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Abstract of the Dissertation

A Stochastic Segmentation Model for Categorical and
Continuous Features of various biological sequential

data

by

Yifan Mo

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2012

Nowadays, Hidden Markov Model (HMM) has been widely used in analysis of various

biological data for both smoothing and clustering. However, characterizing each hidden state

by a single distribution, the classical HMM might have some limitations on the data whose

hidden state is composed by a mixture of distributions (Heng Lian et al., 2006). To address

this issue, we proposed a new stochastic segmentation model and an associated estimation

procedure that has attractive analytical and computational properties. We combined the

forward and backward filter together based on Bayes theorem to calculate the posterior

mean and variance. Besides, we developed an expectation-maximization (EM) algorithm

to estimate the hyper-parameters. Furthermore, we utilized a bounded complexity mix-

ture (BCMIX) approximation whose computational complexity is linear in sequence length.

Another important feature of this segmentation model is that it yields explicit formulas for
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posterior means and probability of categorical states, which can be used to make inference on

both categorical and continuous aspects of the data. Other quantities relating to the poste-

rior distribution that are useful for making confidence assessments of any given segmentation

can also be estimated by using our method. We perform intensive simulation studies (1) to

compare the Bayes and BCMIX estimates (2) to evaluate the BCMIX estimates in terms of

sum square error, Kullback-Leibler divergence and the identification ratio of true segments.

We also applied our model on two biological data sets: (1) reduced representation bisulfite

sequencing (RRBS) data (A.Molaro et al., 2011) (2) ENCODE Nimblegen tilled arrays (Sabo

et al., 2006). Our model shows good performance on segmentation of these two sequential

data. In RRBS data it can further help identify differential methylation region (DMR) while

in microarray data it can discover the DNAsel Hypersensitive Sites (DHSs).
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Chapter 1

Introduction

Biological sciences have been rapidly made process over the past two decades by the

development of technologies capable of performing large-scale measurements. In particu-

lar, high throughput technology has been widely used in many areas including genomics,

transcriptomics, proteomics and etc. Such high throughput, high resolution techniques have

generated tremendous sequential data thus, it is revolutionizing the scale and potential ap-

plications of genomic studies, and creating an enormous and urgent need for mathematical

and computational tools to meet the large scale data analysis challenges such as identifying

sequence variations (both single-nucleotide and segmental) and exploring their disease as-

sociations, reconstruction of RNA transcript populations, locating the sites of protein-DNA

interactions, elucidating population histories and so on. And obviously, the segmentation

problem is the priority and fundamental issue for most of these applications.

In this chapter, we will review two kind of typical biological sequential data: arrayCGH

data for copy number variation (CNV) detection and Chromatin Immunoprecipitation se-

quencing (ChIP-seq) data for identifying the protein-DNA interaction locations. For each of

them, we shall retrospect the most popular and the latest computation models to show how

they solved the difficulties of the segmentation problem within the data. Moreover, we will
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introduce the interesting and unsolved questions as our motivation. In the last section we

will give the outline of this dissertation.

1.1 Literature on several biological sequential data

1.1.1 The segmentation of Copy Number Variation (CNV) using

arrayCGH data

Genetic variation plays a crucial role in biological function. Initially, more attention was

placed on studying single-nucleotide polymorphisms (SNPs). As a result, some 10 million

SNPs have been identified, many of which have documented causal relationships with specific

diseases. Recently, another type of genetic diversity, copy number variation (CNV), has been

garnering a lot of attention. CNVs span larger regions of the genome and are not limited

to a single nucleotide. They are manifested in several ways-as deletions, amplifications,

inversions, or more complex configurations. A significant role for them has been elucidated

in breast cancer, small cell and non-small cell lung cancer, Hodgkin’s lymphoma, and various

other diseases. Recent reports suggest their role has been greatly underestimated; over 1,000

CNV regions were identified, covering over 12% of the human genome (Redon et al., 2006).

Given the relative novelty of the field and significant clinical impact, great effort is now

being directed to understanding the nature of CNVs. Coinciding with today’s genomic era

and widespread adoption of high-throughput technologies, microarrays have quickly been

integrated and remain a fixture of the CNV data analysis pipeline.

The initial methods of comparative genomic hybridization (CGH) and representational

differential analysis (RDA) for cytogenetic testing were proposed in the early 90’s. Later,

to reduce the complexity of whole genome samples, an enzyme digestion and PCR step was

appended. These methods were effective but laborious and limited in resolution. High-
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throughput implementations were forged, in 1997, when Solinas-Toldo and colleagues pro-

posed the initial concept of employing a matrix of selected DNA regions, 100kb, cloned

into bacteria artificial chromosomes (BACs) to analyze genetic alterations. Today, commer-

cial solutions from companies like Affymetrix, Illumina, and Roche offer arrays with probe

lengths as short as 25-mer numbering in the millions. Furthermore, protocols supporting

next-generation sequencing methods for CNV analysis have already begun trickling out.

The basic protocol requires slides with probes spread across the genome. Then, fluorescent

labeled genomic DNA from a test and a reference sample are added to the slide. Hybridiza-

tion to the probes emits fluorescence, which can be quantified. Because the test and reference

are labeled with different color dyes that can be measured independently, the ratio of the

two, usually represented in log 2, can serve as an indicator of copy number changes. Many

different types of arrayCGH platforms now exist each with its own probe characteristics, as

described by Tan and colleagues and summarized in Figure 1.1 (Tan et al., 2007).

Given the raw DNA copy number arrayCGH data from a single sample, the first step

in the analysis is to estimate the underlying real copy number at each probe location from

the noisy log intensity value. This problem, referred to as segmentation problem, has drawn

considerable attention and thus many statistical approaches have been proposed for this

problem, such as: hidden Markov models (Fridlyand et al., 2004), hierarchical tree clus-

tering (Wang et al., 2005), WECCA (Van Wieringen et al., 2008), dynamic tree cutting

(Langfelder et al., 2007), HOPACH (van der Laan and Pollard, 2003), a Bayes regression

approach (Wen et al., 2006), wavelet approximation (Hsu et al., 2005), Gaussian Mixture

models (Engler et al., 2006; Guha et al., 2006). Lai et al., 2007 , Willenbrock and Fridlyand

(2005) reviewed and compared the performance of the existing approaches in 2005. Besides

above, we will emphasis on two approaches: the change-point formulation under the Circular

Binary Segmentation (CBS) algorithm (Olshen et al., 2004) ) and a stochastic segmentation
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Figure 1.1: Array CGH protocols for BACS whole genome TilePath arrays (left) and
Affymetrix high-density arrays (right) and proceeding data analysis (Redon et al., 2006).

model (SCP) proposed by Lai et al., 2007. The former one is the most widely used model

for the CNV analysis. This recursive change-point formulation underlying CBS requires the

least assumption and with a hybrid approach (Venkatraman and Olshen, 2007) to obtain

the P-value of the likelihood ratio test (LRT), it is a fast method with very good robustness.

However, most of the methods above including CBS have no means to evaluated the seg-

ments, for example, people need to decide how many segments is valid in the data. While

the SCP model produces a way of assessing the confidence in the segmentation with its own

attractive statistical and computational properties.
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1.1.2 The “peak” calling and segmentation problems in different

types of ChIP-seq data

Recent technological innovations have transformed the study of DNA-binding proteins

as higher throughput techniques have come to the fore. In particular, the widely used

procedure involving in vivo immunoprecipitation of chromatin-bound proteins (ChIP) has

benefited from significant innovation, undergoing several reincarnations, from ChIP-qPCR to

ChIP-chip (Ren, Bing et al., 2000) and, most recently, to ChIP-seq (Johnson, David S. et al.,

2007; Robertson et al., 2007). To unravel the mechanisms of gene regulation, understanding

the complex interplay of protein-DNA interactions is instrumental, ChIP-seq has risen as

the go-to technique for examining these interactions on a genome-wide scale. ChIP has been

commonly used for illuminating transcription factor binding sites (TFBS) (Johnson, David

S. et al., 2007; Robertson et al., 2007), but has more recently seen widespread adoption

in studying epigenomic mechanisms—most notably, the role of post-translational, covalent

histone modifications (Barski et al., 2007; Mikkelsen et al., 2007; Guttman et al., 2009). As

a case in point, the NIH Roadmap Epigenomics Mapping Consortium has embarked on an

effort to catalogue the most comprehensive database of epigenomic data to date—including

data on over 25 histone marks, along with DNA methylation, chromatin accessibility, and

small RNA expression (Bernstein et al., 2010). Understanding the epigenome is crucial due

to its purported involvement in myriad roles from individual diversity to development to

cancer and other complex diseases (Hawkins , R. David et al., 2010; Kouzarides, T 2002;

Widschwendter et al., 2007). At the molecular level, histone modifications, in particular,

have been linked to regulation of transcription, gene silencing, and chromatin reorganization

(Kouzarides T et al., 2002; Zhang and Pugh 2011). These associations have given rise to the

“histone code” hypothesis that could perhaps be a major mechanism for modulation of the

epigenome (Jenuwein, T. and Allis, C. D. 2001). Figure 1.2 shows the experiment process
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and several different types of ChIP-seq data profile.

ChIP can be broadly applied to study many protein-DNA interactions and on-going

optimization is routinely introducing novel transcription factors and histone modifications

to the diverse list of targeted proteins. From extremely sharp and punctate peaks to large,

broad, and diffuse islands of enrichment, read profile signatures can span a wide range. Ow-

ing to this diversity, read profiles vary markedly and each presents its own nuanced challenges

during downstream analysis. Algorithmically, punctate and diffuse enrichment have ostensi-

bly been addressed as two mutually exclusive data types requiring distinct approaches. For

instance, many transcription factors and histone acetylation modifications generate punctate

profiles characterized by well-formed, sharply enriched peaks interspersed by large stretches

of low signal. Several successful solutions have been introduced to address this problem

(Zhang, Yong et al., 2008; Rozowsky, Joel et al., 2009; Qin, Zhaohui et al., 2010). Here we

emphasis on “MACS” since it is one of the most popular methods. They used window based

approach to solve the peak calling problem. Firstly, MACS slides twice of preset bandwidth

windows across the genome to search the locations with very enriched signals of the Watson

strand and Crick strand, where they estimate the mean distance between the summit of

these two strand as d. Then the reads will be moved to the middle of these two strand by

d/2 base pair. They model the tag distribution along the genome by a Poisson distribution.

They use one parameter λ to capture both the mean and the variance. 2d windows are slided

across the genome to find candidate peaks. MACS uses a dynamic parameter λlocal defined

as λlocal = max(λbackground, λ1k, λ5k, λ10k), where λ1k, λ5k, λ10k are estimated λ around each

candidate peak region in the control data. MACS uses λlocal to calculate the p-value and

smooth out the potential false positives.

However, such window based approach has resolution problem and thus including lots

of co-factor peaks. Moreover, as punctate peaks degenerate into more diffuse islands, read
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density enrichment appears far less pronounced, with much higher variance, and span much

larger regions. In this scenario, peak-calling algorithms are extended beyond their intended

scope and lose effectiveness (Pepke, Shirley et al., 2009). Such non-punctate profiles are com-

monly observed when studying broad histone modifications, e.g. H3K27me3, H3K36me3,

and H3K9me3. Instead, heuristic, window-based derivations have been developed to ad-

dress this inadequacy (Hawkins, R. David et al., 2010, Zang, CZ et al., 2009). To satisfy

the requirement in both peak calling and histione modification segmentation, Xing et al.

(2012) develop a Bayesian change-point (BCP) model that is based on recent advances in

infinite-state hidden Markov modeling, which has been discussed by Lai and Xing (2011).

This model provides explicit formulas for posterior means of ChIP-seq read density profiles

and allows a computationally efficient and fast approximation algorithm for these posterior

means. An enhanced signal is generated that can then be used to identify segments with a

shared read density and the “change-points” that separate them. The BCP enables analysis

of whole genome ChIP-seq data with enhanced precision since read density estimates can

adopt any real number value, which is more flexible than hidden Markov models with finite-

state assumption. Therefore, the BCP can quickly identify islands of histone modification

(HM) enrichment that correlates well with known functional associations and are both repro-

ducible and robust at high resolution. Additionally, the BCP characterizes the diversity of

ChIP-seq density profiles into and was easily adapted to segmenting sharper, punctate peaks

of transcription factor (TF) with performance on par with a widely peak-calling algorithm

while concurrently maintaining proficiency in diffuse data types. BCP accepts the browser

extensible data (BED) format, which we transformed to read counts at every genomic re-

gion location for each chromosome. Only reads mapping to a unique genomic location were

considered and only a single read per start/end coordinate was allowed to reduce spurious

amplification and repetitive sequence bias. In the case of transcription factor ChIP data,

adjacent positions with identical read counts were “blocked” together. For histone modifica-
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tion ChIP data, read counts at 200bp adjacent windows were calculated. This window size is

the default setting for BCP and was chosen for two reasons. First, a single nucleosome is the

expected smallest unit size for histone modification data, including wound and linker DNA,

and is roughly this length. Second, 200bp is approximately the size-selected length, following

DNA fragmentation, for most library preparation protocols. The user can adjust the window

size, but in our experience, optimization away from the default value was rarely necessary.

We assumed that read counts or average read counts on within “blocks” or windows, re-

spectively, follow a Poisson distribution with mean θt, t = 1, . . . , n, where n is the number

of “blocks” or windows in the chromosome, and the true signal θt may undergo occasional

change with probability p at each location t. they also assume that when θ changes to a new

value at t+ 1, the new value follows a Gamma(α, β) conjugate prior. Under this setup, the

posterior distribution of θt given all the data is a mixture of Gamma distributions,

f(θt|Yn) =
∑

1≤i≤t≤j≤n

γijtGamma(αij, βij). (1.1.1)

Hence θt can be estimated by a weighted average of posterior means with different window

sizes. In practical analysis, the model parameters p, α, β can be replaced by their maximum

likelihood estimates, and the mixture above can be approximated by a bounded complexity

mixture (BCMIX) algorithm (Lai and Xing, 2011).

BCP, as a change point model, has key differences with other similarly minded methods.

Its estimate of true signal requires no prior knowledge of the number of different states

of θt, nor the positions or magnitude of the change points. The posterior mean, as an

estimator, plays an important role in peak calling (TF) and/or segmentation (HM) and

we implemented it directly to finding putative TFBS and histone-mark enriched islands.

Given the posterior mean of each block or window represents a piecewise constant signal,

smoothed by incorporating upstream and downstream information, “false” enrichment areas
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caused by local noise were minimized and our ability to identify the most likely enriched

region was enhanced. Consequently, “gaps” in large significant domains were marginalized

and we performed segmentation using a simple cut-line across the posterior means decided

from the background signal After generating candidate segments, each was substantiated as

a peak or island of enrichment if the number of ChIP-seq reads within the region surpassed

the 90th-quantile value expected assuming read number follows a Poisson distribution with

a mean based on the number of input reads in the same region.

1.2 A Motivating Question

Although we didn’t elaborate the details of the classical finite Hidden Markov Model

(HMM), it is obvious that HMM has been comprehensively used in the segmentation of

these data, such as the earliest method for CNV detection(Fridlyand et al., 2004) and Hpeak

(Zhang, Y et al., 2010) and etc. Most of these HMM based methods, although has trivial

differences in preprocessing procedure or hyperparameter estimating, assume in common that

the observation yi are emitted by an underlying Markov chain with a finite state sequence

S and obtains the smoothing estimation with Viterbi algorithm, Baum-Welch algorithm or

similar procedure. The discrete state model works well for detecting inherited CNVs in

normal sample, but is not good for the heterogeneity sample. The similar case for ChIP-

seq data as we mentioned before, the large variation of the read counts also make it hard

for classical finite-state HMM to smooth the parameters. That is the reason we develop

the infinite-state segmentation model under the Bayesian framework. To summarize, the

finite-state HMM has some drawbacks as below:

1. It is common to describe each hidden state by a single distribution. Such assumption

produces a poor fit to the heterogeneity data with many outliers log ratios (Lian H
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et al., 2006). Such outliers would hurt the state prediction of HMMs and have an

inappropriate impact on parameter estimates.

2. Aware of the variation within the state, some modify the HMM assuming the con-

tinuous valued jumps (Guha et al., 2006; Engler et al., 2006; Lian, H et al., 2006).

But they still require pseudo-likelihood based approached or use Markov chain Monto

Carlo (MCMC) to estimate the underlying states distribution. This is time-consuming

for the large scale biological data such as ChIP-seq.

3. The finite-states model has no prior knowledge of the number of states, the number

of segments, the magnitude of the states in advance thus, it often implement naive

clustering or using sliding windows to preprocessing the sequence and cause resolution

problem.

To address these drawbacks, Lai and Xing developed a novel Bayesian segmentation

model with infinite-state assumption (Lai and Xing 2011) and we have apply it to the ChIP-

seq data analysis and generate the tool BCP (Xing et al., 2012). This infinite-state style

model can handle all of the drawbacks listed above. However, as it has no constraint on the

number of state we cannot estimate the posterior state probability. Put it in another word,

we can generate continuous features by the posterior estimates but still need post processing

step to do the hard segmentation. However, in many cases, the observations do not have

such big fluctuation like the ChIP-seq data. The hidden parameter within one state still

need using mixture model but we can constrain the variation of the mixture distribution in

some scope. Let us take a look at the Figure 1.3 from Lian H et al., 2006.

This figure is captured from the paper “Automated mapping of large-scale chromatin

structure in ENCODE”. In this figure, we can easily discover three segments in the first state

(state 0) with the change points δ0, δ3 and δ4. Yet, in this segments, their means take three

10



different values differ from one another. Meanwhile, in other two segments from another

state (state 1) with change points δ1, δ2 has two different means. Both means in state 1 have

larger value compared to the ones of state 0. Moreover, the variance has similar scenario.

Lian et al., employed a Bayesian hierarchical change-point model (CPM) to deal with such

problem. Similar with other mixture model they use pseudo-likelihood based approached

and select the training data sets to learn the model with its distinguishing feature that

the distance between change points are not geometrically distributed, which implies that a

change point might appear within one state.

In contrast, we want to generate our novel stochastic segmentation model under Bayesian

framework has the features as below:

1. Taking advantage of the mixture model, we character the hidden states by a continu-

ous mixture probability distribution. Yet, instead of using MCMC or pseudo-likelihood

based approached, explicit formula integrated with a linear time complexity approxi-

mation will be adopted to smoothing the parameters.

2. Unlike the infinite-state non-linear segmentation model as BCP, we estimate the poste-

rior state probability. That is to say, we can simultaneously characterize the continuous

and categorical features of the sequential data.

3. The distance between the change points are geometrically distributed as we assume

there is no change point within one states.

4. Besides modeling the mean parameter with the hidden states, we assume the variance

parameter has the hidden states as well. In another word, it is supposed to see the

piecewise constant profile not only in mean parameter but also in variance.

11



1.3 Outline

Based on the motivation above, this dissertation research which started from last Novem-

ber constructs a new model to solve such interesting segmentation problem. It studies the

estimation of parameters in a stochastic segmentation model, exploring its application to

some biological sequential data analysis. In Chapter 2, We will detailed describe this seg-

mentation model on how to estimate the posterior distribution of mean, variance and the

posterior state probability with explicit formula. Since the proposed model uses a Bayesian

framework, we will use some demo graph to explain the structure of the model. Expec-

tation Maximum (EM) are used for hyper-parameter estimation. Furthermore, to improve

the computational efficiency of the estimation, a bounded complexity mixture approxima-

tion (BCMIX) is introduced. In Chapter 3, we implement the large scale simulation study

to demonstrate its accuracy and robustness compared to the Bayes estimators and under

different simulation settings. In Chapter 4, we will apply the model to two real biological

sequential data: Nimblegen ENCODE Array for identifying DNaseI sensitivity and DNaseI

hypersensitive sites over the ENCODE regions in human lymphoblastoid cells (GSE4334) and

Reduced Representation Bisulfite Sequencing data (RRBS) (GSE31971) to see the directional

DNA methylation changes and complex intermediate states accompany lineage specificity in

the adult hematopoietic compartment. In the end, some conclusions and discussions are

given in Chapter 5.
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Figure 1.2: Top: the work flow for Chromatin Immunoprecipitation sequencing (ChIP-seq)
experiment; Bottom: Different types of ChIP-seq data profile.
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Figure 1.3: A sample segmentation using Bayesian hierarchical change-point model (CPM)
for a 27 kb region within ENr212.
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Chapter 2

Estimation in a novel Stochastic Segmentation Model

2.1 Model specification

The classic Hidden Markov Model described in the introduction can deal with the classi-

fication problem. With the prior distribution, it can generate the posterior estimation of the

target variable. Yet, in practice, the value of the unknown parameters with the same hidden

state are not necessary the same. That is our motivation to consider this novel segmentation

model to incorporate this feature.

We consider the following model assumptions:

1. The observations yt follow the model yt = µt + σtεt for t = 1, . . . , n, where εt are

independent normal random variables with mean 0 and variance 1.

2. The categorical states of θt := (µt, σt) are represented by a K-state irreducible hid-

den Markov chain {st} with transition probability matrix Q = (qij) and stationary

distribution π.

3. The dynamics of θt is given by θt = 1{st=st−1}θt−1 + 1{st 6=st−1}(zt, ), where

µt|σt ∼ N(zk, σ2
t κ

k), (2σ2
t )
−1 ∼ Gamma(g(k), λ(k)),
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where z(k), κ(k), λ(k), and g(k) (k = 1, . . . , K) are hyper-parameters.

Note that the second assumption indicates θt has a stationary distribution and thus a re-

versible Markov chain can be defined. Unlike the classic HMM models the θt is a constant

based on the hidden state, the third assumption allows the parameter in each state is a

random variable follow a certain distribution. Let’s take a two-state scenario as an example.

Figure 2.1 visually demonstrates the assumptions, showing an example of possible values of

a one-dimensional µt. Four transitions occur during the period 0 ≤ t ≤ T . Within each

state, µt take different values. The values are realizations from the state-specific distribution

of µ(st). The transitions are governed by some hidden Markov chain.

Figure 2.1: Illustration: Values of β(st) in a stochastic regime switching model.

2.2 The forward Filtering estimate of parameters

Let’s first discuss about the forward filter, which is the estimate of θt for any time t given

all the information from the beginning to t. Let J
(k)
t = max{i ≤ t : si−1 6= si = · · · = st = k}

be the most recent switching time prior or equal to t and at which st switches from a state
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other than k to state k. Figure 2.2 illustrates the definition of J
(k)
t . At time t, st = 2, and

the most recent switching occurs before t is at time J
(2)
t as shown in the figure.

Figure 2.2: Illustration: Definition of J
(k)
t .

Let

ξ
(k)
t = P (st = k|Yt), ξ

(k)
i,t = P (J

(k)
t = i|Yt), (2.2.1)

for 1 ≤ i ≤ t and 1 ≤ j ≤ K, in which Yi,j := {yi, . . . , yj} and Yt := Y1t, then, by definition,

ξ
(k)
t =

∑t
i=1 ξ

(k)
i,t . We define f(x|·) is the probability density function of distribution

[
x| ·

]
.

The conditional distribution of θt, given Yt and J
(k)
t = i is composed by two parts:

f(µt|σt,Yi,t) ∝ f(Yi,t|µt, σt) · f(µt|σt)

∝ exp(−
∑t

j=i(yj − µt)2

2σ2
t

) · exp(−(µt − z(k))2

2σ2
t κ

(k)
)

∝ exp
{
−
µ2
t − 2

∑t
j=i yjκ

(k)+z(k)

(t−i+1)κ(k)+1
µt + κ(k)

(t−i+1)κ(k)+1
(
∑t

j=i y
2
j + (z(k))2

κ(k)
)

2σ2
t

κk

(t−i+1)κk+1

}
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∝ exp
{
− 1

2σ2
t (t− i+ 1 + 1/κ(k))−1

{
µt − (t− i+ 1 + 1/κ(k))−1(

t∑
j=i

yj +
z(k)

κ(k)
)
}2}

.

Let

κ
(k)
it =

( 1

κ(k)
+ t− i+ 1

)−1
, z

(k)
it = κ

(k)
it

(z(k)

κ(k)
+

t∑
j=i

yj
)
.

Then

µt|σt,Yit ∼ N(z
(st)
it , σ2

t κ
(st)
it ).

And let Pt = (2σ2
t )
−1, C0 = (Γ(g(k)))−1(λ(k))−g

(k)
(κ(k))−

1
2 .

f(Pt|Yi,t) ∝ f(Yi,t|Pt) · f(Pt)

=

∫
f(Yi,t|µt, Pt) · f(µt|Pt)dµt · f(Pt)

= C0P
g(k)−1
t exp{−Pt

λ(k)
}
∫
P

t−i+2
2

t exp
{
− Pt

t∑
j=i

(yj − µt)2
}
· exp

{
− Pt

(µt − z(k))2

κ(k)

}
dµt

= C0P
(g(k)+ t−i+2

2
)−1

t exp
{
− Pt(

1

λ(k)
+

(z(k))2

κ(k)
+

t∑
j=i

y2
j −

(z
(k)
it )2

κ
(k)
it

)
}

·
∫

exp
{
− Pt

κ
(k)
it

(µt − κ(k)
it (

z(k)

κ(k)
+

t∑
j=i

yj))
2
}
dµt

= C0(κ
(k)
it )

1
2P

1
2
t P

− 1
2

t P
(g(k)+ t−i+1

2
)−1

t exp
{
− Pt(

1

λ(k)
+

(z(k))2

κ(k)
+

t∑
j=i

y2
j −

(z
(k)
it )2

κ
(k)
it

)
}
.

Again let

g
(k)
it = g(k) + (t− i+ 1)/2,

1

λ
(k)
it

=
1

λ(k)
+

(z(k))2

κ(k)
+

t∑
j=i

y2
j −

(z
(k)
it )2

κ
(k)
it

.

Then

(2σ2
t )
−1|Yit ∼ Gamma(g

(k)
it , λ

(k)
it ).
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Combine the derivation above we can gain the conditional distribution of θt, given Yt and

J
(k)
t = i, is

µt|σt,Yit ∼ N(z
(st)
it , σ2

t κ
(st)
it ), (2σ2

t )
−1|Yit ∼ Gamma(g

(k)
it , λ

(k)
it ).

Based on the above conditional distribution, the posterior distribution of θt given Yt is a

mixture distributions:

θt|Yt ∼
K∑
k=1

t∑
i=1

ξ
(k)
i,t

[
θt|Yit, J (k)

t = i
]
. (2.2.2)

Let us see how to derive the mixture weight ξ
(k)
i,t . First note that

f(θt, yt, st−1 = k|Ft−1) =
K∑
l=1

f(θt, yt, st−1 = k, st = l|Ft−1).

When l 6= k,

f(θt, yt, st−1 = k, st = l|Ft−1)

= f(θt, yt|Ft−1, st−1 = k, st = l)P (st−1 = k, st = l|Ft−1)

= f(yt|Ft−1, J
(l)
t = t)f(θt|Ft, J (l)

t = t)P (st = l|st−1 = k)P (st−1 = k|Ft−1)

= f(yt|Ft−1, J
(l)
t = t)f(θt|Ft, J (l)

t = t)pk,lξ
(k)
t−1.

When l = k,

f(θt, yt, st−1 = k, st = k|Ft−1) =
t−1∑
i=1

f(J
(k)
t = i,θt, yt|Ft−1)

=
t−1∑
i=1

f(θt, yt|Ft−1, J
(k)
t = i)P (st−1 = k, st = k|Ft−1)
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=
t−1∑
i=1

f(yt|Ft−1, J
(k)
t = i)f(θt|Ft, J (k)

t = i)P (st = k|st−1 = k)P (st−1 = k|Ft−1)

=
t−1∑
i=1

f(yt|Ft−1, J
(l)
t = t)f(θt|Ft, J (k)

t = i)pk,kξ
(k)
i,t−1.

Define

ξ
(k)∗
i,t =


(∑

l 6=k ξ
(l)
t−1plk

)
f(yt|J (k)

t = t) i = t,

pkkξ
(k)
i,t−1f(yt|Ft−1, J

(k)
t = i) i < t,

Thus

f(βt|Ft) ∝
K∑
k=1

f(βt, yt, st−1 = k|Ft−1)

=
K∑
k=1

ξ
(k)∗
t,t f(θt|Ft, J (l)

t = t) +
K∑
k=1

t−1∑
i=1

ξ
(k)∗
i,t f(θt|Ft, J (k)

t = i).

So the mixture weight ξ
(k)
i,t is the conditional probability which can be determined by the

recursions

ξ
(k)
i,t ∝ ξ

(k)∗
i,t :=


(∑

l 6=k ξ
(l)
t−1plk

)
f(yt|J (k)

t = t) i = t,

pkkξ
(k)
i,t−1f(yt|Ft−1, J

(k)
t = i) i < t.

(2.2.3)

When i = t:

Recall Pt = (2σ2
t )
−1 and define ψ

(k)
0,0 = (κ(k))−

1
2

(λ(k))−g(k)

Γ(g(k))
.

f(yt|J (k)
t = t) =

∫
θt

f(yt|θt)f(θt|J (k)
t = t)dθt

= ψ
(k)
0,0

∫
Pt

∫
µt

P
1
2
t exp{−Pt(yt − µt)2}P

1
2
t exp

{
− Pt

(µt − z(k))2

κ(k)

}
P g(k)−1

t exp{− Pt
λ(k)
}dµtdPt
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= ψ
(k)
0,0

∫
Pt

P g(k)

t exp
{
− Pt[

1

λ(k)
+ y2

t +
(z(k))2

κ(k)
− (κ

(k)
tt )2

κ
(k)
tt

(yt +
z(k)

κ(k)
)2]
}
·∫

µt

exp
{−Pt
κ

(k)
tt

[µt − κ(k)
tt (yt +

z(k)

κ(k)
)]2
}
dµtdPt

= ψ
(k)
0,0

∫
Pt

P g(k)

t exp
{
− Pt[

1

λ(k)
+ y2

t +
(z(k))2

κ(k)
− (z

(k)
tt )2

(κ
(k)
tt )

]
}
P
− 1

2
t (κ

(k)
tt )

1
2dPt

= ψ
(k)
0,0(κ

(k)
tt )

1
2

∫
Pt

P
(g(k)+ 1

2
)−1

t exp{−Pt
λ

(k)
tt

}dPt

= ψ
(k)
0,0(κ

(k)
tt )

1
2 Γ(g

(k)
tt )(λktt)

g
(k)
tt .

Define ψ
(k)
tt = (κ

(k)
tt )−

1
2

(λktt)
−g

(k)
tt

Γ(g
(k)
tt )

, then:

f(yt|J (k)
t = t) = ψ

(k)
0,0

/
ψ

(k)
t,t .

When i < t:

Again Pt = (2σ2
t )
−1 and define ψ

(k)
i,t−1 = (κ

(k)
it−1)−

1
2

(λkit−1)
−g

(k)
it−1

Γ(g
(k)
it−1)

.

f(yt|Ft−1, J
(k)
t = i) =

∫
θt

f(yt|θt)f(θt|Ft−1, J
(k)
t = t)dθt

= ψ
(k)
i,t−1

∫
Pt

∫
µt

P
g
(k)
it−1

t exp
{
− Pt[(yt − µt)2 +

(µt − z(k)
it−1)2

κ
(k)
it−1

+
1

λ
(k)
it−1

]
}
dµtdPt

= ψ
(k)
i,t−1

∫
Pt

P
g
(k)
it −1

t P
1
2
t exp

{
− Pt[

1

λ
(k)
it−1

+ y2
t +

(z
(k)
it−1)2

κ
(k)
it−1

− (κ
(k)
it )2

κ
(k)
it

(yt +
z

(k)
it−1

κ
(k)
it−1

)2]
}

·
∫
µt

exp
{
− Pt

κ
(k)
it

[µt − κ(k)
it (yt +

z
(k)
it−1

κ
(k)
it−1

)]2
}
dµtdPt

= ψ
(k)
i,t−1(κ

(k)
it )

1
2

∫
Pt

P
g
(k)
it −1

t P
1
2
t P

− 1
2

t exp
{
− Pt[

1

λ(k)
+

(z(k))2

κ(k)
+

t∑
j=i

y2
j −

(z
(k)
it )2

κ
(k)
it

]
}
dPt

= ψ
(k)
i,t−1(κ

(k)
it )

1
2 Γ(g

(k)
it )(λkit)

g
(k)
it .
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Define ψ
(k)
i,t = (κ

(k)
it )−

1
2

(λkit)
−g

(k)
it

Γ(g
(k)
it )

, then:

f(yt|Ft−1, J
(k)
t = i) = ψ

(k)
i,t−1

/
ψ

(k)
i,t .

Making use of
∑K

k=1

∑t
i=1 ξ

(k)
i,t = 1, we can show that the conditional probabilities ξ

(k)
i,t are

determined by ξ
(k)
i,t = ξ

(k)∗
i,t

/[∑K
h=1

∑t
j=1 ξ

(h)∗
j,t

]
, in which

ξ
(k)∗
i,t :=


(∑

l 6=k ξ
(l)
t−1qlk

)
ψ

(k)
0,0

/
ψ

(k)
t,t i = t,

qkkξ
(k)
i,t−1ψ

(k)
i,t−1

/
ψ

(k)
i,t i < t,

(2.2.4)

and

ψ
(k)
i,j =

1√
κ

(k)
ij

1

Γ(g
(k)
ij )

[
λ

(k)
ij

]−g(k)ij .

Hence expressions (2.2.1) and (2.2.2) implies

P (st = k|Yt) =
t∑
i=1

ξ
(k)
i,t , E(θt|Yt) =

K∑
k=1

t∑
i=1

ξ
(k)
i,t E(θt|Yit). (2.2.5)

2.3 The backward Filtering estimate of parameters

The model assumption implies that, a stationary distribution of θt exists and is given

by
K∑
k=1

πkNormal(z(k), V (k)). (2.3.1)

This indicates that, if θt is initialized at the stationary distribution, its time-reversed Markov

chain can be defined. This substantially simplifies the smoothing estimates of θt. Note that

this also imposes stationarity conditions for yt. As indicated before, θt is a reversible Markov

chain. Therefore we can obtain a backward filter that is analogous to the forward filter. That
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is, we reverse the location, starting with location T and estimating θt for any position t given

the “historical” information from T to t.

Define R
(k)
t = min{j ≥ t : k = st · · · = sj−1 6= sj} be the most recent changing position

larger than or equal to t when st switches from the state k to another state. Figure 2.3

illustrates the definition of R
(k)
t . At time t, the regime is st = 1, and the most recent

transition occurs after t is at R
(1)
t as shown in Figure 2.3.

Figure 2.3: Illustration: Definition of R
(k)
t .

Define

η
(k)
t = P (st = k|Ft,T ), η

(k)
j,t = P (R

(k)
t = j|Ft,T ),

for t ≤ j ≤ T and 1 ≤ k ≤ K. The quantity η
(k)
t is the conditional probability that the

current state is k given information Ft,T η(k)
i,t is the conditional probability that the current

state is k and the next transition occurs at location j given Ft,T . Thus η
(k)
t =

∑T
j=t η

(k)
t,j . If

we know all the information from time t to T and that the next transition occurs at location

j, we just need to use the information before the change to estimate the current value of θt.
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We then use the time-reversed chain of θt to obtain a backward analog of (2.2.2),

θt+1|Yt+1,T ∼
K∑
k=1

T∑
j=t+1

η
(k)
t+1,j

[
θt+1|Yt+1,j

]
, (2.3.2)

in which the weights η
(k)
t+1,j can be obtained by backward induction using the time-reversed

counterpart of (2.2.4):

η
(k)
t+1,j ∝ η

(k)∗
t+1,j :=


(∑

l 6=k η
(l)
t+2q̃lk

)
ψ

(k)
0,0/ψ

(k)
t+1,t+1 j = t+ 1,

q̃kkη
(k)
t+2,jψ

(k)
t+2,j/ψ

(k)
t+1,j j > t+ 1,

(2.3.3)

where Q̃ = (q̃lk) is the transition matrix of the reversed chain of {st}, and q̃lk = P (st =

k|st+1 = l). Since for B ⊂ Rd, P (βt ∈ B|Yt,T ) =
∫
P (βt ∈ B|βt+1)dP (βt+1|Yt,T ), it follows

from (2.3.2) that

θt|Yt+1,T ∼
K∑
k=1

{
q̃kk

T∑
j=t+1

η
(k)
t+1,j

[
θt|Yt+1,j

]
+
(∑
l 6=k

q̃lkη
(l)
t+1

)
θt

}
. (2.3.4)

2.4 Smoothing estimate of parameters

Next, we shall use Bayes’ theorem to combine the forward filter (2.2.2) with its backward

variant (2.3.4) to derive the posterior distribution of θt given YT (1 ≤ t < T ).

f(θt|YT ) =
K∑
k=1

f(θt, st = k|YT ) ∝
K∑
k=1

f(θt, st = k|Yt)
f(θt, st = k|Yt+1,T )

f(θ, st = k)
. (2.4.1)

Thus we first study f(θt, st = k|Yt)f(θt, st = k|Yt+1,T )
/
f(θ, st = k).

f(θt, st = k|Yt)f(θt, st = k|Yt+1,T )
/
f(θ, st = k)
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=

∑t
i=1 ξ

(k)
i,t f(θt|Yi,t) · {q̃kk

∑T
j=t+1 η

(k)
t+1,jf(θt|Yt+1,j) +

∑
l 6=k q̃lkη

(l)
t+1f(θt|st = k)}

P (st = k)f(θt|st = k)

=

∑t
i=1 ξ

(k)
i,t f(θt|Yi,t) · q̃kk

∑T
j=t+1 η

(k)
t+1,jf(θt|Yt+1,j)

πkf(θt|st = k)

+

∑t
i=1 ξ

(k)
i,t f(θt|Yi,t) ·

∑
l 6=k q̃lkη

(l)
t+1f(θt|st = k)

πkf(θt|st = k)

=
t∑
i

ξ
(k)
i,t

∑
l 6=k

q̃lk
πk
η

(l)
t+1f(θt|Yi,t) +

q̃kk
πk

∑
1≤i≤t≤j≤T

ξ
(k)
i,t η

(k)
t+1,j

f(θt|Yi,t)f(θt|Yt+1,j)

f(θt|st = k)
.

Further we study f(θt|Yi,t)f(θt|Yt+1,j)/f(θt|st = k):

f(θt|Yi,t)f(θt|Yt+1,j)

f(θt|st = k)f(θt|Yi,j)

=
ψ

(k)
i,t ψ

(k)
t+1,j

ψ
(k)
i,j ψ

(k)
0,0

P
(g

(k)
it +g

(k)
t+1j+g(k)+g

(k)
ij )

t ·
exp{−Pt( 1

λ
(k)
it

+ 1

λ
(k)
t+1j

)}

exp{−Pt( 1
λ(k)

+ 1

λ
(k)
ij

)}
·

exp
{
− Pt[ (µt−z(k)it )2

κ
(k)
it

+
(µt−z(k)t+1j)2

κ
(k)
t+1j

]
}

exp
{
− Pt[ (µt−z(k))2

κ(k)
+

(µt−z(k)ij )2

κ
(k)
ij

]
}

=
ψ

(k)
i,t ψ

(k)
t+1,j

ψ
(k)
i,j ψ

(k)
0,0

P
(g

(k)
it +g

(k)
t+1j+g(k)+g

(k)
ij )

t

· exp
{
− Pt[(

1

κ
(k)
it

+
1

κ
(k)
t+1j

− 1

κ(k)
− 1

κ
(k)
ij

)µ2
t − 2(

z
(k)
it

κ
(k)
it

+
z

(k)
t+1j

κ
(k)
t+1j

− z(k)

κ(k)
−
z

(k)
ij

κ
(k)
ij

)µt]
}

· exp
{
− Pt(

1

λ
(k)
it

+
1

λ
(k)
t+1j

− 1

λ(k)
+

1

λ
(k)
ij

+
(z

(k)
it )2

κ
(k)
it

+
(z

(k)
t+1j)

2

κ
(k)
t+1j

− (z(k))2

κ(k)
−

(z
(k)
ij )2

κ
(k)
ij

)
}

=
ψ

(k)
i,t ψ

(k)
t+1,j

ψ
(k)
i,j ψ

(k)
0,0

.

Thus

f(θt|Yi,t)f(θt|Yt+1,j)

f(θt|st = k)
=
ψ

(k)
i,t ψ

(k)
t+1,j

ψ
(k)
i,j ψ

(k)
0,0

f(θt|Yi,j). (2.4.2)
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Put ((2.4.2)) into ((2.4.2)) and combine ((2.4.1)) we could get:

f(θt|YT ) =
K∑
k=1

(
t∑
i

ξ
(k)
i,t

∑
l 6=k

q̃lk
πk
η

(l)
t+1f(θt|Yi,t) +

q̃kk
πk

∑
1≤i≤t≤j≤T

ξ
(k)
i,t η

(k)
t+1,j

ψ
(k)
i,t ψ

(k)
t+1,j

ψ
(k)
i,j ψ

(k)
0,0

f(θt|Yi,j))

(2.4.3)

The posterior distribution of θt given YT can also be expressed as the following mixture of

normal distributions

θt|YT ∼
K∑
k=1

∑
1≤i≤t≤j≤T

α
(k)
ij,t

[
θt|Yi,j

]
, (2.4.4)

in which the mixture weights α
(k)
ij,t are posterior probabilities explained below. Consider the

event

C
(k)
ij = {si = · · · = sj = k, si 6= si−1, sj 6= sj+1}.

We can show that, for i ≤ t ≤ j, α
(k)
ijt = P (C

(k)
ij |Yn).

And from the derivative before, α
(k)
ij,t can be calculated recursively as

α
(k)
ijt = α

(k)∗
ijt

/
Dt, Dt =

K∑
k=1

∑
1≤i≤t≤j≤T

α
(k)∗
ijt ,

α
(k)∗
ijt =

 ξ
(k)
i,t

(∑
l 6=k η

(l)
t+1qkl/πl

)
i ≤ t = j,

qkkξ
(k)
i,t η

(k)
t+1,jψ

(k)
i,t ψ

(k)
t+1,j

/
(πkψ

(k)
i,j ψ

(k)
0,0) i ≤ t < j.

(2.4.5)

Therefore, the smoothing estimates of θt and st given YT are given by

E(µt|YT ) =
K∑
k=1

∑
1≤i≤t≤j≤T

α
(k)
ijt z

(k)
i,j , (2.4.6)

E(σ2
t |YT ) =

K∑
k=1

∑
1≤i≤t≤j≤T

1

2
(gkij − 1)−1(λkij)

−1, (2.4.7)
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P (st = k|YT ) =
∑

1≤i≤t≤j≤T

α
(k)
ijt . (2.4.8)

Similarly, we use the Figure 2.4 illustrates the structure of our algorithm. At position t, we

assume a possible change point to state k occurs at location i before t and at location j after

t. We then derive the posterior probability density function gi,t(θ) and gt+1,j(θ). Moreover,

the forward and backward filter at location t can be calculated based on all such g that

containing all possible i and j, which are represented by f(θt|Ft) and f(θt|Ft+1,T ) in the

figure. By combining them together we could generate the posterior distribution f(θt|FT )at

t given the whole information of the sequence.

Figure 2.4: Illustration: The structure of the algorithm.

One concern here is that, since (2.4.7) are represented as K mixtures of mixtures of normals,

it is questionable whether the smoothing formula could differentiate the values of θt when

K states are close to each other. Such identification issue is closed related to the choice of

appropriate hyper-parameters.
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2.5 Bounded Complexity Mixture (BCMIX) Approximation

Although the Bayes filter (2.2.2) uses a recursive updating formula (2.2.4) for the weights

ξ
(k)
i,t (1 ≤ i ≤ t, 1 ≤ k ≤ K), the number of weights increases dramatically with t, resulting

in rapidly increasing computational complexity and memory requirements in estimating θt

as t keeps increasing. To address the issue of computational efficiency, we follow Xing et al.

(2011) and consider a bounded complexity mixture (BCMIX) approximation procedure with

much lower computational complexity yet comparable to the Bayes estimates in statistical

efficiency. The idea of BCMIX approximation is to keep only a fixed number M of weights at

every stage t, in particular, the most recent m (1 ≤ m < M) weights ξ
(k)
i,t (with t−m < i ≤ t)

and the largest M −m of the remaining weights.

Denote K(k)
t−1 the set of induces i for which ξ

(k)
i,t−1 in (2.2.4) is kept at stage t−1 for regime

k. Note that there are at most M induces in K(k)
t−1 and K(k)

t−1 ⊃ {t− 1, · · · , t−m}. When a

new observation arrives at time t, we still define ξ
(k)∗
i,t by (2.2.4) for i ∈ {t}∪K(k)

t−1 and denote

it the index not belonging to the most recent m stages, {t, t− 1, . . . , t−m+ 1}, such that

ξ
(k)∗
it,t

= min{ξ(k)∗
i,t : i ∈ K(k)

t−1 and i ≤ t−m}, (2.5.1)

choosing i
(k)
t to be the one farthest from t if the minimizing set in (2.5.1) has more than one

element. Define K(k)
t = {t} ∪ (K(k)

t−1 − {i
(k)
t }), and then

ξ
(k)
i,t =

(
ξ

(k)∗
i,t

/ ∑
j∈K(k)

t

ξ
(k)∗
j,t

)
, i ∈ K(k)

t , (2.5.2)

yields a BCMIX approximation to the forward filter.

Similarly, to obtain a BCMIX approximation to the backward filter (2.3.3), let K̃(k)
t+1

denote the set of indices j for which η
(k)
j,t+1 in (2.3.3) is kept at stage t+ 1 for regime k; thus,
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K̃(k)
t+1 ⊃ {t + 1, · · · , t + m}. At time t, define η

(k)
j,t by (2.3.3) for j ∈ {t} ∪ K(k)

t+1 and let jt be

the index not belonging to the most recent m stages, {t, t+ 1, · · · , t+m− 1} such that

η
(k)∗
jt,t

= min{η(k)∗
j,t : j ∈ K̃(k)

t+1 and j ≥ t+m}, (2.5.3)

choosing j
(k)
t to be the one farthest from t if the minimizing set in (2.5.3) has more than one

element. Define K̃(k)
t = {t} ∪ (K(k)

t+1 − {i
(k)
t }), and then

η
(k)
j,t =

(
η

(k)∗
j,t

/ ∑
j∈K̃(k)

t

η
(k)∗
j,t

)
, j ∈ K̃(k)

t , (2.5.4)

yields a BCMIX approximation to the backward filter.

For the smoothing estimate E(θt|YT ) and its associated posterior distribution, we con-

struct BCMIX approximations by combining the preceding forward and backward BCMIX

filters with index sets K(k)
t and K̃(k)

t+1, respectively, at time t. Then the BCMIX approxima-

tions to (2.4.5) are given as

α̃ijt = α∗ijt
/
D̃t, D̃t =

∑
i∈K(k)

t ,j∈{t}∪K̃(k)
t+1

α∗ijt,

α
(k)∗
ijt =

 ξ
(k)
i,t

(∑
l 6=k η

(l)
t+1qkl/πl

)
i ∈ K(k)

t ,

qkkξ
(k)
i,t η

(k)
t+1,jψ

(k)
i,t ψ

(k)
t+1,j

/
(πkψ

(k)
i,j ψ

(k)
0,0) i ∈ K(k)

t , j ∈ {t} ∪ K̃(k)
t+1.

Therefore, the BCMIX smoother for θt and st given YT are expressed as

E(θt|YT ) ≈
∑K

k=1

∑
i∈K(k)

t ,j∈{t}∪K̃(k)
t+1
α̃

(k)
ijt

[
θt|Yij

]
, (2.5.5)

P (st = k|FT ) ≈
∑K

k=1

∑
i∈K(k)

t ,j∈{t}∪K̃(k)
t+1
α̃

(k)
ijt . (2.5.6)
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The BCMIX approximation fixes the number of filters as M at each time, and keeps

the m closest weights and the other M − m largest weights. This greatly reduces the

computational complexity O(T 2) of the filter in Section 2.2 and O(T 3) of the smoother

in Sections 2.3 to O(T ). The specification of M and m are discussed in Section 3.

2.6 Estimation of Hyperparameter

The inference procedure in the above sections involve the hyper-parameters Φ = {Q, z(k),

κ(k), λ(k), g(k); k = 1, . . . , }, which can be replaced by their estimates in the empirical Bayes

approach. We can show that the conditional density function of yt given Yt−1 is expressed

as

f(yt|Yt−1) =
K∑
k=1

t∑
i=1

ξ
(k)∗
it , (2.6.1)

where ξ
(k)∗
it are given by (2.2.4) and are functions of hyper-parameter vector Φ. Given Φ

and the observed data Yn, the log likelihood function is

l(Φ) =
n∑
t=1

log f(yt|Yt−1) =
n∑
t=1

log
{ K∑
k=1

t∑
i=1

ξ
(k)∗
it

}
, (2.6.2)

in which f(·|·) denotes conditional density function. Maximizing (2.6.2) over Φ yields the

maximum likelihood estimate Φ̂.

Since Φ is a [4K + K(K − 1)]-dimensional vector and the functions ξ
(k)
it have to be

computed recursively for 1 ≤ t ≤ T , direct maximization of (2.6.2) is computationally

expensive due to the curse of dimensionality. We can use the EM algorithm to exploit the

much simpler structure of the log likelihood lc(Φ) of the complete data {(yt, st,θt), 1 ≤ t ≤

T}.

Recall Pt = (2σ2
t )
−1.
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lc(Φ) =
T∑
t=1

log f({yt, st,θt})

=
T∑
t=1

{
log f(yt|θt) +

K∑
k=1

f(θt|st = k)1{st=k} +
K∑

k,l=1

log(pkl)1{st−1=k,st=l}

}
=−

T∑
t=1

{
(yt − µt)2Pt +

1

2
log(πP−1

t )
}

−
T∑
t=1

K∑
k=1

{(µt − z(k))2

κ(k)
Pt +

1

2
log(πP−1

t κ(k))
}

−
T∑
t=1

K∑
k=1

{
g(k) log(λ(k))− log(Γ(g(k)))− (g(k) − 1) log(Pt) +

Pt
λ(k)

}
1{st=k}

+
T∑
t=1

K∑
k,l=1

log(pkl)1{st−1=k,st=l}.

(2.6.3)

The E-step of the EM algorithm calculates E[lc(Φ)|Ft] which is

E[lc(Φ)|Ft] =−
T∑
t=1

E[(yt − µt)2Pt|Ft]−
1

2

T∑
t=1

E[log(πP−1
t )|Ft]

−
T∑
t=1

K∑
k=1

E[
(µt − z(k))2

κ(k)
Pt1{st=k}|Ft]−

1

2

T∑
t=1

K∑
k=1

E[log(πP−1
t κ(k))1{st=k}|Ft]

−
T∑
t=1

K∑
k=1

g(k) log(λ(k))E[1{st=k}|Ft]−
T∑
t=1

K∑
k=1

log(Γ(g(k)))E[1{st=k}|Ft]

+
T∑
t=1

K∑
k=1

(g(k) − 1)E[log(Pt)1{st=k}|Ft]−
T∑
t=1

K∑
k=1

E[
Pt
λ(k)

1{st=k}|Ft]

+
T∑
t=1

K∑
k,l=1

log(pkl)E[1{st−1=k,st=l}|Ft].

(2.6.4)

It involves the computation of the conditional expectationsE[(yt−µt)2Pt|Ft], E[log(πP−1
t )|Ft],
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E[ (µt−z(k))2
κ(k)

Pt1{st=k}|Ft] andE[log(πP−1
t κ(k))1{st=k}|Ft], E[log(Pt)1{st=k}|Ft], E[ Pt

λ(k)
1{st=k}|Ft],

and the conditional probability E(1{st=k}|FT ) = P (st = k|FT ) and E(1{st−1=k,st=l}|FT ) =

P (st−1 = k, st = l|FT ). For the first conditional probability,

P (st = k|FT ) =
t∑
i=1

P (J
(k)
t = i|FT ) =

t∑
i=1

T∑
j=t

P (J
(k)
t = i, R

(k)
t = j|FT )

=
∑

1≤i≤t≤j≤T

P (C
(k)
ij |FT ) =

∑
1≤i≤t≤j≤T

α
(k)
ijt .

For the second conditional probability,

P (st−1 = k, st = l|FT ) = P (st = l|st−1 = k,FT )P (st−1 = k|FT ). (2.6.5)

From the above derivation, we know that

P (st−1 = k|FT ) =
∑

1≤i≤t−1≤j≤T

α
(k)
i,j,t−1.

Furthermore,

P (st = j|st−1 = i,FT ) =
P (st = j, st−1 = i,FT )

P (st−1 = i,FT )

=
P (st = j, st−1 = i,Ft|Ft+1,T )

P (st−1 = i,Ft|Ft+1,T )

=
P (st−1 = i,Ft|st = j)P (st = j|Ft+1,T )

P (st−1 = i,Ft|Ft+1,T )

=
P (st−1 = i,Ft)P (st = j|st−1 = i,Ft)

P (st = j)

P (st = j|Ft+1,n)

P (st−1 = i,Ft|Ft+1,T )

=
P (st−1 = i,Ft)

P (st−1 = i,Ft|Ft+1,T )

P (st = j|st−1 = i, yt)P (st = j|Ft+1,T )

P (st = j)

∝ P (st = j, yt|st−1 = i)P (st = j|Ft+1,T )

P (st = j)
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=
f(yt|st = j, st−1 = i)P (st = j|st−1 = i)

∑K
k=1 P (st = j, st+1 = k|Ft+1,T )

P (st = j)

=
f(yt|st = j, st−1 = i)P (st = j|st−1 = i)

∑K
k=1 P (st = j|st+1 = k,Ft+1,T )P (st+1 = k|Ft+1,T )

P (st = j)

=
f(yt|st = j)P (st = j|st−1 = i)

∑K
k=1 P (st = j|st+1 = k)P (st+1 = k|Ft+1,T )

P (st = j)

=
ψ

(j)
t,t /ψ

(j)
0,0pij

∑K
k=1 p̃kjη

k
t+1

πj
.

Thus

P (st = l|st−1 = k,FT ) =
ψ

(l)
t,t/ψ

(l)
0,0pklP̃

′
l ηt+1/πl∑K

i=1

[
ψ

(i)
t,t /ψ

(i)
0,0pkiP̃

′
iηt+1/πi

] . (2.6.6)

Plugging (2.6.6) into (2.6.5), we have

P (st = l, st−1 = k|FT ) =
ψ

(l)
t,t/ψ

(l)
0,0pklP̃

′
l ηt+1/πl∑K

i=1

[
ψ

(i)
t,t /ψ

(i)
0,0pkiP̃

′
iηt+1/πi

] ∑
1≤i≤t−1≤j≤T

α
(k)
i,j,t−1.

Then the conditional probabilities are:

E(1{st=k}|FT ) =
∑

1≤i≤t≤j≤T

α
(k)
ijt ,

E(1{st−1=k,st=l}|FT ) =
ψ

(l)
t,t/ψ

(l)
0,0pklP̃

′
l ηt+1/πl∑K

i=1

[
ψ

(i)
t,t /ψ

(i)
0,0pkiP̃

′
iηt+1/πi

] ∑
1≤i≤t−1≤j≤T

α
(k)
i,j,t−1.

(2.6.7)

The M-step of the EM algorithm involves calculating the partial derivatives of (2.6.4) with

respect to Φ. Simple algebra yields the following updating formulas for Φ.

q̂kl,new =

∑T
t=2 P (st−1 = k, st = l|FT , Φ̂old)∑T

t=2 P (st−1 = k|FT , Φ̂old)
,

ẑ(k)
new =

∑T
t=1E[µtPt1{st=k}|FT , Φ̂old]∑T
t=1 E[Pt1{st=k}|FT , Φ̂old]

,
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κ̂(k)
new =

2
∑T

t=1 E[(µt − ẑ(k)
old)2Pt1{st=k}|FT , Φ̂old]∑T

t=1E[1{st=k}|FT , Φ̂old]
,

λ̂(k)
new =

∑T
t=1 E[Pt1{st=k}|FT , Φ̂old]∑T
t=1 g

(k)
oldE[1{st=k}|FT , Φ̂old].

(2.6.8)

For q̂kl,new, (2.6.7) can be used for calculation.

For ẑ
(k)
new, the numerator and denominator are simplified as below:

E[µtPt1{st=k}|FT , Φ̂old] =
T∑
t=1

α
(k)
ijtE[µtPt|C(k)

ij FT , Φ̂old], (2.6.9)

E[µtPt|C(k)
ij FT , Φ̂old]

=

∫
Pt

Pt

∫
µt

µtf(µt|Pt, C(k)
ij ,Ft)f(Pt|C(k)

ij ,Ft)dµtdPt

=

∫
Pt

Pt

∫
µt

µt

√
Pt√
πκ

(k)
ij

exp{−
(µt − z(k)

i,j )2

κ
(k)
ij

Pt}
(λ

(k)
ij )−g

(k)
ij

Γ(g
(k)
ij )

P
g
(k)
ij −1

t exp{− Pt

λ
(k)
ij

}dµtdPt

=

∫
Pt

P
g
(k)
ij

t

√
Pt√
πκ

(k)
ij

(λ
(k)
ij )−g

(k)
ij

Γ(g
(k)
ij )

exp{− Pt

λ
(k)
ij

}
∫
µt

µt exp{−
(µt − z(k)

i,j )2

κ
(k)
ij

Pt}dµtdPt

=

∫
Pt

P
(g

(k)
ij +1)−1

t

(λ
(k)
ij )−g

(k)
ij

Γ(g
(k)
ij )

exp{− Pt

λ
(k)
ij

}z(k)
ij dPt = λ

(k)
ij

Γ(g
(k)
ij )

Γ(g
(k)
ij )

z
(k)
ij

= λ
(k)
ij g

(k)
ij z

(k)
ij , (2.6.10)

E[Pt1{st=k}|FT , Φ̂old]

=
∑

1≤i≤t≤j≤T

α
(k)
ijtE[Pt1{st=k}|C

(k)
ij FT , Φ̂old]

=
∑

1≤i≤t≤j≤T

α
(k)
ijt g

(k)
ijt λ

(k)
ijt . (2.6.11)
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So

ẑ(k)
new =

T∑
t=1

E[µtPt1{st=k}|FT , Φ̂old]

T∑
t=1

E[Pt1{st=k}|FT , Φ̂old]

=

T∑
t=1

∑
1≤i≤t≤j≤T

α
(k)
ijtλ

(k)
ij g

(k)
ij )z

(k)
ij

T∑
t=1

∑
1≤i≤t≤j≤T

α
(k)
ijtλ

(k)
ij g

(k)
ij

. (2.6.12)

For κ̂
(k)
new, the posterior expectations needed in the updating formula are E[(µt−ẑ(k)

old)2Pt1{st=k}|FT , Φ̂old]

and E[1{st=k}|FT , Φ̂old]. The latter one has been simplified to
∑

1≤i≤t≤j≤T α
(k)
ijt in (2.6.7).

E[(µt − z(k)
old)2Pt1{st=k}|FT , Φ̂old]

=
∑

1≤i≤t≤j≤T

α
(k)
ijtE[(µ2

t − 2µtz
(k)
old + (z

(k)
old)2)Pt|C(k)

ij ,FT , Φ̂old]

=
∑

1≤i≤t≤j≤T

α
(k)
ijt

{
E[(µ2

tPt|C
(k)
ij ,FT , Φ̂old]− 2z

(k)
oldE[µtPt|C(k)

ij ,FT , Φ̂old]

+(z
(k)
old)2)E[Pt|C(k)

ij ,FT , Φ̂old]
}
, (2.6.13)

in which

E[(µ2
tPt|C

(k)
ij ,FT , Φ̂old]

=

∫
Pt

Pt

∫
µt

µ2
tf(µt|Pt, C(k)

ij ,Ft)f(Pt|C(k)
ij ,Ft)dµtdPt

=

∫
Pt

Pt

∫
µt

µ2
t

√
Pt√
πκ

(k)
ij

exp{−
(µt − z(k)

i,j )2

κ
(k)
ij

Pt}
(λ

(k)
ij )−g

(k)
ij

Γ(g
(k)
ij )

P
g
(k)
ij −1

t exp{− Pt

λ
(k)
ij

}dµtdPt

=

∫
Pt

P
g
(k)
ij

t

(λ
(k)
ij )−g

(k)
ij

Γ(g
(k)
ij )

exp{− Pt

λ
(k)
ij

}
∫
µt

µ2
t

√
Pt√
πκ

(k)
ij

exp{−
(µt − z(k)

i,j )2

κ
(k)
ij

Pt}dµtdPt
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=

∫
Pt

P
g
(k)
ij

t

(λ
(k)
ij )−g

(k)
ij

Γ(g
(k)
ij )

exp{− Pt

λ
(k)
ij

}
( 1

2Pt
κ

(k)
ij + (z

(k)
ij )2

)
dPt

=
κ

(k)
ij

2
+ λ

(k)
ij g

(k)
ij (z

(k)
ij )2. (2.6.14)

Using (2.6.10),

− 2z
(k)
oldE[µtPt|C(k)

ij ,FT , Φ̂old] = −2λ
(k)
ij g

(k)
ij z

(k)
oldz

(k)
ij , (2.6.15)

and

(z
(k)
old)2)E[Pt|C(k)

ij ,FT , Φ̂old]] = (z
(k)
old)2λ

(k)
ij g

(k)
ij . (2.6.16)

We have

κ̂(k)
new =

2∑
1≤i≤t≤j≤T

α
(k)
ijt

∑
1≤i≤t≤j≤T

α
(k)
ijt

{
E[(µ2

tPt|C
(k)
ij ,FT , Φ̂old]− 2z

(k)
oldE[µtPt|C(k)

ij ,FT , Φ̂old]

+(z
(k)
old)2)E[Pt|C(k)

ij ,FT , Φ̂old]
}

=
2∑

1≤i≤t≤j≤T
α

(k)
ijt

∑
1≤i≤t≤j≤T

α
(k)
ijt

{κ(k)
ij

2
+ λ

(k)
ij g

(k)
ij (z

(k)
ij )2 − 2λ

(k)
ij g

(k)
ij z

(k)
oldz

(k)
ij + (z

(k)
old)2λ

(k)
ij g

(k)
ij

}

=

2
∑

1≤i≤t≤j≤T
α

(k)
ijtλ

(k)
ij g

(k)
ij (z

(k)
ij − z

(k)
old)2

∑
1≤i≤t≤j≤T

α
(k)
ijt

+

∑
1≤i≤t≤j≤T

α
(k)
ijtκ

(k)
ij∑

1≤i≤t≤j≤T
α

(k)
ijt

. (2.6.17)

For λ̂
(k)
new, the two posterior expectations are calculated in (2.6.11) and (2.6.7). So

λ̂(k)
new =

T∑
t=1

E[Pt1{st=k}|FT , Φ̂old

T∑
t=1

g
(k)
oldE[1{st=k}|FT , Φ̂old

=

T∑
t=1

∑
1≤i≤t≤j≤T

α
(k)
ijt g

(k)
ijt λ

(k)
ijt

T∑
t=1

g
(k)
old

∑
1≤i≤t≤j≤T

α
(k)
ijt

. (2.6.18)
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The iteration scheme (2.6.8) is carried out until convergence or until some prescribed upper

bound on the number of iterations is reached.

To speed up the computations involved in the EM algorithm, one can use the BCMIX

approximations instead of the full recursions to determine the items (2.6.9)-(2.6.14). Our

simulation studies shows that the EM procedure converge vary fast.

2.7 Implementation

We have shown the posterior distribution of θt, given the whole data information, is mix-

ture of distributions. In this section, we describe in detail how to implement the algorithms,

presenting explicit formulas. Let us start with a glance of Bayes algorithm.

Step 1 Calculating V
(k)
i,j and z

(k)
i,j . Similar to (??), given FT and C

(k)
ij , i < j we use

κ
(k)
ij =

( 1

κ(k)
+ j − i+ 1

)−1
,

z
(k)
ij = κ

(k)
it

(z(k)

κ(k)
+

j∑
m=i

ym
)
,

g
(k)
it = g(k) + (t− i+ 1)/2,

λ
(k)
it = (

1

λ(k)
+

(z(k))2

κ(k)
+

t∑
j=i

y2
j −

(z
(k)
it )2

κ
(k)
it

)−1.

The results can be saved in two three-dimensional matrices for future calculation.

More specifically, the posterior distribution of µt given σt and Yit follows the normal

distribution, and the posterior distribution of σt given Yit satisfies the inverse-gamma

distribution. If there is no information other than st = k is given, the initial posterior

distribution are normal distribution and inverse-gamma with initial parameters setting

respectively. Using κ
(k)
i,j , z

(k)
i,j , g

(k)
ij and λ

(k)
it we can also calculate the conditional densities

ψ
(k)
0,0 and ψ

(k)
i,j . They are also used to calculate the smoothing estimate of θt by (2.4.5).
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Step 2 Calculating the forward filter (2.2.4) in a recursive manner.

(A) Start with t = 1. According to (2.2.4), we have

ξ
(k)
1,1 ∝ ξ

(k)∗
1,1 =

(∑
l 6=k

ξ
(l)
0 plk

)
ψ

(k)
0,0/ψ

(k)
1,1 .

Substitute ξ
(l)
0 for l 6= k by the stationary distribution πl, use ψ

(k)
1,1 and ψ

(k)
0,0

to calculate
(∑

l 6=k πlplk
)
ψ

(k)
0,0/ψ

(k)
1,1 , which gives the value of ξ

(k)∗
1,1 , and therefore

ξ
(k)
1,1 =

ξ
(k)∗
1,1∑K

k=1 ξ
(k)∗
1,1

.

(B) At t > 1, calculate ξ
(k)∗
t,t =

(∑
l 6=k ξ

(l)
t−1plk

)
ψ

(k)
0,0/ψ

(k)
1,1 directly. Use ξ

(k)
i,t−1 to calculate

ξ
(k)∗
i,t = pkkξ

(k)
i,t−1ψ

(k)
i,t−1/ψ

(k)
i,t for i < t. Normalize ξ

(k)∗
i,t by dividing

∑
1≤i≤t ξ

(k)∗
i,t to

get ξ
(k)
i,t . Keep doing (B) until t = T .

Step 3 Calculating the backward filter (2.3.3) in a recursive manner. The backward filter η
(k)
j,t+1

can be calculated similarly by starting with t = T .

Step 4 Calculating the smoothing mixture weight and the smoothing estimate (2.4.5).

Here comes a big problem of this procedure on computational complexity, which is caused

by the three-dimension store matrix. With t increasing, the number of weights increase

dramatically and thus requires a huge space for the storing especially for the large biological

data sets. We use two smart ways to slove this problem and make our algorithm running

efficiently.

The first modification is to making use of the BCMIX approximation procedure which

can fix the number of weights as a constant M . The cost associated with the method is to

keep the index set K(k)
t for forward filter ξ

(k)
i,t and K̃(k)

t+1 for backward filter η
(k)
j,t+1. The basic

procedure is similar to the preceding one with calculation of up to M + 1 weights for each

stage t. The detailed procedure is as follows.
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Step 1 Calculating κ
(k)
i,j , z

(k)
i,j , g

(k)
i,j and λ

(k)
i,t .

Step 2 Calculating the BCMIX forward filter (2.5.2) in a recursive manner.

(A) For 1 ≤ t ≤ M , use the Bayes procedure to calculate ξ
(k)∗
i,t , ξ

(k)
i,t . The index set

K(k)
t at stage t is {1, · · · , t}.

(B) At t > M , use new information at stage t to calculate ψ
(k)
t,t and therefore ξ

(k)∗
t,t =(∑

l 6=k ξ
(l)
t−1plk

)
ψ

(k)
0,0/ψ

(k)
t,t . Use ξ

(k)
i,t−1 to calculate ξ

(k)∗
i,t = pkkξ

(k)
i,t−1ψ

(k)
i,t−1/ψ

(k)
i,t for

i ∈ K(k)
t−1. Compare the weights in K(k)

t−1 − {i
(k)
t } and drop the smallest one. The

remaining M weights form the new index set K(k)
t , and ξ

(k)
i,t =

ξ
(k)∗
i,t∑

j∈K(k)
t

ξ
(k)∗
j,t

. Keep

doing (B) until t = T , saving both the index sets and the BCMIX forward filters

for future calculation.

Step 3 Calculating the BCMIX backward filter (2.5.4) in a recursive manner starting with

t = T .

Step 4 Calculating the BCMIX smoothing mixture weight (2.5) and the smoothing estimate

(2.5.5), (2.5.6).

Let us takes a second look at the Bounded Complexity Mixture (BCMIX) procedure, it shows

only a small part of the huge precalculated storing matrices κ
(k)
i,j , z

(k)
i,j , g

(k)
ij and λ

(k)
it have been

used. As a result, it wastes lots of space and time to calculate all such storing matrices.

However, we do not know which matrices to use before calculating the index sets. A better

idea is to calculate κ
(k)
i,j , z

(k)
i,j , g

(k)
ij and λ

(k)
it when we need them. Among them, the g

(k)
ij can

easily obtained by g
(k)
ij−1+ 1

2
. One more challenge is that the formulas to calculate κ

(k)
i,j , z

(k)
i,j and

λ
(k)
it involve matrix inversion, which will take a long time to implement. Instead of calculating

κ
(k)
i,j , z

(k)
i,j and λ

(k)
it directly, we can calculate KI

(k)
i,j := (κ

(k)
i,j )−1, KIZ

(k)
i,j := (κ

(k)
i,j )−1z

(k)
i,j and

LI
(k)
i,j := (λ

(k)
it )−1 by the following simple recursive formulas if we know KI

(k)
i,j−1, KIZ

(k)
i,j−1
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and LI
(k)
i,j−1, then

KI
(k)
i,j = (κ

(k)
i,j )−1 = κ(k)−1 + j − i+ 1 = KI

(k)
i,j−1 + 1,

KIZ
(k)
i,j = (κ

(k)
i,j )−1ż

(k)
ij =

z(k)

κ(k)
+

t∑
j=i

yj = KIZ
(k)
i,j−1 + yj,

LI
(k)
i,j = (λ

(k)
it )−1 =

1

λ(k)
+

(z(k))2

κ(k)
+

t∑
j=i

y2
j −

(z
(k)
it )2

κ
(k)
i,t

= LI
(k)
i,j−1 + y2

j +
(KIZ

(k)
i,j )2

KI
(k)
i,j

−
(KIZ

(k)
i,j−1)2

KI
(k)
i,j−1

.

(2.7.1)

So the BCMIX algorithm can be further simplified by adding this recursive updating

feature. The detailed procedure is as follows.

Step 1 Calculating the BCMIX forward filter (2.5.2) in a recursive manner from t = 1. Follow

Step 2 in the above BCMIX algorithm. Assume at stage t− 1 we have finished calcu-

lating ξ
(k)
i,t−1 and K(k)

t−1, and saved all the V I
(k)
i,t−1 and V IZ

(k)
i,t−1 for i ∈ K(k)

t−1. At stage t,

KI
(k)
i,t , KIZ

(k)
i,t and LI

(k)
i,j for i ∈ K(k)

t−1 can be calculated by (2.7.1). KI
(k)
t,t = κ(k)−1 + 1,

KIZ
(k)
t,t = z(k)

κ(k)
+ yt and LI

(k)
t,t = 1

λ(k)
+ (z(k))2

κ(k)
+ y2

t −
(KIZ

(k)
t,t )2

KI
(k)
t,t

. They are used to calculate

ψ
(k)
i,t by

ψ
(k)
i,t =

1√
κ

(k)
it

1

Γ(g
(k)
it )

[
λ

(k)
it

]−g(k)it

= (KI
(k)
i, )

1
2

1

Γ(g
(k)
it )

(LI
(k)
i,j )g

(k)
it ,

and therefore ξ
(k)∗
i,t are calculated for all i ∈ {t} ∪ K(k)

t−1. A small weight is dropped by

the BCMIX rule and the remaining index set K(k)
t , ξ

(k)
i,t , KI

(k)
i,t , KIZ

(k)
i,t and LI

(k)
i,t are

saved.

Step 2 Calculating the BCMIX backward filter (2.5.4) in a recursive manner starting with

t = T . If we know KI
(k)
i−1,j KIZ

(k)
i−1,j and LI

(k)
i−1,j , and want to calculate KI

(k)
i,j , KIZ

(k)
i,j
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and LI
(k)
i,j by the recursive formulas

KI
(k)
i,j = KI

(k)
i−1,j + 1,

KIZ
(k)
i,j = KIZ

(k)
i−1,j + yi,

LI
(k)
i,j = LI

(k)
i−1,j + y2

i +
(KIZ

(k)
i,j )2

KI
(k)
i,j

−
(KIZ

(k)
i−1,j)

2

KI
(k)
i−1,j

.

Using these updating formulas, we can recursively calculate KI
(k)
t+1,j, KIZ

(k)
t+1,j and

LI
(k)
t+1,j for j ∈ K̃(k)

t+1 and conduct Step 3 in the above BCMIX algorithm.

Step 3 Calculating the BCMIX smoothing mixture weight α̃
(k)
ijt and the smoothing estimate

θ̂t|T . We can evaluate KI
(k)
i,j , KIZ

(k)
i,j , g

(k)
i,j and LI

(k)
i,j for i ∈ K(k)

t , j ∈ K̃(k)
t+1 by

KI
(k)
i,j = KI

(k)
i,t +KI

(k)
t+1,j − (κ(k))−1,

KIZ
(k)
i,j = KIZ

(k)
i,t +KIZ

(k)
t+1,j −

z(k)

κ(k)
,

g
(k)
i,j = g

(k)
i,t + g

(k)
t+1,j − g(k),

LI
(k)
i,j = LI

(k)
i,t + LI

(k)
t+1,j −

1

λ(k)
− (z(k))2

κ(k)
+

(KIZ
(k)
i,t )2

KI
(k)
i,t

+
(KIZ

(k)
t+1,j)

2

KI
(k)
i,j

−
(KIZ

(k)
i,j )2

KI
(k)
i,j

.

(2.7.2)

Then we could use the items above to calculate the posterior mean, posterior variance

and the posterior state probability followed the formula in the previous sections.
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Chapter 3

Simulation Studies

In this chapter, we will implement intensive simulation experiments. Firstly, some gen-

eral criterion are introduced, including sum of squared error (SSE), Kullback-Leibler (KL)

divergence and the identification ratio (IR) of true state calling. Then we make comparisons

between the Bayes estimates and BCMIX approximation procedure estimates through the

Monte Carlo simulations. We will show the BCMIX is statistically and computational effi-

cient. Afterwards, We examine the effect of BCMIX approximation by different simulation

settings. The evaluations are made based on the three criterion and shows a very good

performance of our segmentation model. And a quite fuzzy scenario is discussed in the end.

3.1 Comparison Criterion

There are three criterion by which we assess the performance of the estimation of pa-

rameter θt: the sum of squared errors, the Kullback-Leibler divergence and the L2 errors

between the true and estimated parameters. In our model, as yt = µt + σtεt, the sum of

squared error and L2 errors actually is the same, which defines as below

SSE =
1

T

T∑
t=1

(µt − m̂ut)2 =
T∑
t=1

(µt − E(µt|Yt)∈,
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which measures the discrepancy between the true and estimation of the mean variables. Here

note in other segmentation model for regression dependent variables, the SSE is different from

the L2 errors. The Kullback-Leibler (KL) divergence is a equation of information theory or a

measure in statistics (Cover and Thomas, 1991) that quantifies how close of two probability

distribution. For example, we have two measure space with probability distribution p = pi

and q = qi, the KL divergence is defined by KL(p||q) =
∑

i pilog2(pi
qi

). In our Bayesian model

the KL divergence is used as a measure of the information gain of loss in changing form a

prior distribution to a posterior distribution. For example, assuming the data information is

considered, we could update the probability distribution of θt given parameter space to a new

posterior distribution which is the the probability distribution of θt given both parameter

space and the data information. Here in our model, the KL divergence is calculated by the

formula as below:

KL(θt, θ̂t) =
(µt − µ̂t)2

σ̂2
t

+
σ2
t

σ̂2
t

− 1− log(
σ2
t

σ̂2
t

),

which measures the discrepancy between models with θt and θ̂t. We use κ, the average of

KL over the whole sample period, defined by

κ :=
1

T

T∑
t=1

KL(θt, θ̂t)

From the formula of our KL divergence we could find that it not only consider the difference

of the mean variable but also check the ratio term of the volatility. Put it in another way,

it measures more explicitly and accurately compared to the SSE when the variance also has

the hidden states, thus κ should be a more appropriate criterion.

We also need to evaluate the performance of the smoothed probability r̂
(k)
t|T = P (st =

k|Ft) as discussed in previous chapter. We use this probability to provide assessment of the
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hidden state st belonging to regime k. However, this is not a logical variable only taking a

value of 1 or 0, but a probability theoretically close to 1 or 0. When there is a transition

from some regime to another one, the probability might show some fuzziness. An intuitive

and simple way to make the inference on st is to compare the smoothed probability r̂
(k)
t|T with

0.5. If for any 1 ≤ k ≤ K, r̂
(k)
t|T > 0.5, we identity st = k. More specifically, to evaluate the

performance of this procedure, we define an identification ratio as

IR :=

∑T
t=1

∑K
k=1 1

(r̂
(k)
t|T>0.5)∩(st=k)

T
,

where 1 denotes an indicator function, and T is the length of the sequence. If the true regime

is k, and a probability reasonably close to 1, r̂
(k)
t|T > 0.5, is obtained from the procedure, then

(r̂
(k)
t|T > 0.5) ∩ (st = k) is true, and the indicator function returns 1 for stage t.

3.2 Simulation 1: Comparison between Bayes and BCMIX Esti-

mates

In last chapter, we mention that the Bayes method is quite accurate at the cost of time

consuming computation and heavy burden on the memory requirement since the number

of weights probability increase with t. In another word, it might cause big challenge in

estimating θt while the t is larger at some extent. For the biologic data nowadays, it is nearly

impossible to use the Bayes method to do the estimation. BCMIX approximation procedure

is much faster with less memory demand, which can carry out our model efficiently. In this

section, the simulation experiment will display the comparison of the performance of the

Bayes method and BCMIX in several aspects.

We use 2 states in our model, ie, K = 2. The values of the parameter θt := µt, σt

depend on the hidden state st. In all the examples shown in this section, data are generated
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according to hyperparameter values:z(1) = 2.0, κ(1) = 0.8, λ(1) = 0.8, g(1) = 2.5; z(2) =

4.0, κ(2) = 1.0, λ(2) = 0.5, g(2) = 1.8 and P =

 0.99 0.01

0.01 0.99

. Furthermore, given st, θt is

a realization from a truncated distribution such that |µt| < 8 and the ratio of variance of

different state to make the series stationary. We generate N = 500 series, each of length

T = 1000, and consider st changing over location in four scenarios:

Scenario 1. There is only one transition from regime 1 to regime 2. st = 1 for 1 ≤ t ≤

200; st = 2 for 201 ≤ t ≤ 1000.

Scenario 2. There is only one transition from regime 1 to regime 2. st = 1 for 1 ≤ t ≤

800; st = 2 for 801 ≤ t ≤ 1000.

Scenario 3. There are two transitions between regime 1 and regime 2. st = 1 for

1 ≤ t ≤ 350; st = 2 for 351 ≤ t ≤ 700; st = 1 for 701 ≤ t ≤ 1000.

Scenario 4. There are three transitions between regime 1 and regime 2. st = 1 for

1 ≤ t ≤ 200; st = 2 for 201 ≤ t ≤ 400; st = 1 for 401 ≤ t ≤ 600; st = 2 for 601 ≤ t ≤ 1000.

In each scenario, we assume the true hyper-parameters are given, and compute both

BCMIX and Bayes estimates. As mentioned in Section 2.7, the performance of the BCMIX

procedure depends on the specification of M and m. This dependence is examined here,

choosing M = 2m and M =10, 20, 30 and 40. Furthermore, to access the performance of

both methods, we consider a simple benchmark under the condition that the hidden state of

each position is known in advance. so that the Bayes estimates of θt between two transitions

are given by the standard Bayesian formulas (Section 2.7 of Box and Tiao (1973)). It is

called “fictitious Bayes” estimate. Tables 3.1 and 3.2 compare fictitious Bayes estimate

(fBayes), Bayes estimate (Bayes), and the BCMIX estimate (BCMIX) in terms of the SSE,

κ respectively.

The first three columns in the Table 3.1 display that the fictitious Bayes estimates
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Table 3.1: Performance of Sum of squared errors (SSE) for fBayes, Bayes and BCMIX
estimates. Standard errors are given in parentheses below the estimates.

BCMIX
Scenarios fBayes Bayes (10,5) (20,10) (30,15) (40,20)

Scenario 1 0.0023 0.0031 0.0025 0.0025 0.0025 0.0025
(1.28E-04) (1.63E-04) (1.55E-04) (1.55E-04) (1.55E-04) (1.55E-04)

Scenario 2 0.0024 0.0031 0.0024 0.0024 0.0025 0.0025
(1.26E-04) (1.52E-04) (1.44E-04) (1.44E-04) (1.44E-04) (1.44E-04)

Scenario 3 0.0027 0.0035 0.0030 0.0030 0.0030 0.0030
(1.29E-04) (1.69E-04) (1.63E-04) (1.63E-04) (1.63E-04) (1.63E-04)

Scenario 4 0.0027 0.0051 0.0045 0.0045 0.0045 0.0045
(1.29E-04) (2.25E-04) (2.21E-04) (2.21E-04) (2.21E-04) (2.21E-04)

has the smallest SSE while BCMIX(10,5) is general better than Bayes estimates. As we

known for this variance-varying model, SSE is not an perfect criterion for evaluating the

performance of different procedure. Yet, we can still tell that these three method don’t

have fundamental difference no matter the SSE or the standard deviation. Moreover, the

relative differences between BCMIX(10,5) and fBayes is less than 2% in all scenarios, which

demonstrates BCMIX has very promising results in segmentation. On the other hand we

surprisingly discover that BCMIX(10,5) is obvious better than Bayes results regardless of its

much better time complexity in the big data sets. The last four columns in Table 3.1 show

that the average SSE over 500 sequences changes very slight with respect to the different

values of M and m. In last chapter we knew that the approximation should improve as M

and m become larger since more filters are kept in estimating. However, at least, from this

table, we couldn’t find any necessary clear trend since in each scenario the SSE is almost the

same. In summary, the estimation results do not change dramatically when M and m are

getting larger, which can demonstrate the BCMIX procedure is a very robust for the model

with enough accuracy compared with the Bayes estimates.
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Table 3.2: Performance of Kullback-Leibler divergence (103κ) for fBayes, Bayes and BCMIX
estimates. Standard errors are given in parentheses below the estimates.

BCMIX
Scenarios fBayes Bayes (10,5) (20,10) (30,15) (40,20)

Scenario 1 3.973 5.461 4.269 4.268 4.268 4.268
(1.23E-04) (2.10E-04) (2.01E-04) (2.01E-04) (2.01E-04) (2.01E-04)

Scenario 2 4.027 5.394 4.200 4.199 4.198 4.198
(1.25E-04) (1.78E-04) (1.68E-04) (1.68E-04) (1.68E-04) (1.68E-04)

Scenario 3 5.882 7.434 6.245 6.244 6.244 6.242
(1.43E-04) (2.80E-04) (2.75E-04) (2.75E-04) (2.75E-04) (2.75E-04)

Scenario 4 7.883 9.557 8.365 8.365 8.364 8.362
(1.43E-04) (2.77E-04) (2.72E-04) (2.72E-04) (2.72E-04) (2.72E-04)

As mentioned in last section, Kullback-Leibler divergence is a more accurate measure of

the difference between the true and estimated parameters. Table 3.2 shows the comparison

in terms of Kullback-Leibler divergence for the four scenarios. Again, as the benchmark,

the fictitious Bayes estimates give out the best results than the other ones. We can find the

same trend of the first three columns as the previous table: BCMIX(10,5) is less accurate

than fBayes and the relative difference around 6% while BCMIX is significantly better than

the Bayes estimates. Moreover, the values in each scenario with different M and m have a

slight difference. For example, comparing the results of BCMIX(20,10) and BCMIX(40,20),

the relative differences of these two are just less than 1%. In short, from this table, we can

conclude that BCMIX is a reliable procedure as accurate as the benchmark. And the larger

M and m, the smaller KL divergence, although the difference is very subtle. Considering the

computation time of BCMIX(20,10) is one fourth of BCMIX(40,20), it suggests that M = 20

and m = 10 is an ideal choice.

Table 3.3 compares the Bayes and the BCMIX estimates in terms of identification ratio

(IR). The first two columns show that both the Bayes and BCMIX methods give an average
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Table 3.3: Performance of Identification Ratio (IR*100%) for Bayes and BCMIX estimates.
Standard errors are given in parentheses below the estimates.

BCMIX
Scenarios Bayes (10,5) (20,10) (30,15) (40,20)

Scenario 1 99.9892 99.9992 99.9992 99.9992 99.9992
(2.023588e-05 ) (3.987958e-06 ) (3.987958e-06 ) (3.987958e-06 ) (3.987958e-06 )

Scenario 2 99.9898 99.9994 99.9994 99.9994 99.9994
(1.938927e-05) (4.46855e-06) (4.46855e-06) (4.46855e-06) (4.46855e-06)

Scenario 3 99.9894 99.9999 99.9999 99.9999 99.9999
(1.95523e-05) (4.454175e-06) (4.454175e-06) (4.454175e-06) (4.454175e-06)

Scenario 4 99.9884 99.9984 99.9984 99.9984 99.9984
(2.054098e-05) (5.617037e-06) (5.617037e-06) (5.617037e-06) (5.617037e-06)

IR larger than 99%, with slight absolute differences of less than 0.1%. And in general,

BCMIX has better identification ratio than Bayes method about 0.01%. The standard

deviation shows that BCMIX has less variation indicating its better stability. The last four

columns in Table 3.3 don’t have any changing since the IR values have already reach a very

high level even under the combination M = 10 and m = 5. This table further demonstrates

the effectiveness and robustness of BCMIX. As a results, we will implement much more

simulation works using a more complicated model in the next section. We will display more

scenarios, longer sequence and thus the Bayes model has too much burden on computation

and become “mission impossible”. Here as learning from the three table, we will take the

combination M = 20 and m = 10 in the next step simulation to estimate the parameters

and make the inference.

In Table ??, the fBayes just increase from 0.0024 to 0.0027 between Scenario 2 to 4,

while the Bayes and BCMIX has an obvious increase from 0.0031 to 0.0051 and from 0.0024

to 0.0045, respectively. More significant differences are shown in Table 3.2. In Scenario 3,

103κ of fBayes estimate, Bayes estimates and BCMIX all have a significant increase from
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4.027 to 7.833, 5.394 to 9.557 and 4.200 to 8.365, respectively. However, as shown in Table

3.3, the methods can identify the correct hidden state and regime more efficiently when there

are more transitions in Scenario 3 but Scenario 4 shows it might not be always the case.

The associated standard errors become a little larger in the last two scenarios. However the

0.0001% doesn’t not really influence its robustness. We still believe the Bayes and BCMIX

procedures are robust and efficient to make inference on regimes when number of change

points increases.

To visualize the simulation results, Let us investigate the following figures. Figure 3.1

shows a randomly selected simulation path yt in each scenario. From the figure we find some

obvious changing patterns in each series. For example, in the second plot (Scenario 1), the

points after the position 200 general larger than the ones before 200, indicating a change in

the pattern around t = 200. In Scenario 4, since there are more transitions, it is clear there

are some change points within the series but we cannot identify their precise position. Figure

3.2 shows the true µt and estimated µ̂t|T (the posterior mean) of the corresponding series.

Before we analyze the estimates, let us observe the true parameters in different states to have

a better understanding of the model. In the last plot (Scenario 4), there are two regimes

and three transitions from regime 1 to 2, then back to regime 1, and then to regime 2 again.

However, values of µt within each regime are not the same. For regime 1, µt = 1.14 before

the first transition, and µt = 1.59 between the second and third transition. For regime 2,

µt = 4.31 between the first and second transitions, and µt = 4.12 after the third transition.

The similar situations appear in the Figure3.3. For regime 1, σ2
t = 0.42 before the first

transition, and σ2
t = 0.56 between the second and third transitions. For regime 2, σ2

t = 2.10

between the first and second transition, and σ2
t = 2.2 after the third transition.This is the

new feature of our model as specified in the third assumption. Different from the classic

HMM model in which µt or σ2
t should be a constant within each state, in our model both
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are random variables following some distribution within each state.

Now let us look at the estimation results. In Figure 3.2, we cannot tell the difference

between Bayes estimate (dotted line), BCMIX estimate (dashed line) and the real value (solid

line). In the first two scenarios (top two plots), the estimated parameters are very close to

the true µt. In the last two scenarios (bottom two plots) there are some minor difference

between the BCMIX/Bayes estimates and the real value, but there are no difference between

BCMIX and Bayes. Similar cases in Figure3.3, there are some obvious but minor differences

between the BCMIX/Bayes estimates and the real value, especially in the state 2 which

has larger σ2
t . But the differences between BCMIX and Bayes are very small even both is

exact the same. These two figures demonstrate our model can correctly estimates the mean

variable while less accurate estimates are generated for the variance variable.

Figure 3.4 shows the true and estimated P (st = 1) (posterior state probability) of each

series. Specifically, if the true state is 1, the true probability of P (st = 1) = 1; if the true state

is 2, the true probability of P (st = 1) = 0. There are two states in our simulation model,

hence P (st = 2) = 1−P (st = 1) for 1 ≤ t ≤ T . For convenient, we only show the probability

of state 1. Very slight differences between the estimated probabilities in Bayesian procedure

(dotted line) and BCMIX procedure (dashed line) can be observed. When there are enough

observations between two consecutive transitions, as in the first three plots (Scenarios 1,

2 and 3), both procedures capture the transitions very quickly. But when there are more

frequent transitions, as in the last plot, the estimated probabilities show some fuzziness

around transitions. That is why we use P (st = 1) > 0.5 to make inference on the unknown

regime.

50



Figure 3.1: A selected series yt in Scenarios 1 (top-left), 2 (top-right), 3 (bottom-left) and 4
(bottom-right).
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Figure 3.2: Bayes estimates (dotted line), BCMIX estimates (dashed line) of µ̂t|T and true
µt (solid line) of the selected series in Scenarios 1 (top-left), 2 (top-right), 3 (bottom-left)
and 4 (bottom-right)
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Figure 3.3: Bayes estimates (dotted line), BCMIX estimates (dashed line) of σ̂2
t|T and true

σ2
t (solid line) of the selected series in Scenarios 1 (top-left), 2 (top-right), 3 (bottom-left)

and 4 (bottom-right)
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Figure 3.4: Bayes estimates (dotted line), BCMIX estimates (dashed line) of r̂
(1)
t|T and true

P (st = 1) (solid line) of the selected series in Scenarios 1 (top-left), 2 (top-right), 3 (bot-
tom-left) and 4 (bottom-right)
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3.3 Simulation 2: Large simulation with different simulation set-

tings

In this section, we will examine the effects of different simulation settings on the esti-

mates. In the experiment, we will only use the BCMIX procedure for large scale simulation

studies with specific M and m. We assume we have the exact same model described in

chapter 2. Again there are two states, K = 2. We still use the same parameter set-

tings with the previous simulation study: z(1) = 2.0, κ(1) = 0.8, λ(1) = 0.8, g(1) = 2.5,

z(2) = 4.0, κ(2) = 1.0, λ(2) = 0.5, g(2) = 1.8. And in order to make the series stationary we

did the same truncated procedure. The transition matrix is P =

 1− p p

q 1− q

, which

has the following settings:

Scenario 1. (p, q) = (0.001, 0.001).

Scenario 2. (p, q) = (0.002, 0.001).

Scenario 3. (p, q) = (0.002, 0.002).

Scenario 4. (p, q) = (0.004, 0.001).

Scenario 5. (p, q) = (0.004, 0.002).

Scenario 6. (p, q) = (0.008, 0.004).

Scenario 7. (p, q) = (0.008, 0.008).

Scenario 8. (p, q) = (0.016, 0.008).

Scenario 9. (p, q) = (0.016, 0.016).

Let N = 500 and T takes the values of 3000, 4000, 5000, 6000, 7000 and 8000 for

each scenario. In each scenario, we give the hyper-parameters some initial value as below:

z(1) = 1.5, κ(1) = 1.0, λ(1) = 1.0, g(1) = 2.5, z(2) = 3.5, κ(2) = 1.2, λ(2) = 0.4, g(2) = 1.8 and

(p, q) = (0.01, 0.01). The hyper-parameters are estimated by the EM algorithm described in
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last chapter until convergence. Then the estimates are computed. The BCMIX procedure

with M = 20 and m = 10 is adopted to estimate the smoothing parameters and give inference

on the states. Tables 3.4, 3.5 compare the estimates in different scenarios in terms of the

SSE and κ, respectively. Each table has 6 columns and 9 rows, in which every “cell” is the

result of 500 times simulation for that specific scenario.

Let’s first take an overall view of these the Tables 3.4 and 3.5 column by column. Within

each column, the sample size T is the same, but the value of p and q is different. This infers

that the transition matrix P =

 1− p p

q 1− q

 is different and thus, the mean number

of the change point is different for each row. Although we cannot guarantee the number of

transitions are the same for each pair of p and q since the they are generated by the Markov

chain, we knew the more transitions should be expected once the p and q become larger from

top to bottom in these tables.

Table 3.4 shows two different trend in two direction. On one hand, the larger are p

and q, the larger is the SSE. We can explain it as the big differences between µt and µ̂t is

more likely to happen around the transitions. Once the number of the transitions become

larger, the SSE has more chance to increase. Here note the cell of p, q = 0.002, 0.002 and

the cell of p, q = 0.004, 0.001, it is unclear which has more transitions. Yet, from the SSE,

it seems the former one should has more change points. One the other hand, the SSE

becomes smaller once the sequence become longer. Under the condition that having same

probability of having transitions, the longer series or more data information should make

the prediction of the posterior mean more accurately. But from the table we could tell the

differences between columns are quite small. For example, when p, q = 0.016, 0.016 there is

no distinction between T = 7000 and T = 8000. In short, we can tell BCMIX has very good

performance on all of these p, q settings since the largest SSE is only about 0.56%.

Table 3.5 shows a similar trend: the larger are p and q, the larger are κ. For example,
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Table 3.4: Performance of Sum of squared errors (SSE) for BCMIX estimates. Standard
errors are given in parentheses.

Scenarios T = 3000 T = 4000 T = 5000 T = 6000 T = 7000 T = 8000

p = 0.001 0.00179 0.00167 0.00160 0.00166 0.00150 0.00163
q = 0.001 (7.10E-05) (6.623E-05) (5.87E-05) (6.50E-05) (5.32E-05) (6.96E-05)
p = 0.002 0.00223 0.00212 0.00195 0.00198 0.00179 0.00191
q = 0.001 (9.05E-05) (7.589E-05) (6.45E-05) (7.04E-05) (6.33E-05) (7.52E-05)
p = 0.002 0.00263 0.00255 0.00144 0.00240 0.0022 0.00232
q = 0.002 (9.93E-05) (8.421E-05) (5.34E-05) (7.89E-05) (7.03E-05) (8.35E-05)
p = 0.004 0.00242 0.00230 0.00217 0.00222 0.00202 0.00210
q = 0.001 (9.47E-05) (7.860E-05) (7.02E-05) (7.98E-05) (6.89E-05) (7.62E-05)
p = 0.004 0.00301 0.00289 0.00286 0.00272 0.00262 0.00264
q = 0.002 (1.08E-04) (9.195E-05) (8.82E-05) (8.44E-05) (8.63E-05) (8.96E-05)
p = 0.008 0.00410 0.00396 0.00387 0.00376 0.00355 0.00357
q = 0.004 (1.39E-04) (1.193E-04) (1.08E-04) (1.24E-04) (1.07E-04) (1.17E-04)
p = 0.008 0.00478 0.00460 0.00454 0.00428 0.00403 0.00409
q = 0.008 (1.48E-04) (1.308E-04) (1.32E-04) (1.31E-04) (1.28E-04) (1.35E-04)
p = 0.016 0.00521 0.00490 0.00483 0.00457 0.00431 0.00437
q = 0.008 (1.57E-04) (1.373E-04) (1.37E-04) (1.34E-04) (1.33E-04) (1.47E-04)
p = 0.016 0.00567 0.00519 0.00518 0.00496 0.00476 0.00476
q = 0.016 (1.72E-04) (1.426E-04) (1.51E-04) (1.49E-04) (1.56E-04) (1.70E-04)
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Table 3.5: Performance of average Kullback-Leibler divergence (103κ) for BCMIX estimates.
Standard errors are given in parentheses.

Scenarios T = 3000 T = 4000 T = 5000 T = 6000 T = 7000 T = 8000

p = 0.001 3.829 3.541 3.372 3.441 3.191 3.200
q = 0.001 (1.46E-04) (1.18E-04) (1.06E-04) (1.09E-04) (8.88E-05) (8.93E-05)
p = 0.002 4.517 4.377 4.138 4.177 3.817 3.833
q = 0.001 (1.63E-04) (1.35E-04) (1.17E-04) (1.15E-04) (9.55E-05) (9.74E-05)
p = 0.002 5.555 5.459 4.358 5.161 4.813 4.858
q = 0.002 (1.76E-04) (1.52E-04) (7.81E-05) (1.18E-04) (9.80E-05) (9.77E-05)
p = 0.004 4.890 4.973 4.715 4.668 4.346 4.355
q = 0.001 (1.68E-04) (1.59E-04) (1.28E-04) (1.20E-04) (9.91E-05) (9.81E-05)
p = 0.004 6.434 6.344 6.323 6.043 5.727 5.757
q = 0.002 (1.90E-04) (1.74E-04) (1.55E-04) (1.27E-04) (1.12E-04) (1.06E-04)
p = 0.008 8.810 8.772 8.728 8.645 8.239 8.306
q = 0.004 (2.12E-04) (1.92E-04) (1.64E-04) (1.64E-04) (1.37E-04) (1.43E-04)
p = 0.008 10.246 10.324 10.333 9.979 9.708 9.645
q = 0.008 (2.09E-04) (2.21E-04) (1.83E-04) (1.66E-04) (1.63E-04) (1.44E-04)
p = 0.016 11.122 11.297 11.309 10.848 10.551 10.505
q = 0.008 (2.16E-04) (2.47E-04) (1.93E-04) (1.69E-04) (1.66E-04) (1.54E-04)
p = 0.016 12.439 12.144 12.217 12.005 11.859 11.701
q = 0.016 (2.49E-04) (2.19E-04) (2.05E-04) (1.83E-04) (1.80E-04) (1.64E-04)
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when T = 3000, p = 0.016, and q = 0.016, 103κ is 12.439. The quantity 103κ decreases to

11.122 when p remains at 0.016 and q changes to 0.008, and decreases to 6.434 when q and

q change to 0.004 and 0.002 respectively. Comparing them column by column, we have the

opposite tendency as in SSE table: the longer the sequence the small the κ value except a few

cell in the first rows. Again, the difference between columns are not as big as them between

the rows. When the sample size is large enough, the measured divergence κ should become

stable. As we mentioned before, the quantity κ is the average Kullback-Leibler divergence

which is a more appropriate measurement of the difference between the model with true

parameter and the model with estimated parameter (posterior mean and variance). We can

conclude that BCMIX is an efficient method with small KL divergence.

Let’s take a look at the standard deviation of these two table 3.4 and 3.5. We can get

similar tendency as SSE and κ. The standard deviation become larger when p, q increase and

become smaller when T increase. And the largest standard deviation in SSE is 1.72E − 04

while it is 2.49E−04 in KL divergence. Both is quite small, which shows BCMIX is a robust

method besides its accuracy.

Table 3.6 summarizes the identification ratio (IR) in each scenario. The IR value becomes

larger when p, q increases and also T increases. It infers that BCMIX has higher probability of

correct identification when there are more transitions. For example, when p, q = 0.001, 0.001,

the IR is around 93% with a little increase with T , and it rapidly reaches about 98% with

p, q = 0.004, 0.002. After that it increase gently to around 99% when p, q = 0.008, 0.008

and finally becomes quite stable with even larger p, q. Again as the previous two table, the

changes in the rows are placid. The relative difference between T = 3000 and T = 8000 is

less than 1% and tend to stable with T after IR reaches 99%. The standard deviation still

remains on a very low level less than 0.01. It has the opposite tendency compared to the

IR, that is decreasing with p, q and T increasing. In summary, Table 3.6 support that our
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Table 3.6: Performance of identification ratio (IR) for BCMIX estimates. Standard errors
are given in parentheses.

Scenarios T = 3000 T = 4000 T = 5000 T = 6000 T = 7000 T = 8000

p = 0.001 0.932 0.932 0.932 0.933 0.935 0.935
q = 0.001 (9.04E-03) (7.80E-03) (7.77E-03) (7.64E-03) (7.18E-03) (7.09E-03)
p = 0.002 0.932 0.949 0.937 0.940 0.953 0.953
q = 0.001 (7.02E-03) (5.52E-03) (6.02E-03) (5.53E-03) (4.93E-03) (4.64E-03)
p = 0.002 0.944 0.955 0.959 0.961 0.962 0.970
q = 0.002 (6.52E-03) (5.46E-03) (5.80E-03) (4.95E-03) (4.51E-03) (3.82E-03)
p = 0.004 0.961 0.970 0.962 0.962 0.966 0.968
q = 0.001 (5.15E-03) (3.70E-03) (3.74E-03) (4.38E-03) (3.98E-03) (3.59E-03)
p = 0.004 0.976 0.977 0.980 0.982 0.983 0.980
q = 0.002 (3.59E-03) (3.81E-03) (3.19E-03) (3.35E-03) (2.95E-03) (3.24E-03)
p = 0.008 0.984 0.987 0.990 0.991 0.991 0.989
q = 0.004 (3.22E-03) (2.58E-03) (2.12E-03) (1.87E-03) (2.03E-03) (2.16E-03)
p = 0.008 0.983 0.986 0.991 0.991 0.992 0.992
q = 0.008 (3.50E-03) (2.92E-03) (2.02E-03) (1.78E-03) (1.96E-03) (1.69E-03)
p = 0.016 0.986 0.989 0.995 0.994 0.993 0.992
q = 0.008 (2.80E-03) (2.29E-03) (1.28E-03) (1.36E-03) (1.53E-03) (1.58E-03)
p = 0.016 0.987 0.989 0.993 0.993 0.994 0.994
q = 0.016 (2.86E-03) (2.42E-03) (1.74E-03) (1.54E-03) (1.32E-03) (1.14E-03)
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model could not only generate accurate continuous variable estimation but also has good

performance on identification of different states which we call categorical feature of the data.

Similar to the first simulation, we will show some figures of a randomly selected simula-

tion path in each scenario to visualize the simulation results. Figure 3.5 shows the series yt

in each scenario with T = 3000. Different from the series shown in Figure 3.1 in last section,

the series in Figure 3.5 are longer with more frequent transitions between two regimes. As

we changed the initial value for the simulation. We could find that the mean of two states

are more close and the variance of each state become larger. Furthermore, we find more

fluctuations in magnitude in each series when p and q become larger. Figures 3.6 and 3.7

compare the true µt and σ2
t with µ̂t|T and σ̂2

t|T of the same series in each scenario. From

Figure 3.6 it is clear that when p and q become larger, the series experiences more frequent

transitions. For example, in the first plot with p = 0.001 and q = 0.001, there are 3 transi-

tions in total, while in the last plot with p = 0.016 and q = 0.016, there are 11 transitions.

In each plot there are two states, but the values of µt within each regime are not constant.

For example, in the last plot, the true µt within state 1 follows a normal distribution with

mean 4.0 and take realized values of 5.89, 5.68, 3.64, 4.26, 5.49 and 3.41 over time, while the

true µt within state 2 follows another normal distribution with mean 2.5 and take realized

values of 2.38, 1.13, 1.52, 1.74, 0.40 and 0.93. Similar cases happen in 3.7, the true value of

σ2
t within state 1 follows an inverse gamma distribution with two two parameters of 2.5, 0.8

and take realized value of 1.27, 1.06, 0.85, 0.57, 0.58 and 0.5, while the true σ2
t within state

2 follows the inverse gamma distribution with two parameters of 1.8, 0.5 and take realized

value of 0.29, 0.23, 0.17, 0.17, 0.12 and 0.15.

Let’s take at the figure about the difference between the true value and the estimates.

In Figures 3.6, there are barely no difference between the BCMIX estimates and the true

value. Only in the last three figures, when the number of transitions increasing, there are
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Figure 3.5: A selected series yt in Scenarios 1-9 (from left to right and top to bottom).
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some segments in the middle part of the sequence appear small differences. Yet, in Figures

3.7, there are some obvious differences, especially for the state 1 with larger realized value.

These results are similar with the conclusion we get from the previous simulation.

Figure 3.8 shows the true and estimated P (st = 1) of the same series in each scenario.

Under the simulation settings in these cases, we can find the model could quickly call the

state even when the number of transitions increasing. But in the last figure we can see there

are some few red dots which represent the posterior state probability appears in the middle

of 0 and 1. Even though their value still indicate the correct state calling, but we might

consider how it would be like if we change the simulation with more “strict” settings.
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Figure 3.6: BCMIX estimates µ̂t|T (dashed line) and true µt (solid line) of the selected series
in Scenarios 1-9 (from left to right and top to bottom).
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Figure 3.7: BCMIX estimates σ̂2
t|T (dashed line) and true σ2

t (solid line) of the selected series

in Scenarios 1-9 (from left to right and top to bottom).
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Figure 3.8: BCMIX estimates r̂
(1)
t|T (dashed line) and true P (st = 1) (solid line) of the selected

series in Scenarios 1-9 (from left to right and top to bottom).
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At the end of this section, we will display a special simulation to test our model. We

still use the BCMIX procedure specific M = 20 and m = 10 and 2 states. But instead

using the previous simulation parameter settings a we will set some “strict” conditions on

the setting, which are z(1) = 2.5, κ(1) = 0.8, λ(1) = 0.6, g(1) = 2.0, z(2) = 3.5, κ(2) = 1.0, λ(2) =

0.5, g(2) = 1.8. The p, q = 0.016, 0.016. From it we could discover two changes: the smaller

mean difference and larger mean of σ2
t . Put it in another word, the two states are more closer

with larger variance, thus make the model more difficulty to correctly estimate the posterior

mean and variance. We choose the largest p, q value means it still keeps many transitions

in the sequence. Consider the visualization, we set T = 3000 and do 500 simulation with

different seeds.

To visualize the results, we displays the figures Figure 3.9. In the first observation figure

yt, we can discover some transitions with “blur” boundaries and we cannot know the number

of transitions and the magnitude of each states. The figure µtandµ̂t demonstrates that the

“shape” of the means are much different with the previous ones. In this scenario, the mean of

state 1 sometimes are larger than the mean of state 2 since the large variation of the hidden

variable. Moreover, the figure of IR has clearly shows the fuzziness around each transitions.

It is clear that when there is a transition, it takes a while to recognize it. So the probability

of P (st = 1) does not jump directly from 1 to 0 or 0 to 1. Instead it adjusts step by step

and takes some values in between. These “middle” points may affect the identification ratio.

Moreover, there are more middle points when there are more frequent transitions, although

the IR is higher.

As before we calculate the three criterion SSE, Kullback-Leibler divergence and iden-

tification ratio. Not surprisingly, the SSE and KL divergence has increased to 0.008 and

0.02 with the standard deviation of 0.00027 and 0.0003. The IR has decreased to 75% with

standard deviation of 0.01. Therefore, we can find that the model still has quite good per-
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Figure 3.9: A selected series yt in Scenarios 1 (top-left), µt vs. µ̂t 2 (top-right), σ2
t vs. σ̂2

t 3
(bottom-left) and identification ratio 4 (bottom-right).
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formance on estimating parameter and state calling under some extreme parameter settings.
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Chapter 4

Real Data Analysis

In this section, we will apply the stochastic segmentation model to two real data sets:

Nimblegen ENCODE Array for identifying DNaseI sensitivity and DNaseI hypersensitive

sites over the ENCODE regions in human lymphoblastoid cells (GSE4334) and Reduced

Representation Bisulfite Sequencing data (RRBS) (GSE31971) to see the directional DNA

methylation changes and complex intermediate states accompany lineage specificity in the

adult hematopoietic compartment. We will display some relative results of our model such

as posterior mean, variance and state probability. The genome browser screenshots are also

used for the biological explanation of the results.

4.1 ENCODE Array for detecting DNaseI hypersensitive sites

(DHS)

This data is published on July 27th, 2006 with the series number GSE4334 in GEO

database. The goal of this study was to map DNaseI sensitivity and DNaseI hypersensitive

sites over the ENCODE regions in human lymphoblastoid cells (GM06990, Coriell). The

DNase I accessibility assay used by Sabo, et al. is a “quantitative chromatin profiling”

method first introduced previously by Dorschner, et al. Intact nuclei are first isolated and
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Table 4.1: Hyperparameter estimate using EM algorithm for selected six chromosomes
chr 1 chr 5 chr 7 chr 8 chr 9 chr 12

z1 1.62865 1.4385 1.39987 1.33204 1.60695 1.41574
z2 0.361365 0.338669 0.310175 0.278436 0.216164 0.303773
z3 -0.0165594 -0.03391 -0.02376 -0.04424 -0.01739 -0.02035
κ1 0.971606 1.40201 1.40413 1.04643 0.923544 1.22338
κ2 2.01044 2.03293 2.18995 2.50551 2.41756 2.24939
κ3 1.33345 1.05668 1.05509 0.861222 1.24738 1.02158
λ1 1.38604 1.49653 1.75998 1.9908 1.2697 1.88609
λ2 4.45153 4.51314 5.20456 5.34755 4.32053 5.39408
λ3 10.2532 7.95578 8.5532 8.13503 8.24995 8.66786

divided into two fractions, one which will be treated with DNase I, another which will not.

In a departure from the Dorschner, et al. method, Sabo, et al. furthered size selected for

small fragments presumably cut twice by DNase I in close proximity, rather than just once.

Using a custom-designed Nimblegen array which employed around 39,000 50-mer probes tiled

with 12-mer overlaps falling within 44 genomic ENCODE segments. Signal-to-noise ratios

were then calculated at each probe position by comparing DNase-I-treated versus untreated

samples. We used these signal-to-noise ratios as the input for our algorithm.

Rather than using two states model, we take 3 states in this study. We run our model

chromosome by chromosome. We randomly choose six chromosomes (Chr1, Chr5, Chr7,

Chr8, Chr9, Chr12) to display the results. Table 4.1 shows the estimated hyperparameters

by the EM algortihm . We can find the same state have similar results of each hyperpa-

rameter. The corresponding estimated transition probability matrices are showed in Table

4.2. Moreover, Table 4.3 displays some general statistics of the results, where we can find

that the major and minor hypersensitive sites have very few coverage (7%) compared to the

insensitive region (93%).

We choose two series to visualize the estimation of posterior mean, variance and state
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Table 4.2: Estimated transition probabilities for selected six chromosomes
chr 1 Major DHS Minor DHS Insensitive

(State 1) (State 2) (State 3)
State 1 0.863676 0.100086 0.036239
State 2 0.032456 0.798508 0.169035
State 3 0.004811 0.024998 0.970191

chr 5 Major DHS Minor DHS Insensitive
(State 1) (State 2) (State 3)

State 1 0.810422 0.142955 0.046623
State 2 0.02342 0.811846 0.164734
State 3 0.002498 0.021419 0.976083

chr 7 Major DHS Minor DHS Insensitive
(State 1) (State 2) (State 3)

State 1 0.816241 0.129291 0.054468
State 2 0.016209 0.821953 0.161838
State 3 0.001998 0.020323 0.977679

chr 8 Major DHS Minor DHS Insensitive
(State 1) (State 2) (State 3)

State 1 0.827226 0.119964 0.05281
State 2 0.010763 0.802488 0.186749
State 3 0.001661 0.012828 0.985511

chr 9 Major DHS Minor DHS Insensitive
(State 1) (State 2) (State 3)

State 1 0.825319 0.113304 0.061377
State 2 0.012774 0.774094 0.213133
State 3 0.002048 0.031269 0.966683

chr 12 Major DHS Minor DHS Insensitive
(State 1) (State 2) (State 3)

State 1 0.816969 0.121484 0.061547
State 2 0.020417 0.834264 0.145319
State 3 0.001951 0.017313 0.980736
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Table 4.3: Base level coverage and segment lengths for three states
Major DHS Minor DHS Insensitive

(State 1) (State 2) (State 3)
Number of segs 815 5127 31104

Number of bases 234kb 802kb 13326kb
Percent of bases 1.60% 5.60% 92.80%

Mean of seg length 287 156 428

probability. We choose the first 600 probes in Chromosome 1 which cover 55024 base pair

(chr1:148374643-148429666) and another 600 probes in Chromosome 6 which covers 37164

base pair (chr6:41537432-41574595). Figure 4.1 displays the observation along the probes.

Upper is the series from Chromosome 1 and bottom is the series from Chromosome 6.

Figure 4.2 displays the posterior estimation for the series from Chromosome 1. Upper is

posterior mean; middle is posterior variance and bottom is the posterior state probability

(Red: State 1; Blue: State 2; Green: State 3). Figure 4.3 is a similar plot for the series

from Chromosome 6. From these two figures, we can conclude that our model has good

performance on smoothing the signal and generate reasonable state call. Although the

posterior state probabilities here have many fuzziness, it can correct call the state once we

use a cut line p = 0.5. Figure 4.4 is the genome browser screen-shot for the series from

Chromosome 1, in which some of the major and minor hypersensitive sites called by our

model is close to TSS or overlapping with gene body.

To assess DNase I hypersensitive (DHS) island accuracy, we operated on the assumption

that read densities falling within a DHS island would be enriched and flanked by signifi-

cantly reduced densities outside of the island boundaries–forming a plateau-shaped profile.

Given that, we examined the read density profiles of our and Sabo, et al.’s DHS island

calls, including flanking regions up- and downstream half the island length. We divided the

islands, plus flanks, into 100 equal-sized bins and calculated average read densities within
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Figure 4.1: The observation of two selected series with 600 probes.
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Figure 4.2: The posterior estimation of mean, variance and state probability for the series
from Chromosome 1.
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Figure 4.3: The posterior estimation of mean, variance and state probability for the series
from Chromosome 6.
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Figure 4.4: A screenshot corresponding to the selected series of Chromosome 1 from UCSC
genome browser.

each bin. Our method showed a much more pronounced plateau (Figure 4.5), which implies

our DHS islands more accurately defined island boundaries around regions of higher DNase

I accessibility.

Common wisdom suggests functionally relevant regions of DNA are more susceptible

to enzymatic digestion by DNase treatment due to increased accessibility at cis-regulatory

elements. We assessed the degree of enrichment of our DHS islands within regions of known

functional importance, including CpG islands, known genes, mRNA transcripts, spliced

ESTs, and regions enriched for histone modification marks. We adopt the same enrich-

ment calculation as Lian Heng et al., 2006. Compared to the DHS calling from Sabo et al.,

2006, our result has better enrichment on major DHS and similar enrichment on major and

minor DHS (Figure 4.6). The method of calculation of enrichment is same as Lian et al.,

2006.
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Figure 4.5: The assessment of DHS island accuracy.

4.2 Reduced Representation Bisulfite-seq data for detecting Dif-

ferential Methylation Region (DMR)

This data is published on July 27th, 2006 with the series number GSE31971 in GEO

database. The goal of this study is to provide insights into directional changes in DNA

methylation as cells adopt terminal fates. DNA was extracted from the sperm tissue and frag-

mented to 150-200bp nt by sonication. Samples were treated with bisulfite, which converts

unmethylated cytosine nucleotides to thymines, leaving methylated cytosines unchanged.

Following this treatment, sequencing was performed and reads were mapped to the reference

genome using RMAPBS, revealing the converted and unconverted cytosine positions. The

number of reads methylated and unmethylated at each base position were determined. The

M-value, log2 (methylated reads / unmethylated reads), at each position was calculated and

used as input for our algorithm.

Again, we take 3 states in our model. We choose six genes (CD19, PIWIL1, PIWIL3,
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Figure 4.6: Enrichment of annotation functional elements.
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Table 4.4: Hyperparameter estimate using EM algorithm for six chosen genes under Sperm
cell line.

CD19 PIWIL1 PIWIL3 PLD6 TDRD1 TDRD9
z1 2.15513 1.72502 1.96827 1.89935 2.03974 2.04597
z2 0.00900467 0.007067 0.013866 -0.05837 0.010556 0.010434
z3 -1.58032 -0.8042 -0.06966 -2.21303 -0.40859 -0.26453
κ1 0.0832219 0.571049 0.63258 0.523774 0.596497 0.403964
κ2 0.452864 0.46103 0.40019 1.61268 0.3009 0.446317
κ3 1.77884 1.92117 2.55403 2.98552 3.02786 3.1302
λ1 0.678908 0.431715 0.399965 0.243351 0.328238 0.403964
λ2 20.7468 41.2349 47.2962 10.6345 47.4145 50.3631
λ3 0.429416 0.641349 0.261904 1.56773 0.246383 0.313745

PLD6, TDRD1 and TDRD9) under five different cell lines (B cell, HSPC, Sperm, CD133

and Neutrophil) in this study. Table 4.4 shows the estimated hyperparameters by the EM

algortihm for different genes in the Sperm cell line. The corresponding estimated transition

probability matrices are showed in Table 4.5. Since there is no strong evidence for the chang-

ing variance, a genome browser screenshot will display the signal profile and the posterior

mean for gene CD19 under Bcell (Figure 4.7).

Then we display the state calling figures for each gene under all of the five cell lines via

the genome browser screenshot. From these figures we could further identify the changing of

hypo methylatoin regions (HMRs) for a specific gene across different cells (Figure 4.8, 4.9,

4.10, 4.11, 4.12, 4.13). As mentioned by Emily Hodges et al., 2011, promoter HMRs shared

across diverse cell-types typically display a constitutive core that expands and contracts in

a lineage-specific manner to fine-tune the expression of associated genes. Our results also

well demonstrate such scenario. We can discover in most of these genes, the HMRs are

shared common part but their width differ. Take CD19 as the case, the sperm cell has the

most expansive hypomethylation with the core of known CGI, while the B cell marker CD19

displays a broader HMR at its transcriptional start site (TSS) and does not overlap any
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Table 4.5: Estimated transition probabilities for six chosen genes.
CD19 Major DHS Minor DHS Insensitive

(State 1) (State 2) (State 3)
State 1 0.953219 0.035787 0.010993
State 2 0.133322 0.760572 0.106105
State 3 0.053074 0.049814 0.897112

PIWIL1 Major DHS Minor DHS Insensitive
(State 1) (State 2) (State 3)

State 1 0.942224 0.049052 0.008724
State 2 0.177194 0.765404 0.057402
State 3 0.108773 0.044784 0.846442

PIWIL3 Major DHS Minor DHS Insensitive
(State 1) (State 2) (State 3)

State 1 0.93319 0.058242 0.008568
State 2 0.269287 0.672779 0.057935
State 3 0.129217 0.067086 0.803697

PLD6 Major DHS Minor DHS Insensitive
(State 1) (State 2) (State 3)

State 1 0.970319 0.014387 0.015294
State 2 0.065539 0.778561 0.1559
State 3 0.023315 0.014169 0.962516

TDRD1 Major DHS Minor DHS Insensitive
(State 1) (State 2) (State 3)

State 1 0.921836 0.073046 0.005118
State 2 0.330461 0.634812 0.034727
State 3 0.198612 0.086456 0.714932

TDRD9 Major DHS Minor DHS Insensitive
(State 1) (State 2) (State 3)

State 1 0.941722 0.052617 0.005662
State 2 0.321165 0.652795 0.02604
State 3 0.190382 0.065817 0.743801
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Figure 4.7: The screenshot for gene CD19 under Sperm cell. Top: M value; middle: posterior
mean; bottom: state call.
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Figure 4.8: Genome browser tracks depict the segmentation across gene CD19 under B cell,
CD133+, HSPC, Neutrophil and Sperm (from top to bottom).

known CGI. These suggest the boundaries of HMRs vary in a cell type manner.
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Figure 4.9: Genome browser tracks depict the segmentation across gene PIWIL1 under B
cell, CD133+, HSPC, Neutrophil and Sperm (from top to bottom).
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Figure 4.10: Genome browser tracks depict the segmentation across gene PIWIL3 under B
cell, CD133+, HSPC, Neutrophil and Sperm (from top to bottom).
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Figure 4.11: Genome browser tracks depict the segmentation across gene PLD6 under B cell,
CD133+, HSPC, Neutrophil and Sperm (from top to bottom).
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Figure 4.12: Genome browser tracks depict the segmentation across gene TDRD1 under B
cell, CD133+, HSPC, Neutrophil and Sperm (from top to bottom).
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Figure 4.13: Genome browser tracks depict the segmentation across gene TDRD9 under B
cell, CD133+, HSPC, Neutrophil and Sperm (from top to bottom).
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Chapter 5

Conclusions

For the analysis of biological sequential data, we proposed a class of stochastic seg-

mentation models and an associated inference framework that has attractive statistical and

computational properties. The stochastic regime switching model in Chapter 2 assumes that

yt = µt +σtεt for t = 1, . . . , n, where εt are independent normal random variables with mean

0 and variance 1, and the categorical states of θt := (µt, σt) is an unknown step function

whose prior distribution depends on a finite state hidden Markov chain st. After the hid-

den state shifts from one regime to another regime, the model parameters jump to another

set of values, which are generated by state-dependent prior distributions and hence are not

necessarily same as those within the same state during the past.

A forward filtering procedure shows the posterior distribution of the parameter as a

mixture distribution with explicit weights which can be calculated recursively. Furthermore,

based on the reversibility of the hidden Markov chain, a backward filtering procedure can

be conducted in a similar way. Based on Bayes’ theorem, both the smoothing estimate of

parameter and probability of regimes can be calculated explicitly to save a time-consuming

numerical filtering procedure. The hyperparameters in the model can be estimated by the

Expectation-Maximum (EM) algorithm. Furthermore, a Bounded Complexity Mixture Ap-
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proximation (BCMIX) is shown to have much lower computational complexity yet compa-

rable to the Bayes estimates in statistical efficiency. Simulation studies evaluate the Bayes

and BCMIX estimates in terms of the sum of squared errors (SSE) and the Kullback-Leibler

divergence (κ). Moreover, the accuracy of identifying the transitions is evaluated by an Iden-

tification Ratio (IR). Applying this model to two biological data sets: Nimblegen ENCODE

Array for identifying DNaseI sensitivity and DNaseI hypersensitive sites over the ENCODE

regions in human lymphoblastoid cells (GSE4334) and Reduced Representation Bisulfite Se-

quencing data (RRBS) (GSE31971) to see the directional DNA methylation changes and

complex intermediate states accompany lineage specificity in the adult hematopoietic com-

partment, it generates promising results in biological explanation.

An important benefit of our Bayesian model is that we can derive analytical filtering and

smoothing formulas for the posterior distributions of model parameters and make inference on

segments. The BCMIX estimate has much lower computational complexity yet comparable

to the Bayes estimate in statistical efficiency.
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