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Abstract of the Dissertation

A Spline-based Volumetric Data Modeling
Framework and Its Applications

by

Bo Li

Doctor of Philosophy

in

Computer Science

Stony Brook University

2012

The rapid advances in 3D scanning and acquisition techniques have
given rise to the explosive increase of volumetric digital models in re-
cent years. This dissertation systematically trailblazesa novel volu-
metric modeling framework to represent 3D solids. The need to ex-
plore more efficient and robust 3D modeling framework has gained
the prominence. The traditional surface representation (e.g., triangle
mesh) is incapable of expressing the interior space and materials. Such
a serious drawback overshadows many potential modeling andanalysis
applications. Consequently, it is desirable to explore oneefficient 3D
volumetric data modeling framework to suffice above great potential of
paradigm shift from surface to volume data.

Contrary to surface modeling techniques, two fundamental changes se-
riously impede this shifting to volumetric data: dramatic explosion on
total quantity of data size and unprecedent strong demand for faster
and more accurate scientific computations. Volumetric datamodel-
ing thus has an extraordinarily intense need for a regular, continuous
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and compact representation. This dissertation presents the challeng-
ing research issue of developing a spline-based modeling framework to
bridge this gap. This methodology adopts regular cube parametric do-
main and provides compact and precise mathematical representation,
to sufficiently comply with the requirements in volumetric data mod-
eling. Moreover, the regular tensor-product structure enables our new
developed methods to be embedded into the industry standardseam-
lessly. These properties make spline-base framework highly preferable
in many physically-based applications including mechanical analysis,
shape deformation and editing, virtual surgery training, etc. Neverthe-
less, using this new framework to represent general volumetric models
involves many theoretically fundamental obstacles. This dissertation
focuses on the most important problems, and seeks accurate and effi-
cient solutions.

First, in order to achieve a “surface model to trivariate splines” conver-
sion, we define our new splines upon a novel parametric domaincalled
generalized poly-cubes (GPCs), which comprise a set of regular cube
domains topologically glued together. Using GPCs can effectively re-
duce the number of domain and improve the domain quality.

We then further investigate the technique to allow trivariate splines sup-
porting arbitrary topology. Through the divide-and-conquer scheme,
the user can decompose the model into components and represent them
by trivariate spline patches. Then the key contribution is our power-
ful merging strategy that can glue tensor-product spline solids together,
while preserving many attractive advantages.

We also develop an effective method to reconstruct discretevolumetric
datasets (e.g., volumetric image) into trivariate splines. To capture the
fine features in the data, we construct an as-smooth-as-possible frame
field based on 3D principal curvatures to align with a sparse set of di-
rectional features. The frame field naturally conducts a volumetric pa-
rameterization and thus a spline representation.

Next, we focus on promoting broader applications of our powerful
modeling techniques. We present a novel methodology based on ge-
ometric deformation metrics to simulate magnification lensthat can
be utilized for the Focus+Context (F+C) visualization. We apply this
methodology to both 2D image and 3D volume visualization.

Through our extensive experiments, we demonstrate that ourframe-
work is an effective and powerful tool for comprehensive existing mod-
els. The great potential of our modeling framework will be highlighted
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through many valuable applications. We also envision further research
directions and broader application scopes including many potential the-
oretical problems and useful applications.
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Chapter 1

Introduction

1.1 Problem Statements

Since the beginning of computer graphics research and application, surface shape
modeling and design have always been the central issue, mainly because shape de-
sign keeps acting as the core applications in industry as well as lacking real 3D data
for a long time. Now with the development of 3D data acquisition techniques and
driven by the requirement of more realistic and better visual effects, graphics re-
searchers and practitioners are now having strong momentumto focus on volumet-
ric data modeling as an important augment to current computer graphics. Behind
this great potential are the rapidly developing 3D data acquisition techniques and
their close relations to many desirable applications: proliferation of modern 3D
scanning devices and shape modeling technologies give riseto the huge number of
available high quality 3D datasets. The mature of output terminals, like 3D printing
and 3D display techniques, also stimulates the demand for volumetric data model-
ing and rendering. Many computer graphics applications also benefit tremendously
from this trend. For example, we can now, for the first time, efficiently and robustly
adapt real heterogenous material data onto 3D objects, which will significantly im-
prove the rendering and simulation effects. Consequently,these newly emerged
volumetric datasets, as a novel data platform, may lead to a revolutionary trans-
formation to graphics applications from current existing surface-driven practices.
Fig. 1.1 shows several examples on volumetric data modelingand applications,
including: volumetric parameterization, volumetric shape and density visualiza-
tion, solid texturing, physical-based analysis, volume compression and vectoriza-
tion, elastic model deformation, mesh editing and deformation, etc.

Driven by these applications there is a strong desire for a suitable 3D volumetric
data representation, but so far little progress has been made to develop the modeling
framework. We now need to explore more efficient and robust 3Dvolumetric data

1



Figure 1.1: Volumetric modeling and applications. The common volumetric data
driven applications include volumetric parameterization, volumetric shape and den-
sity visualization, solid texturing design, physical computation (PDE solving), vol-
umetric data vectorization, elastic model deformation, mesh editing and model-
ing.(Courtesy of Nieser et al. [1], Huang et al. [2], Takayama et al. [3], Kopf et al.
[4], Zhang et al. [5], Wang et al. [6], Irvings et al. [7], Ju etal. [8].).

modeling framework, according to the properties of applications on 3D volumet-
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ric data (like large data size for storage/transmission, more frequent physical-based
simulation, more accurate numerical computation need, etc). However, we also im-
mediately realize that this need is always accompanied by many difficult challenges,
some of which are even conflicted with each other. The fundamental reason mainly
comes from volumetric data’s huge data size and its application’s close relation to
physical-based computation. These unique properties determines that volumetric
data modeling, although changing little from the surface model about the complex-
ity of boundary shape, has more restrict criteria on the choice of its representation
format.

The first important difference is compactness. Conventional surface model-
ing mainly focuses on allowing more shape complexity duringdesigning models.
This purpose decides that the discrete/irregular models like point cloudandtrian-
gle meshare widely used because of their high flexibility for representing complex
shapes. When we convert from surface (like triangle mesh) tovolumetric model
(like tetrahedral mesh) [9], the data size explodes dramatically. The model’s ver-
tex number increases to a higher order of magnitude, just to represent the solid
model’s interior structure; Meanwhile, volumetric modelsnormally contain addi-
tional attributes like material and physical properties tosupport physical compu-
tation and other simulations. These attributes add an extraburden for volumetric
representation. For example, when we convert a cube-shape surface model, with
512 × 512 × 6 vertices on cube’s6 faces, into a volumetric cube grid, the vertex
number will explode to512 × 512 × 512, and this data size will almost double
even if we assign each vertex only with density as the simplest material attributes.
Such a data explosion is intolerable during the practice, not only because the pres-
sure from storage, but mainly because this data explosion brings out unrealistic
need of increase on numerical computation ability and transmission bandwidth.
Also, triangle meshes always lacks regularity on triangles’ connective structure.
This disadvantage on structure also brings other challenges into geometric mod-
eling and processing. Many adaptive simplification and acceleration methods like
shape compression/multi-resolution/hierarchical/parallel schemes require the regu-
lar shape structure like quadrilateral/hexahedral domain. It is extremely difficult to
achieve these schemes on an unstructured volumetric domainlike using tetrahedron.

The second difference is on precise, continuous mathematical representations.
Using discrete models to describe the surface shape immediately excludes the pos-
sibility of finding a precise continuous mathematical representation. Besides the
deficiency of shape representation, lacking of a continuousmathematical formula
also hampers the numerical computation accuracy like solving differential equa-
tions, which are more frequently used in simulation and moresensitive to com-
putation accuracy in volumetric modeling and applications. As the compensation,
there are always extra efforts on remeshing to an appropriate mesh and develop-
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ing discrete algorithms to approximate a variety of mathematical operators (like
curvatures, gradients, geodesics, etc). For example, recent trends taking place in
engineering analysis and high-performance computing are demanding greater pre-
cision and tighter integration of the overall modeling-analysis process. Without
accurate geometry and mesh adaptivity, convergence and high-precision results are
impossible. The anatomy of the process has been shown in Fig.1.2. Modeling an
appropriate “simulation-specific” geometry accounts for almost dominant percent-
age of overall analysis time.

Figure 1.2: Estimations of the relative costs of each component of the whole phys-
ical computation process. Note that generating an appropriate model accounts for
almost dominant percentage of overall time.(Courtesy of Michael Hardwick and
Robert Clay, Sandia National Laboratories.).

The above facts and analysis indicate that we need a compact and continuous
representation for 3D volumetric data modeling. In this dissertation, we propose a
spline-based framework which can trade-off above requirements well: We specifi-
cally use spline as our building block for shape and carrier for materials and numer-
ical computation. A key concern of choosing this representation is: These datasets
can be converted to continuous, compact representations toenable geometric design
and downstream product development processes. As the natural correspondence,
spline schemes and relative techniques have been extensively investigated to fulfill
the aforementioned goal. The data size is compressed and canbe interpolated by
a small number of control points. The material data can also be easily adapted by
using multivariate splines. We can compute all the differential quantities such as
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geodesics, curvatures, tensor fields without resorting to any numerical approxima-
tions via linear interpolation and/or local algebraic fitting. The regular structure
also facilitates adaptive modification algorithms like hierarchical/multi-resolution
schemes and GPU acceleration. The rapid and precise evaluations of local and
global differential properties will facilitate many applications such as finite ele-
ment analysis, shape editing, static and dynamic physical models, parameterization,
matching, registration and scientific visualization etc.

Spline-based frameworks are usually used mainly for designing new shapes
(like art design in Maya and manufacture design in CAD). In contrary, we put our
research effort mainly on consolidating general models, including commonly used
2D surface models, 3D solid models and volumetric image datasets, into our spline-
based volumetric framework. This is because these existingmodels are widely ap-
plied in current graphics research and applications. Such aconsolidation will allow
us seamlessly integrate the existing models, processing algorithms, tools and soft-
wares into volumetric-driven applications and reuse all these useful resources.

Current spline prototypes are frequently based on 2-manifolds geometry and
topology (i.e., “surface splines”). Typically, this representation describes only the
boundary of a solid model. There are only limited number of previous existing
volumetric spline techniques, generally following two different trends. Each trend
leaves fundamental challenges unsolved: (1) Many recent methods divide the volu-
metric space into a tetrahedral mesh domain then construct atrivariate spline (like
super spline or box spline) on each tetrahedra domain. Theseirregular-domain
spline theories have just emerged recently, and have not been recognized by the
communities outside computer graphics. At present, the regular tensor-product B-
splines (NURBS) are still the prevailing industrial standard for freeform surface
representation. (2) In contrast, many recent techniques [10], [11], [12] attempt to
convert each part into splines defined on a cylinder/tube domain, because they can
intuitively use the shape skeleton to produce a tube domain and reveal the global
structure and topology. A severe limitation of such approaches is that points on the
tube centerline are all singular. Also, the shape of tube is very simple such that it
can not support complex shape and preserve any sharp edge andpoint feature when
it serves as the domain.

An ideal volumetric spline modeling framework should have the following prop-
erties:

(1) The domain must be suitable for continuous representation. For example,
a singular pointin volumetric domain is a node with valence larger than four on
an iso-parametric plane (Fig. 3.1(a-b)). Handling singularity with tensor-product
splines is extremely challenging. It is desirable to have a global one-piece spline
defined on a globally-connected singularity-free domain.

(2) The proposed domain construction method must be sufficient for surface
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with boundaries/complex shapes/arbitrary topology/longbranches. The only feasi-
ble way is to introduce additional cuts and decompose the model into reasonable
elements. Each element should abstract a component-aware part in a geometri-
cally meaningful way thus make the following spline fitting process accurate and
numerically stable. Also, the separate elements must be glued in a simple and
singularity-free fashion.

(3) A practical volumetric parameterization technique must preserve shape fea-
ture. Specifically, in areas with well-pronounced consistent curvature directions,
patch parametric lines should follow the curvature and patch boundaries should be
aligned with sharp features and smooth surface boundaries.Moreover, an improved
parameterization method should develop an efficient and systematical framework
to better address the heterogenous model with various interior materials.

(4) In our new designed trivariate spline scheme, we want to inherit the at-
tractive properties of prevailing industrial standard NURBS. For example, NURBS
have local support, i.e., moving one control point will onlyaffect its immediate
neighborhood. This makes intuitive design with NURBS possible; The basis func-
tions of NURBS are non-negative, have the property of partition-of-unity, thus are
qualified as basis functions required by finite element method; Non-uniform knot
can confine the basis function inside the domain completely.

(5) We urgently need to design a more efficiently fitting pipeline to handle large
scale computation during trivariate spline approximation. For example, a genus-0
solid bounded by6 simple four-sided B-spline surfaces has originally6 × 10242

control points (DOFs). The size of DOFs increases drastically to 10243 or even
larger when we naively convert it to a volumetric spline representation. This ex-
ponential increase during volumetric spline conversion poses a great challenge in
terms of both storage and fitting costs.

In conclusion, our modeling framework involves3 main challenges and all
above requirements can be categorized into them:

(1) Mesh decomposition.

• How to decompose them into component-aware parts?

• How to design a practical or automatic scheme to generate consistent parti-
tioning, with a small number of parts and spline-friendly domain shapes and
gluing types?

(2) Volumetric parameterization.

• How to reduce the computation complexity of volumetric mapping and make
it more robustly?

• How to analyze and restrict the mapping distortion?
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• How to integrate the shape feature (like sharp edges, corners), or even various
materials (like density value) into our parameterization result?

(3) Trivariate splines.

• How to preserve the critical properties of NURBS surface like partition-of-
unity, local refinement and boundary confinement?

• How to decrease the control point number to adapt huge numberof degree-
of-freedom in trivariate splines?

• How to accelerate fitting efficiency and save fitting cost (time and storage)?

• How to handle multivariate splines for many applications and general models
like vector volume imaging?

Figure 1.3: Hierarchy of our research contents. Key streamline of our framework
(middle row); Main techniques for trivariate spline modeling (upper row); Utilized
applications (bottom row).

Figure 1.3 illustrates the conceptual hierarchy of above discussions and the
whole dissertation. This framework integrates a few projects (first row) and tar-
gets on key challenging problems (third row). By solving these key difficulties we
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have improved the effectiveness and efficiency of shape mapping computation, and
are able to utilize this framework into various applications (bottom row).

Through our experiments, we hope to demonstrate that this data modeling frame-
work is very flexible and can potentially serve as a geometricstandard for product
data representation and model conversion in shape design and geometric process-
ing.

1.2 Contributions

In this dissertation, we present a spline-based framework to solve volumetric data
modeling problems. Particularly, we emphasize our research interest on regular do-
main (“cuboid”) tensor-product splines, because of their favorite advantages. Com-
bining volumetric decomposition, parameterization with trivariate splines, we suc-
cessfully and effectively solve a variety problems in the areas of geometric shape
design and modeling.

Our specific contributions include:

• We develop a novel volumetric parameterization and spline construction frame-
work, which is an effective modeling tool for converting surface meshes to
volumetric splines. Our new splines are defined upon a novel parametric
domain called generalized poly-cubes (GPCs). A GPC comprises a set of
regular cube domains topologically glued together. Compared with conven-
tional poly-cubes (CPCs), the GPC is much more powerful and flexible and
has improved numerical accuracy and computational efficiency when serving
as a parametric domain. We design an automatic algorithm to construct the
GPC domain while also permitting the user to improve shape abstraction via
interactive intervention. We then parameterize the input model on the GPC
domain. Finally, we devise a new volumetric spline scheme based on this
seamless volumetric parameterization. With a hierarchical fitting scheme, the
proposed splines can fit data accurately using reduced number of superfluous
control points. Our volumetric modeling scheme has great potential in shape
modeling, engineering analysis, and reverse engineering applications.

• The next contribution aims to bridge the large gap between the shape versa-
tility of arbitrary topology and the geometric modeling limitation of conven-
tional tensor-product splines for solid representations.Its contribution lies
at a novel shape modeling methodology based on tensor-product trivariate
splines for solids with arbitrary topology. Our framework advocates a divide-
and-conquer strategy. The model is first decomposed into a set of components
as basic building blocks. Each component is naturally modeled as tensor-
product trivariate splines with cubic basis functions while supporting local
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refinement. The key novelty is our powerful merging strategythat can glue
tensor-product spline solids together subject toC2 continuity. As a result,
this new spline representation has many attractive advantages. At the theo-
retical level, the integration of the top-down topologicaldecomposition and
the bottom-up spline construction enables an elegant modeling approach for
arbitrary high-genus solids. Each building block is a regular tensor-product
spline, which is CAD-ready and facilitates GPU computing. In addition, our
new spline merging method enforces the features of semi-standardness (i.e.,
∑

i wiBi(u, v, w) ≡ 1 everywhere) and boundary restriction (i.e., all blend-
ing functions are confined exactly within parametric domains) in favor of
downstream CAE applications. At the computational level, our component-
aware spline scheme supports meshless fitting which completely avoids te-
dious volumetric mapping and remeshing. This divide-and-conquer strategy
reduces the time and space complexity drastically. We conduct extensive ex-
periments to demonstrate its shape flexibility and versatility towards solid
modeling with complicated geometries and non-trivial genus.

• We propose a systematic framework that transforms discretevolumetric raw
data from scanning devices directly into continuous splinerepresentation
with regular tensor-product structure. To achieve this goal, we propose a
novel volumetric parameterization technique that constructs an as-smooth-
as-possible frame field, satisfying a sparse set of directional constraints, and
we compute a globally smooth parameterization with iso-parameter curves
following the frame field directions. The proposed method can efficiently
reconstruct model with multi-layers and heterogenous materials, which are
usually extremely difficult to be handled by the traditionaltechniques.

• Aiming to promote new applications of our powerful modelingtechniques
in visual computing, we present a novel methodology based ongeometric
deformation metrics to simulate magnification lens that canbe utilized for
Focus+Context (F+C) visualization. Compared with conventional optical
lens design (such as fish-eyes, bi-focal lens), our geometric modeling based
method is much more capable of preserving shape features (such as angles,
rigidities) and minimizing distortion.

• We extend this novel methodology and integrate it into a 4-Dimensional space
deformation to simulate magnification lens on versatile textured solid mod-
els. Compared with other magnification methods (e.g., optical/energy based
minimization), 4D differential geometry theory and its practices are much
more capable of preserving shape features (angle distortion minimization),
and easier to adapt on versatile solid models. The primary advantage of 4D
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space lies at: we can now easily magnify the volume of regionsof inter-
est (ROIs) from the augmented dimension, while keeping the rest region un-
changed. To achieve this primary goal, we first embed this volumetric input
into 4D space and magnify ROIs in the 4th dimension. Then we flatten the
4D shape back into 3D space to agree with usual applications in the real 3D
world. In order to enforce distortion minimization, in bothsteps we devise
the high dimensions geometry techniques from rigorous 4D geometry theory
for 3D/4D mapping back and forth to amend the distortion. We demonstrate
the effectiveness, robustness and efficacy of our frameworkwith a variety of
models ranging from tetrahedral meshes to volumetric datasets.

1.3 Dissertation Organization

The remainder of this dissertation is organized in the following fashion. In Chap-
ter 2, we begin with the detailed review prior research work related to component-
aware mesh decomposition, volumetric parameterization and trivariate splines with
regular structures. In Chapter 3, we present a novel modeling concept “Generalized
poly-cube”, and develop an automatic modeling framework using GPC to convert
a surface mesh into volumetric splines. In Chapter 4, we propose a new bottom-up
paradigm that decomposes a surface model into separate spline patches and then in-
tegrates them into a global continuous formulation. We design a new spline merg-
ing algorithm to guarantee high-order continuities while keeping all other spline
properties. In Chapter 5, we propose a trivariate spline-based approach that is able
to reconstruct discrete volumetric data directly acquiredfrom scanning devices into
regular tensor-product spline representation. We study a new volumetric frame field
and parameterization generation method to achieve reconstruction. In Chapter 6, we
apply our geometric modeling method into a visualization application: lens design
problem. We integrate a flexible geometric metric to simulate the optical lens and
our method is much more capable of preserving shape features(angles and rigidi-
ties) and minimizing distortion. In Chapter 7, we present a novel methodology that
integrates 4-Dimensional space deformation to simulate magnification lens on ver-
satile textured solid models. Finally, we conclude in Chapter 8 with the discussion
on future research directions. We articulate all useful theoretical propositions and
proofs about trivariate splines we develop in this dissertation.
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Chapter 2

Background Review

As we have introduced in Chapter 1, the hierarchy of this thesis includes3 main
steps: decomposition, parameterization and spline construction. Spline and param-
eterization consist of our primary research topics thus we review them first. We
notice that many researchers have explored and studied deeply topics inR2, and
since our focus is on volumetric modeling, here we only introduce basic techniques
and theories about surface study and main review the work onR3.

2.1 Splines

Splines normally refer to smooth, piecewise polynomials. They are ideal tools for
applications where continuous representations are critical. Their most common
quality aspects involve: The fitting can be piece-wised; Thedata is highly com-
pressed; The analytic computation is very easy; The format is widely accepted by
most design softwares.

The first study on splines goes back to 1946 by Schoenberg. Since then, splines
become a very active research because of the fast development of industry appli-
cation and computer science. Between the 1960’s and early the 1970’s, Birkhoff,
Garabedian and deBoor have studied and established a seriesof theories on Carte-
sian regular tensor product splines to represent surface. It is well known that now
these types of spline functions become the industry standard and play very impor-
tant roles in many engineering design applications. Although there are huge number
of literatures on many extension types of splines to combat the shortcoming of reg-
ular splines (like triangular B-splines, Powell-Sabin splines, etc), their applications
only exit in theoretical study and the whole industry still insists on regular splines.
Therefore, we shall briefly explain the relative concepts ofregular tensor-product
splines in the following section. Then, we will pay attention on existing trivariate
spline techniques.
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2.1.1 Polynomials and Polar Forms

The most fundamental class of splines is the class of parametric polynomials. In
the context of CAGD and computer graphics, splines are best studied with the help
of a classical theoretical foundation like “Polar Form” [13],[14]. All spline theories
are covered and generated from the polar form theory. Therefore, we here simply
brief the basic idea of the polar form.

Polar Forms. The parametric polynomials are the fundamental basis for splines.
The polar form is a very important tool for polynomials and thus spline study. The
definition of polar form is as follows [15]:

Definition 2.1.1 (Affine Map ). A mapf : Rk → Rt(k ≥ 1) is affine, if and only
if it preserves affine combinations, i.e., if and only if f satisfiesf(

∑m

i=0 αiui) =
∑m

i=0 αif(ui) for all scalarsα0, . . . , αm ∈ R with
∑m

i=0 αi = 1.

Definition 2.1.2 (Symmetric, Multi-Affine ). Let F be an n-variable map.F is
symmetric if and only

F (u1,u2, · · · ,un) = F (uπ(1),uπ(2), · · · ,uπ(n)).

For all permutationsπ ∈
∑

n, The mapF is multi-affine if and only ifF is affine in
each argument and the others are held fixed.

Blossoming principle is a very important express that indicates that any polyno-
mial is equivalent to its polar form [13]:

Theorem 2.1.3(Blossoming Principle). PolynomialsF : Rk → Rt(k ≥ 1) of
degreen, and a symmetric multi-affine mapf : (Rk)n → Rt are equivalent. Given
a map of either type, unique map of the other type exists that satisfies the identity
F (u) = f(u, · · · ,u

︸ ︷︷ ︸

n

). The mapf is called the multi-affine polar form or blossom

ofF .

The property of blossoming principle is used to define deCasteljau algorithm
and de Boor algorithm in the following sections.

2.1.2 Regular Tensor Product Splines

Bézier Splines. Among all regular splines, a Bézier representation in its most
common form is the most widely accepted equation that can be used in any number
of useful ways. Bézier curves have obtained dominance in the typesetting industry
since 1970’s. A Bézier spline can be defined as:

Theorem 2.1.4(Bézier Curve). Given a set ofn+1 control pointsP0, P1, . . . , Pn,
the corresponding
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Bézier Curve is given by

C(t) =
n∑

i=0

PiBi,n(t),

whereBi,n(t) is aBernstein polynomialBi,n(t) = Cn
i t

i(1− t)n−i andt ∈ [0, 1].

As we mentioned in the last section, we can also represent Bézier splines of a
polynomialF from its polar form like [16]:

Theorem 2.1.5.(Bézier Points and de Casteljau algorithm)Let∆ = [r, s] be an
arbitrary interval. Every polynomialF : R → Rt can be represented as a Bézier
polynomial w.r.t.∆. The B́ezier points are given as

bj = f(r, . . . , r
︸ ︷︷ ︸

n−j

, s, . . . , s
︸ ︷︷ ︸

j

),

wheref is the polar form ofF .

Equation above immediately leads to an evaluation algorithm that recursively
computes the values

bl
j(u) = f(r, . . . , r

︸ ︷︷ ︸

n−l−j

, u, . . . , u
︸ ︷︷ ︸

l

, s, . . . , s
︸ ︷︷ ︸

j

)

= s−u
s−r

f(r, . . . , r
︸ ︷︷ ︸

n−l−j+1

, u, . . . , u
︸ ︷︷ ︸

l−1

, s, . . . , s
︸ ︷︷ ︸

j

) + u−r
s−r

f(r, . . . , r
︸ ︷︷ ︸

n−l−j

, u, . . . , u
︸ ︷︷ ︸

l−1

, s, . . . , s
︸ ︷︷ ︸

j+1

)

= s−u
s−r

bl−1
j (u) + u−r

s−r
bl−1
j+1(u)

.

from the given control points. Forl = n we finally computebn
0 = f(u, . . . , u) =

F (u), which is the desired point on the curve. This algorithm is called de Casteljau
Algorithm[16].

Formula above also shows that the de Casteljau Algorithm offers a way to sub-
divide a Bézier curve: suppose that we wish to subdivide a B´ezier curve F over a
given interval∆ = [s, t] at an arbitrary parameteru ∈ ∆. The new Bézier points
of the left and right segmentsFl andFr with respect to the subintervals∆l = [r, u]
and∆r = [u, s] are given as

bl
0 = f(r, . . . , r),bl

1 = f(r, . . . , r, u), . . . ,bl
n = f(u, . . . , u),

and
br
0 = f(u, . . . , u),br

1 = f(u, . . . , u, s), . . . ,br
n = f(s, . . . , s).

13



B-Splines. B-splines (short for Basis Splines) go back to Schoenberg whointro-
duced them in 1946 [17, 18] for the case of uniform knots.B-splines over nonuni-
form knots go back to a review article by Curry in 1947. De Boorderived the
recursive evaluation ofB-spline curves [19]. It was this recursion that madeB-
splines a truly viable tool in CAGD. Before its discovery,B-splines were defined
using a tedious divided difference approach which was numerically unstable. Later
on, Gordon and Riesenfeld realized that de Boor’s recursiveB-spline evaluation
is the natural generalization of the de Casteljau algorithmand Bézier curves are
just subset ofB-spline curves. Versprille [20] generalization ofB-spline curves to
NURBS (non-uniform rationalB-spline) which has become the standard curve and
surface form in the CAD/CAM industry [21].

Definition 2.1.6(B-Spline). Let a vector known as the knot vector defined as

T = {t0, t1, . . . , tm}

whereT is a nondecreasing sequence withti ∈ [0, 1] , and define control points
P0, . . . , Pn . Define the degree as

p ≡ m− n− 1

The knotstp+1, ..., tm−p−1 are called internal knots.
Define the basis functions as

Ni,0(t) =

{
1 if ti ≤ t < ti+1 andti < ti+1;
0 otherwise.

Ni,p(t) =
t− ti

ti+p − ti
Ni,p−1(t) +

ti+p+1 − t

ti+p+1 − ti+1
Ni+1,p−1.

Then the curve defined by

C(t) =

n∑

i=0

PiNi,p(t)

is a B-Spline.

The B-spline basis functions are positive and form a partition of unity. In ad-
dition, they have local support given byNn

i (u) = 0 for u 6∈ [ti, ti+n+1] .The knot
values determine the extent of the control of the control points.

The B-spline can be divided into different types with respect to knot values:
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Uniform B-spline. When the knots are equidistant the B-spline is called uniform.
The uniform B-spline has a succinct definition:

bj,n = bn(t− tj),

with

bn(t) =
n + 1

n

n+1∑

i=0

µi,n(t− ti)
n
+,

and

µi,n =
n+1∏

j=0,j 6=i

1

tj − ti
.

where(t− ti)
n
+ is the truncated power function:

Fn
+ =

{
Fn ifF ≥ 0
0 otherwise

Open-uniform B-spline. The difference between uniform spline and open-uniform
spline is that there exists k degree at the start and end points of the vector knots.
This open-uniform B-spline defines the open-uniform basis function. The motiva-
tion of open-uniform B-spline comes from the difference of B-spline and Bézier
spline. The B-spline can not preserve one property of Bézier spline that the start
and end points of the curve are the same points of the first control point and the
last control point. Open-uniform B-spline can solve this problem. For instance,
if we set the knot vector as (0,0,0,1,1,1), it can be directlyproved that the basis
function generated from this vector is equal to the degree-2, with 3 control point
Bézier curve’s basis function. (0,0,0,0,1,1,1,1) is another example that is the same
as cubic, with 4 control point Bézier curve.

Non-uniform B-spline. B-spline basis function with arbitrary knot vector that
follows the definition requirements. Uniform B-spline is special cases of no-uniform.

Degree of B-spline. B-spline allows arbitrary degree of B-spline. In practicaluse
the degree is rarely more than 3. So the basis function computing can be specialized
for each degree. Figure 2.1illustrates the basis functionsin degree 0,1,2.

• Constant B-spline: The constant B-spline is the simplest B-spline. It is de-
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fined on only one knot span.

Nj,0(t) = 1[tj ,tj+1) =

{
1 if tj < t < tj+1;
0 otherwise.

• Linear B-spline: The linear B-spline is defined on two knot spans.

Nj,1(t) =







t−tj
tj+1−tj

if tj < t < tj+1;
tj+2−t

tj+2−tj+1
if tj+1 < t < tj+2

0 otherwise.

• Uniform quadratic B-spline: the un-uniform quadratic B-spline does not have
the uniform expression. Here we write out the blending function for uniform
type.

Nj,2(t) ==







1
2
t2

−t2 + t+ 1
2

1
2
(1− t)2

.

Figure 2.1: Basis functions for B-spline with degree 0,1,2 from left to right.

As we mentioned in the last section, we can also represent B-Splines of a poly-
nomialF from its polar form [22, 23].

Theorem 2.1.7.(De Boor Points and De Boor Algorithm)Every polynomial

F : R → Rt

can be represented as a B-spline segment over a non-decreasing knot sequence

rn ≤ . . . ≤ r1 < s1 ≤ . . . ≤ sn.
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The de Boor points are given as

dj = f(r1, . . . , rn−j, s1, . . . , sj),

wheref is the polar form ofF .

Tensor Product B-spline. We can extend the B-spline from curve to surface. Ten-
sor product surfaces are the most popular surface design method in theory and in-
dustry: Given a curve scheme

F (u) =
n∑

i=0

Bi(u)bi,bi ∈ Rt,

the corresponding tensor product scheme is defined as

F (u, v) =

n∑

i=0

m∑

j=0

Bi(u)Bj(v)bij ,bij ∈ Rt,

which can also be written as

F (u, v) =
n∑

i=0

Bi(u)biv ,

with

biv = bi(v) =
m∑

j=0

Bj(v)bij.

The last equation demonstrates that tensor product surfaces may be considered as
curves of curves.

NURBS. B-spline shows that it is a powerful tool for free form curve and surface
shape design. However, it has the drawback that can not express exactly the regular
shape. The invention of non-uniform rational B-spline (NURBS) is to solve this
problem.

Definition 2.1.8(NURBS). Let a vector known as the knot vector be defined

T = {t0 ≤ t1 ≤ . . . ≤ tk+n ≤ tk+n+1},

with the restriction that the interior knots have at most multiplicity n, that isti <
ti+n for i = 1, 2, . . . , k, define control pointsP0, . . . , Pk ∈ Ed, and define positive
weightsw0, w1, . . . , wk, associated to the control pointsPi.
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The analytic representation of the corresponding NURBS curveR of degree n inEd

is given by

R(u) =

∑k
i=0wiPiN

n
i (u)

∑k

i=0wiN
n
i (u)

, u ∈ [t0, tk+n+1],

whereNn
i , i = 0, 1, . . . , k are the normalized B-spline basis functions of degree n

corresponding to the knot vectorT .

Another advantage is that it is invariant under projective transformation (only
affine invariance holds for its integral counterpart). Additionally, there are weights
which can be used to control shapes in a manner similar to shape parameters. Geo-
metrically, a rational curve can be viewed as the projectionof an integral curve from
a vector space of one higher dimension. The NURBS curve can beobtained by pro-
jecting the B-spline curvêR in Ed+1 having the same knot vector and control points
P̂i = (wiPi, wi). As a consequence, the NURBS inherit all the nice propertiesfrom
B-splines, and can represent conic sections.

NURBS Surfaces. If we extend equation in two parametric directions we obtain
a surface with the same properties as the NURBS curve:

F (u, v) =

∑n
i=0

∑m
j=0wiPiBi(u)Bj(v)

∑n
i=0

∑m
j=0wiBi(u)Bj(v)

.

The surface does not have to be of equal degree in both directions. Observe the
surface in its rendered form in where we clearly see the localcontrol property.

NURBS generalize the nonrational parametric form. Like nonrationalB-splines,
the rational basis functions of NURBS sum to unity, they are infinitely smooth in
the interior of a knot span, and at a knot they are at leastCk−1−r continuous with
knot multiplicity r, which enables them to satisfy different smoothness require-
ments. They inherit many of the properties of uniformB-splines, such as the strong
convex hull property, variation diminishing property, local support, and invariance
under standard geometric transformations. More material of NURBS and further
detailed discussion of its properties can be found in [24–27].

2.1.3 Hierarchical Schemes

Forsey and Bartels have presented the hierarchial B-spline[28], in which a single
control point can be added without covering an entire row or column of control
points. In their work two concepts are introduced: local refinement using an effi-
cient representation, and multi-resolution editing. These notions can be generalized
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to any surface such as subdivision surface. Meanwhile, the localized hierarchical
splines have been proposed by Gonzalez-Ochoa and Peters [29], which extend the
hierarchial spline paradigm to surfaces of arbitrary topology. Kraft [30] has con-
structed a hierarchical B-splines with a multilevel splinespace which is a linear span
of tensor product B-splines on different, hierarchically ordered grid levels. Charms
[31] have extended this scheme in a more general setting and adapted it to more
applications. Weller et al. [32] have studied spaces of piecewise polynomials with
an irregular, locally refinable knot structure (thus it is called “semi-regular bases”).
Deng et al. [33] have introduced a new type of splines-polynomial splines over hi-
erarchical T-meshes (called PHT-splines) to model geometric objects. PHT-splines
are a generalization of B-splines over hierarchical T-meshes. Song et al. [34] have
presented the method to approximate the signed distance function of a surface by
using polynomial splines over hierarchical T-meshes. In particular, they compute
on closed parametric curves in the plane and implicitly defined surfaces in space.

T-splines, developed by [35], are the most important schemein our proposal.
T-splines are generalizations of NURBS surfaces that are capable of significantly
reducing the number of superfluous control points by using the T-junction mech-
anism. The main difference between a T-spline control mesh and a NURBS con-
trol mesh is that T-splines allow a row or column of control points to terminate at
anywhere without strictly enforcing the rectangular grid structure throughout the
parametric domain. Consequently, T-splines enable much better local refinement
capabilities than NURBS. Furthermore, using the techniques presented in [35], we
are able to merge adjoining T-spline surfaces into a single T-spline without adding
new control points. Sederberg et al. have also developed a simplified algorithm
to convert NURBS surfaces into T-spline surfaces, in which alarge percentage of
superfluous control points are eliminated [36].

(a) (b)

Figure 2.2: (a) Local knot lines for basis functionBi(s, t); (b)Pi is aT -junction.
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T -spline is aPB-spline for which some order has been imposed on the control
points by means of a control grid called aT-mesh. A T -mesh is basically a rectangu-
lar grid that allowsT -junctions. Each edge inT -mesh is a line segment of constant
s (which is calleds-edge) or constantt (which is calledt-edge). AT -junction is
a vertex shared by ones-edge and twot-edges, or by onet-edge and twos-edges.
For example,P1 (see Fig.2.2(b)) is aT -junction. Each edge in aT -mesh is labeled
with a knot interval, constrained by the following rules:

1. The sum of knot intervals on opposing edges of any face mustbe equal.

2. If a T -junction on one edge of a face can be connected to aT -junction on an
opposing edge of the face (thereby splitting the face into two faces) without
violating Rule 1, the edge must be included in theT -mesh.

In contrast to tensor-productB-spline that uses a rectangular grid of control
points,PB-spline is point-based and requires no topological relationship among
control points. The equation for aPB-spline is given by:

P (s, t) =

∑n
i=1PiBi(s, t)

∑n
i=1Bi(s, t)

(s, t) ∈ D,

where thePi are control points. TheBi(s, t) are basis functions written as

Bi(s, t) = N3
i0(s)N

3
i0(t),

whereN3
i0(s) is the cubicB-spline basis function associated with the knot vec-

tor si = [si0, si1, si2, si3, si4] and N3
i0 is associated with the knot vectorti =

[ti0, ti1, ti2, ti3, ti4] as illustrated in Fig. 2.2(a). Every control point has its influ-
ence domainDi = (si0, si4)× (ti0, ti4). TheT -spline equation is very similar to the
equation for a tensor-product rationalB-spline surface, except that knot vectorssi
andti are deduced from theT -mesh neighborhood ofPi.

Knot vectorsi andti for the basis functionBi(s, t) are determined as follows.
Let (si2, ti2) are the knot coordinate ofPi. Consider a ray in parameter space
R(α) = (si2 + α, ti2). Thensi3 andsi4 are thes coordinates of the first twos-
edges intersected by the ray. The other knots can be found in like manner.

In computer graphics T-splines have been applied to many applications. For
example, Song et al. [37] have generalized a T-spline schemeto weighted T-spline
and demonstrated its applicability in 3D free-form deformation. Lévy et al. [38]
have utilized T-splines for surface reconstruction.
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2.1.4 Global Splines V.S. Spline Merging

Spline merging techniques always involve the following steps. In order to model
an arbitrary manifold in 3D using conventional spline schemes, current approaches
will segment the manifold to many smaller open patches, thencover each patch by
a single coordinate system, so that each patch can be modeledby a spline surface.
Finally, any generic approach must glue all the spline patches together by adjusting
the control points and the knots along their common boundaries in order to ensure
continuity of certain degree. It requires the merging of splines defined over dif-
ferent local domains. Surface patch merging has been thoroughly discussed first
in [35, 39] and later is used in [40], in order to glue the trimmed region to form a
single spline. However, it is far more complicated to designsemi-standard trivari-
ate splines which demand much more in-depth studies. Duringspline merging,
handling singularity with still high-order continuity is extremely difficult in spline
research. For surface modeling, Loop and Scheafer in [41] have given an example
of aG2 polynomial construction with general connectivity to accommodate singu-
larities. On the other hand, Peters and Fan [42] have introduced rational linear maps
to replace affine linear atlas and handle singularities between charts.

Spline merging also has many shortcomings. The entire segmenting and patch-
ing process is primarily performed manually, and it requires users’ knowledge and
skills, and for non-trivial topology and complicated geometry this task is laborious
and error-prone. To overcome the above modeling and design difficulties and ad-
dress the topological issue, many researchers seek novel modeling techniques that
would allow designers to directly define continuous spline models over any mani-
folds (serving as parametric domains). Such a global approach would have many
modeling benefits, including no need of the transition from local patch definition
to global surface construction via gluing and abutting, theelimination of a non-
intuitive segmentation and patching process, and ensuringthe high-order continuity
requirements. More importantly, we can expect a true “one-piece” representation
for shapes of complicated topology, with a hope to automate the entire reverse en-
gineering process.

Li et al. have presented an automatic technique to convert polygonal meshes to
T-splines using periodic global parameterization [38, 43]. Li et al.’s method can be
also viewed as manifold splines since the transition functions of the periodic global
parameterization are compositions of translations and rotations. Grimm et al. [44]
have pioneered a generic method to extend B -splines to surfaces of arbitrary topol-
ogy, based on the concept of overlapping charts. Cotrina et al. have proposed aCk

construction on a manifold [45, 46]. Ying and Zorin [47] havepresented a manifold-
based smooth surface construction method which has high-order continuities with
explicit nonsingular parameterizations only in the vicinity of regions of interest. Gu
et al. [48] have developed a general theoretical framework of manifold splines in
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which spline surfaces, defined over planar domains, can be systematically gener-
alized to any manifold domain of arbitrary topology (with orwithout boundaries).
He et al. have further developed modeling techniques for applications of manifold
splines using triangular B -splines [49].

2.1.5 Trivariate Splines

Spline-based volumetric modeling and analysis have gainedmuch attention recently
with many applications. For geometric processing, Song et al. [37] have employed
trivariate splines with non-uniform weights to model free-form deformation. For
physical analysis, Hughes et al. [50] have proposed isogeometric analysis on sur-
face, using bivariate NURBS for modeling smooth geometry and physical attributes
together, and conducting physical analysis simultaneously. For virtual surgery, Tan
et al. [51] have utilized spherical volumetric simplex splines to model and simulate
the human brain. In visualization, Rössl et al. [52] have utilized trivariate super
splines to model and render multi-dimensional material attributes for solid objects.
A modeling technique introduced in [53] has been developed to model skeletal mus-
cle with anisotropic attributes and conduct FEM analysis directly on NURBS solid.
Martin et al. [11] have presented a method to fit a solid model using a cylindrical
trivariate NURBS and support continuum force analysis. However, these existing
spline schemes tend to handle only simple inputs like genus-0 surfaces. For more
complicated shapes, Zhang et al. [12] have proposed the method to convert the
long-branch/bifurcations dominant shapes. Martin et al. [10] have studied shapes
with a symmetry (called “mid-face”) structure. These methods always attempt to
transform the model through a top-down scheme, which inspires us to research a
new method in a divide-and-conquer fashion.

Compared with surface splines designed to extract features(e.g., [38, 54]),
trivariate splines mainly focus on finding part-aware component structures. Besides
poly-cube domains, another commonly-used part-aware domain is cylinder (tube)
like [11]. Martin et al. in [10] have extended this domain to mimic more com-
plex shapes. However, in terms of spline construction, the cylinder (tube) domain
inevitably produces singular points along the tube axis.

2.2 Parameterization

Model parameterization is the fundamental basis and powerful geometry process-
ing tool with versatile application, such as detail mapping, such as spline fitting and
CAD, meshing processing, FEM analysis, visualization etc.In this thesis research
proposal, parameterization is the first and un-avoided stepduring enabling data-to-
spline conversion. In this section, we first briefly outline its mathematical founda-
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tions and describe recent methods for parameterization. Second, since our research
mainly focuses on trivariate spline construction, it is necessary to discuss some
recent emerging study interest on volumetric parameterization. Finally, we demon-
strate feature-aware parameterization specifically because an efficient feature-aware
technique leads to better spline fitting result.

2.2.1 Theory and Techniques

In this section, we outline the mesh parameterization including its mathematical
foundations, versatile local parameterization techniques on different domains. In
[55, 56], authors also have discussed this topic. Our reviewstarts with an intro-
duction to the general idea of parameterization and the state-of-art is reviewed by
summarizing the motivation and major idea of several important approaches. Since
we mainly consider the representation of volumetric information, we also discuss
the emerging tools for regular global parameterization andvolumetric parameteri-
zation.

Metric and Distortion Minimization. Parameterization can be viewed as a pro-
cedure of energy/distortion metric minimization procedure. Energy (distortion met-
ric) gives rise to the solution from the degree of global energy field, that the spring
model will converge at a balance state when the global springenergy is minimized.
The advantage of these ideas involves that once we set the energy field function, we
can solve the parameterization by numerical energy minimization tools directly.

Now we need to specify the energy, or define distortion metrics. The distortion
derives from the stretching during the mappingF between the surface(x, y, z) and
the domain(u, v). Suppose(x, y, z) = F(u, v) is a center pointP of an infinitesi-
mal planar circle. Then, one point on this circleF(u+ δu, v+ δv) is approximated
given by first order Taylor expansion:

F(u+ δu, v + δv) = F + Fu(u, v)δu+ Fv(u, v)δv,

or

F(u+ δu, v + δv) = P+ Fu(u, v)δu+ Fv(u, v)δv = P+ Jf(δu, δv),

whereJ = [Fu,Fv] is a3× 2 mapping matrix (normally it is also called Jacobian
matrix). Using singular value decomposition, we have:

Jf = UΣV T = U





σ1 0
0 σ2

0 0



V T .
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Then we can define the conception of isometric, conformal andequiareal (See
details in [57]. The computer language friendly explanation can be found in [31]).

Theorem 2.2.1.For a planar mappingf : R → R, the following equivalence
gives:

1. f is isometric⇔ σ1 = σ2= 1

2. f is conformal⇔ σ1/σ2 = 1

3. f is equiareal⇔ σ1σ2 = 1

So it isσ1 andσ2 that directly influence the stretch (and the distortion metric
energy) of the mapping. So we have

E(f) =

∫

σ

E(σ1(u, v), σ2(u, v))dudv.

This equation should be defined here in different methods. Malliot et al. [58]
have proposed the method which minimizes “Green-Lagrange deformation tensor”.
This tensor is given by:

E = (σ − 1)2 + (σ − 1)2.

Hormann et al. [59] have presented another method call “Mostly Isometric Pa-
rameterization of Surfaces” (MIPS) for parameterization.This method is based
on the minimization of the ratio between two direction stretching: σ1

σ2
. Since min-

imizing this energy is a difficult numerical problems, they replace it with another
simple metricσ

2
1
+σ2

2

σ1σ2
. Sander et al. [60, 61] have studied a reversed parameterization

method that their formalism uses the inverse function to mapthe parametric space

onto the surface. For this reason, their energy can be expressed as
√

( 1
σ1
)2 + ( 1

σ2
)2.

Sokine et al. [62] have proposed a method based on the remark that shrinking and
stretching should be treated the same. their method uses thefollowing energy to
minimizeMax( 1

σ1
, σ2).

To introduce more flexibility in these methods, some researchers focus on blend-
ing these method together in a spectrum. Degener et al. [63] have proposed to use
a combined energy, with a term that penalizes area deformations, and another term
that penalizes angular deformations. Wang et al. [64] have invented a family of
metrics that can flexibly blend the LSCM method [65] and ARAP method [66].

Barycentric Coordinates. Barycentric coordinates solve the parameterization pro-
cedure from another degree. Retrospect to the simple springmodel, barycentric co-
ordinates consider the converge from local region: every vertex and its local neigh-
bors are averaged by the special designed spring force of theconnected edge. The
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motivation of barycentric coordinates derives from the affine combination param-
eterizing. A succinct idea of this method is based on simple physical model: We
constrain the boundary of the mesh onto the boundary of the parameter domain
which we target to map to (for simplicity, the domain here is planar rectangular).
Suppose two verticesVi andVj are connected by EdgeEij and we imagine this edge
as a spring. Then, the mesh is transformed to a spring system and the parameteri-
zation solving transform to spring energy converge equation: we give each vertex a
parameter that where the vertex stop in the domain.

The most important issue here is to specify the spring energy. Barycentric coor-
dinates is one of the spring force representation. Each vertex is represented as the
weighted average of the neighbor vertex as:

xi =
∑

j∈Ni

λijxj ,

and ∑

j∈Ni

λij = 1,

here theλij is defined as barycentric coordinates. In some cases the coordinateswij

are determined independently and
∑

j∈Ni
wij 6= 1. Then for normalization we set

λij =
wij

∑

j∈Ni
wij

,

where we callwij homogeneous coordinates. One advantage of inventingwij in-
cludes that we can focus on computing coordinates from geometry information
without considering the normalization property.

The earliest generalization of barycentric coordinates goes back to Wachspress
[67]. It focuses on finite element analysis and suggests to set the homogeneous
coordinates as follows:

wij =
cotαji + cotβij

r2ij
,

whererij is the edge length. Desbrun et al. [68] have utilized them forparameteri-
zation. Meyer et al. [69] for interpolating density values inside convex polygons.

Another set of barycentric coordinates also stems from finite element solving.
It actually arises from linear approximation of Laplace equation and is utilized to
parameterization, which is given by:

wij = cot γij + cot γji.

Pinkall et al. [70] have also utilized it to compute discreteminimal surfaces. In
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the area of mesh deformation and interpolation, Sorkine et al. [66] have generalized
this coordinates to preserve the surface details.

Another set of coordinates “Mean value coordinates” is proposed by in [71].
The coordinates are given by:

wij =
tan

αij

2
+ tan

βji

2

rij
.

Contrary to other coordinates, one advantage of mean value coordinates is that it
guarantees thatwij is positive. The negative coordinates may lead to flip-over phe-
nomena and violate injectivity property. Hormann et al. [72] have presented that
mean value coordinates have many useful applications in computer graphics.

There still exist some other coordinates. [73] have studiedand modified the
continuity of barycentric coordinates. Lipman et al. [74] have proposed Green
Coordinates for closed polyhedral cages. They respect boththe vertices position
and faces orientation such that it lead to space deformations with shape preserving.
Joshi et al. [75] have proposed a character-based barycentric coordinates as prac-
tical means to manipulate 3D models by operating to their cages. As indicated in
[75], the rigid spatial topological structure of the FFD latices make the deformation
less flexible. Many papers have attempted to analyze the principle of existed co-
ordinates and attempted to give a comprehensive image to all. Ju et al. [76] have
analyzed and compared three coordinates (Wachspress, Harmonic, Mean value).
They view stokes theory as the root of all three methods. Fromrespect of stokes
theory, the difference between three coordinates is the chosen of unit element shape:
Wachspress use polar dual, mean value use unit circle and Harmonic use original
polygon. Following the same motivation and pipeline, all 2Dpolygon barycen-
tric coordinates can be extended to arbitrary polyhedron inR3, which is necessary
for our volumetric parameterization. [8, 77, 78] have extended the mean value co-
ordinates from 2D polygon to 3D polyhedron. [79] have developed the spherical
coordinates specifically used for spherical polygons.

2.2.2 Volumetric Parameterization Techniques

We have already reviewed many surface parameterization techniques. As a very
closely relevant topic to our proposal, here we briefly review the relevant volu-
metric parameterization techniques. Volumetric parametrization aims to compute a
one-to-one continuous map between a 3-manifold and a targetdomain (or a given
surface with interior space) with low distortions. Volumetric parametrization has
been gaining greater interest in recent years, a few relatedtechniques have been
conducted towards various applications such as shape registration [80, 81], vol-
ume deformation [8, 75, 82], and spline construction [11]. Wang et al. [80] have
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parameterized solid shapes over solid sphere by a variational algorithm that iter-
atively reduces the discrete harmonic energy defined over tetrahedral meshes, the
harmonic energy is rigorously deducted but the optimization is prone to getting
stuck on local minima and it only focuses on spherical like solid shapes such as hu-
man brain datasets. Ju et al. [8] have generalized the mean value coordinates [71]
from surfaces to volumes for a smooth volumetric interpolation. Joshi et al. [75]
have presented harmonic coordinates for volumetric interpolation and deformation
purposes. Their method guarantees the non-negative weights and therefore leads to
a more pleasing interpolation result in concave regions compared with that in [8].
Martin et al. [11] have computed the precise(u, v, w) coordinates for genus-zero
tetrahedral meshes, and the target domain is a cylinder. Li et al. [81] have used the
fundamental solution method to map solid shape onto generaltarget domains. The
current existing methods always attempt to map the model to astandard or simple
domain primitives. Thus, how to handle the complex model volumetric mapping
is very intriguing. [10] have used a “mid-surface” in combination with harmonic
functions to decompose the object into a small number of volumetric tensor-product
patches. However, all these methods can not eliminate singularities. Zhang et al.
[12] have proposed a method to handle long branches: The algorithm divides pos-
sible bifurcations of a vascular system into different cases to solve. Zeng et al. [83]
have studied the volumetric parameterization of cylinder wall. In the paper, the dif-
ferential operator is extended from 2D to 3D. In a similar idea, Xia et al. [84] have
utilized Green’s function for parameterizing star-shapedvolumes. Han et al. [85]
have proposed the method to construct the shell space using the distance field and
then parameterize the shell space to a poly-cube.

2.2.3 Spline-Friendly and Feature-Aware Methods

In this section we briefly review the parameterization techniques that are “Spline-
Friendly”. “Spline-Friendly” here means “feature-aware”. Preserving feature in the
parameterization result is very important to spline approximation because it will
allow splines to approximate more accurately around the feature region.

Many quadrangulation methods are actually based on parameterization tech-
niques. One important property in quad-mesh generation research is edge-preserving.
[54, 86] have constructed an as smooth as possible symmetriccross field that sat-
isfying a sparse set of directional feature edge constraints. Then Daniels et al.
[87] have proposed a template-based approach for generating quad-only meshes,
which offers a flexible mechanism to allow external input, through the definition
of alignment features that are respected during the mesh generation process. [88]
have introduced the concept of an exoskeleton as a new abstraction of shapes that
succinctly conveys the structure of a 3D model. Here “exoskeleton” actually is the
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important feature edges on the model surface. Xia et al. [89]have proposed an ed-
itable poly-cube parameterization techniques that optional sketched features can be
mapped to the corresponding edges on the domain. Huang et al.[90] have presented
a extended spectral-based approach. In contrast to the original scheme, it can pro-
vide flexible explicit controls of the shape, size, orientation and feature alignment
of the quadrangular faces. Zhang et al. [91] have proposed a new method which
constructs a special standing wave on the surface to generate the global quadrilat-
eral structure. The wave-equation based method is capable of controlling the quad
size in two directions and precisely aligning the quads withfeature lines.

2.2.4 Global Parameterization and Poly-cube

The motivation of global parameterization comes from the requirement of B-spline.
B-Spline fitting demands that the parameter of each local domain keeps regular
(tensor-product). It also requires the consistence between different local domains.
Another important issue concerns that we expect to construct volumetric spline so
that each parameter domain is aR3 space. The surface meshes cover the boundaries
of all R3 domains seamlessly and consistently. The way of keeping this property
includes choosing a domain (may be composed by a set of sub-domain) that has
the same topology but with simplified geometry feature. The most simple way
is to map the genus-0 model to a sphere without considering its geometry feature
like [92, 93]. However, for more complex topology and geometry feature, more
complex domains and parameterization techniques have beendeveloped in the last
decades.

The linear discrete harmonic theory is interesting and rich, attractive compu-
tationally and enormously useful in applications. The ideas inform contemporary
notions of discrete conformality and harmonicity that are based on linear conditions
on the vertex coordinates. Examples of applications include [65, 94, 95]. Another
set of theories considers the analysis and modification of some key metric (e.g.,
curvatures). [96–98] have proposed the similar methods based on this theory: First
compute a metric for the image mesh and only then a set of vertex positions and
then solve the Laplace-Beltrami operator about the metric to flatten a mesh.

Some other parameterization techniques utilize curvaturedirections to drive
the parameterization result. For example, in [99, 100], they have proposed an
anisotropic polygonal remeshing method, which is the direct application of param-
eterization, by extracting and smoothing the curvature tensor field and use lines of
minimum and maximum curvatures to determine appropriate edges for the remeshed
version in anisotropic regions. Meanwhile in some other techniques like [43, 101],
they generate two orthogonal piecewise linear vector fieldsdefined over the input
mesh (typically the estimated principal curvature directions) and then compute two
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piecewise linear periodic functions, aligned with the input vector fields, by mini-
mizing an objective function.

Spectral-based parameterization methods study the eigenfunctions of operators
(or eigenvectors of matrices in the discrete setting). Donget al. [102] have used
the Laplacian to decompose a mesh into quadrilaterals in a way that facilitates con-
structing a globally smooth parameterization. Huang et al.[90] have presented an
extended spectral-based approach. In contrast to the original scheme, it can provide
flexible explicit controls of the shape, size, orientation and feature alignment of the
quadrangular faces. Zhang et al. [91] have proposed a new method which con-
structs a special standing wave on the surface to generate the global quadrilateral
structure. The wave-equation based method is capable of controlling the quad size
in two directions and precisely aligning the quads with feature lines.

Poly-cube. In [103], they have represented a method to map model with arbitrary
shape and geometry to a domain-called poly-cube. Poly-cubeis a domain com-
posed by gluing small cubes together. Each segment of input surface mesh maps
to one of six surfaces of one cube. The advantage of this mapping method is that
the mapping is seamless and each mapping patch is tensor-product regular. The
parameter between neighboring patches can transform consistently to each other
simply by linear parameter transformation or rotation. So it guarantees consistence
between patches by setting the resolution and sampling set of parameter between
two patches the same.

Meanwhile, several methods have been developed to improve user control: The
user can easily control the mapping by specifying optional features on the model
and their desired locations on the poly-cube domain. For instance, Wang et al.
[104] have presented a technique where the user can interactively control the desired
locations and the number of corners of the poly-cube map; Xiaet al. [89] have used
user sketches as constraints to control the poly-cube map. Automatic poly-cube
construction is always extremely difficult due to the complexity of the input shape.
Lin et al. have used Reeb graph to segment the surface and thendeveloped an
automatic method to construct poly-cube map [105]. However, their segmentation
method may not work for shapes with complicated topology andgeometry and does
not guarantee a bijection between the poly-cube and the 3D model. He et al. [106]
have proposed an automatic algorithm by slicing the model along one horizontal
direction and then gluing together. It can only handle the horizontal, planar features
from the 3D model. In fact, none of the current techniques constructs the poly-cube
simultaneously following all above criteria.
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2.2.5 Applications on Visualization

In our proposal, one of the important applications about parameterization is on
focus+constext (F+C) visualization. Also, a critical partof remaining work involves
volume data F+C visualization based on volumetric parameterization. Therefore, it
is necessary to introduce and review the related work on thisresearch topic.

Various F+C visualization techniques have already been proposed on many
types of informatics inputs, such as trees [107, 108], treemaps [109], graphs [110],
tables [111], and city maps [112]. Plaisant et al. [113] havedefined the SpaceTree
as a novel tree browser to support exploration in the large node link tree. The al-
gorithm applies dynamic re-scaling of branches to best fit the space and includes
integrated search and filter functions. For the seamless F+C, Shi et al. [114] have
proposed a distortion algorithm that increases the size of anode of interest while
shrinking its neighbors. Ying et al. [115] have also presented a seamless multi-focus
and context technique, called Balloon Focus, for treemap. Gansner et al. [110] have
presented a topological fisheye view for the visualization of large graphs. A method
to cope with map and route visualization has been proposed byZiegler et al. [112].
They depicted navigation and orientation routes as a path between nodes and edges
of a topographic network. Recently, Karnick et al. [116] have presented a novel
multifocus technique to generate a printable version of a route map that shows the
overview and detail views of the route within a single, consistent visual frame. Dif-
ferent from the above methods with specific pre-defined targets, our framework is
capable of handling various information or visualization-based applications.

The key component in F+C visualization is to design an efficient lens. Op-
tical effects, such as fisheye [117] for the nonlinear magnification transformation
with multi-scale, have been widely used. Fisheye views can enlarge the ROI while
showing the remaining portions with successively less detail. Fisheye lens offers
an effective navigation and browsing device for various applications [118]. In ad-
dition, InterRing proposed by Yang et al. [119] and Sunburstproposed by Stasko et
al. [120] have incorporated multi-focus fisheye techniquesas an important feature
for radial space-filling hierarchy visualization. The major advantage of the fisheye
lens is the ability to display the data in a continuous manner, with a smooth transi-
tion between the focus and context regions. Although fisheyelens has advantages
in preserving the spatial relation, it creates noticeable distortions towards its edges,
which fails to formally control the focused region and preserve the shape features
in the context region.

Aiming to cope with the shortcomings of the basic fisheye lens, more sophisti-
cated lenses have been proposed. Bier et al. [121] have presented a user interface
that enhances the focal interest features and compresses the less interesting regions
using a Toolglass and Magic Lenses. Carpendale et al. [122] have proposed several
view-dependent distortion patterns to visualize the internal ROI, where more space
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is assigned for the focal region to highlight the important features. LaMar et al.
[123] have presented a fast and intuitive magnification lenswith a tessellated bor-
der region by estimating linear compression according to the radius of lenses and
texture information. Pietriga et al. [124] have provided a novel sigma lens with new
dimensions of time and translucence to obtain diverse transitions. Later, they pro-
vided in-place magnification without requiring the user to zoom into the representa-
tion and consequently lose context [125]. Their representation-independent system
can be implemented with minimal effort in different graphics frameworks. Mean-
while, the deformation methods are recently used for the complicated 3D datasets,
including volume data [126] and mesh model [127]. Wang et al.[127] have pre-
sented a method for magnifying features of interest while deforming the context
without perceivable distortion, using an energy optimization model for large surface
models. Later, they further extended this framework into 3Dvolumetric datasets
[128]. Inspired by these methods, we utilize geometric deformation that applies to
visualization of 2D data sets, targeting to eliminate the local angle distortion and
keep the visual continuity.

Many image deformation techniques have been successfully studied and used
for various image manipulation applications like image editing and resizing. For
example, Schaefer et al. [129] have utilized moving least squares to fit transfor-
mations and achieve image editing. Also, many blending polynomial coordinates
have been developed for better shape interpolation with boundary deformation con-
straints (e.g., biharmonic weights [130], green coordinates [74]). Meanwhile, image
resizing [104, 131] is introduced in the literature for retargeting images to displays
of different resolutions and aspect ratios. Note that, image resizing has a completely
different goal from lens design, since the resizing task requires that important im-
age regions are optimized to scale uniformly while regions with other contents are
allowed to be distorted. Also, we observe the fact that all ofthe above techniques
confine their operations as energy minimization in the 2D space only. Therefore,
it is very attractive to explore a new deformation method that utilizes 3D geomet-
ric modeling techniques and broadens the scope of geometricmodeling to help the
visualization process.

2.3 Component-Aware Decomposition

Segmenting 3D surface meshes has been widely studied in graphics and digital ge-
ometry processing community. A thorough and detailed discussion on these surface
segmentation techniques is beyond the scope of this work, werefer the interested
readers to Shamir’s great survey [132]. Among these segmentation methods, our
volumetric spline conversion task demands to decompose shapes into meaningful
volumetric parts, simulating how our vision identifies perceptual parts. “Percep-
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tual” stresses that part-aware decomposition is inspired by research in perception,
in particular by the idea that the human visual system understands shapes in terms
of parts [133–135]. Guided by this observation, a lot of part-aware decomposi-
tion methods have attempted to encode the appropriate parts-aware metrics to agree
with human visual perception and thus get the part-aware parts. For instance, these
methods include the slippage [136], shape diameter function [137], interior visual
region difference [138], intrinsic symmetry [139–141], modal analysis [142], etc.
Meanwhile, particularly relevant to our requirement, skeletons are commonly used
global perceptual-part structure representation tools. Alot of skeleton extraction
techniques have been presented and thus can be used for part-aware decomposition
(e.g., Mesh contraction [143], Reeb graphs [144], Thinning[145], etc). Finally, a
part-aware decomposition can be manually edited by simple user interactions on
the original surface [146, 147]. However, these methods mainly focus on design-
ing suitable part-aware metrics, none of them has analyzed the segmentation results
from the spline modeling view, with respect to criteria suchas regularity, control-
lable corners, patch numbers, etc.
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Chapter 3

Generalized Poly-cube Splines

As we have introduced in Chapter 2, the engineering design industry frequently
pursues data transformation from discrete 3D data to splineformulations because
of their compactness and continuous representation. As thenewly merged research
topic, we want to study the method to construct the volumetric splines in this chap-
ter. The main challenge here is to handle arbitrary topologyand complex geometry,
which gives rise to our novel idea of “Generalized Poly-cube”.

3.1 Motivation

Compared with the commonly-used“surface model to surface spline”paradigm,
volumetric splines can represent both boundary geometry and real volumetric and
physical/material attributes. This property makes volumetric representation highly
preferable in many physically-based applications including mechanical analysis [50],
shape deformation and editing, virtual surgery training, etc. However, converting
arbitrary meshes to volumetric splines is extremely challenging because of many
conflicting requirements for volumetric parametric domainconstruction. Attractive
volumetric splines should have the following properties.

1. Structural Regularity. Tensor-product splines (e.g., NURBS) are defined
over regular “cube-like” domains. Compared with the unstructured domain
(e.g., polygonal regions covered by tetrahedral meshes), regular domain sup-
ports more efficient evaluation and refinement, and GPU acceleration can
also be applied directly to spline representation with regular structure. Also,
spline-based physical analysis (e.g., isogeometric analysis [50]) has a prefer-
ence for “cube-shaped” domain.

2. Singularity-free. Singularity here means an inability to produce a locally
consistent parameterization in the neighborhood. Specially in trivariate splines,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.1: Singularity and ill-point distribution in the volumetric domain is very
critical to spline construction. (a-b) show two cases of singular points. (c) highlights
one ill-point. (d) shows that the basis function around the ill-point has influence
outside the cube boundary. (e-h) show different types of ill-points: “Type-1” to
“Type-4”, which are the concave points in the domain.

a global volumetric model is locally parameterized onto several tensor-product
charts. Like Fig. 3.1(a-b), a singular point locates where local charts merge,
if its valence number along one iso-parametric plane is larger than four (note
that from this definition, singularity in volumetric domainis of difference
from surface geometry). Handling singularity with tensor-product splines is
very challenging. Therefore, it is desirable to have a global one-piece spline
defined on a globally-connected singularity-free domain.

3. Controllable Ill-points. In a volumetric parameterization over the poly-cube
domain, we call the corner point in a concave corner of the poly-cube an
ill-point. On such a point, the basis function spans across nearby cubes
through outside space (see Fig. 3.1(c-d)). Fig. 3.1(e-h) illustrate all possi-
ble types of ill-points in red (note that they are not singularities in volumetric
parameterization but singularities in surface parameterization). Being harm-
less to usual parameterization-related applications, ill-points, however, have
an undesirable side-effect on spline construction and subsequent tasks like
physical analysis, boundary confinement and partition-of-unity control (see
[148],[149] for more details). Therefore, it is desirable to control the number
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and types of ill-points. In practice, we hope to restrict ill-points to “Type-1”
only, as shown in Fig. 3.1(e), since it is the easiest type andwe can simply
modify and restrict its “boundary” basis function [149].

4. Shape Awareness.Each spline patch should abstract the shape in a geometri-
cally meaningful way, reveal the shape’s key perceptual parts and topological
structures (e.g., skeleton-like representation). Most importantly, spline con-
struction on large volume data heavily depends on spline gluing in practice.
Therefore, one desirable parameterization scheme should try to reduce patch
number to cut off spline gluing processing.

Existing volumetric spline techniques generally follow two different trends: (1)
Many recent methods [10], [11], [12] convert each part into splines defined on a
cylinder/tube domain (e.g., Fig. 3.1(b)), because they canintuitively use the shape
skeleton to produce a tube domain and reveal the global structure and topology.
A severe limitation of such approaches is that points on the tube centerline are all
singular. (2) In contrast, poly-cube splines [150], [106] are defined on domains as-
sembled by multiple cubes, which avoid the central line singularity problem. Such
splines are flexible to resemble the shape of the given mesh and are capable of
capturing the large scale features with low-distortion mapping. However, gluing
of many cubes may produce many uncontrollable ill-points. Limitations from both
categories of splines have inspired us to develop a new method that is superior to
both types of splines.

The main contributions of this work are as follows. (1) We propose a novel con-
cept ofGeneralized poly-cube (GPC)to serve as the parametric domain for spline
construction. Particularly, GPC combines advantages of existing primitives to sup-
port splines: (a) GPC is powerful and flexible for representing complex models;
(b) GPC provides a simple and regular domain with no singularity and controllable
ill-point numbers/types, yet very spline-friendly domainstructure. (2) We develop
an effective GPC construction and parameterization framework to achieve all the
above goals, while still respecting both the global structure and the geometric fea-
tures. (3) We present a global “one-piece” volumetric spline scheme without stitch-
ing/trimming for general volumetric models. Unlike conventional spline schemes,
our conversion does not require global coordinates everywhere, and piecewise lo-
cal coordinates suffice. GPC therefore becomes an ideal parametric domain. We
also design an efficient volumetric hierarchical spline fitting algorithm to support
recursive refinement with improved accuracy and reduced number of control points.
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(a) (b) (c) (d) (e)

Figure 3.2: Generalized poly-cubes: (a) The wrench model; (b) The conventional
poly-cube (CPC); (c) The generalized poly-cube (GPC) as a topological graph; (d-e)
The cuboid edges are overlaid onto the model to visualize theGPC global structure.

3.2 Generalized Poly-cubes (GPCs)

Conventional poly-cube (CPC)is a shape composed of axis-aligned unit cubes
that abut with each other. Cubes are glued and realized in a global 3D world co-
ordinate system. CPC usually uses unit cubes as the buildingblock. All cubes are
glued together and embedded in the 3D space; any point in a cube is associated
with a unique global coordinate. Fig. 3.2(b) shows an example of CPC constructed
for a wrench model in (a). Constructing effective (good approximation, coherent
topology) CPC for volumetric models with relatively complicated geometry and
topology usually requires extensive user involvement. Such a parametric domain is
inadequate. A less tedious domain construction with reduced number of ill-points
is highly desirable.

Generalized poly-cube (GPC)is composed of a set of cuboids glued together
topologically. We allow any pair of two distinct cuboid faces to be glued together
if these faces have the same size. Fig. 3.2(c-e) show a GPC constructed for the
wrench model (Fig. 3.2(a)).

From above definitions, GPC is less restrictive from CPC to bea better spline-
friendly domain. First, GPC cuboid is not just a unit box. It can be a general cuboid
with rectangular faces. Each cuboid has its local coordinate system; a cuboid is
not axis-aligned but can deform (bend or twist) in order to glue with each other to
form a global topological structure. Second, cuboids in GPCcan be glued together
through arbitrary two faces, and it is even possible that they are from the same
cuboid. The topology of GPC can be represented using a topological graph, which
we denote as aGPC-graph(each node represents a cuboid). Fig. 3.2(c) illustrates a
GPC graph of Fig. 3.2(d). To represent each cuboid, we project the12 cuboid edges
onto the model to visualize different faces (see Fig. 3.2(d-e)).

A less restrictive GPC has several advantages over CPC, which are very critical
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to trivariate spline construction: Controlled ill-points, easier domain to simplify
spline merging and more general shape modeling.

Ill-point Controllability. First, the topological gluing can significantly reduce
the number of ill-points (due to the usage of fewer cuboids and simple gluing rules).
In a simple shape like Fig. 3.4(a-b), a torus’ CPC generates4 ill-points (in red
circles) while a torus’ GPC (see the kitten model, Fig. 3.14)has none. Second, our
GPC construction algorithm will only generateType-1(Fig. 3.1(e)) ill-points. We
can handle them much easier than other types of ill-points [149].

Easier and Better Domain Construction.Because of its topological simplic-
ity and elegance, the construction of GPC is usually easier than that of CPC. Au-
tomatic GPC construction can be developed naturally following the part-aware de-
composition of the model. From a spline practitioner’s view, CPC requires many re-
dundant cubes (to assemble topological handles in an axis-aligned way, like Fig. 3.4(d)).
Cuboids in GPC are similar to the“generalized cylinder”so encodes the shape with
less cuboids, which can significantly save the cost of splinemerging.

When we consider parameterization distortion, less cuboids in GPC may lead
to less distortionthan CPC, because GPC is less restrictive (not axis-aligned) and
better mimics shape. For example, a CPC (Fig. 3.4(d)) can merely mimic the genus-
3 model (with a narrow top and wide bottom region) in an axis-aligned domain.
Consequently, two red-colored parts are parameterized onto the equally-sized do-
main, introducing large distortion. A GPC (Fig. 3.5(c)) canfit the shape better
and significantly improve the parameterization quality, benefitting the final spline
construction.

Highly-twisted and High-genus Shape.GPC can serve as the parametric do-
main for a more general category of solid shapes like the twisted or highly curved
model, such as the twirl (Fig. 3.3(a)) and möbius band (Fig.3.3(d)). Unlike axis-
aligned CPC, GPC can twist them and glue adjacent cuboids in atopological way
so that twisted global shape features can still be modeled asthe cuboid edges (b,e),
with a very small number of cuboids (c,f). For example, we canhardly construct
a useful CPC domain for möbius band; But with GPC, only one cuboid is enough
(f). Another category of models includes models with complex topology especially
when handle loops/voids are relatively small, such as in thesolid bucky model (g).
For CPC, not only the above restrictive axis-aligned problem, small handles/voids
also make the resulting CPC “over-complex”. A less restrictive GPC allows us to
model the domain through a correct topological decomposition to small cuboids
(h). The pattern of the bucky’s GPC-graph around one handle can be decomposed
as shown in (i).

The following three sections discuss the algorithmic pipeline to construct GPC
and splines (also illustrated in Fig. 3.5). The input model is first decomposed into a
few T-shapes. The final output is a global one-piece spline representation.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.3: GPC can handle more generalized models. Row 1: (a) The highly-
twisted swirl model, (b) Its GPC, and (c) Its topological graph. Row 2: (d) The
non-axis-aligned möbius model, and (e,f) Its GPC and topological graph. Row 3:
(g) The bucky model with complex topology, (h) It is decomposed into small “T-
shapes” with4 cuboids. (i) A subset of the GPC graph around the hole.
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(a) (b) (c) (d)

Figure 3.4: (a) The torus model. (b) Its CPC uses at least8 cubes and generates
4 ill-points. (c) The genus-3 model with narrow top and wide bottom regions. (d)
Its CPC maps two regions onto the equal-sized parameterization domain, leading to
large distortion.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.5: GPC and spline construction pipeline. (a) The input genus-3 model
is first decomposed into some “T-shape” patches. (b) Each “T-shape” is further de-
composed into4 cuboids. (c-d) Overlay all cuboid edges onto the model to visualize
the global structure. (e) All cuboids comprise a topological GPC. (f-g) Construct
the parametric mapping between the input model and its GPC. (h) Transform the
model into a volumetric spline representation.
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3.3 Model Partitioning

Suppose a solid region is bounded by a triangle-meshed surface∂M (note that∂M
can be of high-genus, but as the boundary of a solid objectM , ∂M is a closed
surface), this section focuses the computation of a group ofcurves{c} on ∂M .
These curves segment∂M into sub-patches∂Mi, bounding sub-solid regionsMs

i

to be parameterized upon GPC cuboids. We denote these tracedcurves on∂M as
poly-edges, as they will be mapped to edges of GPC cuboids. Our segmentation
includes two main steps:

• Partitioning into T-shapes: we decompose the entire model into a group of
T-shaped patches.

• T-to-cube decomposition: we generate poly-edges on each T-shape and de-
compose it into4 connected cube-like sub-patches.

T-shapes are used as the basic primitive in our framework to decompose more com-
plicated solid models. A T-shape, which represents the verysimple3-branched
volume shape, has trivial topology and only contains Type-1ill-points.

(a) (b) (c)

Figure 3.6: Model segmentation into “T-shape” patches. (a)The part-aware seg-
mentation and its abstraction graph. The nodes in the graph have different cases for
edge connection (red and blue regions). (b) For each case, wehave corresponding
operations on the graph and input model. (c) Our operation guarantees that the re-
sulting nodes in the graph are all degreed = 3, and the model is segmented into
T-shapes.
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3.3.1 T-shape Segmentation

We use∂Ti to represent a T-shape surface andTi for its bounded volume. Our
idea is to partition a given modelM into several T-shaped sub-regions{Ti}. We
achieve this segmentation through tracing curves on the boundary surface∂M and
partition it to sub-patches∂Ti or many simpler patches. This pipeline is illustrated
in Fig. 3.6. The algorithm has following steps. Note that thechallenge is how to
ensure the segmented patch is geometrically similar to a “T”in 3D space, not just
topologically.

Step 1. We first partition the input∂M into several initial part-aware patches
with non-intersecting cutting curves. Any closed surface (the boundary of a solid
model) can be partitioned in this way [151]. Different geometric criteria can be
integrated in this unified partitioning framework. We choose volume-aware shape
descriptors such as the shape diameter functions [137] to guide our cutting curve
tracing.

Step 2. Upon a complete decomposition, we construct an abstractiongraph: a
node represents a patch, an edge connecting two nodes indicates their patch adja-
cency, and an edge connecting a node to itself indicates a handle loop. Fig 3.6(a)
shows a 4-torus with colored part-aware segmentation and the resulting abstraction
graph.

Step 3. We modify each partitioned patch to a standard shape. It means that
we split the abstraction graph’s nodes with high valance until all nodes have≤ 3
incident edges (a graph node withd = 3 represents a3-branch patch, i.e., T-shape,
andd = 1 or d = 2 indicates the patch that bounds a tube). We partition every
patch through analyzing all connected edges:

(3.1)Handle loop(see Fig 3.6(b), Row 1). We generate the shortest handle loop
by [152] and then cut along it. In the abstraction graph, thispartitioning cuts the
loop into two edges.

(3.2) High Valence (d > 3) branch(see Fig 3.6(b), Row 2). We partition it to
two connected nodesn1 (valence-d−1) andn2 (valence-3). Then we repeat the split
until all newly-generated nodes are valence-3. To achieve this idea, we first choose
two boundaries (a pair with the closest distance). Then we utilize the technique
in [151] to generate a cutting curve that covers two boundaries and avoids any
intersection. This curve segments the patch into two patches, one with3 boundaries
(i.e., a T-shape) and another one withd− 1 boundaries. We again execute the same
partitioning method on the second patch until only3 boundary patches exist. Row
2 shows an example of the cutting loop.

After repeating the above operations on every node, we can get a decomposi-
tion result where every node has its valence equivalent to3 or less, as shown in
Fig. 3.6(c). Compared with existing partition techniques,our segmentation method
is uniquely spline-friendly: No prior segmentation resultconsiders the critical is-
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sues in splines like singularities and ill-points. Withoutaddressing these issues, a
segmentation is less suitable for spline conversion. Our T-shape based segmenta-
tion, however, is completely singularity-free and ill-point controllable.

Cutting curve loops should be prevented from intersecting each other in our
system. This can be ensured by not allowing a newly traced curve hitting (vertices
of) existing loops. When two loops are very near and the triangle mesh is very
sparse, triangles around this region will be subdivided to ensure the topologically
correct tracing without intersection (for mesh refinement to ensure reliable curve
tracing, please see [151] for details).

Figure 3.7: Illustration of T-to-cube segmentation.

3.3.2 T-to-cube Segmentation

We process a set of T-shapes∂Ti or tube-shaped (cylinder) patches, one-by-one in
an arbitrary order.∂Ti is first partitioned into4 sub-patches∂Mij , then we generate
corners and poly-edges on each∂Mij (recall that poly-edges are the traced curves
that will be mapped to the edges of cuboid domains), as shown in Fig. 3.7. Mean-
while, for any simple tube-shaped patch, we can generate itscorners and poly-edges
directly by the Step 2, the first pass, i.e., Fig. 3.7(b). Finally, each resulting patch
has8 corners and12 poly-edges like a cuboid. To guarantee corner alignment, when
we determine one T-shape’s result, we transfer its corners on the boundaries to the
adjacent T-shapes if they are not processed yet.

Step 1. We generate three cutting linesW1, W2, andW3 (See Fig. 3.7(a)).
We first find4 corners on one boundary. We denote this boundary as “left” while
arbitrarily denoting other two as “right” and “bottom”. Positions of 4 corners are
determined by its previously-processed adjacent T-patch (except for the first pro-
cessed T-shape, on which we manually set these4 corners). To generate3 cutting
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lines, we detect3 branches of∂Ti by extracting associated skeleton [153], with3
resulting cutting lines.

Step 2.We generate all poly-edges and corners on a T-shape∂Ti, separately in
3 passes (Fig. 3.7(b-d)). Each time we trace poly-edges between2 boundaries with
3 sub-steps.

(2.1) We first remove the third long branches by cutting alongits cutting lines
(e.g.,W3 in Fig. 3.7(b)). After filling the cutting hole [154], the resulting surface is
a2-boundary tube-shaped patch∂P.

(2.2) We map the tube shape to a cylinder domain[u,v] following the approach
of [11]. We shall briefly describe this algorithm: First, setu = 0 for vertices on
one boundary andu = 1 for the other boundary, solve∆u = 0 by mean value
coordinates [71]. Second, trace an iso-v curve along∇u from an arbitrary seed
vertex on the boundaryu = 0 to the other boundaryu = 1 and slice along this
iso-curve and get two duplicated boundary paths, then setv = 0 andv = 1 on them
respectively and solve∆v = 0. The∂P is therefore parameterized onto a cylinder
domain.

(2.3) We generate poly-edges between possible node pairs based on the cylinder-
parameterized patch. For the first pass, we trace4 edges from all corners on the left
boundary to the right. For the second pass, we find2 corners on the left boundary
with shortest Dijkstra distance to the bottom (c1, c2) as shown in Fig. 3.7(c) and
trace2 edges from them to the bottom. For the third pass, we choose pairing cor-
ners ofc1 andc2 on the right boundary (c5, c6) and trace2 edges to the bottom (the
possible node pairing/poly-edge tracing algorithm is described below).

Step 3. We generate poly-edges and corners for the central cuboid cutting.
With 4 intersection corners (between the bottom cutting line and the traced paths)
generated in the second and the third pass, now we trace poly-edges between two
intersection corners in each pass (c13, c14 andc15, c16).

Tracing Poly-edges.The above algorithm involves tracing edge[c1, c2] on a
cylinder parameterized patch[u,v]. According to the processing queue,c2’s loca-
tion is either already determined by other precedent patches or is not yet known.
For an unknownc2, we trace the poly-edge from the
starting corner (c1) along the gradient direction∇u to
another boundary at a new pointc2. For a determinedc2,
we map bothc1 andc2 to the cylinder domain[u,v] and
trace the straight line on the domain between them, then
project this parametric straight line back to the patch
and get the resulting poly-edge. Note that none of poly-
edge is restricted to mesh edges. We allow them to cross
and split the mesh triangles. This strategy enables more
smooth path lines.
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Node Pairing. When we trace poly-edges, it is very possible that all corners’
locations on two boundaries are predetermined by other precedent patches. In such
scenario, we desire to pair two boundaries’ corners before tracing edges between
unpaired corners. Intuitively, the traced path should be least deviated from the
gradient of the harmonic field. Suppose we are tracing paths between boundary
b1 andb2. If corners on bothb1 and b2 are predetermined, we trace the gradient
line from b1’s corners and get ending nodes onb2. Then we compute and find
the pairing between ending nodes and corners onb2, satisfying that the sum of
total distance between each pair is minimized. In this way, we can get the pairing
between corners onb1 andb2; If corners onb2 are not predetermined yet, we directly
use the ending nodes as the new determined corners and thus get the pairing. In
practice, we can merge edge tracing in the second/third pass(Fig. 3.7(c,d)) together:
we determine the4 node pairing together to avoid possible intersected poly-edges
generated between two passes.

Feature-preserving Segmentation.Although the above automatic algorithm
can handle most of models very well, sometimes users still expect to use several
sharp features as the poly-edges. For example, this choice is specially natural and
meaningful on the strong symmetric man-made models with sharp features (e.g.,
CAD models in Fig. 3.3(b-e)). Specifically, a scaling factoris applied to edges on
feature curves, so they are considered shorter in the Dijkstra path tracing. Therefore,
features will be on the traced curves and poly-edges if we compute shortest path
between corners. Fig. 3.3(a, d, e) and Fig. 3.2(d) show the results with feature-
preserving poly-edges. In practice, this method can only pick a few major feature
lines (like in the twirl model, the poly-edges are sharp features we pick). It is still
difficult to handle more complex features. Instead, we can preserve the extra sharp
features through the following spline fitting step.

3.4 Parameterization

After the input modelM is decomposed into sub-patches{∂Mij}, bounding topo-
logical solid cuboids{Mij}, we now perform cuboid parameterization of{Mij}.
We first map the patch boundary to the cuboid domain surface. Then we use this
mapping as boundary condition and compute the interior volumetric parameteriza-
tion.

3.4.1 Surface Parameterization

The subpatch∂Mij computed previously has8 corners and12 poly-edges (see
Fig. 3.8(a)), we partition∂Mij into 6 topological rectangles, then solve3 harmonic
mappings∆u = 0, ∆v = 0, ∆w = 0 on all rectangles. Each time we pick2 op-
posite rectangles as2 iso-plane domains on one direction (e.g.,u = 0 andu = 1).
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(a) (b)

(c) (d)

Figure 3.8: Illustration of surface parameterization.

Then we compute the parameters of this direction (u) on all other4 rectangles. For
example, to solve∆u = 0, we select8 poly-edges on two opposite rectangles (see
Fig. 3.8(b)). 4 red poly-edges bound an iso-u rectangle (u = 0) and the4 blue
poly-edges bound another iso-u plane (u = 1). Then we compute the approximated
discrete harmonic map∆u = 0 [71] on other regions. Fig. 3.8(c) illustrates the
computedu. Similarly, we can compute the harmonic scalar fields ofv andw with
∆v = 0 and∆w = 0, respectively. After solving3 harmonic mappings, each vertex
on the surface patch is mapped to a coordinate(u0, v0, w0) on the cube surface. The
surface parameterization is illustrated in Fig 3.8(d).

3.4.2 Volumetric Parameterization

We compute the volumetric parameterization ofMij on a set ofn0 × n1 × n2 grid
points. These grid points correspond to the uniformly-sampled coordinates in the
parametric space(u, v, w). This volumetric parameterization can be considered as
finding the locations of these nodes withinMij . Similarly, as we discussed in sur-
face parameterization, we need to find the point locations that minimize the equa-
tions∆u = 0,∆v = 0 and∆w = 0 in 3D space.

Then0×n1×n2 grid points include two categories: the surface grid pointsand
interior points. We determine their positions as follows.
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Figure 3.9: Volumetric mapping. We extract sample points asa hexahedral model.
Each node has6 neighbors for solving 3-D Laplacian in Eq. (3.1).

(1) If the parameter of a grid pointn falls on the domain surface, we can always
find its location on∂M by the parameter ofn, wheren’s parameter always falls into
a triangle[v1, v2, v3] of ∂M on the parametric domain with corresponding barycen-
tric coordinatesλ1, λ2, λ3, then its spatial location is interpolated as

∑i=3
i=1 λiP(vi),

whereP(v) denotes the3D position of vertexv.
(2) Keeping the surface points fixed, we compute the interiorpoint position by

minimizing3D Laplacian Eq. (3.1), wherenijk andN λ
ijk represent the node and its

neighbor’s spatial positions in(x, y, z) andwλ is the point weight. In practice, each
node is moved to the weighted mean center of their six neighbors. Here, the choice
of weightwλ has been studied in [80], [8]. In our implementation we simply use
the uniform weightwλ = 1/6 as suggested in [154] and [155].

E(nijk) =
∑

λ

wλ × ||(nijk −N λ
ijk)||, λ ∈ Nb(nijk). (3.1)

We move grid points iteratively. The update converges when changes of all node
positions are smaller than a threshold during one iteration. Fig. 3.10(a-c) show the
computation results of the femur model after20, 60, and80 iterations.

Refinement across Cutting Boundary. Before merging, the parameteriza-
tion of two adjacent sub-patches are already computed separately. Along the cut-
ting interface, onlyC0 continuity is guaranteed and the cutting boundary is not
smooth. We perform a refinement to improve this smoothness. To reduce com-
putation time, we only extract a small region from each patch. For example, we
pick a region from one patch within the parameter(1 − α, 1) × (0, 1) × (0, 1),
and(0, α) × (0, 1) × (0, 1) from another patch if two patches are connected along
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Figure 3.10: Results of the cut-out view of the interior femur model by solving
Eq.(3.1) after20, 60, and80 iterations.

∇u direction (α is a small scalar value). Gluing two extracted region together,
the new patch also has8 new corners and12 new poly-edges
(recall that poly-edges between two adjacent patches are aligned
along the boundary), thus we can recompute the surface mapping
and volumetric mapping on the new patch. Meanwhile, this re-
computing is subject to an extra constraint, on regions thatcon-
nect to an extra third cuboid. We keep these region’s parameter
unchanged during recomputing, to avoid our modification destroy-
ing global parameter consistency.

3.5 GPC-Splines

Two challenging issues must be addressed when designing the
mesh-to-spline transformation over GPC. First, allowing adaptive refinement with-
out significantly increasing control points is highly desirable since volumetric spline
fitting usually requires a large number of control points when we seek high approx-
imation accuracy. Second, unlike conventional B-splines that each control point
and its knots are associated with global coordinates, GPC provides only locally-
defined parameters in each cuboid domain. This is because a global realization of
GPC parametric domain in 3D Euclidean space is oftentimes impossible on highly
twisted/high genus models. Thus we design a unique GPC-spline algorithm using
a point-based scheme.

In principle, a volumetric cubic spline can be viewed as a point-based spline:
Each control pointCi (located in parametric cubeDj with local coordinatecji ) is
associated with three knot vectors along three principal axes:r = [r1, r2, r3, r4, r5],
s = [s1, s2, s3, s4, s5], t = [t1, t2, t3, t4, t5], wherecij = (r3, s3, t3). All knots can be
determined using aray-tracingstrategy [35]. For any sample point with(u, v, w)
as its local parameter, the blending function is

Bi(u, v, w) = Nr(u)×Ns(v)×Nt(w), (3.2)
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whereNr, Ns, andNt are cubic B-spline basis functions associated with the knot
vectorr, s, andt respectively. The formulation for point-based splines (PB-splines)
is

P (u, v, w) =

∑n

0 CiBi(u, v, w)
∑n

0 Bi(u, v, w)
. (3.3)

We modify the above equation to construct GPC splines. The GPC domain
comprises a collection of coordinate charts locally definedin individual cuboid. Ad-
jacent local parametric coordinates are transformed coherently by transition func-
tions, which can be encoded in a GPC-graph structure. Consequently, the global
PB-splines are piecewise rational polynomials defined on GPC, whose transition
functions between adjacent cuboids are compositions of simple cuboid translations
and rotations ofnπ/2, wheren is an integer.

In a cuboidDj, given an arbitrary parameterh, also denoted ashj, the spline
approximation can be carried out as follows:
(1) Find all the neighboring cubes{Di} that supporth (i.e., it contains control
pointsCk that may supporth);
(2) The spline function is:

P (h) =

∑n
k=0C

i
kBk(φ

ij(hj))
∑n

k=0Bk(φij(hj))
, (3.4)

wherehj is the local parametric coordinate of pointh in the cube domainDj, φij

is the transition function from cube domainDj to Di, andC i
k denotes the control

pointk in the cube domainDi.
In theory, a transition functionφij from cube domainsDj toDi is a composition

of translations and rotations following the shortest path from cubeDj to cubeDi

in the GPC-graph. SupposẽDiDj := D1(= Di) → D2 . . . → Dn(= Dj), and
the transition functionΦ(i,i+1) (derived by way of cube-gluing) fromDi+1 to Di is
already known, thenφij is formulated by

hi = φij(hj) = Φ1,2(Φ2,3(. . .Φn−1,n(h
j))).

In practice, because most control points only influence a very small local region and
do not cut across non-adjacent cubes, we observed that only using a neighboring
cube transition function is usually enough.

Along any merging region, two connected cubes share the samedomain size
along the merging face (i.e., we forbidden partial gluing between a large and small
cubes). Therefore, when we merge two cuboids’ control grid (with the same res-
olution), all the control points and intervals along the merging faces will merge
coherently, without any T-junction before hierarchical fitting.
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3.5.1 Hierarchical Fitting

Following above GPC-spline definitions, we develop a hierarchical fitting scheme
to approximate volumetric models. For a sample pointf(hi) in the model whose
parametric coordinate ishi (defined by the volumetric parameterization computed
in previous sections),P (hi) is our GPC-spline representation. We minimize the
following equation:

Edist =

n∑

i=0

||P (hi)− vi||
2, (3.5)

which can be rewritten in matrix format

1

2
CTBTBCT −VTBC, (3.6)

whereC is the vector of control points,V = vi is the vector of sample points,
andB = Bi(hi) is the matrix of basis functions. This least square problem is
not difficult to solve numerically. Given a sample parametric point h in GPC,
in order to decide if we need to refine the approximation, we measure the root-
mean-square error (RMS)σ(h) between its spatial positionf(h) and its spline ap-
proximationP (h). Algorithm 1 documents the main steps. The input includes
all sample points and an initial control grid with control points. The initial con-
trol grid mimics the structure of GPC: Each cube correspondsto a local regular
control grid. All local grids are topologically glued coherently following the GPC-
graph, generating a one-piece global control grid. The function KnotVectors
collects3 direction knots for each control point. We use the same “ray-tracing”
strategy in [35]. InfluencedSamples returns all sample points in the influ-
enced region of a control point.Transition transports a local parameter from
one cube to another cube.AssembleMatrix assembles the matrix for Eq. (3.6)
and SolvingEquation solves it and determines the control point positions.
FittingError returns the worst fitting result in a small grid.Subdivision
divides a grid uniformly into8 smaller sub-grids. Fig. 3.11 illustrates our hierarchi-
cal fitting results.
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Algorithm 1 Hierarchical spline fitting.
Input: Initial control grid Lg,

List of sample points Ls,
List of control points Lc,
Fitting error threshold ǫ

Output: all control points positions.
loop
//Update control point knot vectors
for all Lc do
c = Lc.next()
c.knots = KnotVectors(c,Lg)
L′

s = InfluencedSamples(c,Ls)
for all L′

s do
s = L′

s.next()
s.ctrlist.push_back(c)

end for
end for
//Compute basis functions for samples
for all Ls do
s = Ls.next() Btotal = 0
L′

c = s.ctrlist LB = {}
for all L′

c do
c = L′

c.next()
param=Transition(s.cube#,c.cube#,c.param)
B= BasisFunction (param,c.knots)
LB.push_back(B) Btotal = Btotal +B

end for
AssembleMatrix (LB, Btotal, s)

end for
//Fitting and evaluation
SolvingEquation()
for all Lg do
g = Lg.next()
if FittingError(g) > ǫ then
L′

g =Subdivision(g)
Lg.delete(g) Lg.insert(L′

g)
end if

end for
Stop if no updated grid

end loop
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Figure 3.11: Hierarchical spline fitting results at levels 0, 1, and 2, respectively.

Figure 3.12: The 4-sphere model visualized with cuboid organization, poly-edge
structure, surface parameterization, and volumetric parameterization.
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Figure 3.13: The dancer model visualized with T-shape decomposition, cuboid or-
ganization, poly-edge structure, GPC-graph, and volumetric parameterization.
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3.6 Implementation and Discussion

Our experimental results are implemented on a 3GHz Pentium-IV PC with 4Giga
RAM. To demonstrate the versatility of our approach (therefore, the flexibility of
our computational framework), we construct GPC splines formany models. Our
experiments include models with twisted shape: twirl (Fig.3.3(Row 1)), möbius
solids (Fig. 3.3(Row 2)); and with complex topology: bucky (genus 31, Fig. 3.3(Row
3)), genus-3 (Fig. 3.5), 4-sphere (genus 4, Fig. 3.12); and with complex conceptual
parts: wrench (Fig. 3.2), dancer (Fig. 3.13), and greek and david (Fig. 3.15). Ta-
ble 3.1 summarizes the statistics of the GPC construction, including every model’s
properties (genus, twisted/not twisted), the number of T-shapes, cuboids and ill-
points.

Figure 3.14: The kitten model visualized with surface and volumetric parameteri-
zation.

It may be noted that our parameterization algorithm may not guarantee a globally-
minimized angle and volume distortion. However, since our algorithm decomposes
the input into part-aware patches, each of which is parameterized on a geometrically
similar cuboid, the distortion is satisfactory for our spline construction. The models
of dancer, 4-sphere, kitten, greek and david (Fig. 3.12, Fig. 3.13, Fig. 3.14, and
Fig. 3.15) demonstrate several surface and volumetric GPC parameterization re-
sults. Fig. 3.16 shows several volumetric spline approximation results. We overlay
the control grid line (black lines) onto the fitting results,and the T-junctions on the
control grid reduce the control point greatly while still preserving the shape details.
The statistical results are given in Table 3.2. The table shows that the vertices’ num-
ber increases dramatically when we convert a surface model into a volume data. Our
spline scheme can significantly reduce control points for shape representation. In
most of our experiments, approximation with good quality can be achieved within3
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Table 3.1: Statistics of various test examples

Model Genus Twisted # T-shape # Cuboid # Ill-points
genus-3 3 no 4 16 8
bucky 31 no 60 240 120
mobius 1 yes 1 1 0
twirl 1 yes 2 6 4

4-sphere 4 no 6 24 12
bimba 0 no 1 1 0
femur 0 no 1 1 0
wrench 1 no 2 8 4
dancer 1 no 3 14 6
david 3 no 4 12 24
greek 4 no 6 19 12

levels of hierarchical refinement. The fitting qualities aremeasured by RMS errors
normalized to the overall sizes of solid models.

Table 3.2: Statistics of various spline examples.

Model #. Surface #. Volume #. Control RMS Running
vertices vertices points error time

kitten 12403 40000 3020 0.35% 202s
wrench 7550 12000 2966 0.2% 105s
4-sphere 2042 22800 1088 0.2% 47s
genus-3 6632 51200 1280 0.17% 162s
david 15572 81600 5956 0.37% 890s
body
greek 20109 91900 7265 0.4% 1096s
body

Comparisons. We compare our method with other volumetric parametric do-
main construction and mapping approaches: [103], [106], [10], [12], [105], and
[80]. As shown in Table 3.3 and Fig. 3.3, our method has advantages in the follow-
ing aspects. First, our method works well for volumes with complex topology and
structure. Second, our domain does not have any singularityand can control the
type and number of ill-points (which is highly desirable forspline construction).
Our domain construction does not require tedious design, even for very complex
shape input. Meanwhile, we can also flexibly edit the cube domain to better ap-
proximate the shape interactively.
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Figure 3.15: The greek and david model visualized with T-shape decomposition,
cuboid organization, poly-edge structure, volumetric parameterization and their
GPC graphs, respectively.

We also test our system on the rocker-arm model, which also appears in other
papers (e.g, CubeCover in [1]). As the comparison shown in Fig. 3.17, our parame-
terization has the same quality as in [1]. However,26 cube domains and4 singular
points are used in [1], while we only have eight cuboids and nosingularity. In
Fig. 3.18, we compare our domain (Middle Left) with the methods in [106] (Mid-
dle Right) and [156] (Right) using the fertility model. Our domain significantly
decreases the number of cuboids (19) as while as ill-points (only on cuboids with
more than two edges in the GPC-graph).

Discussions.Since singularity-free and ill-point simplification is thefirst prior-
ity in our spline-oriented system, this enforcement may lower mapping quality in
certain region. According to users’ requirement, we can always change it on the
fly based on a hybrid system. Inside the current partitioningframework, we may
further allow extra local segmentation to improve its geometry awareness. Upon
initial partitioning we detect long branches, and construct additional cuboids to
parameterize these branches. For example, we map the axial shaft and handle of
the screwdriver (Fig. 3.19) to separate cuboids. Compared with using only one
cuboid, the distortion (e.g., the extrusion effect) aroundthe handle top is signifi-
cantly reduced. However, as mentioned above, this modified GPC decomposition
will bring extra singularities, ill-points, and merging cases. In this example we add
four extra“type-4” ill-points.

Our system decomposes the input model mainly according to global shape and
topology. This implies that it fails to handle the model withcomplex features if they
are everywhere. Enforcing poly-edges covering features (Section 3.3.2) can only
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Table 3.3: Comparison with the existing approaches.

Method Tarini [103] He [106] Martin [10] Zhang [12]
Primitives cube cube cylinder cylinder
Topology axis-alignedaxis-aligned symmetric long branch

Twisted model no no yes yes
Singularity no no center center
Ill-points no control large number no no
Domain artiest axis simple simple

construction design scan
Editable yes no no no
domain
Method Lin [105] Wang [80] Hex-mesh [157] Ours

Primitives cube sphere no cube
parameter

Topology reeb-graph genus-0 arbitrary arbitrary
Twisted model no no yes yes

Singularity no center large number no
Ill-points no control no large numbercontrollable
Domain simple sphere no domain simple

construction only existed
Editable no no no yes
domain

recover major features which are globally dominant. For spline construction, this
is not a critical issue since we can always improve the fittingquality hierarchically
around any sharp feature. However, many feature based applications may require
features to be retained. We will investigate how to preservethe feature as much as
possible.

Our poly-edge tracing algorithm can not prevent them from intersecting with
each other. Fortunately, our tracing algorithm can avoid intersection on a well par-
titioned part-aware patch. However, intersection may happen on a very poorly-
shaped T-shaped patch. We will develop an automatic method to detect degenera-
tion and correct it.
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Figure 3.16: The volumetric spline approximation results.

Figure 3.17: Our segmentation/mapping result of the rocker-arm model
(left/middle). Our GPC (right up) has only8 cuboids/no singularity, compared with
26 cubes/4 singular points (right bottom, courtesy of [1]).
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Figure 3.18: Comparisons of different methods on the fertility model (courtesy of
[106] and [156]). Our domain has significant improvement on cuboid and ill-point
number.

Figure 3.19: Modified result of the screwdriver model (up). Mapping it to two
separate domains (bottom right) instead of one cuboid domain (bottom left) can
moderate distortion like extrusion round the handle top region.
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3.7 Chapter Summary

In this chapter, we have presented a GPC spline framework fordata transformation
from surface meshes to continuous volumetric splines. The novelty in this chapter
lies at the systematic handling of generalized poly-cube (GPC) parametric domain
without any strong assumption. Compared with conventionalpoly-cube (CPC),
GPC provides more generalized shape domain and better numerical stability to rep-
resent complicated models of arbitrary structure. We design a volumetric parame-
terization procedure based on GPC, which better handles solid objects with general
topology and structure than existing volumetric parameterization techniques. We
then devise a global “one-piece” volumetric spline based onGPC parameterization.
The GPC construction enables a novel and desirable mechanism that facilitates the
“one-piece” spline representation. Using local point-based strategy, global volu-
metric T-splines can be constructed on piece-wise GPC because transition func-
tions can be effectively computed from the GPC’s topological structure. The entire
spline framework affords hierarchical refinement and level-of-detail control. Our
GPC volumetric splines have great potential in various shape design and physically-
based analysis applications. Our GPC is of great value to a wide range of geometry
processing tasks, including volumetric isogeometric analysis [50], volume defor-
mation, anisotropic material/texture synthesis.
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Chapter 4

Component-aware Trivariate Splines

In the last chapter, we have proposed the technique to map themodel into a general-
ized poly-cube domain. That means the integral model is decomposed into several
cube components. Subsequently, it is natural to construct splines on each compo-
nent and then glue them together. However in the previous chapter, we still use
the global parameterization to approximate the global splines integrally for numer-
ical reasons. Very naturally, this phenomena intrigues us to answer the question:
“How to apply divide-and-conquer schemes onto decomposition-already inputs?”
In this chapter, our primary goal is to develop efficient methods for arbitrary solids
undergoing spline transformation, with local spline construction and global spline
merging.

4.1 Motivation

To achieve this goal, we must address the following key challenges.
(1) High Genus. An attractive spline representation must accommodate high-

genus solid models with complicated shapes.
(2)Local Refinement and Adaptive Fitting.For trivariate splines, both structurally-

complicated shape models and feature-enriched models needlocal refinement. For
example, a genus-0 solid bounded by6 simple four-sided B-spline surfaces has
originally 6× 10242 control points (DOFs). The size of DOFs increases drastically
to 10243 or even larger when we naively convert it to a volumetric spline represen-
tation. This exponential increase during volumetric spline conversion poses a great
challenge in terms of both storage and fitting costs. Therefore, it is advantageous to
use high resolution to approximate boundary surface and lowresolution for interior
space.

(3) Singularity Free. A singular point in a volumetric domainis a node with
valence larger than four along one iso-parametric plane (Fig. 4.1(a)). Handling sin-
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gularity with tenor-product splines is highly challengingin FEM, thus a singularity-
free domain is highly desirable. Unfortunately, singularities commonly exist in
many volumetric domains such as hexahedral meshes and cylinder (tube) domains.

(4) Boundary Restriction. It is a basic requirement for a spline that all blending
functions are completely confined within the parametric domain.

(5) Semi-standardness.A hierarchical spline is always formulated as Eq. 4.1.
Semi-standardness, meaning that

∑B
i=1wiBi(u, v, w) ≡ 1 always holds for all

(u, v, w), has a broader appeal to both theoreticians and practitioners.

(a) (b) (c)

Figure 4.1: (a) The singular point in the volumetric domain.(b-c) A poly-cube
domain can mimic the geometry of input and avoid such type of singular point.

Recently, much work has been attempted towards spline modeling of arbitrary
topology shape while satisfying the aforementioned requirements, following a top-
down fashion like Wang et al.[148]. They have proposed a theoretical trivariate
spline scheme, being built upon volumetric poly-cube domains. Poly-cube is a
shape composed of cuboids that abut with each other. All cuboids are glued in var-
ious merging types like Fig. 4.2, without any singular point(Note that the yellow
dots arenot singular points in the trivariate splines, even though theyare singular
for surface study). For example, a poly-cube parametric domain like Fig. 4.1(c)
is designed to mimic shape geometry Fig. 4.1(b). Although their spline refine-
ment guarantees the features such as semi-standardness andboundary restriction,
this theoretical formulation encounters many difficulties. A global one-piece poly-
cube domain, together with its 3D embedding, is not versatile enough to handle
highly-twisted and high-genus solid datasets. Creating a poly-cube to mimic the
input shape requires tedious user work. The boundary restriction procedure in the
vicinity of gluing regions (Fig. 4.2, yellow dots/lines) isextremely complicated.
Computationally speaking, the global fitting is very time consuming which is com-
pletely unsuitable for trivariate splines.

To ameliorate, our framework takes advantage of the bottom-up scheme. The
global domain is divided into several components, with a controllable number and
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(a) (b) (c) (d)

Figure 4.2: All possible merging types in a poly-cube (“Type-1” to “Type-4”).
To preserve both boundary restriction and semi-standardness, we add extra knots
around the control points on the merging boundary (yellow lines and dots).

types of the cuboid merging. We build tensor-product trivariate splines separately
for each component, and then glue them together. Compared with the top-down
scheme, our divide-and-conquer method is more flexible and powerful to handle
high-genus and complex shape. The interior space mapping and remeshing in each
component is much easier. Compared with global fitting, our local fitting reduces
both the computation time and space consumption significantly.

Figure 4.3: The divide-and-conquer scheme.

One key theoretical challenge in our divide-and-conquer scheme lies at design-
ing merging strategies, so that the global spline after merging will still satisfy the
semi-standardness and boundary restriction properties, especially around merging
regions across adjacent cuboids. All possible cuboid merging types for a poly-cube
are shown in Fig. 4.2. The traditional merging technique [36] only handles stan-
dard surface T-spline models defined over 2D domains withoutconsidering any 3D
merging. In our framework, we have to design a new merging strategy, through
adding extra knots and modifying weights of blending functions, to handle each
merging case in Fig. 4.2, enforcing the semi-standardness and boundary restriction
properties everywhere. Fig. 4.3 and 4.4 show the detailed, step-by-step procedure
using a high-genus G3 model as an example. Specifically, it includes the following
major phases:

(1) Construct a surface poly-cube mapping. To better support our divide-and-
conquer scheme, we use the technique [158] to decompose the entire surface model
into several components. Each component is a part-aware surface patch and we map
it to the boundary surface of a cuboid. We also guarantee in this step that separate
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cuboid mappings are globally aligned.
(2) Construct a local trivariate tensor-product T-spline on each cuboids (Sec-

tion 4.3). Adaptive fitting is allowed for a better fitting result.

Figure 4.4: Steps to convert the G3 model into a trivariate T-spline solid.

(3) Merge local cuboids into a single global spline (Section4.4). Note that, the
novelty of our merging strategy lies at its comprehensive and complete solution to
guarantee the desirable properties: semi-standardness and boundary restriction.

Our new shape modeling framework has the following advantages:

1. Compared with prior top-down strategies, our new divide-and-conquer ap-
proach is more flexible and powerful to handle complex solidswith arbi-
trary topology. Each component can be easily converted to a trivariate semi-
standard regular spline, which is embraced by industry-standard CAD kernels
and facilitates GPU computing like [159].

2. We develop the theory and algorithm to merge adjacent trivariate splines to-
gether. Through adding knots and modifying weights, our merging method
can enforce semi-standardness and boundary restriction for all possible merg-
ing types, even after local adaptive refinement.

3. For solids with homogeneous material, we are capable of generating trivariate
splines from poly-cube surface parameterization directly, thus we avoid com-
plicated interior volumetric remeshing. Moreover, our divide-and-conquer
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strategy makes the modeling and analysis tasks scalable to large-scale volu-
metric data, in terms of computation time and space consumption during the
fitting.

4.2 Component Generation and T-splines

This section briefly reviews the required surface poly-cubegeneration algorithm.
We also define the necessary notations for the rest of this chapter. In the interest of
understanding, most illustrative figures about knots are simply shown in 2D layout,
as their 3D generalizations are straightforward.

4.2.1 Component Generation

The starting point of our whole procedure is to decompose an input surface model
into several component surface. Each component surface is part-aware and maps
to a cuboid surface. The decomposition and mapping must follow the rule that pa-
rameters between neighboring components are consistent (i.e., we can glue their
parameters together directly as a seamless aligned global poly-cube mapping). We
remain agnostic as to which method should be used for such decomposition. How-
ever, in order to better promise these requirements, we utilize the algorithm intro-
duced in Chapter 3. Compared with the conventional poly-cube mapping method
like [103], our construction is specifically suitable for the divide-and-conquer strat-
egy and spline construction. (1) The conventional poly-cube method always gen-
erates an integral poly-cube domain to mimic the whole shapeat first. Then we
have to decompose this integral domain into small pieces forapplying the divide-
and-conquer strategy. In contrast, our method directly uses a small set of con-
nected local cuboids, each of which represents a geometrically meaningful patch
(e.g., part-aware). This property is particularly suitable for highly-twisted/non-axis
aligned/high-genus models (e.g., the g3 model). More importantly, we can use the
divide-and-conquer technique directly on our resulting poly-cube without further
decomposing anymore. (2) Our method can also reduce the number of cuboids, and
control the merging types efficiently: It only generates “Two-cube” and“Type-1”
(Fig. 4.2(a)) merging, thus it simplifies the merging requirement.

4.2.2 Trivariate T-spline

To better prepare readers for the better understanding of the following algorithm,
we briefly define the volumetric T-spline representation (The surface T-spline for-
mulation is detailed in [36]). Also we give the detailed explanation of“Semi-
standardness”and”Boundary Restriction”as follows.
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We useT (V,F , C) (or simplyT ) to denote a control grid domain, whereV,F ,
andC are sets of vertices, faces and cells, respectively. GivenT , a trivariate T-spline
can be formulated as:

F(u, v, w) =

∑B
i=1wipiBi(u, v, w)

∑B
i=1wiBi(u, v, w)

, (4.1)

where(u, v, w) denotes parametric coordinates,pi is a control point,W andB are
the weight and blending function sets. Each pair of< wiBi > is associated with a
control pointpi. EachBi(u, v, w) ∈ B is a blending function:

Bi(u, v, w) = N3
i0(u)N

3
i1(v)N

3
i2(w), (4.2)

whereN3
i0(u), N

3
i1(v) andN3

i2(w) are cubic B-spline basis functions alongu, v, w,
respectively.

In the case of cubic T-spline blending functions in Eq. 4.1, the univariate func-
tion N3

j for each blending functionBi is constructed upon knot vectorRj , where
Rj is a tracing ray parallel to the control grid (See Fig. 4.5(b)): Starting from a knot
k = r00, r

1
0, r

2
0, we can trace tor01 andr0−1, which are the very first intersections when

the rayR(t) = (r00 ± t, r10, r
2
0) comes across one cell face. Naturally, we define the

parameter of a control point as the central knot of the knot sequence for the control
point.

To support downstream CAE applications, our spline framework has the follow-
ing requirements:
Semi-standardness.

∑B
i=1wiBi(u, v, w) ≡ 1 holds for all (u, v, w) in Eq. 4.1,

so that the evaluation of spline functions and their derivatives is both efficient and
stable. Eq. 4.1 can be rewritten as:

F(u, v, w) =

B∑

i=1

wipiBi(u, v, w), (4.3)

Boundary restriction. We require that blending functions of all control points
are strictly confined within parametric domain boundaries.Unfortunately, achiev-
ing this requirement is not trivial, especially around the cuboid merging regions.
Fig. 4.5 shows a counter-example. A standard control point’s blending function
(green box), without confinement procedure, tends to intersect with the boundary.
In CAE-based force analysis, it means the strain energy “escapes the border”, which
might lead to an abrupt bend, twist, and flip-over phenomena in experiments. In the
follow sections, we usually use“central points” for the control point/knot with an
unconfined blending function, since the confinement procedure is mainly through
adding extra knots/control points around the central point. However, even we de-
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sign the additional knots carefully and successfully confine the blending function,
we still have to recompute all control points’ weights around the knots-adding re-
gion, otherwise we will break the semi-standardness aroundthis local region.

(a) (b)

Figure 4.5: Counter-example of boundary restriction. (a) A“Type-1” merging in a
2D layout. (b) The blending function’s supporting region (green box) crosses the
boundary. The supporting region is determined by tracing rays (yellow lines).

4.3 T-spline Construction for Each Component
The construction of trivariate splines on each component isvery critical in our
divide-and-conquer method. Two major goals are involved inthis step. Besides
constructing T-splines preserving desirable features, wehave to satisfy the neces-
sary requirement in each component in anticipation for merging. We propose the
following procedure to satisfy both goals:

1. Construct a boundary restricted control grid.

2. Perform the meshless fitting to determine locations of allcontrol points.

3. Subdivide the control grid via local refinement iteratively. Perform fitting
again in each iteration for a better fitting result.

4. Modify the control grid around merging boundary after each subdivision it-
eration in anticipation for merging.
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Figure 4.6: (a) Top: Boundary restriction is illustrated ona 1D domain, with6
“boundary knots” (or called “bd-knots”,[0, 0, 0] and [5, 5, 5]) and two “boundary
control points” (or called “bd-control-points”, blue dots) inserted. (a) Bottom:
Boundary restricted control grid in a 2D layout. (b) All possible bd-control-points
around one central point.

Table 4.1: RefiningNR by insertingk into knot vector[r0, r1, r2, r3, r4] generates
two basis functionsNR1

andNR2
.

k R1 R2

r0 ≤ k < r1 [r0, k, r1, r2, r3] [k, r1, r2, r3, r4]
r1 ≤ k < r2 [r0, r1, k, r2, r3] [r1, k, r2, r3, r4]
r2 ≤ k < r3 [r0, r1, r2, k, r3] [r1, r2, k, r3, r4]
r3 ≤ k ≤ r4 [r0, r1, r2, r3, k] [r1, r2, r3, k, r4]

4.3.1 Boundary Restricted Control Grid

In order to construct a control grid, we first divide the cuboid block into cells by
grid coordinates. The grid coordinates alongk-axis are denoted as:

Sk = [sk1, s
k
2, . . . , s

k
nk
], k = 1, 2, 3,

wherenk is the resolution of rectilinear grid alongk-axis and each value inSk is
the normal subdivision of cuboid parameter alongk-axis. The tensor product of
S1,S2,S3 divides the block into(n1 − 1)× (n2 − 1)× (n3 − 1) cells and gives rise
to a point-based spline onn1 × n2 × n3 control points.

However, this naive spline construction is open boundary and violates the re-
quirement of boundary restriction. To improve, we replicate the non-uniform knots
at both ends ofSk to restrict the blending functions within the domain (See Fig. 4.6(a)Top):
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Figure 4.7: The bd-control-point distributions around a central point on the cor-
ner/edge/face vertex, respectively.

We add3 extra knots, calledboundary knots (bd-knots), at the end of domain to re-
strict the boundary. The knot set is expanded:

Sk = [sk1, s
k
1, s

k
1, s

k
1, s

k
2, . . . , s

k
nk
, sknk

, sknk
, sknk

].

We also add1 extraboundary control point (bd-control-point)(blue dots), on the
bd-knot outside of the last control point on the boundary. Fig. 4.6(a)Bottom extends
it to a 2D domain, and its extension to the 3D domain is in the same pattern. Our
spline definition achieves: (1) Every blending function in each domain is confined
within the domain boundary; (2) Only bd-control-points’ blending functions influ-
ence the cuboid boundary, so our following fitting method canrely on this usable
property.

In order to represent the bd-control-points conveniently,we can arrange them
into a3 × 3× 3 grid around the central point as Fig. 4.6(b) (Recall that thecentral
point is the control point with an unconfined blending function). These27 possible
knots share the same parameters as the central point. It is only designed to explic-
itly record topological relations of these control points in preparation for efficient
spline merging. After adding bd-control-points to the 3D control grid, each central
point on the corner/edge/face has 8/4/2 control points, respectively (Fig. 4.7). This
special bd-control-point representation is uniquely suitable for merging processing
as shown in Section 4.4.
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4.3.2 Meshless Fitting

Our input only includes a control grid and a group of surface sample points ex-
tracted from the surface patch (already mapped to a cuboid domain surface). The
challenge consists in designing a fitting method for solids without interior volumet-
ric parameterization or remeshing.

1. Boundary fitting. We first determine the positions of bd-control-points only.
Recall that only bd-control-pointspb

i influence the cuboid surface sample
points. Therefore, we can determine their positions by minimizing Eq. 4.4
w.r.t. to surface sample pointvb

j :

argmin(
m∑

j=1

||F(f−1(vb
j))− vb

j ||) (4.4)

⇒
∂

∂pb
i

m∑

j=1

(F(f−1(vb
j))− vb

j)
2

whereF denotes the spline function as Eq. 4.1 andf−1(vb
j) the parameters of

vb
j in the cuboid. The above equation can be rewritten in matrix format as in

the least square method:

1

2
PTBTBP−VTBP = 0, (4.5)

whereB is the matrix of blending functionsBij = I3×3Bi(f
−1(vbj)), V and

P denote the vectors of surface sample pointsvb
j and bd-control-pointspb

i ,
respectively. This equation determines bd-control-points and they serve as
the constraint in the next interior fitting step.

2. Interior fitting. Let u in the setU be the interior parametric value. Each
ui = (u, v, w) is the interior parameter triplet in the tensor-product parametric
grid (u0, u1, . . . , un0

)× (v0, v1, . . . , vn1
)× (w0, w1, . . . , wn1

). Theoretically,
we have the following harmonic equation w.r.t. interior control pointspin

j :

argmin(

m∑

i=1

∫

Ωi

||∇ · ∇F(ui)||du) (4.6)

⇒
∂

∂pin
j

m∑

i=1

∫

Ωi

(△F(ui))
2du = 0,
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whereΩi is an infinitesimal parametric volume aroundui. Similar as [82],
the above minimized energy

∫

Ωi
||△F(ui)|| can be approximated by the fol-

lowing formulation:

m∑

j=0

wijF(uj) = 0, wij =







1 i = j,
−1

6
uj ∈ Nbr(ui)

0 others
(4.7)

whereNbr includes6 immediate neighbors ofui in the tensor-product para-
metric grid. We substitute Eq. 4.7 into Eq. 4.6, which can be solved by the
least square method similar to Eq. 4.4. During computing we set already-
knownpb

i as constraints and get all other control point positions.

Global alignment. Although we execute volumetric fitting separately on ev-
ery cuboid, our fitting technique still guarantees global alignment of interior fitting
results. Recall that we already obtain the identical surface parameters between
cuboids before fitting, since we generate aligned poly-edges (i.e., cuboid edges).
Therefore, two cuboids minimize precisely the same energy in Eq. 4.4 and Eq. 4.6
on the boundary, leading to the equivalent fitting results.

4.3.3 Cell Subdivision and Local Refinement

If the fitting results do not meet certain criteria on each cuboid, we can always
perform subdivision over cells in the control grid with large fitting errors and then
conduct the volumetric fitting. Each cell is split along3-axis and divided into eight
sub-cells naturally.

The challenge is how to preserve the semi-standardness during subdivision.
Sederberg et al. [36] have proposed a feasible approach to refine blending func-
tions on surface patch. We generalize this technique onto our 3D control grid. Let
R = [r0, r1, r2, r3, r4] be a ray-tracing knot vector andNR(u) denotes the corre-
sponding cubic B-spline basis function. If there is an additional knotk ∈ [r0, r4]
inserted intoR, N can be written as a linear combination of two B-spline functions:

NR(u) = c1NR1
(u) + c2NR2

(u). (4.8)

Two knot vectorsR1, R2 are shown in Table 4.1,c1 andc2 are2 weights that can
not exceed1:

c1 = min(
k − r0
r3 − r0

, 1), c2 = min(
r4 − k

r4 − r1
, 1).

Since the blending function ofB is the tensor product ofN along3-axis, we can
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also formulate the refined blending functions along one axis:

Bi ≡ c1Bi1 + c2Bi2. (4.9)

The procedure of our 3D subdivision and local refinement consists of following
steps. The input is a queue of cellQc.

1. Subdivide cells inQc and insert the new vertices into the domainT , and
updateT to T ∗

2. For all pairs of blending functions< wiBi >,wi ∈ W, Bi ∈ B, compute its
new knot vectorR∗ (See Section 4.2). Then,

• If the R∗ includes the knot which does not exist inT ∗, insert a new
vertex on that knot into the domainT ∗.

• If the R∗ is more refined thanR, compute the refinementBi = c1 ×
Bi1 + c2 × Bi2. Insert the new blending functions< wi × c1Bi1 > and
< wi × c2Bi2 > into the control grid. Delete the old pair< wiBi >.

3. Repeat the last step until no new knot vector inR∗. Collect all blending
functions on the same control point and use the total weight as its new weight.

The above procedure can handle refinement and knot extraction on a compli-
cated 3D control grid. It also determines new required control points automatically
to guarantee the semi-standardness. Note that unlike [36],we perform spline fit-
ting again after each refinement iteration to update controlpoint positions. This is
mainly because our goal of refinement is to seek for more accurate fitting result. In
contrast, the refinement in [36] aims to keep the shape unchanged.

4.3.4 Boundary Modification

Boundary modification is necessary for our semi-standard T-spline component, be-
cause of the fundamental difference between standard B-spline and our merging
strategies. Fig. 4.12 intends to visually show the difference between them. It illus-
trates the 1D merging method introduced in [35] on our boundary restricted grid.
For aC2 merging,3 control points on one component will be merged with3 control
points on the other component to form a joint new spline. However, the procedure
does not take the associated weights into consideration. Instandard B-spline, all
the weights are uniform. However, in semi-standard T-spline, it is possible that two
corresponding soon-to-be-joined control points have different weights. As a result,
the semi-standardness around the merged regions will breakdown. Therefore, we
have to add extra requirement about weights to make these control points be capa-
ble of merging.
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To-be-merged control point (Definition 1). For a control point, if its blending
function includes bd-knots around merging boundary, we saythis control point is a
“To-be-merged” control point(For example, Fig. 4.11(a-b) in a 2D layout).
Modification zone (Definition 2). For any cell in the control grid, if one of its8
vertices is “To-be-merged” control point for one boundary,we say this cell is in the
“Modification zone”.

A merging-ready spline must have the following properties:
Boundary requirement (Proposition 1). The weights of all “To-be-merged” con-
trol points on this boundary must equal to one, such that we can merge two splines
and the resulting spline still preserves semi-standardness.

Figure 4.8: Proof of Observation 1.

Proof: As shown in Figure 4.8, two 1D splines are merged. Because of the
symmetry, we only analyze the left side of merging boundary (line segment[M,E]).
During merging, only control pointsD,E, F update blending functions and weights.
The influenced region thus narrows down to the line segment[A,E].

1) Line segment[A,C]: The semi-standardness preserves before merging, thus
wmBm + waBa + wcBc + wdBd ≡ 1 on line segment[a, c], Bi is the blending
function ati. After merging,wm = wM , wa = wA, wc = wC , wd = wD = 1, Bm =
BM , Ba = BA, Bc = BC , thus we only need to prove thatBd = BD between
[A,C]. The knot vector ofBd is [a, c, d, e, e]. The knot vector ofBD is [a, c, d, e, f ].
According to Eq. 8,

BD = Bd +
f − e

f − c
B′

The knot vector ofB′ is [c, d, e, e, f ], which does not influence the line segment
[A,C]. Therefore, we getBD = Bd on [A,C].

2) Line segment[C,E]: Similar to [A,E], we only need to proveBd + Be +
Bec = BD + BE + BF . Our subdivision procedure under “boundary requirement”
generates a local trivariate B-spline on line segment[D,F ] along this direction. Ac-
cording to B-spline merging,Bd +Be +Bec = BD +BE +BF on [C,E].

To guarantee that all “To-be-merged” control points’ weights equal to one, we
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need to be able to recognize if a local subdivision breaks theabove rule or not:

Proposition 2. Any knot insertion outside of “Modification zone” does not
violate boundary requirement (i.e., weights of bd-control-points equal to one).

Figure 4.9: Proof of Proposition 2. “Modification zone” is the left of “Green Bar”.
Three nodes ona1, a12 represent “to-be-merged” control points.

Proof: The point ona23 is the nearest newly-inserted control point outside
“Modification Zone”. According to Table 1, none of refined blending functions
takesa1 as the center of knot vector. Thus the weights of two “to-be-merged” con-
trol points ona1 are unchanged. For “to-be-merged” control pointa12, its refined
blending function is only subdivided from the original blending functionBa12 , lo-
cated ata12. According to Eq. 8,Ba12 = c1 × B′

a12
+ c2 × Ba2 . The new weight

of a12 is c1 = min(a23−a1
a2−a1

, 1) = 1. Therefore, the new weight ona12 still equals to
one.

After detecting the potential violation, we can properly handle it using the fol-
lowing proposition:
Proposition 3. If we subdivide all boundary cells around merging region at the
same time, the new “To-be-merged” control points still guarantee “Boundary re-
quirement” and their wights all equal to one.

Proof: After subdivision, each blending function is subdivided toseveral sub-
blending functions pairs< wiBi >. These pairs are distributed to other knots:
For example, subdivision of blending function located atD generates new pairs on
C,M,D,N,E and the weights on each node can be computed by Eq. 8:

D =
(a12 − a1)(a4 − a23)(a4 − a34)

(a4 − a1)(a4 − a12)(a4 − a2)

+
(a23 − a12)(a4 − a34)

(a4 − a12)(a4 − a2)
+

(a5 − a23)(a34 − a2)

(a5 − a2)(a4 − a2)

M =
(a12 − a1)(a4 − a23)

(a4 − a1)(a4 − a12)
+

a23 − a12
a4 − a12

, N =
a5 − a34
a5 − a2

C =
(a12 − a1)(a23 − a1)

(a4 − a1)(a3 − a1)
, E =

(a5 − a34)(a5 − a45)

(a5 − a2)(a5 − a3)

The weight of refined blending function is the summation of subdivided weights.
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(a)

(b)

Figure 4.10: Proof of Proposition 3. (a) blending function on D subdivides and
generates new blending functions atC,M,D,N,E. (b) updated blending functions
onR only result from subdivision ofX, Y .

ConsideringR as an example, the refined blending function onR is only derived
from unrefined blending functions onX andY . According to the above equations,
we can compute the weights fromX andY :

X ⇒ R :
k − h

k − e
, Y ⇒ R :

(f − e)(k − h)

(k − e)(k − f)
+

h− f

k − f
.

The summation of weights onR is

f − e

k − e
×

k − h

k − f
+

h− f

k − f
+

k − h

k − e
≡ 1.

Based on the above propositions, we propose our modificationprocedure as
follows. The input is the newly refined control grid with new subdivided cell set
Cnew.

1. For each boundary, assign the cell setCT as “Modification zone”. For any
cell with one vertex as a “To-be-merged” control point, we add this cell into
CT .

2. For each boundary, detect if there is any new subdivided cell in the “Modifi-
cation zone”:
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• Cnew

⋂
CT = ∅. According to Proposition 2, the refined grid preserves

the standardness on the boundary, so no further processing.

• Cnew

⋂
CT 6= ∅. Modify the boundary according to Proposition 3:

Subdivide all cells on the boundary to satisfy “Boundary requirement”.

3. Update control point positions. Instead of fitting again like in Section 4.3.3,
we use the same method as in [36] because we seek for keeping spline shape
unchanged in this step.

(a) (b)

(c) (d)

Figure 4.11: Boundary modification. (a) Original “To-be-merged” control points
(in the green box). (b) Subdivision all cells along the boundary, according to Propo-
sition 3. The green box covers updated “To-be-merged” control points. (c) and (d)
“Modification zone” (green box) of (a) and (b). According to Proposition 2, cell
subdivision (by green dots) outside “Modification zone” does not violate “Bound-
ary requirement” (Proposition 1).

4.4 Global Merging Strategies
In our framework, the decomposed components can be merged invarious different
merging types. We develop algorithms to handle different types of merging in this
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Figure 4.12: Two cube merging in 1D layout. Two control points are combined to
form one new control point (4, 5 and 6).

section. As we discussed in Section 4.2.1, our domain only includes “Two-cube”
merging (Section 4.4.1) and “Type-1” merging (Section 4.4.2). Also, we seek to
handle more complicated conventional poly-cube domains, including all other types
of merging in Fig. 4.2 (Section 4.4.3).

4.4.1 “Two-cube” Merging

Merging of 3D components can be simply illustrated by 1D merging. In 1D merg-
ing, each boundary parameter corresponds to a new position after merging. For
example, in Fig. 4.12, the bd-control-point with parameter5 corresponds to a new
parameter6. The control point corresponding ton(n ≥ 2) original control points
simply takes the average position as its new position. Similarly, the merging of two
cuboids includes the following steps.

1. Boundary modification. If bd-knot intervals of two components are different,
subdivide the cube boundary using the procedure in Section 4.3.4 iteratively
until they share the same knot interval (Fig. 4.13(a)).

2. Merging control points. Correspond the original controlpoint to the new
control grid. As shown in Fig. 4.13(a)Right, we merge each column along
the merging direction as 1D case.

3. Computing control point positions. Each new control point p′ corresponds
to n(n ≤ 2) original control pointspi. The new control point position is
computed byp′ =

∑n
i pi

n
.

4.4.2 “Type-1” Merging

The goal of this merging type is to merge3 cuboids into one control grid, like
Fig. 4.2(a). We can still use the “Two-cube” merging technique to treat most merg-
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(a) (b)
Figure 4.13: “Two-cube” merging. (a) Left: Subdivide the bottom cuboid and insert
new control points (green dots) to keep the same knot intervals. Right: Merging
along merging direction. (b) The merged control grid.

ing regions. But we have to design special confinement methodto handle the central
points on the yellow dot/lines. Fig. 4.14(b) shows the extrabd-control-points we
add around the central point on the yellow lines. For the yellow dot, we add addi-
tional8 bd-control-points around it to confine it into the surface boundary, as shown
in Fig. 4.14(c).

Fig. 4.15 illustrates the confinement effect. Fig. 4.15(a) shows a confined 2D
control grid in 2D layout. The extra bd-control-points (blue dots) are inserted
around the central point. Fig. 4.15(b-d) showcase its advantage: unlike Fig. 4.5,
for any chosen parametric position, none of its control points penetrates the bound-
ary to influence the chosen position.

Preserving semi-standardness.Now we still have another challenge. Simply
adding these extra control points would violate the semi-standardness property. To
preserve semi-standardness, we also modify weights in thisnewly-merged control
grid structure. The weight can be computed as follows (See Fig. 4.14(a)): (1) Be-
fore adding bd-knots around the central point, we add an auxiliary control point
(green dot) at the corner. Now we locally have a standard rectangular control grid
with weights all equal to one initially; (2) Insert the designed bd-knots (blue knots
and red crosses in Fig. 4.14(a)) to the grid; (3) Inserting knots triggers the local re-
finement procedure to recompute the weight of each control points. Note that after
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(a) (b) (c)

Figure 4.14: “Type-1” merging: (a-b) The3-D distribution of bd-control-points
around the central point on the yellow lines/dot in Fig. 4.2(a). (c) To preserve semi-
standardness, bd-knots (blue dots and red crosses) and an auxiliary knot (green) are
added. Then we can use local refinement algorithm to compute new control points’
weights.

refinement, the auxiliary point does not affect inside boundary anymore. Therefore,
it is “transparent” and free to be deleted from the spline representation.

Besides preserving semi-standardness, our weight modification technique also
has advantage for pre-computation. The weight computationonly depends on the
initial knot interval of merged control grid. Thus, we can pre-compute this step
and build a look-up table for speedup. Table 4.2(a) shows theindices of control
points around the central point (the same as indices in Fig. 4.6(b)). Table 4.2(b)
shows the corresponding weights for all control points in Fig. 4.14(a) (Numbers in
parentheses correspond to additional control points in Fig. 4.14(b)).

To summarize, “Type-1” merging includes the following steps. The first3 steps
are the same as “Two-cube” merging.
Step 1Modify boundary;
Step 2Merge control points;
Step 3Compute control point positions;
Step 4Insert extra bd-control-points as shown in Fig. 4.14(a-b) (We assign the po-
sition of the control point on the central point to these new inserted control points);
Step 5Modify weight (Change the weight of these bd-control-points by checking
the look-up table, as shown in Table 4.2(a)).

4.4.3 “Type-2,3,4” Merging

The above two merging algorithms (Sections 4.4.1, 4.4.2) are already functionally
sound when handling the merging of all components in our divide-and-conquer
framework, because these are the only two merging types in our T-shape based
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(a) (b)

(c) (d)

Figure 4.15: Confinement effect of “Type-1” merging. (a) The2D layout of a
refined control grid, with added bd-control-points (blue dots) around the central
point (green box). (b-d) For each parameters (green cross),we highlight all control
points (yellow points) that influence this parameter. The violation like Fig. 4.5 is
completely eliminated.

(a) (b) (c)

Figure 4.16: The 3D distribution of bd-control-points in “Type-2,3,4” merging. The
central points are on the yellow dots in Fig. 4.2(b-d).

poly-cube. Not just limited to that, Our ambitious goal is tohandle any shape of
poly-cube domains. Therefore, we offer several more powerful merging operations,
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which are designed to merge the components like “Type-2,3,4” in Fig. 4.2(b-d).
Once again, in order to enforce the boundary restriction, weneed to insert extra bd-
control-points. For the central points on all yellow line inFig. 4.2(b-d), they are just
“Type-1” merging, so we use the same merging method as as shown Fig. 4.14(a).
For the central points on3 yellow dots, we design the extra bd-control-points, as
shown in Fig. 4.16, to preserve boundary restriction.

To guarantee semi-standardness, we recompute the weight using the same method
in Section 4.4.2 as follows. First, we add auxiliary controlpoints, expanding given
control grid around the central point to a complete cube-like grid. Second, we insert
the designed bd-control-points and perform local refinement to compute the new
weight for each control point. Fig. 4.16 shows the 3D distribution of bd-control-
points in all merging cases. Their look-up tables are shown in Table 4.2.
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Table 4.2: Look-up tables. Row 1: an index table for27 possible br-control-points
in Fig. 4.6. Row 2: weights for “Type-1” merging in Fig. 4.15(b) (weights in paren-
theses correspond to additional8 control points in Fig. 4.15(c)). Row (3-5): weights
for “Type-2,3,4” merging.

Indices

7 8 9 16 17 18 25 26 27

4 5 6 13 14 15 22 23 24

1 2 3 10 11 12 19 20 21

Type-1

- - - - - - - - -

1 1 - 17
18

35
36

1 8
9

17
18

1

(1) (1) - (17
18
) (35

36
) (1) (8

9
) (17

18
) (1)

Type-2

26
27

53
54

1 53
54

107
108

1 1 1 -

53
54

107
108

1 107
108

209
216

17
18

1 1 -

1 1 1 1 17
18

8
9

- - -

Type-3

20
27

22
27

8
9

22
27

95
108

17
18

8
9

17
18

1

22
27

95
108

17
18

95
108

25
27

35
36

17
18

35
36

1

8
9

17
18

1 17
18

35
36

1 1 1 -

Type-4

26
27

53
54

1 53
54

107
108

1 1 1 -

53
54

107
108

1 107
108

215
216

1 1 1 -

1 1 - 1 1 1 - - -
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4.5 Implementation Issues and Experimental Results

Figure 4.17: “Two-cube” merging for the kitten model.

Our experimental results are implemented on a3 GHz Pentium-IV PC with4
Giga RAM. Our first experimental results (Fig. 4.17, and Fig.4.18) show the ap-
plication of “Two-cube” merging by considering the kitten and beethoven model as
the test datasets. These are the only merging types that exist in our component gen-
eration framework. For “Type-2,3,4” merging types that do not exist in our frame-
work, we design a special screwdriver model and domain to demonstrate the power
of “Type-2” merging (Fig. 4.19). In terms of poly-cube construction, we recog-
nize that “Type-2” merging is very popular to handle the input with long branches.
Yet, “Type-3,4” merging cases rarely exist even in the most conventional poly-cube
domains. Geometrically speaking, they are more suitable tomimic highly con-
cave shapes. We use the dark T-junction lines to show controlgrid knots and use
different colors to represent different merging types. Red/Blue/Yellow marks all
“to-be-merged” control point knots in3 merging cases, respectively. We also have
a close-up view to show the interior fitting result, demonstrating smoothness around
the merging region. The yellow marks on the control grid highlight the ill-points.

In the second group of experimental results (Fig. 4.21, Fig 4.4, Fig. 4.23, and
Fig. 4.22), we integrate all merging types together to handle the models with high-
genus and complex bifurcations, including the eight (genus2), g3 (genus 3), rockarm,
and wrench (genus 1 with bifurcations) model. We first display their component
generation results. Then we show a spline model for one localcomponent and the
final spline results with a close-up view to highlight the interior fitting and merging
regions. Fig. 4.20 also visualizes components’ T-shape/poly-cube structures in a
more efficient way. We use the same color cuboid to represent one component and
the edges to show the cuboid connections. Each green box covers cuboids from
the same T-shape. This structure clearly demonstrates thatonly “Two-cube” and
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Figure 4.18: “Type-1” merging for the beethoven model.

Figure 4.19: “Type-2” merging for the screwdriver model.

“Type-1” merging are functionally sound in our framework.
In Table 4.3, we document numbers of control points and fitting error. The T-

spline scheme can significantly reduce the number of controlpoints. The fitting
results are measured by RMS errors which are normalized to the dimension of cor-
responding solid models. Meanwhile, we demonstrate the interior fitting quality
in a close-up view of each model. Also, the table illustratesthat adaptive refine-
ment is necessary for trivariate splines, even on a simple surface input model. It
is desirable to use high resolution with more DOFs to approximate boundary sur-
face and low resolution with fewer DOFs for volume interior.For example, in the
kitten/beethoven model, if we naively use B-spline scheme with hierarchical refine-
ment inside the volume, their control points will increase to3718/4850, respectively.
In the last experiment (Figure 4.24), we apply our techniqueto convert the fertility
model, with the noisy surface, into a trivariate spline and remesh it into a smooth
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Figure 4.20: The divide-and-conquer structures of the rockarm/wrench/g3 model.

Segmentation Single Block Spline Spline

Figure 4.21: The eight model.

result. The poly-edges (gray-lines) decompose the fertility model into components.
Note that poly-edges are aligned everywhere so our local parameters are consistent
globally.

Top-down vs. Divide-and-conquer schemes.In Table 4.4, we compare the
performance between our divide-and-conquer framework with general T-splines us-
ing single integral domain in a traditional top-down approach. The most prestigious
advantage of divide-and-conquer framework is to easily handle models with bifur-
cations/highly twisted shape/high-genus. For example, a poly-cube like Fig. 4.1
designed using a top-down scheme is very complicated, with46 cuboids and they
are connected in various types, to mimic the shape of the g3 model. The poly-cube
construction also requires tedious manual design. By comparison, its divide-and-
conquer domain (Fig. 4.20) includes only16 cuboids with two certain merging
types. Second, we also compare the required spatial consumption between our
divide-and-conquer scheme with the top-down scheme. In general, our memory
cost is reduced to1

ns
, wherens is the number of cuboids. Third, we compare the

computation ofB′ between semi-standard T-spline and rational T-spline. We record
the computation time on104 samples for each model. The result shows that our
method is at least twice as fast as rational T-splines. This is because the computa-
tion avoids division operation completely (See the difference between Eq. 4.1 and
4.3).

84



Segmentation Single Block Spline Spline

Figure 4.22: The wrench model.

Segmentation Single Block

Spline Spline

Figure 4.23: The rockarm model.
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4.6 Chapter Summary

In this chapter, we have presented a novel framework to construct trivariate T-
splines with arbitrary topology. Because of the flexible andversatile divide-and-
conquer scheme, our framework can naturally handle solid objects with high genus
and complex bifurcations. We decompose the input surface model into several part-
aware components so that we can fit each component without theneed of volu-
metric parameterization. The proposed spline scheme supports local refinement
hierarchically, and the global trivariate T-splines satisfy the attractive properties of
semi-standardness and boundary restriction. These novel contributions have a broad
appeal to both theoreticians and engineers working in the shape modeling and its
application areas.

Figure 4.24: Mesh smoothing: We convert the fertility modelto a trivariate spline
and remesh it into a smooth result. Three figures show the components (with
poly-edges), the globally aligned parameters, the remeshing result (with interior
cut views), respectively.
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Table 4.3: Statistics of various test examples:Nc, # of control points; RMS,
root-mean-square fitting error (10−3). “bv1”, “bv2”, “ra” and “sd” represent the
beethoven (low and high resolution), rockarm, and screwdriver models.

Model Nc RMS Model Nc RMS
eight 2058 1.63 wrench 3756 2.3
kitten 2840 3.32 g3 2976 1.74
bv1 1001 1.8 bv2 3273 1.36
ra 4582 3.75 sd 1261 1.65

Table 4.4: Comparison between our splines and general splines: Space required by
fitting; Time to compute derivatives of basis functions;Nc, and Number of cuboids.

Model
Our Method General Method

Space B′ Nc Space B′ Nc

kitten 116802 2.38s 1 300688 4.53s 8
eight 24714 2.25s 6 174124 4.35s 15
g3 18952 2.17s 16 314832 4.23s 46
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Chapter 5

Spline-based Volume Reconstruction

In Chapter 3 and 4, we have introduced the techniques to construct trivariate splines
from surface 3D model. In this chapter, we adapt relevant trivariate splines to vol-
umetric data reconstruction: we attempt to apply trivariate splines to represent 3D
volume images.

5.1 Motivation

For volumetric scalar fields defined over a set of discrete samples, the reconstruction
of the data is a fundamental problem with very significant applications. For instance
in visualization, the size of volume data we have been dealing with increases dra-
matically to10243 voxels commonly or even larger. This trend of ever-increasing
data size poses a great challenge in terms of both storage andrendering costs and
thus requires reconstruction.

An ideal model would provide an accurate and efficient approximation for huge
data sets, as well as the exact evaluation of function valuesand gradients which
are required for high-quality visualization and physical simulation. An appropriate
reconstruction involves following common quality requirements:

Accuracy. The reconstructed model should faithfully preserve the density func-
tion.

Feature Alignment. In regions with well-pronounced feature directions, para-
metric lines should guide and follow the shape feature.

Compactness.The number of patch layout as well as the degree of freedom for
each patch should be as few as possible.

Structured Regularity. Locally, each 3D patch is a subdivided cube-structured
domain; Globally, the gluing between patches should avoid singularity.

As-homogenous-as-possible.The density distribution in one single patch should
be narrowed in favor of approximation accuracy.
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Continuity. A continuous representation supports high-order derivatives for
high quality visualization.

An ideal reconstruction framework should optimize the output simultaneously
with respect to all above criteria. However, existing techniques typically prefer
offering a tradeoff between above conflicting requirements. The major reconstruc-
tion strategy is through multi-resolution data hierarchy to compress the data repre-
sentation. Many algorithms have been developed to support hierarchical data re-
construction, including multi-dimensional trees [160] and octree-based hierarchies
[161], [162]. However, these methods tend to produce an extreme large set of sub-
blocks and require extra effort to pack them into a single structure, which undoubt-
edly violates the aforementioned compactness requirement. Moreover, the shape
of produced block is limited as the axis-aligned texture/cube (i.e.,“flat block”). In
contrast, an ideal candidate for feature-driven applications should utilize feature-
aligned texture/cube. Other reconstruction methods seek to generate a continuous
spline representation to approximate the data. In general,spline based reconstruc-
tion can be divided into non-regular and regular splines. Rossl et al. [52] have
developed quadratic super splines to reconstruct and visualize non-discrete models
from discrete samples. Finkbeiner et al. [163] have demonstrated that box splines
deployed on body-centered cubic lattices in the input data are also feasible models
for fast evaluation and GPU-acceleration. Tan et al. [51] have presented a re-
construction algorithm for medical images taking advantages of trivariate simplex
splines. Meanwhile, compared to non-regular splines, manytypes of techniques
(e.g., volume rendering [164]) and applications (e.g., iso-geometric analysis [50])
have a preference for regular-structured schemes. However, the major challenge
lies at they rely heavily on spatial parameterizations and for arbitrary 3D objects
such parameterizations become a rather non-trivial task. The goal of vectorization
is to convert a raster object (2D or 3D image) into a vector graphics that is compact,
scalable, editable and easy to animate, which is very similar to our research goal. In
object-based vectorization [165], the whole image is segmented into a few objects.
The color of each object then is approximated by spline patch. Recently, gradient
meshes ([166]) serve as very powerful tools on 2D image representations and have
been studied in depth. In a gradient mesh, position and pixelvary according to the
specified gradients. However, it is not easy to directly update it to 3D volumetric
image application because of its inefficiency of handling complex topology.

In order to achieve all above requirements, we propose a novel reconstruction
approach that converts the discrete data to a small number ofvolumetric patch lay-
outs. Each patch is a regular tensor-product cube grid whilemaintaining shape
features. The voxels in every single patch have the almost homogenous density
values in favor of accurate approximation for each patch.

In this chapter, we provide a novel framework to help a user toreconstruct a
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discrete volume data into regular patches and spline representations. Our represen-
tation has significant advantages: Each patch has regular structure while maintain-
ing the shape features. The whole data is compactly represented by a very small
number of patches. The density in each patch is as-homogenous-as-possible thus
both the shape and density function can be accurately approximated by a high-order
spline representation.

In order to achieve these advantages, our approach consistsof the following
major steps:

1. Starting with the computing of local tensors and principal curvatures, we gen-
erate an optimized frame field to respect the shape feature.

2. A regular structured parametrization of(u, v, w) is generated, whose gradi-
ents align the above field everywhere. Then we produce a set ofvolumetric
patches based on the parametrization result.

3. We construct on each patch a trivariate T-spline to approximate the function
F (u, v, w) using as-few-as-possible control points.

The remainder of this chapter is organized as follows. Section 5.2 is the frame
field generation stage and Section 5.3 involves the volumetric parametrization and
patch remeshing. We discuss the spline approximation, implementation details, and
demonstrate experimental results in Section 5.4. We conclude in Section 5.5.

(a) (b) (c) (d) (e)

Figure 5.1: Main steps of the reconstruction. (a) Input model with material-aware
boundary surfaces. (b) The tensor and principal direction field is computed on each
voxel in the input data. The major principal directions on the boundary surfaces
serve as the constraints for the next step. (c) In a frame fieldoptimization proce-
dure, an as-smooth-as-possible frame field is generated while maintaining the given
constraints. (d) Corner points are selected to determine the domain structure. Ad-
ditional constraints are added into next step of parametrization computing. (e) A
volumetric parametrization.
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5.2 Frame Field

In this section we mainly focus on frame field generation. We start from designing
an operator of tensor to describe the local feature ( Section5.2.1). Then we discuss
the optimization of a3-direction frame field in Section 5.2.2.

5.2.1 Tensor and Principal Curvature

Traditionally, curvature has be used as a shape feature descriptor widely. Theo-
retically this differential property characterizes only an infinitesimal neighborhood.
Therefore it is desirable to design a numerically adaptableoperator for the discrete
data to compute this property. Although much work deals withthis task on the
surface (see [167] for an overview), we still need a new curvature operator for the
discrete 3D hyper-volume data. Our operator captures statistically the shape of
a neighborhood around a central point by fitting a continuousfunction, and thus
mimics the 3D differential curvature and encodes anisotropy along3 orthogonal di-
rections. To summarize this shape, we use a cubic polynomialfunctionIH(u, v, w)
to approximate the local density function, because they arethe simplest form that
can sufficiently express the shape variability we need to encode in a continuous
manner.

Specifically, the given volumetric data set is represented using a uniform grid
G = (V,E,C), whereV = v0,v1, . . . ,vn denotes the voxels andE,C denote the
set of edges and cubes in the grid, respectively. Each grid voxelvi = (xi, yi, zi, I

D
i )

includes4 components: geometric position in the grid(xi, yi, zi) and the discrete
density valueIDi .

Figure 5.2: Left: The input local data around a voxel. Right:The approximated
result and3 principal directions.

In order to get a local polynomial functionIH(u, v, w) around center voxelvi,
we assign a local parameter value(u0, v0, w0) to vi. For each of its adjacentk-ring
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neighbor voxelsvj ∈ N (vi), the local parameter is(uj, vj , wj) = (u0+xj−xi, v0+
yj − yi, w0 + zj − zi). Then our fitting cubic polynomial can be formulated as:

IH(u, v, w) =

i+j+k≤3
∑

i,j,k≥0

cmu
ivjwk = P (u, v, w)CT , (5.1)

whereC denotes the vector of unknown coefficientscm. P is the vector of
uivjwk. Similarly, we can also describe derivatives ofu, v, w. For instance,

IHu (u, v, w) =

i+j+k≤3∑

i,j,k≥0

cm × i× ui−1vjwk = Pu(u, v, w)C
T , (5.2)

wherePu is the vector ofi × ui−1vjwk (we setum = 0 if m < 0). In the same
way, we can also describe other derivativesIHv , IHw , IHuu, IHvv, I

H
ww, IHuv, I

H
uw, IHvw by

determiningPv, Pw, Puu, Pvv, Pww, Puv, Puw, Pvw.
In order to describe the currently unknown coefficientsC, we construct a fitting

equation:
QCT = ID, (5.3)

whereQ is the fitting matrix. Each rowQj: in the matrix depends on a voxel
Qj: = P (uj, vj, wj), j ∈ i

⋃
N (i). ID is the vector of discrete valueIDj on each

voxel. Because the size of unknown variables is very small, we can solve this linear
least-square problem through multiplying the matrixQ by its transpose:

C = (QTQ)−1QTID. (5.4)

We notice that(QTQ)−1QT is constant for every local function if we choose the
samek for k-ring neighbors of each voxel.

Tensor and Principal Curvature. After the above calculations, we now can
represent the tensor as the following matrix:

T =





IHuu IHuv IHuw
IHuv IHvv IHvw
IHuw IHvw IHww



 . (5.5)

This matrix is equal to the second fundamental form of our hyper-volume rep-
resentation. Therefore, we can compute3 eigenvectors of the local tensor matrix
T and thus get3 directions. We use them to describe the feature on each voxel.
Compared to the conventional texture-gradient based feature, our tensor feature has
very obvious advantages: it produces3 directions rather than one; all local3 direc-
tion fields follow the shape anisotropy thus global fields arealready almost smooth.
As a result it simplifies the complexity and time consumptionof the following op-
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timization step.

5.2.2 Field Smoothing

Although we can use initial principal directions to computethe parametrization
without optimization, it will stuck in a local minimum. To overcome this prob-
lem, we propose an optimization method which respects only the most dominant
directions. First, we extract iso-surfaces of interest andtake them as constraints to
respect the shape. Second, the frame field in each iso-surfaces is iteratively opti-
mized.

Iso-surface extraction. It is natural to take feature on iso-surfaces as con-
straints, because the final parametrization result and patch must respect the shape
of iso-surfaces. Moreover, each sub-space in an iso-surface always tends to be
as-homogenous-as-possible, which is an ideal property forfinal shape and density
approximation.

Frequently, input datasets contain multiple structures and iso-surfaces that need
to be differentiated. However, if those features have the same density and gradient
values, existing clustering methods are limited at effectively classifying those sim-
ilar features accurately. Thus, we apply the texture-basedclassification method for
the iso-surface extraction. In the first step, we simply remove the background vox-
els. It does not influence the information of the feature of interest while significantly
decreasing the computational time and operation complexity. After the background
elimination, sixteen statistical attributes (angular second moment, contrast, corre-
lation, variance, inverse difference moment, individual entropy, sum average, sum
variance, sum entropy, skewness, kurtosis, correlation information measurements,
intensity, gradient and second order derivative) can be extracted following the fea-
ture equations defined in [168] and [169]. For the sake of fastcomputation and easy
programming, we use k-mean clustering in the high- dimension parameter space to
automatically detect various features. One or more features can be selected with
respect to the user’s requirement. The boundary of each cluster finally becomes
one of our iso-surfaces.

The constraints are added towards voxels on iso-surfaces, automatically or man-
ually. In practice, to efficiently describe the feature of iso-surfaces, we set only one
of 3 principal directions as the constraint, one of which follows the normal di-
rection of the iso-surface. As shown in the following sections, only-one-direction
constraints are functionally sound to preserve the featureand have extra flexibility
when handling smoothing and parametrization.

After this preprocessing step, the input is decomposed to anindependent sub-
spaceVi bounded by an iso-surfaceSi. The subspace may also cover several smaller
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subspaces with iso-surfaces

Ssub = {Ssub
0 , Ssub

1 , . . . , Ssub
n }.

Each voxel in the subspaceVi has3 initial directions and each voxel on the iso-
surfacesSi

⋃
Ssub has one direction as the constraint. The following smoothing

step will modify the directions on each voxel while maintaining the constrained
directions.

Field smoothing.The smoothness of a unit frame field can be measured as the
integrated rotation differences between every two neighboring voxels. [170] have
studied the energy of a 2D cross field and simplified it to a linear representation.
In our 3D volume, the challenge lies at smoothing3 vectors in separate directions
while maintaining their orthogonality. Therefore, we takethe local rotation matrix
as the unknown variable.F(vi) = f0, f1, f2 is a frame with3 orthogonal vector
directions on each voxelvi. We can also uniquely describe this frame by rotat-
ing from the origin fame to it. Each row of the rotation matrixR(vi) is a vector
directionRr: = fr, r = 0, 1, 2. Now, the energy turns out to be the sum of all

(a) (b)
Figure 5.3: (a) Jump matching:4 frames has different principal directions along red
and blue arrows. The smooth energy between them should be zero ideally. (b): The
smoothing results with/without considering period jump.

corresponding vector differences between adjacent voxels

Esmooth =
∑

eij∈E

2∑

r=0

||Rr:(vi)−Rr:(vj)||
2. (5.6)

In order to solve unknown rotation matrix, we have to apply nonlinear solver
(e.g.,Gaussian-Newton method) to minimize the energy function. Another diffi-
culty is that Equation 5.6 predetermines the one-to-one mapping of 3 directions
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on two voxels, without considering “jump matching”. “Jump matching” means all
permutation cases of direction mapping. Fig. 5.3(a) shows all 4 “jump matching”
cases for a2-direction field. Similarly, we can have24 “jump matching” cases for
a 3-direction field. An ideal optimization algorithm should dynamically change
direction mapping to get the best result. Fig. 5.3(b) shows asimple frame optimiza-
tion on one voxel according to two adjacent voxels. Using jump matching we can
get the perfect optimization result, while traditional method fails.

To overcome these problems, we design a novel optimization method. The key
idea is that we compute the registration energy [171] between one voxel and its
neighboring voxels. We extend3 orthogonal principal directions into a length-
normalized frame. Each frame gives6 end positions{P(vi)} = {p0, . . . ,p5} at
the end of3 frame lines.

Figure 5.4: Major steps of optimization: (1) Union of endingpoints. (2) ICP-
registration. (3) Compute rotation to get updated frame.

1. Get the union of all frame end positions on neighboring voxels: {S2} =
⋃

vj∈N (vi)
P(vj).

2. The original point set{S1} = {P(vi)} is the frame ending positions ofvi.
Using the ICP-based registration [171], we compute a matrixT that approxi-
mately transforms voxels of{S1} to those of the approximated set{S2}.

3. Decompose the transformation matrixT into a rotation matrixR and a shear
matrixS using polar decomposition. Add the rotationR to the frame ofvi.
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For an iso-surface voxelvi which has a constrained direction, we first apply the
above algorithm without considering constraint. Then, in the updated frame, we
search for the closest direction and project it to the constrained direction by a rota-
tion. The whole frame is also rotated as the final updated result.

The above algorithm is computed on each voxel iteratively until we get a promis-
ingly smooth field. Starting from initially smooth tensor field will make optimiza-
tion converge quickly. Our optimization algorithm avoids solving non-linear equa-
tions; Moreover, we utilize jump matching to get a much better result.

5.3 Volumetric Parametrization

The parametrization should be locally oriented to the framefield from Section 5.2.
Therefore, the parametrization is computed as a solution tothe following energy
minimization problem:

Eparam =
∑

vi∈V

||∇ui − ui||
2 + ||∇vi − vi||

2 + ||∇wi −wi||
2, (5.7)

whereui, vi, wi are the unknown parameters andui, vi andwi are3 frame field
directions on each voxel. In practice, in order to respect the iso-surface and edge
features, as well as preserving regularity in the final parametrization result, our
parametrization algorithm has following steps:

1. Corner detection and selection: Determine all corner candidates from the
frame field. Interactively select corner points from the candidates, serving as
corners of the final parameter domain. These corner points directly determine
the structure of the final parameter domain.

2. Energy minimization with constraints: Add parameter constraints on corner
points and other points if necessary. Add these parameter constraints into the
energy minimization equation. Compute the minimization again to get the
final parametrization result.

3. Remeshing: Guided by the generated parameter, trace and generate a small
set of volumetric patches.

5.3.1 Corner Points

Intuitively, in a parameter domain as shown in Fig. 5.5, a corner candidatevc
i is

the intersection point of3 iso-parametric surfaces onu, v, w respectively. Con-
sequently, some of its neighboring voxels should separately distribute on3 iso-
parametric surfaces and their normal vector follows3 different parameter gradients.
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Figure 5.5: Corner point and edge point. Each vector is a constrained direction
following the gradient of different scalar fieldu, v, w (red, green, blue) separately.

(a) (b)
Figure 5.6: (a) 2D layout of a frame field. It has 6 corners (rednodes) and one
singularity. (b) Recomputed frame field. 4 nodes are selected as corners. The
jump-match of the frame on the boundary is limited.

In practice, we defineCorner point as the voxel that has neighboring voxels with
constrained normal directions along3 different gradients∇u,∇v and∇w sepa-
rately. Similarly, we defineEdge point in a similar way, but its neighboring voxels’
constrained normal directions only follows2 different gradients. For example in
Fig. 5.6(a) 2D layout,6 nodes are detected as the corners according to our defini-
tion.

From these corner candidates, we interactively choose several corners as the fi-
nal corner points. These corners will be mapped to the corners of the parameter
domain. Consequently, the edge points connecting a pair of corners will be mapped
to the iso-parametric lines on the parameter domain. These edge points also par-
tition the boundary surface into several patches. Intuitively, each patch should be
mapped to an iso-parametric surface on the parameter domain.

Frame field recomputing. We notice that the original frame field tend to
produce unnecessary singularities (Fig. 5.6(a)), making the parameter result and
patch structure complicated [172]. To eliminate this problem, we can re-compute
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the frame field with new constraints: The normal direction ofa voxel on an iso-
parametric patch must be aligned to the parametric normal direction. As shown in
Fig. 5.6(b), the normal directions on the left and right boundaries are forced to be
aligned to the green direction, leading to a singularity-free frame field.

Additional constraints. Parameter constraints must be added into the energy
minimization to make sure that any corner point we select will locate on a corner
of the parameter domain. Thus, we associate each corner witha known parameter
before solving the energy equation. However, this constraint may cause serious dis-
tortion in the solved parametrization. Therefore, we need to add more constraints
to get a better parametrization. We observe that the distortion always happens on
the geometric-complicated boundary surface patch which maps to an iso-parametric
surface in the domain. Therefore, we can avoid this distortion by adding the addi-
tional constraints on the boundary surface patch if necessary.

5.3.2 Energy Minimization

In order to minimize Equation 5.7, we have to design a linear formulation of the gra-
dient operator∇ for any scalar field (i.e.,U,V orW) on each voxelvi. We notice
that the gradient computing is invariant to the choice of parameter. Therefore, we
again use the density function (Equation 5.1) and its derivatives to numerically de-
scribe the gradient operator∇. Equation 5.2 and 5.4 together describe the gradient
operator on a voxel. For instance, we represent∇ui as :

∇ui = (PuC,PvC,PwC) = (Pu,Pv,Pw)(Q
TQ)−1QTUD, (5.8)

whereUD represents the vector of unknown scalar valueu onvi and its neigh-
boring voxels. Then, we substitute them into the energy equation, for example:

∑

vi∈V

||∇ui − u||2 =
∑

vi∈V

||(Pu,Pv,Pw)(Q
TQ)−1QTUD − ui||

2. (5.9)

Equation 5.9 is a typical fitting problem, which can be converted into a linear
systemAUT = B through computing∂E

∂u
= 0, whereUT is the vector of unknown

valueu on all voxels. We can simply solve it by least square method.
Modified norm. It is obvious that feature orientation is more important than ex-

act edge length. The orientation can be improved by less penalizing stretch which
is in the direction of the desired iso-lines. In order to achieve this, [86] have intro-
duced an anisotropic norm and we extend it to 3D vector computing:

||(u, v, w)||(α,β,γ) = αu2 + βv2 + γw2.

This norm penalizes the deviation along the major directions with different weights.
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Then we modify the energy equation to the new form:

∑

vi∈V

||∇ui − ui||(ǫ,1,1) + ||∇vi − vi||(1,ǫ,1) + ||∇wi −wi||(1,1,ǫ), (5.10)

with ǫ ≤ 1.

5.4 Spline Approximation and Experimental Results

The previous steps generate a set of regular structured parametric patches thus it is
very straight forward to define a regular high-order representation to approximate
the shape and the density function of each patch. In our framework, we utilize
T-splines for final approximation. A trivariate T-spline [148] can be formulated as:

F(u, v, w) =

∑
wipiBi(u, v, w)

∑
wiBi(u, v, w)

, (5.11)

where(u, v, w) denotes parameter coordinates,pi = (Xi, Yi, Zi, Ii) denotes each
control point,wi andBi are the weight and blending function sets. Each pair of
< wiBi > is associated with a control pointpi. EachBi(u, v, w) is a blending
function given byBi(u, v, w) = N3

i0(u)N
3
i1(v)N

3
i2(w), whereN3

i0(u), N
3
i1(v) and

N3
i2(w) are cubic B-spline basis functions alongu, v, w, respectively. We choose

T-spline because it has two significant advantages: First, the refinement of control
mesh is subdivided locally to reduce a large percentage of superfluous points and
thus enhances the simplicity and accelerates the potentialvisualization applications;
Second, T-spline scheme guarantees

∑

i wiBi(u, v, w) ≡ 1 across the entire space.
Thus the computing ofF(u, v, w) and its derivatives can be much more efficient.
We notice that, although our domain is globally consistent,each patch is treated
as a single object and an independent T-spline in order to better approximate sharp
feature.

5.4.1 Experimental Results

We introduce our experimental results in this section. A prototype system is imple-
mented on a PC with 3.5GHz P4 CPU and 4GB RAM. We consider the Atom, Fuel,
Ankle and Tooth as the test models, and use T-splines to approximate the density
function based on our domain. Fig. 5.7 shows the continuous representation results.
Compared with the original discrete data, reconstructed models perfectly preserve
the shape and density information of the object. They also completely remove the
background noise and simplify the procedure of transfer function design for the
user. Fig. 5.8 shows more details about our parameterization: the corner points,
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parameter domain, surface parametrization and volumetricparametrization respec-
tively. Table 5.1 summarizes the statistics of the performance of our processing
on four models. These figures and tables showcase that our system effectively re-
construct the model with lower number of control points without sacrificing visual
quality.

Table 5.1: Statistics of various test examples:Nd, # of voxels; RMS, root-mean-
square fitting error (density only,10−2); Nc, # of corners;N ′

c, # of control points.

Model Nd RMS Nc N ′
c

Atom 2563 0.122 12 1.5 ∗ 104

Fuel 643 0.877 16 7.2 ∗ 104

Ankle 1283 0.422 12 1.6 ∗ 104

Tooth 2562 × 161 0.393 24 5.1 ∗ 104
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Figure 5.7: Left column: Volume visualization using input discrete models; Right
column: Reconstructed models.
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Figure 5.8: The atom model. Left column: Corner points and parameter domain.
Middle column: Surface parametrization. Right column Interior parametrization.

Figure 5.9: The fuel model. Left column: Corner points and parameter domain.
Middle column: Surface parametrization. Right column Interior parametrization.

Figure 5.10: The tooth model. Left column: Corner points andparameter domain.
Middle column: Surface parametrization. Right column Interior parametrization.
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5.5 Chapter Summary

In this chapter, we have proposed a novel method that reconstructs the discrete volu-
metric data into the regular continuous representation. Westart with the computing
of principal curvatures on a hyper-volume and then find reliable feature-aligned
constraints. Then we compute a smooth field respecting the most dominant shape
features. Corner points are then computed and placed at geometrically meaning-
ful locations. Based on the frame field, we can generate a regular parametrization
which takes material feature-alignment constraints into account, producing a small
number of regular patches. We construct trivariate T-splines on all patches to ap-
proximate geometry and density functions together. Our test results clearly verify
our design.

Our framework perfectly promises a lot requirements in visualization such as
feature-alignment, compactness, regular structure, high-order representation and
as-homogenous-as-possible, etc. These modeling advantages naturally prompt us to
explore its uncharted potential in the near future. We anticipate further novel GPU-
accelerated isosurface direct visualization techniques based on our high-order reg-
ular representations. Meanwhile, the conjunctions between material-based physical
analysis/simulation and our continuous hyper-volume shape functions are of great
interest for potential physics-based applications.

Figure 5.11: The ankle model. Left column: Corner points andparameter domain.
Middle column: Surface parametrization. Right column Interior parametrization.
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Chapter 6

Metrics-based Focus+Context Lens

In all previous chapters, we have discussed the techniques about “how to construct
volumetric parameterization, spline construction and representation”. Here, we ar-
gue that our volumetric parameterizations techniques alsohave various applications
on computer graphics and visualization research. Therefore in this chapter, we at-
tempt to study “how to apply the developed volumetric modeling techniques in
other possible research areas”.

As we introduced in Chapter 2, there is a stronger-than-everneed for visual-
izing large-scale datasets in various science/engineering applications. Meanwhile,
with the explosive emergence of various types of portable devices (e.g., iPad), the
industry frequently pursues as-large-as-possible data visualization on physically-
small-sized screen of mobile device in recent years. Therefore, a careful tradeoff is
required to deal with the potentially conflicting requirement of the inherent screen
size limitation and ever-increasing data size. Focus+Context visualization offers a
good strategy when tackling this problem.

Our ultimate goal is to design a flexible F+C methodology on 3Dvolume im-
age. Therefore, we attempt to design a practical algorithm framework to support
this idea. In this chapter, we first apply this framework onto2D image data as the
first step to 3D application. This choice is natural and necessary, because our idea
is based on geometric modeling techniques and all relevant numerical computa-
tions on 2D manifolds are more mature, stable and robust thanon 3D manifolds.
Therefore, we decide to adapt it on image operations to test its efficiency.

In essence, we can view our core framework as a “reverse-parameterization”
process. Instead of mapping a high-dimension object into a low-dimension space,
we attempt to reversely map a low-dimension object into a high-dimension space,
such that the visual information is enlarged. In the following sections we will dis-
cuss the algorithm in details.
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(a) (b)

Figure 6.1: (a): Direct zoom-in. (b): Our geometric approach to simulate magnifi-
cation lens

6.1 Motivation

The traditional method is direct zoom-in, as shown in Fig. 6.1(a). Focus+Context
(F+C) visualization, as a natural solution, has gained muchresearch momentum
recently. In order to display regions of interest (ROIs) with high resolution, F+C
allows the user to access and address the detail of interest (“Focus”) while still
keeping the overall content of the whole data to accommodatehuman cognitive
custom (“Context”). Attractive F+C visualization should consider the following
quality-centric aspects:

(1)Shape-preserving.Shape (such as angle, rigidity) plays a crucial role during
magnification when improving the visual cognition. The improper magnification
distortion may cause serious cognitive confusion.

(2) Smooth transition. Any visual gain from unifying the detail with the sur-
rounding context may easily be lost if the transition between the focus and context
regions is difficult to understand.

(3) Flexibility. For data with complex and multiple ROIs, the user may have
preference for using different magnification methods or focusing on different shapes
on the same input.

It is a tremendous challenge to optimize the output simultaneously with respect
to all of these criteria. For example, many recent methods attempted to simulate
optical lenses in depth (e.g., fish-eyes, bifocal lens) for magnification. The most
challenging side effect is that, it rarely considers shape-preserving and smooth
transition, thus lens distortions are intolerable when features become sufficiently
intricate.

Inspired by recent image manipulation techniques such as resizing [173] [104],
our new idea is to address the lens design and simulation problem using novel ge-
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ometric modeling methods. The F+C visualization is then solved by a deformation
metric design and optimization solution. This way, we examine this conventional
2D deformation task from a completely innovative perspective of 3D geometric
processing. Rather than minimizing deformation energy on a2D image/grid, we
transform the 2D input to 3D mesh, and then conduct 3D deformations which min-
imize the shape distortions and magnify the ROIs. To achieveour goal, we design a
novel deformation framework that functionally acts as a “lens”. We first build a spe-
cial 3D mesh (“Lens-Mesh”) that magnifies any area of interest while keeping the
rest of area with little distortion. Then, we automaticallydeform the lens-mesh back
into 2D space for viewing. Both steps require us to find distortion minimization for
each individual mesh element with an appropriate family of geometric metrics.

In this chapter we present a general theoretical and computational framework, in
which 3D geometric modeling techniques can be systematically applied to the 2D
lens simulation. The main contributions of our lens design and simulation include:
(1) Our algorithm minimizes the geometric deformation metric distortion thus it
is particulary suitable to satisfy the shape preserving property. Moreover, our de-
formation scheme lets the deformable mesh locally confine the resulting distortion
with great flexibility rather than letting the distortion uniformly spread throughout
the nearby spaces; The resulting transition between the focus and context regions
is also smooth and seamless; (2) Instead of only using lenseswith a regular circle
or square shape, it is very easy to design an arbitrary shape of magnifiers using our
lens-mesh to adapt various shapes; (3) The user can iteratively specify the geomet-
ric metrics, which allows easy production of visually pleasing effects. The whole
algorithm is shown to be of high efficiency, because of the computation of a linear
system with pre-processing.
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(a) (b)

(c) (d)

Figure 6.2: An example of our entire framework: (a) The inputimage. (b) We
generate a 3D lens-mesh to magnify the area of ROI. Then we transfer the texture
from the input to the lens-mesh. (c) We deform the lens-mesh back into a 2D plane
with minimized distortion. (d) Finally we get a new 2D image with area of ROI
magnified.
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6.2 Framework

This section gives a high level overview of our proposed framework. Our sys-
tem takes as input a ready-to-display 2D image. For 3D dataset (e.g., volume
datasets and 3D scanning models), we can generate the 2D format image through
volume rendering. In geometric deformation, we can consider our input as a 2D
regular triangle meshM = {V,E,T}. T = t1, t2, . . . , tn denotes every indi-
vidual triangle, and{E,V} denotes the sets of edges and vertices. Each vertex
vi = (pi, φi) includes the vertex 2D positionpi = (xi, yi) and texture mapping co-
ordinateφi = (xi, yi). Note that in the input mesh the vertex position and mapping
coordinates have the same value. The output is also a 2D triangleMout which has
the same structure asM, but every vertex’s position and mapping coordinate are
updated. Fig. 6.2 illustrates our framework step-by-step using a google map as the
example. Our framework mainly includes the following steps.

Step 1. The user makes an initial choice about regions of interest (ROIs). We
can use a simple user sketch (e.g., drawing a circle) as the ROI boundary to enclose
each ROI, or use the exact shape/boundary of every ROI. The boundary can be
determined by an automatic feature segmentation operationsuch as [174] or simple
heuristic methods.

Step 2. Generate a 3D meshM3D based on the initial meshM in order to
magnify the area of mesh on ROI.

• (2.1) For each ROI, we deform the original 2D surface patch inROI into a
specified 3D surface, with the ROI boundary as constraints (no shape changes
outside the boundary). Every triangle’s area in the boundary is therefore mag-
nified.

• (2.2) We transfer the texture fromM to M3D while satisfying the shape
preserving property. To achieve this, for each vertex inside ROI boundary
we compute texturing mapping coordinates[u,v] on M3D by solving the
harmonic equation∇2u = 0 and∇2v = 0.

Step 3. We deformM3D back into a 2D plane with distortion minimization.
We flatten each trianglet3Di in M3D back to 2D by rotation, and we denote this 2D
triangle as standard triangletstdi . To make each triangle in the final outputMout

approximate to its standard triangle, we design an iterative-executed algorithm with
two phases: For each iterationk, we have a starting 2D triangle meshMk which is
the result from(k − 1)th iteration (M0 is initialized by projectingM3D to 2D).

• (3.1) For each triangleti in Mk, we compute a deformation metricMi (for-
mulated as a2× 2 matrix) using the standard triangletstdi .
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• (3.2) We determine the updated position of every vertex by solving the linear
equation to approximate the deformation metricMi for each triangle.

6.3 Mesh Generation

The input of our framework is the uniform2D dataset. Aiming to effectively gen-
erate the 2D rendered image from the mesh model/volumetric dataset, we adapt the
fragment program (initially proposed by Stemaier et al. [175]) for rendering, con-
sidering many parameters including depth, view angle, and camera position. The
steps include: cast the ray into the mesh model/volume dataset and composite the
color based on the surface/volume data and transfer functions, and render the result
into the frame buffer for display.

In most practical focus+context visualization applications, the user only chooses
a general approximate region via simple user sketch and/or basic geometric prim-
itives (like the region within a drawn circle), enclosing both mesh segment and
nearby context space as a reasonable proxy. The choice of circle lens is natu-
ral and humans are more accustomed to it with better visual understanding com-
pared with other geometric primitives. In practice, we firstvisually choose a gen-
eral/approximate region, then we pick the centerc of this region as the center of
sphere associated with a radiusr. r must be large enough to enclose the entire ROI.

After we setting the lens, we magnify it by moving each vertexto a 3D position.
we use gaussian function to computezi for each vertex:zi = g(1− di

r
)h0, wheredi

denotes the distance to the circle centerc, g(x) denotes a standard gaussian function
ex

2

andh0 is a user input to scale the magnification; As an alternative solution, we
can also use a standard sphere instead of gaussian function to accommodate user’s
visual preference:zi =

√

r2 − d2i .
Arbitrary ROI boundary design. Our system also allows an exact boundary

of an object in the image as the ROI boundary. We denote the triangle mesh patch
inside this object asMp and∂Mp as the patch boundary. We first conduct the
medial axis transform forMp, generating a central curved pathC and each vertex
vi in Mp has a distancedi as the shortest distance to the path. The user decides the
heighth0 of curved pathC. For each vertexvi, we have its new position(xi, yi, zi),
zi = g(1 − di

dm
)h0, wheredm is the maximum distance. We need to subdivide the

triangle if it is scaled or sheared too much after magnification. Then we interpolate
the locations, colors, distances and heights linearly for newly-inserted vertices.

The automatic algorithm can handle versatile models very well, sometimes
users still prefer to use special shapes as the desirable lenses for ROI. Fig. 6.3
shows different visual effects with different meshes.
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(a) (b) (c)

Figure 6.3: Magnification results using different shapes oflenses for the 3D teapot
mesh model. (a) Original teapot mesh model. (b-c) Magnification results using the
square-shaped and our automatically-generated ROI-guided meshes, respectively.

6.3.1 Texture Mapping

The objective of this step is to assign the texture to the magnified 3D triangle mesh,
otherwise the texture will be distorted after changing every triangle’s shape inside
ROIs.

Since both the input meshM and magnified meshM3D have squared boundary,
we treat this problem as the energy minimization problem. Weshall map the mesh
M3D to a uniform2D domain by solving the harmonic functions∇2u = 0 and
∇2v = 0, where∇2 = ∂2

∂x2 + ∂2

∂y2
. In practice, solving equations for any but the

simplest geometries must resort to an efficient approximation due to the lack of
closed-form analytical solutions in the general setting, we shall use mean value
coordinates [71] to solve it numerically.

• We assign each vertex an initial coordinate. In practice we initialize it with
its original 2D position(ui, vi) = (xi, yi).

• We iteratively update the coordinates for each vertex(ui, vi) =
∑

Ng(vi)
wj(uj, vj),

andNg(vi) is the one-ring neighbor ofvi, (uj, vj) is a neighbor’s coordinate,
wj is the local mean value coordinate [71] computed onM3D. Two types of
vertices serve as the Dirichlet boundary conditions (i.e.,we avoid changing
their coordinates): (1) The squared boundary only; (2) All regions outside
any ROI.
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6.4 Flattening

We search for a flattened mesh so that we can display the resulton the popular flat
screen (Note that, our algorithm also supports curved screen like “IMAX”). The key
challenge in this problem is to preserve the important geometric deformation metric
for each triangle. The shape distortion can be measured as the total differences
between the resulting triangles and the original triangles. We use the following
algorithm to minimize the differences.

Step 1. For each triangleti in 3D space, we reformulate it into a standard 2D
triangletstdi which keeps its original shape. Supposev1,v2,v3 are3 vertices of
t3Di in 3D space,e1 = v1 − v2, e2 = v2 − v3, e3 = v1 − v3 are3 edge vectors.
We recompute 2D positions of3 vertices asv1 = (0, 0),v2 = (||e1||, 0) andv3 =
(||e2||cosθ, ||e2||sinθ) (Fig. 6.4). θ is the angle betweene1 and e2. Note that,
we flatten the triangle separately so a vertex inM has different2D positions in
differenttstdi .

Step 2. Now we flatten the mesh back to 2D. This step includes2 iteratively
computed phases. The output meshMout has the same triangle mesh structure as
M while every vertex has only a 2D position. Initially, we guessM0 = M3D and
we reduce the dimension of vertices to 2D by projecting alongaxis-z:vi = (xi, yi).

(2.1) In this phase we compute the deformation metric for each triangle. The
metric represents the transformation from the localized standardtstdi to its k-th it-
eration counterparttki . We represent this transformation as a2 × 2 matrixMi and
we want to approximate this metric in the outputMout. The computation ofMi is
detailed in Section 6.4.1.

(2.2) In this phase, we compute the position of each vertex from the following
equation.

Ek =

T∑

i=0

2∑

j=1

wij||e
k
i j −Mk

i e
std
i j ||

2, (6.1)

whereek
i j , e

std
i j are edge vectors on the triangletki and standard triangletstdi . We

rewrite the function in terms of every edge vector:

Et =
∑

i,j

wij||(v
k
i − vk

j )−Mtm(v
std
i − vstd

j )||2, (6.2)

where each pair of(vi,vj) belongs to the triangletm (Note that(vi,vj) and(vj ,vi)
are2 different vectors that belong to different triangles).wij is the weight for each
edge (see Paragraph “Weights” for details). Setting the gradient to zero, we obtain
the following linear equation:

LVkT = MLVstdT , (6.3)
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where the matrixL represents the edge relationship of vertices (weighted by
wij) . The matrixM includes all local matrixMtm ,Vk andVstd are vectors includ-
ing all vertices’ positions onMk and standard triangles.Vk is the only unknown
vector here and solving this equation gives rise to the positions of all vertices inVk.

Pre-factorization. We observe that the above matrixL depends only on the
geometry ofM. Thus this sparse matrix is fixed during iterations, allowing us to
pre-factorize it with Cholesky decomposition and we can reuse the factorization
many times throughout the algorithm in order to accelerate the process, which has
a significant impact on algorithm efficiency. The total distortion errorEk converges
and we end the iteration when||Ek −Ek−1|| is smaller than the thresholdα (we set
α = 0.1%).

Weights. The choice of weightwij in Eq.(7.11) depends on the importance of
the triangle. The triangles around the ROI center are more sensitive to distortion.
Meanwhile, the distortion on a large triangle is more visually confusing than that
on the tiny ones. Therefore, we design the weight aswij = (1 + hm)Amcot(θ),
whereAm is the area of the triangletm, hm is the averaged height (z-values) of the
triangle, andθ is the opposite angle of the edge vector(vi,vj) in tm.

6.4.1 Computing Metrics

The vertex position inM is determined by our designed metricMI. In our system,
we want to achieve a flexible metric such that the user can generate variable visual
effects with easy interaction. We notice that each transformation matrix includes
two factors: one rotation matrix and two scaling values along two orthogonal direc-
tions. Inspired by [64], which blended the angle-only metric and rigid-only metric,
we provide a new method that allows the user to specify a “mixed” metric that
actually blends between two factors.

Figure 6.4: Generating a 2D standard triangle. Left: Original 3D triangle. Right:
2D standard triangletstdi .
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We start first by computing the transformation matrix between a triangletki in
Mk and the standard triangletstdi . Equivalent to [66] and [176], we compute the
Jacobian matrixJ between two triangles.

J(tki ) =
3∑

i=1

ek
i
(estd

i
)T (6.4)

This matrix measures two tetrahedra’s deformation on two factors: rotation and
scaling. We can decompose two factors by singular value decomposition.

J = UΣVT ,Mr = UVT . (6.5)

HereMr is a rotation-only matrix. andΣ includes two scaling valuesσ1 and
σ2.

Σ =

(
σ1 0
0 σ2

)

To compute a flexible matrix, we can change this2× 2 diagonal matrixΣ with
blended scaling values. We allow the user to input a blendingparameterα(0 ≤ α ≤
0.5). Then the resulting matrix is formulated as:

M = U

(
σb
1 0
0 σb

2

)

V, (6.6)

whereσb
1 = α(σ1 − 1) + 1, σb

2 = α(σ2 − 1) + 1.
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Algorithm 2 The flattening algorithm.

Input: triangle meshM3D,
Blending parameter α ∈ [0, 0.5]
Fitting error threshold ǫ

Output: 2D meshMout

L = BuildMatrix(M) // See Eq.(3)
Cholesky −Decomposition(L)
for all t3Di ∈ M3D do
//Compute the 2D standard triangle
tstdi = 2D − Standard(t3Di )

end for
Initial guess
M0 = Projection(M3D)
while ||Ek −E(k−1)|| > ǫ do

for all tki ∈ Mk do
//Compute metrics. See Eq. (4)
Mti = Compute(t3Di , ti, α)

end for
// Build and solve Eq.(3) to getMk

Et = FittingError(Mk,M3D)
k = k + 1

end while
Mout = Mk
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Figure 6.5: Applications of our lens simulation. Left row: Inputs. Right row: Graph
of company relations, the connecting edges are revealed by the magnification; Eu-
ropean map, major cities of Italy are revealed now.
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6.5 Experimental Results

Our system can effectively provide F+C information to the user, allowing the user
to get detailed focal region while maintaining the integralperception of the model.
The results shown in the following figures demonstrate the power of our technique.
Our experimental results are implemented on a 3GHz Pentium-IV PC with 4 Giga
RAM. In Fig. 6.5, we test our lens using several popular data structures such as
graph, city, map, and text for information visualization: Graph is an abstract data
structure representing relationships or connections. Foraccess to relative nodes
or to the particularly important nodes, our lens makes it easy to find and navigate
toward these nodes; Our framework also improves the magnification functions with
results of multi-scale map/satellite magnification, whichreveal and magnify the
additional details (e.g., additional country names); Our lens provides the efficient
scanning function for the text reading as well. We can place the magnifier to zoom
in the focus region while the remaining regions are evenly distributed to the context
area (as shown in Fig. 6.1).

Fig. 6.2(d) is another excellent example to demonstrate that our technique of-
fers a powerful lens for the route magnification. Using our lens, the user can see
the additional route information and easily panning or zooming to achieve their re-
quirements. Meanwhile, there is no any obviously visual distortion in both focus or
context areas (the transition area with two view scales merges using linear interpo-
lation). The global road distributions and orientations are preserved, and detailed
streets are displayed around ROI.

As a general rule, a good F+C method should be able to maximally support the
shape/feature preservation of objects of interest, such asconformal (angle) preser-
vation or/and area preservation, while minimizing contextdistortions. Instead of
only minimizing angle distortion in [177], Fig. 6.6 shows a group of lenses with the
same input but different metrics, with the blending parameterα = 0, 0.01, 0.1, 0.5.
This blend metrics enrich the result and thus the user can modify the blending pa-
rameter to interactively change the visual effect until oneresult is satisfactory from
the user’s perspective.

Performance. Unlike other methods, the performance of our framework does
not depend on the input image but the size of our triangle mesh. So a conventional
performance table (“model-by-model”) is not necessary forthe analysis purpose.
The sample images we tested are all between512 × 512 and1024 × 1024. We
provide two meshes with sizes of100 × 100 and200 × 200 to handle small and
large images separately. The smaller mesh (10k vertices) uses only0.3 second for
one iteration and it always converges in2 iterations. We use the larger mesh (40k
vertices) to handle very high-detailed application and it uses1.3 seconds for one
iteration. The pre-processing (matrix assembling and pre-factorization) requires
only about1.0 second.
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Figure 6.6: A group of different metrics with modified blending parameterα (α =0,
0.01 , 0.1, 0.5).
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(a) (b)

Figure 6.7: (a-b) The distortion of our mesh and poly-focal lens. The distortion is
color-coded from blue (minimum) to red (maximum).

Distortion. Similar to Eq.(7.11), we apply the following term to measurethe
shape distortion on every triangleTi.

Ei =

2∑

j=1

wij ||ej −Mie
d
j ||

2, (6.7)

Fig. 6.7 compares the distortion between our lens and poly-focal lens [122] (We
consider the input image of poly-focal lens as a regular gridmesh. The deformation
equation is defined in [122]). Although poly-focal lens or fisheye lens can have
similar continuous magnification F+C view as our lens, it creates noticeable distor-
tions towards its edges and has no method to formally controlthe focus region as
well as to preserve local features in the context region. Thecomparison is meaning-
ful because both methods allow “free-boundary” to obtain better shape-preserving
effects. To measure the distortion of poly-focal lens, we also consider their result-
ing image as a deformed mesh with each vertex/color moving tothe new position.
Thus we can also use the same criteria to measure the shape distortion. The color
indicates that our method can reduce the shape distortion ina much better way. We
use blue color to represent zero distortion and red the maximum (0.45 in our result).

Comparison for Magnification Results.We apply our method to a volumetric
colon dataset to verify the advantages of our lens and compare with others as shown
in Fig. 6.8. Local shape preservation and smooth transitionhave important appli-
cations in the clinic education, diagnose, and even virtualsurgery. In the normal
clinic exam, the colonoscopy needle navigates along the colon axis and the lens is
added along the same direction such that the clinicians are able to recognize polyps
on the folds (the wrinkles on the colon wall, red circle). Thefolds in Fig. 6.8(b-c)
are seriously distorted which may sabotage the clinicians’expertise on polyps de-
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(a) (b)

(c) (d)

Figure 6.8: Magnification results using different lenses for volumetric colon dataset.
(a) Original colon dataset. (b-d) Magnification results using bifocal, polyfocal, and
our lenses. By comparison, the folds on the interior colon surface are seriously dis-
torted by all the other lenses because of the sharp transition between the focus and
context regions, while our lens shows the accurate shapes/features of the interior
colon surface without any obvious distortion.

tection. No matter how we modify their lenses in (b-c), the distorted folds always
exist along the lens boundary. In sharp contrast, the fold details in (d) are better
preserved and easy for recognition.

We compare our method with other approaches, like zoom-in, fish-eye, bi-focal,
perspective wall, poly-focal [122] and cube deformation [127] in Table 6.1. Our
method has advantages in the following aspects. First, our solution works well par-
ticularly with the complex shape, because it can flexibly design arbitrary shapes for
lenses. Our method emphasizes angle and rigidity metrics for the shape-preserving
purpose. Moreover, it allows the user to interactively design and blend various
metrics.

Limitations. Our system flattens the mesh to achieve F+C visualization, but
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potentially it may result in flip-over phenomenon (i.e., theresulting triangle covers
another one or its orientation is reversed). Fortunately, this phenomenon always
happens especially on a highly curved surface with complex topology. In contrast,
our 3D mesh is relatively very simple compared with common models used in ge-
ometric modeling study and there are no flip-over triangles in all examples during
our experiments. The texturing step (Section 6.3.1) also produces a fine mapping as
a good initial guess. Meanwhile, we can always solve the flip-over problem using
the existing algorithm [178].

Compared with the direct zoom-in and bi-focal methods, our method can not
authentically keep exactly the same feature of a local region as the original input.
Also, our metric lacks of the measurement to preserve the global structure, shape
symmetry, or long straight lines. However, our human cognitive system for recogni-
tion is accustomed to automatically compensating these slight variations of a local
region and thus it relieves possible disturbing experiencefor the user.

Table 6.1: Comparison with the existing approaches.
Method zoominfisheye bifocal perspective poly-focal mesh our

wall editingmethod
Shape yes no yes(focus) no no(focus) yes angle+

preserving (focus) no(transition) yes(transition) rigidity
Smooth no yes no no yes yes yes

transition
Arbitrary no no no no no no yes
lens shape
Interactive no no no no no no yes

metric design

6.6 Chapter Summary

We have developed a novel and interactive technique to achieve Focus+Context vi-
sualization based on geometric deformations. Specifically, we develop from the
input a 3D lens-mesh and magnify the ROIs through deformation on the lens-mesh.
Our lens design methodology and the prototype system manifest that the geometric
deformation metrics greatly enhance the F+C visualization, and our approach is ex-
pected to transcend the traditional boundary of geometric modeling and will benefit
data visualization.

The important features of our framework can be summarized as: (1) Shape-
preserving. The geometric deformation metrics are minimized so that theresulting
details appear similar to their original counterparts. Geometric deformation also
generates a continuous transition region where the user canget a smooth viewing
transition from the highly-magnified interior region to thenon-magnified exterior
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region; (2)Robustness. It enables the user to design arbitrary number/shape of
magnifiers to effectively display the entire ROIs for visualization of multiple and
complex features. It also allows the user to interactively specify geometric metrics
for various visual effects; (3)Efficiency. The computation is very efficient because
of our pre-factorization processing. Our experimental results have demonstrated
that our lens, as a novel F+C technique, has great potentialsin many visualization
applications.
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Chapter 7

Four Dimensional Magnification
Lens

In the last chapter we introduce a novel geometry-based method for image fo-
cus+context visualization. The success inspires us to extend this pipeline to vol-
ume visualization. The rapid advances in 3D scanning, acquisition, and model-
ing techniques have given rise to the explosive increase of volumetric digital mod-
els with extra density information like MRI, textured solidmodels [3, 4] or CAD
models containing materials. The great progresses in GPU rendering, and internet
bandwidth push forward a stronger-than-ever need for visualizing large scale vol-
ume datasets in various science/engineering applications. Meanwhile, the explosive
emergence of various types of potable mobile devices (e.g.,smart phone) pursues
the visualization technique to display large scale models on a physically limited
device screen. It requires us to non-homogeneously rescaledifferent regions while
keeping the global shape of models within the screen space.

The traditional method is through the use of 2D screen region-of-interest (ROI)
magnification techniques, which functions as “lens” and offers a good strategy to
magnify a local region only. However, compared with magnification on the image
projected on the screen, it is more preferable to locally magnify the 3D volume
datasets directly. For example, the user can translate, rotate, cut and visualize the
dataset from different angles without computing magnification again and again.
Magnifying datasets directly is also necessary for many virtual reality applications
(e.g., cultural heritage and walkthrough).

From practitioners’ perspective, an attractive magnification should address the
following quality-centric aspects:Shape-preserving.Shape (such as angle, rigid-
ity) plays a crucial role during magnification when improving the visual cognition.
The improper magnification distortion may cause serious cognitive confusion. We
should preserve the shape of both focus region and surrounding context region and
global shape simultaneously;Smooth transition. Any visual gain from unifying
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the local detail with the surrounding context may easily be lost if the transition be-
tween the focus and context regions is difficult to understand; Simple interaction.
In most practical applications, the user only prefers to usesimple user sketch (e.g.,
draw a circle) to enclose the focus region. An ideal system should support such
simple interaction.

However, it is a tremendous challenge to optimize the outputsimultaneously
with respect to all of the aforementioned aspects. The most challenging side ef-
fect is that: in a 3D world, a local region’s magnification inevitably compresses
the rest region and leads to distortion. More severely, the conventional methods
are more likely to spread the distortion throughout the 3D space. Any optimization
technique only moderates but never eliminates distortion.Meanwhile, the existing
techniques consider neither shape-preserving nor smooth transition from the rig-
orous geometry’s point of view, thus lens distortions are intolerable when features
become sufficiently intricate.

To tackle the above challenges, we are inspired by the following idea: Rather
than magnifying ROIs and shrinking the rest region in the 3D world, we could in-
crease ROIs’ volume in the additional dimension without changing the rest region.
Also, it is a well-known knowledge that the differential geometry theory and its
practical techniques (e.g., surface parameterization) can handle angle distortion rig-
orously and quantitatively. In this way, we examine this conventional magnification
task from a completely innovative perspective of 3D/4D geometry processing.

To achieve this goal, we propose a framework to simulate 4D lens in order to
achieve local magnification while minimizing global angle distortion. This frame-
work starts from transforming the 3D input into a 4D mesh withan initial fourth
dimension for every vertex. Then we conduct 4D deformation which enlarges ROI’s
volume while keeping the rest unchanged. Then, we automatically deform the mesh
back into 3D space for other applications. Both steps require us to seek distortion
minimization for each individual mesh element during deformation. Specifically,
our contributions in this work include:

1. A framework to address the 3D volume dataset magnification. In contrast
to other possible deformation solutions, our method lets the additional dimension’s
space absorb the volume magnification rather than spreadingthroughout the nearby
space in the original dimensions. Therefore, our result canresemble the original
interior texture and the resulting transition between ROIsand the rest is also smooth
and seamless.

2. Techniques for distortion minimization with high dimensions. To achieve
this, we propose a piece-wise method to solve the harmonic function on nD tetra-
hedral mesh. Meanwhile, we develop a flattening method to model the 4D shape
flattening back into 3D and preserve the shape.

Our system has the very unique feature that we can preserve the shape around
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both focus region and context region/global shape. Our geometry-based method
can also achieve distortion control and quantifying. Therefore our system can ef-
fectively magnify and visualize volume datasets while keeping distortion unnotice-
able. Theoretically, our research first demonstrates that4D geometry is a powerful
tool for volume visualization and modeling, and has great potential for 3D graphics-
relevant tasks.

After discussing related literatures, a framework overview is given in Section 7.1.
On a global view, modeling the 4D magnification in Section 7.2is the first stage in
our framework, followed by flattening techniques in Section7.3. In Section 7.4,
we demonstrate our experimental results and document more comprehensive dis-
cussion, respectively.

7.1 Framework

This section gives a high level overview of our proposed framework. Our system
takes as input a wide range of 3D textured solid models (Fig. 7.1). For a tetra-
hedral mesh without texture, Takayama et al. [3] proposed a method for interior
solid texturing modeling. For volumetric datasets (like CTand MRI) with texture
information only, we partition the given volumetric dataset using a uniform grid.
Each vertex in the grid is associated with a 3D parameter(u, v, w). The original
volume dataset now becomes the volume texture of the uniformgrid. We further
decompose each grid into several tetrahedra and convert theinput to a 3D textured
tetrahedral mesh, as shown in Fig. 7.1(Bottom).

Now we can describe an arbitrary input by a uniform format. Wedefine the
input as a tetrahedral meshM = {T,E,V}. T = {t1, t2, . . . , tn} denotes the set
of tetrahedra, and{E,V} denotes the set of edges and vertices. A mapping function
φ maps vertices to the texture. In a discrete setting, each vertex vi = (pi, φi)
includes two items:p denotes vertex’s position (we usep3D = (x, y, z) in 3D
andp4D = (x, y, z, h) in 4D). φi = (u, v, w) denotes a volumetric parameter
corresponding to the volume texture. Our output is a new tetrahedral meshMout

with updatedp andφ for each vertex. Our framework includes the following steps.
Step 1: Choosing ROI.The user makes an initial choice about regions of inter-

est (ROIs). The shape/boundary of a ROI can be determined by abounding sphere
that encloses user’s interested region, or, by a more accurate ROI’s boundary. We
could detect an accurate ROI’s boundary through automatic boundary extraction
operations (e.g., marching cube) or simple heuristic methods.

Step 2: Magnification. In order to magnify the total volume in ROI, we gener-
ate a new 4D meshM4D based on the initial mesh.

• (2.1) For each ROI, we deform the original 3D tetrahedral patch inside the
ROI in the 4D space, with the ROI boundary as constraints (so that no shape
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Figure 7.1: Inputs of our framework. Top: A 3D solid texturedmodel is a tetra-
hedral mesh mapped by the color texture. Bottom: For a volumetric dataset, we
partition the space into grids and each grid is uniformly subdivided into tetrahedra.
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Figure 7.2: Illustration of the framework. Because it is impossible to visualize 4D
space, we use an image, a planar triangle mesh and a 3D triangle mesh to repre-
sent a volumetric dataset, a 3D tetrahedral mesh and a 4D tetrahedral mesh. After
preprocessing, the input is a tetrahedral mesh with a volumetric dataset as the tex-
ture. The tetrahedral mesh is first embedded into a high dimensional space and we
magnify the total volume in a ROI through the additional dimension. We solve the
harmonic function to recompute the mapping and transfer thetexture to the new
4D tetrahedral mesh. Finally, we flatten the 4D tetrahedral mesh back into 3D for
flexible visualization.
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changes outside ROI’s boundary). The total volume within the boundary is
magnified after this operation.

• (2.2) We recompute each vertex’s parameter to remedy the shape distortion
during magnification. To achieve this, we solve the volumetric harmonic
function: ∆φ12 = 0, whereφ12 is a texture transfer functionM4D → M.
Then for a vertexvi = (p4D

i , φi) in M4D, we update its parameter as:φi =
φ(φ12(p4D

i )), whereφ is the parameter on the original 3D meshM.

Step 3: Flattening. In Step 2 we have already magnifiedM to M4D. In order
to visualizeM4D, it is necessary to flattenM4D back into a 3D mesh as the final
outputMout and preserve the magnification effect. We use a4 × 3 rotation matrix
to rotate each 4D tetrahedront4Di back to a “flattened” 3D tetrahedrontFi . Then
we stitch all separate tetrahedra together as the sole meshMout, and keep each
tetrahedron’s shape to roughly approximate tot3Di after stitching. We can execute
this step iteratively until getting a visually promising result.

• (3.1) We initially guess a 3D tetrahedral mesh (e.g., from the last iteration’s
result, or by simple projection fromM4D in the first iteration). By comparing
between the “guess” tetrahedront3Di in M3D and rotation-generated “flat-
tened” tetrahedrontFi , we can compute a3 × 3 Jacobian matrixJi between
two corresponding tetrahedra. Then we can extract fromJi a stretching-
free/rotation-only matrixRi.

• (3.2) We solve the linear optimization equation to determine every vertex’s
position inMout such that, in the resulting mesh, the Jacobian matrix between
the resulting tetrahedron and the “guess” tetrahedron approximatesRi.

Fig. 7.2 shows our framework in a step-by-step fashion. Since it is extremely
difficult to visualize the 3D-to-4D deformation in an intuitive way, we utilize 2D-
to-3D deformation to simply illustrate the entire framework: 2D image or triangle
mesh to mimic volume dataset / tetrahedral mesh, and deformed 3D triangle mesh
to mimic a 4D tetrahedral mesh.

7.2 3D-to-4D Magnification

In order to magnify in 4D space, we first extend the inputM by embedding it
into 4D space. For each vertex with a 3D positionp3D = (x, y, z), we expand
it to p4D = (x, y, z, h) where the additional heighth = 0. We can imagine this
operation in the 2D layout as pulling a 2D plane from 2D to a real 3D world with
shape unchanged (still a 2D plane but embedded in a 3D world after pulling).
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7.2.1 ROI Magnification

Now we start to magnify ROIs. ROI is a region in the volume. Each ROI encloses
a mesh patchMp and we use∂Mp to represent the boundary of patchMp. To
magnify the ROI’s volume, we seek a solution that could stretch all vertices inside
Mp to new positions while keeping other vertices unchanged.

In most practical focus+context visualization applications, the user only chooses
a general approximate region via simple user sketch and/or basic geometric prim-
itives (like the region within a drawn sphere), enclosing both mesh segment and
nearby context space as a reasonable proxy. In our system, weuse a sphere to en-
close the focus region and simulate lens in most applications. The choice of sphere
lens is natural and humans are more accustomed to it with better visual understand-
ing compared with other geometric primitives. In practice,we first visually choose
a general/approximate region, then we pick the centerc of this region as the center
of sphere associated with radiusr. It may be noted that,r must be large enough to
enclose the entire ROI.

After setting the lens, we magnify its volume by moving each vertex to a new
position along the fourth dimension. As shown in Fig. 7.2, weuse a gaussian func-
tion to computehi in eachp4D

i because the shape changing in such case is not
severe but smooth. For each vertex we computehi = g(1− di

r
)h0, wheredi denotes

the distance to the sphere centerc, g(x) denotes a standard gaussian functionex
2

andh0 is a user input to scale the magnification. As an alternative solution, we can
also use a standard 4D sphere instead of gaussian function toaccommodate user’s
visual preference:hi =

√

r2 − d2i .
In some applications, the user may seek for a lens with an arbitrary shape. For

example, a focus object extracted from the volume may have complex shape or
high genus boundary and the user prefers to use this exact boundary to be the lens
(like Fig. 7.3(b)). To achieve this, we can generate a central skeleton-like curved
pathC (e.g., [145]) and get the medial axis transform for every point on the object
boundary. Each vertexvi inside the lens associates the shortest distancedi with the
axis pathC. Now again we can use gaussian function to computehi for each vertex:
hi = g(1− di

dm
)h0, wheredm is the maximum distance value.

Large scale magnification may stretch/shear the tetrahedron and sabotage the
mesh quality. To solve this, we need to subdivide the highly-stretched tetrahedron
and compute the locations and parameters(p, φ) for newly-inserted vertices. We
utilize barycentric coordinates and linear interpolationto interpolate new positions
and parameters. For a pointpc inside a tetrahedron, its barycentric coordinate is:

fc =

4∑

i

λifi, λi =
1

3

< pc, si >

V
, (7.1)
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(a) (b)

Figure 7.3: Two ways of lens shape design: (a) We can use a 3D sphere, with a
centerc (red point), to enclose the entire ROI. The radius isr. (b) For an arbitrary
shape lens like an extracted object’s boundary (horse) fromthe volume, its medial
axis can assist us to generate the lens. Each vertex inside the ROI associates a
distance valuedi with the axis.

Figure 7.4: A tetrahedron and face normal vectors.
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(a) (b)

Figure 7.5: Texture transfer. We use 2D layout to illustratethe effectiveness of
texture transferring. (a) Direct magnification without recomputing texture transfer.
(b) The result after recomputing texture transfer.

whereV is the volume andsi = Aini. Ai indicates the area of one tetrahedron’s
face triangle (and each tetrahedron has four face triangles). Using the barycentric
coordinates, we can keep the shape unchanged before and after adding vertices.
Although the texture interpolation may not be optimal underthis strategy, we com-
pensate it by modifying the texture coordinates in the following texture transfer
step.

7.2.2 Texture Transfer

After the magnification step, the tetrahedral mesh in the focus region has already
been magnified. Now we need to recompute the texture mapping to minimize dis-
tortion around both focus and context regions. The texture transfer is necessary
because after the above magnification step, the tetrahedronin the focus region has
already been significantly deformed to a different shape, thus still using the un-
changed coordinates to map and interpolate the texture willinevitably cause angle
distortion. Therefore we need to recompute and modify the texture mapping to pre-
serve the original texture shape after deformation. Fig. 7.5 uses a 2D example to
illustrate the necessity of texture transfer. In the left figure, direct magnification
without texture transfer produces severe distortion effect for the context region,
which will be significantly improved after texture transferas shown in the right
figure.

The objective of this step is to texture the new mesh using theoriginal texture,
while preserving the interior texture shape. We have the tetrahedral meshM ∈
R3 andM4D ∈ R4 before and after the magnification. To transfer the texture
information fromM (with the texture functionφ) toM4D, it is desirable to construct
a functionφ12 : M4D → M, that maps the entire space ofM4D ontoM. Then we
can describe the transferred texture mapping function onM4D asφ ◦ φ12.

We solve the following harmonic function by computingφ12 and minimizing
the mapping distortion:

∆φ12 = 0, (7.2)
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where∆ = ∂2

∂x2 +
∂2

∂y2
+ ∂2

∂z2
.

In practice, solving equations for any but the simplest geometries must resort
to an efficient approximation due to the lack of closed-form analytical solutions in
the general setting. In our system we use discrete piece-wise coordinates to solve it
numerically.

1. InM4D, we shall use each vertex’s original 3D position as the initial param-
eterφi = (ui, vi, wi) = (xi, yi, zi).

2. To solve the harmonic function∆φ12 = 0, we iteratively update the parameter
for each vertex(ui, vi, wi) =

∑

Ng(vi)
ωij(uj, vj , wj), whereNg(vi) is the

one-ring neighbor ofvi, (uj, vj, wj) is every neighbor’s parameter,ωij is the
local coordinate associated with each neighbor. Meanwhile, vertices on the
boundary of volumeM4D serve as Dirichlet boundary conditions (i.e., we
avoid changing their parameters).

3. φ12 now maps vertexvi to one point location(ui, vi, wi) on M. Now we
assign the texture parameter on this point inM to vi. This point must locate
inside one tetrahedronti in M, and the parameter ofvi can be represented as
the weighted average of four vertices’ parameters onti. We again use Eq. 7.1
to compute the weight for four vertices onti.

(a) (b)

Figure 7.6: (a) Cotangent coordinates on a triangle mesh. (b) Cotangent coordinates
on a tetrahedral mesh.

Local Coordinates. In our system solving Eq. 7.2 requires an affine combina-
tion as local coordinatesωij . We require that

∑

Ng(vi)
ωij = 1, and this partition of

unity property allows us to use every vertex of a polygon as a basis to interpolate
any function.
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Cotangent coordinate is a robust coordinate system and widely used on triangle
mesh processing. We use two angles opposite to one edge to compute its cotangent
coordinate:kC,D = cot∠CBD + cot∠CED for edgeECD (Fig. 7.6(a)). In our
volume-based system, we generalize the formula from the triangle mesh onto the
tetrahedral mesh, using cotangents of dihedral angles opposite to the edge. Note
that, there are generally more than two tetrahedra sharing the same edge. Suppose
for edgeEuv, it is shared byn tetrahedra thus it is corresponding ton dihedral
angles,θi, i = 1, . . . , n, we define the string energy:

ku,v =

n∑

i=1

cotθi. (7.3)

Then for a vertexvi, we express its one-ring neighbor’s local coordinates as:

ωij =
ki,j

∑j

Ng(i) ki,j
. (7.4)

As shown in Eq. 7.3, determining local coordinates involvescomputing the dihedral
angles between two faces. We compute a dihedral angle in 3D asfollows. In
Fig. 7.6(b), we can compute the cosine of the dihedral angle between two opposite
faces△ABD and△CDB as the following multiplicative term (up to the product
of the norm of these vectors):

(AB ∧AD) · (CD ∧CB). (7.5)

However, in our 4D spaceM4D this formula is not suitable for computing. It turns
out that in 4D space, cross product operator “∧” requires3 vectors rather than just
2. To avoid using∧, we can use Lagrange’s identity to compute the above formula:

(s · u)(t · v)− (s · v)(t · u) = (s ∧ t) · (u ∧ v). (7.6)

Now we can compute the cosine of the dihedral angle with the following updated
formula:

(AB ·CD)(AD ·CB)− (AB ·CB)(AD ·CD). (7.7)

7.3 Flattening

After the above step, we have already magnified the volume of ROI in a 4D mesh
M4D. However, we have to flatten it back to 3D space for visualization and other
typical applications. The key challenge in this step is to preserve every magnified
tetrahedron’s volume/shape during flattening. Inspired by3D techniques like [64,
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66], we devise a two-step algorithm to handle 4D flattening. We first rotate each
4D tetrahedront4Di individually back to 3D space as the 3D tetrahedron (without
changing shape except rotation). We denote this “flattened”3D tetrahedrontFi .
Note that every tetrahedron is rotated back to 3D independently thus all t3Di are
separate from each other without being glued together. The second stage includes
stitching them together into one piece as the original tetrahedral mesh structure.
During stitching we minimize the shape distortion such thatthe final tetrahedron in
Mout

i preserves the shape oftFi .
Rotating a 4D tetrahedront4Di back to a 3D tetrahedront3Di is simple. The

challenge lies at keeping its shape close totFi in the resulting meshMout
i . Our

system affords two iteratively computed phases to achieve this goal. To clearly
describe the algorithm, we denotek as the current iteration, thenMk, vk

i , tki as the
tetrahedral mesh, a vertex and a tetrahedron in thek-th iteration, respectively. Note
thatMk always keeps the same mesh structure as the input meshM. Initially, we
generate the meshM0 in the first iteration by removing the fourth dimension from
every vertex inM4D: For a vertex withp4D

i = (xi, yi, zi, hi) in M4D, we initialize
its position inM0 asp3D

i = (xi, yi, zi).
In the first phase we compute the Jacobian deformation matrixfor each tetra-

hedrontki . The matrix represents the transformation from the localized flattened
tetrahedrontFi to its counterparttki . We represent this transformation as a3 × 3
matrixJi. Generalized from [176], we can compute this Jacobian matrix as:

J(tki ) =
6∑

i=1

ek
i
(eF

i
)T , (7.8)

whereek
i

and(eF
i
)T are the corresponding edges betweentk andtF (Totally there

are six pairs of edges for every tetrahedron). This matrix measures two tetrahedral
deformation on two factors: rotation and scaling. Our goal is to preserve the shape
of each tetrahedron thus we allow a rotation-only matrix, which can be decomposed
separately by singular value decomposition ofJ.

J(tki ) = UΣVT ,Ri = UVT , (7.9)

whereRi is the rotation-only matrix.
Now in the second phase, we can update the position of each vertex by mini-

mizing the following energy:

Ek =

|T|
∑

i

6∑

j=1

κij ||e
k
i j −Riei

F
j ||

2, (7.10)
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Algorithm 3 The flattening algorithm.

Input: Initial 4D meshM4D,
threshold ǫ

Output: 3D meshMout

for all t4Di ∈ M4D do
//Compute a flattened tetrahedron
tFi = F latten(ti)

end for
M0 = Initialize(M4D)
k = 0, d = INF_MAX
while d > ǫ do

for all tki ∈ Mk
i do

//Compute Jacobian matrix
Ji = Jacobian(tki , t

F
i )

//Rotation-only matrix
Ri = SV D(Ji)

end for
// Build and solve Eq. 12
Assemble(L,R,VF )
Vk = SolveEquation(L,R,VF )
//Compute moving distance
d = MaxDistance(Mk−1,Mk)
k = k + 1

end while
Mout = Mk

Output:Mout

134



where|T| is the set of all tetrahedra,ek
i j , e

F
i j are6 edges on the tetrahedrontki and

tFi , κij is the weight associated with the edge. Now we rewrite the function in terms
of every edge vector:

Ek =
∑

m,n

κmn||(v
k
m − vk

n)−Rl(v
F
m − vF

n )||
2, (7.11)

where we usevk
m − vk

n to represent every edge in Eq. 7.10,Rl andκmn are the
rotation-only matrix and weight of the tetrahedrontl which the edge(vk

m,v
k
n) be-

longs to. Note that an edgevk
m − vk

n may appear multiple times if it is shared by
more than one tetrahedron, and thus we use differentRl when the edge appears
more than once. Setting the gradient to zero, we obtain the following linear equa-
tion:

L(Vk)T = RL(VF )T , (7.12)

where the matrixL represents the edge relationship of vertices (weighted byκmn)
in Eq. 7.11. The matrixR includes all local matrixRl, Vk andVF are vectors
including all vertices’ positions onMk andMF . Vk is the only unknown vector
here and solving this equation gives rise to the positions ofall vertices inVk.

After updating the positions, we compute the moving distance for each vertex
betweenMk−1 andMk. The distance is normalized to the diagonal length of the
volume. We record the maximum moving distance among all vertices, and the iter-
ation loop stops if this distance is smaller than the threshold. We set the threshold
to be1e−4. In practice for all experimental results our algorithm converges in at
most 2 iterations.

Weights. The choice of weightκmn in Eq. 7.11 depends on the importance of
a tetrahedron. From the cognitive perspective, tetrahedraaround the ROI center are
more sensitive. Also a tetrahedron with large volume shouldhave a higher weight
than the one with small volume, because the distortion on a large tetrahedron is
more visually confusing. For each edge, we design the weightas (1 + h)V ku,v,
whereV is the average volume of connected tetrahedra,h is the averaged height
(h-values), andku,v is computed from Eq. 7.3.

Boundary Constraints. For a solid textured model, it is necessary to keep the
boundary shape. For a volumetric dataset, the user also prefers to get a resulting
shape with an original square boundary. Therefore, we keep the position of every
boundary vertex unchanged during all iterations.

7.4 Experimental Results and Discussions

Our system can effectively provide magnification information to the user, allowing
the user to get detailed focal region while maintaining the integral perception of the
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model. The results shown in the following figures demonstrate the power of our
techniques. Our experimental results are implemented on a 3GHz Pentium-IV PC
with 4 Giga RAM.

We test our system on both solid textured models and volumetric datasets. From
Fig. 7.7 to Fig. 7.8, we test various solid textured models such as watermelon, and
kiwi and visualize their original/magnification results. Fig. 7.7 demonstrates one
important application using our focus+context magnification. The figure shows
that more seeds appear after magnification. Also, the distribution of seeds (i.e.,
their relative positions between seeds) is preserved. Preserving particle distribu-
tion and relative positions during magnifying has many potential applications in
experiment-driven science and engineering (e.g., structural biology, game design,
etc.). Our focus+context magnification provides an effective magnification lens for
this category of applications.

Fig. 7.8 shows another example. Compared with [128], in which the sphere-like
shape is severely distorted (e.g., the brain model is severely distorted to an irregular
heart-like model), our lens successfully keeps the structure of kiwi core still as the
spherical shape, and the shape of context region is also unchanged.

From Fig. 7.9 to Fig. 7.13, we test several volumetric dataset examples: aneurism,
nucleon,lobb, bonsai and fuel. In these tests, we magnified different shapes like tu-
mor in Fig. 7.9, oxygen atomic nucleus in Fig. 7.10, 3D wave inFig. 7.11, trunk in
Fig. 7.12, irregular air head in Fig. 7.13. All experimentalresults clearly demon-
strate that our framework can keep the prominent global shape and the context re-
gion unchanged for viewers’ easy recognition. Meanwhile, in Fig. 7.9 we demon-
strate an application on structure-aware visualization using a model with many
branches (note that a model’s geometric structure typically has many branches). We
magnify the tumor model while long branches (thinner vessels) are preserved with-
out occlusion or relative position distortion. This example shows that our method
could be of great value to structure-critical applications(e.g., oil pipeline optimiza-
tion and detection, indoor routing and planning, etc.).

Fig. 7.12 demonstrates the application of arbitrary shape lens. In most of our
examples we use the standard sphere shape lens. However, as we discussed in
Section 7.2, we can generate arbitrary shape of lens from medial axis to preserve
features. For example in Fig. 7.12, we utilize the medial axis of the trunk to generate
a special lens for the trunk part. In the result, the trunk is magnified and the shape
is well preserved.

In Fig. 7.14 and Fig. 7.15 we demonstrate more applications such as medical
and physics experiment visualization with complicated models. We magnify the
bladder part in Fig. 7.14 and the resulting model preserves the context region very
well. The user (doctor) can easily recognize each surrounding part (pelvis, artery,
etc.) without any difficulty. This advantage enables doctors to obtain the accurate
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(a) (b)

Figure 7.7: The tetrahedral mesh of watermelon.

information and avoid misdiagnose. In Fig. 7.15 , we magnifythe smoke obstacle
while we can still recognize the shape and number of surrounding flows.

Performance. The performance of our framework does not depend on the size
of texture/volumetric datasets but the size of vertices in the input tetrahedral mesh.
The statistics of examples are shown in Table 7.1. About computational time, in
practice, we can interactively use a sparse low resolution cube/tetrahedral volume,
like in [128], to accelerate the computation and get a fast result. Furthermore, we
can pre-compute magnification and flattening on pre-designed mesh and later use it
on different volumes by just changing textures of the mesh.

Compared with other optical/voxel/resizing based methods, our geometry-based
method has the advantage that we can quantify the local distortion by computing
mesh angle distortion, instead of just displaying visual effects. In the conventional
lens design techniques, the user can only recognize the distortion through obser-
vation because of lacking an accurate measurement method. By comparison, our
focus+context lens defines two categories of distortions: The local distortion and
global distortion. We define the local distortion as the angle distortion in each tetra-
hedron. This metric can be quantified by computing the ratio of the single valuesσ1

andσ2 from the Jacobian matrixJ (The metric is normalized by the diagonal length
of the whole cube grid volume).

During our flattening step, one robustness issue involves avoiding self-intersection.
This question is related to our flattening step. To theoretically illustrate its robust-
ness on how to avoid self-intersection, we shall notice thatour flattening algorithm
is a 3D generalization from the surface method [64, 66], which is originally de-
signed to handle very complex and/or high genus surface model input with no self-
intersecting triangle in the output. In practice this method can effectively handle
a model with very complex shape without self-intersection.Compared with these
complex surface models, our model’s geometry and topology structure is rather sim-

137



(a) (b)

(c) (d)

Figure 7.8: The tetrahedral mesh of kiwi.

ple: a flattenedR3 plane with a simple gaussian function in the middle. That means
that, the deformation is rather slight from this simple input to a flattened output.
In our experimental results, the self-intersection does not visually appear. Conse-
quently, degeneration prevention is not practically necessary for our mesh, thus our
system does not need to provide more mechanism to prevent self-intersection.

Our flattening is computed iteratively. The convergence depends on the moving
distance of every vertex between two iterations. We set a small number (10−4) as
the threshold. In each iteration, we compute this moving distance for every vertex
(normalized by the diagonal length of the cube grid volume).The iteration stops if
the maximum moving distance is smaller than the threshold. Our model converges
in one or two iterations in all of our experiments. The reasonof the fast convergence
is that our tetrahedral mesh is very simple (just a volume as aR3 plane with a simple
gaussian function in the middle).

Comparisons.Currently most of magnification lens design focuses on 2D im-
age visualization only. Recently, Wang et al. in [128] introduced a data reduc-
tion method which can achieve magnification effect. Compared with [128], our
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(a) (b)

Figure 7.9: The volumetric aneurism dataset.

(a) (b)

Figure 7.10: The volumetric nucleon dataset.

method’s most important advantage is that: we can preserve both the focus region’s
shape and the nearby/global shape. Although the method in [128] can preserve the
shape surrounding the focus region, it is incapable of preserving the nearby tran-
sition region (e.g., context), especially the global shape. These phenomena appear
in the examples of [128] and show their method’s major limitation. For example in
[128] Fig.1 column 2, in order to magnify the focus region, the entire brain model
(i.e., the global shape) is distorted significantly: from anoriginal sphere-like shape
to an irregular heart-like shape. In another focus+contextvisualization example in
[128] Fig. 8, the contour of skull is severely deformed. Suchsevere distortion of
the global shape may cause misunderstanding/misdiagnose ([179]). By compari-
son, our technique preserves the context region and global shape much better than
[128]. For example, our method can keep the sphere boundary of watermelon and
kiwi unchanged after magnification (Fig. 7.7, Fig. 7.8). Therefore, our method with
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(a) (b)

Figure 7.11: The volumetric marschner/lobb dataset.

(a) (b)

Figure 7.12: The volumetric bonsai tree dataset with magnified trunk.

an improved context region/global shape preserving capability could be more useful
in the relevant applications.

Another comparison is on distortion controlling and quantifying. The distortion
mechanism in [128] is highly arbitrary, determined by weighted cube grid mag-
nification. Our method is geometry based and generalized from the surface con-
formal parameterization technique, thus we can control thelocal angle distortion
much better from the perception’s point of view. Angle-oriented shape persever-
ation and distortion minimization are more perceptually pleasing than using cube
grid in [128]. Their cube resolution is very coarse with hundreds or voxels inside
each cube. The linear interpolation of these voxels after cube grid deformation will
cause additional angle distortion. Therefore, the cube grid distortion metric is al-
ways inaccurate. Our system can visualize the distortion not only through visual
display but also quantifying such effect by computing angledistortion in a more
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(a) (b) (c)

Figure 7.13: The volumetric fuel dataset with magnified head.

accurate way (which is the ratio of two singular values from Jacobian matrix).
We also compare our method with another focus+context technique [127]. We

shall notice that our system handles much more complicated scenarios than those
in [127]. The input in [127] is only surface boundary model, so it has no interior
or nearby information to display or magnify (all nearby context regions are empty
3D space). Consequently, [127]’s system can hide severe distortions in the empty
context region without any visual information (since it is invisible). By compar-
ison, our input is 3D solid model or volume with multiple materials/tissues, both
inside the focus region and outside such region. When we magnify a focus re-
gion inside our model, all nearby context regions should avoid distortion because
they also contain important tissue, material and shape information. By compari-
son, our geometry-based method can accommodate more complicated models with
well-preserved magnification results for interior and exterior regions.

Since our lens is geometry-based, it can effectively obtaina better global dis-
tortion minimization even on surface mesh when only compared with [127]. We
can simply modify our framework to support surface-only triangle mesh: we use a
polycube to cover the whole input mesh and then magnify the polycube. Fig. 7.16
compares our method with the result in [127]. After setting the user-selected fo-
cus region (red circle in Fig. 7.16(a)), the magnification result generated by Wang’s
method preserves structure/shape in the focus area, but severely affects the context
region (e.g., the upper body, red circle in Fig. 7.16(b)) andintroduces visual arti-
facts, like the distorted proportion of body. By comparison, our technique keeps
upper/lower body proportion without obvious shape confusion for easy object cog-
nition (red circle in Fig. 7.16(c)).
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(a) (b)

Figure 7.14: The volumetric fuel dataset with bladder.

(a) (b)

Figure 7.15: The volumetric fuel dataset with smoke.

Our lens is also similar to the mesh editing based method (which is equivalent
to magnifying the surface boundary first and then interpolating the interior texture).
However mesh editing techniques are not suitable for the focus+context visualiza-
tion application because they focus on totally different input and task. First, mesh
editing requires users to operate on an exact mesh boundary segment. However,
in focus+context visualization applications, the desiredregions can not be easily
detected, extracted, and described as the triangle mesh model. For example, bound-
ary extraction is extremely difficult for most volumetric/medical datasets. In most
practical focus+context visualizations, the user only chooses a general/approximate
region via simple user sketch and/or basic geometric primitives (like the region in
a drawn circle), enclosing both mesh segment and nearby context space as a rea-
sonable proxy. Second, mesh editing only attempts to preserve the shape of focus
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Table 7.1: Statistics of various test examples: # Tex, # pixels in the texture; # V, #
of vertices; Distortion, average distortions by all vertices.

Model # Tex # V Time Distortion
melon 643 600 1.5s 0.05
kiwi 643 880 2.1s 0.08

aneurism 2563 303 315s 0.07
lobb 413 203 46s 0.05

nucleon 413 203 44s 0.04
bonsai 2563 40× 202 127s 0.03
fuel 643 253 110s 0.08

bladder 1283 303 275s 0.03
smoke 2563 303 340s 0.04

region around mesh boundary during magnification. The nearby context region and
global shapes will be severely distorted without consideration (In most cases, these
regions are just empty space in a typical mesh editing task).Finally, mesh edit-
ing only focuses on surface mesh’s shape, thus for interior textures/tissues, we still
need to design a shape-preserving interpolation techniqueto preserve the shape af-
ter boundary deformation. In Table 7.2, we compare our method with [127, 128]
and mesh editing methods. The table clearly shows that our method is a more pow-
erful tool for volume data focus+context visualization.

(a) (b) (c)

Figure 7.16: Comparison between Wang’s method. (a) Input and the focus region
(red circle). (b) [127]’s method (courtesy to [127]) and itsresulting context region
(red circle). (c) Our method and the resulting context region (red circle).
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Table 7.2: Comparison with various methods. We test their abilities in follow-
ing aspects: Preserving the shape of focus region (Focus Region); Preserving the
shape around context region and/or global shape (Context Region Global Shape);
Supporting solid model and/or volume dataset (Solid Texture); Quantifying local
distortion (Distortion Quantifying); Allowing simple sketch to choose ROI (Simple
Sketch Input).

Model [128] [127] Mesh EditingOurs
Focus Region yes yes interpolation yes

needed
Context Region no no empty yes
Global Shape space
Solid Texture yes no no yes

Distortion no no yes yes
Quantifying

Simple Sketch yes yes no yes
Input

7.5 Chapter Summary

In this chapter, A novel framework towards designing magnification lens for volu-
metric datasets is introduced. Specifically, it starts fromthe input of a 3D tetrahedral
mesh and magnify the ROIs in 4D space through the use of dimensional enhance-
ment. The geometry-centric methodology and the prototype system manifest that
the 4D geometry greatly empowers the visualization techniques. This approach
is expected to transcend the traditional boundary of geometric modeling and is of
benefit to data visualization and visual analysis.

From the focus+context visualization application’s perspective, this framework
outperforms other methods with many unique features. In this system, the geometry-
centric techniques offer users the immense power on shape distortion minimization
and its quantitative control. Compared with other methods,it can preserve the shape
not only around the focus region but also the surrounding context region and global
shape. Also, it enables the user to draw either simple sketch(like drawing a sphere)
or arbitrary shape as magnifiers to effectively display the entire ROIs. This system
affords a wide spectrum of 3D input ranging from volume datasets to solid tex-
tured models. All experimental results have demonstrated that 4D lens, as a novel
magnification technique, has great potentials in many visualization applications.

In near future, this system can be extended to the exploration of the utility of
4D geometric modeling/processing. At present, this framework still lacks of mech-
anism to handle sharp features in the input volume, especially when shape features
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are on the boundary of the context region. For most visualization applications, like
medical data visualization, this drawback may not be obvious. However, for visual-
ization involving manufactured objects in game development and traditional CAD,
this distortion may cause severe difficulty during object exploration. It is desir-
able to study how to design better algorithms to support thistype of applications to
keep meaningful sharp features (e.g., shape crack) unchanged during magnification.
Meanwhile, it can also be observed from the examples that thecurrent scheme is ca-
pable of handling higher-dimensional datasets, like solidtextured models equipped
with multiple vector fields. The method could be extended to support multi-scale
resolutions, and explore its application on more generalized models like multivari-
ate splines and achieve parallel acceleration on GPU platform.
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Chapter 8

Conclusion and Future Work

In this dissertation, we present our recent research results, ongoing research and fu-
ture research direction within our general volumetric spline-based modeling frame-
work. We seek novel modeling techniques based on trivariatetensor-product spline
schemes that would allow users to directly construct regular trivariate splines over
3D surface models and preserve all useful properties. Theoretically, it brings fun-
damental progress in understanding, analyzing and solvingvolumetric modeling
problems. We also demonstrate its great potential in many valuable applications
like remeshing, visualization, etc.

8.1 Contribution Summary

In the above chapters, we have investigated and presented a spline-based volumetric
modeling framework to solve 3D objects modeling problems. Particularly, we em-
phasize our research interest on regular domain (“cuboid”)tensor-product splines,
because of their favorite advantages. Combining volumetric decomposition, param-
eterization with trivariate splines, we successfully and effectively solve a variety of
problems in the areas of geometric shape design and modeling.

Our specific contributions include:

1. We propose a new concept of“Generalized poly-cube”(GPC). A GPC com-
prises a set of regular cube domains topologically glued together. Compared
with conventional poly-cubes (CPCs), GPC is much more powerful and flex-
ible and has improved numerical accuracy and computationalefficiency. We
propose an automatic method to construct a GPC domain and we develop a
novel volumetric parameterization and spline construction framework based
on the resulting domain, which is an effective modeling toolfor converting
surface meshes to volumetric splines.
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2. We design a novel component-aware shape modeling methodology based on
tensor-product trivariate splines for solids with arbitrary topology. Instead of
using conventional top-down method, our framework advocates a divide-and-
conquer strategy: The model is first decomposed into a set of components
and then each component is naturally modeled as tensor-product trivariate
splines. The key novelty lies at our powerful merging strategy that can glue
tensor-product spline solids together subject to high-order global continuities,
meanwhile preserving boundary restriction and semi-standardness.

3. We propose a systematic framework that transforms discrete volumetric raw
data from scanning devices directly into continuous splinerepresentation
with regular tensor-product structure. To achieve this goal, we propose a
novel volumetric parameterization technique that constructs an as-smooth-
as-possible frame field, satisfies a sparse set of directional constraints and
computes a globally smooth parameterization with iso-parameter curves fol-
lowing the frame field directions. The proposed method can efficiently recon-
struct model with multi-layers and heterogenous materials, which are usually
extremely difficult to be handled by the traditional techniques.

4. Aiming to promote new applications of our powerful modeling techniques
in visual computing, we present a novel methodology based ongeometric
deformation metrics to simulate magnification lens that canbe utilized for
Focus+Context (F+C) visualization. Compared with conventional optical
lens design (such as fish-eyes, bi-focal lens), our geometric modeling based
method is much more capable of preserving shape features (such as angles,
rigidities) and minimizing distortion. We present a novel methodology that
integrates 4-Dimensional space deformation to simulate magnification lens
on versatile textured solid models.

Practically, we demonstrate their power in many valuable applications, and
show their great potential as enabling tools serving for research in broad areas of
computer graphics, geometric modeling and processing. Ourspline-based frame-
work is endowed with many advantageous properties for modeling continuous quan-
tities defined over multiple domains. Through our extensiveexperiments, we demon-
strate that our framework is more efficient and effective in solving a variety of prob-
lems in computer graphics, image processing and other engineering applications.

8.2 Future Improvement of Our Work

There are many more immediate and valuable research topics based on our current
framework. Here are some research topics that directly extend from work we have
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done in this dissertation.
We would like to further improve the current stage of our automatic generalized

poly-cube construction framework. Our proposed method hascertain limitations
and demands further improvement in the future. First, the constructed poly-cube
mainly depends on the segmentation of the 3D model. Different segmentation may
result in very different generalized poly-cubes. In our implementation, we require to
generate component-aware segmentation before the poly-cube construction. How-
ever, in practice it is always extremely difficult to implement component-aware
segmentation. Furthermore, a general component-aware technique may lead to the
segmentation result in which many resulting components glue together around the
same point or edge. Such a point (or an edge) is an extraordinary point and it is im-
possible to approximate continuous representations around such a point. Currently
in our existing framework, we use topology-based method (like pants decompo-
sition) or skeleton based method to get component-aware segmentation. These
methods have certain limitations and demand further improvement. First, pants
decomposition is designed to handle surface modeling and processing like surface
mapping. Pants decomposition is directed by topology knowledge only so it is not
natural to generate component-aware knowledge. Meanwhile, the skeleton of 3D
model could be very complicated with arbitrary branch connection types in real
applications. However pants decomposition is suitable for“3 branches merging”
only (degree equals to 3 in the skeleton). One potential solution is to first com-
pute the skeleton representation of the given 3D surface. Then we regularize for
the generalized skeleton so that we can convert any merging types (with arbitrary
branches merging) into the regular cube domain without extraordinary points. By
doing so, our generalized poly-cube can handle any shape with very complex skele-
ton in a divide-and-conquer fashion. An optimized “skeleton-to-cube domain” con-
version needs to consider three parameters: the number of branches, the length of
each branch, and the angle between two branches (e.g., localrelative distribution of
branches), which will allow us to acquire improved poly-cube mapping and thereby
to better spline fitting, texture mapping and synthesis and other further applications.

We also would like to further strengthen our current poly-cube framework.
Within the existing framework, users are not allowed to directly specify the ex-
traordinary (corner) points of the poly-cubes on the input 3D surfaces. The cube
generation mainly depends on the model’s topology. Consequently, no important
geometric feature exists in the domain representation. We attempt to provide mean-
ingful help to integrate the sharp feature information intothe parametric domain.
This can also improve the quality of the poly-cube maps. One possible way is to
automatically extract the sharp edges and corners first. Then we seek to map the
sharp edge to the cube domain edge, corner to the cube domain corner.

During the research of volumetric modeling, we also realizethat current existing
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papers only take surface feature into consideration. We also attempt to integrate
the interior feature processing into our generalized poly-cube framework. For 3D
surface models, one important interior feature is mid-structure plane. It is analogous
to the medial axis of the 2D models. We seek to generate the poly-cube domain
integrating sharp features on the mid-structure plane. Onepotential solution is to
first compute the skeleton representation of the given 3D surface model. Then we
cut the skeleton’s orthogonal plane along each point on the skeleton. The cutting
plane may include feature edges cutting from the mid-structure plane and we use
them to decompose each plane into several quadrilateral meshes. Then we merge
the neighboring cutting planes’ quadrilateral meshes intopoly-cubes.

Hierarchical structure and continuous representation aretwo advantages of our
volumetric spline framework. Naturally we want to see theirabilities on relative
physical-based applications like mechanical analysis, shape deformation, fluid dy-
namics, collision detection, etc. First, hierarchical structure can allow us to imple-
ment a fast simulation on the low resolution model and then generate an accurate
result on a high resolution model. This ability enables ou framework to provide
the flexible performance on the limited computation unit device like smartphone;
Continuous representation allows us to implement more direct and accurate physics
computation. For example, by doing computing like FEM/FD onthis framework,
the number of degree of freedom will be much fewer, which willthereby lead to
faster and better fluid simulation and collision/detection.

In addition, the regular structure of cubes will for sure facilitate the parallel
based applications like volume rendering, optimization, fluid simulation, FEM, etc.
The highly data-parallel nature of tensor-product spline computation also enables
GPUs to use local memories and multi-cores more directly forcomputation, achiev-
ing higher arithmetic intensity. To utilize it, general volume modeling computations
must be recast into hardware-specific terms in order to utilize the underlying hard-
ware. In current popular mobile device architecture, the main hardware system is
CPU+GPU. Therefore, it requires specific design to assign different operations on
two processing units and minimize the communication between them. However,
not every scientific computation in volumetric modeling cantake full advantage of
the CPU+GPU structure, especially the modeling of complex geometric shapes of
arbitrary topology, due to the lack of inherent regularity structure (or parametric do-
main). Our regular domain can bridge the gap by introducing poly-cube mapping of
complex shapes onto regular parametric domain, such that the complex geometric
models can be represented as 3D geometric texture in order ofthe GPUs to perform
the general data registration, modeling, and visualization tasks in a high parallel
fashion. The GPU-centric data formats and models will enable the efficient im-
plementation of shape registration, solid modeling, multi-scale data modeling via
reverse engineering, simulation/analysis, and model visualization. Meanwhile, the
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efficient GPU-based algorithm will enhance existing algorithm functionalities with
improved parallel performance in order to handle large-scale, complicated models.

We also expect to extend our current trivariate generalizedpoly-cube splines to
higher dimensional splines through the volumetric parameterization on volumetric
domains, and seek potential applications on heterogeneousvolume modeling, sim-
ulation, finite element analysis and scientific visualization. The high dimensional
model (e.g., 4-Dimensional domain) provides extra flexibility to deform and mag-
nify the volumetric model while still preserving the properties (like shape, geom-
etry, physical laws, etc). The high dimensional framework will provide improved
visualization methods for solid model and facilitate representations of the design,
testing of complicated mechanical objects and will also facilitate the specification
of material distributions.

8.3 Concluding Remarks

These directions for future work, and the many other open problems that exist, are
sure to encourage interesting and exciting research for years to come. As technical
difficulties are overcome, and existing computational algorithms are improved, the
applications will increase in variety and number. We are pleased to have taken the
first step in uncovering the heretofore untapped potential by presenting our frame-
work to modeling and visualization. It is our hope that this integrated approach and
demonstrated applications will foster continued interestand research in this area.
We look forward to the continued exploration of modeling andpredict a successful
future on it.
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