1]){ 

 start<-window$start[j] 

 end<-window$end[j] 

##chr19 

##path<-paste(path0,"result/",type,"/chr",chr,"/chr",chr,"_",start,"_",end,sep="") 

##others 

path<-paste(path0,"result/",type,"/chr",chr,"/chr",chr,"_",split,"_",start,"_",end,sep="") 

data<-read.table(paste(path,"_1.assoc.logistic",sep=""),header=T,sep="") 

data<-data[,c("CHR","SNP","BP","A1","TEST","P")] 

  for (i in 2:100){ 

add<-read.table(paste(path,"_",i,".assoc.logistic",sep=""),header=T,sep="") 

add<-add[,c("P")] 

data<-cbind(data,add) 

} 

data<-data[which(data$TEST=="ADD"),] 

data0<-rbind(data0,data) 

} 

data0<-data0[!is.na(data0$P),] 

##chr19 
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##write.table(data0,paste(path0,"result/",type,"_chr",chr,"_local_100.txt",sep=""),quote=F,col.na

mes=T,sep="\t") 

##others 

write.table(data0,paste(path0,"result/",type,"_chr",chr,"_local_100",split,".txt",sep=""),quote=F,c

ol.names=T,sep="\t") 

 

d. Power comparison 

Performance <- 

matrix(c(13,5,3,79), 

       nrow = 2, 

       dimnames = list("Local" = c("True", "False"), 

                       "Global" = c("True", "False"))) 

Performance 

mcnemar.test(Performance) 

 

e. Type I error rate comparison 

chr<-6 

type<-"rare" 

type1<-"Rare" 

data<-

read.table(paste("c:/Users/Jing/Desktop/",type,"_chr",chr,".txt",sep=""),header=T,sep="\t") 

m<-dim(data)[1] 

data$x<-data$index/m 

jpeg(paste("c:/Users/Jing/Desktop/",type,"_chr",chr,"_general.jpeg",sep="")) 

qqplot(data$x,data$general,xlab="expected uniform distribution",ylab="observed 

p_value",main=paste("Model: No adjustment,\n",type1," Causal SNPs, Chromosome 

",chr,sep=""),col=2) 
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lines(data$x,data$x) 

dev.off() 

 

jpeg(paste("c:/Users/Jing/Desktop/",type,"_chr",chr,"_global.jpeg",sep="")) 

qqplot(data$x,data$global,xlab="expected uniform distribution",ylab="observed 

p_value",main=paste("Model: Global adjustment,\n",type1," Causal SNPs, Chromosome 

",chr,sep=""),col=2) 

lines(data$x,data$x) 

dev.off() 

 

jpeg(paste("c:/Users/Jing/Desktop/",type,"_chr",chr,"_local.jpeg",sep="")) 

qqplot(data$x,data$local,xlab="expected uniform distribution",ylab="observed 

p_value",main=paste("Model: Local adjustment,\n",type1," Causal SNPs, Chromosome 

",chr,sep=""),col=2) 

lines(data$x,data$x) 

dev.off() 

 


