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Abstract of the Dissertation

Theory of nuclear matter of neutron stars and core
collapsing supernovae

by

Yeunhwan Lim

Doctor of Philosophy

in

Physics

Stony Brook University

2012

Nuclear astrophysics is essential to microphysics for the complex hydrodynamics
simulation of numerical supernovae explosions and neutron star merger calcu-
lations. Because many aspects of equation of state (hereafter, EOS) including
symmetry and thermal properties are uncertain and not well constrained by ex-
periments, it is important to develop EOS with easily adjustable parameters.

The purpose of this thesis is to develop the nuclear matter theory and an EOS
code for hot dense matter. This thesis has two major parts. In the first part, we
develop a Finite-Range Thomas Fermi (hereafter, FRTF) model for supernovae
and neutron star matter based on the nuclear model of Seyler and Blanchard,
and Myers and Swiatecki. The nuclear model is extended to finite temperature
and a Wigner-Seitz geometry to model dense matter. We also extend the model
to include additional density dependent interactions to better fit known nuclear
incompressibilities, pure neutron matter, and the nuclear optical potential.

Using our model, we evaluate nuclear surface properties using a semi-infinite
interface. The coexistence curve of nuclear matter for two-phase equilibrium
is calculated. Furthermore we calculate energy, radii, and surface thickness of
closed shell nuclei in which the spin-orbit interactions can be neglected. To get an
optimized parameter set for FRTF, we explore the allowed ranges of symmetry
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energy and the density derivative of symmetry energy. We summarize recent ex-
perimental results, astrophysical inference, and theoretical pure neutron matter
calculations. The correlation between symmetry energy and the surface symme-
try energy in liquid droplet model is also obtained. The beta equilibrium matter
is used to model the neutron star crust.

The second part of the thesis is devoted to construction of a code to compute
the nuclear EOS for hot dense matter that would be distributed to astrophysics
community. With this code, users will be able to generate tables with adjustable
parameters describing the symmetry, incompressibility, and thermal properties
of nuclear matter. We use the liquid droplet approach to generate thermody-
namically consistent nuclear EOS. table. Compared to previous attempts, we
include neutron skin, Coulumb diffusion, and Coulomb exchange. In addition,
we compute the surface tension as a function of proton fraction and temperature
consistently with the bulk energy. For comparison, we generate an EOS table
using the SLy4 non-relativistic Skyrme force model. For both FRTF and SLy4,
more than 10 % of entries of EOS tables consists of nuclei, alpha particles, and
nucleons.
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Chapter 1

Introduction

Stars give us light by burning hydrogen fuel. The simple Einstein’s equation, E = mc2 is
behind sun’s energy. Hydrogen turns into helium and helium burns into carbon, nitrogen,
and oxygen. Finally, the neutron rich elements iron is formed. After an iron core forms, a
star begins to collapse since it cannot support itself against gravitational collapse. During
this process, which as known as a Type II supernova explosion, a neutron star is formed if
the mass of main sequence star is about 8 ∼ 20 M⊙. Stars with greater than 20 M⊙ are
thought to form black holes. An enormous amount of energy (∼ 1053 erg) is released from
supernova explosion. The source of the energy is gravitational binding energy and the most
of the energy is carried away by neutrinos. Right after core collapse, the initial temperature
of neutron star is believed to be 1011K [38]. Neutron stars cool down quickly by neutrino
emission. After the temperature drops below the Fermi temperature, neutron star is cold.
The existence of neutron stars was first suggested by Walter Baade and Fritz Zwicky in 1934
[38] only a year after the discovery of neutrons by James Chadwick. Landau, Bohr, and
Rosenfeld discussed the idea of one giant nuclei in the core of a star before the discovery of
neutron [67] but their paper was not published.
A neutron star has mostly neutrons (∼90%), protons and electrons. If the chemical poten-
tial of electrons is greater than the rest mass of kaon, there might be kaon condensation so
the kaon replaces the role of electrons for charge neutrality. As the density increases, the
chemical potential of neutrons and protons can be greater than the rest mass of hyperons,
then hyperons (Σ+,−,0, Λ, Ξ−) might appear.
A neutron star is divided into an inner core, outer core, inner crust and outer crust. The
outer crust consists of lattice nuclei with free gas of electrons. As density increase, the chem-
ical potential of neutrons becomes greater than zero and neutrons drip out of heavy nuclei.
Thus, the inner crust has a free gas of neutrons with lattice nuclei. Between the boundary
of inner crust and outer core, heavy nuclei become exotic. Because of high pressure, the
spherical nuclei become oblate to minimize the energy, and as the density increases more,
oblate nuclei merge together to become a cylindrical phase, a cylindrical phase becomes a
slab phase, a slab phase turns into a cylindrical hole, and a cylindrical hole becomes a spher-
ical hole, and finally a spherical hole can become uniform nuclear matter. The outer core
thus does not have any nuclei structure. The inner core, which is more dense than the outer
core, is believed to have exotic nuclear matter. Some nuclear physicists argue that there
might be quark matter in the core of neutron stars. Many of them use the MIT bag model

1



to explain the existence of quark matter but it’s still an open question. MIT bag model
describes the quarks are freely moving in a bag. If the distance between quarks is increases,
the force increases so strong that they cannot get out of the bag. To maintain the bag,
negative pressure is introduced, which is known as the bag constant (B). Since we cannot do
any experiment to reveal the existence of quark matter at such high densities on the earth
yet, the theoretical prediction of quark matter depends on the parameters, especially the
bag constant in quark matter.
One thing is for sure is that the densities of neutron stars are extremely high. It is believed
that the central density of the core in neutron stars is 4ρ0 ∼ 10ρ0

†, where a ρ0 is the nuclear
saturation density, 3× 1014g/cm3.
The typical radius of neutron star is around 10km. The mass of neutron is about 1.2M⊙ to
2.0 M⊙. Since neutron stars are so compact, the surface gravity of neutron stars is extremely
high, about 2×1011 times earth gravity. In these conditions, general relativity is essential to
find out the mass-radius relation of neutron stars. The Tolman-Oppenhimer-Volkov (TOV)
equation solves the internal structure of spherically symmetric neutron stars. Thus, the
nuclear physics and the TOV equation play together to give mass-relation of neutron stars.
The nuclear physics beyond ρ0 is not known well and the central density is much higher than
ρ0, various nuclear force models give different mass-radius relation of neutron stars. Fig.

Figure 1.1: Mass and radius relation of cold neutron stars [19]. Each nuclear force model
shows different mass-radius relation of neutron stars.

1.1 shows the mass-radius relation of cold neutron stars using various nuclear force models.

†ρ0 ≃ 0.16fm−3. ρ0 denotes nuclear saturation density which is central density of heavy nuclei. But, in
general, it is a nuclear parameter to be determined from standard nuclear matter properties.
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Since the mass of neutron star is dominated by its core and the density of the core is much
beyond the nuclear saturation density, the nuclear force models should be investigated more
than the current level of understanding.
In contrast to neutron stars, supernovae explosions and neutron star mergers result in ex-
tremely high temperature. Thus, we need to know thermodynamic properties of nuclear
matter for a wide range of densities (10−9 ∼ 1.6/fm3) , temperature (0 ∼ 30 MeV), and
proton compositions (0 ∼ 0.56). This thesis concerns nuclear physics under such extreme
conditions, which are far beyond those achievable by nuclear physics experiments on earth.
Hence, a theoretical extrapolation is needed for high density, high temperature, and low pro-
ton fraction. For zero temperature, the extrapolation of nuclear properties at high density
density (. 10ρ0) can be checked by the mass-radius relation of neutron stars [53]. Un-
fortunately, the extrapolation to high temperature cannot be checked with anything from
experiment or astrophysical observations at this time.
The nuclear thermodynamic information is called ‘Nuclear Equation Of State’ (EOS) and
provided as a tabulated form because of memory constraints. The table should contain free
energy density, pressure, entropy as a function of baryon number density, proton fraction,
and temperature.
For the simulations of supernovae explosions, only a few EOS tables available now. The most
famous one is Lattimer & Swesty [22] (LS) EOS in which they combined non-relativistic po-
tential model with liquid droplet approach. In their EOS they considered phase transitions
from three dimensional nuclei to three dimensional bubble. It is difficult in their code to
arbitrarily vary nuclear parameters.
H. Shen et al. [59] (STOS) built a table using relativistic mean field model (RMF) and
Thomas Fermi approximation. To perform the Thomas Fermi approximation, they employed
the parametrized density profile method, in which density profile follows a mathematical
polynomial (see chapter 5) so to avoid the numerical difficulty of differential equations. A
new version [60] is available now and it contains hyperon interactions.
G. Shen et al. [61] (SHT) provided a few version of tables using RMF parameter sets. They
employed the Hartree approximation to find the nuclear density profile. It is difficult and
very time consuming to develop another table using their code. Table 1.1 show the range of

Table 1.1: Range of Tables

LS 220 STOS SHT

ρ(fm−3) 10−6 ∼ 1 (121) 7.58× 10−11 ∼ 6.022 (110) 10−8 ∼ 1.496 (328)
Yp 0.01 ∼ 0.5 (50) 0 ∼ 0.65 (66) 0 ∼ 0.56 (57)

T (MeV) 0.3 ∼ 30 (50) 0.1 ∼ 398.1 (90) 0 ∼ 75.0 (109)

the independent variables and the number of grid points (number in the parenthesis). STOS
tables deals wide range of densities and temperature. The number of grid points, however,
is small so that the interpolations from that table might not be suitable for the simulation,
which needs high thermodynamic consistencies. That is, except for the LS EOS, the pres-
sure and entropy densities from STOS and SHT are obtained from the numerical derivatives
(P = −ρ2 ∆F

∆ρ
, S = −∆F

∆T
). But this numerical formalism might not give enough accuracy for
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the thermodynamic identity, P = µnρn + µpρp−F if the grid spacing is relatively large. On
the other hand, the LS EOS, which used the liquid droplet approach, provides analytic solu-
tions for thermodynamic variables. The liquid droplet approach enables us to get algebraic
solutions for all thermodynamic derivatives. All three approaches used Wigner-Seitz cell
method in which one heavy nucleus presents at the center of the cell and electrons, nucleons,
and alpha particle exist around the heavy nucleus.
Recently, researchers are trying to build EOS using multi-component nuclei. That is, for
given independent variables (ρ, Yp, T ), several types of nuclei are assumed present. Since the
electron capture or neutrino weak process are depends on average mass number (〈A〉), it is
assumed that this multi-component nuclei method would give better EOS than the single
heavy nucleus method. Hempel et al. [63, 64] used relativistic mean field models (TM1,
TMA, FSU Gold) and nuclear statistical equilibrium method to add the alpha, deutron, and
triton. Blinnikov et al. [65] used Saha equation to find the fraction of multi-component
nuclei and nuclear mass formula. Furusawa et al. [66] also used Saha equation and rela-
tivistic mean filed model. They also considered phase transition using geometric function.
Except for Hempel et al., these EOS tables are under construction. Hempel et al. EOS
provides the fraction of alpha, deutron, and triton fraction ; however, their fraction are so
small that their presence does not effect 〈A〉 very much. Furthermore, even though the idea
of multi-component nuclei may provide better information for weak interaction, their choice
of nuclear force model might not satisfy observations of the mass-radius relation of neutron
stars. The recent discovery of a 1.97M⊙ neutron star (PSR J16142230) and the Steiner et al.

Figure 1.2: Mass and radius relation of cold neutron stars in EOS table. [19]. Only LS220
can satisfy 1.97M⊙ neutron star and the mass-radius criteria.

[53] mass-radius criteria exclude most of the tabulated EOSs. Fig. 1.2 shows the mass-radius
relation in which we can find from EOS table. Since the Shen et al. use TM1 parameter, they
gives the same mass-radius relation. In general, RMFs give larger radii for given neutron
star’s mass than the non-relativistic potential models. FSU Gold was invented to reduce the
radius for a given mass of neutron star, but it cannot reproduce 1.97M⊙ neutron star. As
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shown in Fig. 1.2, LS220 is the only one EOS which satisfy both astrophysical phenomena.
Our research starts from inadequacy of current EOS to model allowable variation in uncer-
tain nuclear physics. For this end, we investigate the nuclear force model (Finite Range
model) and extract the best parameter set which explains nuclear phenomena such as ener-
gies and radii, as well as pure neutron matter and astrophysical data. With the improved
nuclear physics model, we build the new EOS tables which can be used for proto-neutron
star, supernovae explosions, and binary mergers which involves neutron star.
We extend the Lattimer-Swesty [22] approach to produce user friendly code to incorporate
additional physics and adjustable parameters. User will be able to generate tables with only
a few cpu hours to compute. This code development (Chapter 6) is contained in the second
part of the thesis.
In order to calibrate this liquid droplet formalism, we employ the FRTF model which per-
mits the computation of nuclei immersed in dense matter. This is a more sophisticated
approach but still too computationally intensive to generate a complete table. In addition,
it, as well as the tables of H.Shen and G.Shen, predicts complex behaviors of matter near
the transition between nuclei and uniform matter. This complex behavior results from very
small free energy difference between configurations with different mass numbers. In reality,
matter near the transition will be smoothed because of the thermal fluctuation. The liquid
droplet approach is more suitable in this region. However, it is necessary to calibrate to
liquid droplet model so that it successfully models at low densities where laboratory data
is available. Another great advantage of making tables using the liquid droplet approach
is that it allows the analytic prediction of thermodynamically consistent derivatives. The
table would have the wide range of variables such as ρ : 10−10 ∼ 1.6 fm−3, T : 0 ∼ 60MeV,
Yp : 0 ∼ 0.6 with more grid points than other tables.

1.1 Organization of Chapters

This work focuses on developing a Finite Range force model and its application to neutron
star and making nuclear equation of state (EOS) table. Chapter 2 explains the Finite
Range Thomas Fermi model of Yukawa type using a truncated model. Chapter 3 improves
the truncated model in Chapter 2. Chapter 4 investigates another type of Finite Range
model - the Gaussian type. Chapter 5 illustrate nuclear physics and neutron stars. Finally,
Chapter 6 is devoted to making nuclear EOS table. The appendix describes some numerical
approximations that we developed.
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Chapter 2

The Finite-Range Force Model

† Nuclear physics plays an important role in the understanding of astrophysical phenomena
such as neutron stars and supernovae explosions. As described in the introduction, it is
really important to choose the good nuclear force model to make E.O.S. tables. There are a
lot of kind of nuclear force models, and different types of nuclear physics model can describe
the same or different nuclear phenomena. However, the number of models can be used to
make E.O.S. table is limited. We explain some of nuclear force models which is related with
making E.O.S. table briefly. Our finite-range force model will then be described after the
brief explanation.

2.1 Schematic Nuclear force model

Near the nuclear saturation density at small temperatures, the energy density of the uniform
nuclear matter can be approximated by [56],

E(ρ, T, x) = ρ

[
−B +

K

18

(
1− ρ

ρo

)
+ Sv

ρ

ρo
(1− 2x)2 + a

(
ρo
ρ

)2/3

T 2

]
(2.1)

where B ≃ −16 MeV is the binding energy per baryon, x is the proton fraction, Sv is the
symmetry energy, K(≃ 230MeV) is the nuclear incompressibility, and a(≃ 1/15MeV−1) is
the nuclear level density parameter. Mathematically, this is just a Taylor expansion for ρ,
x, and T at ρ = ρo, x = 1/2, and T = 0 MeV.
From thermodynamic derivatives, we can find the pressure, chemical potentials, and entropy

†This chapter is based on Y. Lim and J.M. Lattimer’s work. This part will be submitted to the journal
Nuclear Physics A.
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density:

p =
ρ2

ρo

[
K

9

(
ρ

ρo
− 1

)
+ Sv(1− 2x)2

]
+

2a

3
ρ

(
ρo
ρ

)2/3

T 2 ,

µn = −B +
K

18

(
1− ρ

ρo

)
+ 2Sv

ρ

ρo
(1− 2x)− a

3

(
ρo
ρ

)2/3

T 2 ,

µ̂ = 4Sv
ρ

ρo
(1− 2x) ,

S = 2aρ

(
ρo
ρ

)2/3

T .

(2.2)

These schematic model quantities give reasonable features of nuclear matter, such as the
pressure vanishes both at ρo and zero density, and becomes negative between them. The
proton and neutron chemical potentials approach negative infinity in the limit of low density.
This schematic model can be used for a test problem to generate coexistence curve of dense
and dilute matter and to find the critical temperature of coexistence. This model gives
qualitative numbers so we can estimate the range of validity of realistic models.

2.2 Realistic nuclear force model

Even though the schematic nuclear model can give a good estimation of nuclear matter, it
can not be used in the low density (ρ < 0.01fm−3) and high temperature (T > 5 MeV)
region. Instead we need to rely on more sophisticated models which explain both the high
and low density regions, namely the widely used non-relativistic potential and relativistic
mean field models of the nuclear force.
As pointed out in Steiner et al. [32], the total Hamiltonian density is the sum of the
kinetic energy density and local density dependent interaction energy density. These local
properties simplify the numerical calculation of nuclei and nuclear matter since we can apply
the variational principle without any mathematical or numerical difficulties.
Both potential and mean field models explain the properties of a single nucleus very well.
However, we need to be careful when applying those models in high density regions (see
section 6.3).

2.2.1 Non-Relativistic Potential Model

The non-relativistic potential model, which is often called the ‘Skyrme force model’, is a
density and momentum density functional in a mathematical sense. In this model, the
Hamiltonian density is composed of bulk, gradient, Coulomb energy, and spin-orbit coupling
components,

H = HB +Hg +HC +HJ . (2.3)
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The bulk part is divided by kinetic energy density, two-body interaction, and many body
interactions of nucleons [32],

HB =
~2

2mn

τn +
~2

2mp

τp

+ ρ(τn + τp)

[
t1
4

(
1 +

x1
2

)
+
t2
4

(
1 +

x2
2

)]

+ (τnρn + τpρp)

[
t2
4

(1
2
+ x2

)
− t1

4

(1
2
+ x1

)]

+
t0
2

[(
1 +

x0
2

)
ρ2 −

(1
2
+ x0

)
(ρ2n + ρ2p)

]

+
t3
12

[(
1 +

x3
2

)
ρ2 −

(1
2
+ x3

)
(ρ2n + ρ2p)

]
ρǫ ,

(2.4)

where x0, . . . , t3, and ǫ are parameters specifying the interaction strengths, which are deter-
mined from nuclear data fitting.
The density gradient term, which is responsible for the surface tension of a single nucleus,
is given by [32]

Hg =
1

2

[
Qnn(∇ρn)2 + 2Qnp∇ρn∇ρp +Qpp(∇ρp)2

]
, (2.5)

where the Q parameters are given by

Qnn = Qpp =
3

16

[
t1(1− x1)− t2(1 + x2)

]
,

Qnp = Qpn =
1

8

[
3t1

(
1 +

x1
2

)
− t2

(
1 +

x2
2

)]
.

(2.6)

The Coulomb energy interaction is

HC(r) =
e2ρp(r)

2

∫
d3r′

ρp(r
′)

|r− r′| −
3e2

4

(
3

π

)1/3

ρp(r
′)4/3 , (2.7)

where the first term is a classical Coulomb energy interaction, and the second term is an
exchange Coulomb interaction.
The spin-orbit interaction is given by

HJ =− W0

2
(ρn∇ · Jn + ρp∇ · Jp + ρ∇ · J)

+
t1
16

(J2
n + J2

p − x1J
2)− t2

16
(J2

n + J2
p + x2J

2) ,

(2.8)

where Jn =
∑

n,i ψ
†
iσ × ∇ψi, J = Jn + Jp. There are more than 100 parameter set in this

Skyrme force model. Combined with the Hartree-Fock† approximation, this Skyrme force

†In the Hartree-Fock or Hartree Approximation, the trial wave function is assumed as initial guess and
keep iterating until EN+1 − EN < δ, where δ is a tolerance for energy difference. This is a mathematical
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nuclear energy density functional is quite successful in demonstrating the binding energy,
root mean square radius, and charged radius of a single nucleus. This force model, however,
should be chosen carefully when studying high density (& ρ0) region (see section 6.3).

2.2.2 Relativistic Mean Field Model

At high density, for example n = ρ0, the Fermi momentum at zero temperature is given as

pfc = ~c(3π2ρ0)
1/3 ∼ 330MeV . (2.9)

Therefore, the expansion of the total energy
√
m2c4 + p2c2 to mc2+ p2

2m
is not valid anymore,

and the relativistic effects need to be considered.
The relativistic mean field model explains the origin of nuclear force from ρ, ω, and σ
meson exchanges. In the mean field model, the Lagrangian formalism satisfies relativity and
causality, and is given by [32]

L =Ψ̄

[
i∂/ − gωρ/ · τ −M + gσσ − 1

2
(1 + τ)A/

]
Ψ+

1

2
(∂µσ)

2

− V (σ)− 1

4
fµνf

µν +
1

2
m2
ωω

µωµ −
1

4
BµνB

µν +
1

2
m2
ρρ

µρµ −
1

4
FµνF

µν

+
ζ

24
g4ω(ω

µωµ)
2 +

ξ

24
g4ρ(ρ

µ · ρµ)2 + g2ρf(σ, ωµω
µ)ρµ · ρµ

(2.10)

where V (σ) and f(σ, ωµω
µ) are

V (σ) =
1

2
mσσ

2 +
κ

6
(gσσ)

3 +
λ

6
(gσσ)

4 ,

f(σ, ωµω
µ) =

6∑

i=1

aiσ
i +

3∑

j=1

(ωµω
µ)j .

(2.11)

Here, Aµ is photon field, fµν = ∂µων − ∂νωµ, Bµν = ∂µρν − ∂νρµ, and Fµν = ∂µAν − ∂νAµ.
Like a non-relativistic potential model, the RMF is useful to study single nucleus’ properties.
It seems that the RMF should be used to study nuclear physics at high density region since it
is relativistic and the hyperon’s appearance can be controlled by coupling constant. However,
it does not show the proper mass and radius relation of neutron stars. Therefore, we are not
focused on this RMF formalism anymore.

2.3 Finite-Range Model and its Extension to Finite

Temperature

The interaction between nucleons is short ranged, on the order of 1 ∼ 2 fm. To take into
account this short ranged interaction, we need to add the density dependent interaction form.
The π meson exchange model was successful in accounting for the nuclear interactions, and

analogue of ‘Cauchy criterion’
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we can get the e−r/r0

r
interaction form from the π exchange model. This idea was enlarged

by several authors [24, 30]. We re-examine this idea and add new interaction terms to reflect
the recent nuclear experiments and to explain the mass and radius of cold neutron stars.

2.3.1 The Interaction Energy

We begin with the truncated version of the Myers & Swiatecki [26] finite-range model,
which is an extended version of the Seyler & Blanchard [30, 31] finite-range model. We will
generalize this force to finite temperatures. Initially, we ignore the Coulomb contributions to
the total energy. The symmetric matter saturation density is ρo, and the zero-temperature
Fermi momentum Po is (Po/~)

3 = 3π2ρo/2. The zero-temperature kinetic energy is To =
P 2
o /2mb where mb is the baryon mass. We will assume the interaction energy is

W = − 1

h3

∫
d3r1

∫
d3r2f(r12/a)

∑

t

[∫
CLft1ft2d

3pt1d
3pt2+

∫
CUft1ft′2d

3pt1d
3pt′2

]
(2.12)

where fti is the Fermi occupation function for particle ti †. The position index i = 1 or 2 and
the isospin index t = n or p. The notation is such that if t = n then t′ = p and vice versa.
pti is the momentum of the nucleon at position i of species t. The finite-range function is
taken to be Yukawa-like,

f(r12/a) =
1

4πr12a2
e−r12/a, r12 = |r1 − r2|. (2.13)

The finite-range function f is normalized so that
∫
d3r2f(r12/a) = 1 for all r1. The range

parameter a will be determined by fitting matter surface profiles or surface energies to
laboratory values. The quantities CL,U are momentum- and density-dependent interaction
functionals for like (L) and unlike (U) pairs of particles. Myers & Swiatecki chose them,
with some changes in notation, to be

CL,U(p1, p2, ρ̄) =
h3

4
Toρo(

3

4πP 3
o

)2
[
αL,U − βL,U

(
p12
Po

)2

− σL,U

(
2ρ̄

ρo

)2/3]
(2.14)

where αL, αU , βL, βU , σL, σU are constants. These constants are to be determined by fitting
saturation properties of cold nuclear matter and other considerations. In Eq. (2.14) , p12 =
|p1 − p2|. The quantity ρ̄(r) is the mean density, which is chosen to be

ρ̄2/3 = (ρ
2/3
1 + ρ

2/3
2 )/2 (2.15)

where ρ1 and ρ2 are the baryon densities at positions r1 and r2, respectively.

†t indicates proton or neutron and i represents position of the particle.
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2.3.2 Thermodynamic Quantities

The total energy is the sum of the free particle kinetic energy and the interaction energy,
which can be expressed as

E =

∫
d3r1

~2

2mb

(τn + τp)−
Toρo
4

∫
d3r1

∫
d3r2f(r12/a)×

∑

t

[
αLI1(ρt1, ρt2)− βLI2(ρt1, τt1, ρt2, τt2)− σLI4(ρt1, ρt2)+

αUI1(ρt1, ρt′2)− βUI2(ρt1, τt1, ρt′2, τt′2)− σUI4(ρt1, ρt′2)

]
,

(2.16)

where the double momentum integrals I1, I2 and I4 are analytic and are expressed as

I1(ρ1, ρ2) =

(
3

4πP 3
o

)2 ∫ ∞

0

f1d
3p1

∫ ∞

0

f2d
3p2 =

(
2

ρo

)2

ρ1ρ2,

I2(ρ1, τ1, ρ2, τ2) =

(
3

4πP 3
o

)2 ∫ ∞

0

f1d
3p1

∫ ∞

0

f2d
3p2

(
p12
Po

)2

=

(
2~

ρoPo

)2

(τ1ρ2 + ρ1τ2),

I4(ρ1, ρ2) =
1

2

(
3

4πP 3
o

)2
(

2

ρo

)2/3(
ρ
2/3
1 + ρ

2/3
2

)∫ ∞

0

f1d
3p1

∫ ∞

0

f2d
3p2

=
1

2

(
2

ρo

)8/3

ρ1ρ2

(
ρ
2/3
1 + ρ

2/3
2

)
.

(2.17)

In the Thomas-Fermi approximation, the number and kinetic densities have their usual forms
in finite temperature matter:

ρt =
1

4π3~3

∫ ∞

0

ftd
3p; τt =

1

4π3~5

∫ ∞

0

ftp
2d3p, (2.18)

where the Fermi occupation function is

ft =

[
1 + exp

(
ǫt − µt
T

)]−1

. (2.19)

The single particle energies ǫt, which are functions of the momentum pt and the nucleon
densities, are evaluated below. The nucleon chemical potentials are µt.

The total energy, beginning with Eq. (2.38) and using the results in Eqs. (2.17) and
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(2.18), becomes

E =

∫
d3r1

∑

t

{
~2

2mb
τt −

To
ρo

∫
d3r2f(r12/a)×

[
αLρt1ρt2 + αUρt1ρt′2 − β ′

L(ρt1τt2 + ρt2τt1)− β ′
U (ρt1τt′2 + ρt′2τt1)

− σ′
Lρt1ρt2

(
ρ
2/3
t1 + ρ

2/3
t2

)
− σ′

Uρt1ρt′2

(
ρ
2/3
t1 + ρ

2/3
t′2

)]}
(2.20)

where we introduce the new constants

β ′
L,U = βL,U

(
2

3π2ρo

)2/3

, σ′
L,U =

σL,U
2

(
2

ρo

)2/3

.

The energy density is then the integrand of the d3r1 integration in Eq. (2.20):

E(r) =
∑

t

{
~2

2mb

τt −
To
ρo

[
ρt(αLρ̃t + αU ρ̃t′)− β ′

L(τtρ̃t + ρtτ̃t)

− β ′
U(ρtτ̃t′ + τtρ̃t′)− σ′

Lρt

(
ρ̃tρ

2/3
t + ρ̃

5/3
t

)
− σ′

Uρt

(
ρ
2/3
t ρ̃t′ + ρ̃

5/3
t′

)]}
,

(2.21)

where we define the finite-range integral as

g̃(r) ≡
∫
d3r′f(|r − r′|/a)g(r′) (2.22)

where the notation changes from r1 → r and r2 → r′. Using the definitions for the effective
masses m∗

t and the potential Vt in

δE =

∫
d3rδE =

∑

t

∫
d3r

[
Vtδρt +

~2

2m∗
t

δτt

]
, (2.23)

we find, after noting that r and r′ can be reversed within double integrals,

~2

2m∗
t

=
~2

2mb
+

2To
ρo

(β ′
Lρ̃t + β ′

U ρ̃t′),

Vt =− 2To
ρo

[
αLρ̃t + αU ρ̃t′ − β ′

Lτ̃t − β ′
U τ̃t′

− σ′
L

(
5

3
ρ
2/3
t ρ̃t + ρ̃

5/3
t

)
− σ′

U

(
5

3
ρ
2/3
t ρ̃t′ + ρ̃

5/3
t′

)]
.

(2.24)

In addition, we note that at zero temperature, the total potential felt by a neutron at the
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point r and with momentum p is

Un(r, p) = Vn(r) +
2To
ρo

[
βLρ̃n + βU ρ̃p

]( p

Po

)2

. (2.25)

With these explicit relations, one can now employ the methodology of Lattimer & Raven-
hall [21] to determine thermodynamic quantities. The single-particle energy is

ǫt =
p2

2m∗
t

+ Vt. (2.26)

It follows from Eq. (2.18) that the densities and kinetic densities are

ρt =
1

2π2

(
2m∗

tT

~2

)3/2

F1/2(Ψt), τt =
1

2π2

(
2m∗

tT

~2

)5/2

F3/2(Ψt), (2.27)

where Ψt = (µt − Vt)/T is the degeneracy parameter. The inversion of the first of these
yields the chemical potential:

µt = Vt + TF−1
1/2

[
2π2ρt

(
~2

2m∗
tT

)3/2
]
. (2.28)

The entropy density St is given by Landau’s quasi-particle formula [22]

St = − 2

h3

∫
d3p
[
ft ln ft + (1− ft) ln(1− ft)

]
=

5~2

6m∗
tT
τt −

µt − Vt
T

ρt. (2.29)

The pressure follows from the thermodynamic identity

p =
∑

t

(µtρt + TSt)− E

=
∑

t

[
~2

3mb
τt −

To
ρo

{
ρt(αLρ̃t + αU ρ̃t′)− β ′

L

(
ρtτ̃t +

7

3
ρ̃tτt

)

− β ′
U

(
ρtτ̃t′ +

7

3
ρ̃t′τt

)
− σ′

Lρt

(
7

3
ρ
2/3
t ρ̃t + ρ̃

5/3
t

)
− σ′

Uρt

(
7

3
ρ
2/3
t ρ̃t′ + ρ̃

5/3
t′

)}]
.

(2.30)

The pressure relation can be simplified, upon eliminating the terms involving ρ̃
5/3
t , to

p =
∑

t

[
~2τt
3m∗

t

+
ρt
2
(µt − TΨt) +

To
ρo

(
[β ′
Lρ̃t + β ′

U ρ̃t′ ]τt +
2

3
ρ
5/3
t [σ′

Lρ̃t + σ′
U ρ̃t′ ]

)]
. (2.31)
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2.3.3 Properties of Uniform Matter

For the case of uniform matter, g̃ = g, the energy density becomes

E =
∑

t

{
~2

2m∗
t

τt −
To
ρo
ρt

(
αLρt + αUρt′ − 2σ′

Lρ
5/3
t − 2σ′

Uρ
5/3
t′

)}

=
∑

t

{
~2

2mb
τt −

To
ρo
ρt

[
αLρt + αUρt′ − 2

(
β ′
Lτt + β ′

Uτt′ + ρ
2/3
t [σ′

Lρt + σ′
Uρt′ ]

)]}
.

(2.32)

Here, the effective masses are

~2

2m∗
t

=
~2

2mb

+
2To
ρo

(β ′
Lρt + β ′

Uρt′). (2.33)

Note that the energy density reduces to a Skyrme-like model. The potentials become

Vt = −2To
ρo

[
αLρt + αUρt′ − β ′

Lτt − β ′
Uτt′ −

8

3
σ′
Lρ

5/3
t − σ′

Uρt′(
5

3
ρ
2/3
t + ρ

2/3
t′ )

]
(2.34)

The pressure can then be written as

p =
∑

t

{
~2τt
3m∗

t

− To
ρo
ρt

[
αLρt + αUρt′ − 2(β ′

Lτt + β ′
Uτt′)−

10

3
ρ
2/3
t

(
σ′
Lρt + σ′

Uρt′
)]}

=
∑

t

{
~2τt
3mb

− To
ρo
ρt

[
αLρt + αUρt′ −

10

3

(
β ′
Lτt + β ′

Uτt′ + ρ
2/3
t

[
σ′
Lρt + σ′

Uρt′
])]}

.

(2.35)

The chemical potentials and entropy density are given by Eqs. (2.28) and (2.29), respectively.

2.3.4 The Zero-Temperature Limit

The zero-temperature limit is needed in order to establish the parameters of the force from
experimental constraints. In the zero-temperature limit, one finds from limiting expressions
for the Fermi integrals:

ρt =
1

π2

(
2m∗

t (µt − Vt)

~2

)3/2

,

τt =
1

π2

(
2m∗

t (µt − Vt)

~2

)5/2

=
3

5
(3π2)2/3ρ

5/3
t .

(2.36)

Furthermore, for the case of symmetric nuclear matter (ρn = ρp = ρo/2), one obtains

~2

2mb
τn

∣∣∣∣
ρ=ρo,x=1/2

=
~2

2mb
τp

∣∣∣∣
ρ=ρo,x=1/2

=
3

10
Toρo. (2.37)
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Thus, in the case of zero temperature, the energy density is

E =To
∑

t

ρt

{
3

5

(
2ρt
ρo

)2/3

− 1

ρo

[
αLρ̃t + αU ρ̃t′−

1

2

(
2

ρo

)2/3(
β ′′
L

[
ρ
2/3
t ρ̃t + ρ̃

5/3
t

]
+ β ′′

U

[
ρ
2/3
t ρ̃t′ + ρ̃

5/3
t′

])]} (2.38)

where

β ′′
(L,U) =

(ρo
2

)2/3[6
5

(
3π2
)2/3

β ′
(L,U) + 2σ′

(L,U)

]
=

6

5
β(L,U) + σ(L,U). (2.39)

The potentials at zero temperature become

Vt = −2To
ρo

[
αLρ̃t + αU ρ̃t′ −

1

2

(
2

ρo

)2/3(
β ′′
Lρ̃

5/3
t + β ′′

U ρ̃
5/3
t′

)
− 5

3
ρ
2/3
t

(
σ′
Lρ̃t + σ′

U ρ̃t′
)
]

(2.40)

The expression for the effective mass of Eq. (2.33) is still valid, so the Euler equations at
zero temperature, using Eq. (2.36), take the form

µt =
~2

2m∗
t

(
3π2ρt

)2/3
+ Vt = To

(
2ρt
ρo

)2/3

− 2To
ρo

×
[
αLρ̃t + αU ρ̃t′ −

1

2

(
2

ρo

)2/3[
β ′′
L

(
ρ̃
5/3
t +

5

3
ρ
2/3
t ρ̃t

)
+ β ′′

U

(
ρ̃
5/3
t′ +

5
ρ
2/3
t ρ̃t′

)]]
.

(2.41)

The pressure at zero temperature, using the notation ut = ρt/ρo, becomes

p =ρoTo
∑

t

ut

[
2

5
22/3u

2/3
t − αLũt − αU ũt′

+2−1/3

[
β ′′
L(ũ

5/3
t +

7

3
u
2/3
t ũt) + β ′′

U(ũ
5/3
t′ +

7

3
u
2/3
t ũt′)

]]
.

(2.42)

Once again eliminating terms involving ρ̃
5/3
t , the pressure relation can be simplified to

p = ρo
∑

t

ut

[
µt
2

+ (2ut)
2/3To

(
β ′′
L

3
ũt +

β ′′
U

3
ũt′ −

1

10

)]
. (2.43)

15



2.3.5 Uniform Matter at Zero Temperature and the Saturation
Constraints

Next, we consider uniform matter at zero temperature. Using the notation u = (ρn+ ρp)/ρo
and x = ρp/(ρn + ρp), the bulk energy density at zero temperature is

E = Toρo

{
3

5
22/3u5/3

[
(1− x)5/3 + x5/3

]
− u2

(
αL[(1− x)2 + x2] + 2αU(1− x)x

)

+22/3u8/3
(
β ′′
L

[
(1− x)8/3 + x8/3

]
+ β ′′

Ux(1 − x)
[
(1− x)2/3 + x2/3

])}
.

(2.44)

Figure 2.1: The energy per baryon E and pressure p for zero-temperature matter as a
function of composition Yp. The assumed saturation constraints are: ρo = 0.16545 fm−3,
Eo = −16.533 MeV, po = 0, Sv = 31.63 MeV and S ′

v = 17.93 MeV.

Fig. 2.1 shows the energy per nucleon E = E/ρ and the pressure p of uniform matter as a
function of density and composition Yp for the case of zero-temperature matter. Obviously,
there are substantial regions in which the incompressibility, (∂P/∂n)T,Yp , is negative and the
matter is hydrodynamically unstable. It is straightforward to show that the free energy can
be lowered if matter spontaneously divides into two phases of differing densities with the
same temperature. For asymmetric matter, each phase has differing compositions as well.
These phases are in bulk equilibrium, which is described in the next section.
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For standard nuclear matter, u = 1 and x = 1/2. Letting α = αL + αU and β ′′ =
β ′′
L+ β ′′

U = (6/5)β+ σ, using β = βL+ βU and σ = σL+ σU , and defining the binding energy
as B = −Eo/ρo, one finds the energy per particle to be

Eo
ρo

= −B = To

[
3

5
− α

2
+
β ′′

2

]
, (2.45)

while the pressure becomes

po = 0 = ρoTo

[
2

5
− α

2
+

5

6
β ′′

]
, (2.46)

and the incompressibility parameter reduces to

Ko = 9
dP

dρ

∣∣∣∣∣
ρ=ρo,x=1/2

= To[6− 9α+ 20β ′′]. (2.47)

These can be combined as

Ko =
9

5
To + 15B ≃ 316 MeV, (2.48)

and

α =
9

5
+

5B

To
≃ 3.995, β ′′ =

3

5
+

3B

To
≃ 1.917, (2.49)

using To ≃ 37.68 MeV and B ≃ 16.54 MeV. (For the purposes of illustration, we use the
parameter set established by Myers & Swiatecki [26].) The bulk symmetry parameter is

Sv =
1

8

d2(E/ρ)
dx2

∣∣∣∣∣
ρ=ρo,x=1/2

= To

[
1

3
+
αU − αL

2
+

5

9
(2β ′′

L − β ′′
U)

]
. (2.50)

The derivatives of the symmetry energy and the incompressibilities at saturation are

S ′
v =

ρo
8

d3(E/ρ)
dρdx2

∣∣∣∣∣
ρ=ρo,x=1/2

= To

[
2

9
+
αU − αL

2
+

25

27
(2β ′′

L − β ′′
U)

]
, (2.51)

K ′
o =ρo

dK

dρ

∣∣∣∣∣
ρ=ρo,x=1/2

= Ko + 9ρ2o

(
d3E
dρ3

)

ρ=ρo,x=1/2

=

To

[
4− 9α +

100

3
β ′′

]
=

39

5
To + 55B ≃ 1204 MeV .

(2.52)

In order to specify given values of Sv and S ′
v, one can manipulate Eqs. (2.50) and (2.51):

αL =
7

5
+

5B + 3S ′
v − 5Sv

2To
, αU =

2

5
+

5B + 5Sv − 3S ′
v

2To
,

β ′′
L =

3

10
+

10B + 9S ′
v − 9Sv

10To
, β ′′

U =
3

10
+

20B + 9Sv − 9S ′
v

10To
.

(2.53)
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For values of Sv = 31.63 MeV and S ′
v = 17.93 MeV established by Myers & Swiatecki for

the truncated model, one finds αL ≃ 1.112, αU ≃ 2.882, β ′′
L ≃ 0.417, β ′′

U ≃ 1.505. Note
that for zero temperature uniform matter, E , P and µt depend only on αl, αU , β

′′
L and β ′′

U .
To constrain other the parameters one has to consider the properties of non-uniform matter
and finite-temperature matter.

The specific heat of degenerate nucleonic matter depends on the nucleon effective masses.
The symmetric matter effective mass at saturation density is

~2

2m∗
=

~2

2mb
+ To(β

′
L + β ′

U),
m∗

mb
=

1

1 + β
. (2.54)

A reasonable value for m∗/mb is 0.724 which implies β ≃ 0.381.
A related consideration is the optical model potential. The single particle potentials in

standard uniform nuclear matter at zero temperature are obtained from Eq. (2.40). One
obtains

Vn = Vp = −To
[
α− 3

5
β − 4

3
σ

]
= −B − To(1 + β), (2.55)

where α and σ can be eliminated by using the saturation conditions Eqs. (2.45) and (2.46).
Thus, the potential felt by a neutron with momentum p in standard nuclear matter is given
by combining Eqs. (2.25) and (2.55):

Un(p) = −B + To

[
− 1− β + β

( p
Po

)2]
. (2.56)

Setting En = Un + To(p/Po)
2 to be the total energy of the neutron, one can write

Un(p) = − B

1 + β
− To +

β

1 + β
En(p). (2.57)

This results in a linear relation between Un and En with a slope of β/(1 + β) = 1−m∗/mb.
The valuem∗/mb = 0.724 therefore implies a slope of 0.276, a result supported by experiment
[24] . In addition, the value of the potential for a zero-momentum neutron is −(To(1 + β) +
B) ≃ −68.59 MeV which is also supported by experiment. For β ≃ 0.381, one obtains
σ = β ′′ − (6/5)β ≃ 1.460.

The truncated model predicts the neutron and proton effective masses in pure neutron
matter to be

m∗
n0

mb
=

1

1 + βL
,

m∗
p0

mb
=

1

1 + βU
, (2.58)

but these cannot be established without further input. In the original Myers & Swiatecki
model [26], the β and σ parameters are not independent, but are related by

σL − σU = (βL − βU)
σ

β
= (β ′′

L − β ′′
U)

σ

β ′′
≃ −0.833, (2.59)

using the above values. While it is not necessary to constrain this parameter this way, in
the absence of additional observables for fitting we follow the method of Myers & Swiatecki.
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a αL αU βL βU σ
0.5882 1.1124 2.8823 0.08182 0.2991 1.4597

ρ0 B m∗/mb ω0 Sv S ′
v

0.16545 16.539 0.7241 1.250 31.633 17.931
To Ko K ′

o t90−10,o ωδ to Tco
37.6794 315.91 1203.54 1.910 3.640 1.391 17.4

Table 2.1: Truncated parameter set. The first row contains parameters of the force model.
The second row contains the assumed saturation properties of matter. The third row contains
implied bulk matter and surface properties. Units are expressed in MeV and fm.

We therefore have

σL,U =
σ

2

(
1 +

β ′′
L,U − β ′′

U,L

β ′′

)
, (2.60)

or σL ≃ 0.313 and σU ≃ 1.146. Also,

βL,U =
5

6
(β ′′

L,U − σL,U), (2.61)

βL ≃ 0.0818 and βU ≃ 0.299. These lead to

m∗
n0

mb
≃ 0.924,

m∗
p0

mb
≃ 0.770, (2.62)

The parameters and the implied physical properties of matter and interfaces at saturation
are contained in Table 2.1

In summary, the binding energy, saturation density, symmetry energy, symmetry energy
derivative and effective mass can constrain 5 of the 6 independent parameters of the truncated
model, namely α(L,U), β(L,U), σ and a. The parameter a can be determined by the symmetric
matter surface energy or the surface diffuseness. In the truncated model, these choices
determine the incompressibility parameter and its derivative as well as the surface symmetry
energy parameter. Adjusting the incompressibility, its derivative, and surface symmetry
energy parameters requires additional density-dependent terms in the interaction energy.
This will be explored in the succeeding sections.

2.4 Two-Phase Equilibrium of Bulk Matter

In the general case of asymmetric matter and finite temperature, for two phases to be in bulk
equilibrium, one minimizes the total free energy density for a given temperature, density and
average proton fraction. We assume the electrons remain uniformly distributed so they need
not be considered for this minimization. We also ignore the fact that protons are charged,
an omission that will be included when we consider finite nuclei. We label the denser phase
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as inside or I and the other phase as outside or II. The total free energy density is

F = vρIFI + (1− v)ρIIFII (2.63)

where the average density ρ and proton fraction x satisfy

ρ = vρI + (1− v)ρII , ρx = vρIxI + (1− v)ρIIxII , (2.64)

where v is the volume fraction occupied by the dense phase. Minimizing F for a given ρ and
x results in three bulk equilibrium conditions:

pI = pII ≡ po, µnI = µnII ≡ µn, µpI = µpII ≡ µp (2.65)

Note that these conditions do not involve ρ, x or v. For a given value of xI = ρpI/ρI , the bulk
equilibrium conditions therefore determine ρnI , ρnII and ρpII . Phase equilibrium is possible
for a given values of ρ, T and x if the resulting value of v ∈ (0, 1).

The phase equilibrium of dense matter using a Skyrme interaction at finite temperature
was studied by Küpper, Wegmann & Hilf [14] for symmetric matter, and by Lattimer &
Ravenhall [21], Buchler, J. R. & Barranco [1], Barranco & Buchler [6] , and by Lamb,
Lattimer, Pethick & Ravenhall [16] for the general case. The phase equilibrium of dense
matter using a relativistic field-theoretical interaction has been studied by Glendenning,
Csernai & Kapusta [9] for symmetric matter and Müller and Serot [23] for asymmetric
matter. Phase equilibrium with the finite-range force has heretofore not been previously
studied for the general case of asymmetric hot matter.

2.4.1 Zero-Temperature Two-Phase Equilibrium

In the case of zero-temperature, µpI ≃ −16 MeV < 0 and µnI ≃ −16 MeV < 0 for xI ∼ 0.5,
so ρpII = ρnII = 0. Two-phase equilibrium at zero temperature is then determined by
ignoring the µnI = µnII and µpI = µpII conditions. However, for xI . 0.34, µnI > 0 so
ρnII > 0 and neutron drip occurs. In this regime, equilibrium is determined by ignoring the
µpI = µpII condition. Note from Eq. (2.41) that as long as ρpII = 0, the proton chemical
potential in the uniform light phase is determined by the local neutron density, i.e.,

µpII(ρpII = 0) ≡ µc = To

(
β ′′
U

2

(2ρnII
ρ0

)5/3
− 2αU

ρnII
ρ0

)
. (2.66)

This critical chemical potential (µc) represents the threshold for proton drip†. When µpI ≥
µc, it becomes energetically favorable for protons to drip. This occurs near xI ≃ 0.09. The
behavior of the chemical potentials, densities and pressure in bulk equilibrium are shown in
Fig. 2.2 as a function of the proton fraction in the dense phase.

Note that for very small values of xI , the densities in the two uniform phases approach
each other. For xI < 0.035, in this model, bulk equilibrium becomes impossible and matter
exists in a single uniform phase.

†At zero temperature, proton drip does not happen in neutron star crust but free protons exist in case
of uniform nuclear matter if the phase transition happens in the outer core of neutron stars.
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Figure 2.2: Bulk equilibrium of T = 0 asymmetric nuclear matter. The solid curves uI =
ρI/ρ0 and uII = ρII/ρ0 show the densities at T = 0 for two phases in bulk equilibrium for
various values of xI , the proton fraction in the dense phase. The dashed curves show µn and
µp; neutron drip † occurs when µn > 0, or xI ≃ 0.34 for the truncated finite-range model.
Proton drip occurs when µp > µc, shown by the dashed-dot curve. Another solid curve shows
the value of xII , the proton fraction in the low-density phase. A dashed curve shows the
pressure in bulk equilibrium. All units are in MeV and fm.

2.4.2 Finite-Temperature Symmetric Matter, the Critical Tem-
perature, and the Coexistence Curve

Pressure isotherms are shown in Fig. 2.3 for the case of symmetric matter. For each temper-
ature displayed, bold dots represent the two densities ui and uo, found from the solution of
Eq. (2.65), that coexist in bulk equilibrium. Both phases have equal proton fractions. Matter
with an average density u that satisfies uo < u < ui lies within the coexistence region; the
pressure of this matter is constant as the density is varied as indicated by the dotted lines
connecting the bold dots. Coexistence is only possible up to the critical point, indicated by
the open circle. It is clear from this figure that the critical point is defined by

∂p

∂ρ

∣∣∣
T
=
∂2p

∂ρ2

∣∣∣
T
= 0, (2.67)

which is located at Tco ≃ 17.3 MeV and uco ≃ 0.350. The critical pressure is pco ≃ 0.315
MeV fm−3 for the truncated interaction. The coexistence region in the temperature-density
plane is illustrated in the upper panel of Fig. 2.3. Dotted lines connect the two panels by
indicating the two densities that coexist at each temperature or pressure below the critical
values.
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Figure 2.3: Pressure isotherms are shown in the lower panel. Bold dots indicate the boundary
densities of the two-phase coexistence region. The upper panel shows the coexistence region
in a density-temperature plot. The critical point is illustrated in each panel with an open
circle.

2.4.3 Finite-Temperature Asymmetric Matter and Coexistence Curves

At finite temperature and arbitrary average proton fraction, the phase coexistence is de-
termined by the conditions Eq. (2.65). The coexistence curves are the boundaries of the
two-phase region determined by the conditions v = 0 or v = 1. In contrast to the symmetric
matter case, the densities in each phase vary with the filling factor v at fixed T and Yp. The
coexistence curves are shown in Fig. 2.4. Along the phase boundary, the density of one phase
is shown by the solid (coexistence) curve and the density of the other phase is shown by the
corresponding dotted curve. Along the coexistence curve for each Yp there is a critical point
where the two phases have equal densities, ρi = ρo. As shown in Lattimer & Ravenhall [21],
the critical point for asymmetric matter is determined from

dµn
dx

∣∣∣∣∣
p,T

=
d2µn
dx2

∣∣∣∣∣
p,T

= 0. (2.68)

The critical temperature as a function of dense-phase proton fraction xI is shown in Fig. 2.5.
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Figure 2.4: Coexistence curves for asymmetric matter for the truncated model at finite
temperature. Solid curves show the boundary of the two-phase region for dense phase proton
fractions ranging from xI = 0.5 (upper-most curve) to xI = 0.02 (lower-most curve) in
increments of 0.04. At each density along a solid curve, matter with the indicated xI is in
bulk equilibrium with a less dense phase (which has a different proton fraction xII) whose
densities are indicated by the dotted curves. The densities of the two phases are equal at
the critical points, indicated by solid dots.

2.5 The Nuclear Surface in the Semi-Infinite Approx-

imation

A useful approximation for the nuclear surface is to treat the interface between two phases
in bulk equilibrium in the limit that the curvature vanishes and Coulomb interactions are
neglected. The surface is thus treated in a one-dimensional semi-infinite planar geometry,
and the density profiles in the surface region are found by minimization of the total free
energy.

2.5.1 The Euler Equations

The equilibrium matter distributions, ρn(r), ρp(r), for a given temperature T are obtained
by demanding that the total free energy F is stationary with respect to variations δρn and
δρp subject to the constraints that the total neutron and proton numbers,

N =

∫
d3rρn, Z =

∫
d3rρp, (2.69)
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Figure 2.5: Critical temperature as a function of dense-phase proton fraction for the trun-
cated model.

remain fixed. Note that, formally, F , N and Z diverge in the semi-infinite case since the
integrals extend to ±∞. This divergence is irrelevant, however, as is discussed below.

Free energy stationarity is equivalent to demanding that the neutron and proton chem-
ical potentials, µt = ∂E/∂ρt, given by Eq. (2.28), are spatially constant. For a specific
temperature and proton fraction in the dense phase far from the surface, xI , the chemi-
cal potentials are therefore equal to their corresponding values for bulk equilibrium, as in
Eq. (2.65). Thus, for the appropriate values for µn and µp, Eq. (2.28) becomes the Euler
equations which determine ρn and ρp at every point.

The surface thermodynamic potential for a semi-infinite interface is the difference between
the total thermodynamic potentials of the semi-infinite system in which two uniform phases
in bulk equilibrium exist with a discontinuous density jump at the interface and the system
in which the density varies according to free energy stationarity. Since µn and µp are spatially
constant, this is equivalent to Ravenhall, Pethick & Lattimer [29] and Kolehmainen, Prakash
& Lattimer [13]

ω =

∫ ∞

−∞

[E − T (Sn + Sp)− µnρn − µpρp + po]dz = −
∫ ∞

−∞

[p(z)− po]dz. (2.70)

The last equality is not generally true for a non-relativistic potential and relativistic field-
theoretical nuclear forces, but is true for the finite-range nucleon interaction. In general, a
thermodynamic potential is a function of temperature and chemical potentials, but in the
semi-infinite case one can write ω = ω(T, xI) since µn and µp are themselves functions only
of T and xI in bulk equilibrium. In other words, the values of the average density ρ and
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proton fraction x are irrelevant for this calculation.
In practice, the integrals in Eqs. (2.69) and (2.70) are taken to extend from zII to zI

which are located far to the right and left of the interface, respectively. The integrand of
Eq. (2.70) must vanish far from the interface, according to Eq. (2.65), so these cutoffs do
not affect the value of ω.

Surface Profiles and Tension for Zero-Temperature Symmetric Matter

Figure 2.6: The density as a function of position for zero temperature symmetric matter is
shown by the solid curve. The zero point of the z−axis is arbitrary. The function ũ is shown
by the dashed curve.

In the case of zero temperature symmetric matter, the energy density and Euler equations
are

E = Toρo

[3
5
u5/3 − α

2
uũ+

β ′′

4
u(ũ5/3 + u2/3ũ)

]
, (2.71)

µ = −B = To

[
u2/3 − αũ+

β ′′

2
(ũ5/3 +

5

3
u2/3ũ)

]
. (2.72)

The density as a function of position is shown in Fig. 2.6. The integrand of Eq. (2.70) is

po − p =Toρo

[
− 2

5
u5/3 +

α

2
uũ− β ′′

4
u(ũ5/3 +

7

3
u2/3ũ)

]

=
ρou

2

[To
5
u2/3(1− ũ) +B(1− u2/3ũ)

]
,

(2.73)

where we used Eq. (2.72) to eliminate ũ5/3 and α, and Eq. (2.49) to eliminate β ′′. The
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pressure, and also the integrand, must vanish at each extreme boundary, so that at one
extremity, u → 1 and at the other u → 0, as is shown in Fig. 2.6. Obviously, in the limit
z → ∞, one has u = ũ = 1 since du/dz → 0. From Eq. (2.72) one has µ = −B =
To(1−α+ (4/3)β ′′), which also follows from Eq. (2.49). At the point where u = 0, however,
du/dx 6= 0 so ũ 6= 0. In this case one has

µ = −B = To

(
− αũ+

β ′′

2
ũ5/3

)
(2.74)

for which one finds ũ ≃ 0.126. The surface profile is shown in Fig. 2.6, found by solving Eq.
(2.72) at each point in space. The function ũ also is displayed in Fig. 2.6. It is obvious that
since ũ and u are both less than unity, the integrand Eq. (2.73) is always greater than or
equal to zero.

The surface thermodynamic potential or surface tension depends only on the parameters
α, β ′′ and a, so that given values for B and ρo, the surface tension depends only upon a in the
absence of additional terms in the energy density. Myers & Swiatecki (1969) have noted that
the surface tension at zero temperature for symmetric matter depends almost linearly on a
and this is illustrated in Fig. 2.7. For the truncated model parameters, including a = 0.5882
fm, one obtains the physically reasonable value for the zero-temperature symmetric matter
surface tension, ω(x = 1/2, T = 0) ≡ ωo ≃ 1.25 MeV fm−2. However, the calculated surface
thickness is too small by about 20%, as will be shown below.

Figure 2.7: Surface tension (solid curve) and 90-10 surface thickness (dashed curve) for
symmetric matter at zero temperature in the truncated finite-range Thomas Fermi model as
functions of the diffuseness parameter a. The slopes of each are nearly linear.

It is instructive to compare these results for the surface with those established from a
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potential model analogue for the Hamiltonian density of cold symmetric matter in which the
free energy density is assumed to be composed of a bulk matter part FB(ρ) and a gradient
term:

F = FB +
Q

2
ρ′2. (2.75)

In the above, Q is a constant and ρ′ = dρ/dz. Minimizing the total free energy for a fixed
number of particles introduces the Lagrangian parameter µo, which is equivalent to the
chemical potential −B for symmetric matter,

FB − µoρ =
Q

2
ρ′2. (2.76)

Therefore the density gradient can be determined as a function of density:

ρ′ = −
√

2

Q

√
FB − µoρ. (2.77)

The 90-10 surface thickness, t90−10 is defined as

t90−10 = z(ρ = 0.9ρi)− z(ρ = 0.1ρi) (2.78)

in the case that ρo = 0. For FB we substitute the free energy density of the truncated model
for uniform symmetric matter at zero temperature, for which ρi = ρo:

FB − µoρ

Toρo
≡ fB = u

(
1− u1/3

)2[B
To

(
1 + 2u1/3

)
+
(3B
To

+
3

5

)
u2/3

(
1 +

1

2
u1/3

)]
, (2.79)

which defines the dimensionless function fB(u). This leads to

t90−10,o =

∫ 0.9ρo

0.1ρo

dρ/ρ′ =

√
Qρo
To

It, (2.80)

where

It =

∫ 0.9

0.1

du√
2fB

≃ 3.042; (2.81)

the numerical value is obtained using the truncated model with B = 16.539 MeV and
To = 37.679 MeV. The symmetric matter surface tension is

ωo =

∫ ∞

−∞

[F − µoρ]dz = 2

∫ ∞

−∞

[FB − µoρ]dz =
√
QToρ3oIω, (2.82)

where

Iω =

∫ 1

0

√
2fBdu ≃ 0.2612, (2.83)

where the numerical value is obtained with the same assumptions as previously. The quantity
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Q can be eliminated by combining Eqs. (2.80) and (2.82),

ωo = ρoTot90−10,oIω/It ≃ 0.5353 t90−10,o MeV fm−3 = 1.231 MeV fm−2, (2.84)

where the truncated model and a realistic value of the surface thickness
(t90−10,o = 2.30 fm) is used. This value of ωo agrees well with that obtained from the
numerical results for the truncated model (1.24 MeV fm−2). However, as noted before, the
calculated value of t90−10,o is 20% smaller than the realistic value. This discrepancy can
be traced to the unrealistically large value of the incompressibility parameter Ko in the
truncated model.

Surface Profiles and Tension for Zero-Temperature Asymmetric Matter

Figure 2.8: Neutron (solid line) and proton (dashed line) density profiles for the case xI = 0.4
and T = 0 for a semi-infinite interface for the truncated interaction are indicated in the main
panel in logarithmic units. The inset shows normalized profiles un = ρn/ρo, up = ρp/ρo as
solid curves on a linear scale, and the quantities ũn = ρ̃n/ρo and ũp = ρ̃p/ρo are displayed by
dashed curves. The dotted lines indicate the positions of the squared-off neutron and proton
radii, Rn and Rp respectively.

The density profiles for neutrons and protons for cold asymmetric matter are displayed
in Fig. 2.8 for the case xI = 0.4. Both the densities ρt and the quantities ρ̃t are shown. The
squared-off radii Rn and Rp are also shown; these are defined by

∫ zII

zI

ρtdz = ρtI(Rt − zI) + ρtII(zII −Rt) (2.85)
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with the convention that zII is the boundary in the dilute phase and zI is the boundary in
the dense phase. Clearly we must take zI << 0 and zII >> 0, and in the calculation shown
in Fig. 2.8 these were respectively chosen to be -8 fm and +8 fm.

Figure 2.9: Surface tension (left panel) and neutron skin thickness (right panel) as functions
of dense phase proton fraction for zero-temperature semi-infinite surfaces are shown as solid
curves. In each case, dashed lines represent analytic estimates based on a simplified potential
model as described in the text.

The surface thermodynamic potential for asymmetric matter at zero temperature is
shown in Fig. 2.9. Analytic estimates of the symmetric matter surface thermodynamic
potential ωo and its dependence on proton fraction can be obtained from the potential ap-
proach discussed in section 2.5.1. In particular, specification of the symmetric matter surface
thickness parameter t90−10,o, determines ωo via Eq. (2.84). The leading order dependence of
the surface tension on proton fraction is quadratic with a coefficient ωδ such that

ω ≃ ωo − ωδδ
2, δ ≡ 1− 2xI . (2.86)

In the potential approach, it can be shown in Steiner et al.[32] that the parameter ωδ is, to
lowest order,

ωδ = Sv

√
Q

2

∫ ρo

0

ρ
( Sv
Esym

− 1
)
(FB − µoρ)

−1/2dρ, (2.87)
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where Esym is the density dependent symmetry energy. In the truncated model Esym is

Sv − Esym = Sv

(
1− u1/3

)
×

×
[
1 + u1/3 + u2/3 − 3(Sv − S ′

v)

2Sv
u1/3

(
1 + u1/3

)
− To

3Sv

(
1− u1/3

)(
1 +

1

2
u1/3

)]
.

(2.88)

Eliminating Q using Eq. (2.82) and expressing the free energy density in terms of the trun-
cated model energy density, one finds

ωδ = ωo
Sv
To

Iδ
Iω
, (2.89)

where

Iδ =

∫ 1

0

u√
2fB

(
Sv
Esym

− 1

)
du ≃ 1.024. (2.90)

The numerical value is obtained for the truncated model with the previously determined
parameters and leads to the ratio ωδ/ωo ≃ 3.293 and ωδ ≃ 4.054 MeV fm−2. It is also easy
to show from Eq. (2.85) that the neutron skin thickness t can be written, to lowest order
when ρII = 0, as

t = Rn −Rp =

∫ ∞

−∞

[
ρn
ρnI

− ρp
ρpI

]
dz ≃ 2ωδδ

Svρo(1− δ2)
. (2.91)

From this, we infer a normalized neutron skin thickness to = t(1−δ2)/δ which is predicted to
be insensitive to asymmetry. The analytic approximations for surface properties using Eqs.
(2.86), (2.89) and Eq. (2.91) are displayed in Fig. 2.9. The agreement between the analytic
and numerical results is excellent. As an example, the difference between the numerical and
analytic values for to is about 2 ·10−5 fm for small asymmetries. In addition, the dependence
of t on asymmetry is in good agreement with the analytical prediction of Eq. (2.91).

Surface Tension for Finite-Temperature Matter

For the truncated model, the surface tension (thermodynamic potential density, ω) and
surface thickness parameter (t90−10) for finite-temperature symmetric matter are shown in
Fig. 2.10. The truncated parameter set was employed. Both quantities vary as T 2 for small
temperatures. The surface tension for symmetric matter can be well approximated for all
temperatures by the expression

ω(x = 1/2, T ) ≃ ωo

[
1− (T/Tc)

2
]5/3

, (2.92)

where Tc ≃ 17.4 MeV is the critical temperature for two-phase coexistence of symmetric
matter and ωo = ω(x = 1/2, T = 0). This expression indicates the effective level density
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Figure 2.10: The surface tension of symmetric matter as a function of temperature is shown
by the solid curve for the truncated model. The three accompanying dashed/dotted curves,
labelled by the parameter p, show the temperature dependence ωo[1 − (T/Tco)

2]p where
Tco ≃ 17.4 MeV is the critical temperature for two-phase coexistence of symmetric matter.
In addition, the surface thickness parameter t90−10, scaled by a factor 10, is displayed. At
Tco, it tends to infinity.

parameter for nuclei has the approximate volume and surface contributions

aeff =
2m∗

~2

( π

3ρo

)1/3
A+

( 4π

3ρ2o

)1/3 10ωo
T 2
co

A2/3

≃ 0.059A + 0.226A2/3 MeV−1.

(2.93)

Note that for A ≈ 64 the surface and volume contributions to the nuclear specific heat are
approximately equal.

For asymmetric matter, the temperature dependence of the surface tension is similar to
that of symmetric matter. As shown in Fig. 2.11, the temperature dependence can be well-
approximated by the relation Eq. (2.92) as long as Tc is reduced to the value (approximately
16.1 MeV) appropriate for xII = 0.3. This figure also shows the surface thickness parameter
t90−10 and the neutron skin thickness Rn − Rp.

Fig. 2.12 shows the surface tension and the neutron skin thickness as functions of xII
and T for the truncated model.
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Figure 2.11: The same as Fig. 2.10 except for an asymmetric case with a dense phase proton
fraction xI = 0.3. In this case, the critical temperature is Tc ≃ 16.1 MeV. The dashed line
shows the neutron skin thickness Rn −Rp in fm.

2.6 Isolated Nuclei and Nuclei in Dense Matter

For the computation of finite nuclei, spherical symmetry and zero temperature are assumed
in this model. These restrictions will be relaxed in a future publication. The main point
of this model is to demonstrate the feasibility of efficiently computing the thermodynamic
properties of nuclei in a consistent Thomas-Fermi approximation without the simplifications
associated with the liquid droplet model. In contrast to the case of a semi-infinite interface,
it is preferable in the finite nucleus case to choose values for N and Z, together with the
temperature. The additional two constraints in Eq. (2.65) then determine the chemical
potentials of the isolated nucleus, i.e., a nucleus in a zero density environment.

2.6.1 Isolated Nuclei

The total energy of a nucleus must include the electrostatic Coulomb energy

ECoul =
e2

2

∫

V

d3r

∫

V

d3r′
[ρp(r)− ρe(r)][ρp(r

′)− ρe(r
′)]

|r − r′| , (2.94)

where the spatial integrals are over the entire volume. In the case of an isolated nucleus,
ρe = 0, and the integrand is finite only within the nucleus. The contribution of the Coulomb
energy to the proton chemical potential can be found from a variation of ECoul with respect
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Figure 2.12: Contour plots of surface tesion and Rn − Rp

Finite temperature asymmetric matter: (Left panel) A contour plot of the surface tension
(ω, MeV-fm−2); (Right panel) A contour plot of the neutron skin thickness (Rn −Rp, fm).

to the proton density: ∆µp = δECoul/δρp. One obtains

δECoul =
e2

2

∫

V

d3r

∫

V

d3r′

|r − r′|(δρp(r)[ρp(r
′)− ρe(r

′)] + δρp(r
′)[ρp(r)− ρe(r)]). (2.95)

One can reverse the variables r and r′ in the second term of the double integral, yielding

∆µp(r) =e
2

∫

V

d3r′

|r − r′| [ρp(r
′)− ρe(r

′)]

=4πe2
[
1

r

∫ r

0

r′2[ρp(r
′)− ρe(r

′)]dr′ +

∫ Rc

r

r′[ρp(r
′)− ρe(r

′)]dr′
]
,

(2.96)

where we assumed spherical symmetry in the second line and Rc is taken to have a value
much larger than that of the nucleus. In the limit r → 0, the first integral vanishes. In the
limit r → Rc, one has ∆µp(Rc) = 0 because of charge neutrality. The quantity ∆µp(r) must
be added to the nucleonic part of µp(r).

The total Coulomb energy can be written

ECoul =
1

2

∫

V

[ρp(r)− ρe(r)]∆µp(r)d
3r, (2.97)
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Figure 2.13: Neutron and proton density profiles for the nuclei 40Ca, 56Fe and 208Pb in the
truncated model are shown as solid curves. The densities ut are scaled by the saturation
density ρs. Dashed curves show the corresponding functions ũt. The chemical potentials,
the charge radius Rp, the neutron skin thickness δR = Rn−Rp, and the ground state energy
E are included in each subfigure. The vertical lines show Rn and Rp.

so that the Coulomb contribution to the energy density is just

ECoul =
1

2
(ρp − ρe)∆µp. (2.98)

Density profiles for the isolated nuclei 40Ca, 56Fe and for 238U are displayed in Fig. 2.13
for the truncated interaction model and assuming T = 0. The specific ground state energies,
charge radii and neutron skin thicknesses for these nuclei are included in the figure. The
charge radius is Rp and the skin thickness is Rn − Rp and are defined by

Rp =

(∫
ρpr

2d3r∫
ρpd3r

)1/2

, Rn =

(∫
ρnr

2d3r∫
ρnd3r

)1/2

. (2.99)

The ground state energy is measured relative to A free neutrons, and hence includes the
energy −(mn −mp)c

2(Z/A) from the neutron-proton mass difference.
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2.6.2 Dense Matter and the Wigner-Seitz Approximation

In the case of nuclei at finite density, such as those in a neutron star crust, it is convenient
to employ the Wigner-Seitz approximation in which a cell of radius Rc contains a single
nucleus and sufficient electrons to neutralize the cell. In this paper, we will assume that
the Wigner-Seitz cell has a spherical geometry, but this assumption can be relaxed. In
the case of finite density, therefore, the density of electrons is finite and their distribution
must be considered in addition to those of the nucleons. The average density of the cell is
ρ = 3(N + Z)/(4πR3

c). In a neutron star crust, it is logical to specify the density ρ, and
optimize the beta-equilibrium energy per particle with respect to the density profiles and N
and Z, which determines Rc, µn and µp. The two additional equations needed, in addition
to the Euler equations Eq. (2.28), are equivalent to the beta equilibrium condition

µn − µp + (mn −mp)c
2 = µe (2.100)

and the energy minimization (
∂E

∂Rc

)

β

= 0 (2.101)

where beta equilibrium is assumed.
In a neutron star crust, where the density ρ >> 106 g cm−3 and T < 1 MeV, the

electrons are relativistic and degenerate. In this case, the electron density, which is modified
by the Coulomb potential, is given in terms of the electron chemical potential µe at the cell
boundary by

ρe(r) =
1

3π2

(
µe +∆µp(r)

~c

)3

. (2.102)

Eqs. (2.96) and (2.102) must be solved by iteration. In beta equilibrium, one has µe =
µn(Rc)− µp(Rc) + (mn −mp)c

2 since ∆µp(Rc) = 0.
Nuclei for several different locations in a neutron star crust at T = 0 are displayed in Fig.

2.14. For densities ρ ≥ 0.00028 fm−3 the neutron chemical potential is positive and dripped
neutrons appear. In this case, the number of neutrons in the nucleus is estimated from

Nnuc = ρn0
N − 4πρnRcR

3
c/3

ρn0 − ρnRc

, (2.103)

where ρn0 is the neutron density at the nucleus center and ρnRc is the neutron density at the
cell boundary. Note that when neutron drip does not occur, Nnuc is not exactly equal to N .
In addition, in the case of dripped neutrons, the mean-square neutron radius is redefined to
be

Rn =

(∫
(ρn − ρnRc)r

2d3r∫
(ρn − ρnRc)d

3r

)1/2

. (2.104)

The trend is for proton number Z to decrease with increasing density, as is shown in
Fig. 2.15. The energy minimum is very sensitive to the neutron and proton numbers which
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Figure 2.14: Neutron and proton density profiles for nuclei in the cold crust of a neutron
star. The optimum nucleus for each density ρ (fm−3) is shown, together with the pressure p
(MeV fm−3), the total internal energy per baryon E (MeV), the charge radius Rp (fm), the
neutron skin thickness Rn−Rp, and the chemical potentials µn, µp and µe (MeV). N,Z and
Nnuc are defined in the text. Rc is the Wigner-Seitz cell size and Eβ is the energy of uniform
nuclear matter in beta equilibrium.
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Figure 2.15: Proton number per unit Wigner-Seitz cell for dense matter for the truncated
model is shown by the solid curve. The energy advantage (MeV/baryon, multiplied by 100)
relative to uniform matter in beta equilibrium is shown by the dashed curve. The filling
factor u, defined in Eq. (2.105) and multiplied by 100, is shown by the dotted curve.

accounts for the wiggles shown in this figure. This figure also shows the filling factor

u =
ρ− ρ0
ρ0 − ρRc

, (2.105)

which increases with density, and the energy advantage of nuclei over that of uniform nuclear
matter (both considered in beta equilibrium), ∆E = E − Eβ, which decreases with density.
∆E decreases to zero before the filling factor approaches the value 1/2 for which matter
might expect to be turned inside out (Lamb et al.[15]).

In general, the Wigner-Seitz cell size Rc decreases with increasing density and the nu-
clear filling factor in the absence of dripped nucleons, (R/Rc)

3, where R ≈ (Rn + Rp)/2,
therefore increases. However, the nuclear mass fraction decreases with density because of
dripped neutrons and, as a result, the filling factor u increases less rapidly than it would oth-
erwise. The Coulomb energy decreases with density, and eventually nuclei become unstable
to deformations. In the simple analysis of Ravenhall et al.[58], significant deformations from
sphericity occur when the filling factor is larger than about 1/8. From the results displayed
here, this occurs when ρ ≃ 0.06 fm−3. At this point, the energy difference between nuclei
and uniform matter is small, being only about 0.13 MeV per baryon, and the energy differ-
ence even disappears by densities near ρ = 0.09 fm−3. Thus the density domain in which
significantly deformed nuclei appear is probably relatively small in this case. Lamb et al.[16]
demonstrated that the nuclei will tend to turn “inside-out” when a filling factor larger than
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1/2 obtains, but this appears to be unlikely to ever occur for this model. To explore these
questions further requires one to consider non-spherical geometries for nuclei.

2.7 Conclusions

This chapter demonstrates the feasibility of employing a finite-range nuclear interaction to
efficiently compute nuclear properties in the Thomas-Fermi approximation, and it extends
these calculations to the computation of the properties of hot, dense matter using unit
Wigner-Seitz cells. The method is efficient enough to allow the computation of full tables that
are densely-enough spaced in density, temperature, and electron fraction for astrophysical
applications. Before such a table can be generated, however, there are a few details of the
model that may have to be modified.

The model described in this model does not adequately describe realistic nuclear incom-
pressibilities or the properties of nuclear surfaces. However, these items can be straightfor-
wardly corrected by the addition of density-dependent terms to the nuclear interactions. In
addition, better fits to nuclear effective masses and the optical model potential can be ac-
commodated by additional momentum-dependent terms. Future work will explore possible
modifications and will undertake a detailed comparison to the properties of nuclei.

In addition, Danielewicz [7] pointed out an apparent inconsistency with the liquid droplet
treatment developed by Myers & Swiatecki [24] and by Lattimer et al.[17]. with respect to
its incorporation of the symmetry and Coulomb properties of nuclei. Danielewicz proposed
an alternate formulation of the liquid droplet model. However, Steiner et al.[32] pointed
out discrepancies between the predictions of the two approaches concerning the symmetry
properties of extremely neutron-rich nuclei and neutron skin thickness. The present model
should be immune to any discrepancy involved with the liquid droplet model and, further-
more, should provide a suitable platform with which to resolve this controversy. This point
will be addressed in a future publication.

Following the resolution of these points, we intend to generate a series of three-dimensional
tables suitable for astrophysical simulations, and we will compare their properties to the
Lattimer-Swesty [22] and Shen et al.[61] equations of state.
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Chapter 3

Modified model

† The truncated model is quite successful in representing isolated nuclei and dense matter.
However, the truncated model has a too large nuclear incompressibility and nuclear surface
tension. We added new density dependent interactions so that we can resolve them.

3.1 Original Modification to Myers & Swiatecki Model

We considered an alternative density dependent interaction term which has an energy density
contribution that is proportional to ρ1+ǫ:

CηL = −h
3

4
Toρo

(
3

4πP 3
o

)2

ηL

(
2

ρo

)ǫ(
ρǫt1 + ρǫt2

2

)

CηU = −h
3

4
Toρo

(
3

4πP 3
o

)2

ηU

(
2

ρo

)ǫ(
ρǫt1 + ρǫt′2

2

) (3.1)

where ηL, ηU , and ǫ are parameters. The total energy is altered by the amount

∆E =
1

2

To
ρo

(
2

ρo

)ǫ ∫
d3r1d

3r2 f(r12/a)×
∑

t

[ηLρt1ρt2(ρ
ǫ
t1 + ρǫt2)ηUρt1ρt′2(ρ

ǫ
t1 + ρǫt2′) .

(3.2)

The contribution to the potential is

∆Vt =
To
ρo

(
2

ρo

)ǫ (
ηL

[
(1 + ǫ)ρǫt ρ̃t + ρ̃1+ǫt

]
+ ηU

[
(1 + ǫ)ρǫt ρ̃t′ + ρ̃1+ǫt′

])
, (3.3)

while the energy density contribution is

∆E =
1

2

To
ρo

(
2

ρo

)ǫ∑

t

ρt

[
ηL

(
ρǫt ρ̃t + ρ̃1+ǫt

)
+ ηU

(
ρǫt ρ̃t′ + ρ̃1+ǫt′

)]
. (3.4)

†This chapter is an improved version of the truncated model in Chapter 2. This work will be submitted
to the journal soon.
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In the case of uniform matter, the additional contribution to the energy density is

∆E =
To
ρo

(
2

ρo

)ǫ∑

t

ρ1+ǫt

[
ηLρt + ηUρ

′
t

]
. (3.5)

For standard nuclear matter (u = 1, x = 1/2, T=0 MeV), one finds, after defining η =
ηL + ηU ,

ǫo
ρo

= −B = To

[
3

5
− α

2
+
β ′′

2
+
η

2

]
,

po = 0 = ρoTo

[
2

5
− α

2
+

5

6
β ′′ +

η

2
(1 + ǫ)

]
,

Ko = To

[
6− 9α + 20β ′′ +

9η

2
(1 + ǫ)(2 + ǫ)

]
,

K ′
o = To

[
4− 9α +

100

3
β ′′ +

9η

2
(1 + ǫ)2(2 + ǫ)

]
,

Sv = To

[
1

3
+
αU − αL

2
+

5

9
(2β ′′

L − β ′′
U)

+
1 + ǫ

4
([2 + ǫ]ηL − 2[2− ǫ]ηU)

]
,

S ′
v = To

[
2

9
+
αU − αL

2
+

25

27
(2β ′′

L − β ′′
U)

+
(1 + ǫ)2

4
([2 + ǫ]ηL − 2[2− ǫ]ηU )

]
.

(3.6)

Practical considerations† limit the value of ǫ to the range 0 < ǫ < 2/3. For a given value of
Ko, a solution of Eq. (3.6) yields the consequence that K ′

o is nearly independent of ǫ.

†To determine the range of ǫ, we check the pressure behavior of pure neutron matter.
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We choose the value ǫ = 1/3. One may show in this case that

α =
9

5
+

5B

To
+

1

ǫ

(
3

5
+

5B

To
− Ko

3To

)
=

18

5
+

20B

To
− Ko

To
,

β ′′ =

(
1− 3ǫ

2

)−1 [
Ko

2To
− 3

10
− 9B

2To
− ǫ

(
9B

2To
− 9

10

)]

=
Ko

To
− 6

5
− 12B

To
,

η =
1

ǫ

(
1− 3ǫ

2

)−1(
3

5
+

5B

To
− Ko

3To

)
= 6

(
3

5
+

5B

To
− Ko

3To

)
,

K ′
o =

14

3
Ko − 15B − 3

5
To + ǫ

(
Ko − 15B − 9

5
To

)

= 5Ko − 20B − 6

5
To .

(3.7)

Therefore, to reduce Ko from the truncated model value of 316 MeV to the experimental
value, e.g. 230 MeV, requires a value η ≃ 172/To ≃ 4.3, and α and β ′′ are respectively
changed by +η/2 and −η/2. In this case, K ′

o ≃ 780 MeV.

For ǫ = 1/3, we find

Sv = To

[
1

3
+
α

2
− αL +

5

3
β ′′
L − 5

9
β ′′ +

4

3
ηL − 5

9
η

]
,

S ′
v = To

[
2

9
+
α

2
− αL +

25

9
β ′′
L − 25

27
β ′′ +

16

9
ηL − 20

27
η

]
.

(3.8)

In practice, forKo ≃ 230 MeV, β ′′ ≃ 0 and both α ≃ 6 and η ≃ 4 are positive. Symmetric
matter therefore has positive pressure for u > 1. Pure neutron matter, on the other hand,
has pressure

pN = Toρou

[
2

5
(2u)2/3 − αLu+

5

3
22/3β ′′

Lu
5/3 +

4

3
21/3ηLu

4/3

]
. (3.9)

At ρo, pN has a value about half of the non-interacting Fermi pressure, Combining this result
with reasonable values Sv = 30 MeV and S ′

v = 15 MeV, one finds αL ≃ 7.2, β ′′
L ≃ −3.4 and

ηL ≃ 9.4. In the case S ′
v = 30 MeV, one finds αL ≃ 13.3, β ′′

L ≃ −6.3 and ηL ≃ 17.5. In both
cases, pN turns negative at low densities u < 2.5 because β ′′

L < 0.

The problem can be more clearly observed if one forms the combination Q = eN − es − Sv,
where eN is the neutron energy per baryon and es = E/ρ is the symmetric matter energy per
baryon. Nominally, the magnitude of Q evaluated at the saturation density, Q1 ≡ Q(u = 1),
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is expected to be small, |Q1| ≤ 1 MeV. In our case,

Q = To

[
3

5
u2/3

(
22/3 − 14

9

)
+

[
β ′′

18
+

(
22/3 − 5

3

)
β ′′
L

]
u5/3

+

[
η

18
+

(
21/3 − 4

3

)
ηL

]
u1+ǫ

] (3.10)

Thus, for Sv = 30 MeV and S ′
v = 15 MeV, Q1 ≃ −6.5 MeV. Therefore, in general, the

non-quadratic terms involving β ′′
L and ηL lead to neutron matter energy and pressure that

are not well-behaved at higher densities in comparison to symmetric energies and pressures.

Another possibility is to require that Q1 ≈ 0, specifically

β ′′

18
+

(
22/3 − 5

3

)
β ′′
L +

η

18
+

(
21/3 − 4

3

)
ηL = 0 . (3.11)

Using Eqs.(3.8) and (3.11), we can evaluate αL = −4.0, β ′′
L = −1.4, and ηL = 4.6 using

ǫ = 1/3, Sv = 30 MeV, and S ′
v = 15 MeV. Once again, the negative value of β ′′

L renders
neutron matter unstable at high densities.

3.2 Alternate Modification

Most Skyrme forces explicitly incorporate the η terms with a quadratic x dependence so
that they, unlike the α terms, vanish in Eq. (3.10), and the surviving β ′′

L term can be made
small. It will be necessary for us to formulate a force with similar properties. One way to
do this is to make the extra terms in CL,U functionals of ρ1 only (or ρ2). For example,

CηL = −h
3

4
Toρo

(
3

4πP 3
o

)2

ηL

(
2

ρo

)ǫ(
ρǫ1 + ρǫ2

2

)

CηU = −h
3

4
Toρo

(
3

4πP 3
o

)2

ηU

(
2

ρo

)ǫ(
ρǫ1 + ρǫ2

2

) (3.12)

Then,

∆E =
1

2

To
ρo

∫
d3r1d

3r2 f(r12/a)×
[(

ρ1
ρo

)ǫ
+

(
ρ2
ρo

)ǫ]∑

t

ρt1

[
ηLρt2 + ηUρt′2

]

=
To
ρo

∫
d3r

(
ρ

ρo

)ǫ∑

t

ρt

[
ηLρ̃t + ηU ρ̃t′

]
.

(3.13)

We find

∆E =
To
ρo

(
ρ

ρo

)ǫ∑

t

ρt

[
ηLρ̃t + ηU ρ̃t′

]
, (3.14)
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∆Vt =
To
ρo

[(
ρ

ρo

)ǫ [ ǫ
ρ

∑

t

ρt(ηLρ̃t + ηU ρ̃t′) + ηLρ̃t + ηU ρ̃t′
]
+ ηLρ̂t + ηU ρ̂t′

]
, (3.15)

where

ρ̂t(r1) =

∫
d3r2f(r12/a)

(
ρ2
ρo

)ǫ
ρt2 . (3.16)

In uniform matter, one finds

∆E =
To
ρo

(
ρ

ρo

)ǫ [
ηL(ρ

2
n + ρ2p) + 2ηUρnρp

]
,

∆Vt =
To
ρo

(
ρ

ρo

)ǫ [
ǫ

(
ηL
ρ2n + ρ2p

ρ
+ 2ηU

ρnρp
ρ

)
+ 2ηLρt + 2ηuρt′

]
,

∆p =
To
ρo

(
ρ

ρo

)ǫ
(1 + ǫ)

[
ηL(ρ

2
n + ρ2p) + 2ηUρnρp

]
.

(3.17)

In terms of the proton fraction,

∆E
ρo

= Tou
1+ǫ
(
ηL

[
x2 + (1− x)2

]
+ 2ηUx(1− x)

)
,

∆p = Toρou
2+ǫ
(
ηL

[
x2 + (1− x)2

]
+ 2ηUx(1 − x)

)
.

(3.18)

For standard nuclear matter, we now obtain

ǫo
ρo

= −B = To

[
3

5
− α

2
+
β ′′

2
+
η

2

]

po = 0 = ρoTo

[
2

5
− α

2
+

5

6
β ′′ +

η

2
(1 + ǫ)

]

Ko = To

[
6− 9α + 20β ′′ +

9η

2
(1 + ǫ)(2 + ǫ)

]

K ′
o = To

[
4− 9α +

100

3
β ′′ +

9η

2
(1 + ǫ)2(2 + ǫ)

]

Sv = To

[
1

3
+
α

2
− 5

9
β ′′ − η

2
− αL +

5

3
β ′′
L + ηL

]
,

S ′
v = To

[
2

9
+
α

2
− 25

27
β ′′ − (1 + ǫ)

η

2
− αL +

25

9
β ′′
L + (1 + ǫ)ηL

]

(3.19)
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Solving, we have

α =
9

5
+

5B

To
+

1

ǫ

(
3

5
+

5B

To
− Ko

3To

)
=

18

5
+

20B

To
− Ko

To
,

β ′′ =
5K/To − 3− 9ǫ− 45(1 + ǫ)B/To

10− 15ǫ
=
Ko

To
− 6

5
− 12B

To
,

η =
18− 10K/To + 150B/To

15ǫ(2− 3ǫ)
=

18

5
+

30B

To
− 2K

To
,

K ′
o =

14

3
Ko − 15B − 3

5
To + ǫ

(
Ko − 15B − 9

5
To

)

= 5Ko − 20B − 6

5
To .

(3.20)

The last expressions are obtained with ǫ = 1/3. We also find, for ǫ = 1/3,

Sv = To

[
1

3
+
α

2
− αL +

5

3
β ′′
L − 5

9
β ′′ + ηL − η

2

]
,

S ′
v = To

[
2

9
+
α

2
− αL +

25

9
β ′′
L − 25

27
β ′′ +

4

3
ηL − 2

3
η

]
.

(3.21)

Pure neutron matter has pressure

pN = Toρou

[
2

5
(2u)2/3 − αLu+

5

3
22/3β ′′

Lu
5/3 + (1 + ǫ)ηLu

4/3

]
(3.22)

(3.23)

At ρo, pN has a value about half of the non-interacting Fermi pressure. Combining this result
with reasonable values Sv = 30 MeV and S ′

v = 15 MeV, and assuming ǫ = 1/3, one finds
αL ≃ −4.4, β ′′

L ≃ 3.6, and ηL ≃ −10.7. In the case S ′
v = 30 MeV, one finds αL ≃ −8.4,

β ′′
L ≃ 6.7, and ηL ≃ −19.9. In both cases, since β ′′

L > 0, the neutron matter pressure will
continuously rise with u.
However, we now observe that

Q = To

[
3

5
u2/3

(
22/3 − 14

9

)
+
[β ′′

18
+
(
22/3 − 5

3

)
β ′′
L

]
u5/3

]
, (3.24)

evaluated at the saturation density and using ǫ = 1/3, Sv = 30 MeV and S ′
v = 15 MeV, is

Q1 ≃ −10.3 MeV. Obviously, the neutron matter properties and the symmetry properties
cannot be separately adjusted.

Most Skyrme forces have the properties that both Q1 and Q′
1 ≡ (dQ(u)/d lnu)1 = [pn −

ps − S ′
v] have small magnitudes: if they don’t, their neutron matter has problems. Setting
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Q1 to a small number also results in small values for Q′
1. since for ǫ = 1/3, the value of β ′′

is nearly zero, setting β ′′
L = 0 will ensure that Q1 is small. The coupled set of equations to

determine αL and ηL in this case are

Sv
To

=
1

3
+
α

2
− η

2
− αL + ηL ,

S ′
v

To
=

2

9
+
α

2
− 2

3
η − αL +

4

3
ηL .

(3.25)

These result in

αL =
2

3
+
α

2
− η

2
− 4Sv − 3S ′

v

To
≃ 1.6 ,

ηL =
1

3
+
η

2
− 3

Sv − S ′
v

To
≃ 1.1 .

(3.26)

The neutron matter energy and pressure are now implicitly closely coupled to Sv and S ′
v

such that eN,1 ≃ Sv −B and pN,1/ρo ≃ S ′
v. For Hebler & Schwen [63] estimates of eN,1 ≃ 14

MeV and pN,1/ρo ≃ 2 MeV, we find Sv ≃ 30 MeV and S ′
v ≃ 10 MeV. In this case, αL ≃ 1.2

and ηL ≃ 0.7.

Alternatively, one could use a value of ǫ < 1/3, resulting in β ′′ > 0. To ensure Q1 ≡ 0,
a positive value for β ′′

L is also obtained. This results in different values for αL and ηL and a
different relation between Sv, S

′
v and eN,1, pN,1.

Thus, it would be interesting to fit nuclei to determine the correlation between Sv and S
′
v for

a couple different values of ǫ, such as 1/3 or 1/6. One could then also add the correlations
for Sv and S

′
v obtained from the relations reduced from theoretical studies of neutron matter

energy and pressure at the saturation density.

3.3 Optimized Parameter Set

Adding new density dependent interactions solves nuclear incompressibility, optical potential,
and pure neutron matter properties. To find an optimized parameter set, αL,U , βL,U , and,
ηL,U , we may compare the experimental binding energy of single nucleus with theoretical
calculation from the modified model. For this set, we fix β ′′ = 0, which gives proper nuclear
incompressibility (K ≃ 235 MeV) and varies Sv and S ′

v(= L/3). Since the experimental
error in the binding energy is extremely small, so that it is meaningless if we define χ2 in
conventional way, instead we define the χ2 as

χ2 =
1

N

∑(
Bex,i − Bth,i

σ

)2

(3.27)

where N(= 2336) is the total number of nuclei in the calculation and σ is a mean error
(arbitrary). The Bex,i is the data [45] and Bth,i is the numerical calculation.
The χσ has a unit of MeV so we can estimate the mean difference between Bex and Bth in
each calculation. Even though our code is fast to calculate single nucleus’s properties, the
number of calculation for this contour plot is 2336× 41× 41 ∼ 4 · 106 so we wrote a simple
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Figure 3.1: Solid line shows the contour plot of Sv and L from FRTF II model. There is a
strong correlation between Sv and L. The dotted ellipse at the center represent statistical
calculation from Eq. (3.28) (3.29), which makes χ2 = 8.54.

parallel code for it. Fig. 3.1 shows the contour plot of Sv and L using FRTF II. The dotted
ellipse at the center is a statistical calculation from Eq. (3.28) and (3.29), which makes
χ2 = 8.5 to compare with the contour plot from numerical calculation. This contour plot
implies strong correlation between Sv and L. This strong correlation also implies the strong
correlation between Ss and Sv in liquid droplet model when we extract the information of
Ss from semi-infinite nuclear matter using FRTF model.
The χ2σ2 = 7.54 MeV2 gives mean error

√
7.54/100 ∼ 0.027 MeV per nucleon. This χ2σ2

can be reduced upto 4.72 MeV2 if we add semi-empirical formula for pairing 12/
√
A and

shell effects. We used the Taylor expansion for χ2σ2 to find σSv and σL which are

σ2
[
χ2(p)− χ2

0

]
=

2∑

i,j=1

δpijMijδpij (3.28)
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where p = (Sv, L) and Mij =
1
2
∂pi∂pj |p. Then the definition of σSv , σL, and RSv,L are given

by

σ2
Sv

=
2∂2Lχ

2

∂2Sv
χ2 ∂2Lχ

2 − (∂Sv∂Lχ
2)2

σ2

σ2
L =

2∂2Sv
χ2

∂2Sv
χ2 ∂2Lχ

2 − (∂Sv∂Lχ
2)2

σ2

RSv,L = − ∂Sv∂Lχ
2

√
∂2Sv

χ2 ∂2Lχ
2

(3.29)

Fig. 3.2 shows the 95% confidence interval of Sv and L from FRTF II and Kortelainen et
al. [46] Our result has a simliar mean points of Sv and L with Kortelainen et al. but strong
correlation since Kortelainen et al. chose several parameters such as ρs, Rnp, K at the same
time. The Sv and L are on the same line and very close to each other.
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Figure 3.2: This figure shows 95% confidence interval from FRTF II and Kortelainen et al.
[46]. The red (blue) ellipse is the result from Kortelainen et al. (FRTF II). Our result has the
similar slope with Kortelaine et al. but a stronger correlation. Kortelainen et al. assumed
σ = 2 MeV, for FRTF II we used σ = 1.6 MeV.

Recently Lattimer and Lim [47] summarized the allowed region of Sv and L and compared
those result with liquid droplet model. Our optimized values of Sv and L are also inside the
overlapped region of Sv and L from several experimentally allowed region.
Fig. 3.3 shows Sv and L allowed region. The blue sky region is the result from Sn neutron
skin [48]. GDR comes from giant dipole resonance [49]. There is a restriction from 208Pb
dipole polarizability [52]. HIC represents the result from heavy ion collision [51]. Nuclear
masses is the result from Korelainen et al. [46]. The hatched region comes from neutron
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Figure 3.3: Several experimental result can restrict the Sv and L. Our optimized Sv and L
are in the white overlapped region in the middle of the figure [47].

star observations [53]. There are also pure neutron matter calculations with purple polygons
[54, 55]. This allowed region of Sv and L will give important constraints to develop new
nuclear force model in the future.
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3.4 Nuclear Surface Tension

Compared with the truncated model, the modified model has a lower critical temperature
and surface tension. These properties will be used to construct E.O.S table using liquid
droplet approach. In the liquid droplet approach (chapter 6), the surface tension as a func-
tion of T and proton fraction x is required.

The critical temperature for asymmetric nuclear matter occurs when the dilute and dense
matter have the same density and proton fraction. In general, the proton fractions in both
dense and dilute matter is different each other except for symmetric nuclear matter. The
surface tension can be obtained only numerically using Eq. (2.70).
The surface tension for nuclear matter at finite temperature and given proton fraction can
be approximated [17] by

ω(xi, T ) = ω0(xi)

[
1−

(
T

Tc(xi)

)2]p
. (3.30)

For both the truncated model and the new model, p = 5/3 explains the numerical behaviors
very well.
The critical temperature at which both the dilute and dense phase have the same density
and proton fraction, is approximated by

Tc(xi) = Tc(xi = 0.5)(1 + a(1− 2xi)
2 + b(1 − 2xi)

4 + c(1− 2xi)
6) . (3.31)

The a, b, and c can be obtained by χ2 minimization between the numerical result and fitting

Table 3.1: The critical temperature analytic fitting function

Model Tc,0 a b c
Truncated 17.354 -0.5006 0.66126 -1.33316

New 14.626 -0.4296 0.34216 -1.00298

function. Fig. 3.4 shows the plot of critical temperature of numerical and fitting function.
This fitting function is used to calculate finite temperature surface tension in Eq. (3.30).
The surface tension at T = 0 MeV and Yp = 0.5 is also a function of proton factions. ω0 can
be approximated with fractional function as in LS model,

ω0(xi) = ω0(xi = 0.5)
2 · 2α + q

x−αi + q + (1− xi)−α
(3.32)

The parameter α is left free so that we can choose from 2 to 4.0 and q is obtained from χ2

minimization. For both models, the best α’s are 3.6 and 3.7.
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Figure 3.4: The critical temperature as a given proton fraction: Numerical result and analytic
fitting function.

Table 3.2: Surface tension analytic fitting function for finite range model

Model ω0(xi = 0.5) α q
Truncated 1.25728 3.6 39.0552

New 1.02824 3.7 56.0479
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Figure 3.5: Surface tension at T = 0 MeV as a given proton fraction: Numerical result and
analytic fitting function.
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Chapter 4

Gaussian Type Finite Range model

† The finite range force can be managed with Gaussian distance (f(r) ∼ e−(r/r0)2) depen-
dence. This distance dependence does not represent the repulsion when the distance between
nucleons so close (< 0.1fm) but it can be justified since the total interaction energy is ob-
tained from phase space integration. It also give a better representation of radii of nuclei
and neutron skin than the Yukawa type finite range model.

4.1 Nuclear Density Functional Theory

4.1.1 Energy density functional

The energy of nuclear matter is given by

E = Tkin + EFR + EZR + EC + ES,L (4.1)

where Tkin, EFR, EZR, EC , and ES,L are the kinetic energy, nuclear finite-range interac-
tion, zero-range interaction, Coulomb interaction, and spin-orbit coupling respectively. The
kinetic energy contribution from nucleons is simply obtained by

Tkin =

∫
d3r
∑

t

~2

2m
τt , (4.2)

where t is the type of nucleons.
In this Gaussian nuclear density functional (GNDF) theory, the number and kinetic densities
are

ρt =
1

4π3~3

∫ ∞

0

ft d
3p ; τt =

1

4π3~5

∫ ∞

0

ftp
2 d3p , (4.3)

where ft is the Fermi-Dirac density function,

ft =
1

1 + e(ǫt−µt)/T
. (4.4)

†This chapter is based on Y. Lim’s work, arXiv:1101.1194. This work will be modified and resubmitted.
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For the finite-range term, we use a Gaussian phenomenological model for the nuclear poten-
tial,

EFR =
∑

t

1

π3/2r30

∫
d3r1d

3r2e
−r212/r

2
0

[
V1Lρt(r1)ρt(r2) + V1Uρt(r1)ρt′(r2)

]

+
∑

t

1

π3/2r30

∫
d3r1d

3r2e
−r2

12
/r2

0

[
V2Lρ

1+ǫ
t (r1)ρ

1+ǫ
t (r2) + V2Uρ

1+ǫ
t (r1)ρ

1+ǫ
t′ (r2)

]

+
∑

t

1

π3/2r30

∫
d3r1d

3r2e
−r2

12
/r2

0 ×
[∫

d3pt1d
3pt2ft1ft2V3Lp

2
12 +

∫
d3pt1d

3pt′2ft1ft′2V3Up
2
12

]
,

(4.5)

where p12 = |p1 −p2|, r12 = |r1 − r2|, r0 is the length of interaction, and V1L, V1U , V2L, V2U ,
V3L, and V3U are interaction parameters to be determined. The last term is added to explain
the effective mass of nucleons in dense matter.
The zero-range term in the nuclear force can be regarded as the energy contribution from
three-body nuclear forces. The three-body force is quite important if the baryon density
increases beyond two or three times the saturation density. One possible form of the three-
body force is [34]

EZR =
1

4
t3

∫
d3rρn(r)ρp(r)ρ(r) , (4.6)

where t3 is the interaction strength for a three-body force, ρn (ρp) is neutron (proton) density,
and the ρ is total density.
The energy functional for the Coulomb interaction has an exchange term which is absent in
classical physics,

EC = Epp
C + Eex

C

=
e2

2

∫ ∫
d3r1d

3r2
ρp(r1)ρp(r2)

r12
− 3

4π
(3π2)1/3e2

∫
d3rρ4/3p (r) .

(4.7)

In bulk nuclear matter, the spin-orbit and Coulomb interactions constitute a small portion
of the total energy, so we neglect these two terms. Then the bulk density functional would
be

EB = Tkin + EFR + EZR

=

∫
d3rEB(r) ,

(4.8)

53



where EB is the energy density for bulk matter. Using Eq.(4.2), (4.5), and (4.6), we find

EB =
~2τn
2m

+
~2τp
2m

+ V1L(ρn〈ρn〉+ ρp〈ρp〉) + V1U(ρn〈ρp〉+ ρp〈ρn〉)
+ V2L(ρ

1+ǫ
n 〈ρ1+ǫn 〉+ ρ1+ǫp 〈ρ1+ǫp 〉) + V2U(ρ

1+ǫ
n 〈ρ1+ǫp 〉+ ρ1+ǫp 〈ρ1+ǫn 〉)

+ V3L(ρn〈τn〉+ τn〈ρn〉+ ρp〈τp〉+ τp〈ρp〉)
+ V3U(ρn〈τp〉+ τn〈ρp〉+ ρp〈τn〉+ τp〈ρn〉)

+
1

4
t3ρρnρp

(4.9)

where we defined the Gaussian-type integral using ‘〈...〉’:

〈u(r1)〉 =
1

π3/2r30

∫
d3r2e

−r2
12
/r2

0u(r2) . (4.10)

4.1.2 Effective mass, Potential, and Thermodynamic properties

The effective mass of the nucleons at the nuclear saturation density is about 0.7mB. Some
nuclear density functionals use the effective mass m∗ = mB. However, we introduce the mo-
mentum dependent interaction which describes the effective mass of nucleons. The functional
derivative δEB gives us the effective masses and potentials in the nuclear density functional,

δEB =

∫
d3r

(
Vnδρn +

~2

2m∗
n

δτn + Vpδρp +
~2

2m∗
p

δτp

)
. (4.11)

Now we get the effective mass for neutrons and protons,

m∗
t =

m

1 + 4m(V3L〈ρt〉+ V3U〈ρt′〉)/~2
(4.12)

and the potentials

Vt =2

[
V1L〈ρt〉+ V1U 〈ρt′〉+ (1 + ǫ)ρǫt(V2L〈ρ1+ǫt 〉+ V2U〈ρ1+ǫt′ 〉)

+ V3L〈τt〉+ V3U〈τt′〉
]
+

1

4
t3(2ρt + ρt′)ρt′ .

(4.13)

The thermodynamic properties are extremely important to properly describe the hot dense
matter. The degeneracy parameter, which is in the Fermi-Dirac distribution function is the
key, to open the thermodynamic properties. Using the Fermi-integral, we get the baryon
number density and kinetic density with degeneracy parameter φt = (µt − Vt)/T ,

ρt =
1

2π2

(
2m∗

tT

~2

)3/2

F1/2(φt), τt =
1

2π2

(
2m∗

tT

~2

)5/2

F3/2(φt) . (4.14)
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Landau’s quasi-particle formula gives us the entropy density St, which tell us how to find
the pressure in this density functional,

St = − 2

~3

∫
d3p
[
ft ln ft + (1− ft) ln(1− ft)

]
=

5~2

6m∗
tT
τt −

µt − Vt
T

ρt . (4.15)

From the thermodynamic identity and entropy density given above, we can get pressure,

p = µnρn + µpρp + TSn + TSp − E

=
∑

t

(
5~2

6m∗
t

τt + Vtρt

)
− E

=
~2τn
3m

+
~2τp
3m

+ V1L(ρn〈ρn〉+ ρp〈ρp〉) + V1U(ρn〈ρp〉+ ρp〈ρn〉)
+ V2L(1 + 2ǫ)(ρ1+ǫn 〈ρ1+ǫn 〉+ ρ1+ǫp 〈ρ1+ǫp 〉)
+ V2U(1 + 2ǫ)(ρ1+ǫn 〈ρ1+ǫp 〉+ ρ1+ǫp 〈ρ1+ǫn 〉)

+ V3L(ρn〈τn〉+
7

3
τn〈ρn〉+ ρp〈τp〉+

7

3
τp〈ρp〉)

+ V3U(ρn〈τp〉+
7

3
τn〈ρp〉+ ρp〈τn〉+

7

3
τp〈ρn〉)

+
1

2
t3ρρnρp .

(4.16)

At zero temperature non uniform matter, the chemical potential of the proton and neutron
are given by,

µt =
~2

2m∗
t

(3π2ρt)
2/3 + Vt

=
~2

2m
(3π2ρt)

2/3 + 2(V3L〈ρt〉+ V3U〈ρt′〉)(3π2ρt)
2/3 (4.17)

+ 2

[
V1L〈ρt〉+ V1U〈ρt′〉+ (1 + ǫ)ρǫt(V2L〈ρ1+ǫt 〉+ V2U〈ρ1+ǫt′ 〉) + V3L〈τt〉+ V3U 〈τt′〉

]

+
1

4
t3(2ρt + ρt′)ρt′ .

4.2 Parameters for the Gaussian nuclear density func-

tional

Every nuclear model should reproduce five nuclear matter properties: binging energy, pres-
sure, nuclear incompressibility, symmetry energy and effective mass, m∗. We use the satu-
ration properties of nuclear matter to determine the parameters of the density functional.
For zero-temperature uniform nuclear matter, we have the energy density as a function of
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u = ρ/ρ0 and x = ρp/ρ,

EB
T0ρ0

=
3

5
22/3u5/3

[
(1− x)5/3 + x5/3

]
+ u2

[
v1L(x

2 + (1− x)2) + 2v1Ux(1− x)
]

+ 21+2ǫu2+2ǫ
[
v2L(x

2+2ǫ + (1− x)2+2ǫ) + 2v2Ux
1+ǫ(1− x)1+ǫ

]
(4.18)

+ 22/3u8/3
[
v3L(x

8/3 + (1− x)8/3) + v3U(x(1− x)5/3 + x5/3(1− x))
]

+
1

4
t′3u

3x(1− x) ,

where we define the parameters

T0 =
~2

2m
(3π2ρ0/2)

3/2 , v1L,U =
ρ0
T0
V1L,U , v2L,U =

1

T0

(ρ0
2

)1+2ǫ

V2L,U

v3L,U =
4 · 35/3π4/3

5T0

(ρ0
2

)5/3
V3L,U , t′3 =

ρ20
T0
t3 .

(4.19)

Now we assume that the momentum-dependent interaction is blind to the type of nucleon,
so V3L = V3U(v3 = v3L + v3U). The binding energy of symmetric nuclear matter (u = 1,
x = 1/2) is then given by

E0
ρ0

= −B0 = T0

[
3

5
+
v1L + v1U

2
+ v2L + v2U +

v3
2
+
t′3
16

]
, (4.20)

where B0 = 16MeV is the binding energy per baryon at the nuclear saturation density.
The pressure at the saturation density vanishes, which means that the energy per baryon
has its minimum at the saturation density,

p0 = ρ0T0

[
2

5
+
v1L + v1U

2
+ (1 + 2ǫ)(v2L + v2U ) +

5

6
v3 +

1

8
t′3

]
= 0 . (4.21)

The incompressibility parameter at the saturation density is given by

K0 = 9
dp

dρ

∣∣∣∣
ρ=ρ0

= T0
[
6 + 9(v1L + v1U) + 9(1 + 2ǫ)(2 + 2ǫ)(v2L + v2U ) + 20v3 +

27

8
t′3
]

= 265 MeV .

(4.22)
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The symmetry energy in nuclear matter is defined as

Sv =
1

8

d2(E/ρ)
dx2

∣∣∣∣
ρ=ρ0,x=1/2

= T0

[
1

3
+
v1L − v1U

2
+ (1 + ǫ)((1 + 2ǫ)v2L − v2U ) +

5

18
v3 −

1

16
t′3

]

= 28 MeV .

(4.23)

Another parameter, which is related to symmetry energy, is given by

L =
3ρ0
8

d3(E/ρ)
dρdx2

∣∣∣∣
ρ=ρ0,x=1/2

= T0

[
2

3
+

3

2
(v1L − v1U) + 3(1 + 2ǫ)(1 + ǫ)((1 + 2ǫ)v2L − v2U) +

25

18
v3 −

3

8
t′3

]

= 54 MeV .

(4.24)

We choose the effective mass at the saturation density as 0.78mb and use this number in the
Eq. (4.12),

m∗ =
m

1 + 2mρ0V3/~2
= 0.78mb . (4.25)

Thus we can easily recover v3 from Eq. (4.19). From Eqs. (4.20), (4.21), and (4.22), we can
have v1 = v1L + v2L, v2 = v2L + v2U and t′3 :

v1 =
5K0/T0 + 5v3(1− 3ǫ)− 72ǫ− 90B0/T0(1 + 2ǫ)− 12

45ǫ

v2 =
12 + 90B0/T0 − 5K0/T0 − 5v3

90ǫ(1− 2ǫ)

t′3 = −8v1 − 16v2 − 8v3 −
16B0

T0
− 48

5
.

(4.26)

Then we can manipulate Eq. (4.23), and (4.24) to get v1L and v2L,

v1L =
1

2
v1 +

1

2ǫ

[
5(1− 3ǫ)

27
v3 +

2ǫ− 1

16
t′3 +

(1 + 2ǫ)Sv
T0

− L

3T0
− 1 + 6ǫ

9

]

v2L =
1

2(1 + ǫ)
v2 −

1

4ǫ(1 + ǫ)2

[
5

27
v3 −

t′3
16

+
Sv
T0

− L

3T0
− 1

9

]
,

(4.27)

and we can have v1U = v1 − v1L and v2U = v2 − v2L.
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Table 4.1: Interaction parameters when ǫ = 1/6, K = 265 MeV, Sv = 28MeV, L = 54MeV.

v1L v1U v2L v2U v3L,U t′3 r0 (fm)
-1.766 -3.472 0.410 0.931 0.169 1.177 1.205

4.2.1 Determination of the 1 + ǫ power

We added in Eq. (4.5) the auxiliary density interaction with the 1 + ǫ power. We might
regard 1+ ǫ as the many-body effect—for example, a three-body force if ǫ > 1

2
. It is known,

however, that interactions among more than three-bodies are unimportant in dense matter
[34]. Thus we can restrict the ǫ to be less than 1

2
. As ǫ changes, the t3 parameter changes

sign, which means that the three-body force can be attractive or repulsive. In the general
Skyrme model with the three-body force, the t3 parameter is positive. We choose ǫ = 1/6 so

that the interaction has the form of ρ
7/6
t1 ρ

7/6
t2 . In zero-temperature, uniform matter, we have

u7/3 terms in the energy density. From Eq. (4.18), the energy density has u5/3, u2, u7/3, u8/3,
and u3 terms if we have ǫ = 1/6 so we can use a statistical approach in uniform matter. Fig
4.1 shows the energy per baryon from GNDF and APR [35] EOS. We can see that as the
density increases, the pressure from the two models agrees very well.

Figure 4.1: The solid line represents the energy per baryon (uniform matter) using GNDF.
The upper (lower) curve represents the energy per baryon of pure neutron matter (symmetric
nuclear matter). The energy per baryon (dotted line) from the APR [35] EOS is added for
comparison.

4.2.2 The effective range of the nuclear force : r0

In the Gaussian-interaction model, we can see that the effective range of the force is given
by r0, which is approximately ∼ 1 to 2 fm. We do not have an analytic form of r0, so we
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Figure 4.2: The left figure shows the quantity p0 − p(z) at the semi-infinite nuclear surface
when r0 = 1.205 fm and Ye = 0.5. The surface tension from this configuration is ω = 1.250
MeV fm−2. The right figure shows the surface tension (solid line) and t90−10 thickness (dashed
line) as a function of r0. When r0 = 1.205, t90−10 = 2.412 fm. The surface tension and t90−10

thickness are both linear functions of r0.

need to rely on the numerical solution of the surface tension of semi-infinite nuclear matter:

ω =

∫ ∞

−∞

[
E − TSn − TSp − µnρn − µpρp + p0

]
dz = −

∫ ∞

−∞

[
p(z)− p0

]
dz , (4.28)

where p0 is the pressure at z = −∞ or z = +∞. In one-dimensional, semi-infinite nuclear
matter, we assume that the nuclear density depends only on the z-axis. The Gaussian
integral then becomes

1

π3/2r30

∫
d3r u(r) =

1

π1/2r0

∫ +∞

−∞

dz u(z) . (4.29)

Experimental values for the surface tension and surface thickness are ω = 1.250 MeV fm−2

and t90−10 = 2.3 fm. Fig. 4.2 shows the numerical calculation, which says that r0 = 1.205
fm from the surface tension and r0 = 1.149 from t90−10 thickness. There is a 5% discrepancy
between the two results. Table 4.1 shows the interaction parameters which we use in this
paper when K = 265 MeV, Sv = 28 MeV, L = 54 MeV, and ǫ = 1/6. The simple density
dependent interactions (v1L,U) are attractive. On the other hand, the auxiliary density
dependent interactions (v2L,U), momentum dependent interactions (v3L,U) three-body force
(t3) are repulsive in our model.
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4.3 Nuclear matter and nuclei

4.3.1 Specific heat

The specific heat of uniform nuclear matter can be obtained by

CV = T
∂S

∂T

∣∣∣∣
ρ

=
∂E

∂T

∣∣∣∣
ρ

. (4.30)

For a non-interacting Fermi gas, the specific heat increases linearly with temperature. When
the temperature is low enough, we expect that the specific heat of the nuclear matter tends
to behave like a free Fermi gas. The specific heat formula for the degenerate gas is given by
[36]

CV =
1

3
m∗kFk

2
BT , (4.31)

where m∗ is the effective mass of a nucleon, kF is the Fermi momentum, and kB is the
Boltzman constant.

However, as the temperature increases, non-linear behavior of the specific heat becomes
apparent so that the degenerate gas formula is no longer valid, due to the excitation of
nucleons deep inside the Fermi surface.

Figure 4.3: This figure shows the specific heat per nucleon of uniform matter for different
densities. If the temperature is low enough, the specific heat behaves linearly with temper-
ature.

To calculate the specific heat of uniform nuclear matter, we use the Johns, Ellis, and Lat-
timer (JEL) method [12], which enables us to get the pressure, energy density and entropy
density for a given degeneracy parameter. Fig. 4.3 shows the specific heat per nucleon of
uniform nuclear matter. It shows the linear relation between the specfic heat and tempera-
ture at low temperature region as in Eq. (4.31).
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Figure 4.4: This figure shows the basic properties of the closed-shell nuclei which can be
obtained from the GNDF. The solid (dotted) line indicates the neutron (proton) density as
a function of radius. As the number of nucelons in the nuclei increase, the neutron skin
thickness (Rn −Rp) increases.

A detailed calculation of the specific heat at sub-nuclear density in the neutron star needs to
take into account the beta-equilibrium condition and heavy nuclei with a neutron gas. The
specific heat plays an important role in the cooling process of neutron stars. In the neutron
star crust, there are heavy nuclei and a free-neutron gas. The effective masses of protons
and neutrons are different from the center of the heavy nuclei and dilute neutron gas, so
we cannot use Eq. (4.31). In this case the specific heat at the neutron star crust can be
calculated numerically by changing temperature and comparing the total energy change.

4.3.2 Nuclei at T = 0 MeV

We can use the GNDF theory and the Lagrange multiplier method to find the radius and
binding energy per nucleon for a single nucleus using the Winger-Seitz cell method. In the
Lagrange multiplier method, the chemical potentials of protons and neutrons are constant
in the Wigner-Seitz cell to minimize the total free energy. Fig. 4.4 shows the radius and
binding energy of the closed-shell nuclei obtained using this method. These results agree well
with the experiment [32]. 40Ca has a larger charge radius than the neutron radius because
of the Coulomb repulsion between protons. The solid (dotted) line denotes the neutron
(proton) density. As the atomic number increases, the central density of neutrons increases;
on the other hand the central density of protons decreases. The difference between charge
and neutron radii increases and the neutron skin becomes thicker as the atomic number
increases. In 208Pb nuclei, the central density of protons is lower than the proton density of
the outer part of nuclei (r = 4− 5 fm) because of proton Coulomb repulsion.

Table 4.2 shows the proton and neutron radii and binding energy per baryon of closed
shell nuclei from various nuclear models. The calculation from GNDF theory agrees well
with experimental results.

4.3.3 Heavy nuclei in the neutron star crust

In the neutron star crust, heavy nuclei are formed with a free-neutron gas. These heavy nuclei
are suspected to form a body centered cubic (BCC) structure. In the static equilibrium state,
we calculate the density profile of heavy nuclei with a neutron gas using the Wigner-Seitz
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Table 4.2: Comparsion of the results from Steiner (Potential & Field Theoretical) et al.[32]
, FRTF I(truncated), FRTF II(modified) and the GNDF
Nucleus Property Experiment Potential FT FRTF I FRTF II GNDF
208Pb rch (fm) 5.50 5.41 5.41 5.38 5.45 5.44

BE/A(MeV) 7.87 7.87 7.77 8.01 8.17 8.02
δR(fm) 0.12 ± 0.05 0.19 0.20 0.15 0.13 0.14

0.20 ± 0.04

90Zr rch (fm) 4.27 4.18 4.17 4.10 4.15 4.17
BE/A(MeV) 8.71 8.88 8.65 8.77 9.00 8.72
δR(fm) 0.09 ± 0.07 0.075 0.093 0.064 0.054 0.057

40Ca rch (fm) 3.48 3.40 3.34 3.22 3.26 3.31
BE/A(MeV) 8.45 8.89 8.61 8.47 8.77 8.33
δR(fm) -0.06 ± 0.05 -0.044 -0.046 -0.036 -0.039 -0.042

-0.05 ± 0.04

Cell method. The plot on the left side of Fig. 4.5 shows the proton (dotted line) and neutron
density (solid line) profiles from the center (r=0 fm) of heavy nuclei when ρ = 0.01fm−3.
There are dripped neutrons outside of the heavy nuclei. The cell size (Rc), which is a rough
estimate of the distance between neighboring heavy nuclei, is determined by nuclear density
and beta equilibrium conditions (µn = µp + µe). There is a wave function overlap at the
boundary of the Wigner-Seitz cell. The actual distance between heavy nuclei is (8π/3)1/3Rc.
The right side of Fig. 4.5 shows the binding energy per baryon as a function of Wigner-Seitz
cell size. As the density decreases, the cell size increases and the energy per baryon converges
to −8.0 MeV.

Table 4.3: Nuclear properties in the neutron star crust
ρ (fm3) p (MeV/fm3) ǫ (MeV/fm3) Nnuc Z Rc (fm)

5.623×10−2 0.181 53.06 271.6 89.51 25.12
5.012×10−2 0.147 47.27 218.0 32.18 18.70
3.981×10−2 9.332×10−2 37.52 137.8 21.69 18.06
2.512×10−2 3.965×10−2 23.65 145.3 27.93 22.77
1.585×10−2 1.976×10−2 14.91 150.7 32.07 26.36
1×10−2 1.081×10−2 9.405 147.7 34.29 29.15
1×10−3 7.988×10−4 9.383×10−1 116.3 38.50 40.71
1×10−4 6.945×10−5 9.352×10−2 79.23 38.31 65.47
1×10−5 1.480×10−6 9.326×10−3 58.02 36.98 131.4
1×10−6 2.362×10−9 9.311×10−4 47.90 35.14 270.6
1×10−7 1.714×10−9 9.303×10−5 43.37 34.10 569.7

Table 4.3 shows the thermodynamic properties and physical dimensions of nuclei in the
neutron star crust. Nnuc and Z are the number of neutrons and protons of heavy nuclei in
the Wigner-Seitz Cell respectively. The atomic number of heavy nuclei remains Z ∼ 35 for
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Figure 4.5: In a neutron star, heavy nuclei exist. The left figure shows the density profile
of proton (dotted line) and neutron (solid line). r = 0 fm means the center of heavy nuclei.
Outside the heavy nuclei, there are dripped neutrons. As density decreases, the cell size
increases and the energy per baryon converges to −8.0 MeV.

a large range of densities before the phase transition to uniform matter. This means that
the proton fraction decreases as the density increases. For a narrow range of densities, the
atomic number suddenly increases and the heavy nuclei merge with free neutrons to form
uniform nuclear matter.

Figure 4.6: Effective mass of nucleons in the Wigner-Seitz cell as a function of radial distance
from the center of heavy nuclei. Since the nuclear interaction is weak at the boundary of the
cell, the effective mass of nucleon and the pure mass of a nucleon become equal.

Fig. 4.6 shows the effective mass of nucleons in the Wigner-Seitz cell. The effective mass
of nucleons in the Wigner-Seitz cell is given by Eq. (4.12) and Eq. (4.19) combining to give,

m∗
t =

m

1 + 5
3

(
v3L

ρ̃t
ρ0

+ v3U
ρ̃t′
ρ0

) . (4.32)
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Since we assume that the momentum interaction is blind with respect to isospin, the effective
mass is identical for different isospin nucleons. The effective mass to pure mass ratio of
nucleons is 0.78 at the center of the heavy nuclei and becomes 1 at the outer region of the
Wigner-Seitz cells since the density of nuclear matter is low at the outside of the heavy
nuclei, the interaction energy of nuclear matter is weak.

4.4 Phase transition

In the neutron star, we can see two types of phase transitions: one is the phase transition
from nuclei with a neutron gas to uniform matter, and the other is the phase transition
from uniform nuclear matter to quark matter. During the first phase transition, we can see
the nuclear pasta phase [41] †. That is, spherical nuclei become ellipsoidal, then cylindrical,
and finally slab phase before nuclear matter becomes uniform matter. However, the energy
difference is quite small, so that the effects on the large scale physics are negligible. On the
other hand, the second phase transition is quite dramatic. The energy and pressure change
significantly from nuclear matter to quark matter.

4.4.1 Uniform matter

To check the phase transition points from heavy nuclei with a neutron gas to uniform nuclear
matter, we can simply compare the energy per baryon of uniform nuclear matter with the
energy per baryon of nuclei with a neutron gas since the nuclear matter exists in the lowest
energy states. The energy per baryon in uniform matter can be easily obtained by changing
the ‘〈. . . 〉’ integrals to non integral form from Eq. (4.11) since the Gaussian integrations in
uniform matter become unity. Typically there is a phase transition around 0.5ρ0.

We know that in the outer crust of the neutron star the nuclei have a BCC structure.
If we assume that the pasta phase exists in the low-density region, we may use the density
perturbation to see the phase transition from nuclei with a neutron gas to uniform nuclear
matter. We use the wave number perturbation to see the energy exchange, which has contri-
butions from the volume effects, gradient effects, and Coulomb energy can be approximated
[20],

v(q) ≃ v0 + βq2 +
4πe2

q2 + k2TF
, (4.33)

where q is the sinusoidal variation of the wave number in the spatially periodic density
perturbation. The volume term is given by

v0 =
∂µp
∂ρp

− (∂µp/∂ρn)
2

(∂µn/∂ρn)
. (4.34)

†Around 1/2ρ0, spherical nuclei is deformed to be oblate nuclei, cylindrical phase, slab, cylindrical hole,
and bubble phase to minimize the total free energy density. Since its shape resembles Italian pasta, it is
called ‘nuclear pasta’ phase.
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The energy exchange from the gradient has the form

β = Dpp + 2Dnpξ +Dnnξ
2 , ξ = −∂µp/∂ρn

∂µn/∂ρn
(4.35)

where the coefficients of the gradient terms are given by Dpp = Dnp = Dnn = 132MeV · fm5

[18]. The kTF in the Coulomb interaction represents the inverse Thomas-Fermi screening
length of the electrons. When we see the change in the sign of v, the uniform matter phase
is more stable than the periodic structure of the nuclei. The v has a minimum at

vmin = v0 + 2(4πe2β)1/2 − βk2TF , (4.36)

when q2min = (4πe2/β)1/2 − k2TF .

Another way to see the phase transition is to use the thermodynamic instability. The
thermodynamic stability condition can be described using the inequalities [18, 19],

−
(
∂P

∂v

)

µ

>0,

−
(
∂µ

∂qc

)

v

>0.

(4.37)

where P = Pb + Pe is the total pressure from electrons and baryons and µ = µn − µp is
the difference between the neutron and proton chemical potentials, which is the electron
chemical potential in beta-stable matter. qc is defined as qc = xp − ρe/ρ. Mathematically,
the inequalities in Eq. (4.37) show that the energy per baryon is convex. Eq. (4.37) can be
verified to be [18, 19]

−
(
∂P

∂v

)

µ

= ρ2
[
2ρ
∂E(ρ, xp)

∂ρ
+ ρ2

∂2E(ρ, xp)

∂ρ2
−
(
∂2E(ρ, xp)

∂ρ∂xp
ρ

)2/∂2E(ρ, xp)
∂x2p

]
> 0,

−
(
∂µ

∂qc

)

v

=

(
∂2E(ρ, xp)

∂x2p

)−1

+
µ2
e

π2~3ρ
> 0 .

(4.38)

The second of Eq. (4.38) always holds, so the first will determine the phase transition in the
neutron star crust. Xu et al.[18], use a simple equation to determine the instability using
the thermodynamic relation,

2

ρ

∂E

∂ρ

∂2E

∂x2p
+
∂2E

∂ρ2
∂2E

∂x2p
−
(
∂2E

∂ρ∂xp

)2

=
∂µn
∂ρn

∂µp
∂ρp

−
(
∂µn
∂ρp

)2

. (4.39)

Eq. (4.39) is equivalent to the volume part of the thermodynamic perturbation Eq. (4.34)
method except that there is a ∂µn/∂ρn difference. Comparing the two methods (pertubation
and thermodynamic instability) shows the effects of the gradient and Coulomb terms in the
perturbation method on the transition densities. Fig. 4.7 shows transition densities using
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the perturbation method and thermodynamic instability. The perturbation method has a
lower transition density (0.355ρ0) than thermodynamic instability method (0.406ρ0).

Figure 4.7: We can see the transition density from nuclei with a neutron gas to nuclear
matter. The solid line denotes the curve from the perturbation method. The dotted line
corresponds to the thermodynamic instability method, equivalent to v0 in the perturbation
method. The solid line has a transition density of 0.355ρ0 and the dotted line has a transition
density of 0.406ρ0.

4.4.2 Quark matter

In this model, we do not consider the appearance of hyperons [37] since it is not clear how the
hyperons and nucleons interact. Thus we simply consider the phase transition from uniform
matter to quark matter. We use the MIT bag model [37] for the quark matter equation of
state. At T=0 MeV, the pressure and energy density are given by [37]

p = −B +
∑
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ǫ = B +
∑
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(4.40)
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Figure 4.8: The left panel shows the energy density of nuclear matter (dotted line), quark
matter (dashed) and mixed phase (solid). The right panel shows the pressure of nuclear
matter (dotted lined), quark matter (dashed) and mixed phase (solid).

where the density for each quark flavor is given by

ρf =
(µ2

f −m2
f )

3/2

π2(~c)3
. (4.41)

For the pure-quark phase we use mu = md = 0, ms = 150 MeV and B = 100 MeV fm−3†. In
the mixed phase of uniform nuclear matter and quark matter, we apply Gibb’s conditions
to minimize the free-energy density with two constraints, which are related to total number
density and charge neutrality,

ρb = χρN + (1− χ)ρQ

Q = χQN + (1− χ)QQ = 0 ,
(4.42)

where χ is the volume fraction of the uniform nuclear matter in the mixed phase and the
subscript N (Q) represents nuclear (quark) matter. In the mixed phase, the total charge is
globally neutral in contrast to pure nuclear matter and quark matter. From minimizing the
free energy, we have

pN = pQ

µn = µu + 2µd

µp = 2µu + µd ,

(4.43)

then we have the energy density of the mixed phase

ǫ = χǫN + (1− χ)ǫQ . (4.44)

†Here B is the bag constant for the MIT bag model not the binding energy per baryon for nuclear matter.
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Figure 4.9: The left panel shows the mass-radius relation of the neutron stars (dotted line)
from the GNDF and the hybrid stars (solid line). The right panel shows the number density
profile of a hybrid star which have M= 1.44M⊙. At r ∼ 5.0 km, the phase transition to
nuclear matter takes place, and protons and neutrons exit. When r=8.2 km, the phase
transition to nuclear matter is completed and there is no more quark matter.

As in the case of uniform matter, we assume beta-stable matter so that the chemical poten-
tials of the nuclear matter and quark matter have the relation

µn = µp + µe

µd = µs = µu + µe .
(4.45)

Fig. 4.8 shows the energy density and pressure as a function of number density. The dotted
(dashed) line represents nuclear (quark) matter. The solid line denotes the mixed phase.
The phase transition begins when the baryon density becomes 1.386ρ0 and all nucleons turn
into quark matter when the baryon density becomes 5.236ρ0.
If there is a phase transition in the core of a cold neutron star, the mass and radius are
quite different from the case of a pure-nuclear-matter neutron star. The left panel of Fig.
4.9 shows the mass-radius relation of the neutron stars (dotted line) and hybrid stars (solid
line). The right panel shows the number density profiles of a quark matter and nuclear
matter of 1.44M⊙ hybrid star. The maximum mass of a cold neutron star with mixed phase
(hybrid star) is 1.441M⊙ and the central density of the neutron star is 9.585ρ0. The mass and
radius curve with the mixed phase indicates where the mixed phase exists. As the distance
from the center of the hybrid star increases, the phase transition to nuclear matter takes
place so that neutrons and protons appear (r ∼ 5.0km). Far from the center, the phase
transition is completed (r = 8.2km); pure nuclear matter exists only for larger radii. The
existence of quark matter in the hybrid star can be explained by angular momentum loss
of the proto-neutron star. That is, a fast-rotating neutron stars loses angular momentum
because of magnetic dipole radiation; the central density of the neutron star increases due
to the decrease in centripetal force, then quark matter appears. Since quark matter has a
lower energy density than pure nuclear matter, we might expect heating of the neutron star
from latent heat from quark matter.
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4.5 Astrophysical application

4.5.1 Mass-radius relation of a cold neutron star

We know that the typical radius of a neutron star is ∼ 10km and the mass is ∼ 1.4M⊙. In
this system, the degeneracy pressure of the neutrons provides support against gravitational
collapse. We can apply our model to calculate the mass and radius of neutron stars for
a given central density. We use the Tolman-Oppenheimer-Volkov (TOV) equations which
describe general relativistic hydrostatic equilibrium:

dp

dr
= −G(M(r) + 4πr3p/c2)(ǫ+ p)

r(r − 2GM(r)/c2)c2

dM

dr
= 4π

ǫ

c2
r2 .

(4.46)

Fig. 4.10 shows the mass-radius relation for a cold neutron star. In the GNDF model, the
maximum mass of a cold neutron star is 2.163M⊙, and the corresponding radius is 10.673km.
The maximum mass from the GNDF model is in between the FRTF truncated model (FRTF
I) and the modified model of the FRTF (FRTF II)

Figure 4.10: Mass-radius relation for a cold neutron star. The mass of a cold neutron star
from the Gaussian density functional model has a maximum mass of (2.163M⊙) when the
central density is 6.74ρ0.

4.5.2 Moment of inertia of the neutron star

In the slow-motion approximation, the moment of inertia is given by [39]

I =
8π

3

∫ R

0

r4(ρ+ p)e(λ−ν)/2ω dr , (4.47)
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where λ = − ln(1 − 2m/r) and ν are the metric coefficients and ω is the rotational drag
function. In terms of the function j = e−(λ+ν)/2, the rotational drag satisfies

d

dr

(
r4j

dω

dr

)
= −4r3ω

dj

dr
, (4.48)

with the boundary conditions

ωR = 1− 2I

R3
,

(
dω

dr

)

0

= 0 . (4.49)

Therefore, the moment of inertia can be written as

I = −2

3
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dr
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R

. (4.50)

We note that the second-order differential equation that ω satisfies, Eq. (4.48), can be instead
written as a first order differential equation in terms of the function φ = d lnω/d ln r,

dφ

dr
= −φ

r
(φ+ 3)− (4 + φ)

d ln j

dr
, (4.51)

where
d ln j

dr
= − 4πr2

r − 2m
(ρ+ p) , (4.52)

with the boundary condition φ(0) = 0. The moment of inertia becomes

I =
R3

6
φRωR =

φR
6
(R3 − 2I) , (4.53)

using the boundary condition for ω. This simplifies to

I =
R3φR

6 + 2φR
. (4.54)

Lattimer and Schutz proposed an empirical approximation for the moment of inertia [43],

I ≃ (0.237± 0.008)MR2

[
1 + 4.2

Mkm

M⊙R
+ 90

(Mkm

M⊙R

)]
. (4.55)

Fig. 4.11 shows the moment of inertia of a cold neutron star. The color band represents
upper and lower boundaries of the empirical approximation. FRTF I, II and GNDF agree
quite well with this empirical approximation.
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Figure 4.11: Moment of inertia of a cold neutron star. The color band represents the upper
and lower boundaries of the empirical approximation eq (4.55). Three different models show
different curves; however, they represent the empirical results quite well.

4.6 Conclusions

In the GNDF model, the total energy consists of the kinetic energy, the finite-range effect,
the zero-range effect, and the Coulomb energy. Using the Lagrange multiplier method, we
find the potential energy, pressure, chemical potential and thermodynamic properties. The
interaction parameters are obtained from the properties of infinite nuclear matter. We are
able to obtain the charge radius and binding energy per baryon of the closed-shell nuclei.
The Wigner-Seitz cell size increases as the density decreases and the binding energy per
baryon approaches -8.0MeV. The effective mass becomes 0.78mB at the center of the heavy
nuclei and becomes m outside of heavy nuclei. We are also able to find the pressure of
uniform symmetric nuclear matter and neutron matter. For finite temperature, we can see
the specific heat of nuclear matter follows the general trend of the free fermions. Thus
the GNDF model is a good nuclear matter model to study for both low and high nuclear
densities. We can improve the current model if we have more exact experimental results
and we add additional interaction terms to explain the experimental results. The phase
transition was studied using the GNDF model. The density perturbation suggested that the
phase transition from non-uniform nuclear matter to uniform matter takes place at densities
less than 0.5ρ0. When we take into account the phase transition from uniform nuclear matter
to quark matter, we see that there is a drastic change in the maximum mass of a neutron
star, since the pressure and energy density of quark matter are significantly different from
nuclear matter. The maximum mass of the hybrid star is less than 1.5M⊙. Since the bag
constant is fixed in this study, we need to investigate the mass of hybrid star by varying the
bag constant.
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Chapter 5

Nuclear Energy Density Functional
and Neutron Stars

In this chapter, we study single nucleus, heavy nuclei in dense matter and mass-radius of
neutron stars using an energy density functional with parametrized density profile. Three
different models are used and each model shows similar nuclear properties in the subnuclear
density regions (ρ < 0.07 fm−3). Analytic formulae for the Wigner-Seitz cell size, number of
neutrons, and number of protons in the cell is given using least χ2 fitting between numerical
calculation and fitting function. The maximum mass of a neutron star is investigated,
revealing differences among the models.

5.1 Nuclear energy density functional

In the nuclear energy density functional, the interaction energy comes from the contact force
so the Hamiltonian density is a functional of number density and momentum density. For
comparison with a finite range force, we used three energy density functional models. The
first model is from Ref. [41] (EKO), the second one is the Skyme-type Potential Model
(SPM) [32], and the last one is the Skyrme-Lyon force (SLy4).

In EKO, the Hamiltonian density is composed of homogeneous and inhomogeneous terms,

H = HB(ρn, ρp) +Hg(ρn, ρp,∇ρn,∇ρp) +Hc . (5.1)

The homogeneous term has the form

H0 =
~2

2mn
τn +

~2

2mp
τp + (1− δ2)vs(ρ) + δ2vn(ρ), (5.2)

where ρ = ρn + ρp and δ = (ρn − ρp)/ρ. The quantities vs(ρ) and vn(ρ) are potential energy
density, which represents the potential contribution from symmetric nuclear matter and pure
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neutron matter respectively. Those contribution are given by

vs(ρ) = a1ρ
2 +

a2ρ
3

1 + a3ρ

vn(ρ) = b1ρ
2 +

b2ρ
3

1 + b3ρ
.

(5.3)

The inhomogeneity (gradient) term Hg which is responsible for the surface tension of nuclei
is being used as

Hg = F0|∇ρ|2 . (5.4)

The Coulomb energy density is given by

Ec =
e2

2

∫
d3rd3r′

1

|r − r′|(ρp(r)− ρe)(ρp(r
′)− ρe) , (5.5)

In SPM and SLy4, the Hamiltonian density is given in Eq. (2.3, 2.4,2.5 2.6,2.7)
For all three models, we use a parametrized density profile (PDP) † for protons and neutrons
before a phase transition to uniform nuclear matter takes place.
In PDP, we assume that nuclear density follows [41],

ρi(r) =




(ρini − ρouti )

[
1−

(
r
Ri

)ti]3
+ ρouti , r < Ri

ρouti , r ≥ Ri.

(5.6)

The momentum density is simplified to

τn,p =
3

5
(3π2)2/3(ρn,p)

5/3 (5.7)

in the Thomas-Fermi approximation.

Table 5.1: Parameters in EKO

a1 a2 a3 b1 b2 b3 F0

−458.384 2072.775 3.1668 −227.049 1058.942 2.608 61.917

Table 5.1, 5.2 show the parameters of models which we used in this study.
To find the parameters in EKO, we used standard nuclear matter properties such as E/A =
−16 MeV, K = 235 MeV, p(ρ = ρ0, x = 1/2) = 0 MeV/fm3, Sv = 33.21 MeV, L = 68 MeV.
For b3, we used least χ2 fitting to FPS pure neutron matters. F0 is also found from least χ2

fitting of 2336 nuclei binding energy data.

†The parametrized density profile is not the actual solution of the Thomas Fermi approximation. The
PDP is used to avoid the numerical difficulties of ∇ρ.
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Table 5.2: Parameters in SPM & SLy4

Parameters SPM SLy4
t0 -2719.7 -2488.91
t1 417.64 486.82
t2 -66.687 -545.39
t3 15042 13777.0
ǫ 0.14416 1/6
x0 0.16154 0.834
x1 -0.047986 -0.344
x2 0.027170 -1.000
x3 0.13611 1.354

5.2 Binding energy of single nucleus

We calculate the binding energy of a single nucleus such as 40Ca, 90Zr, and 208Pb. These
nuclei have closed shells so we can neglect shell effects.
In a single nucleus, ρoutn,p = 0 since there are no dripped nucleons.
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Figure 5.1: Proton density profile of 208Pb.

Table 5.3 shows the properties of a single nucleus from both experimental results and a
model calculation. In table 5.3, rch is the charge radius, BE/A is the binding energy per
baryon, and δR is defined as rn − rp, where rn,p is the root-mean-square radius of neutron
and proton. The density profiles for the single nucleus are given in Fig 5.1. Each model
agrees well with the experimental result. The PDP shows the maximum baryon density at
the center of the nucleus because of its mathematical expression. However, many of heavy
nuclei with large number of protons (e.g. 208Pb) have maximum baryon density off the center
because of Coulomb repulsion. Thus PDP cannot show the exact density profile of a single
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Table 5.3: Nuclear properties of single nucleus

Nucleus Exp EKO SPM Sly4
40Ca rch (fm) 3.48 3.36 3.37 3.42

BE/A (MeV) 8.45 8.51 8.51 8.14
δR −0.06±0.05, −0.05±0.04 −0.03 −0.04 −0.04

90Zr rch (fm) 4.27 4.23 4.23 4.28
BE/A (MeV) 8.71 8.74 8.68 8.42

δR 0.09±0.07 0.05 0.06 0.05
208Pb rch (fm) 5.50 5.51 5.50 5.55

BE/A (MeV) 7.87 7.85 7.74 7.56
δR (fm) 0.12±0.05, 0.20±0.04 0.11 0.14 0.12

nucleus. Except for the density profile, PDP can be used as an approximated density profile
to find the charge radius, binding energy per baryon, and δR.

5.3 Neutron Star Crust

In a neutron star, as the density increases, the pressure from degenerate electrons reaches a
point where the electrons can no longer support the gravitational collapse and the neutrons
replace the role of electrons soon after the neutron drip. The neutron drip divides the outer
crust and inner crust of the neutron star. There is a phase transition around 0.5 ρ0 [41]
between inner crust and liquid core since the nuclear system favors the lowest energy state.
Even though there might be sequential phase transition from spherical nuclei with a free of
neutron gas, cylindrical phase, slab, cylindrical hole, bubble to uniform matter, the difference
in the energy density and press is negligible. Thus we consider the phase transition from
spherical nuclei phase to uniform nuclear matter. We can simply compare the energy density
of uniform nuclear matter with heavy nuclei with a free of neutron gas.

5.3.1 Neutron drip

The neutron drips from heavy nuclei as their density increases. The drip point can be
searched from a lower baryon density region. As the density increases, the neutron chemical
potential increases, becomes positive, and neutrons start to drip. In case of protons, the
chemical potential remains negative so there are never any dripped protons at T=0 MeV.
Table 5.4 shows the neutron drip density for different models. In case of EKO, the neutrons
start to drip when ρ = 2.26× 10−4 fm−3.

Before the neutron drip, the total pressure comes from only electron contribution and
soon after the neutron drip, the pressure from dripped neutrons overwhelm the electron
contribution.
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Table 5.4: Neutron drip densities for all 3 models

EKO SPM SLy4
ρ (fm−3) 2.2594×10−4 2.4491×10−4 2.0749×10−4

5.3.2 Phase transition to uniform nuclear matter

To see the phase transition from lattice nuclei with a gas of free neutrons, we compare the
energy per baryon for each model. Since it is believed that the energy differences arise be-
tween various pasta phases, we simply compare the energy per baryon from lattice nuclei
with neutron gas with one from uniform nuclear matter. We may use the Maxwell construc-
tion to find the phase transition points between two phases. The total energy density of two
phases in Ref. [22] can be written as

E = vEh + (1− v)El , (5.8)

where ρ = vρh + (1 − v)ρl. The high and low density of the boundary can be found from
solving ph = pl and µnh = µnl at the same time. A numerical calculation does not yield an
exact intersection for the solution.

Table 5.5: Phase transition points to uniform nuclear matter

EKO Potential SLy4
ρ (fm−3) 0.0759 0.0670 0.0742

5.3.3 Statistical formulae for heavy nuclei in the neutron star

crust

We compare the model calculation with a statistical formula for number of protons and
neutrons in heavy nuclei and Wigner-Seitz cell size. Fitting formulae for the number of
protons and neutrons can be used in neutron star cooling process. That is, neutrinos are
emitted through e− Z bremsstahlung [62] in the crust,

ǫe−Z = 2.1× 1020
Z2

A

(
ρ

ρ0

)
T 6
9 erg/cm

3/s , (5.9)

where T9 = T/109 K. For this, we present two formulae before and after the neutron drip
for each curve (Znuc, Nnuc, and Rc vs ρ) since the derivative of each curve w.r.t ρB is not
continuous. After the neutron drip, we suggest different types of formulae† for each curve

†Fitting functions in this study are introduced to reflect the numerical result correctly. Since the number
of protons increases suddenly before the uniform matter phase transition, c6 is added.
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which are
fRc = a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5

fNnuc = b0 + b1z + b2z
2 + b3z

3 + b4z
4 + b5x

5

fZnuc = c0 + c1z + c2z
2 + c3z

3 + c4z
4 + c5z

5 +
c6√
z
.

(5.10)

where x = ln(ρ fm3) and z = 100ρ fm3.
All a’s, b’s, and c’s parameters can be found from the least χ2 square fitting, in which χ2 is
given by

χ2 =
1

N

N∑

i

(fi − fmodel)
2 . (5.11)

Table 5.6: Fitting formulae for Wigner-Seitz cell size after the neutron drip

a0 a1 a2 a3 a4 a5
EKO −30.812 −30.344 −8.004 −1.428 −0.131 −4.561× 10−3

SPM -39.193 -30.239 -5.414 0.631 −4.313× 10−3 −1.334× 10−3

SLy4 20.120 13.383 6.504 0.918 5.748×10−2 1.367×10−3

Table 5.7: Fitting formulae for number of neutrons in the heavy nuclei after the neutron
drip

b0 b1 b2 b3 b4 b5
EKO 77.737 93.069 -52.346 20.942 -3.740 0.251
SPM 76.989 75.456 -49.337 21.835 -4.239 0.311
SLy4 87.680 86.728 -12.821 3.396 -0.560 6.366×10−2

Table 5.8: Statistical formulae for number of protons in the heavy nuclei after the neutron
drip

c EKO SPM SLy4
c0 36.947 34.619 40.389
c1 1.877 −2.306 5.447
c2 −2.921 5.854×10−2 −4.265
c3 0.942 -4.286×10−2 1.362
c4 −0.143 5.375×10−3 −0.214
c5 8.195×10−3 - 1.301 ×10−2

c6 −0.171 −0.131 −0.203
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Before the neutron drip, another type of formula fits the numerical calculations since the
behavior of Winger-Seitz cell size, number of neutrons, and number of protons in the cell is
relatively simple.

fRc = exp(a0 + a1x+ a2x
2)

fNnuc = b0 + b1(x− x0)
7 + b2(x− x0)

9

fZnuc = c0 + c1(x− x0)
7 + c2(x− x0)

9 .

(5.12)

where x = ln(ρ fm3) and x0 = ln(10−14).

Table 5.9: Fitting formulae before the neutron drip

EKO SPM SLy4
a0 1.2571 1.2489 1.2909
a1 −0.3028 −0.3027 −0.3020
a2 6.2495× 10−4 6.2487×10−4 6.3943×10−4

b0 34.1418 33.2440 36.8709
b1 3.2976×10−9 4.1044 ×10−9 3.6671 ×10−9

b2 1.1095 ×10−11 9.3710 ×10−12 1.2652×10−11

c0 27.8058 26.9215 29.7386
c1 2.9168×10−9 3.2463 ×10−9 3.1409 ×10−9

c2 −1.8428× 10−12 −2.8772× 10−12 −1.6480× 10−12

Fig. 5.2 shows the atomic number in neutron star crust after the neutron drip happens.
The fitting function works very well for EKO, SPM, and SLy4. The full Thomas Fermi
approximation is added in case of truncated FRTF model. In the general case, a full Thomas
Fermi numerical calculation has such a wiggle because of multiple minima ‡.

5.4 Mass-Radius of a cold neutron star

The uniform nuclear matter exists in the core of a neutron star as a result of a nuclear phase
transition. The matter in the core is in the beta equilibrium state to minimize the total
energy density. Mathematically, the beta equilibrium state equation can be obtained from
a Lagrange multiplier method, which says

µn = µp + µe (5.13)

where µn,p,e are chemical potentials of the neutron, proton, and electron respectively.
Nuclear matter beyond the nuclear saturation densities exists in the core of neutron stars.
This means that the mass-radius relation of neutron stars can be a good barometer of nuclear
models. TOV equation (Eq. 4.46) is used to construct the neutron star’s mass and radius.

‡Since the Wigner-Seitz cell size is unknown and to be found numerically, Rc does not smooth near the
phase transition density.
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Figure 5.2: This figure shows the number of protons in neutron star crust from numerical
calculation and fitting function. Truncated model calculation is added for comparison.
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Figure 5.3: Mass and radius relation of cold neutron star from energy density functional

The simple EKO does not satisfy the 2.0M⊙ neutron star. Other models show that the
maximum mass of neutron stars is greater than 2.0M⊙. Nuclear matter at high densities
cannot be described by simple mathematical density functional but we need to consider more
complex nuclear force arising from many body effects or QCD (quantum chromodynamics)
effects.

5.5 Conclusion

PDP can be used to study a single nucleus and nuclei in dense matter. Even though PDP
is not a true solution of density profiles, it can give enough accuracy in the total energy and
continuous properties in Wigner-Seitz cell calculation like liquid droplet approach. Therefore,
PDP is an alternative method to construct a nuclear equation of state for hot dense matter.
Even though all three models show similar properties of nuclear matter such as binding energy
of single nucleus, phase transition points, proton fractions, and Wigner-Seitz cell size, each
model shows the different maximum mass of neutron star. For example, the simple EKO
model cannot describe 2.0 M⊙ neutron star. That means that the potential energy in EKO
should be replaced with a more realistic force model.
The simple division of symmetric potential and pure neutron potential does not work, such
that the δ term in the potential should have more than δ2 interaction. This also means that
the extrapolation beyond the nuclear saturation density is still an open problem which needs
to be checked by mass and radius relation of neutron stars.
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Chapter 6

Nuclear Equation of State for Hot
Dense Matter

† There are many demands for a nuclear equation of state for hot dense matter. Core collaps-
ing supernova explosions, neutron star binary mergers, and proto-neutron star simulation
need a highly thermodynamically consistent EOS table. The recent development of technol-
ogy enables us to develop full 3D simulations of the above phenomenon. However, only a
few EOS tables are available. Furthermore, except for LS220 [22], no EOS tables can satisfy
the mass and radius relation of neutron stars and nuclear experiments at the same time.
Our EOS follows the methodology of LPRL [17] and Lattimer & Swesty [22]. We employ
FRTF and SLy4 as a nuclear force model and the Liquid Droplet approach as a numerical
technique.

6.1 Construction of EOS

To construct the EOS table, we need two basic tools. One is the nuclear force model. Another
is a numerical technique.
For a nuclear force model, we can use (see chapter 1, 2, & 3) the following,

• Non-relativistic potential model

• Relativistic mean field model

• Finite-Range Thomas Fermi model .

As a numerical technique, we might choose,

• Liquid Droplet Approach

• Thomas Fermi Approximation

• Hartree (Fock) Approximation .

†This chapter is based on J.M. Lattimer and Y. Lim’s work. We are checking the thermodynamic
consistencies and will submit our work and provide the new EOS table soon.
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These two tools can be combined to construct a Nuclear EOS Publicly available EOS tables
are

• LS EOS [22]
- Combines Skyrme type force model with Liquid droplet model,
- Disregard consider neutron skin,
- Consider phase transion using geometric function,
- LS 220 is the best until now,

• STOS [59]
- Uses RMF and semi-Thomas Fermi approximation (parametrized density profile.)
- Awkward grid spacing,
- New version available (2011), added hyperon interactions,

• SHT [61]
- Uses RMF and Hartree Approximation ,
- Larger radius for given mass of neutron stars,

For constructing our EOS table, we reconsider the LPRL numerical technique which includes
neutron skin. As an improvement, we add Coulomb diffusion and Coulomb exchange en-
ergy. The liquid droplet approach is the only method which can guarantee thermodynamic
consistency. We can obtain analytic derivatives for ∂p/∂ρ, ∂p/∂T , ∂p/∂Yp, etc.

The other approaches (Thomas Fermi, Hartree-Fock approximation) cannot give enough
accuracy in thermodynamics because they have convergence issues. The thermodynamic
derivatives can be obtained through the numerical derivatives in TF or HF. This can also
produce a thermodynamic inconsistency.
The numerical time needed to construct the whole table can also be a problem. In SHT [61],
it took 6,000 CPU-days to calculate 107,000 grid points. If we use the LDM approach, it
takes less than 10 minutes to calculate 121 × 50 ∼ 302, 500 grid points. That means that
we can easily generate another table using a different nuclear force model. We also consider
phase transitions which occur in a neutron star’s inner crust, as was done in the LS models.

As a nuclear force model, we use FRTF models and SLy4. SLy4 is believed to be the
most accurate Skyreme-type nuclear force model. We choose it for comparison to check our
FRTF model parameters.

6.2 Liquid Droplet Model as a numerical technique

First, we demonstrate that the liquid droplet model adequately describes nuclei. The liquid
droplet model provides us with the energy per baryon of a single nucleus and nuclei in dense
matter. The idea behind it is that the energy contribution of nuclei comes from bulk, surface,
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Coulomb, and, symmetry part [24], in addition, there is a pairing effect such that [32]

E(A,Z) =− BA+ EsA
2/3 + SvA

(1− 2Z/A)2

1 + SsA−1/3/Sv
+ EC

Z2

A

+ Ediff
Z2

A
+ Eex

Z4/3

A
+ a

∆√
A
.

(6.1)

In the above equation, B is the binding energy per baryon in the bulk nuclear matter, Es is
the surface symmetry energy, EC , Ediff , and Eex are energy coefficients in classical, diffusion,
and exchange Coulomb energy. The coefficient a is 1 for odd-odd nuclei, 0 for odd-even
nuclei, and -1 for even-even nuclei. The paring constant (∆) is kept constant at 12 MeV.
This liquid droplet model can be extended by adding the nuclear shell effect. The empirical
formula for this shell effect is given by [50]

Eshell =
1

2
am(Nv + Pv) +

1

4
bm(Nv + Pv)

2 (6.2)

where Nv and Pv is the minimum difference for neutrons and protons between magic num-
ber, 2, 8, 20, 28, 50, 82, 126, and, 184. For example, A = 50, Z = 23, N = 27, then
Zv = |23− 20| = 3, Nv = |27− 28| = 1.

The general way to minimize the total energy at T = 0 MeV† for a given Z and A, we
adopt the µn approach, in which only neutron skin exists on the surface of nuclei. µα
method exists [32], however, it gives a different slope (Ss/Sv vs Sv) from the one µn method.
We confirmed the slope from µn is closed to the one from FRTF model.

For a given nuclear model, the total energy (excluding rest mass energy) is given by

E = fB(A−Ns) + 4πR2σ(µn) + µnNs + EC(R), (6.3)

where fB is the binding energy per baryon for a specific nuclear model and Ns is the total
number of neutrons on the surface. We include in EC the Coulomb, diffusive surface, and
exchange energies. We assume that fB = fB(ρ, x).
With two constraints,

x =
Z

A−Ns

A−Ns =
4πR3

3
ρ

(6.4)

we can find the minimum of total binding energy using the Lagrange multiplier method.

E(µn, Ns, R, ρ, x, λ1, λ2) =fB(ρ, x)(A−Ns) + 4πR2σ(µn) + µnNs + Ec(R)

+ λ1(A−Ns −
4πR3

3
ρ) + λ2(Z − x(A−Ns)) .

(6.5)

†If T 6= 0 MeV, we need to minimize the total free energy or free energy density because of entropy.
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The derivative of E with respect to the unknowns gives,

∂E

∂µn
= 0 : 4πR2 ∂σ

∂µn
+Ns = 0 (6.6a)

∂E

∂Ns
= 0 : − fB + µn − λ1 + xλ2 = 0 (6.6b)

∂E

∂R
= 0 : 8πRσ +

∂EC
∂R

− 4πR2ρλ1 = 0 (6.6c)

∂E

∂ρ
= 0 :

∂fB
∂ρ

(A−Ns)− λ1
4π

3
R3 = 0 (6.6d)

∂E

∂x
= 0 :

∂fB
∂x

(A−Ns)− λ2(A−Ns) = 0 (6.6e)

∂E

∂λ1
= 0 : A−Ns −

4π

3
R3ρ = 0 (6.6f)

∂E

∂λ2
= 0 : Z − x(A−Ns) = 0 . (6.6g)

We will correct E(A,Z) by the shell and pairing energies so these do not need to be included
in the above. From eq. (6.6e) we have

λ2 =
∂fB
∂x

, (6.7)

from eq. (6.6d) and (6.6f), we get

λ1 = ρ
∂fB
∂ρ

. (6.8)

Using λ1, λ2, and eq. (6.6b), we obtain

µn = fB + ρ
∂fB
∂ρ

− x
∂fB
∂x

. (6.9)

If we assume that σ depends on µn through x not ρ, and σ = σ0 − (1− 2x)2σδ, we have four
equations to solve, which are

4πR24(1− 2x)
1

∂µn/∂x
+Ns = 0 (6.10a)

8πR2σ +
∂Ec
∂R

− 4πR2ρ2
∂fB
∂ρ

= 0 (6.10b)

A−Ns −
4π

3
R3ρ = 0 (6.10c)

Z − x(A−Ns) = 0 . (6.10d)
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We can eliminate Ns, leading to three equations to solve,

16πR2(1− 2x)σδ +
∂µn
∂x

(
A− 4π

3
R3ρ

)
= 0 (6.11a)

8πR2(σ0 − (1− 2x)2σδ) +
∂Ec
∂R

− 4πR2ρ2
∂fB
∂ρ

= 0 (6.11b)

Z − 4π

3
R3ρx = 0 . (6.11c)

In the case of the incompressible model where ρ in the nuclei is fixed for all nuclei, we are
left with one equation to solve (eq. 6.11a) :

16π

(
3

4πρ0

)2/3(
Z

x

)2/3

(1− 2x)σδ +
∂µn
∂x

(
A− Z

x

)
= 0 , (6.12)

with µn = fB − x∂fB
∂x

. In case of the simplest nuclear model,

fB = −B + Sv(1− 2x)2 +
K

18
(1− u)2 . (6.13)

Fig. ?? and 6.2 shows the contour plot of χ2 for Ss/Sv and Sv space. The χ2 from total

Figure 6.1: This is a contour plot of χ2 when ρ0 = 0.155/fm3 from incompressible model.
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Figure 6.2: This is a contour plot of χ2 from compressible and incompressible model.

binding energy of nuclei is not much different in both cases but the least χ2 points with
respect to Sv and Ss/Sv are different. The σSv and σSs/Sv

† from the compressible liquid
droplet model are twice larger than the ones from the incompressible liquid droplet model,
which result in the larger contour plot when χ2 = 3. The correlations between Sv and Ss/Sv
from two models are almost same so the slopes from both models are parallel.
χ2 from above two liquid droplet models are less than the one (χ2 = 4.75) from FRTF model.
This justifies the use of the liquid droplet approach as a numerical technique to construct
EOS tables.

6.3 Choice of nuclear force model

The nuclear force model to make the EOS table should represent both nuclear experiments
on Earth and neutron star’s mass and radius relation. Up to now, only LS220 [22] fits both
of constraints. To a choose nuclear force model, we need to take several tests. We show
the result from non-relativistic potential (Skyrme force) model. There are more than 100
models and our tests were done on 62 models. As a model of single nucleus properties,
they are all good enough to represent binding energy and root-mean-square radius when we
use Hartree-Fock code. However, most of the model did not pass the simple test such as

†We adopted arbitrary σ0 as 1.0 MeV in this case.
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pressure from pure neutron matter, maximum mass of a cold neutron star, and Steiner et
al.[53] allowed area of mass and radius.

6.3.1 Pure neutron matter

The pressure in the pure neutron matter should increase as density increases since neutron
alone cannot be bound at all. However, some of nuclear force models cannot represent this
simple behaviour. Fig. 6.3 shows pure neutron matter pressure from some of Skyrme force
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Figure 6.3: This figure shows the Skyrme force models which cannot make positive pressure
of pure neutron matter.

models. These models on the list cannot explain positivity and monotonic slope of pressure.
So, they should be excluded from the candidate of EOS nuclear force.

6.3.2 Maximum mass of a cold neutron star

Recently, PSR J16142230 [57] was found to have a mass of 1.97M⊙. Demorest et al.[57] ana-
lyzed time delay data of the pulsar’s emission as it passed behind its white dwarf companion
(Shapiro delay). This mass now becomes the minimum of maximum mass of neutron stars.
Also this mass can be used to rule out the nuclear force model. Fig 6.4 shows the maximum
mass of neutron star of some Skyrme force model. These models also cannot be used for
suitable nuclear force model at high density.

6.3.3 Allowed region of mass and radii of neutron stars

Steiner et al.[53] analyzed the x-ray data and used atmosphere models of neutron stars to
find the allowed area of mass and radii of neutron stars. From these regions, we can choose
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Figure 6.4: This figure shows the Skyrme force models which cannot produce a 1.97M⊙

neutron star.

final candidates for the nuclear force model of EOS table. Fig.6.5 shows the Skyrme force
models which have too large radii for a given mass of neutron stars. Mathematically, these
happen because of large L so it should be emphasized that L is another important nuclear
constant which should be extracted from nuclear experiments or astrophysical observations.
Of all three tests, we can see that SLy0, . . . , SLy10, and our FRTF I, II, Gaussian models
are good enough to be used as a nuclear force model. Fig.6.6 shows the mass and radius
relation of Skyrme force models and our finite range force models, which are suitable for
make an EOS table.
We did not take a test with any relativistic mean field models†, since they usually have large
L so they cannot make allowed regions of mass and radius in neutron stars.
To summarize (Appendix E), the nuclear force models which pass the 3 tests would have
Sv ≃ 32 MeV, L ≃ 46 MeV, K ≃ 230 MeV, and ρo ≃ 0.16fm−3.

6.4 Free energy

The fundamental idea of making an EOS table is to minimize free energy or free energy
density for a given ρ, T , and Yp. In the Liquid Droplet approach, the free energy in the
Wigner-Seitz cell consists of the contributions from finite nuclei and nucleons outside finite
nuclei. Fig. 6.7 shows the schematic picture inside the Wigner-Seitz cell. The heavy nuclei is
in phase equilibrium with nucleons and alpha particles outside. The free energy per baryon
contribution from heavy nuclei can be divided into,

fN = fbulk + fCoul + fsurf + ftrans (6.14)

†The R1.4M⊙
∝ L1/4 so RMF cannot make the allowed region.
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where fmbulk is the free energy contribution from inside of heavy nuclei, fCoul is the Coulomb
energy contribution, fsurf is the one from surface, and ftrans comes from translational (or
Kinetic) parametrizedenergy of heavy nuclei. We assume that heavy nuclei have uniform
density from the center to the surface so we have the contribution from bulk and surface.

6.4.1 Bulk Matter inside and outside nuclei

The bulk free energy per baryon, fbulk(ρi, xi, T ) ≡ fbulk/ρi, is exactly that described in bulk
matter in the finite range model (or SLy4). The subscript i(o) refers to the bulk nuclear
matter inside (outside) nuclei. The use of the same functional form for bulk matter both
inside the nuclei and the ‘dripped’ bulk matter outside the nuclei is necessary for a consistent
treatment. In general phase transition (which is often called, pasta phase) happen when the
overall density (ρ) approach 0.5ρ0 to minize total energy.

6.4.2 Coulomb energy

The coulomb free energy is the electrostatic energy needed to assemble the static charge con-
figuration. As an illustration, one could assume the positive charge of protons is distributed
uniformly within a spherical nuclear volume (radius rN), and this charge is neutralized by
an equal, but opposite, charge distributed within radius (rc) of a neutral (Wigner-Seitz) cell.
In this case, the number density of nuclei would be nN = 3/(4πr3c ), and the atomic number
would be Z = 4πr3Nρixi/3. As shown by Baym et al.[2], the Coulomb energy density of
spherical nuclei is then given by

fCoul =
3

5

Z2e2ρN
rN

(
1− 3

2
u1/3 +

1

2
u

)
≡ 4π

5
(rNρixie)

2D(u) (6.15)
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Figure 6.6: The left panel shows mass and radius relation of the Skyrme force models which
passes all tests. The right figure shows the one from our force models.

where u = (rN/rc)
3 is the fraction of space occupied by the nuclei. This relation defines the

function D(u).

As shown by Ravenhall et al.[58] in many situations it may be energetically favorable for
nuclei to deform from spheres into cylinders or plates, or even turn ‘inside out’ to form rela-
tively vacuous bubbles surrounded by spherical nuclei and could also deform into spheroidal
shapes. In an attempt to account for varying shapes that would minimize the systematic
free energy, Lattimer & Swesty [22] defined a Coulomb shape function c(u),

fCoul =
4π

5
(rNρixie)

2c(u) . (6.16)

In the low density limit in which nuclei are expected to be spherical, c(u) = uD(u). In the
limit in which nuclei are inside-out, but the resulting bubbles are spherical,
c = (1− u)D(1− u).

6.4.3 Nuclear surface energy

In the liquid droplet model, the surface energy is not calculated dynamically, but is instead
parametrized as a leptodermous expansion in the curvature R−1 where R is the nuclear ra-
dius. In this work, we keep only the lowest order term, which is the surface tension of a
semi-infinite, plane interface between two nuclear phases in mechanical and chemical equilib-
rium. The dense phase is characterized by the densities ρni, ρpi corresponding to those inside
the nucleus, while the light phase, characterized by the densities ρno, ρpo, corresponds to the
nuclear vapor outside nuclei. The neutron and proton chemical potentials for semi-infinite
matter must be equal in both phases, and they are denoted by µn and µp respectively. At a
given temperature, the phase equilibrium is determined by a single quantity, which can be
taken to be the proton fraction xi in the dense phase, or by the neutron chemical potential
µn, or by the neutron-proton chemical potential difference µn − µp. The surface tension is
actually a thermodynamic potential, and as a consequence it is formally a function of the
neutron and proton chemical potentials, as well as of the temperature. If finite-size effects
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Figure 6.7: In the Wigner Seitz cell, there are one heavy nuclei and nucleons, electrons, and
alpha particles outside. In this model, we have neutron skin on the surface of heavy nuclei.

such as the Coulomb forces can be ignored, the phase equilibrium dictates that the chemical
potentials follow a unique trajectory determined only by the temperature and proton frac-
tion in the dense phase. The work of Lattimer et al.[17] assumed that the surface tension
could be therefore treated directly as a function of xi and T .

However, Coulomb and other finite-size effects are not negligible, and the surface tension
is modified by them. The approach we initially employ here is to treat the surface tension as
a function of the neutron chemical potential of the surface (and temperature), and in turn to
treat the neutron chemical potential of the surface as a function of the dense proton fraction
(and the temperature).

As in chapter 2, the surface tension σ is obtained by minimization of the total free energy
per unit area, and results in

σ =

∫ ∞

−∞

(F − µnρn − µpρp − po)dz (6.17)

where F = H − TSB and po is the pressure of the bulk matter (if any) in the dilute phase
in the limit z → ∞.

We employ a simplified description following Lattimer et al.[17], but extend it to contain
three adjustable parameters: the surface tension of zero-temperature symmetric matter, the
zero-temperature surface symmetry parameter, and a parameter describing the entropy (or
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specific heat) of the surface of symmetric mater. This description is given below.

What appears in the liquid droplet model, however, is the surface free energy per unit
area σ + µnνn + µpνp, where νt represent the areal density of particles in the surface. It will
be found that these are determined by

νt = − ∂σ

∂µt

∣∣∣
T
, (6.18)

as is expected from thermodynamics. Since our liquid droplet model takes the reference
interface to be located at the proton surface, this model explicitly considers a skin made
only of neutrons. There are no ‘surface protons’, and νp = 0 . This is consistent with
the statement above that, at a given temperature, the quantity σ is a function of a single
quantity, µn. Therefore, the surface free energy per area is simply σ(µn, T ) + µnνn. In what
follows, the neutron chemical potential for the surface is denoted by µs, but it will be shown
that free energy minimization requires µs = µno.

The surface free energy density for spherical nuclei is thus

fsurf = 4πr2Nρn(σ(µs, T ) + µsνn) =
3u

rN
(σ(µs, T ) + µsνn) . (6.19)

Once again, following the discussion of Lattimer & Swesty [22], the consequences of
nuclear deformation or shape change are taken into account by the surface shape factor s(u),
so that

fsurf =
3s(u)

rN
(σ(µs, T ) + µsνn) . (6.20)

Obviously, s(u) = u for a sphere. As is the case for c(u), the precise form for s(u) will be
required.

In practice, the results of plane-parallel surface energy calculations are most easily ren-
dered in terms of the functions σ(x, T ) and µs(x, T ), where x is the reference asymptotic
proton fraction of the dense phase. Note that x is equivalent to xi for a plane-parallel
surface, but is not necessarily equivalent to xi for a finite liquid droplet nucleus. The quan-
tity x is simply a convenient intermediate variable used to simplify the construction of σ(µs).

As in section 3.4, we write the surface tension as a two-parameter function times a
temperature dependence:

σ(x, T ) = σoh(x, T )

(
2 · 2α + q

x−α + q + (1− x)−α

)
. (6.21)

The quantity σo is the zero-temperature, symmetric matter, surface tension. In case of
Skyrme force model, the numerical calculation of surface tension is not stable since it is a
differential equation rather than an integral equation. The numerical method is described
in Ravenhall et al. [29].
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Table 6.1: Surface tension analytic fitting function for SLy4

Model σ0(xi = 0.5) α q
SLy4 1.13754 3.4 29.0494

The factor h(x, T ) contains the explicit temperature dependence of the surface free energy,
and can approximated by [29]

h(x, T ) =

[
1−

(
T

Tc(x)

)]p
(6.22)

where Tc(x) is the maximum temperature for which nuclei can exist for a given value of x.
For the truncate model and the modified model , p = 5/3 and Tc(x) is given section 3.4. For
SLy4, we use p = 2 [29]. Tc(x) for SLy4 is given by the same formula, e.g. Eq. (3.31), but
different coefficients.

Table 6.2: The critical temperature analytic fitting function for SLy4

Model Tc,0 a b c
SLy4 14.502 -0.3649 -0.02025 -0.34368

The neutron chemical chemical potential µs, for a given value of xi and T , is that which
applies to bulk phase equilibrium. For proton fractions larger than approximately 0.3 at
zero temperature, the phase outside the nucleus is a vacuum with po = 0. If the free energy
is expanded about ρ = ρ0 and T=0, the condition p = 0 results in

µs(x, T ) = fbulk − x
∂fbulk
∂x

≃ −B − T 2

15MeV
+ Sv(1− 4x2). (6.23)

This formula works at low temperature and it cannot correctly represent neutron chemical
potential on the surface. So, we may use a fitting function for neutron chemical poten-
tial of dense matter for given proton fraction and temperature. With appropriate units of
coefficients,

µs(x, T ) = −B + α(1− 2x) + β(1− 2x)2 + γT 2 + δ(1− 2x)T 2 (6.24)

This fitting function is obtained from the numerical calculation of phase equilibrium. Table
6.4.3 shows the coefficients for the fitting function. Therefore, given that one of the equilib-
rium conditions will be µs = µno, the procedure is to determine the quantity x from µno and
T by solving a quadratic equation.
The surface neutron density is then found from Eq. (6.18), or

νn = −∂σ(µs, T )
∂µs

= −∂σ(x, T )
∂x

(
µs(x, T )

∂x

)−1

. (6.25)
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Table 6.3: The chemical potential fitting function

Model B α β γ δ
Truncated 16.539 62.365 -28.900 -0.0455 -0.0414
Modified 16.000 79.627 -49.128 -0.0595 -0.1017
SLy4 15.987 63.963 -34.546 -0.0469 -0.0325

All surface thermodynamic quantities can then be evaluated. We again emphasize that for
surface quantities, x 6= xi but close each other.

6.4.4 Nuclear translational energy

The nuclei essentially form a non-degenerate, non-relativistic Boltzmann gas. The free energy
density of such a gas, ignoring any internal degrees of freedom, is

ftrans = ρN (µH − T ) =
uρi
A
T

[
ln

(
uρi

ρQA5/2

)
− 1

]
. (6.26)

Here ρQ = (mT/2π~2)3/2 , where m is the nucleon mass, and µH represents a nuclear
chemical potential. As in Lattimer et al.[17], it is assumed that the translational energy
diminishes with temperature and disappears at Tc with the same behavior as the surface
energy. This is enforced with the function h(xi, T ). Following Lattimer & Swesty [22],
the simplifying assumption is made to replace A in Eq. (6.26) with a constant Ao = 60
which is an approximation of mass number of heavy nuclei in neutron star crust. This
approximation simplifies the algebra surrounding the equilibrium conditions. In addition,
achieving a consistency in the limit u → 1, where an inside-out phase may replace ordinary
nuclei, u in Eq. (6.26) is replaced by u(1 − u). These approximations are justifiable, given
that the translational energy is a relatively unimportant component. To summarize, the
translational free energy density and nuclear chemical potential are taken to be

ftrans =
u(1− u)ρi

Ao
h(xi, T )(µH − T ); µH = T ln

(
u(1− u)ρi

ρQA
5/2
o

)
. (6.27)

6.4.5 Alpha particles

To represent the thermodynamics of an ensemble of light nuclei, a gas of non-interacting,
but finite volume, alpha particles is assumed. The alpha particles have substantial thermo-
dynamic contributions in regions limited to those near the nuclear dissociation curves. The
alpha particles for those temperatures and densities may be treated as a non-interacting
Boltzmann gas. Alpha particles are bound relative to free neutrons by an energy Bα = 28.3
MeV. Alpha particles also occupy a fairly large volume of space, vα = 24 fm−3 per alpha
particle, and the total volume they occupy must be considered. With these stipulations, the
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free energy density for the alpha particles is

Fα = (1− u)ρα(µα − T −Bα) , (6.28)

where ρα and µα are the number density and chemical potential of alpha particles, respec-
tively. It is assumed that the fractional volume u is already occupied by nuclei and is not
available for alpha particles to occupy. µα is related to ρα by

µα = T ln

(
ρα
8ρQ

)
. (6.29)

6.5 The Combined model

The free energy of each component of dense matter has been developed in the previous
sections. In dense matter, these components are present in varying concentrations, and one
has to allow for the volume occupied by nuclei and by alpha particles. In the most general
case, in which the four components H, n, p, α exists, the baryon conservation equation is

ρ = uρi + 2s(u)
νn
rN

+ (1− u)[4ρα + (1− ραvα)ρo] . (6.30)

The charge conservation equation is

ρYp = uxiρi + (1− u)[2ρα + (1− ραvα)xoρo] . (6.31)

The total free energy density for the entire system becomes:

F =uρifbulk(ρi, xi, T ) +
3s(u)

rN
(σ(µs, T ) + µs(x, T )νn) +

4π

5
(rNρixie)

2c(u)

+ ftrans(u, ρi, xi, T ) + Fα(ρα, u, T ) + (1− u)(1− ραvα)ρofbulk(ρo, xo, T ) .

(6.32)

We neglect the free energy contribution from leptons and photons since we can treat them
separately in nuclear equilibrium.

6.5.1 Equilibrium conditions

The total free energy density is a function of the independent variables (ρ, Yp, T ), but also a
function of the 9 independent variables (ρi, xi, rN , µs, νn, u, ρo, xo, ρα). Note that ρo and xo
can be eliminated by the baryon and charge conservation equations:

ρo =

[
1

1− ραvα

ρ− uρi − 3sνn/rN
1− u

− 4ρα

]

xo =
ρYp − uxiρi − 2ρα(1− u)

ρ− uρi − 3sνn/rN − 4ρα(1− u)
.

(6.33)

The specification of nuclear statistical equilibrium for the system demands that F be min-
imized with respect to each of the 7 remaining dependent variables. It is convenient to use
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the seven (ρi, xi, rN , x, νn/rN , u, ρα) variables set.
The derivative with respect to ρo and xo can be resolved with

∂ρo
∂ρi

= − u

(1− u)(1− ραvα)
,

∂xo
∂ρi

= − u(xo − xi)

ρo(1− u)(1− ραvα)
,

∂ρo
∂xi

= 0 ,
∂xo
∂xi

= − uρi
ρo(1− u)(1− ραvα)

,

∂ρo
∂(νn/rN)

= − 3s(u)

ρo(1− u)(1− ραvα)
,

∂xo
∂(νn/rN)

=
3s(u)xo

ρo(1− u)(1− ραvα)
,

∂ρo
∂u

=
−ρi − 3s′(νn/rN) + 4ρα + ρo(1− ραvα)

(1− u)(1− ραvα)
,

∂xo
∂u

=
ρi(xo − xi) + 2ρα(1− 2xo) + 3s′xoνn/rN

ρo(1− u)(1− ραvα)
,

∂ρo
∂ρα

=
ρovα − 4

1− ραvα
,

∂xo
∂ρα

=
4xo − 2)

ρo(1− ραvα)
.

(6.34)
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Here s′ = ∂s(u)/∂u.
The minimizations are :

∂F

∂ρi
= 0 = u

(
µni − xiµ̂i − µno + xiµ̂o +

hi
Ao

(1− u)µH

)

+
8π

5
(rNxie)

2ρic(u) , (6.35a)

∂F

∂xi
= 0 = uρi(µ̂o − µ̂i) +

8π

5
(rNρie)

2xic(u)

+ h′i
ρi
Ao
u(1− u)(µH − T ) , (6.35b)

∂F

∂rN
= 0 = −3s(u)σ

r2N
+

8π

5
(ρixie)

2rNc(u) , (6.35c)

∂F

∂x
= 0 =

3s(u)σ

rN

(
∂σ

∂x
+ νn

∂µs
∂x

)
, , (6.35d)

∂F

∂(νn/rN)
= 0 = 3s(u)(µs − µno) , (6.35e)

∂F

∂u
= 0 = ρi(fbuli(ρi, xi, T )− µno + xiµ̂o) +

3s′

rN

[
σ + νn(µs − µno)

]

+
4π

5
(ρixirNe)

2c′ + (1− 2u)
hiρi
Ao

µH + po + ραT , (6.35f)

∂F

∂ρα
= 0 = (1− u)(µα − Bα − 4µno + 2µ̂o + Povα) . (6.35g)

Here µ̂ = µn − µp, hi = h(xi), h
′
i = ∂h(xi)/∂xi, and c

′ = ∂c(u)/∂u.

Eq. (6.35c) represents the Nuclear virial theorem, that the surface energy equals twice
the Coulomb energy. Solving for rN yields

r3N =
15s(u)σ

8π(ρixie)2c(u)
, (6.36)

which can be written more succinctly as

rN =
9σ

2β

(s
c
)1/3 , β ≡

(
243π

5

)1/3

(ρixiσe)
2/3 . (6.37)

Therefore rN can be eliminated from the equilibrium equations. It should be noted that
because of the Nuclear virial theorem, the total of the surface and Coulomb energy densities
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is

fsurf + fCoul = β(cs2)1/3
(
1 +

2µsνn
3σ

)
≡ D(u)

(
1 +

2µsνn
3σ

)
, (6.38)

where D(u) is defined [22]. The estimation of D(u) is described below.

Eq. (6.35e) proves the earlier statement that the neutron chemical potential of the sur-
face µs should be equal to µno. Eq. (6.35d) also proves the earlier definition of the surface
density of neutrons νn. Eq. (6.35g) determines the alpha particle density, reiterating that
the alpha particles are in nuclear statistical equilibrium. The last term of Eq. (6.35g) repre-
sents an effective repulsive interaction for the alpha particles because of the excluded volume.

The remaining three equilibrium equations can be manipulated into the expected re-
sults concerning equilibrium among chemical potentials and pressure. Together with the
conservation equations, the seven equations to be solved simultaneously are

A1 = 0 = pi − po − ραT − β

(
D′ − 2D

3u

)
+
uρihi
Ao

µH , (6.39a)

A2 = 0 = µni − µno +
1− u

Ao

[
hiµH − h′ixi(µH − T )

]
, (6.39b)

A3 = 0 = µpi − µpo +
2βD
3ρixiu

+
1− u

Ao

[
hiµH + (1− xi)h

′
ixi(µH − T )

]
, (6.39c)

A4 = 0 = uxiρi − ρYp + (1− u)(ρpo + rpρα) , (6.39d)

A5 = 0 = uρi − ρ+
2β

3σ
Dνn + (1− u)

[
ρno + ρpo + (rn + rp)ρα

]
, (6.39e)

µs = µno , (6.39f)

µα = Bα + 2µno + 2µpo − povα . (6.39g)

We defined the useful abbreviations

rn = 2− ρnovα , rp = 2− ρpovα . (6.40)

Note that the functions c and s could be completely replaced in Eq. (6.39) in favor of D be-
cause 3D′ = uc′/c+ 2us′/s. The nuclear equilibrium is determined only by the combination
cs2, or equivalently, by D.

Eq. (6.39g) illustrates that µα, and hence ρα, is a function of ρno and ρpo alone. In
addition, σ and νn, which are functions of x, are also determinable from ρno and ρpo, because
of Eq. (6.39g). Therefore, it is necessary to simultaneously solve the 5 equations Ai = 0 and
the two supplementary constraints. Note that it would have been inconsistent to evaluate σ
and νn directly as functions of xi, which seems the more straightforward procedure, because
this does not ensure the full minimization of F .
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6.5.2 Determination of Coulomb surface shape parameter D
Following the work of Ravenhall et al.[58], one can identify the dependence of surface and
Coulomb energies on the dimensionality d of the geometry. For d = 3, one has spheres of
radius rN , For d = 2, one has cylinders of radius rN . For d=1, one has plates of thickness
rN . The surface and Coulomb energy densities of an isolated configuration with dimension
d are then

fsurf =
udσ

rN
, fCoul =

4π

5
(ρixorNe)

2Dd(u) (6.41)

where

Dd(u) =
5

d2 − 4

[
1− d

2
u1−2/d +

d− 2

2
u

]
. (6.42)

In the case d = 2, the limit of Dd becomes

D2(u) =
5

8
[u− 1− ln(u)] . (6.43)

Thus, one has s(u) = ud/3 and c(u) = uDd(u). In the event of inside-out matter, one simply
replaces u by 1− u in these equations.

Both s and c depend upon d. The minimization of F with respect to rN allows the
elimination of rN and the identification fsurf + fCoul = βD implies that

D = u

(
d2Dd(u)

9

)1/3

. (6.44)

The formulas Eq. (6.41) are valid for integer values of d , but gradual deformations between
the integer states could be modeled by allowing d to vary [58]. The minimization of fsurf +
fCoul = βD with respect to d then implies that d is determined from minimization of D,
or equivalently d2Dd, at each value of u, subject to a maximum of 3 and a minimum of 1
for d. Fig. 6.8 shows the geometric factor D. D does not depends on density so we can
find a fitting function. Lattimer & Swesty [22] showed that a suitable approximation to this
minimization, but also allowing for the possibility of inside-out matter, is obtained by using

D(u) = u(1− u)
(1− u)D

1/3
3 (u) + uD

1/3
3 (1− u)

u2 + (1− u)2 + 0.6u2(1− u)2
. (6.45)

6.5.3 Solving the equilibrium equations

There are seven equilibrium equations, including the two conservation equations for baryon
number and charge, for seven variables, which can be taken to be ρi, xi, u, ρno, ρpo, ρα and x.
Lattimer & Swesty [22] chose to reduce an analogous system by eliminating two variables
with the conservation constraints. Even though we can reduce the number of equations to
solve, we may probably meet numerical difficulties since, for example, the density of outside
nucleons can be negative and code breaks. Thus, we do not eliminate the number of un-
knowns from the conservation properties but leave them to solve. However, as seen above,
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Figure 6.8: D as a function of u for given dimension(d = 1, 2, 3). The minimum can be
obtained the continuous change of d.

there are two trivial equilibrium conditions so that the variables yi = (ρα, x) can be substi-
tuded in terms of ρno and ρpo.

The most convenient form for the five dependent variables is
zi = (ρi, ln ρno, ln ρpo, xi, lnu). The ‘log’ variables were introduced to prevent the variables
from becoming negative. It also handles the accuracy of the small number.

Solutions are obtained via Newton-Raphson iteration, in which successive changes ∆zj in
the independent variables zj are found from the matrix equation (summing over repeated
indices),

∆zj = −(Bij)
−1Ai . (6.46)

Here Ai is the vector of equations, defined in Eq. (6.39), to be zeroed, and

Bij ≡
∂Ai
∂zj

∣∣∣
y,λ
, (6.47)

where λ = (ρ, Yp, T ).

6.6 Result

As mentioned earlier in this chapter, our code is fast enough to generate an EOS table so we
can easily compare EOS tables with different force models. The liquid droplet approach also

100



gives analytic derivatives of thermodynamic quantities. This means that we can guarantee
the thermodynamic consistency compared with the Thomas-Fermi or Hartree-Fock approxi-
mation, in which thermodynamic derivatives can be obtained numerically. For these reasons,
the liquid droplet approach is the most favorable method to make EOS tables.
For each point, we allow the independent variables change with small amounts of them since
we use the previous solution of the variable set. By doing this, we can avoid code breaking
and speed up the convergence. In the subroutine eos(ρ, T, Yp) which consists of two sub-
routine, Newton-Rapshon code is to seek nucleons, alpha particle, and heavy nuclei (npaH)
solution at first, if it does not converge, try to find nucleons and alpha particle (npa) solu-
tion, if it does not exist, nucleons (np) solution is to be found.
Now we present some of the result from our table †.

6.6.1 Energy density and pressure

At zero temperature, the energy density and pressure is a function of density for both FRTFs
and SLy4 since the Fermi-Dirac distribution function is frozen to 1 so we have a momentum
density as a function of density, Eq (2.18, 2.36). For non-zero temperature, we need to
calculate degeneracy parameters using interpolation or JEL scheme [12], then we can find
energy density and pressure for given ρ, T , and Yp.

6.6.2 Phase Boundaries

For a given density and proton fraction, the heavy nucleus dissolves into nucleons. This phe-
nomenon corresponds to phase equilibrium and critical temperature. Simply, if the critical
temperature of bulk equilibrium is high, the nucleus can exist in relatively high temperature.
Fig. 6.9 shows the phase boundaries of hot dense matter for a given proton fraction (Yp). In
general in the region below the curve, there exist nucleons, alpha particle, and heavy nuclei
(npaH). On the upper left region, nucleons exist with alpha particle. On the right region of
the curve, only nucleons exist. FRTFs and SLy4 have the similar phase boundaries. In SLy4,
nuclei exist larger range of density than FRTFs. Nuclei can exist at higher temperature in
Truncated model because of higher critical temperature.

6.6.3 Atomic number in the heavy nuclei

The most stable nucleus on the earth is 56Fe which has Z = 26. However, in the dense
matter or neutron star crust, there are lots of nucleons and leptons outside, so the interaction
among them may change the configuration of the most stable nuclei. Fig. 6.10 shows the
atomic number as a function of density at given proton fraction (Ye = 0.45) and temperature
(T = 0.726 MeV). The phase transition in SLy4 has completed for large domain of density so
the atomic number increase abruptly for narrow range of density. SLy4 always have a large
number of protons in heavy nuclei for a given density, proton fraction, and temperature. In
case of FRTF II, the atomic number is the smallest because of low surface tension.

†The result presented in this thesis is from beta version. We’ll post them on the website soon after
checking thermodynamic consistency.
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6.7 Conclusions

The liquid droplet approach is the most promising method to generate thermodynamically
consistent nuclear EOS table. The nuclear force model should be tested before making an
EOS table so that the table represents both nuclear experiments on Earth and astrophysical
observations.

To make the EOS consistent with the nuclear physics aspect, we have to use one nuclear
force model to calculate the energy contribution from heavy nuclei, nucleons outside, and
surface tension. In the thermodynamical sense, the derivatives in liquid droplet approach
are written analytically and can be compared with numerical derivatives.

We treat electrons and photons separately since they interact weakly. But we add them
to calculate total energy, pressure, entropy and their derivative with respect to temperature,
density, and proton composition.
For finite temperature, we have to calculate the Fermi integral (F1/2, F3/2) to obtain number
density and momentum density. The interpolation from the table cannot give enough accu-
racy at low temperature (T ≤ 1 MeV). JEL is a successful scheme to give enough accuracy
for all domains (relativistic vs. non-relativistic, degenerate and non-degenerate).
Phase transitions around half of nuclear saturation density (1/2ρ0) can be achieved when we
employ the geometric function D and changing the dimension d continuously.
We should be able to combine the liquid droplet approach with a relativistic mean field
model in the near future if we handle the large L with acceptable values so new parameters
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Figure 6.10: The atomic number increases as density increases in general. Around phase
transition region, the atomic number drops and increases again.

in RMF can represent the allowed regions of mass and radius of neutron stars.
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Chapter 7

Conclusions

The nuclear equation of state is needed to simulate supernovae explosions, proto-neutron
stars, and compact binary mergers involving neutron stars. For these simulations, we need
thermodynamic information for given baryon density, proton fraction, and temperature.
Since the EOS should cover wide range of the above variables, we need to be careful when
we choose a nuclear force model to make the EOS table. A good nuclear force model
should represent both low and high densities nuclear phenomena as well as pure neutron and
astrophysical matter.

First of all, we study nuclear physics using Finite Range force model. In the Finite Range
force model, the nuclear interaction energy at density each point has the contribution from
every spacial point with weight factor (e−r/a). The first model that we investigated is the
truncated model (Chapter 2). To find the parameters in the truncated model, we use the
standard nuclear matter properties of symmetric nuclear matter , such as E/A = −B ≃ −16
MeV, P = 0 MeV/fm3, Sv ≃ 32 MeV, L ≃ 60MeV. a, which is a nuclear diffuseness
parameter can be obtained from semi-infinite nuclear matter calculation. This truncated
model is improved by adding new density dependent interactions to fit optical potential,
nuclear incompressibility, and pure neutron matter. To get optimized parameter set for the
modified model, we compare the results of total binding energy of single nucleus from the
modified model with experimental values. The recent constraints of Sv and L [47] confirm
that our parameter set for the modified model is a good choice.

Both the truncated and modified models model are used to calculate energy per baryon of
single nucleus and heavy nuclei in dense matter. Since the finite range model gives integral
equations instead of differential equations, the boundary condition has no difficulty and
the numerical calculation in the unit (Wigner-Seitz) cell is much easier to perform than
differential equations. Thomas-Fermi approximation is employed to find the nuclear density
profile. In TF, we are seeking the local density at each point instead of finding the full wave
functions. From the density profile, we find the plane wave so that we are able to calculate
momentum density to calculate Hamiltonian density or kinetic energy. At zero temperature,
the relation between the number density and momentum density is simple since the Fermi-
Dirac distribution function is frozen to 1. At finite temperature, however, we have to calculate
the Fermi integral which is not an analytic function. For example, from the number density,
we are supposed to find the degeneracy parameter (φ) from Fermi integral, F3/2(φ) and to get
the momentum density from Fermi integral, F5/2(φ). JEL scheme provides polynomial fits
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for Fermi integral. This fitting function has remarkably high accuracies to calculate Fermi
integral. We employ JEL scheme to calculate nuclear force at finite temperature.

To find the density profile of nuclei, we use Euler-Lagrange equations to minimize total
binding energy, and it gives that µn,i and µp,i are constant in the cell if we set the density
at each grid point as unknown. The multi-dimensional Newton-Raphson method is used
to solve the equations. If the initial guess is good enough, the number of iterations to get
solutions is only two or three so the code is fast enough to calculate binding energy of all
nuclei present on earth.

The bulk equilibrium calculation is an example of using JEL scheme. Bulk (dense-dilute)
matter equilibrium is the simplified case of heavy nuclei in dense matter. That is, if bulk
equilibrium is possible, that suggests there might be a phase of heavy nuclei in dense matter.
If bulk equilibrium does not exist, there would be uniform nuclear matter phase for given
density, proton fraction, and temperature. The conditions for bulk equilibrium are made by
minimizing the total free energy density, which are PI = PII , µnI = µnII , and µpI = µpII .
I(II) represent dense (dilute) phase. From phase equilibrium calculations, we can get the
critical temperature in which both phases have the same density and proton fraction. Beyond
the critical temperature, phase equilibrium does not exist any more. Semi-infinite nuclear
matter density profile is obtained from the finite range force models. Since the curvature
effect of finite nuclei is small, the semi-infinite nuclear matter calculation is used to find the
surface tension for nuclei. With the critical temperature from phase equilibrium, semi-infinite
calculation gives analytic fitting function for surface tension formula (ω = ω(x, T )).

The importance of choosing of nuclear force model to make EOS table can also be seen
when we study neutron star crust. The nuclear potentials have a lot of different form. These
difference does not effect the pressure, energy density, and atomic number in neutron star
crust. If we extend the potentials, however, to high density, the difference in the mass-radius
relation of neutron stars is apparent.

Using the finite-range model with liquid droplet approach, we build EOS table for astro-
physical simulations. Thomas-Fermi and Hartree (Fock) approximation gives only numerical
quantities of thermodynamic quantities. On the other hand, liquid droplet approach gives
analytic thermodynamic quantities, that means thermodynamic consistency. Compared to
LS EOS and LPRL [17], our LDM approach contains neutron skins and surface diffuseness
to improve the liquid droplet formalism. The LDM approach is fast to build the full EOS
table so that we can manipulate different nuclear force model without difficulty and we can
make an EOS table with a large number of grid points. The atomic number at the lower
density region (≃ 0.01/fm3) remains around 30 and has experienced abrupt changes between
the phase transition regions (0.5ρ0). This is a general feature in both the non-relativistic
mean field model and relativistic mean field model. In the phase transition region, the
atomic number from RMF models is an order of magnitude greater than the one from the
non-relativistic potential models. Between SLy4 and finite range force model, the phase
transition to uniform matter happens later in SLy4. Since the truncated model has the
higher critical temperature than SLy4 and the modified model, nuclei can exist in higher
temperature in the truncated model.

It is necessary to compare the EOS tables using the same nuclear force model but with
different numerical techniques (LDM, TF, HF) to see how similar the each EOS table would
be. This work will be begun in the near future.
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Appendix A

Finite Range Integration

In the Yukawa type finite range force mode, one has

g̃(r1) =

∫
d3r2f(r12/a)g(r2) =

∫
d3r2

1

4πr12a2
e−r12/ag(r2) . (A.1)

This integration is not converged easily. The integration which involves∫
f(x)e−x dx has ∼ 1/N2 convergence properties, where N is number of grid points. Math-

ematically, we can increase N as much as possible, but the number of times to calculate the
integration increases as ∼ N2 and the current ability of cpu may have numerical noise when
we increase the number of grid points.
One way to solve the convergence issues is to use mathematical induction, or, geometric
sequence. That is, the the error between g̃N and g̃2N decreases as

g̃2N − g̃N = ∆ , g̃4N − g̃2N =
1

4
∆ , g̃8N − g̃4N =

1

16
∆ , . . . (A.2)

Thus we may have

g̃∞ = g̃N +∆+
1

4
∆ +

1

16
∆ + · · · = g̃N +

4

3
∆ =

4

3
g̃2N − 1

3
g̃N . (A.3)

This induction shows enough accuracies when N = 50 and N = 100 for given Wigner seitz
cell(12fm). However, we need to calculate the integration twice to complete the convergence.
Now, we show the more efficient method to calculate this Yukawa type integration.
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A.1 Taylor expansion integration

The integrand in the Yukawa integration is expand to take into account the variation between
r and r +∆. For example, for given interval (ri, ri + δ),

f(r) =f(ri) + f ′(ri)(r − ri) +
1

2
f ′′(ri)(r − ri)

2 +
1

3!
f (3)(ri)(r − ri)

3 + · · ·

=fi +
fi+1 − fi−1

2∆
(r − ri) +

fi+1 − 2fi + fi−1

2∆2
(r − ri)

2 + · · · .
(A.4)

By doing this, we can eliminate the contamination in the integral between ri and ri+1 when
we use simple trapezoid rule (

∫ i+1

i
f(x)dx = 1

2
∆(fi + fi+1) ).

A.1.1 1D plane parallel nuclear matter

The study of 1D parallel (semi-infinite) nuclear matter sheds light on how the surface tension
changes for a given temperature and proton fraction. In the semi-infinite nuclear matter,
without loss of generality, we can say g(r) = g(x, y, z) = g(z). Then the original finite range
integration becomes

g̃(zo) =

∫ ∞

−∞

dx

∫ ∞

−∞

dy

∫ ∞

−∞

dz
e−

√
x2+y2+(z−zo)2/a

4πa2
√
x2 + y2 + (z − zo)2

g(z). (A.5)

Changing variables, x2 + y2 = ρ2,
∫
dx
∫
dy = 2π

∫
ρ dρ give

g̃(zo) =
1

2

∫ ∞

−∞

dzg(z)

∫ ∞

0

e−
√
ρ2+(z−zo)2/a

a2
√
ρ2 + (z − zo)2

g(z)

=
1

2a

∫ ∞

−∞

dzg(z)(−)e−
√
ρ2+(z−zo)2/a|0∞

=
1

2a

∫ ∞

−∞

dzg(z)e−|z−zo|/a

(A.6)

With the above general equation in 1D plane parallel case, we apply Taylor expansion for
smooth distance dependent function u.

ũ(z) =
1

2a

[∫ z

−∞

u(z′)e(z
′−z)/a dz′ +

∫ ∞

z

u(z′)e(z−z
′)/a dz′

]
≡ u−(z) + u+(z) (A.7)
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This equation can be calculated by iteration scheme.

u−i+1 =
1

2a

∫ zi+1

−∞

u(z′)e(z
′−zi+1)/a dz′

=
1

2a

∫ zi

−∞

u(z′)e(z
′−zi)/ae−∆/a dz′ +

1

2a

∫ zi+1

zi

u(z′)e(z
′−zi+1)/a dz′

=e−∆/au−i +
1

2a

∫ zi+1

zi

u(z)e(z−zi+1)/a dz .

(A.8)

For the integration at the end, we expand

u(z) = ui +
ui+1 − ui

∆
(z − zi) +O(∆2) (A.9)

then we have
u−i+1 = fu−i + I−0 ui + I−1 ui+1 , (A.10)

where
f =e−∆/a

I−0 =
1

2a

∫ ∆

0

(
1− z

∆

)
ez/ae−∆/a dz =

a− (a+∆)e−∆/a

2∆

I−1 =
1

2a

∫ ∆

0

z

∆
ez/ae−∆/a dz =

∆− a + ae−∆/a

2∆
.

(A.11)

In the same manner, we have an equation for u+i ,

u+i =
1

2a

∫ ∞

zi

u(z′)e(zi−z
′)/a dz′

=
1

2a

∫ zi+1

zi

u(z′)e(zi−z
′)/a dz′ +

1

2a

∫ ∞

zi+1

u(z′)e(zi+1−z′)/ae−∆/a dz′

=
1

2a

∫ zi+1

zi

u(z)e(zi−z)/a dz + e−∆/au+i+1 .

(A.12)

With the first order Taylor expansion before, we have

u+i = fu+i+1 + I+0 ui + I+1 ui+1 , (A.13)

where

I+0 =
1

2a

∫ ∆

0

(
1− z

∆

)
e−z/a dz′ = I−1

I+1 =
1

2a

∫ ∆

0

z

∆
e−z/a dz′ = I−0 .

(A.14)

As a second order expansion, we have

u(z) = ui +
ui+1 − ui−1

2∆
(z − zi) +

ui+1 − 2ui + ui−1

2∆2
(z − zi)

2 +O(∆3) (A.15)
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then
u−i+1 = fu−i + J−

0 ui−1 + J−
1 ui + J−

2 ui+1 (A.16)

where

J−
0 =

1

2a
e−∆/a

∫ ∆

0

(
− z

2∆
+

z2

2∆2

)
ez/a dz =

2a2 − a∆− a(2a +∆)e−∆/a

4∆2

J−
1 =

1

2a
e−∆/a

∫ ∆

0

(
1− z2

∆2

)
ez/a dz =

−2a2 + 2a∆+ (2a2 −∆2)e−∆/a

2∆2

J−
2 =

1

2a
e−∆/a

∫ ∆

0

( z

2∆
+

z2

2∆2

)
ez/a dz =

2a2 − 3a∆+ 2∆2 − a(2a−∆)e−∆/a

4∆2
.

(A.17)

For u+i ,
u+i = fu+i+1 + J+

0 ui−1 + J+
1 ui + J−

2 ui+1 , (A.18)

where

J+
0 =

1

2a

∫ ∆

0

(
− z

2∆
+

z2

2∆2

)
e−z/a dz =

2a2 − a∆− a(2a+∆)e−∆/a

4∆2
= J−

0

J+
1 =

1

2a

∫ ∆

0

(
1− z2

∆2

)
e−z/a dz =

∆2 − 2a2

2∆2
+
a(a +∆)e−∆/a

∆2

J−
2 =

1

2a

∫ ∆

0

( z

2∆
+

z2

2∆2

)
e−z/a dz =

2a2 + a∆− (2∆2 + 3a∆+ 2∆2)e−∆/a

4∆2
.

(A.19)

For this second order expansion, we have to be careful for u−1 and u+N−1, which will be

u−1 = fu−0 + I−1
0 u0 + I−1

1 u1u
+
N−1 = fuN0 + I+0 uN−1 + I+1 uN (A.20)

because there will be no second order derivatives at i = 1 and i = N − 1.
For the test of accuracy of this tilde equation, we now compare analytic solution of u(z) =

1
1+ez/a

where a is chosen as 1 fm for the test problem.

ũ(z) =
1

2

(
1 +

z

a
ez/a
)
− 1

2
(ez/a − e−z/a) ln(1 + z/a) . (A.21)

Fig A.1.1 shows the error between the analytic solution and the numerical calculation.
This confirms that the second order expansion gives enough accuracy for integration tech-
nique.
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Figure A.1: The error between analytic solution and numerical calculation. The red (green,
blue) one represent the absolute error between analytic solution and trapezoidal (1st, 2nd
Taylor expansion) numerical integration. N is the number of zone in the given domain (-6,6)
The error decrease as N increases. The error from 2nd order expansion is always smaller
than any others.

A.1.2 3D radial symmetric nuclear matter

In the symmetric nuclei or nuclei with neutron gas matter, we need to calculate

g̃(r1) =

∫
d3r2f(r12/a)g(r2)

=
1

2ar1
e−r1/a

∫ r1

0

g(r)r
(
er/a − e−r/a

)
dr

+
1

2ar1

(
er1/a − e−r1/a

)∫ R

r1

g(r)re−r/adr

+
1

2ar1

(
er1/a − e−r1/a

)∫ ∞

R

g(r)re−r/adr .

(A.22)

The last integration represents the effect from out side nucleons. We now address the coef-
ficient from the second order Taylor expansion method.
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We separate the two integrals as in the 1D semi-infinite nuclear matter,

g̃(r) = g̃(−)(r) + g̃(+)(r) +
1

2r

(
er/a − e−r/a

)
e−R/a(a+R)g(R) . (A.23)

There is no difference in the finite range integration between finite nuclei and nuclei in dense
matter except the final tail term.
The discrete integration for g̃(−)(ri+1) has the form of

g̃(−)(ri+1) =
1

2ari+1
e−ri+1/a

i∑

k=0

∫ rk+1

rk

g(r)r(er/a − e−r/a)dr

= f
(−)
i g̃(−)(ri) +

1

2a(ri +∆)
e−(ri+∆)/a

∫ ri+∆

ri

g(r)r(er/a − e−r/a)dr ,

(A.24)

where f
(−)
i is given by

f
(−)
i =

ri
ri +∆

e−∆/a . (A.25)

The right hand side integration can be extended by

g(r) = gi +
gi+1 − gi−1

2∆
(r − ri) +

gi+1 − 2gi + gi−1

2∆2
(r − ri)

2 . (A.26)

We use the g′i = gi+1−gi−1

2∆
, since this expansion has higher order (O(∆3)) error than the

forward (f ′
i = (fi+1 − fi)/∆) and backward (f ′

i = (fi − fi−1)/∆) error (O(∆2)).
We can find coefficients which correspond to each gi−1, gi, and gi+1 through the integration
so that

g̃
(−)
i+1 = f

(−)
i g̃

(−)
i + w1igi−1 + w2igi + w3igi+1 − w4igi−1 − w5igi − w6igi+1

= f
(−)
i g̃

(−)
i + (w1i − w4i)gi−1 + (w2i − w5i)gi + (w3i − w6i)gi+1

(A.27)
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where

w1i =
1

2a(ri +∆)
e−(ri+∆)/a

∫ ri+∆

ri

[
−(r − ri)

2∆
+

(r − ri)
2

2∆2

]
rer/a dr ,

w2i =
1

2a(ri +∆)
e−(ri+∆)/a

∫ ri+∆

ri

[
1− (r − ri)

2

∆2

]
rer/a dr ,

w3i =
1

2a(ri +∆)
e−(ri+∆)/a

∫ ri+∆

ri

[
(r − ri)

2∆
+

(r − ri)
2

2∆2

]
rer/a dr ,

w4i =
1

2a(ri +∆)
e−(ri+∆)/a

∫ ri+∆

ri

[
−(r − ri)

2∆
+

(r − ri)
2

2∆2

]
re−r/a dr ,

w5i =
1

2a(ri +∆)
e−(ri+∆)/a

∫ ri+∆

ri

[
1− (r − ri)

2

∆2

]
re−r/a dr ,

w6i =
1

2a(ri +∆)
e−(ri+∆)/a

∫ ri+∆

ri

[
(r − ri)

2∆
+

(r − ri)
2

2∆2

]
re−r/a dr .

(A.28)
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Each wi can be obtained

w1i =
ae−∆/a

4∆2(∆ + ri)

[
6a2 + 2a∆− 2ari −∆ri

− e∆/a
(
6a2 +∆(∆ + ri)− 2a(2∆ + ri)

)]
,

w2i =
e−∆/a

2∆2(∆ + ri)

[
−6a3 + a∆2 + 2a2ri −∆2ri

+ 2ae∆/a
(
3a2 +∆(∆+ ri)− a(3∆ + ri)

)]
,

w3i =
e−∆/a

4∆2(∆ + ri)

[
6a3 + a∆ri − 2a2(∆ + ri)

− e∆/a
(
6a3 − 2∆2(∆ + ri)− 2a2(4∆ + ri) + a∆(5∆ + 3ri)

)]
,

w4i =
ae−2(ri+∆)/a

4∆2(∆ + ri)

[
−6a2 −∆(∆ + ri)− 2a(2∆ + ri)

+ e∆/a
(
6a2 −∆ri + 2a(−∆+ ri)

)]

w5i =
e−2(ri+∆)/a

2∆2(∆ + ri)

[
e∆/a

(
−6a3 + a∆2 − 2a2ri +∆2ri

)

+ 2a
(
3a2 +∆(∆+ ri) + a(3∆ + ri)

)]
,

w6i =
e−2(ri+∆)/a

4∆2(∆ + ri)

[
ae∆/a

(
6a2 +∆ri + 2a(∆ + ri)

)

−
(
6a3 + 2∆2(∆ + ri) + 2a2(4∆ + ri) + a∆(5∆ + 3ri)

)]
.

(A.29)
In the same manner, we have

g̃
(+)
i =

1

2ari

(
eri/a − e−ri/a

)N−1∑

k=i

∫ rk+1

rk

g(r)re−r/a dr

= f
(+)
i g̃i+1 +

1

2ari

(
eri/a − e−ri/a

)∫ ri+∆

ri

g(r)re−r/a dr

= f
(+)
i g̃i+1 + w7igi−1 + w8igi + w9igi+1 ,

(A.30)
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where

f
(+)
i =

ri +∆

ri

eri/a − e−ri/a

e(ri+∆)/a − e−(ri+∆)/a

w7i =
a cosh(ri/a)e

−(ri+∆)/a

2∆2ri

×
[
−6a2 −∆(∆ + ri)− 2a(2∆ + ri) + e∆/a

(
6a2 −∆ri + 2a(−∆+ ri)

)]
,

w8i =
cosh(ri/a)e

−(ri+∆)/a

∆2ri

×
[
e∆/a

(
−6a3 + a∆2 − 2a2ri +∆2ri

)
+ 2a

(
3a2 +∆(∆ + ri) + a(3∆ + ri)

)]
,

w9i =
cosh(ri/a)e

−(ri+∆)/a

2∆2ri

×
[
ae∆/a

(
6a2 +∆ri + 2a(∆ + ri)

)

−
(
6a3 + 2∆2(∆ + ri) + 2a2(4∆ + ri) + a∆(5∆ + 3ri)

)]
.

(A.31)

The initial points for g
(−)
0 and g

(+)
N are given by

g
(−)
0 = 0, g

(+)
N = 0 . (A.32)

Since g
(−)
1 and g

(+)
0 can’t have 3 points for numerical derivative, we use the first derivative

so

g
(−)
1 =

1

2a∆
e−∆

∫ ∆

0

g(r)r
(
er/a − e−r/a

)
dr

=
1

2a∆
e−∆

∫ ∆

0

[
g0 +

g1 − g0
∆

r

]
r
(
er/a − e−r/a

)
dr

=

ae−∆/a

[
2a− 2a cosh(∆/a) + ∆ sinh(∆/a)

]

∆2
g0

+

e−∆/a

[
(2a2 +∆2) cosh(∆/a)− 2a

(
a +∆sinh(∆/a)

)]

∆2
g1 .

(A.33)

g̃
(+)
0 = f

(+)
0 g̃

(+)
1 +

1

2ar0

(
er0/a − e−r0/a

)∫ ∆

0

g(r)re−r/a dr , (A.34)
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By expanding er0/a − e−r0/a in terms of r0, we have

f
(+)
0 =

2∆

a

1

e∆/a − e−∆/a
, (A.35)

and the integration becomes

g̃
(+)
0 = f

(+)
0 g̃

(+)
1 +

1

a2

∫ ∆

0

g(r)re−r/a dr

= f
(+)
0 g̃

(+)
1 +

1

a2

∫ ∆

0

[
g0 +

g1 − g0
∆

r

]
re−r/a dr

= f
(+)
0 g̃

(+)
1 +

e−∆/a

[
2a+∆+ (−2a +∆)e∆/a

]

∆
g0

+
2a2 − (2a2 + 2a∆+∆2)e−∆/a

a∆
g1 .

(A.36)

Fig A.1.2 shows the result of 56Fe binding energy calculation as a function of number of
grids. The nuclear force used is FRTF II. The energy converges quickly if we use 2nd order
Taylor expansion. The right panel shows the log scale error and the error of 2nd order
Taylor expansion is less than 0.1% even in the 40 zones. These method is also used to find
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Figure A.2: 56Fe binding energy calculation and relative error in log scale. The Simpson
method doesn’t give the enough accuracy even in N=200.

the properties of heavy nuclei in the dense matter.
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Appendix B

JEL thermodynamic integration

To compute the properties of finite-temperature matter, it is necessary to calculate the Fermi
integrals F1/2 and F3/2. Directly calculating these integrals by usual integral methods is not
advisable for applications like hydrodynamics, which require a high degree of thermodynamic
consistency. The approach we adopt is due to Johns, Ellis & Lattimer[12] (hereafter referred
to as JEL), which is a modification of a less accurate scheme originated by Eggleton, Faulkner
& Flannery[8]. These approaches involve polynomial interpolations for arbitrary degeneracy
and relativity. However, in the finite-range model, nucleons are treated non-relativistically,
so the interpolation method can be considerably simplified from the general case.

The degeneracy parameter Ψ, and an associated variable f , are defined in terms of the
chemical potential and temperature as

Ψ =
µ− V

T
= 2

√
1 +

f

a
+ ln

√
1 + f/a− 1√
1 + f/a+ 1

, (B.1)

such that

f ′ =
df

dΨ
=

f√
1 + f/a

. (B.2)

In the above, a is a fitting parameter and is given in table B. The Fermi integrals are
expressed as polynomials in f with additional parameters pm, where m = 0 . . .M , that are
fixed by the requirements of yielding exact results for the pressure, energy and entropy in
the extremely degenerate and non-degenerate limits or by fitting intermediate results. Using
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M 3 2
a 0.433 1

p0 (e2/a)
√
π/32 = 5.34689 (e2/a)

√
π/32 = 2.31520

p1 16.8441 a−1/4[π2 − 8 + 56/(5a)]/3 = 44.35653

p2 a−1/4[π2 − 8 + 88/(5a)]/3 = 17.4708 32a−5/4/15 = 2.13333

p3 32a−5/4/15 = 6.07364 —

Table B.1: Non-relativistic fermion coefficients

the results of JEL, one finds

F3/2(Ψ) =
3f(1 + f)1/4−M

23/2

M∑

m=0

pmf
m,

F1/2(Ψ) =
f ′(1 + f)1/4−M√

2

M∑

m=0

pmf
m

[
1 +m− (M − 1

4
)

f

1 + f

]
,

F−1/2(Ψ) =− f ′

f + a
F1/2(Ψ)

+
√
2
f(1 + f)1/4−M

1 + f/a

M∑

m=0

pmf
m

[
(1 +m)2−

− (M − 1

4
)

f

1 + f
(3 + 2m− (M +

3

4
)

f

1 + f
)

]
.

(B.3)

The parameters are given in Table B for two cases, M = 2 and 3. With the 1 free parameter
of the M = 2 scheme (ı.e., a), accuracy is better than 3%. With the 2 free parameters of
the M = 3 scheme, i.e., a and p1, accuracy improves about 100-fold.

For EOS table, we have a large range of temperature and density, so the electron can have
four different regimes such as, non-relativistic non-degenerate, non-relativistic degenerate,
relativistic non-degenerate, and relativistic degenerate. We treat electrons as non-interacting
fermions except for the Coulomb interaction. In this case, we add another parameter g to
account for relativistic effects. Then the pressure from electrons can be written, as

p =
me

π2

(me

~

)3 fg5/3

(1 + f)M(1 + g)N−3/2

∑
pmnf

mgn , (B.4)

where

g =
T

me

√
1 + f , (B.5)

and the electron’s degeneracy parameter is given eq. (B.1). The coefficient pmn is provided
in Ref.[12].
Among the thermodynamic quantities in EOS table, we may calculate ∂p/∂n, ∂p/∂T , and
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pmn n = 0 n = 1 n = 2 n = 3
m = 0 5.34689 18.0517 21.3422 8.53240
m = 1 16.8441 55.7051 63.6901 24.6213
m = 2 17.4708 56.3902 62.1319 23.2602
m = 3 6.07364 18.9992 20.0285 7.11153

Table B.2: Fermion coefficients pmn for M = N = 3; a=0.433

∂s/∂T . In JEL scheme, we treat f, g variables independent.

dp =
∂p

∂f
df +

∂p

∂g
dg

dn =
∂n

∂f
df +

∂n

∂g
dg

dt =
∂t

∂f
df +

∂t

∂g
dg ,

(B.6)

where

t =
T

mec2
, g = t(1 + f)1/2 . (B.7)

The ∂p/∂n can be obtained when we make dt = 0, then

∂p

∂n
=

∂p
∂f

+ ∂p
∂g

∂g
∂f

∂n
∂f

+ ∂n
∂g

∂g
∂f

, where
∂g

∂f
= −

∂t
∂f

∂t
∂g

(B.8)

In this manner, we can show that

∂p

∂t
=

∂p
∂f

+ ∂p
∂g

∂g
∂f

∂t
∂f

+ ∂t
∂g

∂g
∂f

, where
∂g

∂f
= −

∂n
∂f

∂n
∂g

. (B.9)

For ∂S/∂T , we have
∂S

∂T
=
g

T

[
g

T

∂2p

∂g2
− ψ

∂n

∂g

]
. (B.10)

We can find the derivative of ∂p/∂f and ∂p/∂g from eq. (B.4)

∂p

∂f
=

mc2nc g
5/2

(1 + f)M+2(1 + g)N−3/2

∑
pmnf

mgn
[
1 +m+ f(m−M)

]

∂p

∂g
=

mc2nc fg
3/2

(1 + f)M+1(1 + g)N−1/2

∑
pmnf

mgn
[
n +

5

2
+ g(4 + n−N)

]
,

(B.11)

where nc =
1
π2

(
mc
~

)3
.

We also need to find the derivatives of ∂2p/∂f 2, ∂2p/∂f∂g, and ∂2p/∂g2. In this case, instead
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of find exact polynomial expression, we might use recursion relation, that is,

∂2p

∂f 2
=− M + 2

1 + f

∂p

∂f
+

mc2nc g
5/2

(1 + f)M+2(1 + g)N−3/2
×

∑
pmnf

mgn
[
(1 +m)m

f
+m(m−M) +m−M

]
,

∂p2

∂f∂g
=

(
1

f
− M + 1

1 + f

)
∂p

∂g
+

mc2nc g
3/2

(1 + f)M+1(1 + g)N−1/2
×

∑
pmnf

mgnm

[
n+

5

2
+ g(4 + n−N)

]
,

∂2p

∂g2
=

(
3

2g
− N − 1

2

1 + g

)
∂p

∂g
+

mc2nc fg
3/2

(1 + f)M+1(1 + g)N−1/2
×

∑
pmnf

mgn
[
n(n + 5

2
)

g
+ n(4 + n−N) + (4 + n−N)

]
.

(B.12)

From thermodynamic quantities, we can get

n =
1

T

(
∂p

∂ψ

)

T

=
1

T

∂f

∂ψ

(
∂p

∂f
+
∂g

∂f

∂p

∂g

)

=
1

mc2

(
1

g

f
√
1 + f

1 + f/a

∂p

∂f
+

f

2
√
1 + f

√
1 + f/a

∂p

∂g

)

ns =

(
∂p

∂T

)

ψ

− nψ =

√
1 + f

mc2
∂p

∂g
− nψ .

(B.13)

The derivatives of the above items w.r.t f and g are given by

∂n

∂f
=

(
1

f
− 1

2a(1 + f/a)

)
n +

1

mc2
f

2g
√
1 + f

√
1 + f/a

×
(
∂p

∂f
+ 2(1 + f)

∂2p

∂f 2
− 1

2

g

1 + f

∂p

∂g
+ g

∂2p

∂f∂g

)
,

∂n

∂g
=

1

mc2
f√

1 + f/a

(
−
√
1 + f

g2
∂p

∂f
+

√
1 + f

g

∂2p

∂f∂g
+

1

2
√
1 + f

∂2p

∂g2

)
,

∂(ns)

∂f
=

1

2mc2
1√
1 + f

∂p

∂g
+

√
1 + f

mc2
∂2p

∂f∂g
− ψ

∂n

∂f
− n

√
1 + f/a

f
,

∂(ns)

∂g
=

√
1 + f

mc2
∂2p

∂g2
− ∂n

∂g
ψ .

(B.14)

Finally we can get thermodynamic derivatives using the above formulae and constraints
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with differentials,

(
∂p

∂n

)

T

=

(
∂p

∂f
+

g

2(1 + f)

∂p

∂g

)(
∂n

∂f
+

g

2(1 + f)

∂n

∂g

)−1

(
∂p

∂T

)

n

=−
√
1 + f

mc2

(
∂p

∂f
− ∂p

∂g

∂n

∂f

(∂n
∂g

)−1
)(

g

2(1 + f)
+
∂n

∂f

(∂n
∂g

)−1
)−1

(
∂(ns)

∂T

)

n

=−
√
1 + f

mc2

(
∂(ns)

∂f
− ∂(ns)

∂g

∂n

∂f

(∂n
∂g

)−1
)(

g

2(1 + f)
+
∂n

∂f

(∂n
∂g

)−1
)−1

(B.15)
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Appendix C

Phase coexistence

Bulk equilibrium of dense and dilute matter is the simplified case of heavy nuclei and nucleon
gas in neutron stars’ inner crust. This bulk equilibrium can be made by the free energy
minimization process.
For given density, we have total free energy density

F =uFI(ρI) + (1− u)FII(ρII) ,

ρ =uρI + (1− u)ρII
(C.1)

where u is the volume fraction of phase I and FI and FII are free energy density of each
phase. The free energy density should be minimized with respect to u, ρI(ρII). Then we
have

∂F

∂ρI
=u

∂FI
∂ρI

+ (1− u)
∂FII
∂ρII

∂ρII
∂ρI

= u(µI − µII) = 0 ,

∂F

∂u
=FI − FII + (1− u)

∂FI
∂ρI

∂ρII
∂u

=FI − FII + (1− u)
∂FII
∂ρII

ρII − ρI
(1− u)

= 0

(C.2)

From eq (C.2), we have µI = µII and pI = pII . In case of neutron and proton matter, this
can be generalized as

µnI = µnII , µpI = µpI , pI = pII . (C.3)

To find the mixed phase of quark and nuclear matter, we use a similar method in nuclear
matter cases.

F = FNu+ FQ(1− u) +
3

4
~c(3π2ρNxN )

1/3ρNxNu+
3

4
~c(3π2ρQxQ)

1/3ρQxQ(1− u) , (C.4)

where F is the free energy density, u is the volume fraction of the nuclear matter, ρN is the
nuclear matter density, ρQ is the quark matter density, xN is electron fraction of nuclear
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matter, and xQ is electron fraction of quark matter. There are two constrains which are

ρB = ρNu+ ρQ(1− u)

ρBYe = ρNxNu+ ρQxQ(1− u) .
(C.5)

We set G(ρN , ρQ, xN , xQ, u)

G(ρN , ρQ, xN , xQ, u) =F − α(ρB − ρNu+ ρQ(1− u))

− β(ρBYe − ρNxNu+ ρQxQ(1− u)) ,
(C.6)

and find the minimum of F using Lagrangian multiplier method.
∂G/∂xN gives

β = −µe,N (C.7)

From ∂G/∂xQ = 0, we have
µe,N = µe,Q . (C.8)

With ρN and ρQ, we have

∂G

∂ρN
= u+ ~c(3π2ρNxN )

1/3xNu+ αu+ βxNu = 0 , (C.9)

thus
∂FN
∂ρN

=
∂FQ
∂ρQ

= −α . (C.10)

Furthermore, we get

∂FN
∂ρN

=
∂ρn
∂ρN

∂FN
∂ρn

+
∂ρp
∂ρN

∂FN
∂ρp

= (1− xN )µn + xNµp (C.11)

and
∂FQ
∂ρQ

=
∂ρu
∂ρQ

∂FQ
∂ρu

+
∂ρd
∂ρQ

∂FQ
∂ρd

+
∂ρs
∂ρQ

∂FQ
∂ρs

= (1 + xQ)µu +
1

2
(2− xQ)µd +

1

2
(2− xQ)µs

= µu + µd + µs + xQ(µu −
1

2
µd −

1

2
µs)

= µu + 2µd + xQ(µu − µd)

(C.12)

where we have used massless quark limits. Therefore

(1− xN )µn + xNµp = µu + 2µd + xQ(µu − µd) . (C.13)

The partial derivative of G w.r.t u simply gives pressure equations which are

FN − ρN
∂FN
∂ρN

= pN = FQ − ρQ
∂FQ
∂ρQ

= pQ . (C.14)
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To summarize, we need to solve 5 equations, which are

(1− xN)µn + xNµp = µu + 2µd + xQ(µu − µd) ,

µe,N = µe,Q ,

pN = pQ ,

ρB = ρNu+ ρQ(1− u) ,

ρBYe = ρNxNu+ ρQxQ(1− u) ,

(C.15)

with 5 unknowns,
ρN , ρQ , xN , xQ , u . (C.16)

The above equations and unknown can be solved numerically using typical Newton-Raphson
method.
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Appendix D

Numerical Techniques in Heavy
Nuclei in Dense Matter

The heavy nuclei in dense matter exist in the narrow range of densities (2.0 × 10−4 ∼
8.0× 10−2/fm3). However, this is the most difficult part of calculations in FRTF model and
Nuclear E.O.S. table. We now explain the numerical techniques in FRTF model.
The total energy in the cell can be obtained from

Etot =

∫
Enp + Ee + EC d3r , (D.1)

where Enp is a nuclear energy density and

Ec =
m4
e

8π2(~c)3

[
xe(2x

2
e + 1)

√
x2e + 1− ln(xe +

√
1 + x2e)

]
(D.2a)

EC =
1

2
(ρp − ρe)∆µp(r) . (D.2b)

Here,

xe =
~c

me
(3π2ρe)

1/3 , (D.3)

and

∆µp = 4πe2
[1
r

∫ r

0

r′2
[
ρp(r

′)− ρe(r
′)
]
dr′ +

∫ Rc

r

r′
[
ρp(r

′)− ρe(r
′)
]
dr′
]
. (D.4)

If we assume that the inner cell or numerical boundary (Rb) for computational purpose is
smaller than the actual Wigner-Seitz cell and the nuclear and electron densities are constant
outside the inner cell, then we have (r < Rb < Rc)

∆µp(r) =4πe2
[1
r

∫ r

0

r′2
[
ρp(r

′)− ρe(r
′)
]
dr′ +

∫ Rb

r

r′
[
ρp(r

′)− ρe(r
′)
]
dr′
]

− 2πe2ρe,o(R
2
c −R2

b) .

(D.5)
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D.1 Non-uniform electron density approximation

Total energy contribution from the outer cell † is given by

Etot,o =
4π

3
(R3

c − R3
b)(Enp,o + Ee,o)−

1

2

∫

Rb,Rc

ρe,o∆µp(r) d
3r , (D.6)

For Rb < r < Rc,

∆µp(r) =
e2

r
(z − z′e)−

2π

3
e2ρe,o

(
3R2

c − 2
R3
b

r
− r2

)
(D.7)

where z′e is the total number of electrons in the inner cell. Then we can have

EC,o = −πe2(z − z′e)ρe,o(R
2
c − R2

b) +
8π2

15
ρ2e,o(2R

5
c − 5R2

cR
3
b + 3R5

b) (D.8)

For energy minimization,

F =

∫
Etot − λ1

(∫
(ρn + ρp) d

3r − 4π

3
R3
cρ
)
−λ2

(∫
ρp d

3r −
∫
ρe d

3r
)

(D.9)

I chose unknowns with ρn, ρp, ρe, and λ1,2, then we have equations to solve

0 = F0,N : µn(ρn, ρp)− µn,0 = 0

0 = FN+1,2N+1 : µp(ρn, ρp) + ∆µp(ρp, ρe)− µn,0 + µe,0 = 0

0 = F2N+2,3N+2 : µe(ρp, ρe)−∆µp(ρp, ρe)− µe,0 = 0

0 = F3N+3 :

∫
(ρn + ρp)d

3r − 4

3
πR3

cρ = 0

0 = F3N+4 :

∫
ρpd

3r −
∫
ρed

3r = 0

(D.10)

D.2 Uniform electron density approximation

In case of constant electron density approximation,

∆µp(r) =4πe2
[1
r

∫ r

0

r′2ρp(r
′) dr′ +

∫ Rb

r

r′ρp(r
′) dr′

]

− 2

3
πe2ρe(3R

2
c − r2) .

(D.11)

†We divide the Wigner-Seitz cell by inner cell and outer cell. In the inner cell, the nuclear density profile
varies. On the other hand, the nuclear density profile is uniform in the outer cell. The radius for inner cell
is set to 15 fm for the numerical calculations.
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For Rb < r < Rc, we have

∆µp(r) =
ze2

r
− 2

3
πe2ρe(3R

2
c − r2) . (D.12)

The energy contribution from outside the inner cell is given by

EC,o = −πzρee2(R2
c − R2

b) +
4π2

15
ρ2e(4R

5
c − 5R2

cR
3
b +R5

b) . (D.13)

For energy minimization, we have

F =

∫
Etot − λ1

(∫
(ρn + ρp) d

3r − 4π

3
R3
cρ
)
−λ2

(∫
ρp d

3r − 4π

3
R3
cρYe

)
(D.14)

I chose unknowns with ρn, ρp, Ye, µn,0, and µp,0 then we have equations to solve

0 = F0,N : µn(ρn, ρp)− µn,0 = 0

0 = FN+1,2N+1 : µp(ρn, ρp)− µp,0 = 0

0 = F2N+2 :

∫
(ρn + ρp)d

3r − 4

3
πR3

cρ = 0

0 = F2N+3 :

∫
ρp d

3r − 4

3
πR3

cρYe = 0

0 = F2N+4 : µn,0 − µp,0 − µe(Ye) = 0

(D.15)

In the lower density ( ρ < 0.01/fm3 ) region, two methods give almost same result. As
density increases, the uniform electron density approximation is unstable numerically in
FRTF model.
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Appendix E

Nuclear Quantities in Non-relativistic
Models

We present nuclear properties of non-relativistic potential (Skyrme force) models. These
properties can be used to restrict nuclear parameters when we make new force models.

E.1 Mathematical relation between nuclear

parameters and quantities

Once we are given nuclear parameters (x0, . . . , x3, t0, . . . , t3) in Skyrme force model, we can
extract nuclear quantities (B, K, M∗, Sv, L, ρo) from its mathematical expression of bulk
matter Hamiltonian density[32].
In the standard Skyrme force models,

p(ρo)

ρo
= 0 =

2

3
Cρ2/3o

(
1 +

5

2
βρo

)
+

3

8
t0ρo +

t3
16

(ǫ+ 1)ρǫ+1
o , (E.1)

where

C =
3~2

10M

(
3π2

2

)2/3

; β =
M

2~2

[
1

4
(3t1 + 5t2) + t2x2

]
. (E.2)

From the pressure expression, we can get ρo using the Newton-Raphson method, with which
we can get the binding energy per baryon, effective mass, and nuclear incompressibility in
standard nuclear matter,

B = −E
A

= −Cρ2/3o (1 + βρo)−
3t0
8
ρo −

t3
16
ρ1+ǫo ,

M∗ =
M

1 + βρo
,

K = 9ρ2
∂2E/A

∂ρ2

∣∣∣
ρ=ρo

= −2Cρ2/3o + 10Cρ5/3o +
9t3
16
ǫ(ǫ+ 1)ρǫ+1

o .

(E.3)
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Other important quantities, Sv and L can be obtained

Sv =
ρ2o
8

∂2E/A

∂x2
=

5

9
Cρ2o +

10CM

3~2

[
t2
6

(
1 +

5

4
x2

)
− 1

8
t1x1

]
ρ5/3o

− t3
24

(
1

2
+ x3

)
ρ1+ǫo − to

4

(
1

2
+ xo

)
ρo ,

L =
3ρo
8

∂3E/A

∂ρ∂x2

∣∣∣
ρ=ρo,x=1/2

=
10

27
Cρ2o +

50CM

9~2

[
t2
6

(
1 +

5

4
x2

)
− 1

8
t1x1

]
ρ5/3o

− t3
24

(1 + ǫ)

(
1

2
+ x3

)
ρ1+ǫo − to

4

(
1

2
+ xo

)
ρo ,

(E.4)

In this way, we can obtain nuclear quantities in standard Skyrme force model.
As an inverse process to find x0, . . . , t3 in Skyrme force model, we can use E/A, p(ρo, x =
1/2) = 0, M∗, K, Sv, L, and ρo. Since we only have 7 quantities for 8 parameters, we may
use the pure neutron matter effective mass M∗

n or the energy difference Q1 = eN − eS − Sv
as described in section (3.2).

The maximum mass of the cold neutron star can be obtained using T.O.V equation and
varying the central density of neutron stars. To get a more precise maximum mass of neutron
stars, we may use numerical Newton Rapshon with numerical derivative of

f =
M2 −M1

ρc2 − ρc1
(E.5)

and find the solution which makes f = 0.
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Table E.1: Non-relativistic Skyrme force model and maximum mass of cold neutron star

Model B (MeV) Sv(MeV) L (MeV) K (MeV) M∗/M ρ0 (fm−3) M/M⊙

Gs -15.6023 31.3749 94.0305 237.3811 0.7838 0.1576 2.192
M∗(0.811) -15.6992 30.7657 79.3938 237.1923 0.8110 0.1609 2.114
M∗(0.9) -15.5659 27.7811 69.9636 240.2086 0.8957 0.1610 2.114
M∗(1.0) -15.4172 24.8108 59.5481 240.2216 1.0000 0.1611 2.087

Rs -15.6019 30.5851 85.7058 237.5088 0.7826 0.1578 2.177
SGI -15.9073 28.3271 63.8631 261.9091 0.6078 0.1545 2.287
SGII -15.6085 26.8270 37.6101 214.7885 0.7855 0.1584 1.663
SIV -15.9733 31.2164 63.4859 324.7265 0.4707 0.1510 2.391
Ska -16.0055 32.9103 74.6226 263.3100 0.6082 0.1554 2.244
SkI1 -15.9660 37.5327 161.0952 242.8726 0.6929 0.1604 2.242
SkI2 -15.7895 33.3788 104.3625 241.0820 0.6847 0.1576 2.255
SkI3 -15.9944 34.8366 100.5490 258.3483 0.5771 0.1578 2.339
SkI4 -15.9573 29.5010 60.3980 248.0753 0.6492 0.1602 2.236
SkI5 -15.8603 36.6487 129.3675 255.9506 0.5785 0.1558 2.349
SkI6 -15.9310 30.0894 59.7002 248.7457 0.6396 0.1591 2.245
SkkT8 -15.9571 29.9178 33.6999 235.8483 0.8326 0.1607 1.691
SkM -15.7851 30.7446 49.3262 216.7496 0.7884 0.1604 1.680
SkM′ -15.5749 29.8860 70.3127 231.0207 0.6533 0.1571 2.148
SkM∗ -15.7851 30.0312 45.7590 216.7496 0.7884 0.1604 1.618
SkT1 -15.9935 32.0171 56.1694 236.3034 1.0000 0.1611 1.849
SkT1s -15.9921 32.0154 56.0964 236.1374 1.0000 0.1603 1.8517
SkT2 -15.9581 31.9977 56.1523 235.8796 1.0000 0.1611 1.848
SkT3 -15.9592 31.4965 55.3027 235.8903 1.0000 0.1611 1.854
SkT3s -15.9924 31.6811 55.8395 236.1412 1.0000 0.1603 1.860
SkT4 -15.9694 35.4579 94.1479 235.6446 1.0000 0.1591 2.128
SkT5 -16.0120 37.0107 98.5508 201.8260 1.0000 0.1641 1.920
SkT7 -15.9519 29.5138 31.0932 235.7859 0.8325 0.1607 1.431
SkT8 -15.9571 29.9178 33.6999 235.8483 0.8326 0.1607 1.698
SkT9 -15.8968 29.7525 33.7134 235.0521 0.8329 0.1604 1.704
SLy0 -15.9860 31.9800 47.1008 229.8049 0.6977 0.1604 2.067
SLy1 -15.9997 31.9905 47.0548 229.9593 0.6976 0.1604 2.067
SLy2 -16.0003 32.0018 47.4436 230.0627 0.6973 0.1606 2.068
SLy3 -15.9850 31.9894 45.2930 230.0423 0.6961 0.1605 2.057
SLy4 -15.9868 31.9986 45.9305 230.0602 0.6944 0.1596 2.070
SLy5 -15.9991 32.0080 48.1339 230.0656 0.6973 0.1606 2.070
SLy6 -15.9342 31.9555 47.4365 230.0047 0.6897 0.1590 2.090
SLy7 -15.9145 31.9861 46.9306 229.8984 0.6878 0.1584 2.090
SLy8 -15.9828 31.9934 47.1634 230.0383 0.6958 0.1604 2.070
SLy9 -15.8081 31.9814 54.8507 229.9855 0.6655 0.1512 2.200
SLy10 -15.9159 31.9775 38.7279 229.8270 0.6832 0.1556 2.056
SV -16.0615 32.8243 96.1003 305.8488 0.3827 0.1551 2.510
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