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Abstract of the Dissertation

Isotopy Invariants of Immersed

Surfaces in a 4-manifold

by

Luoying Weng

Doctor of Philosophy

in

Mathematics

Stony Brook University

2011

In this this dissertation we introduce an isotopy invariant of generically

immersed surfaces in some 4-manifold. The construction is based on Kho-

vanov homology and its variants in the same way as the construction of

Turaev-Viro module of a 3-manifold with infinite cyclic covering relies on

TQFT. The invariant is first constructed for generically immersed surfaces

in S3 × S1 using the functoriality of Khovanov homology, and is generalized
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by using new versions of Khovanov homology. Moreover, it is also general-

ized to surfaces generically immersed transversal to a standardly embedded

S2 in S4. Examples are studied to illustrate the strength and weakness of

this invariant.
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Chapter 1

Introduction

Khovanov homology has been proved to be functorial up to sign by Jacobs-

son [4] and Bar-Natan [1]. One can try to use this functoriality for defining an

invariant of closed surface smoothly embedded in R4. The most straightfor-

ward approach was to consider the surface as an oriented cobordism between

two empty links. For simple grading reasons, this invariant is trivial for sur-

faces with non-zero Euler characteristic. For surfaces homeomorphic to torus

this invariant was proved to be trivial by Rasmussen [9] and Tanaka [12].

In this dissertation, we use the functoriality differently to construct an in-

variant of closed surface generically immersed in a 4-manifold. The model for

our construction is the Turaev-Viro construction of an invariant for a closed

n-manifold with an infinite cyclic covering. The Turaev-Viro construction is

based on an arbitrary n-TQFT and gives a module over the Laurent polyno-

mial ring. See [3].
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The new invariant is a bi-graded module over the Laurent polynomial ring

Q[t, t−1], where Q is the field of rationals. More precisely, let M = S3 × S1

and F be a closed surface generically immersed in M , we assign a module to

the pair (M,F ) using Khovanov homology and prove that it is invariant up

to ambient isotopy.

Besides, we extend Khovanov homology to two new categories. The first

category consists of oriented links as objects and morphisms are oriented

immersed link cobordisms considered up to ambient isotopy. The second

category has framed links as objects and morphisms are like in the first

category besides that the cobordisms are not oriented and maybe even non-

orientable. We proved that Khovanov homology is a 1projective functor on

both categories and the projective functoriality is used to define two versions

of the generically immersed surface invariant as mentioned earlier.

Moreover, since S3 × S1 can be obtained from S4 by a surgery along a

standardly embedded S2, the above construction can also be applied to gener-

ically immersed surfaces transversal to the standardly embedded 2-sphere in

S4 considered up to ambient isotopy.

This paper is organized as follows. In section 2, a definition of the Kho-

vanov homology is outlined. In section 3, we generalize the link cobordisms

and extend the projective functoriality of Khovanov homology to the gener-

alized cobordisms. In section 4, a version of framed Khovanov homology is

1A projective functor F : C −→ D is a functor C −→ D′ where D′ is category with
the same objects as D and in which morphisms are morphisms in D considered up to
multiplication by ±1
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defined. In section 5, we construct the invariant of closed surface generically

immersed in S3 × S1 and its invariance considered up to ambient isotopy

is proved. In section 6, various examples are studied. In section 7, we ap-

ply the construction to the generically immersed surface transversal to the

standardly embedded S2 in S4.
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Chapter 2

Khovanov Homology

2.1 Khovanov Chain Complex

Given a link diagram D, a marker at each crossing is a bar specifying a

pair of vertical angles at the crossing to be joined under smoothing of the

crossing. See Figure 2.1.

−→ , −→

Figure 2.1: Smoothings of a crossing according to markers

A Kauffman state s of D is a distribution of markers at all crossings.

There are two types of markers for each crossing: positive marker and

negative marker . For each state s, define σ(s) as the difference of number
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of positive markers and negative markers.

σ+(s) = #( ), σ−(s) = #( ),

σ(s) = σ+(s)− σ−(s).

Let Ds be the result of resolution according to s and |s| be the number of

components of a smoothing along s. An enhanced state S of D is a Kauffman

state s of D with an assignment of either + or − to each component of Ds .

For an enhanced state S,

τ(S) = τ+(S)− τ−(S),

where τ+(S) is the number of components in Ds with +, and τ−(S) is the

number of components with −. For an oriented diagram, each crossing is

either positive, like , or negative, like . The writhe number of D is

defined as the number of positive crossings minus the number of negative

crossings. Denote it by w(D). The bigrading (i, j) of the enhanced state S

is defined as follows:

i(S) =
w(D)− σ(S)

2
, j(S) = i(S) + w(D) + τ(S).

Definition 2.1.1. The (i, j)-th Khovanov chain complex CKhi,j(D) is a

free abelian group generated by the enhanced states S of D with i(S) = i and
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j(S) = j.

To define the differential of the Khovanov chain complex, we need an

auxiliary structure. Fix an arbitrary ordering for all crossings of the diagram

D. This ordering induces an ordering of negative markers in each state.

Definition 2.1.2. Let S and T be two states, the incidence number of S

and T , denote it by [S : T ] is a function satisfying following two conditions:

1. [S : T ] = 0 unless the markers of S and T differ at only one crossing

and at this crossing the marker of S is positive and that of T is negative.

2. if S and T differs only at the k-th crossing, and if the number of negative

marker after the k-th crossing is n, then [S : T ] = (−1)n.

For an enhanced state S, define a map d by

d(S) =
∑

T

[S : T ]T.

It has the following properties:

1. d is a homomorphism from CKhi,j(D) to CKhi+1,j(D)

2. d2 = 0

This d is the differential for the Khovanov chain complex, which gives rise to

Khovanov homology.

Khovanov homology is proved to be invariant of Reidemeister moves and

hence under isotpy by Khovanov [6].
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2.2 Link Cobordisms and Movie Moves

Definition 2.2.1. A link cobordism between two links L0 ⊂ R3 ×{0} and

L1 ⊂ R3 ×{1} is a compact surface F embedded in R3 × [0, 1] with boundary

∂F = L0 ∪ L1. If F is oriented, then equip L0 with the orientation induced

from F , and L1 with the orientation opposite to the one induced from F .

With such orientation, F is called an oriented link cobordism between

oriented links L0 and L1.

Notice that there is a natural projection from F to [0, 1]. The preimage

of its regular value t is a link Lt = R3 × {t} ∩ F .

We call an oriented link cobordism generic if the projection restricted to

F is a Morse function with distinct critical points.

The intersections of a generic oriented link cobordism with hyperplanes

of constant t ∈ [0, 1] are embedded links except for a finite set of values. At

these values, the intersection Lt has a single non-degenerate isolated double

point corresponding to the critical point of the Morse function. Locally, the

double point looks like at some time t.

A generic oriented link cobordism can be represented by a surface diagram

in R3. It is directly analogous to the two-dimensional link diagram. Such a

diagram is the image of the oriented link cobordism under a projection to

R2 × [0, 1] which preserves the last coordinate of the projection to [0, 1]. By

an arbitrarily small perturbation, the projection can be made generic in the

sense that the only singular points in the interior of the surface diagram are
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double points, Whitney umbrella points and triple points. Whitney umbrel-

las occur as the (isolated) boundary points of the double point set in the

interior of R2 × [0, 1]. In order to recover the cobordism considered up to

ambient isotopy, one needs to decorate the double points in the projection

to distinguish the over crossing and under crossing, like .

We use movie representation to describe the oriented link cobordism sim-

ilarly as in [4], and we consider oriented cobordisms up to ambient isotopy

fixed on the boundary.

Definition 2.2.2. Two oriented embedded surfaces F1 and F2 in a 4-manifold

M are ambient isotopic if there is a family of diffeomorphisms

H :M × [0, 1] −→ M

such that H(x, 0) = x, and H(F1, 1) = F2.

Definition 2.2.3. A movie of a generic oriented link cobordism with a

given surface diagram is the intersection of the diagram with planes R2×{t},

regarded as a function of t. The intersection for a fixed t is called a still.

The t for which the intersection is not a link diagram are called critical

levels.

Notice that the restriction of the movie to a small interval of time around

a critical level shows a link diagram which undergoes either a Reidemeister

move or a Morse modification. The Reidemeister moves occur at levels where

8



the double point set has a boundary point or a local maximum or minimum

or triple points. More precisely, a boundary point corresponds to the first

Reidemeister move, a local minimum or local maximum corresponds to the

second Reidemeister move and the triple point corresponds to the third Rei-

demeister move. The Morse modifications occur at smooth points of the

surface diagram which are local minimum, local maximum or saddle points

of the projection function. Between two critical levels the diagram undergoes

a planar isotopy.

Definition 2.2.4. Reidemeister moves and Morse modifications will be called

local moves. Each such move is localized in a small disc, called a changing

disc.

R3

Figure 2.2: Third Reidemeister move in changing discs

Carter and Saito [11] found a complete set of moves analogous to Rei-

demeister moves for classic links, called movie moves. We borrowed movie

move pictures from Clark, Morrison and Walker [2] and Carter and Saito [11]

in Figure 2.3. Movie Move 1 - 10 are moves from the shown movie to the

standard product of the first still and interval, which are omitted in the pic-

ture. Movie Move 11-15 are moves from one side to the other. And they

proved that any two movies of ambient isotopic oriented link cobordisms can

9



be related by a sequence of movie moves and interchanges of distant critical

points.

2.3 Two Categories and Khovanov Homology

Let C′
o be a category whose objects are oriented links in general position

such that their projections along z-axis are generic and morphisms are link

cobordisms. Let C′
d be a category whose objects are link diagrams and

morphisms are movies. From the discussion above, we can see that there

is a functor F ′ : C′
o −→ C′

d. In fact, F ′ maps the oriented links to their

projections along z-axis and maps the link cobordisms to movies. Moreover,

let Co be the category whose objects are the same as in C′
o and morphisms are

morphisms in C′
o considered up to ambient isotopy fixed on the boundary,

and Cd be the category whose objects are the same in C′
d and morphisms are

in Cd modulo movie moves, then F ′ induces a functor F : Co −→ Cd.

In the Khovanov construction, all the local moves induce chain maps on

Khovanov chain complex. Hence any oriented link cobordism induces a chain

map as a composition of local moves on Khovanov chain complex. In other

words, let D0 and D1 be links diagrams of oriented links L0 and L1 and

F ⊂ R3 × [0, 1] be a link cobordism with F ∩ R3 × {k} = Lk × {k} for

k = 0, 1, and χ(F ) be the Euler characteristic of the cobordism F , then F

10



induces a homomorphism

Khi,j(D0) −→ Khi,j+χ(F )(D1).

Moreover, it is proved by Jacobsson [4] and Bar-Natan [1] that up to sign,

movie moves 1-10 induce identity maps on Khovanov homology, and the two

sides in Movie Move 11-15 induce the same map on Khovanov homology as

well. Thus Khovanov homology is a projective functor Kh : Cd −→ V, where

V is the category of graded abelian groups. Moreover, the following diagram

shows that Khovanov homology is a projective functor from Co to V.

C′
d

// Cd
Kh // V

C′
o

F ′

OO

// Co

F

OO

Kh′=Kh◦F

::
u

u

u

u

u

u

u

u

u
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MM6 MM7

MM8 MM9

MM10

MM11 MM12 MM13

MM14 MM15

Figure 2.3: Carter and Saito’s movie moves.
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Chapter 3

Immersed Link Cobordisms

and Khovanov Homology

3.1 Immersed Link Cobordisms

If we replace “embedded” by “immersed” in the definition of (oriented) link

cobordism F in Definition 2.2.1, then F is called an (oriented) immersed link

cobordism.

The immersed link cobordism is a generalization of the link cobordism.

The main difference between them is that the immersed one also contains

self-intersection points.

Definition 3.1.1. An immersed link cobordism is generic if it has only

transversal self-intersections.

The intersections of a generic immersed link cobordism with hyperplanes

13



of constant t ∈ [0, 1] are almost the same as the embedded case except that

at a finite set of t it has one more types of single isolated double points,

which corresponds to the transversal self-intersection of the surface. Locally

it looks like at some t, which is exactly the same as the saddle point in

the embedded case. They can be distinguished, however, by movies as we

will see in the following.

A generic immersed link cobordism also has a 3-dimensional surface di-

agram and movie representation as described in Section 2.2. Local moves

are Reidemeister moves and Morse modifications together with some extra

move which is responsible for the self-intersection of the surface. We call it

a crossing change move whose movie picture near the self-intersection looks

like , which is in contrast to the double point corresponding to

the saddle point whose local movie is like . Both types of double

points lie in the interior of the set of double points in the surface diagram,

thus the self-intersection of the surface would only interact with the second

and third Reidemeister moves. Hence, the immersed link cobordism can de-

composed as Reidemeister moves and Mose modifications together with the

crossing change move .

By replacing “embedded” with “immersed” in the definition of ambient

isotopy in Section 2.2, we extend the notion of ambient isotopy to immersed

surfaces. Again, we consider immersed cobordisms up to ambient isotopy

fixed on the boundary.

For immersed link cobordisms, it is natural to ask the analogue of Movie

14



Moves as in Section 2.2. Certainly all the 15 types of Movie Moves as in

Figure 2.3 are needed, while it is not sufficient since the self-intersection

of the surface is involved. Since the double points corresponding to the

self-intersections only interact with second and third Reidemeister moves as

mentioned earlier, it suffices to have two extra movie moves as depicted in

Figure 3.1. Thus, two immersed cobordisms are ambient isotopic if and only

if they differ by a sequence of old and new movie moves together with an

interchange of distant critical points.

3.2 Extend Khovanov Homology to a New

Category

Let Ci be a category whose objects are the same as in Co, the category of

oriented links, and morphisms are oriented immersed link cobordisms consid-

ered up to ambient isotopy fixed on the boundary. Similarly as discussed in

Section 2.3, we have a category of link diagrams corresponding to this cate-

gory, denote by Cid, which is almost the same as Cd, the category of oriented

link diagrams, except it includes extra morphisms which are movies with

self-intersections modulo old and new movie moves. Hence there is a functor

Fi : Ci −→ Cid which maps links to their generic projection and immersed

link cobordisms to movies. To extend the Khovanov homology over Ci, it

suffices to extend it over Cid.

15



Cid
Kh // V

Ci

Fi

OO

Kh′=Kh◦Fi

::
t

t

t

t

t

t

t

t

t

t

Since the only extra movies are those involving double point correspond-

ing to the transversal self-intersection of the surface as we have seen in Sec-

tion 3.1, it suffices to show that the induced maps of two sides of the extra

movie moves as in Figure 3.1 differ at most by a sign on Khovanov homology.

MM 16 MM 17

Figure 3.1: Extra Movie Moves. The solid dots are the transversal self-
intersection points.

Notice that in the extra moves, there is a local crossing change move

which doesn’t appear in the original Khovanov construction.

−→

We define the crossing change map c1 in the following.

16



c1 : CKh
i,j( ) −→ CKhi,j−2( ),

where CKhi,j(∗) is the Khovanov chain complex.

c1( ) = ,

c1( ) = 0.

To see how the grading change, we recall the definition of the bigrading

(i, j) of Khovanov chain complex in terms of Kauffman enhanced states as

defined in Section 2.3. By definition, c1 preserves τ , while changing w and

σ accordingly. Eventually, c1 preserves i grading, while decreasing j grading

by 2.

It is easy to check the following diagram commutes:

CKhi,j( )
c1 //

d
��

CKhi,j−2( )

d
��

CKhi−1,j( )
c1 // CKhi−1,j−2( )

where d is the differential of Khovanov chain complex.

Corollary 3.2.1. c1 : CKh
i,j( ) −→ CKhi,j−2( ) is a chain map.

Moreover, this crossing change homomorphism is equivalent to the com-

17



position of Reidemeister moves and Morse modifications as shown below:

j − 2

j − 1 j − 1

We call the double point corresponding to c1 the Type 1 double point.

Similarly, we define

c2 : Kh
i,j( ) −→ Khi+2,j+4( )

c2( ) =

c2( ) = 0

The grading is changed differently due to the change of writhe number,

and interestingly it doesn’t have similar decomposition as the one above due

to orientation reason.

We call the double point corresponding to c2 the Type 2 double point.

Similarly, it is easy to check that c2 commutes with the differential of Kho-

vanov chain complex.

Corollary 3.2.2. c2 : Kh
i,j( ) −→ Khi+2,j+4( ) is a chain map.

With the crossing change homomorphism above, we can define the map
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induced by cobordisms with both two types of double points, which is just

the composition of maps induced by local moves together with the crossing

change maps.

Let D0 and D1 be links diagrams of oriented links L0 and L1 and F ⊂

R3 × [0, 1] be an immersed link cobordism with F ∩R3 ×{k} = Lk ×{k} for

k = 0, 1, di be the number double points of Type i where i = 1, 2 and χ(F ) be

the Euler characteristic of the cobordism F , then F induces a homomorphism

Khi,j(D0) −→ Khi+2d2,j−2d1+4d2+χ(F )(D1).

Direct calculation shows that the homomorphisms induced by the two sides of

extra movie moves in Figure 3.1 differ only by a sign. The detailed calculation

can be found in Appendix A.

Theorem 3.2.1. Khovanov homology is a projective functor from the cate-

gory Ci to the category of graded abelian groups.

We call this extended version immersed Khovanvo homology.

Remark. Notice that the bigrading of Khovanov chain complex de-

pends on the orientation of the link diagram. If we take the total group

C = ⊕CKhi,j(D), then the differential on Khovanov chain complex defines

a differential on C, then neither C nor the differential on C depends on the

orientation of the diagram. Moreover, the two versions of the crossing change

maps on this total group are the same. In the next section, we will see that

without orientation, the crossing change map can be defined as a composition

19



of two simple maps, and there is only one version of such map.
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Chapter 4

Framed Khovanov Homology

4.1 Framed links and diagrams

A framed link is a closed 1-dimensional smooth submanifold in R3 with a

framing, which is a non-vanishing normal vector field. Intuitively, a framed

link can be considered as a ribbon that can be obtained by pushing the link

along the normal vector field. See Figure 4.1. We consider framings up to

isotopy. A link diagram defines a class of isotopic framings whose vectors are

projected to non-zero vectors. These framings are called blackboard framing.

We consider all possible framings, not only blackboard ones.

We can draw a framed link diagram as in Figure 4.1, but this would be

superfluous and cumbersome. All we need is the information that would

allow to recover the framing of the link from the diagram up to isotopy. One

way to achieve this is explained below.
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Figure 4.1: Local picture for a framing

Figure 4.2: Decoration framings

Instead of drawing the whole ribbon as in Figure 4.1, we draw only a

part of the picture where the curve obtained by pushing the link along the

normal vector field is shown only near points where it is above the link.

See Figure 4.2. Since we consider framings up to isotopy, this drawing or

decoration contains sufficient information to recover the framing of the whole

link. In particular, if the framing is blackboard, then no decoration appears.

See an example of framed link diagram in Figure 4.3.
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Figure 4.3: A framed trefoil

4.2 Normal Euler Number

Let N be the normal bundle of the immersed link cobordism in S3× [0, 1]. A

normal Euler number of N, defined by Whitney in [13], is the obstruction

for extending the framing of the boundary links to a nowhere zero section of

N.

Geometrically this number can be interpreted in the following.

Let s0 be the zero section of N, and s be another section of N such that

it extends the framings on the boundary links to the whole cobordism. At

each zero x of s, the local orientation of s0 induces a local orientation of s,

both of which together define a local orientation in the neighborhood of x. It

does not depend on the choice of local orientation of s0 because if s0 changes

orientation, the orientation of s is also changed. Thus the induced the local

orientation near x does not change.

On the other hand, since S3× [0, 1] is oriented, it also defines an orienta-

tion in a neighborhood of x.
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Definition 4.2.1. A local intersection number of s and s0 at x is a num-

ber of ±1. It is +1 if the local orientation induced by the ambient manifold

is the same as the one induced by s and s0, −1 otherwise.

The normal Euler number of N is just the sum of local intersection num-

bers of s and s0 at all zeros. Thus, this number is defined even if the under-

lying link cobordism is non-orientable and it is always an integer.

4.3 Framed Khovanov homology

The framed Khovanov homology is first defined by Viro [14]. In that def-

inition, only blackboard framing is considered. In our setup, the following

additional characteristic is needed. Denote by fr(D) the difference of the

number of positive twists t+, like , and the number of negative twists t−,

like , in all component:

fr(D) = #t+(D)−#t−(D),

whereD is the link diagram. For example, for the framed trefoil in Figure 4.3,

fr = −1.

We consider framed links under framing preserving isotopy. The analogue

of Reidemeister moves for oriented links are obtained in the following. Since

the original first Reidemeister move doesn’t preserve fr(D), we modify it as

in Figure 4.4. The original second and third Reidemeister moves are used
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without change since they don’t change fr(D). Two extra twist moves as

depicted in Figure 4.5 and Figure 4.6 are included. Then two framed links are

isotopic if and only if they differ by a sequence of these modified Reidemeister

moves and twist moves.

Figure 4.4: The first framed Reidemeister moves

Figure 4.5: Twist annihilation move

Figure 4.6: Twist penetration move

We use the same notations as in [14] to define the chain complex of the
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framed Khovanov homology. Let s be a Kauffman state of D as defined in

Section 2.3.

σ+(s) = #( ), σ−(s) = #( ),

σ(s) = σ+(s)− σ−(s).

|s| is the number of components of a smoothing along s. With the Kauffman

skein relation

< >= A < > +A−1 < >,

it is easy to show that the Kauffman bracket

< D >=
∑

s

(−A)3fr(D)Aσ(s)(−A2 − A−2)|s|

is invariant up to framing preserving isotopy.

Let S be an enhanced state of D as defined in Section 2.3,

τ(S) = τ+(S)− τ−(S),

we define a new bigrading (p, q) for an enhanced state S

p(S) = τ(S)− fr(D), q(S) = σ(S)− 2τ(S) + 3fr(D).

The framed Khovanov chain complex Cp,q(D) is a bi-graded Z-module gen-
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erated by the enhanced states, the differential

d : Cp,q(D) −→ Cp−1,q(D)

is defined the same as in Khovanov homology. It is well-defined up to an

overall grading shift due to fr(D). In other words, (p, q) is well-defined up

to a k multiple of (1,−3) where k ∈ Z. We denote the homology of Cp,q(D)

by Khp,qfr (D). If we fix a framing and an orientation on a link, there is

a one-to-one correspondence between Khovanov chain complex and framed

Khovanov chain complex. More precisely, recall that the bi-grading (i, j) of

the Khovanov chain complex is defined as

i(S) =
w(D)− σ(S)

2
, j(S) = i(S) + w(D) + τ(S).

Then if

p(S) = j(S)− i(S)− w(D)− fr(D), q(S) = −2j(S) + 3w(D) + 3fr(D),

we have

Cp,q(D) = CKhi,j(D).

In other words, the total group
⊕

p,q C
p,q(D) =

⊕
i,j CKh

i,j(D). Thus we

can use the same chain map for all Reidemeister moves as defined in the orig-

inal Khovanov construction to define the corresponding maps in the framed
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version. For the two extra framed moves: twist annihilation and penetration

moves, the induced chain maps are just identity since neither the enhanced

state nor the grading are changed under these moves. It is easy to check

that the framed Khovanov homology is invariant of all framed Reidemeister

moves and extra framing preserving moves.

Corollary 4.3.1. Framed Khovanov homology is invariant of framed links

consider up to framing preserving isotopy.

Next, we consider chain maps on framed Khovanov chain complex induced

by the immersed link cobordisms.

First of all, we consider the special cobordism F = L× [0, 1], where L is

a link. Let D0, D1 be two framed link diagrams which are identical link dia-

grams of L with different framings. Let e ∈ Z be the normal Euler number of

the normal bundle of F as described in Section 4.2. The induced chain map

on the framed Khovanov chain complex changes nothing but the bi-grading.

In other words, F induces a homomorphism on the framed Khovanov homol-

ogy

Khp,qfr (D0) −→ Khp−e,q+3e
fr (D1).

Second, we consider cobordisms consisting of Morse modifications (surg-

eries).

There are three kinds of surgeries: 0, 1, 2-surgeries. The induced maps

on chain level use the corresponding maps defined in the original Khovanov

chain complex.
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0(2)-surgery creates(annihilates) framed circles as in Figure 4.7. The

framing is changed when necessary in the middle step. Thus the 0, 2-surgeries

on framed Khovanov homology is defined as a composition of the framing

change map and the corresponding surgery map in the original Khovanov

homology.

Figure 4.7: 0,2-surgeries.

1-surgery merges two framed arcs. Notice that there are two types of

1-surgeries:

1. The framing on the two arcs are compatible.

We can just merge them as in Figure 4.8.

Figure 4.8: 1-surgery along two compatible framed arcs

2. The framings on the two arcs are not compatible.

We cannot just merge them as in the first case. However, we can always

add some twists to one of the arcs so that the framings are compatible

and then merge them as in the first type. fr(D) is unchanged. See

Figure 4.9.
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Figure 4.9: 1-surgery along two non-compatible framed arcs

Third, we consider a cobordism with double points corresponding to self-

intersections of the surface. As seen in Section 3.1, we need a crossing change

map for

−→

We use the Kauffman skein relation below to define this map.

< >= A < > +A−1 < >

This relation also gives a short exact sequence of complexes:

0 // Cp,q( )
α // Cp,q−1( )

β // Cp,q−2( ) // 0

where α is the inclusion and β is the projection. The composition

Cp,q( )
β // Cp,q−1( ) α // Cp,q−2( )

defines a chain map c = α ◦ β : CKhp,qfr ( ) −→ CKhp,q−2
fr ( ), then c
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induces a homomorphism on the framed Khovanov homology.

c : Khp,qfr ( ) −→ Khp,q−2
fr ( )

Notice that there is only one type of such map in contrast to the two types

in the oriented case, and the following diagram commutes up to a grading

shift.
q − 2

p− 1, q + 2 p− 1, q + 2

With the homomorphism above we can similarly define the induced map

of an immersed link cobordism on framed Khovanov homology. Let D0 and

D1 be link diagrams of two framed links L0 and L1, F ⊂ R3 × [0, 1] be an

immersed compact surface with F ∩ R3 × {k} = Lk × {k} for k = 0, 1, e be

the normal Euler number of the normal bundle of F , and d be the number

of transversal self-intersection points. Then the cobordism F induces an

homomorphism

Khp,qfr (D0) −→ Kh
p+χ(F )−e,q−2χ(F )+3e−2d
fr (D1).
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4.4 Categories of framed links and their dia-

grams

Let C′
fr be a category whose objects are framed links that are in general po-

sition such that their projection along z-axis are generic and morphisms are

immersed link cobordisms, C′
frd be the category of framed link diagrams as

described in Section 4.1 and morphisms are movies of immersed link cobor-

disms. Let Cfr be the category whose objects are the same as in C′
fr and

morphisms are the morphisms in C′
fr considered up ambient isotopy fixed on

the boundary, Cfrd be the category with the same objects in C
′
frd and the

same morphisms in C′
frd modulo movie moves in Section 3.2. Then there is

functor Fr′ : C′
fr −→ C′

frd, which maps the framed links in general posi-

tion to its generic projection along z-axis and immersed link cobordisms to

movies as described in Section 3.2. Moreover, since the morphisms in C′
fr and

C′
frd are immersed link cobordisms and their m corresponding movie moves,

Fr′ induces a projective functor Fr : Cfr −→ Cfrd. Moreover, we have the

following result.

Corollary 4.4.1. The framed Khovanov homology is a projective functor

from category Cfr to category V.

Proof. By the projective functoriality of the immersed Khovanov homology,

the framed Khovanov homology is also a projective functor from Cfrd to V

in Section 4.3.
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On the other hand, we have the following commutative diagram.

C′
frd

// Cfrd
Khfr // V

C′
fr

Fr′

OO

// Cfr

Fr

OO

Kh′
fr

=Khfr◦Fr

::
t

t

t

t

t

t

t

t

t

t

Hence the composition Khfr ◦ Fr is a projective functor from Cfr to V.

Remark. The difference between the framed Khovanov homology and

the original Khovanov homology is not just in their gradings. For example,

in the original version, we cannot do 1-surgery along two arcs with the same

orientation, like , while in the framed version, we can always merge two

arcs (by adding twists if necessary). This difference will be further illustrated

in examples in Section 6.

33



Chapter 5

The Construction of the New

Invariant

5.1 The construction

Let F be a generically immersed 2-manifold in S3×S1, L be the transversal

intersection

L = S3 × {1} ∩ F.

Let F̃ be the preimage of F under the infinite cyclic covering map

S3 × R −→ S3 × S1 : (x, y) −→ (x, e2iπy),

Ln = F̃ ∩ (S3 × {n}) ⊂ S3 × R,
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and

Fn = F̃ ∩ (S3 × [n, n + 1]).

By the functoriality of Khovanov homology, the cobordism induces a linear

map

Kh(Fn) : Kh
i,j(L) −→ Khi,j+χ(Fn)(L),

where χ(Fn) is the Euler characteristic of Fn. For simplicity, we only consider

the Khovanov homology withQ coefficient and the functoriality is understood

as projective functoriality and the equality on Khovanov homology holds up

to sign.

Since Khovanov homology has finite rank, the following increasing se-

quences of kernels will stabilize.

kerKh(F0) ⊂ kerKh(F0 ∪ F1) ⊂ · · ·Kh(L0)

Let

Vs(L0) := ∩∞
j=1Im(Kh(∪−1

n=−jFn))
∼= Kh(L0)/ ker(Kh(∪

∞
n=0Fn)).

Vs(L0) is also called the stabilized image of Kh(L0). If we denote the restric-

tion of Kh(F0) on Vs(L0) by Khs(F0), it is not difficult to see that Vs(L0)

is a Q[t, t−1]-module with t acting by Khs(F0). We denote this module by

M(F ). Notice that t naturally has degree 0, since otherwise the stabilized

image Vs(L0) = 0.
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Theorem 5.1.1 (Viro). M(F ) does not depend on L0, and it is well-defined

up to Q[t, t−1]-module isomorphisms.

Proof. Let s ∈ [0, 1] and L′ ≡ S3 × {e2siπ} ∩ F be another transversal inter-

section away from L. We can similarly define

L′
n = F ∩ (S3 × {n + s}) ⊂ S3 × R

and

F ′
n = F ∩ (S3 × [n + s, n+ s+ 1]).

Let T be the deck transformation of the infinite cyclic cover of S3×S1. Define

Ek =





∪0≤i≤k−1T
i(F0) k ∈ Z+

∪k≤i≤−1T
i(F0) k ∈ Z−

,

and E ′
k is defined similarly with F0 replaced by F ′

0. Let W be the cobordism

between L0 and L′
0, we will show that Kh(W ) maps Vs(L0) to Vs(L

′
0) in the

following.

Let x ∈ Vs(L0) and Kh(W )(x) = x′, then by the definition of Vs(L0),

there exists some n > 0 such that x ∈ Kh(E−n)(Kh(T
−n(L0))). Hence

x = Kh(E−n)(y) for some y. Let Kh(T−n(W ))(y) = y′, then

x′ = Kh(W )x = Kh(W ) ◦Kh(E−n)(y).
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L0 L
′
0T

−n
(L0)

T
−n

(W )

WE−n

x x
′

y y
′

T
−n

(L
′
0)

E
′
−n

Figure 5.1: Composition of cobordisms

On the other hand, since

E−n ∪W = T−n(W ) ∪ E ′
−n,

by the functoriality of Khovanov homology,

Kh(E−n ∪W ) = Kh(W ) ◦Kh(E−n),

Kh(T−n(W ) ∪ E ′
−n) = Kh(E ′

−n) ◦Kh(T
−n(W )).
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Hence

x′ = Kh(W )x

= Kh(W ) ◦Kh(E−n)(y)

= Kh(E−n ∪W )(y)

= Kh(T−n(W ) ∪ E ′
−n)(y)

= Kh(E ′
−n) ◦Kh(T

−n(W ))(y)

= Kh(E ′
−n)(y

′) ∈ Vs(L
′
0)

See Figure 5.1.

L0 L
′
0T

−m
(L

′
0)

T
n
(L0)

WA

B

Figure 5.2: Khs(W ) is an isomorphism

Moreover, we will show that the restriction Khs(W ) : Vs(L0) −→ Vs(L
′
0)

is an isomorphism.

Let L′
0 ⊂ E∞, then there exist integers m and n such that Khs(A ∪W )

and Khs(W ∪B) are both isomorphisms by the definition of Khs. See Figure
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5.2. By the functoriality of Khovanov homology again,

Khs(A ∪W ) = Khs(W ) ◦Khs(A),

Kh(W ∪ B)s = Kh(B)s ◦Kh(W )s,

thus Kh(W )s is an isomorphism.

L0 L
′
0

F0

F
′
0

W TW

Figure 5.3: Khs(F0) ∼= Khs(W )−1 ◦Khs(F
′
0) ◦Khs(W ) in case (1)

What’s more, we will prove that M(F ) is well-defined up to Q[t, t−1]-

module isomorphisms.

Consider the following two cases:

(1) W ⊂ F0, then

W ∪ F ′
0 = F0 ∪ TW.

Since Khs(W ) = Khs(TW ), the functoriality of Khovanov homology implies

Khs(F
′
0) ◦Khs(W ) = Khs(TW ) ◦Khs(F0).
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L0 L
′
0

TW

W

F0 F
′
0

Figure 5.4: Khs(F0) ∼= Khs(W )−1 ◦Khs(F
′
0) ◦Khs(W ) in case (2)

(2) F0 ⊂W , then

W ∪ F ′
0 = F0 ∪ TW.

Similarly, we have

Khs(F
′
0) ◦Khs(W ) = Khs(TW ) ◦Khs(F0).

see Figure 5.4. The proof is complete.

We will show see that M(F ) is invariant of ambient isotopy in the next

section.

5.2 An isotopy invariant

Theorem 5.2.1. If F and F ′ are ambient isotopic surfaces generically im-

mersed in S3 × S1, then M(F ) ∼= M(F ′) as Q[t, t−1]-modules.
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Proof. We use the same notation F and F ′ to represent be the images of the

corresponding immersions. Let H : F × [0, 1] −→ S3 × S1 be an ambient

isotopy such that

H0(x) ≡ H(x, 0) = x and H1(F ) ≡ H(F, 1) = F ′.

By Thom’s isotopy extension theorem [5], this isotopy can be extended to

S3 × S1 × [0, 1]. We denote it by the same H .

Since S3 × R × [0, 1] is simply connected, H can be lifted as H̃ on its

infinite cyclic cover S3 × R× [0, 1].

S3 × R× [0, 1]
H̃ //

��

S3 × R

��
S3 × S1 × [0, 1]

H // S3 × S1.

Denote the lifting of F and F ′ by F̃ and F̃ ′ respectively, let Fn and F ′
n be

the transversal intersections,

Fn = F̃ ∩ (S3 × [n, n + 1]) and F ′
n = F̃ ′ ∩ (S3 × [n, n+ 1]),

then H̃1 is a self-diffeomorphism of S3 × R such that

H̃1(F̃ ) = F̃ ′.
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Let L0 = F̃ ∩ (S3 × {0}) and L′
0 = F̃ ′ ∩ (S3 × {0}), then

H̃−1(L′
0) = H̃−1(F̃ ′) ∩ H̃−1(S3 × {0}) = F̃ ∩ H̃−1(S3 × {0})

defines a cobordism between L0 and H̃−1
1 (L′

0). See Figure 5.5.

˜
H

−1
(L

′
0
)

˜
H

−1
1
(L

′
0
)

L0

T
k
(
˜
H

−1
1
(L

′
0
))

Lk

T
k
(
˜
H

−1
(L

′
0
))

˜
H

−1
1
(
˜
F ′
0)

Ek

Figure 5.5: A cobordism induced by the isotopy of diffeomorphisms

Now we are in a very similar situation as in Theorem 5.1.1 except now

we have H̃−1
1 (L′

0) sitting inside a skewed copy of S3. In other words, the

boundary of the cobordism ∂(H̃−1(L′
0)) is not in S3 × {point}. Thus we

cannot apply Khovanov homology to this cobordism. To apply the same

argument, we need to modify the cobordism.

First, we choose a cobordism ∪n+ki=0 Fi ⊂ F̃ such that the induced map on

Khovanov homology is stabilized, i.e. the kernel is not increasing.

Second, we choose another stabilized cobordism ∪m+k′

i=m F ′
i ⊂ F̃ ′ with m,

k′ large enough so that the pull back H̃−1
1 (∪m+k′

i=m F ′
i ) is away from ∪n+ki=0 Fi .

Third, we choose another copy of the link L, say Lp so that H̃
−1
1 (∪m+k′

i=m F ′
i )

is between L0 and Lp as depicted in Figure 5.6.
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L0 Lk H̃
−1
1 (L

′
m) H̃

−1
1 (L

′
m+k′)

∪n+k
i=0 Fi

H̃
−1
1 (∪m+k′

i=m F
′
i )

Lp H̃
−1
1 (L

′
n) Lp+q

T (H̃
−1
1 (∪m+k′

i=m F
′
i ))

T
p
(∪n+k

i=0 Fi)

Lp+k

Figure 5.6: Pull back cobordism in F̃

Suppose Lp is far away from this pull back cobordism. We can use

the isotopy H to construct a new ambient isotopy φ in a neighborhood of

H̃−1
1 (S3 × [m,m+ k′]). More precisely,

φ : S3 × [k, p]× [0, 1] −→ S3 × [k, p]

such that φ(x, i, t) = x ,φ(x, i, 0) = x if i = k, p and

φ(H̃−1
1 (S3 × [m,m+ k′]), 1) = S3 × [m,m+ k′].

Under this isotopy, the pull back cobordism will be in the product space

S3 × [m,m+ k′] as depicted in Figure 5.7. Denote φ(·, ·, 1) by φ1. There is

a cobordism W connecting Lk and φ1(H̃
−1
1 (L′

m)) as in Figure 5.7.

Moreover, we can do the same trick to extend the isotopy φ to the next

product space S3 × [p, p + q] for some large q, so that φ fixes Lp and Lp+q.

Under this isotopy, we have a cobordism W ∪ φ1(H̃
−1
1 (∪n−1

i=m′F ′
i )) connecting

Lk and φ1(H̃
−1
1 (L′

n)) in Figure 5.7.
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L0 Lk φ1(H̃
−1
1 (L′

m)) φ1(H̃
−1
1 (L′

m+k′))

∪k−1
i=0Fi

Lp

φ1(H̃
−1
1 (∪m+k′−1

i=m F ′
i ))

W

φ1(H̃
−1
1 (L′

n))

B = ∪p−1

i=kFi

A = φ−1
1 (H̃−1

1 (∪n−1
i=m′F ′

i ))

Lp+qLk+p

T p
(∪k−1

i=0Fi)

Figure 5.7: New cobordisms under ambient isotopy φt.

Now the same argument as in Theorem 5.1.1 shows that

Khs(A) ∼= Khs(TW ) ◦Khs(B) ◦Khs(W )−1,

where A = H̃−1
1 (∪n−1

i=m′F ′
i ) and B = ∪p−1

i=kFi.

Since

Khs(A) ∼= Khs(F
′
0) , Khs(B) ∼= Khs(F0),

the theorem is proved.

Notice that the construction of M(F ) and the proof of the Theorem 5.2.1

mainly uses the functoriality of Khovanov homology. Both will also work if

we replace Khovanov homology with the framed version. We summarize the

result in the following.

Corollary 5.2.1. M(F ) and Mfr(F ) are invariants of generically closed
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immersed surfaces in S3 × S1 considered up to ambient isotopy.

For the rest of the paper, we denote Q[t, t−1] by R. M(F ) and Mfr(F )

are bi-graded R-modules. Since R is a Principle Ideal Domain, we can write

ever summand of each invariant as the direct sum of quotients of R. More

precisely, let f1, f2,· · · , fm be the invariant factors of the matrix of the

stabilized Khovanov homology such that for all i,

fi|fi+1,

then by the Structure theorem for finitely generated modules over a principal

ideal domain, we have the following isomorphism

M
i,j(F ) ∼= R/f1 ⊕ · · ·R/fm.

M can be replaced with Mfr. In all the examples below, the invariant(s) will

take this form.
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Chapter 6

Examples

We have seen the construction of the surface invariant M(F ) for a closed

generically immersed surface F in S3 × S1 in Chapter 5. The main idea is

cutting the closed surface in the middle and applying Khovanov homology

to the resulting cobordism which connects two identical links, and we have

proved that the result does’t depend on how we cut it. In this Chapter,

we construct cobordisms which connect two identical links and apply various

versions of Khovanov homology to compute the invariant M of the ”close-up”

surfaces obtained by identifying two ends of the cobordisms. We compute

examples of surfaces obtained by planer isotopies, Reidemeister moves or

surgeries. The brief summary of figures and results are listed below.

1. Product surface F = L× [0, 1].

M
i,j(F ) ∼= Khi,j(L)⊗Q ∼= (R/(t− 1))rkKh

i,j(L).
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See Subsection 6.1.1 for details.

2. Two examples of Rotations: Trefoil knot and Knot(8,18).

Corollary 6.0.2. Let Ftref ≡ T × [0, 1]/T×{0}∼ρ(T )×{1} as in Figure 6.1,

where T is the trefoil knot, ρ is the rotation, then

M
i,j(Ftref ) ∼= Khi,j(T )⊗Q.

ρ : rotate

by 120

degree

clockwise

1 2

3

1

2

3

4

5

6

1

2

3
1

2

3

4

5

6

Center Center

Figure 6.1: Rotate a trefoil knot clockwise by 120 degree

Corollary 6.0.3. Let Ft be the surface obtained by rotating Knot(8,18)

clockwise 90 degree in Figure 6.2, then M
i,j(Ft) admits a nontrivial R

action on Khi,j(K) if the Betti number of Khi,j(K) is larger than 1.

clockwise

90 degree

rotation

Figure 6.2: Knot(8,18)

See Subsection 6.1.2 for details.
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3. Klein bottle.

Figure 6.3: Orientation flipping move Fk with positive twist

Let Fk be the cobordism in Figure 6.3, F k be the corresponding close-up

surface, then

M(F k) ∼= (R/(t− 1))0,1 ⊕ (R/(t+ 1))0,−1.

See Subsection 6.2.1 for details.

4. Interchange components of Whitehead link.

a

b

a

b

a

b

a

b
b

a

a

b

Figure 6.4: Interchange two components of White head link. Some Reide-
meister moves are skipped.

Let Fw be the cobordism in Figure 6.4, Fw be the corresponding close-
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up surface, then

M
i,j(Fw) =





R/(t− 1) (i, j) = (−3,−8), or (−2,−6), or (2, 4)

R/(t+ 1) (i, j) = (−2,−4), or (−1,−2), or (1, 0)

R/(t+ 1)⊕ R/(t+ 1) (i, j) = (0,−2)

R/(t2 − 1) (i, j) = (0, 0)

See Subsection 6.2.2 for details.

5. Sliding an arc over a link.

K1 K2
K2K1K1 K2

K2K1 K1 K2

Figure 6.5: Surface obtained by sliding an arc of the link K1 over another
link K2 and then sliding it back under K2

Let Fs be the cobordism in Figure 6.5.

Theorem 6.0.2. The action induced by the cobordism Fs is identity

on Kh(K1 ∪K2), namely, for all (i, j), denote by F s the closed surface

obtained by gluing two ends of Fs, then

M
i,j(F s) ∼= Khi,j(K1 ∪K2)⊗Q
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See Subsection 6.2.3 for details.

6. Surface obtained by surgeries.

1 2 3 4 5

6 7 8 9

a

b

Figure 6.6: A surface F obtained by Reidemeister moves and surgeries

(a) Let F be the cobordism in Figure 6.6, F be the corresponding

close-up surface, then

M
0,j(F ) ∼=





R/(t− 1), j = 1

R/(t− 1), j = −1

a a

a
1 2 3 4 5 6

Figure 6.7: A cobordism with one double point, one 1-surgery and three
0, 2-surgery as well as Reidemeister moves.
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(b) Let Fi be the cobordism in Figure, F i be the corresponding close-

up surface, then

M
0,j(F i) ∼=





R/(t− 2), j = 1

0, j = −1

a

b

a

b

a

b

a

b

c

a

b

c

c

b

a

c

b

a b

c

1 2 3 4 5 6 7

Figure 6.8: Surface obtained by non-orientation-preserving surgery

(c) Let Fn be the cobordism in Figure 6.8, and F n be the correspond-

ing close-up surface, then M
p,q
fr (F n) ≡ 0

See Subsection 6.3 for details.

The calculation uses the language of tangle cobordisms as in [1]. In other

words, all the chain maps between enhanced states are compositions of simple

cobordisms. Simple cobordism are cap, cup and saddle surface. In Figure 6.9,

notations are in the rectangle box, the meanings are listed below it. We also

use “Id” to denote the map whose underlying cobordism is just cylinder.
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p q

p:q

p:q

+ + +

+ - -

+- -

- - 0

+
+

-
+

1p
q

+

+ 0

-

+ 1

+

- 1

-

-

+1

q

+

-1
-

0

+

-

+
-

-

Figure 6.9: Notations for maps for merging two arcs, creation of circles and
annihilation of circles.
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6.1 Surfaces Obtained by Planer Isotopy

6.1.1 Product Surfaces

Consider the product surface F = L × S1, where L is an oriented link in

S3, then M(F ) is just the Khovanov homology of the link together with a

trivial Z action, that is, t acts by identity. In fact, we can cut F at L× {t}

with t ∈ S1 to get a cylinder F̃ , and the invariant is computed by taking the

Khovanov homology of F̃ , which is an identity map on Khovanov homology

at all gradings. Simply put,

M
i,j(F ) ∼= Khi,j(L)⊗Q ∼= (R/(t− 1))rkKh

i,j(L).

If L is a framed link, then we have

M
p,q
fr (F )

∼= Khp,qfr (L)⊗Q ∼= (R/(t− 1))rkKh
p,q

fr
(L).

6.1.2 Surfaces Obtained by Rotations

Let L be an oriented link in R3, and D be its diagram. Assume that D

has certain rotational symmetry, that is, there is an imaginary center in the

diagram D so that a rotation around the center results in a link identical to

the original one. We define a surface induced by the rotation as

F = L× [0, 1]/L×{0}∼ρ(L)×{1}
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where ρ : R3 −→ R3 is the corresponding rotation in the 3-space. Moreover,

the rotation induces a homomorphism on the Khovanov homology, which can

be used to compute M(F ).

Our computation is based on Khovanov homology for oriented links in

terms of states and enhanced states as described in Section 2.3. Recall that

a state is a distribution of markers for all crossings in a link diagram, and

an enhanced state is a state with specified choice (either + or −) for each

component in a state. In other words, if an ordering is fixed, we can write

an enhanced state S as a pair of two vectors,

S = [[c1, c2, · · · , cn], [v1, v2, · · · , vm]]

where ci, vi = 1 or 0, n is the number of crossings, and m is the number of

components in each state. The ordering of the second component is induced

by the label of edges as illustrated in Figure 6.10. The bi-grading of Khovanov

homology (i, j) specifies the state and possible enhanced states.

Now let’s consider the simplest example, Trefoil knot, as in Figure 6.1. it

is easy to see that the trefoil has a rotational symmetry: rotating the diagram

around the center by 120 degree clockwise or counterclockwise results in an

identical diagram.

We proved that the rotation induces identity action on Khovanov homol-

ogy of the trefoil knot.

Corollary 6.1.1. Let Ftref ≡ T × [0, 1]/T×{0}∼ρ(T )×{1}, where T is the trefoil
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knot, ρ is the rotation, then

M
i,j(Ftref ) ∼= Khi,j(T )⊗Q.

Proof. The Khovanov homology of trefoil has rank 1 in four different grad-

ings:

(−3,−9), (0,−1), (0,−3), (−2,−5),

and rank 0 for the rest. The generator of each grading can be written as

a linear combination of enhanced states. For example, in grading (−3,−9),

Khovanov chain complex has only one enhanced state

s = [[0, 0, 0], [1, 1, 1]]

as depicted in Figure 6.10.

(-3,-9) (0,-1) (0,-3)

1

2

3

1 2

3

1 2

3

1

2

1 2

3

1

2

Figure 6.10: Enhanced states of Trefoil on different gradings. Circled num-
bers indicates the ordering of crossings, numbers without circles defines the
ordering of components in a state.

In the chain group CKh−3,9(T ), since all components in the enhanced
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state are negative, we have

0 // CKh−3,9(T )
d=0 // CKh−2,−9(T ) .

Hence Kh−3,−9(T ) is generated by s = [[0, 0, 0], [1, 1, 1]].

On the other hand, we can see that under the rotation, s is unchanged,

implying that the rotation induces identity map on Kh−3,−9(T ).

Similarly, we can show that Kh0,−1(T ) and Kh0,−3(T ) are generated by

[[1, 1, 1], [0, 0]] and [[1, 1, 1], [0, 1]] respectively, and they are unchanged under

the rotation. Kh−2,−5(T ) is a little different. Its generator α is a linear

combination of two enhanced states rather than a single one.

α = −s1 + s2

where s1 = [[1, 0, 0], [0, 1]] and s2 = [[1, 0, 0], [1, 0]]. Denote by the same

ρ the chain map induced by rotation, then a direct calculation shows that

ρ(s1) = [[0, 1, 0], [1, 0]] and ρ(s2) = [[0, 1, 0], [0, 1]].

Consider

β = [[0, 0, 0], [0, 0, 1]]− [[0, 0, 0], [1, 0, 0]].

It is easy to show that

dβ = s2 − s1 − ρ(s2) + ρ(s1).
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In other words,

ρ(α) = α .

Since the rotation induces isomorphism, the stabilized map of an isomor-

phism is itself.

M
i,j(Ftref ) ∼= Khi,j(T )⊗Q.

Remark: The mirror image of the trefoil knot has almost the same result

except the grading is negated. We also compute torus knots with crossings

up to 9, and they all have similar results as the trefoil knot, that is, the

action of rotation induces identity map on Khovanov homology.

The first interesting example is from the surface obtained by rotating

Knot(8,18) as in Rolfsen Knot Table. In fact, Jacobsson studied the rota-

tion action on Knot(8,18) in [4]. Denote the Knot(8,18) by K, and by Ft

the surface obtained by clockwise 90 degree rotation of K around its imagi-

nary center. He calculated the matrix of the action induced by this rotation

explicitly on grading (3, 7) and proved that

M(Ft)
−3,−7 ∼= R/(t3 + t2 + t+ 1).

The action on other gradings is not mentioned in his paper. We compute

all gradings, and it turns out that the rotation action is non-trivial in many

other gradings as well.
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Corollary 6.1.2. Mi,j(Ft) admits a nontrivial R action on Khi,j(K) if the

Betti number of Khi,j(K) is larger than 1.

The proof is also based on direct computation. For each grading, we

choose a basis for Khovanov homology in terms of linear combinations of

enhanced states, then compute the image under the rotation and compare

the image with the basis gives a matrix.

The computation complexity of Khovanov homology increases exponen-

tially when the number of crossings increases. Thanks to KnotTheory 1 and

KhoHo 2, we can compute all the 3ranks of the Khovanov homology of a

given link diagram.

For example, the Khovanov chain complex for Knot(8,18) is the following

1KnotTheory is a Mathematica Package for computing knot invariants including Kho-
vanov homology by Dror Bar-Natan

2KhoHo is a program for computing the Khovanov homology by Alexander Shu-
makovitch

3Torsions can be computed as well, but it not needed here
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(obtained by KhoHo)

i/j -4 -3 -2 -1 0 1 2 3 4

9 0 0 0 0 0 0 0 0 1

7 0 0 0 0 0 0 0 8 5

5 0 0 0 0 0 4 28 32 10

3 0 0 0 4 25 68 84 48 10

1 1 8 28 68 120 128 84 32 5

-1 5 32 84 128 120 68 28 8 1

-3 10 48 84 68 25 4 0 0 0

-5 10 32 28 4 0 0 0 0 0

-7 5 8 0 0 0 0 0 0 0

-9 1 0 0 0 0 0 0 0 0
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The Betti number of its Khovanov homology is

i/j -4 -3 -2 -1 0 1 2 3 4

9 0 0 0 0 0 0 0 0 1

7 0 0 0 0 0 0 0 3 0

5 0 0 0 0 0 0 3 1 0

3 0 0 0 0 0 4 3 0 0

1 0 0 0 0 5 3 0 0 0

-1 0 0 0 3 5 0 0 0 0

-3 0 0 3 4 0 0 0 0 0

-5 0 1 3 0 0 0 0 0 0

-7 0 3 0 0 0 0 0 0 0

-9 1 0 0 0 0 0 0 0 0

However, it is still not easy to compute cycles of Khovanov homology, let

alone the generators in terms of enhanced states. For example, in grading

(−2,−3), we see that the rank of the chain complex is 84, while the rank of

the Khovanov homology is only 3. To find cycles, it involves computing the

kernels of a the differential matrix that is not in the image of the previous

differential matrix.

Both program mentioned above help us find the rank of Khovanov ho-

mology, but they do not compute the generators for the homology. However,

they do provide all the necessary information to find generators of the ho-
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mology. In our computation, we use the information obtained by KhoHo and

extend KhoHo to compute the explicit generators of Khovanov homology and

the induced maps of cobordisms. The codes can be found in the Appendix B.

Proof. We compute the list of M(Ft) for all gradings

M
i,j(Ft) ∼=





R/(t− 1) (i, j) = ±(4, 9), ±(3, 5)

R/(t3 + t2 + t + 1) (i, j) = ±(3, 7), ±(2, 3)

R/(t3 − t2 + t− 1) (i, j) = ±(2, 5), ±(1, 1)

R/(t4 − 1) (i, j) = ±(1, 3)

R/(t4 − 1)⊕ R/(t+ 1) (i, j) = (0,±1)

0 otherwise

It is not difficult to see from the list above that the rotation acts on

grading ±(4, 9) and ±(3, 5) by identity, while for other gradings whose rank

are more than 1, the rotation action is quite nontrivial.

Remarks: There are several other surfaces obtained by rotations, like

Borromean Ring, Knot(5, 1), Knot(7, 1), Knot(10, 123) and so on. They

all can be computed by our program. The results can be found in the Ap-

pendix C.

So far we have seen surfaces obtained by planer isotopies. In the following

sections, we will see examples obtained by Reidemeister moves.
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6.2 Surfaces Obtained by Reidemeister Moves

6.2.1 Klein Bottle

Klein bottle can be obtained by identifying two circles along the orientation

reversing map, which can be realized as a composition of first Reidemeister

moves as in Figure 6.3.

In Khovanov homology, we have explicit chain maps induced by Reide-

meister moves as described in [1] and [4]. Since Khovanov homology of the

unknot doesn’t depend on the orientation, we can simply identify two un-

knots with opposite orientations.

Klein bottle can be seen as a composition of two first Reidemeister moves

with positive twist as in Figure 6.3, the corresponding chain map of which is

shown in Figure 6.11.

00

p p−

+ + + +− −

− − −

−,
+

+ -

Figure 6.11: Chain map induced by the first Reidemeister move with positive
kink. p means + or −.
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Kh∗,∗(©) can be identified with a 2-dimensional vector space with basis

v+ = positive circle and v− = negative circle in the enhanced state. We have

+ + - - - + +- +-

-- - - - -

+ --

Direct computation shows

Kh0,j(Fk) =





−1 j = 1

1 j = −1

Figure 6.12: Orientation flipping move F ′
k with negative twist

Klein bottle can also be seen as a composition of two first Reidemeister

moves with negative twist as in Figure 6.12, the corresponding chain map of

which is shown in Figure 6.13.

+ + + ++ +

- - + +-
- -
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0 +

−

+ +

− −−
+

p p

− 0− −+

+

,

,
-

-+

+

+

Figure 6.13: First Reidemeister move with negative twist

It can be easily obtained that

Kh0,j(F ′
k) =





1 if j = 1

−1 if j = −1

In summary,

M(Fk) ∼= (R/(t− 1))0,1 ⊕ (R/(t+ 1))0,−1.

This invariant can distinguish Klein Bottle from the standard embedding of

torus in S3×S1. In fact, let T be the standardly embedded torus in S3×S1,

then

M(T ) ∼= (R/(t− 1))0,1 ⊕ (R/(t− 1))0,−1.
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6.2.2 Interchange component of Whitehead link

Let W be the whitehead link whose two components labeled by a and b

respectively. These two components can be interchanged using Reidemeister

moves as depicted in Figure 6.4.

Denote by Fw the surface obtained by this move, then Kh(Fw) can be

computed explicitly using all three Reidemeister moves. Since the two ends

of Fs are identical even with orientation, we can close it up to obtain a surface

denote by Fw, then

M
i,j(Fw) =





R/(t− 1) (i, j) = (−3,−8), or (−2,−6), or (2, 4)

R/(t+ 1) (i, j) = (−2,−4), or (−1,−2), or (1, 0)

R/(t+ 1)⊕ R/(t+ 1) (i, j) = (0,−2)

R/(t2 − 1) (i, j) = (0, 0)

Remark. In this example, we can see that our invariant can detect some

kind of ”knotting” in the surface obtained by interchanging components of a

link digram using Reidemeister moves. Similar results can be found for other

links, for example, Hopf link.

6.2.3 Second and Third Reidemeister moves

In this section, we will see some weakness of our invariant. More precisely,

let K1 and K2 be two link diagrams, we can slide an arc of K1 over K2,

then slide it back, the resulting diagram is identical to the starting one. This
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isotopy defines a cobordism Fs with two identical boundary components, so

a surface F s can be obtained by gluing these two boundary components. See

Figure 6.5.

Theorem 6.2.1. The action induced by Fs is identity on Kh(K1 ∪ K2),

namely, for all (i, j),

M
i,j(F s) ∼= Khi,j(K1 ∪K2)⊗Q

Proof. The proof is based on the observation of the chain maps induced by

the second and the third Reidemeister moves.

First, let’s consider a special case when K2 is unknot.

To prove the theorem for this case, we need to apply several compositions

of second Reidemeister moves. The chain map induced by the second Reide-

meister move is shown in Figure 6.14. The right hand side map is just the

inverse map of the left hand side, and vice versa.
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−
+

Id

−
+

Id

+

p q

p:q

p:q

p

q

p:q p:q

Figure 6.14: Chain maps induced by the second Reidemeister move.

Using the chain map in Figure 6.14, we have the following

-

0+

+ +
+

++ 0

++
++

++

+

-+

+

+ - + -

- + -

+-+

+-- +
-+

- +
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-
- - - -

0

- - - -
-

- -

0+

+ +

0

+

+

+

+

-

- -

-

- -

which shows that the action induced by Fs is identity on chain level and

hence on Khovanov homology.

In general, if K2 is a link diagram with at least one crossing, it is equiva-

lent to show that the following two moves induce the same map on homology:

K1 K2
K2K1K1 K2

K1 K2
K1 K2 K2K1

This reduces to compare two types third Reidemeister moves in Figure 6.15

and Figure 6.16.

It’s proved by Bar-Natan in [1] and Clark, Morrison and Walker in [2] that

chain maps induced by Reidemeister moves are unique up to chain homotopy
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and ±1 multiples in the appropriate grading. This property makes it possible

to choose alternative chain maps for Reidemeister moves.

Consider two types of third Reidemeister move in Figure 6.15, we choose

chain maps for each type so that they map each state to the same state. The

detailed calculation can be found in the Appendix D.

0

− − −

+

Id

−Id

,

Id

+Id

0

− − −

−Id

,

Id

Id +

Id

1

2
3

1

2

3
1

2

3

1

2
3

+

2

2 2
2

2

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2 2

2

2

2

2

2

2

2

2

2

2

−Id

− −

−Id −Id −Id

[0, 0, 0] [0, 0, 0]

[0, 0, 1] [0, 0, 1] [1, 0, 0] [0, 1, 0] [0, 0, 1] [0, 0, 1] [1, 0, 0] [0, 1, 0]

[1, 0, 0] [0, 0, 1] [1, 0, 0] [1, 0, 0] [0, 0, 1] [1, 0, 0]

[0, 1, 0] [0, 1, 0] [0, 1, 0] [0, 1, 0]

[0, 1, 1] [1, 1, 0] [1, 1, 0] [0, 1, 1] [0, 1, 1] [1, 1, 0] [1, 1, 0] [0, 1, 1]

[1, 0, 1] [1, 1, 0] [1, 0, 1] [1, 1, 0]

[1, 1, 1] [1, 1, 1] [1, 1, 1] [1, 1, 1]

Figure 6.15: Compare of chain maps induced by two third Reidemeister
moves with state information.

For another two types of third Reidemeister moves we have similar result

as in Figure 6.16.

By comparing chain maps above, we can see that after sliding the arc
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1
2

3

1

2

3

2

[0, 0, 0] [0, 0, 0]

[0, 0, 1] [1, 0, 0] [0, 1, 0] [0, 0, 1] [1, 0, 0] [0, 1, 0]

[1, 0, 0] [0, 0, 1] [1, 0, 0] [0, 0, 1]

[0, 1, 0] [0, 1, 0]

[0, 1, 1] [1, 1, 0]

[1, 1, 0]

[1, 0, 1]

[1, 1, 1] [1, 1, 1]

2

2

[0, 0, 0]

1
2

3

1

2

3

2

[0, 0, 0]

2

2 2

+

2

2

2
0

2

22

[0, 1, 1]

[1, 1, 0]

22

[0, 1, 1]

2

2

[1, 0, 1]

22

+

[1, 1, 0]

2
0 0

[0, 1, 1] [1, 1, 0] [0, 1, 1]

[1, 1, 0] [1, 1, 0] [0, 1, 1]

[1, 0, 1] [1, 0, 1] [1, 1, 0]

0

2

2

2

2

2

2

2

2 2

+

2

2 2

2 2

2 2

+

Id Id

Id Id

Id Id+ Id Id+

Id- -
Id- -

Id Id

Figure 6.16: Compare of chain maps induced by another two third Reide-
meister moves

over or under the whole link diagram, the states are preserved. In fact, when

the arc slide over a crossing over or under, the marker of that crossing is

either preserved or changed from positive marker to negative marker, but

not from negative marker to positive marker. Thus after sliding the arc over

or under the whole link diagram K2, the markers of all crossings has to be

the same due to the grading reason. Moreover, maps that preserve marker of
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the crossings induces the same map on enhanced states for both under and

over slide.

In other words, the chain map induced by Fs acts by ±1 on the Khovanov

chain, while this is not enough to show that M(F s) is identity since it is pos-

sible that for some (i, j), Khi,j(Fs) = Id, while for others Khi,j(Fs) = −Id.

Fortunately this possibility can be excluded by the following observation.

In Figure 6.15, the sign of the chain map is defined for each state, not en-

hanced state, suppose fi,j = CKhi,j(Fs) = Id, we have the following diagram

commutes:

[c1, c2, · · · , ci, · · · , cn]
f i,j //

dk
��

[c1, c2, · · · , cn]

di
��

(−1)sk [c1, c2, · · · , dck, · · · , cn]
f
i−1,j
k // (−1)sk [c1, c2, · · · , dck, · · · , cn]

where dk is the k-th differential, sk is sum of 1′s after ck, hence f
i−1,j
k = Id

for any k. In particular, if a chain map f is identity on [0, 0, · · · , 0], then the

above argument shows that f is identity on all states. Since our invariant is

well-defined up to sign, the action induced by Fs is identity onKhi,j(K1∪K2),

which completes the proof.

Remark. So far all the examples listed above are obtained by Reidemeis-

ter moves or planner isotopies. As discussed in Section 4.3, we get results

for framed version simply by replacing Mi,j with M
p,q
fr , where (p, q) and (i, j)
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satisfying

p(S) = j(S)− i(S)− w(D)− fr(D), q(S) = −2j(S) + 3w(D) + 3fr(D),

In the following section, we will see that the original version and the framed

version of Khovanov homology have different results.

6.3 Examples using surgeries

In this section, we consider surfaces obtained by 0, 1, 2-surgeries together

with Reidemeister moves.

Recall that the immersed link cobordism induces the following map on

Khovanov homology

Khi,j(D0) −→ Khi+2d2,j−2d1+4d2+χ(F )(D1).

There are two sources of grading change:

1. i-surgeries, where i=0,1,2.

0,2-surgery (creating or annihilating a 2-disc) changes the grading by

a positive multiple of (0, 1), while 1-surgery changes the grading by a

positive multiple of (0,−1).

2. Double points.

Recall that in Section 3.1 there are two types of double points in a
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immersed cobordism depending on the local orientation. Type 1 double

points ( −→ ) change the grading by a positive multiple of

(0,−2), while type 2 double points change ( −→ ) the grading

by a positive multiple of (2, 4).

To obtain possible nontrivial result, we need cobordisms satisfying

2d2 = 0, χ(F )− 2d1 = 0.

In terms of double points and surgeries, we need cobordisms that admit no

Type 2 double points. If there is a Type 1 double point, there must be some

0,2-surgeries which can cancel the effect of grading change by Type 1 double

point. If there is no double points, the number of 1-surgery has to be the

same as that of 0,2-surgery. One example is shown in Figure 6.6.

We use movie representation to illustrate this cobordism F in Figure 6.6,

in which moves are labeled from 1 to 9 and some circle components are

labeled by a, b. Move 1 is the just the first Reidemeister move. Move 2 is

first move together with creation of a circle or 0-surgery. Move 3 moves the

circle a by second Reidemeister moves. Move 4 performs a 1-surgery on the

same component. Move 5 performs another 1-surgery. Move 6 moves circle

b away from the other component. Move 8 kills circle b by 2-surgery. Move

8 and 9 are just first Reidemeister moves. The grading is preserved since the

number of 1-surgeries is equal to the number of 0,2-surgeries.

Denote by K the unknot, by v+ the positive circle, by v− the negative
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one, then

Kh0,j(K) ∼=





< v+ >, j = 1

< v− >, j = −1

Apply Khovanov homology to the surface F we have

Kh0,j(F ) =





1, j = 1

1, j = −1

Denote by F the closed surface obtained by identifying two ends of F ,

then

M
0,j(F ) ∼=





R/(t− 1), j = 1

R/(t− 1), j = −1

Another example is shown in Figure 6b .

After adding two positive twists to a circle, a 1-surgery is performed to

get a Hopf link. A double point is added by a crossing change. Meanwhile,

a circle is added to the link by 0-surgery. Then a second Reidemeister move

is used to separate the two circles. Finally these two components are killed

by two 2-surgeries. Notice that the cobordism obtained in Figure 6b has

a double point obtained by Move 4. Denote by F again the closed surface

obtained by gluing two ends. We have

M
0,j(F ) ∼=





R/(t− 2), j = 1

0, j = −1
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For framed Khovanov homology, we have

Khp,qfr (D0) −→ Kh
p+χ(F )−e,q−2χ(F )+3e−2d
fr (D1).

There are several sources contributing to the change of grading:

1. i-surgeries, where i = 0, 1, 2.

0, 2-surgeries change the (p, q)-grading by (1,−2), while 1-surgery change

the grading by (−1, 2). Denote the number of these surgeries by Si.

2. Double points.

Adding a double point will change the grading by (0,−2), denote the

number of double points by nd.

3. Framing change.

We can always change fr(D) of a link to an arbitrary framing by a

cylinder. Namely, let L0 be a framed link with total framing a ∈ Z,

binZ be another total framing of L0. Then we can change the framing

of L0 from a to b by a product cobordism F = L0× [0, 1]. The framing

change occurs during this trivial cobordism. The grading changes by a

multiple of (1,−3) as discussed in Section 4.3. We denote the number

of such change by fr.

Notice that Si, nd are non-negative integers and fr is any integer. Together
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with χ(F ) = e and 2χ(F ) + 2d = 3e, we have

(S0 + S2)(1,−2) + S1(−1, 2) + nd(0,−2) + fr(1,−3) = 0,

which implies that

S0 + S2 − S1 = −fr

fr = −2nd.

In other words, we need two extra 0, 2-surgeries to cancel one double point.

Also, notice that if

S1(−1, 2) + nd(0,−2) + fr(1,−3) = 0,

then

S1 = fr, S1 = −2dp.

On the other hand, since S1 ≥ 0 and nd ≥ 0, the effect of 1-surgery cannot

be canceled by a combination of double points and framing changes.

Then

M
p,q
fr (F )

∼=





R/(t− 2) p = 1, q = −2.

0 otherwise

Notice that one move is omitted at the end of the cobordism, namely the

cylinder which changes fr(D) by (−2, 6).

Besides, framed Khovanov homology can be applied to non-orientation-
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preserving surgeries as well. See Figure 6.8.

Denote by F again the surface obtained by gluing the two ends of the

surface in Figure 6.8. Unfortunately, the invariant Mp,q
fr (F ) ≡ 0.

Remarks. Similar examples can be obtained by performing the oppo-

site twists on Move 1 and 2 in Figure 6.6 and 6b. Also notice that the

surgery performed in above examples using immersed Khovanov homology

are orientation-preserving. For non-orientation-preserving surgeries, it is not

well-defined for the Khovanov homology. However, we don’t have this prob-

lem in the framed version.
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Chapter 7

Generically Immersed Surfaces

in S4

It is well-known that S3×S1 can be obtained by a surgery along a standardly

embedded S2 in S4 by cutting out the neighborhood of this S2 and gluing

back with a D3×S1, where D3 is the 3-dimensional disc. This can be used to

define invariants of pairs (S, F ) in S4, where S is the standardly embedded

2-sphere, and F is a generically immersed surface transversely intersecting S

in S4. Such pairs are considered up to ambient isotopy. Denote such pair by

S2 ∪ F .

Then for S2 × {point} ⊂ S2 ×D2,

|F ∩ (S2 × {point})| = n.
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In other words, F intersects the copy of the standard S2 at the same number

of points.

Besides, since the complement of the neighborhood of the standard S2 is

D3×S1, the transversal intersection F ∩ (D3×{point}) is thus a tangle with

n boundary points {p1, p2, · · · , pn}. Here we use the same collection of points

to represent the intersection in each copy of S2. Recall that we cut out the

neighborhood of the standard S2 and glue back another copy of D3 × S1.

Eventually what we obtain from F is no longer a closed surface in S3 × S1

since in each slice S3 × {point} we only have a tangle instead of a link with

tangle sitting inside one hemisphere of S3. To have a closed surface, we need

to close up the tangles using extra arches in the other hemisphere of S3. In

general, there is no unique way to close up a tangle. One way is to consider all

possible ways to close up the tangle. That’s related to a version of Khovanov

homology of tangles by Khovanov in [7]. For a special case n = 2, there is

only one way to close up the tangle. Hence we have a unique closed surface

generically immersed in S3 × S1. By applying the surface invariant M and

Mfr, we have two surface invariants in S4 up to ambient isotopy.

Theorem 7.0.1. If |F ∩S2| = 2, M(F ) and Mfr(F ) are invariants of S
2∪F

up to ambient isotopy.

Proof. Let F ′ ⊂ S4 be another generically immersed surface such that (S2 ∪

F ) and (S2 ∪ F ′) are ambient isotopic in S4, that is, there exists a family of

diffeomorphisms

H : S4 × [0, 1] −→ S4
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such that

H(x, 0) = x, H(S2 ∪ F, 1) = S2 ∪ F ′.

Denote by the same F and F ′ the new surfaces in S3 × S1 obtained by

closing up the tangle. The isotopy in S4 gives a ambient isotopy of F and F ′

in S3×S1. By Theorem 5.2.1 and Theorem 5.2.1, the theorem is proved.

Examples can be obtained by spinning and twisting in S4. Let K be a

knotted embedded in a three ball B3 = {x ∈ R3||x| ≤ 1}.When B3 is rotated

around the standard S2 in S4, the continuous trace of K forms a locally flat

2-sphere or 2-knot. This 2-knot is said to be derived from K by spinning. If

we twists the arc K m times while it spins, another 2-knot in S4 is obtained

which is said to be derived from k by m-twist spinning.

The computation for these examples are similar as in Section 6.
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Appendix A

Calculations on Extra Movie

Moves

There are two extra movie moves as in Figure 3.1: Movie Move 16 and 17.

In both Movie Moves, movies on two sides induce chain maps on Khovanov

chain complex. These maps are the composition of the crossing change map

and maps induced by Reidemeister moves. The calculation on Movie Move
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16 is shown below.

0

p q

p : q

p : q

+

p : q

p : q

+

0

p q

+

p : q

p : q

+

p : q

p : q

We can see that both movies induced the same map on chain level.
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Similarly, in Movie Move 17, we calculate the induced maps as below.

3 1

2

3 1

2

3 1

2

0

3 1

2

0

3 1

2

-
+

2

1 3

3 1

2

+

2

1 3

3 1

2

3 1

2

-

3 1

2

0,

-
+

2

1 3

+

2

1 3
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3 1

2

1 3

2

-

-

-

0

+

+ +

2 2

1 13 3

-

2

13

+

2

1 3

-

3 1

2

1 3

2

+

+ +

2 2

1 13 3

+

2

1 3

-

2

13

+

2

13

+

2

1 3

-

+

2

13

+

2

1 3

--

3 1

2

0

3 1

2

1 3

2

+

2

13

0

3 1

2

0
,

The results from both movie moves only differ by a sign.
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Appendix B

A Program to Compute

Khovanov Homology

B.1 Introduction to KhoHo.

KhoHo is computer program written by Alexander Shumakovitch [10] using

the algebraic system PARI/GP. The input is an oriented link diagram which

is a directed graph with labeled edges and vertices. It is represented by a

n× 4 matrix, where n is the number of crossings. At each crossing, there is

an entering edge, which is one of the edge on the over-crossing and moving

towards the vertex. If we start with this edge and go clockwise around the

crossing we see four edges in order. Place these four number in the same

order in a row vector as a row of the matrix. So each row corresponds to a
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crossing with the first entry as the entering edge. The order of the crossing

is thus the order of rows.

1 2

3

1

2

3

4

5

6

Center

Figure B.1: Diagram of trefoil knot

For example, in Figure B.1, the diagram matrix is




1 4 2 5

5 2 6 3

3 6 4 1




Khovanov homology can be computed in terms of states and enhanced

states as described in the section 2.3. One way to realize it is using vectors.

More precisely, let L be a link diagram with n crossings, we can assign a

vector S of three components to each enhanced state, each component of

which is itself a vector.

S = [s, ens, edge]

The first component s is a binary vector ( a vector with entry 1 or 0 only),

of length n , which corresponds to a state with 0 representing 0-smoothing

88



or positive marker , 1 representing 1-smoothing or negative marker .

The second component ens is a vector of length m where m is the number of

components for each state s. It is also a binary vector, with 0 representing

positive circle, 1 representing negative circle. The last component is vector

of increasing integers with each integer representing the smallest edge (ac-

cording to the label of each edge) of each component in the enhanced state.

For example, in Figure 6.10, the first picture corresponds to a vector

S1 = [[0, 0, 0], [1, 1, 1], [1, 2, 3]].

The differential d of Khovanov homology hence changes the vector S accord-

ingly. For example,

dS1 = 0.

d[[0, 0, 0], [0, 0, 0], [1, 2, 3]] = [[1, 0, 0], [0, 0], [1, 3]]

+[[0, 1, 0], [0, 0], [1, 2]] + [[0, 0, 1], [0, 0], [1, 2]].

We consider Khovanov chain complex as a graded Z−module of finite ranks,

then a differential can be viewed as Z-valued matrix. In fact, the matrix has

entry only ±1 and 0. Then using Gaussian elimination, all matrices can be

simplified. By comparing the ranks of kernels and images, the rank of Kho-

vanov homology at each grading can be obtained. What is in our best interest

is not just the rank, but the chain complex and the unreduced differential

matrices. These information will be used to compute the explicit generators
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of the homology and hence the chain maps induced by the cobordisms.

B.2 Extensions to KhoHo.

There are mainly two extensions to KhoHo: one is finding the explicit gener-

ators of the Khovanov homology, another one is computing the chain maps

induced by Reidemeister moves and surgeries. For convenience we work over

Q coefficient.

We take all the matrices of the differential before Gaussian elimination.

For each grading of the Khovanov chain complex, we have a finite dimensional

vector space. Each differential is a binary matrix. Take the kernel of the

differential, we have a collection of column vectors which are cycles of the

chain complex. Suppose

· · ·
d0 // CKhi,j

d1 // CKhi−1,j
d2 // · · ·

Let ker d2 = {v1, v2, · · · , vn}, where vi is a column vector, which is a (i −

1, j)−cycle of the chain complex. Suppose the rank of d1 is m0,let M = d1.

Concatenate v1 and M to get a new matrix T . Compare the rank of T

and M , if the rank of T is larger, then let M = T , otherwise, skip v1 and

concatenate M and v2 and so on until the rank of M equals r + m0 where

r is the rank of Khi−1,j . The last r column of M will be the generators of
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Khovanov homology. The algorithm is summarized below.

1 count=0; /∗ count ing v a r i a b l e ∗/

2 i = 1 ;

3 M = d [ 1 ] ;

4 while count<r

5 T=[M, v [ j ] ] ; /∗ concatnate M and v [ j ] ∗/

6

7 /∗ check i f v [ j ] i s in the image o f M ∗/

8 i f rank (T) > rank (M)

9 M =T;

10 count++;

11 j++;

12 i f j>n

13 break ;

Eventually we will have a collection of generators of the homology, which is a

linear combination of enhanced states, whose coefficients are in fact integers.

The implementation is shown below.

1 f ind H gens (prepD , i deg , j d e g )=

2 {

3 l o c a l ( d1 , d2 , j matr , i matr , ker , ker rank , im rank ) ;

4 l o c a l ( Kh gens s , cnt , H rank , b , nonzero , ker temp , t ) ;

5

6 /∗ I n i t i a l i z e the d i f f e r e n t i a l matr ices to ob t a in a l l d i f f ,

7 ∗ chain ranks and b e t t i numbers ∗/

8 Bet t i ( prepD) ;

9
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10 /∗ I n i t i a l i z e the matrix f o r homology genera t or s ∗/

11

12 j matr=j2m(prepD , j d e g ) ;

13 i matr=i2m(prepD , i d e g ) ;

14

15 H rank=Bet t i ( prepD) [ j matr , i matr ] ;

16 Kh gens s=vec to r (H rank , b , [ ] ) ;

17

18 /∗ a l l d i f f r e s t o r e a l l in format ion o f d i f f e r e n t i a l matr ices ∗/

19

20 i f ( i deg<prepD . iHigh ,

21 d2=a l l d i f f [ j matr , i matr ] , d2 = [ ; ] ) ;

22

23 i f ( i deg>prepD . iLow ,

24 d1=reduce mat ( a l l d i f f [ j matr , i matr −1]) , d1 = [ ; ] ) ;

25

26 i f ( d2==0||d2==[ ; ] ,

27

28 /∗ i f d2=0, k e rn e l i s every t h ing ,

29 ∗ r epre s en t ed by id matrix ∗/

30 ker=matid ( cha in ranks [ j matr , i matr ] ) ;

31 ker rank=cha in ranks [ j matr , i matr ] ; ,

32

33 ker=matker int (Mat( d2 ) ) ;

34 ker rank=length ( ker ) ;

35 ) ;

36 /∗ Order ker in the way t ha t the number ∗

92



37 ∗ o f nonzero entry in each column i s i n c r ea s in g ∗/

38

39 ker temp=ker ;

40 t=ve c s o r t ( vec to r ( ker rank , i , l ength ( t2 s ( ker [ , i ] ) [ 1 , ] ) )

, , 1 ) ;

41

42 for ( a=1, ker rank ,

43 ker [ , a]=ker temp [ , t [ a ] ]

44 ) ;

45

46 /∗Find the rank o f the image o f d1 ∗/

47

48 i f ( d1 == [ ; ] | | d1==0,im rank=0;d1 = [ ; ] ;

49 , im rank=length ( d1 ) ) ;

50 cnt=0;

51 a=1;

52

53 while ( a<=ker rank && cnt<H rank ,

54 i f ( l ength (mathnf ( concat (d1 , ker [ , a ] ) ) ) > ( im rank+cnt ) ,

55 cnt++;

56 d1=concat (d1 , ker [ , a ] ) ;

57 nonzero = [ ] ;

58

59 for (b=1, l ength ( ker [ , a ] ) ,

60 i f ( ker [ b , a ] !=0 , nonzero=concat ( nonzero , [ b ] ) )

61 ) ;

62 Kh gens s [ cnt ]=matrix (2 , l ength ( nonzero ) ) ;
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63 Kh gens s [ cnt ] [ 1 , ]= vecex t r a c t ( ker [ , a ] ˜ , nonzero ) ;

64 Kh gens s [ cnt ] [ 2 , ]= nonzero ;

65 ) ;

66 a++;

67 ) ;

68

69 /∗ Check i f j d e g or i d e g exceed the bound . ∗/

70 j=(prepD . jHigh−j d e g ) /2+1;

71 i f ( ( j>mats ize ( cha in ranks ) [1 ]−1) | |

72 ( i matr==mats ize ( cha in ranks ) [ 2 ] ) ,

73 Kh gens s = [ ; ] ) ;

74 return ( Kh gens s ) ;

75 }

Chain maps induced by Reidemeister moves and 1-surgery are defined

explicitly by different authors, for example, Bar-Natan [1]. Our computation

for chain maps are based on an equivalent definition. First of all, since

the computation of the program is based on the diagram, we need to know

how the link diagram changes under all Reidemeister moves and 1-surgery.

Since the link diagram is represented by a matrix, we need a map from the

old matrix to the new one, which specifies the image of each entry of the

matrix. Moreover, for Reidemeister move 1 and 2, the number of crossings

changes as well, so we need to add or remove rows of the diagram matrix

accordingly. The code below is for changes the diagram matrix under the

first Reidemeister move.

1 R1 diagr ( prepD , edge in fo , c on f i g )=
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2 {

3 l o c a l (k , x ,D,R1 D , i , j , name , xnum) ;

4 k=edg e i n f o [ 1 ] ;

5 xnum=prepD .vnum;

6

7 i f ( c on f i g [1 ]>0 ,

8 i f ( c on f i g ==[1 ,1 ,1 ] ,

9 R1 D=concat ( prepD [ 1 ] , [ k , k+2,k+1,k+1]) ;

10 name=”R1 OU ” ) ;

11

12 i f ( c on f i g ==[1 ,1 ,0 ] ,

13 R1 D=concat ( prepD [ 1 ] ,

14 /∗ ” order ” i s an au x i l a r y func t ion t ha t reorder

15 ∗ the f i r s t vec t or according to the permutat ion

16 ∗ t ha t make the second vec t or in ascending order . ∗/

17 order ( [ k , k+2,k+1,k+1 ] , [ 1 , 4 , 3 , 2 ] ) [ 1 ] ) ;

18 name=”R1 OD ” ) ;

19

20 i f ( c on f i g ==[1 ,0 ,1 ] ,

21 R1 D=concat ( prepD [ 1 ] ,

22 order ( [ k , k+2,k+1,k+1 ] , [ 2 , 3 , 1 , 4 ] ) [ 1 ] ) ;

23 name=”R1 OD ” ) ;

24

25 i f ( c on f i g ==[1 ,0 ,0 ] ,

26 R1 D=concat ( prepD [ 1 ] ,

27 order ( [ k , k+2,k+1,k+1 ] , [ 4 , 3 , 2 , 1 ] ) [ 1 ] ) ;

28 name=”R1 UD ” ) ;
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29

30 for ( i =1, xnum,

31 for ( j =1 ,4 ,

32 i f ( ( prepD [ 1 ] [ i , j ]==k &&

33 ( j==1 | | ( j%2==0

34 && (prepD [ 1 ] [ i ,6− j ]−k==1

35 | | k−prepD [ 1 ] [ i ,6− j ]>1

36 )

37 )

38 )

39 ) | | prepD [ 1 ] [ i , j ]>k ,

40

41 R1 D [ i , j ]=prepD [ 1 ] [ i , j ]+2;

42 ) ;

43 ) ;

44 ) ;

45 ) ;

46

47 /∗ the con f i g f o r i n v e r s e map i s d i f f e r e n t .

48 ∗ I t t e l l s the in format ion o f the en t e r ing edge .

49 ∗ con f i g [ 1 ] t e l l s i t i s i n v e r s e or not ,

50 ∗ con f i g [ 2 ] t e l l s p o s i t i v e or n e ga t i v e kink ,

51 ∗ 0 f o r po s i t i v e , c on f i g [ 3 ] t e l l s or i en ta t ion ,

52 ∗ 1 f o r up , 0 f o r down ∗/

53 i f ( c on f i g [1 ]<0 ,

54 R1 D=vecex t r a c t ( prepD [ 1 ] ,

55 vec to r (xnum−1, i , i ) ,
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56 vec to r (4 , i , i )

57 ) ;

58

59 x=l o c a t e c r o s s i n g ( prepD [ 1 ] , e dg e i n f o ) ;

60 D=prepD [ 1 ] [ x [ 1 ] , ] ;

61 i f ( c on f i g ==[−1 ,0 ,1] , name=”R1 −PU ” ) ;

62 i f ( c on f i g ==[−1 ,0 ,0] , name=”R1 −PD ” ) ;

63 i f ( c on f i g ==[−1 ,1 ,1] , name=”R1 −NU ” ) ;

64 i f ( c on f i g ==[−1 ,1 ,0] , name=”R1 −ND ” ) ;

65

66 for ( i =1, xnum−1,

67 for ( j =1 ,4 ,

68 R1 D [ i , j ]=new ed (D, vecex t r a c t ( con f i g , [ 2 , 3 ] ) ,

69 prepD [ 1 ] [ i , j ]

70 ) ;

71 ) ;

72 ) ;

73 ) ;

74

75 check d iag r (R1 D) ;

76 return ( p r ep l ink (R1 D , Str (name , prepD [ 2 ] ) ) ) ;

77 }

We can also compute how each enhanced state changes and hence how

the generator of the homology changes. To compute the surface invariant

M(F ), we start with one diagram matrix, after several moves, we end up

with the same link diagram but different diagram matrix. To compute the
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action under these moves, we need one more step which is transferring the

new diagram matrix back to the starting diagram matrix, so that we obtain

a matrix by converting the transformed generator to a linear combination of

the original generators. The code below is for changing a generator under a

local move and obtaining the transformation matrix.

1 R gens ( prepD , move type , a l l g e n s )=

2 {

3 l o c a l (xnum, x ,R D, con f i g , gens , new gens ) ;

4 l o c a l ( i , p , l , deg i , deg j , temp states , new s ta te s ) ;

5 xnum=prepD .vnum;

6

7 i f ( move type [1]==3 , c on f i g = [ move type [ 3 ] ] ; ,

8 c on f i g=move type [ 3 ] ) ;

9

10 i f ( c on f i g [1]<0 | | move type [1]==3 ,

11 x=l o c a t e c r o s s i n g ( prepD [ 1 ] , move type [ 2 ] ) ;

12 i f (move type [1]==2 ,

13 x=concat (x , l o c a t e c r o s s i n g ( prepD [ 1 ] ,

14 [ prepD [ 1 ] [ x [ 1 ] , 3 ] ] )

15 ) ;

16 ) ;

17 tempD=prep l ink (move2end ( prepD [ 1 ] , x ) , prepD [ 2 ] ) ; ,

18

19 tempD=prepD ;

20 ) ;

21

22 i f ( move type [1]==1 ,
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23 R D=R1 diagr (tempD , move type [ 2 ] , c o n f i g ) ;

24 ) ;

25

26 i f ( move type [1]==2 ,

27 R D=R2 diagr (tempD , move type [ 2 ] , c o n f i g ) ;

28 ) ;

29

30 i f ( move type [1]==3 ,

31 R D=R3 diagr (tempD , move type [ 2 ] , move type [ 3 ] ) ;

32 ) ;

33

34 l i s t g e n e r a t o r s (R D) ;

35 New Info=s t a t e s i n f o ;

36 l i s t g e n e r a t o r s (tempD) ;

37 Old Info=s t a t e s i n f o ;

38

39 i f ( a l l g e n s ==[] ,

40 l i s t a l l H g e n s ( prepD) ;

41 gens=H gens ; ,

42

43 gens=a l l g e n s ;

44 ) ;

45

46 new gens=vec to r ( l ength ( gens ) , i ,

47 [ gens [ i ] [ 1 ] , v e c to r ( l ength ( gens [ i ] [ 2 ] ) , p , [ ] ) ]

48 ) ;

49
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50 for ( i =1, l ength ( gens ) ,

51 d eg i=gens [ i ] [ 1 ] [ 1 ] ;

52 d e g j=gens [ i ] [ 1 ] [ 2 ] ;

53 for (p=1, l ength ( gens [ i ] [ 2 ] ) ,

54 i f ( a l l g e n s ==[] ,

55 temp states=

56 vec to r ( l ength ( gens [ i ] [ 2 ] [ p ] [ 2 , ] ) , i , [ ] ) ;

57 for ( l =1, l ength ( gens [ i ] [ 2 ] [ p ] [ 2 , ] ) ,

58 n=gens [ i ] [ 2 ] [ p ] [ 2 , l ] ;

59 temp states [ l ]= concat ( gens [ i ] [ 2 ] [ p ] [ 1 , l ] ,

60 r e c o v e r s t a t e ( prepD , deg i , deg j , n ) ) ;

61 temp states [ l ] [ 4 ]= Vec ( temp states [ l ] [ 4 ] ) ;

62 ) ; ,

63

64 i f ( l ength ( gens [ i ] [ 2 ] [ p ] [ 1 ] ) ==4,

65 temp states=gens [ i ] [ 2 ] [ p ] ; ,

66 temp states=gens [ i ] [ 2 ] ;

67 ) ;

68 ) ;

69

70 i f ( move type [1]==1 ,

71 new gens [ i ] [ 2 ] [ p]=

72 R1 gen ( prepD ,R D, move type [ 2 ] ,

73 con f i g , temp states ) ;

74 ) ;

75

76 i f ( move type [1]==2 ,
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77 new gens [ i ] [ 2 ] [ p]=

78 R2 gen ( prepD ,R D, move type [ 2 ] ,

79 con f i g , temp states ) ;

80 ) ;

81

82 i f ( move type [1]==3 ,

83 new gens [ i ] [ 2 ] [ p]=

84 R3 gen ( prepD ,R D, move type [ 2 ] , move type [ 3 ] ,

85 temp states ) ;

86 ) ;

87 ) ;

88 while ( l ength ( new gens [ i ] [ 2 ] [ 1 ] )==1

89 && length ( new gens [ i ] [ 2 ] ) ==1,

90 new gens [ i ] [ 2 ]= new gens [ i ] [ 2 ] [ 1 ] ;

91 ) ;

92

93 while ( l ength ( new gens [ i ] ) ==1,

94 new gens [ i ]=new gens [ i ] [ 1 ] ) ;

95 ) ;

96 return ( [ R D , new gens ] ) ;

97 }

98

99 R mat( prepD1 , prepD2 , img , p , i deg , j deg , gens )=

100 {

101 l o c a l (xnum, cmp1 , cmp2 , i , j , k , s , t r f g en s , sp gens , mat) ;

102 xnum=prepD1 [ 3 ] ;

103 t r f g e n s=gens ;
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104 cmp1=find cmpo ( prepD1) ;

105 cmp2=find cmpo ( prepD2) ;

106 binvec2num = vectorv (xnum, i , 2 ˆ ( i − 1) ) ;

107

108 for ( i =1, l ength ( gens ) ,

109 i f ( type ( gens [ i ] [ 1 ] )==”t INT” , gens [ i ]= [ gens [ i ] ] ) ;

110 t r f g e n s [ i ]=gens [ i ] ;

111 for ( j =1, l ength ( gens [ i ] ) ,

112 gen=gens [ i ] [ j ] ;

113 temp=t r f s t a t e ( gen [ 2 ] , p ) ;

114 t r f g e n s [ i ] [ j ] [ 1 ]= temp [ 1 ] ∗ gen [ 1 ] ;

115 t r f g e n s [ i ] [ j ] [ 2 ]= temp [ 2 ] ;

116 s = t r f g e n s [ i ] [ j ] [ 2 ] ∗ binvec2num + 1 ;

117 new info=New Info [ s ] ;

118 temp=t r f e d g e (cmp1 , cmp2 , img , gen [ 4 ] ) ;

119 t r f g e n s [ i ] [ j ] [ 4 ]=

120 vec to r ( l ength ( temp) ,k ,

121 new info [ 4 ] [ new info [ 3 ] [ temp [ k ] ] ]

122 ) ;

123 t r f g e n s [ i ] [ j ] [ 3 ]= order ( gen [ 3 ] ,

124 t r f g e n s [ i ] [ j ] [ 4 ] ) [ 1 ] ;

125 t r f g e n s [ i ] [ j ] [ 4 ]= ve c s o r t ( t r f g e n s [ i ] [ j ] [ 4 ] , , 2 ) ;

126 ) ;

127

128 sp gens=vec to r ( l ength ( gens ) ) ;

129 for ( i =1, l ength ( gens ) ,

130 sp gens [ i ]=matrix (2 , l ength ( gens [ i ] ) ) ;
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131 for ( j =1, l ength ( gens [ i ] ) ,

132 sp gens [ i ] [ 1 , j ]= t r f g e n s [ i ] [ j ] [ 1 ] ;

133 sp gens [ i ] [ 2 , j ]=

134 r e cove r g en ( prepD2 , i deg , j deg ,

135 vecex t r a c t ( t r f g e n s [ i ] [ j ] , [ 2 , 3 ] )

136 ) ;

137 ) ;

138 ) ;

139 mat=trans f mat ( prepD2 , i deg , j deg , sp gens ) ;

140 return (mat) ;

141 }

103



Appendix C

Some Computational Results

For Knot(5,1) and Knot(7,1), the result is just the Khovanov homology of the

knot with rotation acting by identity. For Borromean Ring as in Figure C.1

and Knot(10, 123) as in 1Figure C.2, the results are different.

Let FB be the surface obtained by rotating the Borromean ring around

the imaginary center of the diagram and closed up by gluing the two ends.

Then

Figure C.1: Borromean Ring

1The figure of Knot(10,123) is from http://katlas.org/wiki/10_123

104

http://katlas.org/wiki/10_123


M
i,j(Ft) ∼=





R/(t− 1) (i, j) = ±(2, 3), ±(3, 7)

R/(t2 + t+ 1) (i, j) = ±(2, 5), ±(1, 1)

R/(t3 − 1)⊕ R/(t− 1) (i, j) = (0,±1)

0 otherwise

Let FS be the surface obtained by rotating the Knot(10,123) around the

imaginary center of the diagram and closed up by gluing the two ends.

Figure C.2: Knot(10,123)

M
i,j(FS) ∼=





R/(t− 1) (i, j) = ±(4, 7), ±(5, 11)

R/(t4 + t3 + t2 + t+ 1) (i, j) = ±(4, 9), ±(3, 5)

R/(t5 − 1) (i, j) = ±(3, 7)

R/(t5 − 1)⊕R/(t4 + t3 + t2 + t + 1) (i, j) = ±(2, 5), ±(1, 1)

R/(t5 − 1)⊕R/(t− 1) (i, j) = ±(2, 3)

R/(t5 − 1)⊕R/(t5 − 1) (i, j) = ±(1, 3)

R/(t5 − 1)⊕R/(t5 − 1)⊕ R/(t− 1) (i, j) = (0,±1)

0 otherwise
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Knots or links with more crossings (> 10) are not computed due to the

computational complexity.
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Appendix D

Calculations on the Third

Reidemeister Moves

Our calculation is based on the Gaussian elimination Lemma in [2] which

states the following:

Lemma D.0.1. (Double Gaussian Elimination) Consider the chain complex

A
( •
α ) //

B

⊕

C

(
ψ β
• •
γ δ

)

//

D1

⊕

D2

⊕

E

(
• ϕ λ
• µ ν

)

//

F

⊕

G

( • η ) // H

in an additive category, where ψ : B −→ D1 and ϕ : D2 −→ F are isomor-
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phisms, and all other morphisms including • are arbitrary morphisms. Then

there is a homotopy equivalence between this complex and a much simpler

complex:

A
( •
α ) //

OO

( 1 )

��

B
⊕

C

(
ψ β
• •
γ δ

)

//

( 0 1 )

��

D1

⊕

D2

⊕

E

(
• ϕ λ
• µ ν

)

//

(−γψ−1 0 1 )

��

F
⊕

G

( • η ) //

(−µϕ−1 1 )

��

HOO

( 1 )

��
A

(α ) // C
( δ−γψ−1β ) //

(
−ψ−1β

1

)

OO

E
( ν−µϕ−1λ ) //

(
0

−ϕ−1λ
1

)OO

G
( η ) //

( 01 )

OO

H

Proof. This is Lemma A.2 in [2].

Now we apply Lemma D.0.1 to the Khovanov chain complexes of both

sides of the third Reidemeister move in Figure D.1. The calculation is also

very similar to the one in the Appendix A.2 [2], except we don’t have to

worry about orientations and disorientations of the enhanced states.

R3

Figure D.1: The third Reidemeister move with one arc sliding over the rest.

On the left-hand-side, an ordering is fixed. There is an explicit chain

map Hl which maps the chain complex on the first row to second, which is
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simplified.

1

2

3

⊕ ⊕

⊕ ⊕

⊕ ⊕




−ϕ−1

l λl 0

1 0

0 1






−µlϕ

−1

l 1 0

0 0 1







0 0

1 0

0 1




(1)


−γl1ϕ

−1

l 1 0

−γl2ϕ
−1

l 0 1







ψl
γl1
γl2







ϕl λl 0

µl 0 νl3
0 νl1 νl2






−µlϕ

−1

l λ νl3
νl1 νl2




(• ηl1 ηl2)

(• ηl1 ηl2)
0

The differentials of Khovanov chain complex are of matrix form. The entries

are maps from one enhanced state to another. The Greek letters are chose

intentionally to match the Greek letters in Lemma D.0.1. The letters λl, νl

and ηl in the lemma are also matrices in our case.

λl =



λl1

λl2


 , νl =




0 νl3

νl1 νl2




and η = (ηl1, ηl2). 1 is understood as an identity matrix.

Similarly, we apply Lemma D.0.1 to the right-hand-side in Figure D.1
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which gives another chain map Hr from top to bottom.

3 1

2

⊕ ⊕

⊕ ⊕

⊕ ⊕




−ϕ−1
r λr 0

1 0

0 1






−µrϕ

−1
r 1 0

0 0 1


 



0 0

1 0

0 1




(1)


−γr1ϕ

−1
r 1 0

−γr2ϕ
−1
r 0 1







ψr
γr1
γr2







ϕr λr 0

µr 0 νr3
0 νr1 νr2




(• ηr1 ηr2)



−µrϕ

−1
r λr νr3

νr1 νr2




(• ηr1 ηr2)
0

By comparing the reduced complex of both sides, we can see that there

is a natural isomorphism between them. In fact, this isomorphism identifies
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states with the same smoothing.

⊕ ⊕



−µlϕ

−1

l λ νl3
νl1 νl2




(• ηl1 ηl2)

⊕ ⊕



−µrϕ

−1
r λr νr3

νr1 νr2




(• ηr1 ηr2)

(1)



0 1

1 0






0 1

1 0


 (1) .

This isomorphism together with Hl and Hr defines a homotopy equivalence

between the Khovanov chain complex of two sides of Figure D.1. The result

is summarized on the left in Figure 6.15.

On the other hand, we do the same calculation for another version of the

third Reidemeister move. We apply Lemma D.0.1 to the left-hand-side of

(R3)
′

Figure D.2: The third Reidemeister move with one arc sliding under the rest.
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Figure D.2:

⊕ ⊕

⊕ ⊕




−ϕ−1

l λl 0

1 0

0 1






−µlϕ

−1

l 1 0

0 0 1







0 0

1 0

0 1




(1)



−γl1ϕ

−1

l 1 0

−γl2ϕ
−1

l 0 1







ψl
γl1
γl2







ϕl λl 0

µl 0 νl3
0 νl1 νl2






−µlϕ

−1

l λ νl3
νl1 νl2




(• ηl1 ηl2)

(• ηl1 ηl2)⊕ ⊕

1

2

3

0

.
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On the right-hand-side, we have

⊕ ⊕

⊕ ⊕




−ϕ−1
r λr 0

1 0

0 1






−µrϕ

−1
r 1 0

0 0 1


 



0 0

1 0

0 1


 (1)



−γr1ϕ

−1
r 1 0

−γr2ϕ
−1
r 0 1







ψr
γr1
γr2







ϕr λr 0

µr 0 νr3
0 νr1 νr2




(• ηr1 ηr2)



−µrϕ

−1
r λr νr3

νr1 νr2




(• ηr1 ηr2)⊕ ⊕

3 1

2

0

.

We compare the reduced complexes:

(1)



0 1

1 0






0 1

1 0


 (1)



−µlϕ

−1

l λ νl3
νl1 νl2




(• ηl1 ηl2)⊕ ⊕



−µrϕ

−1
r λr νr3

νr1 νr2




(• ηr1 ηr2)⊕ ⊕

.

Again we can use the identification above together with the chain maps
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obtained earlier to construct a chain map the this version of the Third Rei-

demeister move. The result is summarized on the right in Figure 6.15.

For other variation of the third Reidemeister moves, the computations

are the same. See the result in Figure 6.16.

Notice that the chain maps induced by the third Reidemeister moves are

unique only up to homotopy. We can use the chain map constructed for

Figure D.1 to define a chain map for Figure D.2. In fact, in Figure D.3,

sliding the thick arc under a crossing is the same as sliding the thick arc over

the crossing, the latter of which is exactly the version in Figure D.1.

(R3)
′

R3

Figure D.3: Slide the thick arc under a crossing is the same as slide the thick
arc over the crossing.

It is not difficult to prove that the chain map obtained this way is dif-

ferent from the one we constructed using Lemma D.0.1, but they are chain

homotopic. In fact, it is proved in several papers ( [1], [2] and so on) that the

chain maps induced by Reidemeister moves are unique up to chain homotopy.

Thus we can choose an alternative chain map for our purpose.
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