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Abstract of the Dissertation

Approximating Partially Observable Markov

Decision Processes with Parametric Belief

Distributions for Continuous State Spaces

by

Timothy Knapik

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2012

This dissertation focuses on training autonomous agents to plan and act

under uncertainty, specifically for cases where the underlying state spaces

are continuous in nature. Partially Observable Markov Decision Processes

(POMDPs) are a class of models aimed at training agents to seek high re-

wards or low costs while navigating a state space without knowing their true

location. Information regarding an agent’s location is gathered in the form

of possibly nonlinear and noisy measurements as a function of the true loca-

tion. An exactly solved POMDP allows an agent to optimally balance seeking

rewards and seeking information regarding its position in state space.

It is computationally intractable to solve POMDPs for state domains that

are continuous, motivating the need for efficient approximate solutions. The

algorithm considered in this thesis is the Parametric POMDP (PPOMDP)

method. PPOMDP represents an agent’s knowledge as a parameterised prob-

iii



ability distribution and is able to infer the impact of future actions and obser-

vations.

The contribution of this thesis is in enhancing the PPOMDP algorithm

making significant improvements in training and plan execution times. Several

aspects of the original algorithm are generalized and the impact on training

time, execution time, and performance are measured on a variety of classic

robot navigation models in the literature today. In addition, a mathemat-

ically principled threefold adaptive sampling scheme is implemented. With

an adaptive sampling scheme the algorithm automatically varies sampling ac-

cording to the complexity of posterior distributions. Finally, a forward search

algorithm is proposed to improve execution performance for sparse belief sets

by searching several ply deeper than allowed by previous implementations.
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Chapter 1

Introduction

Humans are constantly making decisions that incur a cost or bestow a reward

in the form of money, time, or a resource of some other form. In addition to

the immediate costs/rewards, their decision will likely also have an impact on

the future dynamics of the system. This requires one to not only think about

immediate gain, but also consider how their current action will affect their

ability to select beneficial actions in the future. With this in mind we consider

replacing the human controller with an artificial intelligence or autonomous

controller.

Markov Decision Processes (MPDs) provide a mathematical framework for

balancing short-term versus long-term cost/reward, while also incorporating

statistical uncertainty present in reality. Partially Observable Markov Deci-

sion Processes (POMDPs) are a logical generalization to the MDPs that adds

an additional layer of uncertainty in the agent’s knowledge of the true state of

the system. While these models may describe how many problems in reality

are perceived, the solutions in general are restrictive in terms of computation,

memory, and most are considered completely intractable. Nonetheless, MDPs

and POMDPs have been studied for decades and a rich mathematic founda-
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tion describing their applications, properties, variants, and solutions are well

documented. These contributions, along with advances in computation power,

have paved the way for a broad class of approximate algorithms to overcome

the intractability of closed-form solutions. The remainder of this chapter will

introduce in more detail: MDPs, POMDPs, and approximation algorithms.

1.1 Markov Decision Processes

A Markov Decision Process provides a mathematical description of how an

agent may interact with a state space. The state space of the world may be

discrete, or in many cases continuous. Similarly, the set of actions available to

the agent may be defined as discrete or continuous. It is assumed that the agent

is fully aware of its position in the state space, but state transitions due to

actions are defined by a probability distribution. While the state transition is

uncertain, the agent becomes fully aware of the updated state upon executing

the action. In addition, a cost/reward is defined as a function of the agent’s

state and action in combination. For simplicity, it is assumed that the model

evolves over discrete time intervals coinciding with the agent’s actions.

The state dynamics governed by the actions may admit a large class of

models, but must adhere to a Markovian restriction. That is, the future state

is conditionally independent of all previous states and actions given the current

state and action.

The goal is to train an agent to be fully autonomous and select intelligent

actions to increase its long term reward. The simplest policy, or rather greed-

iest policy, is to have the agent select the action with the highest immediate

gain. It would be easy to construct a scenario where the action with largest

reward leads the agent to a state where any future rewards are small or zero.
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With this in mind, two standard optimality criterion have been defined to

circumvent the issue. The first being the total expected discounted reward,

where rewards earned in the future geometrically decrease with the passage of

time. The second is the total expected average reward.

There are three standards ways of analyzing an MDP so that the agent

may select the best action to maximize (or minimize in terms of cost) the

optimality criteria. Value iteration is a dynamic programming algorithm that

successively approximates the expected future rewards from each state. An

agent with these values can implicity decide which actions are optimal from

each state. Policy iteration assigns an action to each state that is, unless

incredibly fortunate, suboptimal initially. Through a sequence of incremen-

tal improvements the actions taken from each state are modified until the

algorithm converges to an optimal policy. Lastly, the solution may also be

formulated as a Linear Program where the dual program’s solution will yield

the optimal policy. See [2] for Bellman’s seminal work on MDPs, refer to [3] as

an introductory textbook covering value and policy iteration, and for details

on formulating policies via linear programs refer to [4] and [5] for details on

policy iteration.

MDPs have been used as models in a wide variety of applications. In partic-

ular, they have been applied to solving problems in network flow, telecommu-

nications, inventory stock management, finance, robot navigation, and many

others [6, 7, 8].
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1.2 Partially Observable Markov Decision Pro-

cesses

Partially Observable Markov Decision Processes generalize MDPs in a natural

way similar to how humans perceive reality. While an agent governed in a

MDP world is uncertain where it will transition to while performing an ac-

tion, the true state will be illuminated as the action is completed. The agent

in a POMDP world has similar characteristics, with the exception that the

true state of the world is never directly revealed. Instead, noisy observations

defined by a known probability distribution as a function of the true state are

made and received upon completion of each action. The agent must then use

the observations to deduce its true state and to make informed decisions to

maximize its reward.

With MDPs, the only necessary knowledge was the current state of the

system which is always known. Past actions and rewards have no bearing

on its future decisions. POMDPs still have state transitions according to the

Markovian property, but without perfect knowledge of its current state the

agent must consider the full history of actions and observations [9, 10]. The

storage of information may only grow linearly, and this is a departure from

the simple memory requirements of an MDP.

Many algorithms solve the problem of a growing memory requirement by

calculating a belief distribution over the set of allowable states that serves as a

sufficient statistic for the complete history. This distribution is then updated

as actions are taken and observations are observed. Since the belief is serving

as a sufficient statistic it conveys all the information gained from previous

actions and observations and they then can be discarded. With this in mind

the belief distribution is completely observable and perfectly known to the
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agent. With a small amount of work the POMDP can be transformed into an

equivalent information state MDP where standard techniques can be applied.

There are, however, two nontrivial aspects to the new MDP we must consider:

1. If the original state space is discrete with n states, the information state

space will be continuous over an n-dimensional simplex.

2. If the original state space is continuous, then the information state space

becomes infinite-dimensional over the set of all probability distributions

over the original state space.

For the first case, we will only be able to use the results from studying con-

tinuous state MDPs which will are solvable, but naturally more complex in

terms of computation than their discrete MDP counter parts. For the sec-

ond case, an analytical solution is going to be completely intractable [11, 12].

Some concessions must be made to simplify the model in order to compute an

approximation, but at the same time retain enough complexity so as to train

a capable agent. Two common restrictions used in conjunction are:

1. Restrict the allowable belief distributions to a family that this is similar

to what an agent may actually observe in practice.

2. Discretize the parameters of the chosen belief distribution rather than

explicitly discretizing the continuous state space of the model.

Combining both of this methods, as outlined in [8? ], results in a dramatic

reduction in the dimensionality of the problem at the cost of an analytical so-

lution. An explanation of this algorithm can be be explained with an example.

Consider giving an agent the task of navigating to a location in a two di-

mensional space. Suppose the state space is set of all allowable locations in

this continuous space, and that there are potentially obstacles between the
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agent and the goal state. The set of actions will then take the form of move-

ments in some direction. Recall that the converted MDP state space is the

set of beliefs where the agent may be located in the state space. The simplest

belief distribution to consider may be 100% certainty in the agent’s location.

This would be an ideal belief to have, but incredibly unlikely or unreachable

without direct and perfect observations of the true state of the agent, even

with any combination of actions. This type of belief, while desirable, falls into

the category of being completely irrelevant. Without too much thought, we

can imagine an infinite number of beliefs that are both incredibly unlikely and

undesirable. Imagine an agent’s belief that when visualized spelled your name

across the state space. While this may appear comical (and is), these types of

beliefs demand to be considered when solving for the optimal policy. We are,

however, interested in an approximation. We have considered up until this

point ideal but unreachable beliefs, and completely absurd beliefs. The ques-

tion is then, what types of beliefs is the agent likely to have in practice?. This

answer is certainly a function of the accuracy and nature of the observations

made of the true state, but these specifics can be ignored for now.

Imagine yourself wandering around your apartment at night and due to a

storm the power has gone out. You (carefully) make your way towards the

location of a flashlight holding your arms in front of you sensing for nearby

objects that can give you insight into your position. How would you then

describe where you are at some point in time? A reasonable guess may be to

answer with an exact location and an ellipse around this location indicating

your uncertainty. If it has been some time since contact with any objects

you may have a rather large ellipse, while if you (unfortunately) just walked

into a wall this ellipse may be rather narrow. The two dimensional Gaussian

distribution describes these set of beliefs quite well with only a few parameters,
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2 for the mean, and 3 for the variances and covariance. Thus, the set of beliefs

can restricted to a 5-dimensional continuous space rather than one that is

infinite-dimensional.

While the reduction in state space is quite significant by only allowing

a Gaussian belief, we can briefly discuss a potential shortcoming. Suppose

through your travels with the flashlight you bump into a painting on the wall.

At first you feel confident in the knowledge of your position until you realize

that you have two paintings in two far away places in your apartment. Being

restricted to a single Gaussian belief there are three likely options:

1. Believe you are located around painting #1.

2. Believe you are located around painting #2.

3. Create a Gaussian belief with a large ellipse encompassing both paint-

ings.

Unfortunately, all three are these do not accurately represent what has been

observed given the limits of a single Gaussian belief. This could be circum-

vented by allowing two (or more) Gaussian beliefs, but then we quickly lose

the benefits of the dimension reduction. This toy example does not serve to

discount the reduced belief space by using a single Gaussian, but more to

illustrate potential pitfalls.

The transformation of the state space to a belief space of distributions will

require us to reconsider two components as we transform this problem into an

MDP:

1. What reward does an agent receive for having a belief distribution?

2. How does the agent transition between distributions and how are these

probabilities calculated?
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Goal State

Obstacle

Belief

Figure 1.1: Both figures represent an environment with obstacles. The blue
crosses represent possible locations an agent may believe to exist. The top
figure represents clearly an unlikely set of beliefs to be held by an intelligent
agent, while the bottom indicates a set of believes similar to that as samples
from a two dimensional Gaussian distribution.

Both questions can be answered in the terms of sampling. The new rewards

can be estimated by sampling from the belief distribution multiple times and

taking the average reward according to the original reward function. The

transitions will be slightly more complicated due to the possibly nonlinear

nature of the state update equations. We will see how this can be overcome

with the advances in filtering in the next section.
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1.3 Particle Filters

Filtering is the process of approximating the unobserved state of a system given

a history of noisy observations that are functions of the true system state.

The evolution of the state typically follows a Markov process, that is given

the current state, the future state follows a known probability distribution

and it independent of the earlier state history. Similarly, the observation

conforms to a known distribution given the current state and is independent

of the past. Rather than explicitly estimate the value of the true system

state, the conditional distribution of the current state given the full history of

observations is preferred. This distribution is well known in analytical form

due to the Chapman-Kolmogorov equation, but rarely admits a closed form

solution with a few exceptions [13].

Filters in general sequentially estimate the conditional state distribution

in two steps:

1. Predict the future state distribution using the system dynamics.

2. Update the distribution with the information gained from the observa-

tion.

The filter then proceeds in a recursive manner, following the above two steps

as observations are received and then discarding them. This mitigates some

of the computational burden be removing the need to store a long history

of measurements and compute a conditional distribution as a function of all

measurements [14].

The well known Kalman Filter was first introduced in 1960 and solved

the filtering problem in closed form under the assumption of linear systems

and Gaussian noise [15]. The Extended Kalman Filter (EKF) was developed

later as an approximate solution for nonlinear dynamics and non-Gaussian
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noise. The EKF essentially linearizes the system by taking first order partial

derivatives and then applies the Kalman Filter. While the EKF is compu-

tationally efficient, it does suffer from convergence issues and is limited in

application. Another method applied to nonlinear dynamics is a grid-based

approach, effectively discretizing the state space into cells and then approxi-

mating the model conditional density. The number of cells increases quickly

as the dimensionality of the state space grows limiting the tractability of this

approach. Arulampalam gives a brief account of these techniques in [16].

Particle filtering aims to solve the problems associated with nonlinear sys-

tems and non-Gaussian noise by representing the conditional density as a dis-

crete set of weighted samples. The Particle Filter (PF) is based on results from

sequential Monte Carlo (MC) methods. Typically the true density in question

cannot be sampled from, and particles are instead generated according to

an importance density, which ideally closely resembles the true posterior. The

weights assigned to the particles are selected to represent the true distribution,

and then reweighted as observations are processed. It can be shown that as

the number of particles approaches infinity this method converges to the true

conditional density. There are, however, a few shortcomings in this method.

In particular it often suffers from sample impoverishment, that is a lack of di-

versity in the particles. Resampling and Monte Carlo Markov Chain methods

are techniques designed to overcome this issue [13]. Particle Filters will play

an important role in approximating transitions between belief distributions as

well as our adaptive sampling scheme.
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1.4 Contributions

The main focus of this thesis is improving techniques to approximate solutions

to POMDPs with continuous state spaces. The technique advocated and im-

proved in this thesis is the Parametric POMDP (PPOMDP) algorithm. Other

competitor techniques include the discrete MDP method and Perseus which are

both explained in section 4. The discrete MDP method partitions the continu-

ous state space into a discrete number of cells. It then approximates transition

probabilities and the effects of discrete measurements on the converted state

space. A major deficiency in this method is not being able to incorporate con-

tinuous observations into its solution. Instead, continuous observations must

be discretized into cells similar to the state space discretization. The Perseus

algorithm selects a finite amount of candidate locations in the continuous state

space. The POMDP is then converted to a continuous state MDP with a state

vector of size equal to the number of candidate locations initially selected.

This formulation allows for MDP techniques to be applied at the cost of a new

state space that is likely of very high dimension. The PPOMDP technique

advocated allows for continuous observation spaces and does not suffer from

high dimensional state space conversions by representing an agent’s belief with

a parameterised distribution. It is, however, a relatively new technique with

plenty of room for improvement. The contributions in this to this algorithm

and in this thesis are as follows:

• The testing of efficiency and performance of the PPOMDP algorithm on

a variety of practical models. (section 4.3).

• The generalization of the PPOMDP algorithm to allow non-square weight-

ing matrices to allow a reduction in the number of future sampled belief

states (section 4.3).
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• The application of Kullback-Liebler-distance (KLD) sampling to allow

adaptive sampling in across models and during the training of the agent.

The KLD algorithm was also novelly adapted for PPOMDP and is

merges the sampling of particles and future beliefs in a mathematically

principled manner (section 4.4).

• The implementation of a novel forward search allowing for deeper searches

in less computation time. This allows an agent to train on sparser belief

sets while still collecting competitive rewards.
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Chapter 2

Filtering

Filtering considers the problem of estimating the state of a system and its pos-

sibly hidden parameters with a set of noisy observations. It is assumed that

the underlying mechanics governing the evolution of the system are known,

but possibly stochastic in nature. Similar requirements are met for the obser-

vations as well. In general, if we let xt ∈ Rnx be the state of the system at

time t and zt ∈ Rnz be the measurement obtained at time t, the transition

probability distribution is given by p(xt|xt−1) and the measurement probability

distribution p(zt|xt). Note that the transition equation is Markovian, future

states are only dependent on the most recent. In general we may write

xt = f(xt−1, wt−1)

zt = h(xt, ut−1, vt−1)
(2.1)

where wt ∈ Rnv denotes a vector of process noise, ut ∈ Rnu denotes input to

the system, and vt ∈ Rnv denotes measurement noise. The initial distribution

of the system state, p(x0) is assumed given. If we let x0:t = {x0, x1, · · · , xt}
and z1:t = {z1, z2, · · · , zt}, then the aim of a filter is to estimate the distribu-

tion p(x0:t|z1:t), or the marginal distribution p(xt|z1:t). Ideally the marginal
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distributions may be computed recursively using the previous estimate to up-

date the present estimate. This allows us to discard observations as they are

processed.

Excluding very specific constraints, closed form solutions for calculating

the filtered distributions do not exist. Kalman, in [15] was among the first to

develop a closed form solution for systems with linear dynamics and Gaussian

noise, aptly named the Kalman Filter (KF). Following this work, the Extended

Kalman Filter (EKF) was derived as an approximation for nonlinear models.

The EKF, at the time, was a breakthrough in nonlinear filtering, but suffered

issues with convergence [17]. The particle filter (PF), and its many offspring,

came later as a new filtering technique attempting to mitigate the problems

exhibited in the EKF, and is able to be applied to any nonlinear dynamics and

non-Gaussian distributions.

2.0.1 Kalman Filter

The Kalman Filter in [15] assumes a very specific model in the form of

xt = Axt−1 +But−1 + wt−1

zt = Hxt + vt

where A,B, and H are appropriately sized and known matrices. The noise

processes wt and vt are restricted to be multivariate Gaussian given by

p(w) ∼ N(0, Q)

p(v) ∼ N(0, R)

where Q and R are known covariance matrices.

Using the KF can be broken down into two steps: prediction and update.
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Let x̂−t be the state estimate before the observation zt is considered, and x̂t be

the estimate after zt is considered. Similarly, let P−t be the covariance matrix

representing the uncertainty in the estimate x̂−t , and let Pt be the covariance

matrix representing the uncertainty in the estimate x̂t. Assume at time t

the estimate x̂t−1 and covariance matrix Pt−1 are known. Then the two step

process to obtain x̂t and Pt is given by:

• Predict

x̂−t = Ax̂t−1 +But

P−t = APt−1A
T +Q

• Update

ŷ = zt −Hx̂−t
St = HP−t H

T +R

Kt = P−t H
TS−1

t

x̂t = x̂−t +Ktŷ

Pt = (I −KtH)P−t

While this was (and still is) an important result at the time, the class of

problems it can be applied is quite limited.

2.0.2 Extended Kalman Filter

The Extended Kalman Filter was introduced shortly after the KF in 1966

and was applied to navigating and tracking objects in space [18]. The state

estimate is found by effectively linearizing the transition and measurement

dynamics via a Taylor series approximation. The models where the EKF
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may be applied are much less restrictive than previously explored, at the cost

of an approximate solution over a closed form. Assume the transition and

observation models take the form:

xt = f(xt−1, ut−1) + wt−1

zt = h(xt) + vt

where f(xt−1, ut−1) and h(xt) are potentially nonlinear functions, while wt and

vt are still restricted to multivariate Gaussians. We may linearize f(xt−1, ut−1)

and h(xt) by taking the Jacobians:

At =
∂f

∂x

∣∣∣∣
x̂t−1,uk−1

Ht =
∂h

∂x

∣∣∣∣
x̂−t

The EKF then also proceeds in the recursive manner as before with:

• Predict

x̂−t = f(x̂t−1, ut−1)

P−t = At−1Pt−1A
T
t−1 +Q

• Update

ŷ = zt −Htx̂
−
t

St = HtP
−
t H

T
t +R

Kt = P−t H
T
t S
−1
t

x̂t = x̂−t +Ktŷ

Pt = (I −KtHt)P
−
t
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This is nearly identical to the steps for the KF, except the transition and

measurement equations have been linearized with the matrices At and Ht.

Note, the prediction step uses the nonlinear function f(xt−1, ut−1) rather than

using the approximation.

The KF and EKF both use Gaussian distributions to represent the state

estimate. In same cases the EKF is known to fail, particularly if the underlying

nonlinear state model results in severely skewed or multimodal distributions

[19].

2.0.3 Particle Filter

Particle filters (PFs) are a class of algorithms following a sequential Monte

Carlo (SMC) approach to estimating the the distribution xt|z1:t for the general

state and observation model defined by 2.1. The KF was limited to Gaussian

disturbances and linear models, while the EKF expanded the filtering toolbox

to nonlinear models, but also required Gaussian disturbances. PFs provide

an approximate filtering solution for any transition and observation equation,

and any noise disturbance assuming that 2.1 is known in probabilistic form

[20]. Essentially, a PF provides a means to represent and recursively update

p(xt|z1:t) as a cloud of weighted points over the state space. As the number of

points tends towards infinity it becomes equivalent to an explicit representation

of the posterior density we are interested in [21]. First, we decompose the prior

pdf via the Chapman-Kolmogorav equation before the current observation has

been considered:

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (2.2)
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Then the updated pdf may be written

p(xt|z1:t) = Cp(zt|xt)p(xt|z1:t−1) (2.3)

where C = p(zt|z1:t−1) =
∫
p(zt|xt)p(xt|z1:t−1)dxt is a normalizing constant. In

general, except for restrictive conditions, a closed form solution for 2.3 is un-

known, but this does serve as a starting point for developing a mathematically

sound approximation.

Formally we may represent a particle set with N samples as {xit : i =

1, · · · , N} with associated weights {wit : i = 1, · · · , N} where xit are points in

the state space and the weights satisfy that
∑N

i=1w
i
t = 1. Then a weighted

approximation to the posterior distribution can be written

p(xt|z1:t) ≈
N∑
i=1

witδ(xt − xit). (2.4)

The accuracy of the approximation given by 2.4 is a function of the selection

of sample points, their corresponding weights, and number of samples. Ideally,

2.4 will be most accurate if the samples are drawn according to xit ∼ xt|z1:t

and setting the weights to wit = 1
N

. This distribution, however, it is typically

challenging to sample from directly. Instead, samples will be drawn from an

importance density q(·) where we hope this distribution matches the posterior

closely and can be sampled from easily. The weighting assignment then takes

the form

wit ∝
p(xit|z1:t)

q(xit|z1:t)
. (2.5)

Assuming mild conditions on the importance density, the weights can be re-
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cursively updated according to

wit ∝ wit−1

p(zt|xit)p(xit|xit−1)

q(xit|xit−1, zt)
. (2.6)

For more details on this derivation see [16]. The recursive nature of 2.6 allows

us to obtain and discard observations rather than retain a full trajectory. The

question remains how is the important density selected. The most straightfor-

ward choice would be to set q(xit|xit−1, zt) = p(xit|xit−1), that is the transition

equation given by 2.1. Doing so simplifies 2.6 to wit ∝ wit−1p(zt|xit). Essentially

this weights the particles with states able to produce similar observations as

the one received, zt, highly. It does not, however, factor the current observa-

tion zt into the sampling distribution. If the two distributions, p(xt|xt−1, zt)

and p(xt|xt−1), differ greatly then a large number of samples will be needed

to ensure a good approximation. Techniques to avoid this include applying a

local linearization to the state space model, similar to the EKF to create a

more accurate importance distribution able to incorporate the information of

the observation zt [22]. Particle filters updating sample sets according to 2.6

are refered to as sequential important sampling (SIS) algorithms and form a

basis for more advanced techniques.
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Algorithm 1 A basic Sequential Importance Sampling (SIS) algorithm. The
algorithm recursively updates the particle weights and discards observations
sequentially. The algorithm terminates after a user specified number of itera-
tions.

Sample x1
0, x

2
0, · · · , xN0 according to an initial distribution p0(x)

t← 0
Set wit = 1

N
for i = 1, · · · , N

while t < MaxIterations do
t← t+ t
Receive observation zt
Sample xit ∼ q(xt|xit−1, zt), for i = 1, · · · , N
Set wit ← wit−1

p(zt|xit)p(xit|xit−1)

q(xit|xit−1,zt)
for i = 1, · · · , N

Set C =
∑N

i=1w
i
t

Normalize wit ← wi
t

C

end while

The SIS algorithm is an important step towards solving approximating pos-

terior densities of any functional form and under the assumption of noise vari-

ables, but it does suffer setbacks. In particular, there is the well documented

sampling impoverishment or sampling degeneracy problem [16, 23, 24, 25].

The degeneracy problem occurs when the overwhelming majority of weight

belongs to a single particle, and the remaining particles have essentially zero

weight. A particle set in this extreme case is effectively no longer a cloud

representation of the posterior distribution, but more of a point estimate. The

number of particles in the set is still N , but effectively is 1. Liu introduced,

in [26], the effective sample size , Neff , to measure how many particles were

effectively in the particle set as a function of the particle weights:

Neff =
1∑N

i=1 (wi)2
(2.7)

4.9 is is maximized to N when each of the weights are equal to 1
N

and is
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reduced to 1 when all of the weight belongs to a single particle. A common

technique to overcome sample impoverishment is to resample particles with

replacement from the current particle set when Neff falls below some threshold

NT . Some prefer not to set a threshold and resample each iteration no matter

the effective sample size. The weights are then reset back to 1
N

. Particles with

high likelihood will be sampled more frequently concentrating the cloud of

points on these areas. Particle filtering algorithms resampling in this manner

are referred to as Sequential Importance Sampling (SIR) algorithms.

The research of particle filters will play a pivotal role in our adaptation of

the PPOMDP as we will use these technique when approximating transition

distributions. Also, the notion of effective sample size will play a part in

decreasing computation as part of our adaptive sampler.
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Algorithm 2 A basic Sequential Importance Resampling algorithm. The
particles are resampled with replacement from the current particle set if the
effective sample size becomes too low.

Sample x1
0, x

2
0, · · · , xN0 according to an initial distribution p0(x)

t← 0
Set wit = 1

N
for i = 1, · · · , N

while t < MaxIterations do
t← t+ t
Receive observation zt
Sample xit ∼ q(xt|xit−1, zt), for i = 1, · · · , N
Set wit ← wit−1

p(zt|xit)p(xit|xit−1)

q(xit|xit−1,zt)
for i = 1, · · · , N

Set C =
∑N

i=1w
i
t

Normalize wit ← wi
t

C

Calculate Neff = 1∑N
i=1(wi

t)
2

if Neff < NT then
Sample x̂it from {x1, x2, · · · , xN} with P (x̂it = xj) = wjt for i = 1, · · · , N

Set xi ← x̂it for i = 1, · · · , N
Set wit = 1

N
for i = 1, · · · , N

end if
end while
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Sample xi
t ∼ q(xt|xi

t−1, zt),

q(xt|xi
t−1, zt)

wi
t ← wi

t−1
p(zt|xi

t)p(x
i
t|xi

t−1)

q(xi
t|xi

t−1
,zt)

Resample with replacement

wi
t ← 1

n

Figure 2.1: An illustration of the weighting process in a particle filter. The
top yellow circles represent particles sampled from the importance distribution
q(xt|xit−1, zt). The weights are assigned, with larger circles representing larger
weights. Finally, the particles are resampled with replacement.
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Chapter 3

Stochastic Control

A stochastic controller aims to make optimal decisions to minimize costs under

uncertainty. Two powerful stochastic models are Markov decision processes

and the generalization, partially observable Markov decision processes. This

chapter will define both models and review the various solution methods.

3.1 Markov Decision Processes

A controller in a Markov decision process (MDP) at time k is assumed to be in

state xk ∈ X, select action uk ∈ U , and transition stochastically to the future

state xk+1 according to:

xk+1 = f(xk, uk, wk)

where wk ∈ D is a random variable.

Formally we may define an MDP with the following:

1. The state space X

2. The action space U

3. The set of actions from available from state xk as U(xk) ⊆ U
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4. p(xk+1|xk, uk), the next state transition probability given an action

5. g(xk, uk, wk), the immediate cost of taking action uk while in state xk

6. p(wk|xk, uk), the probability of wk given the current state and action.

Starting from an initial state x0, the goal of the controller is to form a policy

π = {µ1, µ2, · · · } which describes a sequence of functions to select allowable

actions from states at discrete times. That is, let µk : X → U and assume that

µk(xk) ∈ U(xk). The k subscript indicates time. Policies that are independent

of time are called stationary policies and can be written π = {µ, µ, · · · }, or

referred to simply by µ. Let Π be the set of all policies.

The goal is to select optimal policies with respect to a cost criterion. We

will consider the infinite-horizon discounted cost and the undiscounted average

cost.

wk = p(wk|xk, uk)

xk+1 = f(xk, uk, wk)

costk = g(xk, uk, wk)

uk ← µk(xk)

Controller

Stochastic Environment
uk

xk+1

Figure 3.1: This illustrates the MDP model. A policy function selects the next
action based only upon the currently known state. The noisy variable wk is
generated and the state stochastically transitions to xk+1

3.1.1 Discounted cost

Let γ ∈ (0, 1) be a discount factor that lowers the value of future costs. Let

Jπ(x0) be the total expected discounted sum of costs starting from state x0

and following policy π be

Jπ(x0) = lim
n→∞

E{wk}nk=0

[
n−1∑
i=0

γng (xk, π(xk), wk)

]
.
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Let J∗ represent the optimal cost function defined by

J∗(x) = min
π∈Π

Jπ(x), x ∈ X

and let π∗ be the optimal policy

π∗(x) = argmin
π∈Π

Jπ(x), x ∈ X

Let J : X → R and define the operator T such that:

(TJ)(x) = min
u∈U(x)

Ew [g(x, u, w) + γJ (f(x, u, w))] .

We can think of as J representing the cost of being in each state, and T being

a function that calculates the optimal cost one step into the future due to the

minimization over allowable actions. We can define a similar operator Tµ given

a stationary policy µ such that

(TµJ)(x) = Ew [g(x, u, w) + γJ (f(x, µ(x), w))] .

TµJ is then the one stage cost of using policy µ if the initial costs are deter-

mined according to J . For notation convenience, we will define the composition

of T and Tµ as

(T kJ)(x) = (T (T k−1J))(x), x ∈ X

(T kµJ)(x) = (Tµ(T k−1
µ J))(x), x ∈ X

Assumption 1. The cost function is bounded above and below

|g(x, u, w)| ≤M,∀x ∈ X, u ∈ U(x), w ∈ D.
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We also restrict X,U, and D to be discrete sets. The following results have

continuous analogs but require a much more complex mathematical treatment.

Proposition 1. For any function J

J∗(x) = lim
n→∞

(T nJ)(x), ∀x ∈ X.

This proposition affirms the convergence of any function J to the optimal

cost function J∗ after infinite operations by T . Using similar reasoning:

Corollary 1. For any policy µ

Jµ(x) = lim
n→∞

(T nµ J)(x),∀x ∈ X

is the associated cost function for following policy µ

The following states that the optimal cost function can be written recur-

sively rather than in limit form.

Proposition 2. The optimal cost function satisfies

J∗(x) = min
u∈U(x)

Ew [g(x, u, w) + γJ∗ (f(x, u, w))]

or more succinctly

J∗ = TJ∗.

J∗ is the unique solution to either of these equations.

Similarly, the costs from following some policy:

Corollary 2.

Jµ(x) = Ew [g(x, u, w) + γJµ (f(x, µ(x), w))]
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or more succinctly

Jµ = TµJµ.

We see that the difference in form of J∗ and Jµ lies in the absence of

the minimization of actions (clearly as µ selects the actions). Calculating

Jµ is much simpler and can be seen to be a system of linear equations with

|X| unknowns and |X| equations. Thus, finding the infinite horizon costs for a

given policy is relatively straightforward and solved with Gaussian elimination,

but finding the infinite horizon cost of the optimal policy will be more of a

challenge.

We can also make a statement about the requirements of an optimal policy.

Proposition 3. A stationary policy µ is optimal if and only if µ(x)∀x ∈ X
the operator Tµ leaves J∗ unchanged,

TJ∗(x) = TµJ
∗.

There are two widely accepted techniques to solve an MDP with discrete

state and action space that attack the problem from two fronts:

1. Calculate the optimal cost function and infer the optimal policy.

2. Explore the space of policies until the optimal policy is found.

The following sections will describe these two techniques in more detail.

Value Iteration

Value Iteration (VI) is an algorithm that sequentially approximates J∗ with

dynamic programming. The idea is to begin with an initial function J0(x) =

0,∀x ∈ X. The algorithm then proceeds by successively calculating TJ0, T
2J0, · · · .
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Unfortunately, convergence is contingent upon an infinite number of iterations.

It turns out, however, that the operator T is a contraction mapping and we

can place a bound on the error between the optimal value function and T kJ

[7]. Define the norm on J as

||J ||∞ = max
x∈X

J(x),

then

||T kJ − J∗||∞ ≤ γk||J − J∗||∞.

It can be seen that successive applications of the operator T geometrically

decrease the error with respect to the maximum difference initially.

Algorithm 3 A simple implementation of the Value Iteration algorithm. The
program continues until the maximum change of the value function is less
than the user defined variable δ. The algorithm outputs the approximate
value function as well as the corresponding policy.

J(x)← 0,∀x ∈ X
εmax ← −∞
while ε > δ do
Jbuff (x) = J(x),∀x ∈ X
εmax ← −∞
for x ∈ X do

for u ∈ U do
Jaction(u) = Ew [g(x, u, w) + γJbuff (f(x, u, w))]

end for
umin(x) = argmin

u∈U
[Jaction(u)]

J(x)← Jaction(umin(x))
if Jb(x)− J(x) > εmax then
εmax = Jb(x)− J(x)

end if
end for

end while

It is important to note the VI requires a loop over the entire state space and
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action space. Finding optimal policies when one or both spaces are continuous

is much more challenging and usually requires approximation. The PPOMDP

algorithm in particular makes use of VI as it approximates continuous state

POMDPs with discrete state MDPs where VI can be applied.

Policy Iteration

Recall that VI is guaranteed to converge to the true optimal value function at a

geometric rate as a function of γ, but suffers from needing infinite applications

of the operator T . This holds even for discrete state and action spaces. An

alternative approach is policy iteration (PI), that is to sequentially modify an

initial policy µ0 and into a series µ0, µ1, µ2, · · · where each successive policy is

an improvement over its predecessor. Essentially there are two steps that are

repeated in succession, policy evaluation and then policy improvement. Given

a discrete state and action space, the set of all policies is also discrete. Define

a one step updated policy as

µk+1(x) = arg min
u∈U(x)

Ew
[
g(x, µk(x), w) + γJµk(f(x, µk(x), w)

]
.

Recall that Jµ for any policy can be solved via a system of linear equations.

Essentially we are checking to see if any actions can replace those specified

by µk that will reduce the long term cost. Formally it can be shown that by

generating policies with the above:

Proposition 4. For all k and x

Jµk+1(x) ≤ Jµk(x)

If the policy does not change after an iteration, that is Jµk+1(x) = Jµk(x)∀x ∈
X, then the policy has converged to the optimal policy. Since the number of
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policies is discrete this algorithm also terminates after a discrete number of

iterations.

Algorithm 4 A simple implementation of the Policy Iteration algorithm. The
algorithm terminates after there is no change in policy and is then guaranteed
to be optimal.

Generate a random policy µ
converged← false
repeat

Calculate Jµ
for x ∈ X do
µupdated = argminu∈U(x) Ew [g(x, µ(x), w) + γJµ(f(x, µ(x), w)]

end for
if µ(x) = µupdated(x) ∀x ∈ X then

converged← true
else
µ = µupdated

end if
until converged

Complexity of VI and PI

Both PI and VI suffer similar problems if the size of the state space is large.

VI requires the calculation of an expectation inside a loop over all states and

all actions results in a complexity on the order of O(|X|2|U |) operations per

iteration, which is polynomial. The question is then how many iterations are

necessary to find the optimal policy given a value of γ. This is a difficult

question to answer, but it was shown by Littman in [27] that the number of

iterations is proportional to 1
1−γ log

(
1

1−γ

)
. This term may grow quite large

for values of γ near 1. Policy iteration also suffers from similar problems due

to large state spaces. There is a similar loop over actions and states with an

expectation resulting in a complexity of O(|X|2|U |) as well, but additionally

the value function Jµ for the current policy µ must be calculated for each

iteration. Recall that finding Jµ is the solution to a linear system with |X|
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equations and |X| unknowns. The standard time to find Jµ is then O(|X|3)

resulting in a total complexity for a single iteration of the PI algorithm as

O(|X|3 + |X|2|U |). The total number of possible policies is |U ||X| and thus

discrete but exponential as a function of state space size. We can be assured

that PI will terminate in a finite amount of iterations, hopefully at a value far

less than |U ||X|.

Other Methods

The exact solutions to finding an optimal policy or value function serve as

a starting point for developing reasonable approximations or computation

speedup to the existing algorithms.

One area of research that has gathered considerable attention is reinforce-

ment learning, and in particular Q-learning, introduced by Watkins in 1989

[28]. This algorithm attempts to tackle an issue with the need to fully enumer-

ate all states and actions in single iterations of the VI and PI algorithms. The

basic idea is, instead of considering all state action pairs, an agent is placed

in the MDP world and given the freedom to explore, learning to select good

actions that minimize costs over the long term. The Q in Q-learning refers to

the Q-functions Qµ(x, u) for each x ∈ X, u ∈ U , and some policy µ ∈ Π. The

value of Qµ(x, u) is the cost of executing action u from state x and following

policy µ thereafter. Algebraically this can be written

Qµ(x, u) = Ew [g(x, u, w) + γJµ(f(x, u, w))] . (3.1)

The class of Q-function we are interested in are those following the optimal
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policy µ∗. The optimal value function can be written in terms of Q as

J∗(x) = min
u∈U(x)

Qµ∗(x, u).

Qµ∗(x, u) are the functions that are being approximated in the Q-learning

algorithm [29].

In order to find an accurate approximation, the agent must balance two

opposing paradigms for searching the environment, that is the exploration

versus exploitation dilemma. An agent with a high rate of exploration will

continually try new actions that may be unlikely to be part of the optimal

policy. An agent with a high rate of exploitation usually selects greedy ac-

tions it knows are beneficial with respect to actions already tested. The first

method of exploring will exhaustively consider each action (as the agent ex-

plores indefinitely) guaranteeing an optimal solution at the cost of a very slow

rate of convergence. The second method may rapidly select a ”good” policy,

but on that is suboptimal. Under the appropriate transition from exploration

to exploitation it can be shown that Q-learning will converge to the optimal

policy [30]. For a comprehensive review of reinforcement learning techniques

applied to MDPs refer to [30].

Other techniques are interested in retaining an exact solution while greatly

decreasing the running time of the solution method. In particular we briefly

discuss Topological Value Iteration (TVI) and Focused Topological Value It-

eration (FTVI) [31, 32]. As the names suggests, these techniques focus on

improving the basic VI algorithm. The exploits to improve time come from

recognizing that stochastic transitions from states given actions can be mod-

eled as a directed graph. TVI decomposes the directed graph into its strongly

connected components (SCCs) and applies VI sequentially to each component.
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Under appropriate model dynamics this decomposition allows the algorithm

to terminate up to orders of magnitude quicker than basic methods [31]. For

some models, though, actions can be reversed creating a graph that is a sin-

gle large strongly connected component. Dai and Weld resolve this issue by

preprocessing the MDP initially. Similar to Q-learning, the initial phase of

FTVI has an agent randomly explore the world in an effort discard provably

suboptimal actions [32]. Once actions are eliminated the resulting graphical

structure may typically be decomposed in SCCs where TVI may be applied.

It was shown in [32] that this technique outperforms similar techniques up to

two orders of magnitude on a variety of benchmark problems.

x1

x2

x3

x4 x5

x6x7

Component 1 Component 2

Figure 3.2: A graphical representation of an MDP decomposed into strongly
connected components. Small circles indicate state. Arc represent transitions
with positive probability from states assuming an action. The action labels
have been omitted. The large ovals encapsulating the states indicate individual
strong connected components.
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3.2 Partially Observable Markov Decision Pro-

cesses

An agent operating in an environment described by a POMDP adds an extra

layer of uncertainty when compared with an MDP. The agent never directly

observes its true state, but instead makes noisy observations a function of the

unknown state. Formally we write:

xk+1 = f(xk, uk, wk+1)

zk = h(xk, uk−1, vk)
(3.2)

where f is the stochastic transition function as described for MDPs, h is the

measurement function, and vk is a random measurement disturbance with

known distribution independent of transition disturbance wk. Formally we

may write:

1. The state space X

2. The action space U

3. The measurement space Z

4. p(xk+1|xk, uk), the next state transition probability given an action

5. g(x, u), the immediate cost of taking action u while in state x

6. p(zk+1|xk+1, uk), the probability of observing zk+1 while in state xk+1 and

having taken action uk.

7. p(wk+1|xk, uk), the transition noise model.

8. p(vk+1|xk+1, uk), the measurement noise model.
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With the noise dynamics for the measurement and transition defined we can

write the transition probability as

p(xk+1|xk, uk) =

∫
wk+1

f(xk, uk, wk+1)p(wk+1|xk, uk)dwk+1 (3.3)

and the measurement probability

p(zk+1|xk+1, uk) =

∫
vk+1

h(xk+1, uk, vk+1)p(vk+1|xk+1, uk)dvk+1. (3.4)

The complete information available to an agent at time k can be written

as

Ik = {z0, u0, z1, u1, · · · , zk−1, uk−1, zk} , (3.5)

that is a vector containing every action performed and observation observed.

While the state itself is unknown at any time, the information vector Ik is

always fully available to the agent. We may view this vector as an information-

state or I-state. Let the space of information states be denoted with I.

Information known at time k stochastically transitions according the dy-

namics defined by the POMDP model. We denote the transition function

fI

Ik+1 = fI(Ik, uk, zk+1). (3.6)

An agent with information Ik will never be able to view the true costs given

actions without access to its actual state, therefore an approximation of the

costs must be made. Let the approximated cost be gI and the function GI be

gI = GI(Ik, uk). (3.7)
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The agent in a POMDP world needs a policy, πI : I → U , that maps informa-

tion states to actions to minimize the expected cost. The expected cost given

some policy πI can be written

JπI (Ik) = lim
n→∞

EI

[
n−1∑
i=0

γnRI (Ik+i, π(Ik+i))

]
, (3.8)

with optimal policy π∗I

π∗I (Ik) = argmin
πI

JπI (Ik). (3.9)

Given an information space I, an information transition function fI , and cost

estimate RI , the POMDP model is converted into what appears to be identical

to an MDP. One pitfall, however, prevents us from finding optimal policies

via previous discussed VI and PI techniques. The complete history Ik grows

linearly with time as observations and actions are assimilated. Applying VI

or PI to a state space that contains vectors growing in length indefinitely will

be problematic. This does not erase the relationship between POMDPs and

MDPs, but rather asks us to reconsider how information is stored over time

to create a more manageable information state space.

3.2.1 Belief States

Since the true state of the system is unobserved in the POMDP model the

agent must reason about its location purely from the recorded history of actions

and observations, and its understanding of the system’s dynamics. A standard

technique is create a probability distribution over allowable states. Let bk(x)

be the probability density function conditioned on the history of actions and

observations up until time k for the location of the agent in state space. We
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xk+1 ← f(xk, uk, wk+1)

zk+1 ← h(xk+1, uk, vk+1)

wk+1 ∼ p(wk+1|xk, uk)

vk+1 ∼ p(vk+1|xk+1, uk)

wk+1

vk+1

zk+1 ← h(xk+1, uk, vk+1)

xk

xk+1

Ik+1 = fI(Ik, uk, zk+1)

rI = RI(Ik, uk)

zk+1

POMDP

Information State MDP

uk ← µI(Ik)

Controller Ik+1

uk

uk

Figure 3.3: This illustrates the POMDP model converted to the corresponding
fully observable information state MDP model

may denote this with

bk(x) = p(xk = x|Ik).

We may decompose the information vector Ik

Ik = {z0, u0, z1, u1, · · · , zk−2, uk−2, zk−1, uk−1, zk}

= {z0, u0, z1, u1, · · · , zk−2, uk−2, zk−1} ∪ {uk−1, zk}

= {Ik−1, uk−1, zk}
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Using Baye’s Theorem,

bk(x) = p(xk = x|Ik) = p(xk = x|Ik−1, uk−1, zk)

∝ p(zk|xk = x, uk−1)p(xk = x|Ik−1, uk−1)

= p(zk|xk = x, uk−1)

∫
X

p(xk = x|Ik−1, uk−1, xk−1)p(xk−1|Ik−1, uk−1)dxk−1

= p(zk|xk = x, uk−1)

∫
X

p(xk = x|uk−1, xk−1)p(xx−1|Ik−1)dxk−1

= p(zk|xk = x, uk−1)

∫
X

p(xk = x|uk−1, xk−1)bk−1(xk−1)dxk−1,

(3.10)

where∝ stands for proportional to. The fourth line follows from the Markovian

property of transitioning between states. This result is important in that it

lets us recursively update the agent belief distribution with only uk−1, zk, and

bk−1. As observations and actions are made they can be discarded alleviating

the issue of a constantly growing information state. We can characterize the

way an agent’s belief transitions from bk−1 to bk with the function

bk = ψ(bk−1, uk−1, zk). (3.11)

The corresponding reward for taking an action before bk can be written as an

expectation over states

ĝ(bk, uk) = Exk [g(xk, uk)|Ik]

=

∫
X

g(xk, uk)bk(xk)dxk

= 〈g(·, uk), bk〉.

With a fully observable state defined with its corresponding transition function

defined along with a meaningful reward the POMDP has been converted to
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a belief MDP. There are, however, still a few shortcomings that need to be

addressed before we can find good policies over the belief states. The previous

equations have been written to allow a continuous state space X, but can easily

be rewritten with summations if X turns out to be discrete. The next sections

will discuss the differences in belief MDPs for when X is either discrete or

continuous.

3.2.2 Discrete State Spaces

To illustrate the POMDP with a discrete state space we will introduce the

so called Tiger Problem. The Tiger Problem considers a man who is forced

to repeatedly open one of two doors. Behind one of the doors lies a great

reward, while behind the alternative is a rather hungry tiger. The man does

not have to immediately open a door, but is allowed to listen, perhaps with

multiple attempts, to gain information about the whereabouts of the tiger.

Once the man selects a door, he either receives the reward or is (to be slightly

less severe as other descriptions of this problem) frightened by the tiger. The

door is then shut, the tiger randomly relocated, and the process of selecting a

door resumes. We can write the state, action, and observation spaces as

1. X = {Tiger-Left, Tiger-Right}

2. U = {Listen, Open-Left, Open-Right}

3. Z = {Hear-Tiger-Left,Hear-Tiger-Right}.

The state of the system (the location of the tiger) does not change when the

action chosen is listening. Then the transition probabilities can be written:

If the man decides to listen for sounds from the tiger, it will be favored

that he hears sounds coming from the door that the tiger is truly behind. The

observation probabilities are then:
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Table 3.1: Transition Probabilities

u = Listen Tiger-Left Tiger-Right

Tiger-Left 1 0
Tiger-Right 0 1

u = Open-Left
Tiger-Left .5 .5

Tiger-Right .5 .5
u = Open-Right

Tiger-Left .5 .5
Tiger-Right .5 .5

Table 3.2: Observation Probabilities

u = Listen Tiger-Left Tiger-Right

Hear-Left .85 .15
Hear-Right .15 .85

Finally we must consider a reward. We assume a small cost for listening,

a large reward for selecting the door with the treasure, and a severe penalty

for selecting the door with the tiger. This is summarized in the table:

Table 3.3: Rewards

Tiger-Left Tiger-Right

Listen -1 -1
Open-Left -100 10

Open-Right 10 -100

With the transition, observation, and reward equations written the POMDP

agent can convert this problem into the corresponding belief-MDP. The state

space in this belief-MDP is the set of all probability distributions over the two

discrete states, Tiger-Left and Tiger-Right. We may let p represent the belief

that the tiger is behind the left door, then the belief the tiger is behind the

right door is just 1 − p. This means we need only a vector (in this case of

scalar) of length one to represent the state space of beliefs. In general, if there
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are n discrete states in the POMDP model you will need a vector of length

n− 1 to represent the states. The reduction in dimension by one comes from

the constraint that the sum probability is 1. Let the vector describing the

distributions be b where b(x) is the probability the agent is in state x ∈ X.

0 1b(x1)

0 1

1

b(x1)

b(x2)

Allowable states

Two discrete states

Three discrete states

Believes the tiger is on the leftBelieves the tiger is on the left

Figure 3.4: The belief simplexes for a two and three state POMDP. The top
axis corresponds to the tiger problem. Only a single line is necessary to rep-
resent the agent’s belief that the tiger is behind the left or right door. The
bottom axis represent the belief space for 1 more dimension. Any point in the
shaded triangle imply a belief in the third state and assuredly sum to 1.

Any POMDP with discrete state space can be converted into a belief-MDP

whose belief’s can be represented with discrete length vectors representing

probability distributions. Unfortunately, this new state space is continuous in

nature as the distributions are multinomial. This makes the use of PI and VI

algorithms infeasible as both require summations over the state space. While
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the previous solution methods are impractical, the equations for the optimal

value function and policy are insensitive to continuous versus discrete state

spaces. Recall for the standard discounted MDP the backup operator T and

its relation to the optimal value function:

(TJ)(x) = min
u∈U(x)

Ew [g(x, u, w) + γJ (f(x, u, w))]

J∗(x) = lim
n→∞

(T nJ)(x),∀x ∈ X,

where the w is the source of error due to transitioning between states.

We can now replace parts of this equation with the belief MDPs coun-

terparts, first we attack the expectation. The expectation is taken with re-

spect to w, a noisy variable affecting the transitions between states. The

transition equation for a belief MDP has been written bk = ψ(bk−1, uk−1, zk).

The noise in switching belief states at time k − 1 is in the uncertainty in

the future measurement zk. Thus, the expectation will be changed to one

with respect to zk. The reward function g(x, u, w) is simply replaced with

ĝ(b, u) = 〈g(·, u), b〉 =
∑

x∈X g(x, u)b(x). Finally, we also switch the min op-

erator to the max operator since in this particular example we are trying to

maximum reward. The new operator becomes

(TJ)(b) = max
u∈U

EZ [ĝ(b, u) + γJ(ψ(b, u, Z))]

= max
u∈U

[∑
x∈X

g(x, u)b(x) + γ
∑
z∈Z

p(z|b, u)J(ψ(b, u, z))

]

= max
u∈U

[∑
x∈X

g(x, u)b(x) + γ
∑
z∈Z

p(z|b, u)J(bzu)

]
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where bzu = ψ(b, u, z), the future belief state when the action and observation

are given. Since we have discrete states, the future belief may be written

bzu(x
′) = p(z|x′, u)

∫
X

p(x′|x, u)b(x)dx

∝ p(z|x′, u)

∫
X

p(x′|x, u)b(x)dx

= p(z|x′, u)
∑
x∈X

p(x′|x, u)b(x).

While we cannot iterate over the belief points exhaustively to use PI or VI, we

can try to find a why to succinctly represent the finite horizon value function

and how this is changed with successive applications of T . Recall, the initial

step of VI is to let J0(x) = 0 for all x ∈ X. We may do the same here, let

J0(b) = 0 for all b ∈ B. This is equivalent to taking the zero vector 0 and

writing J0(b) = 〈b,0〉. Then

J1(b) = max
u∈U

[∑
x∈X

g(x, u)b(x) + γ
∑
z∈Z

p(z|b, u)J0(bzu)

]
= max

u∈U
[〈b, g(·, u)〉]

= max
{αi

1}i
〈b, αi1〉

where αi1 form a set of vectors describing the value function after 1 iteration.

We see that after one application of T , the single vector 0 describing J has

grown to a set of vectors |U | in length. Essentially, each of these vectors

describes a hyperplane through the belief space, with the finite value function

J1 taking the maximum value over hyperplanes. It turns out that J1 has the

property of being a piecewise linear and convex function (PWLC). In fact,

J1, J2, J3, · · · all are PWLC functions [33]. PWLC functions can easily be

expressed with a set of hyperplanes. In general, let {αin} represent the set of
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vectors that describe Jn such that

Jn(b) = max
{αi

n}i
〈b, αin〉.

Denote that total number of vectors in the set {αin} as |Jn|. Then we may

write Jn+1(b) as

Jn+1(b) = max
u∈U

[
〈b, g(·, u)〉+ γ

∑
z∈Z

p(z|b, u)Jn(bzu)

]

= max
u∈U

[
〈b, g(·, u)〉+ γ

∑
z∈Z

p(z|b, u) max
{αi

n}i
〈bzu, αin〉

]

= max
u∈U

[
〈b, g(·, u)〉+ γ

∑
z∈Z

max
{αi

n}i

∑
x′∈X

p(z|x′, u)
∑
x∈X

p(x′|x, u)b(x)αin(x′)

]

= max
u∈U

[
〈b, g(·, u)〉+ γ

∑
z∈Z

max
{αi

n}i
〈b, giu,z〉

]

where giu,z(x) =
∑

x′∈X p(z|x′, u)p(s′|s, u)αin(x′). Finally, if we define the vector

gbu = g(·, u) + γ
∑
z∈Z

argmax
giu,z

〈b, giu,z〉,

then Jn+1(b) takes the simple form of

Jn+1(b) = max
u∈U

[
〈b, gbu〉

]
We see that given a representation of Jn with a set of hyperplanes and for a

given belief point b, the next iteration, Jn+1, at point b can also be represented

with a set of new hyperplanes. If B was a discrete set we could iterate over

all b ∈ B and find separate sets of hyperplanes, but this is unfortunately not

the case. To alleviate this issue several region based algorithms have been
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developed. In particular, the Witness algorithm and Incremental Pruning are

among the most popular [33, 34]. Both algorithms are similar in nature and

decompose the optimal value function.

First, let Qu
n be the value of taking action u, then acting optimally there-

after. Then

Qu
n(b) =

∑
x∈X

g(x, u)b(x) + γ
∑
z∈Z

p(z|b, u)Jn−1(bzu),

and the optimal value function after n iterations can be written

Jn(b) = max
u∈U

Qu
n(b).

We know that Jn is PWLC, but it is also true that each individual Qu
n is

PWLC and can be represented by a set of vectors [34]. Since this is the case,

then Jn is just the maximum value over the union of set
⋃
u∈U Q

u
n. Cassandra

in [35] further decomposed Jn

Qu,z
n (b) =

ĝ(b, u)

|Z| + βp(z|b, u)Jn−1(bzu)

Qu
n(b) =

∑
z∈Z

Qu,z
n (b)

Jn(b) = max
u∈U

Qu
n(b).

Each of these functions are PWLC [34], and we let Jn, Q
u
n, Q

u,z
n represent the

set of vectors representing their corresponding functions over the belief space.

The value of Jn(b) is a combination of vectors from Qu
n and Qu,z

n . Finding the

exact values of these vectors can be straightforward, but doing so for each b

is infeasible. In order to calculate Jn(b) for all b ∈ B, Incremental Pruning

considers all possible combinations of vectors. This allows us to explicitly
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represent Jn, but at a large computational cost of calculating expensive cross-

sum over the vectors. Let the cross-sum of two vector sets X and Y be defined

as

X
⊗

Y = {x+ y|x ∈ X, y ∈ Y }

with |X⊗Y | = |X||Y |.

0 1b(x1)

J

Dominated vector

Maximum value over all vectors

Figure 3.5: The value function expressed as a set of vectors. The bold black
line indicates the maximum over the set of vectors. The blue line indicates a
vector that is dominated by other vectors and less than the bold line for all
belief points.

Once all possible vectors are calculated to represent Jn, many (if not most)

may be removed from the set. Remember, Jn(b) is the maximum value over a

set of scalar products. Thus, if it is true for some j ∈ Jn that 〈b · j〉 < 〈b · j′〉
for all j′ 6= j ∈ Jn, then j can be removed from the set without effecting the

value function. We call finding and removing these vectors pruning. Assuming

Jn−1 has been calculated with a minimal set of vectors, then Jn may be found

with a few straightforward steps and is described in the following pseudocode.
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Algorithm 5 A simple implementation of incremental pruning. The algo-
rithm represents the value function initially with a single 0 vector. It then
sequentially updates Jn until the change in the value function is small. Dom-
inated vectors are pruned each stage to minimize unnecessary computation.

J ← {0}
converged← false
repeat

Calculate Qu,z

Calculate Qu(b) = Prune(⊕z∈ZZu,z
n )

Calculate J ′ = Prune(∪u∈UQu
n)

if |J ′(b)− J(b)| < δ ∀ b ∈ B then
converged← true

else
J ← J ′

end if
until converged

The details on pruning have been omitted, but essentially require solving a
collection of linear programming problems. This step can be time consuming,
but is necessary to avoid a rapid growth of vectors. For a more complete
treatment of solving POMDP’s with discrete states refer to [33, 34, 35].

|Jn| without pruning |Jn| with pruning

n = 1 3 3
n = 2 27 5
n = 3 2187 9
n = 4 * 10
n = 5 * 13

Table 3.4: A comparison of the size of Jn with and without pruning of domi-
nated vectors on the Tiger problem. The ∗ indicates a size too large to calcu-
late in a reasonable amount of time. We see that with pruning the number of
vectors per iteration does not grow too fast.

3.2.3 Moving Towards Continuous State Spaces

We saw in the previous section how vectors of length |X| can represent belief

states for discrete state POMDPs, each element of the vector representing
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the probability that the agent is in a particular state. The set of all beliefs

then forms a |X| dimensional simplex and is thus infinite and continuous in

nature. The value function of the simplex was exactly calculated with a set

of piecewise linear and convex functions. The Witness algorithm in particular

iteratively finds sets of linear functions to approximate the value function

with increasing accuracy [33]. A major setback to this algorithm, and exact

algorithms in general, is the growing sizes of the set of linear functions and the

linear programming required to prune dominated functions from this set [35].

Another class of algorithms exist that select a discrete subset of points from the

belief simplex, only updating these points during value iteration [36, 37, 38].

One in particular, Perseus, has been well studied over the last few years with

promising results [36].

The key point in converting a POMDP to an equivalent belief state MDP

is by analyzing the set of all probability distributions over states. For the

discrete state space this set is continuous, with every possible distribution

represented with a finite length vector (of dimension |X|). For continuous

state spaces, though, this transition is not so gentle and can be illustrated with

a simple example. Suppose the state space is an a point in the line segment

[0, 1]. The belief states are then all probability distributions with support

[0, 1]. This includes any truncated Gaussian, for any choice of µ and σ, any

truncated exponential, and any probability mass function represented by a

discrete number of points. An infinite-dimensional vector would be required

to specify every distribution making the point based approaches using the

belief simplex impossible. The next chapter will describe current methods to

overcome these new challenges for continuous state spaces.
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Chapter 4

Solving Continuous State

POMDPs

Discrete state POMDPs can be converted into belief state MDPs where the

new set of states are points on a belief simplex of dimension equal to the num-

ber of states. Exact algorithms using incremental pruning and the Witness

algorithm [33, 35] were discussed as methods to solve in this new space. Point

based methods such as Perseus [36] randomly sampled the belief simplex and

only updated the value function at these points resulting in alternative algo-

rithms with large state spaces. Models with a continuous state space have a

corresponding belief space over the set of all possible probability distributions

over that space requiring infinite dimensional vectors to exhaustively spec-

ify every possible distribution. An immediate extension of the Witness and

Perseus algorithm (and similar variants) is not readily available to be applied

to this new class of problems. There has, however, been significant progress

to solving continuous state POMDPs.

Thrun in [39] pioneered some work on the continuous state space by rep-

resenting beliefs as a weighted particle set over the admissible set of states.
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He then used Monte Carlo techniques to update the beliefs after actions and

observations, and also used a k-nearest neighbor scheme to interpolate the

value function at belief points not specifically in his set. He used the Kullback

Leibler divergence measure (effectively the non symmetric distance between

two distributions) as the distance between two belief points. Agents training

using this method were able to solve simple robot navigation problems at the

cost of long training times. This is likely due to the size of the belief vector

being equal to the number of particles representing the beliefs. Increasing

the number of particles will increase accuracy, but at the cost of state space

increase as well.

Porta and Spann in [40] provided strong theoretical contributions to solving

POMDPs with continuous state spaces (and discrete action and observations).

The value function over the belief space was shown to also be piecewise linear

and convex represented with a set of α functions (rather than vectors). In ad-

dition, the n step value function was proven to have a discrete representation,

although exponential with respect to number of observations. By assuming

each belief can be represented by a discrete mixture of Gaussians they were

able to apply there equations to solve a single corridor robot navigation prob-

lem using a modified Perseus algorithm adapted for the continuous state space.

Their algorithm was successful in training the agent, but has a computational

bottleneck in exponential growth in number of α functions during value iter-

ation.

The work in [40] was further extended in [41] to handle continuous action

spaces. Essentially, actions were sampled during the value iteration process.

A wide variety of sampling methods are available for selecting actions, of-

ten sampling randomly as an exploration stage, and then sampling actions

nearby known best actions seen thus far. Their algorithm still falls into the
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point based class, but the points are specific Gaussian distributions, rather

than sampled states from the model. Their algorithm was compared to the

traditional Perseus algorithm. The results between the discrete Perseus and

continuous (Gaussian based) Perseus were comparable in terms of accumu-

lated reward and time to train the agent, but did have a reduction in memory

requirements (only 9 Gaussians versus 200 sampled states).

Brooks also investigated using POMDP models with continuous state spaces

in [1, 8, 42]. His approach, called Parametric POMDP (PPOMDP), restricts

beliefs to being in the set of multivariate Gaussians. The algorithm uses Monte

Carlo methods and particle filtering to estimate the transition probabilities be-

tween a discrete set of Gaussian distributions representing likely belief states

the agent my encounter naturally. The transition probabilities coupled with

an expected reward over belief states allows the problem to be solved with

traditional MDP value iteration rather than modeling the value function as a

set of vectors (or functions). The agent then uses the calculated value func-

tion along with nearest neighbor interpolation to select good actions from any

Gaussian belief state. He incorporated a forward search over the action space

to improve the agent’s performance. This algorithm is also capable of han-

dling a continuous observation space, but uses a discretized action space as an

approximation to model’s with continuous actions. The algorithm was tested

on simulated models as well as a real life trial showing strong results. The

strength in this method is in the dimension reduction. Belief states for two

dimensional Gaussians (representing the (x, y) location of the agent) require

only a vector of length 4, a strong contrast to [39] where the vector length

grows with the number of particles used.

Zhou extended the work of Brooks in [43, 44], producing the first theoretical

error bounds for the difference between the true value function and the one
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calculated using the parametric belief distribution and estimated transition

probabilities. She also generalized the set of beliefs available for the agent

from multivariate Gaussians to the entire exponential family. Like Brooks,

she represents beliefs with particle sets and projects them onto a distribution

from the exponential family for dimension reduction. She also includes rigorous

proofs of convergence as the number of particles tends to infinity.

The parametric POMDPs developed by Zhou and Brooks is the advocated

method and the one explored in this thesis for modeling and solving POMDPs.

The number of knobs and dials available to the user of this algorithm to twist

and turn are vast. In particular, given a model, the user must decide on the

belief distribution, choice of particle filter, number of particles used, belief

set selection, discretization of action space, and action selection during online

control. The selection of these options can have a dramatic effect on the

reward obtain by the agent, memory demands, and length of time to compute

the value function and select actions. The correct choices will be dependent

on the selected model (robot navigation, inventory stock control) and the

computational power of the user.

The rest of this chapter will be dedicated to making significant improve-

ments to the state of PPOMDP. First we will detail the current standards of

PPOMDP. We will then show that the current state of the PPOMDP algo-

rithm wastefully spends computation on sampling more posterior beliefs than

is necessary for training an intelligent agent. We will show this numerically on

a variety of examples, and also show how extra samples can be effectively gen-

erated by using a k-nearest neighbor interpolation scheme. A novel forward

search approach will be contrasted against Brooks recommended approach.

We will show how our approach can search far deeper than Brooks allowing

for intelligent agents to successfully accumulate rewards on sparse belief sets.
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We will then create a novel threefold adaptive sampling scheme during agent

training. We will show how this approach trains intelligent agents in a reason-

able training time when compared to less sophisticated adaptive samplers. The

number of samples drawn during the course of training an agent by our sam-

pler will further verify our claim about the wasteful computational approach

to PPOMDP initially.

4.1 Parametric POMDP

The introduction to this chapter described the inherent complications when

generalizing the discrete state space to a continuous one, and also described

the recent developments in alleviating these issues. In particular, we placed

emphasis on the methodology developed by Zhou and Brooks in [1, 44]. The

purpose of this section is to explain in detail how continuous state POMDPs

can be converted and modified allowing traditional MDP solution methods

to be employed. We will begin by defining the exponential family and show-

ing how to project particle sets onto distributions from this family. We will

then describe how to take a discrete subset of distributions and approximate

transition probabilities given actions from an agent. A short introduction to

nearest neighbor search will follow to illustrate how the transitions probabili-

ties may be calculated efficiently. Finally, the basic PPOMDP algorithm will

be presented.

4.1.1 Density Projection

To begin we take a closer look at the belief representation. Both Zhou and

Brooks expressed beliefs states as a lower dimensional parametric distribution.

The multivariate Gaussian distribution was employed by both, although Zhou
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produced results that can be applied to any distribution in the exponential

family. Define Ω as the selected exponential family of densities chosen to

represent the belief state of the agent. Let Θ be the set of valid parameters

describing the densities in Ω. Then we can write

Ω = {f(·, θ) : θ ∈ Θ}

f(x, θ) ∝ exp
(
θTT (x)− A(θ)

)
where x ∈ Rn corresponds to the state space defined by our POMDP model,

θ ∈ Rm is a parameter vector , and T (x) = [T1(x) T2(x) · · ·Tm(x)] is a vec-

tor of sufficient statistics [45], and A(θ) = log
∫
exp(θTT (x))dx < ∞. The

multivariate Gaussian, exponential, gamma, chi-squared, beta, Bernoulli, and

Poisson distribution (and many others) all belong to this family of densities.

Algorithms like Perseus select a discrete set of points over the continuous

belief simplex. Similarly we will be selecting a discrete set of parameter vec-

tors. Let G = {θ1, θ2, · · · , θ|G|} be the subset of allowable beliefs specified by

parameter vectors, rather than explicit locations in the state space. From the

perspective of the agent, these belief points are fully observable and define the

state space for the MDP model we are converting to. We know that the MDP

model has uncertainty in where an agent will transition given an action. Typ-

ically this is defined initially with a transition matrix. But, for our modified

problem the transition probabilities will have to be estimated. Let p(·|θi, u)

represent the transition probabilities given an initial belief state and action.

There are two main issues to approximating this distribution:

1. How do we incorporate the future measurement available to the agent in

belief space rather than the explicit state space?

2. How can we be sure the belief distribution will remain in the exponential
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family selected?

The first issue is circumvented by sampling possible states from the belief dis-

tribution θi. The initial POMDP model fully describes how the agent will

transition between states given an action. Upon transitioning forward in time

according to the state model, observations may be sampled as well according

to the system dynamics. The new particle set along with the sampled observa-

tions represent a group of possible futures for the agent given and action. This

set of future possibilities are not, however, directly comparable to the to our

belief states which are represented parametrically rather than as a probability

mass function over the state space (essential what a weighted particle set is).

The second issue involves using a technique known as density projection.

Essentially density projection maps a weighted particle set back to a parameter

in the exponential family of choice by either a maximum likelihood estimate

or minimizing the Kullback-Liebler divergence [43, 46, 47]. The best fitting θ

is unlikely to be in the belief set B. This is not a problem for the purposes of

an agent maintaining a belief while executing actions and incorporating obser-

vations, however does pose an issue for calculating the transition probabilities.

The forward beliefs generated will be ”snapped” to nearby parameters in G.

That is, an agent beginning in state θi and taking action u will transition to

θj with positive probability if the forward beliefs are similar or nearby θj in

parameter space after the particles are projected onto Ω. Details for explicitly

calculating these transition matrices will follow in the next sections.

Kullback-Liebler divergence

Kullback-Liebler divergence was first published in 1951 and can succinctly be

described as the non-symmetric distance or dissimilarity between two distri-

butions [48]. We are interested in two distributions over the continuous state
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space: a weighted particle set, a probability density function f(·, θ) in the

family of exponential densities. Formally the Kullback-Liebler divergence is

defined by

DKL(b||f) =

∫
b(x)log

(
b(x)

f(x)

)
dx. (4.1)

We may define a projection function ProjΩ : B → Ω

ProjΩ(b) = argminf∈ΩDKL(b||f). (4.2)

Essentially, ProjΩ(b) yields the parameter θ that best matches a particle set

representing b. To solve for θ, first substitute f(·, θ) for f in 4.1 yielding

DKL(b||f(·, θ)) =

∫
b(x)log

(
b(x)

f(x, θ)

)
dx

=

∫
b(x)log (b(x)) dx−

∫
b(x)log (f(x, θ)) dx.

(4.3)

The first term is constant as a function of θ, then the optimal theta can be

found by maximizing

ProjΩ(b) = argmaxθ∈Θ

∫
b(x)log (f(x, θ)) dx. (4.4)

Zhou showed in [43] that the maximization is obtained when

Eb[Tj(X)] = Eθ[Tj(X)], for i = 1, · · · ,m. (4.5)

With this we have a principled way to convert weighted particle sets into a

parameterized belief distribution in the exponential family. What remains to

be discussed are the four main algorithms themselves used to convert the con-

tinuous POMDP into the MDP counterpart. Particularly we need algorithms

that:
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1. Update a parameterized belief θ given an action u and future observation

z

2. Forecast future distributions given a belief θ and action u. Note the

uncertainty in the future belief is from two sources: the noisy system

dynamic, and the unknown future observation.

3. Calculate transitions between beliefs in the belief set G given a set of

actions U .

4. Calculate a reward function for taking actions from beliefs in G.

PPOMDP Algorithm

In the previous chapter we discussed how an information state or belief state

of an agent operating in a POMDP environment can be modeled as a fully ob-

servable state from an equivalent MDP model. The types of beliefs have been

restricted to those from the parameterized exponential family of distributions.

A key component to completing this transition is developing a method to cal-

culate the transition function fI(Ik, uk, zk), where the information state Ik can

really be replaced with the parameter θk. We simplify some of the notation in

this chapter with the following table.

xk → x
xk+1 → x+

Ik → θ
Ik+1 → θ+

uk → u
zk+1 → z+

Table 4.1: This table contains a list of notation simplifications in notation for
brevity purposes.
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The following approach is based on particle filtering techniques and as-

suming that the exponential belief distribution chosen may easily be sampled.

Essentially, particles are propagated forward in time according to an action.

Observations are then sampled and compared to the given observation z+ to

form a weighted particle set.

Algorithm 6 An implementation of the transition equation fI(θ, u, z
+). The

integer value N indicates the number of particles sampled.

Input: θ, u, z+

Output: θ+

for i = 1 : N do
Sample xi from p(xi|θ)
Sample x+

i from p(x+
i |xi, u)

Sample z+
i from p(z+

i |x+
i )

Calculate wi = p(z+|z+
i )

end for
Normalize ŵi = wi∑N

i=1 wi

θ+ = ProjΘ

(
{x+

i }Ni=1, {ŵi}Ni=1

)
Algorithm 6 allows an agent to keep track of it’s belief as it takes actions

and makes observation. In addition, the agent must be able to reason about

future beliefs given an action but devoid of the future observation. Brooks

initially proposed a simple implementation of generating the posteriors in [1].

Algorithm 7 is similar to algorithm 6, but is missing the input of a known

future observation. The algorithm compensates for the lack of observation by

sampling one from each of the N particles generated. At this point algorithm

6 is essentially called with a fixed particle set for each sampled observation.

One issue with generating a distribution of posteriors this way is that the com-

plexity scales quadratically with respect to the number of particles generated.

That is, if N particles are used then N posterior distributions are calculated.

It will be shown in the following sections that some if this computation burden
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Algorithm 7 A simple implementation of GeneratePosteriors(θ, u). Let
N be the number of particles sampled and posteriors to be returned. This
algorithm works by generating and propagating N particles forward in time
according to the system dynamics. Each particle also samples a possible future
observation. The particle set is then re-weighted N times assuming the correct
observation belongs to one coming from an individual particle. This generates
N differently weighted particle sets, but with the exact same particles. Each
set is then projected back onto Θ

Input: θ, u
Output: {θ+

1 , θ
+
2 , · · · , θ+

N}
Let W be a matrix of size N ×N holding the particle weights.
for i = 1 : N do

Sample xi from p(xi|θ)
Sample x+

i from p(x+
i |xi, u)

Sample z+
i from p(z+

i |x+
i )

end for
for i = 1 : N do

for j = 1 : N do
Calculate Wij = p(z+

i |x+
j )

end for
end for
Normalize the rows of W
for i = 1 : N do
θ+
i = ProjΘ

(
{x+

j }Nj=1, {Wij}Nj=1

)
end for
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may be alleviated by limiting the number of posteriors to a value less than N .

One of the essential portions of any MDP model is the transition probability

function p(·|x, u) and is typically known in advance. In our POMDP world

we need a means of approximating p(·|θ, u), the probability of transition to

another belief in G given θ ∈ G. A natural calculate this is to simulate the

distribution over posteriors for each θ ∈ G and u ∈ U combination. The

posteriors that are close to beliefs already in G will weight those beliefs with

positive probability. This is accomplished by a nearest k-neighbor search over

the set G.

Algorithm 8 A simple implementation of TransitionProbablities(). This
functions returns two jagged multidimensional arrays, Tvalues and Tindices.
Tindices points to where in G particular θ and u combinations have positive
transition probability. Tvalues holds the transition probabilities. The jagged
matrices allow the total memory requirements to be far than the order of
|G|2|U | by not storing the transitions with 0 probability.

Input: G = {θ1, θ2, · · · , θ|G|}
Output: An approximation to p(·|θi, u) for θi ∈ G and u ∈ U stored in the
variables Tindices and Tvalues.
Initialize counter as an array of length |G|.
for i = 1 : |G| do

for j = 1 : |U | do
∆ = GeneratePosteriors(θi, uj)
Reset counter
for k = 1 : |∆| do

Let index be the index of the closest member in G to ∆k

counter[index]← counter[index] + 1
end for
Tindices[i][j]← non-zero indices of counter
Tvalues[i][j]← counter

|∆|
end for

end for

The overall runtime of algorithm 8 is a function of several sources. We

write the following four functions that model these sources:
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1. C1(x, x+, z+), the total cost of generating a particle x from initial belief θ,

propagating it forward according to the system dynamics, and sampling

the observation z+.

2. C2(x+, z+), the cost of evaluating the particle weight p(z+|x+).

3. C3(N), the cost of using a particle set of size N to project onto the

parameterize family Θ.

4. C4(|G|), the cost of finding the nearest-neighbor in a set of size |G|.

Algorithm 8 has two outer loops enumerating over all possible combinations

from the sets G and U . The inner loop is a function of the four above costs

and the number of particles used in the filtering. Putting this altogether the

complexity of run time can be written as

O
(
|G||U |

(
NC1(x, x+, z+) +N2C2(x+, z+) +NC3(N) +NC4(|G|)

))
(4.6)

The cost of C1 and C2 are both model dependent, C3 is a function of

the chosen belief distribution, and C4 is a function of the nearest-neighbor

algorithm selected. Assuming C1 and C2 are close to constant, the projection

function is simple (linear with the number of samples), and a proper data

structure for similarity search is used for the nearest-neighbor search, then the

dominating complexity is from the weighting of the particle sets. Equation 4.6

can then be approximately written as

O
(
|G||U |N2

)
.

The final necessary algorithm is an approximation to the reward received

for taking actions from belief states. Assuming states can easily be sampled
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Figure 4.1: A depiction of algorithm 8. (a) illustrates the sampling of particles
from the exponential distribution θ, the forward propagation according to the
model dynamics, and the sampling of observations from particle states. (b)
Shows how the weighting matrix W is calculated from the combination of
particles and observations.

from the belief distribution, samples are drawn and the reward from these

states executing the chosen action are averaged.

These four algorithms combined serve as the foundation for the Parametric

POMDP algorithm. The next section briefly introduces four models to test

our improvements as well as two competitor algorithms to establish a baseline

performances. We then demonstrate our improvements.

4.2 Test Models and Competitor Algorithms

In this section we define our four continuous state POMDP models we will

test our algorithms on. We also briefly discuss two competitor algorithms for

creating policies for continuous state POMDPs.
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Algorithm 9 A simple algorithm to calculate the reward from belief states.

Input: Belief state θ and action u, the number of samples to be drawn N
Output: ĝ(θ, u)
reward← 0
for i = 1 : N do

Draw x from p(·|θ)
reward← reward+ g(x, u)

end for
reward← reward

N

ĝ(θ, u)← reward

4.2.1 Robot Navigation

Autonomous robot navigation has been a topic studied in several different

flavors over the past decades. In particular, any robot navigation system is

generally interested in one of the following:

• Localization: The act of sensing the environment to determine the robots

position on given map. Position is typically described using a the tuple

(x, y, θ), that is the (x, y) location on the map and the robot’s pose,

heading, or direction θ.

• Planning: Using knowledge of the environment to optimize plan actions

that maximize the chance of the robot successfully reaching a goal state.

During the first attempts at equipping an agent with tools to autonomously

navigate, it was assumed that the agent could easily maintain its correct po-

sition through simple a basic understanding of the robot’s motion [49]. This

technique, known as dead reckoning, was doomed to fail as small errors over

time accumulated resulting in a loss of orientation [49]. This lead researchers

to a Bayesian approach as a model for robot navigation. Simply put, the

Bayesian approach allowed the agent to maintain a belief distribution over a

discrete set of locations, and also allowed it to update the belief state in a
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mathematically principled manner given actions and sensory information [50].

Many problems assume that the model of the environment is known ahead of

time, but work in [51] developed a Simultaneous Localization and Mapping

algorithm the tracks the agents locations as well as discovers the obstacles

making up the map. This thesis will, however, be assuming that the map is

known a priori to the agent.

With the advances in localization, the agent’s ability to keep a good ap-

proximation of its position, researchers were then allowed to pursue robot

planning algorithms. While a variety of robot tasks can be imagined, a typical

goal is for an agent to reach a desired location. An intelligently acting agent

must balance between reaching the goal as quickly as possible, but also while

avoiding hazards (obstacle collision). To naturally train an agent with this

behavior, we use cast the robot navigation problem into a POMDP model:

• X: The set of allowable positions for the agent (the set of all legal (x, y, θ)

tuples).

• U: The set of actions available to the robot: turn-left, turn-right, accel-

erate, etc...

• Z: The set of observations: Typically modeled as laser range sensing or

odometry measurements.

• g(x, u): The reward may be set as positive for actions from the goal

state, and negative for other actions and collisions.

We saw in the former sections how POMDPs can be cast as an equivalent be-

lief state MDP for both the discrete and continuous state space. The Gaussian

and exponential belief distributions found in [1, 44] are fairly recent innova-

tions in the POMDP field for tackling continuous state space problems. We
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argue that this approach is the most natural given the continuous nature of

(x, y, θ) positions. During the infancy of this research, however, the state space

was modelled as discretely by sections of portions of the world or creating a

topological map [49, 50, 51, 52, 52, 53]. To begin, we specify a simple robot

navigation problem where the state space is simply the robot’s (x, y) position.

We then increase the complexity of our robot navigation model by adding more

components to the state space, that is a pose direction θp and also increasing

the size of the world twofold.

4.2.2 Simple Robot Navigation

For our initial robot navigation model we assume a POMDP environment

similar to [1]. The state space consists of all (x, y) pairs of points in a 20m×
10m enclosed grid and not intersecting an obstacle placed on the map. For this

model, the agent does not assume a pose direction and θ is omitted from the

state space. The actions from the space U come in the form of (d, θ) pairs, that

is the agent may select a direction and a distance to move. We discretize this

set uniformly over 16 directions (θ divided uniformly in [−π, π]), and allow the

choice of two distances {1, 2}. Additionally, a 33rd action (.1, 0) is added to

allow the agent to make small movements. Observations are taken in the form

of noisy range measurements in 4 equally spaced directions (North, West,

South, East). The range detector only makes an observation if an obstacle

or the map is within a range of 2 meters. Additionally, a collision detector

indicates that the agent has collided with an obstacle or the border of the map.

The goal of the agent is to navigate to an area 1m × 1m. The parameters of

this model are summarized:

• X = the set of all legal (x, y) positions
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• p(x+|x, u) is a two dimensional Gaussian with mean translated from

the initial position x in the direction and distance indicated by u. The

standard deviation is set to .2d where d is the distance traveled. The

covariance is set to 0.

• z =
[
z1 z2 z3 z4 zd

]T
, where zi is the range measurement in the

ith direction. zd is a boolean variable indicating a collision.

• p(zi|x) is normally distributed with mean equal to the true range mea-

surement with standard deviation
√
.5.

• g(x, u) =

 −.1 if the agent is not in the goal state

10 if the agent is in the goal state

The belief state will be represented by a two dimensional Gaussian where the

mean parameters correspond to the (x, y) locations and the variance represent

uncertainty in either direction. Zero covariance is assumed.

Figure 4.2: This figure illustrates a simple robot navigation model. The model
is bounded by a 20× 10 box. The red box indicates the goal position and the
blue boxes indicate obstacles.
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4.2.3 Robot Navigation with Pose

We are increasing the complexity of our robot navigation model by adding an

additional state variable, the pose or heading of the agent indicated with θp.

Similar models with a pose variable have been considered in [54] and [55]. In

[54], a POMDP formulation is proposed and applied to an agent operating in an

office setting. A graph model with transition probabilities is inferred from the

map’s corridors, entrances, and rooms. In addition to a range sensing model,

they consider landmark-based navigation model. Essentially, a landmark is

a unique feature of a map detectable by an agent aiding in localization. In

[? ], the state space is discretized and modeled graphically as well with a

hierarchical tree of POMDP models.

Figure 4.3: A figure illustrating a larger and more complex world for the agent
to navigate. The blue areas indicate obstacles while the red region indicates
the goal region.

Our pose navigation model is similar as the aforementioned model,but with

a few exceptions adding complexity. The range sensor remains the same,

except that the direction of the 4 sensors is dependent on the pose of the

agent, rather than strictly than North, West, South, and East. Secondly, we

incorporate obstacles that are not perfectly aligned with the x and y axis.

This adds a slight extra difficulty taking range measurements and makes the

independent Gaussian belief state too limited. The action space has been

modified to a (d, θm) pair, where d indicates the distance to be traveled, and
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θm indicates a rotation in pose before moving. Lastly, the map that the agent

will test on has been expanded to a dimension of 40m×10m, a two fold increase

in area. The specifics of this model are as follows:

• X = the set of all legal (x, y, θp) positions. An illegal position is when

the (x, y) coordinates are located inside an obstacle or outside of the

map. We let θp take values in [−π, π]

• U = a set of 7 (d, θm) pairs. Six of the actions take the form (d,−π/4),(d, 0),

and (d, π/4) with d taking the value of .1 or 1. Lastly, the agent is allowed

to take a small step directly backwards with the action (−.5, 0).

• p(x+|x, u) is a two dimensional Gaussian with mean translated from the

initial position x in the direction and distance indicated by u. The agent

rotates according to θp first and then moves the set distance d. The

standard deviation is set to .2d where d is the distance traveled. The

covariance is set to 0.

• z =
[
z1 z2 z3 z4 zθp zd

]T
, where z1, z2, z3 and z4 are range mea-

surements in the θp, θp + π, θp + 2π and θp + 3π directions. zθp is a noisy

measurement of the true heading. zd is a boolean variable indicating a

collision.

• p(zi|x) is normally distributed with mean equal to the true range mea-

surement with standard deviation
√
.5.

• g(x, u) =

 −.10 if the agent is not in the goal state

20 if the agent is in the goal state

The agent is allowed 200 actions (an increase over the 100 previously per-

mitted) to reach a small goal region of size 1m× 1m. The total accumulated

reward falls in the region [−20, 20], although an agent acting perfectly will have
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a reward of about 15 due to the size of the map and the minimum number of

actions needed to traverse it.

The beliefs available to the agent will be constrained to a 2 dimensional

Gaussian over the (x, y) coordinates and 1 dimensional Gaussian over the pose

θp. We assume that x and θp are independent as well as y and θp. A belief

state can be summarized by the 7 length vector θ = [x, y, σx, σy, σxy, θp, σp].

If we modestly discretized the belief set choosing 10 different values for each

parameter, this would result in a belief set size of 107. Clearly a belief set with

ten million states would put the training time outside of acceptable bounds

and a mesh of points will be necessary.

4.2.4 Car-on-a-Hill

Consider the simple task of driving a car up the hill of a fairly steep moun-

tain, so steep that it is impossible to climb the mountain without some initial

velocity. As the driver you have control over the accelerator thus defining the

set of actions at your disposal. The only way to climb the mountain is to first

reverse the vehicle to a location where you can accelerate to enough speed to

climb to the top of the mountain. More details can be found in [56]. This is

a simple but popular control problem modified to suit our POMDP purpose.

The details are as follows:

• X = the set of all (p, v) pairs where p is the vehicle’s position and v is

the vehicle’s speed.

• U = a discrete set of accelerations in the set [−4, 4]. For our purpose we

discretize this set to a length of 5.

• Let the mountain’s height be described (and depicted in 4.4) the function
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h(p) such that

h(p) =

 p(1 + p)

p√
1+5p2

• p(x+|x, u) is a two dimensional Gaussian with mean translated from the

initial position p and speed v according to well known physics describing

motion.

• z =
[
zp zv

]T
, where zp and zv are noisy observations of the vehicles

position and speed.

• p(zp|x) and p(zv|x) are normally distributed with means equal to the

true position and velocity with standard deviations σp and σv.

• The agent receives rewards for remaining in small area near the top of

the mountain with constrained speed. All actions taken under different

circumstances have a negative reward. The specifics are:

g(x, u) =

 0 if p < −1 or p > 1.5 or |v| ≥ 3

1 if 1 < p < 1.5 and |v| < 3

We allow the agent to take a total of 100 actions. Beliefs are defined as the

two dimensional gaussian θ = [p v σp σv]. The value function for this model

is illustrated in figure 4.4 on a uniform grid of beliefs with fixed standard

deviations. Also a heat map of the optimal actions (acceleration) is depicted.

We see that there is an area in the state space where being close to the top

of the mountain with low speed has a low value function. The reasoning is

that the agent must spend valuable time moving backwards first to gain the

necessary velocity to climb the hill. The belief state for the Car-on-a-Hill will

be represented with a two dimensional Gaussian with no zero covariance.
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Figure 4.4: The top left figure indicates the value function for beliefs corre-
sponding to position and velocity pairs. The standard deviations are of the
belief parameters are ignored. The bottom image indicates the optimal action
from beliefs. The color bar indicates the selected acceleration. Finally, the
right plot illustrates the hill the car is balancing on. They cyan colored box
indicates the vehicles initial position, while the red colored boxes indicate the
bounds for the desired position.
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4.2.5 Inventory Stock model

Consider the problem of managing the the inventory levels of an item in a

store [57]. The manager needs to ensure that there are enough items to satisfy

customer demand, but also is constrained by the amount of items stored due to

holding costs and space considerations. The inventory level is measured as dis-

crete times but it uncertain due to a variety of practical issues (misplacement,

spoilage) [58].

We model this problem as a POMDP as seen in [58]. Let the total number

of items stored by denoted with x and a holding cost of h incurred for storing

each of the x items. At discrete times the stock my be replenished with exactly

Q items or none at all. The demand d for an item is modeled as an exponential

random variable with the parameter λd. A cost of s is also incurred if the

demand exceeds the stock. The specifics of the model are as follows:

• X = the set of allowable item amounts, [0,∞].

• U = {0, 1}. The agent elects to restock with exactly Q or none of the

item.

• x+ = max(x+ uQ− d, 0)

• The observation z is a gaussian distribution normally distributed on the

true item stock level with standard deviation σx.

• The agent incurs a cost for holding each item and potentially not having

enough supply to satisfy the demand:

g(x, u) = h max(x+ uQ− d, 0) + s max(d− x− uQ, 0)
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Model |U | |θ| Number of observations
Inventory 2 2 1
Navigate 33 4 5

Pose Navigate 7 7 6
Car-on-a-Hill 5 5 2

Table 4.2: A table listing the number of actions, length of belief state, and
length of the observation vector for each model reviewed in this thesis.

The belief state is simply represented as a 1-dimensional Gaussian. We sum-

marize all four models with the following table:

4.2.6 Competitor Algorithms

As a baseline we must compare our enhanced PPOMDP algorithm to the

standard PPOMDP as well as other non PPOMDP substitutes. For the first

batch of results we will look strictly at the performances of a discrete MDP

method and Perseus algorithm. In both cases we will pay these algorithms

every convenience in terms of memory and computation.

The discrete MDP solution [59] works by dividing the state space into a

discrete number of cells. If we let s denote a cell, then we can approximate

the cell transitions p(s+|s, u), the observation probabilities p(z+|s+), and the

reward g(s, u) through sampling. Calculating p(s+|s, u) is accomplished by

sampling from the cell s and using the system dynamics and action u to see

what future cell the particle is moved to. Then p(s+|s, u) is equal to the

number of particles landing in s+ divided by the number of trials. For our

calculating each cell s was sampled 50 times, and each particle sampled was

propagated forward 5 different times yielding a total of 250 samples per tran-

sition calculating. It is unclear how to calculate p(z+|s+) for the continuous

case, therefore the range detection only yielded a boolean indication: either

there was an obstacle within 2 meters or not. p(z+|s+) was then approximated
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with a sampling scheme similar to p(s+|s, u).

Once the appropriate probabilities are calculated the POMDP becomes an

MDP model and the corresponding value function may be calculated via VI.

During the VI calculation the best action from each cell can be stored and used

as a reference during plan execution. During the execution phase the agent

keeps a probability distribution over the set of cells, updating the distribution

according the the calculation of p(s+|s, u) and p(z+|s+). The most likely state

(cell with highest probability) indicates which action the agent will choose.

The number of discrete cells for each model was set as 5000, a value far larger

the number of beliefs for our PPOMDP (with the exception of Pose Navigate).

The Perseus solution is similar to the discrete MDP solution. First discrete

number of points from the state space are selected and the appropriate tran-

sition probabilities between states are calculated via sampling. We then allow

the agent to explore the this new state space holding a discrete probability

distribution over the points. For training, a set of 2000 points are selected and

10,000 beliefs are collected to train the agent. The value function was then

approximated according to the Perseus algorithm described in [36]. During

plan execution, the best action was found by selecting the one that maximized

the value function given by the hyperplane set output from the algorithm.

4.3 Generalizing the Transition Approxima-

tion

This section is dedicated to altering how the belief state transitions are ap-

proximated. We will show how a substantial amount of computation time can

be saved and artificial sample can be generated.
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4.3.1 Particles Sets and Posterior Beliefs

If we refer to algorithm 7 and the corresponding depiction in 4.1 we see that a

matrix of size N×N of weights is created to calculate future belief states. The

ith column indicates the ith particle sampled from a belief state θ representing

a point in the model’s state space. The jth row is a set of weights assuming

the agent truly received a measurement from the jth particle. Thus, each

row correspond to the same particle set of size N , but with a different set of

weights as different observations are assumed. It is convenient to generate N

weighted particle sets since the N observations are available. This assumes

the the number of samples needed to represent θ as a particle set sets number

of samples we must draw from θ+|θ, u. In practice, the variety of beliefs after

observing may be small. By taking belief samples than less N we can save

considerable computation time during training From this point on we will

discard the notation of N to describe both sample sizes in favor of:

1. N1: The number of particles sampled from a given belief state θ.

2. N2: The number of weighted particle sets and belief states generated

acting as samples from θ+|θ, u.

We also add the constraint that N2 < N1 for efficient calculations. Note, we

still use the full N1 samples when projecting the weighted sets back to belief

space, but only project N2 times in total. The pseudocode and depiction of

these changes can be found in algorithm 10 and figure 4.5

Computationally how is this going to effect our calculations during train?.

Imagine a belief state that requires 1000 particles drawn for an accurate sample

(N1 = 1000). According to algorithm 7, we need to populate a matrix of size

1000×1000. Suppose, though, that the weighted particle sets are similar after

sampling random observations. Then the number of future beliefs needed for
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Algorithm 10 A slight modification to 10. Instead of a square matrix of
weights of size N×N , a non square matrix W is created of size N2×N1 where
N1 are the number of particles sampled from the given belief state and N2 are
the number of projected beliefs returned, assuming N2 < N1

Input: θ, u,N1, N2

Output: {θ+
1 , θ

+
2 , · · · , θ+

N2
}

Let W be a matrix of size N2 ×N1 holding the particle weights.
for i = 1 : N1 do

Sample xi from p(xi|θ)
Sample x+

i from p(x+
i |xi, u)

Sample z+
i from p(z+

i |x+
i )

end for
for i = 1 : N2 do

for j = 1 : N1 do
Calculate Wij = p(z+

j |x+
i )

end for
end for
Normalize the rows of W
for i = 1 : N2 do
θ+
i = ProjΘ

(
{x+

j }N1
j=1, {Wij}N1

j=1

)
end for

x1 x2 x3 xN1

x+1 x+2 x+3 x+N1

z+1 z+2 z+3 z+N1

x+1 x+2 x+N1

z+1

z+2

z+N2

W11 W12 W1N1

W2N1W22W21

WN2N1WN22WN21

θ+1

θ+2

θ+N2Sample from p(z+i |x+i )

Sample from p(x+i |xi, u)

Sample from p(xi|θ) p(z+i |x+j )

Non symmetric weighting matrix N2 ×N1

Figure 4.5: A figure illustrating the calculation of future beliefs using a non-
symmetric weighting matrix.
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an accurate sample could be much smaller than 1000. Assume we have on

good authority that this value is in the neighborhood of 100 (N2 = 100).

Then the weighting matrix need only be of size 100× 1000, an entire 10 times

less in terms of memory and computation. Additionally, only 100 projections

of weighted particle sets must be computed rather than 1000. The complexity

of training the agent changes from equation 4.6 to:

O
(
|G||U |

(
N1C1(x, x+, z+) +N1N2C2(x+, z+) +N2C3(N1) +N2C4(|G|)

))
(4.7)

Clearly we see that settings of N2 < N1 will be strictly faster than N1 = N2,

but the question is how will this effect the agent’s performance. To test our

changes we fix N1 = 100 while letting N2 ∈ {5, 10, 20, 40, 60, 80, 100}. The

settings N1 = N2 = 100 will allow us to compare to the standard PPOMDP

procedure. We choose dense belief sets for all four models. Specifically, |G| was

set as 1000, 500, 5000, and 2000 for the Inventory, Navigate, Pose Navigate,

and Car-on-a-Hill models respectively. Additionally, we compare our results to

those accumulated by an agent that was trained using Perseus and a discrete

MDP. Both Perseus and discrete MDP were allowed far greater training time

and finer discretization than our PPOMDP parameters to establish a proper

baseline to compare against as was described in the previous section.

Table 4.6 contains several interesting results. First we note that PPOMDP

outperforms both Perseus and discrete MDP for each of the four models. We

also notice that PPOMDP is unable to capture rewards near the theoretical

optimal performance, something we we attempt to obtain in future sections.

The most important result, however, it that values of N2 < N1 obtain com-

parable results to the standard PPOMDP setting of N1 = N2. Particularly,

for the Car-on-a-Hill and Navigate models N2 may be decreased to as little
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N2 Inventory Navigate Pose Navigate Car-on-a-Hill
5 -39 8.5 -8.9 68
10 -22 8.9 -4.1 71
20 -21 9.2 -3.3 73
40 -22 9.2 3.3 72
60 -21 9.2 11.8 72
80 -21 9.3 11.8 73
100 -21 9.2 11.8 73

Perseus -35 6.1 -20 65
Discrete MDP -49 6.8 10.8 60
Max Reward -13 9.3 14 84

Table 4.3: A table indicating the total rewards collected on average for all four
models as a function of N2. The bottom three rows indicate performance from
the Perseus and Discrete MDP agent as well as an upper bound for rewards
collected. N1 is set constant at 100.

N2 Inventory Navigate Pose Navigate Car-on-a-Hill
5 .66s 9.6s 37s 2.8s
10 .80s 11.6s 42s 3.8s
20 1.05s 14.7s 53s 5.7s
40 1.53s 21.1s 71s 9.0s
60 1.91s 27.0s 90s 11.6s
80 2.27s 30.9s 101s 13.7s
100 2.61s 33.8s 108ss 15.6s

Table 4.4: A table indicating the total training time (seconds) for all four
models as a function of N2. N1 is set constant at 100.

as 10 retain good performance. Then Pose Navigate model, however, clearly

suffers from a good sample over the posterior beliefs, although there is still

comparable performance when N2 = 60. For smaller values of N2 we see the

performance predictably diminish. We refer to Table 4.7 to see the reduction

in training times.

From Table 4.7 we see that a large portion of the training time must be

spent on the projection of the particles sets onto belief space. The speed differ-

ence between N2 = 5 versus N2 = 100 is nearly 5 fold for all four models. We
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Model N2 < N1 N1 = N2 Train Time Reduction
Inventory .80s 2.61s 31%
Navigate 14.7s 33.8s 43%

Pose Navigate 90s 108s 83%
Car-on-a-Hill 5.7s 15.6s 36%

Table 4.5: A table indicating the total training time (seconds) for all four
models for settings of N1 = N2 and the smallest value of N2 that receives
comparable performance. The percentage of time is shown in the final column.

summarize the speed improvements in the following table where we compare

the times when N2 < N1 with times when N1 = N2 and both have similar

performance:

We see for the Navigate and Car-on-a-Hill models a dramatic reduction in

training time when compared to the settings N1 = N2. For the Pose Navigate,

there is a slight reduction in training time, but for smaller samples of the

posterior belief the agent reaches the goal state less and less. The question is,

can we effectively generate extra samples of the posterior belief with projecting

more particles sets onto our parameterized distribution?

4.3.2 Generating Extra Posterior Belief Samples

If we look back to algorithm 8 we see that limiting N2 is effecting the calcula-

tion of the transition probabilities between states in G. Each weighted particle

set (N2 per action and belief pair) is projected into the belief space and then

“snapped” to the nearest belief in G. These “snapped” beliefs are then as-

signed nonzero transition probability. Zhou advocated “snapping” to only the

single nearest neighbor in G, while Brooks uses an interpolation scheme that

uses the nearest 10 neighbors. We argue that by assigning nonzero transition

probability to more than just 1 neighbor for each of our samples θ+
1 , · · · , θ+

N2
,

we effectively generate additional posterior belief samples. The only extra com-
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putational cost, while fixing N2, is the extra burden performing a k-nearest

neighbor search rather than the single nearest neighbor search. Algorithm 11

illustrates the changes to the transition approximation.

Algorithm 11 A generalization of TransitionProbablities(). As input this
algorithm accepts the value N3 which indicates the number of nearest neigh-
bors to consider when approximating transitions between beliefs.

Input: G = {θ1, θ2, · · · , θ|G|}, N3

Output: An approximation to p(·|θi, u) for θi ∈ G and u ∈ U stored in the
variables Tindices and Tvalues.
Initialize counter as an array of length |G|.
for i = 1 : |G| do

for j = 1 : |U | do
∆ = GeneratePosteriors(θi, uj)
Reset counter
for k = 1 : |∆| do

Let indexm be the index of the mth closest member in G to ∆k for
m = 1 : N3

counter[indexm]← counter[indexm] + 1 for m = 1 : N3

end for
Tindices[i][j]← non-zero indices of counter
Tvalues[i][j]← counter

|∆|N3

end for
end for

While Brooks used settings similar to our setting of N3 = 10 (in his work

the nearest neighbors were weighted according to distance from the sampled

posterior), and Zhou used a setting of N3 = 1, nobody has shown how settings

N3 > 1 can be interpreted as artificially inflating N2. We are particularly

interested in the performance of Pose Navigate as this is the only model that

severely suffered as a consequence of small N2. To test this generalization, we

reran the previous experiment while varying the N3 ∈ 1, 2, 3, 4, 5. We present

the rewards and times for training while fixing N1 = 100 and N2 = 10 and

varying N3.

From Table 4.6 we can make several observations. We see that for the
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N3 Inventory Navigate Pose Navigate Car-on-a-Hill
1 -22 9.2 -4.1 72
2 -22 8.9 -0.6 72
3 -21 8.7 11.8 73
4 -22 8.5 11.8 73
5 -22 8.1 11.8 71

Standard PPOMDP -21 9.2 11.8 73
Perseus -35 6.1 -20 65

Discrete MDP -49 6.8 10.8 60
Max Reward -13 9.3 14 84

Table 4.6: A table indicating the total rewards collected on average for all four
models as a function of N3. The bottom three rows indicate performance from
the Perseus and Discrete MDP agent as well as an upper bound for rewards
collected. N1 is set constant at 100 while N2 is set constant at the low value
of 10.

Model N2 = 10, N3 = 3 N2 = 100, N3 = 1 Train Time Reduction
Inventory 0.93s 2.61s 35%
Navigate 10.1s 33.8s 30%

Pose Navigate 43s 108s 40%
Car-on-a-Hill 3.6s 15.6s 23%

Table 4.7: A table indicating the total training time (seconds) for all four
models for settings of N1 = N2 and the smallest value of N2 that receives
comparable performance. The percentage of time is shown in the final column.

Navigate model the total rewards collected on average slowly diminishes as

N3 is increased. But, the Pose Navigate model responds exactly as we had

hoped. We see that for the setting of N2 = 10 and N3 = 1 the agent collects

negative rewards, but for N3 >= 3 the rewards collected become on par with

the standard PPOMDP settings (N2 = 100 and N3 = 1). It appears, for

models that require a large sample of posterior beliefs that using larger values

of N3 can effectively generate extra samples. This has to be done with care,

though, as for the Navigate model suffers, while the other two models are

indifferent. Finally, we reevaluate Table 4.7 with our updated results.
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We have generalized the calculation of transition probabilities between be-

lief states in G by introducing the parameters N1, N2, and N3. We have shown

that taking less samples over posterior beliefs than the number of particle sam-

ples representing θ ∈ G can result in comparable performance to the standard

setting. We showed that values of N3 > 1 can effectively generate posterior

belief samples that boost the time savings for the Pose Navigate model. Our

method trains agents from 2 to 5 times faster than the standard equivalent

when we fix N1 = 100. While these results are important, we do note that we

failed to achieve performances that are comparable to theoretically optimal

results. The next section reviews a forward search algorithm implemented by

Brooks. We then implement our own forward search algorithm and demon-

strate how it is capable of performing deeper searches than previously allowed

while achieving higher performance.

4.4 Forward Searching without Future Obser-

vations

In the previous section we illustrated the average reward accumulated by an

agent using a plan from a PPOMDP solution on a test bed of four models. A

set of likely beliefs were selected and the transition probabilities between beliefs

were approximated converting a continuous state POMDP into a discrete state

MDP. While the MDP was solved during value iteration the best action from

each state was easily stored at no extra computation cost and little additional

memory. While acting the agent will never (excluding perhaps the initial

state) hold a belief that exactly matches that from the belief set. The agent

can quickly do a nearest neighbor search with the help of a KD-tree and find

the closest belief state in the predefined set. Since the best action from this

83



point was saved this serves as suitable action to select assuming a high density

of beliefs. However, if the density of beliefs is sparse, there may arise situations

where the snapping effect to the nearest belief results in very poor decision

making as illustrated in Figure 4.6. But computationally, we prefer sparse

belief sets in terms of ease of computation. Following and expanding upon the

work of Brooks in [1], we develop forward planning techniques that allow the

agent to search the belief space before snapping to the nearest belief in the

set and show how this results in dramatically smaller belief sets and shorter

training time needed for high performance on the previously mentioned robot

navigation model.

Figure 4.6: This figure depicts an agent that believes it is just right of an
obstacle. The nearest reference belief, though, is clear of the obstacle and
selects an action moving toward the right and towards the goal region. This
dooms the agent to repeatedly collide with the obstacle even though the belief
is closely aligned with its true position and illustrates the so called ”snapping
effect” when referencing the belief set for actions.

The following will describe forward planning algorithm applied to PPOMDP’s

presented in [1]. We will then show how it can be improved to drastically re-

duce computational cost. Two additional forward planning techniques will be

introduced and their performance in terms of agent success and action selection

time will be compared.
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4.4.1 PPOMDP as a Game Tree

To prevent potentially poor decisions an agent needs to be equipped with an

action selection strategy more informed than taking the action stored from

the nearest belief point in the set. Consider the agent illustrated in 4.6. The

agent here accurately has a belief that coincided with the actual unobserved

true state. But the closest belief point used as a reference is slightly beyond an

obstacle obstructing the agent. If the agent elects to choose the action stored

in at that point it will inevitably run itself into the obstacle. This may repeat

several times until the agent’s belief shifts to one closer to a different belief

point in the set that stored a better action suitable for the agent’s position.

An intelligent agent should be able to predict its location in belief space

after an action (or series of actions). Its goal is then to choose the action

that results in a high reward and will leave the agent at a location where

future rewards are also available. Calculating the reward from a belief state

and action pair is straightforwardly approximated via algorithm 9. Deciding

the worth of being in a belief state is also simple and similar to the original

action selection. The agent simply finds the J value of the closest belief point

calculated during value iteration. Brooks in [1] uses a weighted interpolation

scheme over a set of belief points within range, while Zhou in [44] uses only

the nearest neighbor. We also only use only the nearest neighbor saving some

computation when comparing our results to their algorithm.

Typically, an agent benefits from expanding its forward search as far as

possible. We see this particularly in the realm of game theory and in the

analysis of chess artificial intelligence. In chess, two players alternate selecting

actions. An individual player is trying to select an action that advances his

board state closer to a game winning position, while preventing his opponent

from doing the same. The farther a player can look ahead to consider the
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ramifications of an action, the more informed his decision will typically be

(excluding a horizon effect) [60]. The term ply or depth refers to the number

of actions considered sequentially before evaluating the board position. A

board position is heuristically evaluated according to the number and position

of chess pieces. One can exhaustively create a tree of all the possible board

positions resulting from any combination of actions up until some predefined

depth d. Unfortunately, this tree exponentially expands as a function of search

depth. Once a tree is constructed a player may evaluate an action assuming

the he will select the best action for himself and that his opponent will do

the opposite. An algorithm of this type is called a Min-Max algorithm and

can be used in any deterministic two player game [61]. This algorithm was

significantly improved with the advent of the Alpha-Beta algorithm, mitigating

the exponential explosion of board states allowing for deeper searches. Alpha-

beta search operates by pruning out branches of the tree that are provably

worse than an action already considered [62].

The agent in a PPOMDP setting has a similar decision to make as a player

involved in a chess game, but without an adversary making decisions to ma-

liciously thwart its goals. There is in some context, though, another player

effecting our agent’s progression. While an agent has complete control over

its actions, the future true state and observed measurement are randomly de-

cided. We can think of this effect as Nature effecting our position (or belief

in our case), but in a random rather than adversarial manner. Additionally,

since Nature’s actions (or the agent’s observations) are continuous, making a

tree of future beliefs can only be accomplished by sampling a discrete number

of observations. The leaves of our sampled tree hold potential future belief

states after an action is selected and observation is collected. These leaves

can be evaluated by the closest J value in the predetermined belief set. Un-
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fortunately, since Nature is not knowingly competing against the agent, the

Min-Max and Alpha-Beta algorithms are not at our disposal.

4.4.2 PPOMDP Game Tree with Observations

The game tree in the PPOMDP setting consists of two types of nodes each

representing a point in belief space: action and observation nodes. There are

|U | edges leaving an action nodes, one for each of the available actions, and all

edges transition to an observation node. An observation node represents the

agent’s belief immediately after it acts but before it incorporates an observa-

tion into its belief. The branching factor from an observation node should be

|Z| assuming a discrete set of measurements, but is a bit more complicated

assuming an infinite set as in the robot navigation model. Instead of enu-

merating all possibilities at these nodes, future observations may be sampled

limiting the branching factor. Recall, that we generalized how posterior beliefs

were sampled. We use N1 to represent the number of samples drawn from θ

and N2 to represent the number of future beliefs sampled θ+|θ, u. Thus, in

our implementation of a forward search the branching from an action node is

N2. The total number of leaves in this game tree considering a forward search

of depth d results in a need to evaluate (|U |N2)d belief states. The robot

navigation model was defined as having 33 action. If we set N2 at a very low

value of 10, then a single depth search requires 330 evaluations. Searching one

additional ply requires (330)2! Both Chess and Go have (on average) a far

smaller branching factor of 35 and 200 respectively [63], as well as being able

to take advantage of the Alpha-Beta pruning. Thus, the exhaustive tree search

for the PPOMDP controller will be limited to only 1 or 2 ply in the current

state. This motivates us to find a method to increase our search depth. The

main problem with this forward search is the double branching factor. Even
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if we elect to choose a very small value of N2 (the number of future states we

branch to from an action), this value will still have an exponential effect on

our computation as a function of depth.

θ

u1 u2 u|U |

z+1 z+2 z+N

θ+1 θ+2 θ+N

Observation nodes

Action nodes

Figure 4.7: A figure adapated from [1] illustrating the the game tree resulting
from an initial belief θ. First the agent branches out considering all actions,
and then branches again according to possible future observations.

Koenig, in [64, 65], works on a robot navigation task similar to the Pose

Navigate Model presented. The focus of his work is interleaving planning and

plan execution for real time action selection on non-deterministic domains.

The randomness in his navigation model is represented by the fictitious oppo-

nent Nature. The model, as with ours, has Nature acting randomly, but the

agent in Koenig’s work assumes that Nature is both intelligent and adversar-

ial. That is, Nature will actively attempt to deny the agent access to a goal

state. Applying this to our work is simple. Instead of taking the average over

observations when evaluating the game tree we take the minimum. If we were

to anthropomorphize the agent searching this way, we can consider it acting
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Algorithm 12 A recursive forward search algorithm EvaluateParticles re-
turning the value of being in an initial state and storing the predicted op-
timal sequence of actions. The subfunction UpdateParticles applies the
selected action to each of the particles, MakeMeasurements stochastically
samples a measurement from each particle, CalculateStateActionReward
returns the weighted average reward of taking an action from each particle,
UpdateWeights reweights the particle set given the assumed true measure-
ment z+

j .

Input: An initial particle set {x1, x2, · · · , xN1} with weights
{w1, w2, · · · , wN1}, search depth d, and the total reward path pathReward.

Output: An approximation of the total expect future rewards and best next
action.
actionCost← 0
MaxV alue← −∞
Let X denote {x1, x2, · · · , xN1}
Let W denote {w1, w2, · · · , wN1}
for i = 1 : Number of actions do
action← ith action
{x+

1 , x
+
2 , · · · , x+

N1
} ← UpdateParticles(X, action)

Let X+ denote {x+
1 , x

+
2 , · · · , x+

N1
}

{z+
1 , z

+
2 , · · · , z+

N1
} ←MakeMeasurements(X+)

Let Z+ denote {z+
1 , z

+
2 , · · · , z+

N1
}

meanV alue← 0
actionReward← CalculateStateActionReward(X,W, action)
for j = 1 : N2 do
{w+

1 , · · · , w+
N1
} ← UpdateWeights(X+,W, Z+, z+

j )
Let W+ denote {w+

1 , · · · , w+
N1
}

R← actionReward+ pathReward
meanV alue← meanV alue+ EvaluateParticles(X+,W+, d− 1, R)

end for
meanV alue← meanV alue/N2

if meanV alue > MaxV alue then
Store action as best action for depth d
maxV alue = meanV alue

end if
end for
return maxV alue
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extremely risk adverse avoiding scenarios with possible low rewards even if the

outcome is unlikely. If we take the minimum over observations rather than the

average, then this would allows us to use results from Min-Max and Alpha-

Beta literature. Recall, Alpha-Beta prunes out sections of the search tree that

lead to provably worse scenarios than we know we can maneuver to. But, the

double branch factor for each action still remains.

4.4.3 PPOMDP Game Tree without Observations

How can we reduce the number of evaluations for forward searching in the

PPOMDP setting? What we need to realize is that the observations available

to the agent are a convenience. Recall, the agent makes inferences about its

location in state space based on its knowledge of the state transition function

and the noisy measurement dynamics. If observations are completely neglected

the agent can still make principled estimates of its location. We propose to

modify the forward search by electing not to sample future observations. Es-

sentially the agent simulates blind actions through state space. We expect the

belief states generated from very deep searches to be very uninformed, that is

the beliefs will have variance parameters. But, the search tree expansion only

branches on the number of actions |U |. A search without considering observa-

tions to a depth of d has |U |d leaves opposed to (|U |N2)d leaves if we evaluated

via Brooks’ forward search. Clearly our method is much more efficient com-

putationally, but the leaves are our tree are more unrealistic beliefs. But, will

the deeper depths allowed by our search allow for better performance.

To test the difference in performance between our proposed forward search

and Brooks’, we first evaluate the length of time it takes to select an action as

a function of search depth and model. We set N1 = N2 = 100 when searching

via Brooks’ method. That is, we remove the sampling generalization we made
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Inventory, |U | = 2
Search Depth No Observations With Observations

1 .001s .002s
2 .001s .384s
3 .001s NA
4 .001s NA
5 .001s NA

Table 4.8: A table of the times to select an action as a function of search
depth for the Inventory model. The sampling parameters are set as N1 =
N2 = 100. NA corresponds to settings where the time to select an action
becomes prohibitive.

Navigate, |U | = 33
Search Depth No Observations With Observations

1 .003s .065s
2 .054s 204s
3 2.91s NA

Table 4.9: A table of the times to select an action as a function of search
depth for the Navigate model. The sampling parameters are set as N1 = N2 =
100. NA corresponds to settings where the time to select an action becomes
prohibitive.

about state particles and posterior beliefs. For our search, we set N1 = 100,

N2 is irrelevant as we are not sampling future observations.

From the previous tables, we see that forward searching via Brooks’ algo-

rithm is reasonably limited to a search depth of 1. A search depth any deeper

results in action selection times greater than .1 seconds, which we set as a

reasonable cut off on the time allotted for an autonomous agent to select an

action. Note, for the Navigate model it takes a stunning 204 seconds to select

a single action with a search of depth 2 when considering the impact of ob-

servations. On the other hand, for our search algorithm we are able to obtain

reasonable searches of depths 5, 2, 3, and 5 for the Inventory, Navigate, Pose

Navigate, and Car-on-a-Hill models respectively.

We test the performances as a function of realistic search depth for both
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Pose Navigate, |U | = 7
Search Depth No Observations With Observations

1 .003s .022s
2 .008s 15.72s
3 .054s NA
4 .391s NA
5 2.87s NA

Table 4.10: A table of the times to select an action as a function of search
depth for the Pose Navigate model. The sampling parameters are set as N1 =
N2 = 100. NA corresponds to settings where the time to select an action
becomes prohibitive.

Car-on-a-Hill, |U | = 5
Search Depth No Observations With Observations

1 .001s .009s
2 .001s 4.51s
3 .005s NA
4 .019s NA
5 .084s NA

Table 4.11: A table of the times to select an action as a function of search
depth for the Car-on-a-Hill model. The sampling parameters are set as N1 =
N2 = 100. NA corresponds to settings where the time to select an action
becomes prohibitive.
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Inventory, |U | = 2
|G| = 20 |G| = 1000

Search Depth No Obs. W/Obs. No Obs. W/Obs.
0 -26 -26 -21 -21
1 -13.7 -14.2 -13.6 -13.9
2 -13.6 NA -13.6 NA
3 -13.6 NA -13.6 NA

Max. Reward -13 -13 -13 -13

Table 4.12: A table of the average rewards collected as a function of search
depth and search type for the Inventory model. The sampling parameters are
set as N1 = N2 = 100. NA corresponds to settings where the time to select an
action becomes prohibitive.

Navigate, |U | = 33
|G| = 200 |G| = 500

Search Depth No Obs. W/Obs. No Obs. W/Obs.
0 7.4 7.4 9.2 9.2
1 8.0 8.2 9.2 9.2
2 9.2 NA 9.2 NA

Max. Reward 9.3 9.3 9.3 9.3

Table 4.13: A table of the average rewards collected as a function of search
depth and search type for the Navigate model. The sampling parameters are
set as N1 = N2 = 100. NA corresponds to settings where the time to select an
action becomes prohibitive.

forward searches. In addition, we also test on sparse and dense belief sets. We

are interested to see if our deep searches can compensate for sparse belief sets

if they will outperform Brook’s forward search. The results are summarized

in the following tables.

We see that for the Inventory model, either forward search accumulates

rewards very near the optimal values. Also the agent is indifferent to very

sparse belief sets (|G| = 20), which is likely due to the low dimension state

space (only 1). For the Navigate model we see that the agent accumulates very

high rewards without a forwards search with a dense belief set. When this set
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Pose Navigate, |U | = 7
|G| = 2000 |G| = 5000

Search Depth No Obs. W/Obs. No Obs. W/Obs.
0 10.4 10.4 11.8 11.8
1 10.3 11.6 12.0 12.5
2 11.9 NA 12.5 NA
3 12.3 NA 12.7 NA

Max. Reward 14 14 14 14

Table 4.14: A table of the average rewards collected as a function of search
depth and search type for the Pose Navigate model. The sampling parameters
are set as N1 = N2 = 100. NA corresponds to settings where the time to select
an action becomes prohibitive.

Car-on-a-Hill, |U | = 5
|G| = 250 |G| = 2000

Search Depth No Obs. W/Obs. No Obs. W/Obs.
0 16 16 72 72
1 10.2 9.2 72.2 80.3
2 13.9 NA 79.8 NA
3 45.7 NA 81.7 NA
4 57.9 NA 82.1 NA
5 73.1 NA 83.1 NA

Max. Reward 84 84 84 84

Table 4.15: A table of the average rewards collected as a function of search
depth and search type for the Inventory model. The sampling parameters are
set as N1 = N2 = 100. NA corresponds to settings where the time to select an
action becomes prohibitive.
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is reduced to size 200 the zero depth is only able to accumulate rewards on

average equal to 7.4. With our forward search of depth 2 we can bring this

back to a value of 9.2. Due to the limited nature of searching with observations

the competitor algorithm only obtains rewards equal to 8.2. We see similar

results with Pose Navigate. Our search algorithm searches deeper and obtains

rewards on a sparse belief set close to that of the dense belief set and out

performs Brooks’ algorithm. The most promising results are from the Car-on-

a-Hill model. Our search to a depth of 5 on a sparse belief set accumulates

rewards on average equal to 73.1. The competitor forward search may only

search to depth 1 and achieve an average reward of 9.2. With our search we

almost reach the peak rewards on an extremely sparse belief set.

4.5 Adaptive Sampling

In the previous section we saw that there are a variety of ways that the accuracy

of the PPOMDP algorithm can be tuned that have a great effect on the training

time, action selection time, and performance. In summary, during training the

user must choose:

1. N1, the number of particles sampled from a belief state.

2. N2, the number of belief states to project from weighted particle sets.

3. N3, the number of nearest neighbors the sampled belief states “snap” to

when approximating transition probabilities.

Additionally, during plan execution the user may use different parameters

(excluding N3) to adjust search depth and accuracy. A wise choice (balancing

performance and computational resources) of parameters will certainly change

according to the agent’s computational power and model. As well, in a fixed
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model there may exist places in the belief state space where more or less

samples are necessary to satisfy a minimum degree of accuracy. This motivates

us to incorporate an adaptive sampling scheme to ensure errors are minimized

throughout training, plan execution, and across models. First we will review

adaptive sampling techniques in the particle filter literature and then apply

them to the PPOMDP algorithm. Then we will show how these techniques

work across models and simplify the user’s input while maintaining efficient

training time, execution time, and performance.

4.5.1 Adaptive Sampling

Particle filters have been modified and tuned to solve problems in a diverse

set of problems ranging from speech recognition to robot navigation [66]. This

class of algorithms is attractive due to their ability to represent arbitrary

probability density functions [16]. Throughout the years a number of im-

provements have been made to deal with specific deficiencies in the particle

filter. In the review [13], Doucet explains a Resample-Move strategy that

“herds” particles towards high likelihood locations in state space with Markov

Chain Monte Carlo move steps. The point is to ensure the quality of the

sample set. The Ensemble Particle Filter, seen in [67] and derived from the

Ensemble Kalman filter in [68], has been shown to perform well on highly

nonlinear model that exhibit multimodal behavior. Particle filters and genetic

algorithms were merged in [69] as a resampling scheme to combat the well

known degeneracy problem. The purpose of many of these improvements is

to create a diverse set of particles that maintain an accurate representation of

the underlying density function for a fixed number of particles.

The run time of any particle filter will be subject to the number of particles

used. A tradeoff exists between using less particles for computational efficiency
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at the cost of possibly poor accuracy, and thus motivates an automated system

for determining particle set size adaptively. During the course of a particle

filter algorithm the complexity of the estimated probability distribution will

vary over time [70]. For simple distributions we desire less particles, while for

difficult and complex we require more. Consider the two areas of sampling in

the PPOMDP algorithm:

1. Particles (or possibly true states of the agent) are sampled from belief

states to estimate future distributions. For broad and uncertain belief

states, we expect a large number of samples. For certain and low variance

belief states we require less samples for an accurate particle representa-

tion.

2. Future belief states after acting are calculated (in the PPOMDP al-

gorithm) by assigning different weights to the same particle set. The

weights are a function of a predicted future observation. If a measure-

ment conveys little information, the sets of weights will be similar re-

quiring less projected beliefs to represent future possibilities.

Specifically, we need an algorithm that adjusts the values of N1 and N2 during

training and plan execution, and also across models.

There have been attempts through the years to adjust the particles in

a mathematically justified manner. In particular there is a likelihood-based

adaptation method [71, 72] which adjusts the number of particles based on

there non-normalized likelihoods. Samples are drawn until the sum of the

likelihoods exceeds a user defined threshold. While this was shown to improve

the quality of particle filters [71, 72], Fox explains in [73] how this approach

does have deficiencies and samples less particles than is appropriate. He then

proposes and derives an adaptive sampling scheme based on Kullback-Leibler
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distance (KL-distance) and will be our method of choice and explains in what

follows.

4.5.2 Kullback-Liebler Distance Sampling

Kullback-Liebler Distance-sampling (KLD-sampling) in [70, 73] is motivated

by the following quote from Fox

“At each iteration of the particle filter, determine the number of samples

such that, with probability 1 − δ, the error between the true posterior and the

sample-based approximation is less than ε.”

Recall the KL-distance between two probability distributions p and q

K(p, q) =
∑
x

p(x)log

(
p(x)

q(x)

)
.

The KL-distance establishes a measure (although not a metric, since it is not

symmetric) that can be interpreted as a distance between probability distribu-

tions. K(p, q) is zero if p and q are identical, and grows the larger the disparity

between the two. Let X = {X1, · · · , Xk} be a sample of n draws from k bins.

Assume X follows a multinomial distribution, that is X ∼Multinomial(n, p)

where p = {p1, · · · , pk} denotes the probabilities of drawing from each of the

k bins. The maximum likelihood estimate (MLE) of p is given by

p̂ = n−1X = {n−1X1, · · · , n−1Xk}

The likelihood ratio statistic can be written in terms of the KL-distance as

log (λn) = n

k∑
i=1

p̂jlog

(
p̂j
pj

)
= nK(p̂, p).
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The likelihood ratio is known to converge [74] to the chi-square distribution

with k − 1 degrees of freedom, that is

2log (λn)→d χ
2
k−1 as n→∞

Fox shows in [73] that is n is selected to satisfy

n =
1

2ε
χ2
k−1,1−δ

then it can be guaranteed that the probability Pp(K(p̂, p) = 1−δ. In practice,

χ2
k−1,1−δ is approximated using

n =
k − 1

2ε

(
1− 2

9(k − 1)
+

√
2

9(k − 1)
z1−δ

)3

(4.8)

where z1−δ follows the quantile of the standard normal distribution.

This gives us clear guidance for sampling from a multinomial distribution,

but the distributions encountered so far have all ben continuous. This problem

is alleviated by creating a uniform grid of bins over the support or using a

multidimensional tree structure [75] (such as a KD-tree). When using a KD-

tree, a point is “binned” at the nearest neighbor in the tree. A second problem

is that the number of bins with non-zero probability are unknown during an

iteration of the filter. That is, we don’t know what value k should take. This

is overcome by keeping track of the number of bins that the particles fall

into, and updating the value of k as particles are sampled. This adaptively

increases the number of particles to be sampled. Eventually, as the bins fill,

the estimate of k is unchanged and the samples reach the value of n specified

by 4.8. Algorithm 13 is presented and adapted from [70].

This gives us clear guidance for sampling from a multinomial distribution,

99



2550

50

75

100

150

200

k = 10

δ

ε

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.05

0.1

0.15

0.2

0.25

0.3

0.35

150

200

300

400

600

900

k = 50

δ

ε

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.05

0.1

0.15

0.2

0.25

0.3

0.35

300400

600

900

1100

k = 100

δ

ε

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.05

0.1

0.15

0.2

0.25

0.3

0.35

4000

6000

8000

10000

k = 1000

δ

ε

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 4.8: A figure showing four contour plots of the number of samples
needed to satisfy the KLD-sampling criterion for values of ε and δ. Each
figure corresponds to a different value of k, the number of bins with positive
support.
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Algorithm 13 The basic KLD sampling algorithm. This psuedocode ignores
some of the details in particle sampling and weighting in exchange for read-
ability. Also, the variable nmin is defined to ensure that at least nmin samples
are drawn. Let nχ be the minimum number of samples necessary to satisfy
4.8.

Let k = nχ = n = 0, S =
while n < nmin and n < nχ do

Sample x(n) ∼ X
S ← S ∪ x(n)

if x(n) in an empty bin then
k ← k + 1
Mark the bin x(n) falls into as not empty

nχ ← k−1
2ε

(
1− 2

9(k−1)
+
√

2
9(k−1)

z1−δ

)3

end if
n← n+ 1

end while
return S

but the distributions encountered so far have all ben continuous. This problem

is alleviated by creating a uniform grid of bins over the support or using a

multidimensional tree structure [75] (such as a KD-tree). When using a KD-

tree, a point is “binned” at the nearest neighbor in the tree. A second problem

is that the number of bins with non-zero probability are unknown during an

iteration of the filter. That is, we don’t know what value k should take. This

is overcome by keeping track of the number of bins that the particles fall

into, and updating the value of k as particles are sampled. This adaptively

increases the number of particles to be sampled. Eventually, as the bins fill,

the estimate of k is unchanged and the samples reach the value of n specified

by 4.8. Algorithm 13 is presented and adapted from [70].

There are two areas where KLD-sampling is applicable: sampling from

the belief state and generating future belief states. From the previous section

we set these values to N1 and N2, respectively. Ideally we can remove their

specification and replace it with values more closely related with accuracy:
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Model Average N1 Average N2

Inventory 638.8 77.2
Navigate 96.8 6.3

Pose Navigate 218.3 9.8
Car-on-a-Hill 138.8 10.6

Table 4.16: A table of the average N1 and N2 selected for each of the four
models

δ and ε. Algorithm 14 is an adapted two stage KLD-sampler specifically to

accomplish this. Given an initial belief state, action, and N3, 14 first generates

a particle set along with sampled measurements. It then calculates weighted

particles sets, projects them onto the belief space, generating n3 future beliefs

per weighted particle sets. Thus, each iteration (each weighted particle set)

increases the number of samples in the second stage by n3, and potentially

increases k by n3 as well. Before, we had the stipulation that N2 ≤ N1, and

similar reasoning applies here as well. Each particle yields one measurement

and thus the number of future beliefs is limited by the number of particles

sampled in the first stage of the algorithm. Additionally, this method requires

two multidimensional trees for the binning process, one for the model’s state

space and another for the belief space.

We now have a mathematically principled way of sampling a particle rep-

resentation of θ and distribution over posteriors θ+|θ, u. Just by specifying the

parameters ε and δ, algorithm 14 effectively adjust N1 and N2 during train-

ing and across models. In earlier sections we made the claim that in general

N2 < N1 will provide adequate sampling for high performance. We demon-

strated this numerically, but now we have the adaptive sampler to further

verify this claim more systematically. We first compile frequency tables for

the selected values of N1 and N2 across all four of our models during training.

We also list the average values of N1 and N2.
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Algorithm 14 The KLD algorithm adapted for the two stage sampling en-
countered in PPOMDPs. The first stage creates and particle representation
of a given belief. The second stage creates and projects weighted particle sets
until the KLD-sampling criteria is satisfied.

Let k = nχ = na = 0, Sa = Sb = Z = ø
First stage: sampling particles from a given belief state
while na < nmin and na < nχ do

Sample x(na) ∼ X
Sample x(na),+ ∼ p(x(na),+|x(na), u)
Sample z(na) ∼ p(z(na)|x(na),+)
Sa ← Sa ∪ x(na),+

Z ← Z ∪ z(na)

if x(na) in an empty bin then
k ← k + 1
Mark the bin x(na) falls into as not empty
Update nχ

end if
na ← na + 1

end while
Let k = nχ = nb = counter = 0
Second stage: sampling future beliefs
while nb < nmin and nb < nχ do

if counter == na then
Halt the while-loop

end if
Let newBelief be the projection of the particle set Sa using measurement
z(counter)

Find the n3 nearest neighbors of newBelief in G
Update k for all unbinned neighbors
Update nχ
nb ← nb + n3

counter ← counter + 1
end while
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Figure 4.9: A figure showing the distributions of N1 and N2 selected by our
adaptive sample while training an agent on all four models. Each row corre-
sponds to a different model. The right column contains the frequencies for N1,
while the left row contains the frequencies for N2.
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From Figure 4.9 we see that our adaptive sampler is adjusting the values

of N1 and N2 during the course of training. We see that the distribution

of sampling parameters is also changing across the models as we had hoped.

Table 4.5.2 verifies our claims about N2 < N1. We see for all four models

that the adaptive sampler choose and order of magnitude less samples of the

posterior belief distribution than the particles representing θ.

We need to verify that the adaptive sampler is capable of training an intel-

ligent agent in a reasonable amount of time. We have no standards to measure

against as we have the only PPOMDP adaptive sampler for training. We will,

however, break our sampler into three versions of varying complexity. Recall

that when considering a weighted particle set, the effective sample size can be

measured as:

Neff =
1∑N

i=1 (wi)2
. (4.9)

We can save some computation time by using particles sets smaller than N1

when we project them onto the belief space.

We list three versions of our adaptive sampler:

• Method #1: Adaptively sample N1 and N2. Limit the number of parti-

cles used in the projection of the particle set back onto belief space. Use

the stopping convention of Neff >
N1

2
.

• Method #2: Adaptively sample N1 and N2. Use the full particle sets to

project back to belief space.

• Method #3: Adaptively sample only N1. Let the number of posterior

beliefs be equal to N1.

Method #1 is a small computation improvement over Method #2. We consider

Method #3 to be a comparison to Brooks and Zhou if they were to implement
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Model |G| Depth M. #1 M. #2 M. #3 Fixed
Inventory 20 2 -13.4 -13.5 -13.4 -13.6
Navigate 200 2 9.1 9.1 9.2 9.2

Pose Navigate 2000 3 12.2 12.3 12.2 12.3
Car-on-a-Hill 250 5 73.0 73.5 72.3 73.1

Table 4.17: A table of average rewards collected for three adaptive samplers
and one fixed. The fixed sampler used values of N1 = N2 = 100. The adaptive
sampler used values of ε = δ = .1.

Model |G| Depth M. #1 M. #2 M. #3 Fixed M. #3 / M. #1
Inventory 20 2 .03s .06s .48s .04s 16.0X
Navigate 200 2 4.7s 6.0s 19.4s 10.3s 4.1X

Pose Navigate 2000 3 50.6s 65.8s 208s 45.2s 4.1X
Car-on-a-Hill 250 5 .61s 1.19s 6.95s 1.62s 11.4X

Table 4.18: A table of average rewards collected for three adaptive samplers
and one fixed. The fixed sampler used values of N1 = N2 = 100. The adaptive
sampler used values of ε = δ = .1.

an adaptive sampler as both used the settings N1 = N2. The search times and

performances of our algorithms are listed in the tables below.

From Table 4.5.2, we see no significant reduction in average rewards col-

lected for our adaptive sampler. All three, and in particular Method #1,

perform at the highest standards set thus far. We are of course interested in

how the training times of all three methods compares. We of course do not

want a sampler that “over-samples”. Table 4.5.2 shows illustrates the times to

train. In particular, we look at the difference between Method #1 and Method

#3. We see that by allowing N2 < N1 that our adaptive sampler trains agents

4 to 16 times faster than the more simplistic sampler. Also, we note that our

sampler trains a times less than the fixed settings N1 = N2 = 100, with the

exception of the Pose Navigate model.
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Chapter 5

Conclusions

In this thesis we proposed and developed several novel improvements to the

Parametric POMDP algorithm for continuous state spaces and demonstrated

their effectiveness on a variety practical POMDP models. Our improvements

allow for a significant reduction in the computation aspects of training an

agent and plan execution.

In the first part of our contributions we decoupled two areas of sampling

used to approximate transitions probabilities between belief states from a dis-

crete set of beliefs. Specifically, we allowed the number of particles representing

a belief state to be of a different value of than the number of sampled pos-

terior beliefs. We demonstrated that by allowing these values to be different

we could save a considerable amount time training autonomous agents on a

variety of models. Our methods were shown to be 2 to 5 times faster than the

current standards when matching similar parameter settings for the sampling

during belief state transitions. We also showed that we could effectively gen-

erate extra posterior belief samples by doing a k-nearest neighbor search when

approximating the transition probabilities. Specifically, we demonstrated this

on our adaptation of robot navigation with a pose state. We showed that an
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agent was able to collect high rewards a high number of samples were drawn.

As we decreased the posterior sample size the rewards predictably declined as

well. When only 10 samples were drawn the agent typically catastrophically

failed to reach the goal region. As we introduced multiple neighbors during the

training we saw training improve to the standards set by a full 100 samples.

Secondly, we implemented a new forward search algorithm. Our search

algorithm branched only on the number of actions available to the agent rather

than branching on number of actions and number of observations sampled. Our

tree required the evaluation of a |U |d leaves where other similar approaches

were required to evaluate a tree that branched twice. In the context of our

parameters, the tree would have (|U |N2)d leaves to evaluate. To reduce the

branching factor so substantially, we ignored the impact of observations on

future belief states altogether. We showed how this resulted in much more

reasonable search times (where we define “reasonable” as being a search taking

less than 1 seconds) for depths from 2 to 5 depending on the parameters of

the model. We showed how the only other standard method may only search

up to a depth of 1 before the action selection time becomes prohibitive. We

demonstrated that the deeper searches of our method outperformed the other

method on sparse and dense belief sets. We showed that rewards without

a forward search were a lessened with the sparseness of belief set density.

However, when our search algorithm was able to create nearly identical rewards

when sparse sets were used and compared to rewards on a denser belief set.

The standard search with observations was unable to search deep enough to

make a similar claim.

Thirdly, we developed a threefold adaptive sampler based on Kullback-

Liebler distance and effective sample sizes for training the agent. With our

sampler we only require the setting of two accuracy parameters, ε and δ.
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With these two values the sampler dynamically tunes the number of particles

representing beliefs, the number of posterior beliefs sampled, and the size of

weighted particle sets used to project back onto belief space for every θ ∈ G
and u ∈ U pair. We demonstrated that our sampler can train the agent

in reasonable training times when compared to a fixed sampler. That is, our

sampler does not take a prohibitive number of samples driving the computation

time past what we would expect for the complexity of the model. We showed

that without allowing N1 and N2 take different values an adaptive sampler

takes 4 to 16 times as long to train without any boost in performance when

tested on our four models. We also verified our claim that N2 < N1 by taking

the average values of N1 and N2 selected by the adaptive sampler.
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