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Abstract of the Dissertation 

Radiosynthesis and Bioimaging of Antibacterial Agents 

 

by 

Li Liu 

Doctor of Philosophy 

in 

Chemistry 

Stony Brook University 

2012 

 

The dose and duration of treatment of antibacterial agents is normally established 

using plasma pharmacokinetic (PK) data together with information on drug efficacy once 

treatment has been initiated. Although plasma drug concentration is an important guide 

for establishing treatment protocols, recent studies indicate that the distribution of 

antibiotics in tissues is a more critical determinant and predictive factor for their activity. 

This is because most drugs exert their bactericidal effects at the site of infection rather 

than in the plasma, and because drug equilibration between plasma and infection site 

cannot always be achieved 

Therefore the tissue distribution of front-line TB drugs, including rifampicin (RIF), 

isoniazid (INH) and pyrazinamide (PZA), and enoyl-ACP reductase (FabI) inhibitors, PT-

70 and PT-119, have been studied in healthy animals using PET and radiolabeled drugs. 

We find that their accumulations are consistent with the mechanism of excretion of each 
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drug. In addition, we also find that the ability of the drugs to penetrate the blood-brain 

barrier decreases in the order PZA > INH > RIF. Estimated concentrations of RIF, INH 

and PZA in the lungs are at least 10, 10 and 1-3 times higher, respectively, than the 

minimum inhibitory concentration (MIC) values for these drugs against Mycobacterium 

tuberculosis (Mtb). Estimates of drug concentrations in the brain suggest that the 

concentrations of RIF and INH are 3-4 and >10 times higher than their MIC values, 

while the concentration of PZA is similar to or slightly higher than its MIC values.  

It is also estimated that the ability of PT-70 and their radiolabeled metabolites to 

penetrate the blood-brain barrier is similar to INH, while the ability of PT-119 is two 

times higher than INH. In addition, estimated AUC0-90min/MIC values for PT-70 and PT-

119 are 38% and 37% of the INH AUC0-90min/MIC, respectively, which suggests that PT-

70 and PT-119 have similar potential to treat CNS TB in non-human primates and 

humans. For pulmonary TB infection, it is estimated that the AUC0-90min/MIC values for 

PT-70 and PT-119 are 51% and 14%, respectively, of the INH AUC0-90min/MIC, which 

suggests that PT-70 is a better candidate than PT-119. For S. aureus infection, PT-119 

demonstrates 10 times higher AUC0-90min/MIC value than that for PT-70 in the brain, and 

it is clear that PT-119 is a superior candidate for the treatment of S. aureus meningitis, 

although both AUC0-90min/MIC values are higher than calculated CSF AUC0-90min/MIC of 

a commonly prescribed antibiotic, Vancomycin.. The estimated concentrations in heart 

and kidney are at least 20 times higher for PT-70 and 100 times higher for PT-119 than 

the MIC values against S. aureus. The AUC0-90min/MIC for PT-119 is 16368 min and 

51023 min for heart and kidney respectively, and both are ~3 times higher than the 



 

v 
 

values for PT-70. The result suggested PT-119 is better candidate than PT-70 to 

treatment S. aureus infection in the heart and kidney. 

Finally, studies of radiolabeled antibacterial agents have been extended to Mtb and S. 

aureus infected animals to evaluate their abilities to localize bacteria. 2-[18F]F-INH has 

been imaged in Mtb infected mice in comparison with uninfected mice, and we have 

observed minor amplitude of signal (1:6:1 = infected : uninfected) at 1 hr post injection, 

although it may be partially contributing to a nonspecific inflammatory effect. [18F]FDG 

has been utilized to image S. aureus infection in systemic infected mice, and a 2.5:1 

signal has been observed within spleen, which is consistent with highest level of 

bacteria population. These studies will help us to validate novel diagnostics for 

infectious disease 
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Chapter 1 

Introduction: Antibiotic Discovery, Infectious Disease Diagnosis, and 

Positron Emission Tomography 

 

Antibiotic Discovery 

The History of Antibiotics 

In 1908, the first synthetic antibiotic, Salvarsan, was discovered by Paul Ehrlich, who 

screened hundreds of organic arsenical compounds against various organisms and 

found that Salvarsan was active against syphilis1. Twenty years later, Alexander 

Fleming observed the antibiotic property of the mold Penicillium notatum against 

Staphylococcus aureus (S. aureus), although it wasn’t until 1942 that the manufacturing 

process for Penicillin was invented by Howard Florey and Ernst Chain2. In the 

meanwhile, German chemist, Gerhard Domagk, discovered the first sulfonamide 

antibiotics, Prontosil, and invented the manufacturing procedure1. These pioneers led to 

a discovery of over ten antibiotics between 1945 and 1960, which has later been called 

the “golden era” of antibiotic discovery (Figure 1.1)3. 

 

Following this “golden era”, extensive medicinal chemistry efforts were undertaken in 

order to improve the pharmacological properties of the known scaffolds and to 

circumvent antibiotic resistance. In addition, the pace of the discovery of new classes of 
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**Parameters for overall process 

  

Over the past few decades, government agencies, academic institutions and 

pharmaceutical companies have invested a great amount of capital into antibacterial 

research and development (R&D), and scientific and technology inputs have been 

advanced significantly. For example, identification of new drug targets has been aided 

by billion times faster DNA sequencing since the first genome sequence was 

determined in the 1970s. In addition, HTS facilitates the hit identification and is more 

than tenfold cost effective than in the mid-1990s. However, R&D productivity, measured 

by new antibiotics brought to market, has declined6.  

 

Antibiotic Concentration at Site of Infection 

One possible reason for the decline in R&D productivity is poor estimation of drug 

concentration at the site of infection. During the preclinical and clinical stages of 

antibiotic discovery, the dose and duration of treatment is normally established using 

plasma pharmacokinetic (PK) data together with information on drug efficacy once 

treatment has been initiated. Although plasma drug concentration is an important guide 

for establishing treatment protocols, recent studies suggest that the distribution of 

antibiotics in tissue is a more critical determinant and predictive factor for their 

activities7,8. In addition, failure to reach optimal drug concentration at the site of infection 

may result in therapeutic failure and trigger bacterial resistance. Finally, regulation 
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agencies, such as Food and Drug Administration (FDA) in the United States and 

European Medicines Evaluation Agency (EMEA) in Europe, require measurement of the 

distribution of antibiotics at uninfected and infected sites8. Thus there is a pressing need 

to have a technique to measure the drug concentration at the site of infection. 

 

Measurement of Drug Concentration at the Site of Infection 

Over the past few decades, several techniques have been developed to understand 

the tissue distribution of drugs. These approaches can be divided into invasive methods 

and non-invasive methods, while invasive methods can be further divided into direct and 

indirect methods.  

 

Invasive Methods 

Indirect method measures antibiotic concentration in the plasma and uses 

mathematical algorithms to derive concentration at peripheral compartments. This 

methodology has been used extensively in current antibiotic discovery and is based on 

theoretically sound compartments or physiological concepts9,10. However, studies have 

demonstrated that the real body is a multimillion-compartment model, and current 

technology, which seeks to determine the antibiotic transfer between plasma and tissue 

with heterogeneous and tissue specific rates, is merely able to account for all those 

compartments11. Thus although parameters such as the volume of distribution can be 

used to estimate tissue penetration, this refers to the penetration into a hypothetical 
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compartment. Unless there is a rapid, unrestricted and homogeneous diffusion 

processes in this hypothetical compartment, the mathematical calculation is a poor 

estimation of antibiotic distribution in tissues8. 

 

As technology has developed, several direct experimental tools have been employed 

to circumvent the limitations of the indirect method. These approaches typically involve 

taking tissue or a fluid sample from a live organism, homogenizing the sample, 

extracting the antibiotic from the sample and quantifying the antibiotic by Liquid 

Chromatography-Mass Spectrometry (LC/MS or LC/MS/MS). This method is clearly 

advantageous in terms of sampling area compared to the indirect method. However, 

this involves the medical removal of tissue from a live subject performed by a surgeon, 

which is a more complicated procedure than taking plasma samples. In addition, the 

data obtained from the homogenized samples is complicated by the fact that the tissue 

distribution of drugs is not always homogeneous12. Finally, the extraction efficiency of 

drugs from tissue adds an additional complication.  

 

Another innovative direct method is microdialysis (MD), a method that was initially 

designed for experimental neurophysiology and neurochemistry to measure 

neurotransmitter concentration in the central nervous system (CNS). The method has 

been gradually adopted by pharmacologists to measure drug distribution. The principle 

of MD is the diffusion of drugs across a semipermeable membrane at the tip of the MD 

probe. The MD probe is implanted into the tissue of interest and the concentration 
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gradient of the drug drives the diffusion of the compound from the tissue into the probe. 

Samples from the probe are collected and quantified, and used to derive the 

extracellular fluid (ECF) concentration. To date, MD is the only feasible technique that 

can continuously monitor drug concentration in virtually any tissue. However, the 

invasive nature, high technique requirement, and recovery reliability raise limitations on 

using this technique13,14.    

 

Non-invasive Methods 

Imaging techniques, such as Positron Emission Tomography (PET) and Single 

Photon Emission Computed Tomography (SPECT), have made significant 

improvements over the past few decades leading to their use for non-invasive detection 

of drug behavior and location in vivo. Technique likes PET, which images drugs and 

other molecules labeled with positron-emitting isotopes, provides a method of acquiring 

quantitative information on the dynamics of drug absorption, distribution, and elimination 

in a living animal or human. Together with advances in the development of methods for 

labeling drug molecules and other organic compounds, PET is emerging as a powerful 

alternative to invasive distribution studies. Indeed, PET can map three-dimensional 

tissue distribution over time noninvasively and the quantification reliability is as good as 

direct measurement of tissue samples15. In addition, the methodology developed for 

imaging drug distribution in laboratory animals using PET can be readily translated to 

humans. Finally, PET is also complementary to clinical MD and magnetic resonance 

spectroscopy (MRS) in terms of acquiring information on the tissue distribution of 
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different chemical species8, although the later technique is as sensitive as PET and thus 

it can only measure higher concentration of drugs.  

 

Diagnosis of Infectious Disease 

Diagnosis of infectious disease is as critical as antibiotic discovery, if not more so, in 

order to personalize treatment of patients16. Traditional diagnosis starts with obtaining a 

medical history and performing a physical exam. In addition, a more detailed diagnosis 

would include the culture of infectious agents isolated from a patient, typically blood or 

urine. A series of tests can be performed with patient samples to identify the infectious 

organism, such as microbial culture, microscopy, biochemical tests and molecular 

diagnostics. In some cases, when the infection is inside the body, a biopsy is performed 

after which the sample is tested in a similar way as blood and urine to identify the 

pathogen17.  

 

Imaging of Infectious Diseases 

Imaging techniques represent a potentially non-invasive diagnostic method for 

infectious diseases. Over the last few decades, several types of imaging techniques 

have been developed and implemented for diagnosis. The imaging technique provides 

timely identification and localization of infection. Computerized tomography (CT), 

magnetic resonance imaging (MRI), and ultrasonography are powerful non-invasive 

methods to diagnose infectious disease18,19. However, these techniques cannot detect 

early stage infection as they can only differentiate disease status by anatomical 



 

 

change

after th

active 

disease

 

Molecu

Molec

tradition

molecu

molecu

localiza

Figur

Handbo

 

es, which w

he cure of

infection, 

e16.  

ular Imagin

cular imag

nal imagin

ular proces

ular target 

ation of infe

re 1.3 Mol

ook of Nan

would not 

f infectious

which ma

ng 

ging is an

ng in that i

ss of living

of interest

ection and 

ecular Ima

noscience a

happen at

s disease 

akes it diff

nother cate

it enables 

g organism

t in the liv

quantity ba

aging and

and Nanote

9 

t early stag

has minim

ficult for a

egory of n

the visual

m through 

ving organi

acterial loa

d Infection

echnology

ge of dise

mal anatom

a physician

non-invasiv

lization of 

a probe. T

ism and th

ad (Figure 

n Diagnosi

ase. In ad

mical differ

n to judge

ve techniq

the cellula

This probe

heoretically

1.3)20.  

is. Adopte

ddition, a le

rence com

e the statu

que. It diff

ar function

e interacts 

y could ide

d from Ope

esion left 

mpared to 

us of the 

fers from 

n and the 

with the 

entify the 

 

ensource 



 

10 
 

Molecular imaging techniques include several modalities, such as optical imaging, 

PET and SPECT. Optical imaging is the use of fluorescence or bioluminescence. In 

fluorescence imaging, an external light source is used to excite a fluorophore in the 

target molecule, and the resulting light emission is captured to reconstruct the image. In 

contrast, bioluminescence imaging utilizes a luciferase reporter gene as the source of 

light, which enables gene expression and infection status to be monitored. However, 

one crucial limitation of optical imaging is the inability of light to penetrate more than a 

few cm of tissue, which is especially critical when working at visible wavelengths21. In 

addition, fluorescent imaging requires the incorporation of a fluorophore into the drug, 

which may affect the biological properties of the molecule.  

 

PET and SPECT are conceptually similar to fluorescent imaging. While fluorescent 

imaging implements a fluorophore, PET and SPECT utilize a radiolabeled probe, which 

contains a targeting compound and a radionuclide. Decay of the radionuclide is 

captured by an external detector and used to reconstruct the distribution of the probe. 

Compared to optical imaging, PET and SPECT have better tissue penetration, resulting 

in better resolution21.  

 

Development of PET and SPECT imaging is stimulated by advances in cell biology, 

the discovery of new targets and by unraveling the molecular pathways that lead to 

disease22. Moreover, these methods have already been identified as powerful 

techniques to study cancer20,23-25, CNS diseases26-30, and cardiovascular disease31,32. 

The use of molecular imaging to study infectious diseases is a relatively new area in 
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comparison with cancer and CNS. Before introducing agents used for imaging infectious 

diseases, it is necessary to clarify infection and inflammation. 

 

Infection and Inflammation 

The definition of inflammation is “the response of tissues to any kind of injury in order 

to bring serum molecules and cells of the immune system to the site of damage”16. 

Inflammation is triggered by trauma, ischemia or infection33. Typical characteristics of 

inflammatory responses are enhanced blood supply, enhanced vascular permeability, 

and increased influx of leukocytes34. In the meanwhile, leukocytes and plasma proteins 

are generated as part of the defense mechanism.  

 

Inflammation Probes 

Strategies to image infection include targeting the inflammatory response and 

targeting the bacterium. However, it is worth pointing out that infection does not always 

generate inflammatory response, such as in the case of immunocompromised 

subjects16. Targeting the inflammatory response can be further categorized as non-

specific uptake and specific uptake. The non-specific strategy utilizes increased 

vascular permeability and blood supply, such as [67Ga]citrate and non-specific 

immunoglobulins, while the specific strategy involves the use of the influx of leukocytes, 

such as radiolabeled leukocytes, antigranulocyte monoclonal antibodies and leukocyte 

receptor-binding ligands16. Recently, 2- [18F]-fluorodeoxy-D-glucose (FDG) has 

demonstrated utility for imaging infections35,36, and the mechanism is related to 

leukocytes consuming glucose as energy source37. However, probes that target the 
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inflammatory response often cannot be used to differentiate between infection and 

inflammation.  

 

Infection Specific Probes 

Probes such as radiolabeled antibiotics and antibacterial peptides, that are designed 

to target the infectious organism, are potentially able to distinguish sterile inflammation 

and infection. In the late 1980s, the first radiolabeled antibiotic was introduced by Dr. 

Solanki and coworkers38. In the next two decades, ciprofloxacin, lemofloxacin, 

ceftzoxime, isoniazid, fluconazole and other antibiotics have been radiolabeled21,39. 

Among those radiolabeled probes, [99mTc]ciprofloxacin has been studied most 

extensively. It is a synthetic broad spectrum fluoroquinolone antibiotic and binds to 

prokaryotic topoisomerase IV and DNA gyrase in bacteria40,41. Clinical applications of 

this radiotracer have been implemented by Dr. Britton and coworkers, who 

demonstrated 85.4% sensitivity and 81.7% specificity for detecting infection among 879 

patients42. However, other studies in animals and patients provide controversial support 

for these reports with evidence of lower specificity43. 18F labeled fleroxacin and 

trovafloxacin have been used to evaluate infection in animal models44,45. These studies 

determined the biodistribution of antibiotics at the site of infection and proved that PET 

imaging of radiolabeled antibiotic is a promising tool for determine tissue PK. However, 

the uptake of the probes at the infection site was not significantly different from control 

in either case. This unexpected result could partially be explained by low specific activity 

as the radiolabeled antibiotics are diluted to therapeutic dose by their unlabeled 

counterparts44-46. In addition, the use of the fluorine exchange labeling method provides 
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a “cap” on the upper limit of specific activity of radiolabeled antibiotics as the mass of 

product is 1,000 times larger than otherwise the same nucleophilic substitution18.  

 

Several antimicrobial protein peptides were investigated in a similar manner for 

specific imaging of bacterial infection47-51.  Human neutrophils (HNPs) were radiolabeled 

with 99mTc, and the resulting probe was evaluated in S. aureus and Klebsiella 

pneumonia (K. pneumonia) infection models. However, the signal ratio between 

infection and control was low and decreased even further with time48. Another 

antimicrobial peptide, ubiquicidin (UBI), has been investigated as truncated peptides, 

UBI 29-41(residues 29-41 of ubiquicidin) and UBI 18-35 (residues 18-35 of ubiquicidin). 

Each of them was radiolabeled with 99mTc and demonstrated statistical significant 

accumulation in infection than sterile inflammation49,50,52.  

 

More recently, another probe, [125I]FIAU, has been used to image bacteria with 

positive thymidine kinase (TK) activity53. The function of TK is to transfer a γ phosphate 

group from ATP to the 5’ hydroxyl group of pyrimidine deoxynucleosides54. The probe is 

a substrate of TK and undergoes a phosphorylation in vivo. Phosphorylated [125I]FIAU 

accumulates within the cell as the free phosphate prohibits the penetration of the 

plasma membrane55. This probe was initially designed to image tumor cells with 

exogenous herpes virus infections and further adapted to bacterial imaging with 

endogenous TK53. 
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A summary of known probes targeting bacteria are presented in Table 1.1.  

 

Table 1.1 Probes for Imaging Bacteria Infection21 

Probe Bacterium 
Maximum 

Ratio  
Tmax Isotopes 

UBI 29-41 S. aureus 2.89 60 min 99mTc52

Ciprofloxacin 

(infecton) 

S. Corynebacteria 

S. aureus 

5.5 

1.7 

2 h 

0 h 

18F56 

99mTc57 

Fleroxacin E. Coli. ~1 2h 18F46 

Trovafloxacin E. Coli. <1 2h 18F45 

Ethambutol Mtb > 1 n/a 99mTc58

Isoniazid Mtb 3.5 24 h 99mTc59

FIAU S. aureus ~15 16 h 125I53 

  

 

Obviously, diagnosis of bacterial infections has been brought back into the spotlight 

and increasing research efforts have been invested in development of new probes for 

imaging specific molecular events in infection18,53. These probes have demonstrated 

application in early detection of infection, therapy decision making and therapy 

response access. However, current state of the art probes are not currently able to 

differentiate strains of bacteria. Theoretically, targeting strain specific enzymes or 

receptors would enable this differentiation. Even if probes target the same enzyme in 
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different bacteria, altered binding affinity between these homologous proteins could also 

lead to the ability to differentiate bacterial strains.  

 

Positron Emission Tomography   

History of PET 

In the late 1950s, two scientists, Drs. David E. Kuhl and Roy Edward, introduced the 

concept of emission and transmission tomography60,61. Based on their contribution, 

University of Pennsylvania designed and constructed several tomographic instruments62. 

Subsequently, scientists at Washington University carried the development of 

tomographic technique to the next stage63,64. In 1961, the first single-plane PET scanner 

was built by Dr. James Robertson and his associates at Brookhaven National 

Laboratory65.  

 

Besides the advancement in instrumentation, the development of PET was further 

facilitated by the invention of new radiopharmaceuticals, which led to the acceptance of 

PET as a diagnostic technique. The single most important tracer that has been 

developed is [18F]FDG which was synthesized at Brookhaven National Lab under the 

direction of Dr. Al Wolf and Dr. Joanna Fowler66. In 1976, the first human study on 

[18F]FDG was performed at the University of Pennsylvania with two healthy volunteers 

and the concentration of [18F]FDG in organs were determined. In the next few decades, 

significant amount of research and capital have been invested in the development of 

both instrumentation and radiopharmaceuticals. Together with improvements in image 
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reconstruction, PET has now been established as a sophisticated research and 

diagnostic tool. 

 

Principles of PET 

PET is an advanced medical imaging technique that is used to study and visualize 

human physiology at the molecular level. The positron emitting radioisotopes, carbon-11, 

nitrogen-13, and fluorine-18, are the most commonly used elements in PET through 

their chemical introduction into the molecule of interest (Table 1.2). 

 

Table 1.2 The most commonly used short-lived radionuclides in PET67 

Radionuclide 
Half-life 

(min) 

Nuclear 

reaction 
Target Product 

Decay 

product 

11C 20.4 14N(p,α)11C N2(+O2) [11C]CO2 
11B 

   
N2(+H2) [11C]CH4 

 
13N 9.97 16O(p,α) H2O [13N]NOx 

13C 

   
H2O+EtOH [13N]NH3 

 
15O 2.04 15N(d,n)15O N2(+O2) [15O]O2 

15N 

18F 110 20Ne(d,a)18F Ne(+F2) [18F]F2 
18O 

  

18O(p,n)18F [18O]H2O [18F]F- 
 

  

After administration of the radiotracer, the PET radionuclide decays by positron 

emission (Figure 1.4). When a positron annihilates with an electron, two 511 keV γ-rays 
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are generated and emitted at 180 degrees to each other67. These tissue penetrating   γ-

rays take a few nanoseconds to reach the detectors. When two detectors are hit within 

a set timing window by an annihilation photon pair, an electronic pulse is generated at 

each detector which determines the straight along which the event occurred. However, 

far more photon pairs are not detected because one or both of the gamma rays are not 

detected. During a PET scan, the system is counting the number of times each detector 

pair is hit in coincidence, so the raw data from a PET scan are simply the list of counts 

obtained along each line of response68. With the sophisticated three-dimensional (3D) 

or two-dimensional (2D) reconstruction algorithms, raw projection data can be 

converted into high quality images to provide quantitative measures of probe 

concentration in a subject at spatial resolutions of a few millimeters. In addition, these 

quantitative measures of probe concentration can be extended to yield more profound 

measures of PK and PD, as well as the biochemical status of enzymes and receptors.  
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Production of radionuclides 

The positron emitting radionuclides are produced during irradiation of the appropriate 

target and converted to synthetic precursors, either in the target or immediately after 

exiting the target. The number and type of products that are generated in a target are a 

function of the irradiation condition, the mixture of substances in the target and the 

presence of impurities. The radionuclides generated from this “hot atom” chemistry and 

commonly used in PET are carbon-11, fluorine-18, nitrogen-13 and oxygen-15. Among 

them, carbon-11 and fluorine-18 are particularly important. Carbon-11 and fluorine-18 

have certain advantages and limitations: 1) Almost every organic target molecule has 

carbon, but only a small pool has fluorine. Carbon-11 labeled compounds will have 

identical pharmacological properties compared to the carbon-12 equivalent, while 

introduction of fluorine-18 may alter the chemical and biological properties of the drug. 2) 

The longer half-life of fluorine-18 enables multiple step synthesis and transportation of 

doses to sites several hours away. However, carbon-11 is normally limited to a much 

short time scale of reaction and an in-house cyclotron is always necessary. 3) Fluorine-

18 provides better resolution than carbon-11 as it has lower energy67.  

 

Carbon-11 has a 20.4 min half-life and almost 100% of the radioactive decays are by 

positron emission. There are several reactions that can be used to produce carbon-11, 

with the 14N(p,α)11C reaction on nitrogen gas being preferred69. With the addition of a 

small amount of oxygen, this reaction produces high yield of carbon-11 in the form of 

carbon dioxide. If hydrogen is added instead, this reaction yields carbon-11 in the form 

of methane. As nitrogen gas from the target is normally inert, the separation of carbon-
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11 in the gas is accomplished by passing through a solution or solid phase trap. From 

there, the carbon-11 can be used to produce a wide range of precursors (Scheme 

1.1)67.  

 

 

Scheme 1.1 Important Carbon-11 precursors produced from [11C]CO2 or 

[11C]CH4
67 

 

[11C]CH3I is the most commonly used methylation agent, and can be prepared by a 

wet method with LiAlH4 and hydriodic acid or by the gas-solid method with iodine from 

[11C]CO2 and [11C]CH4, respectively70,71. A more reactive methylation agent, 

[11C]CH3OTf, can be prepared by passing gaseous [11C]CH3I through a heated column 

of silver triflate. The resulting agent has become more widely used recently because of 

its better reactivity and low volatility72. [11C]HCN is another commonly used starting 

material as the nitrile group is widely found in pharmaceutical molecules. The 

preparation of [11C]HCN involves reduction from [11C]CO2 to [11C]CH4  with H2 and 

subsequent reaction with NH3 over platinum73. The carbonyl group exists widely in 

[11C]CO2 [11C]CH4

[11C]CH3OH [11C]CH3I [11C]CH3OTf[11C]CH2O

[11C]RCOCl

[11C]CCl4

[11C]HCN [11C]COCl2

[11C]CO

[11C]CH2O
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biologically interesting molecule, and [11C]CO is utilized as a labeling precursor for this 

group. [11C]CO is readily synthesized from [11C]CO2 through heated zinc or 

molybdenum with the latter giving higher and more reliable yields67. [11C]RCOCl can be 

utilized for incorporation of carbonyl functional groups and can be readily prepared with 

desired Grignard reagents. Another labeling molecule for the carbonyl functional group 

is [11C]COCl2 and it can be prepared from [11C]CCl4 by reaction with Fe2O3 powder and 

Fe granules74. [11C]CH2O was identified as a useful labeling reagent more than a 

decade ago, and now a new synthetic method has been developed which involves the 

oxidation of [11C]CH3I with trimethylamine N-oxide75.   

 

Fluorine-18 has a 110 min half-life and is the most widely used radionuclide in PET. 

97% of the decays are positron emission, with 3% electron capture. Among a number of 

nuclear reactions that can be used to produce fluorine-18, 18O(p,n)18F and 20Ne(d,α)18F 

are the major routes76, and the resulting [18F]F- and [18F]F2 are the major forms of 

fluorine-18 for subsequent labeling reaction.  

 

Incorporation of radionuclides 

Introduction of the radioisotope with the labeling precursor is the second step in the 

process of applying PET imaging applications. Although the half-life of carbon-11 and 

fluorine-18 are only 20.4 min and 110 min, respectively, a large number of reactions 

have been developed in order to incorporate these isotopes into the probes in the 

appropriate time frame with limited forms of carbon-11 and fluorine-18 sources.  
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Labeling with carbon-11 

Methylation with [11C]CH3I or [11C]CH3Tf is the most commonly used method for 

introduction of carbon-11 into organic molecules. It can be accomplished by either 

nucleophilic reaction with amine, alcohol or thiol precursor groups or palladium 

mediated methylation with stannanes. Typical examples include radiosynthesis of 

[11C]raclopride, an antagonist of dopamine D2 receptor, and [11C]M-MTEB, a 

metabotropic glutamate receptors ligand77,78. Labeling of carbonyl groups with carbon-

11 is another widely accepted method of radiotracer generation, which can be 

accomplished with [11C]COCl2, [11C]CO, [11C]CO2, or [11C]HCN. Examples of 

radiotracers that have been synthesized using these precursors include [11C]RPR-

72840A, an serotonin reuptake inhibitor, [11C]metergoline, an serotonin receptor 

antagonist and [11C]INH, an enoyl-ACP reductase inhibitor (Scheme 1.2)79-81.  

 

Labeling with Fluorine-18 

Fluorination is most commonly performed using nucleophilic reactions with [18F]F-. 

Several forms of [18F]F-  can be used including [18F]KF.K222, [18F]TBAF and [18F]CsF. 

The key idea is to expose a “naked” [18F]F- and make it a better nucleophile. Forms of 

[18F]F- can be incorporated through aromatic and aliphatic nucleophilic substitution 

reactions. For example, the synthesis of [18F]haloperidol, a dopamine antagonist, 

utilizes aromatic nucleophilic substitution, and [18F]FDG, a widely used glucose analog, 

utilizes an aliphatic substitution reaction82,83. Electrophilic fluorination is an additional 

way to incorporate [18F]F, although this method leads to lower specific activity and 
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Summary 

There is pressing need to understand the drug concentration at the side of infection 

for antibiotic discovery and better treatment regimes. In addition, timely identification 

and localization of infectious diseases is critical for appropriate treatment. We will first 

develop radiosynthesis methods or adopt existing methods to incorporate carbon-11 or 

fluorine-18 into the molecules of interest, which includes [11C]INH with its [18F]F labeled 

analog, [11C]RIF, [11C]PZA, [11C]PT70, [11C]PT119 and [18F]PT161 and conduct PET 

imaging of those molecules in healthy animals and/or humans to understand the tissue 

PK. Second, we will utilize these radiolabeled probes to evaluate our ability to image 

bacterial infection, with specific focus on the two medically important pathogens S. 

aureus and Mycobacterium Tuberculosis (Mtb).  
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Chapter 2 

Radiosynthesis and Bioimaging of the Tuberculosis Chemotherapeutics 

Isoniazid, Rifampicin and Pyrazinamide in Baboons 

This chapter is based on the work that has been published in: 

Liu, L.; Xu, Y.; Shea, C.; Fowler, J.S.; Hooker, J.M. and Tonge, P.J. “Radiosynthesis 

and Bioimaging of the Tuberculosis Chemotherapeutics Isoniazid, Rifampicin and 

Pyrazinamide in Baboons.” J. Med. Chem. 2010, 53, 2882-91 

Dr. Hooker guided the development of radiosynthesis method. Drs. Fowler, Hooker 

and Tonge helped with the writing and revision of this publication.  

 

Introduction 

The dose and duration of treatment of antibiotics is normally established using plasma 

pharmacokinetic (PK) data together with information on drug efficacy once treatment 

has been initiated. Although plasma drug concentration is an important guide for 

establishing treatment protocols, recent studies indicate that the distribution of 

antibiotics in tissues is a more critical determinant and predictive factor for their 

activity7,8. This is because most drugs exert their bactericidal effects at the site of 

infection rather than in the plasma, and because drug equilibration between plasma and 

infection site cannot always be achieved7,8. Failure to reach optimal drug concentration 

at the site of infection may result in therapeutic failure and trigger bacterial resistance8. 

Therefore, the Food and Drug Administration (FDA) now requires clinical studies of 
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tissue drug distribution at uninfected and infected sites8. Positron emission tomography 

(PET), which images drugs and other molecules labeled with positron-emitting isotopes, 

provides a method of acquiring quantitative information on the dynamics of drug 

absorption, distribution and elimination in a living animal or human. Together with 

advances in the development of methods for labeling drug molecules and other organic 

compounds with carbon-11 (half-life: 20.4 min), PET is emerging as a powerful 

alternative to ex vivo distribution studies using laboratory animals which sample a single 

time point per animal. Indeed PET can map three-dimensional tissue distribution over 

time non-invasively15. It is also complementary to clinical microdialysis (MD) and 

magnetic resonance spectroscopy (MRS) in terms of acquiring information on the tissue 

distribution of different chemical species7. In addition, the methodology developed for 

imaging drug distribution in laboratory animals using PET can be readily translated to 

humans15. 

 

More than two million deaths every year are attributed to infection with Mycobacterium 

tuberculosis (MTB) and the world health organization (WHO) has estimated that one 

third of the world’s population is infected with this pathogen84-86. While many bacterial 

infections are treated using 1-2 weeks course of monotherapy, the treatment of 

tuberculosis (TB) requires the use of multiple antibiotics over a 6-9 month period, 

dramatically increasing the risk of noncompliance and enhancing the emergence of 

resistance87. The current treatment regime for drug-sensitive TB involves the use of 

isoniazid (INH), rifampicin (RIF), pyrazinamide (PZA) and ethambutol (EMB) or 

streptomycin for two months, followed by four months of continued dosing with INH and 



 

27 
 

RIF. This regime has been used for decades and is primarily based on PK studies in 

serum combined with historical data on the efficacy of treatment88. TB infection most 

commonly occurs through inhalation of live bacteria, and thus the primary site of 

infection in humans is the lung. However, MTB can also disseminate via the blood 

stream and infect other organs in the body. In particular, MTB infection of the brain 

(central nervous system TB, CNS TB) can occur. CNS TB is presented in many forms 

including tuberculous meningitis, cerebral tuberculomas without meningitis and spinal 

TB89. CNS TB is particularly difficult to manage since the pathogenesis, diagnosis and 

treatment of this form of TB infection has not been as intensively studied as pulmonary 

TB and there is little data to guide treatment options89,90. Current treatment for CNS TB 

normally follows the same format as that used for treating pulmonary TB, and involves 

an intensive phase of treatment followed by a continuation phase89,90. Thus, both INH 

and RIF are included in the treatment based on their potent activity against pulmonary 

TB infection and, in the case of INH, the significant levels of this drug that can be 

detected in the cerebrospinal fluid (CSF). In addition, although high concentrations of 

PZA can be detected in the CSF, the importance of this drug for treating CNS TB is 

largely unknown89,90. Although measurement of CSF drug concentration through lumbar 

puncture is a good indication of drug availability in brain, it would be advantageous to be 

able to measure brain drug distribution non-invasively and more accurately since a 

ventriculo-lumbar concentration gradient is often observed and the distribution of drugs 

in each compartment of the CNS is not homogeneous91.  
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Here we present a PET imaging study of carbon-11 labeled RIF, INH and PZA in 

baboons in order to provide more direct insight into the PK and biodistribution of drugs 

commonly used to treat TB. These studies in healthy baboons, are a prelude to imaging 

experiments in infected animals and humans, which should ultimately be useful in 

evaluating new TB treatment regimes, especially for disseminated forms of the disease 

such as CNS TB where the ability to evaluate drug availability at the site of infection 

may be limited.  

 

Using PET, we find that all three drugs and/or their radiolabeled metabolites are 

cleared rapidly from the lungs. In addition, their accumulations are consistent with the 

mechanism of excretion of each drug. We also find that the organ distribution of each 

drug differs by 1-1000 fold from the plasma drug distribution. All of the three injected 

drugs demonstrated higher concentrations in the lung than the plasma over the time 

course of the experiment. In addition, we find that the ability of the drugs to penetrate 

the blood-brain barrier decreases in the order PZA > INH > RIF. Estimates based on the 

weight of the baboon, a standard drug dose and the assumption that the positron signal 

derives primarily from the intact drug indicates that the concentrations of RIF, INH and 

PZA in the lungs are at least 10, 10 and 1-3 times higher, respectively, than the 

minimum inhibitory concentration (MIC) values for these drugs against MTB. Estimates 

of drug concentrations in the brain using the same assumptions outlined above suggest 

that the concentrations of RIF and INH are 3-4 and >10 times higher than their MIC 

values, while the concentration of PZA is similar to or slightly higher than its MIC. These 
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data have important implications for the treatment of TB and CNS TB, and set the scene 

for additional studies in humans. 
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The subsequent hydrazine hydrolysis of the cyanide was accomplished in two steps 

which involved a nucleophilic attack by hydrazine and subsequent hydrolysis of the 

imine by water. This procedure was a modification of a published method94, which used 

NaY zeolite as the catalyst to hydrolyze the aromatic cyano group without adding acetic 

acid to drive the reaction. Initial studies indicated that the hydrolysis step was too slow 

to be useful with carbon-11 (approximately 60 min at 180°C). However, since mass 

spectrometry revealed the formation of intermediate (4) together with the complete 

consumption of 3 within the first 5 min of the reaction, acetic acid was added to promote 

hydrolysis of the intermediate. Using this two step procedure, the hydrolysis time of 3 

was reduced to 10 min. The final product was formed with an average 45%-50% DCY 

(calculated from [11C]HCN) in a total synthesis time of 50 min. Isonicotinamide was the 

only major side product, but with optimization of the ratio between hydrazine, water and 

acetic acid (3:3:1), formation of this adduct could be reduced to less than 15% of the 

desired product. [11C]INH was purified by semi-preparative HPLC and the amount of 

hydrazine in the sample, that initially coeluted with [11C]INH, was reduced by leaving the 

sample on the rotary evaporator for 10 min. The average amount of hydrazine present 

in the injected solution was 8.2 µg/ml (~10.0 µg/injection) as determined by an analytical 

assay, which was adapted from a previous report95. Analytical HPLC and TLC were 

used to demonstrate that the radiolabeled product was over 99% radiochemically pure, 

with a specific activity of 140-165 mCi/µmol at the time of delivery.  
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images (Figure 2.1c) were generated by sum from 15 to 90 min. Regions-of-interest 

(ROIs) were drawn manually. 

 

These PET studies are the first in which dynamic TB drug concentrations have been 

measured in whole brain tissue in a living animal. Figure 2.1 clearly demonstrates that 

the ability of the drugs and their radiolabeled metabolites to penetrate the blood-brain 

barrier decreases in the order PZA > INH > RIF. The [11C]RIF TAC, AUC and image 

(Figure 2.1) showed that RIF and/or its radiolabeled metabolites poorly penetrate the 

blood-brain barrier in healthy baboons, consistent with previous studies in which the 

concentration of i.v. delivered RIF in human CSF was measured, although our studies 

demonstrate a higher RIF concentration in brain tissue than that observed in the CSF.98 

The unit % of injected dose per cubic centimeter (%ID/cc) was used and the 

concentration of injected [11C]RIF in the whole brain area was monitored over the 90 

min scanning period with a C30min = 0.000642 %ID/cc (1.09 µg/ml), C60min = 

0.000536 %ID/cc (0.912 µg/ml) and C90min = 0.000710 %ID/cc (1.21 µg/ml).  
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(a) TACs generated from the image acquired after intravenous administration of each 

drug in baboons by manually drawing the ROIs. (b) Whole-brain regions of interest were 

used to generate TACs for each labeled drug. The resulting curves were integrated as a 

function of time to produce AUC plots. (c) Dose corrected coronal images summed over 

frames 24-35 (15-90 min). The NIH color scale was used to represent relative 

radioactivity concentration. 

 

In parentheses we have estimated the expected concentration of RIF in the baboon 

brain based on the weight of the baboon (17 kg), the recommended daily dose for a 

human adult (10 mg/kg) and the assumption that the positron signal derives primarily 

from the intact drug. Thus, for a 17 kg baboon the injected dose is 170 mg and, for 

example, at 30 min the concentration in the brain is estimated to be 0.000642% of 170 

mg which is 1.09 µg/ml. The anticipated concentration of RIF in the baboon brain is 

therefore 3-4 times above the MTB MIC for this compound, supporting the use of RIF 

for treating CNS TB infections89,98. The concentrations of RIF observed in our study are 

similar to the value of 0.87 µg/g determined in monkeys 6 hours after i.v. administration 

of [14C]RIF99, which suggests that the observed level of RIF could persist for several 

hours in brain tissue. In addition, although studies in mice revealed a much higher RIF 

brain tissue concentration of 10.25 µg/ml 3-7 hours after i.p. administration100, the latter 

measurements were made with a 100 mg/kg dose of RIF, and thus are likely similar to 

the concentrations reported from our PET study if our estimates were based on a 100 

mg/kg dose. Finally, Thomas and coworkers resected human brain tissue around 
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tumors and determined a RIF concentration of 0.29 µg/ml following i.v. infusion of 600 

mg RIF in 500 ml saline over 3h101. 

 

Thus, the concentrations of RIF determined by PET imaging the distribution of 

[11C]RIF in healthy baboons are similar to those observed in mice and monkeys, while 

the ~3.5-fold difference between our values and that determined by resecting brain 

tissue could be due to the limited sampling region in the latter experiments. Although 

the studies with [14C]RIF do provide information on drug distribution, this is only at a 

single time point, whereas the PET imaging experiments provide dynamic data from 0-

90 min. Importantly, the PET studies are non-invasive and thus can be readily applied to 

determining RIF concentration and distribution in humans. 

 

 The [11C]INH TAC, AUC and image (Figure 2.1) showed a higher initial brain 

penetration and tissue accumulation when compared to RIF, consistent with CSF 

analysis in humans102,103. The concentration of injected [11C]INH in the whole brain area 

was monitored after i.v. administration (Figure 2.1a), and gave C30min = 0.00299 %ID/cc 

(2.54 µg/ml), C60min = 0.00248 %ID/cc (2.11 µg/ml) and C90min = 0.00206 %ID/cc (1.75 

µg/ml). Again, concentrations in µg/ml are estimated based on the weight of the baboon, 

the recommended daily dose for a human adult which is 5 mg/kg and the assumption 

that the positron signal derives primarily from the intact drug. Thus, the calculated INH 

concentration is more than 10 times above the MIC of this compound against MTB, and 

hence INH should be a suitable therapy for CNS TB infection as recommended89, with 

the caveat that INH must be used with another drug since INH-resistant mutants 
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emerge quickly during monotherapy104. Concentrations estimated from our [11C]INH 

study are similar to those determined in mice using [14C]INH in which a 10 mg/kg s.c. 

dose gave concentrations of 4.4 µg/g and 3.2 µg/g at 30 min and 60 min, respectively105. 

However, studies in cats in which [14C]INH was administered i.p. revealed much lower 

penetration of INH into the brain, with a calculated INH concentration of only 0.02 

µg/g106,107. The lower brain concentration of INH determined in cats compared to our 

baboon study could reflect interspecies differences and/or the different routes of 

administration that were used. Finally, although the observed CSF concentrations in 

humans from two experiments are contradictory (1.9 µg/ml with 8.5 mg/kg oral dose at 2 

h108 and 0.31 µg/ml with 108.7 mg oral dose at 1 h102), it is clear that the INH 

concentration in brain tissue is equal to, or greater than, the concentration in the CSF. 

 

 The [11C]PZA TAC, AUC and image indicated excellent penetration of PZA into 

healthy brain tissue in vivo (Figure 2.1). This result is consistent with CSF analysis in 

humans in which the PZA concentration in the CSF exceeded that in the serum109(e.g. 

brain C60min =  0.00463 %ID/cc and plasma C60min = 0.00272 %ID/cc). The concentration 

of [11C]PZA in the whole brain area decreased following i.v. administration, with C30min = 

0.00619 %ID/cc (21.05 µg/ml), C60min = 0.00463 %ID/cc (15.74 µg/ml) and C90min = 

0.00403 %ID/cc (13.70 µg/ml). As above, concentrations in µg/ml are estimated based 

on the weight of the baboon, the recommended daily dose for a human adult which is 

20 mg/kg and the assumption that the positron signal derives primarily from the intact 

drug. We believe that this is the first study of PZA distribution in the primate brain. 

Studies with rats conducted by Wu and coworkers using MD gave similar brain tissue 
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concentrations with a similar dose and i.v. administration110. In patients with inflamed 

meninges, the CSF concentration of PZA was 50 µg/ml following a single 3 g oral 

dose109. The calculated PZA concentration at different time points from our baboon 

study is similar to or slightly greater than the MIC value for this drug against MTB. 

 

Torso PET imaging in anesthetized baboons 

PET imaging studies were performed with [11C]RIF, [11C]INH and [11C]PZA to 

determine their peripheral organ distribution. The TACs (Figures 2.2, 2.3 and 2.4) were 

generated from the image acquired after i.v. administration of each drug to baboons by 

manually drawing the ROIs. 
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kidney at 60 min. Although Nitti et al. have reported a PK study of RIF administered i.v. 

from 15 min to 12 h111, these results are difficult to compare with our own since in their 

case the RIF was infused over a 3 h period. Furesz and coworkers used samples 

obtained by biopsy to determine the concentration of orally administered RIF in the 

organs and body fluid of patients with diseases that are presumed not to affect the 

absorption and elimination of RIF112. Although these data do not show concentrations 

before 90 min, the relative abundance of RIF in each organ and body fluid is quite 

similar to our own measurements and shows that in most cases the concentration of 

drug in the organs exceeds that in the serum. In their study, the bile concentration after 

150 mg oral dose is up to 538.5 µg/ml at 3-5 h, while the concentration in the liver is 

between 22-35 µg/ml which is several fold smaller than our estimated liver 

concentration. This result may suggest that RIF is cleared quickly from the liver between 

1.5 h to 3 h post administration. Our data can also be compared with the tissue 

distribution of RIF in monkeys performed 6 h after i.v. administering [14C]RIF. In the 

latter experiment the liver still had the highest concentration (60.41µg/g), while the heart, 

lung and kidney retained some drug (10.11 µg/g, 8.32 µg/g and 14.69 µg/g, 

respectively)99. Finally, a semi-quantitative evaluation of whole body RIF distribution in 

mice using i.v. injected [14C]RIF suggested a similar drug distribution compared to our 

own studies except that the difference between the liver and other organs was not as 

large113.  
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studied the distribution of INH in mice using s.c. injected [14C]INH and have shown 

similar drug distributions at 0.5 h and 1 h compared to our baboon study assuming that 

10 mg/kg drug is administered.105 Other studies in mice with i.v. administration show 

drug concentrations in the liver, lung and kidney that are several fold higher than the 

amounts estimated using PET imaging114, while Roohi et al. used a technetium-99m 

derivative of INH to determine the drug biodistribution in Sprague-Dawley rats giving 

similar drug concentrations in heart and lung but more than 10-fold higher 

concentrations in the liver and kidney compared to the other studies115. Again, 

interspecies variation could play an important role in any differences observed between 

our study and those conducted in rodents, with the additional caveat that the study in 

rats involved the use of INH that had been modified with technetium-99m. 
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distribution. These studies, which were conducted using healthy baboons, thus clearly 

highlight the utility of using PET imaging to determine drug PK parameters and drug 

biodistribution non-invasively in vivo, and are a prelude to imaging experiments in 

infected animals and humans. Ultimately, this approach should be useful for 

determining better TB treatment regimes, especially for disseminated forms of the 

disease such as CNS TB where assessing drug availability at the site of infection may 

be difficult. It is also hypothesized that these labeled drugs may be eventually useful for 

determining the location of bacterial populations in vivo since these drugs are expected 

to accumulate within the bacteria either by conversion to metabolites that are unable to 

rapidly leave the cell or by binding with long residence times to their drug targets. Both 

PZA and INH are prodrugs for which activating enzymes are present in the 

mycobacterium119,120, while the INH-NAD adduct, which is the active form of INH, has a 

residence time of 60 min on the MTB enoyl-ACP reductase InhA121. In addition RIF is 

also thought to have a long residence time on the mycobacterial RNA polymerase 

based on studies with the E. coli homologue which provided a residence time of ~90 

min122. Importantly, the rapid clearance of all drugs and/or their radiolabeled metabolites 

from the lungs provides a clear window for imaging populations of TB bacteria since this 

is the primary site of TB infection. 
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Conclusions 

The front-line TB chemotherapeutics INH, RIF and PZA have been labeled with 

carbon-11 and the biodistribution of the labeled drugs has been imaged in baboons in 

vivo. These PET imaging studies provide an opportunity to review the bioavailability of 

known drugs both in the brain and peripheral organs, which could potentially improve 

their use and help to determine the effective dose since these methods can be easily 

translated to healthy volunteers and patients. Radiosynthesis and formulation of each 

drug has been accomplished in 1 h, using [11C]CH3I to label RIF and [11C]HCN to label 

INH and PZA. Following i.v. administration, the labeled drugs have been imaged in 

baboons using PET. INH, PZA, RIF and/or their metabolites clear rapidly from many 

tissues, however INH, PZA and/or their metabolites accumulate in the bladder while RIF 

and/or its metabolites accumulate in the liver and gall bladder, consistent with the routes 

of excretion of the drugs. In addition, estimates based on the weight of baboon, a 

standard drug dose and the assumption that the positron signal derives primarily from 

the intact drug indicates that the concentrations of RIF, INH and PZA in the lungs are at 

least 10, 10 and 1-3 times higher, respectively, than the MIC values for these drugs 

against MTB. Furthermore, we find that the ability of the drugs and their radiolabeled 

metabolites to penetrate the blood-brain barrier decreases in the order PZA > INH > RIF. 

Estimates of drug concentrations in the brain using the same assumptions outlined 

above suggest that the concentrations of RIF and INH are 3-4 and >10 times higher 

than their MIC values, respectively, while PZA is similar to or slightly higher than the 

MIC. The PK and drug distribution data have important implications for treatment of 
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disseminated TB in the brain, and set the scene for imaging the distribution of the 

pathogen in vivo.   

Experimental Section 

General 

[11C]CH3I was generated from [11C]CO2 using a PETtrace MeI Microlab (GE Medical 

System, Milwaukee, WI, USA). Briefly, [11C]CO2 was obtained from proton 

bombardment of a N2/O2 target (14N(p,α)11C) using an EBCO TR 19 cyclotron 

(Advanced Cyclotron System INC. Richmond, Canada). [11C]CO2 was heated with H2 on 

nickel to produce [11C]CH4 and the latter was converted to [11C]CH3I by iodination which 

was released into a stream of argon. 

[11C]HCN was generated from [11C]CO2 using a home-made unit. Briefly, [11C]CO2 

was obtained and converted to [11C]CH4 using the same conditions as those used for 

[11C]CH3I production. Reaction of [11C]CH4 and NH3 mediated by platinum produced 

[11C]HCN which was released into a stream of argon. 

Chemical and radiochemical purity was determined by an analytical HPLC system 

equipped with both UV and radioactivity detectors. The purities of the intermediate and 

final products were > 95%, and the specific solvent gradients used for each compound 

are given below. 
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Synthesis of de-methyl RIF(1) (RIF precursor) 

1-Nitrosopiperazine123. Piperazine 0.86 g (10 mmol) in 6N HCl (6 ml) was cooled to -

10°C and a solution of NaNO2 (0.69 g, 10 mmol) in H2O (12 ml) was added slowly over 

1 h. At a temperature below 0 °C, the pH was adjusted to 10 using NaOH, and then the 

mixture was extracted using chloroform, dried over Na2SO4, and the solvent removed by 

evaporation. The crude product was purified by column chromatography using silica gel 

and 8% MeOH/CH2Cl2 as the mobile phase. The product was a yellow oil and the yield 

was 72%. 1H-NMR(300 MHz, CDCl3) δ: 4.15-4.18(m, 2H), 3.74-3.77(m, 2H), 3.00-

3.03(m, 2H), 2.75-2.79(m, 2H), 1.83(s, 1H). ESI-MS calculated for [M+H]+ m/z = 116, 

found 116.  

 

De-methyl RIF (1)123,124. 1-Nitrosopiperazine 230 mg (2 mmol) was dissolved in 2 ml 

of THF and was then added slowly to a suspension of LiAlH4 (216 mg, 6 mmol) in 10ml 

THF under N2 at 0 °C. The mixture was stirred for 5 min and then heated to reflux for 3 

h. The cooled reaction mixture was quenched by MeOH until no further bubbles were 

formed, concentrated in vacuo and filtered. The resulting filter cake was washed with 

MeOH, and the combined filtrate was evaporated to dryness, yielding crude 1-

aminopiperazine as a solid. p-Toluenesulfonic acid (5 mg), 10 ml dry THF and 140 mg 

3-formyl-rifamycin (0.2 mmol) were then added with molecular sieves to the crude 1-

aminopiperazine. The reaction mixture was stirred at room temperature overnight, 

filtered and concentrated in vacuo. The crude product was purified by column 

chromatography with silica gel using 5% MeOH/CH2Cl2 as the mobile phase. The 

product was a red solid and the yield was 78%. 1H-NMR (600 MHz, CDCl3) δ: 13.15 (s, 
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1H), 12.01 (s, 1H), 8.30 (s, 1H), 6.57 (dd, J = 15.6, 11.4 Hz, 1H), 6.38 (d, J = 11.4 Hz, 

1H), 6.20 (d, J = 12.6 Hz, 1H), 5.93 (dd, J = 15.6 Hz, 4.8 1H), 5.10 (dd, J = 12.6, 6.6 Hz, 

1H), 4.94 (d, J = 10.8 Hz, 1H), 3.77 (d, J = 9.0 Hz, 1H), 3.47 (d, J = 6.6 Hz, 1H), 3.11-

3.14 (m, 2H), 3.05-3.06 (m, 2H), 3.04 (s, 3H), 3.01-3.03 (m, 2H), 2.97-3.01 (m, 2H), 

2.97-3.06 (m, 1H), 2.33-2.41 (m, 1H), 2.22 (s, 3H), 2.08 (s, 3H), 2.06 (s, 3H), 1.79 (s, 

3H), 1.69-1.72 (m, 1H), 1.51-1.56 (m, 1H), 1.33-1.38 (m, 1H), 1.01 (d, J = 7.2 Hz, 3H), 

0.88 (d, J = 7.2 Hz, 3H), 0.60 (d, J = 6.6 Hz, 3H), -0.30 (d, J = 6.6 Hz, 3H). 13C-NMR 

(100 MHz, CDCl3) δ 195.12, 174.32, 171.91, 169.50, 169.36, 147.85, 142.60, 142.54, 

138.68, 135.02, 134.19, 129.31, 123.18, 120.29, 118.50, 117.87, 112.89, 110.85, 

108.74, 106.04, 104.44, 94.39, 77.20, 76.87, 76.77, 74.41, 70.62, 57.09, 53.43, 51.48, 

44.82, 39.56, 38.59, 37.55, 33.43, 21.55, 20.80, 17.83, 10.96, 9.02, 8.57, 7.65. ESI-MS 

calculated for [M+H]+ m/z = 809, found 809. Chemical purity was determined by 

reverse-phase analytical HPLC using a Phenomenex, Luna C-18, 250×4.6, 5 µm 

column operated at 1 ml/min flow rate using a mobile phase of 32% MeCN/68% H2O. 

 

Radiosynthesis of [11C]RIF 

The synthesis of [11C]RIF was performed using 1 as precursor. A solution of precursor 

(1.0 mg, 1.2 µmol) was dissolved in 0.1ml MeCN and 0.2 ml DMSO with 0.2 mg K2CO3. 

After [11C]CH3I was purged into the solution and trapped, the reaction vessel was 

sealed and heated at 110°C for 10 min in an oil bath. The reaction mixture was diluted 

with 1 ml of aqueous ammonium formate (0.1M) prior to loading onto a semi-preparative 

HPLC column. HPLC purification was performed using a reverse phase C-18 column 
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(Phenomenex, Luna C-18 250×10, 5 µm), at a 5 ml/min flow rate with a mobile phase 

consisting of 35% MeCN/65% aqueous ammonium formate (0.1 M). The product was 

collected at the expected retention time (17 min), mixed with 100 mg ascorbic acid, and 

the solvent was removed by rotary evaporation. After dilution with 4 ml saline, the 

solution was filtered through an Acrodisc 13-mm Syringe Filter with 0.2 µm Supor 

membrane (Pall Corporation, Ann Arbor, MI) into a sterile vial for delivery. 

Radiochemical purity was determined by reverse-phase analytical HPLC using a 

Phenomenex, Luna C-18, 250×4.6, 5 µm column operated at 1 ml/min flow rate using a 

mobile phase of 35% MeCN/65% 0.1 M aqueous ammonium formate. Subsequently, 

purity was verified using TLC (15% MeOH/85% CH2Cl2) by co-spotting the labeled 

product with a standard.  

 

Radiosynthesis of [11C]INH 

The synthesis of [11C]INH was performed using 2 as the precursor. The precursor (1.0 

mg), K222 (0.2 mg) and tetrakis(triphenylphosphine)palladium(0) (2.0 mg) was placed in 

a vial with 0.2 ml DMSO and heated until all the solid dissolved. This solution was then 

added to [11C]HCN that had been purged and trapped in 0.1 ml DMSO, and the reaction 

mixture was sealed and heated at 135°C for 5 min. Water (0.3 ml), hydrazine 

monohydrate (0.3 ml) and NaY zeolite (20 mg) were then added, and after heating for 5 

min at 135 °C, acetic acid (0.1 ml) was added. Following an additional 5 min at 135 °C, 

the reaction mixture was filtered through celite and the reaction vessel was washed with 

0.5 ml water prior to injection onto the semi-preparative HPLC column. HPLC 
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purification was performed using a reverse phase PFP column (Phenomenex, Luna 

PFP(2) 250×10, 5 µm) at a 5 ml/min flow rate with a gradient elution: 0-5 min, 100% 

water; 5-20 min from 100% water to 20% MeCN/80% water. The product was collected 

at the expected retention time (12 min), and the solvent and the majority of hydrazine 

coeluted was removed by ~10 min rotary evaporation. After dilution with 4 ml saline, the 

solution was filtered through an Acrodisc 13-mm Syringe Filter with 0.2 µm Supor 

membrane (Pall Corporation, Ann Arbor, MI) into a sterile vial for delivery. 

Radiochemical purity was determined by reverse-phase analytical HPLC using a 

Phenomenex, Luna PFP, 250×4.6, 5 µm column operated at 1 ml/min with a gradient of 

0% to 20% MeCN in water over 20 min. Subsequently, purity was verified using TLC (25% 

MeOH/75% CH2Cl2) by co-spotting the labeled product with a standard.,  

Quantification of hydrazine in the final formulated solution was determined by the 

modification of a published procedure95. Briefly, an aliquot (20 µl) of saline formulated 

solution was added to a test tube containing 20 µl H2SO4 solution (0.1 M) and 20 µl of 

benzaldehyde in methanol (1 ml benzaldehyde/100 ml methanol). Additional 40 µl 

sodium borate solution (0.01 M) and 20 µl methanol was added to the previous mixture 

and 25 µl of this new solution was injected into HPLC. The concentration of hydrazine 

was calculated based on the UV absorption (313 nm) of hydrazone and the standard 

curve. A blank sample (INH standard without hydrazine) was also analyzed which 

confirmed that INH did not interfere with the detection of hydrazine. 
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Radiosynthesis of [11C]PZA 

The synthesis of [11C]PZA was performed using 5 as the precursor. The precursor 

(1.0 mg), K222 (0.2 mg) and tetrakis (triphenylphosphine)palladium(0) (2.0 mg) was 

placed in a vial with 0.2 ml DMSO and heated until all the solid dissolved. This solution 

was then added to [11C]HCN that had been purged and trapped in 0.1 ml DMSO, and 

the reaction mixture was sealed and heated at 135 °C for 5 min. K2CO3 (0.2 ml, 0.1 M) 

and H2O2 (0.1 ml, 30%) were then added, and after heating for 5 min at 135℃, the 

reaction mixture was diluted with 0.3 ml ammonium formate (0.025 M, 5% acetic acid) 

and filtered through celite. The reaction vessel was washed with 0.5 ml ammonium 

formate solution prior to injection onto the semi-preparative HPLC column. HPLC 

purification was performed using a reverse phase PFP column (Phenomenex, Luna 

PFP(2) 250×10, 5 µm) at a 5 ml/min flow rate with a mobile phase consisting of 2% 

MeCN/98% ammonium formate (0.025M, 5% acetic acid). The product was collected at 

the expected retention time (7 min), and the solvent was removed by rotary evaporation. 

After dilution with 4 ml saline, the solution was filtered through an Acrodisc 13-mm 

Syringe Filter with 0.2 µm Supor membrane (Pall Corporation, Ann Arbor, MI) into a 

sterile vial for delivery. Radiochemical purity was determined by reverse-phase 

analytical HPLC using a Phenomenex, Luna PFP, 250×4.6, 5 µm column operated at 1 

ml/min using 3% MeCN/97% 0.025 M aqueous ammonium formate as the mobile phase. 

Subsequently, purity was verified using TLC (25% MeOH/75% CH2Cl2) by co-spotting 

the labeled product with a standard. . 
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PET Imaging and Data Processing 

All animal experiments performed in this study were approved by the Brookhaven 

Institutional Animal Care and Use Committee. Four baboons were included in this study. 

Ketamine hydrochloride (10mg/kg) was administered intramuscularly as an anesthetic 

agent and anesthesia was further maintained with oxygen (800 ml/min), nitrous oxide 

(1500 ml/min) and isoflurane (Forane, 1-4%) during scanning. Two catheters were 

placed in a radial arm vein and the popliteal artery for [11C]-labeled drug injection and 

arterial sampling, respectively. [11C]-labeled drug was injected through the prior catheter 

and arterial blood was collected through the latter one as following time intervals: every 

5 s for 2 min, then 2, 5, 10, 20, 30, 45, 60 and 90 min. During the PET scanning, heart 

rate, respiration rate, body temperature and pO2 were monitored. Siemens HR+ 

(Siemens high-resolution, whole-body PET scanner with 4.5×4.5×4.8 mm resolution at 

the center of field of view) was used to perform dynamic PET scans for a total of 90 min 

with the following time frames in 3D mode: 1×10, 12×5, 1×20, 1×30, 8×60, 4×300, 

8×450 s. Correction of attenuation was obtained by a transmission scan of a 68Ge rod 

source prior to each PET scan. Six baboon studies were conducted with average 

injected doses for RIF, INH and PZA of 1.54 mCi, 4.38 mCi and 5.17 mCi respectively. 

Images were reconstructed by filtered back projection (FBP) and analyzed using 

AMIDE® software125. 
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LogD and PPB Determination 

LogD determination: A test tube containing 2.5 ml of octanol and 2.5 ml of phosphate 

buffer solution (pH 7.4) was mixed with ~50 µl aliquot of formulated [11C]-labeled drug 

by vortex for 2 min followed with centrifugation for 2 min to ensure full separation of the 

aqueous and organic phases. An aliquot from the octanol layer (0.1 ml) and aqueous 

layer (1 ml) were collected for radioactivity measurement. An additional 2.0 ml aliquot of 

the octanol layer was carefully transferred to a new test tube containing 0.5 ml octanol 

and 2.5 ml phosphate buffer (pH 7.4) and the previous procedure (vortex mixing, 

centrifugation, sampling, and transfer) was repeated for an additional five times to 

obtain six sets of samples. A well counter (Picker, Cleveland, OH) was used to measure 

radioactivity in each set of samples and the logD value of each sample was calculated 

by the following equation:  

 

logD = log (decay-corrected radioactivity in octanol layer × 10/decay-corrected 

radioactivity in phosphate buffer layer).  

 

PPB determination: A 10 µl aliquot of the formulated [11C]-labeled drug was mixed 

with a sample of baboon plasma (0.8 ml, collected from at least 4 different baboons and 

pooled) by gently inverting several times. The mixture was incubated for 10 min at room 

temperature and then a 20 µl aliquot was taken to determine the total radioactivity in the 

plasma sample (AT; AT=Abound+Aunbound). An additional 0.2 ml aliquot of plasma was 

placed in the upper level of a centrifree® tube (Amicon, Inc., Beverly, MA) and then the 
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tube was centrifuged for 10 min. After discarding the upper part of the Centrifree tube, a 

20 µl aliquot from the bottom part of the tube was taken to determine the amount of 

radioactivity that passed through the membrane (Aunbound). PPB was calculated by the 

following equation: % unbound = Aunbound × 100/AT 

 

Metabolite analysis 

Several aliquots (~0.2 ml each) of baboon plasma sample were collected at various 

time points during the PET study. Each sample was counted and added to a solution of 

unlabeled standard (20 µl of a 1 mg/ml solution) in MeCN (0.3 ml). The resulting 

solution was vortexed and centrifuged and the supernatant was collected. After mixing 

with 0.3 ml water, the supernatant was analyzed by HPLC using the following conditions: 

RIF, Waters µbondapak C-18 3.9×300 mm column with eluents 70% MeCN/30% 0.1 M 

aqueous ammonium formate at 1.0 ml/min using UV (254 nm) and radio-detection; INH, 

Phenomenex spherisorb ODS(2) 4.6×300 mm, 5 µm column with eluents 2% MeCN/98% 

0.02 M aqueous heptane sulfonic acid at 1.0 ml/min using UV (254 nm) and radio-

detection; PZA, Phenomenex spherisorb ODS(2) 4.6×300 mm, 5 µm column with 

eluents 10% MeCN/90% 0.01 M aqueous potassium phosphate (pH 5.2) at 1.7 ml/min 

using UV (254 nm) and radio-detection. The percent of unmetabolized radiotracer was 

determined as the ratio between the fraction of radioactivity coeluting with the unlabeled 

standard and the total radioactivity from the HPLC column. 
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Figure 3.1 The FASII pathway 

 

The causative pathogen for staph infection is Staphylococcus aureus (S. aureus), 

which is also known as golden staph. It is estimated that 20% of the human population a 

long-term carrier of S. aureus129. The emergence of antibiotic-resistant strains, such as 

methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA), 

raises challenges for chemotherapy and stresses the need for new antibiotics with novel 

mechanisms of action127,130. Although staph infections are generally presented on the 

surface of the skin, S. aureus are able to disseminate via the blood stream or through 

surgical process into other organs131-133. In particular, S. aureus can also invade deeper 

into kidney and heart, which are the two common sites of organ infection134,135. 

Moreover, S. aureus infection in the brain, which is termed S. aureus meningitis, has 

high mortality rates, although the incidence is low. The treatment of drug-resistant S. 

aureus meningitis, such as infection caused by MRSA or VRSA, is even more 

complicated since treatment is limited to drugs that are able to penetrate the blood-brain 

barrier (BBB). The standard treatment for MRSA meningitis is difficult to establish as 

there is a lack of techniques that are able to assess drug concentration inside the 

human brain tissue136,137.  

 

Mycobacterium Tuberculosis (Mtb) is the causative agent of TB, an infectious disease 

that is carried by one third of the world’s population and that is responsible for 2 million 

deaths each year84-86. The most common site of TB infection are the lungs as the 

primary route of infection is through inhalation of live bacteria. A more severe Mtb 

infection, in the form of tuberculous meningitis, cerebral tuberculomas or spinal TB, can 



 

62 
 

occur in the brain and is called CNS TB89. Current treatment for CNS TB normally 

follows the same format as that used for treating pulmonary TB. Consequently, 

information about drug distribution in the brain would be helpful to guide the 

development of new treatment regimes89. The emergence of multi-drug resistant TB 

(MDR-TB) and extremely drug-resistant TB (XDR-TB) contribute to the spread of 

infection and worsen the situation by either lengthening the treatment or invalidating 

current treatment, especially in the case of CNS TB. Therefore, drugs with novel 

mechanisms of action are urgently needed to control the spread of disease128. One of 

the front-line TB treatments is isoniazid (INH), which is a prodrug that has to be 

activated by KatG, the mycobacterial catalase-peroxidase, to form the active inhibitor 

INH-NAD adduct119. Since isoniazid resistance occurs primarily from mutations in 

KatG138, inhibitors of InhA that do not require activation should be active against 

isoniazid-resistant strains of Mtb139. Thus a series of sub-nanomolar diaryl ether 

inhibitors of FabI that are active against Mtb has been developed (Scheme 3.1)139-142. 

As the FabI has structural similarity across different bacterial species, those inhibitors 

demonstrated potent activity against a broad spectrum of bacteria, including S. aureus 

and Francisella tularensis (Scheme 3.1)143,144.  
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3.1). Both inhibitors have been radiolabeled and the biodistribution of the labeled drugs 

has been imaged in baboons in vivo. It is estimated that the concentrations of PT-70 

and PT-119 in the lungs are at least 10 times higher than the MIC values for each 

compound against MTB. In addition, as AUC/MICs are likely the driver of the efficacy for 

those two compounds, we calculated AUC0-90min/MIC for both PT-70 and PT-119. The 

AUC0-90min/MIC for PT-70 and PT-119 are 51% and 14% of the AUC0-90min/MIC for INH, 

respectively, which suggests that PT-70 is a better candidate than PT-119 to treat 

pulmonary TB infection in non-human primates and humans. In addition, the estimated 

inhibitor concentration in the heart and kidneys are at least 20 times higher for PT-70 

and 100 times higher for PT-119 than the MIC values of these compounds against S. 

aureus. The AUC0-90min/MIC for PT-119 is 16368 min and 51023 min for heart and 

kidney, respectively, and both are ~3 times higher than the values for PT-70. The 

results suggest that PT-119 is better candidate than PT-70 to treatment S. aureus 

infection in the heart and kidney. The ability of the PT-70 and their radiolabeled 

metabolites to penetrate the blood-brain barrier is similar to INH, while the ability of PT-

119 is two times higher than INH. It is estimated that the concentrations of PT-70 and 

PT-119 in the brain are at least 10 times higher than their MIC values against TB. The 

AUC0-90min/MIC are 38% and 37% of INH AUC0-90min/MIC for PT-70 and PT-119 

respectively, which suggests that PT-70 and PT-119 are potential candidates for 

treatment of CNS TB. For S. aureus infection, PT-119 had an AUC0-90min/MIC value in 

the brain that was 10 times higher than that for PT-70, and it is clear that PT-119 is a 

superior candidate for the treatment of S. aureus meningitis. These studies provide the 

first tissue distribution of PT FabI inhibitors in non-human primates, and will facilitate 
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Result and Discussion 

Organic Synthesis 

The synthesis of precursors 7 and 8 was adopted from methods developed internally 

by another graduate student in the lab (Pan Pan) without optimization (Scheme 3.2) 

(unpublished data). Briefly, compound 3 was prepared from commercially available 

vanillin through three steps. Vanillin was protected with a benzyl group and coupled with 

a hexyl chain using a Wittig reaction to form compound 2145. Reduction of compound 2 

with hydrogen generated compound 3. Compound 4 was synthesized by nucleophilic 

aromatic substitution of 3 with 1-fluoro-2-nitrobenzene, and was converted to compound 

5 by reduction with H2 catalyzed by palladium on charcoal. Compound 6 was prepared 

from 5 by utilizing the Sandmeyer reaction, which went through a diazonium salt 

intermediate prior to iodide anion attack146. The deprotection was carried out with 

tribromoborane in dichloromethane to form 7, and compound 8 was prepared with 

additional treatment of tributylchlorostannane on 7 under strong basic condition in 

diethyl ether. 
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Brain PET imaging in anesthetized baboons 

PET imaging studies were performed with [11C]PT-70 and [11C]PT-119 to determine 

the brain penetration and distribution. Images were acquired for 90 min following i.v. 

administration of each radiolabeled drug and time-activity curves (TACs) (Figure 3.2a) 

were generated from the imaging data and the region-of-interests (ROIs) were drawn 

manually80. Time-concentration curves (TCCs) in Figure 3.2b were produced by a 

linear extrapolation of estimated concentration of each compound in µg/ml assuming 50 

mg/kg dose and 20 kg baboon, while dose corrected coronal images (Figure 3.2c) were 

generated by sum from 15 to 90 min. The area under the curve values (AUCs) were 

produced by integrating the concentration-time curve as a function of time.  AUC0-

90min/MIC values, which are a critical predictor of in vivo efficacy, are given in Table 3.3 

where they are compared with the corresponding value for INH from similar PET 

studies80. 
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TB infection treatment. In addition, the AUC0-90min/MIC value of PT-70 is about 38% of 

the value for INH, which provides further indication of the efficacy of PT-70 against TB. 

Moreover, although PT-70 is less active against S. aureus as the MIC is ~2.5 times 

larger and AUC0-90min/MIC is less attractive than the one for Mtb, the estimated 

concentration in the brain is still over 5 times above the S. aureus MIC, which suggests 

that this compound has sufficient potency for treatment of S. aureus meningitis.  

 

The [11C]PT-119 TAC, TCC (Figure 3.2) showed a higher brain penetration and 

accumulation when compared to PT-70. The activity of injected [11C]PT-119 in the 

whole brain was monitored after iv administration (Figure 3.2) and the estimated 

concentration in µg/ml has been calculated based on the same assumptions as those 

described above. Therefore, the calculated PT-119 concentration is more than 10 times 

above the MIC of this compound against Mtb (Figure 3.2b), and hence PT-119 should 

be a good candidate for the treatment of CNS TB infection. Moreover, the AUC0-

90min/MIC value of PT-119 is similar to the value of PT-70, and about 39% of the value of 

INH. Taken together with the efficacy of INH in CNS TB treatment, it is clear that PT-

119 would be a promising candidate for CNS TB treatment. In the meanwhile, the 

predicted potency against S. aureus meningitis is 5 times better than that for CNS TB 

based on the AUC0-90min/MIC, and over 10 times better than the potency of PT-70 

against S. aureus meningitis. The estimated concentration in the brain is over 80 times 

above the S. aureus MIC through the study time frame. Taken together, the 

biodistribution studies suggest that PT-119 is a highly promising candidate for the 

treatment of S. aureus meningitis. 
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Vancomycin is commonly prescribed for MRSA meningitis and administered through 

iv infusion or intraventricular instillation147,148. Although the peak concentration in CSF 

reached almost 300 µg/ml with intraventricular injection of a 10 mg dose, it was difficult 

to reach above 6 µg/ml with iv administration 149. It is also known that higher AUC/MIC 

values of vancomycin correlated with better treatment outcome, although other PK/PD 

correlation was proposed150. Given a 1 µg/ml MIC against S. aureus and a peak 

concentration of less than 6 µg/ml in CSF, the calculated AUC0-90min/MIC would be less 

than 540 min, which is significantly lower than the estimated AUC0-90/MIC for PT-70 and 

PT-119. Another common prescription for S. aureus meningitis is linezolid, which is 

considered to be effective if AUC0-24h/MIC value is over 100 hrs (2,400 min)151. As the 

AUC0-90/MIC for PT-70 and PT-119 are 708 and 8870 min (Table 3.3) it is likely that 

AUC0-24h/MIC would be larger than 2,400, at least for PT-119, which further suggests 

that both compounds may be active against S. aureus meningitis.  
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Figure 3.2 Blood-brain barrier penetration, TACs and TCCs for [11C]PT-119, 

[11C]PT-70 and [11C]INH.  

(a) TACs generated from the image acquired after iv administration of each compounds 
in baboons by manually drawing the ROIs. (b) TCCs calculated from TACs assuming a 
50 mg/kg dosage and a 20 kg baboon. (c) Dose corrected coronal images summed over 
15-90 min. The NIH color scale was used to represent relative radioactivity 
concentration. 

 

Torso PET imaging in anesthetized baboons 

PET imaging studies were performed with [11C]PT-70 and [11C]PT-119 to determine 

their peripheral organ distributions. The TACs (Figures 3.3 and 3.4) were generated 

from the images acquired after i.v. administration of each drug to baboons by manually 

drawing the ROIs, and the TCCs in the lung were estimated the same way as that 

described earlier for the brain.  

 

[11C]PT-70 was administered iv and monitored over the 90 min dynamic PET scan. 

The injected [11C]PT-70 cleared rapidly from the heart, lung and blood, with moderate 

accumulation in liver and kidney, while a large portion of radioactivity accumulated in 

the gallbladder (Figure 3.3). The rectilinear scan at around 120 min after administration 

suggests that another large portion of the injected [11C]PT-70 was eliminated into the 

bladder. The estimated concentration of PT-70 in the lung is more than 50 times above 

the Mtb MIC for this compound over the scan period, and hence PT-70 should be a 

suitable candidate for pulmonary TB infection. In addition, the AUC0-90min/MIC of PT-70 

is 51% of the value for INH (AUC0-90min/MIC = 13040 min) (Table 3.4), which further 

supported the potential of PT-70 drug candidacy. The radioactivity in the organs was 
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higher than values observed in plasma, which confirms that differences exist between 

drug concentrations in plasma and in organs, and demonstrates that there is a need to 

measure the compound concentration at the site of infection. The penetration of 

radioactivity into the heart and kidney, the common sites of severe infection of S. aureus, 

is higher than lung, and the estimated AUC0-90min/MIC values are 5023 min and 18126 

min (Table 3.4).  
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The imaging experiments reported here in the present work were conducted using 

microdoses (1-10 µg) of compounds, and so the estimated PK for a therapeutic dose of 

drug was obtained by linear extrapolation. We are aware that drug distribution can 

change as a function of administered dose if one or more processes, such as 

transporters or metabolic enzymes that affect distribution, become saturated. However, 

based on the mechanism of action of these compounds together with the observation 

that no significant difference exists for tissue PK between microdose and therapeutic 

dose in mice (Figure 4.3, Chapter 4), we believe that saturable processes are not likely 

to play a major role in modulating distribution in tissues. In addition, we are also aware 

that the radioactivity signal may not come from the intact drug, especially in the case of 

liver and kidney, where the drugs are metabolized. The major route of metabolism of 

diaryl ether analogs is through glucuronidation at the phenol group, which does not 

remove the radiolabel from the parent compound152. Because of the addition of the 

glucuronic acid, however, the antibacterial properties of the compound are likely altered. 

Thus it is possible that we overestimate the penetration, AUC0-90min, and AUC0-90min/MIC, 

as part of the radioactivities may not represent the intact compounds. However, in other 

organs, especially in brain, we are confident that most of the signals are from intact 

drugs as metabolism is slow in those organs. The current studies in healthy baboons 

clearly demonstrate the utility of using PET imaging to determine the PK parameters 

and biodistribution of drug candidates non-invasively in vivo before the establishment of 

systematic toxicology information. In addition, these studies provide closer estimation of 

distribution in human than rodents. Eventually, this approach should facilitate the drug 

discovery process to treat TB infection and Staph infection, especially for disseminated 
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forms of the disease such as CNS TB and S. aureus meningitis, where the compound 

concentration at the site of infection is difficult to measure. Because these compounds 

are able to penetrate tissues of various organs and efficacy has been demonstrated in 

animal models, we expect the radiolabeled compound would surround or accumulate 

within the bacteria. Given that these compounds have long residence time on their FabI 

targets, we hypothesize that these labeled compounds may be good candidates for 

localizing bacterial populations in vivo. Both PT-70 and PT-119 have long residence 

times, of 30 min and 90 min respectively, on the Mtb enoyl-ACP reductase InhA. 

Moreover, PT-119 also has a long residence time (100 min) on the S. aureus enoyl-

ACP reductase, which suggests that this compound has the potential to locate and 

quantify S. aureus in addition to Mtb. 

 

Conclusion 

Two potent enoyl-ACP reductase inhibitors, with in vitro and in vivo activity against 

Mtb and S. aureus, have been radiolabeled with carbon-11 and the biodistribution of the 

labeled drugs has been imaged in baboons in vivo. These studies have elucidated the 

distribution of these compounds in the tissues of non-human primates and the results 

provide guidance for designing studies to assess efficacy in clinical trials. In addition, 

based on the AUC0-90min and AUC0-90min/MIC, we can expect the efficacy of PT-70 and 

PT-119 towards each form of S. aureus and Mtb infection. Based on the weight of the 

baboon, a safe or standard drug dose, and the assumption that the signal derives 

primarily from the intact drug, it is estimated that the ability of PT-70 and their 

radiolabeled metabolites to penetrate the blood-brain barrier is similar to INH, while the 
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ability of PT-119 is two times higher than INH. In addition, it is estimated that the AUC0-

90min/MIC values for PT-70 and PT-119 are 38% and 37% of the INH AUC0-90min/MIC, 

respectively, which suggests that PT-70 and PT-119 have similar potential to treat CNS 

TB in non-human primates and humans. For S. aureus infection, PT-119 demonstrated 

10 times higher AUC0-90min/MIC value than that for PT-70 in the brain, and it is clear that 

PT-119 is a superior candidate for the treatment of S. aureus meningitis. For pulmonary 

TB infection, it is estimated that the AUC0-90min/MIC values for PT-70 and PT-119 are 51% 

and 14%, respectively, of the INH AUC0-90min/MIC, which suggests that PT-70 is a better 

candidate than PT-119. The estimated concentrations in heart and kidney are at least 

20 times higher for PT-70 and 100 times higher for PT-119 than the MIC values against 

S. aureus. The AUC0-90min/MIC for PT-119 is 16368 min and 51023 min for heart and 

kidney respectively, and both are ~3 times higher than the values for PT-70. The result 

suggested PT-119 is better candidate than PT-70 to treatment S. aureus infection in the 

heart and kidney.   
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Experimental Section 

Organic Synthesis 

4-(Benzyloxy)-3-methoxybenzaldehyde (1)153 

A solution of benzyl bromide (3.93 ml, 33 mmol) was added to the mixture of 4.56 g 

vanillin (30 mmol) in 50 ml MeOH and 1.85 g KOH (33 mmol) in 50 ml H2O dropwise 

and the whole mixture was heated to reflux for 4 hrs. After the completion of reaction, 

the product was extracted with DCM and H2O, and the aqueous layer was further 

washed with DCM. The combined DCM layers were dried with MgSO4, and 

concentrated in vacuo. The crude product 1 was purified by automated column 

chromatography with silica gel using 5% ethyl acetate/petroleum ether as the mobile 

phase. The product was obtained as a white solid with a yield of 52%. ESI-MS 

calculated for [M+H]+ m/z = 243, found 243. 

 

1-((4-((E)-hex-1-enyl)-2-methoxyphenoxy)methyl)benzene (2)154 

A solution of n-BuLi (2M solution in cyclohexane, 6.7 ml, 13.4 mmol) was added 

dropwise to an solution of n-Pentyltriphenylphosphonium bromide (13.4 mmol) in DCM 

at -78°C.  After 30 min, 2.5 g of 1 (10.3 mmol) was added to the mixture before the 

cooling bath was removed, and the reaction mixture was stirred overnight. The reaction 

was subsequently quenched by slowly adding 1M HCl, after which the pH was adjusted 

to 7 using NaHCO3 Solution. The aqueous layer was extracted with DCM twice and the 

combined organic layers were washed with brine before drying with MgSO4. The crude 

product 2 was concentrated in vacuo prior to purification by automated column 
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chromatography with silica gel using 5% ethyl acetate/petroleum ether as the mobile 

phase. The yield was 75%. ESI-MS calculated for [M+H]+ m/z = 297, found 297. 

 

4-Hexyl-2-methoxyphenol (3)155 

Activated palladium on charcoal (200mg) was added to 50 ml MeOH solution of 

compound 2 (2.28 g, 7.8 mmol). The reaction mixture was stirred under hydrogen 

overnight and then filtered through celite. The crude product 3 in the filtrate was 

concentrated in vacuo and purified by automatic column chromatography with silica gel 

using 5% ethyl acetate/petroleum ether as the mobile phase. The product was a 

colorless liquid and the yield was 91%. ESI-MS calculated for [M+H]+ m/z = 209, found 

209. 

 

1-(4-Hexyl-2-methoxyphenoxy)-2-nitrobenzene (4)156 

A solution of 1.484 g compound 3 (7.1 mmol) and 2.9 g K2CO3 dissolved in 5 ml DMF 

was stirred for 10 min prior the addition of 1.303 g 1-fluoro-2-nitrobenzene (6.4 mmol). 

The reaction was heated to 120 oC under N2 for 2 hrs before quenching with 50 ml H2O. 

The aqueous layer was extracted 3 times with 30 ml diethyl ether and the combined 

organic layer was washed with 50 ml brine and dried with MgSO4. The crude product 

was concentrated in vacuo and was used for the next step without purification. 

 

2-(4-Hexyl-2-methoxyphenoxy)benzenamine (5)156 

Activated palladium on charcoal (200 mg) was added to a solution of compound 4 (2.0 

g, 6.1 mmol) in 25 ml of MeOH. . The reaction mixture was stirred under hydrogen 
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overnight and then filtered through celite. The crude product 3 in the filtrate was 

concentrated in vacuo and purified by automated column chromatography with silica gel 

using 5% ethyl acetate/petroleum ether as the mobile phase. The product was colorless 

liquid and the yield was 89%. ESI-MS calculated for [M+H]+ m/z = 300, found 300. 

 

1-(4-Hexyl-2-methoxyphenoxy)-2-iodobenzene (6)157 

HCl (6M. 6.0 ml) and NaNO2 (1.5 g) were added to a solution of compound 5 (2g, 6.7 

mmol) in 50ml of 50% AcOH/50% H2O at 0oC, and the mixture was stirred for 40 min 

prior to the addition of 4.8 g of KI (28 mmol). After 24 hrs, the reaction quenched with 

200 ml solution of 50% DCM/50% H2O. The organic layer was obtained and the 

aqueous later was extracted 2 times with DCM. The combined organic layer was dried 

with MgSO4 and concentrated in vacuo. 1.74 g of crude product was collected and used 

for next step without purification.  

 

2-(2-Iodophenoxy)-5-hexylphenol (7)157 

6.3 ml BBr3 solution (1M, 6.3 ml) was added dropwise to a solution of compound 6 

(1.74g, 4.2 mmol) in 10 ml DCM at -78oC, and the mixture was warmed to room 

temperature slowly. Before quenching the reaction with 10 ml MeOH, the reaction was 

cooled to -78 oC. The reaction was dried in vacuo and redissolved with 30 ml DCM. 

Organic layer was washed with NaHCO3, water and brine sequentially prior to dry with 

MgSO4. The crude product was concentrated in vacuo and purified by automated 

column chromatography with silica gel using 4% ethyl acetate/petroleum ether as the 

mobile phase. The product was yellow liquid and the yield was 81%. 1H NMR (300MHZ, 
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CDCl3) δ 7.85 (dd, J = 8.4, 1.5 Hz, 1H), 7.24-7.30 (m, 1H), 6.72-6.90 (m, 3H), 6.74 (d, J 

= 8.1 Hz, 1H), 6.65 (dd, J = 8.1, 2.1 Hz, 1H), 5.51 (s, 1H), 2.56 (t, J = 7.8 Hz, 2H), 1.50-

1.62 (br, 2H), 1.21-1.40 (br, 6H), 0.89 (t, J = 6.6 Hz, 3H); ESI-MS for [M+H]- m/z = 395, 

found 395 

 

2-(2-(Tributylstannyl)phenoxy)-5-hexylphenol (8)157 

t-BuLi (2M solution in cyclohexane, 1.14 ml, 2.28 mmol) was added dropwise to a 

solution of 7 (300mg, 0.76 mmol) in 10 ml dry diethyl ether at -78°C. The mixture was 

stirred for 30 min prior to the dropwise addition of tributylchlorostannane (0.818 ml, 3.04 

mmol). The reaction was stirred at -78°C and allowed to warm to room temperature 

overnight. The reaction was then quenched with 0.1 M phosphate buffer (pH 7) at -78°C, 

and 100 ml 50% diethyl ether/50% H2O was added. The organic layer was collected 

and the aqueous layer was extracted with additional diethyl ether.. The combined 

organic layers were dried over MgSO4, and the solvent was removed in vacuo. The 

crude product was purified by automated column chromatography with silica gel using 1% 

triethylamine/4% ethyl acetate/95% petroleum ether as the mobile phase. The product 

was a yellow oil and the recovered yield was 25%. 1H NMR (300MHZ, CDCl3) δ 7.48 

(dd, J = 7.2, 1.8 Hz, 1H), 7.22-7.28 (m, 1H), 7.08-7.12 (m, 1H), 6.88 (d, J = 2.1 Hz, 1H), 

6.74 (dd, J = 7.5, 2.4 Hz, 2H), 6.64 (dd, J = 8.4, J = 2.1, 1H), 5.35 (s, 1H), 2.56 (t, J = 

7.5 Hz, 2H), 1.47-1.63 (br, 8H), 1.24-1.36 (br, 12H), 1.04-1.10 (br, 6H), 0.84-0.92 (br, 

12H); ESI-MS for [M+H]- m/z = 599, found 599. 
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Synthesis of [11C]PT-70 

The synthesis of [11C]PT-70 was performed using organotin or stannanes 6 as the 

precursor67. The precursor (1.0 mg) was dissolved in 0.3 ml THF with 2 mg 

tetrakis(triphenylphosphine)palladium(0). After [11C]CH3I was purged into the solution 

and trapped at 0°C, the reaction vessel was sealed and heated at 100°C for 5 min in an 

oil bath. The reaction mixture was diluted with 1 ml of aqueous ammonium formate 

(0.1M) prior to loading onto a semi-preparative HPLC column. HPLC purification was 

performed using a reverse phase PFP column (Phenomenex, Luna PFP 250×10, 5 µm), 

at a 5 ml/min flow rate with a mobile phase consisting of 68% MeCN/32% aqueous 

ammonium formate (0.1 M). The product was collected at the expected retention time 

(17 min) and the solvent was removed by rotary evaporation. After dilution with 4 ml 

saline with 1 ml sterile alcohol, the solution was filtered through an Acrodisc 13-mm 

Syringe Filter with 0.2 µm Supor membrane (Pall Corporation, Ann Arbor, MI) into a 

sterile vial for delivery. Radiochemical purity was determined by reverse-phase 

analytical HPLC using a Phenomenex, Luna PFP, 250×4.6, 5 µm column operated at 

1.0 ml/min flow rate using a mobile phase of 70% MeCN/30% water, with 10 min 

retention time. Subsequently, purity was verified using TLC (5% EA/95% HE, Rf = 0.45) 

by co-spotting the labeled product with a standard.  

 

Synthesis of [11C]PT-119 

The synthesis of [11C]PT-119 was performed using iodo-precursor 580. The precursor 

5 (1.0 mg), K222(0.2 mg) and tetrakis(triphenylphosphine)palladium(0) (2.0 mg) was 
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placed in a vial with 0.2 ml DMSO and heated until all the solid dissolved. This solution 

was then added to [11C]HCN that had been purged and trapped in 0.15 ml DMSO, and 

the reaction mixture was sealed in a reaction vial and heated at 135°C for 5 min in an oil 

bath. The reaction was quenched by the addition of 1 ml water and the mixture was 

filtered through celite prior to injection onto the semi-preparative HPLC column. HPLC 

purification was performed using a reverse phase PFP column (Phenomenex, Luna 

PFP 250×10, 5 µm), at a 5 ml/min flow rate with a mobile phase consisting of 70% 

MeCN/30% aqueous ammonium formate (0.1 M). The product was collected at the 

expected retention time (10 min) and the solvent was removed by rotary evaporation. 

After dilution with 4 ml saline with 1 ml sterile alcohol, the solution was filtered through 

an Acrodisc 13-mm Syringe Filter with 0.2 µm Supor membrane into a sterile vial for 

delivery. Radiochemical purity was determined by reverse-phase analytical HPLC using 

a Phenomenex, Luna PFP, 250×4.6, 5 µm column operated at 1.0 ml/min flow rate 

using a mobile phase of 70% MeCN/30% H2O, with 10 min retention time. Subsequently, 

purity was verified using TLC (5% EA/95% HE, Rf = 0.4) by co-spotting the labeled 

product with a standard.  

 

PET Imaging and Data Processing 

All animal experiments performed in this study were approved by the Brookhaven 

Institutional Animal Care and Use Committee. Two baboons were included in this study. 

Ketamine hydrochloride (10mg/kg) was administered intramuscularly as an anesthetic 

agent and anesthesia was further maintained with oxygen (800 ml/min), nitrous oxide 
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(1500 ml/min) and isoflurane (Forane, 1-4%) during scanning. Two catheters were 

placed in a radial arm vein and the popliteal artery for [11C]-labeled drug injection and 

arterial sampling, respectively. [11C]-labeled drug was injected through the prior catheter 

and arterial blood was collected through the latter one as following time intervals: every 

5 s for 2 min, then 2, 5, 10, 20, 30, 45, 60 and 90 min. During the PET scanning, heart 

rate, respiration rate, body temperature and pO2 were monitored. Siemens HR+ 

(Siemens high-resolution, whole-body PET scanner with 4.5×4.5×4.8 mm resolution at 

the center of field of view) was used to perform dynamic PET scans for a total of 90 min 

with the following time frames in 3D mode: 1×10, 12×5, 1×20, 1×30, 8×60, 4×300, 

8×450 s. Correction of attenuation was obtained by a transmission scan of a 68Ge rod 

source prior to each PET scan. Six baboon studies were conducted with average 

injected doses for RIF, INH and PZA of 1.54 mCi, 4.38 mCi and 5.17 mCi respectively. 

Images were reconstructed by filtered back projection (FBP) and analyzed using 

AMIDE® software.125 

 

LogD and PPB Determination 

LogD determination: A test tube containing 2.5 ml of octanol and 2.5 ml of phosphate 

buffer solution (pH 7.4) was mixed with ~50 µl aliquot of formulated [11C]-labeled drug 

by vortex for 2 min followed with centrifugation for 2 min to ensure full separation of the 

aqueous and organic phases. An aliquot from the octanol layer (0.1 ml) and aqueous 

layer (1 ml) were collected for radioactivity measurement. An additional 2.0 ml aliquot of 

the octanol layer was carefully transferred to a new test tube containing 0.5 ml octanol 
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and 2.5 ml phosphate buffer (pH 7.4) and the previous procedure (vortex mixing, 

centrifugation, sampling, and transfer) was repeated for an additional five times to 

obtain six sets of samples. A well counter (Picker, Cleveland, OH) was used to measure 

radioactivity in each set of samples and the logD value of each sample was calculated 

by the following equation:  

 

logD = log (decay-corrected radioactivity in octanol layer × 10/decay-corrected 

radioactivity in phosphate buffer layer).  

 

PPB determination: A 10 µl aliquot of the formulated [11C]-labeled drug was mixed 

with a sample of baboon plasma (0.8 ml, collected from at least 4 different baboons and 

pooled) by gently inverting several times. The mixture was incubated for 10 min at room 

temperature and then a 20 µl aliquot was taken to determine the total radioactivity in the 

plasma sample (AT; AT=Abound+Aunbound). An additional 0.2 ml aliquot of plasma was 

placed in the upper level of a centrifree® tube (Amicon, Inc., Beverly, MA) and then the 

tube was centrifuged for 10 min. After discarding the upper part of the Centrifree tube, a 

20 µl aliquot from the bottom part of the tube was taken to determine the amount of 

radioactivity that passed through the membrane (Aunbound). PPB was calculated by the 

following equation:  

 

% unbound = Aunbound × 100/AT 
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Metabolite analysis 

Several aliquots (~0.2 ml each) of baboon plasma sample were collected at various 

time points during the PET study. Each sample was counted and added to a solution of 

unlabeled standard (20 µl of a 1 mg/ml solution) in MeCN (0.3 ml). The resulting 

solution was vortexed and centrifuged and the supernatant was collected. After mixing 

with 0.3 ml water, the supernatant was analyzed by HPLC using the following condition: 

Waters µbondapak C-18 3.9×300 mm column with eluents 65% MeCN/35% 0.1 M 

aqueous ammonium formate at 1.0 ml/min using UV (254 nm) and radio-detection. The 

percent of unmetabolized radiotracer was determined as the ratio between the fraction 

of radioactivity coeluting with the unlabeled standard and the total radioactivity from the 

HPLC column. 
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Chapter 4  

Evaluation of Carbon-11 Radiolabeled FabI inhibitors for Detection of 

Staphylococcus aureus in A Mouse Model of Infection 

Infected animal experiments were conducted at BNL with Yang Lu and Hui Wang 

 

Introduction 

It has been estimated that 20% of the human population is a long-term carrier of S. 

aureus129. The incidence of infection has increased every year, and hospitalization 

involving S. aureus has almost doubled from 1999 to 2005130. The emergence of 

antibiotic-resistant strains, such as methicillin-resistant S. aureus (MRSA) and 

vancomycin-resistant S. aureus (VRSA), raises challenges for chemotherapy and 

increases mortality127,130. Although staph infections generally occur on the skin, S. 

aureus are able to disseminate via the blood stream or through surgical processes into 

other organs131-133. In particular, S. aureus can also invade the heart and cause 

endocarditis, which results in 25-47% mortality134,135,158. Typical diagnostic procedures 

for staph infection involve appearance upon examination and biological analysis of 

blood samples or nasal secretions. Recent technological advances in RT-PCR have 

enabled reliable and rapid procedures to be created for the identification and 

characterization of clinical isolates of S. aureus. However, challenges have remained for 

the clinical diagnosis of S. aureus endocarditis as it still primarily relies on unspecific 

signs such as heart murmur, fever and the presence of bacteria in the blood158. Given 
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the high mortality rate that results from staph infection, there is a pressing need to 

develop improved diagnostic methods for this disease to guide the treatment.  

 

Non-invasive imaging is emerging as a powerful tool to study S. aureus and 

complement current diagnostic methods. Optical imaging, which utilizes bioluminescent 

bacteria or synthetic fluorescent probes, has demonstrated notable successes in 

localizing and quantifying S. aureus in rodent159-162. However, pathogenic bacteria do 

not carry either luciferase enzymes or fluorescent proteins in their native state. In 

addition, optical imaging is only feasible for imaging bacteria at a depth of a few cm162. 

Several MRI studies of S. aureus have been reported, but the accumulation of contrast 

agents was nonspecific and attributed to inflammation163,164. Recently, imaging of S. 

aureus using PET and SPECT with radiolabeled antibodies, antibiotics, peptides and 

proteins has been reported42,158,165-168. Although antibodies and peptides can specifically 

bind to molecular targets, their relatively large size limits tissue diffusion and peptides 

are also vulnerable to decomposition by proteases162. A few antibiotics are tagged with 

radiolabel and evaluated in living animals. Traditional methods for labeling antibiotics 

typically employ a radiolabel that is attached through a linker or involves fluorine-

exchange to generate low specific activity fluorine-18 analogues of drugs such as 

fluoroquinolone antibiotics39,42. Both methods however suffer from disadvantages: 

attachment of a linker may alter the biological activity of the antibiotics, while the latter 

results in very low specific activity radiotracer.  
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comparison with corresponding organs in uninfected animals, which are consistent with 

the location of staph infection according to CFU counts. Additional experiments are 

planned to evaluate the performance of [11C]PT-119 and [11C]PT-70 in the systemic 

infection model.  
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Result and Discussion 

In vitro assay for the uptake of radiolabeled compounds by S. aureus 

In Figure 4.1, we depict the in vitro uptake of various radiolabeled compounds by S. 

aureus in 2 hrs. [18F]FDG clearly demonstrates time-dependent uptake and increases 

almost linearly from 10 min to 2 hr, while [11C]PT-119 was incorporated by the bacteria 

quickly and decreased from 20 min to 2 hr. In addition, bacteria accumulated ~3% of 

incubated [18F]FDG in 20 min, which is 10 times lower than the uptake of [11C]PT-119 

(~45% of incubated dose). The significant difference suggests that [11C]PT-119 is 

potentially a better probe than [18F]FDG for in vivo imaging of S. aureus, although 

membrane association might contribute a certain amount of uptake. In addition, the 

specific activity of [11C]PT-119 was probably 100-1000 times higher than [18F]FDG as 

the latter was diluted with glucose, which may also contribute to the 10 times difference 

in uptake as well as the rate of uptake. The [18F]FDG uptake we measured was 2 times 

higher than the value reported by Welling35, which could due to slightly higher (25%) 

amount of bacteria in our system and differences in the bacterial strain.  
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min ratio looks promising, it is not significantly higher than one (P > 0.05). In addition, 

there is no clear trend over the 1 hr study time frame, which made the design of 

additional experiments more difficult. Instead of focusing on [11C]PT-119 alone, we 

moved toward another diaryl ether [11C]PT-70 and performed similar experiment. As 

shown in Figure 4.5 b, the T/NT ratio are less variable than that with [11C]PT-119. The 

N/NT ratio moved from 0.97 at 10 min to 1.22 at 40 min. At 60 min, the ratio decreased 

to 1.1. Again, the trend is not clear whether the ratio would increase or decrease over 

time, which made it hard to decide whether we should pursue probes with radiolabels 

that have longer half-lives.  

 

These results, especially the control from [18F]FDG, tend to suggest that our animal 

model may not be the best for our purpose, although it has been utilized by other 

researchers intensively for nuclear imaging and optical imaging and they demonstrated 

that the T/NT ratios are between 2 to 635,160,165,170. An alternative explanation is that our 

thigh infection model differs fundamentally from that used in other studies. However, the 

consistent bacterial growth measured by CFU, together with reliable efficacy studies 

using the same model, suggests that the model is performing as expected. Since we 

have so far been unable to explain the apparent discrepancy between our results and 

those reported in the literature, we decided to pursue the systemic infection model for 

comparative purposes. 

 

Imaging systemic infection model in immunocompetent mice 

[18F]FDG 
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Systemic infection was induced by ip injection of S. aureus with an infection dose of 5 

× 106 CFU/mouse (low dose) or 5 × 108 CFU/mouse (high dose). [18F]FDG (100~200 

µCi) was injected iv 24 hrs post-infection. In Figure 4.6 are shown the radioactive 

counts detected in major organs from the control group, low dose infection group and 

high dose infection group 2 hrs after [18F]FDG administration. Radioactivity in the spleen 

and liver from the high dose infection are significantly higher than the control group (P < 

0.05). It is well known that ip inoculation leads to significant levels of bacterial infection 

in the spleens of infected animals. In out experiments the highest levels of infection 

were observed in the spleen, which is consistent with the observation that accumulation 

of [18F]FDG was highest in this organ (~2.5 fold above background). The results 

presented as a control experiment to validate the animal model, and suggest that the 

systemic model might be suitable for imaging S. aureus in vivo with other probes, such 

as  [11C]PT-119 and [11C]PT-70. The next steps of this project will utilize systemic model 

to evaluate the [11C]PT-119 and [11C]PT-70 distribution.  
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Experimental Section 

Chemicals 

[18F]FDG (5-10 mCi) was purchased from Cardinal Health (Plainview, NY) on each 

day of experiment. [11C]PT-70 and [11C]PT-119 were made in-house according to the 

method described in Chapter 3.  

 

In vitro assay for the uptake of radiolabeled compounds by bacteria 

S. aureus RN4220 strain was grown to mid-log phase (OD = 0.8) in Muller-Hilton (MH) 

broth. 1 ml of culture was centrifuged at 10,00 rpm for 3 min and the cell pellet was 

resuspended in 1 ml of saline . Radiolabeled compound (~1mCi in 1-2 ml saline, 

specific activity = 50-200 mCi/µmol at the time of incubation) was subsequently added 

to the bacterial suspension (20 ml) while “cold” compound was added to the control 

group. The bacterial suspension was incubated at 37 °C and aliquots (1 ml) were 

removed at 5 min, 10 min, 20 min, 40 min, 1 hr, 2 hr, centrifuged and washed once with 

saline to reduce the background signal. An empty tube without bacteria was 

incorporated as a control for background correction. A well counter (Picker, Cleveland, 

OH) was used to measure radioactivity in each set of samples. The radioactive counts 

were decay corrected to the time of that the incubation was initiated. 
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Animal experiment 

All of the animal experiments were approved by the Brookhaven Institutional Animal 

Care and Use Committee or Stony Brook University Institutional Animal Care and Use 

Committee. Animals were purchased from Taconic or Charles River.  

 

Thigh infection model35 

Female ICR mice (Charles River) weighting between 22-28 g (6-8 weeks) were used 

for experimental infection. The animals were housed in the animal facility for 1 week 

before the experimental day, and food and water were given ad libitum. S. aureus 

RN4220 was striped on Muller-Hilton agar sheep blood plate and incubated at 37 °C. A 

single colony was picked and cultured in 15 ml MH broth at 37°C to mid log phase (OD 

= 0.8). Cells were collected by centrifugation (10,000 rpm, 3 min) and washed with 

saline (1 ml). The cell pellet was resuspended in saline (1 ml) containing 1% BHI media 

and injected im into the left thigh at doses of 5×107 cells/thigh or 5×108 cells/thigh. At 

the same time the right thigh of each animal was injected im with empty vehicle as 

control. 

 

Systemic infection model171 

Male Swiss Webster mice (Taconic) weighting between 32-37 g (6-8 weeks) were 

used for experimental infection. The animals were housed in the animal facility for 1 

week before the experimental day, and food and water were given ad libitum. S. aureus 

RN4220 was striped on Muller-Hilton agar sheep blood plates and incubated at 37°C. A 

single colony was picked and cultured in 15 ml of MH broth at 37°C to mid log phase 
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(OD = 0.8). Cells were collected by centrifugation (10,000 rpm 3 min) and washed with 

saline (1 ml). Cell pellets were resuspended in saline (1 ml) containing 1% BHI media 

and 500 µl was injected ip into mice at 5×106 cells/mouse or 5×108 cells/mouse. 

 

Detection of S. aureus infections in mice 

Anesthesia was initiated with 5% isoflurane and maintained with 1-4% isoflurane 

during the imaging process. Mice were placed on the mPET (MicroPET R4, Siemens) 

scanner prior to injection of radiolabeled compounds ([18F]FDG, [11C]PT-119, or 

[11C]PT-70). Data acquisition was started simultaneously with the injection of 

radiolabeled compound. During the scan, the mice were immobilized with surgical tape 

and kept warm at 30°C during imaging using a heating lamp. Dynamic PET scans (60-

120 min) were performed in 3D mode, and the raw data were reconstructed by 3D 

filtered-back projection (FBP). Results were analyzed using AMIDE software.  

 

Bacterial CFU counting 

Animals were euthanized at the end of experiment and target organs were collected 

and weighted separately. Each organ was homogenized in 1ml saline and a series of 

dilutions were performed. 50 µl of each dilution was spread on a Muller-Hilton agar 

sheep blood plate which was then incubated at 37°C for 24h. CFUs were counted and 

normalized to weight. 

 

Biodistribution of radiolabeled compound in mice 
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Female ICR mice weighting between 22-25 g (4-6 weeks) were purchased from 

Charles River. The animals were housed in the animal facility for 1 week before the 

experimental day, and food and water were given ad libitum. [11C]PT-70 (100-150 µCi, 

200-500 µl, specific activity = 7-13 Ci/µmol at the end of bombardment (EOB)) was 

injected iv into study 1 group while PT-70 (200mg/kg) was administered ip into study 2 

group prior to the infection of [11C]PT-70. Mice were euthanized 60 min post 

administration, and target tissues were obtained by dissection and then weighed, and 

counted for radioactivity with a well counter (Picker, Cleveland, OH).  

 

Statistical analysis 

Statistical comparison between groups was performed using one tail distribution, two 

sample, unequal variance student t-test in Excel 2010 (Microsoft) and expressed as the 

Pearson’s correlation coefficient. 
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Chapter 5 

Non-invasive PET Imaging of 2-[18F]-Fluoroisonicotinic acid hydrazide in 

Mycobacterium tuberculosis Infected Mice 

 

This chapter is based on the following manuscript: 

Weinstein, E.A.* Liu, L.,* Wang, H., Ordonez, A.A., Tonge, P.J., & Jain, S.K., 

Noninvasive Determination of 2-[18F]-Fluoroisonicotinicacid hydrazide Pharmacokinetics 

by Imaging Mycobacterium tuberculosis Infected Mice. Antimicrob. Agents Chemother. 

Manuscript in Preparation 

Infected animal experiments were conducted at JHU with Dr. Weinstein in Dr. Jain’s 

lab. Dr. Weinstein and Mr. Wang helped with the preparation of the manuscript.  

 

 

Introduction 

Tuberculosis (TB) is a global health threat, and the choice of treatment of this 

particular pathogen is driven by the relatively unsophisticated diagnostic methods. The 

basic methods for diagnosis of active Mtb infection have not changed for decades and 

generally rely on the availability of clinical samples that contain bacteria, either for acid 

fast staining and/or culturing, or, more recently, for nucleic acid amplification172.  In 

addition, while one focus of development of diagnosis is for active TB, Mtb is primarily 

found in the body in a latent or non-replicating state. The detection of latent TB relies on 
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the tuberculin skin test using PPD that requires a relatively intact immune system and is 

negative in approximately 20% of people with known TB173. The Quantiferon method 

which detects the production of interferon-gamma in response to mycobacterial 

antigens has approximately the same predictive value as the PPD skin test. Thus, in 

order to combat the spread of TB, an efficient, reliable and rapid method that can not 

only diagnose infection but that can also differentiate between different bacterial 

populations in humans is in urgent need. 

 

PET is a well established technique for imaging human brain function and cancer 

status20,25-27. While PET has previously been used to image the distribution of 

[18F]FDG in patients infected with TB, 18FDG is a monitor of glucose uptake and so 

many tissues and cells, both normal and abnormal, will take up 18FDG174. Although 

18FDG may be able to image TB bacteria, this radiotracer has limited diagnostic value 

since it cannot distinguish TB from other pathological, as well as benign, conditions175. 

[125I]-FIAU has been developed for bacteria imaging, including TB, by targeting 

thymidine kinase (TK). However, it cannot differentiate bacteria from species and it also 

requires to externally engineering Mtb strain with chromosomally integrated bacterial 

TK176. Zhang and coworker reported the utility of bioluminescent Mtb reporter stains that 

enabled monitor bacteria population in vivo. Although this technique demonstrates to be 

valuable in treatment evaluation, its diagnostic value is minimal as patients will not carry 

this particular strain of TB bacilli177. A sensitive detection of nonrecombinant strains 

that cause TB has been developed by Cirillo and coworkers by utilizing reporter 

enzyme fluorescence (REF) method, which uses β-lactamase as the reporter enzyme 
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and a specific probe for imaging. Although this method demonstrates potential in 

animal model, it would be difficult to apply to patient as the limitation of signal 

penetration of optical imaging178,179. Thus, there is a pressing need to develop novel 

target-specific PET probes that can be readily translated to patient. 

 

 Isoniazid (INH) was first recognized as an antitubercular drug back in 1952180, and it 

has been the most widely used drug for the treatment of TB since then121. Our 

hypothesis is that the INH will accumulate in infected tissue, enabling bacterial 

populations to be non-invasively imaged using PET. The mode of action of INH was first 

reported by Cole and coworkers that INH is a prodrug activated by mycobacterial 

catalase-peroxidase enzyme KatG as its mutations are discovered in a major fraction of 

clinical isolated INH resistant strains119,138,181. In addition, Jacobs and coworkers 

identified InhA as the target of INH, which became the general consensus for the 

antitubercular mechanism of INH, although Barry and Blanchard have identified KasA 

and DHFR as targets for INH, respectively182-185. As there was considerable technical 

challenge to perform [11C]INH imaging study in TB infected animals, we mitigated the 

challenge by imaging fluorine-18 labeled INH analog, 2-fluoro-isonicotinic acid 

hydrazide (2-F-INH). 

 

The antitubercular activity of 2-F-INH, an analog of INH, was first reported by Cordes 

and coworkers in 1976186. Subsequently, Amartey incorporated fluorine-18 into 2-F-INH 

and reported its localization to the site of infection in E. coli infected mice with 3.0 ratio 

between infected and uninfected thighs187,188. However, the mechanism of 
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similarity/difference between 2-F-INH is still poorly understood, and E. coli does not 

carry activation enzyme KatG or its analog. 

 

Here we report a direct comparison of 2-F-INH and INH at the molecular level which 

suggests 2-F-INH will behave similar to INH for the in vivo imaging experiment as the 

accumulation of INH or 2-F-INH is driven by KatG activation189. We also developed a 

novel injection system to determine the host pharmacokinetic profile of 2-[18F]F-INH and 

compare tracer accumulation in the lungs, brain, and liver of Mtb infected mice. The 

data indicates that 2-[18F]F-INH accumulates specifically in the bacterial lesions. The 

C3HeB/FeJ mice demonstrate foci of signal intensity consistent with granuloma like 

lesions observed on CT. Although the 2-[18F]F-INH signal is only slightly larger in Mtb 

infected mice than uninfected mice, the platform we developed here can be used for 

future development of diagnosis technology.  
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reaction. The by-product of the second step is [18F]F- ion, which is generated through 

the nucleophilic substitution with N2H4. Purging with N2 gas before quenching removed 

excess N2H4, which otherwise will affect the product elution. Compound 3 was 

subsequently purified by HPLC using a semipreparative Phenomenex Luna PFP 

column (250  10, 5µm) and eluted around 10 min. In the optimized reaction scheme, 

the decay-corrected yield (DCY), calculated from eluted [18F]KF, was 25-30% in a total 

synthesis time of 75 min. Analytical HPLC and TLC demonstrated that the radiolabeled 

product was over 98% radiochemically pure, with a specific activity of 200-300 

mCi/µmol at the time of administration to the animal.  

 

Activity of 2-F-INH against wild type H37Rv Mtb and isoniazid resistant mutants.  

 INH is typically activated by the catalase-peroxidase KatG119, after which the 

compound forms a NAD adduct that inhibits the target protein InhA119,183,190,191. 2-F-INH 

has an MIC99 of 8 µg/ml against H37Rv, which is similar as first reported by Cordes and 

coworkers in 197690, as opposed to 0.025 µg/ml for INH. In addition, the MIC of 2-F-INH 

increased to 32 µg/ml with INH-resistant strains of H37Rv with mutations in the katG 

gene in the promoter192 (M1A,INH MIC99 >2 µg/ml) and point mutation W149R (INH 

MIC99 >1 µg/ml). Likewise, a third INH resistant strain with a  -8 T→A mutation in the 

promoter region of inhA (INH MIC99 0.1 mg/ml) had an MIC99 of >32 µg/ml for F-INH. 

Thus the fact that MIC of 2-F-INH increases even more in INH resistant strains indicates 

that 2-F-INH is activated by the same mechanism as INH. 
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Analysis of 2-F-INH KatG mediated NAD adduct formation, InhA inactivation, and 

in vitro accumulation of 2-F-INH in Mtb.  

Given a similar pattern of activity between 2-F-INH and INH against drug resistant Mtb. 

strains, we next determined whether 2-F-INH undergoes a similar pattern of adduct 

formation with NAD prior to inhibition of InhA. Recombinant, purified Mtb KatG was used 

to oxidize INH or 2-F-INH. Adduct formation monitored by HPLC demonstrated similar 

amounts of adduct formation for both INH and 2-F-INH based on UV absorption at 260 

nm and 326 nm. Next, the time-dependent inactivation of InhA by INH and 2-F-INH was 

measured by monitoring the oxidation of NADH in vitro. The inactivation followed first 

order kinetics with a rate constant of 0.0299 and 0.0104 min-1 for INH and 2-F-INH, 

respectively (Figure 5.1). Complete inhibition of InhA was achieved within 90 min for 

INH, whereas 2-F-INH required over 120 min.  In the control groups, the inhibition of 

InhA was negligible(< 10% loss) without addition of KatG or drug(not shown). This 

decreased InhA activity has been attributed to the slow degradation of InhA in vitro or 

autoxidation of drug193. This provided one explanation for the apparent reduced Mtb 

MIC99 of 2-F-INH as compared to INH. 

 



 

 

Figure 

 T

KatG, 

intracel

type M

[18F]-IN

resistan

accumu

addition

and Mt

cellular

 

 

5.1 Inactiv

The NAD a

but could

llularly. We

tb and INH

NH (198 c

nt strain, 

ulation of 

n of fluorin

tb growth,

r uptake an

vation of I

adduct for

d not de

e therefore

H resistan

pm) readil

KatG 

2-[18F]-INH

ne at the s

, but the 

nd attenuat

InhA with 

mation ass

etermine w

e tested th

t mutants 

ly accumu

M1A, de

H (23 cpm

second pos

analog ge

ted activity 

119 

INH and 2

say showe

whether 2

e intracellu

(Figure 5

ulated with

monstrated

m). Taken 

sition signi

enerally fol

against iso

2-F-INH 

ed that 2-F

2-[18F]-INH

ular accum

.2). Follow

hin wild ty

d signific

together, 

ficantly de

llows a si

oniazid res

F-INH was 

H was ap

mulation of

wing an 8 

pe Mtb. O

cantly red

these data

ecreases a

milar patte

sistant mut

readily ox

ppreciably 

f 2-[18F]-IN

hour incub

Only the m

duced int

a indicate 

ctivity aga

ern of me

ants. 

 

idized by 

trapped 

H in wild 

bation, 2-

most INH 

racellular 

that the 

inst InhA 

etabolism, 



 

 

Figure 

in wild

 

PET Im

2-[18F

with res

animal.

selectiv

PET sig

super-s

form gr

Mtb194. 

CFU M

106 CF

in biosa

scanne

5.2 Cell a

 type H37R

maging of 2

F]-INH was

sultant spe

. We hypot

ve intracell

gnal. C3He

susceptibili

ranuloma li

5-6 week 

Mtb (H37Rv

U in the lu

afety level 

ed in pairs 

associated

Rv Mtb and

2-[18F]F-IN

s synthesiz

ecific activi

thesized th

ular trappi

eB/FeJ mic

ity to TB 1

ike lesions

old female

v) by aeros

ungs. Mice 

3 conditio

with infec

d radioacti

d isoniazid

NH in H37R

zed and pu

ity of 200-3

hat the met

ng of the N

ce were se

1 (sst1) loc

s with centr

e C3HeB/F

sol infection

underwent

ons with su

cted mice p

120 

ivity follow

d resistant

Rv Mtb infe

urified by a

300 mCi/µ

tabolism of

NAD addu

lected for t

cus, endow

ral casseou

FeJ mice w

n, which at

t standard 

ubsequent 

positioned 

 

wing 8 hou

t strains.

ected mic

a modified

µmol at the

f isoniazid 

ct and the

their lack o

wing the m

us necrosis

were infecte

t 17 weeks

tail vein in

biocontain

next to un

ur incubat

e.   

d method o

e time of ad

by the Mtb

refore gen

of expressio

mice with a

s in respon

ed with app

s post infec

njection of 2

nment for i

ninfected c

tion with 2

of Amartey

dministratio

b KatG may

nerate a TB

on of Ipr1 w

an intrinsic 

nse to infec

proximatel

ction result

200 µCi 2-

maging. M

controls in 

2-18F-INH 

y et al 188 

on to the 

y result in 

B-specific 

within the 

ability to 

ction with 

y 1 x 102 

ted in 5 x 

-[18F]-INH 

Mice were 

separate 



 

 

biocont

Discret

uninfec

bladder

slow wa

 

Figur

with M

INH, B

M. tube

Mice w

tainment tu

te foci of P

cted anima

r. Nonspec

ashout acr

re 5.3 Com

tb compa

) Infected 

erculosis b

were injecte

ubes. Imag

PET activit

als. Backgr

cific PET s

ross the blo

mbined PE

red to uni

mouse im

by aerosol 

ed with 200

ges (Figure

ty were no

round activ

signal was 

ood brain b

ET/CT ima

nfected co

maged wit

contained 

0 µCi of 2-

121 

e 5.3) were

oted in the 

vity is note

also noted

barrier.  

aging of C

ontrol. A) 

th 2-18F-IN

5 x 106 C

[18F]-INH v

e acquired 

lung fields

d as expe

d within th

3HeB/FeJ 

Uninfecte

H. C3HeB/

CFU in the 

via the tail 

60 minutes

s of infecte

cted in the

he brain fie

 

mice at 1

ed mouse i

/FeJ infect

lungs at th

vein and im

s following

ed mice, b

e liver, kidn

eld, possib

17 weeks i

imaged w

ted with 10

he time of 

maged in p

g injection. 

but not in 

neys and 

ly due to 

infection 

ith 2-18F-

02 CFU of 

imaging. 

pairs 120 



 

122 
 

minutes post-injection using the Mosaic HP (Philips) Small Animal PET imager followed 

by immediately by a CT scan. Whole animal sagittal and transverse sections are 

displayed as combined PET/CT images with heart (H), liver (L), kidneys (K), and 

bladder (B) marked 

 

To confirm these results, a second BALB/C mouse model was selected which 

produces a diffuse, disseminated Mtb infection in response to a similar low dose aerosol 

infection.  Mice were imaged 8 weeks post infection, at which point the initial 102 CFU 

bacterial implantation progressed to 2.7 x 106 CFU in the lungs. The BALB/C animals 

were younger, and therefore weighed less (20.2 g ± 1.2 g) compared to the C3HeB/FeJ 

mice (37.1 g ± 6.0 g). There was no significant difference in weight between infected 

and uninfected animals. Mice underwent standard [18F]FDG PET imaging with 

anatomical CT co-registration (Figure 5.4, panels A and B) as previously described 194. 

Diffuse FDG-PET activity was noted in the lung fields in infected animals, with minor 

activity in the abdomen. Typical background FDG uptake was noted in heart, brain, 

bladder and kidneys, as observed in the uninfected control. Next, imaging was 

performed with 2-[18F]-INH. Uninfected mice (Figure 5.4, panel C) demonstrated 

background PET activity in the liver, kidneys and bladder. Infected animals (Figure 5.4, 

panel D) produced an additional PET signal in the lung fields and spleen, the expected 

sites of diffuse TB infection.  
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Organ compartment pharmacokinetics of 2-[18F]-INH in Mtb infected and 

uninfected mice.  

Given the qualitative differences in the 2-[18F]-INH PET signal between Mtb infected 

and uninfected mice we wished to perform a quantitative analysis. To permit on table 

injection of tracer, we fashioned a tail vein microcatheter within the biosafety 3 

biocontainment tube (Figure 5.6).  Following simultaneous 2-[18F]-INH injection into 

paired infected/uninfected BALB/C mice, we acquired PET data over time as a series of 

windows. Using the CT co-registration data, spherical regions of interest were drawn in 

the lung, brain, and liver fields. Each data point represents the mean intensity of 3 

animals. Organ specific regions of interest were drawn spherically based upon CT 

imaging. For the lungs two regions of interest were drawn to encompass the left and 

right lung fields. There was significantly more 2-[18F]-INH in the lung fields of infected 

mice versus uninfected controls from 40 minutes post injection to the end of the 

recording at 60 minutes (Figure 5.5, panel A). Presumed restriction of drug passage 

through the blood brain barrier produced a distinctly different PET activity profile, in 

which rapid uptake peaked 15 minutes post injection then slowly diffused away (Figure 

5.5, panel B). While the signal was greater in infected mice, it was not statistically 

significant. As expected, the liver intensity was not significantly different between the 

infected and uninfected animals (Figure 5.5, panel C), but of overall higher magnitude 

as this is the site of isoniazid host metabolism. 
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Discussion and Conclusion 

Isoniazid has been the mainstay of TB treatment since its introduction in 1952121,180. 

Attempts have been made to synthesize active analogs, and the antitubercular activity 

of 2-F-INH (MIC = 40 µg/ml) was first reported by Cordes and coworkers in 1976186. 

Subsequently, Amartey incorporated fluorine-18 into 2-F-INH and reported its in vitro 

accumulation in S. pneumoniae and its in vivo localization to E. coli infected mouse 

thighs with infected/uninfected ratio of ~3.5187,188. As neither of these microbes contains 

the katG oxidase-peroxidase, the mechanism of accumulation was unclear, and 

perhaps involved a nonspecific oxidation event. While this is known to occur 

inorganically with MnII or MnIII195, it remained imperative to establish the mechanistic 

similarity between 2-F-INH and INH for our studies. Here we report a direct comparison 

of 2-F-INH and INH with an in vitro KatG activation assay. We described a similar 

activation profile between 2-F-INH and INH, but INH demonstrated faster time-

dependent inhibition of InhA. The general consensus for the antitubercular mechanism 

of INH is the inactivation of InhA, however it is important to note that Barry and 

Blanchard have identified KasA and DHFR as possible targets of INH182-185. 

Nevertheless, we suggest that the higher MIC99 of 2-F-INH is likely due to reduced 

inactivation of InhA rather than KatG discrimination.  

 

We used the fluorine-18 analog of 2-F-INH to determine a pharmacokinetic profile of 

drug distribution in infected and uninfected murine models of TB. To our knowledge, this 

is the first example of on table radiotracer injection for imaging of biosafety level 3 
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organisms in a biosafety level 2 environment. The simple use of a tail vein catheter can 

be readily used by others to overcome this technical problem.  

 

The data suggest that 2-[18F]F-INH demonstrates lesion specific PET activity. The 

C3HeB/FeJ mice demonstrated punctuate foci of signal intensity consistent with 

granuloma like lesions observed on CT. Our previous work has established that these 

lesions both contain bacilli and are [18F]FDG avid194. We note that the distribution 

between the 2-[18F]F-INH PET signal and the lesions on CT did not perfectly correlate. 

As INH is only active against actively dividing bacilli, it is possible that unlabeled lesions 

may have contained quiescent, or dormant bacilli. It is for this reason that INH is 

typically administered over the course of several months of treatment. Infected BALB/C 

mice in contrast do not form granulomas and demonstrated a pattern 2-[18F]F-INH 

activity consistent with diffuse infection. Given the minor amplitude(1.6:1) of the 2-

[18F]F-INH signal in Mtb infected mice, we also recognize that decreased elimination of 

tracer may be contributing to a nonspecific blood pooling effect. However, the similar 

pattern of 2-[18F]F-INH activity in the liver between infected and uninfected mice would 

argue against this as the dominant process.  

 

In the analysis of the brain field, we found that 2-[18F]F-INH activity peaked 15 minutes 

after administration, consistent with the known rapid transit of INH across the blood 

brain barrier80. In infected animals, 2-[18F]F-INH activity trended towards greater 

accumulation in the brain. While not specifically assayed, we speculate that the infected 
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animals may have been burdened with TB meningitis, a manifestation of disease that is 

often difficult to diagnose89,90. 

 

Inconsistent, or incomplete Mtb treatment has led to the emergence of drug resistant 

strains196. The World Health Organization (WHO) has set a goal for elimination of TB by 

2050, but multidrug resistant (MDR) and extensively drug resistant (XDR) strains 

threaten the ability to effectively treat the infection197. With the alarming rise of drug 

resistant Mtb strains, accounting for up to 20% and 2% respectively of global TB198, 

there is significant interest in developing not only new drugs, but novel biomarkers to 

monitor TB therapy. The TB Trials Consortium (TBTC) has expressed an urgent need 

for development of validated biomarkers for monitoring TB treatments and for detecting 

relapse after completion of TB treatments199. Jain and coworkers have previously 

utilized pulmonary [18F]FDG to monitor the response to treatment194. FDG is a general, 

non-specific marker of metabolic activity that cannot discriminate inflammation from 

infection200, and furthermore assumes normal leukocyte function for tracer uptake at the 

site of infection. Bacteria specific imaging tracers are urgently needed that can identify 

foci of infection regardless of the host immune state. The use of PET technology is 

therefore not only useful for preclinical pharmacokinetic analysis, but potentially also for 

the diagnosis and monitoring of antibiotic therapy. 
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Experimental Section 

General 

Chemicals used in the study were all purchased from commercial vendors and were 

used without further purification except where stated. Acetonitrile was stored over 

molecular sieves in N2. [18F]F- was purchased from PETNET Solutions Inc. 

(Philadelphia, PA) in the form of NaF on ion-exchange resin. Chemical and 

radiochemical purities were determined by a TLC and an analytical HPLC system 

equipped with both UV and radioactivity detector. The purities of the intermediate and 

the final products were > 95%. 

 

Synthesis 

Synthesis of ethyl 2-(dimethylamino)pyridine-4-carboxylate188 

500 mg (3 mmol) 2-(N,N-dimethylamino)pyridine-4-carboxylic acid were dissolved in 

25 ml EtOH with 0.5 ml of H2SO4. The mixture was heated to 90°C and refluxed for 12 

hrs before quenching with 0.1M K2CO3. The pH of the solution was adjusted to 8, and 

then 3 portions of 30 ml ether were added to extract the crude product. The 3 portions 

of ether were combined together and washed with saturated NaHCO3. The ether was 

removed by rotary evaporation and the resulting crude product was purified by 

automated column chromatography with silica gel using a mobile phase of 25% ethyl 

acetate/75% petroleum ether. The product was a yellow liquid and the yield was 62%. 

1H NMR (300MHz, CDCl3) δ: 8.26 (d, J = 5.1 1H), 7.11 (s, 1H), 7.05 (d, J = 4.8 1H), 
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4.38 (q, J = 7.2 2H), 3.14(s, 6H), 1.40(t, J = 6.9 3H). ESI calcd for [M + H]+ m/z = 195, 

found 195.  

 

Synthesis of ethyl-2-(trimethylammonium)-4-pyridine carboxylate triflate (1)188 

Compound 1 (350 mg, 1.8 mmol) was dissolved in 5 ml CH2Cl2. The temperature of 

the solution was reduced to -78°C prior to the slow addition of methyl trilfate (296 mg, 

1.8mmol). The reaction was warmed to room temperature and kept at RT for 24 hrs. 

The solvent was removed by rotary evaporation and the resulting yellow solid was 

washed with cold ether. The crude product was recrystallized in ethyl acetate. The 

product was a white solid and the yield was 25%. 1H NMR (300MHz, CDCl3) δ: 8.75 (d, 

J = 4.8 1H), 8.40 (s, 1H), 8.14 (d, J = 4.5 1H), 4.49 (q, J = 7.2 2H), 3.81(s, 9H), 1.45(t, J 

= 6.9 3H). ESI calcd for [M (positive portion)]+ m/z = 209, found 209. ESI calcd for [M 

(negative portion)]- m/z =149, found 149.  

 

Synthesis of 2-F-INH201 

1 g (7 mmol) of 2-fluoropyridine-4-carboxylic acid was dissolved in 30 ml of THF, and 

1,1’-carbonyldiimidazole (CDI, 8.4 mmol) was added to the solution. The mixture was 

stirred at RT for 1 hr prior to addition of 336 mg (10.5 mmol) of N2H4. After 6 hrs, the 

solvent was removed by rotary evaporation, and the resulting crude product was 

purified by automated column chromatography using a mobile phase of 2% MeOH/98% 

CH2Cl2. The product was a white solid and the yield was 70%. 1H NMR (300MHz, CDCl3) 
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δ: 8.35 (d, J = 5.2 1H), 7.65 (d, J = 5.6 1H), 7.42 (s, 1H), 4.62 (s, 1H). ESI calcd for 

[M+H]+ m/z = 156, found 156 

 

Radiosynthesis of 2-[18F]F-INH (3)188 

The development of radiosynthesis was started at Dr. Hooker’s lab (Harvard Medical 

School), and finalized at Dr. Fowler’s lab (BNL). The radiosynthesis for imaging studies 

were done at Dr. Pomper’s lab (Johns Hopkins Medical Center). Aqueous [18F]KF was 

eluted from the resin with 1 ml K2CO3 (1mg) in MeCN/H2O solution (900 µl/100 µl) into a 

Reacti-Vial preloaded with 5 mg Kryptofix 2.2.2.. The solution was azeotropically dried 

with additional aliquots of MeCN at 105°C. 2mg of 1 was dissolved in 300 µl MeCN and 

the whole solution was added to the Reacti-Vial. The sealed Reacti-Vial was heated at 

105°C for 2 min before it was quenched by addition of 3 ml cold H2O. The mixture 

contained the intermediate 2 was loaded on C-18 Sep-Pak and the Sep-Pak was 

flushed with additional 5 ml H2O, followed by 5 min helium blow. The resulting dried 2 

was eluted into a reaction vial preloaded with 50 µl of N2H4
.H2O with 300µl MeCN. The 

mixture was heated for 6 min and purged with N2 for 2 min prior to quenching with 1.5 

ml H2O. The resulting solution was loaded onto a semipreparative HPLC column 

(Phenomenex, Luna PFP 250  10, 5 µm) operated at a 5 ml/min flow rate with a 

mobile phase consisting of 5% MeCN/95% H2O. The product was collected at the 

expected retention time (10 min) and the solvent was removed by rotary evaporation. 

After dilution with 1-2 ml of saline, the solution was filtered through an Acrodisc 13 mm 

syringe filter equipped with a 0.2 µm Supor membrane (Pall Corporation, Ann Arbor, MI) 
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into a sterile vial. Radiochemical purity was determined by reverse-phase analytical 

HPLC using a Phenomenex, PFP, 250  4.6, 5 µm column operated at 1 ml/min flow 

rate using a mobile phase of 5% MeCN/95% H2O. In addition, the radiochemically purity 

was verified using TLC (10% MeOH/90%CH2Cl2) by cospotting the labeled product with 

a standard. 

 

Inactivation of InhA by INH or 2-F-INH 

The Mtb enoyl-ACP reductase (InhA) was expressed and purified as previously 

described202 and catalase-peroxidase (KatG) was kindly obtained as a gift from Dr. 

Magliozzo (CUNY, Brooklyn College). Trans-2-dodecenoyl-CoA (DD-CoA) was 

synthesized from trans-dodecenoic acid by using the mixed anhydride method as 

previously described203. Aliquots of the substrate were flash frozen in liquid N2 and 

stored at - 80 °C. All solutions of INH, F-INH, β-NADH, and β- NAD+ were prepared 

daily and stored on ice. InhA (0.5 μM) was incubated with 0.5 μM KatG, 50 μM NAD+, 

50 μM INH (or  2-F-INH), and 2 mM EDTA in a total volume of 1.0 mL at 25 °C in InhA 

buffer (30 mM PIPES, 150 mM NaCl, pH 6.8). The enzyme was stabilized by the 

addition of glycerol (8%, v/v). Aliquots (60 µl) were taken at defined time points, and 

residual InhA activity was measured. Enzyme kinetic assays were performed on a Cary 

100 Bio spectrophotometer (Varian) in InhA buffer by following the oxidation of NADH to 

NAD+ at 340 nm. InhA activity was monitored by adding DDCoA (20 μM) to assay 

mixtures containing NADH (250 μM) and aliquots from the inactivation reaction. The 
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residual InhA activity at each time point was normalized to 100%, using the value 

measured at time zero193. 

 

Adduct formation between NAD and INH or 2-F-INH 

A mixture of 0.5 µM KatG, 50 µM NAD+ and 50 μM INH (or 2-F-INH) was incubated in 

a total volume of 1.0 ml at 25 °C in InhA buffer (30 mM PIPES, 150 mM NaCl, pH 6.8). 

Aliquots of solution were taken at 30 min and 1 hr, and each aliquot was filtered through 

centricon (10,000 NMWL) prior to injection onto the HPLC. Peaks were monitored by 

reverse-phase analytical HPLC using a Phenomenex, Luna C-18, 250  4.6, 5 µm 

column operated at 1 ml/min flow rate using gradient: 0-20 min, from 100% water to 20% 

MeCN/80% water and dual channel UV detection at 260 nm and 326 nm. Peaks eluted 

around 12-15 min with UV absorption ratio between 260 and 326 is 3.2-3.8 were 

selected as adduct.  

 

In vitro 2-[18F]-INH uptake 

2-[18F]-INH uptake in vitro was measured using wild-type Mtb (H37Rv) from -80°C 

frozen stock as well as INH-resistant strains katG W149R, katG M1A and inhA T(-8) 

kindly provided by Dr. Eric Nuermberger 192. Five independent cultures of each strain 

and heat killed controls were grown in Middlebrook 7H9 broth supplemented with 10% 

oleic acid-albumin-dextrose-catalase (Difco, Detroit, MI) and 0.05% Tween 80 (Sigma). 

Each culture was grown at 37°C with rapid agitation to a OD600 of at 0.3. F-INH (20 µCi) 
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were placed in each culture at time 0. At each time point 0.5 ml of culture was sampled, 

pelleted by centrifugation and washed twice with PBS, resuspended in 0.5 ml of PBS 

and transferred to culture tubes for heat inactivation (90°C for 20 min). Radioactivity 

Measurements were done at time 0, 60, 120, 240, 360 and 480 min. Samples were 

transferred to the gamma counter (1282 Compugamma CS, LKB Wallac Instruments) 

for measurement. Background counts were subtracted from sample counts. Heat killed 

negative controls of each culture were generated by exposure to the 90°C water bath 

for 20 min. Positive controls used 18F-FDG as tracer on the same cultures at the same 

time points. In order to determine CFUs, samples from time 0 and 480 minutes for each 

strain were plated on 7H11 plates. Plates were incubated for 4 weeks at 37°C in a 5% 

CO2 environment before CFU counts were determined. MIC99 values were determined 

for each strain with INH and F-INH by the broth macro-dilution method (National 

Committee for Clinical Laboratory Standards M07-A8).  

 

Animal experiments  

Protocols were approved by the Johns Hopkins Biosafety, Radiation Safety and 

Animal Care and Use Committees. 

 

In vivo aerosol infection 

Five- to six-week-old female BALB/c (Charles River) or C3HeB/FeJ (Jackson 

Laboratory) mice were aerosol infected with 2.5 x 102 CFU of Mtb H37Rv, using the 
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Middlebrook inhalation exposure system (Glas-Col) with a log-phase broth culture. 

Three mice were sacrificed at 1 day, 6 weeks, 8 weeks (BALB/c) or 17 weeks 

(C3HeB/FeJ) after infection to determine the number of bacilli implanted in the lungs 

and the bacillary burden at the time of imaging. The entire lungs were homogenized in 

PBS and plated onto Middlebrook 7H11 selective plates (Becton Dickinson). All plates 

were incubated at 37°C for 4 weeks before the colonies were counted. A separate 

group of identically infected mice were used for imaging studies. 

 

Bio-containment and anesthesia 

All live Mtb infected animals were imaged within a sealed Minerve small-animal 

environment System (Bioscan). Two 0.22 µm 60 mm disc VACU-GUARD (Whatman) 

filters were used in series at both the inlet and the outlet to contain the bacteria within 

the device. A standard small animal anesthesia machine was used to deliver a mixture 

of Isoflurane (Henry Schein) and oxygen during transport and imaging. Animals were 

anesthetized, a 30 gauge needle (BD Bioscience) was attached to polyethylene-10 

tubing (Braintree Scientific) was inserted into the lateral tail vein of BALB/c mice as a 

catheter for tracer delivery. Animals were sealed inside the bio-containment device in 

the biosafety level 3 facility and the external surfaces of the bio-containment device was 

decontaminated and transported to the imaging suite. During prolonged anesthesia (> 

20 min), an infrared thermometer and a heat-lamp were used to measure and maintain 

ambient air temperature inside the bio-containment device. 

 



 

137 
 

[18F]-FDG-PET/CT imaging 

The night before each imaging time-point, mice were fasted for 12 hrs. Water was 

provided ad libitum. On the day of imaging, each mouse was weighed, injected with 200 

µCi of [18F]FDG via the tail vein and imaged 45 min post-injection using the Mosaic HP 

(Philips) Small Animal PET imager with 15 min static acquisition. A CT scan was also 

performed at the same time using the NanoSPECT/CT (BIOSCAN) in vivo animal 

imager. PET images were reconstructed and co-registered with CT images. Three mice 

were used for each group.  

 

2-[18F]-INH-PET/CT imaging 

One week after PET scan with [18F]-FDG, the same C3HeB/FeJ mice were weighed, 

injected with 200 µCi of 2-[18F]-INH via the tail vein and imaged 20 min post-injection 

using the Mosaic HP (Philips) Small Animal PET images with 10 minute dynamic 

acquisition windows for 120 min. Infected and uninfected controls were scanned two at 

a time as matched pairs. BALB/C mice were likewise weighed, anesthetized and sealed 

in biosafety level 3 biocontainer, but were injected with 200 µCi of 2-[18F]F-INH via the 

tail vein catheter at the start of image acquisition, and dynamic windows were set for 5 

2-minute windows, followed by 10 5-minute windows for a total scan time of 60 minutes. 

CT scans were immediately performed subsequent to PET imaging using the 

NanoSPECT/CT (BIOSCAN) in vivo animal imager. PET data were reconstructed and 

co-registered with CT images. Images were automatically coregistered and presented 

using Amira version 5.4.2 (http://www.amira.com), with a resulting 1:1 correspondence.  
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For semiquantitative analysis, animals were analyzed in groups of three. Each animal 

CT had two spherical (3 mm diameter) regions of interest (ROI) drawn manually in the 

lung fields making sure not to overlap the PET-active liver while but single ROIs were 

outlined for liver and brain. The standard uptake values (SUV) were computed by 

normalizing the ROI activity for each mouse to the injected dose and animal weight 

using Amide version 0.9.1. For each group, the mean lung 2-[18F]-INH-PET activity at 

each time-point was calculated by averaging the normalized lung SUV of all the ROIs in 

that group. Mean lung 2-[18F]-INH-PET activity at each time-point was also calculated 

similarly for three uninfected animals used as controls and imaged at the same time.  

 

Statistical analysis.   

Statistical comparison between groups was performed using one tail distribution, two 

sample, unequal variance t-test in Excel 2010 (Microsoft). Data are presented on a 

linear scale as mean ± standard error for the mean PET activities and on a logarithmic 

scale as mean ± standard deviation for CFU counts. 
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