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Abstract of the dissertation

Building Distributed Data Models in a
Performance-Optimized, Goal-Oriented

Optimization Framework for
Cyber-Physical Systems

by
Varun Subramanian
Doctor of Philosophy

in
Computer Engineering
Stony Brook University

2012

Cyber-physical systems (CPS) are large, distributed embedded systems that inte-

grate sensing processing, networking and actuation. Developing CPS applications is

currently challenging due to the sheer complexity of the related functionality as well

as the broad set of constraints and unknowns that must be tackled during operation.

Building accurate data representations that model the behavior of the physical envi-

ronment by establishing important data correlations and capturing physical laws of

the monitored entities is critical for dependable decision making under performance

and resource constraints.

The goal of this thesis is to produce reliable data models starting from raw sensor

data under tight resource constraints of the execution platform, while satisfying the

timing constraints of the application. This objective was achieved through adaptation

policy designs that optimally compute the utilization rates of the available network

resources to satisfy the performance requirements of the application while tracking

physical entities that can be quasi-static or dynamic in nature. The performance

requirements are specified using a declarative, high-level specification notation that

correspond to timing, precision and resource constraints of the application. Data

model parameters are generated by solving differential equations using data sampled

over time and modeling errors occur due to missed data correlations and distributed

data lumping of the model parameters.
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Chapter 1

Introduction

1.1 Introduction to Cyber Physical Systems

Cyber-physical systems (CPS) are distributed embedded systems that utilize a large

variety of sensors, actuators and processing power to integrate the cyber world with

the physical world [56]. CPS are rapidly emerging as a main computing paradigm for

applications in environmental monitoring, energy conservation, healthcare, infrastruc-

ture management, homeland security, intelligent traffic management, manufacturing,

and retail [17, 21, 56]. This is due not only to sensing and electronic devices becom-

ing extremely cheap and small in size, thus deployable in large numbers, but also to

their potential of offering superior data acquisition and decision making capabilities,

if the related aspects are tackled collectively instead of separately. Moreover, CPS

are expected to provide better robustness, including responses to unexpected condi-

tions as well as critical situations. Providing efficient and reliable data acquisition for

decision making in large, distributed embedded systems currently represents a main

challenge [56].

The acquired data is used in decision making to model the behavior of physical

entities of interest, like atmosphere, water, soil, radio and sound signals, oil fields,

traffic flow, and so on [36, 50, 12, 44]. For example, refer to Figure 1.1 that describes

an application scenario in an urban environment where sensor nodes equipped with a

variety of sensors are spread across an area and the application goal is to route vehicles

along paths that would reduce the overall amount of toxic gas pollution. Real-time

data is acquired from three layers of sensors distributed over the region: a gas sensor

layer, a temperature sensor layer, and an acoustic sensor layer. The acquired data at

1
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Figure 1.1: Main characteristics of the illustrating example

each node includes position, dynamics (e.g., tracking), and concentration of the toxic

gas clouds from gas sensors.

Due to the distributed nature of the physical entities, individual nodes in the ap-

plication have insufficient data. Hence, these nodes need to collaborate and transform

this raw data into a meaningful representation. In the application example, readings

from neighboring sensors are aggregated together so that contiguous gas clouds are

identified and their size and trajectory can be found in real-time while tracking the

cloud dynamics. Aggregated data from sensors can also be transformed into data

models. These data models generate model parameters that would describe the man-

ner in which data is distributed in the region, establish data correlations and relations

that pertain to physical laws of the monitored entities. In order to obtain the above

properties, physical models are built by discretizing the space and introducing state

variables for every node in the network. Each of these state variables were expressed

in the form of differential equations. For example, the form of differential equations

used in this work is given by equation 1.1. The equation is valid for a node i with k

neighbors. The only known terms are the Y values that represent the sensor measure-

ments. Yi(i) corresponds to sensor measurement of node i and Yk(t) are the sensor

measurements of the neighbors of i. The Gri,k
terms are the gradient coefficients that

model data flow between variables, and the Sci
term is the storage coefficient that

indicates the rate of energy stored in node i. The rate of adding or removing energy

from the external environment is modeled using Ėin,i and δ is the time difference

between consecutive samples. The model parameters that include the Gri,k
terms

and the Sci
term are computed by solving these differential equations for each node

2



using sampled data and streamed along the data paths to a common collection point

called the target point, which can use this information to make decisions specific to

the application goals. Hence, the form of differential equations that are used in this

work produce model parameters that model data flow (gradients) between variables

and the rate at which energy is stored or dissipated at each node.

Sci

[Yi(t) − Yi(t − δ)]

δ
=

∑

k

[
Yk(t) − Yi(t)

Gri,k

] + [Ėin,i] (1.1)

Considering the example application in Figure 1.1, the Gri,k
terms would describe

the dynamics of the toxic gas cloud over a region and Sci
terms would describe the

level of toxicity (density) of a gas cloud at the corresponding location.

Apart from generating meaningful data models from raw sampled data, CPS ap-

plications also need to detect emergence of a physical phenomenon in a distributed

area. The creation and behavior of these emergent entities are defined from enabling

conditions, that correspond to specifying rules for defining an emergent entity. These

rules could define the minimum level of toxicity of an emergent gas cloud and the

minimum area covered by the cloud.

The precision of the data models depends on the performance constraints of the

embedded infrastructure, including sampling frequency, precision of data acquisition,

memory size, communication bandwidth, and power consumption. The performance

of the infrastructure conditions the amount of sampled data and the delay with which

data becomes available to the decision making routines. The correlations, require-

ments, and constraints of the application must be precisely specified, so that it can

be efficiently tackled under the tight resource constraints of the architecture.

The insight obtained from the process of generating data models are useful while

employing decision making procedures. Decision making may include adjusting the

network parameters and/or performing control procedures depending on the appli-

cation needs and resource availability. The application example shown in Figure

1.1 would employ the decision making procedure of finding travel paths for vehicles

within the region such that the overall pollution is minimized, e.g., CO, CO2, SO2,

and NOx pollution. The characteristics of the polluting clouds constantly change in

time and space due to weather conditions (i.e. wind, temperature and humidity) and

new pollution sources, such as ongoing traffic. Finding the shortest-length paths does

not necessarily minimize the experienced pollution, even though it reduces exposure
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time. Instead, decisions about the optimal paths must be continuously made during

travel depending on the current and expected levels of the toxic gas concentration.

The procedure should generate multiple paths (variable AltPaths in Figure 1.1) and

analyze each path according to a cost function that captures two aspects, the total

pollution level along the path (variable TotalPollution) and the precision of the pol-

lution estimation (variable Delay). For example, data received at the target point

after a certain time limit (variable Limreq) are less precise in evaluating the total

pollution due to the dynamics of gas clouds. Variables Start and Time define the

time window over which the expected pollution levels are predicted. Depending on

existing conditions and data predictions, the path that is expected to produce the

least amount of pollution is selected.

1.2 Design challenges in CPS

The previous section provides an introduction to CPS and details its design challenges

using the application example in Figure 1.1.

This section provides a brief description of the characteristics of Cyber Physical

Systems and its design challenges that are addressed in this thesis work.

• Physically-distributed data models: The data used in decision making is phys-

ically distributed in space and time, such as the pollution levels along travel

routes and gas clouds placed over 2D zones. Data is utilized to express cu-

mulative descriptions (e.g., size and position of toxic clouds, total amount of

pollution), current and predictive trends (i.e. dispersion of clouds in time and

space), and integration of data from related sensors, such as gas sensors, tem-

perature sensors and sensors to build data model parameters that describe the

phenomenon.

• Emergent objects: The forming of a new gas cloud represents an emergent object

as the position, time, and gas type of the cloud cannot be anticipated a-priori.

In contrast to dynamic variables of procedural languages, which are explicitly

created at specific points in a program, emergent objects are produced if their

enabling conditions are met, such as a gas cloud is formed if the gas concentra-

tion level at all points of a contiguous area exceeds a predefined threshold.
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• Data predictions: The performed decisions, e.g., the selected travel paths, de-

pend not only on the current state, such as the current pollution level, but also

on the future characteristics of the system, i.e. pollution levels at future time

instances. The prediction procedures for future characteristics of the monitored

entities declare both invariant features, like the physical properties of the en-

tities (e.g., the physical laws of gases), and changing aspects, like weather and

traffic conditions, which modify the expressions used in prediction.

• Application goals and constraints: The quality of the acquired data is critical

for optimal decision making, including sampling sufficient data over space and

time, and minimizing the loss and delay of transferring distributed data to the

decision making routine given the bandwidth, memory and energy constraints

of the architecture. Various timing constraints characterize data acquisition

and event handling.

1.3 Objective

The goal of this thesis is to produce reliable data models starting from raw sensor

data under tight resource constraints of the execution platform while satisfying the

timing constraints of the application.

The above mentioned objective is achieved by following the steps enumerated

below:

1. Utilizing the execution support to transfer executable code generated from goal-

oriented descriptions to the individual nodes, run network-level applications

and detect emergent phenomena based on the rules that are described by the

application.

2. Building dynamic optimization policies for network parameters to efficiently

track quasi-static physical entities while satisfying performance requirements of

the application.

3. Building dynamic optimization policies for network parameters to efficiently

track dynamic physical entities while satisfying performance requirements of

the application.
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4. Building data models that would build meaningful representations of the mon-

itored phenomena and characterizing modeling errors that would occur due to

model parameter lumping, and missed data correlations that occur depending

on the utilization rates of the data paths.

The first step generates executable code for individual nodes based on goal-

oriented descriptions of the application and uses the execution platform to trans-

mit this code to the nodes in the network, before running network-level applications

on this execution platform. The execution support also detects the emergence of

an entity based on pre-defined thresholds. These thresholds may correspond to the

minimum density at each point and the minimum area that has to be covered by

the entity. The second and third steps ensure that sufficient data is available at the

target point (decision making node in the network) for building highly precise data

models by satisfying the timing constraints of the application using resource parame-

ter switching strategies based on the application goals and the nature of the physical

entities. The fourth step builds data model parameters using differential equations in

the form of equation 1.1 using data sampled from the environment. These parameters

model gradients of data flow within the network and the density of sampled data at

different points in the network. The effects of lumping these model parameters while

transferring them to the target point are studied, and the missed correlations between

physical points that are induced by data paths are characterized.

Based on the above description that states the primary objective this thesis and

the steps taken to achieve this objective, we can derive the importance of addressing

these challenges compared to the existing techniques proposed by the community of

Wireless Sensor Networks (WSNs). The main goal of methods proposed for WSNs

is to improve the network performance, e.g., bandwidth, throughput, and energy

consumption [95, 96, 97, 99]. In contrast, the main goal of the presented work for

developing CPS applications is providing accurate data models while meeting all con-

straints of the application and embedded architecture. Operating at a higher level of

abstraction compared to the WSN community, the conducted research work optimizes

network parameters while considering performance requirements, like overall timing,

precision and resource constraints. Precision constraints are satisfied when sufficient

amount of accurate data is sampled by the sensors and also made available at the

decision making nodes for correct data representation. Satisfying timing constraints

directly relates to reducing latency. Latency corresponds to the delay with which
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data is available at the target point. Hence, reducing latency is critical to produce

accurate data models that describe the monitored phenomena. Very high latency will

result in imprecise descriptions of the the toxic gas clouds in the application example

considering the dynamic nature of the toxic gas clouds, making the available data ob-

solete. A more critical application that requires hard timing constraints is the airbag

controller in automobile applications. The sensors need to collaborate quickly and

the decision to deploy the airbag has to be made within the precise timing constraints

to avoid human injuries. The resource constraints correspond to limited availability

of network resources like buffer memory, communication bandwidth, and energy con-

sumption. The challenge is to optimally utilize these limited resources to satisfy all

application needs.

The report describes different optimization and algorithmic procedures that tackle

these challenges in a systematic manner. Before going into the details of these pro-

cedures, Chapter 2 discusses the procedure to specify application goals, procedures

and constraints of an application, and also the techniques to transform these speci-

fications into executable code, while Chapter 3 provides the execution platform of a

grid network of reconfigurable embedded nodes to run these applications based on the

goal-oriented specifications. Chapters 4 and 5 describe the optimization algorithms

that use the properties of the monitored entities to select the right network resources

based on their availability to satisfy the performance requirements of the applications.

In other words, these optimization techniques ensure that sufficient amount of data

is available at the target point within the specified timing delay, which is important

for building precise data models that can be used for decision making. Chapter 6

describes the procedure of building data model parameters by solving differential

equations and streaming these model parameters to the target point. The proce-

dure of distributed data lumping is used where model parameters at different points

in the network are lumped for cumulative data representations to reduce communi-

cation overhead. The modeling errors that occur during the process of distributed

data lumping and the missed data correlations due to the nature of the data paths

are characterized in Chapter 6. Chapter 7 concludes the report by summarizing the

achieved objectives and also provides future work.
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Chapter 2

A High-Level Specification

Notation to describe CPS

Applications1

2.1 Introduction

Specifications at high-levels of abstraction require less development effort as compared

to descriptions closer to the physical level [59], and create additional opportunities

for optimizing the implementation performance for CPS applications. High-level de-

scriptions mainly focus on expressing the goals, sensing inputs, actuation outputs,

events, and constraints of an application, and less on implementation details, such

as processing algorithms, routing methods, and data sharing across the distributed

platform. This leads to shorter descriptions that are simpler to maintain [59]. More-

over, the burden of tackling complex functionalities and variations in the operating

conditions is shifted from the programmer to the compiling and execution support. In

traditional specification languages for CPS [25, 53, 15, 30, 29, 27, 47], the programmer

has to specify explicitly the processing algorithms, interactions between tasks, data

routing, and cluster formation rules. This reduces the opportunities for co-optimizing

the network-level data acquisition, transfer, and processing, including dynamic con-

ditions that are hard to predict off-line. In spite of these advantages, there are few

high-level programming frameworks for CPS applications.

1The work on high-level specification notation was published in [1], and the work on distributed
KDS was published in [4]
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This chapter presents a novel goal-oriented programming framework for develop-

ing CPS applications executed on physically-distributed networks of reconfigurable

embedded nodes in section 2.3. The considered applications involve physically dis-

tributed data and events, objects emerging dynamically in time and space, and data

requiring predictions about their evolution. Such characteristics are typical for many

applications in environmental monitoring, infrastructure management, and intelli-

gent traffic management. The proposed framework is based on a declarative, Z-based

programming notation. Descriptions express the optimization goals, sensed inputs,

actuation outputs, events, and performance constraints, while leaving to the opti-

mizer and execution environment the task of optimally implementing the functional-

ity. Goals and constraints are expressed based on distributed variables that specify

data acquired over distributed physical regions. The operators performed on these

distributed variables include set-related operators, predicate logic operators, cumu-

lative operators, like integrals, and differentials. Section 2.4 uses the application

described in figure 1.1 to provide three examples to specify application goals, the

rules to monitor a phenomenon, and the constraints and precision requirements for

data sensing. In section 2.5, techniques to compile these goal-oriented descriptions

into executable code are discussed, which can be made available at the individual

nodes. The executable code is utilized by the execution support to perform network-

related operations. The execution support of the networked infrastructure is detailed

in Chapter 3.

The distributed variables that are used to make the above goal-oriented descrip-

tions correspond to entities that are distributed in space. These distributed variables

are dynamic in nature. This dynamic nature causes different sets of sensor nodes to

produce events over time and is a consequence of a number of external factors that

govern object movements. For example, consider a scenario where the application

goal is to track toxic clouds over an urban area similar to the application example

described in Figure 1.1. The nodes are distributed in the form of a grid and are

equipped with gas sensors that also have gas classification capabilities. Figure 2.6

shows three local regions that are dynamically formed based on cloud composition.

Each region contains gases of different types, including composition and nature. The

shaded region is the common region, and is heterogeneous due to the presence of both

clouds. Since the cloud is dynamic, it can move in space and also change its proper-

ties over time. For instance, the dotted lines in Figure 2.6 indicate that region II has
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expanded after a certain time. Consequently, region III will also expand.

This dynamic nature of the distributed variables is represented using a fully decen-

tralized method based on Kinetic Data Structures (KDS) [86]. Unlike the variables

or data structures defined in programming languages which are static in nature (i.e.

data structures can hold only fixed types like float, integer, etc. and they have a fixed

memory assigned to them), Kinetic Data Structures have properties that can vary

over time making the concept very suitable to describe variables that are dynamic

in nature, i.e. they change their properties over time. The focus of this KDS-based

model is representation of distributed variables having the properties of kinetic data

on a grid network of wireless embedded sensing nodes once emergent entities is de-

tected. Detecting emergent entities is a capability of the execution platform of the

grid sensor network that is described in detail in Chapter 3.

In this KDS-based implementation, data is aggregated in the form of fragments

that are distributed in the network. The default fragment structure is shown in Fig-

ure 2.8(a) and is updated periodically as the distributed variable changes its proper-

ties. An updated fragment structure is shown in Figure 2.8(b). This technique is com-

pared with existing leader-based, cluster-based and centralized techniques [83][84][85].

Section 2.6 discusses this technique in more detail.

2.2 Related Work

Depending on their abstraction level, existing programming languages for networks

of sensors and embedded processors can be grouped into four classes: low level, node

level, local neighborhood level, and application level languages [41]. Low level pro-

grams explicitly manage the CPU operation, events, and communication between

CPUs. Node level languages focus on expressing the shared and local state informa-

tion of an application, and the operators to process the state through remotely called

procedures. Local neighborhood level languages offer constructs to define and manage

information across localized clusters. Application level languages express an applica-

tion’s functionality without referring to computing or networking details. A somewhat

similar classification is proposed in [87]: programming models are distinguished into

node level, group level (neighborhood and logical groups), and network-level (global

behavior) models.

Low level languages include nesC, Insense, Query Machine and Mate, among other

10



languages. nesC language [25], arguably the most popular specification language for

sensor networks, extends C language with constructs for supporting events, concur-

rency, and component-oriented design. Task communication is non-blocking, based

on split-phase. Routing uses minimum spanning trees. Insense [55] offers parallel

threads communicating through typed channels. Query Machine [53] is a stack-based

language with dedicated instructions for sensors, buffers, and data aggregation, in

addition to the traditional CPU level instructions, like flow control, arithmetic and

logic operations, and stack management. Mate programs [15] are formed out of small

code capsules, which self-replicate through the network using a lightweight version of

BLISS protocol.

SNACK is a node level language [30]. It includes component composition con-

structs, and a library of reusable components and services. The language offers

support for describing shared and local state, sharing of components with similar

parameters, and sharing of control flow or similar actions. Descriptions are based on

Remote Procedure Calls of services through well defined interfaces. A similar con-

cepts is implemented in JCells, a language for Internet [16]. In JCells, operators are

exported and imported by containers of objects and code through typed interfaces.

The containers can be moved, copied, and linked dynamically with each other either

locally or over the network. A similar model is proposed in [34, 42].

Local neighborhood level languages provide constructs for accessing data and

specifying communications in localized regions [29, 28], such as constructs for data

addressing, data sharing, and data reduction. Neighborhood is defined based on

metrics like radio connectivity and geographical location. Abstract Regions [29] are

algorithmic descriptions that use a data sharing mechanism across neighborhoods of

nodes. Programs must define all cluster level operations, like selecting the leader

nodes, but the language offers operators for routing data between nodes, aggregating

data, and exploring trade offs, e.g., bandwidth vs. energy consumption trade off [58].

Resource brokers are used for fine-grained resource management in Pixie, a dataflow

language [60]. Similarly, Hood [28] is a node-centered approach, which extends nesC

with constructs for membership, data sharing, caching and messaging. Shared values

are updated through policies that use information about neighbors, like state, cached

attributes, and local annotations. Logical neighborhoods are discussed in [43].

Application level languages describe the global functionality of an application

based on sensor networks without referring to the topology of the network [41, 27,
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45, 32]. The functionality is specified as a sequence of operations on continuous data

streams, like join, selection, group formation, aggregation, and sort. Extraction of

spatial-temporal pattern queries is presented in [31]. Queries are predicates defined

over exact or relative time constraints. In Flask [41, 51, 62], applications are de-

scribed using distributed dataflow graphs, which are compiled into nesC programs.

The language abstracts low level aspects, like concurrency, buffering, and routing,

but requires explicit description of algorithmic routines and interactions between the

routines. Hence, specifications still must include a significant amount of implemen-

tation details, like sampling clocks, analog to digital conversions, data flow merging,

specific filtering, etc. TelegraphCQ [27] is a dataflow language for adaptive processing

of continuous queries. Support for adaptation includes scheduling, resource alloca-

tion, and trade offs between flexibility and overhead. The language constructs include

interfacing support through ingress and caching, query operators like join, selection,

projection, grouping and aggregation, and duplicate elimination, and adaptive routing

through eddies to support parallelism, load balancing, and fault tolerance. Each data

stream must have an associated state in eddies, such as to indicate the set of modules

where a data must be routed to. The Borealis stream processor [32] assumes window-

based operators over continuously streaming tuples. The language addresses three

important requirements: revision and fault tolerance of the input streams by main-

taining replica or generating tentative tuples, dynamic query modification through

changing the query attributes at runtime, and dynamic and distributed query opti-

mization by local steps, e.g., priority scheduling, query plan modification, load shed-

ding [52], and global decisions, like query allocation to nodes [33, 46]. MacroLab [59]

adds vector programming abstraction to Matlab. Macrovectors are sampled from dis-

tributed physical spaces defined by the vectors’s scope. Programs describe operations

executed over macrovectors, like addition, subtraction, max, min, find, etc.

Declarative programming languages, a particular kind of an application level lan-

guage, are proposed for data query processing [47, 40], cleaning of unreliable data [39],

model identification [47], adaptive sampling and in-network event generation [53]. The

Pulse model [47], proposed for continuous-time model identification, describes the

mathematical nature of the model and any related constraints, e.g., error, and then

uses a gradient-based solver to find the parameters of the model. SwissQM [53] in-

cludes declarative constructs for describing window queries, complex event generation,

overlapping sensor networks, and optimization. Zhao et al. [26, 12] propose Spatial
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Aggregation Language (SAL) in which applications are described through creation

and transformation of spatial-temporal objects. Object properties, e.g., location, in-

tensity, and motion, emulate the properties of physical objects. The language defines

multi-layer hierarchies, i.e. spatial objects, cell complexes, and geometric objects,

based on abstraction and composition operators, like aggregate, classify, re-describe,

localize, and search. Abstractions describe classes of equivalence between the com-

posing entities. Transformations refer to the properties of Euclidean spaces, and

include functions like rotation and translation. [14] presents a kinetic data structure

that maintains all the attributes describing objects in continuous motion, such as 2-D

convex hull and closest pair.

2.3 Z-based Specification Notation

This work uses a notation based on Z language [24] to define distributed data and

events, to declare their properties, and to specify the constraints and goals of the

application. This programming notation is at the application level. Similar to other

declarative languages [63, 38, 48], it is based on first-order predicate logic to ex-

press the functionality of a system with respect to the properties of distributed data

and events, and how individual sensor readings are integrated over space and time.

In addition, the proposed notation describes other important aspects of CPS, like

the application goals and constraints, and predictions of the dynamics of physical

data in time and space. The explicit description of goals and constraints is impor-

tant as CPS involve decision making under time and precision requirements (besides

data querying). Moreover, specifying constraints helps efficient resource management

by facilitating performance trade-off exploration for optimizing the execution for a

variety of requirements, i.e. sensing precision, delay, memory size, communication

bandwidth, and power consumption. This notation based on Z language [24] has

been used for formal specification and verification of computing systems.

Z descriptions are structured using schema notation. A schema can include several

predicates defined using universal (∀) and existential (∃) quantifiers over variables of

various types, like sets, power sets, Cartesian products, sequences and functions.

Predicates are the main means for declaring properties, conditions, and constraints.

Every predicate defines the involved variables and clauses, which are constructed

using logic operators, like conjunction (∧), disjunction (∨), implication (⇒), and
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equivalence ( ⇐⇒ ), and set operators, i.e. union (∪), intersection (∩), difference (\),

membership (∈), and subset (⊂).

One schema is defined for each sensor layer of the application. Following is a

summary of how Z-based constructs are utilized in specifying the features that are

helpful for building high-level specifications:

• Physically-distributed variables: Distributed variables are described as contin-

uous functions defined over space and time ranges, such as gas concentration

(variable concentration in Figure 2.2) and temperature (temp in Figure 2.3).

Universal and existential operators can be used for such variables.

For example, the construct ∀x ∈ [XL, XR].∀y ∈ [YL, YR]. p(x, y) refers to the

distributed variable p defined over the points of a planar, rectangular region.

∀t ∈ [TL, TR]. q(t) refers to the variable q over a time window.

• Data characteristics: The sampled data is characterized by a set of basic at-

tributes, including value, precision (e.g., bitwidth and sampling time), position,

and time. Each basic attribute can be used to compute aggregated attributes,

like the overall value in time and space, and rates of change, such as gradients in

time and space. This is expressed through integral operator
∫

and differential

operator ∂, respectively.

• First-order predicate logic: Predicates are constructed using operators ∧, ∨, ¬,

⇒, ⇐⇒ , ∀, and ∃. The attribute response indicates the time moment of

completing the operator evaluation for distributed variables. The consequence

of an operator ⇒ is performed if its premise is true. In addition to declaring

properties and constraints, the operator also specifies reactive behavior, in which

an event triggers a response. For example, in Figure 2.3, temperature sensing

generates response Action1, if the precision of the reading falls below threshold

Limprec. The attribute response of method Action1 represents the response

time, and is used to describe timing constraints.

• Set operators: As some distributed variables are sets and sequences, the follow-

ing set-related operators are available: ⊂, ⊆, ∪, ∩, ∈, \, and P for defining the

power set. Constructs {Signature|Predicate.Expression} define implicit sets

where Signature specifies the domain of the variables, Predicate is the filter for
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Figure 2.1: Schema for describing the application goals

selecting the values that make the predicate valid, and Expression represents

the computation that produces the values in the set.

• Invariant constraints: Invariants, used in prediction, are predicates over dis-

tributed variables to define properties valid for any physical point and/or time

instance. The predicates refer to time instances following the current moment

t0 and to physical points that are different from the node performing the pre-

diction. As they can include derivative and difference operators, invariants can

also describe the dynamics of distributed variables, i.e. variations along curves

and over time.

• Goals and constraints: Goals describe the expressions to be maximized or min-

imized by decision making. Goals are specified using integral or differential

operators defined over distributed variables. Constraints are predicates that

represent requirements for data attributes. Timing constraints use attribute

response of an operator over distributed data. The attribute denotes the time

moment when the operator completes.

The next section discusses the Z descriptions of the three sensor layers of the

application described in the illustrative example in Figure 1.1.

2.4 Z-based Specification of Illustrating Example

Schema Application in Figure 2.1 describes the application goals. Constants DOMx

and DOMy are the ranges of coordinates x and y of the monitored area. The generic

parameters define the set of alternative paths (AltPaths) analyzed by the decision
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making routine in Figure 1.1 to find the path of minimum total pollution, and start

time (Start) and end time (End) of the time window considered for analysis. Output

variable TotalPollution (Z output names end in ‘!’) is used in computing the total

pollution of a path. The variable is a sequence of values ExpConcentration, where

each value defines the pollution level (current and future) of a path segment.

ExpConcentration is an input (schema input names end in ‘?’), and is produced

by schema GasCloud in Figure 2.2. Output Delay is a sequence of time ranges. Each

range is a time interval during which the sensing precision was below the needed

resolution.

The bottom part of the schema defines two predicates and the goal of the ap-

plication. The first predicate indicates the expected pollution of a path: at any

time moment, TotalPollution includes the current and expected pollution levels of

all points forming the path. The second predicate states that a new time interval

is added to output Delay, if there exists a time moment t prior to the current time

t0, and there exists an element e in sequence TotalPollution, such that e does not

include a pollution value later than t and the difference between t0 and t exceed the

acceptable limit Limreq. The predicate states that the pollution data available for

that segment is obsolete as the time separation between the decision making moment

(current time t0) and the data sensing time (t) is too large. Limreq is a constant. The

third equation defines the application goal, which is to select the path that minimizes

the total pollution (by integrating together the pollution values of the path segments

based on the sequence TotalPollution), and minimizes the total time over which the

required sampling precision is not met (to maintain the validity of predictions). α

and β are fixed by the user based on the importance of the two factors.

Schema GasCloud in Figure 2.2 specifies gas level monitoring. It defines the

conditions under which a new gas cloud emerges, the data collected about cloud

position, size, and trajectory, and predictions about the gas levels at other physical

positions and future time instances. To simplify the description, only the earliest-

detected gas cloud is monitored, but this does not limit the concept. To avoid false

alarms, constant Limgas is the threshold above which a gas has been detected in a

point, and constants Limx and Limy are thresholds defining the minimum size of a

cloud. Input concentration returns the instantaneous concentration level of a gas at

a sensing point, e.g., using an API method of the gas sensor. Output Type stores

the gas type of a cloud. Output T indicates the sequence of time ranges during
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Figure 2.2: Schema for describing gas cloud detection and gas pollution concentration
monitoring

which the gas cloud was detected, and which form the lifetime of the cloud. Output

Trajectory is the sequence of positions forming the trajectory of the cloud. Input

detect indicates if a new polluting object (e.g., a car) was detected in a point of

the physical space at time t, such as using sound-based tracking [64]. Output level

describes the pollution level at a point and time. It is updated based on the gas sensor

readings and upon detecting a new vehicle. Output ExpConcentration expresses the

current and expected pollution levels of any point of the monitored zone.

The bottom part of the schema has four predicates. The first predicate states

that a new gas cloud emerges if there exists a rectangular, compact region over which

the toxic gas concentration at any point exceeds threshold Limgas. The size of the

detected region is defined by ranges D X and D Y . To avoid false alarms, the dimen-

sions of the cloud along the two coordinates must be larger than thresholds Limx and

Limy. The constraint must be satisfied for the entire lifetime of the cloud. The pred-

icate records the type of the detected gas cloud in the output variable Type, the time

instances at which the cloud exists in output sequence T , and the trajectory of the

cloud in output sequence Trajectory. The second predicate states that in any point

the pollution level at the current moment t0 is equal to the reading of the gas sensor.

The third predicate expresses the invariant rule used to predict function level at time

moments after the current time. If a car is detected, the level in that point increases

by the typical amount of pollution created by that car. Function pol is a car’s typical

pollution, which is built through experiments. A different schema can be constructed

that would characterize this function pol that depends on different conditions. The
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Figure 2.3: Schema for describing temperature sensing

predicates can be specified such that data from acoustic sensors can estimate the

speed of the car and its relative position with respect to other cars. This data can

be used to extract driver profile. Another predicate can characterize the type of car

(sedan, SUVs, trucks, etc.). This information can be obtained through classification

techniques by using the frequency signature of acoustic data. Combining information

extracted from these two predicates can be used to estimate the pollution level of

the car. The fourth predicate of Schema GasCloud is an invariant equation that

defines the expected gas concentration at a future time t1 depending on the concen-

tration level at time t1 (considering predictions about vehicles traversing the point)

and the amount of dispersed gas between t0 and t1. The invariant expresses the mass

conservation law for gases [13]. Note that function CloudDispersion, that captures

the gas dispersion, has input parameter temp, which introduces a dependency on the

temperature sensing layer.

Schema Temperature in Figure 2.3 describes the temperature sensing layer. Con-

stant κ is the heat transfer coefficient. Constants Limreq and Limprec are thresh-

old values defining the minimum precision requirements for temperature sampling.

Limresp is the timing constraint for response to temperature related events. The

schema variables include output temp that stores the temperature reading at any

point and time. Output Event is a sequence recording the events associated to tem-

perature sensing.

The first predicate states that temp is equal to the temperature sensor reading

at that point, e.g., using the sensor’s API method read temperature. The second

predicate defines the invariant characteristic of temperature sensing, which states

that the temperature values in any two points x1, y1 and x2, y2 are correlated by the

integral of the heat transfer coefficient along any path between the two points [13].

The third predicate records in output Event all time events at which the temperature
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Figure 2.4: Code and data structures of the reconfigurable sensor nodes

sensing precision had fallen bellow limit Limprec. Attribute precisionBW of temp

indicates the bitwidth precision of sensing. For every event, the predefined action

Action1 is performed under the timing constraint that its response time must be less

than constant Limresp.

2.5 Translation of Z-based descriptions into exe-

cutable code

The methodology for translating Z-based descriptions into executable code is sum-

marized next. Each sensing device (identified by its input APIs) has an execu-

tion thread, as shown in Figure 2.4(a). The code for the three steps of a thread,

(i) sampling, (ii) process and predict, and (iii) transmit data packet, is created using

the predicates that involve only variables related to a single physical position (i.e.

read temperature?(x, y, t) which refers to the physical position of coordinates x and
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// predicate 1 of Schema Application, GasCloud

routine temperature_sensing (){
variable temp;

temp = read_temperature();

store temp in table temperature;

// predicate 1 of Schema Temperature
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S // predicate 3 of Schema Temperature

if (temp.prec < Lim prec ) {

store new event in table events;

generate and transmit one event packet;

}

// predicate 2 of Schema Temperature

for (neighbors <x,y> of the current node) {

temp = estimate temperature at <x,y>;

store temp in table temperature;
}
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variable conc;
routine gas_sensing (){ 

conc = concentration();

// predicate 4 of Schema GasCloud
for (t = current_time to End) {
compute entry for time t in table
ExpConcentration using
tables level and temperature;

}
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routine car_detect (){

// predicate 3 of Schema GasCloud

det = detect();

if (det) {

}

// predicate 4 of Schema GasCloud
for (t = current_time to End) {

compute entry for time t in table

tables level and temperature;

ExpConcentration using

}
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// predicate 4 of Schema GasCloud
generate and transmit one data packet with

}

temperature value, time, coordinates;

(a)
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// predicate 1 of Schema Application
generate and transmit one data packet with
level, time, coordinates, ExpConcentration;

}

generate and transmit one data packet with
level, time, coordinates, ExpConcentration;

store conc in table level;

// predicate 2 of Schema GasCloud

routine data_packet (){
variable pack;

// predicate 1 of Schema GasCloud
pack = receive one data packet;

Lim x && y) {
if(DX > DY> Lim

generate and transmit one event packet;
}

store DX, DY in table level;
}

}
else {

}
}

// predicate 4 of Schema GasCloud
for (t = current_time to End) {

compute entry for time  t in table

if (no gas cloud found yet){

DT = compute detect time of the cloud;

detect) {if (DT > Lim

add DX, DY for gas cloud in table level;

if (gas type in pack == detected gas) {
DX, DY = U {<x, y> in pack};

update trajectory of cloud in table level;

ExpConcentration using trajectory of gas
cloud & temperature along the trajectory;
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generate and transmit one data packet with
level, trajectory, time, coordinates,
ExpConcentration;

(d)(c) } d
a
ta

 p
a
c
k
e
t

C
o

n
s
u

m
e
r

call Action1 with timing constraint Lim ;resp

store conc in table level;

variable det, conc;

conc = pol(det);

// predicate 1 of Schema Application, GasCloud

Figure 2.5: Sensor node code that implements the example in Section 3

y) and not a broader physical area (e.g., variable Trajectory that refers to the coor-

dinate ranges DX and DY ). The predicates involving variables defined over physical

areas produce code for the threads corresponding to data and event packets. The

sequencing of the code of the three steps (of a thread) is not important as every Z

rule defines a situation that does not conflict with the other rules. Logic implications

produce if statements, in which the premise is the evaluated condition and the con-

clusion represents the body of the statement. Data tables, as shown in Figure 2.4(b),

correspond to the variables and functions of the Z-based specification. Instructions

referring to the equality operator produce code to update the data tables.

The routine in Figure 2.5(a) implements the SN functionality for sampling the

temperature sensors. It corresponds to the second thread in Figure 2.4(a), and is

executed with frequency fsampl,temp, which is a parameter of the architecture. As

expressed by the first predicate of Schema Temperature in Figure 2.3, the sensor

inputs are sampled using the sensor’s API read temperature(). The values are stored

in the local table temperature of a node, including the position, time, and value of the

sampled temperature. The table structure corresponds to variable temp in Figure 2.3.

20



As declared by the third predicate of Schema Temperature, if the bitwidth precision

of sampling is less than Limprec, an event is generated: the event is stored locally

in Table events, e.g., the event time and identifier. An event packet is produced to

notify the target point. In addition, the node executes response Action1 with timing

constraint Limresp. Then, according to the second predicate of Schema Temperature,

the temperature values at physical points different than the sensor node position are

estimated and stored in the local table. The estimation uses the physical law for

temperature variation describing the temperature difference along a path. Finally, a

data packet is created and transmitted to the target point with information about

the sampled temperature. The data packet is used to implement predicate four of

Schema GasCloud.

Figure 2.5(b) describes the routine handling gas sensors (third thread in Fig-

ure 2.4(a)). The routine uses tables level and ExpConcentration in Figure 2.4(b).

Table level keeps gas-related information at a point, i.e. coordinates, time, and gas

concentration level. Table ExpConcentration is used to predict the gas concentration

at future time moments. The structures of the two tables correspond to the corre-

sponding variable descriptions in Figures 2.1 and 2.2. The routine is executed with

frequency fsampl,gas. First, it samples the gas using the sensor’s API concentration(),

and then stores in table level the sampled information. These actions are according

to the second predicate of schema GasCloud in Figure 2.2. Then, as declared by the

fourth predicate of schema GasCloud, the expected gas level concentration is com-

puted for the time window defined by the current time moment and constant End

provided by the decision making routine. The expected level is found based on the

physical law of gas dispersion. A data packet is then formed with gas information

and sent to the target point, as required by the first predicates of Schema Application

and GasCloud. The two tables are also updated, if a car is detected by the tracking

sensor, as expressed by the third predicate of schema GasCloud. pol() indicates the

typical pollution level of a certain car type denoted by variable det. The code in

Figure 2.5(c) is executed by the routine handling inputs from the SN’s sonar used in

tracking vehicles (fourth thread in Figure 2.4(a)). Upon detecting a moving vehicle

through the sonar’s API detect(), the routine updates table level by adding the extra

pollution levels due to the car, as defined by the third predicate of schema GasCloud,

and then also updates table ExpConcentration. Note that computing the predicted

values utilizes table temperature, as expressed by the third predicate. This justifies
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the transmission of the temperature values sensed by other nodes.

Figure 2.5(d) presents the code used to handle the received data packets that

include information about gases. The figure corresponds to the fifth thread in Fig-

ure 2.4(a). According to the first predicate of schema GasCloud, the received gas-

related information is used to detect emergent gas clouds by clustering the positions

of the neighboring points at which the gas was detected. Variables x and y (in a

packet) describe points in space at which the gas was detected. The size of a cloud is

indicated by variables DX and DY . If the coordinates of the clusters exceed limits

Limx and Limy, the time for detecting the cloud, DT , and its trajectory are stored. If

the detection time exceeds the threshold Limdetect, an event packet is transmitted to

notify the target point indicating that the delay of transmitting data packets exceeds

the timing constraint. Table level is updated with information about the gas cloud.

Then, as expressed in predicate four of Schema GasCloud, table ExpConcentration

is updated with information about the gas cloud using the gas dispersion law, and the

concentration level and temperature along paths. Finally, data packets are created

and transmitted to the target point.

Event packets received by a node are forwarded to the target point.

Table ExpConcentration is used by the target point to evaluate the total pollution

of the analyzed paths (first predicate of schema Application in Figure 2.1) and to find

the time range for which data acquisition precision is not sufficient (second predicate

of the schema).

2.6 Representing Distributed Variables using Ki-

netic Data Structures

As discussed in the previous sections, the distributed data that corresponds to an en-

tity being monitored is considered a distributed variable. These distributed variables

are represented using a procedure based on Kinetic Data Structures (KDS) [86] since

they keep changing their properties in time and space, i.e. they are kinetic in nature.

The procedure uses the concept of KDS to implement a decentralized methodology

where data is aggregated in the form of fragments distributed over the entire cloud.

When an emergent cloud is detected, we compute the initial set of fragments in the

form of convex hulls as shown in Figure 2.8(a). Each fragment is represented by an
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aggregate node that correlates its data with other aggregate nodes to make decisions

that correspond to merging or splitting those fragments to represent a phenomenon.

Whenever these fragments change their structure, related parameters, like area, loca-

tion, density and composition, are updated.

Region II

Region I

Region III

CO  2

  2SO

Cloud at later time

Figure 2.6: KDS for geographically distributed, physical data

Accurate data representation is directly related to adjusting network granularity

depending on data distribution over space, computing the optimal value of sampling

precision, and minimizing data loss and latency. The procedure to adjust network

granularity is performed by merging or splitting KDS fragments depending on infor-

mation gradients over distances. It is also important that the local regions do not

lose their identities when entities overlap. For example in Figure 2.6, regions I and

II should be correctly represented even when an overlapping region III is formed.

Updates over time should not lose information. When region II in Figure 2.6 expands

over time, fragments inside the network need to be updated in a time-efficient manner.

The subsection on Comparison with existing approaches explains why existing leader-

based approaches are insufficient and the advantages of using the distributed KDS-

based approach over existing leader-based approaches are experimentally proven.

The process of obtaining a meaningful representation of the cloud using the KDS-

based method is summarized in Figure 2.7. At the lowest level, the sensor nodes

sample emergent events and compute the attribute vectors (AV). The vectors are

then used to compute the initial set of convex hulls. Data is aggregated at this level,

so that each Aggregation Node (AN) contains the aggregated attribute vector (AAV)

for that particular convex hull. This aggregated data can be used to compute several

topographical parameters such as boundary, area and location of the convex hull.

2.6.1 KDS Parameters

In order to faithfully represent the dynamic nature of the physical cloud movement,

we use KDS to characterize different aspects of the entities which form the cloud.
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procedure
Goal selects

Figure 2.7: Proposed flow to construct distributed KDS

Our cloud KDS have three main parameters:

• Topography: The parameter describes the geographical extent of the cloud. It

can express boundary, area, and location. In order to extract these parameters,

the sensing nodes generate attributes by providing either the location of the

entity, or their own location if they do not have localization capabilities.

• Composition: The parameter contains information regarding the inherent sig-

nature characteristics of the entity being monitored. For example, the chemical

composition of a gas or the frequency spectrum of a sound source. The param-

eter helps us to define another parameter called cloud class, e.g., homogeneous

or heterogeneous. The attributes required for this purpose are the signature

attributes, which are generated by the nodes using their sampled data.

• Density: The parameter contains information regarding the density of the en-

tity in different regions of the cloud. Combining the data from all these pa-

rameters, we can identify important derived characteristics such as the contin-

uous/discontinuous nature of the cloud, merging/splitting of clouds, and move-

ment of clouds over time.

2.6.2 KDS Operators

KDS include three main operators for each kind of parameter: (i) convex hull oper-

ator [86] is the mathematical model that supports aggregating data fragments into
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Algorithm 1 Algorithm for computing the initial convex hulls

for each active node i = 1 to n do
initialize count = 0
forward data towards the ANs
if (yi 6= 0)and(xi 6= N) then

collect incoming data vectors to compute the convex hull at ANi

increment count
if count > 2 then

aggregate data in the format: AAV < (X, Y )A, HA, DA >

end if
end if

end for

a valid result, (ii) composition operator that decides to merge fragments (applying

convex hull operator) depending on the pursued goal, and (iii) splitting operator that

decomposes the computing of a KDS parameter for a larger geographical area into

fragments corresponding to smaller regions. The three operators are presented next.

i. Convex hulls: Suppose an emergent cloud triggered events at n nodes in a

network of size N × N . The n nodes sample the data and compute the low level at-

tributes that are required to comprehensively characterize the KDS operators. These

attributes are then converted into aggregated fragments called convex hulls (CH)

at the Aggregation Nodes (AN), using certain aggregation scheme as shown in Fig-

ure 2.8(a). The arrows show the communication scheme for transmitting data during

the aggregation process. The procedure used to form these initial set of convex hulls

is explained below. The input to this function is the attribute vector generated by

the sampling nodes, represented as follows:

AVi < (x, y)i, Hi, Di > (2.1)

Hi < entity1, entity2, ..entityl > (2.2)

Di < d1, d2, ..dl > (2.3)

where, (x, y) is the location of the sensor node, H is the cumulative vector which

contains the list of l entities, D contains the density of each type of entity, in the
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(a)

Split Hulls

Merged Hulls

(b)

Figure 2.8: Aggregation, splitting and merging of convex hull fragments

same order as the names in H. Each node generates one attribute vector. So, i varies

from 1 to n.

In Algorithm 1, the initial convex hulls are formed using a static algorithm where

the bottom-right node in the structure is the AN for that particular convex hull.

Therefore, the nodes which have y coordinate zero (leftmost column) or those which

have x coordinate equal to N (topmost row), cannot be ANs. Also, the AN requires

at least three active nodes to form a convex hull. The aggregated attribute vector

contains (X,Y )A which is a list of (x, y) coordinates of the nodes which form the

convex hull, HA is the cumulative aggregated vector of the list of distinct entities and

DA contains the average density of the respective entities for that particular convex

hull.

Algorithm 2 Goal-Oriented Merging/Splitting of Convex hulls - Density profile

send AAVs to neighboring active ANs
receive AAVs from neighboring active ANs
if goal = Density profile then

for each AN j = 1 to m do
compare density profile D for entities
if dD

d(x,y)
> thresholdhigh then

split convex hull into smaller sections
else

if dD
d(x,y)

< thresholdlow then
merge convex hulls into larger sections

end if
end if

end for
end if
Update convex hull information in AAV databases in the ANs
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Algorithm 3 Goal-Oriented Merging/Splitting of Convex hulls - Cloud composition

send AAVs to neighboring active ANs
receive AAVs from neighboring active ANs
if goal = Cloud composition then

for each AN j = 1 to m do
compare list of entities HA in the incoming AAVs
if lists match then

combine hulls
end if

end for
end if
Update convex hull information in AAV databases in the ANs

ii-iii. Goal-oriented composition (merging) and distribution (splitting): In the

analysis, n nodes form m aggregation nodes, which in turn compute p convex hulls.

Initially, the ANs transmit their AAVs to the active neighbors and receive AAVs from

others. Depending on the goal, Algorithm 2 or Algorithm 3 is selected to operate on

the network. Therefore, depending on the density gradient or composition of the

cloud, convex hulls are split (distributed) or merged (composed), to get more insights

into the cloud characteristics as shown in Figure 2.8(b).

2.6.3 Comparison with existing approaches

Existing leader-based approaches [87][83][84][85] have data aggregated onto leader

nodes and the leader nodes process their received data to compute the regions of

interest and represent the global structure of a geographically-distributed data, e.g.,

a data cloud. In hierarchical leader-based approaches [82], there are local leaders

that compute regions that get updated at the root node. These approaches are more

efficient compared to the traditional approach where individual data is sent to a base

station and the base station performs all computations. They are well suited for

query-based applications.

However, unlike query-based applications, CPS applications involves the accurate

representation of a distributed variable. These entities change their properties in space

and time and there is a need for a data structure that would dynamically evolve as

these properties change. This data structure describes the entity in the form of a set

of variables, that include Topography, Composition and Density of the entity. Even
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though existing leader-based approaches reduce communication overhead compared

to the traditional approach, large amount of data still has to be communicated to

the leader node or the root node. The leader node then processes the received data

and if necessary, transmits decisions back to the nodes local to monitored entity if

the application is not only query-based. However, the KDS-based methodology we

use is decentralized and distributed among the nodes that sample the entity, thus

further reducing communication overhead significantly compared to the leader based

approach. Another advantage of this technique over leader based approach is that

based on the granularity of the local fragment in which a node lies with respect to

a specific property (e.g. density, composition, etc.), the node can derive information

regarding the dynamics of the entity and can make its own decisions locally without

the need for a leader node to process data and transmit decisions to the node. The

granularity of a fragment is the level at which it is clustered with respect to other

fragments. For example, compared to the default fragment structure in Figure 2.8(a),

the merged fragments in Figure 2.8(b) would represent lower density gradients and

the split fragments would represent higher density gradients of the gas cloud. Hence,

nodes that are local to these fragments would have sufficient information regarding

the gas cloud to make any local decisions. Hence, we can conclude from the above

mentioned advantages that by locally updating the fragments based on the changing

properties of the entity, the KDS-based distributed technique is quicker to react to

the dynamic nature of the distributed variables.

To prove that the KDS-based technique reduces communication overhead sig-

nificantly compared to the existing techniques, the performance of the distributed

algorithm was studied on three data points or cloud structures that were defined

based on their dynamics. Experiments were conducted on a 100 node PSoC Network

simulator that functions using the execution support described in Chapter 3. Once

the initial fragmented structure (convex hulls) are formed when the cloud emerges and

the fragments are merged or split depending on information gradients, it should be

less expensive in terms of latency to update the kinetic data structure operators. In

this approach, existing operator values are updated without having to recompute all

parameters. When an event emerges in the network, it is incorporated into its closest

fragments and all operators related to its topography, composition and density are

updated in a time-efficient manner.

Every cloud structure defined is updated in five iterations after the initial frag-
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Parameters Cloud Structure Traditional Cluster-head Hierarchical-based

based on dynamics Method based method method [82]

Percentage Slow 89 48 25

Latency Fast 91 69 25

Improvement Merging 88 74 25

Percentage Slow 82 73 60

Data Loss Fast 81 64 40

Improvement Merging 68 46 0

Table 2.1: Percentage improvements over latency and data loss of the proposed tech-
nique

ments representing its properties are formed. Each data cloud has fifteen to twenty

events active during a particular time. The number of events correspond to the

number of nodes sampling relevant data.

The first data cloud structure moves slowly over the network and due to its slow

dynamics, the network is efficiently able to update its fragmented structures as data

clouds move. Only 18-20% of the whole fragmented structure has to be updated on

an average as the cloud moves.

The second data cloud structure moves at a rate faster than the processing ca-

pability of the network and hence, the network sees the change in dynamics to be

abrupt. 35-45% of the whole fragmented structure has to be updated on an average

as this cloud moves over the network.

The third data cloud structure starts with two separate clouds, each with eight

and nine events respectively. Eventually they merge to form a single cloud with

17 events. The region common between those clouds experiences a sudden surge

in densities. As a results, smaller fragments of convex hulls were formed by using

our splitting procedure to obtain more information in those areas of high density

gradients. As a result, the nodes in those regions experienced higher data loss values.

Since the fragmented approach is used which involves only local data commu-

nication, the latency value is consistently similar for all types of cloud structures.

We could observe only a difference of only up to 10% in latency values for the same

resource utility over different cloud structures and it is fairly consistent at 60 to 70

msec. when default resource parameters are used. As expected, the slow cloud pro-

duced the lowest data loss of 4 compared to the other clouds, the fast cloud produced

a data loss of 6 and the merging cloud produced the highest data loss of 7.
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The described technique is compared to existing approaches in Table 2.1. The

traditional approach is the centralized approach where raw data is transmitted to a

base station. It can be observed that latency improvements are in the range of 90%

and data loss improvement is 75% on an average. Compared to the cluster based

approach, we improve latency by an average of 64% and data loss by 61%. The

hierarchical based approach also produces fairly consistent values of latency due to

its fixed hierarchical structure where local leaders collaborate and update leaders at

the higher hierarchy level. This approach is the closest to our distributed approach

and we improve latency by 25% and improvements in data loss depends on the cloud

structure.

Hence, due to the fact that fragments are updated locally and communication

overhead is reduced significantly compared to existing approaches, the KDS-based

distributed technique is quick to react to the dynamic nature of the distributed vari-

ables making it suitable to represent distributed variables.

2.7 Conclusions

This chapter presents a novel goal-oriented programming framework for developing

CPS applications executed on physically-distributed networks of reconfigurable em-

bedded nodes. The considered applications involve physically distributed data and

events, objects emerging dynamically, and data requiring predictions about their evo-

lution in space and time. The framework is based on a declarative, Z-based program-

ming notation, and descriptions express the optimization goals, sensed inputs, actua-

tion outputs, events, and performance constraints, while leaving to the optimizer and

execution environment the task of optimally implementing the functionality. Goals

and constraints are expressed based on distributed variables that specify data acquired

over distributed physical regions. The operators performed on distributed variables

include set-related operators, logic operators, and cumulative operators, like integrals

and differentials. The method to convert high-level description to executable code is

also discussed.

The distributed variables, that correspond to the monitored entity, are represented

using a distributed technique that uses the concept of Kinetic Data Structures (KDS)

where data is aggregated in the form of fragments and gradients within the entity

are described either by merging or splitting these fragments, thus changing its gran-
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ularity. Information regarding the entities is stored locally and only a subset of these

fragments have to be updated with the changing properties of the cloud (35%-45% of

the structure for fast moving clouds). In addition, latency improvement ranging from

25% to 90% compared to existing methods makes this technique capable of quickly

adapting to any changes in the properties of the distributed variable.
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Chapter 3

Execution Support of the

Networked Embedded

Infrastructure1

3.1 Introduction

This chapter provides the execution platform that defines middleware routines to run

network-level applications on the networked reconfigurable sensored system. Each

sensor node is a PSoC embedded processor [37] and these nodes are interconnected

using UART modules and/or radio communication modules. The middleware rou-

tines generate either command, data or event packets. The command packets specify

network parameters like regions, data paths, target points, sampling rates, sampling

precision, event threshold values and actuation procedures. The values of these pa-

rameters are generated based on the design points and executable code that are

generated using the goal-oriented specifications discussed in Chapter 2. In the exper-

iments section, this chapter also provides timing and power analysis of these middle-

ware routines and network performance related measurements for a grid network of

reconfigurable embedded PSoC processors.

This chapter also discusses a novel method to detect emergent physical entities,

e.g., clouds of polluting gas, or clusters of autonomous agents, like robots or vehicles

using a decentralized technique. Emergent entities in CPS express phenomena that

1The work on detecting emergent entities was published in [5]
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are distributed in space and time, and are dynamic with respect to their characteristic

attributes and lifetime. Due to the dynamic nature of these distributed entities, there

is a need for timely detection of the emergence of these entities and an efficient proce-

dure to accurately represent these entities using the process of building data models.

This chapter focuses on the part of timely detection of these emergent phenomena,

which corresponds to a distributed event.

The research community defines events simply as deviating sampled measurements

that violate a pre-defined threshold condition. [88] presents an event-driven wireless

visual sensor network where surveillance frames are transmitted to cluster-heads only

when an event is detected using a threshold condition. [89] conducts a thorough sur-

vey of existing outlier detection techniques for wireless sensor networks. Outliers are

measurements that significantly deviate from normal pattern of sensed data. Reasons

for outliers include noise, sensing errors, events and external attacks on the network.

[90] presents a method for event detection where nodes are initially trained by expos-

ing them to various events for feature extraction and a control station extracts events

from these features.

During the process of detecting emergent entities, events only at the node level

are considered as measurements that violate a threshold condition. For example, a

node would produce an event for the application example described in Figure 1.1 if it

exceeds the measurement from the gas sensor exceeds the density threshold Limgas

defined in the schema describing gas cloud detection in Figure 2.2.

At the network-level, we define events as measurements that correspond to emer-

gent data and these events are used to reliably detect new entities that appear in the

network vicinity. These events, that are distributed among nodes, are generated in

the form of asynchronous inputs and they also need to satisfy the parametric con-

straints set by the application. In the application example, the schema in Figure 2.2

describes these parametric constraints in terms of minimum density of the gas cloud

Limgas to avoid false alarms, and the minimum area covered by the cloud is defined

using the variables Limx and Limy. The nodes in the network are also not assumed

to be synchronized with a common clock. Current event detection techniques cannot

address these challenges creating a need to devise a new event detection technique.

Once an emergent entity is detected and the initial data model is built to represent the

entity, its change in dynamics and structure can be tracked in a time-efficient manner

through inter-node collaborations and regularly updating the data model parameters.
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This procedure of detecting an emergent entity is considered a capability of the

execution support in addition to the middleware routines. Using these capabilities

of the execution support, experiments were conducted for different algorithms and

adaptation policies that were developed to achieve the primary objective of this thesis.

These experiments were conducted either on the physical PSoC grid network, or on

an efficient SystemC simulator that closely emulates the physical network.

3.2 Execution Support

The execution platform is a grid network of reconfigurable embedded sensor nodes

(SNs).

Figure 2.4(a) describes the execution flow of a SN. Each node executes the same

functional template based on four kinds of inputs [61]:

• Command packets are sent at start-up by the server to the SNs to program the

execution parameters of the routines. This procedure transmits the executable

code and design points generated based on the high-level specifications to the

individual nodes. All nodes execute the same code. The packets implement

the following commands: they specify the x and y coordinates of the sensor

nodes. Regions within the network are defined by specifying the x and y co-

ordinates of the bottom-left and top-right corners of a rectangular, physical

region. These packets also define the common collection point called as target

point, the region’s paths used in transmitting data to the target points, the

paths’ transmission parameters, the regions’ sensing precisions (i.e. bitwidth

resolutions and time intervals between successive measurements), and the re-

gions’ aggregation function. After executing the command, the node forwards

the packet to its neighbors until all SNs get the packet.

• Sensed data correspond to the various sensing layers of the application. Each

sensing layer has a separate thread, which is activated depending on the sam-

pling requirement of the application. Each thread includes three steps: acquir-

ing the data from the sensor using the sensor’s API methods, processing the

data and computing predictions required for decision making, and producing

and transmitting the data packets necessary to aggregate distributed data and

their properties.
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• Data packets transmit the sampled and processed data and locally computed

model parameters between SNs and the target point to accumulate distributed

data for the monitored region. After receiving the packet, a node integrates

any additive attributes for which the individual values are not required at the

target point for decision making. Then, the packet is forwarded towards the

target point.

• Event packets communicate events over the network. In response to an event

packet, a node might execute an action and then forward the packet to the

target point. Events at the node level occur when the sampled data violates a

threshold value after being processed by the sensor node.

A more detailed description of the above packets can be found in Appendix A.

Execution follows the scheme in Figure 2.4(a), and utilizes the data structures in

Figure 2.4(b).

3.3 Event detection using distributed interrupts

This section describes a technique that addresses the challenges of detecting emergent

entities. The term distributed interrupts is used to describe this procedure due to the

asynchronous and distributed nature of these events. In addition to detecting these

emergent entities, there is a need to compute the time taken by the network to detect

an emergent entity after it was produced. We define this time period as distributed

interrupt latency. Accurately predicting interrupt latency is a challenging task since

nodes in the network are not synchronized by a common clock. Accurate prediction

of interrupt latency is critical since it is used to compute the criticality of processing

an interrupt to generate interrupt priorities and also set application-specific timing

constraints for interrupt processing and decision making modules.

The algorithm uses the concept of fragments which was discussed in Chapter 2

where each fragment is represented by an aggregation node (AN). For simplicity, a

fragment in this algorithm is considered to have four nodes. A bottom-up three level

hierarchical structure shown in figure 3.1 is used by this algorithm to detect emergent

entities. The first level of hierarchy is called the node level that detects an emergent

entity from sensor notifications. The second level of hierarchy is called the intra-

fragment level, where the algorithm performs intra-fragment communications and the
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notification packets are transmitted to the respective aggregation nodes (ANs). After

forming emergent events, the ANs determine if they are potential interrupts (PI).

At the highest level of hierarchy called the inter-fragment level, the ANs perform

inter-fragment communications and collaborate with each other to decide if PIs can

form an emergent event resulting in interrupt generation. The AN that detects an

interrupt broadcasts an interrupt generation packet.

The algorithm computes interrupt latency and the equations to compute it are

governed by the minimum requirements set by application goals for interrupt gener-

ation (parametric constraints) and network architecture capabilities.

The process of extracting an entity from sampled data is described in brief. An

embedded node performs some signal processing operations after it samples real-time

data using its sensors and extracts attributes from the output of these signal process-

ing algorithms. These attributes are used to extract features that characterize a par-

ticular entity using either supervised or unsupervised classification techniques [89] [81]

commonly used in data mining applications. The procedure used by classification

techniques discretize attributes into intervals and each interval corresponds to a fea-

ture that is unique for each entity. For example, if the purpose of the application

is vehicular detection using acoustic sensors, the data samples are input to an FFT

algorithm that outputs the attribute frequency of the acoustic signals. Each vehicle

(entity) can be characterized according to a range of frequencies and each range corre-

sponds to a feature that distinguishes one vehicle from another. We assume that the

sensors after processing sensed data identify entities through already existing data

classification techniques and focus on the problem on detecting emergent clouds.

Parametric constraints to define a cloud are set by application goals that are

defined using high-level specifications described in Chapter 2. These parametric con-

straints correspond to a minimum area covered by the cloud that has a density value

higher than a threshold. For example, the entities are toxic gas clouds in the ap-

plication example shown in Figure 1.1 and the schema for gas cloud detection in

Figure 2.2 describes these parametric constraints where Limgas defines the density

threshold, and the minimum area covered by the cloud is defined using the variables

Limx and Limy, i.e. the minimum range of cloud in terms of the x and y coordinates

of the network.
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3.3.1 Node-Level hierarchy

The first level of hierarchy operates at the node level and the nodes detect an emer-

gent entity. If the sensor notifies a node of an emergent entity, the node immediately

processes the sensed data, computes the signature characteristics of the entity and

forms a notification packet. A notification packet is generated due to data inconsis-

tencies in the sampled signal. In this application scenario, data inconsistency is an

outlier [89] that corresponds to the addition of a new entity to the Attribute Vectors

(AVs) formed by the node after processing data. A notification packet is an outlier

which may or may not be an emergent event. Individual nodes cannot make this

decision at the bottom level of hierarchy due to insufficient data.

Referring to equation (3.1), the time taken by the sensor to detect an event and

notify the sensor is given by tdetect. tprocess is the amount of time taken by the node to

process the sample after sensor notification, update its AV and form the notification

packet. The time taken for the node to detect the emergence of a new entity, process

it and produce the notification packet is given by tprod.

tprod = tdetect + tprocess (3.1)

3.3.2 Intra-fragment level of hierarchy

The second level of hierarchy is called the intra-fragment level, where the algorithm

performs intra-fragment communications and notification packets are collected at

aggregation nodes (ANs). The ANs, that represent a default fragment, combine

notification packets to form fragment events. After forming fragment events, the ANs

determine if they are potential interrupts (PI) and filter out PIs from outliers based

on certain rules that are defined by parametric constraints as shown in figure 3.1. A

fragment event is not a PI if it does not satisfy the density constraint (e.g. Limgas in

Figure 2.2). By collaborating with neighbors, emergent entities are distinguished from

situations where an existing cloud of entity moves into the vicinity of a fragment and

the fragment event is dropped. Noise and sensing errors are identified by defining a

threshold for a percentage value. This percentage value is the ratio of the aggregated

parametric value at the AN to a computed reference value. These parametric values

depend on the sensor type and the reference value is a function of the number of
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nodes in the fragment, sensor characteristics like range and sensing errors based on

sensor abnormalities, and network granularity.

Since the nodes in the network are not synchronized with a global clock, time

predictions have to be made at the ANs. Each AN captures the time instant when

it receives a node event from an individual node and produces a time stamp τk using

the node’s timer module.

Tk = τk − tdelay k (3.2)

From these captured time stamps, the AN predicts the time instances of event

detection at each individual node Tk by computing the latency tdelay k given by equa-

tions (3.2) and (3.3). The term tcomm k refers to communication time which is a

function of baud rate and packet size, l(path k) refers to the length of the path from

the node k to the AN, twait k refers to average waiting times at the input buffers of

the forwarding nodes and tprod k refers to the time taken by the node to produce the

node event which is given by equation (3.1). tprod k is computed at the first level of

hierarchy and all other terms except twait k are known.

tdelay k = tcomm k × l(path k) + twait k + tprod k (3.3)

The twait k values of all nodes in the fragment are computed using the time stamps

of the individual nodes at the AN. The nodes are labeled with respect to path distance

from AN. Hence twait k is the waiting time of the node that is at a path distance k

from AN within the fragment. Starting from the AN, the waiting times along the

intra-fragment path of all the nodes are computed. For the AN, tdelay 0 is equal to

tprod 0 and all other terms including the waiting time is zero. For the next node which

we term as AN-1, twait 1 is zero since the length of the path is 1 and there are no

forwarding nodes. For nodes that are x nodes away from the AN, a procedure is used

to compute the wait times.

twait x = twait xx−1 + twait xx−2 + ... + twait x1 (3.4)

The method to predict waiting time is given by equation (3.4) and (3.5). The

term twait xy
indicates the waiting time of node x at node y. The values of twait xy

are

sequentially computed starting with y = x − 1 and ending at y = 1. The r terms in

39



the equation are binary variables and hold either 1 or 0. An ra(b) value of 1 indicates

that the waiting time of node a in node b was a finite positive term and the value of

zero indicates that the waiting time was negligible since node b was not processing

samples when it received data from node a in its input buffer and the waiting time

of the data from node a at the input buffer of node b is negligible. The ra(b) values

are computed using a simple algorithm that uses existing Tk and τk values.

twait xi
=





(τx − τi).rx(i), if(i = x-1)

[τx +
∑x−1

j=i+1 wait xj − τi].rx(i), otherwise
(3.5)

The time taken for event nodes to reach the AN tintra frag is the difference between

the time instance when the first node in the fragment generates an event and the time

instance when the last node in the fragment reaches the AN. The time taken for an AN

to generate a PI tprod AN depends on tintra frag and the AN processing time tprocess AN .

tprocess AN is the amount of time taken for an AN to produce a fragment event and

determine if it is a PI.

tprod AN = tintra frag + tprocess AN (3.6)

3.3.3 Inter-fragment level of hierarchy

At the highest level of hierarchy, the ANs perform inter-fragment collaborations to

decide if the PIs collectively can form an emergent event resulting in distributed

interrupt generation. The AN that detects an interrupt, called ANgen, broadcasts

an interrupt generation packet and the relevant nodes start executing the ISR. This

decision is made based on the area constraints set by application goals.

Since the purpose is interrupt detection with minimum communication, the ANs

use the basic path structure for inter-fragment communication shown in Figure 3.1 to

avoid flooding of PI packets. All ANs follow the same path procedure which ensures

that PIs from an AN is not received multiple times at any other AN. The procedure

is such that the PIs tend to diffuse to a particular direction.

Let ANlast be the last AN from which ANgen received a PI before interrupt gener-

ation. After detecting an interrupt, ANgen performs computations using the tprod AN

values and the time stamp values to determine the AN with the highest latency called
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ANlat. ANlat is the one of the first fragments that generates a PI and the nodes in

this fragment are the first ones to detect emergent events. The interrupt latency tintr

is given by (3.7) and it depends on the time taken for ANlat to generate a PI, the

communication time between ANlat & ANgen and the time difference between the

time stamp values of ANlat and ANlast.

tintr = τANlast
− τANlat

+ tprod ANlat
+ tcomm AN .l(pathANlat

) (3.7)

Hence, by combining equations (3.1), (3.3), (3.6), (3.7) and their dependencies,

we compute the interrupt latency after the sensors detect the asynchronous inputs and

this time delay depends on the sequence in which the sensor inputs are detected, entity

dynamics, node processing times, baud rate, packet sizes and parametric constraints.

The accuracy of predicting the amount of time required to generate an interrupt

tintr is critical as it is helpful to compute the timing constraints during the process of

building data models.

3.4 Experiments

The first set of experiments provides timing and power analysis of these middleware

routines and network performance related measurements for a grid network of re-

configurable embedded PSoC processors. The second set of experiments analyze the

performance of the event detection procedure that detects emergent entities.

3.4.1 Execution support routines

This section presents the measured execution time and power consumption of the

implemented execution support. Measurements were done for a grid-type physical

network of reconfigurable embedded PSoC processors [37]. PSoC is a system on chip,

which offers an 8-bit microcontroller, flash memory for programs, SRAM memory

for data, and programmable digital and analog cells, which are all integrated on

the same silicon chip. PSoC’s hardware reconfiguration capabilities are important

for improving performance by customizing the architecture to the application needs.

PSoC nodes were wired together in a grid and communicate with each other through

UART modules. Tables 3.4.1 and 3.2 provides a detailed description of the power

consumption and the execution times of all routines.

41



Definitions # clock cycles Power
(mW)

Region 1,974 259.42
Target point 1,847 + 84 × (r - 1) + 271.45

112 × no nodes
Path 453 + 84 × (r - 1) + 251.65

68 × n + 234 × p
Path rates 1,400 + 84 × 252.93

(r - 1) + 86 × q
Actuation 1,626 + 84 × (r - 1) 251.96
Precision 1,378 + 84 × (r - 1) 240.06

Event region 1,284 + 84 × (r - 1) 239.51
Event param. 1,843 + 84 × (r - 1) 251.715

Table 3.1: Timing and power consumption analysis of execution support for command
packets

As there are cases in which the execution time of the methods is variable, for

example definition of a target point, the execution time was split to reflect the constant

component and the variable parts. For example, the number of clock cycles of target

point definition is 1, 847+84× (r−1)+112×no nodes. The constant overhead takes

1847 clock cycles. The other two parts represent timing of loops, where it takes 84

and 112 clock cycles respectively to execute each run of the loop, and the loops are

run (r − 1) and no nodes times respectively. The referred region is the r-th entry

in a node’s data structure. no nodes denotes the number of nodes in that specific

region. The average power consumption was measured by executing continuously

each routine on PSoC. A multimeter connected in series with the supply pin of PSoC

and the power source indicated the current drawn by PSoC. The average consumed

power resulted by multiplying the measured current with PSoC operating voltage.

Table 3.4.1 indicates the execution time (number of clock cycles) and power con-

sumption of the command packets for defining regions, target points, paths, path

rates, actuation, sensing precision, and events. According to the scheme used by the

nodes to broadcast data, the nodes transmit the packets to the neighboring node(s)

after updating the local data structure. Parameter n denotes that the node is the

n-th node in the path. Value p is the size of the packet. Parameter q denotes that

the path associated is the q-th path in the data structure of the region.
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Function # clock cycles Power
(mW)

Sense 64,720 571.86
Process 277 +Comm. exec.+ 230.9

Forward. function
Check event 1,038 + 84 × 242.83

(r - 1) + 84 × (t - 1)
Actuation 268 + 84 × (r - 1) 242.21

Transfer from buffer 225 + Process 253.46
Select path 1,233 + 75 × (r - 1) 243.38

+ 91 × (q - 1)
Forward data packet 1,087 + 75 × (r - 1) 227.21

+ 35 × (p - 1)
Forward event packet 848 + 84 × (r - 1) 236.72

Table 3.2: Timing and power consumption analysis of execution support for data
packets

Table 3.2 illustrates the clock cycles analysis and power consumption measure-

ments for the temperature sensing routine. In Check event and Actuation, r de-

fines that the current region is the r-th entry in the data structure for events and

actuation, respectively, and t denotes that the current region is the t-th entry in

the data structure of the target points for all regions. In Select path, the parame-

ter r indicates that the current region is the r-th entry in the data structure, and

variableq denotes the number of paths eliminated while selecting the path. For rou-

tine Forward data packet, parameter r indicates that the region name in the data

packet is the r-th entry in the data structure that defines the path, and variable p

denotes that the path name in the data packet is the p-th path defined for that region

in the data structure. For Forward event packet, r defines that the region in the

event packet is the r-th entry in the data structure that stores the target points for

all regions defined for the node.

The timing overhead of the routines is low. It increases linearly with the number

of monitored DARs, number of paths, the packet size, and the position of a node

on the paths. The power consumption is around 250mW for all routines with the

exception of the sensing module, for which it is higher.
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Figure 3.2: Interrupt detection time vs. parametric constraints

3.4.2 Performance of the event detection algorithm

Experiments were performed by producing emergent clouds moving and changing

their shapes and sizes over time on a grid type PSoC [37] network simulator containing

100 nodes with a granularity of 3m. The sensor used was a microphone array that

localizes entities producing sound. Sensor abnormalities were captured through real-

time experiments and incorporated in the simulator. Entities were identified using a

pre-defined, supervised discretization technique that used frequency intervals.

Emergent data clouds were formed starting with a couple of nodes and expanding

over the network with different dynamics. The proposed algorithm predicted inter-

rupt latency tintr and the percentage prediction error was computed. It was observed

that interrupt latency and prediction error are independent of cloud size and posi-

tion for a given set of parametric constraints and cloud dynamics. This behavior is

observed due to the uniform path structure used by the algorithm. Interrupt is de-

tected dynamically by the first node that satisfies the parametric constraints. Hence,

we show experimental results on the same emergent cloud by varying dynamics and

parametric constraints.

Experiments were performed on 8 different clouds of entities with different sizes,

positions and dynamics. Distributed interrupts were successfully generated for all

clouds.

The cloud dynamics are measured with respect to the node processing capabilities.

The processing capabilities correspond to the time taken to process sampled data.

Tables 3.3 and 3.4 provide experimental results for different cloud dynamics for the

same cloud. Column 1 in both tables shows cloud dynamics relative to node processing

speed. Columns 2 to 7 show interrupt generation time in table 3.3 and percentage

prediction error in table 3.4 for different parametric constraints. The parametric
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Cloud Dynamics wrt Interrupt Generation Time (msec)

node processing power 9m2 15m2 21m2 30m2 36m2 45m2

1 2 3 4 5 6 7

90% 1216 1317 1366 1406 1466 1503

faster

70% 1616 1717 1775 2006 2056 2103

faster

50% 2016 2117 2146 2606 2656 2703

faster

30% 2416 2517 2575 3206 3256 3273

faster

Same 2130 3036 3106 3186 3993 4103

Speed

20% 2280 3406 3446 3526 4605 4663

slower

50% 2580 4006 4046 4126 5465 5573

slower

90% 2880 4606 4646 4726 6405 6463

slower

Table 3.3: Prediction of time taken to generate interrupts
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Figure 3.3: Percentage prediction error vs. parametric constraints

constraints correspond to minimum area that need to be covered by the entity to

generate an interrupt. We analyze the change in interrupt latency and percentage

prediction error with cloud dynamics and parametric constraints with the help of the

plots in figures 3.2 and 3.3. Percentage prediction error corresponds to the difference

between the tintr value computed by the algorithm to the actual interrupt latency

time under the assumption that the nodes are clock synchronized.

Figure 3.2 is used to analyze changes in interrupt latency with changes parametric

constraints for different dynamics. Figure 3.2a includes clouds with dynamics faster

than node processing speed and figure 3.2b includes clouds with dynamics slower than

node processing speed. It is observed that the slope in figure 3.2 remains constant

for a specific range of areas. The slope depends on the value of l(pathANlat
) in equa-

tion (3.7). We observe an abrupt change in the slope for an increase in l(pathANlat
).

For example, the values of l(pathANlat
) increases with areas ranging from 20m2 to

30m2 in figure 3.2a and also areas ranging from 10m2 to 15m2 and 30m2 to 35m2 in

figure 3.2b. It is observed that if the cloud dynamics is faster than node processing

power, the change in slope is less apparent comparatively and is almost non-existent

for the case that is 90% faster as shown in figure 3.2a. The change in slope is more

pronounced for slower cloud dynamics as shown in figure 3.2b.

Figure 3.3 is used to analyze changes in prediction errors for changes in parametric

constraints with different cloud dynamics. Figure 3.3a includes clouds with dynamics

faster than node processing speed and figure 3.3b includes clouds with dynamics

slower than node processing speed.

Both figures 3.3a and 3.3b show that the algorithm works consistently for different

cloud dynamics with a few exceptions. It was observed that the errors due to radio

retransmissions is more dominant. The percentage error for parametric constraints
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Cloud Dynamics wrt Prediction Error (%)

node processing power 9m2 15m2 21m2 30m2 36m2 45m2

1 2 3 4 5 6 7

90% 2.71 0.95 2.42 2.35 2.26 3.62

faster

70% 2.05 0.73 1.94 1.66 1.62 2.61

faster

50% 1.65 0.59 1.56 1.29 1.26 2.05

faster

30% 1.38 0.50 1.35 1.05 1.03 1.69

faster

Same 0.00 0.78 0.76 0.74 1.66 1.60

Speed

20% 0.00 1.27 1.26 1.23 0.97 1.40

slower

50% 0.00 1.08 1.07 1.05 0.83 1.178

slower

90% 0.00 0.94 0.94 0.92 0.70 1.018

slower

Table 3.4: Percentage prediction error
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less than 10m2 is high for faster clouds due to the above reason. For the same

parametric constraints for slower clouds, the slow clouds produce a prediction error

of zero. For these cases, ANgen is the same as ANlat and the algorithm produces

predictions based on measurements local to this node and error due to retransmissions

is zero. For higher values of min area, other errors like predicting waiting times twait k

also make contributions. As expected, the algorithm produces higher percentage

errors for cloud dynamics faster than processing speed due to longer waiting times at

node input buffers. The percentage error is lowest for clouds which have dynamics

equal to node processing time.

3.5 Conclusions

This chapter describes the execution platform that defines middleware routines to

run network-level applications on the grid-type sensor network. This execution sup-

port is used to run all experiments to analyze all algorithms discussed in this thesis.

The middleware routines can generate command packets that specify network pa-

rameters like regions, data paths, target points, sampling rates, sampling precision,

event threshold values and actuation procedures. Timing and power analysis of these

middleware routines and network performance related measurements are discussed in

the experiments section, and are used to build an efficient SystemC simulator that

closely emulates the physical network.

The execution support also has the capability to detect emergent entities in time

and space in the form of cloud of physical entities. The novel concept of distributed

interrupts is used for detecting these emergent events. These emergent entities are

detected using asynchronous sensor inputs sensed by embedded nodes which are not

synchronized by a common clock. The three-level hierarchical algorithm was able

to correctly generate a distributed interrupt or an emergent event for different cloud

dynamics, area and size under a wide range of parametric constraints. Interrupt

latencies are accurately predicted and percentage prediction error ranges from 0 to

2.7%.
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Chapter 4

Online Adaptation Policy Design of

Parameterized Execution Platform

to Track Quasi-Static Entities1

4.1 Introduction

This chapter discusses an optimization model that automatically devises the adapta-

tion policies of the reconfigurable sensor nodes to address the goals and constraints

of the goal-oriented descriptions. The procedure discussed in this chapter targets ap-

plications where entities are typically quasi-static in nature, e.g. environmental mon-

itoring applications where temperature throughout the domain has to be constantly

monitored and data model parameters are constantly updated. These applications

define the global tasks and goals that must be achieved by a networked distributed

system through combined operation of its embedded nodes. As a result, two main

design challenges emerge, (i) each sensor node has to efficiently sense, process, and

network under a wide range of performance requirements, while (ii) only scarce hard-

ware, bandwidth, and energy resources are available (to keep the cost low). The per-

formance requirements are specified by the user using the schema-based, high-level

specifications described in Chapter 2. For example, the performance requirements

for the application example described in Figure 1.1 was specified by the schema in

Figure 2.1. In this specification, the area domain (variables DOMx and DOMy) is

1This work was published in [1, 10]

49



specified and pollution within that domain has to be minimized, and timing con-

straints were set where the delay with which data has to be available for building

data models should not exceed the specification provided by variable Limreq. The

second design challenge directly relates to the application-specific constraints. These

constraints are imposed by the schemas that correspond to entity monitoring and

data sampling. For example, the specifications for gas cloud monitoring in Figure 2.2

and for temperature sensing in Figure 2.3 describe predicates to describe a few thresh-

old requirements that the acquired data needs to meet for successfully building data

models to represent the phenomena. The embedded network infrastructure needs to

optimally utilize the available resources to sample sufficient amount of data and make

this data available for building data models. The reason for targeting applications

with quasi-static entities was to study how the optimization model switches between

network resource parameters and adjusts the cost function depending on varying goals

and resource constraints without worrying about the different facets that describe

the dynamic nature of the entities. Adaptation strategies for dynamically changing

entities are described in Chapter 5. Present design methods are insufficient for tack-

ling the two challenges. Methods have only limited capability for co-optimizing the

sensing, processing, and communication subsystems of embedded nodes. Also, few

methods exploit the flexibility of networked reconfigurable architectures to produce

low-cost yet efficient designs for a broad range of requirements.

The procedure discussed in this chapter devises online reconfiguration policies

that control the characteristics of the sensor nodes and data routing to tackle the

two challenges. The algorithm uses two steps: (i) Design Point generation, and

(ii) adaptation policy design at node and network level hierarchies.

The first step produces Design Points (DPs) that are used by the adaptation

model to switch between network parameters to improve performance of the net-

work infrastructure. These design points are generated for each network parameter

module depending on the application goals and resource constraints imposed by the

application. Each DP specifies a unique performance-cost trade off. For example,

each DP would correspond to different communication bandwidth values that can

be selected by the optimizer. The goals and application constraints describes by the

schemas in Chapter 2 would provide the range of bandwidth values that can be used

and the procedure can generate n number of intermediate values that can be used

for data communication. The performance-cost trade offs correspond to different
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communication speed-power consumption ratios and other performance factors. For

example, higher bandwidth values would improve latency, but the embedded nodes

would consume high power at the communication modules, corresponding to latency-

power trade offs. Transmitting large amounts of data with high bandwidths can flood

the network, resulting in data loss, which corresponds to latency-data loss trade offs.

The DP generation procedure uses a systematic simulated-annealing based approach

using Multimode Dataflow Graphs (MDGs) to capture the multiple operation modes

of the sensor nodes. These MDGs are graphical representations that are built using

the performance resource constraints specified by high-level specifications specified in

Chapter 2.

Using a Linear Programming solver describing adaptation as a Continuous-Time

Markov Chain, the second step calculates the switching rates between alternative

DPs and possible communication paths to optimize performance requirements of the

application. The executable code derived from high-level descriptions, along with

the cost function derived from the application goals and the DPs are available at

individual nodes. After adjusting the coefficients in the cost function based on the

application goals specified by the corresponding schema and computing the transition

probabilities to switch between available DPs, the node runs this executable code on

the execution support and sufficient amount of data is provided to build accurate

data models.

4.2 Related Work

The sensor network research community has traditionally studied network routing

protocols [69] without focusing much on design methods for networks of reconfig-

urable sensor nodes. Fortunately, there is some similarity between sensor networks

and Networks-on-Chip (NoCs) [70, 71, 72]. For both, the performance of the network-

ing infrastructure is critical for the overall system performance. Algorithms for NoC

path selection, mapping of cores, and TDMA time slot allocation are discussed in [73].

Methods for communication topology mapping, and topology and protocol selection

are offered in [74, 71, 68, 35]. Ascia et al. [74] present a Genetic Algorithm for find-

ing the communication topology, protocols, and priorities of mesh-based NoCs with

static routing of communication packets, and the worst-case performance is estimated

using a trace-based simulator. Bertozzi et al. [71] suggest a communication network
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design flow that includes topology mapping, selection, and generation for minimiz-

ing objectives, like area, power, hop delay, and bandwidth of various topologies, like

mesh, torus, hypercube, etc. The designer specifies the mapping of the functional-

ity to cores and the routing function, e.g., dimension ordered, minimum-path, traffic

splitting across minimum-paths, and traffic splitting across all paths. The methods

perform a greedy mapping of the communications between cores followed by solv-

ing multi-commodity flow equations for finding the splitting ratios across multiple

paths. Designs are simulated with cycle and signal level accuracy. Murali et al. [68]

propose a methodology to map different use-cases to reconfigurable NoCs, so that

the constraints of each use-case is met. Multiple use-cases can run in parallel. The

core mapping remains the same when switching from a use-case to another but the

communication paths and TDMA slots are reconfigured to match the new use-case.

Guz et al. [75] discuss allocation of non-uniform link capacities under QoS timing

constraints. Wormhole routing is considered due to its simplicity, small latency, and

reduced buffer space requirements. Performance is estimated using analytic models.

Capacity allocation assigns to links small chunks of link capacity guided by bandwidth

sensitivity. The related work on NoCs offers very interesting methods for designing

the networking infrastructure, but does not tackle the interdependency between the

design of reconfigurable nodes and the network. Exploiting the adaptation opportuni-

ties of networked embedded nodes reduces data loss, latency, and power consumption

without increasing cost.

4.3 Optimization Model

This section discusses the optimization model that automatically devises the adapta-

tion policies of the reconfigurable sensor nodes to address the goals and constraints of

the goal-oriented descriptions. The challenges addressed by this optimization model

involve reliable sensing, processing, and networking to meet application goals by op-

timally utilizing the limited resources that are available to run the application.

The optimization procedure uses two steps: (i) Design Point generation, and

(ii) Adaptation Policy Design at the node and network level hierarchies.
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Figure 4.1: Multimode Dataflow Graph

4.3.1 Design Point Generation

Chapter 2 discusses the schema-based high-level descriptions that enable the use to

specify application goals, related procedures and resource constraints. These descrip-

tions are used to build Multimode Dataflow Graphs (MDGs). MDGs are polar graphs

that consist of multiple parallel threads spanning between the start and end nodes,

as shown in Figure 4.1. Each thread is composed of nodes connected through arcs. A

node describes an algorithmic component, e.g., function, subroutine, etc. Arcs express

the required sequencing and data dependencies between nodes. Nodes communicate

through shared memory. Nodes can share hardware resources for their implementa-

tion. Each thread might include multiple modes. A mode represents a pair of polar

sub-graphs, which are executed in mutual exclusiveness depending on the value of

the condition associated to the mode. Condition values change continuously. For

example, in Figure 4.1, Nodes 2 and 3, and Node 4 define the two complementary

branches of Mode 1. The first branch is selected if the condition is true (labeled

Mode1.T ), and the second branch if the condition is false (labeled Mode1.F ). Modes

can be nested.

The method to generate design points is based on the algorithm proposed in [35],

which handles systems with multiple operation modes. The algorithm co-optimizes

all modes together as opposed to traditional methods, which consider only one mode

at a time, usually starting with the most performance-constrained mode [68]. As

shown in [68], traditional strategies can result in hardware over-design as high as
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90% compared to the optimal solutions.

The algorithm for generating multiple DPs is based on Simulated Annealing (SA).

It finds the resource mapping and scheduling of MDG nodes for different hardware

resource sets. The cost function is a weighted sum of the performance attributes.

The exploration loop performs two types of moves: it changes with probability p the

mapping of a node to resources, and it modifies with probability (1− p) the order of

execution of two nodes mapped to the same hardware resource. Hence, the algorithm

conducts simultaneous mapping and scheduling, which offers better solutions than

having two separate steps [35].

Using a given MDG, the procedure performs simultaneous mapping and scheduling

by evaluating the performance attributes of an MDG’s implementation, e.g. latency,

power consumption, etc. The variables in the MDGs denote the performance values

of the blocks in the implementation. In Figure 4.2(b), variable T ex
1 is the execution

time of Node 1 for its current hardware binding (for example, the execution time of

a task for certain resources). Similarly, variable T ex
2 is the execution time of Node 2,
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and so on. Variables T start
i and T end

i are the start and end times of Node i. Operator

nodes correspond to operators and mathematic functions, e.g., plus, maximum, etc.,

and are used to compute the overall performance attributes of an implementation

based on the node attributes and the specific scheduling order. For example, Fig-

ures 4.2, 4.3, and 4.4 are used to evaluate the overall latency of an implementation.

The DPs that are eventually generated should evaluate to a latency using the above

procedure while keeping application specific goals in mind. For example, a range of

DPs should be selected such that the evaluated latencies should satisfy the timing

constraint Limreq in the schema in Figure 2.1 while meeting the constraints related to

energy consumption of the specification. Similar graphs can be set-up for attributes

other than latency and power consumption. An overall performance attribute is com-

puted by pre-order traversal of the graph. Hence, performance estimation using this

procedure has module-level accuracy. Alternative DPs, each corresponding to the T ex
i

values and equivalent values for other performance attributes are generated by the

algorithm.

The procedure also offers the benefit of simplifying the combined expression of

mapping and scheduling. Figure 4.2(b) illustrates the structure built to express the

data dependencies between nodes 1, 2, and 3 in Figure 4.2(a). The graph shows that

the start time T start
3 must be larger than both end times T end

1 and T end
2 of nodes 1 and

2. Moreover, for each node i, its end time T end
i is the sum of its start time T start

i and

execution time T ex
i . Figure 4.3(b) illustrates the sub-graph set-up for the two modes

in Figure 4.3(a). The semantics are similar to the previous case with the difference

that the branches for the unselected modes propagate the value −∞ to the max

operator node. Thus, the unselected modes do not affect the overall performance. If

the hardware binding of a node changes then the value of the T ex variable changes too.

The scheduling order between two nodes mapped to the same resource is expressed

through a dotted arc, as shown in Figure 4.4(b). If Node 2 in Figure 4.4(a) is executed

before Node 1 then the dotted arc in the PM reflects the ordering constraint. The SA

loop changes the execution order between the two nodes by modifying the direction

of the dotted arc. A dotted arc is dynamically added whenever two nodes share the

same resource, and is removed if the mapping for one of the nodes changes.
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4.3.2 Adaptation Policies by the Data Communication Net-

work

The Data Communication Network (DCN) is a grid network of parameterized nodes

called Sensing Nodes (SNs), as shown in Figure 4.5(b). As explained later in this

subsection, grid networks simplify the estimation of the transmission delays and the

prediction of the data loss of a node. Handling networks of different topologies requires

expending the approach, so that the grid network acts as a virtual layer between the

physical network and the optimization model. Then, an additional step can map the

links of the virtual network to physical routing links similar to the method discussed

in [66].

This step calculates the switching rates between alternative DPs and possible com-

munication paths to optimize the cost function that minimizes data loss and latency,

timing constraints, scalability, precision and resource constraints. The coefficients
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of the cost function are adjusted depending on application goals. Application goals

are specified during run time and the rate of utilizing DPs over time depends only

on currently available resources and application requirements, and is independent of

history. Hence, equations are formulated in the form of Continuous-Time Markov

Chains (CTMC) to solve the optimization problem and the transition probabilities

computed to switch between DPs depend only on the current state and is independent

of the previous state of the process. The optimization equations are formulated for

SN-level production and consumption of data, and network-level data between SNs.

A. SN-level production and consumption of data

At the SN-level, the operation of the node routines are modeled as producers that

place data into a common buffer, and consumers that remove data from the buffer.

The buffers represent the local memory of an embedded sensor node. Each thread

handling sensing data and data packets (i.e. threads shown in Figure 2.4(a)) has one

producer and one consumer. Producers are of two kinds: Producers-S represent data

sensing through physical sensors, and Producers-N correspond to data packets from

the network. Consumers model the data packet output to the network as well as any

local data processing, e.g., filtering and local data aggregation. Consumers remove

data from the buffer without adding data back to it. Figure 4.6(b) illustrates the

model.

Example: The thread for temperature sensing (Figure 2.5(a)) has one related

Producer-S and one Consumer in the DCN. This producer corresponds to the code

that starts with reading the output of the temperature sensor and ends with placing

the read data into the local memory. The consumer represents the code that transmits

one data packet. Similarly, one Producer-S and one consumer are for the routines in

Figures 2.5(b)-(c). The routine in Figure 2.5(d) has one Producer-N corresponding

to the code that reads one packet from the network and one consumer. The producer

describes receiving bits from the network, assembling data packets, identifying the

values in packets, and placing the values into buffers.

Each producer (consumer) can have different data production (consumption) char-

acteristics, e.g., speed, power consumption, production rate and data precision, de-

pending on the specific implementation on the reconfigurable architecture. An imple-

mentation is called Design Point (DP). Hence, each producer (consumer) is described

by a set of distinct DPs. Selection of the DP set is performed using the methods
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described in [49, 57]. During operation, producers and consumers switch among DPs

to adapt to the specific conditions and requirements. The modeling of the local, SN-

level data production and consumption must capture the switching between different

DPs.

The SN-level data production and consumption is modeled as Continuous-Time

Markov Chains (CTMC):

ProducerI(ConsumerI) = (SI , A, A(i), t, K, r) (4.1)

For producer (consumer) I, SI is the set of states, A is the action set, and A(i)

are the actions associated to state i ∈ SI . t(i, j, a) is the transition rate if action a is

chosen for transitioning from state i to state j. K is the number of reward criteria.

rk(i, a) is the reward rate if action a is selected for state i. αi is the steady-state

probability of state i.

Example: In Figure 4.6(b), Producer-S has four states, each state being a differ-

ent design point DPi. Similarly, Producer-N has three states. The reward criteria

are the performance attributes of the DPs, such as latency, power consumption, and

input data rate. The action set A has only one action, which is defined by the fixed

functionality of a DP. Hence, for brevity, actions are not indicated in the following

CTMC equations. The action set A would have multiple actions, if each SN has mul-

tiple alternative routines to execute the node functionalities, like alternative sampling

and processing methods. Then, the actions would represent the alternative routines

that the node can select. The overhead, e.g., time and power, for switching states is
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not expressed in the model as it is low for a reconfigurable architecture.

The execution rates of DPs are expressed for two situations, if the producers

(consumers) do not share or share resources. In the first case, the following equations

describe each state i of producer (consumer) I:

t(i, i) αi −
∑

∀k∈SI

t(k, i) αk = 0 (4.2)

∑

∀i∈SI

αi = 1, αi ≥ 0 (4.3)

Equation (4.2) correlates the rate of using DP (state) i to the rate of using DP k

and the transition probability from k to i. Equation (4.3) indicates that one DP is

always used for a thread.

If the producer (consumer) threads are executed on shared resources, e.g., shared

processor, then the equations (4.3) for all threads must be eliminated, and replaced

with the following (single) equation:

∑

∀SI

∑

∀i∈SI

αi = 1 (4.4)

The equations indicate that the DPs of all threads are executed in mutual exclusion

on the shared resource.

Assuming that each state i of a producer (consumer) I produces (consumes) data

at a rate qi (qi ≥ 0) then the average amount of data produced (consumed) in a unit

of time is:

DATAI =
∑

∀i∈SI

αiqi (4.5)

The average input data rate (sensing precision) of SN K is:

Input rateK =
∑

j∈Producer−SK

DATAj ≥ Resolutionk (4.6)

where set Producer − SK is the producer set for all sensing routines of SN K.

Example: The second equation in Figure 2.1 states that the precision in time

of data sensing (e.g., the time interval between consecutive sensor readings) has to

be less than Limreq, otherwise the corresponding time period is added to sequence
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Delay. Hence, the precision in time for gas and temperature sensing has to meet

the constraint. Thus, the input rate of the two sensors must meet the requirement

Input rate ≥ 1
Limreq

.

The amount of data generated by all producers of an SN has to be larger than

the amount of data consumed by all its consumers:

∑

∀I∈Producers

∑

∀k∈SI

DATAk ≥
∑

∀J∈Consumers

∑

j∈SJ

DATAj (4.7)

Assuming that the precision is cumulative, the bitwidth precision of a producer I

is:

PrecisionI =
∑

∀i∈SI

αipreci (4.8)

Example: According to the third equation in Figure 2.3, the bitwidth precision

Precision of the temperature sensors has to be larger than Limprec to avoid the

generation of an event and a response Action1.

The data loss per unit of time at node K is the difference between its overall

production and consumption rates:

LossK =
∑

∀i∈SK,producers

αi qi −
∑

∀i∈SK,consumers

αj qj (4.9)

The buffer capacity of any node K must be larger than the worst-case buffer space

requirement:

∑

∀i∈DecO(SK,prod.)

αi qi −
∑

∀j∈IncO(K,Sconsumers)

αj qj ≤ BuffK (4.10)

Sets DecO and IncO are the set of states of the producers and the set of states of

the consumers, respectively, for which data keeps accumulating in the internal buffer.

In the worst case, input data is coming at the highest rates of the producers while

data is consumed at the lowest rates of the consumers. The states in sets DecO and

IncO include the DPs with the top k largest input rates and the DPs with the l

lowest output rates, such that
∑

i∈DecO αi qi ≥
∑

j∈IncO αj qj. Set DecO is ordered in

the decreasing order of the rates, and set IncO in the increasing order of the rates.

Values k and l are the values for which the difference in equation (4.10) is maximum.
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Data loss reduces the resolution that is achieved at the target point, where the

sampled data is collected for decision making. Assuming that the loss at a SN is

equally distributed among its producers, the achieved input rate of a SN is as follows:

Input rateK,achieved = (
∑

j∈Producer−SK

DATAj) −
Lossk

Cardinality(Producers)
(4.11)

and

Input rateK,achieved ≥ Resolutionk (4.12)

where Cardinality(Producers) is the total number of producers, which includes

Producers-S and Producers-N. Note that equation (4.6) is required for accurate node-

level decisions, and equation (4.11) is needed for precise global decisions.

B. Network-level data flow

The network-level data flow is modeled as a Data Aggregation Pattern (DAP). A

DAP is a set of paths so that every SN is connected to a target point in the network.

An SN can use multiple paths. Figure 4.5(b) illustrates a DAP including paths pi,

pk, and pj. SN n receives data from SN m through path pi, and from SN p through

path pk. DAPs help expressing the communication parameters of connected SNs, e.g.,

communication load and delay.

The optimization model satisfies the following data conservation rule: the data

output by one SN is entirely received by the inputs of the SNs connected to it. Lossy

connections can be modeled by transfer functions of links. Without affecting the

generality of the method, the paper considers only lossless links. As in Figure 4.5(b),

for link L between any SNs m and n, set PL is the set of all paths pL,k that use link

L. Bpk
is the bandwidth and βpL,k

is the rate of using path pk. Using equation (4.5)

and the data conservation rule, the following equation states that PL should have

sufficient bandwidth for the communication between SNs m and n:

∑

∀i∈Sconsumerm

αiqi =
∑

∀j∈SProd−Nn

αjqj ≤
∑

∀pL,k∈PL

βpL,k
Bpk

(4.13)
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and,

∑

∀pL,k∈PL

βpL,k
= 1, βpL,k

≥ 0 (4.14)

The delay of path pk is the average latency of all its SNs:

Delaypk
=

∑

∀m∈pk,I∈m

∑

i∈SI

αi Delayi (4.15)

The delay of a node m on path pk is:

Delaym,pk
=

∑

∀n∈Succ(m,pk),I∈n

∑

i∈SI

αi Delayi (4.16)

where SN n follow node m in the path pk towards the target point.

The latency of DAP P is equal to the maximum delay of its paths pk ∈ P :

Latencyaver,P = max
pk∈P

Delaypk
(4.17)

If a target point has a collection C of alternative DAPs then the average latency

is as follows:

Latencyaverage =
∑

∀P∈C

ωP Latencyaver,P (4.18)

∑

∀P∈C

ωP = 1, ωP ≥ 0 (4.19)

ωP is the utilization rate of DAP P .

The delay of receiving data from node K at the target point is:

DelayK =
∑

∀P∈C,∀pi∈Ps.t.K∈pi

ωi DelayK,pi
(4.20)

where P is an alternative DAP in collection C, and pi is the path in DAP P , so

that SN K is part of path pi.
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Example: The second equation in Figure 2.1 requires that the pollution data

acquired for every path segment should be available at the target point in less than

Limreq time, otherwise the data is considered obsolete. Hence, delay DelayK <

Limresp for every SN K.

The rate at which the sensing data acquired by SN K is received at the target

point TP is the minimum of the rate expressed in equation (4.11) and the experienced

communication delay for the node:

Input rateK,TP = min(Input rateK,achieved,
1

DelayK
) (4.21)

The following equations formulate the expressions used in expressing the goal of

an application. The average power consumption of the network is the total average

power consumption of all SN K in the network:

P total =
∑

∀K

∑

∀SI∈K

∑

i∈SI

αi Pi (4.22)

The cost function minimizes a weighted sum describing the overall data loss, power

consumption and delay:

Cost = min(γLoss + δ P total + µ Latencyaverage) (4.23)

In summary, the step for optimizing the DCN parameters uses the equations (4.2)-

(4.23) to optimize the dynamic behavior of a SN network. Figure 4.6(a) enumerates

the constants and variables of the model. The procedure calculates the steady-state

probabilities and transition rates of the design points (DPs) and communication paths

to optimize a cost function that expresses the application goals, data loss, latency,

and power consumption. The step also considers the constraints of the architecture,

such as available memory.

The discussed model differs from another Markov Decision Process-based opti-

mization discussed in [65]. The approach in [65] focuses on maximizing the lifetime

of sensor nodes by tuning the processor voltage and frequency and sensing frequency.

In contrast, at the sensor level, the proposed model also describes memory size con-

straints, which is important as many embedded architectures have small data mem-
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Best-case Worst-case Diff. Exec.
Ex. List Opt. Imp. List Opt. Imp. (%) time

sch. (%) sch. (%) (sec)
SN 16 82 41 50 136 108 20 62 33
SN 24 154 84 45 210 180 14 53 34
SN 32 173 156 9.8 242 215 11 27 112
SN 48 522 296 43 510 353 30 16 97
SN 64 633 440 30 852 510 40 19 225.30

Table 4.1: Design Point generation

ories. In addition, the model formulates data communication loss and delays, which

are main aspects for acquiring accurate data for decision making.

4.4 Experiments

The experimental part presents results for (i) Design Point (DP) Generation, (ii) DCN

network parameter optimization, and (iii) a heat source tracking application imple-

mented on a wired grid network with up to 25 PSoC embedded processors [37]. The

PSoC chips communicate with each other through UART modules. The goal was to

study the speed - memory - power consumption trade-offs explored starting from goal-

oriented specification, and to characterize the time and power consumption overhead

of the execution support. The experimental results for execution support middleware

routines can be found in appendix A.

4.4.1 Design Point Generation

The first set of experiments studied the quality of DP generation using the proposed

method. MDGs with 16, 24, 32, 48, and 64 nodes have been considered. Each MDG

had three modes. Five different resource sets were considered for each case.

The obtained results are shown in Table 4.1. The table presents the characteristics

of the best-case and worst-case DP. In addition, there are six more DPs for each

of the five resource sets considered. Columns 2 and 5 present the latency results

of a traditional list scheduling algorithm. Columns 3 and 6 offer the latency of

the solutions produced by the proposed method. Columns 4 and 7 indicate the

relative latency improvement of the method as compared to list scheduling. Column 8
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presents the relative difference of the latencies for the worst and best case DPs. The

last column indicates the execution time of the algorithm. Results show that the

proposed method achieves on average a latency improvement of 29% as compared

to list scheduling. Also, best-case latency differs on average by about 35% from the

worst case. The execution time is reasonably large even for bigger MDGs.

4.4.2 Network Parameter Optimization

The goal of this experiment was to study the performance improvement that results by

applying the network optimization step described in the previous section. This step is

enabled by the proposed goal-oriented programming model as it supports description

of a broad set of constraints on sampling rate, delay, memory, communication, and

power consumption. We developed grids of 9, 18, and 27 sensor nodes (SN). Each

reconfigurable SN had three modules as follows: one sampling module (Producer-S)

with 5 different DPs, one input network module (Producer-N) with 3 DPs, and one

output network module (Consumer) with 2 DPs. All DPs represent different latency -

power trade-offs. For example, the sampling module includes a sensing frontend block

and a data processing block. The DPs of the frontend represent different designs that

improve the bit resolution by increasing the sampling rate of ∆Σ ADCs [49, 57], but

using more power. The DPs of the processing block are designs for Discrete Fourier

Transform (DFT) with different latencies and power consumptions. The assumed

Data Aggregation Pattern (DAP) included 8 different paths in the network. The

paths provided alternative data communication paths from all nodes in the network

to a target point. The optimized cost function included three terms: total power

consumption, overall data loss, and size of the required buffers, with the last two

being more important. Constraints were minimum data input rate and latency.

The experiments offered insight on how the problem goals and constraints influ-

ence the steady-state probabilities of different reconfigurable DPs, hence the nature

of the execution adaptation process. We observed that optimal solutions included

many DPs with a high power consumption - latency ratio. The data precision con-

straint is important in selecting the DPs of the sensing component (Producer − S).

Tightening the power constraint increases the data loss as the optimization algorithm

picks the slower DPs for the output network module but these DPs have lower power

consumption. The data loss constraint has an important influence on the steady-state
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Ex. Delay Total Max. Total Total Time
Constraint Loss Loss Power Buffer (sec)

(1) (2) (3) (4) (5) (6) (7)
Net 9 (case 1) 4.1 8.85 2.02 4.61 19.90 0.06
Net 9 (case 2) 5.0 7.97 2.18 4.60 3.56 0.06
Net 9 (case 3) 6.5 8.75 1.96 3.65 0 0.06
Net 18 (case 1) 4.4 22.74 5.64 12.14 30.54 0.26
Net 18 (case 2) 5.5 20.33 3.91 11.12 4.47 0.26
Net 18 (case 3) 8.0 18.66 3.91 10.99 1.48 0.26
Net 27 (case 1) 5.6 35.62 3.35 16.94 27.63 0.46
Net 27 (case 2) 6.5 31.50 3.91 15.33 6.42 0.46
Net 27 (case 3) 9.0 29.08 3.91 14.19 3.95 0.46

Table 4.2: Adaptation policy performance characteristics

probabilities of the output network states. Also, increasing the output rate of nodes

does not necessarily reduce data loss. Higher output rates might over-constrain the

entire path, which can increase the loss of subsequent nodes, and thus lead to higher

overall loss and power consumption.

Table 4.2 offers quantitative insight into the experiments. Three latency (delay)

constraints, shown in the second column, were considered for each network size. The

third column shows the total data loss in the network. The fourth column presents the

highest loss at a single node. The fifth column indicates the total power consumption,

and the sixth column the total buffer space of the SNs. The last column presents the

execution time of solving the linear optimization problem by solver lp solve [11].

The total loss and required buffer space are also relatively low. Specifically, between

14% and 33% of the SNs did not experience any loss. For networks with 27 nodes,

between 22% and 50% of the SNs did not require local buffer space to accommodate

the rates of their producers and consumers. Power consumption decreases as the

latency constraint is relaxed, but the decrease is small due to the smaller weight of

power consumption in the cost function.

A second experiment focused on optimizing the DCN parameters of a grid network

with 36, 64, 81 and 100 nodes. Each sensing module had 5 reconfigurable DPs, each

input network module had 3 DPs, and each output network module had 2 DPs. The

adaptation policies were produced for three optimization requirements: minimizing

data loss, minimizing average power consumption, and minimizing the total delay.

The observed parameters for each policy included the total delay, total data loss, and
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Max.Data Min.Loss

Ex. Delay Loss Power Delay Loss Power

(msec) (µW) (msec) (µW)

(1) (2) (3) (4) (5) (6) (7)

Netw. 36 9.54 36.13 11.76 12.34 0 10.50

Netw. 64 - - - 17.92 5.34 18.80

Netw. 81 15.97 83.09 26.46 22.19 0 23.65

Netw. 100 15.97 100.68 33.04 21.91 0 29.39

Table 4.3: Network performance improvement through adaptation (I)

Min.Pow. Min.Delay Exec.Time

Ex. Delay Loss Power Delay Loss Power (sec)

(msec) (µW) (msec) (µW)

(1) (8) (9) (10) (11) (12) (13) (14)

Netw. 36 12.44 38.3 9.28 7.22 39.53 19.95 0.703

Netw. 64 18.28 74.73 16.27 11.22 44.39 22.62 2.39

Netw. 81 22.08 91 20.68 13.64 50.46 23.81 3.90

Netw. 100 22.08 112.1 25.58 13.64 89.81 30.43 5.48

Table 4.4: Network performance improvement through adaptation (II)

total power consumption. The results were compared with a greedy policy in which

all nodes used their DP with the highest data sensing rate, hence the flexibility of the

goal-oriented framework in expressing various constraints is not used.

Tables 4.3 and 4.4 show the obtained results. In table 4.3, Columns 2-4 corre-

spond to the greedy policy, columns 5-7 are for the policy for minimizing loss. In

table 4.4, columns 8-10 are for the policy for minimizing average power, and columns

11-13 are for the policy for minimizing the total delay. The columns are labeled in

the tables for easy readability. The greedy policy was not satisfying the constraints

for the network of 64 nodes: the optimization problem was infeasible as a high input

sampling requirement is impossible to meet, if the application demands low loss and

the architecture has insufficient buffer memory and communication bandwidth. Col-

umn six shows that the data loss is very low, often zero, if the policy is minimized for

minimum data loss. However, the data loss of the greedy policy is high, as shown in

Column 3. Moreover, the power consumption of the adaptive policy (Column 10) is
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Figure 4.7: Heat source tracking using PSoC network with 16 nodes

around 21% less than for the greedy policy (Column 4). The total delay of the policy

optimized for delay (Column 11) is between 14% to 24% lower than the total delay

of the greedy policy (Column 2). As compared to the policy optimized for minimum

power consumption, the policy for minimum loss increases the total power consump-

tion by up to 13% but significantly reduces the data loss, such as with 112 data values

for a network with 100 nodes. The policy with minimum total delay is faster with

37% to 41% than the policy for minimum data loss but its power consumption is with

3% to 47% higher while the data loss is much larger too.

If the sensing rate requirement is increased by 75% then the policy for minimum

data loss reduces loss by 61% to 65% as compared to the policy for minimum power

consumption, and by 36% to 57% as compared to the policy for minimum delay.

However, the policy consumes between 14% to 18% more power than the policy

optimized for power and has a total delay between 23% to 30% larger than the

policy optimized for minimum total delay. The delay increases because DPs with

longer execution time are used more often than the faster DPs but with higher power

consumption. Similarly, the loss is higher due to using communication links with

lower bandwidth, but which use slower clocks to reduce power consumption.

Column 14 shows the execution time for solving the equations using lp solve [11].

The solving time is less than 5.5 seconds for models built for networks with 100

nodes. The results show that the optimization methods scales well with the size of

the networks.

4.4.3 Heat Source Tracking over Physical Zones

The third experiment tracked a heat source moving over a physical zone. Two zones

were considered, one covered by a network of 16 PSoC nodes and one covered by

a network of 25 PSoC nodes. The goal was to collect the sensed temperatures at
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16 nodes

Ex. Loss Node

delay (msec)

≤120 ≤150 ≤180 <21 <80 <138

(1) (2) (3) (4) (5) (6) (max) (7)

DAP 1 1 1 12 3 9 2 (86.74)

DAP 2 1 3 10 3 8 3 (103.45)

DAP 3 1 2 11 3 7 4 (120.16)

Table 4.5: Heat source tracking with static DAPs (16 nodes)

25 nodes

Ex. Loss Node

delay (msec)

≤120 ≤150 ≤180 <40 <105 <175

(1) (8) (9) (10) (11) (12) (max) (13)

DAP 1 6 1 16 6 12 5 (136.87)

DAP 2 3 7 13 6 10 7 (170.29)

DAP 3 5 4 14 6 13 4 (170.65)

Table 4.6: Heat source tracking with static DAPs (25 nodes)

the target point with the goal of finding the trajectory of the heat source. Different

moving patterns were considered for the heat source, such as the three patterns in

Figure 4.7(d) for the network with 16 nodes. Three different DAPs were analyzed,

each DAP having three paths. The paths are shown in Figures 4.7(a)-(c). Temper-

ature readings were collected for 3 minutes at a rate of 1 sample per second with a

total number of readings of 180 samples per node. The experiments measured the

data loss at the nodes, the delay of the sensing nodes, and the delay of the paths.

The effort required to develop the application was relatively small, and depends

only marginally on the network size. It is easy to modify a description by updating

the goals, events, and constraints. Low and node level descriptions require a higher

programming effort as the specific interaction scheme of every node must be provided.

Neighborhood level description must be adjusted if the goals and constraints of the

application change.

Tables 4.5 and 4.6 summarize the results measured for the two networks, with
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16 nodes 25 nodes

Ex. Node Node

delay (msec) delay (msec)

(1,0) (2,0) (2,2) (1,0) (1,1) (1,3) (3,1) (3,3) (4,0)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

DAP 1 86.92 70.39 36.97 120 103 137 136 36 103

DAP 2 53.68 70.39 103.45 87 70 36.97 136.87 70 137.23

DAP 3 120.16 103.81 36.97 153 170 70.21 70.39 103 103

DAP (15/15/70) 105.92 93.77 46.92 138.15 144.95 75.23 90.23 88 108.13

DAP (15/30/55) 95.21 88.76 56.90 128.25 129.95 70.25 100.17 83.05 113.26

Table 4.7: Heat source tracking with dynamic DAPs

16 nodes and 25 nodes. These measurements are used as a reference to study the

effectiveness of dynamically switching between alternative DAPs. The rows corre-

spond to the three static DAPs in Figure 4.7. Columns 2-4 present the number of

nodes for which the target point received less than or equal to 120 samples (out of 180

samples), between 121 and 150 samples, and between 151 and 180 samples. Columns

8-10 offer the same information for the network with 25 nodes. Columns 5-7 present

the number of nodes that have a delay to the target point less than 21 msec, between

22 and 150 msec, and above 150 msec. The delay of the longest path of a DAP is

shown in Column 7 in brackets. Similar information is offered in Columns 11-13 for

the network with 25 nodes.

For the network with 16 nodes, the percentage of nodes experiencing data loss

is less than 10%. However, for networks with 25 nodes, the percentage is between

30% and 43%. This justifies that data loss becomes significant for larger networks

mainly due to more data being transferred through nodes because of longer paths.

The overall data loss is 156 values for DAP 1, 190 values for DAP 2, and 206 values

for DAP 3. The overall data losses for the network with 25 nodes are 616 values for

DAP 1, 655 values for DAP 2, and 856 values for DAP 3. The delay experienced

by individual nodes varies significantly depending on the paths topology. Therefore,

static paths cannot meet high rate constraints for all nodes, as invariably, few nodes

have large delays to the target node. These nodes are the bottlenecks in computing

with distributed variables.

Table 4.7 summarizes the results for tracking with dynamic DAPs. The three

DAPs were used with two different rate sets: first, DAP 1 with rate 0.15, DAP 2 with

0.15, and DAP 3 with 0.7, and second, DAP 1 with rate 0.15, DAP 2 with 0.3, and

DAP 3 with rate 0.55. During execution, DAPs were selected dynamically according
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to their rates: each time a new data packet was produced by a node, it was forwarded

to the target point along a DAP selected with a probability equal to the rates. The

columns indicate the delays experienced by nine sensing nodes when transmitting

their data to the target point (each node is denoted by its row and column numbers

in the grid). The first three rows are for the static DAPs, and the last two rows for

the two dynamic scenarios. Note that the maximum delays are smaller, which reduces

the delay for evaluating distributed variables at the target point. The more DAP sets

are used dynamically the smaller the difference between a nodes delay and its delay

using the shortest path to the target point. Using dynamic DAPs reduced the data

loss significantly: only 90 values were lost for the first case, and 109 values were lost

in the second case. This is an improvement of 42% and 30% respectively compared to

the best case among the static DAPs. For the network with 25 nodes, 550 values were

lost for the first dynamic scenario and 600 values for the second dynamic scenario.

The first dynamic scenario reduces data loss between 10% and 35% compared to the

three static DAPs.

To study the scalability of the methods for larger networks, we developed a Sys-

temC simulation model for the heat tracking application. The model was tuned to

give the same data loss and delays as the values measured for the physical network

with 25 nodes. For the same static paths and dynamic path configuration rates as in

Table 4.7, using DAP 1 with rate 0.15, DAP 2 with 0.15, and DAP 3 with 0.7 reduced

data loss on the average by 15% for the network with 36 nodes and by about 10%

for the network with 64 nodes. Using DAP 1 with rate 0.15, DAP 2 with 0.3, and

DAP 3 with rate 0.55 reduced the loss by about 13% for a network with 36 nodes

and around 6% for the network with 64 nodes.

4.5 Conclusions

This chapter describes a performance optimization model that automatically designs

the adaptation policies of the reconfigurable sensor nodes to address the goals and

constraints of the goal-oriented descriptions. The reconfiguration policies result by

finding the switching rates between the design points of the sensing, processing and

actuation routines and alternative data communication paths. This is important for

co-designing the sensing, processing, actuation and networking subsystems of CPS

applications. Adaptation policies are computed by solving a Linear Programming
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problem describing adaptation as a Continuous-Time Markov Process. This opti-

mization model targets CPS applications that deal with quasi-static entities. The

purpose of this assumption was to thoroughly study the effects of optimization goals

and network parameter constraints on resource allocation.

Experimental results present the performance improvement obtained by optimiz-

ing the network parameters, and a distributed heat source tracking application using

a network of reconfigurable, embedded PSoC processors. Results show that the opti-

mization methods scale well with the network size. The produced adaptation policies

offer small data loss, and have low buffer memory requirements. Power consumption

can be on average about 21% lower than for policies that are not power aware. Sig-

nificant data loss results, up to 43%, if a static set of communication paths is used.

Static paths are also not effective for computing with distributed variables as the slow

nodes become bottlenecks. Switching dynamically between alternative paths reduces

data loss by up to 40% and also shortens the delay of the slower nodes. This im-

proves the rates of collecting data at the target points, and helps detecting emergent

objects. The execution time of the execution support routines increases linearly with

the network size.
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Chapter 5

Online Adaptation Policy Design of

Parameterized Execution Platform

to Track Dynamic Entities1

5.1 Introduction

As opposed to the optimization model discussed in Chapter 4 where the purpose was

goal-oriented resource allocation to track quasi-static entities, the adaptation policies

in this chapter incorporates the additional aspect of the entities being dynamic in

nature, i.e. they change their properties over time by moving within the space.

The distributed entities are treated as distributed variables, a concept discussed in

detail in Chapter 2. In Chapter 4, we discussed the need for switching between

Design Points (DPs), that represent different performance-cost trade offs, and data

paths depending on goal-oriented descriptions and the resource constraints of the

network architecture. Experiments proved that by changing the coefficients in the

cost function based on the goal descriptions, the adaptation model managed to meet

performance constraints depending on the availability of resources, and sufficient data

can be made available for building highly accurate data models. In this chapter, the

addition of the dynamic aspect of the entities creates the need for an additional step

in the adaptation design that captures the related properties of the dynamic entity,

that includes its velocity and direction. Considering different facets of how these

1A preliminary version of this work was published in [6]
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properties can change over time, trajectory prediction techniques are employed that

predict future sensor readings related to the trajectories. These dynamic properties,

along with the results of the trajectory prediction algorithms, are utilized by the

sensor nodes in their network resource allocation policies to meet the performance

requirements of the architecture that would be helpful during the model building

procedure.

A typical application that would require this approach of trajectory prediction are

target tracking applications, where vehicles that move within a particular region are

tracked using acoustic sensors. The research community has published many papers

on vehicular tracking, where the purpose is optimizing energy consumption, just like

any other work related to Wireless Sensor Networks (WSNs). Zhao [17] optimizes

only power where the current sensor, that is tracking a vehicle, predicts the next

best sensor that has the highest probability of sampling the vehicle and turns that

node on before putting itself to sleep mode. The purpose of trajectory prediction

in this research work is incorporating the additional aspects of dynamic properties

of the entities and predictions into the adaptation design described in Chapter 4

to build more precise data models that would enable efficient decision making. For

example, the schema in Figure 2.1 that specifies the goals of the application described

in Figure 1.1 has the output variable ExpConcentration, that defines the current and

the future (expected) pollution level of a path segment. Based on the current pollution

levels and the future predictions, decisions related to vehicular routing are made to

minimize overall pollution. The function pol in Figure 2.2 defines the pollution level of

a car and the procedure can use acoustic sensor readings to determine the driver profile

and makes predictions related to the dynamics of the car and the future pollution

levels that would be generated from the car. Different enabling conditions can change

the velocity and direction of a moving gas cloud, like wind, paths taken by vehicles,

temperature, etc. For vehicles, the enabling conditions may correspond to the amount

of traffic and the nature of the roads. Hence, apart from ensuring that sufficient

amount of data is made available within the application-specific timing constraints

for building precise data models, accurately capturing the dynamic properties of the

entities and predicting its future positions is equally critical to enable decision making

related to application goals.

The research community predominantly uses techniques based on measurement

history like Bayesian Inferences [17, 18, 19, 20] and Extended Kalman Filters [21, 22,
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23] to make trajectory predictions. This research work considers four facets and/or

assumptions including measurement history that might affect the accuracy of trajec-

tory prediction of any moving entity within a region, depending on rate at which

the dynamic properties of the entities change and discusses four trajectory prediction

methods related to each facet. Experiments were performed on different trajecto-

ries where the dynamic properties of each trajectory are different. Conclusions were

derived from these experiments and the situations where each algorithm is advanta-

geous over the other algorithms in terms of satisfying performance requirements were

identified in the second subsection of the section on experiments. The four algorithms

are briefly described below:

• Quasi-static prediction based on Bayesian inference where previous readings are

used to make predictions using Bayes theorem.

• Bounded trajectory method which approximates trajectories as sequences of

bounded convex - concave regions and the future trajectory is bounded inside a

region that is computed based on the inflexion point that separates the convex-

concave regions.

• Stochastically bounded trajectories, which also assumes a bounding region for

the future trajectory, but describes the transitions from a bounded region to

another as a Markov process.

• An adaptive model, which performs a dynamic linearization of trajectories by

defining states for a trajectory.

The results obtained from these prediction algorithms are used in the adaptation

policy design where correlations between the target trajectory and data communi-

cation paths are used to improve network performance in terms of reducing overall

latency and data loss. Improving latency is critical for generating data models with

high precision and accuracy, and improving data loss is important to ensure that suffi-

cient amount of data is available during model parameter generation. The subsequent

sections provide the theoretical descriptions of the trajectory prediction algorithms

and experimental results provide better insight on the features of each algorithm and

the conditions under which each algorithm should be used for better performance

in terms of latency and data loss, which are the parameters in the cost function
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of the optimization model. The adaptation policy design is devised similar to the

one described in Chapter 4 but in this case, the correlations between the selected

path and the results from the trajectory prediction algorithm are also considered

while switching between design points. The design points include different parameter

values corresponding to input buffer size (memory), communication baud rate, and

power consumption (radio power levels).

5.2 Related Work

The resources of a network of embedded nodes must be allocated so that there is

an optimal load balancing between sensing, processing and communication activities.

[77] explain that this problem needs meticulous investigation due to its importance

for distributed information processing systems. Several important resource allocation

methods have been presented in the literature mainly to optimize energy and power

consumption. Munir et al. [65] propose a technique using Markov Decision Processes

to tune the parameters of the node architecture (i.e. processor voltage and frequency,

and sensing frequency) to reduce energy consumption while operating in changing

environments. Software reconfiguration for WSN is discussed in [60]. Lu et al. [78]

discuss energy efficient node cluster formation using data correlations and spatial

properties of the application. A decentralized adaptive resource allocation approach

is discussed in [79]. Nodes use a bidding scheme to allocate resources in which

they optimize their return (i.e. the utility of their actions) while minimizing their

payments (e.g., consumed energy). Other resource allocation methods for distributed

networked systems are discussed in [80, 60, 10, 58]. [17] optimizes power consumption

for vehicular tracking applications where each node predicts the next best sensor that

has the highest probability of sampling the vehicle and turns that node on before

putting itself to sleep mode. While minimizing energy consumption is important to

prolong the functioning of a network, acquiring sufficient data is equally important

for effective decision making. Performing resource allocation to optimize the quality

and quantity of the data acquired through a network has not been studied yet.
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Figure 5.1: Data path configurations used in tracking trajectories

5.3 Motivation

The correlations between the trajectories of the targets and the selected data commu-

nication paths influences both the experienced data loss and delays while forwarding

data to the target point. The two issues are essential in deciding the quality of the

data used to build data model that enable decision making.

In general, data loss occurs when data stored in buffers is overwritten before

it is forwarded either because of an ongoing data sampling or data reception. This

situation also increases the delay of transmitting data to the target node. For example,

Figure 5.1(a) shows two different data path configurations, and the same trajectory

(highlighted in bold) runs through the network for those configurations. The target

point, which is the node that collects data from all other nodes in the region, is

the black bubble. The embedded collection and target points are based on PSoC

processor [37]. The first path configuration does not experience any data loss for

the considered trajectory. The average delay for the nodes is 1434.62 msec and the

maximum and minimum delays are 2040 msec and 1010 msec, respectively. Six nodes

in the second path configuration experience data loss for the same trajectory. The

average delay for the nodes that did not experience any data loss is 1962.86 msec

and the maximum and minimum delays are 5660 msec and 1010 msec, respectively.

Hence, nodes have an average delay of 36.82% more than path configuration one.

Figure 5.1(b) shows two different trajectories running through the network which

uses the same path configurations, trajectory one is shown with black line and tra-
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jectory two with grey line. Trajectory one has data loss at seven nodes compared

to trajectory two which has no data loss. The nodes in trajectory one experience

an average delay of 73.43% higher than trajectory two. Hence, the same data path

configuration can yield different levels of performance for different trajectories.

Using the above experimental example, the need for accurately predicting tra-

jectories of the entities based on its dynamics for efficient model building through

optimal path selection to reduce latency and data loss is established.

5.4 Algorithms for Trajectory Prediction

For transmitting data to target points, the data paths that work best are selected

for a set of targets. The data paths for data at the receive buffers are observed and

also the forwarding path segments that lie in the line of the trajectory. The lengths

of these path segments are also considered. The data path that produces the least

value of average delay and data loss for the predicted trajectory is chosen. A central

element of optimal data path (DAP) selection is predicting the trajectories of the

targets.

We first characterize the behavior of a trajectory, and define how the elements in

the communication network compute the state of the system based on the information

collected. A trajectory is described by its velocity v and angle θ with respect to the

X-axis in the grid communication network. The state of a target is defined by its

x-position, y-position, and time of triggering an event at a data collection node. The

minimum distance between nodes is adjusted according to the range of the wireless

communication radios, such that no two nodes can sense a target at the same time t.

The variables v and θ correspond to the dynamic properties that define the trajectory

state.

Sensing interval for a node is ts, which depends on processing capacity. Over time

ts, there would be a change in a target’s velocity δv which lies in range [0, δvmax].

δvmax = vmax − v (5.1)

vmax is the maximum velocity.

δvxmax = δvmax cosθ (5.2)
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δvymax = δvmax sinθ (5.3)

Over time ts, there would also be a change in angle δθ, which is in range [0, δθmax].

δθmax is the worst case change in angle over time ts, which is computed by using the

velocity constraints vxmax and vymax.

The rate at which the v and θ values change over time i.e. the values of δθ and

δv determine how the trajectory moves within the network. Accordingly, there are

different facets that describe the dynamics of the trajectory and future trajectory

predictions should be made based on these facets. For example, δθ and δv remain

constant over time, i.e. the trajectory dynamics change at a constant rate, they

are more easily predictable and Bayesian techniques would be able to accurately

predict the future trajectory. Similarly, different scenarios, like looping trajectories

and trajectories with high fluctuations in velocity can be generated by changing the δθ

and δv values over time. Four algorithms were devised for predicting the trajectory

of the monitored phenomenon to select the data configuration paths that produce

the least data loss and delay while transmitting data from the collection points to

the target point for decision making. Each of these algorithms represents a unique

feature that tries to capture different scenarios that would change the trajectory

dynamics. The first algorithm uses Bayesian inference to make trajectory predictions

similar to the sensor selection techniques in [17]. The second algorithm uses bounded

trajectories where a Trajectory Approximating Region (TAR) is computed by finding

inflexion points of convex-concave fragments. The third algorithm uses stochastically

bounded trajectories where the TAR is found based on stochastic techniques. The

fourth algorithm is an adaptive algorithm that adapts its prediction based on the

current state and the rate of change of parameters related to the trajectory.

5.4.1 Quasi-Static Trajectories

An unknown trajectory of a target is defined to be quasi-static, if the trajectory can

be approximated well (at run time) as a collection of fragments pertaining to a set of

statically defined trajectories.

Each node stores the static trajectories and the best data communication path

for the trajectory. The data path selection procedure dynamically estimates at every
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node the most likely static trajectory to which the current node (and its neighboring

nodes) might belong to. Then, the optimal data path is dynamically selected for that

node. The probability of the current node n being approximated by trajst,i of the

static set is estimated using Bayesian inference [17, 81]:

p(trajst,i|n) ∝ p(n|trajst,i)
∑

trajst,k

p(trajst,i|trajst,k)p(trajst,k|nprev) (5.4)

p(trajst,i|n) is the probability of having trajectory trajst,i given that node n sam-

pled the current trajectory. p(n|trajst,i) is the probability of node n sampling data

given the static trajectory trajst,i. p(trajst,i|trajst,k) is the probability of having a

transition to trajst,i given trajst,k. The probability of having trajst,k given that the

previous node nprev sampled the trajectory is p(trajst,k|nprev).

The static path having the highest value p(trajst,i|n) is selected as being the one

to which the current node belongs to, and its data path is used for forwarding data.

There is a need to build a set of quasi-static trajectories based on the character-

istics of the possible trajectories of the targets. Since a trajectory is characterized by

velocity v and angle θ, we split equation (5.4) into equations (5.5) and (5.6):

p(velst,i|n) ∝ p(n|velst,i)
∑

velst,k

p(velst,i|velst,k)p(velst,k|nprev) (5.5)

p(velst,i|n) is the probability of having velocity velst,i given that node n sampled

the current trajectory. The probability that the velocity of a target sampled at node

n is p(n|velst,i). The probability distribution is Gaussian with mean at computed

velocity v and variance corresponding to vmax − v. p(velst,i|velst,k) is the probability

of having a transition to velst,i given velst,k.

p(φst,i|n) ∝ p(n|φst,i)
∑

φst,k

p(φst,i|φst,k)p(φst,k|nprev) (5.6)

p(φst,i|n) is the probability of having angle φst,i given that node n sampled the

current trajectory. The probability that the angle of a target sampled at node n is

p(n|φst,i). The probability distribution is Gaussian with mean at computed angle θ

and variance corresponding to θmax − θ. p(φst,i|φst,k) is the probability of having a

transition to φst,i given φst,k.
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Figure 5.2: Quasi-static trajectory example

The quasi-static trajectories are defined for each node. An example is shown in

Figure 5.2. These trajectories look like sinusoidal waves, and their shapes depends on

angle θ and the height h, which is determined by computing distance d from velocity

v. d is the displacement of the trajectory over time ts given velocity v.

The sinusoidal shape of the quasi-static trajectories has many advantages. These

trajectories can be compressed or expanded by changing angle θ. The height h de-

pends on displacement d over time ts given velocity v. The sinusoidal shape enables

the same trajectory to be reused for multiple nodes and hence reduces programming

effort and redundancy. For example, the same trajectory can be defined for all labeled

nodes in Figure 5.2. A phase shifted version of the trajectory can also be defined to

accommodate all angles. A 90o phase shifted version of the trajectory is shown in

Figure 5.2 (the dotted trajectory). The direction of trajectory motion is also in-

terchangeable. For node B in Figure 5.2, both trajectories together cover angles θ,

θ + 90, θ + 180 and θ + 270. Depending on the angle, more phase shifted versions of

the same trajectory might be needed to cover all nodes. The smaller the angle, the

more the number of phase shifted version of the trajectories are required.

The angle with the highest value p(φst,i|n) in equation (5.6) is used as θ. The

velocity with the highest value p(velst,i|n) in equation (5.5) is used to compute d

and the segment of that quasi-static trajectory (bolded in the figure for node A) is

utilized for prediction. The mapped segment predicts the future sensing nodes of

the trajectory. The data communication path is selected by static analysis of that

trajectory segment and identifying the data path that performs best for that segment.
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Figure 5.3: Trajectory description using bounded trajectory model

5.4.2 Bounded Trajectories

The second method approximates a trajectory as sequences of convex - concave frag-

ments with bounded gradients of known ranges. The point separating each successive

convex - concave fragments is called inflexion point. The average time distance ∆T

between inflexion points is known. The prediction model estimates that the real tra-

jectory of a target is located inside the region defined by the minimum and maximum

gradients. The region is called Trajectory Approximating Region (TAR).

Figure 5.3(a) illustrates a trajectory expressed in this way. The gradient of the

convex fragment is in the range [Gradconvex
Min , Gradconvex

Max ]. At time T1, there is a break

of the two dashed lines as the trajectory switches to the concave part. The gradients

of this part are in the range [Gradconcave
Min , Gradconcave

Max ]. The trajectory shown in the

figure is approximated well by the corresponding TAR.

The likelihood pn of node n, inside TAR, to sample the trajectory is estimated

as follows. Let’s consider a discretization of TAR into sub-regions, as shown with

dotted line in Figure 5.3(b). The likelihood pn depends of the (unknown) length of

the trajectory ltrajectory inside the sub-region containing the node, the area of the

sub-region Areasub−region, and the number Nalt traj of alternative trajectories that are

inside the sub-region and go through the node:

pn ∝
ltrajectory

Areasub−region

Nalt traj ≈

∫
∆T

√
x(t)2 + y(t)2dt

Areasub−region

Nalt traj (5.7)
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or

pn ∝

∫
∆T

√
x2

0 + y2
0 + 2(Gradx + Grady)t dt

Areasub−region
Nalt traj (5.8)

x(t) and y(t) are the (unknown) equations describing the target’s trajectory. x0

and y0 are the coordinates of the target at time T0, and Gradx and Grady are the

gradients at time T0 of the trajectory along the two axes.

The number of alternative trajectories Nalt traj can be estimated based on (i) the

angle defined by vector
−−−→
(A, n) from node A (the node currently considered) to node n

and the vector corresponding to Gradmin, and (ii) the angle defined by vector
−−−→
(A, n)

and the vector corresponding to Gradmax. The larger the product of the two angles

the higher Nalt traj:

Nalt traj ∝
̂−−−→

(A, n),
−−−−−−→
Gradmin ×

̂−−−→
(A, n),

−−−−−−→
Gradmax (5.9)

To reduce the overhead of estimating likelihood pn, starting from expressions (5.8)

and (5.9), two approximations can be introduced to calculate probability pn.

The first approximation considers that all nodes of a TAR are equally likely to

be part of the trajectory, therefore expression (5.8) has the same value for all nodes,

and is computed using the area value for the entire TAR, without any discretization.

Nalt is the same for all nodes and can be eliminated from the expression. This

approximation reduces the computing overhead to estimate pn at node A.

The second approximation reduces the overhead even further assuming that a

target’s trajectory can have any gradient inside TAR, hence, in the worst case, it

coincides with the data communication path inside the region. Then, the likelihood

pn can be estimated as follows:

pn ∝
1

lengthn∈DPi

(5.10)

DPi is the data communication path containing node n. lengthn∈DPi
is the length

of DPi inside TAR. For example, in Figure 5.3(b), data communication Path2 has

no nodes inside the regions, hence the likelihood of its nodes sampling the trajectory

is lesser than for the nodes of Path1. Counting the number of path nodes inside a

TAR requires low processing overhead. Note that for windows of size one, expres-
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Figure 5.4: Trajectory description using stochastically bounded trajectory model

sion (5.8) is proportional to the cosine of the angle between the trajectory and the

data communication path at node A.

5.4.3 Stochastically Bounded Trajectories

The third model represents a trajectory as stochastically bounded trajectories, if the

trajectory is approximated by bounded fragments in which the change to another

fragment follows a stochastic rule, instead of alternating between convex and concave

regions like for bounded trajectories. Similar to bounded trajectories, stochastically

bounded trajectories are composed of fragments with gradients limited to a known

range [Gradi
Min, Gradi

Max]. Figure 5.4(b) shows the description of a trajectory that

is composed of four fragments, each being characterized by a specific gradient ranges

and average time ∆T of switching to another fragment.

The switching between different fragments is modeled as a Markovian process.

Lets denote xi the steady-state probability of fragment i, and ti,j the transition rates

between the fragments. The values of ti,j are found through observing various trajec-

tories through the same region. Then, the steady-state probabilities can be computed

by solving the following equations:

ti,ixi −
∑

j 6=i

tj,ixj = 0 (5.11)

and
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∑

∀k

xk = 1 (5.12)

Using the same reasoning as for bounded trajectories, the likelihood pn in expres-

sion (5.8) is updated as follows:

pn ∝ xi

∫
∆T

√
x2

0 + y2
0 + 2(Gradx + Grady)t dt

Areasub−region

Nalt traj (5.13)

or the approximation in equation (5.10) is changed to expression:

pn ∝ xi
1

lengthn∈DPi

(5.14)

5.4.4 Adaptive Model

The fourth trajectory prediction method adapts its prediction based on the current

state and the rate of change of parameters related to the trajectory. The method

incorporates the advantages of the first three methods. The state of a trajectory

depends on the rate at which its parameters change. If the rate of change of velocity or

angle changes beyond a range, the trajectory has entered another state. For example,

a higher rate of change of angle causes the trajectory to loop. A lower rate of change

of angle causes an almost linear trajectory.

The proposed mechanism utilizes this definition of a trajectory state to make the

following predictions: If the rate of change of angle and velocity over time has been

constant (e.g., acceptable increase or decrease of φ for angle, and acceptable increase

or decrease of xm
s

for velocity, to introduce noise margin), the trajectory is assumed

to remain in the same state. A new state is defined by change of velocity ∆V and

angle ∆θ over time. As shown in equation (5.15), depending on the time for which

the trajectory has been in the above state, we can compute the probability pstate for

which it remains in the same state. That depends on the number of previous events

for which the trajectory assumed the same state trajstaten
and the deviation of current

values of velocity δ(∆V ) and angle δ(∆θ) with respect to the current state. Hence,

pstate ∝
trajstaten

δ(∆V ).δ(∆θ)
. (5.15)
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Figure 5.5: Adaptive prediction model: (a) noise margins and (b) linear approxima-
tion

For higher probabilities, we can make predictions for longer future trajectory

segments, which depends on time tpredict over which the trajectory can be predicted

accurately.

tpredict ∝ pstate (5.16)

Hence,

tpredict ∝
trajstaten

δ(∆V ).δ(∆θ)
≈ k.trajstaten .(x − ∆V ).(φ − ∆θ) (5.17)

The higher the distance of ∆V and ∆θ from the noise margins, the closer it is

to the trajectory state parameters and hence the probability or time of prediction

increases. The above equation is valid only when x > ∆V and φ > ∆θ. Otherwise,

the trajectory has entered a new state: tpredict is updated by changing trajstaten
to

value one, and a new state is defined corresponding to the change in angle and velocity

with respect to the previous node.

tpredict determines the number of future events that can be predicted. This depends

on the current state of the trajectory, the current estimated position of the target,

and the current absolute values of angle and velocity. When the trajectory enters a

new state, trajstaten
is reset to value one, and the value of tpredict is determined by

the proportionality constant k.

The noise margins φ for angles and x for velocity are defined as follows. If the rate

of change of parameters go beyond these parameters, the trajectories change states.

Refer to Figure 5.5(a), where the solid line is the trajectory if ∆V and ∆θ do not

86



change over time from node A. The broken line is the deviation that results in the

same state since it triggers the same set of future nodes, but the dotted and broken

line triggers a different set of nodes and hence belongs to a different state. In this

case, the change in parameters exceeded the noise margins. The two noise margins

are defined as follows:

δ(∆θ) ≤ φ (5.18)

and

δ(∆V ) ≤ x (5.19)

We use the computed value of tpredict to find parameters φ and x. We then compute

the future trajectory using tpredict assuming that the rate of change of parameters is

equal to the values defined for the state. Using the above information, we determine

future sensing nodes for that state. The minimum change in velocity and angle, that

generates a trajectory producing a different set of future sensing nodes, correspond

to the noise margin.

Moving on to the prediction procedure, for tpredict seconds, the future trajectory

is approximated based on current velocity, angle, and trajectory state (rate of change

of velocity and angle) using linear approxation. The method produces trajectory

segments that approximate the trajectory curve. The curve in Figure 5.5(b) shows

the trajectory and the broken lines present the segments produced by the linear

approximation method. Linear approximation is a good method for prediction in this

case since we do not have to reproduce the actual trajectory, but only determine the

future sensing / processing nodes.

Value tpredict depends on the trajectory state. If the trajectory remains in the state

for some time, value tpredict is high and a large segment of the future trajectory can be

predicted. The value of tpredict is low at the point where the trajectory state switches.

Hence, a very small segment of the trajectory is predicted until the trajectory settles

into a new state.
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5.5 Parameter Optimization using Predictions

This section describes adaptation policies to select the parameters of the nodes during

communication along data paths, namely buffer size, baud rate and radio power

depending on the available resources and trajectory prediction. In this section, we

contend that apart from optimizing data paths, there is also scope for improving

performance by adjusting these SN-level parameters based on trajectory predictions.

Let us consider the example shown in Figure 5.6 where node n selects the path drawn

in the figure and the dotted curve is the future trajectory. It can be observed that

a major section of the forwarding nodes in a selected data path lies in the vicinity

of the future trajectory. In this case, the forwarding nodes would have to store data

from node n in the input buffers while processing the sensed data corresponding to

the target. This would result in longer waiting times at the input buffers of the

forwarding nodes, increasing latencies and also the risk of buffer overwrites resulting

in data loss. Data loss can be prevented by increasing the input buffer sizes of each

forwarding node. Data loss can also be prevented by adjusting the baud rate to a

value relative to the speed of the trajectory and this prevents longer waiting times at

the input buffers, lowering the risk of buffer overwrites. It was observed that lower

baud rates actually improves data loss without affecting latencies as the time spent

by data at the input buffers of the forwarding nodes is now spent in communication.

The subsequent subsections formulates adaptation policies that uses the above

concept where results from trajectory prediction are used by the nodes to switch

between network parameters to minimize the cost function by reducing data loss and

average delay.

5.5.1 Optimizing Buffer Size

The following constraints refer to buffer size:

N in
n ≤ Bfk (5.20)

and

Bfk ≤ Buffcap (5.21)
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N in
n is the amount of data input at a node, Bfk is buffer size, which ranges from

one to x (e.g., x = 4 bytes in our practical experiments), and Buffcap is the buffer

capacity at the node, which depends on the amount of available memory. The larger

the amount of memory required for processing, the lower is the buffer capacity. Hence,

we use four DPs in our experiments corresponding to buffer size.

It was observed that higher the buffer size, higher is the average delay. For lower

buffer sizes, data gets overwritten, and hence does not contribute to average delay

since it is computed only for nodes that reach the target point.

Average Delay =

∑
loss of individual nodes∑

No. of nodes recvd. at TP
(5.22)

The performance equation for buffer size is as follows:

−PBf = αBfLoss + (1 − αBf )Delay (5.23)

The negative sign shows that performance improves when we reduce loss and

delay. A large value of αBf indicates that the focus is to improve delay over loss.

This decision can be made based on the current state of the trajectory, the length

of the critical path (l(Crp)) from current node to the target point (TP), and the

length of the future trajectory in the bounding region that covers the area between

the current node and the TP, as shown in Figure 5.6. If the length of the critical path

is such that the projected delay is less than the threshold value that would make the

data obsolete, the focus could be more on improving data loss. At the same time,

sufficient amount of data should reach TP for efficient decision making.

l(Crp) = max(l(p1), l(p2), ..., l(pn)) (5.24)

The value of αBf depends on the following two parameters:

αBf ∝
l(Crp)

l(trajbound)
(5.25)
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Figure 5.6: Parameter optimization using predicted trajectory

A large critical path results in longer delay if buffer size is higher and if a major

part of the future trajectory lies inside the bounded area. This increases the possibility

of data loss due to data overwrites during processing at the future nodes. αBf is

directly proportional to the length of the critical path, and inversely proportional

to the length of the trajectory bounded by the area. The computed αBf is used to

compute the steady state probabilities in equations (5.26) and (5.27):

t(i, i)xi −
∑

∀k∈Bf

t(k, i)xk = 0 (5.26)

where, t(i, j) is the transition probability from state (DP) i to j, and xi-s are the

steady state probabilities.

∑
xi = 1 (5.27)

In our case, the number of elements, k is four.

5.5.2 Optimizing Baud Rate

Higher baud rates result in faster communication between neighboring nodes which

lowers delay. However, slower baud rates, in certain conditions enumerated below,

can help improve performance:

1. Improving power efficiency to prolong network life: The default baud rate is

switched to a lower value to conserve battery life.

2. Preventing data loss by ensuring shorter waiting times at the input buffers of

the processing nodes, thus lowering the risk of a data overwrite condition: The
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baud rate is lowered to a value relative to the speed of the trajectory such that

data is forwarded at a speed slower than the trajectory. We can avoid long

waiting times at input buffers using this method but the final average delay

must be comparable to the average delay with the previous baud rate and the

delay should not exceed the threshold value that makes that data obsolete.

The following is the baud rate performance equation based on the above condi-

tions:

−PBr = αBrLoss + βBrDelay + γBrPower (5.28)

The coefficient αBr is computed based on the length of the projected trajectory

(l(traj)) within the bounded area shown in Figure 5.6:

αBr ∝
1

l(trajbound)
(5.29)

The coefficient βBr is computed based on the delay of path pi given a baud rate

value. The constraint for computing this parameter is that the delay should be less

than the threshold value that makes this data obsolete at TP. In equation (5.30), βBrk

finds the coefficient for each bandwidth value and the selected path pi. The baud rate

that performs best is used as βBr in equation (5.28).

βBrk
∝

1

DelaypiBr

(5.30)

and

DelaypiBr
= l(pi).Br + tBrwait

(5.31)

and

tBrwait
=

∑

∀n∈pi

ttn − trn (5.32)

where trn is the time at which data is received at node n and ttn is the time at

which data from current node is transmitted from node n. tBrwait
corresponds to the

waiting times at the input receive buffers of the nodes. If the forwarding node is
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predicted to be performing the task of processing data, the current node can reduce

its bandwidth to an order of magnitude corresponding to the node processing time.

This results in lower values of tBrwait
and reduces the risk of a data overwrite.

In our experiments, we have 3 DPs for baud rate at the SN-level (communica-

tion between embedded node and radio module using SPI protocol), with bandwidth

values equal to 4.8kbps, 9.6kpbs and 19.2kbps, where 9.6kbps is the default value

selected by the nodes. We have 2 DPs for baud rate at the network level (inter-node

communication using radio modules), with bandwidth values equal to 31.25kbps and

62.5kbps. The default value is 31.25kbps.

5.5.3 Optimizing Power Consumption

The last coefficient depends on the amount of power available for data communication

modules and the desired length of battery life:

γBr ∝
Poweravailable(watts)

l(Batterydesired)
(5.33)

The computed values of αBr,βBr and γBr are normalized to compute the weights

for equation (5.28). These weights are used to decide the appropriate baud rate.

Power consumption is adjusted using 8 DPs that correspond to the radio power

levels that range from 0 to 7 with 7 being the highest power level that minimizes the

number of re-transmissions and the default power level is 1.

5.6 Experiments

Four trajectory prediction algorithms were studied using eight trajectories defined

such that they cover the entire data communication network. Trajectories one to five

cover different possible trajectory directions, velocity values, angle ranges, and rates

of change of velocity and angle. These parameters are important for the prediction

performance of the algorithms. Situations where the algorithms perform worst were

identified and then trajectory six was built based on these situations. Hence, all

algorithms are expected to yield less optimal results on trajectory six. Figure 5.7

illustrates the first six trajectories. Finally, we defined two more trajectories that

are approximately five to six times longer than trajectories one to five and three
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Figure 5.7: Trajectory descriptions

times longer than trajectory six and we named them trajectory A and trajectory B.

We considered trajectories four and six, which have the most number of events, to

create trajectories A and B that move along the same direction as that of trajectories

four and six while looping along its current position. To study multi-target tracking,

the experiments also considered multiple trajectories simultaneously. The data paths

configurations were defined such that there are three unique path configurations for

each of the four target points. Hence, the experiments used a total of twelve path

configurations.

The experiments section is divided into three subsections. The first subsection pro-

vides experimental results and analysis of the four trajectory prediction algorithms

on the eight trajectories. The second subsection provides conclusions derived from

the experimental analysis detailed in Subsection 4.6.1 and describes the conditions

under which each of the four algorithms would perform optimally by making accurate

trajectory predictions. The third subsection provides experimental results for adap-

tation policy design where design points for parameters including buffer size, baud

rate and power consumption were switched based on the trajectory predictions. The
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Table 5.1: Performance for Trajectory 1
TP Path Data Loss (20 events) Average Delay

Conf. Static A1 A2 A3 A4 Static A1 A2 A3 A4

1 2 3 4 5 6 7 8 9 10 11 12

1 1 0 947

2 4 1 1 0 0 509 259 298 273 188

3 2 (-1) (-1) (0) (0) 251 (-3%) (-18%) (-9%) (25%)

2 1 1 647

2 3 0 1 0 0 752 325 376 383 267

3 1 (1) (0) (1) (1) 416 (22%) (10%) (8%) (36%)

3 1 8 644

2 5 1 1 0 1 715 240 326 300 224

3 1 (0) (0) (1) (0) 323 (26%) (0%) (7%) (31%)

4 1 4 780

2 2 2 2 1 0 716 456 399 586 366

3 2 (0) (0) (1) (2) 417 (-9%) (4%) (-40%) (12%)

parameter optimization technique was tested on trajectories A and B.

5.6.1 Experimental analysis of the four prediction algorithms

The tables presenting the experimental results have the following structure described

below. Columns one and two indicate the static path configurations used for each

target point. Columns three to seven show data loss for different configurations and

the number of events generated by the trajectory (bracketed number in row one).

Columns eight to twelve show average delay for different configurations. Specifically,

Column three shows the data loss and column eight indicates the average delay for

static path configurations. Column four gives the data loss performance and Col-

umn nine presents the average delay performance for prediction using quasi-static

trajectories. Column five shows the data loss performance and Column ten indicates

the average delay of trajectory prediction through bounded trajectories. Column

six shows the data loss performance and Column eleven the average delay for using

stochastically bounded trajectories. Column seven presents the data loss and Column

twelve the average delay of the adaptive algorithm. Columns eight to twelve also show

the percentage improvement of average delay (the percentage values in brackets below

the absolute average delay values) with respect to the best case path configuration.

Columns three to seven show the absolute improvement in data loss with respect to

the best case path configuration.
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Table 5.2: Performance for Trajectory 2
TP Path Data Loss (21 events) Average Delay

Conf. Static A1 A2 A3 A4 Static A1 A2 A3 A4

1 2 3 4 5 6 7 8 9 10 11 12

1 1 6 1134

2 5 0 0 0 0 868 298 308 305 288

3 0 (0) (0) (0) (0) 308 (3%) (0%) (1%) (7%)

2 1 4 925

2 2 0 2 0 0 748 364 448 387 333

3 2 (2) (0) (2) (2) 448 (19%) (0%) (14%) (26%)

3 1 8 1054

2 1 1 1 0 0 844 346 360 383 317

3 1 (0) (0) (1) (1) 360 (4%) (0%) (-6%) (12%)

4 1 5 799

2 5 0 1 0 0 871 319 312 331 203

3 1 (1) (0) (1) (1) 312 (-2%) (0%) (-6%) (35%)

Trajectory 1. Refer to Table 5.1 for the performance of trajectory one. This is the

simplest trajectory of all cases.

All algorithms make good predictions for this trajectory. The adaptive method

(A4) gives the best improvement in average delay compared to all other algorithms

for all four TPs. The improvement ranges from 12% to 36%. The method is also

the only algorithm that produces a positive improvement in average delay for all four

target points. Even though quasi-static prediction (A1) produces good predictions, it

is unable to produce improvements as significant as method A4 as its path selection

procedure depends on the performance of the mapped quasi-static trajectory seg-

ments. The algorithms perform worst when using TP one for this trajectory as three

out of four algorithms produce negative improvements in average delay, and two out

of four algorithms produce a negative improvement in data loss.

Trajectory 2. Refer to Table 5.2 for the performance of this trajectory. This

trajectory assumes a motion that initially runs at high speed, i.e. in the range of 65%

to 75% of vmax until it slows down to 40% to 50% of vmax to curve at the segment

circled in Figure 5.7 before it speeds up again. This trajectory traverses through the

entire network but the rate of change of angle is uniform. The slow speed at the

circled segment gives enough time for the trajectory to curve.

There are only insignificant mispredictions by the quasi-static algorithm (A1) at a

couple of nodes in the circled area. The predictions by bounded trajectory algorithm

95



       (a)        (b)

Data Loss at

Trajectory 2

Data Loss at
Trajectory 4

A   B

 C

A

Figure 5.8: Data loss at trajectories 2 and 4

(A2) resulted in producing the same performance as the best case path configuration

for all target points. Hence, improvements in data loss and average delay by algorithm

A2 for all TPs is zero. All other algorithms give good improvements in data loss. The

adaptive algorithm (A4) gives the best improvement in average delay for all four TPs

ranging from 7% to 35%. The stochastically bounded algorithm (A3) produces good

improvements in data loss but generates negative improvements in average delay

for two out of four TPs. At TP three, algorithm one loses data due to prediction

inaccuracy. The scenario is discussed with the help of Figure 5.8(a). Node A in the

figure is the one whose data is lost. The continuous curve represents the trajectory

and the broken curve is the quasi-static trajectory segment that node A mapped.

Trajectory 3. Refer to Table 5.3 for the performance of this trajectory. This

trajectory was defined to cover the area of the network that was uncovered by the

first two trajectories. Trajectory three might look symmetrical to trajectory two but

the dynamics is completely different. Velocity values change in this trajectory over a

wide range from 20% to 96% of vmax, but the rate of change of velocity over time for

most of the trajectory is less than the threshold for a grid distance of 3m. The other

trajectories do not have this wide velocity range.

All algorithms give good improvement over data loss and average delay. The data

loss produced by the algorithms when target point three is used is unavoidable and is

not due to mispredictions. The adaptive algorithm (A4) gives the best improvement

in average delay for all target points and the characteristics of two trajectory segments

(circled in Figure 5.7) were identified to be the reason for this behavior. The Tra-

jectory Approximating Regions (TARs) estimated by bounded trajectory (A2) and

statistically bounded (A3) methods are sufficient to avoid data loss, but not even 50%
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Table 5.3: Performance for Trajectory 3
TP Path Data Loss (25 events) Average Delay

Conf. Static A1 A2 A3 A4 Static A1 A2 A3 A4

1 2 3 4 5 6 7 8 9 10 11 12

1 1 4 830

2 5 1 2 0 0 1019 385 407 417 314

3 2 (1) (0) (2) (2) 407 (6%) (0%) (-2%) (23%)

2 1 7 985

2 7 0 1 0 0 841 284 292 317 242

3 1 (1) (0) (1) (1) 292 (3%) (0%) (-8%) (17%)

3 1 6 1052

2 3 1 2 1 1 680 379 425 410 319

3 2 (1) (0) (1) (1) 474 (20%) (10%) (14%) (33%)

4 1 8 865

2 0 0 1 0 0 684 299 341 321 293

3 1 (0) (-1) (0) (0) 342 (13%) (0%) (6%) (14%)

of the area of TARs generated by the sampling nodes contain the actual trajectory.

This results in higher average delay. This is the reason for negative or insignificant

improvements of average delay. Algorithm A4 gives the best improvement in average

delay ranging from 17% to 33%. Algorithms A3 and A4 give the best improvement

in data loss.

Trajectory 4. Refer to Table 5.4 for the performance of this trajectory. This

trajectory starts going down the network and then loops back at the circled area in

Figure 5.7. At that area, the rate of change of velocity is uniform but the rate of

change of angle changes abruptly causing quasi-static algorithm (A1) to make mis-

predictions shown in Figure 5.8(b). Nodes A, B and C map to segments (dotted

curves) that completely mispredict the trajectory resulting in data loss. TPs one and

two provide a good reflection of this misprediction and the three nodes that lose data

are nodes A, B and C. Bounded trajectory algorithm (A2) performs similar to the

best case path configuration. The other three algorithms give good improvement in

data loss with adaptive algorithm (A4) giving the best improvement. Algorithm A4,

again, gives the best improvement in average delay compared to the other algorithms.

All algorithms give poor improvements in average delay when TP two is used. Al-

gorithms A1 and A3 give negative improvements and algorithms A2 and A4 give an

improvement of 0%.

Trajectory 5. Refer to Table 5.5 for the performance of this trajectory. Algorithm
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Table 5.4: Performance for Trajectory 4
TP Path Data Loss (30 events) Average Delay

Conf. Static A1 A2 A3 A4 Static A1 A2 A3 A4

1 2 3 4 5 6 7 8 9 10 11 12

1 1 10 1007

2 9 3 6 4 1 1133 478 570 452 432

3 6 (3) (0) (2) (5) 550 (13%) (-3%) (18%) (21%)

2 1 5 887

2 8 3 5 0 0 834 452 300 425 299

3 5 (2) (0) (5) (5) 298 (-52%) (0%) (-43%) (0%)

3 1 5 733

2 13 0 4 0 1 902 356 426 264 257

3 4 (4) (0) (4) (3) 425 (16%) (0%) (38%) (40%)

4 1 8 941

2 9 0 4 0 0 925 258 266 279 249

3 5 (5) (1) (5) (5) 285 (10%) (7%) (2%) (13%)

       (a)        (b)
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Figure 5.9: Data loss at trajectory 5

A2 gives no improvement in data loss, while the other three algorithms give good

improvements. Algorithm A4 gives the best improvement in average delay, which is

above 25% except for TP two for which all algorithms give negative or insignificant

improvements.

This trajectory yields the following two interesting aspects of the network behav-

ior:

1. When TP one is chosen, node A in Figure 5.9(b) loses data because all three

path configurations for TP one map to the same path segment (dotted lines

in the figure) that results in data getting overwritten at the last node in the

segment. All three algorithms made accurate predictions and still, data was

lost at node A. This is a situation that is beyond the three algorithms and a

good topic for future work where a method could be devised to switch between

TPs by reducing switching overhead.
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Table 5.5: Performance for Trajectory 5
TP Path Data Loss (26 events) Average Delay

Conf. Static A1 A2 A3 A4 Static A1 A2 A3 A4

1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 800

2 2 1 2 1 1 807 410 444 393 338

3 2 (1) (0) (1) (1) 444 (8%) (0%) (12%) (24%)

2 1 6 883

2 1 1 1 0 0 761 290 293 412 287

3 1 (0) (0) (1) (1) 293 (1%) (0%) (-41%) (2%)

3 1 8 740

2 7 0 1 0 0 960 257 293 364 209

3 1 (1) (0) (1) (1) 292 (12%) (0%) (-25%) (28%)

4 1 5 727

2 6 0 2 0 0 809 240 309 212 215

3 2 (2) (0) (2) (2) 271 (11%) (-14%) (22%) (21%)

2. Referring to Figure 5.9(a), algorithm two made the right prediction at node B

by computing the inflexion point (labeled IP) accurately. The point labeled S

is the sampling point of the node. But the TAR proved to be too small for

node B to make a path selection. It ended up selecting the default path which

resulted in data loss. This situation occurs when IP is computed by the node

at a location that is too close to the node. If the algorithm can get at least the

next sampling node in its TAR, it will be able to avoid data loss.

Trajectory 6. Refer to Table 5.6 for the performance of this trajectory. The target

in this trajectory loops while moving in a linear direction. Algorithms A1 and A2 give

poor improvements over data loss, but algorithms A3 and A4 give good improvements.

Algorithm A1 gives insignificant improvement in average delay, algorithms A2 and A3

give negative or no improvement in average delay, and algorithm A4 gives significant

improvements in average delay for all target points, excluding TP two.

Algorithm A1 produces wrong predictions for most of the nodes at places where

the trajectory loops. It is able to produce fairly accurate predictions at the linear

part of the trajectory (i.e. the trajectory parts that are bolded in Figure 5.10(a)).

The looping part of the trajectory was selected for analysis because any segment of

this trajectory that loops similar to Figure 5.10(b) produces similar mispredictions.

The broken lines in the figure shows the quasi-static trajectory mapping of the nodes.

It was observed that the TARs produced by algorithm A2 are very small at the
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Table 5.6: Performance for Trajectory 6
TP Path Data Loss (74 events) Average Delay

Conf. Static A1 A2 A3 A4 Static A1 A2 A3 A4

1 2 3 4 5 6 7 8 9 10 11 12

1 1 23 803

2 10 5 7 1 0 912 305 334 414 296

3 7 (2) (0) (6) (7) 328 (7%) (-2%) (-26%) (10%)

2 1 33 877

2 8 10 7 4 2 772 398 356 377 347

3 8 (-2) (1) (4) (6) 350 (-14%) (-2%) (-8%) (1%)

3 1 22 953

2 18 7 8 3 2 840 315 323 389 285

3 8 (1) (0) (5) (6) 323 (3%) (0%) (-20%) (12%)

4 1 13 842

2 24 11 13 4 2 1048 473 515 584 378

3 14 (3) (1) (10) (12) 517 (9%) (0%) (-13%) (27%)

areas where the trajectory loops reducing path selection efficiency even when predic-

tion accuracy is high. This results in poor improvement over data loss. In three cases,

A2 produces a TAR similar to Figure 5.9(a) resulting in data loss. At the areas where

the trajectory is linear, i.e. the bolded part in Figure 5.10(a), the area produced is

large but does not cover much of the trajectory. In other words, the IP computed

is inaccurate especially in those areas where the trajectory just stopped looping and

the linear part of the trajectory starts.

Algorithm A3 produces TARs with larger area but the TARs cover only a small

part of the future trajectory. This condition is sufficient to give good improvements

over data loss but results in increasing the average delays for all four TPs.

Algorithm A4 is able to produce accurate predictions resulting in the best im-

provement in both data loss and average delay for all TPs. It produces low values of

tpredict at places where the trajectory loops, but it is able to map to the appropriate

paths efficiently.

Multiple trajectories. The execution time for simultaneous prediction of three tra-

jectories is 2500 msec on an average, 2650m sec on an average for six trajectories,

and 2700 msec on an average for nine trajectories. Table 5.7 summarizes the predic-

tion performance for six simultaneous trajectories, and Table 5.8 for nine. In places

where the trajectories are close to each other, interference could result in data loss.

At a node that is currently sampling one of the targets, data from one target that is
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Table 5.7: Performance for trajectories 1, 2, 3, 4, 5, and 6
TP Path Data Loss (195 events) Average Delay

Conf. Static A1 A2 A3 A4 Static A1 A2 A3 A4

1 2 3 4 5 6 7 8 9 10 11 12

1 1 89 920

2 83 29 41 30 18 940 363 435 509 350

3 45 (16) (4) (15) (27) 407 (11%) (-7%) (-25%) (14%)

2 1 109 876

2 83 37 46 35 24 834 418 377 436 350

3 53 (16) (7) (18) (29) 369 (-13%) (-2%) (-18%) (5%)

3 1 96 945

2 86 20 30 20 9 869 395 427 472 434

3 36 (16) (6) (16) (27) 434 (9%) (2%) (-9%) (0%)

4 1 84 915

2 91 40 55 38 26 991 481 492 539 450

3 64 (24) (9) (26) (38) 447 (-8%) (-10%) (-21%) (0%)

Table 5.8: Performance for all trajectories
TP Path Data Loss (264 events) Average Delay

Conf. Static A1 A2 A3 A4 Static A1 A2 A3 A4

1 2 3 4 5 6 7 8 9 10 11 12

1 1 140 892

2 128 61 81 65 49 792 288 350 447 280

3 88 (27) (7) (23) (39) 286 (-1%) (-22%) (-56%) (2%)

2 1 153 844

2 131 63 75 62 48 857 460 364 508 364

3 83 (20) (8) (21) (35) 316 (-46%) (-16%) (-61%) (-16%)

3 1 137 863

2 133 44 67 46 37 718 297 318 384 290

3 74 (30) (7) (28) (37) 286 (-4%) (-11%) (-34%) (-1%)

4 1 133 910

2 138 62 85 69 51 949 531 521 539 435

3 94 469 (-13%) (-11%) (-15%) (-7%)
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Figure 5.10: Data loss at Trajectory 6

Table 5.9: Performance for Trajectory A
TP Path Data Loss (171 events) Average Delay

Conf. Static A1 A2 A3 A4 Static A1 A2 A3 A4

1 2 3 4 5 6 7 8 9 10 11 12

1 1 49 864

2 47 20 20 14 2 942 510 383 414 383

3 20 (0) (0) (6) (18) 383 (-33%) (0%) (-8%) (0%)

2 1 35 771

2 50 24 22 12 6 970 436 351 349 299

3 22 (-2) (0) (10) (16) 345 (-26%) (-2%) (-1%) (13%)

3 1 47 876

2 41 30 32 10 6 789 537 403 425 356

3 33 (3) (1) (22) (27) 406 (-32%) (1%) (-5%) (12%)

4 1 61 955

2 38 24 29 12 12 901 555 435 469 436

3 30 (6) (1) (18) (18) 441 (-26%) (1%) (-6%) (1%)

waiting in one of its buffers can be overwritten by a data packet from another target.

Long trajectories. Two trajectories, namely trajectories A and B were derived from

trajectories four and six. These trajectories were made longer than the trajectories

defined in Figure 5.7. Experimental analysis in this section includes comparisons of

algorithms with respect to one another.

Trajectory A. Refer to Table 5.9 for the performance of this trajectory. The

algorithms produce poor improvements in average delay for TPs one and four. Meth-

ods A2 and A4 produce no improvement for TP one and 1% for TP four. Algorithms

A1 and A3 produce worse results for all TPs. Methods A3 and A4 give good im-

provements in data loss.

It is observed that algorithm A4 performs best with respect to all other algorithms

in this trajectory for all four target points. It gives an improvement in data loss

ranging from 60% to 90% with respect to the best case path configuration and the
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Table 5.10: Performance for Trajectory B
TP Path Data Loss (204 events) Average Delay

Conf. Static A1 A2 A3 A4 Static A1 A2 A3 A4

1 2 3 4 5 6 7 8 9 10 11 12

1 1 58 865

2 59 31 36 21 11 989 479 448 436 428

3 36 (2) (0) (6) (7) 445 (-7%) (-1%) (2%) (4%)

2 1 30 757

2 61 5 14 3 2 916 406 370 371 284

3 14 (-2) (0) (4) (6) 370 (-9%) (0%) (0%) (23%)

3 1 44 880

2 54 23 29 16 7 846 476 423 450 404

3 29 (1) (0) (5) (6) 423 (-13%) (0%) (-6%) (5%)

4 1 53 761

2 57 12 18 8 0 989 396 363 427 350

3 18 (3) (1) (10) (12) 373 (-6%) (3%) (-14%) (7%)

improvement in average delay ranges from 0% to 13%. Compared to algorithm A1,

A4 gives an improvement ranging from 50% to 90% in data loss and 21% to 34% in

average delay. Compared to algorithm A2, A4 gives an improvement ranging from

59% to 93% in data loss and 0% to 15% in average delay. Compared to algorithm

A3, A4 gives an improvement ranging from 0% to 86% in data loss and 7% to 16%

in average delay.

Trajectory B. Refer to Table 5.10 for the performance of this trajectory. Even for

this trajectory, Algorithms A3 and A4 give good improvements in data loss. Algo-

rithm A1 produces a negative improvement in average delay for all TPs. Excluding

algorithm A4 for target point two, no algorithm produces significant improvements

in average delay for any target point.

Even in this case, algorithm A4 performs best with respect to all other algorithms

for all four target points. It gives an improvement in data loss ranging from 69% to

100% with respect to the best case path configuration and the improvement in average

delay ranges from 4% to 23%. Compared to algorithm A1, A4 gives an improvement

ranging from 60% to 100% in data loss and 11% to 30% in average delay. Compared

to algorithm A2, A4 gives an improvement ranging from 69% to 100% in data loss and

5% to 23% in average delay. Compared to algorithm A3, A4 gives an improvement

ranging from 33% to 100% in data loss and 2% to 23% in average delay.
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5.6.2 Performance of the four prediction algorithms

Since the quasi-static algorithm uses Bayesian inference to map to static trajectories,

it performs best when the rate of change of velocity and angle is less than a threshold

value, the condition that makes the trajectory assume a linear motion. Nodes are

able to map to a static trajectory segment that closely resembles the actual trajec-

tory. In other words, this algorithm performs well when previous readings can be

used well to predict the future trajectory. This behavior is expected considering the

properties of Bayes Theorem. Experiments show that this algorithm is very sen-

sitive to small mispredictions when it comes to improving data loss, but improves

performance significantly if the prediction is accurate. It was also observed that the

algorithm improves average delay better than the trajectory bounded and stochas-

tically bounded algorithms with a few exceptions. This is because the segment this

algorithm maps to is a fairly accurate estimation of the direction of the trajectory

flow even if it mispredicts the future sensing nodes.

The bounded trajectory and stochastically bounded trajectory methods define

Trajectory Approximating Regions (TAR) to estimate the area in which the trajectory

would lie in the future. The paths are selected based on the TARs and not on the

estimated direction of trajectory motion. The algorithms improve average delay if a

major portion of their TARs are occupied by the future trajectory. The stochastically

bounded algorithm performs better than the quasi-static and bounded trajectory

when the trajectory abruptly switches state (e.g. looping trajectories when δθ is very

high) since it uses Markov Decision Processes and is fully independent of history.

For these conditions, the bounded trajectory technique performs better than the

quasi-static trajectory based technique, but not as well as the stochastically bounded

trajectory technique.

For long trajectories, it is seen that the adaptive method produces results sig-

nificantly better than the quasi-static algorithm, which makes Bayesian inference to

make trajectory predictions similar to sensor selection techniques in [17]. Even in

the general case, the adaptive method produces better results compared to the other

algorithms for all trajectories since it was intuitively designed based on the experi-

mental analysis of the first three algorithms. Hence, this technique is able to capture

all the advantages of the other three techniques.
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5.6.3 Experimental analysis of the adaptation policy design

Experiments on trajectories A and B were conducted by using the parameter opti-

mization techniques discussed in the previous section. The focus was to improve data

loss with a slight trade off on average delay by switching between different design

points involving parameters namely buffer size, baud rate, and radio power. These

experiments use the following design points (DPs):

1. Buffer size (4 DPs): Bf = 1 to 4 packets. The default value is 1.

2. Baud rate between Embedded Node and the Radio Module using SPI (3 DPs):

Br = 4.8kbps, 9.6kpbs and 19.2kbps. The default value is 9.6kbps.

3. Radio baud rate (2 DPs): 31.25kbps, 62.5kbps. The default value is 31.25kbps.

4. Radio power levels (8 DPs): RPr = 0 to 7, 7 being the highest power level. The

default value is 1.

We conducted four sets of experiments on parameter optimization using buffer

size selection. The experiments used fixed path configurations and the trajectory

predicted by the adaptive algorithm. Each set imposed a constraint on the maximum

value of buffer size. A buffer constraint of one, as expected, did not improve data

loss and average delay. A buffer constraint of two improves data loss by 32% to 35%

with an increase in average delay by 10%. A buffer constraint of three improves data

loss by 55% with an increase in average delay by 16%. A buffer constraint of four

improves data loss by 65% to 70% with an increase in average delay by 20%.

Three sets of experiments were performed on baud rate optimization with no

constraints on the utility of baud rate. The three sets of experiments correspond to

three different radio power levels. These experiments are synthetic experiments where

processing time was adjusted to a value that is in the same order of magnitude as

that of the baud rate values. Baud rate optimization techniques improved data loss

by 15% to 50%. The reason for this wide range is due to the variable speed of the

trajectory. It was observed that baud rate optimization is more effective for faster

trajectory speeds. The increase in average delay with respect to the default baud rate

value is 15% to 35%. It was observed that changing radio power results in the same

improvement with respect to the default values for that radio power level. Switching

to a different power level does not change data loss, but improves average delay due
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to less number of retransmissions. With respect to power level 1, power levels 4 and

7 improve average delay by 40% and 45% respectively.

5.7 Conclusions

This chapter describes adaptation policy design that optimally selects network pa-

rameters that include data paths and network resources that include memory buffer

size and baud rates to satisfy the performance requirements of the application. Unlike

Chapter 4 which the purpose was tracking quasi-static entities, this chapter deals with

dynamic entities where the distributed variables move within the space with certain

properties, specifically velocity v and direction θ. Depending on the correlations be-

tween data paths and trajectory of the moving entity, data paths and other network

parameters are switched to optimize performance by reducing latency and data loss

for building highly accurate data models. Depending on the nature of the trajectory

which relates to the rate of change of velocity δv and direction δθ, four trajectory

prediction algorithms were devised that predicted the future trajectory and each of

these algorithms perform better than the others under certain conditions.

The four algorithms are: (i) quasi-static prediction based on Bayesian infer-

ence, (ii) bounded trajectory method which approximates trajectories as sequences of

bounded convex - concave regions, (iii) stochastically bounded trajectories, which de-

scribes the transitions from a bounded region to another follows as a Markov process,

and (iv) an adaptive model, which perform a dynamic linearization of trajectories.

The accuracy of the predictions depends on the assumptions made by each of the

algorithms and the dynamic nature of the entity. The performance of each algorithm

under different conditions were derived based on experimental analysis.

Bayesian-based trajectory prediction performs well for quasi-static trajectories but

gives lesser improvements for long, complex trajectories and provides better improve-

ments in latency compared to the bounded and stochastically bounded trajectory

techniques, these result in smaller data loss compared to Bayesian-based trajectory

predictions. The adaptive prediction method reduces data delay between 12% and

36%, and data loss up to 90% for long trajectories. Increased buffer sizes reduce data

loss up to 70% but also increase delay by 20%. Baud rate optimization improves data

loss between 15% to 50% and is more effective for fast trajectories. Increased radio

power levels reduce average delay by up to 45%.
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Chapter 6

Distributed Data Modeling and

Model Parameter Lumping for

CPS Applications

6.1 Introduction

Many modern applications require dependable actuation and control based on phys-

ical data collected from distributed areas [56]. Such applications include gas dis-

tribution in power plant control [92], sound in vehicle tracking [26], temperature

monitoring in warehouses [93], smart oil fields [50], distributed gas monitoring [101],

but also future generation transportation systems, intelligent power grid, health care,

homeland security, and many more [56, 26]. Data collection is through a network of

embedded sensors that acquire with different resolutions physical data, like tempera-

ture, humidity, gas composition, object proximity, light intensity, and magnetic field.

The embedded sensing nodes are connected through wired and/or wireless networks.

Nodes also interact sometimes through shared physical media, such as the air mass

in a room, the local electromagnetic field, or the human body [26].

Such applications require accurate data representations and models based on data

collected over space and time. The representation and models have to be built in

real-time starting from raw data and then used for optimized decision making. Data

models are associated to curves, 2D areas, and 3D volumes, and not only to singular

points as in traditional embedded systems. These data models generate model pa-
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rameters that would describe the manner in which data is distributed in the region,

establish data correlations and relations that pertain to physical laws of the monitored

entities. The energy at each node in the network is represented as a state variable

and each state variable is expressed in the form of differential equations, discussed

in the later sections, that contain these model parameters. The generated model pa-

rameters correspond to gradient coefficients, that model flow of data between nodes

in the network, and storage coefficients that model the energy stored at a node.

Apart from producing accurate data models starting from raw sampled data, there

is also the need to tackle the performance and resource constraints specified by the

high-level specification notations discussed in Chapter 2. These constraints provide

limited network resources and even if the procedure is able to generate accurate data

models locally at each state variable, these model parameters have to reach the de-

cision making node within the timing constraints for precise data representations.

Traditional communication topologies, like minimum height trees, can increase the

data volume at nodes, thus result in high data losses if the local memory resources

are exceeded. The adaptation policies discussed in Chapter 4 and Chapter 5 are used

to select the right resources that should be utilized to transmit these model param-

eters to the target point. In addition, this chapter also discusses Data lumping [81],

the process of producing cumulative representations of locally produced data models

while they are transmitted to the target point. However, while lumping the model

parameters along the data paths, careful decisions have to be made to avoid loss of in-

formation at the critical points when these model parameters are lumped. In addition,

important data correlations can be lost depending on information gradients within

the network and the utilization rates of the communication paths. All these factors

have to be taken into consideration during the process of modeling distributed sam-

pled data for efficient decision making in dynamic conditions. This chapter focuses

on building these model parameters and characterizing the lumping and correlation

errors. A method for optimized distributed data lumping is also discussed where

the cost function provides importance to either optimizing lumping errors or latency.

Experiments were run on a case study that generated temperature values using a

simulator [114] for the floorplan given in Figure 6.3 that corresponds to the SUN

Niagara T1 architecture [113]. The experiments section generated four datasets that

cover different dynamics of entities (heat sources for the case study) and characterizes

modeling errors after thoroughly analyzing the effects of the dynamics of entities on
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these modeling errors. Experiments were also run on three datasets, one with static

heat sources, the second one with moving heat sources, and the third one with heat

sources randomly appearing and leaving a core.

6.2 Related Work

The process of modeling has been extensively used in thermal modeling of heat gen-

erated in ICs. Sridhar et al. [105] present a model for thermal simulation of 3D

ICs with multiple inter-tier microchannel liquid cooling and try to accurately predict

the temperatures at different points in a 3D chip using the thermal properties (ther-

mal conductivity and capacitance) of Silicon and other materials used at different

elements in the architecture. The 3D-chip was divided into thermal cells and heat

transfer was modeled according to the material properties and the heat generated

at those cells based on input power values and the rate of pumping liquids across

microchannels. Hence, the purpose of modeling in existing techniques is thermal sim-

ulation to generate temperature values over time [105, 112] at different points in the

chip to aid thermal management [106]. Thermal management through voltage and

frequency scaling and task scheduling has been extensively studied [108, 109, 111],

but these management policies are centralized. On the other hand, the purpose of

modeling in our application is using sensor data distributed in an area to extract

model parameters that would represent the phenomenon.

The process of distributed data lumping presented in this work differs in several

ways from the aggregation techniques proposed for wireless sensor networks (WSNs).

The main goal of cumulative data representation for WSN is to improve the network

performance, e.g., bandwidth, throughput, and energy consumption [95, 96, 97, 99].

A feedback-based scheme is discussed in [95]. The scheme adapts to changing traf-

fic conditions and time requirements. Tiny Aggregation (TAG) offers services for

distributing and executing aggregation queries over WSNs [100]. Parents compute

monotonic aggregates based on data sent by their children over a tree network. The

work in [91] reduces data communication by fitting functions that approximate the

transmitted values. SPIN proposes a procedure to avoid transmission of redundant

data [96]. Redundancy elimination through coding is discussed in [102]. Recent work

in [104] defines a centralized threshold-OR fusing rule for combining sensor samples

under normally distributed, independent additive noise conditions. Xue et al. [103]
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propose a locally weighted fusion function for improving model accuracy. Fuzzy set

based fusion of classifier outputs is discussed in [94]. In contrast, control applications

require representations that are produced based on application-specific functions ex-

pressing the physical environment rather than on generic functions [98]. Models are

organized at multiple levels of abstractions characterized by different representation

accuracies. Moreover, optimization methods are needed to tackle the performance

requirements and resource constraints of the application.

6.3 Distributed Data Modeling for CPS

Physical models are built by discretizing the space, introducing state variables for

every node of the discrete mesh, and expressing the conservation and rate of change

laws for the state variables [13]. Every node in the grid is described by continuous

parameters that are of two kinds: (a) Across parameters that model flow between

physical points, and (b) Through parameters that describe the derivative and inte-

gration operations.

The differential equations are derived starting from the law of energy conservation

given by equation 6.1:

Ei(t) − Ei(t − δ)

δ
=

∑

k

Ėi,k(t)) +
∑

k

Ėk,i(t)) + Ėin out,i(t) (6.1)

The left hand side of the equation indicates the rate of change of energy at a node

i. The first two terms on the right hand side indicates the rate of transfer of energy

between the node i and the neighbors k. The term Ėi,k(t) indicates the rate of transfer

of energy from node i to node k, Ėk,i(t) indicates the rate of transfer of energy from

node k to node i, and Ėin out,i(t) indicates the rate of adding (or removing) energy to

(from) node i.

The terms Ėi,k(t) and Ėk,i(t) indicate energy flux (fi,k and fk,i), and this rate of

energy transfer (flux) depends on the difference of physical data sensed at nodes i and

k (given by Yi(t) and Yk(t)), and the transfer coefficient (given by Gri,k
and Grk,i

).

We call these transfer coefficients as gradient coefficients. The difference in energy

Ei(t)−Ei(t−δ) over time δ causes an increase or decrease in the value of the physical

data (the change to value Yi(t) from Yi(t−δ)) and the amount of this change depends

on the capacity of the node to store data (given by Sci
). We call this Sci

coefficient as
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storage coefficient. Hence, equation 6.1 can be replaced by the differential equation

given by equation 6.2.

Sci

[Yi(t) − Yi(t − δ)]

δ
=

∑

k

[
Yk(t) − Yi(t)

Grk,i

] +
∑

k

[
Yi(t) − Yk(t)

Gri,k

] + [Ėin,out,i] (6.2)

where k indicates the neighbors of the node and δ is a very short interval of

time, Gradients Gri,k
and Grk,i

represent gradient coefficients that model flow of data

between nodes k and i. Storage coefficient Sci
represents the capacity of a node

to store energy and indicates the rate of increase or decrease of Yi over time δ for

a difference in energy Ei(t) − Ei(t − δ). Ėin,out,i(t) is the rate of change of energy

incident at node i due to adding or removing energy from the environment modeled

by the input source. The gradient coefficients Gradients Gri,k
and Grk,i

are combined

to form an equivalent gradient coefficient value Greqi,k
for a node i with respect to

neighbor k and equation 6.2 is simplified to produce equation 6.3.

Sci

[Yi(t) − Yi(t − δ)]

δ
=

∑

k

[
Yk(t) − Yi(t)

Greqi,k

] + [Ėin,out,i] (6.3)

Starting from raw data samples that correspond to the Yi and Yk values, the

differential equation 6.3 is used to compute the unknowns that correspond to the

model parameters Sc and Gr values over time. The values of these parameters change

depending on how dynamics and other properties of the physical entities that cause

the change in measurements. Hence, by solving the above differential equation for

all nodes in the network using sensor data measured over time, the dynamics of

all the state variables over space and time can be predicted, which can be used to

devise dynamic decision making strategies. The distributed model produced from

equation 6.3 is shown in Figure 6.2(a), where the gradient coefficients are considered

analogous to resistances and the storage coefficients are analogous to capacitances.

Since data in CPS is distributed in nature, data is transmitted along data paths in

the form of tuples. Each tuple contains information regarding node position, time of

sampling, the attributes of the sampled signal and the computed model parameters.

Thus, each node communicates data with its own neighbors, locally produces the

model parameters that include the through and across variables and then transmits
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Figure 6.1: Distributed data collection and lumping

this information in the form of tuples to the target point.

While transmitting this data along the path, the process of lumping is performed

at different abstraction levels (granularities) and it introduces errors that depends on

various factors. Higher abstraction levels introduce higher errors (as more information

is lost when intermediate nodes are removed), but they decrease the data communica-

tion volume. This reduces the utilized resources (such as communication bandwidth,

power, memory, etc.) and helps meeting the timing and resource constraints of the

application.

Optimizing distributed data lumping is challenging and the procedure must decide

among multiple data paths available for collecting data. For example, tree networks,

as in Figure 6.1(a), have minimum height, which reduces communication time. But

such networks have an increased data volume at certain nodes (the gray nodes). To

reduce data loss, the gray nodes must have larger input and output buffers, and

support higher bandwidth rates on their outgoing links. The height of critical paths

can be reduced by allowing more incoming paths to converge at a node. This comes,

however, at the penalty of more complex interfacing for the nodes.

The data paths influence the modeling and lumping errors as they decide what

data is available at each node. In Figure 6.1(b), the overall error over time ∆T is a

function of the errors e1 and e2 for each of the two links: errortotal =
∫
∆T

f(e1, e2)dt.

errortotal ≤ precisiontotal, the overall precision requirement. In addition, the errors

along each path might be less than given threshold values:
∫

path1
g(e1)dt ≤ Pth1, and

∫
path2

g(e2)dt ≤ Pth2. The total additive error is: errortotal =
∑

∆T

∑
path1

ei+
∑

path2
ej

N
.

Error along path1 is
∑

path1

ei

N1
≤ Pth1 and for path2, it is given by

∑
path2

ej

N2
≤ Pth2.

N1(2) is the number of sampling nodes along a path, and N = N1 + N2. There are

many ways of selecting the acceptable local errors ei,(j) at the sensing nodes while

meeting all constraints, however each distribution has different timing performance.

For example, larger local errors at the early node allow more aggressive lumping, thus

less data needs to be propagated along the paths but the trade-off is that the early
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nodes process more and less error margin is available to the latter nodes.

In Figure 6.1(c), data is collected and transmitted along the shown paths. As a

result, certain data correlations are missed, such as those between data collected at

the node pairs marked with a dotted line. The amount of missed correlations can be

reduced by selecting the data path in Figure 6.1(d).

The above mentioned errors that are produced due to loss of information during

lumping, the missed data correlations due to the nature of the data paths, and the

sensing errors due to sensor limitations and time synchronizations are characterized

in the next section.

6.4 Modeling Errors

Physical data is modeled locally at each node using differential equations formulated

at equation 6.3 [13]. The nature of the data correlations and the utilization rates of

the communication paths influence modeling and lumping errors.

This section models describes the different types of modeling errors that are gen-

erated depending on the procedure of lumping, the correlation between data paths

and the dynamics of the physical entity, and the limitations at the sensing front end.

The errors are represented in the form of equations and these equations are used to

derive the error bounds that characterize these errors.

6.4.1 Lumping Errors

All model parameters cannot be streamed to the target point within the given timing

constraints of the application and the limited availability of the network resources,
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specifically communication bandwidth and input memory buffers. This establishes

the need for lumping model parameters along the path and the locally produced

model parameters are lumped to produced a more global model. This process of

lumping results in errors due to loss of information when intermediate state variables

are removed. The error depends on the level of abstraction used during the process

of lumping.

Figure 6.2(c) shows the distributed parameter description used to express the

lumping error. The description is a tree network where every tree corresponds to

a data collection path. Lumping simplifies the cascaded stages by eliminating state

variables. The introduced error is estimated by comparing the behavior of the initial

and lumped network, such as the two top networks in Figure 6.2(c). After solving

the equations for the top two networks in Figure 6.2(c), the following relationships

result for energy flux f and sample values Y :

Error fA(t) = γ Scx

γ YA(t) + YB(t) − (γ + 1) Yx(t − δ) − (γ + 1) δ (Ecomp(t)/Scx)

(γ + 1)2 δ + γ Scx Grab

(6.4)

Error fB(t) = −Scx

γ YA(t) + YB(t) − (γ + 1) Yx(t − δ) − (γ + 1) δ (Ecomp(t)/Scx)

(γ + 1)2 δ + γ Scx Grab

(6.5)

where Ecomp(t) is the summation of energy due to the missing links and external

input energy. The expression for lumping error at a node (state variable), Errx,lump =

∆Yx(t) is derived by subtracting the expression for Y
x
(t) before lumping from the

expression for Yx(t) after lumping.

Errx,lump = κ (γ YA(t) + YB(t) − (γ + 1) Yx(t − δ) − (γ + 1) δ (Ecomp(t)/Scx)) (6.6)

κ =
γ Scx Gr1ab

(γ + 1)2 δ + γ ScxGrab

(6.7)
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Gradient coefficient Gr2ab
is assumed to be equal to γ times the value of Gr1ab

. δ is

the time discretization step used in distributed parameter modeling. Note that ∆Yx

characterizes the error of the removed state variable, and ∆fA and ∆fB the errors of

the energy flow along the two directions along the select path. Yx(t− δ) is the sensor

reading at the previous time moment. For the lumped network, Yx is approximated

as Yx = γ YA+YB

γ+1
. For situations where Gr1ab

and Gr2ab
are equal, the value of γ is 1.

Lemma: The equation that bounds the maximum increase in lumping errors for

lumping state variable X over W samples is derived from equation 6.6

boundW,lump ≤ κ W δ (boundlump1 − boundlump2) (6.8)

where,

boundlump1 = (γ + 1) δ Ÿx,MAX + γ (ẎA−xMAX
) + (ẎB−xMAX

) (6.9)

and

boundlump2 =
(γ + 1) δ

Scx

Ėcompx,MIN
) (6.10)

where Ÿ
x,MAX is the maximum of the second derivative of the data at node x,

ẎA−xMAX
and ẎB−xMAX

are the maximum first order derivative of the difference in

sensor readings of node x with respect to neighboring nodes A and B in the path.

Hence, YA−x(t) = YA(t) − Yx(t), and YB−x(t) = YB(t) − Yx(t), and boundW,lump =

errorYx
(t) − errorYx

(t − W δ).

The total error depends on the number of removed state variables in the path and

the variation characteristics of those variables. For slowly changing variables, more

variables can be removed while keeping the error below a limit. For different variation

characteristics, the maximum lumping level can be found to stay within a certain

error. The lumping errors are characterized at the end of the subsection Analysis

of Bounds for Lumping Errors in the experiments section. The paragraph under

the heading Characterizing Lumping Errors provides conclusions from the analysis

of experimental results that were obtained from different datasets which had entities

stationary and moving within the network. The conditions when lumping errors might
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increase or decrease significantly are mentioned.

6.4.2 Correlation errors

Correlation errors are introduced because not all tuples are calculated due to the

“blind” spots introduced by the data collection paths. Figure 6.1(b) explains how

missing correlations occur between neighboring sensing nodes. The absent tuples

correspond to data from neighboring nodes that belong to different collection paths.

Hence, correlation errors are path-induced errors and are modeled as follows:

Errb,path =
∑

∀b

NL∑

∀p

∑

c ∈ p

error(p) (6.11)

b is a pair of neighboring nodes i and k that belong to different paths. error(p)

is the error introduced due to the missing tuples c at all lumping levels p of node k

(assuming that data is transmitted from node i to node k).

The error introduced by a collection path is estimated as shown in Figure 6.2(b).

A path eliminates the coupling gradient coefficients between two columns, such as

the gradient coefficients between storage variables Sci−1,j−1
and Sci−1,j

, between stor-

age variables Sci,j−1
and Sci,j

, and so on. This removes the correlation between the

associated state variables, such as energy values Ei−1,j−1 and Ei−1,j, between Ei,j−1

and Ei,j, etc. The error associated to decoupling columns j − 1 and j is proportional

to the overall impact of the flux through the removed gradient variables:

Errorj−1,j,path =
∑

i

[
Ei,j/Sci,j

− Ei,j−1/Sci,j−1

Gri,(j−1,j)

] (6.12)

Ei,j/Sci,j
= Geq

ri,j
feq

i,j + Eeq
i,j/Seq

ci,j
(6.13)

Ei,j−1/Sci,j−1 = Geq
ri,j−1

feq
i,j−1 + Eeq

i,j−1/Seq
ci,j−1

(6.14)

Parameters Geq
ri,j−1

and Seq
ci,j−1

are the equivalent coefficient values of the left sub-

network (after decoupling) measured from a decoupled node to the actuator. Simi-
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larly, parameters Geq
ri,j

and Seq
ci,j

are the equivalent coefficient values of the right sub-

network. Gri,(j−1,j)
are the removed gradient coefficients due to the missed correlations

induced by the collection paths.

Referring to the network at lumping level 3 in figure 6.2(c), the expression for

correlation errors is derived and is given by:

Errx,correlate =
1

γ Gr1ab

[exprx,correlate1 − exprx,correlate2] (6.15)

exprx,correlate1 = γ Scx Gr1ab
Ẏx(t) + (γ + 1) Yx(t) (6.16)

exprx,correlate2 = γ YA(t) + YB(t) + γ Gr1ab
Ein,out(t) (6.17)

where Ein,out(t) is the external input energy source incident at the node.

Lemma: The correlation error at state variable Yx over W samples under the

assumption that the same path configuration is used is bounded by the following

expression where boundW,correlate = Errx,correlate(t) − Errx,correlate(t − W δ):

boundW,correlate ≤
W δ

γ Gr1ab

[boundW,correlate1 − boundW,correlate2] (6.18)

where,

boundW,correlate1 = γ Scx Gr1ab
Ÿx,MAX (6.19)

and

boundW,correlate2 = γ ẎA−xMIN
+ ẎB−xMIN

+ γ Gr1ab
Ėin,out,MIN (6.20)

The correlation errors are characterized at the end of the subsection Analysis of

Bounds for Correlation Errors in the experiments section. The paragraph under the

heading Characterizing Correlation Errors provides conclusions from the analysis of
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experimental results that were obtained from different datasets which had entities

stationary and moving within the network. The conditions when correlation errors

might increase or decrease significantly are mentioned.

6.4.3 Collection Errors

Collection errors are introduced if the sensor data cannot be acquired due to the

hardware constraints of the sensing frontends. For example, not all sampled values

present in the input buffers can be processed. Lets assume that error Errsensj
is due

to discarding one physical value of sensor sensj. The total error introduced by all

discarded data at the node’s sensors is:

Errj,basic =
∑

∀sensj

λj qsensj
Errsensj

(6.21)

and

Errj,basic =
∑

∀sensj

λj qsensj
(
∑

∀k

error(k)) (6.22)

qsensj
is the sampling rate of the sensor. λj is the rate of discarding values at sensor

sensj (λj < αsensj
). error(k) is the error introduced for tuple k by the discarded data.

Another type of collection error corresponds to time synchronization errors that

are introduced due to dissimilar clocks. Even if the nodes have the same sampling rate,

they produce data at different time instances since their clocks are not synchronized.

Considering the network at lumping level3 in figure 6.2(c), models are produced and

updated by computing model coefficients from data produced at all three nodes at a

particular time instance t, i.e. the Gr and Sc values are computed using the values

of YA(t), YB(t) and Yx(t). Assuming that available sensor values are YA(t), YB(t) and

Yx(t− dt), where the sensor reading available at node x is time shifted by a factor of

dt due to unsynchronized clocks, we model the introduced errors by comparing the

behavior of the synchronized network with that of the unsychronized network. δ is

the time discretization step used in distributed modeling.

Errx,sync = ∆fx(t) = 2 Scx

Yx(t) − Yx(t − dt)

ScxGr1ab

(6.23)
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where,

Yx(t) − Yx(t − dt) = dt
γYA(t) + YB(t) − (γ + 1) Yx(t − dt) + γ (Ecomp(t) Gr1ab

)

dt (γ + 1) + γ Scx Gr1ab

(6.24)

It is observed that time synchronization errors produced due to a smaller factor

dt is negligible compared to lumping and correlation errors.

6.5 Constraint Modeling

The purpose of model parameter lumping discussed in the previous sections is cumu-

lative data representation to reduce communication overhead. During this process,

intermediate nodes are lumped at different levels of hierarchy shown in Figure 6.2(c).

The tradeoff experienced during the process of lumping is the loss of information

contained in those nodes resulting in lumping errors. This section formulates the

performance and design constraints for distributed data lumping for obtaining the

right resource parameters and lumping hierarchy depending on the nature of the cost

function. The resource parameters include the rate of using different bandwidth val-

ues and the lumping hierarchy value corresponds to the probability that a node would

be lumped given an error value.

The equations for performance and design constraints given below are specific for

a data path (DAP ) with different path segments (px ∈ DAP ).

6.5.1 Sensing and input network interfacing

The average input data rate from all sensors of a node x is given by equation 6.25.

Input ratex =
∑

∀sensj

αsensj
qsensj

(6.25)

αsensj
≥ 0 is the rate of using sensor j and the sensing rate is greater than the

required resolution, qsensj
≥ Resolutionj. NET INx is the amount of data input qin

x

from other nodes in the path.
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NET INx = qin
x (6.26)

6.5.2 Output network interfacing

The amount of data output from node x is NET OUTx and data loss occurs when

the input rate is higher than the output rate and the difference is more than the

available buffersize buff . Hence, the constraint equation 6.27 requires the buffer size

to be larger than the difference to avoid data loss.

buff ≥ (Input ratex + NET INx) − NET OUTx (6.27)

Assuming the input rate is the same as output rate, the equation for NET OUTx

depends on the amount of data output by the sensing module and the amount of data

input from all previous nodes prevx in path segment px

NET OUTx = problumpx
DATA OUTx +

∑

∀prevx∈px

problumpx
DATA OUTprevx (6.28)

where the DATA OUTx is the size of a packet in bytes sent out by node x and

problumpx
is the probability that a node x would be lumped and is given by equa-

tion 6.29.

problumpx
=

∑

∀j

λj lump levelj (6.29)

where lump levelj corresponds to the lumping level, which is defined by the per-

centage of lumped nodes in px and λj corresponds to the utilization rates of using

lump levelj and
∑

∀j λj = 1.
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6.5.3 Path delay

The delay of path px is the sum of the average execution time of all nodes x along

the path plus the average time for transmitting the output data of each node:

Delaypx =
∑

∀x∈px

(Delayx + Delayout
x ) (6.30)

The average execution time of node x is equal to:

Delayx =
∑

∀j

αj Execj (6.31)

Execj is the execution time of primitive j executed by node x, and αj is the

execution rate of the primitive. Each primitive may correspond to clock frequency.

The average time for transmitting the output data NET OUTx of node x is

expressed as follows:

Delayout
x = NET OUTx

∑

∀j

βj
1

BWj
(6.32)

βj is the rate of using bandwidth BWj for the output link and
∑

∀j βj = 1.

Latencyaver is the delay of the longest path segment px of a DAP .

Latencyaver = max
px

Delaypx (6.33)

6.5.4 Total Lumping Error

The total lumping error is given by equation 6.34 below.

Errlump,total =
∑

∀x∈DAP

problumpx
Errx,lump (6.34)

where the Errx,lump values are computed using equations 6.6 and 6.7 through

profiling and problumpx
is given by equation 6.29.
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6.5.5 Cost Function

Cost = ζ Errlump,total + µ Latencyaver + η Energytotal (6.35)

Given a set of data paths (DAP ), equations 6.25- 6.35 are solved to compute the

λj and βj values that correspond to utilization rates of different lumping levels and

bandwidth values.

6.5.6 Optimizing lumping error

Based on the given cost function (equation 6.35), the probability of lumping a node

problumpx
(equation 6.29) is obtained by computing the λj values. A threshold value of

lumping error thresholdlump is computed based on this value of problumpx
, the typical

value of lumping error obtained through profiling and the size of the path segment px.

A high ζ to µ ratio in the cost function would produce a high threshold value since

tolerance to high lumping level is less. A low ratio of ζ to µ corresponds to giving

higher priority to improving latency, thus increasing the tolerance for lumping errors.

The decision making procedure that determines whether to lump a node considers

more number of factors in addition to considering the lumping error computed using

equations 6.6 and 6.7. Equations 6.36- 6.39 describe the procedure that makes the

lumping decision by computing the value of decisionlumpx
and comparing its value to

thresholdlump.

decisionlumpx
= W1 factor1lump+W2 factor2lump+W3 factor3lump+W4 Errx,lump (6.36)

where,

factor1lump = 1 −
Ÿx,MAX − Ÿx

Ÿx,MAX

(6.37)

factor2lump = 1 −
ẎA−xMAX

− ẎA−x

ẎA−xMAX

(6.38)
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factor3lump = 1 −
ẎB−xMAX

− ẎB−x

ẎB−xMAX

(6.39)

Errx,lump is computed using equations 6.6 and 6.7. The equation for the first

factor, equation 6.37, tries to capture the entry of an entity that might result in

very high value of double derivative of sensor reading. This value remains high until

it reaches steady state. The second and the third factors, equations 6.38 and 6.39,

correspond to the difference of sensor readings of the node with respect to the previous

and next nodes in the path. Lumping the node would result in losing information

with respect to gradients between the nodes. Areas where gradient values are high

might be helpful in decision making procedures and hence, the node should not be

lumped in case of high gradient values. The contribution of these factors become very

important when an entity enters the vicinity of one of its neighbors. Even though the

lumping error Errx,lump is typically low under these circumstances, lumping this node

would affect the gradient coefficients of its neighbors and result in important loss of

information at the neighboring node. The weights W1, W2, W3 and W4 are computed

based on current conditions, although more emphasis is given on the fourth factor.

The result is used along with the value of thresholdlump to decide whether to lump a

node.

6.6 Experiments

Experiments were run on 4 datasets created on the floorplan given in figure 6.3. The

floorplan has 8 cores, 4 L2 caches (1 memory cache shared by 2 cores), 2 memory

elements, one clock module, one floating point unit, crossbar interconnect and other

processing elements. The architecture is the ULTRASPARC Niagara T1 architec-

ture [113]. Datasets were generated using a simulator [114].

The 25-node network contains one sensor located at each processing element,

except cache0 and cache2 which have 2 sensors. 4-D plots are given where data and

modeling errors at different time instances are plotted over the network region. 4-D

plots are given in this chapter and Appendix B and these plots are contour plots

that represent either temperature values or percentage modeling errors at the sensor

nodes spread across the network. The x-axis of the plots represents the x-coordinates
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Figure 6.3: Floorplan of the Architecture

Node Node Processing Node Node Processing
No. Coord (x,y) Element No. Coord (x,y) Element
1 (1,1) Cache0 14 (4,3) FPU
2 (2,1) Core0 15 (5,3) Mem1
3 (3,1) Core1 16 (1,4) Cache2
4 (4,1) Core2 17 (2,4) Tag2
5 (5,1) Core3 18 (3,4) DRAM1
6 (1,2) Cache0 19 (4,4) Tag3
7 (2,2) Tag0 20 (5,4) Cache3
8 (3,2) DRAM0 21 (1,5) Cache2
9 (4,2) Tag1 22 (2,5) Core4
10 (5,2) Cache1 23 (3,5) Core5
11 (1,3) Mem0 24 (4,5) Core6
12 (2,3) CLK 25 (5,5) Core7
13 (3,3) Crossbar

Table 6.1: Node coordinates and their positions
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Figure 6.4: Path Configuration

of the nodes, the y-axis corresponds to y-coordinates of the nodes and we have a

5x5 grid network. The z-axis represents time in ms. The contour represents either

temperature or modeling error and is described by a colormap. The datasets have 4

time slots and the plots have contour slices that correspond to the state of the system

at the end of each time slot (25ms, 50ms, 75ms and 100ms on the z-axis).

The sensor positions (node coordinates associated with each processing element)

are given in Table 6.1 and two path configurations that were used to analyze modeling

errors are given in Figure 6.4. The paths are configured such that path1 has predom-

inantly vertical links and hence, captures vertical gradients across the network and

path2 has horizontal links and it captures horizontal gradients across the network.

Based on how heat flows across the network for each dataset, the errors were analyzed

and then, the errors characterized by plotting the bounds and analyzing the contri-

bution of each term in the bounds equations to the change in bound values. The next

subsection describes the four datasets along with analysis of how entity dynamics and

data paths affect lumping and correlation errors. The subsequent subsection analyzes

how the bounds that describe modeling errors change with entity dynamics. Eventu-

ally, the last subsection in this experiments section solves the optimization problem

described by equations 6.25 to 6.39 that describes the procedure of optimized lumping

based on cost function.
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6.6.1 Analysis of Lumping and Correlation Errors

This subsection analyzes how data paths affect lumping and correlation errors for

different scenarios produced by the datasets. The 4-D plots corresponding to tem-

perature data is provided in this section. The plots that describe modeling errors are

given in Appendix B. The subsections exclude the analysis of time synchronization

errors as it was observed that these errors are path independent and highest at the

positions of the heat sources. The maximum percentage error that was observed was

0.2% at dataset4, which is insignificant.

Dataset 1

For dataset1, core0 and core4 in figure 6.3 were heated up for a period of 100 ms (all

time slots) by the same amount. Figure 6.5 shows the temperature values over the

25-node network and each slice in the figure corresponds to temperature value at the

corresponding time instance (25ms, 50ms, 75ms and 100ms).

It can be observed that over time, since heat sources are stationary at core0

(2,1) and core4 (2,5), area covered by those cores and the associated caches heat

up. The associated caches are cache0 (1,1) for core0 and cache2 (1,5) for core4. The

temperature values local to those processing elements are hotter than the other parts,

but the heat propagates over the network due to heat transfer gradients. As a result,

the nodes on the right part of the network at 100ms are warmer compared to their

values at 25ms, even though they are not located at the heat spots.

Analyzing Lumping Errors for Dataset 1:

Figure B.1 shows the percentage lumping error at each point in the 5x5 network

when path 1 is used and figure B.2 shows the percentage lumping error when path2

is used. When path1 is used, percentage error at nodes (2,1), (2,2), (2,4) and (2,5)

are very high for all 4 time slots compared to other nodes in the network. Node (2,1)

is located at core0 and node (2,5) is located at core4. Analyzing those parts of the

network, path1 mainly has vertical links. Hence the two segments (2,2), (2,1), (3,1)

and (1,5),(2,5),(2,4) lie in the areas where percentage error is very large. Lumping the

node (2,1) would establish a new link between (2,2),(3,1) and the model parameters

Sc and Gr are accordingly adjusted. It is observed that due to very high temperature

value at core0 (2,1), the updated Gr values after lumping (2,1) and/or (2,2) would

result in loss of crucial information. Since the Sc values are also removed, the high
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Figure 6.5: Temperature values for dataset 1
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heat values stored at these nodes would not reach the target point. Similarly, error

increases when you lump either node (2,5) or node (2,4) due to the lost information at

node (2,5) which lies in core4. Error is computed by computing the difference between

the actual temperature value at the node and the temperature value estimated after

lumping the node and updating the coefficients. Due to the nature of path1 having

vertical links, the plots in figure3 shows that percentage error at the heating cores

and their vertical neighbors is very high.

The same reasoning occurs for path2 but in this case, the paths are pre-dominantly

horizontal. It is interesting to observe that more number of nodes are affected near

core4 (2,5). The path segment that is affected is (3,5),(2,5),(1,5),(1,4),(2,4) with high

percentage errors at (3,5),(2,5),(1,4),(2,4) due to the high loss of information along

the path. For node (2,1), error is high between nodes (2,1) and (3,1) due to the fact

that (2,1) is located at the heated core0.

Analyzing Correlation Errors for Dataset 1:

Figure B.3 shows the percentage correlation error at each point in the 5x5 network

when path 1 is used and Figure B.4 shows the percentage correlation error when path2

is used. It can be observed that path1 is a lot more efficient compared to path2 for

this particular dataset.

The reason why path1 produces lower values of correlation errors than path2

is due to the nature of the paths and the location of the two heat sources. It is

observed that the two nodes located at the core have only one missing link at both

nodes. However, the nodes especially on the left part of the network have very high

temperature gradients along the vertical links. The two cores get heated up and heat

dissipation and gradients are such that the temperature values at these cores become

very high, but the non-core and non-cache elements that are located at vertical links

with respect to the cores do not heat up as much. Hence, the temperature gradients at

the vertical links of the cores are very high due to this difference and produces higher

correlation errors if these nodes are not linked in the path. Hence, path1 performs

better compared to path2 since it is configured to have predominantly vertical links.

Only node (4,3) has high correlation errors when path1 is used since it is located at the

FPU and it heats up more compared to the other processing elements nearby causing

more gradients along the horizontal direction (refer to Figure 6.3 and Table 6.1 to

determine the positions of FPU and its neighbors). For nodes located at row 2 (y-

axis = 2), the gradients are higher along the bottom link due to the presence of a
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hot core (core0) at row0. Similarly, row4 has high gradients along the top link due to

the presence of core4 (located at row5) which is hot and row3 has both vertical and

horizontal links with high gradients. This behavior is more visible at the left side of

the network since both core0 and core4 are located on the left side (x-axis = 2).

Dataset 2

Dataset2 has moving heat sources. Core0 and core7 in Figure 6.3 were heated up for

the first time slot (0-25ms). Then the heat sources move to core1 and core6 in the

second time slot (25-50ms). For the third slot (50-75ms), the heat sources are located

at core2 and core5 and eventually, core3 and core4 get heated up in the fourth time

slot (75-100ms). Figure 6.6 shows the temperature values over the 25-node network

and each contour slice in the figure corresponds to temperature values at the end of

each time slot (25ms, 50ms, 75ms and 100ms).

Nodes (2,1) and (5,5) display higher temperature values at 25ms since they are

located at core0 and core7. For the second time slot, nodes (3,1) located at core1 and

(4,5) located at core6 display higher temperature values but the effects of the previous

heat sources can still can be seen at those points. For the third time slot, nodes (4,1)

and (3,5) heat up due to their locations at core2 and core5 and the residual heat at

the previous heat positions can be seen. Eventually, the fourth time slot that ranges

from 75-100ms heats up core3 and core4, i.e. nodes (5,1) and (2,5) in the network, but

due to the fact that both heat sources moved along the x-direction to the other end

of the network, temperature is fairly high at the cores through which the heat sources

passed, but obviously temperature is the higher at the nodes local to the current

heating cores. Previously, for dataset1, since the cores were stationary, heating was

only local to those areas. Hence, max temperature is higher at 100ms for dataset1,

although heat is more distributed over the network for dataset2.

Analyzing Lumping Errors for Dataset 2:

It is observed from figures B.5 and B.6 that lumping error is higher local to the

position of the heat source and the reason is same as the lumping errors that occur

for dataset1. It is, however, observed that path2 performs better than path1 as time

passes since the other nodes in the network also display 1.5% - 2% errors when path1

is used while it is less than 1% for those nodes (many of them have close to 0% error)

when path2 is used. This behavior is most visible at the fourth contour slice that

corresponds to the end of the last time slot. This is because of the residual heat at the
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Figure 6.6: Temperature values for dataset 2
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previously heated cores resulting in lower temperature gradients along the horizontal

direction. This phenomenon is observed along the red areas of the fourth contourslice

in Figure 6.6 that shows temperature plots. The gradients are higher in the vertical

direction closer to the heat spots (red to yellow areas in Figure 6.6).

When you lump a node with higher gradients with respect to neighbors, some

amount of information is lost. Since path2 mostly uses horizontal links, error is close

to zero at the nodes that are away from the hot spots due to smaller gradients and

even local to the heat spots, the error is much lower compared to the results produced

by path1. Segment (5,1), (5,2), i.e. the lower-right part of the network displays high

lumping errors when path2 is used for the last time slot. The segment, being a vertical

link, lies between the yellow and the red regions in Figure 6.6 causing an increase in

lumping errors. This phenomenon is observed only during the last time slot because

the heat source moves to core3, i.e. node (5,1) during this time. Hence, dataset2

provides us with the additional insight over dataset1 that the decision to lump a

node depends not only on its absolute temperature value (position of heat sources),

but also its relationship with respect to neighbor nodes (in terms of gradients).

Analyzing Correlation Errors for Dataset 2:

Figure B.7 shows the correlation errors for dataset2 when path1 is used and Fig-

ure B.8 shows the correlation errors for dataset2 when path2 is used. Similar to

dataset1, path1 performs better than path2 in minimizing correlation errors. Espe-

cially at 100ms, the end of the fourth time slot, correlation error is almost zero except

for a couple of nodes at the bottom-left part of the network. On the other hand, ex-

cept for 3 nodes in the network, correlation error in most part of the network is 90%

when path2 is used at 100ms. For dataset1, correlation errors reduced as you moved

away from the stationary heat sources but in this case, both heat sources move along

the horizontal direction at top and bottom part of the network causing high gradients

along the vertical axis throughout the network. This results in a significant increase

in correlation errors when path2 is used, but path1 reduces these errors to almost zero

due to the fact that it predominantly has vertical links in its path, thus capturing all

correlations between nodes that have very high gradients, e.g. the vertical links cover

the gradients represented by the red and yellow areas in Figure 6.6.

The high correlation errors that occur at (1,1) when path1 is used is due to the

fact that its right neighbor (2,1) is a core and due to the fact that the link between

those nodes is absent, the gradient between those nodes is high. On the other hand,
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that link exists when path2 is used and hence, error is minimal for that node. The

two blue spots that always exist at nodes (5,1) and (1,5) are due to the fact that

those nodes do not have any missing links for either paths. This condition is true for

all datasets.

Dataset 3
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Figure 6.7: Temperature values for dataset3

Dataset3 has 4 stationary heat sources located at core0, core3, core4 and core7.

These heat sources are heated by the same amount during all 4 time slots over the
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period of 100 ms.

The four cores located at (2,1), (5,1), (2,5), (5,5) are heated over a period of 100ms.

It is observed from Figure 6.7 that the nodes in the network gradually experience an

increase in temperature due to gradients. At 100ms, the nodes along the first row (y

= 1) and the last row (y = 5) heat to very high temperatures compared to the other

nodes. In other words, heat transfer was maximum along these two rows since there

was a heat source on each end causing the red lines at those two rows in the fourth

contour slice in Figure 6.7. Due to the presence of 4 heat sources at the corners,

overall temperature is definitely high compared to dataset1, which contains the blue

(colder) regions in the right part of the network, since the 2 cores were located on the

left part.

Analyzing Lumping Errors for Dataset 3:

The behavior is consistent with the previous 2 cases for path1 where percentage

error is high local to the heat spots as shown in Figure B.9. However, Figure B.10

shows that when path2 is used, lumping errors are much lower even at the heat spots.

It is higher at the other heat spots compared to the rest of the network but much

lower than the results observed for dataset1 and dataset2. This is due to the fact

discussed in the temperature analysis that the gradients are very low along the x-axis

at the first and last rows compared to the previous datasets. For example, at y =

1, nodes (2,1) and (5,1) have heat sources for this dataset while there is only one

heat source at (2,1) for dataset1. The same path segment (2,1), (3,1) is used for both

datasets when path2 is selected. For dataset1, you observe high lumping errors at

nodes (2,1) and (3,1) while the lumping errors at the same time instances are 50%

lower at those nodes for dataset3, the only difference being that (5,1) also has a heat

source. The gradient effects from (5,1) increases the temperature at (3,1) resulting

in lower temperature gradients between (2,1) and (3,1).

When path1 is used, the segments are such that nodes neighboring to the heat

spots (yellow region in the fourth contourslice) are at a lower temperature values

compared to the heated nodes (red region in the fourth contourslice) indicating higher

gradients and hence, resulting in higher lumping errors. Similar situation occurs at

segment (5,1), (5,2), i.e. the lower-right part of the network when path2 is used. The

segment being a vertical link lies between the yellow and the red regions causing an

increase in lumping errors. This behavior was also observed for dataset2.

Analyzing Correlation Errors for Dataset 3:
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Figures B.11 and B.12 re-establish the fact that path segments should be selected

along links that are very high gradients to reduce loss of correlations between nodes.

The presence of four heat sources generates more gradients in the network resulting

in higher percentage errors when path2 is selected compared to the previous datasets

with 2 cores. Path2 definitely performed better, especially in the right part of the net-

work for the initial time instances for dataset1. It also performed better for dataset2

for the first time slot when the 2 heat sources had not started moving. Since this

dataset contains 4 heat sources at four corners in the network, path2 performs worse

for all 4 time slots due to the nature of the path segments defined in the path. As

expected, high temperature gradients at the end of the fourth time slot cause very

high correlation errors at the fourth contourslice in figure B.12.

Dataset 4

Dataset4 has 4 heat sources initially located (in the first time slot) at core0, core3,

core4 and core7 just like in dataset3. But they move after each time slot. Referring

to the first contourslice (end of first time slot) in Figure 6.8, temperatures at nodes

where the cores are located have higher values compared to the other nodes. The

corresponding nodes are (2,1), (5,1), (2,5), (5,5).

For the second time slot, the heat source at core0 moves to core1, the heat source

at core3 moves to core2, the heat source at core4 moves to core5 and the heat source

at core7 moves to core6. Hence, the heat sources are now located at (3,1), (4,1),

(3,5), (4,5). It can be seen that temperature values are higher at the those nodes

(central part of the first and last rows). For the third time slot, the heat sources

located at core1 and core2 swap their positions and the heat sources located at core5

and core6 swap their positions. Hence, the same core elements have the heat sources,

the only difference being that they were swapped. It can be observed from the third

contourslice that the temperature at the central part of the first and the last rows are

higher compared to the previous slice. For the fourth time slot, the heat source at core

1 moves to core0, the heat source at core2 moves to core3, the heat source at core5

moves to core4 and the heat source at core6 moves to core7. Hence, the same core

elements that were heated during the first time slot get heated again (four corners

of the chip), but with the heat sources swapped. The fourth contourslice shows the

temperature at the end of the last time slot and the first and the last row elements

are hot due to the moving nature of the heat sources and their residual effects. The
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Figure 6.8: Temperature values for dataset4
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fourth contourslice for dataset4 in Figure 6.8 may look the same as the contourslice

for dataset3 in Figure 6.7, but note that the nodes at the center are more red (hotter)

for dataset4 compared to dataset3 due to the moving nature of the heat sources.

Analyzing Lumping Errors for Dataset 4:

The nature of the moving heat sources can be observed in Figure B.13 since

lumping errors are very high local to the heat spots. Since path1 is used, the nodes

located at the heat spots and the vertical neighbors display high lumping errors.

Expectedly, for the second and the third time slots, the central nodes of the first and

last rows produce very high lumping errors along with their vertical neighbors due to

the presence of two heat sources at those points. When path2 is used, the lumping

errors produced by this dataset shown in Figure B.14 is very similar compared to

dataset3, the only difference being that the reason why those similar gradients are

produced (the reason being the moving nature of the heat source). It can be observed

that it is a bit lower compared to dataset3 since all nodes along the rows are heated by

the moving cores resulting in lower gradients between those nodes. Another difference

that was observed was that the vertical segment at the bottom-right part of the

network (segment (5,1),(5,2)) produces higher errors for time slot 1 and time slot 4

since the heat source moves during the other time slots. For dataset3, that part of the

network always produced high lumping errors since the heat sources were stationary.

Analyzing Correlation Errors for Dataset 4:

For this dataset, the plots in Figure B.15 show that path1 produces correlation

errors very similar to dataset3, but for the difference that the effects of the FPU

at the center of the network (this effect was discussed while analyzing dataset1) is

visible at the initial time instances, but that effect is not to be seen during the later

time instances for this dataset. In fact, at the end of the fourth time slot, this effect

completely vanishes and the correlation errors around that point is close to zero. The

reason is that as the heat sources move, they transfer heat over the network. This

aspect dominates the effects of the FPU.

The plots in Figure B.16 show that path2 produces much higher correlation errors

compared to dataset3 due to the moving nature of the cores. The fact that the cores

moved along the x-direction created a very high gradient with respect to the vertical

links for all nodes. We can see a larger difference between the red and yellow zones

from fourth slice in Figure 6.8 (dataset4) compared to the same plot in Figure 6.7

(dataset3) indicating the larger gradients produced by dataset4. As a result, this
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Figure 6.9: Bounds for lumping errors at core 0

dataset produced the highest amount of correlation errors when path2 is used. Hence,

we observe dark red areas in most part of the network at the end of time slot 4.

6.6.2 Analysis of Bounds for Lumping Errors

This subsection analyzes the bounds for lumping errors given by equations 6.8, 6.9,

6.10. The bound values at core0, core1, core2 and core4 are analyzed for path2 and

they provide good insight on the factors that might change the lumping errors and aid

in the process of deciding whether to lump a node depending on current conditions,

i.e. the dynamics of the monitored entities in the vicinity of the node. Each of the

four plots given by Figures 6.9, 6.10, 6.11 and 6.12 have two plots where the plots

on the left hand side cover bound values from the fixed datasets (i.e. dataset1 and

dataset3) and the plots on the right side cover bound values from the moving datasets

(i.e. dataset2 and dataset4). It is observed that the bound values for all cores reach

steady state after the initial few samples for fixed datasets. The bound values are

sensing readings, i.e. temperature values in this case.

Core0

Analyzing core0, i.e. node (2,1) for dataset1 and dataset3 given by Figure 6.9, a heat

source is always present at this core. Hence, it produces almost exactly the same

bound values for both datasets, the bounds for dataset1 being slightly higher due to

the difference in gradients with respect to its neighbors. Dataset3 has one more heat
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source at core3 (5,1), resulting in lower gradients. For these datasets, since the heat

source is static at core0 and the power dissipation does not change over time, the

ŸxMAX
value corresponding to the first term in the equation 6.9 is at its maximum

at this node and remains the same for the other samples. Hence, it reaches a steady

state after 6 samples and remains fairly constant over time. The time taken after

sample 3 through sample 6 to reach steady state is due to the increase in Sc value

between samples 3 and 4, causing an increase in the bound value by 13% and the

steady decrease in ĖcompMIN
value in equation 6.10 between samples 3 and 6, causing

an increase in the bound value by 14.5% at sample 5 and 4% at sample 6. After this,

all the terms remain fairly constant over time.

For dataset2, the heat source is present at the first time slot and then it moves

along the horizontal direction at the subsequent time slots. It reaches core3 (5,1) at

the fourth time slot. In case of dataset4, the heat source present at core3 reaches

core0 at the fourth time slot. It is observed that the bound values are consistent with

the static datasets for the first time slot for both dataset2 and dataset4. However,

the heat source moves at the sixth sample and hence, the bound values increase

again. There is a sudden increase in the value of gamma and the term ẎB−xMAX
in

equation 6.9 since the node moves to node B, the corresponding link for node (2,1)

located at core0. The term gamma increases by a large amount due to the high

difference in gradients between the two links. This results in the decrease of the value

of κ, but this effect is mitigated by the increase in ẎB−xMAX
. Hence, an increase in

bound value is observed at sample 7 by 171% for dataset2 and 240% for dataset4.

For dataset4, the value of ẎB−xMAX
is much higher due to the effects of another heat

source. At sample 10, the gradient effects at the link between nodes 2 and 3, i.e. link

B−X changes its state due to heat transfer over time between the nodes. This affects

the Gr values and the value of γ decreases resulting in an increase in κ. As a result,

we could observe an increase in the bound value by 25% for both datasets. Hence, the

effects of κ is very less compared to the effects of the ẎB−xMAX
and ŸxMAX

values. For

dataset4, the bounds reaches steady state until sample 18 since two heat sources are

present at core1 and core2 during this time. For the fourth time slot, the heat sources

move back to core0 and core3. The bound values decrease for dataset4 during this

time by 16% at the start of the fourth time slot (sample 18) due to the difference in

gradients caused by the moving of the heat sources. The ẎB−xMAX
and ŸxMAX

terms

do not change at this point because the heat sources have already traversed all the

138



0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sample number

B
o

u
n

d
 v

a
lu

e
 (

te
m

p
e
ra

tu
re

)

 

 

Dataset1

Dataset3

0 5 10 15 20 25
0

2

4

6

8

10

12

Sample number

B
o

u
n

d
 v

a
lu

e
 (

te
m

p
e
ra

tu
re

)

 

 

Dataset2

Dataset4

Figure 6.10: Bounds for lumping errors at core 1

cores along the x-axis, and the gradients are not high enough to change them, but

are sufficient to change κ resulting in the 16% decrease. Similar to the second time

slot, the gradient effects at the links change over time due to heat transfer caused by

the moving cores at the fourth time slot and the bound value decreases in the middle

of the fourth time slot (sample 22) by 11%.

Core1

Bounds for core1 are given in Figure 6.10. Compared to core0, bounds for core1

when dataset1 and dataset3 reach steady state more quickly and at steady state,

they are approximately 41% lower since no heat source is present at this node for

those datasets. In other words, ŸxMAX
increases depending on energy received from

the neighboring core and hence, is lower. For both dataset2 and dataset4, the heat

source reaches this core at the second time slot. Hence, a huge increase in bound

value (663% for dataset2 and 988% for dataset4) is observed at sample 7. This is due

to the significant increase in ŸxMAX
values due to the moving of the heat source into

this core. For the later time instances, few increases and decreases in bound values

were observed due to the gradient effects explained for core 0.

Core2

Bounds for core2 are given in Figure 6.11. When dataset1 is used for core2, it is

further away from the heat source at core0 and hence, the bounds reach steady state
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Figure 6.11: Bounds for lumping errors at core 2

almost immediately and the bound value at steady state is 96% lower than core0.

For dataset3, the bounds for this core is similar to core1 since both cores have a

neighboring core with a heat source. Dataset2 behaves similar to core1, the difference

being that the huge increase in bound value (522%) is time shifted by a factor of 25ms

(6 samples). This is because the heat sources moves into this core during the third

time slot compared to the second time slot in the case of core1. For dataset4, the

bound value increases at the same time compared to core1 since heat source from

core3 moves to this core during the second time slot and the increase in bound value

(906%) is also similar to core1.

Core4

The bound values at core4 are given in Figure 6.12. It behaves very similar to core0

for dataset1 and dataset3 since the conditions are very similar. However, for dataset2,

the behavior is similar to cores 1 and 2, the difference being that the huge increase

in bound value is observed at the start of the fourth time slot, when the heat source

moves to this core.

Characterizing Lumping Errors

Combining the analysis of the increase in lumping errors from the 4D plots and the

contribution of each term in the bound equation due to the effects of the moving

entities from the bound plots, it was concluded that the lumping error increases
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Figure 6.12: Bounds for lumping errors at core 4

significantly when the heat source moves to the vicinity of a node (significant increase

in Ÿx values, the first term in the bound equation) and when the gradient is very

large (increase in κ and the second and/or third term, ẎA−x and/or ẎB−x values in

the bound equation). The change in the value of κ occurs due to the change in Gr

values, but the effect on the bounds is insignificant compared to the other factors.

Based on the above analysis, we can add meaning to the equation that describes

the bounds for lumping errors. The first term indicates the increase in information

when a heat source is present in the core. The second and the third term indicate the

gradients with respect to neighboring nodes in the path. The equation is formulated

such that higher the increase in temperature over time and higher the gradients,

higher would be the lumping errors due to loss of information at the node and the

gradient effects with respect to the neighbors. The fourth term indicates the loss of

information due to the change in energy sinks at the node that is lumped.

6.6.3 Analysis of Bounds for Correlation Errors

This subsection analyzes the bounds for correlation errors given by equations 6.18,

6.19, 6.20. The bound values at core0, core1, core2 and core4 are analyzed for path2

and they provide good insight on the factors that might change the correlation errors.

Each of the four plots given by Figures 6.13, 6.14, 6.15 and 6.16 have two plots where

the plots on the left hand side cover bound values from the fixed datasets (i.e. dataset1

and dataset3) and the plots on the right side cover bound values from the moving
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Figure 6.13: Bounds for correlation errors at core 0

datasets (i.e. dataset2 and dataset4). The bound values are in terms of energy since

correlation errors correspond to energy at the missing links. In this case, we measure

energy flux since we measure temperature, i.e. heat.

Core0

The plots that analyze bounds for core0 are given in Figure 6.13. When dataset1 and

dataset3 are used, the heat source at core0 remains static for all time slots. Hence,

the Ÿx value is initially high until it reaches steady state approximately at the end

of the first time slot. At this point, the maximum value of ŸxMAX
for all time slots

is reached. Once steady state is reached, the gradient values with respect to the

neighboring nodes keep decreasing over time, decreasing the ẎB−xMIN
. This results

in the increase in bounds for correlation errors. This behavior is consistent with the

analysis of correlation errors using the 4-D plots. A decrease in ẎA−x and ẎB−x values

increases the energy difference between the rise of energy at the state variable Ÿx

and the energy due to gradients with respect to the path’s established links. This

difference in energy corresponds to the missed correlation (energy) with respect to

the missing links. Hence, once steady state is reached for dataset1 and dataset3, the

gradients keep decreasing and there is a steady increase in bound values of correlation

errors.

For dataset2 and dataset4, the moving of the heat sources at the end of first time

slot creates the required gradients that keeps the bound values low until the third

142



0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sample number

B
o

u
n

d
 v

a
lu

e
 (

e
n

e
rg

y
)

 

 

Dataset1

Dataset3

0 5 10 15 20 25
0

50

100

150

200

250

300

Sample number

B
o

u
n

d
 v

a
lu

e
 (

e
n

e
rg

y
)

 

 

Dataset2

Dataset4

Figure 6.14: Bounds for correlation errors at core 1

time slot is reached. The heat source is present in the first time slot at core0 and the

same heat source moves to core1 at the second time slot, keeping the high gradients

between these cores. At the third time slot, the heat source moves to core2, which is

furthest away from core0, significantly decreasing the gradients that produces a spike

in the bound value by 260% between samples 12 and 13. After the heat source moves

to core2, the relative gradient values change as it reaches equilibrium and the value

of γ increases, resulting in a decrease of the bound values by 40%. When dataset4 is

used, the heat source is present at core0 during the first time slot, and a heat source is

present at core1 during the second and third time slots. This keeps the gradient high

between core0 and core1, resulting in low bound values. However, the heat source

moves from core1 to core0 during the fourth time slot, resulting in lower gradients

between the cores as the increase in temperature at core0 brings its temperature closer

to the temperature of core1. Hence, the increase in bound value of 203% is observed

between samples 18 and 19.

Core1

The plots that analyze bounds for core1 are given in Figure 6.14. Since there is no

heat source present at core1 for dataset1 and dataset3, the range of bound values (0

to 1.2) is significantly lower compared to the range of bound values at core0 (0 to

32). For dataset2 and dataset4, the heat source moves from core0 to core1 causing a

huge increase in ŸxMAX
at core1. This results in a sharp increase in bound value from
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Figure 6.15: Bounds for correlation errors at core 2

a flux value of 1.18 to 89 (i.e. more than 7000%) between samples 6 and 7. At the

middle of the second time slot, the gradients between the two cores decreases as the

temperature of core1 gets closer to core0 resulting in an increase in bound value of

73% for dataset2 and 48% for dataset4 between samples 10 and 11. The increase of

bound value by 315% at the start of fourth time slot due to the moving of heat source

(to core3) further away from the core (core1) and the subsequent decrease by 47%

due to the change in γ is similar in concept to the drastic changes of bound values

observed during the third time slot at core0.

Core2

The plots that analyze bounds for core2 are given in Figure 6.15. For this core, bound

values are very low for dataset1 and dataset3 similar to core1 due to the fact that

no heat source is incident on this core at any point of time. For dataset2, the bound

values behaves similar to the bound values at core1, the only difference being that

the increase from a very low value of 3.5 to 73 occurs at the third time slot when the

heat source moves to this core, resulting in a sudden increase in ŸxMAX
. In case of

core1, it moves during the second time slot causing the spike in bound values. For

dataset4, the same increase is observed during the second time slot when the heat

source moves from core3 to core2. In addition, there is also a 450% increase of bound

values at the start of the fourth time slot when the heat source moves away from this

core to core3. Interestingly, the temperature value at the node decreased and caused
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Figure 6.16: Bounds for correlation errors at core 4

the value of bound value to spike since the terms in equations 6.19 and 6.20 ended

up being added instead of subtracted due to opposite signs of the values that result

from this behavior. The temperature again starts increasing after a couple of samples

and during this time instance, the term given by equation 6.19 again computes a

positive value. In addition, steady state condition between the gradients and the

ŸxMAX
term caused the bound value to decrease significantly. This phenomenon is

observed momentarily even at other nodes when a heat source leaves the node and

enters its neighbor, which happens to be the next node in the path.

Core4

The plots that analyze bounds for core4 are given in Figure 6.16. The bound values

at core4 are very similar to core0 for dataset1, dataset3 and dataset4. This is due

to similar relative positions with respect to heat sources. However, for dataset2, the

heat source moves towards core4 from core7 as opposed to the phenomenon at core0

where the heat source moves from core0 to core3. Hence, the bound values are low

for the initial three time slots and increases significantly at the start of the fourth

time slot (sample 18) when the heat source moves to this core. The presence of a

heat source over time causes a decrease in gradient with respect to core5 resulting a

further increase in the middle of the time slot (sample 22).
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Path Unoptimized Optimized

Conf. BW % Loss Avg Delay Avg Error Opt Ratio %Loss %Lump Loss Avg Delay Avg Error

1 2 3 4 5 6 7 8 9 10

Path 1 BW 1 43.75 18.65 7.36 Opt 1 59.41 24.11 23.05 6.57

BW 2 56.25 22.22 6.89 Opt 2 64.33 39.77 21.82 6.19

BW 3 63.54 30.62 6.92 Opt 3 61.78 57.06 23.06 4.98

Path 2 BW 1 43.75 17.78 6.73 Opt 1 60.6 23.63 25.30 6.87

BW 2 56.25 22.45 7.08 Opt 2 69.04 49.4 27.67 6.04

BW 3 63.54 30.82 6.5 Opt 3 72.63 65.78 26.48 5.02

Table 6.2: Comparison of results: Dataset with static heat sources

Characterizing Correlation Errors

Combining the analysis of the increase in correlation errors from the 4D plots and

the contribution of each term in the bound equation due to the effects of the moving

entities from the bound plots, it was concluded that the correlation error increases

significantly when the heat source moves to the vicinity of a node (significant increase

in Ÿx values) and when the gradient is very low (decrease in ẎA−x and/or ẎB−x values

in the bound equation). A decrease in gradient values increases the difference in the

energy stored at the node and the gradient energies at the path links. This difference

in energy corresponds to the total energy due to missing links.

6.6.4 Optimized Distributed Data Lumping

The procedure of optimized distributed data lumping, describing by equations 6.25

to 6.39, is being implemented on three datasets in this subsection. The first dataset

corresponds to dataset 3 described previously which contains four static heat sources.

The second dataset corresponds to dataset 4 described previously which contains four

moving heat sources. Finally, the third dataset was newly generated with heat sources

randomly appearing and disappearing within each core.

Table 6.2 shows the comparison of results for the unoptimized and optimized case

using the dataset with static heat sources. Column 1 gives the path configuration.

The first configuration had a critical path of 12 nodes while the second one had 15

nodes. Columns 2 to 5 contain information pertaining to the unoptimized case while
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Path Unoptimized Optimized

Conf. BW % Loss Avg Delay Avg Error Opt Ratio %Loss %Lump Loss Avg Delay Avg Error

1 2 3 4 5 6 7 8 9 10

Path 1 BW 1 43.75 18.65 7.94 Opt 1 60.69 27.16 23.44 6.62

BW 2 56.25 22.22 7.03 Opt 2 64.7 37.64 20.45 6.38

BW 3 63.54 30.62 7.17 Opt 3 58.85 52.6 19.93 4.93

Path 2 BW 1 43.75 17.78 5.65 Opt 1 63.58 16.3 23.68 5.21

BW 2 56.25 22.45 5.92 Opt 2 67.29 43.39 31.28 5.56

BW 3 63.54 30.82 5.46 Opt 3 71.05 60.52 22.67 4.45

Table 6.3: Comparison of results: Dataset with moving heat sources

columns 6 to 10 gives results for the optimized scenario.

Column 2 mentions 3 values of bandwidth that were used for conducting experi-

ments, with BW 1 being the fastest and BW 3 as the slowest. The ’% Loss’ indicates

the percentage of packets that were lost during transmission and hence did not reach

the target point. Since the bandwidth and buffer size are constant, the % loss is the

same for both paths in the unoptimized case. Column 4 gives the average delay per

packet (that was received at the target point) while column 5 gives the average lump-

ing error per packet (that was lost). In this case, it can be noticed that the as the BW

decreases from fastest to slowest, the % loss as well as the average delay increases

for both path configurations. This is because the packets travel slowly towards the

target point and the probability of data being overwritten in the buffer of forwarding

nodes is higher. The average lumping error however fluctuates with no preference to

specific BW because the unoptimized procedure assigns the same importance to all

packets resulting in the packets getting dropped randomly.

For the optimized case, experiments were performed using 3 values of the optimiza-

tion ratio given by ’error/latency’ (ζ/µ) in the cost function given by equation 6.35.

The ratio Opt 1 is 0.7/0.3, Opt 2 is 0.5/0.5 and Opt 3 is 0.3/0.7. Columns 7, 9 and 10

for the optimized case are analogous to columns 3, 4 and 5 of the unoptimized case.

Column 8 gives the percentage of packets that were dropped due to lumping of nodes.

From the results, it can be observed that the the % loss for optimized case is mostly

greater than the loss for unoptimized case. This is expected since some packets are

intentionally dropped by the lumping procedure which is in addition to the loss owing
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Path Unoptimized Optimized

Conf. BW % Loss Avg Delay Avg Error Opt Ratio %Loss %Lump Loss Avg Delay Avg Error

1 2 3 4 5 6 7 8 9 10

Path 1 BW 1 43.75 18.65 5.43 Opt 1 63.06 23.86 18.90 4.37

BW 2 56.25 22.22 4.8 Opt 2 66.04 36.41 23.52 4.79

BW 3 63.54 30.62 4.88 Opt 3 59.44 51.66 21.47 4.02

Path 2 BW 1 43.75 17.78 4.04 Opt 1 64.13 27.71 24.09 3.05

BW 2 56.25 22.45 4 Opt 2 70.37 48.76 29.31 3.41

BW 3 63.54 30.82 3.71 Opt 3 70.43 62.9 23.8 2.76

Table 6.4: Comparison of results: Dataset with random heat sources

to limited buffer size. From column 8 it can be seen that a major part of the loss is

actually caused by lumping and is therefore beneficial. This is also reflected in the

values of average error which are consistently smaller for the optimized case.

The ratio Opt 3 puts more emphasis on reducing latency while Opt 1 focuses more

on reducing average error. So, for Opt 1, less nodes are lumped and preference is given

to lower bandwidths while for Opt 3, more nodes are lumped and faster bandwidths

are used since we try to reduce latency. Intuitively, the delay for Opt3 should be least

while error for Opt1 should be lowest. However, in actuality, this may not always be

the case since buffer size plays an important role in deciding which packets reach the

target point. For example, the less lumping and lower bandwidths of Opt 1 cause

increase in congestion on the paths resulting in loss of important packets.

The results for the dataset with moving heat sources are as shown in table 6.3. For

the unoptimized case, the % loss and average delay increases for slower bandwidths

for the same reason as mentioned before. Also, the average error varies in a random

fashion but is obviously larger than the error for the optimized case. For the optimized

case, especially for Opt 3, it can be seen that the delay is very less as compared to

the unoptimized case. Also, the contribution of the lumping procedure towards the

total loss of packets is high. Therefore, the average error is low.

The results for the random dataset are mentioned in table 6.3. Similar to the

previous datasets, for the unoptimized case, the % loss and average delay increases

for slower bandwidths and the average error is higher as compared to the optimized

case. An interesting observation is that the values of average error are the lowest for
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the random dataset as compared to the previous two datasets.

6.7 Conclusion

This chapter provides a method to produce data models from raw sampled data using

differential equations given by equation 6.3. Using sampled data over time, the model

parameters are produced that correspond to gradient coefficients to capture the data

flow between physical points and storage coefficients to model the density of sampled

data at a particular physical point. These model parameters are transmitted to the

target point along data paths.

The procedure of distributed data lumping is introduced, where these data models

are lumped to reduce the load in the network. The process of lumping helps improve

latency and data loss in the network, but introduces errors for dropping nodes as

data is forwarded along the path. Equations for lumping errors and related error

bounds are derived and through experiments, lumping errors are characterized and

it was concluded that lumping errors increase in locations of high density sensor

readings and situations that result high gradients with respect to neighboring nodes

in the path. These situations need to be captured by the modeling process to enable

efficient decision making at the target point. Equations 6.25 to 6.35 are formulated

to select the right lumping hierarchy levels and utilization rates between bandwidth

values depending on the coefficients of the cost function and experiments correlate

data loss to lumping error. Buffer constraints produce data loss at the input buffers

of the nodes and important information is lost in the form of errors at the target

point. The optimization procedure minimizes average error per lost packet.

Depending on data paths that are used to stream data towards the target point,

correlation errors are introduced. The energy that is not captured due to the missing

links correspond to correlation errors. This chapter derives equations to compute

correlation errors and the bound values can help in deciding the utilization rates of

the path. It was experimentally observed that correlation errors can be reduced by

using data paths that would establish links with high gradients.
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Chapter 7

Conclusions and future work

The primary objective of this thesis was to produce reliable data models using raw

sensor data for accurate data representations under tight resource constraints of the

execution platform, while satisfying the timing constraints of the application. This ob-

jective was achieved using different algorithmic steps, starting with building dynamic

adaptation policies for network parameters to satisfy the performance requirements

of the application while tracking physical entities that can be quasi-static or dynamic

in nature, during the process of generating and streaming data model parameters to

the common collection point.

The performance requirements are specified using a declarative, high-level spec-

ification notation in Chapter 2 that correspond to timing, precision and resource

constraints of the application and Chapter 3 describes the execution platform that

defines middleware routines to transfer executable code to individual nodes and run

network-level applications on the grid-type sensor network, that is used to run all

experiments that are conducted in this thesis.

Chapter 4 describes a performance optimization model for entities having physical

properties that are quasi-static in nature. Adaptation policy design switches between

design points representing different performance-cost trade offs to address the goals

and constraints of the goal-oriented descriptions. Experiments show that the opti-

mization method scales well with network size and improves power consumption by

21% and data loss by 40%, while reducing delay of slower nodes to satisfy the timing

constraints of the application.

Chapter 5 adds the aspect of the dynamic properties of the monitored entities to

the adaptation policy design discussed in Chapter 4. The correlations between dif-
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ferent data paths and trajectory of the moving entities were used to select the right

network resource parameters and data paths to satisfy performance requirements of

the application and four trajectory prediction algorithms were discussed to capture

different facets of the entity dynamics. The performance of the four algorithms were

evaluated based on their latency and data loss improvements compared to the other

techniques and the conditions under which each algorithm performs best were iden-

tified.

Finally, Chapter 6 uses differential equations to produce data model parameters

that include gradient coefficients, that capture the data flow between physical points

and storage coefficients, that capture the density of sampled data at different physi-

cal points. The process of lumping these data model parameters while transmitting

them to the common collection point along data paths introduces lumping and corre-

lation errors, which were characterized in Chapter 6. Using the equations that bound

lumping errors and the identified factors that affect them, an algorithm was devised

to establish the required trade off between the goals of keeping the lumping errors

within the acceptable limit and reducing communication load on the network and

experiments were conducted to control the nodes that would experience data loss by

adjusting lumping hierarchy and bandwidth rates to minimize errors and delay at the

target point.

7.1 Future Work

The research work conducted for this thesis focuses on building high-precision data

models using sampled data that models the behavior of the monitored entities to

enable decision making. Within the scope of this work, models are considered highly

precise when sufficient amount of data is available at the decision making nodes with a

delay value that is lower than the threshold value specified by the application. Future

work that would employ decision making procedures can use this robust infrastructure

to perform goal-oriented control applications in the form of actuation procedures using

the data model parameters, and also add a feedback mechanism between the network

infrastructure and the decision making module to improve the quality of data models

from the goal-oriented perspective. The feedback mechanism can be also be used

by the decision making procedures to devise new data paths or alter existing paths

to add or reduce redundancy within parts of the network based on the density and
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dynamics of the entities in order to adjust errors related to missed data correlations.

Apart from adjusting the quality and quantity of data models, the decision mak-

ing procedure can use these data model parameters, along with the sensor data, to

identify the activities that take place within the environment to aid goal-oriented

control procedures. For example, the temperature data, and the Sc and Gr parame-

ter values that are computed for the case study in Chapter 6 can be used to identify

the software applications that are running at different processing elements in the chip

using causal relations between the nodes in the network. These causal relations can

be represented in the form of Directed Acyclic Graphs (DAGs) and using the prob-

ability distributions that describes the relations between different nodes in the DAG

structures, decisions related to thermal management within the chip [106] and sensor

placement strategies [107] can be made.
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Appendix A

Network Execution Platform

This appendix presents the detailed procedure of defining network parameters on the

execution support, which is a 36-node grid-type PSoC network. PSoC is a system on

chip, which offers an 8-bit microcontroller, flash memory for programs, SRAMmemory

for data, and programmable digital and analog cells, which are all integrated on

the same silicon chip. PSoCs hardware reconfiguration capabilities are important

for improving performance by customizing the architecture to the application needs.

PSoC nodes were wired together in a grid and communicate with each other through

UART modules.

A.1 Packet structure for communication

The execution of the networked sensor nodes is based on different kinds of packet

structures for communication: (A) server command packets, (B) data packets, and

(C) event packets. Command packets are sent by the server to the SNs to program

the parameters of the routines. The packets implement the following functionality:

(i) Definition of DARs and their associated parameters, (ii) definition of events and

actuation procedures, and (iii) starting and resetting the network. Defining the data

regions and their associated parameters includes specifying the x and y coordinates

of the bottom-left and top-right corners of a rectangular DAR, the set of alterna-

tive target points, regions paths, path probabilities, regions sensing precision (i.e.

bitwidth resolutions and time intervals between successive measurements), and re-

gions aggregation function. Data packets transmit data between SNs and the target

point accumulating the data over a monitored region. Event packets communicate
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Figure A.1: Middleware Routines for a Region

events over the network. The structure for each of these packets is as follows:

A.1.1 Server Command Packets

Command packets are sent from the server to the PSoC network to define various

parameters that update the data structure of the nodes in the network. The nodes

perform different functionalities relative to these parameters. The command packets

are further divided into the following subtypes:

Define Regions

This command is used to define a set of nodes within the PSoC grid to be a part of

the same region. The size of this packet is 7.

Command string format:

r. . . region id. . . x1. . . y1. . . x2. . . y2. . . FFh

• r - command id (define region)

• region id - region name

• x1, y1 - coordinates for bottom-left corner of region

• x2, y2 - coordinates for top-right corner of region

• FFh - End of Packet

ex. r A 0 1 2 2 // defines a region named ”A”, node (0,1) and (2,2) set the

boundaries of region ”A”, node (0,1) being the bottom-left corner of the region and

node (2,2) being the top-right corner of the region as shown in Figure A.1.
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Define Region’s Target Point

This command establishes which of the nodes associated with a region is the target

node. The target node is the node where all the paths within the region will end.

The Target node collects data from all the nodes in the network and forms a data

pool. The data from the region is fed back to the Entry Point and from the Entry

Point to the server from the target node. The size of this packet is 5.

Command string format:

t. . . region id. . . x. . . y. . . FFh

• t - command id (define target point)

• region id - region name

• x, y - coordinates of target point

• FFh - End of Packet

ex. t A 0 1 // defines the node (0,1) to be the Target Node for region ”A” as

shown in Figure A.1 where the Target Point is highlighted in blue.

Define Region’s Path

This command sets a path inside a predefined region. Only one path can be set at a

time but a region can have multiple paths. The size of this packet is not fixed as the

length of a path is not fixed.

Command string format:

p. . . region id. . . path id. . . no of nodes. . . list of nodes. . . FFh

• p - command id (define path)

• region id - region name

• path id - path name

• no of nodes - total number of nodes on path

• list of nodes - xi, yi - coordinates of nodes on path, separated by spaces and

last node is always the target point
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• FFh - End of Packet

ex. p A P 4 2 2 1 2 0 2 0 1 // defines a path named ”P” in region named ”A”

having 4 nodes with the co-ordinates (2,2), (1,2), (0,2) & (0,1). (0,1) is the target

node and the last node in the path. The path is shown in Figure A.1 highlighted in

green.

Define Path Probability

This command is used to set the probability with which a path is chosen within a

predefined region. The size of this packet is 5.

Command string format:

q. . . region id. . . path id. . . path probability. . . FFh

• q - command id (define path probability)

• region id - region name

• path id - path name

• path probability - the probability with which a path is chosen (given in %)

• FFh - End of Packet

ex. q A P 30 // sets the probability of path named ”P” in region named ”A” to

30% = 0.3.

Define Region’s Precision

This command sets the precision of the data acquisition within a predefined region

by specifying the resolution of the ADC (this changes the sampling time) and the

time interval between two measurements. All nodes within the region will use these

settings. The size of this packet is 5.

Command string format:

s. . . region id. . . no of bits. . . no of seconds. . . FFh

• s - command id (define space and time precision within a region)

167



• region id - region name

• no of bits - ADC bit resolution

• no of seconds - time interval in which at least one measurement must be made

• FFh - End of Packet

ex. s A 8 5 // precision in region named ”A” is set to 8 bit ADC resolution and

an interval of 5 seconds between 2 measurements.

Define Region’s Event

This command is used to define an event for a region. The size of this packet is 4.

Command string format:

h. . . region id. . . threshold. . . FFh

• h - command id (define a region’s event)

• region id - region name

• threshold - threshold temperature value that generates an event

• FFh - End of Packet

ex. h A 30 // defines an event for region ”A”, 30o Celsius being the threshold

temperature value that generates an event.

Define a Node’s Event for a Region

This command is used to define an event for a node (x, y) specific to region ”A”.

The default threshold value for the node for region ”A” is the one defined by the

command Define a region’s event. The size of this packet is 6.

Command string format:

n. . . region id. . . x. . . y. . . threshold. . . FFh

• n - command id (define an event for a node)

• region id - region name
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• x, y - coordinates of node

• threshold - threshold temperature value that generates an event

• FFh - End of Packet

ex. n A 3 12 30 // defines an event for node (3,12) for region ”A”, 30o Celsius

being the threshold temperature value that generates an event. The node may be a part

of other regions and they may have different threshold values specific to those regions.

Define Region’s Range

This command defines a range of temperature values for controlling the speed of the

fan for a specific region. The command packet specifies three temperature values T1,

T2 and T3. If the temperature value is less than T1, the fan is very slow i.e. the

PWM which drives the fan has 25% duty cycle. If the temperature value is between

T1 & T2, the speed of the fan is slow (PWM with 50% duty cycle). If the temperature

value is between T2 & T3, the speed of the fan is medium (PWM with 75% duty

cycle) and the speed is fast (PWM with 100% duty cycle) if the temperature value is

greater than T3. The size of this packet is 6.

Command string format:

g. . . region id. . .T1. . .T2. . .T3. . . FFh

• g - command id (define region’s range)

• region id - region name

• T1 - temperature value 1

• T2 - temperature value 2

• T3 - temperature value 3

• FFh - End of Packet

ex. g A 20 25 30 // defines a range of temperature values for region ”A” such

that the fan is very slow if the temperature value is less than 20o C, speed of the fan

is slow for the temperature range of 20o C - 25o C, speed of the fan is medium for

the temperature range of 25o C - 30o C and the speed is fast if the temperature value

exceeds 30o C.
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Define a Node’s Range for a Region

This command defines a range of temperature values for controlling the speed of the

fan for a node (x, y) specific to a region ”A”. The command packet specifies three

temperature values T1, T2 and T3. If the temperature value is less than T1, the

speed of the fan is very slow i.e. the PWM which drives the fan has 25% duty cycle.

If the temperature value is between T1 & T2, the speed of the fan is slow (PWM

with 50% duty cycle). If the temperature value is between T2 & T3, the speed of the

fan is medium (PWM with 75% duty cycle) and the speed is fast (PWM with 100%

duty cycle) if the temperature value is greater than T3. The default range for the

node for region ”A” is the one defined by the command Define region’s range. The

size of this packet is 8.

Command string format:

o. . . region id. . . x. . . y. . .T1. . .T2. . .T3. . . FFh

• g - command id (define node’s range for a region)

• region id - region name

• x, y - co-ordinates of node

• T1 - temperature value 1

• T2 - temperature value 2

• T3 - temperature value 3

• FFh - End of Packet

ex. g A 3 12 20 25 30 // defines a range of temperature values for node (3, 12)

specific to region ”A” such that the speed of the fan is very slow if the temperature

value is less than 20o C, speed of the fan is slow for the temperature range of 20o C -

25o C, speed of the fan is medium for the temperature range of 25o C - 30o C and the

speed is fast if the temperature value exceeds 30o C. The node may be a part of other

regions and they may have different ranges specific to those regions.
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Reset Network

This command resets the entire PSoC Network. It is intended as a software version of

a hard reset, enabling the user to remotely reset all the nodes in the network, hence

deleting all previous information stored in the data structure (region, target, path,

path probability, aggregation function, precision, event and range). This command

also stops execution. The size of this packet is 1 and it does not include an End of

Packet.

Command string format:

x

This command can be also be executed by pressing the reset button of node (0,0)

which is the Entry Point.

The actual information is not deleted from memory, rather all the indexes in the

data structure are reset to zero, this being equivalent to a total loss of information.

Start execution

This command enables execution for the network. All the parameters which include

region and it’s parameters, events and ranges are defined prior to enabling execution.

After the execution is enabled, the nodes in the network start sensing temperature,

execute various functions within the regions, check for events and also produce the

actuation signals. The size of this packet is 1 and it does not include End of Packet.

Command string format:

y

After this command is defined, the nodes stop execution only on hardware reset

or on software reset using the Reset Network command.

A.1.2 Data Packets

The Data Packet is defined by a node in the network. The node uses this packet

format to transmit data associated to it to the Target Point of the region along one

of the paths defined by the server. All other nodes in the path just forward this

information packet to the subsequent node in the path. The size of this packet is 8.

Command string format:
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D. . . region id. . . path id. . . x. . . y. . . data. . . funct. . . FFh

• D - command id (Communicate data to Target Point)

• region id - region name

• path id - path used to send data to Target Point

• x, y - co-ordinates of the node

• data - aggregated data computed by the node

• funct - aggregation function used by the node

• FFh - End of Packet

ex. D A P 2 2 17 g // An information packet defined by node (2,2) which sends

data associated to region ”A” to the Target Point using path ”P”.

A.1.3 Define Event Packet

This information packet is defined by an individual node in case an event occurs for a

defined region. An event occurs when the computed data is higher than the threshold

value defined for the node and the event is specific for a region. The node defines

this packet to inform the Target Point that an event has occurred. The size of this

packet is 5.

Command string format:

v. . . region id. . . x. . . y. . . FFh

• v - command id (Inform the Target Point about an event)

• region id - region name

• x, y - co-ordinates of the node

• FFh - End of Packet

ex. v A 2 2 // An information packet defined by an individual node which trans-

mits the packet to the Target Point.
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Appendix B

4-D Plots for Modeling Errors

173



1 2 3 4 5
1

2

3

4

5

20

30

40

50

60

70

80

90

100

110

 

 

T
im

e
 (

m
s
)

Percent Lumping Error(path1, dataset1)

X−coord

Y−coord
0.5

1

1.5

2

2.5

3

3.5

4

Figure B.1: Percentage lumping errors: path1, dataset1
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Figure B.2: Percentage lumping errors: path2, dataset1
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Figure B.3: Percentage correlation errors: path1, dataset1
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Figure B.4: Percentage correlation errors: path2, dataset1
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Figure B.5: Percentage lumping errors: path1, dataset2
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Figure B.6: Percentage lumping errors: path2, dataset2
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Figure B.7: Percentage correlation errors: path1, dataset2
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Figure B.8: Percentage correlation errors: path2, dataset2

181



1 2 3 4 5
1

2

3

4

5

20

30

40

50

60

70

80

90

100

110

 

 

T
im

e
 (

m
s
)

Percent Lumping Error(path1, dataset3)

X−coord

Y−coord 0.5

1

1.5

2

2.5

3

3.5

4

Figure B.9: Percentage lumping errors: path1, dataset3
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Figure B.10: Percentage lumping errors: path2, dataset3
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Figure B.11: Percentage correlation errors: path1, dataset3
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Figure B.12: Percentage correlation errors: path2, dataset3
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Figure B.13: Percentage lumping errors: path1, dataset4

186



1 2 3 4 5
1

2

3

4

5

20

30

40

50

60

70

80

90

100

110

 

 
T

im
e
 (

m
s
)

Percent Lumping Error(path2, dataset4)

X−coord

Y−coord
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure B.14: Percentage lumping errors: path2, dataset4
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Figure B.15: Percentage correlation errors: path1, dataset4
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Figure B.16: Percentage correlation errors: path2, dataset4
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