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Abstract of the Dissertation

A Spline-based Volumetric Data Modeling
Framework and Its Applications

by
Bo Li

Doctor of Philosophy
in
Computer Science
Stony Brook University
2012

The rapid advances in 3D scanning and acquisition techaityage
given rise to the explosive increase of volumetric digitaldals in re-
cent years. This dissertation systematically trailblaae®vel volu-
metric modeling framework to represent 3D solids. The neeext

plore more efficient and robust 3D modeling framework hasiggi
the prominence. The traditional surface representatian, (giangle
mesh) is incapable of expressing the interior space andialateSuch
a serious drawback overshadows many potential modelingralgsis
applications. Consequently, it is desirable to explore effieient 3D

volumetric data modeling framework to suffice above gre&tpial of

paradigm shift from surface to volume data.

Contrary to surface modeling techniques, two fundametiahges se-
riously impede this shifting to volumetric data: dramatipksion on
total quantity of data size and unprecedent strong demanthster
and more accurate scientific computations. Volumetric datalel-
ing thus has an extraordinarily intense need for a regutarticuous



and compact representation. This dissertation preseatshalleng-
ing research issue of developing a spline-based modekmggiwork to
bridge this gap. This methodology adopts regular cube petréardo-

main and provides compact and precise mathematical reyiedsm,

to sufficiently comply with the requirements in volumetriatd mod-
eling. Moreover, the regular tensor-product structurebsour new
developed methods to be embedded into the industry staseard-
lessly. These properties make spline-base frameworkyhgyeferable
in many physically-based applications including mechalnamalysis,
shape deformation and editing, virtual surgery trainirig, dleverthe-
less, using this new framework to represent general volucnabdels
involves many theoretically fundamental obstacles. Tléseaftation
focuses on the most important problems, and seeks accuratefi®

cient solutions.

First, in order to achieve a “surface model to trivariatersgs” conver-
sion, we define our new splines upon a novel parametric dooadlied
generalized poly-cubes (GPCs), which comprise a set ofaegube
domains topologically glued together. Using GPCs can tifely re-
duce the number of domain and improve the domain quality.

We then further investigate the technique to allow trivi@splines sup-
porting arbitrary topology. Through the divide-and-coagscheme,
the user can decompose the model into components and rejpitesa

by trivariate spline patches. Then the key contributionus power-

ful merging strategy that can glue tensor-product splitiestogether,
while preserving many attractive advantages.

We also develop an effective method to reconstruct disexdtanetric

datasets (e.g., volumetric image) into trivariate splinkscapture the
fine features in the data, we construct an as-smooth-aghpmfame

field based on 3D principal curvatures to align with a spaet@tdi-

rectional features. The frame field naturally conducts amwatric pa-
rameterization and thus a spline representation.

Next, we focus on promoting broader applications of our péuve
modeling techniques. We present a novel methodology baseagko
ometric deformation metrics to simulate magnification |&mst can
be utilized for the Focus+Context (F+C) visualization. Vigpla this
methodology to both 2D image and 3D volume visualization.

Through our extensive experiments, we demonstrate thafraore-
work is an effective and powerful tool for comprehensivesérg mod-
els. The great potential of our modeling framework will bghiighted



through many valuable applications. We also envision &rrtesearch
directions and broader application scopes including maigrgial the-
oretical problems and useful applications.
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Chapter 1

Introduction

1.1 Problem Statements

Since the beginning of computer graphics research andcapipln, surface shape
modeling and design have always been the central issuelynb&cause shape de-
sign keeps acting as the core applications in industry dsasdéhcking real 3D data
for a long time. Now with the development of 3D data acquasitiechniques and
driven by the requirement of more realistic and better \igff@cts, graphics re-
searchers and practitioners are now having strong mometatémeus on volumet-
ric data modeling as an important augment to current comguggphics. Behind
this great potential are the rapidly developing 3D data siiipn techniques and
their close relations to many desirable applications: ifen@tion of modern 3D
scanning devices and shape modeling technologies giveortee huge number of
available high quality 3D datasets. The mature of outputiteals, like 3D printing
and 3D display techniques, also stimulates the demand fameidric data model-
ing and rendering. Many computer graphics applications laésefit tremendously
from this trend. For example, we can now, for the first timé¢cieintly and robustly
adapt real heterogenous material data onto 3D objectshwiiltsignificantly im-
prove the rendering and simulation effects. Consequetitgse newly emerged
volumetric datasets, as a novel data platform, may lead &v@utionary trans-
formation to graphics applications from current existingface-driven practices.
Fig.[I.1 shows several examples on volumetric data modelird applications,
including: volumetric parameterization, volumetric seaand density visualiza-
tion, solid texturing, physical-based analysis, volummpoession and vectoriza-
tion, elastic model deformation, mesh editing and deforomaetc.

Driven by these applications there is a strong desire foitatde 3D volumetric
data representation, but so far little progress has beem toatkvelop the modeling
framework. We now need to explore more efficient and robusv@Dmetric data



Figure 1.1: Volumetric modeling and applications. The cammolumetric data
driven applications include volumetric parameterizatiaiumetric shape and den-
sity visualization, solid texturing design, physical camgtion (PDE solving), vol-
umetric data vectorization, elastic model deformationsimediting and model-
ing.(Courtesy of Nieser et al. [H, Huang et al. 2], Takayeet al. [3], Kopf et al.
[@], Zhang et al.mS], Wang et al.[[6], Irvings et al. [7], Juadt B].).

modeling framework, according to the properties of appiices on 3D volumet-



ric data (like large data size for storage/transmissiorrefrequent physical-based
simulation, more accurate numerical computation needl, Btwvever, we also im-
mediately realize that this need is always accompanied mymii#ficult challenges,
some of which are even conflicted with each other. The fundéshesason mainly
comes from volumetric data’s huge data size and its appicatclose relation to
physical-based computation. These unique propertiesrdetes that volumetric
data modeling, although changing little from the surfacelet@bout the complex-
ity of boundary shape, has more restrict criteria on theaghof its representation
format.

The first important difference is compactness. Conventisndace model-
ing mainly focuses on allowing more shape complexity dudegigning models.
This purpose decides that the discrete/irregular modedlvint cloudandtrian-
gle meshare widely used because of their high flexibility for represey complex
shapes. When we convert from surface (like triangle meskphometric model
(like tetrahedral mesh[|[9], the data size explodes draryalti The model’s ver-
tex number increases to a higher order of magnitude, juseépoesent the solid
model’s interior structure; Meanwhile, volumetric modetrmally contain addi-
tional attributes like material and physical propertiestpport physical compu-
tation and other simulations. These attributes add an éxirden for volumetric
representation. For example, when we convert a cube-shafses model, with
512 x 512 x 6 vertices on cube’s faces, into a volumetric cube grid, the vertex
number will explode tdb12 x 512 x 512, and this data size will almost double
even if we assign each vertex only with density as the simphasgerial attributes.
Such a data explosion is intolerable during the practicepnty because the pres-
sure from storage, but mainly because this data explosimgsiout unrealistic
need of increase on numerical computation ability and trassion bandwidth.
Also, triangle meshes always lacks regularity on triarigtesnective structure.
This disadvantage on structure also brings other chalkenge geometric mod-
eling and processing. Many adaptive simplification and lecagon methods like
shape compression/multi-resolution/hierarchical/derschemes require the regu-
lar shape structure like quadrilateral/hexahedral domais extremely difficult to
achieve these schemes on an unstructured volumetric ddikeaursing tetrahedron.

The second difference is on precise, continuous matheahaéipresentations.
Using discrete models to describe the surface shape imtedéxcludes the pos-
sibility of finding a precise continuous mathematical repgragation. Besides the
deficiency of shape representation, lacking of a continuoathematical formula
also hampers the numerical computation accuracy like sgldifferential equa-
tions, which are more frequently used in simulation and nsaesitive to com-
putation accuracy in volumetric modeling and applicatios the compensation,
there are always extra efforts on remeshing to an apprepnigsh and develop-



ing discrete algorithms to approximate a variety of matheahoperators (like

curvatures, gradients, geodesics, etc). For examplentré@nds taking place in
engineering analysis and high-performance computing emeadding greater pre-
cision and tighter integration of the overall modelingdgees process. Without
accurate geometry and mesh adaptivity, convergence ahepinégision results are
impossible. The anatomy of the process has been shown ifRigModeling an

appropriate “simulation-specific’ geometry accounts flon@st dominant percent-

age of overall analysis time.

Design Solid Model Analysis Solid Model Geomeltry
Creation and/or Edit Creation andfor Edit Decomposition
Start — I
2 >
| . |
: y e f Assign Model
Meshing Mesh Manipulation Paramelers
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Assemble Simulation Run Simulation Post-process
Model Results
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Artifacts
» "
>
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Figure 1.2: Estimations of the relative costs of each corapbaf the whole phys-
ical computation process. Note that generating an ap@tgpmodel accounts for
almost dominant percentage of overall time.(Courtesy ofhdel Hardwick and
Robert Clay, Sandia National Laboratories.).

The above facts and analysis indicate that we need a compadcatamtinuous
representation for 3D volumetric data modeling. In thisdisation, we propose a
spline-based framework which can trade-off above requergsmwell: We specifi-
cally use spline as our building block for shape and cardenfaterials and numer-
ical computation. A key concern of choosing this repredeorias: These datasets
can be converted to continuous, compact representati@matde geometric design
and downstream product development processes. As theahaturespondence,
spline schemes and relative techniques have been extrisnvestigated to fulfill
the aforementioned goal. The data size is compressed angecaterpolated by
a small number of control points. The material data can a¢sedsily adapted by
using multivariate splines. We can compute all the diffée¢mquantities such as



geodesics, curvatures, tensor fields without resortingnyonamerical approxima-
tions via linear interpolation and/or local algebraic fi¢fi The regular structure
also facilitates adaptive modification algorithms likeraiehical/multi-resolution

schemes and GPU acceleration. The rapid and precise dvaliaf local and

global differential properties will facilitate many apgditions such as finite ele-
ment analysis, shape editing, static and dynamic physiodkts, parameterization,
matching, registration and scientific visualization etc.

Spline-based frameworks are usually used mainly for dasignew shapes
(like art design in Maya and manufacture design in CAD). Intcary, we put our
research effort mainly on consolidating general modetdugiing commonly used
2D surface models, 3D solid models and volumetric imagesg#sainto our spline-
based volumetric framework. This is because these existimgels are widely ap-
plied in current graphics research and applications. Swcmsaolidation will allow
us seamlessly integrate the existing models, processyagitiims, tools and soft-
wares into volumetric-driven applications and reuse asthuseful resources.

Current spline prototypes are frequently based on 2-migisifgeometry and
topology (i.e., “surface splines”). Typically, this repentation describes only the
boundary of a solid model. There are only limited number @vpus existing
volumetric spline techniques, generally following twofdient trends. Each trend
leaves fundamental challenges unsolved: (1) Many recetitods divide the volu-
metric space into a tetrahedral mesh domain then constiuebaate spline (like
super spline or box spline) on each tetrahedra domain. Tinesgular-domain
spline theories have just emerged recently, and have nat te@®gnized by the
communities outside computer graphics. At present, thelaegensor-product B-
splines (NURBS) are still the prevailing industrial stardiéor freeform surface
representation. (2) In contrast, many recent technid@s ], ] attempt to
convert each part into splines defined on a cylinder/tubeaionbecause they can
intuitively use the shape skeleton to produce a tube donmairreveal the global
structure and topology. A severe limitation of such appheads that points on the
tube centerline are all singular. Also, the shape of tubesrg gimple such that it
can not support complex shape and preserve any sharp edgeiahteature when
it serves as the domain.

An ideal volumetric spline modeling framework should hawefollowing prop-
erties:

(1) The domain must be suitable for continuous represemtat-or example,
a singular pointin volumetric domain is a node with valence larger than four o
an iso-parametric plane (Fig._B.1(a-b)). Handling singtylavith tensor-product
splines is extremely challenging. It is desirable to havdobal one-piece spline
defined on a globally-connected singularity-free domain.

(2) The proposed domain construction method must be suffiéer surface



with boundaries/complex shapes/arbitrary topology/lbranches. The only feasi-
ble way is to introduce additional cuts and decompose theeinatb reasonable

elements. Each element should abstract a component-aadre@ geometri-

cally meaningful way thus make the following spline fittingbpess accurate and
numerically stable. Also, the separate elements must bedgiu a simple and

singularity-free fashion.

(3) A practical volumetric parameterization technique tusserve shape fea-
ture. Specifically, in areas with well-pronounced consistirvature directions,
patch parametric lines should follow the curvature andiphtuundaries should be
aligned with sharp features and smooth surface bounddii@eover, an improved
parameterization method should develop an efficient antesyaical framework
to better address the heterogenous model with variousontaaterials.

(4) In our new designed trivariate spline scheme, we wannkerit the at-
tractive properties of prevailing industrial standard NBSR For example, NURBS
have local support, i.e., moving one control point will omdifect its immediate
neighborhood. This makes intuitive design with NURBS plalssiThe basis func-
tions of NURBS are non-negative, have the property of pantbf-unity, thus are
gualified as basis functions required by finite element natiNon-uniform knot
can confine the basis function inside the domain completely.

(5) We urgently need to design a more efficiently fitting pipelo handle large
scale computation during trivariate spline approximatibor example, a genus-
solid bounded by simple four-sided B-spline surfaces has origindilyx 10242
control points (DOFs). The size of DOFs increases drasfital1024* or even
larger when we naively convert it to a volumetric spline esgantation. This ex-
ponential increase during volumetric spline conversiosgsoa great challenge in
terms of both storage and fitting costs.

In conclusion, our modeling framework involv&8smain challenges and all
above requirements can be categorized into them:

(1) Mesh decomposition.

e How to decompose them into component-aware parts?

e How to design a practical or automatic scheme to generatsistent parti-
tioning, with a small number of parts and spline-friendlyndion shapes and
gluing types?

(2) Volumetric parameterization.

e How to reduce the computation complexity of volumetric magmnd make
it more robustly?

e How to analyze and restrict the mapping distortion?



e How to integrate the shape feature (like sharp edges, @rrereven various
materials (like density value) into our parameterizatiesult?

(3) Trivariate splines.

e How to preserve the critical properties of NURBS surface lgartition-of-
unity, local refinement and boundary confinement?

e How to decrease the control point number to adapt huge nuoflgree-
of-freedom in trivariate splines?

e How to accelerate fitting efficiency and save fitting cost @iamd storage)?

e How to handle multivariate splines for many applicationd ganeral models
like vector volume imaging?

Generalized Divide-and-Conquer
Poly-cube Spline Merging

Component-Aware Volumetric Trivariate
Decomposition Parameterization Splines

Feature-Aware Volume
Volume Data Focus+Context
Reconstruction Visualization

Figure 1.3: Hierarchy of our research contents. Key stragndf our framework
(middle row); Main techniques for trivariate spline moaeli(upper row); Utilized
applications (bottom row).

Figure[1.3 illustrates the conceptual hierarchy of abowewdisions and the
whole dissertation. This framework integrates a few pitsj€first row) and tar-
gets on key challenging problems (third row). By solvingsia&ey difficulties we



have improved the effectiveness and efficiency of shape mggomputation, and
are able to utilize this framework into various applicaighottom row).

Through our experiments, we hope to demonstrate that ttasadeling frame-
work is very flexible and can potentially serve as a geomstaadard for product
data representation and model conversion in shape desthgesnmetric process-

ing.

1.2 Contributions

In this dissertation, we present a spline-based framevwmsdolve volumetric data
modeling problems. Particularly, we emphasize our resaaterest on regular do-
main (“cuboid”) tensor-product splines, because of thearofite advantages. Com-
bining volumetric decomposition, parameterization wiitadriate splines, we suc-
cessfully and effectively solve a variety problems in theaarof geometric shape
design and modeling.

Our specific contributions include:

e We develop a novel volumetric parameterization and splmstruction frame-
work, which is an effective modeling tool for converting floe meshes to
volumetric splines. Our new splines are defined upon a noasdrpetric
domain called generalized poly-cubes (GPCs). A GPC comprsset of
regular cube domains topologically glued together. Comgbavith conven-
tional poly-cubes (CPCs), the GPC is much more powerful andlie and
has improved numerical accuracy and computational eftigigrhen serving
as a parametric domain. We design an automatic algorithrorstruct the
GPC domain while also permitting the user to improve shagé&attion via
interactive intervention. We then parameterize the inpatieh on the GPC
domain. Finally, we devise a new volumetric spline schenmsedan this
seamless volumetric parameterization. With a hierarthittag scheme, the
proposed splines can fit data accurately using reduced nurhbeperfluous
control points. Our volumetric modeling scheme has gretdmi@l in shape
modeling, engineering analysis, and reverse engineepplications.

e The next contribution aims to bridge the large gap betweersktiape versa-
tility of arbitrary topology and the geometric modeling ltation of conven-
tional tensor-product splines for solid representatiolts.contribution lies
at a novel shape modeling methodology based on tensor-grtiariate
splines for solids with arbitrary topology. Our frameworkvacates a divide-
and-conquer strategy. The model is first decomposed intbod semponents
as basic building blocks. Each component is naturally nmextiels tensor-
product trivariate splines with cubic basis functions wrslupporting local



refinement. The key novelty is our powerful merging stratét can glue
tensor-product spline solids together subjecttocontinuity. As a result,
this new spline representation has many attractive adgastaAt the theo-
retical level, the integration of the top-down topologidalcomposition and
the bottom-up spline construction enables an elegant nmagdapproach for
arbitrary high-genus solids. Each building block is a ragiénsor-product
spline, which is CAD-ready and facilitates GPU computingadldition, our
new spline merging method enforces the features of semdatdness (i.e.,
> w;Bi(u,v,w) = 1 everywhere) and boundary restriction (i.e., all blend-
ing functions are confined exactly within parametric dorsgiim favor of
downstream CAE applications. At the computational leval, @mponent-
aware spline scheme supports meshless fitting which coetylatoids te-
dious volumetric mapping and remeshing. This divide-andguier strategy
reduces the time and space complexity drastically. We ocdrekiensive ex-
periments to demonstrate its shape flexibility and vergatbwards solid
modeling with complicated geometries and non-trivial genu

We propose a systematic framework that transforms disgmdtenetric raw
data from scanning devices directly into continuous spl@gresentation
with regular tensor-product structure. To achieve thisl,ge@ propose a
novel volumetric parameterization technique that coms$ran as-smooth-
as-possible frame field, satisfying a sparse set of dineaticonstraints, and
we compute a globally smooth parameterization with is@peater curves
following the frame field directions. The proposed method eéiciently
reconstruct model with multi-layers and heterogenous nadse which are
usually extremely difficult to be handled by the traditiotethniques.

Aiming to promote new applications of our powerful modelir@ghniques
in visual computing, we present a novel methodology basedemmetric

deformation metrics to simulate magnification lens that lbarutilized for

Focus+Context (F+C) visualization. Compared with conieral optical

lens design (such as fish-eyes, bi-focal lens), our geotneiideling based
method is much more capable of preserving shape featurels ésuangles,
rigidities) and minimizing distortion.

We extend this novel methodology and integrate it into a gv@nsional space
deformation to simulate magnification lens on versatiléuesd solid mod-
els. Compared with other magnification methods (e.g., appénergy based
minimization), 4D differential geometry theory and its giiaes are much
more capable of preserving shape features (angle distamiaimization),

and easier to adapt on versatile solid models. The primargradge of 4D



space lies at: we can now easily magnify the volume of regadnster-
est (ROIs) from the augmented dimension, while keepingekeregion un-
changed. To achieve this primary goal, we first embed thigsmaetric input
into 4D space and magnify ROIs in the 4th dimension. Then vigeflaghe
4D shape back into 3D space to agree with usual applicatiotigeireal 3D
world. In order to enforce distortion minimization, in batteps we devise
the high dimensions geometry techniques from rigorous 4rgry theory
for 3D/4D mapping back and forth to amend the distortion. \Wmdnstrate
the effectiveness, robustness and efficacy of our framewidlka variety of
models ranging from tetrahedral meshes to volumetric d&gas

1.3 Dissertation Organization

The remainder of this dissertation is organized in the foihg fashion. In Chap-
ter[2, we begin with the detailed review prior research wetkted to component-
aware mesh decomposition, volumetric parameterizatidrrarariate splines with
regular structures. In Chaptér 3, we present a novel magletincept “Generalized
poly-cube”, and develop an automatic modeling framewoikgu&PC to convert
a surface mesh into volumetric splines. In Chapter 4, wegsem new bottom-up
paradigm that decomposes a surface model into separate pgpliches and then in-
tegrates them into a global continuous formulation. Wegtesi new spline merg-
ing algorithm to guarantee high-order continuities whieeging all other spline
properties. In Chaptéll 5, we propose a trivariate splireef@pproach that is able
to reconstruct discrete volumetric data directly acqufrech scanning devices into
regular tensor-product spline representation. We stuaynemolumetric frame field
and parameterization generation method to achieve recatisn. In Chaptdrl6, we
apply our geometric modeling method into a visualizatiopl@ation: lens design
problem. We integrate a flexible geometric metric to sineitae optical lens and
our method is much more capable of preserving shape feglamgtes and rigidi-
ties) and minimizing distortion. In Chapter 7, we presenbeah methodology that
integrates 4-Dimensional space deformation to simulaignifiaation lens on ver-
satile textured solid models. Finally, we conclude in Ckégtwith the discussion
on future research directions. We articulate all usefubtécal propositions and
proofs about trivariate splines we develop in this dissiema

10



Chapter 2

Background Review

As we have introduced in Chapter 1, the hierarchy of thisishesludes3 main
steps: decomposition, parameterization and spline aoetgin. Spline and param-
eterization consist of our primary research topics thus evéew them first. We
notice that many researchers have explored and studiedydegjcs in R?, and
since our focus is on volumetric modeling, here we only idtrce basic techniques
and theories about surface study and main review the woikon

2.1 Splines

Splines normally refer to smooth, piecewise polynomialseyrare ideal tools for
applications where continuous representations are alkitidheir most common
guality aspects involve: The fitting can be piece-wised; @ha& is highly com-
pressed; The analytic computation is very easy; The formafddely accepted by
most design softwares.

The first study on splines goes back to 1946 by Schoenberge 8ien, splines
become a very active research because of the fast developmi@adustry appli-
cation and computer science. Between the 1960’s and eal1$9@A0’s, Birkhoff,
Garabedian and deBoor have studied and established a setiepries on Carte-
sian regular tensor product splines to represent surfade wiell known that now
these types of spline functions become the industry stdralad play very impor-
tant roles in many engineering design applications. Algiothere are huge number
of literatures on many extension types of splines to contishortcoming of reg-
ular splines (like triangular B-splines, Powell-Sabinisgs, etc), their applications
only exit in theoretical study and the whole industry stikists on regular splines.
Therefore, we shall briefly explain the relative conceptsegjular tensor-product
splines in the following section. Then, we will pay attemtion existing trivariate
spline techniques.

11



2.1.1 Polynomials and Polar Forms

The most fundamental class of splines is the class of parempetlynomials. In

the context of CAGD and computer graphics, splines are Iegtesi with the help
of a classical theoretical foundation like “Polar Forrﬂﬂ@]. All spline theories

are covered and generated from the polar form theory. Toexeive here simply
brief the basic idea of the polar form.

Polar Forms. The parametric polynomials are the fundamental basis foresp
The polar form is a very important tool for polynomials andgtspline study. The
definition of polar form is as folIowiIiS]:

Definition 2.1.1 (Affine Map). A mapf : R* — R!(k > 1) is affine, if and only
if it preserves affine combinations, i.e., if and only if fisies /(3" auu;) =
Yoo aif(u;) for all scalarsag, . . ., a,, € Rwith " o = 1.

Definition 2.1.2 (Symmetric, Multi-Affine ). Let F' be an n-variable map.F’ is
symmetric if and only

F(up,ug, -+ ,u,) = F(Ura), Ur), + , Ur(n))-

For all permutationsr € >, The mapF is multi-affine if and only i is affine in
each argument and the others are held fixed.

Blossoming principle is a very important express that iaths that any polyno-
mial is equivalent to its polar fornﬁhB]:

Theorem 2.1.3(Blossoming Principle). PolynomialsF : R* — R(k > 1) of
degreen, and a symmetric multi-affine map: (R¥)" — R’ are equivalent. Given
a map of either type, unique map of the other type exists #iadfies the identity
F(u) = f(u,---,u). The mapf is called the multi-affine polar form or blossom

n

of F.

The property of blossoming principle is used to define degljast algorithm
and de Boor algorithm in the following sections.

2.1.2 Regular Tensor Product Splines

Bézier Splines. Among all regular splines, a Bézier representation in itssm
common form is the most widely accepted equation that carsee i any number
of useful ways. Bézier curves have obtained dominancearyibesetting industry
since 1970’s. A Bézier spline can be defined as:

Theorem 2.1.4(Bézier Curve). Given a set of. + 1 control pointsP,, P, . .., P,,
the corresponding

12



Bézier Curve is given by

whereB; ,,(t) is aBernstein polynomiaB; ,,(t) = C/'t'(1 — t)" " andt € [0, 1].

As we mentioned in the last section, we can also represezieBgplines of a
polynomial /" from its polar form like [[Ib]:

Theorem 2.1.5.(Bézier Points and de Casteljau algorithnibet A = [r, s|] be an
arbitrary interval. Every polynomiaF’ : R — R! can be represented as a&Ber
polynomial w.r.t.A. The Bezier points are given as

wheref is the polar form off".

Equation above immediately leads to an evaluation algoritihat recursively
computes the values

I _
bi(u) = f(r,...,r,u,...,u,5,...,8)

n—l—j l J
== f(r s, s) (S, S)
n—l—j+1  1-1 J n—l—j -1 J+l
—upl—1 —rpi—1
= by (u) + = ()

from the given control points. Fdr= n we finally computeby = f(u,...,u) =
F(u), which is the desired point on the curve. This algorithm iteckde Casteljau
Algorithm [IE].

Formula above also shows that the de Casteljau Algorithere# way to sub-
divide a Bézier curve: suppose that we wish to subdivideezid® curve F over a
given intervalA = [s, t] at an arbitrary parameter ¢ A. The new Bézier points
of the left and right segmenf§ and F,. with respect to the subintervals = [r, u]
andA, = [u, s| are given as

bé:f(r,...,r),bll:f(r,...,r,u),...,bil:f(u,...,u),

and
bi = f(u,...,u), bl = f(u,...,u,s),...,b, = f(s,...,s).

13



B-Splines. B-splines (short for Basis Splines) go back to Schoenbergintho-
duced them in 194@. 8] for the case of uniform knd#ssplines over nonuni-
form knots go back to a review article by Curry in 1947. De Bderived the
recursive evaluation oB-spline curvesﬂg]. It was this recursion that mage
splines a truly viable tool in CAGD. Before its discovery;splines were defined
using a tedious divided difference approach which was nicalér unstable. Later
on, Gordon and Riesenfeld realized that de Boor’s recurBhspline evaluation
is the natural generalization of the de Casteljau algoritmd Bézier curves are
just subset of3-spline curves. Versprillé;_LiZO] generalization Bfspline curves to
NURBS (non-uniform rationaB-spline) which has become the standard curve and
surface form in the CAD/CAM industr\L_[_tl].

Definition 2.1.6(B-Spline). Let a vector known as the knot vector defined as

T = {to,t1,... . tm}

whereT is a nondecreasing sequence withe [0, 1] , and define control points
Py, ..., P, . Define the degree as

p=m—n-—1

The knots, 4, ..., t,,—,—1 are called internal knots.
Define the basis functions as

o 1 if t, <t <t andti < Tit1;
Nio(t) = { 0 otherwise

t—t; Livpr1 —1
Nip(t) = P— thz}p—l(t) + o —tint fl . Nit1p-1.
TP ? 1+p 7

Then the curve defined by
C(t) =Y PiNiy(t)
=0
is aB-Spline

The B-spline basis functions are positive and form a partitf unity. In ad-
dition, they have local support given by (v) = 0 for u & [t;,t;1n11] . The knot
values determine the extent of the control of the contrah{soi

The B-spline can be divided into different types with respgednot values:
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Uniform B-spline. When the knots are equidistant the B-spline is called umifor
The uniform B-spline has a succinct definition:

bjm — bn(t - tj),

with )
n+1« n
i=0
and
n+1 1
Him = H ti—t;
J=0,j#i

where(t — t;)"! is the truncated power function:

]__z:{}" if F>0

0 otherwise

Open-uniform B-spline. The difference between uniform spline and open-uniform
spline is that there exists k degree at the start and endspoirthe vector knots.
This open-uniform B-spline defines the open-uniform basigfion. The motiva-
tion of open-uniform B-spline comes from the difference e§fdine and Bézier
spline. The B-spline can not preserve one property of Bé&péne that the start
and end points of the curve are the same points of the firstagmbint and the
last control point. Open-uniform B-spline can solve thislgem. For instance,
if we set the knot vector as (0,0,0,1,1,1), it can be direptiyved that the basis
function generated from this vector is equal to the degresth 3 control point
Bézier curve’s basis function. (0,0,0,0,1,1,1,1) is Aroexample that is the same
as cubic, with 4 control point Bézier curve.

Non-uniform B-spline. B-spline basis function with arbitrary knot vector that
follows the definition requirements. Uniform B-spline igsfal cases of no-uniform.

Degree of B-spline. B-spline allows arbitrary degree of B-spline. In practicaé
the degree is rarely more than 3. So the basis function cangpegin be specialized
for each degree. Figuke 2.1illustrates the basis functiodsgree 0,1,2.

e Constant B-spline: The constant B-spline is the simplespiie. It is de-
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fined on only one knot span.

1 ift, <t <t
Njo(t) = Lty i) = { 0 ]otherWiSje

e Linear B-spline: The linear B-spline is defined on two kncdrsg

Ui <t <t
Njyl(t) = ﬁ If tj-i-l <t < tj+2
0 otherwise

e Uniform quadratic B-spline: the un-uniform quadratic Bisp does not have
the uniform expression. Here we write out the blending fiamcfor uniform

type.
142
2 2t 1
vag(t) _= —lt + t "‘25
5(1—1)
1 1 | N
N11 N[.l 12
% 1 2 3 4 5 & % 1 2 3 4 5 & % 1 2 3 4 S §
1 1 1
Wy Nyi N2
O0 1 2 3 4 5 ,J; 00 1 2 3 4 5 5 0 1 2 3 4 5 SE
1 1 1
Ny ey Ny,

C0 1 2 3 4 5 .J; G0 1 2 3 4 5 3: 0 1 2 3 4 5 ,:

Figure 2.1: Basis functions for B-spline with degree 0, k¢ left to right.

As we mentioned in the last section, we can also represemiiBeS of a poly-
nomial F' from its polar form [@2@3].

Theorem 2.1.7.(De Boor Points and De Boor Algorithmlevery polynomial
F:R—R
can be represented as a B-spline segment over a non-decgdasit sequence

r, <. .<r<s << sy,
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The de Boor points are given as
dJ = f('f’l, e ,Tn_j, S1y+. 4, Sj),
wheref is the polar form off".
Tensor Product B-spline. We can extend the B-spline from curve to surface. Ten-

sor product surfaces are the most popular surface desigrmoohat theory and in-
dustry: Given a curve scheme

F(u) = Z Bi(U)bi, bi c Rt,
=0
the corresponding tensor product scheme is defined as
F(U, ’U) = Z Z Bz-(u)Bj(v)bij, bij € Rt,

i=0 j=0

which can also be written as

with .
b;, =bi(v) = > B;(v)bj;.
=0

The last equation demonstrates that tensor product ssrfaeg be considered as
curves of curves.

NURBS. B-spline shows that it is a powerful tool for free form curveaurface
shape design. However, it has the drawback that can notexpractly the regular
shape. The invention of non-uniform rational B-spline (NB& is to solve this
problem.

Definition 2.1.8(NURBS). Let a vector known as the knot vector be defined
T={to<ti <... <tppn < togni1)s

with the restriction that the interior knots have at most nplicity n, that ist; <
tisn fori =1,2,..., k, define control point, . .., P, € E?, and define positive
weightswy, wy, . . ., wy, associated to the control poinf3.
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The analytic representation of the corresponding NURBSe#irof degree n irie?

is given by

Zf:o w PN} (u)
3o WiV} (u)

whereN*;i = 0,1, ...,k are the normalized B-spline basis functions of degree n
corresponding to the knot vectar.

R(u) = U € [to, thtnt1),

Another advantage is that it is invariant under projectrams$formation (only
affine invariance holds for its integral counterpart). Aduhally, there are weights
which can be used to control shapes in a manner similar tcegba@ameters. Geo-
metrically, a rational curve can be viewed as the projeatian integral curve from
a vector space of one higher dimension. The NURBS curve cabtaeed by pro-
jecting the B-spline curv& in E4+! having the same knot vector and control points
b= (w; P;, w;). As a consequence, the NURBS inherit all the nice propéfrias
B-splines, and can represent conic sections.

NURBS Surfaces. If we extend equation in two parametric directions we obtain
a surface with the same properties as the NURBS curve:

> i0 E;n:o w; P, B;(u) B;(v)
D i 2o WiBi(u) Bj(v)

The surface does not have to be of equal degree in both dinsctiObserve the
surface in its rendered form in where we clearly see the lomaidrol property.

NURBS generalize the nonrational parametric form. Likerational B-splines,
the rational basis functions of NURBS sum to unity, they afeitely smooth in
the interior of a knot span, and at a knot they are at |€4st—" continuous with
knot multiplicity r, which enables them to satisfy different smoothness requir
ments. They inherit many of the properties of unifaB¥splines, such as the strong
convex hull property, variation diminishing property, &ésupport, and invariance
under standard geometric transformations. More matefilldRBS and further
detailed discussion of its properties can be foun@'n—Z?

F(u,v) =

2.1.3 Hierarchical Schemes

Forsey and Bartels have presented the hierarchial B-s@']ein which a single
control point can be added without covering an entire rowaumn of control
points. In their work two concepts are introduced: localefinent using an effi-
cient representation, and multi-resolution editing. Eestions can be generalized
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to any surface such as subdivision surface. Meanwhile,ataized hierarchical
splines have been proposed by Gonzalez-Ochoa and @krw[ﬁﬂw extend the
hierarchial spline paradigm to surfaces of arbitrary togg! Kraft @] has con-
structed a hierarchical B-splines with a multilevel spspace which is a linear span
of tensor product B-splines on different, hierarchicaltgiered grid levels. Charms
[@] have extended this scheme in a more general setting daqated it to more
applications. Weller et aI|__[$2] have studied spaces ofgugge polynomials with
an irregular, locally refinable knot structure (thus it i@ “semi-regular bases”).
Deng et al. EIS] have introduced a new type of splines-patyiabsplines over hi-
erarchical T-meshes (called PHT-splines) to model geaonajects. PHT-splines
are a generalization of B-splines over hierarchical T-reesi$ong et aI@4] have
presented the method to approximate the signed distancédarof a surface by
using polynomial splines over hierarchical T-meshes. Iti@aar, they compute
on closed parametric curves in the plane and implicitly defisurfaces in space.

T-splines, developed bﬂbS], are the most important schienweir proposal.
T-splines are generalizations of NURBS surfaces that goalida of significantly
reducing the number of superfluous control points by usiegTHunction mech-
anism. The main difference between a T-spline control meshaaNURBS con-
trol mesh is that T-splines allow a row or column of controire to terminate at
anywhere without strictly enforcing the rectangular gricusture throughout the
parametric domain. Consequently, T-splines enable mutterdecal refinement
capabilities than NURBS. Furthermore, using the techrequesented in|__[_:|35], we
are able to merge adjoining T-spline surfaces into a singiplihe without adding
new control points. Sederberg et al. have also developenhplifed algorithm
to convert NURBS surfaces into T-spline surfaces, in whitarge percentage of
superfluous control points are eliminated [36].

(Siz» tio)

(Sizs tin)

(Sios t2)  [(Sirs ti2)  |(Siz tix)  [(Sias t2)  |(Sias Ti2)

(si: tia) t3

(Siz: tia)

(@) (b)

Figure 2.2: (&) Local knot lines for basis functi®(s, t); (b) P; is aT-junction.
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T-spline is aP B-spline for which some order has been imposed on the control
points by means of a control grid called-anesh A T-mesh is basically a rectangu-
lar grid that allowsl"-junctions. Each edge ihi-mesh is a line segment of constant
s (which is calleds-edge) or constarit (which is calledt-edge). AT-junction is
a vertex shared by oneedge and twa-edges, or by one-edge and twa-edges.

For exampleP; (see Fid.2R(b)) is &-junction. Each edge in A-mesh is labeled
with a knot interval, constrained by the following rules:

1. The sum of knot intervals on opposing edges of any face beustjual.

2. If aT-junction on one edge of a face can be connectediigunction on an
opposing edge of the face (thereby splitting the face into faces) without
violating Rule 1, the edge must be included in fhenesh.

In contrast to tensor-produdt-spline that uses a rectangular grid of control
points, P B-spline is point-based and requires no topological retastigp among
control points. The equation for/aB-spline is given by:

_ Z?:l HBi(‘S? t)

P(s,t) = S Bi(s,) (s,t) € D,

where theP; are control points. Thé; (s, t) are basis functions written as

Bi(s,t) = Nig(s)Njo(t),

where N3 (s) is the cubicB-spline basis function associated with the knot vec-
tor s; = [si0, Si1, Si2, Si3, sia) @nd N3 is associated with the knot vectey =
[tio, ti1, tio, tis, tis] @s illustrated in Figl_2]2(a). Every control point has it8un
ence domairD; = (s, si4) X (ti0,ti4). TheT-spline equation is very similar to the
equation for a tensor-product rationatspline surface, except that knot vecters
andt; are deduced from th€-mesh neighborhood d?,.

Knot vectors; andt; for the basis functiorB; (s, t) are determined as follows.
Let (s;2,t2) are the knot coordinate aP;. Consider a ray in parameter space
R(a) = (si2 + a,t;n). Thens;; ands;, are thes coordinates of the first twe-
edges intersected by the ray. The other knots can be fourkeimianner.

In computer graphics T-splines have been applied to maniicatipns. For
example, Song et al. [37] have generalized a T-spline schemeighted T-spline
and demonstrated its applicability in 3D free-form defotiora Lévy et al. ]
have utilized T-splines for surface reconstruction.
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2.1.4 Global Splines V.S. Spline Merging

Spline merging techniques always involve the followingpsteln order to model
an arbitrary manifold in 3D using conventional spline sckenturrent approaches
will segment the manifold to many smaller open patches, toser each patch by
a single coordinate system, so that each patch can be mduebkedpline surface.
Finally, any generic approach must glue all the spline peEgd¢bgether by adjusting
the control points and the knots along their common bouedan order to ensure
continuity of certain degree. It requires the merging oirgd defined over dif-
ferent local domains. Surface patch merging has been thbhpuliscussed first
in [@@] and later is used in_[40], in order to glue the triethregion to form a
single spline. However, it is far more complicated to desgmi-standard trivari-
ate splines which demand much more in-depth studies. Dwgige merging,
handling singularity with still high-order continuity isceemely difficult in spline
research. For surface modeling, Loop and Scheafér In [A4d baven an example
of aG? polynomial construction with general connectivity to aceonodate singu-
larities. On the other hand, Peters and Fah [42] have inteditational linear maps
to replace affine linear atlas and handle singularities eetwcharts.

Spline merging also has many shortcomings. The entire setymyeand patch-
ing process is primarily performed manually, and it reguinsers’ knowledge and
skills, and for non-trivial topology and complicated gedryehis task is laborious
and error-prone. To overcome the above modeling and deditgutlies and ad-
dress the topological issue, many researchers seek noddlimg techniques that
would allow designers to directly define continuous splireels over any mani-
folds (serving as parametric domains). Such a global agpresauld have many
modeling benefits, including no need of the transition framal patch definition
to global surface construction via gluing and abutting, éliination of a non-
intuitive segmentation and patching process, and ensth@gigh-order continuity
requirements. More importantly, we can expect a true “oleegy representation
for shapes of complicated topology, with a hope to autontegesttire reverse en-
gineering process.

Li et al. have presented an automatic technique to convérgpoal meshes to
T-splines using periodic global parameterizati@ @ 43kt al.’'s method can be
also viewed as manifold splines since the transition fumstiof the periodic global
parameterization are compositions of translations aratiorts. Grimm et aI.@4]
have pioneered a generic method to extend B -splines tocasfaf arbitrary topol-
ogy, based on the concept of overlapping charts. Cotrinh bage proposed a*
constructionon a manifolﬁhal%]. Ying and Zo[47] hgresented a manifold-
based smooth surface construction method which has hdgropntinuities with
explicit nonsingular parameterizations only in the vigyrof regions of interest. Gu
et al. @] have developed a general theoretical framewbrkanifold splines in
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which spline surfaces, defined over planar domains, can &tersptically gener-
alized to any manifold domain of arbitrary topology (withwithout boundaries).
He et al. have further developed modeling techniques foliGgiwns of manifold
splines using triangular B -splineE[49].

2.1.5 Trivariate Splines

Spline-based volumetric modeling and analysis have gaimeth attention recently
with many applications. For geometric processing, Sondg @ have employed
trivariate splines with non-uniform weights to model frieem deformation. For
physical analysis, Hughes et eE[SO] have proposed isog&@ranalysis on sur-
face, using bivariate NURBS for modeling smooth geometd/@nysical attributes
together, and conducting physical analysis simultango&sir virtual surgery, Tan
et al. EJL] have utilized spherical volumetric simplex spé to model and simulate
the human brain. In visualization, Rossl et al.|[52] havézed trivariate super
splines to model and render multi-dimensional materiaicattes for solid objects.
A modeling technique introduced i53] has been developadddel skeletal mus-
cle with anisotropic attributes and conduct FEM analysisatly on NURBS solid.
Martin et al. EL] have presented a method to fit a solid modeigia cylindrical
trivariate NURBS and support continuum force analysis. By, these existing
spline schemes tend to handle only simple inputs like g@mnsaisfaces. For more
complicated shapes, Zhang et [12] have proposed theochéthconvert the
long-branch/bifurcations dominant shapes. Martin et@] have studied shapes
with a symmetry (called “mid-face”) structure. These mekhalways attempt to
transform the model through a top-down scheme, which iespiss to research a
new method in a divide-and-conquer fashion.

Compared with surface splines designed to extract feati@res, @3,@4]),
trivariate splines mainly focus on finding part-aware comgat structures. Besides
poly-cube domains, another commonly-used part-aware ohoimaylinder (tube)
like [|1_;l|]. Martin et al. in Eb] have extended this domain tanmt more com-
plex shapes. However, in terms of spline construction, yieaer (tube) domain
inevitably produces singular points along the tube axis.

2.2 Parameterization

Model parameterization is the fundamental basis and polvgeometry process-
ing tool with versatile application, such as detail mappswgh as spline fitting and
CAD, meshing processing, FEM analysis, visualization &tahis thesis research
proposal, parameterization is the first and un-avoideddiieipg enabling data-to-
spline conversion. In this section, we first briefly outlitemathematical founda-
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tions and describe recent methods for parameterizatiarorfe since our research
mainly focuses on trivariate spline construction, it is essary to discuss some
recent emerging study interest on volumetric parametgoizaFinally, we demon-
strate feature-aware parameterization specifically tseran efficient feature-aware
technique leads to better spline fitting result.

2.2.1 Theory and Techniques

In this section, we outline the mesh parameterization oholy its mathematical
foundations, versatile local parameterization techrsgue different domains. In
[@,@], authors also have discussed this topic. Our regi@ants with an intro-
duction to the general idea of parameterization and the-stiaart is reviewed by
summarizing the motivation and major idea of several imgodrapproaches. Since
we mainly consider the representation of volumetric infation, we also discuss
the emerging tools for regular global parameterization\aidmetric parameteri-
zation.

Metric and Distortion Minimization.  Parameterization can be viewed as a pro-
cedure of energy/distortion metric minimization procednergy (distortion met-
ric) gives rise to the solution from the degree of global ggéield, that the spring
model will converge at a balance state when the global sgmeggy is minimized.
The advantage of these ideas involves that once we set thgydied function, we
can solve the parameterization by numerical energy miratiam tools directly.

Now we need to specify the energy, or define distortion metite distortion
derives from the stretching during the mappifdetween the surfade:, y, z) and
the domainu, v). Supposéz, y, z) = F(u,v) is a center poinP of an infinitesi-
mal planar circle. Then, one point on this cird®u + du, v + dv) is approximated
given by first order Taylor expansion:

Fu+du,v+ 0v) = F + Fy(u,v)ou+ F,(u,v)dv,

or

F(u+ou, v+ ov) =P+ F,(u,v)0u + F,(u,v)ov =P + J¢(du, dv),

whereJ = [F,, F,] is a3 x 2 mapping matrix (normally it is also called Jacobian
matrix). Using singular value decomposition, we have:

(o] 0
Jr=UVI=U| 0 o |V
0 0
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Then we can define the conception of isometric, conformaleapdareal (See
details in EV]. The computer language friendly explanatian be found ir@l]).

Theorem 2.2.1.For a planar mappingf : R — R, the following equivalence
gives:

1. fisisometrics o, = 05=1
2. fis conformaks o4 /0y = 1

3. fis equiareaks o109 = 1

So it iso; and o, that directly influence the stretch (and the distortion metr
energy) of the mapping. So we have

E(f) = /E(Ul(u, v), oa(u, v))dudv.

This equation should be defined here in different methoddlidilat al. @]
have proposed the method which minimizes “Green-Lagraefm@ishation tensor”.
This tensor is given by:

E=(c—1)7*4+(c — 1)

Hormann et al. @9] have presented another method call “iMdsometric Pa-
rameterization of Surfaces” (MIPS) for parameterizatiorhis method is based
on the minimization of the ratio between two direction sthétg: ZL. Since min-
imizing this energy is a difficult numerical problems, theplace it with another

simple metric%. Sander et aIlE@l] have studied a reversed paramdteriza
method that their formalism uses the inverse function to thagarametric space

onto the surface. For this reason, their energy can be esext (Oil)2 + ((}2)2.

Sokine et aI.2] have proposed a method based on the remtrktirinking and
stretching should be treated the same. their method usdslibeing energy to
minimize Maz(-, 03).

To introduce more flexibility in these methods, some reseascfocus on blend-
ing these method together in a spectrum. Degener etal. & proposed to use
a combined energy, with a term that penalizes area defanstand another term
that penalizes angular deformations. Wang et all [64] havenited a family of
metrics that can flexibly blend the LSCM meth@[65] and ARAéthod @3].

Barycentric Coordinates. Barycentric coordinates solve the parameterization pro-
cedure from another degree. Retrospect to the simple spraugl, barycentric co-
ordinates consider the converge from local region: evertexeand its local neigh-
bors are averaged by the special designed spring force abtineected edge. The
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motivation of barycentric coordinates derives from thenaffcombination param-
eterizing. A succinct idea of this method is based on simplgsigal model: We
constrain the boundary of the mesh onto the boundary of thenpeter domain
which we target to map to (for simplicity, the domain here lesnar rectangular).
Suppose two verticdg andV/; are connected by Edde; and we imagine this edge
as a spring. Then, the mesh is transformed to a spring systdrtha parameteri-
zation solving transform to spring energy converge equatie give each vertex a
parameter that where the vertex stop in the domain.

The most important issue here is to specify the spring en&gycentric coor-
dinates is one of the spring force representation. Eaclexéstrepresented as the
weighted average of the neighbor vertex as:

€Tr; = E )\ijxj7

JEN;

doai=1,

JEN;

here the);; is defined as barycentric coordinates. In some cases thdinatesw;;
are determined independently aEq.eM w;; # 1. Then for normalization we set

and

w,-j

Ny=
7 s
> jen; Wij

where we calkv;; homogeneous coordinates. One advantage of inveating-
cludes that we can focus on computing coordinates from gegnrdormation
without considering the normalization property.

The earliest generalization of barycentric coordinatessduack to Wachspress
[@]. It focuses on finite element analysis and suggeststttheehomogeneous

coordinates as follows:
cot avj; + cot ;5
Wi = 2 ’

v
wherer;; is the edge length. Desbrun et @[68] have utilized thenpfoameteri-
zation. Meyer et al.@9] for interpolating density valuaside convex polygons.

Another set of barycentric coordinates also stems fromefi@iément solving.
It actually arises from linear approximation of Laplace &iipn and is utilized to

parameterization, which is given by:

r

w;; = coty;; + cot yj;.

Pinkall et al. [L_Zb] have also utilized it to compute discretmimal surfaces. In
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the area of mesh deformation and interpolation, Sorkiné @] have generalized
this coordinates to preserve the surface details.

Another set of coordinates “Mean value coordinates” is psaggl by in @1].
The coordinates are given by:

Bji

_tan 5 + tan 5

wij =

rij

Contrary to other coordinates, one advantage of mean valoinates is that it
guarantees that;; is positive. The negative coordinates may lead to flip-oVves-p
nomena and violate injectivity property. Hormann et m][lﬂave presented that
mean value coordinates have many useful applications ipatengraphics.

There still exist some other coordinateiﬁ?:%] have studied modified the
continuity of barycentric coordinates. Lipman et aJD[Ma]vb proposed Green
Coordinates for closed polyhedral cages. They respectthetiertices position
and faces orientation such that it lead to space defornsatith shape preserving.
Joshi et al. @5] have proposed a character-based bariceatrdinates as prac-
tical means to manipulate 3D models by operating to theiesad\s indicated in
[@], the rigid spatial topological structure of the FFDidas make the deformation
less flexible. Many papers have attempted to analyze theipknof existed co-
ordinates and attempted to give a comprehensive image.tdwakt al. ] have
analyzed and compared three coordinates (Wachspress,oHiatnMean value).
They view stokes theory as the root of all three methods. Fespect of stokes
theory, the difference between three coordinates is theerhof unit element shape:
Wachspress use polar dual, mean value use unit circle anddtér use original
polygon. Following the same motivation and pipeline, all @gdlygon barycen-
tric coordinates can be extended to arbitrary polyhedraR®inwhich is necessary
for our volumetric parameterizatiorﬂ ﬂaﬁ 78] have eghthe mean value co-
ordinates from 2D polygon to 3D polyhedron. [[79] have depebbthe spherical
coordinates specifically used for spherical polygons.

2.2.2 \Volumetric Parameterization Techniques

We have already reviewed many surface parameterizatidmitpees. As a very
closely relevant topic to our proposal, here we briefly nevtbe relevant volu-
metric parameterization techniques. Volumetric paraizegion aims to compute a
one-to-one continuous map between a 3-manifold and a tdayeain (or a given
surface with interior space) with low distortions. Volumetparametrization has
been gaining greater interest in recent years, a few relatgthiques have been
conducted towards various applications such as shaperetgia @,@], vol-
ume deformationﬂﬁ@Z], and spline construction [11png/ et al. @b] have
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parameterized solid shapes over solid sphere by a vargtadgorithm that iter-
atively reduces the discrete harmonic energy defined owahtedral meshes, the
harmonic energy is rigorously deducted but the optimizat®prone to getting
stuck on local minima and it only focuses on spherical likedsshapes such as hu-
man brain datasets. Ju et all [8] have generalized the méad e@ordinates [71]
from surfaces to volumes for a smooth volumetric interpotat Joshi et al. [ [75]
have presented harmonic coordinates for volumetric infatfpn and deformation
purposes. Their method guarantees the non-negative \8eightttherefore leads to
a more pleasing interpolation result in concave regionspaoed with that in|__[J8].
Martin et al. [11] have computed the precise v, w) coordinates for genus-zero
tetrahedral meshes, and the target domain is a cylindet.dli @] have used the
fundamental solution method to map solid shape onto getegdt domains. The
current existing methods always attempt to map the modektaradard or simple
domain primitives. Thus, how to handle the complex modelintric mapping
is very intriguing. ] have used a “mid-surface” in comdttion with harmonic
functions to decompose the object into a small number offaeluic tensor-product
patches. However, all these methods can not eliminate lsinties. Zhang et al.
[IE] have proposed a method to handle long branches: Thethlgodivides pos-
sible bifurcations of a vascular system into different sasesolve. Zeng et all. [83]
have studied the volumetric parameterization of cylindall.wn the paper, the dif-
ferential operator is extended from 2D to 3D. In a similalid&ia et al. [[Eh] have
utilized Green’s function for parameterizing star-shapeldimes. Han et al.@S]
have proposed the method to construct the shell space Ungrdjstance field and
then parameterize the shell space to a poly-cube.

2.2.3 Spline-Friendly and Feature-Aware Methods

In this section we briefly review the parameterization teghes that are “Spline-
Friendly”. “Spline-Friendly” here means “feature-awar@reserving feature in the
parameterization result is very important to spline appnaion because it will
allow splines to approximate more accurately around theifeaegion.

Many quadrangulation methods are actually based on paesimagton tech-
niques. One important property in quad-mesh generati@arel is edge-preserving.
[é,@] have constructed an as smooth as possible symmnoetss field that sat-
isfying a sparse set of directional feature edge constaifithen Daniels et al.

] have proposed a template-based approach for genggiad-only meshes,
which offers a flexible mechanism to allow external inputotigh the definition
of alignment features that are respected during the meséragsmn process.mw]
have introduced the concept of an exoskeleton as a new etstraf shapes that
succinctly conveys the structure of a 3D model. Here “exletka” actually is the
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important feature edges on the model surface. Xia etal. H&9¢ proposed an ed-
itable poly-cube parameterization techniques that optisketched features can be
mapped to the corresponding edges on the domain. Huanq@}a}have presented
a extended spectral-based approach. In contrast to thearggheme, it can pro-
vide flexible explicit controls of the shape, size, orielmiatand feature alignment
of the quadrangular faces. Zhang et [91] have proposemvammethod which
constructs a special standing wave on the surface to gerthaglobal quadrilat-
eral structure. The wave-equation based method is capabtntrolling the quad
size in two directions and precisely aligning the quads Watture lines.

2.2.4 Global Parameterization and Poly-cube

The motivation of global parameterization comes from tligineement of B-spline.
B-Spline fitting demands that the parameter of each localailorkeeps regular
(tensor-product). It also requires the consistence betwiédterent local domains.
Another important issue concerns that we expect to cortstalemetric spline so
that each parameter domain iRaspace. The surface meshes cover the boundaries
of all R? domains seamlessly and consistently. The way of keepisgptitiperty
includes choosing a domain (may be composed by a set of smaidpthat has
the same topology but with simplified geometry feature. Thestsimple way

is to map the genu8-model to a sphere without considering its geometry feature
like [@ ]. However, for more complex topology and geamédéature, more
complex domains and parameterization techniques haveds@toped in the last
decades.

The linear discrete harmonic theory is interesting and, rattractive compu-
tationally and enormously useful in applications. The glgdorm contemporary
notions of discrete conformality and harmonicity that aaedx on linear conditions
on the vertex coordinates. Examples of applications ire:@,@l@]. Another
set of theories considers the analysis and modification wfeskey metric (e.g.,
curvatures).@d;%] have proposed the similar methodsdas this theory: First
compute a metric for the image mesh and only then a set ofwpdsitions and
then solve the Laplace-Beltrami operator about the madrilatten a mesh.

Some other parameterization techniques utilize curvatiinections to drive
the parameterization result. For example, [@ 100]y thave proposed an
anisotropic polygonal remeshing method, which is the diapplication of param-
eterization, by extracting and smoothing the curvaturedefield and use lines of
minimum and maximum curvatures to determine appropriagetbr the remeshed
version in anisotropic regions. Meanwhile in some othenmégues Iikel],
they generate two orthogonal piecewise linear vector fidifsned over the input
mesh (typically the estimated principal curvature dir@ts) and then compute two
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piecewise linear periodic functions, aligned with the inpector fields, by mini-
mizing an objective function.

Spectral-based parameterization methods study the eigetidns of operators
(or eigenvectors of matrices in the discrete setting). Deingl. @] have used
the Laplacian to decompose a mesh into quadrilaterals inydived facilitates con-
structing a globally smooth parameterization. Huang efo4] have presented an
extended spectral-based approach. In contrast to thealggheme, it can provide
flexible explicit controls of the shape, size, orientation eature alignment of the
guadrangular faces. Zhang et [91] have proposed a netvoohethich con-
structs a special standing wave on the surface to genemgdbal quadrilateral
structure. The wave-equation based method is capable todorg the quad size
in two directions and precisely aligning the quads withdeatines.

Poly-cube. In [@], they have represented a method to map model witkranp
shape and geometry to a domain-called poly-cube. Poly-@ibedomain com-
posed by gluing small cubes together. Each segment of inface mesh maps
to one of six surfaces of one cube. The advantage of this mgppethod is that
the mapping is seamless and each mapping patch is tenshrgbnegular. The
parameter between neighboring patches can transformstensy to each other
simply by linear parameter transformation or rotation. {3puarantees consistence
between patches by setting the resolution and samplingf getrameter between
two patches the same.

Meanwhile, several methods have been developed to imps®recontrol: The
user can easily control the mapping by specifying optioratidres on the model
and their desired locations on the poly-cube domain. Fdait®, Wang et al.

] have presented a technique where the user can intelgaontrol the desired
locations and the number of corners of the poly-cube mapekah @)] have used
user sketches as constraints to control the poly-cube mapordatic poly-cube
construction is always extremely difficult due to the comjileof the input shape.
Lin et al. have used Reeb graph to segment the surface andiévettoped an
automatic method to construct poly-cube @105]. Howeweir segmentation
method may not work for shapes with complicated topologygewmetry and does
not guarantee a bijection between the poly-cube and the 3@emble et al. 6]
have proposed an automatic algorithm by slicing the modeigabne horizontal
direction and then gluing together. It can only handle thézomtal, planar features
from the 3D model. In fact, none of the current techniquestiots the poly-cube
simultaneously following all above criteria.
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2.2.5 Applications on Visualization

In our proposal, one of the important applications aboutpesterization is on
focus+constext (F+C) visualization. Also, a critical pafrtemaining work involves
volume data F+C visualization based on volumetric paranzet#on. Therefore, it
is necessary to introduce and review the related work onréisisarch topic.

Various F+C visualization techniques have already beepgs®d on many
types of informatics inputs, such as trd&]@ 108], t 1, graphO],
tables [Eh], and city map@lZ]. Plaisant et Etlls] haetned the SpaceTree
as a novel tree browser to support exploration in the largeiok tree. The al-
gorithm applies dynamic re-scaling of branches to best déitgpace and includes
integrated search and filter functions. For the seamless Bh(Cet al. ] have
proposed a distortion algorithm that increases the sizerafde of interest while
shrinking its neighbors. Ying et a15] have also presdrmtseamless multi-focus
and context technique, called Balloon Focus, for treemams@er et aIJ_L_liO] have
presented a topological fisheye view for the visualizatidaige graphs. A method
to cope with map and route visualization has been propos&idoyer et al. ].
They depicted navigation and orientation routes as a pdtidles nodes and edges
of a topographic network. Recently, Karnick et a{ﬂllG] égresented a novel
multifocus technique to generate a printable version ofuderonap that shows the
overview and detail views of the route within a single, cetet visual frame. Dif-
ferent from the above methods with specific pre-defined taygeir framework is
capable of handling various information or visualizatimased applications.

The key component in F+C visualization is to design an efiiciens. Op-
tical effects, such as fishey@.l?] for the nonlinear maggifbn transformation
with multi-scale, have been widely used. Fisheye views cdarge the ROI while
showing the remaining portions with successively lessideff@sheye lens offers
an effective navigation and browsing device for variousligppions ]. In ad-
dition, InterRing proposed by Yang et dr[_i19] and Sunbprsposed by Stasko et
al. L’L_Zd)] have incorporated multi-focus fisheye technigagan important feature
for radial space-filling hierarchy visualization. The magalvantage of the fisheye
lens is the ability to display the data in a continuous manmih a smooth transi-
tion between the focus and context regions. Although fisthelys has advantages
in preserving the spatial relation, it creates noticealdtodions towards its edges,
which fails to formally control the focused region and presethe shape features
in the context region.

Aiming to cope with the shortcomings of the basic fisheye lemsre sophisti-
cated lenses have been proposed. Bier etal [121] havenpeesa user interface
that enhances the focal interest features and compressksthinteresting regions
using a Toolglass and Magic Lenses. Carpendale etal [ER2] broposed several
view-dependent distortion patterns to visualize the maeROI, where more space
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is assigned for the focal region to highlight the importagdttires. LaMar et al.

] have presented a fast and intuitive magnification ieitls a tessellated bor-
der region by estimating linear compression according éor#ldlius of lenses and
texture information. Pietriga et am24] have providedael sigma lens with new
dimensions of time and translucence to obtain diverseitrans. Later, they pro-
vided in-place magnification without requiring the usera@om into the representa-
tion and consequently lose contdﬂhZS]. Their represemandependent system
can be implemented with minimal effort in different graphicameworks. Mean-
while, the deformation methods are recently used for theptioated 3D datasets,
including volume dat6] and mesh mocﬂlZ?]. Wang et[l@] have pre-
sented a method for magnifying features of interest whil®meing the context
without perceivable distortion, using an energy optim@amodel for large surface
models. Later, they further extended this framework intov@lumetric datasets
[@]. Inspired by these methods, we utilize geometric deédion that applies to
visualization of 2D data sets, targeting to eliminate themalangle distortion and
keep the visual continuity.

Many image deformation techniques have been successtulliiyesl and used
for various image manipulation applications like imagetiadi and resizing. For
example, Schaefer et aI|.__L1129] have utilized moving leasteeg to fit transfor-
mations and achieve image editing. Also, many blendingmpmiyial coordinates
have been developed for better shape interpolation withdaty deformation con-
straints (e.g., biharmonicweigh@so], green coorcﬁe@]). Meanwhile, image
resizing ml] is introduced in the literature for rgiting images to displays
of different resolutions and aspect ratios. Note that, ier&gizing has a completely
different goal from lens design, since the resizing taskireg that important im-
age regions are optimized to scale uniformly while regioitk wther contents are
allowed to be distorted. Also, we observe the fact that athefabove techniques
confine their operations as energy minimization in the 20cepanly. Therefore,
it is very attractive to explore a new deformation method thdizes 3D geomet-
ric modeling techniques and broadens the scope of geonnedidieling to help the
visualization process.

2.3 Component-Aware Decomposition

Segmenting 3D surface meshes has been widely studied ihigsaand digital ge-
ometry processing community. A thorough and detailed disicun on these surface
segmentation techniques is beyond the scope of this workefee the interested
readers to Shamir’s great surv ﬁllSZ]. Among these se@tientmethods, our
volumetric spline conversion task demands to decompoggeshato meaningful
volumetric parts, simulating how our vision identifies pptual parts. “Percep-
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tual” stresses that part-aware decomposition is inspiyeebearch in perception,
in particular by the idea that the human visual system unaeds shapes in terms
of parts @ 5]. Guided by this observation, a lot of {zavere decomposi-
tion methods have attempted to encode the appropriate gaetise metrics to agree
with human visual perception and thus get the part-awarts.pgaor instance, these
methods include the inppadzLiSG], shape diameter fum ], interior visual
region diﬁerence@8], intrinsic symmetr@l@“], md)analysiSEZ], etc.
Meanwhile, particularly relevant to our requirement, skehs are commonly used
global perceptual-part structure representation tooldotAf skeleton extraction
techniques have been presented and thus can be used f et-decomposition
(e.g., Mesh contractio3], Reeb gra144], Thindﬁ etc). Finally, a
part-aware decomposition can be manually edited by simgde unteractions on
the original surfacdmmﬂ. However, these methodsitpddcus on design-
ing suitable part-aware metrics, none of them has analymegdgmentation results
from the spline modeling view, with respect to criteria sashregularity, control-
lable corners, patch numbers, etc.
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Chapter 3

Generalized Poly-cube Splines

As we have introduced in Chapter 2, the engineering desiduastny frequently
pursues data transformation from discrete 3D data to sfdimsulations because
of their compactness and continuous representation. Asewey merged research
topic, we want to study the method to construct the voluraspiines in this chap-
ter. The main challenge here is to handle arbitrary topologl/complex geometry,
which gives rise to our novel idea of “Generalized Poly-cube

3.1 Motivation

Compared with the commonly-uséslurface model to surface splingdaradigm,
volumetric splines can represent both boundary geomettyread volumetric and
physical/material attributes. This property makes voltrioeepresentation highly
preferable in many physically-based applications ineclganechanical analysis [50],
shape deformation and editing, virtual surgery trainirtg, ¢élowever, converting
arbitrary meshes to volumetric splines is extremely cinglieg because of many
conflicting requirements for volumetric parametric domeaonstruction. Attractive
volumetric splines should have the following properties.

1. Structural Regularity. Tensor-product splines (e.g., NURBS) are defined
over regular “cube-like” domains. Compared with the ungited domain
(e.g., polygonal regions covered by tetrahedral mesheg)ar domain sup-
ports more efficient evaluation and refinement, and GPU exa#n can
also be applied directly to spline representation with ructure. Also,
spline-based physical analysis (e.g., isogeometric ai ]) has a prefer-
ence for “cube-shaped” domain.

2. Singularity-free. Singularity here means an inability to produce a locally
consistent parameterization in the neighborhood. Spgaietivariate splines,
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Figure 3.1: Singularity and ill-point distribution in th@lMmetric domain is very
critical to spline construction. (a-b) show two cases ofjglar points. (c) highlights
one ill-point. (d) shows that the basis function around thpadint has influence
outside the cube boundary. (e-h) show different types gfalhts: “Type-1” to

“Type-4”, which are the concave points in the domain.

a global volumetric model is locally parameterized ontcesaltensor-product
charts. Like Fig[-3]1(a-b), a singular point locates whemal charts merge,
if its valence number along one iso-parametric plane islatigan four (note
that from this definition, singularity in volumetric domais of difference
from surface geometry). Handling singularity with tenpooduct splines is
very challenging. Therefore, it is desirable to have a dloba-piece spline
defined on a globally-connected singularity-free domain.

3. Controllable Ill-points. In a volumetric parameterization over the poly-cube
domain, we call the corner point in a concave corner of thg-pabe an
ill-point. On such a point, the basis function spans acrasslyy cubes
through outside space (see Hig.l13.1(c-d)). Eigl 3.1(eHndtiate all possi-
ble types of ill-points in red (note that they are not singitiks in volumetric
parameterization but singularities in surface paranedé&an). Being harm-
less to usual parameterization-related applicationggaihts, however, have
an undesirable side-effect on spline construction andesjuent tasks like
physical analysis, boundary confinement and partitionfofy control (see
[ﬁ],] for more details). Therefore, it is desiraldecbntrol the number
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and types of ill-points. In practice, we hope to restricipidlints to “Type-1”
only, as shown in Fid._3l1(e), since it is the easiest typevemdan simply
modify and restrict its “boundary” basis functidﬁMQ].

4. Shape AwarenessEach spline patch should abstract the shape in a geometri-
cally meaningful way, reveal the shape’s key perceptudsard topological
structures (e.g., skeleton-like representation). Mogtartantly, spline con-
struction on large volume data heavily depends on splinglun practice.
Therefore, one desirable parameterization scheme shyuial teduce patch
number to cut off spline gluing processing.

Existing volumetric spline techniques generally follonotdifferent trends: (1)
Many recent methodﬁhO]Ehl]EllZ] convert each part imibnes defined on a
cylinder/tube domain (e.g., Fig._3.1(b)), because theyicauiitively use the shape
skeleton to produce a tube domain and reveal the globaltsteiand topology.
A severe limitation of such approaches is that points onube tenterline are all
singular. (2) In contrast, poly-cube splin@5 10 defined on domains as-
sembled by multiple cubes, which avoid the central line glagty problem. Such
splines are flexible to resemble the shape of the given medrasncapable of
capturing the large scale features with low-distortion piag. However, gluing
of many cubes may produce many uncontrollable ill-poinimitations from both
categories of splines have inspired us to develop a new métta is superior to
both types of splines.

The main contributions of this work are as follows. (1) Wepgmee a novel con-
cept ofGeneralized poly-cube (GP®) serve as the parametric domain for spline
construction. Particularly, GPC combines advantagesisfiag primitives to sup-
port splines: (a) GPC is powerful and flexible for represemitomplex models;
(b) GPC provides a simple and regular domain with no singyland controllable
ill-point numbers/types, yet very spline-friendly domatnucture. (2) We develop
an effective GPC construction and parameterization fraoniewo achieve all the
above goals, while still respecting both the global strreetand the geometric fea-
tures. (3) We present a global “one-piece” volumetric spinheme without stitch-
ing/trimming for general volumetric models. Unlike contienal spline schemes,
our conversion does not require global coordinates evesygytand piecewise lo-
cal coordinates suffice. GPC therefore becomes an ideaingéia domain. We
also design an efficient volumetric hierarchical splinenfiftalgorithm to support
recursive refinement with improved accuracy and reducedenof control points.
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Figure 3.2: Generalized poly-cubes: (a) The wrench motIThe conventional
poly-cube (CPC); (c) The generalized poly-cube (GPC) apa@ltgical graph; (d-e)
The cuboid edges are overlaid onto the model to visualiz&®€ global structure.

3.2 Generalized Poly-cubes (GPCs)

Conventional poly-cube (CPC)is a shape composed of axis-aligned unit cubes
that abut with each other. Cubes are glued and realized inlmlBD world co-
ordinate system. CPC usually uses unit cubes as the buitdiongg. All cubes are
glued together and embedded in the 3D space; any point in @ isudissociated
with a unique global coordinate. Fig. B.2(b) shows an examplCPC constructed
for a wrench model in (a). Constructing effective (good appnation, coherent
topology) CPC for volumetric models with relatively congated geometry and
topology usually requires extensive user involvementhSuparametric domain is
inadequate. A less tedious domain construction with redlicenber of ill-points

is highly desirable.

Generalized poly-cube (GPC)s composed of a set of cuboids glued together
topologically. We allow any pair of two distinct cuboid fact be glued together
if these faces have the same size. Figl 3.2(c-e) show a GP€raoted for the
wrench model (Fid._312(a)).

From above definitions, GPC is less restrictive from CPC ta better spline-
friendly domain. First, GPC cuboid is not just a unit box.dhde a general cuboid
with rectangular faces. Each cuboid has its local coordisgstem; a cuboid is
not axis-aligned but can deform (bend or twist) in order teeglith each other to
form a global topological structure. Second, cuboids in @B&be glued together
through arbitrary two faces, and it is even possible thay #re from the same
cuboid. The topology of GPC can be represented using a tgjgallagraph, which
we denote as &PC-graph(each node represents a cuboid). Eigl 3.2(c) illustrates a
GPC graph of Fid. 3]2(d). To represent each cuboid, we prthed2 cuboid edges
onto the model to visualize different faces (see Eig. 3){d-

A less restrictive GPC has several advantages over CPChwgcvery critical
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to trivariate spline construction: Controlled ill-pointsasier domain to simplify
spline merging and more general shape modeling.

lll-point Controllability. First, the topological gluing can significantly reduce
the number of ill-points (due to the usage of fewer cuboidksample gluing rules).
In a simple shape like Fig. 3.4(a-b), a torus’ CPC generatgspoints (in red
circles) while a torus’ GPC (see the kitten model, Fig. BH&§ none. Second, our
GPC construction algorithm will only generatgpe-1(Fig.[3.1(e)) ill-points. We
can handle them much easier than other types of ill-p JI1

Easier and Better Domain Construction. Because of its topological simplic-
ity and elegance, the construction of GPC is usually ealaar that of CPC. Au-
tomatic GPC construction can be developed naturally fallgwhe part-aware de-
composition of the model. From a spline practitioner’s yi@RC requires many re-
dundant cubes (to assemble topological handles in an fgised way, like Figl-3.4(d)).
Cuboids in GPC are similar to tfigeneralized cylinder’so encodes the shape with
less cuboids, which can significantly save the cost of sphiegging.

When we consider parameterization distortion, less cubmdsPC may lead
to less distortiorthan CPC, because GPC is less restrictive (not axis-al)gsoed
better mimics shape. For example, a CPC (Eid. 3.4(d)) carlgnatimic the genus-
3 model (with a narrow top and wide bottom region) in an aXigred domain.
Consequently, two red-colored parts are parameterizea thetequally-sized do-
main, introducing large distortion. A GPC (Fig._B.5(c)) diinthe shape better
and significantly improve the parameterization qualitypdféting the final spline
construction.

Highly-twisted and High-genus Shape.GPC can serve as the parametric do-
main for a more general category of solid shapes like thetédisr highly curved
model, such as the twirl (Fig._3.3(a)) and mobius band (Bi§(d)). Unlike axis-
aligned CPC, GPC can twist them and glue adjacent cuboidsapaogical way
so that twisted global shape features can still be modelétkeasuboid edges (b,e),
with a very small number of cuboids (c,f). For example, we bardly construct
a useful CPC domain for mobius band; But with GPC, only orteoaliis enough
(f). Another category of models includes models with compigology especially
when handle loops/voids are relatively small, such as irsthie bucky model (g).
For CPC, not only the above restrictive axis-aligned pnohlemall handles/voids
also make the resulting CPC “over-complex”. A less resiacGPC allows us to
model the domain through a correct topological decompmsitto small cuboids
(h). The pattern of the bucky’s GPC-graph around one haratidbe decomposed
as shown in (i).

The following three sections discuss the algorithmic pipgeto construct GPC
and splines (also illustrated in F[g. B.5). The input moddirst decomposed into a
few T-shapes. The final output is a global one-piece splipeegentation.
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Figure 3.3: GPC can handle more generalized models. Row)ITh@ highly-
twisted swirl model, (b) Its GPC, and (c) Its topological gina Row 2: (d) The
non-axis-aligned mobius model, and (e,f) Its GPC and togioll graph. Row 3:
(g) The bucky model with complex topology, (h) It is decomgadsnto small “T-
shapes” witht cuboids. (i) A subset of the GPC graph around the hole.
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@ (b) (©) (d)

Figure 3.4: (a) The torus model. (b) Its CPC uses at |@astbes and generates
4 ill-points. (c) The genus-3 model with narrow top and widétbm regions. (d)
Its CPC maps two regions onto the equal-sized parametenzibmain, leading to
large distortion.

(e) (f) (9) (h)

Figure 3.5: GPC and spline construction pipeline. (a) Thruirgenus-3 model
is first decomposed into some “T-shape” patches. (b) Eagdhape” is further de-
composed intd cuboids. (c-d) Overlay all cuboid edges onto the model toalige
the global structure. (e) All cuboids comprise a topolog@RC. (f-g) Construct
the parametric mapping between the input model and its GRPCIransform the
model into a volumetric spline representation.
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3.3 Model Partitioning

Suppose a solid region is bounded by a triangle-meshedcsutfd (note thato M
can be of high-genus, but as the boundary of a solid objécHM is a closed
surface), this section focuses the computation of a grougupfes{c} on M.
These curves segmefifl/ into sub-patche®)/;, bounding sub-solid regionk!/;

to be parameterized upon GPC cuboids. We denote these taopess oroM as
poly-edgesas they will be mapped to edges of GPC cuboids. Our segnmantat
includes two main steps:

e Partitioning into T-shapes: we decompose the entire madela group of
T-shaped patches.

e T-to-cube decomposition: we generate poly-edges on eattafje and de-
compose it intal connected cube-like sub-patches.

T-shapes are used as the basic primitive in our frameworkc¢omipose more com-
plicated solid models. A T-shape, which represents the sanple 3-branched
volume shape, has trivial topology and only contains Typieoints.

Figure 3.6: Model segmentation into “T-shape” patches.T{& part-aware seg-

mentation and its abstraction graph. The nodes in the graph different cases for

edge connection (red and blue regions). (b) For each caskaveecorresponding

operations on the graph and input model. (c) Our operati@magiees that the re-

sulting nodes in the graph are all degrke- 3, and the model is segmented into
T-shapes.
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3.3.1 T-shape Segmentation

We usedT; to represent a T-shape surface ahdor its bounded volume. Our
idea is to partition a given modél/ into several T-shaped sub-regiofis;}. We
achieve this segmentation through tracing curves on thadeany surfacé& ) and
partition it to sub-patched7; or many simpler patches. This pipeline is illustrated
in Fig.[3.6. The algorithm has following steps. Note that ¢thallenge is how to
ensure the segmented patch is geometrically similar to arf'BD space, not just
topologically.

Step 1. We first partition the inpudM/ into several initial part-aware patches
with non-intersecting cutting curves. Any closed surfabe (oundary of a solid
model) can be partitioned in this w. 51]. Different gednoecriteria can be
integrated in this unified partitioning framework. We chea®lume-aware shape
descriptors such as the shape diameter functlons [137]itee quur cutting curve
tracing.

Step 2. Upon a complete decomposition, we construct an abstragtiagoh: a
node represents a patch, an edge connecting two nodestexlibair patch adja-
cency, and an edge connecting a node to itself indicates dienbop. Fig 3.6(a)
shows a 4-torus with colored part-aware segmentation anteulting abstraction
graph.

Step 3. We modify each partitioned patch to a standard shape. It sndeat
we split the abstraction graph’s nodes with high valancd altnodes have< 3
incident edges (a graph node with= 3 represents a-branch patch, i.e., T-shape,
andd = 1 or d = 2 indicates the patch that bounds a tube). We partition every
patch through analyzing all connected edges:
3.1)Handle loop(see Fig 3.6(b), Row 1). We generate the shortest handle loop
by ﬂ@] and then cut along it. In the abstraction graph, piaigitioning cuts the
loop into two edges.

(3.2) High Valence { > 3) branch(see Fig_3.6(b), Row 2). We partition it to
two connected nodes (valenced — 1) andn, (valences). Then we repeat the split
until all newly-generated nodes are valericéFo achieve this idea, we first choose
two boundaries (a pair with the closest distance). Then wigzaithe technique
in [@] to generate a cutting curve that covers two bouredaand avoids any
intersection. This curve segments the patch into two patares with3 boundaries
(i.e., a T-shape) and another one with 1 boundaries. We again execute the same
partitioning method on the second patch until odlgoundary patches exist. Row
2 shows an example of the cutting loop.

After repeating the above operations on every node, we caa decomposi-
tion result where every node has its valence equivalestao less, as shown in
Fig.[3.6(c). Compared with existing partition technigumas, segmentation method
is uniquely spline-friendly: No prior segmentation restonsiders the critical is-
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sues in splines like singularities and ill-points. Withagidressing these issues, a
segmentation is less suitable for spline conversion. Osidpe based segmenta-
tion, however, is completely singularity-free and ill-pbcontrollable.

Cutting curve loops should be prevented from intersectimcheother in our
system. This can be ensured by not allowing a newly tracegeditting (vertices
of) existing loops. When two loops are very near and the gfeumesh is very
sparse, triangles around this region will be subdividedntsuee the topologically
correct tracing without intersection (for mesh refinemenénsure reliable curve
tracing, please se-51] for details).

Input = First Pass Output

Cutting | cylinder

= Traelng ) Result
Boundary Mapping Poly-edges | ’ g&
c ; c d 7 g ‘

: ..,
L e
\ i SR
C! < it @ °5 cm
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Tracing Tracing g‘; i Tracing
Poly-edges Puly dg 5 o ciz Cis Poly-edges
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Figure 3.7: lllustration of T-to-cube segmentation.

Result

3.3.2 T-to-cube Segmentation

We process a set of T-shap#s; or tube-shaped (cylinder) patches, one-by-one in
an arbitrary orderdT; is first partitioned intal sub-patche8/;;, then we generate
corners and poly-edges on eaeh/;; (recall that poly-edges are the traced curves
that will be mapped to the edges of cuboid domains), as showigi[3.7. Mean-
while, for any simple tube-shaped patch, we can generateiiters and poly-edges
directly by the Step 2, the first pass, i.e., FFigl 3.7(b). Bnaach resulting patch
has8 corners and2 poly-edges like a cuboid. To guarantee corner alignmergywh
we determine one T-shape’s result, we transfer its cornete@boundaries to the
adjacent T-shapes if they are not processed yet.

Step 1. We generate three cutting liné®;, W,, andWs (See Fig[37(a)).
We first find4 corners on one boundary. We denote this boundary as “lefilewh
arbitrarily denoting other two as “right” and “bottom”. Rtisns of 4 corners are
determined by its previously-processed adjacent T-paxbept for the first pro-
cessed T-shape, on which we manually set thesarners). To generatecutting

42



lines, we detecs branches obT; by extracting associated skeletcﬁllSB], with
resulting cutting lines.

Step 2.We generate all poly-edges and corners on a T-shdpeseparately in
3 passes (Fid. 31 7(b-d)). Each time we trace poly-edges leetivBoundaries with
3 sub-steps.

(2.1) We first remove the third long branches by cutting aldegutting lines
(e.g.,Ws in Fig.[3.7(b)). After filling the cutting hol 4], the neléing surface is
a2-boundary tube-shaped pata®.

2.2) We map the tube shape to a cylinder donfairv| following the approach
of ]. We shall briefly describe this algorithm: First, set= 0 for vertices on
one boundary and = 1 for the other boundary, solvAu = 0 by mean value
coordinates|[71]. Second, trace an isaurve alongVu from an arbitrary seed
vertex on the boundary = 0 to the other boundary = 1 and slice along this
iso-curve and get two duplicated boundary paths, then se6 andv = 1 on them
respectively and solvAv = 0. ThedP is therefore parameterized onto a cylinder
domain.

(2.3) We generate poly-edges between possible node paed ba the cylinder-
parameterized patch. For the first pass, we tdaegges from all corners on the left
boundary to the right. For the second pass, we fimdrners on the left boundary
with shortest Dijkstra distance to the bottom (c,) as shown in Fig_3]17(c) and
trace2 edges from them to the bottom. For the third pass, we chodgegpaor-
ners ofc; andc, on the right boundaryc, cg) and trace2 edges to the bottom (the
possible node pairing/poly-edge tracing algorithm is dbsd below).

Step 3. We generate poly-edges and corners for the central cubdichgu
With 4 intersection corners (between the bottom cutting line &edtaced paths)
generated in the second and the third pass, now we tracespglys between two
intersection corners in each pasg;(cy4 andcys, ci6).

Tracing Poly-edges. The above algorithm involves tracing edgg, cs] on a
cylinder parameterized patc¢h, v]. According to the processing queus’s loca-
tion is either already determined by other precedent patohés not yet known.
For an unknownc,, we trace the poly-edge from the
starting corner ;) along the gradient directiofu to
another boundary at a new poit For a determineds,
we map bothe; andc, to the cylinder domaitu, v] and v
trace the straight line on the domain between them, the
project this parametric straight line back to the patch
and get the resulting poly-edge. Note that none of poly- v
edge is restricted to mesh edges. We allow them to cross ;
and split the mesh triangles. This strategy enables more
smooth path lines.
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Node Pairing. When we trace poly-edges, it is very possible that all ca&’ner
locations on two boundaries are predetermined by otheepestt patches. In such
scenario, we desire to pair two boundaries’ corners befa@ng edges between
unpaired corners. Intuitively, the traced path should lzstleleviated from the
gradient of the harmonic field. Suppose we are tracing pathsden boundary
b, andb,. If corners on bothb; andb, are predetermined, we trace the gradient
line from b,’s corners and get ending nodes Bn Then we compute and find
the pairing between ending nodes and corners-grsatisfying that the sum of
total distance between each pair is minimized. In this wagycan get the pairing
between corners dn andb,; If corners orb, are not predetermined yet, we directly
use the ending nodes as the new determined corners and thie geiring. In
practice, we can merge edge tracing in the second/thirdpasi.7(c,d)) together:
we determine thd node pairing together to avoid possible intersected pdbyes
generated between two passes.

Feature-preserving Segmentation.Although the above automatic algorithm
can handle most of models very well, sometimes users sfieexto use several
sharp features as the poly-edges. For example, this croggecially natural and
meaningful on the strong symmetric man-made models withpsteatures (e.g.,
CAD models in FigL.3.B(b-e)). Specifically, a scaling fadapplied to edges on
feature curves, so they are considered shorter in the Bajkstth tracing. Therefore,
features will be on the traced curves and poly-edges if weptaenshortest path
between corners. Fig.3.3(a, d, €) and 3.2(d) show thdteewith feature-
preserving poly-edges. In practice, this method can ordi pifew major feature
lines (like in the twirl model, the poly-edges are sharpdeas we pick). It is still
difficult to handle more complex features. Instead, we casgnve the extra sharp
features through the following spline fitting step.

3.4 Parameterization

After the input model\/ is decomposed into sub-patchigs)/;; }, bounding topo-
logical solid cuboids{}/;;}, we now perform cuboid parameterization {af/;;}.
We first map the patch boundary to the cuboid domain surfabenve use this
mapping as boundary condition and compute the interiormeltic parameteriza-
tion.

3.4.1 Surface Parameterization

The subpatchv)M;; computed previously ha8 corners andl2 poly-edges (see
Fig.[3.8(a)), we partitio®/;; into 6 topological rectangles, then solgdarmonic
mappingsAu = 0, Av = 0, Aw = 0 on all rectangles. Each time we piekop-
posite rectangles asiso-plane domains on one direction (exg+~ 0 andu = 1).

44



b e o

Figure 3.8: lllustration of surface parameterization.

Then we compute the parameters of this directigof all other4 rectangles. For
example, to solveé\u = 0, we selecB poly-edges on two opposite rectangles (see
Fig.[3.8(b)). 4 red poly-edges bound an isorectangle ¢ = 0) and the4 blue
poly-edges bound another isgplane ¢ = 1). Then we compute the approximated
discrete harmonic mapu = 0 [ﬂ] on other regions. Fid. 3.8(c) illustrates the
computedu. Similarly, we can compute the harmonic scalar fields ahdw with

Av = 0andAw = 0, respectively. After solving harmonic mappings, each vertex
on the surface patch is mapped to a coordifiagev,, wy) on the cube surface. The
surface parameterization is illustrated in Eigl 3.8(d).

3.4.2 \Volumetric Parameterization

We compute the volumetric parameterizatiomdf; on a set ofy x ny x n, grid
points. These grid points correspond to the uniformly-dachpoordinates in the
parametric spaceu, v, w). This volumetric parameterization can be considered as
finding the locations of these nodes withify;. Similarly, as we discussed in sur-
face parameterization, we need to find the point locatioasrtfinimize the equa-
tionsAu = 0, Av = 0 andAw = 0 in 3D space.

Thengy x ny X ny grid points include two categories: the surface grid poamis
interior points. We determine their positions as follows.
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Figure 3.9: Volumetric mapping. We extract sample pointa aexahedral model.
Each node hag neighbors for solving 3-D Laplacian in EQ. (B.1).

(1) If the parameter of a grid pointfalls on the domain surface, we can always
find its location oroM by the parameter of, wheren’s parameter always falls into
atrianglefvy, vq, v3] of 9M on the parametric domain with correspondlng barycen-
tric coordinates\;, Ay, A3, then its spatial location is mterpolatedg}g NP (v;),
whereP (v) denotes th8 D position of vertex.

(2) Keeping the surface points fixed, we compute the intgrgant position by
minimizing 3D Laplacian Eq.[(3]1), wherm; andj\/]k represent the node and its
neighbor’s spatial positions ifx, y, z) andw, is the point weight. In practice, each
node is moved to the weighted mean center of their six neighlbtere, the choice
of weightw, has been studied iiﬁboﬂ [8]. In our implementation we synyde
the uniform weightv, = 1/6 as suggested iﬁlm] a 55].

nzyk Z'LU)\ X || N — 2]k)|| A€ Nb(nwk) (31)

We move grid points |terat|vely. The update converges winamges of all node
positions are smaller than a threshold during one iterafiag.[3.10(a-c) show the
computation results of the femur model af2€r 60, and80 iterations.

Refinement across Cutting Boundary. Before merging, the parameteriza-
tion of two adjacent sub-patches are already computed a@bar Along the cut-
ting interface, onlyC? continuity is guaranteed and the cutting boundary is not
smooth. We perform a refinement to improve this smoothnessteduce com-
putation time, we only extract a small region from each patear example, we
pick a region from one patch within the parametér— «, 1) x (0,1) x (0,1),
and(0,«) x (0,1) x (0, 1) from another patch if two patches are connected along
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Figure 3.10: Results of the cut-out view of the interior fermodel by solving
Eq.(3.1) after0, 60, and&0 iterations.

Vu direction ¢ is a small scalar value). Gluing two extracted region togeth
the new patch also has new corners and2 new poly-edges
(recall that poly-edges between two adjacent patches myeeal

along the boundary), thus we can recompute the surface m@appi -
and volumetric mapping on the new patch. Meanwhile, this re -
computing is subject to an extra constraint, on regions ¢bat B
nect to an extra third cuboid. We keep these region’s pasmet|]:
unchanged during recomputing, to avoid our modificatiornrdgs i3
ing global parameter consistency. .

3.5 GPC-Splines

Two challenging issues must be addressed when designing the
mesh-to-spline transformation over GPC. First, allowidgative refinement with-
out significantly increasing control points is highly deile since volumetric spline
fitting usually requires a large number of control points wie seek high approx-
imation accuracy. Second, unlike conventional B-splifed each control point
and its knots are associated with global coordinates, GPR€iges only locally-
defined parameters in each cuboid domain. This is becausial gealization of
GPC parametric domain in 3D Euclidean space is oftentimesssible on highly
twisted/high genus models. Thus we design a unique GP@Gesplgorithm using
a point-based scheme.

In principle, a volumetric cubic spline can be viewed as axpbased spline:
Each control point’; (located in parametric cub®’ with local coordinatec{) is
associated with three knot vectors along three principa$ax= [r1, 72, 73, 74, 75),

S = [51, S2, 83, 54, 85], t= [tl, to, t3, ty, t5], WhereCij = (7“3, S3, tg). All knots can be
determined using eay-tracing strategy@':‘;]. For any sample point with, v, w)
as its local parameter, the blending function is

Bi(u,v,w) = N,.(u) X Ns(v) x Ny(w), (3.2)
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whereN,, N,, and N, are cubic B-spline basis functions associated with the knot
vectorr, s, andt respectively. The formulation for point-based splines-gplnes)

is
P(u,v,w) = ZofiBi(u’U’w). (3.3)
>0 Bi(u,v,w)

We modify the above equation to construct GPC splines. Th€ @&main
comprises a collection of coordinate charts locally defineddividual cuboid. Ad-
jacent local parametric coordinates are transformed ewttigrby transition func-
tions, which can be encoded in a GPC-graph structure. Caesdy, the global
PB-splines are piecewise rational polynomials defined o G#hose transition
functions between adjacent cuboids are compositions gileicuboid translations
and rotations ofirr /2, wheren is an integer.

In a cuboidD’, given an arbitrary parametér, also denoted ak’, the spline
approximation can be carried out as follows:

(1) Find all the neighboring cubelsD’} that supporth (i.e., it contains control
pointsC}, that may suppoth);
(2) The spline function is:

S, CiBu(¢ (W)
P = e B (o))

whereh’ is the local parametric coordinate of polmin the cube domaib’, ¢
is the transition function from cube domaiw to D’, andC}, denotes the control
pointk in the cube domaib:.

In theory, a transition function from cube domaing) to D? is a composition
of translations and rotations following the shortest patinf cubeD’ to cubeD"
in the GPC-graph. SupposeDi := D,(= D') — D,... — D,(= D7), and
the transition functior®; ;1) (derived by way of cube-gluing) from; ., to D; is
already known, then is formulated by

(3.4)

h' = ¢ (h7) = & o(Po3(... @,y (h7))).

In practice, because most control points only influence aserall local region and
do not cut across non-adjacent cubes, we observed that eimlg & neighboring
cube transition function is usually enough.

Along any merging region, two connected cubes share the samain size
along the merging face (i.e., we forbidden partial gluingh®en a large and small
cubes). Therefore, when we merge two cuboids’ control grith(the same res-
olution), all the control points and intervals along the gneg faces will merge
coherently, without any T-junction before hierarchicairiig.
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3.5.1 Hierarchical Fitting

Following above GPC-spline definitions, we develop a hhamal fitting scheme

to approximate volumetric models. For a sample pdifit;) in the model whose
parametric coordinate Is; (defined by the volumetric parameterization computed
in previous sections)P(h;) is our GPC-spline representation. We minimize the
following equation:

Egist = Z [|P(h;) — vil|?, (3.5)
=0
which can be rewritten in matrix format
1
5CTBTBCT - VIBC, (3.6)

where C is the vector of control pointsy = v; is the vector of sample points,
andB = B;(h;) is the matrix of basis functions. This least square problem i
not difficult to solve numerically. Given a sample parantepointh in GPC,

in order to decide if we need to refine the approximation, wasuee the root-
mean-square error (RM3) h) between its spatial positiofyh) and its spline ap-
proximation P(h). Algorithm[1 documents the main steps. The input includes
all sample points and an initial control grid with controlipis. The initial con-
trol grid mimics the structure of GPC: Each cube correspdnds local regular
control grid. All local grids are topologically glued coleatly following the GPC-
graph, generating a one-piece global control grid. Thetfandnot Vect or s
collects3 direction knots for each control point. We use the same traging”
strategy in Eb]. I nfl uencedSanpl es returns all sample points in the influ-
enced region of a control poin@r ansi ti on transports a local parameter from
one cube to another cubAssenbl eMat ri x assembles the matrix for Eq. (B.6)
and Sol vi ngEquat i on solves it and determines the control point positions.
Fi tti ngError returns the worst fitting result in a small gri®@ubdi vi si on
divides a grid uniformly int&® smaller sub-grids. Fig. 3.11 illustrates our hierarchi-
cal fitting results.
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Algorithm 1 Hierarchical spline fitting.

Input: Initial control gridZ,
Li st of sanple pointsZ,,
Li st of control points C,,
Fitting error thresholde
Qutput: all control points positions.
loop
/ I Updat e control point knot vectors
forall £.do
c= L. next()
c. knots = Knot Vect ors(c, £,)
L, =1nfluencedSanpl es(c, L,
forall £ do
s= L. next ()
s.ctrlist. push_back(c)
end for
end for
/| Conpute basis functions for sanples
forall £, do
s =L,. next () Biya =0
L. =s.ctrlist L=}
forall £, do
c=/L.next()
par anFTransi ti on(s. cube#, c. cube#, c. param
B= Basi sFunction (param c. knots)
'CB' DUSh_baCk( B) Biotat = Biotar + B
end for
Assenbl eMatri X (Lg, Biota, S)
end for
/I Fitting and eval uation
Sol vi ngEquati on()
forall £, do
g =L, next()
if FittingError(g) > e then
L, =Subdi vi si on(g)
L, delete(g) L, insert(L))
end if
end for
Stop if no updated grid
end loop
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Figure 3.11: Hierarchical spline fitting results at leveld 0and 2, respectively.

Figure 3.12: The 4-sphere model visualized with cuboid oizgion, poly-edge
structure, surface parameterization, and volumetricrpatarization.
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Figure 3.13: The dancer model visualized with T-shape deosition, cuboid or-
ganization, poly-edge structure, GPC-graph, and volumparameterization.
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3.6 Implementation and Discussion

Our experimental results are implemented on a 3GHz PentuRC with 4Giga
RAM. To demonstrate the versatility of our approach (themefthe flexibility of
our computational framework), we construct GPC splinesniany models. Our
experiments include models with twisted shape: twirl (B@(Row 1)), mobius
solids (Fig[3.B(Row 2)); and with complex topology: buckgius 31, Fid. 313(Row
3)), genus-3 (Fid._315), 4-sphere (genus 4, Fig.13.12); attdcs@mplex conceptual
parts: wrench (Fid._312), dancer (Fig._3.13), and greek awddFig.[3.15). Ta-
ble[3.1 summarizes the statistics of the GPC constructnmiiding every model’'s
properties (genus, twisted/not twisted), the number ohdpgs, cuboids and ill-
points.

Figure 3.14: The kitten model visualized with surface antlinetric parameteri-
zation.

It may be noted that our parameterization algorithm may natgntee a globally-
minimized angle and volume distortion. However, since égodthm decomposes
the input into part-aware patches, each of which is paraimetton a geometrically
similar cuboid, the distortion is satisfactory for our sgiconstruction. The models
of dancer, 4-sphere, kitten, greek and david (Fig.13.12, [Eig3, Fig[3.14, and
Fig.[3.15) demonstrate several surface and volumetric Gé#@npeterization re-
sults. Fig[3.1b shows several volumetric spline approimnaesults. We overlay
the control grid line (black lines) onto the fitting resulsd the T-junctions on the
control grid reduce the control point greatly while stilegerving the shape details.
The statistical results are given in Tablel3.2. The tablevshbat the vertices’ num-
ber increases dramatically when we convert a surface motdehivolume data. Our
spline scheme can significantly reduce control points fapsirepresentation. In
most of our experiments, approximation with good quality ba achieved withia

53



Table 3.1: Statistics of various test examples

Model | Genus Twisted| # T-shape # Cuboid| # lll-points
genus-3 3 no 4 16 8
bucky 31 no 60 240 120
mobius| 1 yes 1 1 0
twirl 1 yes 2 6 4
4-sphere 4 no 6 24 12
bimba 0 no 1 1 0
femur 0 no 1 1 0
wrench 1 no 2 8 4
dancer| 1 no 3 14 6
david 3 no 4 12 24
greek 4 no 6 19 12

levels of hierarchical refinement. The fitting qualities areasured by RMS errors
normalized to the overall sizes of solid models.

Table 3.2: Statistics of various spline examples.

Model |#. Surface #. Volume| #. Control| RMS | Running
vertices | vertices | points | error | time
kitten 12403 40000 3020 |0.35%| 202s
wrench| 7550 12000 2966 | 0.2% | 105s
4-sphere 2042 22800 1088 | 0.2% | 47s
genus-3| 6632 51200 1280 [0.17%| 162s
david 15572 81600 5956 |0.37%| 890s
body
greek | 20109 91900 7265 | 0.4% | 1096s
body

Comparisons. We compare our method with other volumetric parametric do-
main construction and mapping approach@[l@ [1@],[@], ﬂ@], and
[@]. As shown in Tablé 3]3 and Fig._3.3, our method has adweg in the follow-
ing aspects. First, our method works well for volumes witmptex topology and
structure. Second, our domain does not have any singukamiycan control the
type and number of ill-points (which is highly desirable &pline construction).
Our domain construction does not require tedious desigen & very complex
shape input. Meanwhile, we can also flexibly edit the cube alorto better ap-
proximate the shape interactively.
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Figure 3.15: The greek and david model visualized with Tpghdecomposition,
cuboid organization, poly-edge structure, volumetricapagterization and their
GPC graphs, respectively.

We also test our system on the rocker-arm model, which alpeap in other
papers (e.g, CubeCover 0 [1]). As the comparison showngdFELLT, our parame-
terization has the same quality aslin [1]. Howe®ércube domains andl singular
points are used ir[|[1], while we only have eight cuboids andsingularity. In
Fig.[3.18, we compare our domain (Middle Left) with the methan [106] (Mid-
dle Right) and EG] (Right) using the fertility model. Ouomain significantly
decreases the number of cuboid8)(as while as ill-points (only on cuboids with
more than two edges in the GPC-graph).

Discussions Since singularity-free and ill-point simplification is thiest prior-
ity in our spline-oriented system, this enforcement maydomapping quality in
certain region. According to users’ requirement, we caragivchange it on the
fly based on a hybrid system. Inside the current partitiofiagnework, we may
further allow extra local segmentation to improve its getsgnawareness. Upon
initial partitioning we detect long branches, and congtagiditional cuboids to
parameterize these branches. For example, we map the hafalasid handle of
the screwdriver (Fig_3.19) to separate cuboids. Compaiiéd wging only one
cuboid, the distortion (e.g., the extrusion effect) arotimel handle top is signifi-
cantly reduced. However, as mentioned above, this modifit@ @ecomposition
will bring extra singularities, ill-points, and mergingses. In this example we add
four extra“type-4” ill-points.

Our system decomposes the input model mainly accordingotoadjshape and
topology. This implies that it fails to handle the model wetimplex features if they
are everywhere. Enforcing poly-edges covering featurest{&[3.3.2) can only
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Table 3.3: Comparison with the existing approaches.

Method |Tarini [L03] He [106] | Martin [10] |Zhang [12]
Primitives cube cube cylinder cylinder
Topology |axis-alignegaxis-aligned symmetric |long branch

Twisted model no no yes yes
Singularity no no center center
lll-points | no controllarge number no no

Domain artiest axis simple simple

construction| design scan

Editable yes no no no

domain

Method Lin [105] | Wang [80] Hex-mesh [157] Ours
Primitives cube sphere no cube

parameter
Topology |reeb-graph genus-0 arbitrary arbitrary
Twisted model no no yes yes
Singularity no center | large number no
lll-points | no control no large numbericontrollablée

Domain simple sphere no domain simple

construction only existed

Editable no no no yes

domain

recover major features which are globally dominant. Fomgptonstruction, this
is not a critical issue since we can always improve the fittjnglity hierarchically
around any sharp feature. However, many feature basecdcapptis may require
features to be retained. We will investigate how to pres#redeature as much as
possible.

Our poly-edge tracing algorithm can not prevent them frotersecting with
each other. Fortunately, our tracing algorithm can avadidrsection on a well par-
titioned part-aware patch. However, intersection may kappn a very poorly-
shaped T-shaped patch. We will develop an automatic methddtect degenera-
tion and correct it.
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Figure 3.16: The volumetric spline approximation results.

Figure 3.17: Our segmentation/mapping result of the reeker model
(left/middle). Our GPC (right up) has on®ycuboids/no singularity, compared with
26 cubest singular points (right bottom, courtesy of [1]).
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Figure 3.18: Comparisons of different methods on the frthodel (courtesy of
] and |Ll_5_b]). Our domain has significant improvement ohaid and ill-point
number.

Figure 3.19: Modified result of the screwdriver model (up).apging it to two
separate domains (bottom right) instead of one cuboid dortiettom left) can
moderate distortion like extrusion round the handle toporeg
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3.7 Chapter Summary

In this chapter, we have presented a GPC spline framewodafartransformation
from surface meshes to continuous volumetric splines. Tvelty in this chapter
lies at the systematic handling of generalized poly-cubeiparametric domain
without any strong assumption. Compared with conventiqudy-cube (CPC),

GPC provides more generalized shape domain and better roahstability to rep-

resent complicated models of arbitrary structure. We categigolumetric parame-
terization procedure based on GPC, which better handlesagkcts with general
topology and structure than existing volumetric paranieaéon techniques. We
then devise a global “one-piece” volumetric spline base®B&C parameterization.
The GPC construction enables a novel and desirable mech&mad facilitates the
“one-piece” spline representation. Using local pointdaastrategy, global volu-
metric T-splines can be constructed on piece-wise GPC kectansition func-

tions can be effectively computed from the GPC'’s topoldgtacture. The entire
spline framework affords hierarchical refinement and lefedletail control. Our

GPC volumetric splines have great potential in various sliigsign and physically-
based analysis applications. Our GPC is of great value tala rainge of geometry
processing tasks, including volumetric isogeometric ysarial@)], volume defor-

mation, anisotropic material/texture synthesis.
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Chapter 4

Component-aware Trivariate Splines

In the last chapter, we have proposed the technique to mapdHtel into a general-
ized poly-cube domain. That means the integral model isdposed into several
cube components. Subsequently, it is natural to constplictes on each compo-
nent and then glue them together. However in the previouptehawe still use

the global parameterization to approximate the globahsglintegrally for numer-
ical reasons. Very naturally, this phenomena intriguesousnswer the question:
“How to apply divide-and-conquer schemes onto decompos#iready inputs?”
In this chapter, our primary goal is to develop efficient noelh for arbitrary solids
undergoing spline transformation, with local spline comstion and global spline
merging.

4.1 Motivation

To achieve this goal, we must address the following key ehgks.

(1) High Genus. An attractive spline representation must accommodate- high
genus solid models with complicated shapes.

(2) Local Refinement and Adaptive Fitting. For trivariate splines, both structurally-
complicated shape models and feature-enriched modelsloesdefinement. For
example, a genug-solid bounded by6 simple four-sided B-spline surfaces has
originally 6 x 10242 control points (DOFs). The size of DOFs increases dragfical
to 1024° or even larger when we naively convert it to a volumetricrspliepresen-
tation. This exponential increase during volumetric splionversion poses a great
challenge in terms of both storage and fitting costs. Theeefbis advantageous to
use high resolution to approximate boundary surface anddsaiution for interior
space.

(3) Singularity Free. A singular point in a volumetric domaiis a node with
valence larger than four along one iso-parametric plarge[@l (a)). Handling sin-

60



gularity with tenor-product splines is highly challenging-EM, thus a singularity-
free domain is highly desirable. Unfortunately, singulas commonly exist in
many volumetric domains such as hexahedral meshes andey/(tube) domains.

(4) Boundary Restriction. Itis a basic requirement for a spline that all blending
functions are completely confined within the parametric dom

(5) Semi-standardnessA hierarchical spline is always formulated as Eql 4.1.
Semi-standardness, meaning t@le w; B;(u,v,w) = 1 always holds for all
(u,v,w), has a broader appeal to both theoreticians and practitone

(@) (b) (c)

Figure 4.1: (a) The singular point in the volumetric domaib-c) A poly-cube
domain can mimic the geometry of input and avoid such typengfidar point.

Recently, much work has been attempted towards spline nmgdefl arbitrary
topology shape while satisfying the aforementioned regunents, following a top-
down fashion like Wang et al.[148]. They have proposed artitimal trivariate
spline scheme, being built upon volumetric poly-cube demaiPoly-cube is a
shape composed of cuboids that abut with each other. Allidskare glued in var-
ious merging types like Fid. 4.2, without any singular pdidote that the yellow
dots arenot singular points in the trivariate splines, even though taeysingular
for surface study). For example, a poly-cube parametricaiortike Fig.[4.1(c)
is designed to mimic shape geometry Hig.l4.1(b). Althougkrthpline refine-
ment guarantees the features such as semi-standardnelssiartthry restriction,
this theoretical formulation encounters many difficulti@sglobal one-piece poly-
cube domain, together with its 3D embedding, is not veesatilough to handle
highly-twisted and high-genus solid datasets. Creatinglg-pube to mimic the
input shape requires tedious user work. The boundary ecéetriprocedure in the
vicinity of gluing regions (Fig[L4)2, yellow dots/lines) extremely complicated.
Computationally speaking, the global fitting is very timeasoming which is com-
pletely unsuitable for trivariate splines.

To ameliorate, our framework takes advantage of the botipraecheme. The
global domain is divided into several components, with amiable number and
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(@) (b) (©) (d)

Figure 4.2: All possible merging types in a poly-cube (“Tyeto “Type-47).
To preserve both boundary restriction and semi-standasjivee add extra knots
around the control points on the merging boundary (yellowdiand dots).

types of the cuboid merging. We build tensor-product tiatar splines separately
for each component, and then glue them together. Comparbdtiva top-down
scheme, our divide-and-conquer method is more flexible awekful to handle
high-genus and complex shape. The interior space mappthgeameshing in each
component is much easier. Compared with global fitting, oaall fitting reduces
both the computation time and space consumption significant

Components Separate
with consistent T-spline
parameter components

Input: Component Trivariate T-spline | T-spline 5 Output:

surface model generation generation on each component merging global T-spline

Figure 4.3: The divide-and-conquer scheme.

One key theoretical challenge in our divide-and-conqukest lies at design-
ing merging strategies, so that the global spline after mgrgill still satisfy the
semi-standardness and boundary restriction propersgecelly around merging
regions across adjacent cuboids. All possible cuboid mgrtyipes for a poly-cube
are shown in Fig_4]2. The traditional merging techni @@y handles stan-
dard surface T-spline models defined over 2D domains witbonsidering any 3D
merging. In our framework, we have to design a new mergiratesgy, through
adding extra knots and modifying weights of blending fuoiet, to handle each
merging case in Fid. 4.2, enforcing the semi-standardnes®aundary restriction
properties everywhere. Fig. 4.3 and 14.4 show the detaiteg;lsy-step procedure
using a high-genus G3 model as an example. Specifically;litdges the following
major phases:

(1) Construct a surface poly-cube mapping. To better suppordivide-and-
conquer scheme, we use the techni@[158] to decomposetttesarface model
into several components. Each componentis a part-awdeesyratch and we map
it to the boundary surface of a cuboid. We also guaranteedsrsthp that separate
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cuboid mappings are globally aligned.
(2) Construct a local trivariate tensor-product T-splimeeach cuboids (Sec-
tion[4.3). Adaptive fitting is allowed for a better fitting et

Figure 4.4: Steps to convert the G3 model into a trivariagpline solid.

(3) Merge local cuboids into a single global spline (Seclad). Note that, the
novelty of our merging strategy lies at its comprehensivé @mplete solution to
guarantee the desirable properties: semi-standardnédsandary restriction.

Our new shape modeling framework has the following advagag

1. Compared with prior top-down strategies, our new diade-conquer ap-
proach is more flexible and powerful to handle complex solith arbi-
trary topology. Each component can be easily converted fivaxitite semi-
standard regular spline, which is embraced by industnyeilsted CAD kernels
and facilitates GPU computing Iikm59].

2. We develop the theory and algorithm to merge adjacerartate splines to-
gether. Through adding knots and modifying weights, ourgimgr method
can enforce semi-standardness and boundary restrictiafl fssible merg-
ing types, even after local adaptive refinement.

3. For solids with homogeneous material, we are capablerafrgéing trivariate
splines from poly-cube surface parameterization direttilys we avoid com-
plicated interior volumetric remeshing. Moreover, ouriderand-conquer
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strategy makes the modeling and analysis tasks scalaldege-$cale volu-
metric data, in terms of computation time and space consomgtring the
fitting.

4.2 Component Generation and T-splines

This section briefly reviews the required surface poly-cgbeeration algorithm.
We also define the necessary notations for the rest of thigtehdn the interest of
understanding, most illustrative figures about knots argbi shown in 2D layout,
as their 3D generalizations are straightforward.

4.2.1 Component Generation

The starting point of our whole procedure is to decomposapatisurface model
into several component surface. Each component surfacatisaware and maps
to a cuboid surface. The decomposition and mapping must¥dahe rule that pa-
rameters between neighboring components are consistentwie can glue their
parameters together directly as a seamless aligned glohatpbe mapping). We
remain agnostic as to which method should be used for sudngsasition. How-
ever, in order to better promise these requirements, wegeutthe algorithm intro-
duced in Chaptdr]3. Compared with the conventional polyeaulapping method
like [@], our construction is specifically suitable foettlivide-and-conquer strat-
egy and spline construction. (1) The conventional polyecoiethod always gen-
erates an integral poly-cube domain to mimic the whole steggst. Then we
have to decompose this integral domain into small piecesgptying the divide-
and-conquer strategy. In contrast, our method directlys @sssmall set of con-
nected local cuboids, each of which represents a geomltrinaaningful patch
(e.g., part-aware). This property is particularly suieatar highly-twisted/non-axis
aligned/high-genus models (e.g., the g3 model). More itamdly, we can use the
divide-and-conquer technique directly on our resultingyqmube without further
decomposing anymore. (2) Our method can also reduce theanwhbuboids, and
control the merging types efficiently: It only generates SFaube” andType-1”
(Fig.[4.2(a)) merging, thus it simplifies the merging reqoient.

4.2.2 Trivariate T-spline

To better prepare readers for the better understandingediotiowing algorithm,
we briefly define the volumetric T-spline representationgEarface T-spline for-
mulation is detailed inEG]). Also we give the detailed exqphtion of“Semi-
standardnessand’Boundary Restriction”as follows.
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We useT'(V, F,C) (or simplyT) to denote a control grid domain, wheyve F,
andC are sets of vertices, faces and cells, respectively. Givertrivariate T-spline
can be formulated as:

B
; 7 iBi )y Uy
F(u,v,w) = 2imy WiPiBi(u, v, w)

Ele w; Bi(u, v, w)
where(u, v, w) denotes parametric coordinates,is a control point)V andB are

the weight and blending function sets. Each paikoi; B; > is associated with a
control pointp;. EachB;(u, v, w) € B is a blending function:

, (4.1)

Bi(u, v, w) = Niy(u) Nj (v)Njp(w), (4.2)

where N3 (u), N7 (v) and N3,(w) are cubic B-spline basis functions aloag, w,
respectively.

In the case of cubic T-spline blending functions in Eql 4h&, tinivariate func-
tion Nj?” for each blending functiom; is constructed upon knot vectd#, where
R’ is atracing ray parallel to the control grid (See [Fig] 4.5(B}arting from a knot
k=ry rl r2 we cantrace to? andr® ,, which are the very first intersections when
the rayR(t) = (r) + t,r},r3) comes across one cell face. Naturally, we define the
parameter of a control point as the central knot of the kngtisace for the control
point.

To support downstream CAE applications, our spline franr&was the follow-
ing requirements:

Semi-standardness.Zf:1 w; B;i(u,v,w) = 1 holds for all (u,v,w) in Eq.[4.1,
so that the evaluation of spline functions and their dereatis both efficient and
stable. Eq_4]1 can be rewritten as:

B
F(U,'U,UJ) = ZwipiBi(uvvvw)v (43)
i=1

Boundary restriction. We require that blending functions of all control points
are strictly confined within parametric domain boundarigafortunately, achiev-
ing this requirement is not trivial, especially around thibaid merging regions.
Fig.[4.3 shows a counter-example. A standard control poisiending function
(green box), without confinement procedure, tends to iatenwith the boundary.
In CAE-based force analysis, it means the strain energyfesscthe border”, which
might lead to an abrupt bend, twist, and flip-over phenomemxperiments. In the
follow sections, we usually usieentral points” for the control point/knot with an
unconfined blending function, since the confinement proeedumainly through
adding extra knots/control points around the central pditdwever, even we de-

65



sign the additional knots carefully and successfully cantlre blending function,
we still have to recompute all control points’ weights arduhe knots-adding re-
gion, otherwise we will break the semi-standardness arthisdocal region.

(a) (b)

Figure 4.5: Counter-example of boundary restriction. (&¥pe-1" merging in a
2D layout. (b) The blending function’s supporting regiomegn box) crosses the
boundary. The supporting region is determined by tracigg (gellow lines).

4.3 T-spline Construction for Each Component

The construction of trivariate splines on each componentery critical in our
divide-and-conquer method. Two major goals are involvethia step. Besides
constructing T-splines preserving desirable featureshawe to satisfy the neces-
sary requirement in each component in anticipation for mergWe propose the
following procedure to satisfy both goals:

1. Construct a boundary restricted control grid.
2. Perform the meshless fitting to determine locations afaitrol points.

3. Subdivide the control grid via local refinement iteralyvePerform fitting
again in each iteration for a better fitting result.

4. Modify the control grid around merging boundary afterteaabdivision it-
eration in anticipation for merging.
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Figure 4.6: (a) Top: Boundary restriction is illustrated @D domain, with6
“boundary knots” (or called “bd-knots’[p, 0, 0] and[5, 5, 5]) and two “boundary
control points” (or called “bd-control-points”, blue doptgserted. (a) Bottom:
Boundary restricted control grid in a 2D layout. (b) All padse bd-control-points
around one central point.

Table 4.1: RefiningVy by insertingk into knot vector|rg, r1, 2, 73, 74] generates
two basis functionsVyz, andNg,.

k Ry Ry
To < k < ™

TOuk T17T27T3] k , 1, 72,73, T4

[ [ ]
™ S k<r2 [,r T17k Tro, T 3] [Tluk o, T3, T 4]
ro <k <rs | [ro,r1,re, k,r3] | [11,72, k, 73, 74]
rs <k <y | [ro,r1,72, 73, k] | [r1,72,73, K, 4]

4.3.1 Boundary Restricted Control Grid

In order to construct a control grid, we first divide the cubblock into cells by
grid coordinates. The grid coordinates aldngxis are denoted as:

S = [s},s5,....sh ],k =1,2,3,

wheren,, is the resolution of rectilinear grid alorigaxis and each value i, is
the normal subdivision of cuboid parameter aldngxis. The tensor product of
Si1, S, S; divides the block intdn; — 1) x (ny — 1) x (ng — 1) cells and gives rise
to a point-based spline an x n, x n3 control points.
However, this naive spline construction is open boundarny\dalates the re-
guirement of boundary restriction. To improve, we repkcidite non-uniform knots
at both ends of,, to restrict the blending functions within the domain (Seg[Bi6(a)Top):
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Figure 4.7: The bd-control-point distributions around atca point on the cor-
ner/edge/face vertex, respectively.

We add3 extra knots, calletboundary knots (bd-knotst the end of domain to re-
strict the boundary. The knot set is expanded:

Si = [V, 8% sk sh sk sﬁk, s’ka, sﬁk, s’ka]

We also addl extraboundary control point (bd-control-poin{plue dots), on the
bd-knot outside of the last control point on the boundary.[&i6(a)Bottom extends
it to a 2D domain, and its extension to the 3D domain is in theespattern. Our

spline definition achieves: (1) Every blending function atle domain is confined
within the domain boundary; (2) Only bd-control-pointséhting functions influ-

ence the cuboid boundary, so our following fitting method &y on this usable

property.

In order to represent the bd-control-points conveniently,can arrange them
into a3 x 3 x 3 grid around the central point as Fig. ¥.6(b) (Recall thatcthetral
point is the control point with an unconfined blending fuon)i. These&7 possible
knots share the same parameters as the central point. Ityisiesigned to explic-
itly record topological relations of these control pointspreparation for efficient
spline merging. After adding bd-control-points to the 3ol grid, each central
point on the corner/edge/face has 8/4/2 control pointpeesely (Fig[4.V). This
special bd-control-point representation is uniquelyatlé for merging processing
as shown in Sectidn 4.4.
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4.3.2 Meshless Fitting

Our input only includes a control grid and a group of surfaamgle points ex-
tracted from the surface patch (already mapped to a cubaithotosurface). The
challenge consists in designing a fitting method for solidbout interior volumet-
ric parameterization or remeshing.

1. Boundary fitting. We first determine the positions of bd-control-points only.
Recall that only bd-control-pointp? influence the cuboid surface sample

points. Therefore, we can determine their positions by mizing Eq.[4.%
w.r.t. to surface sample poinf;:

argmin(Y_ |[F(f~(v}) = vil|) (4.4)
j=1

= % ;F(f-l(v;?)) oy

Sl

whereF denotes the spline function as Eq.]4.1 gnd(v?) the parameters of
v? in the cuboid. The above equation can be rewritten in matrimat as in
the least square method:

1
5PTBTBP —~ VIBP =0, (4.5)

whereB is the matrix of blending functionB,; = ]3X3Bi(f—1(v§’)), V and
P denote the vectors of surface sample poir?tsand bd-control-pointp?,
respectively. This equation determines bd-control-moand they serve as
the constraint in the next interior fitting step.

2. Interior fitting. Let u in the setU be the interior parametric value. Each
u; = (u,v,w)is the interior parameter triplet in the tensor-productpagtric
grid (wg, w1, ..., Upy) X (Vo, V1, -, Upy ) X (Wo,wr,...,w,, ). Theoretically,
we have the following harmonic equation w.r.t. interior n'ohpointSp;'.":

argmin(z /Q [V VF(w)]|du) (4.6)

= 0 Z/Q;(AF(ui)fdu =0,

P
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where(); is an infinitesimal parametric volume around Similar as @],
the above minimized energly, ||AF(u;)|| can be approximated by the fol-
lowing formulation:

" 1 i=7j,
> wiF(u;) =0,w;; =4 —4 u; € Nbr(u) (4.7)
j=0 0 others

whereNbr includes6 immediate neighbors af; in the tensor-product para-
metric grid. We substitute Ef. 4.7 into Hqg. 4.6, which can dlgexd by the
least square method similar to Hqg.]4.4. During computing etealeady-
knownp!? as constraints and get all other control point positions.

Global alignment. Although we execute volumetric fitting separately on ev-
ery cuboid, our fitting technique still guarantees globajrahent of interior fitting
results. Recall that we already obtain the identical serfearameters between
cuboids before fitting, since we generate aligned poly-edge., cuboid edges).
Therefore, two cuboids minimize precisely the same enardi[4.4 and Eq. 4.6
on the boundary, leading to the equivalent fitting results.

4.3.3 Cell Subdivision and Local Refinement

If the fitting results do not meet certain criteria on eachaidpwe can always
perform subdivision over cells in the control grid with larfitting errors and then
conduct the volumetric fitting. Each cell is split aloB@xis and divided into eight
sub-cells naturally.

The challenge is how to preserve the semi-standardnessgdsubdivision.
Sederberg et all_[36] have proposed a feasible approacHine f@ending func-
tions on surface patch. We generalize this technique ont8 Dwontrol grid. Let
R = [ro,m1,72,73,74) DE a ray-tracing knot vector andlz(u) denotes the corre-
sponding cubic B-spline basis function. If there is an adddl knotk € [rg, 74
inserted intaRk, NV can be written as a linear combination of two B-spline fuprcs:

Ng(u) = ¢1Ng, (u) + c2Ng, (u). (4.8)

Two knot vectorsR,, R, are shown in Table 4.X; andc, are2 weights that can

not exceed: " )
0 1), 0 = min( ! ,
r3s —To s — T

Since the blending function aB is the tensor product aV along3-axis, we can

c1 = man(

1).
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also formulate the refined blending functions along one: axis
Bi = ClBil + CQBZ'Q. (49)

The procedure of our 3D subdivision and local refinementistéef following
steps. The input is a queue of céll.

1. Subdivide cells iy, and insert the new vertices into the domdin and
updatel’ to T*

2. For all pairs of blending functions w;B; >, w; € W, B; € B, compute its
new knot vector?* (See Sectioh 412). Then,

e If the R* includes the knot which does not exist T, insert a new
vertex on that knot into the domaif.

e If the R* is more refined tharkR, compute the refinemem®;, = ¢; x
Bi1 + ¢2 X Bys. Insert the new blending functiors w; x ¢;B;; > and
< w; X cB;o > into the control grid. Delete the old pair w; B; >.

3. Repeat the last step until no new knot vectorRih Collect all blending
functions on the same control point and use the total weglisamew weight.

The above procedure can handle refinement and knot extmamtiaa compli-
cated 3D control grid. It also determines new required abpimints automatically
to guarantee the semi-standardness. Note that uvlﬂke\[\&ﬁ]oerform spline fit-
ting again after each refinement iteration to update copwoit positions. This is
mainly because our goal of refinement is to seek for more atetitting result. In
contrast, the refinement iﬂ36] aims to keep the shape ugeuhn

4.3.4 Boundary Modification

Boundary modification is necessary for our semi-standasglifite component, be-
cause of the fundamental difference between standardiBesphd our merging
strategies. Fid. 4.12 intends to visually show the diffeeebetween them. It illus-
trates the 1D merging method introducedlinl [35] on our boundeastricted grid.
For aC? merging,3 control points on one component will be merged wittontrol
points on the other component to form a joint new spline. Hexeghe procedure
does not take the associated weights into consideratiostalmdard B-spline, all
the weights are uniform. However, in semi-standard T-gplitis possible that two
corresponding soon-to-be-joined control points haveediifit weights. As a result,
the semi-standardness around the merged regions will nl@ak. Therefore, we
have to add extra requirement about weights to make thes$eotpnoints be capa-
ble of merging.
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To-be-merged control point (Definition 1). For a control point, if its blending
function includes bd-knots around merging boundary, wetlsgycontrol point is a
“To-be-merged” control poin{For example, Fid. 4.11(a-b) in a 2D layout).
Modification zone (Definition 2). For any cell in the control grid, if one of it8
vertices is “To-be-merged” control point for one boundang say this cell is in the
“Modification zone”.

A merging-ready spline must have the following properties:
Boundary requirement (Proposition 1). The weights of all “To-be-merged” con-
trol points on this boundary must equal to one, such that wersarge two splines
and the resulting spline still preserves semi-standardnes

m a c deekkhn

Figure 4.8: Proof of Observation 1.

Proof: As shown in Figuré 418, two 1D splines are merged. Becausheof t
symmetry, we only analyze the left side of merging boundimeg 6egmeni), £]).
During merging, only control point®, E, F' update blending functions and weights.
The influenced region thus narrows down to the line segment].

1) Line segmentA, C]: The semi-standardness preserves before merging, thus
Wi B, + we By + we.B. + wyB; = 1 on line segmeniq, ¢|, B; is the blending
function ati. After merging,w,, = wy, W, = W4, W, = We, Wy = Wp = 1, By, =
By, B, = By, B. = Bg, thus we only need to prove that, = Bp between
[A, C]. The knot vector of3, is [a, ¢, d, e, e]. The knot vector 0B, is [a, ¢, d, e, f].
According to Eq. 8,
f—e

f _
The knot vector ofB’ is [c,d, e, e, f], which does not influence the line segment
[A, C]. Therefore, we geBp, = B, on[A, (.
2) Line segmeniC, EJ: Similar to[A, E], we only need to prové3; + B, +
B., = Bp + Bg + Bp. Our subdivision procedure under “boundary requirement”
generates a local trivariate B-spline on line segmBnt'] along this direction. Ac-
cording to B-spline merging3, + B. + B., = Bp + Bg + Br on|[C, E].

Bp = B, + B’

To guarantee that all “To-be-merged” control points’ wegyequal to one, we
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need to be able to recognize if a local subdivision breaksitioere rule or not:

Proposition 2. Any knot insertion outside of “Modification zone” does not
violate boundary requirement (i.e., weights of bd-conpoints equal to one).

Hudguis H
a; a4 a¢ ay aqo ay doa as

Figure 4.9: Proof of Proposition 2. “Modification zone” ietleft of “Green Bar”.
Three nodes ony, a;» represent “to-be-merged” control points.

Proof: The point onay3 is the nearest newly-inserted control point outside
“Modification Zone”. According to Table 1, none of refined ideng functions
takesa; as the center of knot vector. Thus the weights of two “to-lergad” con-
trol points ona; are unchanged. For “to-be-merged” control pairy, its refined
blending function is only subdivided from the original bé#ng functionB,,,, lo-
cated atu;,. According to Eq. 8B,,, = c1 x B, , + c2 x B,,. The new weight
of ajpiscy = mm(%, 1) = 1. Therefore, the new weight an- still equals to
one.

After detecting the potential violation, we can properiyntke it using the fol-
lowing proposition:

Proposition 3. If we subdivide all boundary cells around merging region la t
same time, the new “To-be-merged” control points still garatee “Boundary re-
guirement” and their wights all equal to one

Proof: After subdivision, each blending function is subdividedsaveral sub-
blending functions pairsc w;B; >. These pairs are distributed to other knots:
For example, subdivision of blending function located)ajenerates new pairs on
C,M, D, N, E and the weights on each node can be computed by Eq. 8:

(012 - al)(a4 - a23)(a4 - Cl34)
(CL4 - al)(a4 - CL12)(CL4 - Clz)

(a23 - CL12)(CL4 - a34) (a5 - a23)(a34 - Clz)

D —

(CL4 - CL12)(CL4 - a2) (CL5 - ag)(a4 - a2)
M — (alz - al)(a4 - CL23) + a23 — 12 N — a5 — a34
(a4 - al)(a4 - CL12) g — A12 7 as — a2
O — (alz - Cll)(a23 - Cll) E— (Cls - a34)(a5 - Cl45)
(as —ar)(az — ay) ’ (a5 — az)(as — as)

The weight of refined blending function is the summation dfdivided weights.
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Figure 4.10: Proof of Proposition 3. (a) blending functian 0 subdivides and
generates new blending functiongat\M, D, N, E. (b) updated blending functions
on R only result from subdivision ok, Y.

ConsideringR as an example, the refined blending functionfis only derived
from unrefined blending functions ox¥i andY'. According to the above equations,
we can compute the weights from andY’:

k—h (f=e)k—h) h—f
X:R.E,Y:R.(l{; +k; 3

The summation of weights oR is

f—e k—h h—f k—h

1.
k—e h—f h_f h—e

Based on the above propositions, we propose our modificatiocedure as
follows. The input is the newly refined control grid with newbslivided cell set
Cnew-

1. For each boundary, assign the cell €gt as “Modification zone”. For any
cell with one vertex as a “To-be-merged” control point, wel #ais cell into
Cr.

2. For each boundary, detect if there is any new subdivididnctne “Modifi-
cation zone™.
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e C,..[)Cr = @. According to Proposition 2, the refined grid preserves
the standardness on the boundary, so no further processing.

e C,..1Cr # @. Modify the boundary according to Proposition 3:
Subdivide all cells on the boundary to satisfy “Boundaryuiegment”.

3. Update control point positions. Instead of fitting agéke in Sectior 4.313,
we use the same method aslin| [36] because we seek for keefimgsmpe
unchanged in this step.

e SRR
88 8 ¢ 835,008

..f.‘. .:b<

Figure 4.11: Boundary modification. (a) Original “To-besiged” control points

(in the green box). (b) Subdivision all cells along the baamydaccording to Propo-
sition 3. The green box covers updated “To-be-merged” obptrints. (c) and (d)
“Modification zone” (green box) of (a) and (b). According tooposition 2, cell

subdivision (by green dots) outside “Modification zone” soet violate “Bound-

ary requirement” (Proposition 1).

4.4 Global Merging Strategies

In our framework, the decomposed components can be mergediaus different
merging types. We develop algorithms to handle differepesyof merging in this
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Figure 4.12: Two cube merging in 1D layout. Two control psiate combined to
form one new control point (4, 5 and 6).

section. As we discussed in Sectlon 4.2.1, our domain omydes “Two-cube”
merging (Sectiof 4.411) and “Type-1" merging (Section2).4 Also, we seek to
handle more complicated conventional poly-cube domanma$yding all other types
of merging in Fig[4.R (Sectidn4.4.3).

4.4.1 “Two-cube” Merging

Merging of 3D components can be simply illustrated by 1D rmgygin 1D merg-
ing, each boundary parameter corresponds to a new positennaerging. For
example, in Figl_4.12, the bd-control-point with paraméteprresponds to a new
parametef. The control point corresponding tdn > 2) original control points
simply takes the average position as its new position. nfgjlthe merging of two
cuboids includes the following steps.

1. Boundary modification. If bd-knot intervals of two comgoits are different,
subdivide the cube boundary using the procedure in Seci®d #eratively
until they share the same knot interval (Fig.4.13(a)).

2. Merging control points. Correspond the original confoint to the new
control grid. As shown in Fid_4.13(a)Right, we merge eaclimm along
the merging direction as 1D case.

3. Computing control point positions. Each new control pgihcorresponds
to n(n < 2) original control pointsp;. The new control point position is

computed by’ = ZT"
4.4.2 “Type-1" Merging

The goal of this merging type is to mergecuboids into one control grid, like
Fig.[4.2(a). We can still use the “Two-cube” merging teclueido treat most merg-
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Figure 4.13: “Two-cube” merging. (a) Left: Subdivide thetioon cuboid and insert
new control points (green dots) to keep the same knot inenRight: Merging
along merging direction. (b) The merged control grid.

ing regions. But we have to design special confinement methioandle the central
points on the yellow dot/lines. Fig. 4]14(b) shows the ekidacontrol-points we
add around the central point on the yellow lines. For theoyeliiot, we add addi-
tional 8 bd-control-points around it to confine it into the surfaceidary, as shown
in Fig.[4.14(c).

Fig.[4.15 illustrates the confinement effect. Hig. 4.15f@ves a confined 2D
control grid in 2D layout. The extra bd-control-points (bldots) are inserted
around the central point. Fig. 4]15(b-d) showcase its adggn unlike Fig[[4]5,
for any chosen parametric position, none of its control fsop@netrates the bound-
ary to influence the chosen position.

Preserving semi-standardnessNow we still have another challenge. Simply
adding these extra control points would violate the semmdardness property. To
preserve semi-standardness, we also modify weights imévidy-merged control
grid structure. The weight can be computed as follows (Sgd4z14(a)): (1) Be-
fore adding bd-knots around the central point, we add anlianxkicontrol point
(green dot) at the corner. Now we locally have a standaréngectar control grid
with weights all equal to one initially; (2) Insert the desggl bd-knots (blue knots
and red crosses in Fig. 4]14(a)) to the grid; (3) Insertingt&itriggers the local re-
finement procedure to recompute the weight of each contiatgdNote that after
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Figure 4.14: “Type-1" merging: (a-b) Th&D distribution of bd-control-points
around the central point on the yellow lines/dot in 4)2(c) To preserve semi-
standardness, bd-knots (blue dots and red crosses) andidargknot (green) are
added. Then we can use local refinement algorithm to com@ecantrol points’
weights.

refinement, the auxiliary point does not affect inside barg@nymore. Therefore,
it is “transparent” and free to be deleted from the splingasentation.

Besides preserving semi-standardness, our weight maebficeechnique also
has advantage for pre-computation. The weight computatidy depends on the
initial knot interval of merged control grid. Thus, we caregrompute this step
and build a look-up table for speedup. Tablel 4.2(a) showsnitliees of control
points around the central point (the same as indices in[E&{bY. Tabld 4.2(b)
shows the corresponding weights for all control points ig.BiI4(a) (Numbers in
parentheses correspond to additional control points inZIg(b)).

To summarize, “Type-1" merging includes the following fephe first3 steps
are the same as “Two-cube” merging.

Step 1Modify boundary;

Step 2Merge control points;

Step 3Compute control point positions;

Step 4Insert extra bd-control-points as shown in Fig, 4.14(avi# @ssign the po-
sition of the control point on the central point to these negerted control points);
Step 5Modify weight (Change the weight of these bd-control-psiby checking
the look-up table, as shown in Tablel4.2(a)).

4.4.3 “Type-2,3,4” Merging

The above two merging algorithms (Sections 4.4.1, #.4 @pieady functionally
sound when handling the merging of all components in ourdéhand-conquer
framework, because these are the only two merging types rinf-@hape based
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Figure 4.15: Confinement effect of “Type-1" merging. (a) T2 layout of a

refined control grid, with added bd-control-points (blugsjaround the central
point (green box). (b-d) For each parameters (green cnaesjghlight all control

points (yellow points) that influence this parameter. Thaation like Fig.[4.5 is

completely eliminated.

-~

>

.I_/
¢

y 19 .
[ NNy Y 4

(a) (b)
Figure 4.16: The 3D distribution of bd-control-points in/fie-2,3,4” merging. The
central points are on the yellow dots in Hig.14.2(b-d).

poly-cube. Not just limited to that, Our ambitious goal isn@ndle any shape of
poly-cube domains. Therefore, we offer several more pawerérging operations,
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which are designed to merge the components like “Type-2j8,&ig. 4.2(b-d).
Once again, in order to enforce the boundary restrictiomees to insert extra bd-
control-points. For the central points on all yellow lineFiig.[4.2(b-d), they are just
“Type-1" merging, so we use the same merging method as asrshmn4.14(a).
For the central points o8 yellow dots, we design the extra bd-control-points, as
shown in Fig[4.16, to preserve boundary restriction.

To guarantee semi-standardness, we recompute the weighthie same method
in Sectior[ 4.4 as follows. First, we add auxiliary confoints, expanding given
control grid around the central pointto a complete cube-jkd. Second, we insert
the designed bd-control-points and perform local refindn@mompute the new
weight for each control point. Fig. 4.116 shows the 3D distiitin of bd-control-
points in all merging cases. Their look-up tables are shawkable4.D.
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Table 4.2: Look-up tables. Row 1: an index table 3@rpossible br-control-points
in Fig.[4.8. Row 2: weights for “Type-1" merging in Fig. 4] (weights in paren-
theses correspond to additiosalontrol points in Fig.4.15(c)). Row (3-5): weights
for “Type-2,3,4” merging.

Indices
7 8 9 16 17 | 18 || 25 | 26 | 27
4 5 6 13 14 | 15 || 22 | 23 | 24
1 2 3 10 | 11 | 12 (| 19| 20 | 21
Type-1
1 1 - = 3 1 8 = 1
D O] - |G |G| o6 |G| Q@
Type-2
210201 38 o 1 1 1 -
1 1 1 1 % % - - -
Type-3
7l o | ¥ |w | w5 | ® |1
s | | e | % | s | | s |2
8 =11 = 3 1 1 1 -
Type-4
AN EIE IR IR E
Bl 1 o2 1 1 1 -
1 1 - 1 1 1 - - -

81



4.5 Implementation Issues and Experimental Results
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Figure 4.17: “Two-cube” merging for the kitten model.

Our experimental results are implemented oh@Hz Pentium-1V PC withi
Giga RAM. Our first experimental results (FIg.4.17, and Bid.8) show the ap-
plication of “Two-cube” merging by considering the kittemdabeethoven model as
the test datasets. These are the only merging types thatregisr component gen-
eration framework. For “Type-2,3,4” merging types that @b exist in our frame-
work, we design a special screwdriver model and domain tcotstnate the power
of “Type-2" merging (Fig[4.19). In terms of poly-cube comgition, we recog-
nize that “Type-2” merging is very popular to handle the ipwith long branches.
Yet, “Type-3,4” merging cases rarely exist even in the most/entional poly-cube
domains. Geometrically speaking, they are more suitablmitoic highly con-
cave shapes. We use the dark T-junction lines to show cogiticolknots and use
different colors to represent different merging types. /Bae/Yellow marks all
“to-be-merged” control point knots iBmerging cases, respectively. We also have
a close-up view to show the interior fitting result, demoaistig smoothness around
the merging region. The yellow marks on the control grid hgitt the ill-points.

In the second group of experimental results (Fig. ¥.21 [y Big.[4.28, and
Fig.[4.22), we integrate all merging types together to hatigé models with high-
genus and complex bifurcations, including the eight (g&)ug3 (genus 3), rockarm,
and wrench (genus 1 with bifurcations) model. We first digpleeir component
generation results. Then we show a spline model for one mraponent and the
final spline results with a close-up view to highlight thesimor fitting and merging
regions. Fig[[4.20 also visualizes components’ T-shapefadoe structures in a
more efficient way. We use the same color cuboid to representomponent and
the edges to show the cuboid connections. Each green boxscowboids from
the same T-shape. This structure clearly demonstrate®itityat Two-cube” and
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Figure 4.19: “Type-2” merging for the screwdriver model.

“Type-1" merging are functionally sound in our framework.

In Table[4.8, we document numbers of control points and djitérror. The T-
spline scheme can significantly reduce the number of copwits. The fitting
results are measured by RMS errors which are normalizecdetdithension of cor-
responding solid models. Meanwhile, we demonstrate trexiontfitting quality
in a close-up view of each model. Also, the table illustrabteg adaptive refine-
ment is necessary for trivariate splines, even on a simpfas input model. It
is desirable to use high resolution with more DOFs to appnaxé boundary sur-
face and low resolution with fewer DOFs for volume interibor example, in the
kitten/beethoven model, if we naively use B-spline schentle ierarchical refine-
mentinside the volume, their control points will increasg18/4850, respectively.
In the last experiment (Figufe 4124), we apply our technimueonvert the fertility
model, with the noisy surface, into a trivariate spline aachesh it into a smooth
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Figure 4.20: The divide-and-conquer structures of theaookwrench/g3 model.

N an

Segmentation Single Block Spline Spline
Figure 4.21: The eight model.

result. The poly-edges (gray-lines) decompose the figrtiiodel into components.
Note that poly-edges are aligned everywhere so our locahpeters are consistent
globally.

Top-down vs. Divide-and-conquer schemesln Table[4.4, we compare the
performance between our divide-and-conquer framework general T-splines us-
ing single integral domain in a traditional top-down apm@toal he most prestigious
advantage of divide-and-conquer framework is to easilydleamodels with bifur-
cations/highly twisted shape/high-genus. For exampleglg-gube like Fig[ 4.1l
designed using a top-down scheme is very complicated, 46ittuboids and they
are connected in various types, to mimic the shape of the giem®he poly-cube
construction also requires tedious manual design. By casgg its divide-and-
conquer domain (Fid._4.20) includes onlg cuboids with two certain merging
types. Second, we also compare the required spatial congnripgetween our
divide-and-conquer scheme with the top-down scheme. ler@&nour memory
cost is reduced te} wheren, is the number of cuboids. Third, we compare the
computation ofB3’ between semi-standard T-spline and rational T-spline. alerd
the computation time on(0* samples for each model. The result shows that our
method is at least twice as fast as rational T-splines. Bii®cause the computa-
tion avoids division operation completely (See the diffee between Eq¢. 4.1 and

[4.3).
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Segmentation SingljérBIock Spline Spline

Figure 4.22: The wrench model.

Segmentation

Spline Spline
Figure 4.23: The rockarm model.
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4.6 Chapter Summary

In this chapter, we have presented a novel framework to naststrivariate T-
splines with arbitrary topology. Because of the flexible amdsatile divide-and-
conquer scheme, our framework can naturally handle sojettdwith high genus
and complex bifurcations. We decompose the input surfacehiioto several part-
aware components so that we can fit each component withoutetibe of volu-
metric parameterization. The proposed spline scheme sigplozal refinement
hierarchically, and the global trivariate T-splines datibe attractive properties of
semi-standardness and boundary restriction. These naweillzutions have a broad
appeal to both theoreticians and engineers working in thpesimodeling and its
application areas.

Figure 4.24: Mesh smoothing: We convert the fertility moided trivariate spline
and remesh it into a smooth result. Three figures show the coents (with
poly-edges), the globally aligned parameters, the remgstasult (with interior
cut views), respectively.
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Table 4.3: Statistics of various test examples:, # of control points; RMS,
root-mean-square fitting errot((—3). “bv1”, “bv2”, “ra” and “sd” represent the
beethoven (low and high resolution), rockarm, and screxedmodels.

Model | N, | RMS || Model | N. | RMS
eight | 2058| 1.63 || wrench| 3756| 2.3
kitten | 2840| 3.32 g3 2976| 1.74
bvl | 1001| 1.8 bv2 | 3273| 1.36
ra |4582| 3.75 sd 1261 | 1.65

Table 4.4: Comparison between our splines and generakesplBpace required by
fitting; Time to compute derivatives of basis functions; and Number of cuboids.

Model Our Method General Method
Space| B’ | N.| Space| B | N.

kitten | 116802| 2.38s| 1 | 300688| 4.53s| 8
eight | 24714 | 2.25s| 6 | 174124| 4.35s| 15
g3 18952 | 2.17s| 16 | 314832| 4.23s| 46
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Chapter 5

Spline-based Volume Reconstruction

In Chaptef B andl4, we have introduced the techniques torcmm$tivariate splines
from surface 3D model. In this chapter, we adapt relevaveitiate splines to vol-
umetric data reconstruction: we attempt to apply triverglines to represent 3D
volume images.

5.1 Motivation

For volumetric scalar fields defined over a set of discretgxesnthe reconstruction
of the data is a fundamental problem with very significanti@pfions. For instance
in visualization, the size of volume data we have been dgaliith increases dra-
matically to10243 voxels commonly or even larger. This trend of ever-incregsi
data size poses a great challenge in terms of both storageeaddring costs and
thus requires reconstruction.

An ideal model would provide an accurate and efficient apipmakion for huge
data sets, as well as the exact evaluation of function vadmesgradients which
are required for high-quality visualization and physidael@lation. An appropriate
reconstruction involves following common quality requirents:

Accuracy. The reconstructed model should faithfully preserve thesdgfunc-
tion.

Feature Alignment. In regions with well-pronounced feature directions, para-
metric lines should guide and follow the shape feature.

Compactness.The number of patch layout as well as the degree of freedom for
each patch should be as few as possible.

Structured Regularity. Locally, each 3D patch is a subdivided cube-structured
domain; Globally, the gluing between patches should avioigigarity.

As-homogenous-as-possibl&.he density distribution in one single patch should
be narrowed in favor of approximation accuracy.
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Continuity. A continuous representation supports high-order devigatior
high quality visualization.

An ideal reconstruction framework should optimize the otigimultaneously
with respect to all above criteria. However, existing taghes typically prefer
offering a tradeoff between above conflicting requirememtse major reconstruc-
tion strategy is through multi-resolution data hierarobgdmpress the data repre-
sentation. Many algorithms have been developed to supperdrichical data re-
construction, including multi-dimensional tre 60farctree-based hierarchies
[@], @]. However, these methods tend to produce aremdrliarge set of sub-
blocks and require extra effort to pack them into a singlacstire, which undoubt-
edly violates the aforementioned compactness requiremdoteover, the shape
of produced block is limited as the axis-aligned texturb&(.e.,“flat block”). In
contrast, an ideal candidate for feature-driven applcetishould utilize feature-
aligned texture/cube. Other reconstruction methods segknerate a continuous
spline representation to approximate the data. In gengshhe based reconstruc-
tion can be divided into non-regular and regular splinessdRet al. Eb] have
developed quadratic super splines to reconstruct andlizeusn-discrete models
from discrete samples. Finkbeiner et M163] have dematest that box splines
deployed on body-centered cubic lattices in the input degaabso feasible models
for fast evaluation and GPU-acceleration. Tan et al.l [5Mehpresented a re-
construction algorithm for medical images taking advaesagf trivariate simplex
splines. Meanwhile, compared to non-regular splines, mgpgs of techniques
(e.g., volume renderin 4]) and applications (e.g.sgeometric analysis [50])
have a preference for regular-structured schemes. Howieemajor challenge
lies at they rely heavily on spatial parameterizations awdafbitrary 3D objects
such parameterizations become a rather non-trivial takk. gbal of vectorization
is to convert a raster object (2D or 3D image) into a vectoplgies that is compact,
scalable, editable and easy to animate, which is very sitalaur research goal. In
object-based vectorization [165], the whole image is sedettinto a few objects.
The color of each object then is approximated by spline paigcently, gradient
meshes 6]) serve as very powerful tools on 2D image septations and have
been studied in depth. In a gradient mesh, position and pagglaccording to the
specified gradients. However, it is not easy to directly tgpdato 3D volumetric
image application because of its inefficiency of handlinghptex topology.

In order to achieve all above requirements, we propose al nevenstruction
approach that converts the discrete data to a small numbetwhetric patch lay-
outs. Each patch is a regular tensor-product cube grid whdetaining shape
features. The voxels in every single patch have the almastogenous density
values in favor of accurate approximation for each patch.

In this chapter, we provide a novel framework to help a useetonstruct a
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discrete volume data into regular patches and spline reptasons. Our represen-
tation has significant advantages: Each patch has regulatwte while maintain-
ing the shape features. The whole data is compactly regesbéy a very small
number of patches. The density in each patch is as-homogea®spossible thus
both the shape and density function can be accurately ajppated by a high-order
spline representation.

In order to achieve these advantages, our approach coositie following
major steps:

1. Starting with the computing of local tensors and prinbgpavatures, we gen-
erate an optimized frame field to respect the shape feature.

2. A regular structured parametrization (ef, v, w) is generated, whose gradi-
ents align the above field everywhere. Then we produce a setlwinetric
patches based on the parametrization result.

3. We construct on each patch a trivariate T-spline to apprate the function
F(u,v,w) using as-few-as-possible control points.

The remainder of this chapter is organized as follows. 8ei.2 is the frame
field generation stage and Section| 5.3 involves the volumgarametrization and
patch remeshing. We discuss the spline approximation gmehtation details, and
demonstrate experimental results in Secfioh 5.4. We cdedluSection 5]5.

(@) (b) (d)

Figure 5.1: Main steps of the reconstruction. (a) Input nhedd material-aware

boundary surfaces. (b) The tensor and principal directeld fs§ computed on each
voxel in the input data. The major principal directions oe tioundary surfaces
serve as the constraints for the next step. (c) In a frame diglonization proce-

dure, an as-smooth-as-possible frame field is generatdd mhintaining the given
constraints. (d) Corner points are selected to determimeldimain structure. Ad-
ditional constraints are added into next step of paranstaz computing. (e) A

volumetric parametrization.
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5.2 Frame Field

In this section we mainly focus on frame field generation. et $rom designing
an operator of tensor to describe the local feature ( SeBidd). Then we discuss
the optimization of &-direction frame field in Sectidn 5.2.2.

5.2.1 Tensor and Principal Curvature

Traditionally, curvature has be used as a shape featureiptesovidely. Theo-
retically this differential property characterizes onlyiafinitesimal neighborhood.
Therefore it is desirable to design a numerically adaptep&rator for the discrete
data to compute this property. Although much work deals whik task on the
surface (see [167] for an overview), we still need a new dureaoperator for the
discrete 3D hyper-volume data. Our operator capturessstaily the shape of
a neighborhood around a central point by fitting a contindomstion, and thus
mimics the 3D differential curvature and encodes anisgtedpng3 orthogonal di-
rections. To summarize this shape, we use a cubic polynduamiaetion 77 (v, v, w)
to approximate the local density function, because theytaeaimplest form that
can sufficiently express the shape variability we need t@m@adn a continuous
manner.

Specifically, the given volumetric data set is representdgua uniform grid
G = (V,E,C),whereV = v, vy, ..., v, denotes the voxels arldi C denote the
set of edges and cubes in the grid, respectively. Each grelve = (z;, v, 2;, [)
includes4 components: geometric position in the gfid, y;, z;) and the discrete
density valuel”.

Figure 5.2: Left: The input local data around a voxel. Rightie approximated
result and principal directions.

In order to get a local polynomial functiaff’ (u, v, w) around center voxel;,
we assign a local parameter valug, vy, wo) to v;. For each of its adjacentring
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neighbor voxels; € N/ (v;), the local parameter {8, v;, w;) = (ug+x;—x;, vo+
Y — Yi, wo + z; — 2;). Then our fitting cubic polynomial can be formulated as:

i+j+k<3
I (u,v,w) = Z emtv’w® = P(u,v,w)CT, (5.1)
i,5,k>0
where C denotes the vector of unknown coefficiemnfs. P is the vector of
uvlw”. Similarly, we can also describe derivativesof, w. For instance,

i+j+k<3
I (u,v,w) = Z em X i x uIwk = Py (u,v,w)C7?, (5.2)

i,J,k=0

where P, is the vector ofi x u'~'v/w* (we setu™ = 0 if m < 0). In the same
way, we can also describe other derivativgs 14, 12 12 2 " 7H TH CTH y
determiningP,, P, Py, Py, Puww, Puv, Puw, Pw-

In order to describe the currently unknown coefficiabtswve construct a fitting
equation:

QcT =17, (5.3)

where Q is the fitting matrix. Each rowQ;. in the matrix depends on a voxel
Q;. = P(u;,vj,w;),j € il JN(i). I” is the vector of discrete valug’ on each
voxel. Because the size of unknown variables is very smalican solve this linear
least-square problem through multiplying the ma@pby its transpose:

C=(Q"'Q)'Q"I". (5.4)

We notice that Q" Q)~'QT is constant for every local function if we choose the
samek for k-ring neighbors of each voxel.

Tensor and Principal Curvature. After the above calculations, we now can
represent the tensor as the following matrix:

VRSO SLA i
T=| 12 17 11 |, (5.5)
I A
This matrix is equal to the second fundamental form of ourdmymlume rep-
resentation. Therefore, we can compBgiteigenvectors of the local tensor matrix
T and thus ge8 directions. We use them to describe the feature on each .voxel
Compared to the conventional texture-gradient basedriatur tensor feature has
very obvious advantages: it produckedirections rather than one; all locabirec-
tion fields follow the shape anisotropy thus global fieldsaready almost smooth.
As a result it simplifies the complexity and time consumptdthe following op-
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timization step.

5.2.2 Field Smoothing

Although we can use initial principal directions to compthe parametrization
without optimization, it will stuck in a local minimum. To evcome this prob-
lem, we propose an optimization method which respects dr@dynmost dominant
directions. First, we extract iso-surfaces of interest i@ké them as constraints to
respect the shape. Second, the frame field in each iso-sarfadteratively opti-
mized.

Iso-surface extraction. It is natural to take feature on iso-surfaces as con-
straints, because the final parametrization result andhpatcst respect the shape
of iso-surfaces. Moreover, each sub-space in an iso-gudhgays tends to be
as-homogenous-as-possible, which is an ideal propertfyrfar shape and density
approximation.

Frequently, input datasets contain multiple structurekisorsurfaces that need
to be differentiated. However, if those features have theesdensity and gradient
values, existing clustering methods are limited at efletyi classifying those sim-
ilar features accurately. Thus, we apply the texture-bakessification method for
the iso-surface extraction. In the first step, we simply reenthe background vox-
els. It does not influence the information of the feature tdi@st while significantly
decreasing the computational time and operation compleXiter the background
elimination, sixteen statistical attributes (angularssgtmoment, contrast, corre-
lation, variance, inverse difference moment, individuarepy, sum average, sum
variance, sum entropy, skewness, kurtosis, correlatiftmmimation measurements,
intensity, gradient and second order derivative) can beetdd following the fea-
ture equations defined im68] a@w]. For the sake ofdastputation and easy
programming, we use k-mean clustering in the high- dimengarameter space to
automatically detect various features. One or more featoa® be selected with
respect to the user’s requirement. The boundary of eachecltisally becomes
one of our iso-surfaces.

The constraints are added towards voxels on iso-surfagesmnatically or man-
ually. In practice, to efficiently describe the feature a-murfaces, we set only one
of 3 principal directions as the constraint, one of which folkotlhe normal di-
rection of the iso-surface. As shown in the following seasiponly-one-direction
constraints are functionally sound to preserve the featndehave extra flexibility
when handling smoothing and parametrization.

After this preprocessing step, the input is decomposed iodgpendent sub-
spacé/; bounded by an iso-surfacg. The subspace may also cover several smaller
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subspaces with iso-surfaces
Ssub — {SSUb, Sisub7 . SZUb}

Each voxel in the subspadé has3 initial directions and each voxel on the iso-
surfacesS; | J S*“* has one direction as the constraint. The following smogthin
step will modify the directions on each voxel while maintagnthe constrained
directions.

Field smoothing. The smoothness of a unit frame field can be measured as the
integrated rotation differences between every two neighlgosoxels. [Eb] have
studied the energy of a 2D cross field and simplified it to adimepresentation.
In our 3D volume, the challenge lies at smoothingectors in separate directions
while maintaining their orthogonality. Therefore, we tdke local rotation matrix
as the unknown variableF (v;) = fo, fi, f2 is a frame with3 orthogonal vector
directions on each voxel;. We can also uniquely describe this frame by rotat-
ing from the origin fame to it. Each row of the rotation matRv;) is a vector
directionR,. = f.,r = 0,1,2. Now, the energy turns out to be the sum of all
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Figure 5.3: (a) Jump matchingframes has different principal directions along red
and blue arrows. The smooth energy between them should bédsaily. (b): The
smoothing results with/without considering period jump.

corresponding vector differences between adjacent voxels
2
Eamootn = 9 O |[Re(vi) = Ree(v))] 1% (5.6)
eijEE r=0

In order to solve unknown rotation matrix, we have to applylm®ear solver
(e.g.,Gaussian-Newton method) to minimize the energytionc Another diffi-
culty is that Equation 516 predetermines the one-to-onepimgpof 3 directions
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on two voxels, without considering “jump matching”. “Jump@tohing” means all
permutation cases of direction mapping. Figl] 5.3(a) shdiv ‘gump matching”
cases for &-direction field. Similarly, we can hav&t “jump matching” cases for
a 3-direction field. An ideal optimization algorithm should rigmically change
direction mapping to get the best result. [Figl 5.3(b) shosiswle frame optimiza-
tion on one voxel according to two adjacent voxels. Usinggumatching we can
get the perfect optimization result, while traditional med fails.

To overcome these problems, we design a novel optimizatethod. The key
idea is that we compute the registration ene@[l?l] betwaree voxel and its
neighboring voxels. We extentl orthogonal principal directions into a length-
normalized frame. Each frame giveésnd position§P(v;)} = {po,...,ps} at
the end of3 frame lines.

e ! -

Figure 5.4: Major steps of optimization: (1) Union of endipgints. (2) ICP-
registration. (3) Compute rotation to get updated frame.

1. Get the union of all frame end positions on neighboringelex{S,} =
UV]‘EN(Vi) P(Vj)'

2. The original point sefS,} = {P(v;)} is the frame ending positions &f.
Using the ICP-based registration [171], we compute a méttixat approxi-
mately transforms voxels dfS; } to those of the approximated s, } .

3. Decompose the transformation maffixnto a rotation matrix? and a shear
matrix S using polar decomposition. Add the rotati@to the frame ofv;.
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For an iso-surface voxel; which has a constrained direction, we first apply the
above algorithm without considering constraint. Then,he tpdated frame, we
search for the closest direction and project it to the cairsdd direction by a rota-
tion. The whole frame is also rotated as the final updatedtresu

The above algorithm is computed on each voxel iterativetif we get a promis-
ingly smooth field. Starting from initially smooth tensorléievill make optimiza-
tion converge quickly. Our optimization algorithm avoiadwng non-linear equa-
tions; Moreover, we utilize jump matching to get a much betsult.

5.3 Volumetric Parametrization

The parametrization should be locally oriented to the fréield from Sectio 5.2.
Therefore, the parametrization is computed as a solutigdhédollowing energy
minimization problem:

Eporam = Y _ ||V, — wi|[* +[|Vv; — o> + [|[Vw; — wil|>,  (5.7)

v, €V

whereu;, v;, w; are the unknown parameters angd v; andw, are 3 frame field
directions on each voxel. In practice, in order to respeetis-surface and edge
features, as well as preserving regularity in the final patazation result, our
parametrization algorithm has following steps:

1. Corner detection and selection: Determine all cornedictes from the
frame field. Interactively select corner points from thedidates, serving as
corners of the final parameter domain. These corner poirgsttli determine
the structure of the final parameter domain.

2. Energy minimization with constraints: Add parameterstogints on corner
points and other points if necessary. Add these parametstraints into the
energy minimization equation. Compute the minimizatioaiago get the
final parametrization result.

3. Remeshing: Guided by the generated parameter, traceessilage a small
set of volumetric patches.

5.3.1 Corner Points

Intuitively, in a parameter domain as shown in Higl5.5, aneorcandidates{ is
the intersection point o8 iso-parametric surfaces an v, w respectively. Con-
sequently, some of its neighboring voxels should sepgratiskribute on3 iso-
parametric surfaces and their normal vector follovasfferent parameter gradients.
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Figure 5.5: Corner point and edge point. Each vector is atcaingd direction
following the gradient of different scalar field v, w (red, green, blue) separately.

a0 &

() (b)
Figure 5.6: (a) 2D layout of a frame field. It has 6 corners (medes) and one
singularity. (b) Recomputed frame field. 4 nodes are saleatecorners. The
jump-match of the frame on the boundary is limited.

In practice, we defin€orner point as the voxel that has neighboring voxels with
constrained normal directions alodgdifferent gradientsvu, Vv and Vw sepa-
rately. Similarly, we defin€dge pointin a similar way, but its neighboring voxels’
constrained normal directions only follovisdifferent gradients. For example in
Fig.[5.6(a) 2D layout( nodes are detected as the corners according to our defini-
tion.

From these corner candidates, we interactively chooseaeaners as the fi-
nal corner points. These corners will be mapped to the cerokthe parameter
domain. Consequently, the edge points connecting a paaragécs will be mapped
to the iso-parametric lines on the parameter domain. Thage points also par-
tition the boundary surface into several patches. Intelgiveach patch should be
mapped to an iso-parametric surface on the parameter domain

Frame field recomputing. We notice that the original frame field tend to
produce unnecessary singularities (FigJ] 5.6(a)), makiegparameter result and
patch structure complicated__L]l72]. To eliminate this peolb] we can re-compute
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the frame field with new constraints: The normal directioraofoxel on an iso-

parametric patch must be aligned to the parametric normetiibn. As shown in

Fig.[5.6(b), the normal directions on the left and right bdames are forced to be
aligned to the green direction, leading to a singularigefframe field.

Additional constraints. Parameter constraints must be added into the energy
minimization to make sure that any corner point we seledtladate on a corner
of the parameter domain. Thus, we associate each corneawitiown parameter
before solving the energy equation. However, this condtraay cause serious dis-
tortion in the solved parametrization. Therefore, we needdd more constraints
to get a better parametrization. We observe that the distoaiways happens on
the geometric-complicated boundary surface patch whigbsrt@an iso-parametric
surface in the domain. Therefore, we can avoid this distorfy adding the addi-
tional constraints on the boundary surface patch if necgssa

5.3.2 Energy Minimization

In order to minimize Equatidn 3.7, we have to design a lineanfilation of the gra-
dient operato/ for any scalar field (i.eU, V or W) on each voxeV;. We notice
that the gradient computing is invariant to the choice obpaater. Therefore, we
again use the density function (Equation]5.1) and its deviesito numerically de-
scribe the gradient operat®t. Equatiori 5.2 and_5.4 together describe the gradient
operator on a voxel. For instance, we represénf as :

vu; = (P,C,P,C,P,C)= (P, P, P,)(Q'Q)'Q"U”, (5.8)

whereU” represents the vector of unknown scalar valum v; and its neigh-
boring voxels. Then, we substitute them into the energy sgudgor example:

S IVui—ul =Y |I(P, P, P)(Q"Q)'QU” —wil|”.  (5.9)

vieEV v, eV

Equatio 5.9 is a typical fitting problem, which can be cotegiinto a linear
systemAU” = B through computin%—f = 0, whereU™ is the vector of unknown
valuewu on all voxels. We can simply solve it by least square method.

Modified norm. Itis obvious that feature orientation is more importantitba-
act edge length. The orientation can be improved by lessligt tretch which
is in the direction of the desired iso-lines. In order to agkithis, [86] have intro-
duced an anisotropic norm and we extend it to 3D vector coimgut

[1(, v, w)l(@,.0) = o + Bo* + .

This norm penalizes the deviation along the major direstisith different weights.

98



Then we modify the energy equation to the new form:

Z [V, — Uz’||(e,1,1) +[|Vo; — UiH(l,e,l) + || Vw; — wiH(l,l,e)a (5.10)

v,V

with e < 1.

5.4 Spline Approximation and Experimental Results

The previous steps generate a set of regular structurethparea patches thus it is
very straight forward to define a regular high-order repmnéstéon to approximate
the shape and the density function of each patch. In our frame we utilize

T-splines for final approximation. A trivariate T-spli@ can be formulated as:

F(u,v,w) = 2 wipiBi(u, v, w) (5.11)

Z wiBi(uv v, w) 7

where (u, v, w) denotes parameter coordinates,= (X;,Y;, Z;, I;) denotes each
control point,w; and B; are the weight and blending function sets. Each pair of
< w;B; > is associated with a control poipt. EachB;(u,v,w) is a blending
function given byB;(u, v, w) = N3 (u)N3 (v)N2(w), where N3 (u), N7 (v) and
N2,(w) are cubic B-spline basis functions alongv, w, respectively. We choose
T-spline because it has two significant advantages: Firstréfinement of control
mesh is subdivided locally to reduce a large percentage perfiuous points and
thus enhances the simplicity and accelerates the potgisiglization applications;
Second, T-spline scheme guarant®esw; B;(u, v,w) = 1 across the entire space.
Thus the computing oF (u, v, w) and its derivatives can be much more efficient.
We notice that, although our domain is globally consisteath patch is treated
as a single object and an independent T-spline in order teregtproximate sharp
feature.

5.4.1 Experimental Results

We introduce our experimental results in this section. Agqge system is imple-
mented on a PC with 3.5GHz P4 CPU and 4GB RAM. We consider tomAFuel,

Ankle and Tooth as the test models, and use T-splines to zijopate the density
function based on our domain. Fig. 5.7 shows the continuguesentation results.
Compared with the original discrete data, reconstructedatsoperfectly preserve
the shape and density information of the object. They alsoptetely remove the
background noise and simplify the procedure of transfection design for the

user. Fig[’5.B shows more details about our parametenzatfte corner points,
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parameter domain, surface parametrization and volumedri@metrization respec-
tively. Table[5.1 summarizes the statistics of the perfarceaof our processing
on four models. These figures and tables showcase that adensgéfectively re-
construct the model with lower number of control points withsacrificing visual
quality.

Table 5.1: Statistics of various test exampl@g;, # of voxels; RMS, root-mean-
square fitting error (density onlyp=2); N,, # of corners;N’, # of control points.

Model Ny RMS | N, N!
Atom 2563 0.122] 12 | 1.5* 10*
Fuel 643 0.877| 16 | 7.2 % 10*

Ankle 128° 0.422| 12 | 1.6 % 10*
Tooth | 256 x 161 | 0.393| 24 | 5.1 % 10"
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Figure 5.7: Left column: Volume visualization using inpusatete models; Right
column: Reconstructed models.
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Figure 5.8: The atom model. Left column: Corner points andupater domain.
Middle column: Surface parametrization. Right column ticieparametrization.

Figure 5.9: The fuel model. Left column: Corner points andapzeter domain.
Middle column: Surface parametrization. Right column ticieparametrization.

AR

Figure 5.10: The tooth model. Left column: Corner points pathmeter domain.
Middle column: Surface parametrization. Right column ticieparametrization.
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5.5 Chapter Summary

In this chapter, we have proposed a novel method that recmtsthe discrete volu-
metric data into the regular continuous representationstie with the computing
of principal curvatures on a hyper-volume and then find bdtigeature-aligned
constraints. Then we compute a smooth field respecting the¢ dooninant shape
features. Corner points are then computed and placed ategecatly meaning-
ful locations. Based on the frame field, we can generate daegarametrization
which takes material feature-alignment constraints istmant, producing a small
number of regular patches. We construct trivariate T-gglion all patches to ap-
proximate geometry and density functions together. Ourréssilts clearly verify
our design.

Our framework perfectly promises a lot requirements in a@igation such as
feature-alignment, compactness, regular structure,-bider representation and
as-homogenous-as-possible, etc. These modeling adesmaturally prompt us to
explore its uncharted potential in the near future. We grdte further novel GPU-
accelerated isosurface direct visualization techniqasgd on our high-order reg-
ular representations. Meanwhile, the conjunctions betweaterial-based physical
analysis/simulation and our continuous hyper-volume stapctions are of great
interest for potential physics-based applications.

Figure 5.11: The ankle model. Left column: Corner points pacameter domain.
Middle column: Surface parametrization. Right column ticieparametrization.
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Chapter 6

Metrics-based Focus+Context Lens

In all previous chapters, we have discussed the technidngag éhow to construct
volumetric parameterization, spline construction andesgentation”. Here, we ar-
gue that our volumetric parameterizations techniquestase various applications
on computer graphics and visualization research. Thezefothis chapter, we at-
tempt to study “how to apply the developed volumetric maugliechniques in
other possible research areas”.

As we introduced in Chaptéf 2, there is a stronger-than-eeed for visual-
izing large-scale datasets in various science/engingepplications. Meanwhile,
with the explosive emergence of various types of portablécds (e.g., iPad), the
industry frequently pursues as-large-as-possible daaalization on physically-
small-sized screen of mobile device in recent years. Thegea careful tradeoff is
required to deal with the potentially conflicting requiremef the inherent screen
size limitation and ever-increasing data size. Focus+&antisualization offers a
good strategy when tackling this problem.

Our ultimate goal is to design a flexible F+C methodology onv@ime im-
age. Therefore, we attempt to design a practical algorittaiméwork to support
this idea. In this chapter, we first apply this framework c2bimage data as the
first step to 3D application. This choice is natural and nemes because our idea
is based on geometric modeling techniques and all relevamierical computa-
tions on 2D manifolds are more mature, stable and robustd@ha8D manifolds.
Therefore, we decide to adapt it on image operations totgesfficiency.

In essence, we can view our core framework as a “reversenateaization”
process. Instead of mapping a high-dimension object intmadimension space,
we attempt to reversely map a low-dimension object into &4diignension space,
such that the visual information is enlarged. In the follegvsections we will dis-
cuss the algorithm in details.
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Figure 6.1: (a): Direct zoom-in. (b): Our geometric apptotx simulate magnifi-
cation lens

6.1 Motivation

The traditional method is direct zoom-in, as shown in Eid(#®). Focus+Context
(F+C) visualization, as a natural solution, has gained nmeskearch momentum
recently. In order to display regions of interest (ROIs)haliigh resolution, F+C
allows the user to access and address the detail of intéfestus”) while still
keeping the overall content of the whole data to accommolatean cognitive
custom (“Context”). Attractive F+C visualization shouldrsider the following
guality-centric aspects:

(1) Shape-preserving.Shape (such as angle, rigidity) plays a crucial role during
magnification when improving the visual cognition. The imper magnification
distortion may cause serious cognitive confusion.

(2) Smooth transition. Any visual gain from unifying the detail with the sur-
rounding context may easily be lost if the transition betw#e focus and context
regions is difficult to understand.

(3) Flexibility. For data with complex and multiple ROIs, the user may have
preference for using different magnification methods ougiieg on different shapes
on the same input.

It is a tremendous challenge to optimize the output simelasly with respect
to all of these criteria. For example, many recent methotsrgited to simulate
optical lenses in depth (e.g., fish-eyes, bifocal lens) fagnification. The most
challenging side effect is that, it rarely considers shamserving and smooth
transition, thus lens distortions are intolerable whenues become sufficiently
intricate.

Inspired by recent image manipulation techniques suchsiamg @] @],
our new idea is to address the lens design and simulatiorgmolising novel ge-
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ometric modeling methods. The F+C visualization is thenesthby a deformation
metric design and optimization solution. This way, we exaarthis conventional
2D deformation task from a completely innovative perspectf 3D geometric
processing. Rather than minimizing deformation energy @Damage/grid, we
transform the 2D input to 3D mesh, and then conduct 3D defoomswhich min-
imize the shape distortions and magnify the ROIs. To acloeveyoal, we design a
novel deformation framework that functionally acts as a&le We first build a spe-
cial 3D mesh ‘Lens-Mesh”) that magnifies any area of interest while keeping the
rest of area with little distortion. Then, we automaticalsform the lens-mesh back
into 2D space for viewing. Both steps require us to find digiamminimization for
each individual mesh element with an appropriate familyexfrgetric metrics.

In this chapter we present a general theoretical and coripuoghframework, in
which 3D geometric modeling techniques can be systembtiapplied to the 2D
lens simulation. The main contributions of our lens desige simulation include:
(1) Our algorithm minimizes the geometric deformation neetlistortion thus it
is particulary suitable to satisfy the shape preserving@ry. Moreover, our de-
formation scheme lets the deformable mesh locally confiegdkulting distortion
with great flexibility rather than letting the distortionitormly spread throughout
the nearby spaces; The resulting transition between thesfand context regions
is also smooth and seamless; (2) Instead of only using lexites regular circle
or square shape, it is very easy to design an arbitrary sHapagnifiers using our
lens-mesh to adapt various shapes; (3) The user can igespecify the geomet-
ric metrics, which allows easy production of visually pleaseffects. The whole
algorithm is shown to be of high efficiency, because of the matation of a linear
system with pre-processing.
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Figure 6.2: An example of our entire framework: (a) The inpoage. (b) We
generate a 3D lens-mesh to magnify the area of ROI. Then wefenathe texture
from the input to the lens-mesh. (c) We deform the lens-mesk mto a 2D plane
with minimized distortion. (d) Finally we get a new 2D imagélwarea of ROI

magnified.
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6.2 Framework

This section gives a high level overview of our proposed &anrk. Our sys-
tem takes as input a ready-to-display 2D image. For 3D dafasg., volume
datasets and 3D scanning models), we can generate the 2@tfonage through
volume rendering. In geometric deformation, we can comside input as a 2D
regular triangle mestM = {V,E, T}. T = ty,t,,...,t, denotes every indi-
vidual triangle, and{E, V} denotes the sets of edges and vertices. Each vertex
v; = (pi, ¢;) includes the vertex 2D positign, = (z;, y;) and texture mapping co-
ordinategp; = (z;,y;). Note that in the input mesh the vertex position and mapping
coordinates have the same value. The output is also a 2Qkeidn °“* which has
the same structure ast, but every vertex’s position and mapping coordinate are
updated. Fidg._ 612 illustrates our framework step-by-s&pgia google map as the
example. Our framework mainly includes the following steps

Step 1. The user makes an initial choice about regions of intere®igR We
can use a simple user sketch (e.g., drawing a circle) as thé&Mddary to enclose
each ROI, or use the exact shape/boundary of every ROI. Thedaoy can be
determined by an automatic feature segmentation operanidmas4] or simple
heuristic methods.

Step 2. Generate a 3D mesh?? based on the initial mesiM in order to
magnify the area of mesh on ROI.

e (2.1) For each ROI, we deform the original 2D surface patcR@1 into a
specified 3D surface, with the ROl boundary as constraimtsiiape changes
outside the boundary). Every triangle’s area in the bounigaherefore mag-
nified.

e (2.2) We transfer the texture froov to M3P while satisfying the shape
preserving property. To achieve this, for each vertex m&®I boundary
we compute texturing mapping coordinafesv] on M3? by solving the
harmonic equatioV?u = 0 andV?v = 0.

Step 3. We deformM?3P back into a 2D plane with distortion minimization.
We flatten each triangle’”in M3P back to 2D by rotation, and we denote this 2D
triangle as standard triangt¢’?. To make each triangle in the final outptt“*
approximate to its standard triangle, we design an itezagxecuted algorithm with
two phases: For each iteratibnwe have a starting 2D triangle megh”* which is
the result fromk — 1)th iteration (M is initialized by projectingVI®” to 2D).

e (3.1) For each triangle; in M*, we compute a deformation metid; (for-
mulated as & x 2 matrix) using the standard trianglg<.
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e (3.2) We determine the updated position of every vertex yirsgpthe linear
equation to approximate the deformation mellg for each triangle.

6.3 Mesh Generation

The input of our framework is the unifora\D dataset. Aiming to effectively gen-
erate the 2D rendered image from the mesh model/volumettasedt, we adapt the
fragment program (initially proposed by Stemaier et @]170r rendering, con-
sidering many parameters including depth, view angle, amileca position. The
steps include: cast the ray into the mesh model/volume elasal composite the
color based on the surface/volume data and transfer fursstamd render the result
into the frame buffer for display.

In most practical focus+context visualization applicaipthe user only chooses
a general approximate region via simple user sketch and&ic lyeometric prim-
itives (like the region within a drawn circle), enclosingtbanesh segment and
nearby context space as a reasonable proxy. The choiceotd t&ns is natu-
ral and humans are more accustomed to it with better visudnstanding com-
pared with other geometric primitives. In practice, we finstually choose a gen-
eral/approximate region, then we pick the centaf this region as the center of
sphere associated with a radius- must be large enough to enclose the entire ROI.

After we setting the lens, we magnify it by moving each vettea 3D position.
we use gaussian function to computdor each vertexz; = g(1 — %)ho, whered;
denotes the distance to the circle cewrtes(z) denotes a standard gaussian function
e*” andh, is a user input to scale the magnification; As an alternatiation, we
can also use a standard sphere instead of gaussian furctgodmmodate user’s
visual preferencez; = /72 — dz.

Arbitrary ROl boundary design. Our system also allows an exact boundary
of an object in the image as the ROI boundary. We denote taegie mesh patch
inside this object as\1,, and9.M,, as the patch boundary. We first conduct the
medial axis transform foM,,, generating a central curved pathand each vertex
v, in M, has a distancé; as the shortest distance to the path. The user decides the
heighth, of curved patfC. For each vertex;, we have its new positiotx;, y;, z;),

z =gl — j—;)ho, whered,, is the maximum distance. We need to subdivide the
triangle if it is scaled or sheared too much after magnifocatirhen we interpolate
the locations, colors, distances and heights linearly éovip-inserted vertices.

The automatic algorithm can handle versatile models verl, wemetimes
users still prefer to use special shapes as the desiraldeddor ROI. Fig[6l3
shows different visual effects with different meshes.
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Figure 6.3: Magnification results using different shapelen$es for the 3D teapot
mesh model. (a) Original teapot mesh model. (b-c) Magniboatsults using the
square-shaped and our automatically-generated ROI-gundshes, respectively.

6.3.1 Texture Mapping

The objective of this step is to assign the texture to the nfi@gr8D triangle mesh,
otherwise the texture will be distorted after changing gv¥eangle’s shape inside
ROls.

Since both the input mesk and magnified mesihvt3” have squared boundary,
we treat this problem as the energy minimization problem.sA&l map the mesh
M?3P to a uniform2D domain by solving the harmonic functiongu = 0 and
Vv = 0, whereV? = g—; + g—;. In practice, solving equations for any but the
simplest geometries must resort to an efficient approxonatiue to the lack of
closed-form analytical solutions in the general setting, shall use mean value
coordinateéﬂl] to solve it numerically.

e We assign each vertex an initial coordinate. In practicenit@alize it with
its original 2D positionu;, v;) = (x;, y;)-

e We iteratively update the coordinates for each veftexv;) = >_ ., w;(u;, v;),
andNg(v;) is the one-ring neighbor of;, (u;, v;) is a neighbor’s coordinate,
wj is the local mean value coordina@[?l] computed\dit’. Two types of
vertices serve as the Dirichlet boundary conditions (W ,avoid changing
their coordinates): (1) The squared boundary only; (2) Adions outside
any ROI.
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6.4 Flattening

We search for a flattened mesh so that we can display the mestlie popular flat
screen (Note that, our algorithm also supports curved sdilee=“IMAX"). The key
challenge in this problem is to preserve the important geocdeformation metric
for each triangle. The shape distortion can be measuredeawtél differences
between the resulting triangles and the original triangéée use the following
algorithm to minimize the differences.

Step 1. For each triangle; in 3D space, we reformulate it into a standard 2D
triangle t:¢ which keeps its original shape. Supposev,,v; are3 vertices of
t3P in 3D spacee; = v, — vo, €3 = Vo — V3,e3 = v — vy are3 edge vectors.
We recompute 2D positions @fvertices as/; = (0,0), vy = (||e1]],0) andvs =
(||ez2]|cosh, ||ez||sind) (Fig.[6.4). 6 is the angle between, ande,. Note that,
we flatten the triangle separately so a vertexMhhas different2D positions in
differentts'e,

Step 2. Now we flatten the mesh back to 2D. This step inclugléeratively
computed phases. The output mestt“’ has the same triangle mesh structure as
M while every vertex has only a 2D position. Initially, we gaggl® = M3P and
we reduce the dimension of vertices to 2D by projecting abxig-z:v; = (z;, ;).

(2.1) In this phase we compute the deformation metric fohdgangle. The
metric represents the transformation from the localizeddardt:'? to its k-th it-
eration counterpatt’. We represent this transformation a a 2 matrix M; and
we want to approximate this metric in the output®’. The computation oM, is
detailed in Section 6.4.1.

(2.2) In this phase, we compute the position of each vertax fihe following
equation.

T 2
EF =) wyllef; — Miei |7, (6.1)
i=0 j=1

whereej ;, ;' are edge vectors on the triangfeand standard triangte"?. We

rewrite the function in terms of every edge vector:
E' = Z@UUH(Vf —vh) = Mg, (vi' = v5' 9%, (6.2)
irj
where each pair dfv;, v;) belongs to the triangle,, (Note that(v;, v;) and(v;, v;)
are2 different vectors that belong to different triangles), is the weight for each
edge (see Paragraph “Weights” for details). Setting thdigrd to zero, we obtain

the following linear equation:

LVE" — MLvstd” (6.3)
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where the matrixd. represents the edge relationship of vertices (weighted by
w;;) . The matrixM includes all local matrixVIg, , VFandVstd are vectors includ-
ing all vertices’ positions on\{* and standard triangled/* is the only unknown
vector here and solving this equation gives rise to the jpositof all vertices ifV*.

Pre-factorization. We observe that the above matiixdepends only on the
geometry ofM. Thus this sparse matrix is fixed during iterations, allaywrs to
pre-factorize it with Cholesky decomposition and we carseethe factorization
many times throughout the algorithm in order to accelefaeprocess, which has
a significant impact on algorithm efficiency. The total dititm errorE* converges
and we end the iteration whefE* — EF~1|| is smaller than the threshold(we set
a = 0.1%).

Weights. The choice of weightv;; in Eq.(7.11) depends on the importance of
the triangle. The triangles around the ROI center are marsitbee to distortion.
Meanwhile, the distortion on a large triangle is more visuabnfusing than that
on the tiny ones. Therefore, we design the weightvgs= (1 + h,,)A,,cot(f),
whereA,, is the area of the triangle,,, ., is the averaged height (z-values) of the
triangle, and is the opposite angle of the edge vedtoy, v;) in t,,.

6.4.1 Computing Metrics

The vertex position inM is determined by our designed metNE/. In our system,
we want to achieve a flexible metric such that the user canrgeneariable visual
effects with easy interaction. We notice that each trams&bion matrix includes
two factors: one rotation matrix and two scaling values gltwo orthogonal direc-
tions. Inspired by|E4] which blended the angle-only neeémd rigid-only metric,

we provide a new method that allows the user to specify a “diixaetric that

actually blends between two factors.

(l1€:]],0)

N

||e2|10030 ||82]]|sinh)

Figure 6.4: Generating a 2D standard triangle. Left: OagBD triangle. Right:
2D standard triangle;’,
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We start first by computing the transformation matrix betwaerianglet? in
M* and the standard triangtg'?. Equivalent tol[66] and [176], we compute the
Jacobian matrix between two triangles.

3
J(th) = ef(ef)” (6.4)
=1

This matrix measures two tetrahedra’s deformation on twtofa: rotation and
scaling. We can decompose two factors by singular valuerdposition.
J=UxVvT M, =UVT, (6.5)

Here M., is a rotation-only matrix. and includes two scaling values, and

09.
. 01 0
(5 0)

To compute a flexible matrix, we can change this 2 diagonal matrix> with
blended scaling values. We allow the user to input a blenpamgmeten (0 < o <
0.5). Then the resulting matrix is formulated as:

b
_ o 0
1\/I_U(0 aS)V’ (6.6)

whereo? = a(o; — 1) + 1,05 = a(og — 1) + 1.
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Algorithm 2 The flattening algorithm.

| nput: triangle nmesh M3P,
Bl endi ng paraneter « € [0,0.5]
Fitting error thresholde
Qut put: 2D nmesh Mo
L = BuildMatriz(M) ] See Eq. (3)
Cholesky — Decomposition(L)
for all t3” € M3P do
/| Conpute the 2D standard triangle
t5' = 2D — Standard(t3P)
end for
Initial guess
MO = Projection(M?3P)
while ||EF — EF=D|| > e do
for all tf € M* do
/| Conpute netrics. See Eq. (4)
M;, = Compute(t3?, t;, a)
end for
/1 Build and solve Eq.(3) to get M*
E! = FittingError(M*, M3D)
k=k+1
end while
Mout — Mk
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Figure 6.5: Applications of our lens simulation. Left rowputs. Right row: Graph
of company relations, the connecting edges are revealeldeoyagnification; Eu-
ropean map, major cities of Italy are revealed now.
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6.5 Experimental Results

Our system can effectively provide F+C information to theruallowing the user
to get detailed focal region while maintaining the integratception of the model.
The results shown in the following figures demonstrate tivego@f our technique.
Our experimental results are implemented on a 3GHz PentiluRE with 4 Giga
RAM. In Fig.[6.5, we test our lens using several popular détactires such as
graph, city, map, and text for information visualizationta@h is an abstract data
structure representing relationships or connections. a€oess to relative nodes
or to the particularly important nodes, our lens makes iy éadind and navigate
toward these nodes; Our framework also improves the magtditfunctions with
results of multi-scale map/satellite magnification, whielveal and magnify the
additional details (e.g., additional country names); @uslprovides the efficient
scanning function for the text reading as well. We can plaeentagnifier to zoom
in the focus region while the remaining regions are eversgyrithiuted to the context
area (as shown in Fig. 86.1).

Fig.[6.2(d) is another excellent example to demonstrateahatechnique of-
fers a powerful lens for the route magnification. Using ouslethe user can see
the additional route information and easily panning or zogo achieve their re-
guirements. Meanwhile, there is no any obviously visualdisn in both focus or
context areas (the transition area with two view scales esenging linear interpo-
lation). The global road distributions and orientations preserved, and detailed
streets are displayed around ROI.

As a general rule, a good F+C method should be able to maximatiport the
shapel/feature preservation of objects of interest, sucori®rmal (angle) preser-
vation or/and area preservation, while minimizing contdistortions. Instead of
only minimizing angle distortion ir@?], Fig. 8.6 showsm@gp of lenses with the
same input but different metrics, with the blending paranet= 0,0.01, 0.1, 0.5.
This blend metrics enrich the result and thus the user canfynib@ blending pa-
rameter to interactively change the visual effect until cemult is satisfactory from
the user’s perspective.

Performance. Unlike other methods, the performance of our framework does
not depend on the input image but the size of our triangle m@sta conventional
performance table (“model-by-model”) is not necessarytiier analysis purpose.
The sample images we tested are all betwgehx 512 and 1024 x 1024. We
provide two meshes with sizes ®00 x 100 and200 x 200 to handle small and
large images separately. The smaller mesh (10k vertices)ardy0.3 second for
one iteration and it always converges2iiterations. We use the larger mesh (40k
vertices) to handle very high-detailed application ands#si.3 seconds for one
iteration. The pre-processing (matrix assembling andfgctsrization) requires
only aboutl.0 second.
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Figure 6.6: A group of different metrics with modified blendiparametet (a =0,
0.01,0.1,0.5).
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(@) (b)

Figure 6.7: (a-b) The distortion of our mesh and poly-foeald. The distortion is
color-coded from blue (minimum) to red (maximum).

Distortion. Similar to Eq[(Z.11), we apply the following term to meastire
shape distortion on every triangle.

2
Ei = Zwinej — Mie?||2, (67)

j=1

Fig.[6.7 compares the distortion between our lens and m:dylﬂensmz] (We
consider the input image of poly-focal lens as a regularigiegh. The deformation
equation is defined i 2]). Although poly-focal lens ohége lens can have
similar continuous magnification F+C view as our lens, iates noticeable distor-
tions towards its edges and has no method to formally cottteofocus region as
well as to preserve local features in the context region.chimeparison is meaning-
ful because both methods allow “free-boundary” to obtaittdveshape-preserving
effects. To measure the distortion of poly-focal lens, ve@alonsider their result-
ing image as a deformed mesh with each vertex/color moviniggmew position.
Thus we can also use the same criteria to measure the shapeialis The color
indicates that our method can reduce the shape distortiaminch better way. We
use blue color to represent zero distortion and red the maxif.45 in our result).

Comparison for Magnification Results. We apply our method to a volumetric
colon dataset to verify the advantages of our lens and cawpiéin others as shown
in Fig.[6.8. Local shape preservation and smooth transktawe important appli-
cations in the clinic education, diagnose, and even virguagery. In the normal
clinic exam, the colonoscopy needle navigates along thencais and the lens is
added along the same direction such that the clinicianstdeg@recognize polyps
on the folds (the wrinkles on the colon wall, red circle). Thkls in Fig.[6.8(b-c)
are seriously distorted which may sabotage the cliniciarpertise on polyps de-
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Figure 6.8: Magnification results using different lenses/fdumetric colon dataset.
(a) Original colon dataset. (b-d) Magnification resultsygdbifocal, polyfocal, and

our lenses. By comparison, the folds on the interior colafaese are seriously dis-
torted by all the other lenses because of the sharp tran&igtween the focus and
context regions, while our lens shows the accurate shaasres of the interior
colon surface without any obvious distortion.

tection. No matter how we modify their lenses in (b-c), thetalited folds always
exist along the lens boundary. In sharp contrast, the fotdildan (d) are better
preserved and easy for recognition.

We compare our method with other approaches, like zoomsimdye, bi-focal,
perspective wall, poly-focal [122] and cube deformatio@7]Lin Table[6.L. Our
method has advantages in the following aspects. First,autisn works well par-
ticularly with the complex shape, because it can flexiblyigiearbitrary shapes for
lenses. Our method emphasizes angle and rigidity metridbéosshape-preserving
purpose. Moreover, it allows the user to interactively gesand blend various
metrics.

Limitations. Our system flattens the mesh to achieve F+C visualization, bu
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potentially it may result in flip-over phenomenon (i.e., tesulting triangle covers
another one or its orientation is reversed). Fortunatéig, phenomenon always
happens especially on a highly curved surface with commpglbgy. In contrast,
our 3D mesh is relatively very simple compared with commoret® used in ge-
ometric modeling study and there are no flip-over triangheslli examples during
our experiments. The texturing step (Secfion 6.3.1) alsdywes a fine mapping as
a good initial guess. Meanwhile, we can always solve thedlipr problem using
the existing algorithrﬂm8].

Compared with the direct zoom-in and bi-focal methods, oathod can not
authentically keep exactly the same feature of a local reg®the original input.
Also, our metric lacks of the measurement to preserve thigaglstructure, shape
symmetry, or long straight lines. However, our human cogmgystem for recogni-
tion is accustomed to automatically compensating thegatshariations of a local
region and thus it relieves possible disturbing experidacéne user.

Table 6.1: Comparison with the existing approaches.

Method [zoomirfisheyé Dbifocal [perspective poly-focal | mesh| our
wall editingmethod
Shape yes | no | yes(focus) no no(focus) | yes [angle+
preserving|(focus no(transition) yes(transition)) rigidity
Smooth no | yes no no yes yes | yes
transition
Arbitrary no no no no no no | yes
lens shape
Interactive| no no no no no no | yes
metric design

6.6 Chapter Summary

We have developed a novel and interactive technique toaeRecus+Context vi-
sualization based on geometric deformations. Specificaléy develop from the
input a 3D lens-mesh and magnify the ROIs through deformatiothe lens-mesh.
Our lens design methodology and the prototype system nsiifat the geometric
deformation metrics greatly enhance the F+C visualizagod our approach is ex-
pected to transcend the traditional boundary of geometoidating and will benefit
data visualization.

The important features of our framework can be summarized BsShape-
preserving. The geometric deformation metrics are minimized so thatdkalting
details appear similar to their original counterparts. @etsic deformation also
generates a continuous transition region where the usegetaa smooth viewing
transition from the highly-magnified interior region to then-magnified exterior
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region; (2)Robustness. It enables the user to design arbitrary number/shape of
magnifiers to effectively display the entire ROIs for vigaation of multiple and
complex features. It also allows the user to interactivpgcify geometric metrics

for various visual effects; (Ffficiency. The computation is very efficient because
of our pre-factorization processing. Our experimentalitsshave demonstrated
that our lens, as a novel F+C technique, has great potetiaiany visualization
applications.
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Chapter 7

Four Dimensional Magnification
Lens

In the last chapter we introduce a novel geometry-based adefibr image fo-
cus+context visualization. The success inspires us tmdxias pipeline to vol-
ume visualization. The rapid advances in 3D scanning, adoun, and model-
ing techniques have given rise to the explosive increaselofwetric digital mod-
els with extra density information like MR, textured sohabdels [EBD4] or CAD
models containing materials. The great progresses in GRtkrang, and internet
bandwidth push forward a stronger-than-ever need for \igng large scale vol-
ume datasets in various science/engineering applicatMeanwhile, the explosive
emergence of various types of potable mobile devices (gmgrt phone) pursues
the visualization technique to display large scale modals @hysically limited
device screen. It requires us to non-homogeneously redifidesnt regions while
keeping the global shape of models within the screen space.

The traditional method is through the use of 2D screen regfanterest (ROI)
magnification techniques, which functions as “lens” aneésffa good strategy to
magnify a local region only. However, compared with magaiiien on the image
projected on the screen, it is more preferable to locally mfaghe 3D volume
datasets directly. For example, the user can translatteratut and visualize the
dataset from different angles without computing magniitcatagain and again.
Magnifying datasets directly is also necessary for manyalreality applications
(e.g., cultural heritage and walkthrough).

From practitioners’ perspective, an attractive magniicashould address the
following quality-centric aspectsShape-preserving.Shape (such as angle, rigid-
ity) plays a crucial role during magnification when imprayithe visual cognition.
The improper magnification distortion may cause seriousitivg confusion. We
should preserve the shape of both focus region and surnogiiedintext region and
global shape simultaneousIgmooth transition. Any visual gain from unifying
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the local detail with the surrounding context may easilyds if the transition be-
tween the focus and context regions is difficult to undekt&mple interaction.
In most practical applications, the user only prefers tosiswle user sketch (e.qg.,
draw a circle) to enclose the focus region. An ideal systeaukhsupport such
simple interaction.

However, it is a tremendous challenge to optimize the ousputltaneously
with respect to all of the aforementioned aspects. The ntuatanging side ef-
fect is that: in a 3D world, a local region’s magnification vitably compresses
the rest region and leads to distortion. More severely, theventional methods
are more likely to spread the distortion throughout the 38csp Any optimization
technique only moderates but never eliminates distorfid@anwhile, the existing
techniques consider neither shape-preserving nor smaatkition from the rig-
orous geometry’s point of view, thus lens distortions atelarable when features
become sufficiently intricate.

To tackle the above challenges, we are inspired by the faligudea: Rather
than magnifying ROIs and shrinking the rest region in the 3@ley we could in-
crease ROIs’ volume in the additional dimension withoutndiag the rest region.
Also, it is a well-known knowledge that the differential geetry theory and its
practical techniques (e.qg., surface parameterizatiamhaadle angle distortion rig-
orously and quantitatively. In this way, we examine thisvartional magnification
task from a completely innovative perspective of 3D/4D getignprocessing.

To achieve this goal, we propose a framework to simulate 4B ie order to
achieve local magnification while minimizing global angistdrtion. This frame-
work starts from transforming the 3D input into a 4D mesh véthinitial fourth
dimension for every vertex. Then we conduct 4D deformatibicivenlarges ROI's
volume while keeping the rest unchanged. Then, we autoaligtaeform the mesh
back into 3D space for other applications. Both steps requsrto seek distortion
minimization for each individual mesh element during defation. Specifically,
our contributions in this work include:

1. A framework to address the 3D volume dataset magnificatinrcontrast
to other possible deformation solutions, our method legsatiditional dimension’s
space absorb the volume magnification rather than spre#itiogghout the nearby
space in the original dimensions. Therefore, our resultreaemble the original
interior texture and the resulting transition between Riid the rest is also smooth
and seamless.

2. Techniques for distortion minimization with high dimesss. To achieve
this, we propose a piece-wise method to solve the harmonudifin on nD tetra-
hedral mesh. Meanwhile, we develop a flattening method toeintb@ 4D shape
flattening back into 3D and preserve the shape.

Our system has the very unique feature that we can presex\ghtpe around
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both focus region and context region/global shape. Our gégnrbased method
can also achieve distortion control and quantifying. Tfeeour system can ef-
fectively magnify and visualize volume datasets while kegplistortion unnotice-
able. Theoretically, our research first demonstratesitbajeometry is a powerful
tool for volume visualization and modeling, and has gre#&pibal for 3D graphics-
relevant tasks.

After discussing related literatures, a framework ovemiggiven in Sectiop 7]1.
On a global view, modeling the 4D magnification in Secfiodig.the first stage in
our framework, followed by flattening techniques in Secfio8. In Sectior 714,
we demonstrate our experimental results and document noonprehensive dis-
cussion, respectively.

7.1 Framework

This section gives a high level overview of our proposed #ramrk. Our system
takes as input a wide range of 3D textured solid models (Effj). 7For a tetra-
hedral mesh without texture, Takayama et al. [3] proposecethaod for interior
solid texturing modeling. For volumetric datasets (like @1d MRI) with texture
information only, we partition the given volumetric datassing a uniform grid.
Each vertex in the grid is associated with a 3D parameter, w). The original
volume dataset now becomes the volume texture of the unifpidn We further
decompose each grid into several tetrahedra and convartghbeto a 3D textured
tetrahedral mesh, as shown in Hig.]7.1(Bottom).

Now we can describe an arbitrary input by a uniform format. &&éne the
input as a tetrahedral medi = {T,E, V}. T = {ty,t,,...,t,} denotes the set
of tetrahedra, an¢lE, V' } denotes the set of edges and vertices. A mapping function
¢ maps vertices to the texture. In a discrete setting, eadewer = (p;, ¢;)
includes two items:p denotes vertex’s position (we ug” = (z,y,2) in 3D
andp?? = (x,y,2,h) in 4D). ¢; = (u,v,w) denotes a volumetric parameter
corresponding to the volume texture. Our output is a nevalemral mesivi©v
with updatedp and¢ for each vertex. Our framework includes the following steps

Step 1: Choosing ROIL.The user makes an initial choice about regions of inter-
est (ROIs). The shape/boundary of a ROI can be determinedbwrading sphere
that encloses user’s interested region, or, by a more aecR@l’s boundary. We
could detect an accurate ROI's boundary through automatimdbary extraction
operations (e.g., marching cube) or simple heuristic natho

Step 2: Magnification. In order to magnify the total volume in ROI, we gener-
ate a new 4D mesNI*? based on the initial mesh.

e (2.1) For each ROI, we deform the original 3D tetrahedratipanside the
ROI in the 4D space, with the ROI boundary as constraintshigbrto shape
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Figure 7.1: Inputs of our framework. Top: A 3D solid textuneddel is a tetra-
hedral mesh mapped by the color texture. Bottom: For a volucneéataset, we
partition the space into grids and each grid is uniformlycubed into tetrahedra.
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Figure 7.2: lllustration of the framework. Because it is ospible to visualize 4D

space, we use an image, a planar triangle mesh and a 3D #iaregh to repre-

sent a volumetric dataset, a 3D tetrahedral mesh and a 4héelral mesh. After
preprocessing, the input is a tetrahedral mesh with a vaiuerdataset as the tex-
ture. The tetrahedral mesh is first embedded into a high dsraeral space and we
magnify the total volume in a ROI through the additional dirsien. We solve the
harmonic function to recompute the mapping and transfeteaktire to the new

4D tetrahedral mesh. Finally, we flatten the 4D tetrahedegback into 3D for

flexible visualization.
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changes outside ROI's boundary). The total volume withalbundary is
magnified after this operation.

e (2.2) We recompute each vertex’s parameter to remedy theedfiatortion
during magnification. To achieve this, we solve the volumeétarmonic
function: A¢'? = 0, where¢'? is a texture transfer functioM*” — M.
Then for a vertex; = (pi”, ¢;) in M*”, we update its parameter as; =
o(0'%(piP)), whereg is the parameter on the original 3D mesh

Step 3: Flattening. In Step 2 we have already magnifidd to M*?. In order
to visualizeM*?, it is necessary to flatteNI*? back into a 3D mesh as the final
outputM“* and preserve the magnification effect. We uge>a3 rotation matrix
to rotate each 4D tetrahedraef’ back to a “flattened” 3D tetrahedraii . Then
we stitch all separate tetrahedra together as the sole ME%h and keep each
tetrahedron’s shape to roughly approximateX9 after stitching. We can execute
this step iteratively until getting a visually promisingstst.

e (3.1) We initially guess a 3D tetrahedral mesh (e.g., froml#st iteration’s
result, or by simple projection frolI*” in the first iteration). By comparing
between the “guess” tetrahedroff in M3 and rotation-generated “flat-
tened” tetrahedron!”, we can compute & x 3 Jacobian matrix; between
two corresponding tetrahedra. Then we can extract fdgra stretching-
free/rotation-only matribR,;.

e (3.2) We solve the linear optimization equation to deteergnery vertex’s
position inM°“ such that, in the resulting mesh, the Jacobian matrix betwee
the resulting tetrahedron and the “guess” tetrahedroroappatesk,;.

Fig.[Z.2 shows our framework in a step-by-step fashion. &ihts extremely
difficult to visualize the 3D-to-4D deformation in an intug way, we utilize 2D-
to-3D deformation to simply illustrate the entire frametwo2D image or triangle
mesh to mimic volume dataset / tetrahedral mesh, and detb&Ddriangle mesh
to mimic a 4D tetrahedral mesh.

7.2 3D-to-4D Magnification

In order to magnify in 4D space, we first extend the inplitby embedding it
into 4D space. For each vertex with a 3D positigt’ = (v, z), we expand
it to p*? = (z,y, 2, h) where the additional height = 0. We can imagine this
operation in the 2D layout as pulling a 2D plane from 2D to d 8&aworld with
shape unchanged (still a 2D plane but embedded in a 3D waddg@illing).
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7.2.1 ROI Magnification

Now we start to magnify ROIs. ROI is a region in the volume. EEROI encloses
a mesh patciM,, and we use)M,, to represent the boundary of patd,. To
magnify the ROI's volume, we seek a solution that could stretll vertices inside
M, to new positions while keeping other vertices unchanged.

In most practical focus+context visualization applicaipthe user only chooses
a general approximate region via simple user sketch and&ic lyeometric prim-
itives (like the region within a drawn sphere), enclosinghbmesh segment and
nearby context space as a reasonable proxy. In our systenseva sphere to en-
close the focus region and simulate lens in most applicatibhe choice of sphere
lens is natural and humans are more accustomed to it witerhestial understand-
ing compared with other geometric primitives. In practiwe, first visually choose
a general/approximate region, then we pick the centdrthis region as the center
of sphere associated with raditslt may be noted that; must be large enough to
enclose the entire ROI.

After setting the lens, we magnify its volume by moving eaehtex to a new
position along the fourth dimension. As shown in [igl 7.2,use a gaussian func-
tion to computeh; in eachp!” because the shape changing in such case is not
severe but smooth. For each vertex we compute g(1— %)ho, whered; denotes
the distance to the sphere centegg(r) denotes a standard gaussian functien
andh, is a user input to scale the magnification. As an alternatigi®n, we can
also use a standard 4D sphere instead of gaussian functamtdéonmodate user’s
visual preferenceh; = \/r? — d2.

In some applications, the user may seek for a lens with atranpishape. For
example, a focus object extracted from the volume may haweptex shape or
high genus boundary and the user prefers to use this exaotlhouto be the lens
(like Fig.[7.3(b)). To achieve this, we can generate a ceskaleton-like curved
pathC (e.g., [145]) and get the medial axis transform for everynpon the object
boundary. Each vertex; inside the lens associates the shortest distdnagth the
axis pathC. Now again we can use gaussian function to compyter each vertex:
hi = g(1— j—;)ho, whered,,, is the maximum distance value.

Large scale magnification may stretch/shear the tetraheand sabotage the
mesh quality. To solve this, we need to subdivide the higiifgtched tetrahedron
and compute the locations and parametexrss) for newly-inserted vertices. We
utilize barycentric coordinates and linear interpolatiomterpolate new positions
and parameters. For a pot inside a tetrahedron, its barycentric coordinate is:

1< pe,si >

4
fe= Nfidi=g——1r— (7.1)
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Figure 7.3: Two ways of lens shape design: (a) We can use a B&respwith a
centerc (red point), to enclose the entire ROI. The radius.igb) For an arbitrary
shape lens like an extracted object’s boundary (horse) frenvolume, its medial
axis can assist us to generate the lens. Each vertex in®dB@h associates a

distance valud; with the axis.

Figure 7.4: A tetrahedron and face normal vectors.
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Figure 7.5: Texture transfer. We use 2D layout to illustiiie effectiveness of
texture transferring. (a) Direct magnification withouteetgouting texture transfer.
(b) The result after recomputing texture transfer.

whereV is the volume and; = A;n;. A; indicates the area of one tetrahedron’s
face triangle (and each tetrahedron has four face triapglésing the barycentric
coordinates, we can keep the shape unchanged before andddiag vertices.
Although the texture interpolation may not be optimal urnithés strategy, we com-
pensate it by modifying the texture coordinates in the feillg texture transfer
step.

7.2.2 Texture Transfer

After the magnification step, the tetrahedral mesh in thedaegion has already
been magnified. Now we need to recompute the texture mappingrimize dis-
tortion around both focus and context regions. The textaester is necessary
because after the above magnification step, the tetrah&dtbe focus region has
already been significantly deformed to a different shapes #till using the un-
changed coordinates to map and interpolate the texturengilitably cause angle
distortion. Therefore we need to recompute and modify thieite mapping to pre-
serve the original texture shape after deformation. [Efg.uges a 2D example to
illustrate the necessity of texture transfer. In the lefufey direct magnification
without texture transfer produces severe distortion &ffecthe context region,
which will be significantly improved after texture transfes shown in the right
figure.

The objective of this step is to texture the new mesh usingtiygnal texture,
while preserving the interior texture shape. We have th@ahetral mestiM €
R? andM*P ¢ R* before and after the magnification. To transfer the texture
information fromM (with the texture functior) to M*?”, itis desirable to construct
a function¢!'? : M*” — M, that maps the entire spacelf*” ontoM. Then we
can describe the transferred texture mapping functioNdf as¢ o ¢'2.

We solve the following harmonic function by computing and minimizing
the mapping distortion:

Apt? =0, (7.2)
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2 2 2
whereA = 2, + 2 4 O

22"

In practice, soﬁ/ing equations for any but the simplest getvies must resort
to an efficient approximation due to the lack of closed-fomalgtical solutions in
the general setting. In our system we use discrete pieceewisrdinates to solve it
numerically.

1. InM*?, we shall use each vertex’s original 3D position as thedhjiaram-
eterg; = (u;, vi, w;) = (24, yi, 2i).-

2. To solve the harmonic functiahe'? = 0, we iteratively update the parameter
for each vertex(u;, v, w;) = > (v, wis(u;, vj, w;), whereNg(v;) is the
one-ring neighbor of;, (u;, v;,w;) is every neighbor's parameter;; is the
local coordinate associated with each neighbor. Meanwhédices on the
boundary of volumeM*” serve as Dirichlet boundary conditions (i.e., we
avoid changing their parameters).

3. ¢ now maps vertex; to one point location(u;, v;, w;) on M. Now we
assign the texture parameter on this poinMrto v;. This point must locate
inside one tetrahedran in M, and the parameter &f can be represented as
the weighted average of four vertices’ parameters;olVe again use Eq. 7.1
to compute the weight for four vertices on

fa

() (b)

Figure 7.6: (a) Cotangent coordinates on a triangle me3iCqtangent coordinates
on a tetrahedral mesh.

Local Coordinates. In our system solving Ed. 7.2 requires an affine combina-
tion as local coordinates;;. We require thad . . wi; = 1, and this partition of
unity property allows us to use every vertex of a polygon assidito interpolate
any function.
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Cotangent coordinate is a robust coordinate system andywided on triangle
mesh processing. We use two angles opposite to one edge fut®its cotangent
coordinate:kcp = cotZCBD + cotZCED for edgeEcp (Fig.[Z.6(a)). In our
volume-based system, we generalize the formula from thedte mesh onto the
tetrahedral mesh, using cotangents of dihedral anglessitppio the edge. Note
that, there are generally more than two tetrahedra shangsmgame edge. Suppose
for edgeF,,, it is shared byn tetrahedra thus it is correspondingrtodihedral
anglesp;,i = 1,...,n, we define the string energy:

n

Fuw = Y _ cotf);. (7.3)

i=1
Then for a vertex/;, we express its one-ring neighbor’s local coordinates as:
ki

=
Ng(i) ki

(7.4)

(A}Z'j =

As shown in Eq_713, determining local coordinates invok@® puting the dihedral
angles between two faces. We compute a dihedral angle in 3llag/s. In
Fig.[7.6(b), we can compute the cosine of the dihedral anefl@den two opposite
facesAABD and ACDB as the following multiplicative term (up to the product
of the norm of these vectors):

(ABAAD)-(CD ACB). (7.5)

However, in our 4D spackI*? this formula is not suitable for computing. It turns
out that in 4D space, cross product operatot fequires3 vectors rather than just
2. To avoid using\, we can use Lagrange’s identity to compute the above formula

(s u)(t-v)—(s-v)(t-u)=(sAt) (uAv). (7.6)

Now we can compute the cosine of the dihedral angle with theWing updated
formula:
(AB-CD)(AD  -CB) - (AB-CB)(AD-CD). (7.7)

7.3 Flattening

After the above step, we have already magnified the volumedifiRa 4D mesh
M*P. However, we have to flatten it back to 3D space for visudbreand other
typical applications. The key challenge in this step is tesprve every magnified
tetrahedron’s volume/shape during flattening. Inspire@bytechniques Iike|E4,
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@], we devise a two-step algorithm to handle 4D flatteninge fikét rotate each
4D tetrahedrort}” individually back to 3D space as the 3D tetrahedron (without
changing shape except rotation). We denote this “flattel3&i'tetrahedrort?".
Note that every tetrahedron is rotated back to 3D indepehdtus all t3” are
separate from each other without being glued together. €bersl stage includes
stitching them together into one piece as the original beftigal mesh structure.
During stitching we minimize the shape distortion such thatfinal tetrahedron in
My« preserves the shape df.

Rotating a 4D tetrahedrotf” back to a 3D tetrahedroty” is simple. The
challenge lies at keeping its shape closefoin the resulting mestMs“. Our
system affords two iteratively computed phases to achibigedgoal. To clearly
describe the algorithm, we dendtes the current iteration, thévi*, v¥, t¥ as the
tetrahedral mesh, a vertex and a tetrahedron ik ttkeiteration, respectively. Note
thatM* always keeps the same mesh structure as the input Medhitially, we
generate the mesMI® in the first iteration by removing the fourth dimension from
every vertex inM*”: For a vertex withp!? = (x;, y;, z;, h;) in M*P | we initialize
its position inM° asp3” = (z;, vi, 2:)-

In the first phase we compute the Jacobian deformation miatrigach tetra-
hedront?. The matrix represents the transformation from the loedliftattened
tetrahedront!” to its counterpart?. We represent this transformation a8 & 3
matrix J;. Generalized fro 17 6], we can compute this Jacobian masi

6
J(tF) = elf(e)”, (7.8)

i=1

wheree? and(el’)” are the corresponding edges betwegandt’ (Totally there
are six pairs of edges for every tetrahedron). This matriasuees two tetrahedral
deformation on two factors: rotation and scaling. Our gedbipreserve the shape
of each tetrahedron thus we allow a rotation-only matrixichltan be decomposed
separately by singular value decompositiorJ of

Jt") =USVT R, = UVT, (7.9)

whereR; is the rotation-only matrix.
Now in the second phase, we can update the position of eatdxugy mini-
mizing the following energy:

IT| 6

E' =3 wyllel, — Rieif |, (7.10)

i g=1
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Algorithm 3 The flattening algorithm.

I nput: Initial 4D nmesh M*P,
t hreshol de
Qut put: 3D mesh M°“
for all t}” € M*? do
/| Conpute a flattened tetrahedron
tI" = Flatten(t;)
end for
M = Initialize(M*?)
k=0,d=1NF_MAX
while d > e do
for all t¥ € M¥ do
/ | Conput e Jacobi an matri X
J; = Jacobian(t¥ tF)
/I Rotation-only matrix
R; =SV D(J;)
end for
/1 Build and solve Eq. 12
Assemble(L, R, VT)
VF# = SolveEquation(L, R, V)
/ | Conput e novi ng di stance
d = MazDistance(M*~!, MF)
E=k+1
end while
Mout — Mk
Qut put : Mo«
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where|T| is the set of all tetrahedray ;, ;" ; are6 edges on the tetrahedropand
t!, r;; is the weight associated with the edge. Now we rewrite thetfan in terms
of every edge vector:

EF =" bl |(vE, = vE) = Ry(v] — V)%, (7.11)

where we uses® — v* to represent every edge in Eq. 7.1, and ,,, are the
rotation-only matrix and weight of the tetrahedrgrwhich the edgdv’® , v*) be-
longs to. Note that an edgé€’, — v¥ may appear multiple times if it is shared by
more than one tetrahedron, and thus we use diffédRgnivhen the edge appears
more than once. Setting the gradient to zero, we obtain tie@ximg linear equa-
tion:

L(VHT = RL(V7T, (7.12)

where the matriX. represents the edge relationship of vertices (weightegl,hy
in Eq.[Z.11. The matriR includes all local matrixR;, V¥ and V" are vectors
including all vertices’ positions od* andM*. V* is the only unknown vector
here and solving this equation gives rise to the positioralafertices inV*.

After updating the positions, we compute the moving distaior each vertex
betweenM*~! andMP*. The distance is normalized to the diagonal length of the
volume. We record the maximum moving distance among alloestand the iter-
ation loop stops if this distance is smaller than the thrieshé/e set the threshold
to bele~*. In practice for all experimental results our algorithm vemes in at
most 2 iterations.

Weights. The choice of weight,,,,, in Eq.[7.11 depends on the importance of
a tetrahedron. From the cognitive perspective, tetrahamanand the ROI center are
more sensitive. Also a tetrahedron with large volume shbakk a higher weight
than the one with small volume, because the distortion onge leetrahedron is
more visually confusing. For each edge, we design the weight + h)Vk, .,
whereV is the average volume of connected tetrahefires, the averaged height
(h-values), and., ,, is computed from Eq.713.

Boundary Constraints. For a solid textured model, it is necessary to keep the
boundary shape. For a volumetric dataset, the user alserprif get a resulting
shape with an original square boundary. Therefore, we Keepadsition of every
boundary vertex unchanged during all iterations.

7.4 Experimental Results and Discussions

Our system can effectively provide magnification inforroatto the user, allowing
the user to get detailed focal region while maintaining titegral perception of the
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model. The results shown in the following figures demonsttaé power of our
techniques. Our experimental results are implemented daHz3Pentium-IV PC
with 4 Giga RAM.

We test our system on both solid textured models and volucradtasets. From
Fig.[Z.7 to Fig[Z.B, we test various solid textured modethsas watermelon, and
kiwi and visualize their original/magnification resultsigH7.4 demonstrates one
important application using our focus+context magnifmwati The figure shows
that more seeds appear after magnification. Also, the loigion of seeds (i.e.,
their relative positions between seeds) is preserved.eRiag particle distribu-
tion and relative positions during magnifying has many poét applications in
experiment-driven science and engineering (e.g., straichiology, game design,
etc.). Our focus+context magnification provides an effecthagnification lens for
this category of applications.

Fig.[Z.8 shows another example. Compared [128], in tvthe sphere-like
shape is severely distorted (e.g., the brain model is sevaistorted to an irregular
heart-like model), our lens successfully keeps the straafikiwi core still as the
spherical shape, and the shape of context region is als@aagel.

From Fig[7.9 to Fid. 7.13, we test several volumetric ddtasgmples: aneurism,
nucleon,lobb, bonsai and fuel. In these tests, we magnifieateht shapes like tu-
mor in Fig.[7.9, oxygen atomic nucleus in Hig. 4.10, 3D wavEim[7.11, trunk in
Fig.[Z.12, irregular air head in Fig._7]13. All experimen&dults clearly demon-
strate that our framework can keep the prominent globaleslhap the context re-
gion unchanged for viewers’ easy recognition. Meanwhilesig.[7.9 we demon-
strate an application on structure-aware visualizationgua model with many
branches (note that a model's geometric structure tygita$ many branches). We
magnify the tumor model while long branches (thinner vegssle preserved with-
out occlusion or relative position distortion. This examphows that our method
could be of great value to structure-critical applicati¢ag., oil pipeline optimiza-
tion and detection, indoor routing and planning, etc.).

Fig.[Z12 demonstrates the application of arbitrary shaps.| In most of our
examples we use the standard sphere shape lens. Howevee discussed in
Section 7.2, we can generate arbitrary shape of lens fromainaxis to preserve
features. For example in Fig. 7]12, we utilize the mediad akihe trunk to generate
a special lens for the trunk part. In the result, the trunk &gnified and the shape
is well preserved.

In Fig.[Z14 and Fig._7.15 we demonstrate more applicatioch sis medical
and physics experiment visualization with complicated eled We magnify the
bladder part in Fig. 7.14 and the resulting model presetvesontext region very
well. The user (doctor) can easily recognize each surragnpart (pelvis, artery,
etc.) without any difficulty. This advantage enables datorobtain the accurate
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Figure 7.7: The tetrahedral mesh of watermelon.

information and avoid misdiagnose. In Hig. 4.15 , we magtiiysmoke obstacle
while we can still recognize the shape and number of surriogrftbws.

Performance. The performance of our framework does not depend on the size
of texture/volumetric datasets but the size of verticehi@ihput tetrahedral mesh.
The statistics of examples are shown in Tdblé 7.1. About ctatipnal time, in
practice, we can interactively use a sparse low resolutidretetrahedral volume,
like in [@], to accelerate the computation and get a familte Furthermore, we
can pre-compute magnification and flattening on pre-dedignesh and later use it
on different volumes by just changing textures of the mesh.

Compared with other optical/voxel/resizing based methodsgeometry-based
method has the advantage that we can quantify the localrtitstdy computing
mesh angle distortion, instead of just displaying visutda§. In the conventional
lens design techniques, the user can only recognize thertitist through obser-
vation because of lacking an accurate measurement methodorBparison, our
focus+context lens defines two categories of distortiortge [bcal distortion and
global distortion. We define the local distortion as the amistortion in each tetra-
hedron. This metric can be quantified by computing the rdtib@single values,
ando, from the Jacobian matriX (The metric is normalized by the diagonal length
of the whole cube grid volume).

During our flattening step, one robustness issue involveisieng self-intersection.
This question is related to our flattening step. To theoaélidllustrate its robust-
ness on how to avoid self-intersection, we shall notice dhaflattening algorithm
is a 3D generalization from the surface methiod @ 66], Wwhécoriginally de-
signed to handle very complex and/or high genus surface hqulg with no self-
intersecting triangle in the output. In practice this mektlwan effectively handle
a model with very complex shape without self-intersecti@ompared with these
complex surface models, our model’s geometry and topoltoggtsire is rather sim-
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Figure 7.8: The tetrahedral mesh of kiwi.

ple: a flattened?? plane with a simple gaussian function in the middle. Thatmsea
that, the deformation is rather slight from this simple ihpua flattened output.
In our experimental results, the self-intersection dodsvisually appear. Conse-
guently, degeneration prevention is not practically neagsfor our mesh, thus our
system does not need to provide more mechanism to prevémtsesection.

Our flattening is computed iteratively. The convergencesdep on the moving
distance of every vertex between two iterations. We set dl smmber (10~%) as
the threshold. In each iteration, we compute this movintadise for every vertex
(normalized by the diagonal length of the cube grid volunid)e iteration stops if
the maximum moving distance is smaller than the threshold.rmbdel converges
in one or two iterations in all of our experiments. The reasiahe fast convergence
is that our tetrahedral mesh is very simple (just a volumeZSgane with a simple
gaussian function in the middle).

Comparisons. Currently most of magnification lens design focuses on 2D im-
age visualization only. Recently, Wang et al. [ﬂ128] iimoed a data reduc-
tion method which can achieve magnification effect. Comgaveth @], our
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Figure 7.9: The volumetric aneurism dataset.

(@) (b)

Figure 7.10: The volumetric nucleon dataset.

method’s most important advantage is that: we can presetethe focus region’s
shape and the nearby/global shape. Although the meth@] fBn preserve the
shape surrounding the focus region, it is incapable of pvesgthe nearby tran-
sition region (e.g., context), especially the global shafese phenomena appear
in the examples 0@8] and show their method’s major litioia For example in
[@] Fig.1 column 2, in order to magnify the focus regiore #ntire brain model
(i.e., the global shape) is distorted significantly: fromoaiginal sphere-like shape
to an irregular heart-like shape. In another focus+contextalization example in
[@] Fig. 8, the contour of skull is severely deformed. Saekiere distortion of
the global shape may cause misunderstanding/misdiag@)( By compari-
son, our technique preserves the context region and glbbalesmuch better than
]. For example, our method can keep the sphere boundiavgtermelon and
kiwi unchanged after magnification (FIg. V.7, Hig.]7.8). fidfere, our method with
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Figure 7.12: The volumetric bonsai tree dataset with magphifiunk.

an improved context region/global shape preserving céipatould be more useful
in the relevant applications.

Another comparison is on distortion controlling and quigirig. The distortion
mechanism in[128] is highly arbitrary, determined by wegghcube grid mag-
nification. Our method is geometry based and generalized fre surface con-
formal parameterization technique, thus we can controldhal angle distortion
much better from the perception’s point of view. Angle-oted shape persever-
ation and distortion minimization are more perceptuallygsing than using cube
grid in @]. Their cube resolution is very coarse with hregds or voxels inside
each cube. The linear interpolation of these voxels aftee@rid deformation will
cause additional angle distortion. Therefore, the cube djstortion metric is al-
ways inaccurate. Our system can visualize the distortidronty through visual
display but also quantifying such effect by computing argjktortion in a more
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Figure 7.13: The volumetric fuel dataset with magnified head

accurate way (which is the ratio of two singular values fr@oabian matrix).

We also compare our method with another focus+context tquh]. We
shall notice that our system handles much more complicatedasios than those
in [@]. The input in ] is only surface boundary modael,ishas no interior
or nearby information to display or magnify (all nearby @xitregions are empty
3D space). Consequentl 27]'s system can hide sevetertiims in the empty
context region without any visual information (since it iwisible). By compar-
ison, our input is 3D solid model or volume with multiple madgs/tissues, both
inside the focus region and outside such region. When we ifyagrfocus re-
gion inside our model, all nearby context regions shouldchdgstortion because
they also contain important tissue, material and shapernrdton. By compari-
son, our geometry-based method can accommodate more categlimodels with
well-preserved magnification results for interior and @wteregions.

Since our lens is geometry-based, it can effectively obdaetter global dis-
tortion minimization even on surface mesh when only conghavith ]. We
can simply modify our framework to support surface-onlgrigle mesh: we use a
polycube to cover the whole input mesh and then magnify thycpbe. Fig[7.16
compares our method with the result 27]. After setting tiser-selected fo-
cus region (red circle in Fig. 7.116(a)), the magnificatiosutegenerated by Wang’s
method preserves structure/shape in the focus area, lrregeaffects the context
region (e.g., the upper body, red circle in Hig. 7.16(b)) aricbduces visual arti-
facts, like the distorted proportion of body. By comparisoar technique keeps
upper/lower body proportion without obvious shape corfngor easy object cog-
nition (red circle in FigCZ.116(c)).
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Figure 7.14: The volumetric fuel dataset with bladder.

Figure 7.15: The volumetric fuel dataset with smoke.

Our lens is also similar to the mesh editing based methodcfwisi equivalent
to magnifying the surface boundary first and then interrodgthe interior texture).
However mesh editing techniques are not suitable for thesfecontext visualiza-
tion application because they focus on totally differemiunand task. First, mesh
editing requires users to operate on an exact mesh bounegnyesit. However,
in focus+context visualization applications, the desiregions can not be easily
detected, extracted, and described as the triangle mesél nkaat example, bound-
ary extraction is extremely difficult for most volumetricgalical datasets. In most
practical focus+context visualizations, the user onlyad®s a general/approximate
region via simple user sketch and/or basic geometric piigst(like the region in
a drawn circle), enclosing both mesh segment and nearbgxtosppace as a rea-
sonable proxy. Second, mesh editing only attempts to presbe shape of focus
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Table 7.1: Statistics of various test examples: # Tex, #lpixethe texture; # V, #
of vertices; Distortion, average distortions by all vezc
Model |[#Tex| #V Time| Distortion
melon | 643 600 | 1.5s| 0.05
Kiwi 643 880 2.1s 0.08
aneurisni 2563 303 315s| 0.07
lobb 413 203 46s 0.05
nucleon| 413 203 44s 0.04
bonsai | 256° |40 x 20% | 127s| 0.03
fuel 643 253 110s| 0.08
bladder | 1283 303 275s| 0.03
smoke | 256° 303 340s| 0.04

region around mesh boundary during magnification. The yearbtext region and
global shapes will be severely distorted without consitieng(In most cases, these
regions are just empty space in a typical mesh editing taBkjally, mesh edit-
ing only focuses on surface mesh’s shape, thus for intezidutes/tissues, we still
need to design a shape-preserving interpolation techinapeeserve the shape af-
ter boundary deformation. In Talle V.2, we compare our nikthith [127,/128]
and mesh editing methods. The table clearly shows that otiradés a more pow-
erful tool for volume data focus+context visualization.

o =y
o~
’\\

(b)

Figure 7.16: Comparison between Wang’s method. (a) Inpdtla@ focus region
(red circle). (b) ]’s method (courtesy @27]) andrigsulting context region
(red circle). (c) Our method and the resulting context redred circle).
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Table 7.2: Comparison with various methods. We test thadiitiab in follow-
ing aspects: Preserving the shape of focus region (Focusmedreserving the
shape around context region and/or global shape (ContegibR&lobal Shape);
Supporting solid model and/or volume dataset (Solid TextuQuantifying local
distortion (Distortion Quantifying); Allowing simple skeh to choose ROI (Simple
Sketch Input).

Model [128][127]Mesh EditingOurs
Focus Region yes| yes |interpolation yes
needed
Context Regionno | no empty |yes
Global Shape space
Solid Texture| yes| no no yes
Distortion | no | no yes yes
Quantifying
Simple Sketch yes| yes no yes
Input

7.5 Chapter Summary

In this chapter, A novel framework towards designing magatfon lens for volu-
metric datasets is introduced. Specifically, it starts ftbeninput of a 3D tetrahedral
mesh and magnify the ROIs in 4D space through the use of dioraisenhance-
ment. The geometry-centric methodology and the prototygeem manifest that
the 4D geometry greatly empowers the visualization tealesq This approach
is expected to transcend the traditional boundary of gewen@iodeling and is of
benefit to data visualization and visual analysis.

From the focus+context visualization application’s pexgjve, this framework
outperforms other methods with many unique features. ggystem, the geometry-
centric techniques offer users the immense power on shap@tibn minimization
and its quantitative control. Compared with other methadsin preserve the shape
not only around the focus region but also the surroundinges@megion and global
shape. Also, it enables the user to draw either simple skitehdrawing a sphere)
or arbitrary shape as magnifiers to effectively display th&re ROIs. This system
affords a wide spectrum of 3D input ranging from volume dettago solid tex-
tured models. All experimental results have demonstrdtatl4D lens, as a novel
magnification technique, has great potentials in many lisatéon applications.

In near future, this system can be extended to the exploratiahe utility of
4D geometric modeling/processing. At present, this fraoriwtill lacks of mech-
anism to handle sharp features in the input volume, espearaken shape features
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are on the boundary of the context region. For most visuazapplications, like
medical data visualization, this drawback may not be olsidlowever, for visual-
ization involving manufactured objects in game developinaaa traditional CAD,
this distortion may cause severe difficulty during objegbleration. It is desir-
able to study how to design better algorithms to supporttyfue of applications to
keep meaningful sharp features (e.g., shape crack) uneti@hging magnification.
Meanwhile, it can also be observed from the examples thattirent scheme is ca-
pable of handling higher-dimensional datasets, like deltured models equipped
with multiple vector fields. The method could be extendedupp®rt multi-scale
resolutions, and explore its application on more genezdlinodels like multivari-
ate splines and achieve parallel acceleration on GPU phatfo
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Chapter 8

Conclusion and Future Work

In this dissertation, we present our recent research sesuigoing research and fu-
ture research direction within our general volumetricrplbased modeling frame-
work. We seek novel modeling techniques based on trivaeatsor-product spline
schemes that would allow users to directly construct regulzariate splines over
3D surface models and preserve all useful properties. Btieally, it brings fun-
damental progress in understanding, analyzing and sokahgmetric modeling
problems. We also demonstrate its great potential in mahyatsée applications
like remeshing, visualization, etc.

8.1 Contribution Summary

In the above chapters, we have investigated and presenpdiderbased volumetric
modeling framework to solve 3D objects modeling problenetiBularly, we em-
phasize our research interest on regular domain (“cubo@li$or-product splines,
because of their favorite advantages. Combining volumdgcomposition, param-
eterization with trivariate splines, we successfully afidaively solve a variety of
problems in the areas of geometric shape design and modeling

Our specific contributions include:

1. We propose a new concept‘@eneralized poly-cube’(GPC). A GPC com-
prises a set of regular cube domains topologically gluedttoey. Compared
with conventional poly-cubes (CPCs), GPC is much more pfulvand flex-
ible and has improved numerical accuracy and computateffiaiency. We
propose an automatic method to construct a GPC domain ane:vedogh a
novel volumetric parameterization and spline constructramework based
on the resulting domain, which is an effective modeling tmolconverting
surface meshes to volumetric splines.
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2. We design a novel component-aware shape modeling mddgydoased on
tensor-product trivariate splines for solids with arligréopology. Instead of
using conventional top-down method, our framework adwexatdivide-and-
conquer strategy: The model is first decomposed into a sebraponents
and then each component is naturally modeled as tensouqirddvariate
splines. The key novelty lies at our powerful merging stygthat can glue
tensor-product spline solids together subject to higreopgibbal continuities,
meanwhile preserving boundary restriction and semi-stadmkss.

3. We propose a systematic framework that transforms desgdumetric raw
data from scanning devices directly into continuous splegresentation
with regular tensor-product structure. To achieve thisl,ge@ propose a
novel volumetric parameterization technique that coms$ran as-smooth-
as-possible frame field, satisfies a sparse set of direttcomestraints and
computes a globally smooth parameterization with iso4patar curves fol-
lowing the frame field directions. The proposed method chciently recon-
struct model with multi-layers and heterogenous mateneathsch are usually
extremely difficult to be handled by the traditional techres.

4. Aiming to promote new applications of our powerful modglitechniques
in visual computing, we present a novel methodology basedemmetric
deformation metrics to simulate magnification lens that learutilized for
Focus+Context (F+C) visualization. Compared with conweral optical
lens design (such as fish-eyes, bi-focal lens), our geotneideling based
method is much more capable of preserving shape featurel ésuangles,
rigidities) and minimizing distortion. We present a novetthodology that
integrates 4-Dimensional space deformation to simulatgnifiaation lens
on versatile textured solid models.

Practically, we demonstrate their power in many valuablgliegtions, and
show their great potential as enabling tools serving foeaesh in broad areas of
computer graphics, geometric modeling and processing. splure-based frame-
work is endowed with many advantageous properties for nmglebntinuous quan-
tities defined over multiple domains. Through our extenskgeriments, we demon-
strate that our framework is more efficient and effectivelving a variety of prob-
lems in computer graphics, image processing and other eegng applications.

8.2 Future Improvement of Our Work

There are many more immediate and valuable research togsesilon our current
framework. Here are some research topics that directlynedt®m work we have
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done in this dissertation.

We would like to further improve the current stage of our auwdtic generalized
poly-cube construction framework. Our proposed methoddeasin limitations
and demands further improvement in the future. First, thestracted poly-cube
mainly depends on the segmentation of the 3D model. Diftesegmentation may
resultin very different generalized poly-cubes. In our iempentation, we require to
generate component-aware segmentation before the pbl/aanstruction. How-
ever, in practice it is always extremely difficult to implemeomponent-aware
segmentation. Furthermore, a general component-awdrritge may lead to the
segmentation result in which many resulting components ggether around the
same point or edge. Such a point (or an edge) is an extraoydgioat and it is im-
possible to approximate continuous representations drsuch a point. Currently
in our existing framework, we use topology-based methdda (hants decompo-
sition) or skeleton based method to get component-awam@esggtion. These
methods have certain limitations and demand further imgmaant. First, pants
decomposition is designed to handle surface modeling amckepsing like surface
mapping. Pants decomposition is directed by topology kadge only so it is not
natural to generate component-aware knowledge. Meanyithieskeleton of 3D
model could be very complicated with arbitrary branch catioa types in real
applications. However pants decomposition is suitable'3doranches merging”
only (degree equals to 3 in the skeleton). One potentialtisolus to first com-
pute the skeleton representation of the given 3D surfacen e regularize for
the generalized skeleton so that we can convert any menrgpes t(with arbitrary
branches merging) into the regular cube domain withougexttinary points. By
doing so, our generalized poly-cube can handle any shaperainy complex skele-
ton in a divide-and-conquer fashion. An optimized “skefeto-cube domain” con-
version needs to consider three parameters: the numbeanéles, the length of
each branch, and the angle between two branches (e.g.rédeti@te distribution of
branches), which will allow us to acquire improved poly-eubapping and thereby
to better spline fitting, texture mapping and synthesis dhdrdurther applications.

We also would like to further strengthen our current polpe&uramework.
Within the existing framework, users are not allowed to clisespecify the ex-
traordinary (corner) points of the poly-cubes on the inpDtsRirfaces. The cube
generation mainly depends on the model’s topology. Coresgty) no important
geometric feature exists in the domain representation. ttWengt to provide mean-
ingful help to integrate the sharp feature information itite parametric domain.
This can also improve the quality of the poly-cube maps. Qossible way is to
automatically extract the sharp edges and corners firstn Weeseek to map the
sharp edge to the cube domain edge, corner to the cube doorair.c

During the research of volumetric modeling, we also reahzae current existing
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papers only take surface feature into consideration. We a@tempt to integrate
the interior feature processing into our generalized molge framework. For 3D

surface models, one important interior feature is midestnee plane. Itis analogous
to the medial axis of the 2D models. We seek to generate thequile domain

integrating sharp features on the mid-structure plane. gaential solution is to

first compute the skeleton representation of the given 3Easermodel. Then we
cut the skeleton’s orthogonal plane along each point onkbket®n. The cutting

plane may include feature edges cutting from the mid-atinecplane and we use
them to decompose each plane into several quadrilaterdleaed hen we merge
the neighboring cutting planes’ quadrilateral meshespalg-cubes.

Hierarchical structure and continuous representatiotveseadvantages of our
volumetric spline framework. Naturally we want to see thadilities on relative
physical-based applications like mechanical analysispsideformation, fluid dy-
namics, collision detection, etc. First, hierarchicalisture can allow us to imple-
ment a fast simulation on the low resolution model and theregee an accurate
result on a high resolution model. This ability enables @mfework to provide
the flexible performance on the limited computation unitidevike smartphone;
Continuous representation allows us to implement moretaed accurate physics
computation. For example, by doing computing like FEM/FDtlois framework,
the number of degree of freedom will be much fewer, which wiéireby lead to
faster and better fluid simulation and collision/detection

In addition, the regular structure of cubes will for sureilftate the parallel
based applications like volume rendering, optimizatiandfsimulation, FEM, etc.
The highly data-parallel nature of tensor-product spliomputation also enables
GPUs to use local memories and multi-cores more directlgdonputation, achiev-
ing higher arithmetic intensity. To utilize it, general uate modeling computations
must be recast into hardware-specific terms in order tazatthe underlying hard-
ware. In current popular mobile device architecture, thenrhardware system is
CPU+GPU. Therefore, it requires specific design to assiffardnt operations on
two processing units and minimize the communication betmteem. However,
not every scientific computation in volumetric modeling ¢ake full advantage of
the CPU+GPU structure, especially the modeling of compkongetric shapes of
arbitrary topology, due to the lack of inherent regularttyisture (or parametric do-
main). Our regular domain can bridge the gap by introducwoig-pube mapping of
complex shapes onto regular parametric domain, such teatdimplex geometric
models can be represented as 3D geometric texture in ortlee G&FPUs to perform
the general data registration, modeling, and visualiratésks in a high parallel
fashion. The GPU-centric data formats and models will emalhé efficient im-
plementation of shape registration, solid modeling, nredtle data modeling via
reverse engineering, simulation/analysis, and modehblization. Meanwhile, the
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efficient GPU-based algorithm will enhance existing altjon functionalities with
improved parallel performance in order to handle largdes@mplicated models.

We also expect to extend our current trivariate generalmag-cube splines to
higher dimensional splines through the volumetric parantion on volumetric
domains, and seek potential applications on heterogenabuisie modeling, sim-
ulation, finite element analysis and scientific visualiaati The high dimensional
model (e.g., 4-Dimensional domain) provides extra flekiyptio deform and mag-
nify the volumetric model while still preserving the propes (like shape, geom-
etry, physical laws, etc). The high dimensional framework provide improved
visualization methods for solid model and facilitate reser@ations of the design,
testing of complicated mechanical objects and will alsdlitate the specification
of material distributions.

8.3 Concluding Remarks

These directions for future work, and the many other opeblpros that exist, are
sure to encourage interesting and exciting research fosyeaome. As technical
difficulties are overcome, and existing computational athms are improved, the
applications will increase in variety and number. We aregéel to have taken the
first step in uncovering the heretofore untapped potenyigdresenting our frame-
work to modeling and visualization. It is our hope that tintegrated approach and
demonstrated applications will foster continued inteeasl research in this area.
We look forward to the continued exploration of modeling @neldict a successful
future on it.
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