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Abstract of the Dissertation
INlumination and Geometry Inference Using Graphical Models
by
Alexandros Panagopoulos
Doctor of Philosophy

mn

Computer Science
Stony Brook University
2011

Image formation is a function of three components: scene geometry, surface
reflectance and illumination. Estimation of one or more of these components
from an image gives rise to inverse rendering problems, such as shape recon-
struction or illumination estimation, which are the two major problems of
interest in this thesis. We formulate such problems in a way that attempts
to bridge the gap between low-level approaches based on the physical laws
governing image formation and higher-level models that examine images in
a statistical way. We take advantage of the powerful formalism offered by
graphical models, which lead to modular frameworks and offer powerful dis-
crete optimization techniques. We first focus on the problem of illumination
estimation from a single image, utilizing the information in cast shadows. We
start by describing a method to extract cast shadows from an image. We then
present three approaches to illumination estimation from shadows: The first
models illumination as a mixture of distributions to robustly estimate illumi-
nation. The second associates illumination not with pixel intensities but with
the existence of shadow edges. The third approach unifies the previous ideas
in a Markov Random Field (MRF) framework. Such a model is robust to
coarse or incomplete knowledge of geometry, while it can also incorporate geo-
metric parameters, allowing us to jointly infer three major components of the
problem: the cast shadows, illumination and geometry. Geometry inference
from the information contained in cast shadows can only be coarse, however.
We subsequently focus on the problem of inferring geometry from the shading
variations in an image. We take a data-driven approach, constructing a dic-
tionary of geometric primitives. To reconstruct an image, we combine local
hypotheses from this dictionary in an MRF model. We demonstrate that this
approach can effectively reconstruct 3D shapes from real photographs, while
removing several important assumptions of previous approaches.
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Chapter 1

Introduction

The computer vision problem can be examined at different conceptual levels.
At a lower level, one could try to model the image formation process based
on the laws of physics that govern it. At a higher level, one could attempt
to identify objects or extract scene properties based on statistical models of
the appearance of objects in the image, disregarding many components of the
process that leads to the specific appearance of the object in the image. It is
clear that none of these approaches is a complete treatment of the problem:
trying to extract information from an image by modeling the physical laws
that govern its formation necessitates many restricting assumptions and ac-
curate knowledge of components of the image formation other than the input
image. On the other hand, higher-level computer vision tasks treat many of
the components of the image formation process, such as illumination, as noise
that has to be ignored. The result is often compromised performance.

In this thesis we are interested in the image formation process. This pro-
cess is the interaction of geometry, reflectance and illumination that leads to
the formation of an image. Attempting to recover one or more of the three
components of this process is known as the set of inverse rendering problems.
The difference of the work proposed in this thesis from previous work is that we
try to examine such problems through statistical frameworks that could poten-
tially bridge the gap between this and higher-level computer vision tasks. This
could ultimately allow the incorporation of such models of the components of
image formation in larger frameworks towards the goal of scene understanding.
To this end, we also attempt to relax the assumptions that similar approaches
traditionally rely on. Relaxing these assumptions means that we are able to
solve such inverse rendering problems for broader classes of images, including



complex natural images where knowledge of other components of the problem
may be limited and unreliable.

The three components of the image formation process (geometry, reflectance,
illumination) give rise to three different inverse rendering problems: shape re-
construction, reflectance estimation and illumination estimation. In this thesis
we examine two of those problems. First we discuss illumination estimation
from a single image, and present three approaches to model this problem in the
case of approximate geometry knowledge, using the information contained in
cast shadows. The third and more complete of these approaches combines ideas
from the other two in a Markov Random Field formulation. This formulation
is not only able to jointly estimate shadows and illumination parameters, but
also able to incorporate information about geometry and estimate it jointly
with the other two components. We demonstrate that the result is a frame-
work that can be applied in complex natural images, using initial information
that could be obtained automatically utilizing, for example, object detection.

Although through this approach we are able to infer geometry parameters
that define the rough 3D geometry of occluders in the scene, the information
contained in cast shadows is not adequate to estimate detailed 3D shape. We
examine the problem of shape reconstruction in more detail, using shading vari-
ations as input. The problem of shape-from-shading has been a long-standing
and challenging research area in computer vision. It is a generally ill-posed
problem, with ambiguities that make a solution difficult. We propose a data-
driven approach in an attempt to constrain these ambiguities, capturing priors
on the local geometry directly through a dictionary of geometric primitives.
The hypotheses produced by the dictionary to explain a test image are then
combined through a graphical model.

The main contributions of this thesis are:

e An EM-based algorithm for illumination estimation, based on model-
ing illumination as a mixture of probability distributions, leading to a
method that is robust to coarse geometry and that can model soft shad-
ows (Chapter 4).

e The association of illumination directly with shadow edges instead of
shadow intensities, which leads to a simple approach that is robust to
geometry knowledge and shadow estimation (Chapter 5).

e The formulation of scene photometry, and specifically the cast shadow
creation process, as a Markov Random Field model (Chapter 6). Such

2



a model offers robustness to inaccurate or incomplete information about
geometry and shadows, as well as flexibility with regard to the cues used
from illumination estimation. An efficient optimization scheme for this
MRF is also proposed.

e The introduction of geometry parameters in the same MRF framework.
This enables the joint, concurrent estimation of three major components
of the problem of illumination estimation from shadows: cast shadows,
illumination and geometry. In the same way higher-level information
about objects in the scene could be introduced in our model, given the
flexibility of the way geometry is parameterized in this model.

e A way to associate local shading patterns with the underlying local ge-
ometry, in a data-driven dictionary approach to the problem of shape
reconstruction from shading (Chapter 7). An important contribution of
our model is that it removes the Lambertian assumption by modeling the
distribution of local shading patterns produced by a geometry patch over
various reflectance parameter sets. This fact makes this approach able
to get convincing shape reconstructions from real-world photographs.

The rest of this thesis is organized as follows:

Chapter 2 surveys the prior art in the four main areas of interest for this
thesis: we present prior work in illumination estimation, with a closer look
to illumination estimation from cast shadows; in cast shadow detection; in
shape reconstruction from shading; and finally, in graphical models, with an
emphasis on Markov Random Fields, since we will formulate our algorithms
in the two main problems of interest through the use of such models.

Chapter 3 describes our approach to detecting cast shadow in images. The
results from this approach are used as input to our method for illumination
estimation through an MRF model in Chapter 6. The proposed shadow de-
tection approach is based on simple observations about the nature of shadows
in an image, and produces competitive results with low computational com-
plexity.

Chapters 4, 5 and 6 present three approaches to illumination estimation
from shadows. We choose cast shadows, instead of shading or specular high-
lights, as a cue for two reasons: on one hand, the cast shadows constitute
the most stable among these three cues when knowledge of geometry is inac-
curate or incomplete; specular highlights are the most heavily dependant on



accurate knowledge of the underlying geometry. On the other hand, cast shad-
ows allow for estimation of the higher-frequency components of illumination
(as discussed in [122]). This characteristic compares favorably to shading as
an illumination cue, because the latter, in the case of lambertian reflectance,
only allows for the estimation of low-frequency illumination components (since
lambertian reflectance acts as a low-pass filter [8].

The first illumination estimation approach we examine, in Chapter 4, is
based on modeling illumination as a mixture of distributions. This modeling
provides certain advantages when applied to real world images; we propose an
Expectation-Maximization (EM) algorithm to estimate illumination through
this model [128]. We show how such an approach can allow the estimation of
illumination in natural images, using 3D bounding boxes to model the geom-
etry - a big step from the accurate 3D modeling assumed in past work. This
approach has the extra advantage that it can model the perceived size of light
sources, and therefore deal with soft shadows.

In Chapter 5 we propose a different approach to illumination estimation.
Our approach is based on associating the light source parameters not with
the pixel intensities in the image but with the observed image edges. In ap-
proaches that rely on the pixel intensity values, two significant types of errors
can be introduced: errors in the initial shadow estimate propagate through-
out the illumination estimation process, altering the final results; on the other
hand, the knowledge of scene structure may not be adequate to explain a lot
of correctly detected shadows in complex scenes, leading to erroneous illumi-
nation solutions that try to explain every observed shadow with inadequate
geometry data. In this chapter we propose a way to couple shadow and illu-
mination estimation, trying to detect only the shadow edges that are relevant
to the provided geometry, as part of the illumination estimation process. This
leads to an illumination estimation algorithm that can reliably estimate illu-
mination, even when scene geometry knowledge is limited, while being less
dependent on obtaining an initial shadow estimate (we can even avoid obtain-
ing an estimate of shadow edges altogether, as we show in our results), and
having lower computational complexity than state-of-the-art methods. In this
approach, illumination estimation is posed as the minimization of an energy
function, and coupled with the detection of salient shadow edges.

In chapter 6 we combine ideas from both previous approaches in a much
more powerful framework. The proposed approach is based on formulating the
creation of shadows in the image as a Markov Random Field. This statistical
model provides not only robustness to rough geometry and initial shadow
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Figure 1.1: An example of our illumination estimation approach (Chapter 6): Left,
the input image; center, the estimated shadow with our approach; right, the original
image with a synthetic sundial (orange) rendered with the illumination estimate
obtained with our approach. This is one example of the results obtained from
estimating illumination in a large number of images from the "Motorcycles” class of
Caltech101 [110] using the same coarse, average geometry and camera parameters
for every instance.

information, but also allows us to directly incorporate more information about
the scene, such as geometry parameters. The result is a model that enables
the estimation of illumination in complex natural images when occluders are
modeled by simple bounding boxes, or when a single approximate geometric
model for a whole class of objects is used to approximate every object of
that class. We further demonstrate how this model can enable inference of
3D geometry as a natural part of the illumination modeling. Through our
framework, we are able to jointly estimate all three major components of our
problem: the cast shadows, the illumination and the geometry parameters.
Chapter 7 shifts our focus to geometry, which could be dealt only in a
coarse manner in the work of Chapter 6. In this chapter, we examine an ap-
proach to the problem of shape from shading based on the idea of learning
shadow primitives. The goal of the work in this chapter is to infer the 3D
scene structure, in the form of a normal map, from a single grayscale image
using the information contained in shading. We capture the relationship be-
tween the appearance and geometry of image patches in a straight-forward
way, by learning a dictionary that associates local image appearance with the
underlying local geometry. The appearance is represented as a distribution of
local appearances over different reflectances, to allow shape estimation even
when surfaces deviate from the Lambertian assumption. When reconstructing
the 3D shape of an image, we produce a set of local hypotheses about the
geometry using the learned dictionary. These hypotheses are then combined
in a Markov Random Field model in order to produce the final shape estimate.



Figure 1.2: An example of our 3D shape reconstruction approach (Chapter 7): Left,
the original image [146]; center, the estimated normal map with our approach; right,
a rendering of the estimated normal map under different illumination.

The primitives captured in the dictionary are effectively priors that constrain
the ambiguities inherent in the shape-from-shading problem. As a result, we
are able to demonstrate reliable shape reconstructions from both synthetic and
real images, which can significantly outperform the state of the art, especially
in the case of real photographs (see Fig.1.2 in this section for an example).
Finally, Chapter 8 concludes this thesis, summarizing the approaches pro-
posed in previous chapters and discussing some directions for future research.



Chapter 2

Background Review

In this thesis we will examine two of the three instances of Inverse Rendering
problems: estimating illumination from a single input image, and estimating
3D shape either jointly with illumination estimation, or directly from the ob-
served shading patterns in the image. In this chapter we give an introduction
to the fundamentals of these problems. We first examine the fundamentals of
the problem of estimating illumination from one or more images, and discuss
methods that have been proposed for this problem. We examine in more detail
the case of estimation illumination from cast shadows, which will be the focus
of subsequent chapters, and introduce some notation. We also discuss the lit-
erature on detecting shadows in an image, which is a problem interconnected
with the estimation of illumination from shadows.

We then examine the literature in the second category of inverse rendering
problems that is of interest: the problem of Shape-from-Shading (SfS). We give
an overview of the large amount of literature that exists in the field, and a
simple categorization of the proposed methods. We also examine the relatively
sparse prior art that involves graphical models and data-driven approaches for
this problem.

The approaches presented in this thesis differ with most of the approaches
discussed in this chapter in that they try to incorporate knowledge about the
inverse rendering problems in statistical frameworks, such as Markov Random
Field models, that can both model the uncertainty in the input data and offer
the flexibility to incorporate different cues and problem parameters. Therefore,
after reviewing the methods proposed to solve this problem in the literature, we
also give a brief introduction to graphical models, with an emphasis on Markov
Random Fields. This introduction presents some fundamental concepts for the



discussion in Chapters 6 and 7.

2.1 Illumination Estimation

The problem of estimating illumination from one or more images is called
inverse lighting [114]. One broad categorization of inverse lighting methods
can be made based on the source of information utilized to estimate illumina-
tion. The three most common sources of information are specular reflections,
shading and cast shadows.

Many techniques have been developed to estimate light source properties
from shading variations in a single image, starting with the work of Pentland
[137]. One directional light source can be estimated with the assumption
that the viewed scene represents a convex object with sharp contours (Vega
and Yang [183]; Yang and Yuille [193]). Yang and Yuille [193] analyze the
intensities and surface normals along the occluding boundaries to estimate the
directions of multiple light sources. Hougen and Ahuja [63] determine the light
source directions and intensities from a single image of a Lambertian object
of known geometry, solving a set of linear equations for image irradiance.
Zheng and Chellappa [198] reconstruct the shape, illuminant direction, and
texture from a single image of a Lambertian surface, using shading information
along image contours. Marschner and Greenberg [114] propose a technique
to reconstruct the directional distribution of light from an image, assuming
Lambertian reflectance and accurate 3D geometry, by producing a set of basis
images and finding a linear combination of those basis images that matches the
input image. Kim et al. [72] estimate the illuminant direction from a single
image of a Lambertian surface, while also recovering the shape of the surface,
using image regions corresponding to bumps. Zhang and Yang [196, 197]
detect critical points where the surface normal is perpendicular to some light
source direction from a single image of a Lambertian sphere of known geometry
and then determine the directions and intensities of multiple light sources.
Wang and Samaras [187] extend that method by allowing Lambertian objects
of arbitrary known shapes. This approach maps the surface normals onto a
sphere and then segments the surface into regions, with each region illuminated
by a different set of light sources. Finally, illuminant direction estimation is
performed by a recursive least squares technique.

Specularities have also been used to estimate illumination parameters.
Hara et al [55] propose a method to estimate surface reflectance and illu-



mination from a specular image, without the distant illumination assumption.
Specularities are also utilized in [56] in order to estimate both illumination,
in the form of multiple point light sources, and reflectance. Tominaga and
Tanaka [176] utilize the dichromatic reflection model and the Phong model
and successfully recovered the reflectance, light direction, and its color, tex-
ture, and shape under a single light source. Miyazaki et al. [117] present a
simultaneous recovery of the shape, surface reflectance, texture, and the direc-
tions of multiple sources with polarization analysis of multiple images taken
from a single view.

A directional light source can also be estimated with the additional help
of shadows (Nillius and Eklundh [120], Sato et al. [166]). Sato et al. [165],
[166] propose a method to simultaneously recover the illumination distribution
(directions and intensities of light sources) and the surface reflectance by an-
alyzing intensity information inside shadows cast on the scene by the object.
The work on illumination based on shadows will be presented in more detail
in the next section.

In other work, multiple cues are combined to reliably estimate the illumina-
tion distribution. Wang and Samaras [187] develop a method based on shadow
and a method based on shading independently and integrate the two methods
to estimate multiple directional illuminants. Li et al. [112] integrates cues
from shading, shadow and specular reflections for estimating directional illu-
mination in a textured scene. In [199], Zhou et al propose a unified framework
to estimate both distant and point light sources. Other sources of information
can also be used; [181] studies the problem of estimating illumination from
images of textured surfaces, extending work in [76].

[lumination can also captured in a more direct way; in [25], Debevec pro-
poses a method for acquiring a radiance map with photographs of a spherical
surface mirror, such as a polished steel ball. Powel et al. [142] have also used
specular spheres to estimate the position of several point light sources from a
set of images.

Important theoretic results have been reported about the possible appear-
ances of a diffuse object and their relationship with illumination. In [8] it is
shown that the set of all reflectance functions (the mapping from surface nor-
mals to intensities) produced by Lambertian objects under distant, isotropic
lighting lies close to a 9D linear subspace. [9] proves that the set of n-pixel im-
ages of a convex object with a Lambertian reflectance function, illuminated by
an arbitrary number of point light sources at infinity, forms a convex polyhe-
dral cone and that the dimension of this illumination cone equals the number



of distinct surface normals. [152], [150] develop a signal-processing framework
which describes the reflected light field as a convolution of the lighting and
BRDF, and expresses it mathematically as a product of spherical harmonic
coefficients of the BRDF and the lighting. In [151] the subspace best approx-
imating images of a convex Lambertian object under different illumination
conditions is analyzed.

2.1.1 Illumination Estimation from Shadows

In this section, we present some background on the specific problem of illumi-
nation estimation from shadows in a single image, since this is a problem that
will occupy a large part of this proposal.

In general, the outgoing radiance along direction w at the 3D point p of
the scene that projects to pixel i with coordinates (x,y) is

Lo(p,w, \) = /QfT(p,w’,w, NLi(p, o, A)(—a - ng)da, 2.1)

where A is the light wavelength, f,.(p,w’,w, \) is the BRDF, L;(p,«w’, \) is the
incident radiance of wavelength A at point p along direction w’, and € is the
hemisphere of inward directions.

A commonly used set of assumptions is that the surfaces in the scene exhibit
lambertian reflectance, and that the scene is illuminated by light sources at
infinity, as well as some constant ambient illumination term. We discretize the
integral in 2.1 using N sample directions on the illumination sphere. Under
these assumptions, the outgoing radiance at a pixel ¢ is given by:

Lo(p) = pp <a0 + Z Vo (d,)oy max{d, - np, 0}) : (2.2)

where pp, is the albedo at point p, ap is the ambient intensity, o;,i € {1, ..., N}
is the incoming radiance along the ¢-th sampling direction, d; is the unit
direction vector of the i-th sampling direction, and V,,(d;) is a visibility term
for direction d; at point p, defined as:

0, if ray to p along d; intersects G

1, otherwise (2.3)

Vp<dj )= {
Assuming a simplified linear model for the camera sensors, we model the
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observed value at pixel (z,y) as:
I(x,y) = kLo(p) + ¢, (2.4)

where k is an exposure parameter and € is noise. Since we can only estimate
light source intensities up to scale, we assume x = 1.

Eq.2.2 taken for each image pixel (or a subset of image pixels) forms a linear
system, with the illumination parameters as the unknowns. An important
constraint in this system is the non-negativity of the light intensities:

In [166] the set of illumination directions d; is set to be an even sampling
of all possible directions, corresponding to the nodes of a geodesic sphere. The
albedo pp, is assumed uniform. In this case, the unknowns that need to be
estimated for the inverse lighting problem are the intensity values {a;} for
each direction. This system in [166] is solved by non-negative least squares
optimization.

This approach is however sensitive to inaccuracies in the 3D model that
represents the scene, requiring 3D modeling that can be labor-intensive. Fur-
thermore, it does not directly address the case of textured surfaces. An extra
image containing the scene albedo is required in that case, in order to extract
the shading from the input image.

[115] shows that the set of images produced by a Lambertian scene with
cast shadows can be efficiently represented by a sparse set of images generated
by directional light sources. They utilize this observation enforcing sparsity
constraints in a linear system to better estimate illumination. First the image
is separated in low-frequency, diffuse component and a high-frequency resid-
ual component which captures cast shadows. The low-frequency component,
which mainly captures diffuse shading, is estimated using spherical harmonics.
Then the high-frequency components are estimated solving a ¢;-regularized
least-squares problem corresponding to a linear system with non-negativity
and sparsity constraints.

Prior art on illumination estimation using shadows cast on textured sur-
faces is limited. In [166], an extra image is necessary to deal with texture. Li et
al [111] propose a method that integrates multiple cues from shading, shadow,
and specular reflections. Kim et al [73] use regularization by correlation to
estimate illumination from shadows when texture is present, but requires ex-
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tra user-specified information and assumes lambertian surface reflectance and
known geometry.

Spherical Harmonics

The problem of illumination estimation from shadows can be alternatively for-
mulated based on spherical harmonics. Spherical harmonics form an orthonor-
mal basis defined over a unit sphere, where every square-integrable function
can be projected. Spherical harmonics Y}, (0, ¢) are defined as:

Yim (0, @) = Ny P (cos 0)e™, (2.6)

where P/"(-) are the associated Legendre functions and Ny, the normalization
constants.

Since we assume distant illumination, the illumination function is defined
on a sphere. We can expand the illumination L on spherical harmonics
Yim (0, @) using spherical coordinates w = (6, ¢), obtaining

LO.6) =) D, LinYin(0.9). (27)

=0 m=—1

Therefore, on the spherical harmonic basis, illumination is defined by coeffi-
cients L;,,. These coefficients are the variables to be estimated in order to
estimate illumination. In order to render the value of an image pixel 7 (cor-
responding to 3D point p) using spherical harmonics, we need to integrate
incoming illumination L and a transfer function ¢:

I(i) = /52 L(w)t(w, p)dw. (2.8)

If we project both the illumination and the transfer function into spherical
harmonic coefficients, the integral becomes a simple dot product:

I(i) =Y Lit(p). (2.9)

where L and t(p) are the spherical harmonic coefficients of illumination L
and the transfer function ¢ at point p respectively. In the above equation,
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we have kept only the first » + 1 harmonic coefficients, making the equality
relationship approximate.

If we assume lambertian reflectance, and taking into account shadows, the
transfer function can be directly calculated by the scene geometry G:

t(w,p) = Vp(w) max(n(p) - w,0), (2.10)

following Eq.2.2. V,,(w) is a binary visibility term, as in Eq.2.3.

The problem of illumination estimation in this setting corresponds to the
estimation of the spherical harmonic coefficients of illumination L; in Eq.2.9,
where B is the observed image and coefficients ¢ can be computed from the
geometry. There is one equation for each image pixel, forming a simple linear

system
I=tL", (2.11)

where I = [{I(i)}] is a known vector of size N, t is a known matrix of size
N x (n+1)% L is the unknown vector of size (n + 1)? and N is the number
of pixels in the image.

The relationship of illumination and shadows is examined more closely in
[122], where it is shown that the transfer function ¢ has non-zero high-frequency
components when cast shadows are taken into account. One important result
of this observation is that high-frequency components of illumination con-
tribute to the brightness of the surface (under lambertian reflectance), making
it possible to use cast shadows to estimate such high-frequency illumination
components. Such high-frequency components cannot be estimated by the
shading on lambertian surfaces [150], as mentioned earlier.

Estimating illumination from shadows using spherical harmonics has how-
ever certain limitations:

e First, a very large number of basis functions is required to estimate
illumination that is well localized in the angular domain, such as a point
light source

e Second, high-frequency components are harder to estimate as the number
of shadow pixels observed is reduced, making the estimation of high-
frequency components often difficult.

In [122] an improvement is proposed by using Haar wavelets as the basis
functions. This offers the advantages of basis functions with compact supports
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Figure 2.1: A comparison of different methods for illumination estimation from
shadows. a) Original image; b) 3D model rendered with illumination estimated
using spherical harmonics; ¢) result with [166] (100 directions); d) result with [166]

(300 directions); e) result with [168]; f) result with [122]; g) result with [115]. Images
from [115].

and sparsity. The latter means that many of the resulting illumination coeffi-
cients are near-zero, and fewer that 1% of the basis functions are sufficient to
accurately represent natural illumination [119].

A Fourier analysis of cast shadows for the case of surfaces that exhibit 3D
texture with canonical configurations, such as V-grooves, is examined in [153].

In [168] a spherical harmonic representation is used in combination with
semidefinite programming to estimate illumination under non-negativity con-
straints. While [168] focuses on specular objects, the same technique applies
to the case of cast shadows as well.

Illumination Estimation with Limited Geometry Knowledge

The work discussed so far has assumed that geometry is known accurately.
Much fewer methods have tackled the problem of inverse lighting when the
knowledge of 3D scene geometry is limited and inaccurate.

Recently Lalonde et al [97] proposed an approach that combines cues from
the sky, cast shadows on the ground and surface brightness to estimate il-
lumination of outdoor scenes with the sun as the single light source. Their
method makes strong assumptions and is only applicable to daytime outdoor
scenes. Karsch et al [71] utilize simplified geometry provided through user
annotation to estimate various components of a scene, including illumination.
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Their approach can convincingly insert synthetic objects in real scenes using
the obtained estimates of the various scene components.

The ability to estimate illumination with limited knowledge of geometry
significantly increases the practicality and usefulness of inverse lighting. We
will extensively deal with this case in later chapters.

2.2 Shadow Detection

As mentioned in the previous sections, in this thesis we will examine more
closely the estimation of illumination from the cast shadows in an image. This
assumes that we are able to detect cast shadows in the first place. Cast shadow
detection from a single image is however a difficult problem in the general case.
When shadows are cast on textured surfaces and in general, complex scenes
captured in low dynamic range images, their detection can be challenging.
Hence in this section we review prior work in the problem of detecting cast
shadows.

The detection of cast shadows in the general case is not straightforward.
Shadow detection, in the absence of illumination estimation or knowledge of
3D geometry is a well studied problem. [161] uses invariant color features to
segment cast shadows in still or moving images. [109] suggests a method to
detect and remove shadows based on the properties of shadow boundaries in
the image. In [32, 33], a set of illumination invariant features is proposed
to detect and remove shadows from a single image. This method is suited
to images with relatively sharp shadows and makes some assumptions about
the lights and the camera. Camera calibration is necessary; if this is not
possible, an entropy minimization method is proposed to recover the most
probable illumination invariant image. In [169], a method for high-quality
shadow detection and removal is discussed. The method, however, needs some
very limited user input. Recently, [200] proposed a method to detect shadows
in the case of monochromatic images, based on a number of features that
capture statistical properties of the shadows. Lalonde et al [98] propose a
learning approach to detect shadows in consumer-grade photographs, focusing
on shadows on the ground. The above methods detect the majority of shadow
pixels, but they are not always accurate since they are based only on image
statistics.

A related body of work involves the extraction of intrinsic images from
the input image [38, 172, 173, 46]. The intrinsic images can separate the
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albedo and the shading from the input image, based on learned image statistics.
However, they do not target the identification of the cast shadows specifically,
and separately from shading.

In [130] a bayesian framework is proposed for shadow extraction from a
single image, with no assumptions about the camera and lights, and assuming
Lambertian reflectance. This method requires, however, information supplied
by the user in the form of a rough quadmap which approximately identifies
shadow and non-shadow regions.

2.2.1 Illumination Invariants

Photometric color invariants are functions which describe each image point,
while disregarding shading and shadows. These functions are demonstrated to
be invariant to a change in the imaging conditions, such as viewing direction,
object’s surface orientation and illumination conditions. Some examples of
photometric invariant color features are normalized RGB, hue, saturation,
cicocs and lilsls [41]. An examination of various photometric invariants is
given in detail in [42]. Other interesting invariants that could be exploited are
described in [40, 179, 27].

Hue and saturation are two simple invariants; both hue and saturation
are shown to be invariant to surface orientation, illumination orientation and
illumination intensity, while hue is also invariant to specular highlights [42].

The normalized RGB color invariant is defined as:

R

== 2.12

"TR+G+B (2.12)
G

- & 2.1

I"R+a+B (2.13)
B

2 2.14

’ R+G+ B’ (2.14)

which is shown [42] to be insensitive to surface orientation, illumination direc-
tion and illumination intensity; R, G and B are the three components of RGB
color.
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The c¢icqocs invariant color feature is defined as:

¢ = arctan <m) , (2.15)
G

¢y = arctan <W> , (2.16)
B

c3 = arctan <W) , (2.17)

where R, G and B are the three components of RGB color. It is shown [42]
to be invariant to surface orientation, illumination direction and illumination
intensity.

Multiple invariants can be combined in a tensor framework to offer more
robust illumination-invariant edge detection [42].

Adding to the various illumination invariants, a set of photometric quasi-
invariants has been proposed [180, 27]. The various quasi-invariants are also
insensitive to certain photometric edges, such as shadows and shading. They
are advantageous for the task of feature detection invariant to illumination
effects, since they don’t exhibit the non-linear nature of photometric invari-
ants. The non-linear nature of the latter means that they lead to unstable
features. Quasi-invariants can be chosen in order to isolate the illumination-
invariant edges in an image, or, alternatively, the edges attributed to specific
photometric features such as shadows and shading [42].

Another illumination invariant representation specifically targeted to shad-
ows is described in [33]. For this representation, a vector of illuminant variation
e is estimated. The illumination invariant features are defined as the projec-
tion of the log-chromaticity vector x’ of the pixel color with respect to color
channel p to a vector e’ orthogonal to e:

_[/ :X/TeL (218)
=P ke1,23k#pj=12 (2.19)
Pp

and p; represents the k-th RGB component.

The illumination invariant features of [33] assume narrow-band camera
sensors, Planckian illuminants and a known sensor response, which requires
calibration. The known sensor response requirement can be circumvented
by using the entropy-minimization procedure proposed in [32]| to calculate
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the illuminant variation direction e. Futhermore, it has been shown that the
features extracted this way are sufficiently illumination-invariant, even if the
other two assumptions above are not met ([33]). A weakness of this feature in
practice is that its performance decreases in the case of images that have been
degraded, for example by JPEG compression, a case often true in practice.

2.2.2 Combining multiple cues

More recently, and concurrently with work presented in this thesis, some new
approaches have appeared that combine different cues in statistical frameworks
in order to detect shadows.

Lalonde et al [98] propose an algorithm to automatically detect shadows
cast by objects onto the ground, putting an emphasis on outdoors consumer-
grade photographs where approaches such as [33] are not effective. They only
examine shadows cast onto the ground. Their key idea is that the appearance
of the ground in outdoor images falls into a small number of predefined classes,
corresponding to common materials/textures such as stone, grass, asphalt etc.
They aim to learn the appearance of this limited number of classes from a
labeled training set in order to recognize shadows. Their approach has three
components: a) using existing ground classifiers to recognize the portion of
an image that corresponds to ground; b) training a decision tree classifier on
shadow-specific features around image edges; c¢) and a Conditional Random
Field model (CRF) that combines the shadow edge detection results to create
coherent shadow contours. Their detection accuracy is around 85% but they
are limited to shadows cast on the ground in daytime outdoor images.

Zhu and Tappen [200] focus on the more difficult problem of detecting shad-
ows in grayscale images. They use both shadow-variant and shadow-invariant
cues from illumination, textural and odd-order derivative characteristics. The
features they employ, based on an oversegmentation of the image, include in-
tensity difference, the local maximum intensity smoothness, the skewness of
intensities distribution, gradient and texture similarity features, entropy and
the sum of edge responses. A boosted decision tree classifier is trained on this
large number of features and then integrated into a CRF model. The CRF en-
forces local consistency over the pixel shadow labels. Their approach achieves
detection rates of almost 89% in a dataset of challenging grayscale natural
images. It depends however on training and is computationally intensive.

Guo et al [47] propose a region based approach. In addition to consid-
ering individual regions separately, they train a pairwise classifier to predict
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illumination conditions between segmented regions from their appearances.
They combine the single-region and pairwise classifiers in a graphical model
corresponding to the image segments, and employ graph-cuts to find a la-
beling of shadow and non-shadow regions. They finally refine their results
using image matting, in order to also be able to remove shadows. Their ap-
proach achieves slightly higher classification results compared to the previous
approaches, reaching up to 90% classification rates in the same dataset as

[200].

2.3 Shape Recovery

In this section we review the prior art relevant to the second inverse rendering
problem that we will examine in later chapters, that of shape recovery. Shape
recovery is a classic problem in computer vision and a large body of prior work
exists on the subject, including a variety of shape-from-X techniques. The goal
of shape recovery methods it to infer the 3D geometry underlying a scene from
one or more images of that scene.

The reconstructed 3D geometry can be expressed in different ways:

e Depth values z(x) at point x, which can be measured either as the dis-
tance of surface points from the camera, or as the height from the x —y
plane.

e Surface normals n = (n,, n,,n,), which are vectors perpendicular to the
tangent plane on the object surface.

e Surface gradients (p,q) = (%, g—;), which are the rate of change of the

surface depth along the x and y directions. The surface normal can be

related to the surface gradients by n = \/ﬁ (—p,—q, 1).

e Slant, ¢, and tilt, 0, angles. These angles define the surface normal in a
spherical coordinate system. The surface normal is expressed in terms
of ¢ and 0 as n = (cos 0 sin ¢, sin @ sin @, cos ¢).

Shape-from-shading is the instance of the shape recovery problem where
shape is inferred by the variations of the shading variations, observed as the
image brightness, in a single image. Although shading is a very important cue
for human perception of shape and depth, shape-from-shading is a challenging
and generally ill-posed problem in computer vision.
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2.3.1 Shape from Shading

Shading is an important cue for the perception of shape by the human visual
system. In humans, information from shading is combined with stereoscopic
processing, the information from outlines, elementary features and the visual
system’s knowledge of objects [148, 7], in order to rapidly and accurately per-
ceive the 3D shape of surfaces. In computer vision, the shape-from-shading
problem (SfS) has mostly focused on a set of simplifying assumptions. These
assumptions, including Lambertian reflectance and known light source direc-
tion, are not necessarily valid for the human visual system [116], but have been
widely used in order to find tractable solutions to the problem. Despite the
large amount of prior art, the applicability of shape-from-shading methods in
practice has been limited. The best results are obtained when combined with
some other strong prior, such as stereo reconstruction (e.g. [163]).

Horn [60, 61] in the 70’s was the first to formulate the Shape From Shading
problem rigorously as that of finding the solution of a nonlinear first-order
Partial Differential Equation (PDE), the "image irradiance equation”:

R(n(x)) = I(x), (2.20)

where I(x) is the image brightness at point x (proportional to the image
irradiance), n(x) is the normal vector at x and R (n(x)) is the reflectance
function which gives us the radiance at point x as a function of the normal
n(x).

Let z(x) be the height of the surface. Here we assume that the scene is
illuminated by a single known point light source at infinity, whose direction
is d = (dy,d,,d,) and that the surface has uniform albedo equal to 1 and
exhibits Lambertian reflectance. Then we can re-write Eq.2.20 as:

I(x) =\/1+ |V2(x)|* + (dy,d,)V2(x) — d, = 0, (2.21)

which is a first-order non-linear Hamilton-Jacobi PDE. If we assume that the
light source is a frontal light source at infinity, so that d = (0,0,1), then
Eq.2.21 becomes the eikonal equation:

IVz(x)]> = TR 1. (2.22)
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Figure 2.2: Examples of ambiguities in shape-from-shading. Left: the crater illusion
(from [135]). If one imagines that the light source is at the bottom of the image,
the two craters can be thought of as two upside down volcanoes (the image actually
depicts two ash cones). Right: the bas-relief ambiguity in a marble bas-relief sculp-
ture (from [10]). While from the frontal view we expect the sculpture to have full
3D depth, the actual surface is the ”"flattened” surface shown in the side view.

For a long time, research in shape-from-shading focused on the compu-
tational part of the problem, trying to directly compute numerical solutions.
Soon, however, and due to the poor quality of the results, questions about the
existence and uniqueness of solutions became central. The shape-from-shading
is now known to be an ill-posed problem [20, 124, 126, 10]. One common type
of ambiguities is that between convex and concave surfaces that can produce
the same image brightness (see Fig.2.2 for an example). When the light source
and surface albedo are unknown, Belheumer et al [10] proved that the same
image can be obtained by a continuous family of surfaces. This is known as
the ”Bas-relief ambiuity [10]. Therefore, in general cases, we cannot unam-
biguously infer the 3D structure of an object, as seen for a single viewpoint,
using the shading and shadowing.

A lot of research has focused on the above set of assumptions, with results
of limited applicability. An interesting modification to the above assump-
tions is the replacement of the orthographic projection with the more realistic
perspective projection [133, 162]. The equations for perspective shape-from-
shading are established by [143, 145, 22|, and it is also a nonlinear PDE.
Another modification to the ”classical” assumptions, that leads to interesting
changes to the problem formulation, is the replacement of the light source at
infinity with a light source at the center of projection [123, 146]. These two
modifications to the problem assumptions can lead to a formulation that is
not ill-posed [146].

A third important assumption above has been that of Lambertian re-
flectance. Very little work has dealt with surfaces of non-Lambertian re-
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flectance [3, 104, 147].
The work in shape-from-shading can be divided in the following broad
categories:

e Local approaches: Local approaches for shape-from-shading involve ex-
amining small image regions and reconstructing the local shape. These
local results are then quilted together. Local approaches tend to be fast,
but often require some initial information about the surface, such as
the linearization of the reflectance map [135, 136] or the depth at sin-
gular points [124]. In practice, when applied to real-world images such
techniques have not been effective.

e Global approaches: global approaches recover the entire 3D surface, ei-
ther through propagation of height values from singular points of the sur-
face, or by minimizing some energy functional defined on a parametriza-
tion of the reconstructed 3D surface.

— Global propagation techniques propagate information from specific
points of the 3D surface. Examples of such solutions are, for exam-
ple, various approaches based on viscosity solutions [159].

— Global minimization approaches express constraints on the solution
in the form of an energy function. Minimizing this energy recovers
a surface that attempts to satisfy such constraints. Minimization
approaches have been shown in the past to be more generally appli-
cable to different types of input images, and more robust to noise
than either local techniques or global propagation approaches [195].

Local Approaches

Pentland [135] assumed that surfaces are locally spherical at each point. He re-
constructed 3D shape from the image intensity and its first and second deriva-
tives. Lee and Rosenfeld [102] used the same assumption of locally spherical
surfaces to compute the slant and tilt of the surface in the light source coor-
dinate system based on the first derivative of image intensity. Pentland [134]
used the linear approximation of the reflectance function in terms of the sur-
face gradient, and applied a Fourier transform to the linear function to get a
closed form solution for the depth at each point. Tsai and Shah [177] applied
the discrete approximation of the gradient first, then employed the linear ap-
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proximation of the reflectance function in terms of the depth directly. Their
algorithm recovered the depth at each point using a Jacobi iterative scheme.

Global Propagation Approaches

Horn’s original method [59] based on characteristic strips can be categorized
as a propagation method. A characteristic strip is a line in the image, along
which the surface depth and orientation can be computed if these quantities
are known at the starting point of the line. This method constructs initial
estimates around the singular points in the shading image using a spherical
approximation. Characteristic strips are assumed to have the same direction
as intensity gradients. The initial shape information is propagated along the
characteristic strips.

A category of methods that can be categorized as global propagation ap-
proaches are those based on viscosity solutions. The notion of viscosity solu-
tions was first used to solve SFS problems by Rouy and Tourin [159]. Their
work is based on the notion of continuous viscosity solution, which are PDE
solutions that may not be differentiable and may contain edges. In their work,
they provide conditions for the existence of both continuous and smooth solu-
tions and a numerical scheme to obtain a solution based on dynamic program-
ming. Oliensis [124] described how the surface shape can be reconstructed from
singular points instead of the occluding boundary. Based on this idea, Dupuis
and Oliensis [127, 125] formulated SfS as an optimal control problem, and
solved it using numerical methods. Bichsel and Pentland [13] simplified Dupuis
and Oliensis’s approach and proposed a minimum downhill approach for SFS
which converged in less than ten iterations. Similar to Horn’s, and Dupuis
and Oliensis’s approaches, Kimmel and Bruckstein [75, 74] reconstructed the
surface through layers of equal height contours from an initial closed curve.
Their method applied techniques in differential geometry, fluid dynamics, and
numerical analysis, which enabled the recovery of non-smooth surfaces. The
algorithm used a closed curve in the areas of singular points for initialization.

The perspective projection, in combination with the assumption of a light
source at the center of projection, is examined by Prados and Faugeras [146].
They are able to show that under such assumptions, the problem of shape from
shading can be well-posed. Based on the notion of viscosity solutions, they
provide [145, 144] a generic, provably convergent shape-from-shading method
applicable to both orthographic and perspective projection.
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Global Minimization Approaches

Ikeuchi and Horn [64] propose one of the earliest minimization approaches
to recover the surface gradients. The surface gradients are defined by two
values for each pixel, constrained only by a single intensity value. To solve
the resulting underdetermined system, the introduce a smoothness constraint
that requires the result of the reconstruction to be a smooth surface. Surface
gradients are also constrained by the brightness constraint, requiring the pro-
duced brightness to be the same as the observed. An energy function that
expresses the above two constraints is minimized to reach a solution. To en-
sure convergence, initial knowledge of the shape at the occluding boundaries is
required. Brooks and Horn [21] minimize an energy function expressing these
two constraints in terms of the surface normals.

Frankot and Chellappa [35] enforce integrability in the surface slopes re-
constructed with algorithms such as [21]. The integrability constaint is an
important constraint for SfS problems, requiring the reconstructed normal
maps or gradient fields to correspond to plausible 3D surfaces. In Frankot
and Chellapa’s approach, a possibly nonintegrable estimate of surface slopes
is represented by a finite set of basis functions, and integrability is enforced
by calculating the orthogonal projection onto a vector subspace spanning the
set of integrable slopes. They also examine the special case of Fourier basis
function, leading to a frequency domain interpretation of shape-from-shading.
With this approach they are able to improve both accuracy and efficiency
over Brooks and Horn’s algorithm [21]. Subsequently, Horn also replaces the
smoothness constraint in his approach with an integrability constraint [62].
One issue with Horn’s method is slow convergence. Szeliski [170] proposes a
hierarchical basis pre-conditioned conjugate gradient descent algorithm to im-
prove computational efficiency. Vega and Yang [184] propose a heuristics-based
SES approach (the shading logic algorithm). They derive the heuristics from
the geometric interpretation of Brooks and Horn’s algorithm [21] in order to
improve the performance and stability of Brooks and Horn’s algorithm. Zheng
and Chellappa [198] introduce an intensity gradient constraint, instead of the
more common smoothness constraint. This constraint requires the intensity
gradients of the reconstructed image and the input image to be close. An
overview of various constraints proposed for the consistency of reconstructed
normal maps is given in [192].

The above techniques are based on variational calculus. A discrete for-
mualtion was used by Leclerc and Bobick [101], who solved for depth values
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using a conjugate gradient technique. Their formulation is also constrained by
the brightness and smoothness constraints. Initialization is required through
the use of stereo reconstruction. Lee and Kuo [103] do not require an initial
depth estimate, and model the surface using triangular patches. The solution
also attempts to satisfy the brightness and smoothness constraints. Relaxing
the assumption of a single smooth surface, Malik and Maydan [113] assumed
piecewise smooth surfaces. They reconstruct shape by minimizing an energy
function that combines constraints both from shading and line drawing. En-
ergy minimization then recovers both a normal map and a line labeling.

The introduction of shading constraints in a physics-based deformable
model framework is first examined by Samaras et al. [162, 164]. In this
work, they provide a general methodology for the incorporation of illumination
constraints within a deformable model framework and apply it to the coupled
problems of shape from shading and light source estimation from images. Their
method can incorporate any type of shading constraint, from Lambertian to
highly non-linear ones, and can be applied to both orthographic or perspec-
tive projection. Potetz [138] formulates the shape-from-shading problem as
a Markov Random Field. This formulation results in a higher-order MRF
model, that incorporates integrability constraints and simple priors about the
3D shape. Energy minimization on this model correspond to a MAP estimate
of the surface gradients. Although they focus on the efficient optimization
of such higher-order MRF models, the approach is still very computationally
expensive.Recently, Barron and Malik [6] proposed a method to solve simulta-
neously the problems of shape-from-shading and intrinsic images, by imposing
"naturalness” priors over albedo and shape. Their approach is aided by an
initial low-frequency estimate of the 3D shape.

2.3.2 Local Shading Patterns

Later in this thesis, in Chapter 7, we are going to describe a data-driven ap-
proach to shape-from-shading that utilizes information in larger image regions
(image patches) consisting of many pixels. The work we examined so far gen-
erally aims to constrain the 3D surface at a single image pixel based on the
observed image intensity and its immediate neighbors, using simple constraints
such as smoothness and assumptions about the reflectance model.

Some prior work has dealt with the relationships between shading and ge-
ometry in small image regions. Haddon and Forsyth [49, 50] notice that the
effect of interreflections due to distant surfaces is confined to low spatial fre-
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quencies in the shading field. They look for "stereotyped” appearance patterns
in the shading field that are linked to specific geometric primitives, such as
folds and grooves. In such patterns, the effect of unseen surfaces in the envi-
ronment has effects that vary slowly over the region of support. They examine
approaches for testing hypotheses of geometric primitives for consistency with
the shading field, and looking for shading patterns that are distinctive of some
shape pattern. These approaches can be composed into a bottom-up process of
representation. Han et al [54] target the specific case of folds in cloth, and learn
a set of shading primitives to represent them. Through these primitives they
are able to reconstruct the geometry of folds, and the surface in between folds
is interpolated through a two-level MRF model to get the complete 3D shape.
Recently, Varol et al [182] proposed learned shading primitives to deform the
initially known 3D surface of a locally textured object. They learn a mapping
between local shading patterns and the deformations of the underlying shape.
They use this mapping to reconstruct parts of deformable surfaces that are not
well-textured, as part of a nonrigid shape recovery approach driven by point
correspondences in video sequences.

The relationship between shading and geometry patterns has also been ex-
amined through the use of neural networks. Lehky and Sejnowski [106] show
that it is possible to reconstruct the approximate surface normals in the case
of simple ellipsoidal shapes by training a neural network on intensity patterns.
The intensity variations in image patches are also examined in [189], where
a multilayer feedforward network is applied to the SfS problem. Similarly,
[11] proposes a backpropagation-based neural network for learning brightness
patterns and associating them with range data. In [140], [139] the statistical
relationship between 2D appearance and the underlying 3D geometry is exam-
ined. Lee et al [105] suggest neural network configurations that could simulate
how the human brain takes advantage of such statistical properties to infer
information about surfaces, which could lead to useful priors for statistical 3D
surface inference in computer vision.

2.4 Graphical Models

Most of the approaches in the literature we surveyed in the previous sections
are based on directly modeling the physical properties of the problem and at-
tempting to find numerical solutions to the resulting systems of equations. In
order to describe the physical laws governing the problems of interest, usually
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these methods have to rely on several strong assumptions. When such assump-
tions are violated, the quality of the results obtained will suffer. It is, however,
to be expected that assumptions such as Lambertian reflectance or knowledge
of geometry will be violated when examining a real, complex image. In such
cases, the assumptions we make can be at best only satisfied approximately.
It is the goal of the work in this thesis to extend the applicability of solutions
to inverse rendering problems to such real, complex images. To this goal, we
are interested in modeling the problems in ways that, on one hand, can model
the uncertainty in our data, and on the other, provide flexible frameworks that
are able to incorporate a variety of features and parameters that are relevant
to each application. An important tool we will use is graphical models, hence
this section gives an introduction to the fundamentals behind them.

Graphical models offer a powerful framework to express the statistical de-
pendencies in a large variety of problems across different scientific or engi-
neering fields. They have become popular in computer vision problems due to
the following properties, which motivated us to also examine their use in the
aforementioned inverse rendering problems:

1. Graphical models lead to flexible, modular frameworks. The graph struc-
ture, and the corresponding natural factorization of the probability dis-
tribution they model, makes it natural to add and remove ”components”
that model subsets of the problem. Therefore, a graphical model frame-
work can often be easily extended to incorporate different sources of
information in the form of input data or priors. We take advantage
of this property to allow for different parametrizations of geometry in
Chapter 6.

2. The existence of inference methods applicable to large classes of MRF
models allows the decoupling of the modeling and inference. This al-
lows easier modeling of the problem, and facilitates the combination of
components in larger frameworks. Furthermore, discrete optimization
in graphical models enables tractable inference in a variety of difficult
problems, relaxing many of the constraints posed on the energy function
by continuous methods. This has lead to very large range of applications
of graphical models in computer vision problems.

3. The probabilistic nature of graphical models has potential advantages,
compared to classic variational methods, in terms of parameter learning
[155, 160] and uncertainty analysis [83, 44].
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Graphical models have been widely used in Computer Vision problems (im-
age restoration, image segmentation, stereo reconstruction etc.), where they
have offered a more natural way to formalize prior knowledge about the struc-
ture of each problem, and allowed inference in the complex models that arise
as a result. Markov Random Fields (MRFSs), in particular, have become a
ubiquitous tool in computer vision problems.

A graphical model is a probabilistic model which corresponds to a graph.
That graph denotes the conditional independence between the random vari-
ables of the model. More specifically, each graphical model can be represented
by a graph G = {V, £}, consisting of a set of nodes V and a set of edges £.
By X = {X,}icy we denote a set of random variables indexed by the nodes V,
so that for each node i € V, there is an associated random variable X;. By x;
we denote a realization of the random variable X, taking values from a state
space X;. We will often refer to such a realization of random variable X; as a
label of node 1.

The graphical model provides a compact representation of a family of joint
distributions over the multidimensional space formed by the Cartesian product
of the state spaces & of each random variable X;. The lack of an edge between
two nodes ¢ and j denotes conditional independence between the corresponding
random variables X; and X in this family of joint distributions. Most joint
distributions of interest represented by a graphical model can be factorized into
a product of local functions, each of which involves a (usually small) subset of
random variables. This factorization is a key concept behind graphical models.

Two types of graphical models are commonly used:

e Bayesian networks, which are represented by directed acyclic graphs
(also known as Belief Networks)

e Markov networks, which are represented by undirected graphs (also known
as Markov Random Fields)

Each of these model types can represent certain dependencies that the other
one cannot: A Markov network can represent cyclic dependencies which a
Bayesian network can’t; the latter can represent induced dependencies which
the former cannot. Both types of models can be represented by a unified
representation called a factor graph (if the corresponding joint distribution
can be factorized).

The interested reader can refer to [100, 14, 69, 84] for a more in-depth
analysis. In the next sections we describe in more detail one graphical model
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type, the Markov Random Field, and give a brief overview of methods to
perform inference on such models.

2.4.1 Markov Random Fields

Markov Random Field (MRF) models have been widely used in Computer
Vision to model various low- or mid-level tasks. Examples of applications
of MRFs in Computer Vision are image denoising [12, 155], image super-
resolution [37], segmentation [167], stereo-matching [30] etc.

A Markov Random Field is a set of variables having a Markov property
described by an undirected graph G = {V,£}. Formally, to form a Markov
random field, the set of random variables X indexed by V must satisfy the
following local independence assumption, called local Markov property:

VieV, X; L va{i}|X./\/'ia (2.23)

which means that each node 7 is independent of all other nodes given all of its
neighbors N;.

The associated family of joint distributions p(x) (satisfying the local Markov
property) are Gibbs distributions. Given the graph G with cliques C, the joint
distribution can be factorized in the form:

p(x) = % I ¢e(0), (2.24)

where ¢.(x.) is a potential function defined over clique c¢. Potential function
¢c(x.) takes positive real values over the possible configurations x. of clique c.
Z is a normalizing factor such that p(z) is a probability distribution.

We can define the MRF energy E(x) as the sum of all potential functions:

Ex) = Y wila.). (2.25)

where
Ye(@e) = —log () (2.26)

is the clique energy, which is also referred to as a clique potential or potential

29



function. The joint distribution p(x) can then be written as:

1
p(x) = o exp {(~E(x)}. (2.27)
Inference of the most probable configuration x°* of variables X be per-
formed by mazimum a posteriori (MAP) estimation:

X = arg m}e{xxp(x). (2.28)

From the above, it can be seen that MAP inference corresponds to minimizing
the MRF energy E(x):
X = arg m)én E(x), (2.29)

2.4.2 Inference on MRF Models

Many important computer vision problems can be elegantly expressed in terms
of MAP estimation of a Markov Random Field. However, despite the power of
the energy minimization approach to such problems, early attempts were lim-
ited by computational considerations. In particular, the algorithms originally
used for energy minimization in MRFs, such as iterated conditional modes
(ICM) [12] or simulated annealing [5] appeared to be very inefficient. Several
related classes of energy minimization problems were viewed as intractable.
However, in more recent years, powerful methods such as graph cuts [24, 18, 16]
and loopy belief propagation [194] were popularized and were proven to be very
powerful [171]. Furthermore, significant effort has been dedicated recently to
developing efficient energy minimization approaches for even more challenging
MRF classes, such as models that contain higher-order cliques (cliques of order
higher than 2). Such developments are significant, because they greatly extend
the range of MRF models that can be used in practice in order to include many
useful cases. In this section, we gave a brief overview of the developments in
MREF inference, both for the more standard MRF topology that only includes
pairwise interactions, as well as for the more challenging case of higher-order
graphs.

Graph Cut Methods

Graph cuts was originally developed [24] for MRF's where labels x; take binary
values. The main idea behind graph cuts is to introduce two special nodes s
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and t called the source and sink. A directed graph G*' is constructed to
include the source and sink. An s-t cut partitions the nodes of this graph into
to disjoint sets .S and T', so that s € S and t € T. For each directed edge i, j, a
non-negative capacity setting (i, j) is assigned, so that the cost C(S,T') of the
cut is equal to the MRF energy of the corresponding (binary) configuration
x. If an MRF has such a graph representation, it is called graph-representable.
The minimization of the energy of an MRF that can be represented in this
form corresponds to minimizing the cost of the s-t cut (min-cut problem):

C(S.T)= > cli,j), (2.30)

ieS,jeT

which is equivalent to a max-flow problem and can be computed in polynomial
time. However, not all MRF's are graph-representable. It has been shown that
the pairwise MRF's whose energy can be minimized in polynomial time using
graph cuts correspond to a submodular energy function [87].

Unfortunately in computer vision applications of MRF's, it is often that
non-submodular energy functions arise. In such cases, the minimization be-
comes NP-hard in general.

Boykov et al [18] introduce two kinds of large moves, the a-expansion
and af-swap, for the optimization of MRF problems with multi-valued labels.
They deal with a wide class of energies corresponding to MRFs with pairwise
interactions. Ishikawa [66] extends the use of graph-cuts to the exact opti-
mization of arbitrary convex pairwise MRFs. To accelerate graph-cuts in the
case of dynamic MRFs (MRF's where the form of potential changes over time),
the dynamic max-flow algorithm is proposed in [81, 82, 70]. Komodakis et al
[92, 93] propose a primal-dual scheme to minimize the MRF energy, based on
linear programming relaxation. Their approach has the advantage of compu-
tational efficiency.

Solutions for non-submodular energy functions can be inferred partially.
[51] proposed roof duality to obtain a partial optimal labeling for quadratic
pseudo-boolean functions. More recently, and based on the same concept,
Quadratic Pseudo-Boolean Optimization (QPBO) was proposed [15, 158] and
shown to be an effective approach. To deal with multi-label MRFs through
QPBO, [80] proposed a method based on converting the multi-label MRF to
an equivalent binary one. [108] proposed a method based on QPBO and move
techniques, referred to as fusion moves. This technique is based on fusing two
proposed solutions at each step of the algorithm, in order to achieve an energy
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lower than that of either proposal.

Belief Propagation

Belief propagation (BP) was originally proposed in [131, 132]. It is a message-
passing approach to inference on graphical models. It was originally used to
perform exact MAP inference and/or max-marginal inference, on graphical
models that can be represented by tree-structured factor graphs. In this case,
belief propagation can perform inference in polynomial time.

Loopy belief propagation (LBP) is the application of belief propagation in
general graphs [194, 190, 191, 30]. In general graphs, belief propagation has to
be performed iteratively, and inference is approximate [190, 191]. LBP is not
generally guaranteed to converge, but there exist conditions that guarantee
convergence [118]. Despite the lack of guarantees of convergence, loopy be-
lief propagation has performed well in a number of computer vision problems.
Wainwright et al. [185] proposed a method inspired by the problem of maxi-
mizing a lower bound on the model energy. Based on this work, Kolmogorov
[85] proposed a memory-efficient message-passing algorithm that achieves ef-
fective energy minimization in many practical applications.

Dual Methods

The problem of MAP inference in pairwise MRF models can be reformulated
as an integer linear programming problem. Unfortunately this problem is
NP-hard in general. However, several algorithms have been proposed for ap-
proximate MRF optimization, based on Linear Programming (LP) relaxations
of such problems. It is generally infeasible to directly apply generic LP algo-
rithms, such as interior point methods, to solve LP problems corresponding
to MRF models in computer vision, due to the large number of variables. It
is possible, however, to solve a dual to the original LP problem [95]. Meth-
ods that take such an approach include the message passing algorithm based
on block coordinate descent proposed in [43], the Tree-Reweighted message
passing (TRW) techniques [185, 85] and the dual decomposition (MRF-DD)
approach proposed in [89, 91]. The tightening of the LP-relaxation has also
been examined, in order to achieve a better optimum [43, 90, 96].
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Inference on Higher-order MRF's

In recent years, a lot of research has concentrated in the case of MRFs with
higher-order potentials. Such MRFs can better capture the statistics of sev-
eral low-level vision problems [155], while they naturally arise to model other
computer vision tasks. An example is the work presented later in this thesis,
where a higher-order MRF naturally models the creation of cast shadows in
an image. Inference on such MRF models remains however challenging.

One approach taken in order to minimize the energy of higher-order MRF's
is to reduce the higher-order model to a pairwise one, by introducing ex-
tra variables. Inference in the pairwise model can be performed with one of
the standard methods. This idea was first proposed in [154] (variable sub-
stitution), but the resulting pairwise models contained many non-submodular
components, making inference difficult [15, 2|. An improved reduction method
for second-order binary MRFs was proposed in [87] and [36] proposed an al-
gebraic simplification of this approach. Based on the same concept, Ishikawa
(65, 68] developed a technique that can reduce every higher-order MRF to a
pairwise one. This technique can also deal with multi-label MRF's using fusion
moves [67]. Approaches based on graph-cuts have also been proposed to tackle
with more specific forms of higher-order MRF models [77, 78, 149].

Other authors have examined the use of belief propagation methods on
higher-order MRF models. These techniques focus on taking advantage of
specific classes of higher-order potentials to develop more efficient message-
passing algorithms [99, 141, 175].

A third category of approaches proposed to deal with higher-order MRF's
is based on the LP-relaxation formulation of the MRF energy minimization.
In [88], the dual-decomposition framework [89] is applied to the case of higher-
order MRFs. The result is a decomposition of the original MRF problem to
a set of one master and several slave problems, with the master coordinat-
ing the solutions of the slaves. Inference algorithms are proposed to solve a
class of MRF models with pattern-based potentials. Other recent approaches
[156, 79] have also exploited the ”sparseness” of certain forms of higher-order
potentials.
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Chapter 3

Extracting Shadows

In Chapter 2 we examined the literature in extracting the shadows from a
single image. Despite the large number of approaches proposed, the problem
is still challenging in the general case. The approach of intrinsic images does
not separate the cast shadows from the shading component. The various illu-
mination invariant representations do not generally offer satisfactory results in
complex natural images; from our experiments, it seems that the best perform-
ing method illumination invariant representation is that of [33], which however
does not perform well when camera calibration is not possible, and when the
image color is distorted from factors such as JPEG compression. Some other
methods need user-supplied hints which indicate where the shadows lie; the
approach in [200] is overly complex and involves a learning stage, and the ap-
proach in [98] uses several assumptions that don’t apply in arbitrary natural
images.

In this chapter we will describe a simple new cue to aid shadow extraction
(Sec.3.1.1), and we will describe a method to obtain an estimate of cast shad-
ows that is sufficient for the task of illumination estimation. The goal of this
method is not to provide a high-resolution estimate of shadow intensity (which
could be used for shadow removal). Such an estimate could however be ob-
tained from our results using a refinement stage, such as matting. The main
advantage of the method proposed in this chapter is that it can be applied
without assumptions about the camera or the lights illuminating the scene, it
can be implemented efficiently and it does not depend on a training phase.

In the next section (section 3.1.1) we introduce a simple measure of bright-
ness to aid in the extraction of shadows from the image. In section 3.1.2 we
present our approach to obtain a set of confidence values that image segments
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belong to cast shadows. Section 3.2 offers experimental evaluation of our ap-
proach and comparisons to current state-of-the-art methods, and section 3.3
concludes the chapter.

3.1 Owur approach

We detect shadows by examining the change of image features across the
borders of potential shadow regions. We start from the observation that light
sources affect the whole image in a consistent way; therefore, edges due to
cast shadows will generally exhibit characteristics that are consistent across
the whole image, while edges due to other effects, such as albedo variations,
will exhibit a more random behavior. To aid in the detection of shadows,
we also utilize an appropriate measure of brightness, the bright channel. In
the rest of this section, we explain our approach to shadow detection in more
detail.

3.1.1 Bright Channel Cue

We first extract a measure of brightness from the image, the bright channel
cue (defined similarly to the dark channel prior proposed in [57]):

[bm'ght(i> = Maxcc{r,g,b} (mailfjeg(i)([c(j))) (3-1)

where ¢(j) is the value of color channel ¢ for pixel j and €(7) is a rectangular
patch of size m x m pixels, centered at pixel ¢ (in our experiments, m = 6.

The bright channel cue is based on the following intuition: The image
values in patch (i) are bounded by the incident radiance and modulated
by the albedo at each pixel. However, in natural images, often a patch will
contain some pixels with albedo that has high values in at least one color
channel. By maximizing over color channels over all pixels in the patch, we
reduce the effect of local variations of albedo within the image patch, getting
a measure of brightness which is closer to the incident radiance at pixel ¢+ than
the brightness at that pixel only.

We post-process the bright channel by choosing a white point [, ,ﬁz ght» Such
that at least 8 % of the pixels are fully illuminated, corresponding to bright
channel values of 1.0 (in our experiments, 5 = 20%). Then the adjusted bright
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channel values Iy,;gn are:

r Iri )
Lyvigni(i) = min {%’f(z) 1.0} (3.2)

bright

Furthermore, the max operator in Eq. 3.1 implies a dilation operation,
meaning that the dark regions in the bright channel image appear shrunk by
m/2 pixels (m x m is the size of patches €(i)). We correct this by expanding
the dark regions in the bright channel image by m/2 pixels, using an erosion
morphological operator [45]. An example of the bright channel is shown in
Fig. 3.1.b.

3.1.2 Shadow detection

As mentioned above, we take advantage of the global nature of the effects of
illumination to detect cast shadows. For example, if we examine features like
the brightness ratio or the hue difference across the two sides of shadow edges,
in a scene with a single light source we will notice that the values we observe
are concentrated around a clearly defined center. Intuitively, the shadows are
usually similarly dark and exhibit a similar color change everywhere when they
are caused by the same light source. On the other hand, the same features
across the sides of non-shadow edges are distributed in a much more random
way in most images, because they are caused by albedo variations and other
effects that are local in the image. The distribution of such features exhibits
peaks that correspond to shadow borders in the image. Our goal is to detect
such peaks.

All our computations to obtain confidence values for shadows are based
on comparing image features on the two sides of potential shadow borders.
To improve the robustness of such computations, when examining values on
the two sides of pixel ¢ lying on the border of segment S;, we compare the
average of values on two semi-circular patches P}, and P, centered at pixel
i, and oriented so that P/ is inside segment S; and P/, is outside, as seen
in Fig.3.1.d. We examine only border pixels where the ratio of the average
bright channel value between the two patches P!, and P!, is larger than 6, or
smaller than 1/6., to ignore pixels that do not correspond to image edges (in
our experiments, 6, = 1.2).

We first obtain a segmentation S of the bright channel image jbm-ght [29].
From the set of segments in S, we choose a subset of segments that are ”good
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Figure 3.1: Shadow detection: a. original image (from [200]); b. bright channel; c.
segmentation; d. for each segment border pixel, feature values are compared between
two patches inside (yellow) and outside(blue) the segment; then we form histograms
of the features observed for all segments, and for segments that are good candidates
to correspond to shadows, and compute the difference of the two distributions; e.
the final shadow estimate

candidates” to correspond to shadow regions. We define a "good candidate”
for shadow as a segment where all three RGB color channels reduce in value
across most of its edges, as we move from outside the segment towards the
inside. We compute the confidence geunq(S5;) that a segment S; is a ”good
candidate” to be a shadow as:

Geana(Sj) = 1/1S;1 > qli (3.3)

i€S;

where ¢(i; S;) = 1 if the average of 7, g and b color channels in P}, is darker
than P! ., and 0 otherwise.

Let f be the chosen feature across segment borders (bright channel ratio
or hue difference in our experiments) that depends on illumination. We create

a histogram h$" of the values of feature f at all segment border pixels. We
also create a hlstogram h‘;’cwd of the values of feature f at each border pixel
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t of each segment S;, where each border pixel ¢ contributes to the histogram
proportionally to the confidence geqnq(S;). These two histograms represent the
distribution of the values of feature f over all segment borders and over only
segment borders that may be shadows. Normalizing them and taking their
difference gives us a third histogram h}w 7 which corresponds to peaks in the
distribution of feature f at borders in the set of "good candidates” that are
not prominent in the distribution of f in the set of all segment borders. We
expect that these peaks will correspond to the characteristics of the shadows:
for example, if f is the bright channel ratio, then the peaks in hjlff ! will indicate
how dark the shadows in the image are.

Based on the extracted histograms, we compute a confidence for each seg-
ment to correspond to a shadow. We approximate the distribution of feature f

in h;iff ! by a mixture of normal distributions. Each component k of this mix-

ture model is characterized by mean ,ui, variance 0,{ and mixing factor W,{ . We

estimate these parameters through an Expectation-Maximization algorithm.
To choose the number of distributions in the mixture we minimize a quasi-
Akaike Information Criterion (QAIC). The confidence, based on a feature f,
for segment S; € S is then defined as:

PI(S;) = = max 3 Py (AF(PLPY), (3.4)

|BJ| F i€B;

where B; is the set of all border pixels of segment S, k identifies the mixture
components, and, for patches P} and P on the two sides of border pixel 4,
Py (Af(P},Pi)) is the probability of observing the difference Af(P{, Ps) in
the average value of feature f between the two patches P} and P, according
to mixture component k& (and weighed by the mixture factor ).

If we know that there is only a single light source, as in the case of out-
door scenes, we can improve performance further by fitting a single normal
distribution centered at the highest peak of h‘jff 7

The features used in our work are the bright channel value ratio and hue
difference across patches P} and Pi. We compute the final confidence p(S;)
that segment S; is a shadow as:

P(S;) = Geana(S;) (P (S;) + P"(S5)) /2. (3:5)

The shadow intensity for a segment S; is computed as the median of
the bright channel value ratio of patch pairs inside and outside the segment
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method ‘ classification rate ‘

our method (bright channel ratio) 87.7%
our method (hue) 86.7%
our method (combined) 89.1%
200] 88.7%

Table 3.1: Pixel classification results with our method using different features, and
with [200], on the UCF dataset ([200]).

(Fig.3.1.e).

This process is based on a segmentation of the image. In order to re-
duce our method’s dependency on the quality of segmentations, we compute
confidence values for different initial segmentations of the image. The final
confidence value at pixel ¢ is the mean of confidence values computed from
each segmentation. Shadow detection can then be performed by threshold-
ing the confidence value at each image pixel. In our experiments, we chose
the threshold for shadow detection to maximize the classification rate on 100
training images from the UCF dataset [200].

3.2 Shadow Cue Evaluation

We evaluated our shadow detection approach quantitatively on the UCF dataset
[200], which consists of 356 images and manually annotated ground truth for
the cast shadows, using the same set of 123 test images as [200]. We also
evaluated our approach on the 135 image dataset of [98]. In Fig.3.2 we show
ROC curves with our method on both datasets and compare with [200], [31]
and [98].

In figure 3.3 we show results using our shadow detection approach on the
UCF dataset [200].

Our method performs similarly to [200] and significantly better than [31],
which is affected by the low image quality and unknown camera sensors. One
reason for the difference in performance to [98] is that the annotation of the
ground truth in the dataset of [98] generally includes edges of cast but not
attached shadows, whereas our method does not differentiate between the
two. When the shadow is partially cast and partially attached, the ground
truth in [98] contains only the partial boundary that corresponds to the cast
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Figure 3.2: Comparison of our shadow detection method with different features and
different methods ([200], [98], [31]). ROC curves computed on the dataset of [200]
(top) and that of [98] (bottom).

shadow and thus cannot be matched correctly by our method that produces
always closed shadow borders. In Table 3.1 we show pixel classification rates
on the 123 test images from UCF dataset. To obtain these classification rates,
we chose the decision threshold (see Sec.3.1.2) as the optimal threshold for
a different set of 100 training images from the UCF dataset. The results
show that our method is comparable to much more complex approaches. The
average running time of our method for the test images in the UCF dataset is
2.7 sec which compares very favorably to the other methods.

The results in Fig.3.2 also justify our choice of the bright channel compared
to simple image brightness (from the HSV color model), by examining the
performance of each in shadow detection when used with simple thresholding.

3.3 Conclusions

In this chapter, we presented an approach to detect cast shadows in a single
color image. Our approach does not make strong assumptions about the type
of the scene (such as [98]) and is computationally efficient, taking a few seconds
for each image. It also does not depend on training, such as [200]. The
performance achieved is comparable to the aforementioned methods. In the
next chapters, we will discuss illumination estimation utilizing the shadows
extracted from the input image. The method described here is used in Chapter

40



Figure 3.3: Shadow detection results: a) The original image, b) the confidence
values we compute using our approach, c) the shadow values estimated by our
approach after thresholding the computed confidence values, and d) the ground
truth provided. Images are from the UCF dataset [200]. Notice that in some images,
there are errors that are due to inaccuracies in the marking of ground truth (first
image) or because of different treatment of attached shadows in our algorithm and
in the ground truth (third image).

6 as input to the proposed illumination estimation method.
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Chapter 4

Illumination Estimation
through EM

In this chapter we present a new approach to illumination estimation. The
base of this approach is the modeling of illumination as a mixture of probability
distributions. Compared to previous approaches that use a set of samples of
possible illumination directions ([166]) or a small set of point light sources,
this allows us to better approximate the real illumination by modeling the
approximate size of light sources, corresponding to the ”softness” of shadow
borders. At the same time, it enables us to perform illumination estimation
robustly to large inaccuracies in knowledge of scene geometry, by an algorithm
based on Expectation-Maximization (EM) [26].

We describe illumination as a mixture of von Mises-Fisher distributions.
Our goal is to estimate the parameters of the distributions in this mixture.
Given a single input image and a coarse model of the geometry of the scene,
we first extract a set of illumination invariant features. Then illumination pa-
rameters are estimated using the EM algorithm. In the E-step, we first detect
shadows, given the 2D cues (intensity variations and illumination invariant
features), and input from the interaction of the light sources with the geome-
try. Afterwards, we update the expectations of the hidden variables that relate
shadow pixels to the light sources in our model. Given these expectations, in
the M-step we estimate the mean direction of the light source distributions,
their intensities and shape parameters. Intensity and shape parameter esti-
mation is performed using information directly from the image, in order to
obtain an estimate more robust to the inaccuracies in geometry knowledge
and detected shadows. The algorithm outputs a set of shadow labels and the
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parameters that define the light source distribution.
Summarizing, the contributions of this algorithm are:

- we associate a mixture of von Mises-Fisher distributions with the gener-
ation of cast shadows in an image

- the above leads to a compact representation of the illumination which
allows for robust estimation, relatively insensitive to inaccuracies in 3D
geometry and shadow estimation.

- we integrate low-level cues obtained from illumination invariant features
with 3D reasoning in a graphical model to enable shadow inference for
textured surfaces

We validate our method by applying it to a dataset featuring images of sim-
ple objects in backgrounds that contain significant texture, under known and
controlled illumination, as well as to a more challenging set of photographs of
outdoor scenes involving geometrically complicated objects. We demonstrate
that even when complex objects, such as a tree or a human, are modeled with
simple bounding boxes, in natural scenes involving texture, our method is able
to get a close approximation to the original illumination.

The remainder of this chapter is organized as follows: Sec.4.1 gives nec-
essary background information; Sec.4.2 presents our model and the EM algo-
rithm to perform inference with it; in Sec.4.4.1, shadow detection from illu-
mination invariant features and their integration to our model is discussed;
in Sec.4.5, the estimation of the parameters of the light source distributions
in the mixture model is presented; results demonstrating the performance of
our approach are presented in Sec.4.6, and in Sec.4.7 conclusions and future
extensions are discussed.

4.1 Fundamentals

The inputs to our algorithm are the image I and a coarse 3D model of the
geometry G. We assume light sources are distant. Therefore, illumination
can be approximated as a mixture of light distributions on a unit sphere of
light directions. We model the light source distributions as von Mises-Fisher
distributions. For each pixel i, a set R; of N random 3D unit vectors express-
ing directions in 3D space is used to produce N samples of the illumination
environment.
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4.1.1 The von Mises-Fisher Distribution

A 3-dimensional unit random vector z (i.e., x € Rz and ||z|| = 1) is said to
have a 3-variate von Mises-Fisher (referred to as vMF henceforth) distribution
[4] if its probability density function has the form:

KR T
= — "7 4.1
47rsinhk6 (4.1)

fol@; p, k)
where £ is the mean direction, & is the concentration parameter, ||u| = 1 and
t > 0. The concentration parameter x defines how strongly samples drawn
from the distribution are concentrated around the mean direction p. The
von Mises-Fisher distribution is the equivalent of a Gaussian distribution on
a sphere, and it is used widely in directional statistics.

4.2 Model Description

In this section, we formulate the generation of cast shadows as a mixture of
vMF distributions on the unit sphere, and present the general EM framework
to estimate the parameters of this mixture model.

We assume that light sources are distant. Let ¢ be a pixel of the original im-
age. We sample the incoming radiance at this pixel along N randomly chosen
directions. The image value I(7) at pixel ¢ can be discreetly approximated by
the sum of the contributions of the light sources along each sampling direction
Irg.

A light source contributes to the incoming radiance along direction r; only
if the ray from the 3D position of pixel ¢ along direction rj; does not intersect
the geometry of the scene G. We repeat from Eq.2.3 the definition of the
visibility term V,,(ry) for a ray along direction ry, originating at the 3D point
p that projects to pixel #:

0, if ray from ¢ along r; intersects G
Vp(ry) ={ ' & (4.2)

1, otherwise

Assuming Lambertian reflectance, the image intensity (i) at pixel i could
ideally be synthesized from the sum /(i) of the contributions of the light source
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distributions:

Z( (ry) max {n, - rk,O}Zl rk> (4.3)

where M is the number of distributions used to approximate the illumination,
n,; is the normal corresponding to pixel ¢ and /;(rk) is the contribution of light
distribution j along direction rx. We model each light distribution j as a von
Mises-Fisher distribution, with mean direction p;, concentration parameter x;
and intensity (mixing factor) «;, and therefore:

Li(rr) = ajfo(re; py, K;). (4.4)

We assume that Zj\il a; = 1. Therefore, we can describe the illumination en-
vironment using the set of parameters 6 = {1, K1, a1, ..., fiar, Kar, Qo }, which
we need to estimate.

4.3 The EM Algorithm

The problem of estimating the illumination from cast shadows, given the above
model, can be regarded as the problem of estimating the mixture of vMF dis-
tributions defined in Eq.4.3. For this estimation problem we use the EM
algorithm, which has been used widely to estimate the parameters of mix-
ture models due to its simplicity and numerical stability. Our formulation
closely resembles the soft-assignment scheme described by Banerjee et al. [4]
to estimate the parameters of a mixture of vMF distributions.

Let X = {xy,...,zp} be the set of pixels in the image and L = {L1, ..., Ly}
the set of light source distributions. For each pixel, a set R = {ry,...,ry} of N
sampling directions is used. The sampling directions r; are chosen randomly.
Our algorithm initializes the cluster means p; randomly for each light source
distribution £, the concetration parameters to x; = 1 and the intensities to
aj = I_i\ Then the following steps are repeated:

E-step

At each iteration, in the E-step we detect shadow pixels, calculating the prob-
ability P(s;|I,6) that pixel z; is in shadow, given the current estimate of the
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parameters 0, and then we estimate the new values of the parameters for only
one distribution 7 in each iteration.

The probability that pixel ¢ is in shadow cast due to light distribution j,
given our current estimate of the parameters 6, expresses the probability that
pixel ¢ has been labeled as shadow, and that the expected shadow intensity by
all distributions other than j does not explain pixel #:

qj(xi;fgﬂ)<—P(8i|fg,9)max{ls(xi)— > f’f@i;e),o}, (4.5)

k=1,k#j

where Ig(z;) is the shadow intensity value, as estimated in Sec.4.5 (for the first
EM iteration, when there is no such estimate, Is(x;) = 1 if pixel i is labeled
as shadow, and 0 otherwise). I* are the image intensities as synthesized by
rendering the scene using the k-th light source distribution.

To synthesize I*, we sample light source distribution k& using the accept-
reject algorithm to generate a set of incoming light directions Ry = {r%, ..., r’(f?}
for each pixel 7, where () the number of samples. Then, the synthesized image
intensity for pixel ¢ is given by:

= Z V(rk) max {rk ‘n;, 0} , (4.6)

reRk

which is another way to look at the generation of shadows in Eq.4.3.
We update the expectation for each hidden variable h;, associated to
sample direction ry for pixel ¢, using the following rule:

1 _Vp<rk> x fv(rk;/ﬁjﬂij)
Zm;ﬁk <1 B Vp(rm)) Zyj\f:l fv(rk; 2 K?n) .

pi(hig 1,0) < q;(xi; 1,0) (4.7)

M-step

In the M-step, we update the parameters 6 for each k=1...M. The mean direc-
tions f; are estimated by:

Nj:12<|R|ij hzk’le > (48)

kER
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The concentration parameters x; and the intensities ay; are estimated directly
from the image, as described in Sec.4.5.

4.4 Shadow Detection in the E-step

In the E-step of the EM algorithm described above, we used the probability
that a pixel ¢ corresponds to a cast shadow. We formulate the estimation
of these probabilities as a labeling problem, where shadows are identified by
assigning a set of binary labels S = {s;|i € P} to image pixels P:

~ | +1, if pixel ¢ is in shadow

s(i) = { —1, otherwise (4.9)

As mentioned, we use a number of 2D cues coming from illumination invariant
representations of the image (fig.4.1), combined with information from 3D
reasoning to estimate the shadow labels. The probability of the shadow labels
S is modeled as:

P(su,e)ocH P(sil0) T] P(siisll) |, (4.10)

JEN(3)

where N (i) are the pixels neighboring to i. The term P(s;|0) models the prob-
ability that pixel 7 is in shadow given the current estimate of the illumination,
and enforces geometrically meaningful shadows. It is approximated using the
expected shadow values Z;\il I, spatially smoothed. The term P(s;, s,|1)
represents the joint probability of labels s; and s; for neighboring pixels ¢ and
7, given some image features for these pixels. This term encodes our estimate
that the corresponding image gradient should be attributed either to shadow
or to texture. The computation of shadow borders is discussed in section 4.4.1.

The distribution of shadow labels can be represented by a factor graph
which corresponds to a 2D lattice. Inference to find the labels s; at each step
is performed using loopy belief propagation.

4.4.1 Identifying Shadow Borders

In order to identify shadow borders, as required for our shadow detection ap-
proach, we utilize illumination-invariant representations of the original image.
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Figure 4.1: Hlumination invariant images: a) original image, b) normalized rgb, c)
c1cacs, d) the 1d illumination invariant image obtained using the approach in [33].
Notice that in all three illumination invariant images, the shadow is much less visible
than in the original.

[lumination-invariant representations were discussed earlier in Section 2.2.1.
The ones we choose to use here are the Normalized RGB and ¢;cyc3 represen-
tations and the illumination invariant described in [33].

A border which appears in the original image but not in the illumination
invariant images is a border which can be attributed to illumination effects.
Therefore, to identify potential shadow borders, edges are detected in the orig-
inal image and each edge is checked against the illumination invariant images.
Calculating edges as simple finite difference approximations to gradients leads
to a lot of noise, detecting edges that are not important. To solve this, we
apply a smoothing filter to the original image, and then use the Canny edge
detector to perform edge detection.

We do not calculate similar edge maps from the illumination invariant
images. Instead, for each pixel that lies on an edge in the original image,
we compare the difference of the average values of the illumination invariants
along the direction of the gradient in the original image. Thus the shadow
border map is defined as:

: (k)

0, otherwise

where AT f,’j,}m is the result of a step filter oriented along the image gradient and

applied to illumination invariant image k, k = 1,2, 3. The parameters 7, ..., 73
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Figure 4.2: Shadow borders: a) original image, b) estimate using only 2D cues, c)
refined estimate after first iteration

are learned directly from data, as the values that best separate shadow borders
from edges not related to shadows in the training set. We prefer this method
over directly comparing with edges in the illumination invariant image (as in
[33] for example) in order to deal with very soft shadows and edge localization
differences in the original and the invariant image.

Because the illumination invariant features often either contain some illu-
mination information, or omit some information that is not related to illumi-
nation, the shadow borders detected using the above method generally include
borders that are not related to shadows (figure 4.2.b). To alleviate this prob-
lem, we take advantage of the current estimate of the illumination to remove
unreasonable shadow borders, by defining the final shadow edges as:

Es(xvy) = es(xvy)HVISH (412)

where Ig is the shadow map expected from our current estimate of the illu-
mination parameters, # and the rough geometry GG, smoothed with a gaussian
filter. The refined shadow borders after the first iteration are shown in figure
4.2.c.

4.4.2 Integrating Shadow Borders to our Model

Shadow borders are integrated in our model by the term P(s;, s,|I) in Eq.4.10,
which defines the probability of the pair of labels for pixels ¢ and j given the
corresponding image features. If pixels ¢ and j do not belong to an image
border, then this term enforces uniformity of labels, so it becomes:

1—01, ifSZ‘ZSj

Puniform (s, 5511) = { 01, otherwise (4.13)
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If one of ¢+ and 7 belongs to a shadow edge, this term enforces a transition in
the labels from ¢ to j. The probability of the pair of labels of 7 and j becomes:

1 =6y, s;=+1 ||L]| <L
Pborder<5i7sj’[) = 1- 827 §j = +]‘7 ||]J|| < ||IZ|| (414)
05, otherwise

In the above equations, s; = +1 if pixel 7 is in shadow and the constants 6; and
6, are learned from the training data. We do not assume that P(s;, s;|/) has a
distribution dependent on the difference of the intensities of ¢ and j in order to
make possible the detection of dim shadows. Often the intensity changes over
falsely detected shadow edges are much larger than the ones over real shadow
borders.

4.5 Estimating » and Intensity

Estimating the concentration parameter x for a mixture of vMF distributions
requires significant approximations [4]. In our model, it becomes even more
difficult because the values of the samples are not individually observed; in-
stead, only their per-pixel sums are known. It is easy to observe, though, that
there is a clear connection between the shadow edge gradients, as they appear
in the image, and the concentration parameter of the light source distributions.
We exploit this connection to derive an estimator for .

4.5.1 &~ Estimation

Let I¥ be the image of the shadow intensities attributed to light source dis-
tribution k. Let i and j be two neighboring image pixels and ATl%(i,j) =
IE(i) — IE(j) the finite approximation to the shadow intensity gradient be-
tween pixels ¢ and j because of light source k. Using a linear approximation
for e, we derive from Eq.4.3 the following relation connecting AI%(i, j) and
the parameter xy:

o > |AI§(27J)| - (Zre]ﬁ Vp(r) - ZI‘ERQ Vp(r))
C S er, Vo(r)ymax {r - i, 0} — -, 5 Vp(r) max {r - ;, 0}

(4.15)
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where R; and R, are the sampling directions for illumination at pixels ¢ and
7 respectively.

We evaluate Eq.4.15 only for the neighboring pixel pairs ¢ and j for which
the absolute value of the denominator:

Z Vp(r) max {r - p;,0} — Z Vo(r) max {r - p;,0}| > e, (4.16)

reR; reRs

for some very small e. Given the above, this means that we select only the
pixel pairs were shadow variations are expected given the light direction uy
and geometry G. These are the areas that are actually informative about the
value of k.

To estimate the true shadow image gradient AI¥ due to light source dis-
tribution k, for a shadow edge pixel i, we project the observed gradient VI(7)
along the direction of the synthesized shadow gradient VI*. As mentioned
earlier, I* is the shadow synthesized from the geometry and light source dis-
tribution k. A
V(i) - VI*(i)

AIE(®D) . :
° || VI*()|

(4.17)

where a4, is the current estimate of the intensity of light source k. I* has been
smoothed using a gaussian kernel.

To estimate k, we compute the estimate from Eq.4.15 for all pixels located
around the identified shadow borders. The estimate of s, is selected to be the
maximum of all per-pixel estimates from Eq.4.15. In practice, we discard the
top 1% of values as outliers and select the maximum of the remaining values
as the value of k.

4.5.2 Light Intensity Estimation

Intensity estimation for light source k is also based on shadow borders. For
each pixel ¢ with coordinates (x,y) that lies on an identified shadow edge,
vi *(z,y) defines a direction perpendicular to the synthesized shadow edge.
We select two samples py = [z, y|"+t,VI*(z,y) and py = [z, y]T —t.VI*(z, ).
Starting with ¢; = t5 = 0, we individually increment ¢; and ¢y until we find
a minimum of VI*(p;) and VI*(p,) respectively. Then we assume that p;
lies inside the shadow umbra and p, is outside the shadow. The intensity
difference AI(i) = I(p2) — I(p1) is an estimate of the shadow intensity. The
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Figure 4.3: Convergence: the plot shows the mean difference (in degrees) between
the estimated light source directions for each iteration and the final parameter values
from our algorithm

light source intensity «y is set to the mean value of AI(i) over all shadow edge
pixels. Intensities are normalized so that >, oy, = 1.

4.6 Results

For all of our experiments, 200 random samples of the illumination sphere
per pixel were used. A maximum of 40 EM iterations and 1500 iterations
for the belief propagation in the factor graph were performed. The average
running time of the algorithm was 3-5 minutes per image (For performance
reasons, several EM iterations were performed before successive applications
of belief propagation in the E-step). On average, our algorithm needed 15 to
20 EM iterations per light source distribution to converge (see Fig.4.3). The
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a: original image

: estimated lights

Figure 4.4: Comparison of real and synthesized shadows: a,b) photographs under
same illumination, c) estimated illumination from (a), d) a picture of the background
with the object removed, e) a 3D model of the original object rendered with the
estimated illumination, and superimposed on the background image of (d). The
shadows in this image are rendered with the estimated illumination and cast on the
background image.

3D models we used to approximate the geometry consisted of 8 to 15 polygons
each for all results presented here.

A dataset of 58 pictures captured in a controlled environment, using various
background textures, was used to evaluate the algorithm. The geometry of the
objects and the illumination environment were both known in these cases. 5
of the images were used to learn the parameters for shadow border detection
and the rest were used for testing. Results in some representative examples of
images are displayed in Fig.4.5 and 4.6. In Fig.4.4 we show the augmentation
of a real scene with a synthetic object, compared to the image of the actual
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Figure 4.5: Results for shadows cast on different textures with our method: the
original images are in the first row, the shadows as rendered from the coarse 3D
model (used for the estimation) and the estimated illumination, using the same
viewpoint as the original image, are in the second row, and the third row shows the
illumination sphere as viewed from the top of the scene. Images a, ¢ and d have been
captured using the same lights setup. The mean difference of light source directions
from these 3 images and 2 more with the same original illumination and different
background (not shown here) was 4.92 degrees. Images e and f were captured using
3 light sources.

Figure 4.6: Results with our dataset: For each of 4 input images, clockwise, the
original image, the labeling before the first iteration (using only 2D cues), the final
labeling, and the coarse 3D model rendered with the estimated illumination are
displayed. Notice that even in a difficult case, such as image d, where the initial
shadow labeling is very poor, our algorithm is able to discover the shadows and
estimate the illumination.
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object in the scene.

The algorithm was also tested against 3 images of natural scenes. The
parameters used were the same ones used with our collected dataset. These
images were taken outdoors, so they involved only one major light source,
the sun. However, they also involved texture, complex backgrounds and very
complicated geometry, which we approximated with simple box-like models.
The results are shown in Fig.4.7.

The mean direction of the light source distributions is estimated accurately
from shadows cast on surfaces with a variety of textures. The mean error for
directions estimated under the same illumination, for the same object but
with 5 different textured backgrounds (three examples are in Fig.4.6 a, ¢ and
d) was 4.92 degrees. The estimation of the concentration parameter « is often
inaccurate, especially in the presence of texture. A better separation of texture
and shadow is required for better estimation of .

The number of distributions used in the mixture model does not affect
the results substantially. If the number of distributions used is larger than
necessary, the distribution means tend to cluster together in clusters that
correspond to the actual lights. When the number of distributions is less than
that of the major light sources, our model tends to select some of the shadows,
leaving others unexplained.

4.7 Conclusions

In this chapter we described a new method to identify cast shadows and model
their generation using a mixture of vMF distributions. Our model requires a
single input image and a coarse 3D model to describe the scene geometry,
and is robust to poor geometry information and poor initial shadow labeling.
Furthermore, the illumination estimation results are stable regardless of the
texture of the surfaces on which shadows are cast. The ability to model scene
geometry with 3D models as coarse as simple bounding boxes would make it
possible to use our algorithm in combination with e.g. object detectors in-
stead of full geometry, combined with a camera position estimate. Our results
show that our method can be useful not only in estimating illumination for
augmenting a real scene with synthetic objects, but also for tasks such as seg-
mentation and more general reasoning about the 3D scene represented by an
image. Interesting extensions to this work would include extending the EM
method to handle complex natural illumination (which would mainly require
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Figure 4.7: Results with photographs from Flickr. Top: original image, Bottom:
the rough 3D model used for illumination estimation, rendered with the estimated
illumination under the same viewpoint. Notice that despite the inaccuracies of the
3D models (mainly boxes), the shadows match well.

changes in the M-step estimators), applying the EM method with the bright
channel shadow cue to improve results, and examining a tighter integration of
shadow estimation and the feedback from 3D reasoning based on illumination.
Such a tighter integration, under a different model for illumination, is pre-
sented in the Chapter 6, in a model that has the ability to easily incorporate
different facets of the illumination estimation problem.
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Chapter 5

Illumination from Shadow Edges

5.1 Introduction

In this chapter we discuss illumination estimation in general scenes and as-
sociate it with the existence of shadow edges. Most general illumination es-
timation methods from shadows (or shading) associate a parametrization of
illumination with the per pixel intensity of shadows or shading [166]. As a re-
sult, estimating illumination from shadows in a general scene generally needs
a way to separate shadows from scene albedo and other effects as initial input.
Two significant types of errors can be introduced this way: errors in the initial
shadow estimate propagate throughout the illumination estimation process,
altering the final results, even in the case where the shadow estimate is refined
during illumination estimation [129]; on the other hand, the knowledge of scene
structure may not be adequate to explain a lot of correctly detected shadows in
complex scenes, leading to erroneous illumination solutions that try to explain
every observed shadow with inadequate geometry data. In this chapter we
propose a way to couple shadow and illumination estimation, trying to detect
only the shadow edges that are relevant to the provided geometry, as part of
the illumination estimation process. This leads to an illumination estimation
algorithm that performs on par with or better than the state of the art, even
when scene geometry knowledge is limited, while being less dependent on ob-
taining an initial shadow estimate (we can even avoid obtaining an estimate
of shadow edges altogether, as we show in the results in this chapter), and
having lower computational complexity than state-of-the-art methods. In this
approach, illumination estimation is posed as the minimization of an energy
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function, and coupled with the detection of salient shadow edges.

We define this energy function to correspond to the quality of the match-
ing between the observed shadow edges in the image and the shadow edges
expected by the illumination solution. We extract the set of observed shadow
edges by comparing gradients in the original image and two illumination in-
variant representations of it; in the limit, our approach can work without
performing any shadow edge detection at all, assuming that all image edges
are potential shadow edges (as we demonstrate in figure 5.7). The potential
shadow edges are encoded in a shadow edge confidence map, and a simple
approach is described to minimize the solution energy given this map, obtain-
ing the illumination parameters that correspond to a good matching of the
expected shadow edges with observed image edges.

The contributions of this work are the following:

e We explicitly associate illumination with shadow edges instead of per-
pixel shadow intensities. This allows our approach to ignore errors in
shadow detection, and concentrate only on potential shadow silhouettes
that are meaningful given the scene geometry.

e This fact further allows our approach to estimate illumination using 3D
geometry that only partially models a complex scene; for example, ap-
proximate knowledge of a single shadow-casting object and the rough
shape of the surface its shadow is cast on can be adequate to estimate
illumination in a larger, complex scene.

e Our approach is robust to inaccurate knowledge of 3D geometry, allowing
us to model objects in real images using very coarse geometry, such as 3D
bounding boxes. Our quantitative results demonstrate the robustness of
our method with regard to geometry inaccuracies.

We present both quantitative and qualitative results. Quantitative results
show the accuracy of our approach when estimating illumination in a syn-
thetic dataset. Qualitative results show how our method performs in a set of
real images collected from Flickr, and are compared to the results obtained by
[129] (which we describe in the next chapter). At the same time, the computa-
tional cost of our approach is significantly lower than comparable approaches,
corresponding to a much simpler implementation.

This chapter is organized as follows: in section 5.2 we formulate illumi-
nation estimation as the minimization of an energy function that measures
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noise real shadow

Figure 5.1: Motivation for using shadow edges instead of pixel intensities: We ex-
amine the example input image in (a) which includes a well-defined shadow and
some noise. We examine the error of two possible light configurations that produce
the images in (b) and (c). If the current estimate of ambient illumination is high,
leading to dim gray shadows, then computing the per-pixel error between the ex-
pected shadow and the observation would produce a lower error for (b) than for
(c). This is because most pixels in (b) has similar values as the corresponding pixels
in the observed image, with a few white pixels in between. On the other hand,
most shadow pixels have significantly different values than those produced by the
configuration of (c). However, the shadow outline produced by the configuration of
(b) is different than the observed image edges, while (c) matches the image edges
well. Therefore, penalizing differences in the predicted and observed orientation of
edges will favor the correct configuration (¢). The shadow edges effectively lead to
an energy with less local minima than a similar formulation using pixel intensities.

the quality of the match between the expected shadow gradient and an edge
map extracted from the image. Section 5.3 describes how we obtain this edge
map, while in section 5.4 we describe energy minimization and we extend our
solution to the case of multiple light sources. Results are presented in section
5.5, while section 5.6 concludes the chapter.

5.2 Formulation

We will first examine the case where the scene is illuminated by a single distant
light source, with direction dy and intensity ag. Let € = {e;} be a set of edges
detected from the original image, and Q(e;) € [0, 1] be a confidence value that
edge e; is generated by a cast shadow (larger values indicate higher confidence).
A geometric model G is also known. Geometry G may model only a small part
of the scene and may be approximate - e.g. in many of our experiments we
approximate objects by 3D bounding boxes.

Our goal is to find the light parameters 0, = (dg,ap) that produce a
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shadow with shadow borders £(6.|G) that:

e best coincide with image edges that have high confidence values Q(e;)
to belong to shadows, and

e have a similar orientation with the corresponding observed image edges.

We express this requirement by defining an energy for each set of light param-
eters:

1 _—
Ematch(9£> =T~ 7 g (1 - Q(Z)) + E Vfi,eiz s (51)
‘5 (0c19) ‘ i€€(02|G) i€€(0.19)

where V/Ii,\ei is the angle between the observed image gradient VI; at pixel ¢
and the direction of the synthetic shadow edge at 7, e;.

Notice that in this formulation, we have already removed several important
requirements of traditional illumination estimation methods:

1. We do not need to know or estimate the intensity of ambient illumination

2. We are not defining the energy over all possible shadow edges in the
scene, but only for that set of edges that is generated by the geometry
G and the set of light parameters 6.

3. We do not need to estimate the intensity of light sources while estimating
light source directions, because the set of edges £(6.|G) depends only on
the light source direction. The light source intensity can be included in
the energy minimization (see Eq.5.2) or, as we preferred here, it can be
estimated after the light source directions have been estimated.

Therefore, the matching cost E,acn(0z) only depends on the light direc-
tions and the confidences assigned to observed shadow edges.

If we wish to estimate light source intensity oy concurrently with light
source direction, we can minimize the sum of E,, ., (6) and a term E,(0,):

= - 2
o Iout - Iint
Ea(95> - Z <C¥0 - max{ni ] dO, 0}) ) (52)

ACH9)

where I,, and I,,; are the mean pixel intensities of two image patches placed
on the two sides of pixel i, in the inside and outside of the expected shadow
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respectively, n; is the normal vector at pixel ¢, as given by the provided 3D
geometry (if any for that pixel), and dy is the light source direction. Eq.5.2
assumes Lambertian reflectance - our estimates, however, do not deteriorate
significantly when this assumption is violated, and no such assumption is nec-
essary to estimate only the light source directions.

We therefore manage to associate the light source directions with only
the subset of observed edges in the image that matches the shadow borders
£(0,|G) produced by the current illumination estimate. One obvious issue
that arises, though, is that in some cases there are trivial solutions that do not
produce any cast shadows and such solutions will be preferred because they
lead to minima of E,q.n(0z). To avoid this, we encourage solutions that have
a larger number of well-explained shadow edge pixels, by defining the final
energy to be minimized as:

1

Ee =
(0r) T

(Ematen(02) + wa Eo(0r)) (5.3)

where w,, is a weight and the term w, F, () can be omitted if there is no need
to estimate light directions and intensities concurrently. The set ég is the set
of all the expected shadow edge pixels in & (0£|G) that coincide with observed
edges of high confidence:

& = {ei € £(0£9) | Qles) > eQ}, (5.4)

where 0¢ is a confidence threshold. We set 0 = 0.5 in our experiments.

5.3 Extracting the edge map

The main term of the energy we want to minimize is E,,q1ch(6z), which is
mainly a sum of confidence values along the expected shadow borders, the
form of the confidence map is important for finding the light parameters that
minimize E(6).

Let Q@ = {Q(i)} be the confidence map. For each image pixel i, the confi-
dence (i) expresses the probability that i belongs to a shadow edge, if there
is an edge at i, or the probability that a shadow edge lies in the vicinity of i.
Map © must contain confidence values that smoothly increase as we approach
observed edges in the image, in order to allow effective minimization of E(f.).
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Figure 5.2: Extracting the edge map: a.The original image; b. The edge confidence
map Q (right) extracted from the original image. Brighter pixels indicate higher
confidence; c. The gradient directions after smoothing (used to penalize the expected
shadow gradient). The x and y components of the gradient are encoded in the red
and green channels.

Therefore, to compute Q, we first detect edges in the image and compute
the probability that they correspond to a shadow. Then we perform a series of
smoothing operations to propagate the appropriate confidence values to pixels
in Q that do not lie on image edges. The form of the final confidence map can
be seen in Figure 5.2.

We first apply the Sobel edge detector to the original image I, obtaining
a set of gradients, VI. We also calculate a set of illumination invariant repre-
sentations of the original image /. We refer to the k-th illumination invariant
representation of I as I®). An illumination-invariant representation of the orig-
inal image I will, ideally, not contain any effects of illumination, such as cast
shadows and shading [40, 179, 27, 33]. Having such a representation, we can
compare the gradients in the original image with gradients in the illumination-
invariant representation to attribute the gradient to either shadows/shading
or texture. The illumination invariants we chose to use for our experiments are
the normalized RGB and ¢ cyc3 representations [41]. We apply the Sobel edge
detector to each illumination-invariant image representation I*) to obtain the
corresponding gradients VI®*).

To compute a confidence that each pixel ¢ belongs to a shadow border, we
compare the gradients from the original image and each illumination invariant.
We define the confidence value for pixel ¢ as:

Qi) = max {maX{HVI(i)H —wh HV[(’“) (z)|

J0}}. (5.5)

Because in practice some gradients related to illumination appear in the illu-
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mination invariant representations, we take the maximum of the differences
between gradients in the original image and illumination invariants. The
weights w# were learned from a training set of images, which was a subset
of the dataset of images with hand-annotated cast shadows provided by [200].

After obtaining this initial set of confidences, we apply a smoothing oper-
ation for a fixed number of iterations to propagate the confidences to pixels
that do not belong to detected image edges. In this smoothing operation, the
new confidence value Q(i) of pixel i with previous confidence Q(i) is set to be:

QM) A, I VTG <0,
Q) = { max{Q(i), Q(i)}, otherwise ’ (56)

where Q(7) is the average of confidence values in a 3x3 neighborhood centered
at pixel 7. The value of \ was set to 0.5 and 6, is a small threshold, so that
edges with gradient magnitudes less than 6, are not significant.

Similarly, we create a smoothed version of the edge gradients by setting the
new gradient direction of each pixel to be the average of itself and its neighbors,
weighted by their relative confidence values. The resulting confidence map and
gradient directions can be seen in Fig.5.2.

5.4 Energy minimization

To find the optimal light parameters, we need to minimize the energy E(6.)
in Eq.5.3. This energy contains multiple local minima, while we also cannot
get a good approximation to its gradient. The evaluation of the energy for
different parameters, however, is relatively fast. We therefore use a move-
making approach, where we start from a random initial set of parameters, and
perform a number of iterations, examining at each iteration a random step
from the current parameter values:

For the first K iterations, the generation of proposed parameters O, is
done randomly, to randomly sample the whole parameter space. After the
first K iterations, O is generated by choosing the proposed light direction by
sampling a von Mises-Fisher distribution centered at the previous estimate of
light direction (if we want to estimate intensities at the same time, we also
choose a proposed intensity as a sample from a normal distribution around
the previous intensity estimate).

If the light intensity is not estimated as part of the energy minimization,
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Algorithm 1 Minimization of E(6.)

Light parameters: 6, < random parameters
Energy minimum: E,,;, = E(0.)
loop
generate proposed parameters 0, given 0
if E(6z) < E(0z) then
9£ < (9[;

we estimate it afterwards, using the estimate d, of light direction we obtained.
The intensity estimate &g is the median of local intensity estimates along the
expected shadow edges:

~ . Tout - T@'nt
o = median; g, g {max{n 0.0} } . (5.7)

This very simple approach to minimize the energy F(f.) proved effective
because it samples the whole parameter space, avoiding many of the local
minima, and then concentrates its effort to the area around the best solution
so far. However, it would be very desirable in the future to examine other
approaches that can give some guarantees about optimality, while also reducing
the number of times the energy E(6,) has to be evaluated during minimization.

5.4.1 Dealing with multiple light sources

In our discussion so far we have examined only the case of a single light source.
When multiple light sources are present, there will be multiple shadow outlines
that can be explained by the provided geometry §. We can deal with this
case by discovering light sources one-by-one: We estimate the direction and
intensity of each light source j, and then remove the corresponding edges from
the edge confidence map Q (removing the corresponding edge pixels and then
re-applying the smoothing operation). We then repeat, estimating the next
light source from the new, reduced edge confidence map. The process stops
when the last discovered light source has very low average confidence values
along its projected shadow border, or has near-zero intensity. This procedure
can allow not only the estimation of the parameters of multiple light sources,
but also to determine the number of light sources illuminating the scene.
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5.5 Results

our method our method
method NNLS [166] all samples 20% of edges
exact geometry 3.84 1.82 2.06
exact 22.05 1.67 2.03
geom.—+noise
approximate 13.95 4.00 5.86
geom.
approximate 33.69 4.76 6.28
geom.-+noise

Table 5.1: Average error in light direction estimation for a set of synthetic images.
The images were rendered using 1 known point light source, and the displayed error
is the angle between the real and estimated light directions, in degrees. We com-
pare with the non-negative least squares optimization (NNLS) approach proposed in
[166]. Examples of the images and geometry used are shown in Fig.5.3. The second
row shows results with our approach when all expected shadow border pixels are
used to evaluate the energy, and the third row shows results with our approach when
only 20% of expected shadow border pixels is used, achieving a 5-fold speedup with
small deterioration of the results. Our approach significantly outperforms [166] and
it is influenced much less than [166] by noisy shadow input and coarse knowledge of
geometry.

We evaluated our approach quantitatively using a synthetic dataset of 3D
models rendered with a known distant point light source, as well as qualita-
tively with images collected from Flickr [129]. A total of 1000 iterations was
performed for each image.

In the results we present here, we compare with the approach of [166],
which is a well-established approach for illumination estimation based on non-
negative least squares optimization (explained in Chapter 2), and with the
MRF approach of [129], which is an earlier version of the work of ours presented
in the next chapter. The MRF approach of the next chapter [129] is a hybrid
approach, in the sense that it combines both information from pixel intensities
and from shadow edges. It includes a term that incorporates the idea we
presented in this chapter, which in the MRF formulation of the next chapter
is referred to as the shadow shape-matching prior. Please notice that only in
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figure 5.6 we compare the approach of this chapter to the MRF approach of
the next chapter [129] without the shadow shape-matching prior, to clearly
demonstrate the benefit of taking advantage of shadow edge information.

Results on the synthetic dataset are shown in Table 5.1. Examples of the
synthetic images and models used are shown in Fig.5.3. The direction and
intensity of the light source was chosen randomly. We examined four different
cases:

Exact geometry: We used the same 3D model to render the image and
to estimate illumination.

Approximate geometry: We used a 3D model that coarsely approxi-
mated the original geometry by a bounding box and a ground plane to estimate
illumination.

Exact geometry and noisy shadow input: We used the same 3D model
to render the image and to estimate illumination, as above, and a noisy initial
shadow estimate. The latter was obtained by adding random dark patches to
the rendered shadow (Fig.5.3). We used this form of noise because, on one
hand our methods are relatively insensitive to spatially-uniform random noise,
and on the other, in real data the errors generally affect large image regions
which get mislabeled, which is emulated by this patch-based noise.

Approximate geometry and noisy shadow input: We estimated il-
lumination parameters using a coarse 3D model and a noisy initial shadow
estimate, as described above.

Table 5.1 shows the average error in light direction estimation, in degrees.
It is easy to notice that our approach is almost unaffected by errors in the initial
shadow estimate, which have been simulated by the noisy shadow input. The
non-negative least squares optimization approach of [166] on the other hand
exhibits a significant drop in accuracy when noise is present in the shadow
estimate, as well as in the case the knowledge of scene geometry is approximate.
Figure 5.4 shows the convergence of our approach in the case of synthetic data.

Figure 5.5 shows results with our approach on a set of images of cars from
Flickr. The geometry in these images consists of a ground plane and a 3D
bounding box representing the car. We compare our results with the results
obtained in [129], which is an earlier version of the work we present in Chapter
6. The estimated illumination is shown by rendering a synthetic orange sun
dial, illuminated by the illumination estimate obtained with our method, into
the original image. Although accurate comparisons are difficult since there is
no ground truth for illumination in these images, a visual inspection shows
that our results are equally convincing than those obtained by the MRF ap-
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Figure 5.3: Examples of synthetic images used for quantitative evaluation. Image
size was 100x100 pixels. From left to right: a) the full-resolution 3D model, rendered
with 1 point light source; b) the full-resolution 3D model, after the addition of noise,
as described in the text (noise is random and may coincide with the shadow); c)
the approximate 3D model corresponding to the full-resolution model on the left,
rendered under the same illumination (for demonstration; this model is used for the
illumination estimation only, in the experiments with approximate geometry).

energy

light direction error
——

iteration iteration

Figure 5.4: Convergence of our algorithm. Left: the error in the estimated light
direction, averaged over a set of synthetic examples, per iteration; right: the average
energy per iteration.

proach of [129]. On the other hand, the approach of [129] is significantly more
computationally demanding (Table 5.2).

Figure 5.7 demonstrates the flexibility of our method with regard to shadow
detection. In this case, we compare the illumination estimate obtained when
using all image edges (obtained with a Sobel detector) compared to using only
potential shadow edges (by utilizing illumination invariants as described ear-
lier). Our approach can select those image edges that correspond to plausible
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Figure 5.5: Results with images of cars from Flickr. The results of illumination
estimation are presented by rendering a synthetic orange sundial to the original
image, using the estimated illumination. Top: the results with our method; bottom:
results with the much more computationally intensive method proposed in [129].
Our results are equivalent or better than the results from [129], although our method
uses only simple shadow edge detection and a much more efficient optimization to
estimate illumination parameters.

cast shadows, and obtain a good illumination estimate, even when no initial
shadow edge detection is performed.

Examples of the 3D geometry used for illumination estimation in the case
of Flickr images is shown in figure 5.8.

Excluding the cost of raytracing shadows, the computational cost of our
method is linear to the number of edge samples; the number of edge samples
used can be reduced without significant impact to the final results, in order
to improve performance. In our unoptimized implementation, on a system
with an Intel i5 CPU, each iteration took 4-10msec depending on image size,
or 1-3msec when using one of every 5 shadow edge samples (in the case of
synthetic results in Table 5.2). Paired with a GPU raytracer, the total time for
our algorithm can be limited to 5-60 seconds per image, which is a significant
advantage compared to computationally intensive methods such as the more
complete illumination estimation method we present in Chapter 6. As our
results show, this improvement usually comes at little cost to the accuracy of
the estimated results.

One significant advantage of the approach proposed here is that potential
shadow edges which are far from the shadow edges generated by the known
geometry are not penalized at all. Therefore, our method will ignore real shad-
ows that cannot be explained by the geometry, if the geometry models only
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Figure 5.6: Advantages of our approach: in this figure we compare the behavior
of our method with [129] when the geometry is only partially modeled. a) original
image from Flickr [128], depicting 2 persons; b) the illumination estimation result
when both people are modeled, with our method (illustrated by rendering an orange
sundial into the original image with the estimated illumination).; ¢) illumination
estimate with [129] (without the shadow shape-matching prior) when only one of
the two people is modeled. The algorithm tries to explain both shadows with one
object, resulting in a light source placed under the scene; d) our approach using
the same 3D model as in (¢), when only one of the two people is modeled - the
illumination estimate is convincing and almost the same as in (b) where full geometry
was given. In (e), (f) and (g) we show the 3D model used to estimate illumination in
(b),(c) and (d) respectively, rendered with the estimated illumination. Notice that
(f) and (g) show the same 3D model, but because the estimated light is under the
scene in (f), we marked the model with a red outline to make it visible.

small part of the actual scene. At the same time, wrongly detected shadow
edges need not be accounted for, and have no effect on the energy of the final
solution. This advantage of our approach is demonstrated in figure 5.6. In
this example only one of two nearby objects is modeled. For comparison, we
present the result using the MRF approach of [129] (see next chapter) with-
out the shadow shape prior term,as mentioned earlier. The partial modeling
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method running time (sec)
[129] (MRF) 244
our method, all samples 4.4
our method, 20% of samples 1.2

Table 5.2: Running times for our algorithm compared to the state-of-the-art ap-
proach of [129], for a 500x300 pixel image. The times ezxclude the time spent ray-
tracing (which is the same for both approaches and can be reduced to less than 1
sec using hardware acceleration).

of the scene causes the modified MRF approach of [129] (and probably most
approaches that are based on an error computed over all shadow pixels) to
try to explain all shadows using the provided geometry, resulting in erroneous
illumination estimation. Our approach, on the other hand, correctly estimates
illumination by associating it only with a subset of the observed shadow edges.
One drawback is that this kind of approach could potentially ignore real shad-
ows when the geometry differs substantially, but in our experiments modeling
objects with 3D bounding boxes, even with inaccurate modeling, was enough
to associate the illumination solution with the correct set of shadow edges.

We only used light sources that produce sharp shadows in our experiments.
A limitation of the proposed approach is that it cannot handle well soft shad-
ows produced by area light sources.

5.6 Conclusions

In this chapter, we presented an approach to estimate illumination from a sub-
set of shadow borders. The advantages of this approach, as we demonstrated,
are that illumination estimation relies much less in the quality of shadow de-
tection, while at the same time allowing the partial and coarse modeling of the
3D geometry of the scene. Our results show that our approach can estimate
illumination even when no shadow detection is performed (Fig.5.7), since the
sets of image edges that match potential shadow outlines are limited. The ac-
curacy of our results is better than previous approaches [166], and comparable
to the method of [129], while achieving relatively low computational complex-
ity, which can be further controlled by limiting the number of edge samples
used in our computations as desired. In the future, we would like to examine
optimization approaches that can give us guarantees on the optimality of the
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Figure 5.7: Results comparing illumination estimation based on potential shadow
edges (left) and all edges in the image (right). It is clear that our method can work
even when we do not explicitly detect shadow edges, because few image edges match
potential shadow silhouettes. The results of illumination estimation are presented
in the bottom by rendering a synthetic orange sundial to the original image, using
the estimated illumination. Maps Q are in the top row. This is an image where we
failed to obtain any meaningful illumination estimate with the method of [129].

solution and to examine other ways to build the shadow edge confidence map
and the corresponding map of edge orientations, for example through a diffu-
sion process. Another exciting direction for future work would be to associate
the matching of the synthetic shadow silhouette with deformable geometric
models, allowing some refinement of geometry concurrently with illumination
estimation.
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Figure 5.8: The geometry used to approximate the cars in images from Flickr. The
geometry consists of a bounding box (green) that encloses the body of the car, and
a plane for the ground. Camera parameters were selected by hand to match each
scene.
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Chapter 6

Scene Photometry in a Global
MRF Model

In the previous chapters we discussed two different approaches towards the
estimation of illumination under approximate knowledge of geometry and ini-
tial shadows. As discussed in the introduction, one of our goals is to be able
to utilize illumination when provided with images of complex, real scenes, in
order to extract more information about the scene, or integrate illumination in
more complicated tasks. Towards this goal, in this chapter we present a new
model to capture the interaction of illumination, geometry and cast shadows
in an image. This model combines ideas from the approaches described in the
two previous chapters in a complete framework. It effectively captures every
aspect of the problem and, through a hybrid optimization scheme, is able to
infer all three components of the problem (shadows, illumination, geometry),
given some initial hints. Through this framework, not only are very coarse
approximations of geometry, such as bounding boxes, enough to estimate il-
lumination, but geometry reasoning can be incorporated with illumination
estimation. In the following sections we show how, for example, the geometry
of the occluders can be refined as part of the illumination estimation process.
The initial approximate geometric information we require could be derived
as part of more general scene understanding techniques, while enabling illu-
mination estimation to be incorporated in the scene understanding loop; the
obtained illumination and geometry information could be a crucial contextual
prior in addressing various other scene understanding questions.

Graphical models can efficiently incorporate different cues within a uni-
fied framework [186]. Hence, in order to deal with the complex illumina-
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tion/geometry/shadows estimation problem robustly in a flexible and exten-
sible framework, we jointly model the geometry, light sources, and shadow
values within an Markov Random Field model, and all the latent variables can
then be simultaneously inferred through the minimization of the energy of the
MRF. To the best of our knowledge, this is the first time that the interaction
of illumination and geometry in the image formation is addressed using an
MRF model.

The MRF model we propose captures the interaction between geometry
and light sources and combines it with image evidence of cast shadows. Cast
shadow detection is well-posed in terms of graph topology, since it can be
expressed using a graph in the form of a 2-dimensional 4-connected lattice,
where each image pixel corresponds to a graph node. Modeling in the MRF
model the creation of cast shadows from the interaction of light sources and
geometry, on the other hand, implies a potential dependence between each
pixel and all nodes representing the light sources and the occluder geometry.
This generally results in higher-order cliques in the graph representing our
MRF model. Further complications arise by the fact that the number of light
sources is unknown, resulting in unknown MRF topology, and the search space
is continuous. In our model, we are able to reduce the search space and identify
the MRF topology through an initial illumination estimate obtained using a
voting algorithm. To tackle inference in the resulting higher-order MRF model
with both discrete and continuous variables, we describe two methods based
on discrete optimization.

We make the following assumptions (common in illumination modeling):

e an initial coarse 3D geometry is known,

e the illumination environment can be approximated by a set of distant
light sources,

e the reflectance of surfaces is roughly lambertian.

Futhermore, when we discuss how occluder geometry parameters can be esti-
mated jointly with illumination, we assume that these occluders are identified
in the original image by providing a 2D bounding box, and one or more can-
didate geometric models that could potentially approximate the object 3D
geometry (see Fig.6.1).

In the end of this chapter we provide qualitative evaluation of the proposed
method on different datasets, including images captured in a controlled envi-
ronment, car images collected from Flickr and images from the Motorbikes

74



class of Caltech 101 [110]. We also provide quantitative results on a synthetic
dataset. The experimental evaluation shows that our method is robust enough
to be able to use geometry consisting of bounding boxes or a common rough
3D model for a whole class of objects, while it can also be applied to scenes
where some of our assumptions are violated. Results on geometry parameter
estimation show that through our model we can extract useful information
about object geometry and pose from the cast shadows.

The remainder of this chapter is organized as follows: Sec. 6.1 presents
related fundamentals; Sec. 6.2 describes the MRF model to jointly estimate
the shadows, illumination and geometry parameters. In Sec. 6.3 we discuss
the inference process. Experimental evaluation is provided in Sec. 6.4, and
Sec. 6.5 concludes this chapter.

6.1 Fundamentals

We follow the same model as described in the beginning of Section 2.1.1 in
Chapter 2. We adopt a commonly used set of assumptions: the surfaces in
the scene exhibit lambertian reflectance, and the scene is illuminated by point
light sources at infinity, as well as some constant ambient illumination term.
Under these assumptions, the outgoing radiance at a pixel ¢ can be expressed
as:

Lo(pP) = pp <a0 + Z Vi (d,)oy max{d, - np, 0}) : (6.1)

where N is the number of light sources, pp is the albedo at point p, «ay is the
ambient intensity, a;,7 € {1,..., N} is the intensity of the i-th light source, d;
is the illumination direction of the i-th light source, and V,(d;) is a visibility
term for direction d; at point p.

Therefore illumination information is fully captured by parameters 6, =
{Oz(), a1, ..., 0N, dl, ceey dN}

We first obtain an initial cast shadow estimate from the input image I.
This estimate should contain the shading intensity at each pixel in shadow,
without any variations due to albedo p, and the non-shadow pixels of I should
be masked out. Ideally, therefore, the value of each shadow pixel (z,y) in such
a shadow image I, would be the shading at that point due to the non-occluded

75



Figure 6.1: Intermediate steps for geometry parameter estimation: a) Input: the
original image, with a 2D bounding box localizing the object and a label indicating
which are the candidate geometric models to explain this object. b) The mask
obtained from the 2D bounding box using GrabCut. c¢) A 3D bounding box is
positioned randomly inside the 2D bounding box. d) After the execution of our
method, we obtain the most probable geometry to explain the object, an estimate
of 3D pose parameters, as well as an estimate of illumination and shadows.

light sources, given by:

N
I(z,y) = ap + Z Vo(di)oy; max{d; - np, 0}, (6.2)

=1

where p is the 3D point where (z,y) projects to. In practice we can obtain a
cast shadow estimate I, which is a rough approximation of Ij.

In our experiments, we use the approach we presented in Chapter 3 in this
thesis in order to obtain the shadow estimate is. The initial shadow estimate
I, we obtain through this method is used as input to the MRF model we
present later in this chapter. The final shadow estimate produced by our MRF
inference process attempts to remain close to this initial estimate, as well as
conform to the synthetic shadow expected by the estimated illumination and
geometry configuration.

6.1.1 Geometry modeling

One of the goals of this work is to provide a model that allows reasoning
about illumination to be incorporated in more complex scene understanding
tasks. Towards this goal, we describe here how we can incorporate objects
with unknown parameters to be estimated to our model. Estimation of these
parameters happens jointly with the estimation of illumination and cast shad-
ows. Different parametrizations of the scene geometry could be handled by our
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model without significant changes, as long as the total number of geometry
parameters remains small.

As mentioned, G is the known, approximate 3D geometry which is provided
as input. We assume that there may also exist a (small) set of objects O,
which are the parametric objects we want to estimate. The information we
assume as known about the objects O is restricted, for each object i, to a
2D bounding box that bounds the object in the image, and a set Go of
potential approximate 3D models for this object. The potential 3D models
can be thought as the geometric models representing common instances of the
class to which object i belongs (e.g. if the object is a car, we could assume
a small number of 3D models representing common car shapes). Our goal
is to recover, concurrently with illumination estimation, the most probable
geometry for each of these objects, as well as the most probable orientation,
translation and scale for each of them, in order to best approximate the real
scene geometry.

In figure 6.1 we show a visual representation of some of the input required
by our method in order to perform geometry estimation, as well as of the
intermediate steps to obtain the final estimate of parameters.

In the following sections we present a model to jointly estimate the shadows,
the illumination parameters 6, and a set of geometry parameters from the
approximate shadow cue I,.

6.2 Global MRF for Scene Photometry

We associate the image-level evidence for cast shadows with high-level informa-
tion about geometry and the light sources through the MRF model described
in this section.

6.2.1 Markov Random Field Formulation

The proposed MRF consists of one node for each image pixel ¢ € P, one node
for each light source [ € L, one node for the ambient intensity oy and one node
for the geometry of each object k in the set of objects O. Each pixel node,
all the light nodes and all the object nodes compose a high-order clique ¢ € C.
The 4-neighborhood system [17] composes the edge set € between pixels. The
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Figure 6.2: MRF topology: This is part of the graph representing an example MRF
model with 2 light sources and one geometry node. The light source nodes are
shown in blue on the top, with 2 nodes representing light sources and a special node
representing the ambient illumination. The red node corresponds to a parametrized
geometric model. The nodes in black are the pixel nodes, connected in a 2D lattice.
Each pixel node is connected with all light and geometry nodes (shown here only
for one pixel node for simplicity).

energy of our MRF model has the following form:

E(x) = > dilw)+ Y tijlziz)+ D onlw)

i€P (i,)e€ keO

+Z¢l(Il,X@) + Z¢c(l‘i,X£,X@), (63)

lel i€P

where ¢;(z;) and ¢y (xy) are the singleton potentials for pixel nodes and object
nodes respectively, 1; ;(z;, ;) is the pairwise potential defined on a pair of
neighboring pixels, ¢;(z;, Xo) is the clique potential expressing a shadow shape-
matching prior, and ¥.(x;, X, Xp) is the high-order potential associating all
lights in £, all objects in O and a pixel x;.

The latent variable x; for pixel node i € P represents the intensity value
for that pixel. We uniformly discretize the real intensity value [0, 1] into N
bins to get the candidate set AX; for x;. The latent variable z; for light node
[ € L is composed of the intensity and the direction of the light. We sample
the space in the vicinity of the light configuration obtained by the previous
voting approach to get the candidate set A for z; (see details later in this
section).
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By xo we signify the labels corresponding to the objects in . The label
19 of object node k determines a set of parameters (gx, ¢r, ta, ty,tz, Suy Sy, Sz2),
where g, is an index into Go®) that determines which of the potential object
geometries is selected for label 70, ¢y is the azimuth orientation of the object,
(tz,ty,t.) is the translation and (s, sy, s.) is the scale of the object.

Figure 6.2 shows the topology of the MRF. In particular, it shows the MRF
nodes for an example with 2 light sources and one geometry node, and also
the edges connecting the pixel nodes and one of the pixel nodes with the light
and geometry nodes.

Singleton Potentials for Pixel Nodes

This term encodes the similarity between the estimated intensity value at pixel
i and the shadow cue value I4(i) and is defined as:

¢i(r;) = wymin{|z; — L,(i)

) (6.4)

where an upper bound ¢, for this cost term is used to avoid over-penalizing
outliers and wy is a positive weight coefficient (same for w;, w, and w. below).

Singleton Potentials for Geometry

In our attempt to extract information about the geometry of object &, in the
model of Eq.6.3 we obviously take into account the information in the shadow
cast by object k. However, the cast shadow provides only one projection of
the object, which is often insufficient to extract useful information about the
object shape. We can, however, obtain a second projection of the object, the
one onto the image plane, which will provide us with extra information to
make reasoning about the object pose and shape possible.

To obtain the shape of the object on the image plane, we use GrabCut [157]
with the user-provided 2D bounding box for the object as input. GrabCut gives
us a foreground/background segmentation, where pixels in the foreground F
are the pixels most likely to belong to the object contained in the initial 2D
bounding box.

The singleton potentials ¢ () penalize geometry labels xy that are incon-
sistent with the extracted shape F of the object k in the image. This potential
also penalizes geometry labels zj that correspond to a scale that significantly

79



deforms the initial geometry. The form of the potential is:

o) = D (F) = Ma () +ws [x0 = 11|, (69)
icP
where x,(jmle) is a vector (s, sy, s,) determining the object scale corresponding

to label xy, F is the object mask obtained by GrabCut:

. —1 if ¢ € background
Fi) = { +1 if ¢ € foreground (6.6)
and M is the mask corresponding to the projection I& of the geometry assigned
to object k from label xj, at the corresponding rotation, translation and scale:

[ -1 ifier?
M@)_{ 1 ifie Il (6.7)

As demonstrated in our experiments (Fig.6.14), the obtained mask M is
not by itself adequate for determining the geometry parameters. The combi-
nation of the mask M with the information contained in shadow regions in
our MRF model, however, allows us to obtain a good estimate of the geometry
parameters.

Pairwise Potentials

We adopt the well-known Ising prior [39] to define the pairwise potential be-
tween neighboring pixels (i, j) € £ to favor neighboring pixels having the same
value:

mmwm:{wpﬁ%%% (6.9

Shadow Shape-matching Prior

Terms ¢;(x;,Xp) incorporate into the MRF model a shadow shape-matching
prior for light [, in order to favor illumination and geometry configurations
generating shadow shapes that match observed shadow outlines. The shadow
shape-matching prior implements the idea presented in more detail in Chapter
5. It evaluates the quality of the matching between the observed edges in the
image and the edges expected given a light configuration x; for light [ and
geometry configuration xp.
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We take a slightly different approach than that of the previous chapter in
the way we compute the edge maps used to penalize the shadow shapes. The
way presented here is coarser, and is based on producing different distance
maps for a small number of discretized edge directions. Then the direction of
each edge generated by the light and geometry configuration is penalized based
on the distance maps corresponding to the two closest discretized directions.
This results in a slightly weaker (more approximate) constraint than that of the
work in the previous chapter. It, however, appeared to give better results when
used as a component of our MRF model. Notice that due to the modularity
of the MRF formulation, we could simply substitute this form of the shape-
matching prior with the approach of the previous chapter without any other
modifications in the MRF modeling or inference.

During the initialization phase of our algorithm, we first apply gaussian
smoothing and the Sobel edge detector [45] to detect edges in the shadow cue
image. Let 7(i) € [0,27) be the angle of the gradient at pixel ¢ with the z-
axis, and 7(i) € {0, K — 1} a quantization of 7(i). For each possible direction
d € {0, K — 1}, we compute a distance map vy so that, for pixel i, vy(i) is the
distance from pixel 7 to the closest edge pixel of orientation d.

During inference, for pixel ¢ with gradient angle 7(i), the distance function
is computed by interpolating between the distance map values for the two
closest quantized orientations:

diStT(i)(i) = (1 — )\) " Us(3) (Z) + A Uz (i)+1 (Z), (6.9)
A= {Kz—;(z)} , (6.10)

where {.} indicates the fractional part. In our experiments, we chose K = 4.

The shape-matching prior expresses the quality of the match between the
observed edges in the shadow cue image and the edges of the synthetic shadow
S associated with x; and geometry configuration xe:

1
¢Z(Xl, Xo) =W E diStTSl (z)(l)) (611)
|gSl (Xl’ XO)| i€€s, (x1,%x0)

where Es,(x;,Xp) is the set of all pixels that lie on edges of the shadow S,
generated by light label x; and 7g,(¢) is the gradient angle of the synthetic
shadow edge generated by z; at pixel 7. To determine the set of shadow edge
pixels s, (x;,Xp), we generate the shadow S; created by light label x; and the
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geometry xp and then apply gaussian smoothing and the Sobel edge detector.
The set Es,(x;, %) contains all pixels whose gradient magnitude is above ..

Higher-order Potentials

The higher-order terms .(z;,X;,Xp) impose consistency between the light
source labels x,, the geometry labels x» and the pixel intensity values.

Let S be the synthetic shadow, generated by light configuration x, and
geometry configuration xp. The intensity at pixel i € S is:

si(xp,Xp) = X0 + Z 20V (xP" [x 0 ) max{—x{" - n(i), 0},
lel

where x* corresponds to the ambient intensity, zf* is the light intensity com-
ponent of x;, x¥" is the light direction component, n(i) is the normal at 3D
point p imaged at pixel 7 and V;(x%") € {0,1} is the visibility term for light
direction x%" at 3D point p (cf. Eq.2.3). For pixels i ¢ S, we set s(x.) = 1,
according to the definition of our shadow cue I4(i). The clique potential is

defined as:
¢£1)($i,X£,Xo) = w. min{(s}(xz,x0) — ;)2 te}, (6.12)

where t. is also an upper bound to avoid over-penalizing outliers.

In cases where the geometry G is far from the real scene geometry, a light
configuration that does not generate any visible shadows in the image might
result to a lower MRF' energy than the true light source. To avoid this degen-
erate case, we introduce the term wf) (x£,Xp), which assignes a fixed penalty
to light configurations that do not generate any visible shadows in the image.
The final form of the clique potential is:

Vo, Xz, %0) = U (24, %2, X0) + VP (%2, X0). (6.13)

6.2.2 Initializing the MRF Model

As mentioned earlier, the continuous search space complicates inference in our
MRF model. Furthermore, in our discussion of the model so far, we assumed
that the number of light sources |£| is known. In practice, however, |£] may
be unknown, which results in unknown MRF topology. To deal with these two
issues, we use a rough initial illumination estimate both to determine |L£|, if it
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Figure 6.3: Our voting algorithm: a) pixels that are not in shadow vote for all
possible illumination directions that are not occluded; b) pixels in shadow vote for
all illumination directions that are occluded by the geometry.

is unknown, and to set the initial values of the light source variables, before
inference begins.

To obtain this rough illumination estimate we use the greedy approach
described in Algorithm 2, based on the shadow cue Iy and geometry G. We
examine a fixed set of possible illumination directions, corresponding to the
nodes of a geodesic sphere [166]. In each iteration of this algorithm, the
pixels in shadow, which are not explained by already discovered light sources,
vote for all occluded illumination directions. Pixels not in shadow vote for
all illumination directions that are not occluded (see Fig.6.3 for an example).
After all pixels cast a vote, the most popular direction is chosen as the direction
of the new light source. Having the light source direction, we estimate the light
source intensity using the median of local intensity estimates from each pixel
in the shadow of this light source, and the new light source is added to the set
of discovered light sources. The algorithm stops when the estimated intensity
of the new light source is near zero, meaning that it doesn’t have a significant
contribution to the observed shadows.

6.3 Inference

We simultaneously estimate the cast shadows, illumination and geometry pa-
rameters by minimizing the MRF’s energy defined in Eq. 6.3:

x" = arg min E(x) (6.14)
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Algorithm 2 Voting for initial illumination estimate

Lights Set: £ < &
Direction Set: D < all the nodes of a unit geodesic sphere
Pixel Set: P < all the pixels in the observed image
loop
votes[d] < 0, ¥d € D
for all pixel i € P do
for all direction d € D\ £ do
if I,(i) < 6g and vd' € L£,V;(d") = 0 then
if V;(d) = 1 then votes[d] + votes[d] 4+ 1
else
if V;(d) = 0 then votes[d] + votes[d] + 1
d* < arg maxq(votes[d])
Pax < {i]ci(d*) =1 and Vd # d*,¢;(d) = 0}

. 11, (i)
ag+ < median { max{—n(p(i))-d*,0} }iePd*

if ag+ < ¢, then
stop the loop
L+ LU (d*,ad*)

Minimizing this energy, however, is challenging, because our MRF model con-
tains high-order cliques of size up to |£| + |O] + 2.

A straightforward way to minimize the model energy is the high-order
clique reduction technique proposed in [65]. This method performs inference
in a higher-order MRF with binary labels by reducing any pseudo-Boolean
function to an equivalent quadratic one while keeping the minima of the re-
sulting function the same as the original. Like [65], we extend this method to
deal with multi-label MRFs by employing the fusion-move [107] and QPBO
[52, 86] algorithms. Therefore, a number of iterations is performed, and for
each iteration, the algorithm fuses the current labeling L., and a proposed
labeling Lo, by minimizing a pseudo-Boolean energy [65].

In our experiments, however, this method failed to provide good solutions
(Table 6.1). This can be explained by the complexity of the graph-structure,
the large number of labels and the nature of pair-wise and higher order inter-
actions.

To address this failure and efficiently perform inference, we can split the
minimization of the energy in Eq.6.3 in two stages [19]. If we assume that

the light parameters are fixed, the high-order clique potentials 1/19) in Eq.6.12,
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which are part of 1., become singleton potentials of the form:

Y (2%, x0) = wemin{ (s} (xz, X0) — )%, te}. (6.15)

This way, for a fixed light configuration x, and a fixed geometry configu-
ration xp, after we split ¢, in w((;l) and ¢<(:2) as in Eq.6.13, we can rewrite the
energy of the MRF model in Eq.6.3 as:

E(x) = Ei(x|xz,%x0) + ErL(Xc,%x0) + Ec(x0), (6.16)
where
Er(x|xz,%x0) = Y (¢ilz:) + 0 (wilx0,%0)) + Y il x;)  (6.17)
ieP (i,7)€E

is the component of the MRF’s energy involving only pairwise potentials, asso-
ciating the (fixed) light configuration x, and geometry configuration xo with
per-pixel variables, and

Ei(xe,%0) = Y (éi(m) + ¢ (x2,%0)) , (6.18)

lel

= dulxr) (6.19)

keO
are the energy terms associated with the (fixed) light configuration x, and the
(fixed) geometry configuration x» but independent of the per-pixel variables.

For a given light configuration x, and geometry configuration x¢, the en-
ergy Er(x|x.,Xp) can be minimized using any inference algorithm for pairwise
MRF models. The speed of the chosen algorithm is, however, important, be-
cause the energy F;(x|x.,Xp) is minimized many times (for different light and
geometry configurations). To achieve better performance, we used the FastPD
algorithm [94] in our experiments.

The energy minimum min, { £;(x|x.z,Xo)} changes with different light con-
figurations and different geometry configurations, as in the simple example
shown in Fig.6.4. To minimize F(x), a (blocked) coordinate descent approach
in the hght and ggeometry parameter domain is used:

Let XE , Y be the set of light and geometry parameters that corre-
spond to the mlnlmum energy encountered up to iteration s — 1. At iteration

s, we generate proposed light labels x! - ) and geometry labels XO) by sampling

the light parameter space around the current light estimate X(L and the ge-
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ometry parameter space around the current geometry configuration estimate
&S_l). We then compute the total MRF energy as

E®) (x) = min{EI(x|xf), XS))} + EL(XS), XS)) + Eg<XS)), (6.20)

which includes minimizing the pairwise energy E[(X|XS),XS) ). If the new

energy E®)(x) is lower than the previous lowest energy, we keep the proposed
illumination and geometry labels XS) and xE‘;), otherwise they are discarded.

As the number of geometry and illumination parameters is increasing, the
choice of which dimensions of the illumination-geometry parameter domain to
re-sample in order to generate proposals x(g) and xg) becomes crucial for the
effectiveness of the minimization. In our experiments we used the following
proposal schedule: At some iteration s, a single light source [ is chosen, and
new values are generated only for the parameters of light source [ and the
ambient intensity to produce xg). At iteration s + 1, new values for the
azimuth rotation and geometry class label of a single object k are generated
to produce xg+1). At iteration s+ 2 new values are generated for the 6 scalar
parameters defining the 3D translation and 3D scale of a single object k to
produce XSH). This proposal schedule is repeated every 3 iterations.

The final solution corresponds to the light parameter sample s that gener-

ated the labeling with the lowest energy:
x?" = arg min £ (x). (6.21)

This method is more tolerant to local minima in the model energy (which
appear often in practice) and it requires a limited number of the costly evalu-
ations of energy Er(x|x.,X0).

6.3.1 Proposal Generation

Sampling of the solution space to generate proposed labels is required by both
minimization approached discussed above. The generation of good guesses for
these proposals can significantly aid fast convergence to a good solution. In
this section we discuss proposal generation.

Light directions: Proposed light source direction x%" is generated by
drawing a sample from a von Mises-Fisher distribution [34] with mean direc-

tion 5(;’“’“ and concentration parameter Ksgmpie, Where f{f" is the current light
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Figure 6.4: The model energy over possible directions of one light, for a simple
synthetic scene.

direction estimate. The estimate from the voting algorithm is used for the
first iteration. In our experiments, Kgumpre = 200 was chosen and samples were
drawn using the accept-reject algorithm.

Light intensities: The proposed intensity for light source [ is computed
from the current light source intensity estimate adding a random offset, drawn
from a normal distribution. The same method is used for ambient intensity
proposals x®°.

Pixel intensities: When using higher-order clique reduction to perform
inference, proposals for the pixel labels are also required. The light proposal is
kept fixed for IV successive iterations, while at iteration ¢ of the N successive
iterations, pixel label 7 of the IV different possible pixel labels is proposed for
every pixel node, after which a new light parameter proposal is generated and
the possible pixel labels are proposed again in the next N iterations.

Geometry parameters: The parameters used to define the geometry of
an object are azimuth rotation, 3D translation, 3D scale and a geometry class
label. This means that geometry for an object is defined by 7 scalars and 1
discrete value. The scalar values are drawn from normal distributions with the
current value of the respective parameters used as the distribution mean. The
geometry class label is drawn from a uniform distribution for each proposal.
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6.4 Experimental Validation

In this section we evaluate the proposed MRF model, both quantitatively in
a synthetic dataset, as well as qualitatively in real datasets. We also present
results when geometry parameters are estimated simultaneously with shadows
and illumination.

= -

1 4 ¢

a. Exact geometry b. Approx. geometry c. Approx. geometry +
noisy shadow input

#lights: 1 2 3 1 2 3 1 2 3
Voting 7.06 6.94 8.23 5.83 11.51 13.31 20.78 28.61 29.30
NNLS [166] 3.84 6.20 6.35 13.95 15.21 14.15 33.69 32.10 33.96
MRF(HOCR [65]) 3.29 5.41 8.13 5.14 14.67 13.99 14.35 20.60 22.83
MRF(2-stage 0.44 1.31 2.36 2.53 9.06 8.57 6.97 12.36 | 17.77
minim.)
MRF(2-stage 1.27 3.82 5.40 3.11 11.12 11.95 10.81 12.24 17.91
minim.) - w/o
shadow shape
prior
Number of light 0 0.047 0.143 0 0.309 0.32 0 0.285 0.33
sources: mean || (0%) (4.7%) | (14.2%)| (0%) (17.6%)| (23.8%)| (0%) (26.7%)| (38%)
error (error %)

Table 6.1: Quantitative results on a synthetic dataset: from left to right, we show
the mean error in degrees for the estimated light directions on a synthetic dataset,
a) using the exact geometry to do the illumination estimation; b) using geometry
approximated by bounding boxes (blue) and a ground plane; ¢) using approximate
geometry and a noisy initial shadow estimate. For each case, we show results for
scenes rendered with 1, 2 or 3 light sources. We show results obtained with the
voting algorithm used for the initialization; with NNLS [166]; with our MRF model,
when the MRF energy is minimized using [65]; and when the MRF energy minimized
using our 2-stage approach, which achieves the best results. We also include results
with our MRF model and 2-stage approach without the shadow shape-matching
prior, which shows the benefits of this term. In the bottom we show the mean error
in the estimated number of light sources and in what portion of images that number
was estimated inaccurately.
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6.4.1 Illumination Estimation

We used three different sets of images to evaluate illumination estimation
results with our approach: images collected in the lab under controlled illu-
mination conditions, real-world images of cars collected from Flickr, and the
Motorbike images from Caltech 101 [110]. We overlayed a synthetic verti-
cal pole (sun dial) onto the original images, rendered under the illumination
estimated by our method, in order to visualize the results.

The weights used in our experiments were: (ws,wy, w,, w.) = (8,1,1,4).
The upper bounds for the truncated potentials were (t,,t.) = (0.5,0.5). Pixel
node labels were quantized to 8 values and 1000 iterations of our algorithm
were performed.

[Nlumination estimation takes 5 to 30 minutes per image for the images in
this paper, depending on image size. However, 60% to 70% of the running
time is spent performing raytracing, which can be sped up significantly with
a faster raytracer implementation. Table 6.2 shows the running time of our
algorithm in various scenarios. Running times with voting, HOCR ([65]) and
our inference approach are compared. Although HOCR is faster for 1 light
source, it does not scale well as the number of light sources increases. Because
of the lack of a termination criterion for our approach, we performed enough
(predetermined) iterations to obtain similar or better results as with HOCR
in order to be able to compare. A maximum of 200 iterations was perfomed
with HOCR. With our method, the number of iterations was 200 by the num-
ber of light sources. For geometry estimation we performed 800 iterations.
Experiments were perfomed on an Intel Core i7 computer with 8GB of RAM.

Synthetic Dataset

To evaluate our method quantitatively we used a set of synthetic images,
rendered using a set of known area light sources. The number of light sources
was randomly chosen from 1 to 3. The direction, intensity of the light sources
was also chosen randomly. We examined three different cases:

Exact geometry: We used the same 3D model to render the image and
to estimate illumination.

Approximate geometry: We used a 3D model that coarsely approxi-
mated the original geometry by a bounding box and a ground plane to estimate
illumination.

Approximate geometry and noisy shadow input: We estimated il-
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voting MRF (HOCR | MRF (our inference
[65]) method)

synthetic images (200x200 | 2 25 33
pixels, 1 light source)
synthetic images (200x200 | 2 48 61
pixels, 2 light sources)
synthetic images (200x200 | 2 170 95
pixels, 3 light sources)
car images (approx. 500x350 | 11 414 468
pixels)
car images + geometry esti- | - - 2036
mation (approx. 500x350 pix-
els)

Table 6.2: Running times (in seconds) for our algorithm, for different datasets.
Times do not include shadow detection. Next to each dataset we note the average
size of its images. For one light source, 200 iterations were performed with both
HOCR and our MRF inference approach. For the synthetic dataset with our MRF
inference method, we select the number of iterations to be performed as a multiple
of the number of lights, so the runtime increases linearly with the number of light
sources. In the case of HOCR [65] we did not increase the number of iterations. It
should be noted that a large portion (60%-70%) of the running time is dedicated
to raytracing, which could be significantly improved. The MRF inference involves
considerably more time spent on raytracing than the voting initialization algorithm,
since occlusions have to be computed for each light /geometry configuration proposal.

lumination parameters using a coarse 3D model, as above, and a noisy initial
shadow estimate. The latter was obtained by adding random dark patches to
the rendered shadow (Table 6.1.c). We used this form of noise because, on one
hand our methods are relatively insensitive to spatially-uniform random noise,
and on the other, in real data the errors generally affect large image regions
which get mislabeled, which is emulated by this patch-based noise.

We computed the difference between the estimated light source parame-
ters and the parameters of the true light source that was closest in direction
to the estimated one. The average light source direction errors are presented
in Table 6.1. We compare the results from the voting method used to obtain
the initial estimate, and our MRF model. We compare the proposed inference
method with a state-of-the-art method to perform inference on higher-order
MRF models, the higher-order clique reduction (HOCR) technique of [65].
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Figure 6.5: Convergence of our algorithm. Left: The energy F(z) for each iteration,
averaged over a set of synthetic test images (for two-stage inference, using approxi-
mate geometry and added noise to the initial shadow estimate); right: the angular
error per iteration, averaged over the same test set.
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Figure 6.6: Behavior of our algorithm in the case of soft shadows. Illumination has

been modeled by a vMF distribution of varying concentration s to produce sets of

images with shadows of varying ”softness”. Even for very ”soft” shadows, the error

(in degrees) in the light source direction estimate is relatively small. On the top we
give examples of the images produced for sample s values.

The results show that our method, taking advantage of the topology of this
particular MRF model to efficiently perform inference, is able to achieve signif-
icantly better results, compared to our initialization method, HOCR inference
on our model, as well as the non-negative least squares optimization approach

of [166] (NNLS).
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Furthermore, Table 6.1 shows that the shadow shape-matching prior sig-
nificantly improves illumination estimates. This is more pronounced in the
case of inaccurate input data, where a large number of pixels may be different
between the noisy observed shadow and the one produced by the coarse ge-
ometry and true illumination. However, when there are multiple light sources,
leading to a large number of potential shadow edges, the benefits of the shadow
shape-matching prior are reduced.

We also evaluated the estimation of the number of light sources through our
voting procedure on our synthetic dataset. Table 6.1 shows the mean error
in the estimated number of light sources in that dataset. We are generally
able to get a good estimate of the number of light sources. Accuracy of the
number of light sources is reduced when the true number of light sources and
the errors in the initial shadow estimate increase. We further evaluated our
light source number estimation on the motorbike images of Caltech 101. The
images we selected contained a single light source (the sun) and the average
estimated number of light sources was 1.17, with the number of light sources
correctly estimated 91% of the time. We should also note that any extraneous
light sources identified by our voting algorithm are generally assigned low
intensities during MRF inference, resulting in small errors in the synthesized
cast shadows.

We further quantitatively evaluated the behavior of our method in the case
of soft shadows. We rendered the set of synthetic scenes under illumination
produced by a single light source modeled by a vMF distribution of varying
concentration parameter k. Lower values of x mean a more spread-out light
distribution and softer shadows. Fig.6.6 shows the error in the estimated light
source direction (in degrees) as the concentration parameter of the light source
changes. Even in the case of very soft shadows, our method is able to estimate
the direction of illumination with good accuracy.

Real Datasets

To evaluate our approach in real images, we used the class ”Motorbikes” of
the Caltech 101 dataset [110] and images of cars we collected from Flickr.

In the case of "Motorbikes”, we used the same coarse 3D model (Fig.6.11)
corresponding to an average motorbike and the same average camera param-
eters for every image. In this dataset there are significant variations in ge-
ometry, pose and camera position in each individual image, deviating from
our average 3D model and camera parameters. Despite these variations, our
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Figure 6.7: Results for the Motorbikes class of the Caltech101 dataset. We rendered
a synthetic sun dial (orange) under the estimated illumination and overlayed it on
each original image. The geometry used for all instances was the same 3D model
capturing an average motorbike, with the same average camera parameters.

results in Fig.6.7 show that our algorithm is robust enough to effectively es-
timate illumination using the same generic 3D model for all instances of a
class of objects. This robustness would enable our algorithm to use results
from an object detector for objects of known classes in an image, and simple
common class geometry, to estimate illumination. Such an application would
further require either average camera parameters or a horizon line estimator
to perform illumination estimation without any input from the user.

In the case of car images collected from Flickr (Fig.6.8), the geometry was
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Figure 6.8: Results with car images collected from Flickr. Top row: the original
image and a synthetic sun dial rendered with the estimated illumination; Bottom
row: the final shadow labels. The geometry consists of the ground plane and a single
bounding box for the car.

limited even further to a bounding box approximating to the car body and
a ground plane (Fig.6.11). Camera parameters were matched manually. For
both Fig.6.8 and Fig.6.10 we assumed known number of light sources. Despite
our initial assumption of Lambertian reflectance, the results show that our
algorithm can cope with the abundance of non-lambertian surfaces in these
images.

We further evaluated our algorithm in a set of images captured under
controlled illumination conditions in the lab. This set includes shadows cast on
a variety of textured surfaces, under 1, 2 or 3 light sources. Results on images
from this dataset can be found in Fig.6.10. To estimate the illumination in this
images we used rough approximate geometry, which can be seen in Fig.6.11.
In Fig.6.10 we also show two synthetic examples of illumination estimation
where shadows are cast on arbitrary geometry, demonstrating that we do not
make any assumptions about scene geometry.

In figure 6.12 we compare the illumination estimation results between the
voting algorithm we use for initialization and our MRF model. While the
voting algorithm is able to find a reasonable approximation of illumination in
most cases, it is usually not able to get accurate solutions in cases such as
soft shadows, noise in the shadow estimate, or significant inaccuracies in the
geometry. Our MRF model is more robust, especially in real-world examples;
the approximate solution from the voting algorithm though offers usually a
good initialization for the MRF energy minimization. Figure 6.12 compares
the two for some synthetic toy examples and for real data from the Caltech101
"Motorbikes” class.
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Figure 6.9: Examples of scenes with several occluders: the orange bounding boxes
show the geometry provided as input to our method, and the synthetic orange
sundial rendered using the estimated illumination shows our light source estimate.
The illumination estimate is very stable regardless of which part of the scene we
choose to model.

Failure cases

Fig.6.13 shows common cases where our algorithm fails. One general reason is
challenges in shadow detection. While the shadow shape-matching prior helps
our method differentiate between adjacent shadows from different occluders, it
can still be challenging to correctly estimate illumination when there shadows
from objects that are not modeled by the geometry are very close to or overlap
shadows of interest. Furthermore, very dim shadows, as in the case of cloudy
outdoor scenes, can be hard to detect, therefore not allowing us to obtain a
good solution. On the other hand, coarse geometry knowledge can sometimes
lead to observed shadows that cannot be explained under any illumination
configuration given the coarse geometry (as in Fig.6.13.c). Inaccuracies in the
placement of 3d models in the scene (e.g. with the Caltech 101 ”Motorbike”
images ) or in the camera parameters can also lead to inaccurate illumination
estimates (Fig.6.13.d).
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Figure 6.10: Results with captured images using different number of light
sources, and different background textures. The vertical image pairs
(a,h),(b,i),(c,j),(d,k),(e,]),(fm) are captured under the same illumination. An or-
ange synthetic sundial has been rendered under the estimated illumination and
inserted into the original image. We also include a pair of results on synthetic im-
ages (g,n) that show that our method can be applied to arbitrary scene geometry,
where shadows are not cast on a flat ground (mean light direction error for g,n is
2.27 degrees).

Figure 6.11: The 3D models we used to perform illumination estimation for the
images of cars (Fig.6.8), motorcycles (Fig.6.8), and the images of Fig.6.10. Camera
parameters where selected manually. In the case of the Caltech101 Motorcycles
class, a single set of camera parameters (with orthographic projection) where used
for all images. For the rest of the images, camera parameter selection was done
individually for each image, although approximately.

6.4.2 Geometry Reasoning

We evaluate joint illumination and geometry /pose estimation qualitatively on
the car images we collected from Flickr, as seen in Fig.6.14. The input to our
algorithm in this case was the original image, a 2D bounding box around the
object of interest (in this case, the car), a common ground plane, the camera
parameters and a common set of 4 candidate geometric models for cars (shown
in Fig.6.14). The geometric models represent 4 common car shapes. The 2D
bounding box can be provided by a car detector. The camera parameters are
very similar across these images, probably because of the common subject, and
could approximated automatically using the information in the image EXIF
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Figure 6.12: Comparison of illumination estimation results with our voting initial-
ization algorithm and our MRF model. Top row: the original image; Middle row:
the 3D model used to approximate geometry for illumination estimation, rendered
with the illumination estimate obtained with the voting algorithm; Bottom row:
the same 3D model rendered with the illumination estimate obtained by our MRF
model, from the same input data. It is easy to see that the voting algorithm gets
relatively close to the solution, but is not able to offer high accuracy especially with
soft shadows or more complex images.

<4 e

tag, along with horizon line estimation (and assuming the camera is at eye
level of an average human). In our experiments shown in Fig.6.14 however, we
set camera parameters manually.

For experiments with geometry parameter estimation we did not use our
voting initialization method, because the random initial geometry reduces the
benefits of such an initialization. We assumed a single light source and used a
random initialization of the other parameters. A larger number of iterations
(4000) was performed to obtain a solution, with larger variance for the param-
eter proposal generation. Despite the random initialization, our MRF model
is able to obtain a satisfactory solution.

Our results show that we can approximate the orientation of the ob-
ject with good accuracy (around 10 degrees), and get visually convincing
estimates of scale and orientation. The object geometry is identified cor-
rectly in 3 of the 4 images below. Notice that although we could fit an
infinite number of very different (and mostly incorrect) combinations of ge-
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Figure 6.13: Common failure modes. Errors due to shadows (top): (a) shadows of
other objects not modeled may overlap the shadows of the objects of interest, or
(b) very dim shadows may not be detected, in which case our algorithm tries to
use other dark image regions. Errors due to geometry (bottom): (c) approximate
geometry (in blue) can have no possible way to explain observed shadows caused by
the true geometry. (d) Large errors in the positioning of geometry in the scene (when
geometry parameters are not estimated) affect the relative position of shadows in
the image to the object geometry.

ometry/rotation/translation/scale values to the object outline obtained by
GrabCut, as shown in Fig.6.14.b, the combination of the object outline and
the shadow leads our algorithm to select parameter combinations close to the
truth (Fig.6.14.c), while estimating the illumination at the same time. In some
cases the pose estimate further improves when when combined with geometry
class estimation.

An important observation is that, as the number of free parameters that
define geometry grows, local minima in the energy become a bigger issue. An
example of this problem is the fourth image in Fig.6.14.d, where the geometry
class used for the pick-up truck corresponds to ”jeep”, and at the same time
the size chosen for the model omits the rear part of the pick-up truck. In this
case our algorithm has found a local minimum of the energy; to continue to the
global minimum, a large change in scale and translation along with the change
in the selected geometry class is needed. A clever selection of the dimensions
which change to produce the new step on each iteration can help as the number
of geometry parameters grow - for example, the geometry class could be locked
to the simple bounding box for a number of iterations, expecting that the
bounding box will be positioned properly over the object before we begin
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Figure 6.14: Results of joint estimation of shadows, illumination and geometry pa-
rameters. The geometry used in this case consists of a ground plane and a bounding
box for the object. The geometry parameters estimated are the azimuth rotation,
3D translation and 3D scale of the object’s bounding box. a) input: the original
image and the initial configuration of the geometry; b) the estimated geometry when
only fitting the object to the mask obtained by GrabCut; c¢) the geometry estimated
by our method. While the object silhouette is not enough to estimate the geom-
etry parameters, the combination of the object silhouette with information in the
shadows allows us to obtain a good geometry estimate. d) Here we also allow our
model to select the most probable of 4 candidate geometry classes. The estimated
geometry class for each image is, from left to right: box, jeep, sedan, jeep. The 4
geometry classes are shown on the right.

examining more specific geometry classes. Random initializations of geometry
very far from the true geometry can also affect the final result, but constraining
the initial pose within the GrabCut mask is often sufficient.

6.5 Conclusions
In this chapter, we introduced a higher-order MRF model of illumination,

which allows us to jointly estimate the illumination parameters, cast shad-
ows and a set of geometry parameters for the occluders in a scene, given a
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single image. Our model incorporates both high-level knowledge about the
scene, such as illumination and geometry, and low-level image evidence. Al-
though this leads to a complex formulation that makes inference challenging,
we demonstrate that inference can be performed effectively. Our results in
various datasets, demonstrate the power of our MRF illumination model. We
are able to estimate the illumination parameters using the same geometry,
pose and camera parameters for a large number of scenes which belong to the
same class, as shown by our results on Caltech101. Bounding boxes can be
sufficient approximations of occluders for our method, as is the case with our
experiments with car images from Flickr. Geometry reasoning is incorporated
in our model to allow estimation of the object pose in the 3D scene, as well as
reasoning about the 3D geometry that best represents an object. The exten-
sive experiments show that our approach is more general and more applicable
in real-world images where other methods fail. In the future, we are interested
in incorporating our method in more general scene understanding applications.
Geometry parameter estimation, as presented here, is the first step towards
this direction.
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Chapter 7

Shape Reconstruction with a
Dictionary of Shading
Primitives

In the previous chapters we examined the estimation of illumination from a
single image from cast shadows, which in Chapter 6 we linked with the esti-
mation of geometry parameters. In that chapter, we linked the two inverse
rendering problems of interest, illumination estimation and shape reconstruc-
tion. However, the information contained in cast shadows is not enough to
obtain a good estimate of the shape of objects. As seen in the previous chap-
ter, shadows offer only information about the object outline, which can be
used to infer rough geometry or the object position and pose. Hence, in this
chapter we will discuss the use of shading for the reconstruction of 3D shape.

7.1 Introduction

Shape recovery is a classic problem in computer vision and a large body of prior
work exists on the subject. We examined the prior art in the area, focusing
on shape-from-shading (SfS), in Chapter 2. In this chapter, we examine an
approach to the problem of shape from shading based on the idea of learning
shadow primitives. The goal of the work in this chapter is to infer the 3D
scene structure, in the form of a normal map, from a single 2D image using
the information contained in shading.

We capture the relationship between the appearance and geometry of image

101



Figure 7.1: Our method: Left, the original image [146]; center, the estimated normal
map with our approach; right, a rendering of the estimated normal map under
different illumination.

patches in a straight-forward way, by learning a dictionary that associates local
image appearance with the underlying geometry. Each entry in the dictionary
captures the geometry of a small rectangular region (patch) and a distribution
of the possible image intensities associated with this geometry, as observed in
a training set containing images of known geometry. We choose to describe
the 3D scene by a normal map, containing one normal vector for each pixel to
describe the orientation of the surface point which is projected to that pixel.
The input to our algorithm is a single image, and the direction of the light
source. We assume that the scene is illuminated by a single distant point light.
We do not assume a specific type of surface reflectance. In our initial approach
to the problem, we assume that the object surface has uniform albedo, so that
an image containing only shading variations is available. Shading variations
in case of variable albedo could be extracted through other methods [174].
To reconstruct the shape of a new image, we first divide the image into
patches. For each image patch, we find dictionary patches that have similar
appearance to the observed one. We define the distance of the image patch to
the ones in the dictionary as the Mahalanobis distance between the observed
appearance and the distribution of appearances that can be produced by each
dictionary patch. That distribution corresponds to different parameter choices
in the Ward reflectance model [188]. The dictionary patches obtained to ex-
plain an image patch constitute a set of hypotheses about the local geometry.
Despite the fact that there are infinite possible geometric explanations for the
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Figure 7.2: An example of the priors captured by shading primitives: The local
shading pattern on the top can have any of infinite geometric explanations. The
surface normals could have for example the orientations shown on the left. How-
ever, in practice such a shading pattern imposes a strong prior for the underlying
geometry: it usually corresponds to an edge of a solid object, with normals oriented
perpendicularly to the edge, as shown on the right. A human would also choose this
as the most probable geometric explanation.

appearance of a given patch, our experiments show that certain explanations
are much more probable, making our approach effective. The problem of in-
ferring the shape of the objects in the scene becomes that of properly selecting
the normal vectors given the set of local hypotheses obtained by the dictionary.
We formulate inference of the final 3D shape as a labeling problem on a
Markov Random Field (MRF') model. This model allows us to chose a normal
vector for each pixel that is close to the obtained local hypotheses, and at
the same time satisfy anisotropic smoothness constraints. The MRF model
contains one node per image pixel, with pairwise interactions between them
and the node labels indicate the normal vector at each corresponding pixel,
taking values in a continuous domain. We perform inference by minimizing
the MRF energy using the QPBO [53, 86] and fusion-move [107] algorithms.
The main contributions of this work are the following:

1. We describe a dictionary of learned geometric primitives and the asso-
ciated shading patterns. This way we learn priors to locally resolve the
ambiguities inherent to the shape-from-shading problem.

2. We propose an effective way to capture the similarity between local shad-
ing patterns and learned patches using a wavelet decomposition and the
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Mahalanobis distance. This allows us to handle reflectances that deviate
from the Lambertian assumption.

3. We describe an MRF that combines the local geometric hypotheses to
reconstruct the final normal map.

We present results in both synthetic and real results. In both cases, we
demonstrate that our algorithm is able to recover both the general object shape
and finer geometric details. The learned dictionaries in our experiments are
trained on synthetic data, but we are able to use them to reliably reconstruct
the shape of real photographs. Comparisons with other approaches [28, 177,
146] on real data show the advantages of our approach.

In the following sections we describe how image patches can be represented
and how a dictionary of patches can be learned from a set of training images
and their corresponding geometry (Sec.7.2), and how we can reconstruct the
normal map from a test image, using the trained dictionary and formulating
the problem as inference on a Markov Random Field (MRF) model (Sec.7.3).
In Sec.7.4 we present results on synthetic datasets and real images with our
method. Sec.7.5 concludes the chapter.

7.2 Patch dictionary

We first construct a dictionary of local geometric primitives (patches) from
a set of training images with known geometry. Each patch in the dictionary
is a small normal map of size n x n, representing the local 3D geometry.
Along with the geometry for each patch, we store the distribution of pixel
intensities (local appearances) that can be produced by that geometry under
different reflectance models, given a light source direction. We refer to each of
the learned geometric primitives in the dictionary as a dictionary patch. By
patch appearance we refer to the n x n grid of pixel intensities describing the
appearance of an image patch or dictionary patch. By patch geometry we refer
to the n x n grid of normal vectors representing the patch geometry.

7.2.1 Patch representation

We reduce the dimensionality of the normal map representation by applying
PCA to a subset of patches from the training set and keeping the Mg first
eigenvectors. Patch normal maps are therefore projected on the PCA basis and
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Figure 7.3: The data stored in a learned dictionary. Top: the normal map of
sample dictionary patches; Bottom: the mean appearance of each dictionary patch
as reconstructed from the mean of appearance wavelet coefficients. Red indicates
background pixels.

represented by the Mg resulting coefficients. We choose to represent the patch
appearance using a Haar wavelet basis [48]. We use Haar wavelets of order 2,
using the non-standard construction, resulting in a basis of size M4 = 16 for
appearance patches.

The distribution of appearances that can be produced by the geometry of
a dictionary patch is represented by the mean and variance of the coefficients
of the patch appearance. Furthermore, each dictionary patch contains a mask
that indicates which pixels belong to the foreground and which (if any) to
the background. Therefore, a dictionary patch D; is represented by a quadru-
plet {G;, M, u#t, 02}, where G are the PCA coefficients describing the patch
normal map, M; is the patch foreground/background mask (an n x n grid of
binary values), and p' and o' are the means and variances of the coefficients
of the appearances that can be produced by the patch geometry.

An example set of patch appearances and geometries from a learned dic-
tionary is shown in Fig.7.3.

7.2.2 Dictionary construction

Let 7 = {(T}. T¢,TM,tE)} be the training set, where each training in-
stance k consists of an image T}, the corresponding normal map T, a fore-
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ground /background mask TM and a light source direction tZ. We assume that
each training instance is illuminated by a single distant light source. In order
to obtain a good dictionary D from training set 7, we aim to learn a set of
geometric primitives that could adequately describe the objects in the training
set. Our approach is to: 1) First examine only the geometry of the training
set, learning a set of dictionary patches that correspond to distinct local ge-
ometric structures in our training set. 2) As a second step, we examine the
local appearance produced by each of the learned dictionary patches under
different reflectances, and store statistics to describe the distribution of these
appearances.

To learn the dictionary patch geometry, we first divide the geometry T of
each training instance k into a set P of overlapping patches P; of size n X n.
We then project the normal map P of each patch P; onto the PCA basis, so
that PC is represented by a set of coefficients a. To decide if we should add
this patch to the dictionary D, we compute the distance between P, and each
dictionary patch D; as:

(P D) = > (af (m) — af(m))” +
+wMZ [P]i\/[(p),DZM(p)} ) (71)

where the first term is the euclidian distance of the PCA coefficients represent-
ing the geometry and the second term the difference of the foreground /background
masks, weighed by a weight w,; that determines how strictly we want the fore-
ground /background mask to match between the two patches (a large value of
wyr = 100 was used in our experiments).

If the distance to the closest patch already in the dictionary is above a
threshold 6p, then a new dictionary patch is added to the dictionary, with the
geometry and mask of patch P,. Therefore, after all patches in the training set
have been examined, a (potentially large) dictionary D has been constructed,
containing a variety of distinct local geometric structures.

The second step is to learn the distribution of appearances that can be
produced by the geometry of each dictionary patch. In order to do that,
we render the normal map of each dictionary patch D; using the Ward [188]
reflectance model and a set R of different reflectance parameters, which corre-
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sponds to surfaces of varying specularity, varying diffuse intensity and varying
anisotropic specular properties. We project the image intensities produced by
each reflectance parameter selection onto the wavelet basis, and we store the
mean y:' and variance o7 for each appearance coefficient across all reflectance
parameters.

Dictionary light source direction

Training of the dictionary assumes a known light source direction. This light
source direction is used to render the local geometry under a set of different re-
flectances, in order to generate the distribution of appearances for each patch.
We want to be able to use our approach in order to reconstruct the shape
of images illuminated by arbitrary light source directions. However, it is not
possible to learn a different dictionary for each possible light direction.

If we assume that we only handle Lambertian reflectances, our approach
can store the normal vectors of the dictionary patches in the coordinate system
of the light source. In this case, we can use the learned dictionary for images
of arbitrary light source direction, simply transforming the recovered normals
back from the coordinate system of the light source to that of the camera. This
procedure is however not possible when non-lambertian reflectance models are
accounted for.

We solve this issue by re-computing the distribution of appearances for
each dictionary patch as a first step every time we are provided with a new
image to reconstruct and the corresponding light source direction. Generating
the distribution of appearances for a dictionary of 30000 patches, such as the
one used in our experiments, takes 1-3 minutes. This time is much less than
the time needed to reconstruct the image from the dictionary.

7.3 Shape reconstruction

In this section we describe how we reconstruct the geometry when provided
with a new image I and a learned dictionary D. We first divide the input image
into a set of overlapping patches. We then find the dictionary patches in D
that are closest in appearance to the patches extracted from the test image 1.
Finally, we reconstruct the 3D shape from the results of the dictionary look-up
using a Markov Random Field (MRF) model.

We divide the image I into a set of overlapping patches. We define an image
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patch P; for each image pixel j, so that P; is centered at pixel j and has size
n x n. This way, we extract all possible image patches from the input image
I. For each image patch, we search the dictionary for dictionary patches of
similar appearance. We retrieve the kp dictionary patches that are closest in
terms of appearance to image patch P; (we define the metric to compare patch
appearances in the next section, Sec.7.3.1). Because we defined image patches
centered at each pixel, a given pixel i is covered by up to n? overlapping image
patches. As a result, there are up to kpn? dictionary matches that include
pixel 7, with each dictionary match defining a normal vector for pixel i. Each
of these results is considered a hypothesis about the vector at pixel i.

Because of the dependency of patches on scale, we repeat this search for
a set of different scales §. We use re-scaled versions of the original image, at
scales both coarser and finer. We examine every patch at the coarsest scale.
At finer scales, we only examine those image patches that have image variance
above a given threshold (0.001 in our experiments). Moving to finer scales,
the patches get smaller relative to the image. As a result, the average image
variance per patch reduces, so that only finer details are examined at finer
scales (see Fig.7.4). The dictionary matches of size n x n at each scale are
then re-scaled to the scale of the original image. As a result, the final set
of dictionary matches contains patches of varying sizes, corresponding to the
different image scales used for the search.

The above procedure generates up to |S|kpn? normal vector hypotheses
for each image pixel i. From this large set of hypotheses, we keep only the
k normal vectors that correspond to the k£ dictionary patches with the lowest
matching cost that contain this image pixel. These candidate normal vectors
will be subsequently used in the MRF optimization described in section 7.3.2
to obtain the final normal map.

7.3.1 Dictionary search

To determine how well a dictionary patch (consisting of a normal map patch
and a set of appearance statistics) matches an image patch (consisting of a
patch of image intensities) we use the Mahalanobis distance.

Let P; be an image patch consisting of appearance P]A (a n x n patch of
per-pixel intensities) and a foreground/background mask PjM . Projecting the
foreground pixels of appearance PJA onto the appearance wavelet basis, we
obtain a set of coefficients ozj‘ that describe the image patch appearance. We
compute the distance between the appearance of P; and that of a dictionary
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patch D; by the Mahalanobis distance:

DA, B = | 3 L) )

m=1 (o’?(m))2

, (7.2)

where p#t and o are the mean and variance of the appearance coefficients of
the appearances produced by dictionary patch D; under different reflectances,
as computed during training .

To compute the quality of the match between dictionary patch D; and
image patch P;, we also compute the similarity of the foreground/background
masks of the two patches:

DD Py) = -5 33" [P () = PGy (73)

z=1 y=1

where [DM(z,y) = PM(xz,y)] = 1 if both masks agree for pixel (z,y) and 0
otherwise.
The final cost of using dictionary patch D; to explain image patch P; is
then:
cost(D;, Pj) = Da(D;, P;) + wy Dy (D;, Pj), (7.4)

where w); is a weight that determines how strictly we want the foreground /background
mask to match between the two patches (the same as in Eq.7.1). Therefore,
the best matches in the dictionary to explain an image patch P; will be able
to produce similar appearances while at the same time will have a similar

foreground /background mask.

7.3.2 Combination of dictionary matches

Having obtained a set of dictionary matches, we then produce one normal map
per scale that contains the average of the best £ matches from the dictionary
for each pixel. The normal maps for each scale are combined to produce a
first guess about the final normal map, by setting the normal of each pixel
to be the average normal of the finest scale that has been recovered for that
pixel. The results we obtain at each scale and their combination to produce

'We have assumed that covariances between appearance coefficients are 0, which lead to
no significant deterioration in results, but significantly faster training and testing.

109



Figure 7.4: Combining matches over different scales to produce an initial guess about
the normal map. a) original image; b-d) the normal maps produced by averaging
dictionary matches at 3 different scales; e) the combination of all scales to produce
an initial guess about the normal map; f) the final result from our method.

the initial guess are shown in Fig.7.4.

We refine this initial guess to produce the final normal map by modeling
the problem as an MRF model. Through the MRF optimization, we estimate
a normal map for the image that is both close to the discovered dictionary
matches and that satisfies anisotropic smoothness constraints.

Our MRF model can be represented by a 4-connected 2D lattice, where
each node corresponds to an image pixel. Each random variable z; at pixel
1 indicates a normal vector n;. Therefore, the labels x; take values from a
continuous domain. The energy of the MRF model is:

E(x) =Y ¢ila) +wy Y il zy), (7.5)

i€l i,jEN

where 7 is the set of image pixels, A is the set of neighboring pixels in the
4-connected grid, ¢;(z;) is the singleton potential that associates the labels z;
with the geometry hypotheses recovered from the dictionary D and v;;(x;, z;)
is the pairwise potential associating neighboring pixels ¢ and j. The w, was
set to 0.1 in our experiments.

The form of the singleton potential is:

{arCCOS (n(z:) - n(Dy)) } 7 (7.6)

¢i(s) = w; min cost(D;)

% ;
J

where n(z;) is the normal vector at pixel ¢ indicated by label x;, n(D;) is the
normal vector at pixel ¢ as predicted by match j, and cost(D;) is the cost
associated with match D;. Furthermore, w! is a weight that corresponds to

)
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how reliable we expect the dictionary matches at pizel i to be.

We express w! based on two observations: dictionary matches are more
reliable when there is enough local image variability (flat image regions are the
least informative), and dictionary matches are not reliable when the matches
in different scales differ significantly from each other. Therefore, we define w!
as: . -

Wi =1 @ (7.7)
where o; is the local image variance at pixel ¢, which is computed as the
variance of the image pixel intensities in a 6 x 6 patch centered at pixel 7. The
term ¢(i) represents how much the recovered dictionary patches differ at pixel
1, and is defined as:

q(i) = % Z Z arccos (n(D3) - m;) (7.8)

s=0 j

where S is the set of different scales we are examining, D; indicates the j-
th recovered dictionary patch for pixel ¢ using scale s, and n; is the normal
vector at pixel ¢ obtained by averaging the normals at pixel ¢ from all recovered
dictionary matches at all scales.

The pairwise potentials ;;(x;, x;) enforce smoothness between the normals
of neighboring pixels ¢ and j:

Yij(x;, x;) = wy; arccos (n(x;) - n(z;)), (7.9)

where w;; is a weight computed as a function of the image gradient between
pixels ¢ and j:
W;; = max {O, 1-— vaIij} s (710)

and wy determines how sensitive the smoothing term is to image gradients
(we set wy = 4 in our experiments).

An alternative formulation @/}ZLJ for the pairwise potentials could take into
account the image intensities to increase the detail in the final result. This
however necessitates the assumptions of a reflectance model. To produce this
alternative pairwise potential form, we assume Lambertian reflectance. We
introduce the image intensities in our model using the differences of intensities

111



between neighboring pixels ¢ and j:

(@i, ;) = (@i, 25)+ (7.11)
+wy, ((I; = I;) — (max {0, n(z;) - d} — max {0,n(z;) - d}))?,

where d is the light direction and I; and I; are the image intensities at pixels
1 and j. The weight w; modulates the contribution of the new Lambertian
term to the final solution. In practice, this modified form of the pairwise
potentials increases the detail of the result, but it also introduces artifacts
and shape distortions, especially in the case of real photographs with non-
lambertian surfaces. Therefore, unless for a certain application it is safe to
assume Lambertian reflectance, this alternative formulation of the pairwise
potentials would not be recommended.
We infer the final normal map by minimizing the MRF energy over the
labels x:
X = arg mxin E(x) (7.12)

We chose to use the QPBO [53, 86] and fusion-move [107] algorithms to
perform inference. The QPBO algorithm is used to solve a binary MRF la-
beling problem between the current set of node labels X and a set of proposed
labels x’. The solution is initialized to our initial guess about the normal map,
produced by keeping the average normal of the finest scale available for each
pixel. We perform a predefined number of iterations, and at each iteration
we generate the set of proposed normals (indicated by labels x) by adding a
small random offset to each normal vector in the current solution x.

7.4 Experimental Evaluation

We evaluated our method on both real (Fig.7.6) and synthetic (Fig.7.7) data.
For evaluation on synthetic data, we used a set of 3D models rendered assuming
Lambertian reflectance. The set consisted of 6 models of real objects captured
with a 3D scanner [178, 23] and rendered from 142 different viewpoints and a
set of 2.5D range images of 11 different objects [58], captured from 66 different
viewpoints. We used a subset of the viewpoints available, resulting in a set of
150 images. We used leave-one-out cross-validation to evaluate our algorithm:
we reconstructed the shape from an image of model 7 using a dictionary trained
on all models other than i (excluding multiple views of the same object as well).
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Figure 7.5: The effect of patch size demonstrated using a special dictionary of spher-
ical patches: a) the original image; b-d) the normal maps reconstructed from the
original image using a dictionary that contains only patches representing spherical
surfaces. We reconstruct the original image using a dictionary of 4 x 4 pixel patches
(b), an image enlarged by a factor of 2 using 8 x 8 patches (c), and an image enlarged
4 times using 16 x 16 pixel patches. It can be seen that larger patch sizes offer a
much better support to infer local curvature. No detail was added while enlarging
images.

We used 4 scales (1/4, 1, 2 and 4 times the size of the original image) to recover
matching patches from the dictionary. The smaller scale better captures the
overall shape of the object, while finer scales can better capture detail. A total
of 5000 iterations was performed during MRF inference. The running time of
our algorithm was 20-40 minutes per image, depending on image size and the
size of the dictionary (running time measured on an Intel Core i5 machine).
Training for a dataset of 150 images takes slightly over an 1hr. We integrated
the normal maps estimated by our method using the M-estimator [1], in order
to produce the final 3D surfaces (Fig 7.8).

For our experiments, we used a dictionary of 30000 patches of size 12 x
12 pixels. We used a Haar wavelet basis of size 16 and the first 90 PCA
eigenvectors for the patch normal maps. We observed that dictionaries of at
least 10000 patches were necessary in order to get satisfactory reconstructions,
while having more than 30000 patches (for the selected patch size) was usually
only marginally beneficial to our results.

Furthermore, it was apparent from our experiments that the patch size
needs to be at least 8 x 8 pixels in order to reasonably capture local shape, with
larger patch sizes offering better results. We can demonstrate this through a
custom dictionary containing only patches of spherical surfaces. Reconstruct-
ing an image from that dictionary corresponds to assuming that the surface
is locally spherical. We examined different patch sizes, rescaling the image so
that the relative size of the patch to the image remains constant. For exam-
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ple, the image we used for patch size 16 x 16 was enlarged 4 times compared
to the original, used for patch size 4 x 4 (no details where added by enlarg-
ing the images). The reconstructed 3D shape obtained is significantly more
accurate with patch sizes larger than 8 x 8 pixels, with the best results ob-
tained by the largest patch size we tried, 16 x 16 pixels (see Fig.7.5). This
dictionary, constructed by spherical surfaces, ignores the high-frequency in-
formation, capturing only the overall curvature of each patch. Therefore, our
result shows that relatively large patch sizes are required to reliably capture
the local curvature of surfaces. However, larger patch sizes require construct-
ing larger dictionaries. In our experiments, the choice of a 12 x 12 pixel size
was sufficient.

Figure 7.6: Reconstruction from a real photograph. From left to right, original
image (from [146]); the normal map estimated with our method; the normal map
after integrating our estimate using the M-estimator [1]; 3 rendered images with the
normal map we estimated and different light directions.

In our experiments, our method significantly outperforms previous shape-
from-shading approaches (Fig.7.9). It is able to reliably capture the general
orientation of surfaces and is able to reconstruct much more local detail than
other approaches [28, 177, 146]. This can be attributed to the fact that most
shape-from-shading approaches rely on some kind of smoothness constraint,
whereas in our case such constraints are replaced by the learned primitives.
Smoothness needs to be enforced much more weakly during our MRF inference,
allowing the solution to retain a lot of local detail. In our experiments with real

114



Figure 7.7: Reconstruction of normal maps of synthetic images. The images are
generated by rendering depth maps of objects collected by 3D scanning [178, 23].
We show the reconstructed normal maps and renderings of the reconstructed shape
under different illuminations.

data, our method also outperforms the shape-from-shading approach of [146]
that applies to specific cases of the problem that can be well-posed. The ability
of our method to handle surfaces that are not lambertian is one extra reason
for the improved performance on real images. The results in Fig.7.11 show
that the shape reconstruction with our approach is not significantly affected
by surface reflectances that deviate from the Lambertian model. Fig.7.11
further shows that our method can handle reflectance parameters that are
not included in the set of reflectance parameters used during training. The
use of the Mahalanobis distance further allows us to cope with images that
are not photometrically calibrated (e.g. underexposed images), which can be
challenging when matching the local patch appearance, since in the set of
reflectances used to build the distributions of appearances in the dictionary
we have also included surfaces with lower uniform albedo.

In Fig.7.10 we show the reconstructed 3D shape with our method for
Mozart, when illuminated from 3 different light directions.

One weakness of our method is that the quality of the results diminishes
in the case of objects with large flat surfaces, indicating that flat patches are
significantly more ambiguous than patches that contain even slight shading
variations.
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Figure 7.8: Examples of 3D surfaces reconstructed from the normal maps estimated
with our method, using the M-estimator [1].

7.4.1 Image relighting

In Fig.7.12 we show results with image relighting of real objects. The input
to our method is the original image, a foreground /background mask and the
light direction. We extract the brightness as the maximum of the RGB color
channels for each pixel. We apply our method to estimate the normal map. We
finally render the estimated normal map using Lambertian reflectance under
a new light direction. The final image is formed by transferring the hue and
saturation from the input image, and using the brightness from our rendering.
The result is realistically relighted images, as seen in Fig.7.12.

7.4.2 Refining coarse geometry

In this section we demonstrate how we can refine a coarse normal map using
our approach. The initial geometry is collected using a Microsoft Kinect (a
consumer device that includes a 3D scanner and a camera). The collected
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Figure 7.9: Comparison of our method with other approaches: a) original image;
Surface estimates by: b) [28]; ¢) [177]; d) [146]; e) our approach. Please note that our
approach captures both the overall shape of the object as well as the details better,
resulting in a 3D face with clearly discernible features and a closer resemblance to
the original.

Figure 7.10: Shape reconstruction with different light directions with our method:
Mozart, illuminated from 3 different light directions.

data are an image and a depth map. The depth values in the depth map are
reliable but of low resolution. Therefore, computing the normal vectors from
the depth map leads to unsatisfactory results, even when smoothing is used on
the depth values, as shown in Fig.7.13. Furthermore, the collected depth map
contains a lot of wholes, especially around the occlusion borders of objects.
We can use our approach to refine such results.

To refine coarse known 3D geometry, we make a very simple modification
to our dictionary search cost cost(D;, P;) in Equation 7.4: We add a matching
cost term between the normal map of dictionary patch D; and the coarse
(smoothed) normal map that is known for the test patch P;. The new cost
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Figure 7.11: Behavior of our approach for different surface reflectances. A synthetic
image has been rendered using the Ward reflectance model and different reflectance
parameters, corresponding to surfaces of varying specularity. From left to right,
the input image, the normal map estimated with our method, and three renderings
of the normal map under novel light directions. Rows a-c show results with three
different reflectance parameter choices of increasing specularity. The results show
that our approach is not significantly affected by reflectances that deviate from the
Lambertian model. In (c), the reflectance of the object has a stronger specular com-
ponent that the most specular component used to generate the local appearance
distribution for each dictionary patch while training. For comparison, in (d) we
reconstruct the same image as (c), but with a dictionary trained using reflectance
parameters that include surfaces as specular as or more specular than the test im-
age. It can be seen that the results in (c) are comparable to the results in (d),
demonstrating that the choice of reflectance parameters while training is not crucial
for the results.
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Figure 7.12: Two real objects, including some albedo variations, relighted with our
approach. First column: the input image; second column: the estimated normal
map with our method; Last three columns: three relighted versions of the original
image.

becomes:
M
cost'(D;, P;) = cost(Dy, Pj) + wg Z (af (m) — ajG(m))2, (7.13)
m=1
where af(m) is the m-th coefficient of the geometry of dictionary patch D,

&J-G(m) is the m-th coefficient of the coarse geometry of the test patch j, and
wg is a weight (we set that weight to 1 for our experiments).

With this modification, the resulting dictionary matches that try to explain
patch P; not only match the appearance of that patch, but also the known
coarse geometry. Because we are interested to refine the geometry, and there-
fore we assume the known geometry is coarse, we select a small value for M
in Eq.7.13. Thus, we require only the first few PCA coefficients of the geome-
try to match, corresponding to the low-frequency geometric information. The
geometric details are constrained only by the shading in this matching. We
chose M = 6 in our experiments shown in Fig.7.13.

Figure 7.13 shows the results for an example scene captured using a Kinect.
Our method is able to complete the holes in the collected depth map, and to
obtain a convincing normal map. We show the normal maps we obtain from
the Kinect depth data using various levels of smoothing on the depth values
for comparison.

The geometry refinement results we present here show how the approach we

presented in this chapter could be combined with the illumination and coarse
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Figure 7.13: Refinement of geometry captured with a Kinect: a) the image captured
by the Kinect; b) the depth map captured by the Kinect (notice that there are gaps
around the edges of the object); ¢) the normals computed by the depth map; d)
normals computed by the depth map after gaussian smoothing of the depth values; e)
the normals computed by refining the smoothed normal map (d) using our method.
Notice that we have correctly completed all the object edges, as well as increased
the detail in the object while removing noise.

geometry estimation of Chapter 6 in order to provide a complete treatment to
the problem. The missing link for this integration is the separation of albedo
from shading. While the work in intrinsic images offers such capabilities, the
quality of the results is not sufficient for the purpose of reconstructing shape
in complex natural images. However, the concept of dictionaries of shading
primitives could be extended to include factorizations of local appearance into
albedo and shading components. The shading component would then be con-
strained by the requirement to correspond to a plausible geometric surface,
making the extraction of intrinsic images significantly more robust. We be-
lieve that this would be a very interesting direction for future research.

7.5 Conclusions

In this paper we presented a data-driven approach to the problem of shape-
from-shading from a single image. We described how we can build a dictio-
nary that captures in a straight-forward way the correlations between different
structures in local shading and geometry. Such a dictionary can provide a set
of local hypotheses to explain the geometry underlying an observed image.
The final surface structure can be recovered by combining these hypotheses in
an MRF model. The advantages of a data-driven approach are that it removes
a lot of typical considerations in SfS algorithms, such as boundary conditions
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or the choice of camera model, and enables us to explicitly deal with surfaces
that deviate from the lambertian reflectance model. The results with this ap-
proach outperform previous shape-from-shading approaches, even when such
approaches make significantly more assumptions than ours. Futhermore, the
work presented in this chapter opens several areas for future research:

e We can try to learn a dictionary for the more complex case of global illu-
mination, in order to model interreflections. Apart from using a training
set rendered under global illumination, we should choose the frequencies
of patch appearance in an informed way [50] to obtain good matches
from the dictionary. The expression of appearance on a wavelet basis
facilitates the development of the appropriate distance measures.

e A second important extension to this work would be the incorporation
of albedo variations in the learned dictionary. Specifically, a dictionary
that contains possible decompositions of local appearance to shading and
albedo patterns could be learned. This approach resembles prior work
in intrinsic images [174] - the use of such a decomposition in a shape re-
construction framework would offer however a powerful constraint: the
shading component of the decomposition must correspond to a plausi-
ble 3D surface. Furthermore, the decomposition of local appearance on
a wavelet domain (or similar) allows the association of specific spatial
frequencies to albedo or shading, facilitating such decompositions.

e As seen from the previous two areas for future work, one of the most
important components of such approaches is the choice of a basis and
distance metric for local appearance. Our choices enabled the use of this
method on real photographs that are not photometrically calibrated,
and where surfaces deviate from the Lambertian assumption. There is,
however, potential for significant improvements given more research on
how appearance distance metrics affect the reconstructions.

e An example of possible future advances related to the way appearance
is defined would be the estimation of reflectance parameters. The cur-
rent approach models appearance as a distribution produced by a set
of difference reflectance parameters. Instead of assuming reflectance is
an unknown parameter and effectively treating it as noise, one could
define the distribution of appearances for a given geometric primitive
as a high-dimensional manifold over reflectance parameters, based on a
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low-parametric BRDF model (e.g. [121]). Such modeling could enable
the estimation of reflectance jointly with shape reconstruction.

e The distribution of appearances for each geometric primitive is re-computed
for the light direction of each input image that needs to be reconstructed.
This naturally allows the application of our method in cases of complex
natural illumination. In such cases, though, the matching of observed
shading patterns to dictionary patches can become challenging.

The future work described here could potentially allow for a complete,
data-driven treatment of the shape-from-shading problems in general images.
Even if such a complete treatment of this problem is not possible, given the
inherent limitations of shape-from-shading, our approach allows for a useful
amount of information to be extracted from shading in a large class of images.
It therefore can allow the combination of shading with other sources of infor-
mation in more complex multi-cue frameworks, towards the ultimate goal of
image understanding.
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Chapter 8

Conclusions

In this thesis we examined two of the three inverse rendering problems, those
of estimating illumination and reconstructing 3D shape from shading varia-
tions. We presented approaches that attempt to solve these problems using
probabilistic approaches that relax the strong assumptions of prior work.

In illumination estimation, we relaxed the onerous assumption of accurate
knowledge of geometry, presenting three different techniques that estimate il-
lumination from the cast shadows in an image: 1) a method based on EM and
the modeling of illumination as a mixture of von Mises-Fisher distributions,
which is able to model soft shadows as well; 2) a method that estimates illu-
mination by associating the light source parameters with the observed shadow
edges in the image, which offers competitive performance and low computa-
tional complexity; 3) a method that combines ideas from the two previous ones
and models the creation of cast shadows as a Markov Random Field model.
This approach not only offers a robust and effective method for the estimation
of illumination in real images, but it also provides a powerful formalism that
can incorporate other facets of the problem in a unified framework. Along
these lines, we introduce parametrizations of geometry into this framework
and demonstrate that it is possible, through this MRF formulation, to jointly
estimate all major components of the problem at the same time: cast shadows,
illumination and geometry parameters.

Although through this approach we are able to infer geometry parameters
that define the rough 3D geometry of occluders in the scene, the information
contained in cast shadows is not adequate to estimate detailed 3D shape.
Moving towards this direction, we proposed an approach that infers 3D shape
from the local shading variations in the observed surfaces. This approach
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is based on the idea of building a dictionary of geometric primitives, and
learning the relationship between the local geometry and appearance. When
reconstructing an image, the hypotheses about local 3D geometry produced
by this dictionary are combined to infer the final 3D surface through an MRF
model. This approach is demonstrated to offer a reliable way to overcome
the challenges and ambiguities that plague the shape-from-shading problem.
We are able to estimate the 3D shape of real objects, even when they exhibit
non-lambertian reflectance, and obtain results that are superior to prior work
while at the same time relaxing many of the assumptions that work relied on.

The work in both areas aims to make the application of inverse rendering
problems viable in real-world scenarios where we examine natural scenes that
may be of significant complexity, and the extra information provided, apart
from a single image, is limited and unreliable. The result is that the meth-
ods we propose are useful not only for direct practical applications, such as
inserting a synthetic object in a photograph or relighting a photograph ob-
tain with flash illumination, but also as components in the ultimate goal of
scene understanding. On one hand, we formulated our methods in modular
frameworks based on graphical models. Therefore, new components can be
added to our framework, or the entire framework can be used as a component
in a larger graphical model that captures the interaction of various sources of
information about a scene, such as object detectors. On the other hand, we
significantly relax the assumptions about the initial knowledge of the scene.
Hence, our methods can utilize approximate information obtained with auto-
matic methods, which would be a necessity in order to integrate them in larger
scene understanding frameworks.

This integration towards larger scene understanding tasks would be one
major direction for future research, based on the work presented in this thesis.
A second general line of work would be the extension of the ideas we presented
about 3D shape reconstruction, not only to improve performance, but: 1) to
allow the more concrete integration of reflectance parameters in the problem,
and 2) to incorporate a decomposition of local appearance into albedo and
shading. The latter would introduce ideas similar to those proposed for the
extraction of intrinsic images to our approach, but would combine them with
powerful geometric constraints towards a complete treatment of the shape-
from-shading problem in the case of general images with varying albedo.
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