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Abstract of the Dissertation

Teichmüller Space of a Once Punctured Disk:

Complex Coordinates on the Space of Abelian

Differentials and the Takhtajan-Zograf Metric

by

Ki Woo Song

Doctor of Philosophy

in

Mathematics

Stony Brook University

2012

We construct an embedding of T (Z), the Teichmüller space of Z—a Fuch-
sian group with a single parabolic generator—into the space of Nehari bounded
abelian differentials on the Riemann surface M = Z\H. This “pre-Bers em-
beddig” is much simpler, and yet it still draws many parallels with the Bers
embedding, such as the existence of a linear local right inverse. This gives rise
to new complex coordinates which are compatible with the Bers coordinates.
The differentials of the pre-Bers and the Bers embedding belong to a one pa-
rameter family of operators on the space of Beltrami differentials on M , which
behave nicely with the Takhtajan-Zograf metric on T (Z).
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Chapter 0

Introduction

0.1 History and Background

In this dissertation, we define T (G)—the Teichmüller space of a Fuchsian
group G—to be a quotient of the unit ball centered at 0 in the Banach space of
bounded measurable (−1, 1)-differentials on H. We are particularly interested
in the case where G = Z, the group generated by z 7→ z + 1. Since Z\H '
D− {0}, we say that T (Z) is the Teichmüller space of a once punctured disk.
We are also interested in the case where G = {1}, the trivial group. T (1) is
called the universal Teichmüller space. This space is universal in the sense
that every Teichmüller space T (G) embeds complex analytically into T (1).

The identification of T (1) with a subgroup of quasisymmetric maps on R
gives T (1) a group structure via composition of quasisymmetric mappings.
The right multiplication is a biholomorphic map, but the left muliplication is
not even continuous (c.f. [6]). While this does not induce a group structure on
T (G) for a general G, it is shown in [13] that a suitable choice of normalization
makes T (Z) a subgroup of T (1)

Interpreting T (G) as a moduli space of marked surfaces, one defines the
Bers fiber space over T (G) as the universal cover of the tautological fiber
bundle T (G) over T (G). For G = {1}, F (1) = T (1), and this space is known
as the universal Teichmüller curve. T (1) was extensively studied by Teo in
[12], where it is shown that

1. There is a “pre-Bers embedding” of T (1) into the space of Nehari bounded
abelian differentials on D, which induces the usual complex structure.

2. Conformal welding gives an identification of T (1) with a subgroup of
quasisymmetric mappings of S1 fixing 1. The right multiplication on the
induced group structure induced on T (1) is holomorphic.
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3. Velling’s second variation of spherical areas defines a unique right in-
variant Kähler metric on T (1), which pulls back to the Kirillov metric
on

S1\Diff +(S1) ↪→ S1\Homeoqs(S1) ' T (1).

In [5], Bers proved that if G and Ġ are such that G\H and (Ġ\H) − {a}
are conformally equivalent, then there is a biholomorphism between T (G) and
F (Ġ). In particular, this gives an isomorphism between T (Z) and T (1).

The Bers isomorphism between T (Z) and T (1) gives a very interesting
phenomenon in which T (Z), a complex embedded submanifold of T (1), is at
the same time the total space of a complex fiber bundle over T (1).

T (Z) ' T (1)
↓

T (Z) ↪→ T (1)

To be more precise, let us denote by TD(G) the Teichmüller space modeled
on the domain D, and similarly for TD(G). Let p : H → D \ {0}, where
p(z) = e2πiz. This induces the isomorphism between TH(Z) and TD(1), so the
diagram becomes

TH(Z) ' TD(1) [0] 6= [w k(p(z))
k(p(z))

] 7→([0], w)

↓

7→

TD(Γ0) ↪→ TD(1) [0] 7→ [0]

where Γ0 is a subgroup of PSU(1, 1) generated by a single parabolic element.
The isomorphism between TH(Z) and TD(Γ0) can be characterized as a pull-
back on the Beltrami differentials by a Möbius transformation mapping Z to
Γ0 (which in turn, would map H to D). Under the Bers isomorphism,

TD(1) 3 ([0], w) 7→ [w
k(p(z))

k(p(z))
] ∈ TH(Z)

where k(z) = z/(1 + z)2, a rotation of the Koebe function.
Teo studied the case G = Z and Ġ = {1} in [13], where it is shown that

the Bers isomorphism in this case is actually a group isomorphism, and the
pull-back of the Velling-Kirillov metric on T (1) to T (Z) at [0] is given by

〈µ, ν〉TZ =

∫
u
µ(z)ν(z)d2z. (1)

2



Here µ, ν ∈ Ω−1,1(H,Z) ' T[0]T (Z), and u is the vertical strip [0, 1]× [0,∞).
This form of the Velling-Kirillov metric has a striking resemblance to a

metric discovered by Takhtajan and Zograf in [10] for Tg,n, the Teichmüller
space of finite conformal type (g, n). The Takhtajan-Zograf metric on Tg,n is
given by

〈µ, ν〉TZ =

∫
X

µ(z)ν(z)E(z, 2)ρ(z)d2z. (2)

Here µ, ν ∈ Ω−1,1(X) ' T[X]Tg,n, ρ is the hyperbolic metric, and E(z, s) is
the Eisenstein-Maass series for the uniformizing Fuchsian group G (i.e. X '
G\H). One can think of the Eisenstein-Maass series for Z to be E(z, s) =
(Im z)s. Substituting this expression for E into (2) gives (1). Takhtajan and
Zograf showed that (2) is a Kähler metric. Likewise, Teo’s work in [13] shows
that (1) defines a (unique) right invariant Kähler metric on T (Z).

The properties of Takhtajan-Zograf metric in the finite conformal case
has been studied by Obitsu, who showed that it was incomplete in [8]. He
also studied its asymptotic behaviors in relation to the Weil-Petersson metric
through the investigation of the properties of the Eisenstein-Maass series in
[9]. It was conjectured by Obitsu in [8] that the metric has negative sectional
curvature, but currently nothing is known.

0.2 This Dissertation

Here, we briefly discuss the organization and the content of this dissertation.
Chapter 1 is a review already known results. The main purpose of this

chapter is to review some basic Teichmüller theory and to fix notations.
Chapter 2 introduces a “pre-Bers embedding” of T (Z) into the space of

abelian differentials. By identifiying T (Z) with a normalized subspace of con-
formal mappings of L, we define the map θ as the logarithmic derivative of
the derivative. This map is injective on T (Z), and its image lies in the Banach
space of Nehari bounded holomorphic 1-differentials of norm less than 6. The
image of θ contains a ball of some radius α centered at 0. We will also show
that this map is holomorphic and compute its derivative.

Chapter 3 uses the embedding from chapter 2 to construct a coordinate
chart on T (Z). We start by constructing a linear local right inverse from a
small ball in A1

∞(L,Z) into the subspace H−1,1(H,Z) of pre-Bers harmonic
Beltrami differentials, similiar to the Ahlfors-Weill Local section for the Bers
embedding. Using this right inverse, we construct complex coordinate charts
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on T (Z) based on A1
∞(L,Z) and verify its compatibility with the complex

structure induced by the Bers embedding. We end the chapter with some
variational formulas for H−1,1(H,Z) which closely parallel those of Ω−1,1(H).

Chapter 4 introduces a 1-parameter family of projection operators on L∞(H,Z)
of the form

Ns = csE(∗,−s)PE(∗, s)P,

where s is a parameter, cs a normalizing constant, P the Bers projection, and
E(z, s) = (Im z)s, which may be thought of as the Eisenstein-Maass series
for the group Z. We show that NsNt = Ns and 〈Nsµ,Ntν〉 = 〈Nkµ,Nlν〉 up
to a multiplicative constant that only depends on the parameters. We pay a
special attention to N2, which has the property 〈N2µ,N2ν〉 = 〈N2µ, ν〉 as P
does with respect to the Weil-Petersson pairing.

Chapter 5 uses the tools from preceding chapters to study the properties of
Takhtajan-Zograf metric on T (Z). The material in this chapter is work that
is still in progress and will need further investigation. The main conjecture
is an expression for the first derivative of the Takhtajan-Zograf metric in the
coordinates discussed in Chapter 3:

∂gµν
∂κ

(0) =

∫
u
N2µ(z)ν(z)N2κ(z)d2z, (3)

where µ, ν, κ ∈ H−1,1(H,Z). This expression, if valid, gives an indepedent
proof of the fact that Takhtajan-Zograf metric on T (Z) is Kähler.
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Chapter 1

Preliminary Teichmüller Theory

Here we present some necessary facts from Teichmüller theory. For details, see
[3, 6, 7].

1.1 Definition of T (G).

Let H = {z ∈ C : Im z > 0}, L = {z ∈ C : Im z < 0}, and ρ(z) =
−(z − z)−2 denote the hyperbolic metric of constant curvature −4 on H (or
L). The subscripts z and z will always stand for the partial derivatives ∂

∂z
=

1
2

(
∂
∂x
− i ∂

∂y

)
and ∂

∂z
= 1

2

(
∂
∂x

+ i ∂
∂y

)
, unless otherwise stated.

Let G be a torsion free discrete subgroup of PSL(2,R). A measurable
function σ : D → C on a domain D is said to be a (q, r)-form if σ(z) =
σ(g(z))g′(z)qg′(z)r for all g ∈ G. The (−1, 1)-forms are the Beltrami differ-
entials. If σ is a Beltrami differential, then |σ| is a measurable real valued
function. We denote by L∞(−1,1)(D,G) the complex Banach space of Beltrami

differentials on D with the norm ||σ||∞ = ess sup |σ|. For r > 0, we let
L∞(−1,1)(D,G)r = {µ ∈ L∞(−1,1)(D,G) : ||µ||∞ < r}. In general, for any normed
vector space V and r > 0, we denote by Vr the elements of V of norm less
than r.

We give two definitions of T (G).
Given µ ∈ L∞(−1,1)(H, G)1 we define an extension µ̂ to C via reflection:

µ̂(z) =

{
µ(z), Im z > 0

µ(z), Im z < 0,
(1.1)

so that
µ̂(z) = µ̂(z). (1.2)

5



Consider the unique quasiconformal mapping of the (extended) plane solving
the Beltrami equation

fz = µ̂fz (1.3)

which fixes 0, 1 and ∞. We will denote the solution to (1.3) by wµ.
Due to the reflection symmetry (1.2), wµ satisfies

wµ(z) = wµ(z). (1.4)

It follows from (1.4) that wµ preservers R. Since wµ is orientation preserving,
the domains H, L are preserved as well.

We could also extend µ by

µ̌(z) =

{
µ(z), Im z > 0

0, Im z < 0.
(1.5)

Again, consider the unique quasiconformal mapping of the (extended) plane
solving the Beltrami equation

fz = µ̌fz (1.6)

which fixes 0, 1 and ∞. We will denote the solution by wµ. Note that wµ is
conformal on L.

If f = wµ (or wµ), the condition µ = µ◦g g′
g′

for g ∈ G implies that both f ◦g
and f are solutions to (1.3) (or (1.6)). By uniqueness, f ◦g ◦f−1 ∈ PSL(2,C).

Definition 1.1.1 (Model A). For µ, ν ∈ L∞(−1,1)(H, G)1, define an equivalence

relation µ ∼A ν given by wµ|R = wν |R. The Teichmüller space of G is defined
as

T (G) = L∞(−1,1)(H, G)1/ ∼A .

Definition 1.1.2 (Model B). For µ, ν ∈ L∞(−1,1)(H, G)1, define an equivalence

relation µ ∼B ν given by wµ|L = wν |L. The Teichmüller space of G is defined
as

T (G) = L∞(−1,1)(H, G)1/ ∼B .

wµ|R = wν |R if and only if wµ|L = wν |L, so these two definitions are equiv-
alent. The set T (G) is a topological space with the quotient topology induced
from L∞(−1,1)(H, G)1. We will denote the quotient map by Φ, and for every

µ ∈ L∞(−1,1)(H, G)1 set Φ(µ) = [µ] ∈ T (G).

6



1.2 The Bers Embedding and the Ahlfors-Weill

Local Section

For σ a (p, 0)-differential, we define

||σ||p,∞ = ||ρ−pσ||∞ (1.7)

andAp∞(L, G) to be the complex Banach space of holomorphic (p, 0)-differentials
with the norm given by (1.7).

Let Φβ be defined by

L∞(−1,1)(H, G)1 3 µ 7→ wµ|L = f 7→ S(f) ∈ A2
∞(L, G), (1.8)

where S(f) =
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

, the Schwarzian derivative.

The image of Φβ is contained in A2
∞(L, G)6 and contains A2

∞(L, G)2. Φβ

descends to a map β to T (G) known as the Bers embedding, and it induces a
complex structure on T (G).

The Ahlfors-Weill local section, given by

Λ(φ)(z) = −1

2
ρ−1(z)φ(z) (1.9)

is a right inverse to Φβ on A2
∞(L, G)2. Λ maps A2

∞(H, G) into

Ω−1,1(H, G) = {µ ∈ L∞| µ(z) =
(z − z)2

2
φ(z), φ ∈ A2

∞(H, G)},

the space of harmonic Beltrami differentials.
The derivative of Λ◦Φβ : L∞(−1,1)(H, G)1 → Ω−1,1(H,Z)1 at 0 is a projection

operator on L∞(−1,1)(H, G) into Ω−1,1(H, G), which can be written explicitly as

(Pµ)(z) = −3(z − z)2

π

∫
H

µ(u)

(u− z)4
d2u. (1.10)

We will refer to P as the Bers projection.
The kernel of P is the space of infinitesimally trivial Beltrami differentials:

N (H, G) =

µ ∈ L∞(−1,1)(H, G) :

∫∫
D

µφ d2z = 0 for all φ ∈ A2
1(H, G)

 ,

(1.11)
where D is a fundamental domain of G in H, and A2

1(H, G) is the space of holo-
morphic (2, 0)-differentials which are integrable over a fundamental domain (in
particular, D).
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The decomposition

L∞(−1,1)(H, G) = N (H, G)⊕ Ω−1,1(H, G) (1.12)

identifies the holomorphic tangent space T[0]T (G) = L∞(−1,1)(H, G)/N (H, G) at

the origin of T (G) with the Banach space Ω−1,1(H, G).
The Banach space Ω−1,1(H, G) is not separable whenever G\H has an ideal

boundary.

1.3 Right Translation Map

Let [µ] ∈ T (G). For any representative µ ∈ [µ], let Gµ = wµ ◦G◦w−1
µ . For any

g ∈ G, we have that gµ = wµ ◦ g ◦w−1
µ is a Möbius transformation. Therefore,

gµ is completely determined by its restriction to R, and so it depends only on
the equivalence class of µ. Furthermore, since wµ preserves H and L, it follows
that Gµ is a Fuchsian group independent of the choice of the representative µ.
Let Hµ = wµ(H).

For any µ ∈ L∞(−1,1)(H, G)1, let Rµ : L∞(−1,1)(Hµ, Gµ)1 → L∞(−1,1)(H, G)1, so

that if Rµ(κ) = ν, then wκ ◦ wµ = wν . Equivalently,

κ =

(
ν − µ
1− µ̄ν

(wµ)z
(wµ)z

)
◦ w−1

µ . (1.13)

We will also use the notation κ = ν ∗ µ−1. Rµ descends to a map R[µ] :
T (Gµ)→ T (G) (by restricting to R), and it is a biholomorphic map of complex
manifolds. ([7]) (Similarly, one defines Rµ : L∞(−1,1)(H

µ, Gµ)1 → L∞(−1,1)(H, G)1

by using wµ instead of wµ.)
For every µ ∈ L∞(−1,1)(H, G)1, we have the following identification of tangent

spaces:

T[µ]T (G) = (DR[µ])[0]

(
T[0]T (Gµ)

)
' T[0]T (Gµ) ' Ω−1,1(H, Gµ). (1.14)

Let ν ∈ L∞(−1,1)(H, G). This defines a vector field ∂
∂ν

on L∞(−1,1)(H, G)1 by
∂
∂ν

(µ) = d
dt

∣∣
t=0

(µ+νt) ∈ TµL∞(−1,1)(H, G)1. For ν ∈ Ω−1,1(H, G), the vectorfield
∂
∂ν

can be pushed down to a vector field ∂
∂εν

on the open subset U0 ⊂ T (G)
corresponding to A2

∞(L, G)2. Using (1.14), we represent the tangent vector
∂
∂εν

([µ]) ∈ T[µ]T (G) by

∂

∂εν
([µ]) = PR(ν, µ) ∈ Ω−1,1(H, Gµ) (1.15)

8



where

R(ν, µ) =
d

dt

∣∣∣∣
t=0

(µ+ νt) ∗ µ−1 =

(
ν

1− |µ|2
(wµ)z
(wµ)z

)
◦ w−1

µ (1.16)

and µ is the unique harmonic representative of [µ].
From here on, we’re exclusively going to be looking at the case where

G = {1} or G = Z, where Z = 〈z 7→ z + 1〉. Since g′ = 1 for all g ∈ G, we will
simply identify all the differentials with functions on H (or L).

The following statement was originally given and proved in [13].

Lemma 1.3.1. Let µ ∈ L∞(H,Z)1. If G = Z, then Gµ = Z.

Proof. Let γ(z) = z + 1. For µ ∈ L∞(H,Z)1, we have γµ ∈ PSL(2,R). Since
γ is parabolic, and wµ fixes ∞, γµ is parabolic and fixes ∞. So γµ(z) = z + b.
Furthermore,

γµ ◦ wµ(z) = wµ(z + 1)

γµ ◦ wµ(0) = wµ(1)

γµ(0) = 1.

It follows that γµ(z) = z + 1, and Gµ = 〈z 7→ γµ〉 = 〈z 7→ z + 1〉 = Z.

In particular, this show that T (Z) is a subgroup of T (1), and for [µ] ∈ T (Z),
R[µ] defines a right multiplication on T (Z).
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Chapter 2

Embedding of T (Z) into A1
∞(L,Z)

We define the Banach space of Nehari bounded abelian differential to be

A1
∞(L,Z) = {φ ∈ Hol(L) : sup |(z − z)φ(z)| <∞},

with the norm ||φ||1 = sup |(z − z)φ(z)|.
In this chapter, we will prove the following theorem.

Theorem 2.0.1. Let Θ : L∞(H,Z)→ A1
∞(L,Z) be given by [µ] 7→ d

dz
log(wµ|′L).

Then,

(a) Θ descends to an injective map on T (Z).

(b) Θ(L∞(H,Z)) ⊂ A1
∞(L,Z)6.

(c) There is a positive number α such that A1
∞(L,Z)α ⊂ Θ(L∞(H,Z)).

(d) Θ is holomorphic, and its derivative at µ is given by

DµΘ(ν)(z) = − 2

π
(wµ)′(z)

∫
H

ν(u)(wµz )(u))2

(wµ(u)− wµ(z))3
d2u, (2.1)

where ν ∈ L∞(H,Z).

Throughout the rest of this dissertation, we will denote

θ(h) =
hzz
hz

=
d

dz
log hz,

and

Ψ(φ) = φz −
1

2
φ2,

so that if S denotes the Schwarzian derivative, we have S(h) = Ψ(θ(h)).
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2.1 Existence and Uniqueness

In this section, we will prove that part (a) of the main theorem in fact holds
for T (1). The fact that Θ descends to θ on T (1) is trivial, so it is sufficient
to show that θ is injective. This will be done by proving an existence and
uniqueness statement for θ analogous to the Schwarzian derivative.

Let D denote the space of univalent functions on L which admits a quasi-
confomal extension to C fixing 0, 1,∞. The identification T (1) ' D is given
by [µ] 7→ wµ|L.

Lemma 2.1.1. Let φ be a holomorphic function on a simply connected domain
A in the complex plane. Then there is a locally injective holomorphic function
f in A such that

θ(f) = φ. (2.2)

The solution is unique up to a post composition by a Möbius transformation
fixing ∞.

The uniqueness part of Lemma 2.1.1 shows that θ is injective on D. The
existence part will become important in the proof of part (c). (See section 2.3)

Note 2.1.1. Let T (1) the be universal Teichmüller curve over T (1). Unlike
when T (1) is modeled on the unit disk, the map θ is not injective as a map
from T (1) to A1

∞(H) (c.f. [12].) In fact, the map collapses the fibers of T (1)
over T (1). This can be most directly seen by identifying T (1) with the space
of univalent function on H that admit a quasiconformal extension with fixed
points 0 and ∞.

Proof of Lemma 2.1.1. We rewrite (2.2) as

v′ − φv = 0, (2.3)

where v = f ′. Let z0 ∈ A, and let φ(z) =
∑

n≥0 an(z − z0)n.
If v(z) =

∑
n≥0 cn(z − z0)n is to be a solution to (2.3), then

(n+ 1)cn+1 =
n∑
k=0

an−kck. (2.4)

If c0 = 0, then we get that cn = 0 for all n. Set c0 = 1.
Let r,M > 0 be chosen such that |an| < M/rn, and rM < 1. Such numbers

necessarily exist since

11



φ(n)(z0)

n!
=

1

2πi

∫
CR

φ(w)

(w − z0)n+1
dw (2.5)

|an| ≤
M(R)

Rn
, (2.6)

where CR is the circle of some fixed radius R centered at z0, and M(R) =
sup|w|=R |φ(z)|. By the maximum principle, M(r) is an increasing function of
r, and so for r < R, we have |an| < M(r)/rn ≤M(R)/rn.

Let M(R) = M and choose r sufficiently small so that rM < 1. Then,

(n+ 1)|cn+1| ≤
n∑
k=0

M

rn−k
|ck| <

1

rn+1

n∑
k=0

|ck|rk. (2.7)

Using c0 = 1, the induction hypothesis |ck| < 1/rk for k = 1, 2, . . . , n, and
(2.7), we have

|cn+1| <
1

rn+1
, n ≥ 0. (2.8)

It follows that v(z) =
∑

n≥0 cn(z− z0)n is holomorphic on |z− z0| < r, and
solves the equation (2.3). Furthermore, since A is simply connected, analytic
continuation and the monodromy theorem gives us a global solution. We also
have that if v(z0) = 0 at some point z0, then v ≡ 0 on A. So it follows that
either f is locally injective or constant.

Uniqueness follows directly from the relation:

θ(f ◦ g) = θ(f) ◦ g g′ + θ(g). (2.9)

Suppose that g is a solution to the equation θ(g) = φ. If h is any other
solution, we have (locally)

0 = θ(h)− θ(g) = θ(h ◦ g−1) ◦ g g′. (2.10)

Since θ(h ◦ g−1) = 0, it follows (for instance, from setting φ = 0 in (2.3)) that
h(z) = αg(z) + β for some α and β.

2.2 Global Bound

In this section, we will prove that part (b) of the main theorem holds for T (1).
We denote the space Ak∞(L) the Banach space of holomorphic functions on

L with the norm ||φ||k = supz∈L |(z − z)kφ(z)|.

12



Proposition 2.2.1. Let h be a univalent function on L. Then,

sup
z∈L
|(Im z)θ(h)(z)| ≤ 3. (2.11)

This bound is sharp.

Proof. Let λ(z) = i z−1
z+1

, a, b ∈ R with a > 0. For any univalent function h of
the lower half-plane, set

g(z) =
h(aλ(z) + b)− h(−ai+ b)

2iah′(−ai+ b)
. (2.12)

Then, g is a univalent function on the unit disk with g(0) = 0, g′(0) = 1. By
Bieberbach’s estimate,

|c2| =
∣∣∣∣g′′(0)

2

∣∣∣∣ ≤ 2. (2.13)

On the other hand, one can show that g′′(0) = −2 + 2iaθ(h)(−ai + b). It
follows from (2.13) that

| − 1 + iaθ(h)(−ai+ b)| ≤ 2, (2.14)

and triangle inequality gives us the desired inequality.
h(z) = z−2 achieves the extremal value.

Note 2.2.1. z 7→ z2 on L is not an extremal function for ||θ(h)||1 = 6, but it
is still an extremal function for (2.13). Both z2 and z−2 are extremal functions
for the Bers embedding. (These maps are rotations of the Koebe function on
the unit disk pulled back to the lower half-plane, then composed with a Möbius
transformation.)

2.3 The Image of Θ Contains an Open Ball

Let D(G) ⊂ D with the property f ◦ γ = γf ◦ f for γ ∈ G, where γf ∈
PSL(2,C). For any G, the space T (G) can be identified with D(G) by [µ] 7→
wµ|L. For G = Z, if γ(z) = z+ 1, then γf is parabolic and fixes ∞. The other
two fixed points of f forces γf = γ, so f(z + 1) = f(z) + 1. In short,

D(Z) = {f ∈ D|f(z + 1) = f(z) + 1}. (2.15)

From Proposition 2.2.1, we know that θ on D(Z) maps into A1
∞(L,Z). We

will prove part (c) of the main theorem by showing that A1
∞(L,Z)α ⊂ θ(D(Z))

for some α > 0.
First, we start with a lemma.
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Lemma 2.3.1. Let Ψ(φ) = φz − 1
2
φ2. If φ ∈ A1(L) with ||φ||1 < δ, then

||Ψ(φ)||2 ≤ 4δ +
1

2
δ2. (2.16)

The proof of this lemma will be given later in this section.

Proposition 2.3.1. Let θ : D(Z)→ A1(L,Z) be given by

θ(f) =
f ′′

f ′
. (2.17)

Then, the image of θ contains an open ball centered at 0.

The group Z is used here for the first time.

Proof. For any normed vector space V , denote by Vr the the ball of radius r
centered at 0 in V . Let α be the positive root of 4δ+ 1

2
δ2 = 2. By Lemma 2.3.1,

Ψ(A1
∞(L,Z)α) ⊂ A2

∞(L,Z)2. We will show that A1
∞(L,Z)α lies in the image

of θ.
Let φ ∈ A1

∞(L,Z)α. By the existence part of Lemma 2.1.1, there is a locally
injective holomorphic function f such that θ(f) = φ. Since S(f) ∈ A2

∞(L,Z)2,
by the Ahlfors-Beurling extension theorem (cf. [6, Theorem II.5.1]), f is
injective and admits a quasconformal extension. By the Z-invariance of φ,
z 7→ f(z+ 1) is also a solution which is injective with a quasiconformal exten-
sion. The uniqueness part of Lemma 2.1.1 gives

f(z + 1) = af(z) + b. (2.18)

We will show that a = 1. If a 6= 1, then take z0 such that f(z0) 6= 0.
Repeated application of (2.18) gives

f(z0 + n) = anf(z0) + b

(
1− an

1− a

)
, (2.19)

and taking n→ ±∞ in (2.19) gives

f(∞) =∞ =
b

(1− a)
(2.20)

It follows that a = 1, and thus f(z + 1) = f(z) + b. The injectivity of f
forces b 6= 0.

Let g(z) = (f(z) − f(0))/b. Then, g ∈ D(Z), and θ(g) = θ(f) = φ. It
follows that A1

∞(L,Z)α ⊂ θ(D(Z)).
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Corollary 2.3.1. Let φ ∈ A1
∞(L,Z)α. If θ(f) = φ, then f(∞) =∞.

Note 2.3.1. Currently, it is not known whether the Z-invariance is a neces-
sary condition for Proposition 2.3.1. If Corollary 2.3.1 is true for D, then
Theorem 2.0.1 would hold for T (1).

Proof of Lemma 2.3.1. Suppose that φ ∈ A1(L), so that ||φ(z)||1 < δ. Let C
be a circle of radius R centered at z for R < |Im z|. Then,

φ′(z) =
1

2πi

∫
C

φ(w)

(w − z)2
dw (2.21)

|φ′(z)| ≤ δ

4π

∫
C

|dw|
|Im w||w − z|2

(2.22)

This integral can be computed exactly using residues:

∫
C

|dw|
|Im w||w − z|2

=
1

R2

∫ 2π

0

dθ

sin(θ) +R−1Im z
(2.23)

=
2

R2

∫
|w|=1

dw

w2 + 2i(R−1Im z)w − 1
(2.24)

=
2π

R2
√

(R−1Im z)2 − 1
. (2.25)

Therefore, we get the following estimate:

|φ′(z)| ≤ δ

2R
√

(Im z)2 −R2
. (2.26)

The right hand side of (2.26) achieves its minimum at R = (
√

2)−1|Im z|,
and so it follows that

|φ′(z)| ≤ δ

(Im z)2
, (2.27)

and by triangle inequality, we have

4(Im z)2|Ψ(φ)| ≤ 4(Im z)2(|φ′|+ 1

2
|φ|2|) ≤ 4δ +

1

2
δ2. (2.28)

Note 2.3.2. This is a modification of the proof of Theorem A.2. in [12].

Note 2.3.3. Using limiting rectangles instead of a circle, it is possible to
improve the estimate to 8

π
δ+ 1

2
δ2. I believe that the sharp estimate is 2δ+ 1

2
δ2.
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2.4 Holomorphicity and the Derivative

In this section we will prove part (d) of the main theorem. Let Θ : L∞(H)1 →
A1
∞(L) be given by µ 7→ θ(wµ|L). Proposition 2.2.1 says that the image of Θ is

contained in a ball of radius 6 at 0. We will introduce a shift of base point by
some α ∈ L∞(H)1, then show that the shifted map Θα also satisfies a global
bound. The global bound will be used to show that Θα is holomorphic at every
point. Its directional derivative at 0 will be computed, which corresponds to
the directional derivative of Θ at α. This

The exposition closely follows the corresponding discussion for the Bers
embedding in [7].

2.4.1 Shift of Base Point

For α ∈ L∞(H)1, set D1 = wα(L), D2 = wα(H). Let ρα be such that
ρα(w)|dw|2 = ρ(z)|dz|2, where w = wα(z). Let A1

∞(D1) be the Banach space
of holomorphic functions on D1 with the norm ||f || = supD1

|√ραf |, and

(wα)∗1 : A1
∞(D1)→ A1

∞(L)

f 7→ f ◦ wα(wα)′.

This map is an isometry.
If µ ∈ L∞(D2)1, we define wµ to be the solution to the Beltrami equation

with coefficient µ extended to all of C by 0 on D1 normalized by fixing 0, 1,∞.
(See (1.6)) Note that wµ ◦wα is a quasiconformal mapping which is conformal
on L fixing 0, 1,∞. And so, there exists a κ ∈ L∞(H)1 so that wµ ◦ wα = wκ.
Explicitly,

µ =

(
κ− α
1− κα

(wα)z
wαz̄

)
◦ (wα)−1. (2.29)

Let Rα(µ) = κ. (Compare with (1.13).)
For µ ∈ L∞(D2)1, we define Θα(µ) = θ(wµ|D1). Note that Θ0 = Θ.

Proposition 2.4.1. Θα : L∞(D2)1 → A1
∞(D1)12.

Proof.

Θ0 ◦Rα(µ) = θ(wµ ◦ wα) (2.30)

= θ(wµ) ◦ wα(wα)′ + θ(wα) (2.31)

Θ0 ◦Rα(µ) = (wα1 )∗Θα(µ) + Θ0(α). (2.32)
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It follows from Proposition 2.2.1 and triangle inequality that

||Θα(µ)||1 = ||(wα1 )∗Θα(µ)||1 ≤ ||Θ0(Rα(µ))||1 + ||Θ0(α)||1 ≤ 12. (2.33)

In summary, we have the following commutative diagram.

L∞(D2)1
Rα

> L∞(H)1

A1
∞(D1)

Θα

∨
f 7→(wα)∗1f+Θ(wα)

> A1
∞(L)

Θ
∨

2.4.2 Proof of Holomorphicity

We will show that Θα : L∞(D2)→ A1
∞(D1) is holomorphic at every point. Let

ε > 0 be such that if |t| < 5ε, then |µ+ tν| ≤ 1. Fix some z on D1, and let

g(t) = (ρα)−1(z)

(
Θα(µ+ tν)(z)−Θα(µ)(z)

t

)
. (2.34)

It is enough to show that |g(t1)− g(t2)| is uniformly bounded over all z ∈ D1

by |t1 − t2|.
Let

h(t) = (ρα(z))−1θα(wµ+tν)(z) (2.35)

so that

g(t) =
h(t)− h(0)

t
. (2.36)

Both g and h are holomorphic on |t| < 5ε (c.f. [1]), and |h(t)| ≤ 12 by (2.4.1).
For |t| < 3ε, we have

h(t)− h(0) =
t

2πi

∫
|s|=4ε

h(s)

(s− t)s
ds (2.37)

|h(t)− h(0)| ≤ |t|
2π

∫
|s|=4ε

|h(s)|
||s| − |t|||s|

|ds| ≤ 12

ε
|t| (2.38)

|g(t)| ≤ 12

ε
(2.39)

For |t1|, |t2| < ε, we have
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g(t1)− g(t2) =
t1 − t2

2πi

∫
|s|=2ε

g(s)ds

(s− t1)(s− t2)
(2.40)

|g(t1)− g(t2)| ≤ |t1 − t2|
2π

∫
|s|=2ε

|g(s)||ds|
(|s| − |t1|)(|s| − |t2|)

≤ |t1 − t2|
2π

∫ 2π

0

|g(s)|2
ε
dθ.

(2.41)

Putting (2.36) into (2.41) then using (2.39), we get

|g(t1)− g(t2)| ≤ |t1 − t2|
2π

∫ 2π

0

24

ε2
dθ ≤ 24|t1 − t2|

ε2
. (2.42)

Taking the supremum over z, we get

∣∣∣∣∣∣∣∣Θα(µ+ t1ν)−Θα(µ)

t1
− Θα(µ+ t2ν)−Θα(µ)

t2

∣∣∣∣∣∣∣∣
1

≤ 24|t1 − t2|
ε2

. (2.43)

This shows that Θα is holomorphic at µ.

2.4.3 The Derivative of Θ

Proposition 2.4.2. Let µ, ν ∈ L∞(H) with ||µ||∞ < 1. For z ∈ L,

DµΘ(ν)(z) = − 2

π
(wµ)′(z)

∫
H

ν(u)((wµ)z(u))2

(wµ(u)− wµ(z))3
d2u. (2.44)

Proof. From section 2.4.2, we know that the derivative exists.

d

dt

∣∣∣∣
t=0

Θα(tν) =
d

dt

∣∣∣∣
t=0

(wtν)′′

(wtν)′
= (ẇν)′′, (2.45)

where ẇν = d
dt

∣∣
t=0

wtν . Here we use the fact that [ d
dz
, d
dt

] = 0 (c.f. [1]).
From [4, Chapter V Section C Theorem 5],

ẇν(z) = − 1

π

∫
D2

ν(w)

(
1

w − z
+
z − 1

w
− z

w − 1

)
d2w (2.46)

(ẇν)′′(z) = − 2

π

∫
D2

ν(w)

(w − z)3
d2w. (2.47)

It follows from (2.45) and (2.47) that

D0Θα(ν)(z) = − 2

π

∫
D2

ν(w)

(w − z)3
d2w. (2.48)
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(2.32) gives

Θ(µ+ νt) = Θ(µ) + (wµ)∗1Θµ(R−1
µ (µ+ νt)) (2.49)

Taking the derivative at t = 0 in (2.49), we get

(DµΘ)(ν) = (wµ1 )∗D0ΘµR(ν, µ) (2.50)

where

R(ν, µ) =
d

dt

∣∣∣∣
t=0

R−1
µ (µ+ νt) =

(
ν

1− |µ|2
wµ

wµz̄

)
◦ (wµ)−1. (2.51)

Using (2.48) and (2.50) and by change of variables w = wµ(u), we get

(DµΘ)(ν)(z) = − 2

π
(wµ)′(z)

∫
D2

(
ν

1− |µ|2
wµz
wµz̄

)
◦ (wµ)−1(w)

d2w

(w − wµ(z))3

(2.52)

= − 2

π
(wµ)′(z)

∫
H

ν(u)(wµz (u))2

(wµ(u)− wµ(z))3
d2u. (2.53)

Corollary 2.4.1. For µ ∈ L∞(H),

D0Θ(ν)(z) = − 2

π

∫
H

µ(u)

(u− z)3
d2u. (2.54)

Note 2.4.1. Following the same notations as above, for the Bers embedding
we have (Φβ)α : L∞(D2)1 → A2

∞(D1)12 with

D0(Φβ)α(ν)(z) = − 6

π

∫
D2

ν(w)

(w − z)4
d2w. (2.55)

It’s clear that

D0(Φβ)α(ν)(z) = D0Θα(ν)′(z) = (ẇν)′′′(z), (2.56)

and since D0(Φβ)α(ν)(z) = 0 if and only if (ẇν)′(z) = 0, it follows that

kerD0(Φβ)α(ν)(z) = kerD0Θα(ν)(z),

or equivalently,
kerDµΦβ(ν)(z) = kerDµΘ(ν)(z)

for all µ, ν ∈ L∞(H) with ||µ||∞ < 1. Since Φβ descends to β on T (1) and β
is an injective immersion on T (1), it follows that θ is an injective immersion
on T (1) as well.
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Chapter 3

New Complex Coordinates

We define the space of pre-Bers harmonic Beltrami differentials as follows:

H−1,1(H,Z) = {µ ∈ L∞(H,Z) : µ(z) = (z − z)φ(z) where φ ∈ A1
∞(L,Z)}.

For µ ∈ L∞(H), let ẇ[µ] = d
dt

∣∣
t=0

wtµ, and F [µ] = 1
2
(ẇ[µ] − iẇ[iµ]) and

Φ[µ] = 1
2
(ẇ[µ] + iẇ[iµ]). Then,

F [µ](z) = − 1

π

∫
H
µ(u)

(
1

(u− z)
+
z − 1

u
− z

u− 1

)
d2z (3.1)

Φ[µ](z) = − 1

π

∫
H
µ(u)

(
1

(u− z)
+
z − 1

u
− z

u− 1

)
d2z (3.2)

This chapter contains one of the main results of this dissertation, which is
given below:

Theorem 3.0.1. Let η : A1
∞(L,Z)→ H−1,1(H,Z) ⊂ L∞(H,Z) be given by

η(φ)(z) = (z − z)φ(z).

Then,

(a) η is a right inverse to Θ on A1
∞(L,Z)α, where α is the same constant

from Theorem 2.0.1(c).

(b) For p ∈ T (Z), let Up = Rp(U0), where U0 is the image of A1
∞(L,Z)α in

η. Then, (Up, θ ◦ R−1
p ) form a complex coordinate chart on T (Z) that is

compatible with the Bers coordinates.

(c) For µ ∈ H−1,1(H,Z), F [µ] = (z − z)Φ[µ] + Φ[µ].
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Strictly speakingH−1,1(H,Z) is looks like a subspace of (−1
2
, 1

2
)-differentials.

While it may be possible to make sense of this identification of the (−1
2
, 1

2
)-

differentials with the (−1, 1)-differentials in an invariant way by using the
Eisenstein-Maass series for the group G, doing this in a meaningful way is
beyond the scope of this dissertation.

3.1 Local Right Inverse

In this section, we will prove part (a) of the main theorem. (Compare with
the Ahlfors-Weill Local section for the Bers embedding in section 1.2.)

Proposition 3.1.1. Let η(φ)(z) = (z − z)φ(z). If ||φ||1 < α, then Θ(η(φ)) =
φ.

Proof. Let φ ∈ A1
∞(L,Z)α, where α is as in the proof of Proposition 2.3.1.

Then by Proposition 2.3.1, there is f ∈ D(Z) so that θ(f) = φ. We define

F (z) =

{
f(z) + (z − z)f ′(z), z ∈ H
f(z), z ∈ L

(3.3)

Since f admits a quasiconformal extension, it follows that F is a continuous
map on the extended complex plane, which is injective on L. On H, we have

Fz̄ = f ′(z̄)− f ′(z̄) + (z − z)f ′′(z) = (z − z)f ′′(z) (3.4)

Fz = f ′(z̄). (3.5)

Let µF = Fz̄/Fz. Then,

µF =
Fz̄
Fz

= (z − z)
f ′′(z̄)

f ′(z̄)
= (z − z)φ(z) = η(φ). (3.6)

Since ||µF ||∞ = ||φ||1 = α = 2
√

5− 4 < 1, it follows that F is local home-
omorphism of the sphere onto itself, and therefore must be globally injective.
F is quasiconformal.

By Corollary 2.3.1, we have F (∞) =∞. And so

wµF =
F (z)− F (0)

F (1)− F (0)
= F (z). (3.7)

Therefore,
Θ(η(φ)) = θ(wµF |L) = θ(f) = φ. (3.8)

21



Corollary 3.1.1. The composition

(η ◦D0Θ)(µ) = − 2

π
(z − z)

∫
H

µ(w)

(w − z)3
d2w, (3.9)

defines a projection operator from L∞(H,Z) into H−1,1(H,Z).

Example 3.1.1. Let f(z) = zn. Then,

θ(f)(z) =
n− 1

z
,

so ||θ(f)||1 = 2|n− 1|. For |n− 1| < 1/2, we have

η(θ(f))(z) = (z − z)
n− 1

z
∈ L∞(H)1.

In that case, F defined as in (3.3) is a quasiconformal mapping. We don’t
need to use the smaller constant α, since f already has a continuous extension
to the real line. The condition |n − 1| < 1/2 ensures that the extension is
injective.

On the other hand,

S(f)(z) =
1− n2

2z2
.

Since ||S(f)(z)||2 = 2|(1−n2)|, f admits an Ahlfors-Weill extension whenever
|n2 − 1| < 1.

This example shows that there are Beltrami differentials with representa-
tives in H−1,1(H) but not in Ω−1,1(H) and vice-versa.

3.2 Complex Structure and Compatibility

In this section we will prove part (b) of the main theorem.
Set V0 = Φ ◦ η(A1

∞(L,Z)α) ⊂ T (Z). For p ∈ T (Z), let Vp = Rp(V0), and

hp : Vp → A1
∞(L,Z)α

be given by hp = θ ◦R−1
p .

Proposition 3.2.1. (hp, Vp) form a complex coordinate chart on T (Z).

Proof. First, note that p ∈ Vp, and so
⋃
p∈T (Z) Vp = T (Z). Let q ∈ Vp. Since

h−1
p = Rp ◦Φ ◦ η, we have
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hq ◦ h−1
p = θ ◦R−1

q ◦Rp ◦Φ ◦ η = θ ◦Rr ◦Φ ◦ η (3.10)

= θ ◦Φ ◦Rr̃ ◦ η (3.11)

= Θ ◦Rr̃ ◦ η, (3.12)

where r = p ∗ q−1, and r̃ is a representative of r in L∞(H,Z)1. This shows
that hq ◦ h−1

p is a composition of holomorphic maps.

Let us denote by C the complex structure defined by the coordinate chart
in Proposition 3.2.1.

Proposition 3.2.2. C is compatible with the complex structure of the Bers
coordinates.

The Bers coordinates are defined as follows. Let Φ(Λ(A2
∞(L,Z)2)) = U0 ⊂

T (Z). For p ∈ T (Z), Up = Rp(U0), and

bp : Up → A2
∞(L,Z)2

with bp = β ◦R−1
p . To prove Proposition 3.2.2, it is sufficient to check that the

maps

hp ◦ b−1
p : bp(Up ∩ Vp) ⊂ A2

∞(L,Z)→ hp(Up ∩ Vp) ⊂ A1
∞(L,Z)

and
bp ◦ h−1

p : hp(Up ∩ Vp) ⊂ A1
∞(L,Z)→ bp(Up ∩ Vp) ⊂ A2

∞(L,Z)

are holomorphic.
By definition,

hp ◦ b−1
p = θ ◦R−1

p ◦Rp ◦Φ ◦ Λ = θ ◦Φ ◦ Λ (3.13)

= Θ ◦ Λ, (3.14)

which is a composition of holomorphic mappings.
The inverse is given by

bp ◦ h−1
p = β ◦R−1

p ◦Rp ◦Φ ◦ η (3.15)

= β ◦Φ ◦ η. (3.16)

If φ ∈ A1
∞(L,Z), then θ(wη(φ)|H) = φ. So

bp ◦ h−1
p (φ) = β ◦Φ ◦ η(φ) = S(wη(φ)|H) = Ψ(θ(wη(φ)|H)) = Ψ(φ). (3.17)
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Lemma 3.2.1. Ψ : A1(H)→ A2(H) is holomorphic.

Proof. The proof of Lemma 2.3.1 shows that φ 7→ φz is continuous at 0. Since
this map is linear, it is continuous everywhere and holomorphic.

The map φ 7→ φ2 is obviously continuous and holomorphic with Fréchet
derivative at φ along ψ given by 2φψ, since

(
(φ+ εψ)2 − φ2

ε
− 2ψφ

)
= εψ2 (3.18)∣∣∣∣∣∣∣∣(φ+ εψ)2 − φ2

ε
− 2ψφ

∣∣∣∣∣∣∣∣
2

= ε||ψ2||2 = ε(||ψ||1)2. (3.19)

Therefore, Ψ(φ) = φz − 1
2
φ2 is holomorphic with Fréchet derivative

DΨφ(ψ) = ψz − ψφ.

Since Ψ is holomorphic, it follows that bp ◦ h−1
p is holomorphic.

3.3 Variational Formulas

In this section, we will prove part (c) of the main theorem. In fact, we will
prove a more general statement.

Proposition 3.3.1. Let µ ∈ H−1,1(H). Then,

F [µ] = (z − z)Φ[µ]′ + Φ[µ]. (3.20)

Note 3.3.1. For µ ∈ Ω−1,1(H), we have

F [µ] =
(z − z)2

2
Φ[µ]′′ + (z − z)Φ[µ]′ + Φ[µ]. (3.21)

So the formulas relating F and Φ for harmonic and pre-Bers harmonic Bel-
trami differentials are identical except for the missing the quadratic term in
(3.20). (c.f. [2])

It is known that ẇ[µ] extends to a continuous function on all of C. The
normalization of wtµ forces and w[µ](x) = 0 for x = 0, 1 and z−2w[µ](z) → 0
as z →∞. We also have for z ∈ H, that F [µ]z̄ = µ and Φ[µ]z̄ = 0.

Let N be an operator on L∞(H), given by
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Nµ(z) = − 2

π
(z − z)

∫
H

µ(w)

(w − z)3
d2w. (3.22)

By differentiating Φ twice, we see that the following statement holds:

Proposition 3.3.2. For µ ∈ L∞(H),

Nµ = (z − z)Φ[µ]′′. (3.23)

N and P are related as follows:

Corollary 3.3.1. For µ ∈ L∞(H),

Pµ =
(z − z)2

2

(
Nµ

(z − z)

)
z̄

(3.24)

(3.23) is the key identity needed in the proof of Proposition 3.3.1.

Proposition 3.3.3. Let N be defined as (3.22). Then,

(a) kerN = N (H).

(b) Im N ⊂ L∞(H).

(c) N2 = N .

Note 3.3.2. When restricted to the subspace L∞(H,Z), N = η ◦ D0Θ and
Proposition 3.3.3 follows trivially.

Proof. For Proposition 3.3.3(a), since N (H) = ker Φ, it follows from Proposi-
tion 3.3.2 that N (H) ⊂ kerN . Also, from Corollary 3.3.1, we have kerN ⊂
kerP = N (H).

Proposition 3.3.3(b) is shown as follows:

|Nµ(z)| ≤ 4|y|
π

∫
H

|µ(w)|
(w − z)3

d2w ≤ 4|y|||µ||∞
π

∫ π

0

∫ π

|y|

rdrdθ

r3
= 4||µ||∞ (3.25)

For Proposition 3.3.3(c), let µ(z) = (z − z)φ(z) and further suppose that
φ(z) is real analytic on R. Let DR = {z ∈ H : |z| < R} and CR the boundary
of DR in C. Then,
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∫
DR

(u− u)φ(u)

(u− z)3
d2u =

∫
DR

(
1

(u− z)2
+

z − u
(u− z)3

)
φ(u)

du ∧ du
2i

(3.26)

=

∫
CR

(
1

(u− z)
+

z − u
2(u− z)2

)
φ(u)

du

2i
(3.27)

= − 1

4i

∫
CR

φ(u)

u− z
du+O(R−1) (3.28)

= −π
2
φ(z) +O(R−1) (3.29)

If φ is not real analytic on R, then use φ(z − iε), ε > 0 in place of φ(z) in
the above computation then let ε→ 0.

Proof of Proposition 3.3.1. Since w[µ]z̄ = (z − z)Φ[µ]′′, we have

w[µ] = (z − z)Φ[µ]′ + Φ[µ] + f,

where f is analytic on L. From Proposition 3.3.3(b), we have that |Φ[µ]′′| =
O(y−1) so it follows that |yΦ[µ]′| → 0 as y → 0 and

f |R = w[µ]− Φ[µ].

Therefore, f is continuous on R with f(0) = 0 and f(1) = 0.
We have

0 = Im (w[µ]|R) = Im (Φ[µ] + f)
∣∣∣
R

= Im (−Φ[µ] + f)|R ,

so it follows that the function g = f −Φ[µ] is real on R. Since g is a holomor-
phic function on H, g extends to an entire function by the Schwarz reflection
principle.

Im z−2g = Im z−2w[µ] → 0 as z → ∞. Combined with the fact that
g(0) = 0 and g(1) = 0, we have that g(z) = a(z − z2) for some real number a.

It follows that

w[µ] = (z − z)Φ[µ]′ + Φ[µ] + Φ[µ] + a(z − z2). (3.30)

Since z−2(z − z)Φ[µ]′ → 0 as z →∞, this forces a = 0.

The following are some interesting consequences of Proposition 3.3.1

Corollary 3.3.2. Let µ ∈ H−1,1(H). Then,
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(a) w[µ]z = 2Re Φ[µ],

(b) d
dt

∣∣
t=0

w∗tµd
2z = 4Re (Φ[µ]′)d2z,

(c) d
dt

∣∣
t=0

w∗tµ(ρ(z)d2z) = 0,

(d) d
dt

∣∣
t=0

(wtµ)z̄
(wtµ)z

= 0.

Proof. For Corollary 3.3.2(a), take the z-derivative of (3.20) to get

F [µ]z = Φ[µ]′ (3.31)

w[µ]z = Φ[µ]′ + Φ[µ]′ = 2Re Φ[µ]. (3.32)

For Corollary 3.3.2(b), we have

d

dt

∣∣∣∣
t=0

w∗tµd
2z = (|(wtµ)z|2 − |(wtµ)z|2)d2z = |(wtµ)z|2(1− t2|µ|2)d2z (3.33)

= w[µ]z + w[µ]z̄ = 2Re (w[µ]z) = 4Re (Φ[µ]′)d2z. (3.34)

For Corollary 3.3.2(c), we have

d

dt

∣∣∣∣
t=0

w∗tµ(ρ(z)d2z) =
d

dt

∣∣∣∣
t=0

w∗tµd
2z

(wtµ − wtµ)2
(3.35)

=

(
4Re (Φ[µ]′)

(z − z)2
+
−2(w[µ]− w[µ])

(z − z)3

)
d2z (3.36)

=

(
2(Φ[µ]′ + Φ[µ]′)

(z − z)2
+
−2(z − z)(Φ[µ] + Φ[µ]′)

(z − z)3

)
d2z

(3.37)

= 0. (3.38)

For Corollary 3.3.2(d), we have

d

dt

∣∣∣∣
t=0

(wtµ)z̄
(wtµ)z

=
w[µ]z̄ − w[µ]z

1
= 0 (3.39)

Note 3.3.3. Corollary 3.3.2(c) also holds when µ ∈ Ω−1,1(H), which is a
classical result by Ahlfors in [2, Lemma 2]

27



Chapter 4

Family of Operators

In this chapter, we discuss a one-parameter family of projection operators on
L∞(H,Z). We shall see in Chapter 5 how these operators may be used to
study the properties of the Takhtajan-Zograf metric on T (Z).

Let u = [0, 1]× [0,∞), a fundamental domain of the group Z. Let L2(u) be
the space of measurable functions that are square integrable on u with respect
to the Euclidean area. We will refer to the L2-inner product as the Takhtajan-
Zograf pairing (TZ-pairing) which will be denoted as 〈µ, ν〉 =

∫
u µν. Let

en(z) = e2πinz̄. With a slight abuse of notation, we will denote the function
z 7→ (Im z)s by ys. Finally, let Γ(s) =

∫∞
0
yse−ydy.

Theorem 4.0.1. Let P be the Bers projection, and Ns = gsy
−sP (ysP ), where

gs = 4
Γ(3−s)Γ(3+s)

. Then,

(a) For 0 ≤ s < 2, Ns : L∞(H,Z)→ L∞(H,Z).

(b) NtNs = Nt for all 0 ≤ s < 2 and 0 ≤ t ≤ 2.

(c) kerNt = N (H,Z) for 0 ≤ t ≤ 2.

(d) The following is true for all s, t ∈ [0, 2].

1. Nt : L∞(H,Z) → L2(u). Furthermore, ysNtµ ∈ L∞(H,Z) for all
s > 0.

2. 〈Nsµ,Ntν〉 = gs,t〈Pµ, Pν〉, where gs,t = Γ(5−s−t)
6Γ(3−s)Γ(3−t) .

(e) 〈N2µ, ν〉 = 〈N2µ,N2ν〉.

The motivation for looking at such operators is as follows. For ν ∈ Ω−1,1(H, G)
and µ ∈ L∞(H, G), the Weil-Petersson pairing is given by

28



〈µ, ν〉WP =

∫
D

µ(z)ν(z)ρ(z)d2z,

where D is a fundamental domain of G. The Bers projection P is self-adjoint
with respect to the Weil-Petersson pairing in the sense that

〈Pµ, Pν〉WP = 〈µ, Pν〉WP ,

for any µ, ν ∈ L∞(H) whenever both sides are convergent. (This follows
directly from the fact that µ− Pµ ∈ N (H, G) for all µ ∈ L∞(H, G).)

One could obtain an analogous operator for the TZ-pairing as follows: for
µ, ν ∈ L∞(H,Z),

〈Pµ, Pν〉 = −4〈Pµ, y2Pν〉WP

= −4〈Pµ, Py2Pν〉WP

= 〈µ, y−2Py2Pν〉.

Up to a multiplicative constant, the operator y−2Py2P corresponds to N2

in Theorem 4.0.1. Unfortunately, N2µ does not map L∞(H) to L∞(H), so it
does not correspond to a differential of a coordinate map. However, part (d) of
the theorem allows us to relate the TZ-pairings of N2 with N1 = N or N0 = P ,
which correspond to the differentials of the pre-Bers and the Bers embedding,
respectively.

Theorem 4.0.1 will be proven in the subsequent sections. The majority of
the proofs rely heavily on the properties of Fourier coefficients of the harmonic
Beltrami differentials, which we will prove as we go along.

4.1 Ns is bounded.

In this section, we will prove part (a) of the main theorem by proving a slightly
stronger statement.

Proposition 4.1.1. Let µ ∈ L∞(H). Then, y−sP (ysµ) ∈ L∞(H) for s ∈
[0, 2).

Proof. Let z = x+ iy and w = u+ iv. Then,∣∣∣∣∫
H

vsµ(w)

(w − z)4
d2w

∣∣∣∣ ≤ ||µ||∞ ∫
H

vs

|w − z|4
d2w (4.1)
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∫
H

vs

|w − z|4
d2w ≤

∫ π

0

∫ ∞
y

|v − y|s

r4
rdrdθ =

∫ π

0

∫ ∞
y

rs−3| sin(θ)− y

r
|sdrdθ

(4.2)

Since 0 < y ≤ r, we have | sin θ − y
r
| ≤ 1, and so for s ≥ 0, we have

| sin θ − y
r
|s ≤ 1. ∫

H

vs

|w − z|4
d2w ≤ π

∫ ∞
y

rs−3dr, (4.3)

which converges when s < 2. So we have the following estimate

y2−s
∫

H

vs

|w − z|4
d2w ≤ π

2− s
(4.4)

For any µ ∈ L∞(H), we have Pµ ∈ L∞(H). Applying Proposition 4.1.1 to
Pµ gives y−sPysPµ ∈ L∞(H).

4.2 Overwriting Property

To prove part (b) of the main theorem, it is sufficient to prove the following
statement:

Proposition 4.2.1. Let µ ∈ L∞(H,Z) and s ∈ [0, 2), Then,

PNsµ = Pµ. (4.5)

We will prove (4.2.1) by comparing the Fourier expansions of Pµ and PNsµ.
In the statement of Proposition 4.2.1 the extremal value s = 2 has been omitted
to ensure that Nsµ ∈ L∞(H,Z). Nevertheless, the expansion of Nsµ will be
valid even when s = 2.

The Fourier expansion of Nsµ is given as follows.

Proposition 4.2.2. Suppose that µ(z) = y2
∑

n≥1 cnen(z) and s ∈ [0, 2].
Then,

Nsµ(z) =
2

Γ(3− s)(4π)s
y2−s

∑
n≥1

cn
ns
en(z). (4.6)
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Example 4.2.1. Let µ(z) = y2
∑

n≥1 nen = y2k(e1(z)), where z 7→ k(z) is the
Koebe function on D. Then, µ ∈ L∞(H,Z). Putting s = 2 and cn = n into
(4.6), it is easy to see that N2µ 6∈ L∞(H,Z).

We need some preliminary results to obtain the expression (4.6).

Lemma 4.2.1. Let µ ∈ L∞(H,Z). Then, the Bers projection P has the
expansion:

Pµ(z) = 32π3y2
∑
n≥1

n3〈µ, en〉en(z). (4.7)

To apply the expression (4.7) in the computation of y−sP (ysPµ), we need
the following proposition.

Proposition 4.2.3. For any s > 0, ysPµ ∈ L∞(H).

Lemma 4.2.1 and Proposition 4.2.3 will be proven later in this section.

Proof of Proposition 4.2.2 using Lemma 4.2.1 and Proposition 4.2.3:
Suppose that µ(z) = y2

∑
n≥1 cnen(z) with µ ∈ L∞(H,Z). Then, Pµ = µ,

and so applying (4.7), we get

P (ysPµ) = 32π3y2
∑
n≥1

n3〈y2+s
∑
m≥1

cmem, en〉en(z). (4.8)

〈ysPµ, en〉 is absolutely convergent, so by Fubini’s theorem and uniform con-
vergence we get

〈y2+s
∑
m≥1

cmem, en〉 = cn

∫ ∞
0

y2+se−4πnydy = cn
Γ(3 + s)

(4πn)3+s
. (4.9)

Putting (4.9) into (4.8) gives

y−sP (ysPµ) = hsy
2−2
∑
n≥1

cn
ns
en(z), (4.10)

where hs = 32π3Γ(3 + s)/(4π)3+s. Therefore,

Nsµ(z) = gshsy
2−s
∑
n≥1

cn
ns
en(z),

with gshs = 2(4π)−s/Γ(3− s).
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Proof of Proposition 4.2.1.
Suppose that µ(z) = y2

∑
n≥1 cnen(z), so that Pµ = µ. By putting (4.6)

into (4.7), we obtain

P (Nsµ)) =
64π3

Γ(3− s)(4π)s
y2
∑
n≥1

n3〈y2−s
∑
m≥1

cm
ms

em, en〉en(z). (4.11)

The integral 〈y2−s∑ cm
ms
em, en〉 converges absolutely. Using Fubini’s theo-

rem and uniform convergence, we obtain

〈y2−s
∑
m≥1

cm
ms

em, en〉 =

∫ ∞
0

y2−se−4πnydy =
Γ(3− s)
(4πn)3−s . (4.12)

And so,

P (Nsµ) =
(4π)3−sΓ(3− s)
Γ(3− s)(4π)3−sy

2
∑
n≥1

n3 cn
ns

1

n3−s en(z) (4.13)

= y2
∑
n≥1

cnen(z) = Pµ (4.14)

The remainder of this section will be used to prove Lemma 4.2.1 and Propo-
sition 4.2.3.

Proof of Lemma 4.2.1. Let µ ∈ L∞(H,Z). The lemma basically follows from
rearranging the integral in the following way:∫

H

µ(w)

(w − z)4
d2w =

∑
n∈Z

∫
u

µ(w)

(w − z + n)4
d2w. (4.15)

The integral is absolutely convergent as one can see from the proof of
Proposition 4.1.1 with s = 0, so∫

H

µ(w)

(w − z)4
d2w =

∫
u

∑
n∈Z

µ(w)

(w − z + n)4
d2w. (4.16)

By classical complex analysis, we have∑
n∈Z

1

(u− n)4
=

8π4

3

∑
n≥1

n3e2πinu

for Im u > 0. So
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∫
H

µ(w)

(w − z)4
d2w =

∫
u

∑
n≥1

µ(w)n3e2πin(w−z)d2w. (4.17)

The expression on the right hand side of (4.17) is absolutely convergent for
Im z > 0, so we obtain the desired expression.

The following lemma will have many applications so we state it here.

Lemma 4.2.2. Let µ(z) = y2
∑

n≥1 cnen(z) ∈ L∞(H,Z). Then,

∑
n≥1

|cn|2

ns+4
(4.18)

is convergent whenever s > 0.

Proof. Let s > 0. Then,∫
D

|µ(z)|2ys−1e−4πyd2z ≤ (||µ||∞)2Γ(s)

(4π)s
<∞. (4.19)

By Fubini’s theorem and uniform convergence, the integral on the left hand
side can be evaluated as follows

∑
n,m

cncm

∞∫
0

1∫
0

ys+3e2πi(n−m)xe−2π(n+m+2)ydxdy =
∑
n≥1

|cn|2
∞∫

0

ys+3e−4π(n+1)ydy

(4.20)

=
∑
n≥1

|cn|2Γ(s+ 4)

(4π(n+ 1))s+4
. (4.21)

By limit comparison, the series
∑

n≥1

|cn|2

ns+4
is convergent.

Note 4.2.1. This is a direct proof of remark 4.2 in [13].

Corollary 4.2.1. Let µ ∈ ∞. Then, for y > 1,

|Pµ| ≤ C ′e−2πy. (4.22)
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Proof. From Lemma 4.2.2, we see that for n sufficiently large, |cn| ≤ Cn3 for
all n > M . So

∣∣∣∣∣∑
n≥1

cnen

∣∣∣∣∣ ≤∑
n≥1

|cn|e−2πny ≤
M∑
n≥1

|cn|e−2πny + C
∑
n>M

n3e−2πny, (4.23)

and ∑
n≥M+1

n3e−2πny =
e−2π(M+1)y (e−4πy + 4e−2πy + 1)

(e−2πy − 1)4 ≤ 6e−2π(M+1)y

(e−2π − 1)4 . (4.24)

It follows that for y > 1, we have

|Pµ| < C ′e−2πy (4.25)

for some constant C ′.

And finally, we prove Proposition 4.2.3:

Proof of Proposition 4.2.3. For 0 ≤ y ≤ 1, 0 ≤ ys ≤ 1, so

|ysPµ| ≤ |Pµ| ≤ ||Pµ||∞.

For y > 1, we know |ysPµ| is bounded from Corollary 4.2.1.

4.3 Kernel of Nt

The following proposition is an immediate consequence of Proposition 4.2.1.

Proposition 4.3.1.

(a) kerP = kerNt for t ∈ [0, 2).

(b) kerP ⊂ kerN2

To prove part (c) of the main theorem, one only has to show that kerN2 ⊂
kerP . This will be done by proving the following statement:

Proposition 4.3.2. Let µ ∈ L∞(H,Z). Then,

Φ[µ]z = N2µ. (4.26)

34



Since ker Φ = kerP = N (H), (4.26) implies that kerP ⊂ kerN2.
We prove Proposition 4.3.2 by comparing the Fourier expansions of Φ and

N2. From Proposition 4.2.2, we have

N2µ =
1

8π2

∑
n≥1

cn
n2
en. (4.27)

Proposition 4.3.3. For µ ∈ L∞(H,Z),

Φ[µ](z) = −
∫
u
µ(w)(cot(π(w − z))− cot(πw))d2w. (4.28)

Proof. Let µ ∈ L∞(H,Z), and

Φ[µ] = − 1

π

∫
H
µ(w)R(w, z)d2w, (4.29)

so that R(w, z) = 1
w−z + z−1

w
− z

w−1
. This integral is absolutely convergent, so

Φ[µ] = − 1

π

∫
u

∑
n∈Z

µ(w)R(w, z + n)d2u. (4.30)

Using classical complex analysis, one can show that∑
n∈Z

R(w, z + n) = π(cot(π(w − z))− cot(πw)). (4.31)

Proof of Proposition 4.3.2. Taking the derivative of (4.28) gives

Φ[µ]′(z) = −π
∫
u
µ(w) csc2(π(w − z))d2w = 4π

∫
u
µ(w)

∑
n≥1

ne2πn(w−z)d2w.

(4.32)

Since∫
u

∑
n≥1

|µ(w)ne2πn(w−z)|d2w ≤ 2π||µ||∞
∫ ∑

ne−2πn(v+y)dv = ||µ||∞
∑

ne−2πy

(4.33)

is convergent when y > 0, we can apply Fubini’s theorem to (4.32) to obtain
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Φ[µ]′(z) = 4π
∑
n≥1

∫
u
µ(w)ne2πn(w−z)d2w (4.34)

= 4π
∑
n≥1

n〈µ, en〉en(z). (4.35)

Putting µ(z) = y2
∑

n≥1 cnen into (4.34) gives the desired result.

4.4 Square Integrability and the Invariance of

the TZ-pairing

In this section we will prove part (d) of the main theorem. First, we prove

Proposition 4.4.1. If µ ∈ ∞ and t ∈ [0, 2], then |ykNtµ| ∈ L∞(H,Z) for any
k > 0.

Proof. The proof follows exactly that of Proposition 4.2.3, except using Nt in
place of P . One sees that Corollary 4.2.1 holds for Nt by simply noting that∑

n≥1

|cn|
ns

e−2πny <
∑
n≥1

|cn|e−2πny

in (4.23)

Proposition 4.4.2. For µ ∈ L∞(H,Z) and s, t ∈ [0, 2], we have

(a) y−sPysPµ ∈ L2(u) for 0 ≤ s ≤ 2.

(b) 〈Nsµ,Ntµ〉 = gs,t〈Pµ, Pν〉, where gs,t = Γ(5−s−t)
6Γ(3−s)Γ(3−t) .

The first part is proven using Lemma 4.2.2. The second part follows from
direct computation.

Proof of Proposition 4.4.2(a). By Proposition 4.2.3, we have that for µ ∈
L∞(H,Z) and k > 0, that y−s+

k
2PysPµ ∈ L∞(H,Z). Therefore,∫

u
|y−sPysPµ(z)|2(yke−4πky)d2z ≤ C

4πk
, (4.36)

where C = (||y−s+ k
2PysPµ||∞)2. Using Fubini’s theorem and uniform conver-

gence, we get
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〈y2−s
∑
n≥1

cn
ns
en, y

2−s
∑
n≥1

cn
ns
en(yke−4πky)〉 =

∑
n≥1

∫
y4−2s+k |cn|2

n2s
e−4π(n+k)y

(4.37)

=
∑
n≥1

Γ(5− 2s+ k)|cn|2

n2s(4π(n+ k))5−2s+k
. (4.38)

Note that ∑
n≥1

Γ(5− 2s+ k)|cn|2

n2s(4π(n+ k))5−2s+k

is non-decreasing as k → 0. By the monotone convergence theorem, we obtain

lim
k→0
〈y2−s

∑
n≥1

cn
ns
en, y

2−s
∑
n≥1

cn
ns
en(yke−4πky)〉 =

Γ(5− 2s)

(4π)5−2s

∑
n≥1

|cn|2

n5
(4.39)

The quantity on the right hand side of (4.39) is convergent by Lemma 4.2.2.
Noting that |y−sPysPµ(z)|2(yke−4πky) is non-dreasing as k → 0, we apply the
monotone convergence once again to get

||y2−s
∑
n≥1

cn
ns
en||2 =

Γ(5− 2s)

(4π)5−2s

∑
n≥1

|cn|2

n5
(4.40)

Proof of Proposition 4.4.2(b). If µ(z) = y2
∑

n≥1 cnen, then by Proposition 4.2.2,
we have

〈Nsµ, (Ntµ)e−4πky〉 = 〈y2−s
∑
n≥1

cn
ns
en, y

2−t
∑
n≥1

cn
nt
ene
−4πky〉 (4.41)

=
∑
n≥1

∫
y4−s−t |cn|2

ns+t
e−4π(n+k)y (4.42)

=
∑
n≥1

Γ(5− s− t)|cn|2

ns+t(4π(n+ k))5−s−t . (4.43)

The series in (4.43) is non-decreasing as k → 0. So using monotone con-
vergence, we get

lim
k→0
〈y2−s

∑
n≥1

cn
ns
en, y

2−t
∑
n≥1

cn
nt
ene
−4πky〉 =

Γ(5− s− t)
(4π)5−s−t

∑
n≥1

|cn|2

n5
. (4.44)
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Applying the dominated convergence theorem, we get

〈y2−s
∑
n≥1

cn
ns
en, y

2−t
∑
n≥1

cn
nt
en〉 =

Γ(5− s− t)
(4π)5−s−t

∑
n≥1

|cn|2

n5
. (4.45)

Putting everything together, we get:

〈Nsµ,Ntµ〉 =
4Γ(5− s− t)

(4π)5Γ(3− s)Γ(3− t)
∑
n≥1

|cn|2

n5
(4.46)

=
4Γ(5− s− t)

(4π)5Γ(3− s)Γ(3− t)
(4π)5

Γ(5)

∑
n≥1

〈Pµ, Pµ〉 (4.47)

= gs,t〈Pµ, Pµ〉. (4.48)

4.5 Self-Adjointness of N2

In this section, we will prove part (e) of the main theorem.

Proposition 4.5.1. For µ, ν ∈ L∞(H,Z),

〈N2µ,N2ν〉 = 〈N2µ, ν〉. (4.49)

The equation (4.49) can be thought of a statement of self-adjointness of
the extremal operator N2 in the sense that it is an “orthogonal projection” of
L∞(H,Z) onto the “orthogonal complement” of N (H,Z) with respect to the
TZ-pairing (see Equation (4.34).) This of course, does not make literal sense
since the image of N2 does not lie in L∞(H,Z). (See Example 4.2.1.) However,
on the subspace L∞(H,Z) ∩Hol(H,Z), N2 does act as a projection operator.
In fact, pulling back to the punctured disk by the logarithm shows that the
integral kernel of N2 is just the Bergman kernel function of weight 1.

Proposition 4.5.2. For any µ ∈ L∞(H,Z) and κ ∈ kerP , 〈N2µ, κ〉 = 0.

Proof of Proposition 4.5.1 using Proposition 4.5.2.

By Proposition 4.5.2, we have

〈ν − Pν,N2µ〉 = 0 (4.50)

〈ν,N2µ〉 = 〈Pν,N2µ〉. (4.51)
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Using Proposition 4.4.2(b), we obtain the desired equality as follows.

〈N2κ,N2µ〉 = g(2, 2)〈Pκ, Pµ〉 =
g(2, 2)

g(2, 0)
〈Pκ,N2µ〉 =

g(2, 2)

g(2, 0)
〈κ,N2µ〉 = 〈κ,N2µ〉.

(4.52)

To show Proposition 4.5.2, it is sufficient to show that N2µ ∈ L1(u) for
µ ∈ L∞(H,Z). Then, the orthogonality will follow from (1.11).

Lemma 4.5.1. For µ ∈ L∞(H,Z),∫
u
|N2µ|2e2kyd2z <∞ (4.53)

for all 0 ≤ k < 2π.

Proof. We divide up u = R1 ∪ R2, where R1 = ([0, 1] × [0, 1]) and R2 =
[0, 1]× [0,∞).

From Proposition 4.2.3, we have that for s > 0, ysekyN2µ ∈ L∞(R1). Since
R1 has finite area,

∫
R1
|ysHµ|2e2kyd2z <∞.

Suppose that µ(z) = y2
∑

n≥1 cnen. Then by Proposition 4.2.2,

N2µ(z) =
1

8π2

∑
n≥1

cn
n2
en,

and using the estimate |cn| ≤ n3 for n > M , we get

8π2|N2µ(z)| ≤
∑
n≥1

|cn|
n2

e−2πny ≤
M∑
n=1

|cn|
n2

e−2πny +
e−2π(M+1)y

(1− e−2πy)
. (4.54)

It follows from this estimate that on R2, we have |N2µ(z)| < Ce−2πy, so∫
R2

|N2µ|2e2kydy ≤ C

∫
R2

e(−4π+2k)ydy. (4.55)

This integral is convergent as long as k < 2π.
Finally, let

fs =

{
|ysN2µ|2, z ∈ R1

|N2µ|2, z ∈ R2

. (4.56)
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fs is non-decreasing as s→ 0, fs → |N2µ|2, and∫
fse

ky → C ′
∑
n≥1

|cn|2

n4(4πn− 2k)
(4.57)

for some constant C ′, which is convergent by limit comparison.

Proposition 4.5.3. N2µ ∈ L1(u).

Proof. By Hölder’s inequality, we have(∫
u
|N2µ|d2z

)2

≤
(∫
u
|N2µ|2e2kyd2z

)(∫
u
e−2kyd2z

)
. (4.58)

Since N2µ is anti-holomorphic and L1(u), it follows from (1.11) that

〈ν,N2µ〉 = 0 (4.59)

for ν ∈ N (H,Z).
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Chapter 5

Conclusion and Conjecture

The contents of this chapter are work that is still in progress.
In this chapter, we will use the tools from chapters 3 and 4 to study the

Takhtajan-Zograf metric on T (Z).

Definition 5.0.1. We define the Takhtajan-Zograf metric to be the right in-
variant metric h on T (Z) with its value at [0] ∈ T (Z) given by

hµν([0]) = 〈µ, ν〉, (5.1)

where µ, ν ∈ Ω−1,1(H,Z). µ, ν represent tangent vectors at T[0]T (Z), and 〈∗, ∗〉
is the TZ-pairing. (See chapter 4).

Theorem 4.0.1(d) tells us that h is convergent.
For µ, ν, κ ∈ Ω−1,1(H,Z) with ||κ||∞ < 1, µ, ν representing tangent vectors

at T[κ]T (Z), the Takhtajan-Zograf metric can be represented in the following
way

hµν(κ) = 〈PR(µ, κ), PR(ν, κ)〉, (5.2)

where R is defined as in section 1.3.
One could also define a right invariant metric g on T (Z) by representing

the tangent vectors of T (Z) using H−1,1(H,Z) instead of Ω−1,1 by

gµν([0]) = 〈µ, ν〉, (5.3)

where µ, ν ∈ H−1,1(H,Z). And again, convergence is guaranteed by Theo-
rem 4.0.1(d).

Similar to (5.2), for µ, ν, κ ∈ H−1,1(H,Z) with ||κ||∞ < α, µ, ν representing
tangent vectors in T[κ]T (Z), we get

gµν(κ) = 〈NR(µ, κ), NR(ν, κ)〉. (5.4)
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Proposition 5.0.4. Let N be as in (3.22), and Ns as in Theorem 3.0.1. Then
for µ ∈ L∞(H,Z), Nµ = N1µ.

Proof. By Proposition 3.3.3(a) and Theorem 4.0.1(c), we have that kerN =
kerN1 = kerP . So it is sufficient to check the equality on Ω−1,1(H,Z). Let
µ(z) = y2

∑
n≥1 cnen. One can obtain the Fourier expansion of Nµ using

Proposition 3.3.2 and Proposition 4.2.2 for s = 0. The resulting series is equal
to the one in Proposition 4.2.2 for s = 1.

In other words, η ◦DΘ0 = N1.

Proposition 5.0.5. g = 3h

Proof. Since g and h are both right-invariant, it is sufficient to show that the
equality holds at p = [0]. If µ, ν ∈ Ω−1,1(H, G) represent tangent vectors
on T[0]T (Z), then Nµ,Nν ∈ H−1,1(H,Z) represent the same vectors in the
θ-coordinates. Then the statement of the proposition follows directly from
Theorem 4.0.1(d) by putting s = t = 1.

By Theorem 4.0.1(d) one can freely change the projection operator N or
P in Definition 5.0.1 with any of the Nt, in particular with N2. Using the pre-
Bers harmonic Beltrami differentials allows us to work with simpler variation
formulas as we will see below.

Conjecture 5.0.1. Let µ, ν, κ ∈ H−1,1(H,Z). Then,

∂gµν
∂κ

(0) = 4

∫
u
N2µ(z) ν(z) N2κ(z) d2z, (5.5)

where
∂gµν
∂κ

(0) =
∂

∂ε

∣∣∣∣
ε=0

gµν(εκ). (5.6)

Using Theorem 4.0.1:

1

2
gµν(κ) =

1

2
〈NR(µ, κ), NR(ν, κ)〉 (5.7)

= 〈N2R(µ, κ), N2R(µ, κ)〉 = 〈N2R(µ, κ), R(ν, κ)〉 (5.8)

=

∫
u
N2R(µ, κ) ◦ wκ(z)ν(z)((wκ)z̄(z))2d2z (5.9)

Ignoring all convergence issues, replacing κ with εκ then taking the deriva-
tive at ε = 0 gives
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1

2

∂gµν
∂κ

(0) =

∫
u

(
∂

∂ε

∣∣∣∣
ε=0

N2R(µ, εκ) ◦ wεκ
)
ν(z)d2z + 2

∫
u
N2µ ν (Φ[κ]′)d2z

(5.10)

By Proposition 4.3.2, we can put Φ[κ]′ = N2κ. And with the following
conjecture, we get the desired expression.

Conjecture 5.0.2. Let µ, κ ∈ H−1,1(H,Z). Then,

∂

∂ε

∣∣∣∣
ε=0

N2R(µ, εκ) ◦ wεκ = 0 (5.11)

There are some computations using the integral kernel of N2 (see Proposi-
tion 4.3.3) that suggest eq. (5.11), but it has been omitted here.

Note 5.0.1. Conjecture 5.0.2 is a complete analogue of the first part of [11,
Prop 7.1], where it is shown that

∂

∂ε

∣∣∣∣
ε=0

N0R(µ, εκ) ◦ wεκ
(wεκ)z̄
(wεκ)z

= 0 (5.12)

for µ, κ ∈ Ω−1, 1(H). The factor (wεκ)z̄
(wεκ)z

can be omitted in (5.11) because of

Corollary 3.3.2(d).

The expression in (5.13) is obviously symmetric in µ and κ, which implies
that g is Kähler. It also has the advantage that it is simpler than the formula in
proof of Lemma 3 in [10], which contains the Green’s function for the operator(
∆0 + 1

2

)
.

Using integration by parts on (5.13), one can arrive at a more symmetric
form for the first derivative of the Takhtajan-Zograf metric:

Conjecture 5.0.3. For µ, ν, κ ∈ H−1,1(H,Z),

∂gµν
∂κ

(0) = 4

∫
u
N2µ(z) N2ν(z) N2κ(z) d2z. (5.13)
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