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Abstract of the Dissertation

Oblivious Remote Data Access Made Practical

by

Peter Thomas Williams

Doctor of Philosophy

n

Computer Science

Stony Brook University

2012

Access pattern leaks threaten data confidentiality. The ability to access remote infor-
mation without revealing the objects of interest is thus essential to remote storage privacy.
Despite many challenges to deployment, this thesis asserts that there exist practical (appli-
cable and economical) access privacy mechanisms.

Outsourced computing is a popular trend with good reason: significant cost savings
can be obtained by consolidating data center management. This trend arrives with a new
set of security issues, however. Companies expose themselves to significant risk by placing
sensitive data in systems outside their control. Of concern are not only network security, data
confidentiality, and collocation issues, but more importantly a significant shift in liability,
and a new class of insider attacks.

To defend these new vulnerability surfaces, of special importance becomes the ability to
provide clients with practical guarantees of confidentiality and privacy.
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This thesis outlines a set of essential outsourcing challenges: (i) How can remotely-hosted
data be accessed efficiently with privacy? (ii) How can multiple clients run transactions pri-
vately in parallel, with serializability assurances guaranteed by untrusted, possibly malicious
transaction managers? (iii) How can new, efficient, minimal-TCB hardware be designed to
better provide security and privacy outsourcing guarantees?

To answer these questions, this dissertation introduces new mechanisms for practical
private data access and oblivious transaction processing, as well as new trusted hardware
designs. A space-time trade-off of client storage vs. efficiency is explored, then expanded to
the additional dimensions of multiplicity of clients, the nature of the trusted computing base
(hardware vs. software), and the degree of client data processing (access vs. transactions
vs. computation). The results are orders of magnitude more efficient than existing work.
Together, they bridge the gap between theoretical possibility and practical feasibility.
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Chapter 1

Introduction and Models

1.1 Introduction

In an increasingly networked world, computing and storage services require security assur-
ances against malicious attacks or faulty behavior. As networked storage architectures be-
come prevalent—e.g., networked file systems and online relational databases in sensitive pub-
lic and commercial infrastructures such as email and storage portals, libraries, and health and
financial networks—protecting the confidentiality and integrity of stored data is paramount
to ensure safe computing. In networked storage, data is often geographically distributed,
stored on potentially vulnerable remote servers or transferred across untrusted networks;
this adds security vulnerabilities compared to direct-access storage.

Moreover, today, sensitive data is being stored on remote servers maintained by third-
party storage vendors for economic reasons. Most third-party storage vendors do not pro-
vide strong assurances of data confidentiality and integrity. For example, personal emails
and confidential files are being stored on third-party servers such as FilesAnywhere.com,
Gmail, Yahoo! Mail, and MSN Hotmail [57]. Privacy guarantees of such services are at best
declarative and often subject customers to unreasonable fine-print clauses—e.g., allowing the
server operator (and thus malicious attackers gaining access to its systems) to use customer
behavior for commercial profiling, or governmental surveillance purposes [113].

To protect data stored in such an untrusted server model, security systems should offer
users assurances of data confidentiality and access pattern privacy. However, a large class
of existing solutions delegate this by assuming the existence of co-operating, non-malicious
servers. As a first line of defense, for ensuring confidentiality, all data can be encrypted at
the client side using non-malleable encryption before being stored on the server. The data
remains encrypted throughout its lifetime on the server and is decrypted by the client upon
retrieval.

Encryption provides important privacy guarantees at low cost. However, it is only a first
step, as significant information is still leaked through the access pattern of encrypted data.
As a motivating example, consider a database management system running on top of an
untrusted, encrypted file system. The file system, in satisfying requests for the transaction



processor, learns semantic information about the transactions through the sequence of disk
blocks accessed. If, for example, an alphabetical, encrypted keyword index is updated as an
encrypted record is inserted, it can learn what keywords are present in the new record, based
only on the locations updated within the encrypted index.

In existing work, one proposed approach for ensuring client access pattern privacy (and
confidentiality) tackles the case of a single-owner model. Specifically, a service provider hosts
information for a client, yet does not find out which items are accessed or what is stored. In
this setup the client has full control and ownership over the data: other parties are able to
access the same data through this client only. One prominent instance of such mechanisms
is Oblivious RAM (ORAM) [41]. T will use the term ORAM to refer to any such outsourced
data technique.

One of the main drawbacks of existing ORAM techniques is their overall time complexity.
Specifically, in real-world setups, Goldreich and Ostrovsky’s ORAM [41] yields execution
times of hundreds to thousands of seconds per single data access. Recent work, including
this work, provide various mechanisms to improve the efficiency by orders of magnitude.

This dissertation is structured in two parts. Part (I) considers Oblivious RAM. I consider
first (Chapter [2)) a brief overview of existing work in this area: a description of the original
ORAM as well as some very recent approaches from other authors to improve performance.
Chapter[3lexamines the probabilistic oblivious sorting primitives I presented in 2008 [127,128]
(and formalized in a journal version [130]). These are used in Chapter[4]to drastically improve
performance of the original ORAM when assuming a limited amount of client storage. I
apply similar techniques in Chapter [5] to speed things up by another order of magnitude,
while redoing the entire ORAM data structure for reduced complexity. Chapter [6] tackles
two more barriers to practicality: worst case cost and query latency. I demonstrate results
with a full implementation, including a construction running parallel queries among multiple
clients, and achieve usability by providing an implementation of the first oblivious file system.
Chapter [T explores a different approach to defeating query latency, providing the first poly-
logarithmic single-round-trip ORAM without client storage requirements.

Part (II) considers two related access privacy scenarios. After beginning with a slightly
broader survey (Chapter[8]), I consider the scenario of transaction privacy (Chapter[9). Using
a construction first presented in 2009 [129], I show how an untrusted (potentially malicious)
service provider can provide transaction management, durability, and serialization, while
allowing clients to retain full guarantees of privacy and correctness. Chapter looks at
the design of secure hardware, with applications to the access privacy scenario of Private
Information Retrieval; I first presented this in 2011 [126].

1.2 Model

Deployment. Let us consider the following concise yet representative interaction model.
A capacity-constrained client desires to outsource storage to an untrusted party (the server).



Sensitive data is placed by a client on a data server. Later, the client will access the out-
sourced data through an online query interface exposed by the server. Network layer confi-
dentiality is assured by mechanisms such as SSL/IPSec. Without sacrificing generality, let
us assume that the data is composed of equal-sized blocks (e.g., disk blocks, or database
rows).

Clients need to read and write these stored data blocks with correctness assurances,
while revealing no information to the (curious and possibly malicious) server. I describe
the protocols from the perspective of the client, who will implement two privacy-enhanced
primitives: read(id), and write(id, newvalue). The (untrusted) server need not be aware of
the protocol, but rather just provide traditional store/retrieve primitives.

Adversary. The adversarial setting considered in Chapters [5] [7] O] and assumes a
storage provider that is curious and possibly malicious. Not only does it desire to illicitly
gain information about the stored data, but it could also attempt to cause data alterations
while remaining undetected. I prove that clients will detect any tampering performed by
the server, before the tampering can affect the client’s behavior or cause any data leaks. I
will not consider timing attacks, noting that an implementation can be turned into a timing-
attack free implementation without affecting the running time complexity of these protocols.
I also do not address direct denial of service behavior.
The adversary considered in Chapters 4] and [6]is considered to be curious but honest.

Cryptography. For the majority of the constructions presented in this dissertation, I
will require only three cryptographic primitives with all the associated semantic security
[40] properties. First, a collision-free hash function which builds a distribution from its
input indistinguishable from a uniform random distribution. Second, an encryption function
that generates unique ciphertexts over multiple encryptions of the same item, such that an
adversary has no non-negligible advantage at determining whether a pair of encrypted items
of the same length represent the same or unique items (e.g., satisfying semantic security).
Third, I will need a pseudo-random number generator whose output is indistinguishable from
a uniform random distribution over the output space. Any one-way hash function satisfying
the requirement above can be used for this purpose, provided that a key generator has
provided a seed. Finally, some of the constructions require basic public-key cryptography
signing and encryption primitives.

In these definitions, I assume the adversary is polynomially-bounded in the key size.
Indistinguishability is used in the standard computational privacy sense, requiring that any
polynomially-bounded adversary have only a negligible chance of violating security, taken
over possible key choices. Negligibility is again used in the standard cryptographic sense: a
function is negligible in its parameter if it is asymptotically bounded above by all inverse
polynomials. Similarly, an event occurs with high probability if the probability of an
event occurring (taken across the appropriate domain) is one minus a negligible quantity.

A trend throughout this discourse is the application of only these “basic” cryptographic
primitives (with a few exceptions, including Section [5.2)). This constraint follows from two
motivating factors. First, establishing performance and practicality as the primary goal
is often (but not necessarily) incompatible with the use of more complicated primitives.
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Second, this allows us to stick to the most mainstream and widely used primitives, avoiding
dependence on less-broadly-tested cryptographic constructions. This has the side effect of
making the constructions algorithm-focused, rather than cryptography-focused.

1.3 Common Notation

Oblivious RAM (ORAM) refers to any construction that provides the previously specified
read and write operations with privacy. n denotes the database size (in fixed-size blocks).
log represents the natural log. Other notation is defined where introduced.

1.4 Performance Analysis

There are several different trends concerning representation of performance analysis in related
work. Some papers look at message complexity, measuring performance in terms of the
number of passed messages, according to a message size defined in the paper. Often, it is
convenient to use a simplified model that measures cost in terms of a multiplicative overhead
factor. This considers how many accesses sized b are required to simulate a single oblivious
access sized b. While it provides an intuitive and useful idea of the cost overhead, it is not
suitable for all constructions, as many require expenses that are not of the form of extra
accesses.

To be self-consistent in this dissertation, I represent asymptotic computation complex-
ity, storage complexity, and communication complexity in the standard asymptotic model.
However, I specify storage and communication costs in terms of words, instead of bits. That
is, I assume that a block identifier can be transmitted, processed, and stored at O(1) cost.

Recognizing that this is useful for identifying asymptotic performance trends only, imple-
mentations are benchmarked in representative environments wherever possible. I will also
find it convenient at times to model instead the expected performance based on the amount
of computation, I/O transfer, and network transfer required in an implementation.

1.5 Security Definitions

After examining what is meant by “query privacy”, this section will establish a formal
definition of query privacy to capture this notion. Related ORAM papers (including work by
Pinkas and Reinman [108]) typically address query privacy by showing that any sequence of
block accesses used to satisfy a query appear random to the server. As shown by Kushilevitz
et al. [72], this approach is incomplete, often leaving subtle privacy leaks in existing ORAMs.

This trend was partially reversed by Boneh et al. [17], which introduces a security game
in a slightly broader model. That is, to capture information leaked through the timing and
total number of queries, as well as through query transcripts, they model the execution of
programs, rather than the execution of sequences of queries. Modeling clients as Turing
machines thusly is general enough to consider almost any scenario. As this is more general



than needed for our purposes, I will provide a slightly more restricted definition, modeling
clients as equal-length adaptively chosen sequences of queries, rather than adaptively chosen
Turing machines.

The privacy goal of Oblivious RAM is to hide the client’s access pattern from the server.
Intuitively, the server should learn nothing about what the client is doing. The server should
be as powerful as possible; borrowing the intuition behind IND-CPA, the server should
be able to submit queries to the client, watch them run, and learn the result. It might
be desirable to have an Oblivious RAM that lets the server run queries without learning
anything about the client’s access pattern. Unfortunately this guarantee is not satisfiable in
the Oblivious RAM model: any party able to run arbitrary requests learns trivially when
writes are performed by the client, by watching for changes.

This observation indicates that the advantage of the server could instead be defined as its
ability to learn anything about the access pattern from the execution transcripts. That is,
rather than measuring the server’s advantage at guessing anything about the client’s access
pattern, we should measure the additional advantage that the execution transcripts give at
guessing anything about the client’s access pattern.

Note that the security definition presented by Boneh et al. [17] is adaptive only during
the preparation phase. That is, while the adversary can pick queries based on previous
transcripts during the preparation phase, once the verifier has picked a random bit, the
adversary no longer gets to see transcripts between queries. I remove this limitation below.

This generalization reflects the observation that in practice, an adversary may have some
impact over what queries are run, while it is observing transcripts. Giving the adversary the
ability to adaptively choose queries during the challenge phase (not just in the preparation
phase) encompasses an adversary’s ability to learn from the transcripts, even as it has some
influence over the queries. I then show in Theorem [I] that such a generalization is plausibly
necessary: that is, there exist constructions secure against a limited-adaptive adversary but
granting an arbitrarily higher advantage to a fully adaptive adversary.

1.5.1 Security Model (IND-CQA)

Definition 1. An ORAM Instance provides adaptive query privacy, if for each possible
sequence of accesses s of length m, the corresponding sequence of transcripts gives no infor-
mation about s.

Adaptive query privacy is captured in the IND-CQA (“indistinguishable under a chosen
query attack”) security game (sketched below) that represents an honest-but-curious, com-
putationally bounded adversary. Borrowing the intuition behind IND-CPA, the server is
allowed to submit an arbitrary number of queries to the client, watch them run, and learn
their result:

1. The adversary provides the initial database contents.

2. The verifier flips a secret random bit b.



3. The verifier then engages in the following process, repeated polynomially many times
t with a polynomially bound adversary:

(a) The adversary specifies two queries ¢ and r, where a query can be a read, write,
or insert, for any block, and with any fixed-size block content.

(b) If b = 0, the verifier executes query ¢; otherwise it executes r.

(c) The verifier returns the execution transcript (but not the query result) to the
adversary.

4. After t rounds, the adversary guesses b.

An ORAM construction is considered to have computational adaptive query privacy
if there is no adversary A with a non-negligible advantage at guessing b, with the probability
taken over the possible choices of b, secret key, and internal coin flips by the adversary.

Intuitively, any information about the sequence of accesses leaked through the transcript
allows construction of adversary that gains an advantage at distinguishing transcripts.

Note that the inability for the server to observe the query results does not imply the
server’s inability to predict its query results. In fact, since the server constructs the database,
it knows in advance the answer to each query. It simply does not learn, during execution,
which of each pair of queries is run. This adversary still corresponds to one able to observe
externally a client’s queries and query results—in fact, the adversary has a strictly stronger
ability, since it can choose those queries and results. The idea captured is that the execution
transcripts give the adversary no additional advantage.

The model defined by Boneh et al. [17] allows adaptive queries only in the preparation
phase. Replacing the programs with sequences (to avoid considering program length and
timing attacks), I refer to this as the limited-adaptive-adversary model. As discussed above,
the fully adaptive adversary of IND-CQA captures a more powerful adversary than the
limited-adaptive adversary:

Theorem 1. If there exists a construction y-secure in the limited-adaptive adversary model
(i.e., granting any polynomial adversary no more than vy advantage), then for any 0 < e <1,
there exists a construction v+ e-secure in the limited-adaptive-adversary model, but for which
there exists an adversary with advantage %(1 — (1 =€)/ under IND-CQA, for any function
f(c) polynomial in the security parameter c.

Proof. Let S be a construction y-secure under the limited-adaptive model.

Modify S to make it insecure in the following manner (and call the result S’). It behaves
equivalently to S, except it includes a new, random bit string length ¢ in each transcript
output. Whenever this bit string is a prefix to the following query, then with probability e
append ‘heads’ as an additional field in that transcript output. In all other cases, append
‘tails’ to the query transcript.

S’ is v+ € secure in the limited-adaptive model: the only additional information available
to an adversary is an € chance on each query in revealing a certain property. The adversary



can only guess about one of these queries, since the challenge phase does not provide tran-
script feedback—so the adversary can try only use this information to guess about a single
query.

Now, construct an adversary that issues f(c) queries, building one sequence (b=1) that
always prefixes the random bit string leaked by the construction to the next query. The
other sequence (b=0) always makes a random query that does not prefix this bit string. At
the end, output 1 if the field ‘heads’ is appended to any of the transcripts.

This event occurs with probability 1 — (1 — €)7(); in these cases the adversary knows
with certainty that b=1. Otherwise, the adversary guesses 0. The guess is thus correct with
probability 1 4+ (1 — (1 — €)7(?)), leading to an advantage of £(1 — (1 — €)7(?)). O

In the example construction above, the number of queries f(c) necessary to exhibit an
advantage of any constant amount is proportional to 1/e. That means that a negligible
advantage requires a super-polynomial f(c) to grow into a non-negligible advantage. It
remains an open question whether there exists a construction which is e-secure in the limited-
adaptive model, for a negligible €, but which grants an adversary a non-negligible advantage
in the IND-CQA model.

And now I show an IND-CQA adversary is at least as powerful as the limited-adaptive
adversary.

Theorem 2. Any construction secure under IND-CQA is also secure under the limited-
adaptive-adversary model.

Proof. (outline) Suppose there exists an adversary A that breaks a construction C under
the limited-adaptive-adversary model with advantage €. This leads to construction of an
adversary B that breaks that construction under IND-CQA with the same advantage.
Adversary B is constructed equivalently to adversary A. The additional information avail-
able to adversary B—the transcripts of queries during the challenge phase—is discarded. The
advantage of B in IND-CQA is equal to e. O

1.5.2 An Actively Malicious Adversary

This game can be extended to capture query privacy versus an actively malicious adversary.
While the game defined by Boneh et al. [17] considers only an honest but curious adversary,
the idea here is to allow the adversary to specify the return value of every request of the
server. That is, instead of being provided the transcript by the verifier after each query,
the adversary can choose the result and the server-supplied portion of the transcript of each
request.

I note that many existing constructions, even those that assume an actively malicious
adversary, are vulnerable in this model. The problem is that these protocols simply abort
upon detecting incorrect behavior. While the client can detect when the server is behaving
incorrectly (the server cannot get away with the malicious behavior), one of three scenarios
occurs.



1. The client might leak access pattern information before detecting the incorrect behav-
ior.

2. The point at which the failure is detected leaks access pattern information to the server.

3. Or, ideally, the client does not reveal anything to the server by acknowledging when
the server deviates from protocol.

The second scenario is relevant and often leads to a significant leak. For example, the
server can easily corrupt specific items, to trigger a failure on a repeated query. Moreover, it
is not always straightforward to prevent this leak, since it is not clear how to proceed once
the server has violated the protocol.

Fortunately, such a leak requires the adversary to reveal its adversarial nature to the
client. This makes it feasible, for example, to employ economic incentives to mitigate this
leak. One option is thus to restrict the adversary model, allowing it to violate the protocol
only where it has a non-negligible chance of going undetected. Nevertheless, Section
will discuss how to hide acknowledgement of a protocol violation, in order to prevent loss of
privacy.

1.5.3 Security Model (IND-DA)

Definition 2. An ORAM Instance provides adaptive query privacy against a deviant ad-
versary, if for each possible sequence of accesses s of length m, the corresponding sequence
of transcripts gives no information about s.

Adaptive query privacy against a potentially malicious adversary is captured in the IND-
CQA-D (“indistinguishable against a deviant adversary”) security game (sketched below)
that represents an honest-but-curious, computationally bounded adversary.

1. The adversary provides the initial database contents.
2. The verifier flips a secret random bit b.

3. The verifier then engages in the following process, repeated polynomially many times
t with a polynomially bound adversary:

(a) The adversary specifies two queries ¢ and r, where a query can be a read, write,
or insert, for any block, and with any fixed-size block content. The adversary
also specifies a Turing machine T that will respond to protocol requests from the
verifier.

(b) If b = 0, the verifier interactively executes with T the query ¢; otherwise it
executes 7.

(c) The verifier returns the execution transcript (but not the query result) to the
adversary.

4. After t rounds, the adversary guesses b.



Chapter 2
A Brief Survey of Oblivious RAMs

This chapter provides a short survey of related Oblivious RAM techniques, with a focus
specifically on computational ORAM techniques in the random oracle model. A broader
discussion, including theoretical work on ORAMs in the standard model [27], and lower
bounds on ORAMs in the standard model [7], is out of scope.

2.1 Goldreich’s Oblivious RAM

Oblivious RAM [41] provides access pattern privacy to a single client (or software process)
accessing a remote database (or RAM), requiring only logarithmic storage at the client. The
amortized communication and computational complexities are O(log3n).

In ORAM, the database is considered to be a set of n semantically-secure encrypted
blocks (with an ORAM key held by the client) and supported operations are read(id), and
write(id, newvalue). The data is organized into log,(n) levels, as a pyramid. Level i consists
of up to 4° blocks; each block is assigned to one of the 4° buckets at this level as determined
by a hash function. Due to hash collisions each bucket may contain from 0 to O(logn)
blocks.*

Reading. To obtain the value of block ¢d, the client must perform a read query in a
manner that maintains two invariants: (i) it must never reveal which level the desired block
is at, and (ii) it must never retrieve a given block from the same spot twice. To maintain
(i), the client always scans a single bucket in every level, starting at the top (Level 0, 1
bucket) and working down. The hash function informs the client of the candidate bucket
at each level, which the client then scans. Once the client has found the desired block, the
client still proceeds to each lower level, scanning random buckets instead of those indicated
by their hash function. For (ii), once all levels have been queried, the client then re-encrypts
the query result (a block) with a different nonce and places it in the top level. This ensures
that when the client repeats a search for this block, it will locate the block on its first access
(in a different location), and the rest of the search pattern will be randomized. Figure

LA security parameter sets the bucket size to ensure there is only a negligible chance of bucket overflow.
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Figure 2.1: ORAM: Query Overview. Clients search from the top down, choosing the buckets
indicated by a hash function. Since previously accessed items are located in the top level,
and buckets are selected randomly on lower levels once an item is found, all accesses appear
uniformly random to a polynomial-time observer.

illustrates this process. Note that the top level will immediately fill up; the process to dump
the top level into the one below is described later.

Writing. Writes are performed identically to reads in terms of the data traversal pattern,
with the exception that the new value is inserted into the top level at the end. Inserts are
performed identically to writes, since no old value will be discovered in the query phase. Note
that semantic security properties of the re-encryption function ensure the server is unable to
distinguish between reads, writes, and inserts, since the access patterns are indistinguishable
between each case.

Note that in both read and write procedures, no block is ever deleted, meaning that
the old block values are kept in the database. Though this behavior can be modified, as
described in Section [4.2]

Level Overflowing. Once level i is full (each 4° steps), it is emptied into the level below,
as illustrated in Figure This lower level is completely re-encrypted, and re-ordered
according to a new hash function. Thus, accesses to this new iteration of the lower level will
henceforth be completely independent of any previous accesses. Note that each level will
overflow once the level above it has been emptied 4 times. Any re-ordering must be performed
obliviously: once complete, the adversary must be unable to make any correlation between
the old block locations and the new locations. A sorting network is used to reorder the
blocks.

To enforce invariant (i), note also that all buckets must contain the same number of
blocks. For example, if the bucket scanned at a particular level has no blocks in it, then the
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Figure 2.2: ORAM: Reshuffling a level into the level below. Once a level is full, the client
places all items from that level into the level below, and shuffles obliviously in such a manner
that the server can make no correlation between the old locations and the new locations.

adversary would be able to determine that the desired block was not at that level. Therefore,
each reorder process fills all partially empty buckets up to the top with fake blocks. Recall
that since every block is encrypted with semantic security, the adversary cannot distinguish
between fake and real blocks. The client decrypts the block, then checks the value of a flag
included with the block cleartext to determine whether it is fake. For discussion of how to
reconcile old versions of the blocks with the new versions, and additional discussion on other
considerations, please refer to Section

Cost. Each query requires a total online cost of O(log®(n)) for scanning the \logn-sized
bucket on each of the log, n levels. A is a security parameter relating to the probability of
buckets overflowing. There is also an additional, amortized cost due to intermittent level
overflows. Using a logarithmic amount of client storage, reshuffling levels in ORAM requires
an amortized cost of O(log” n) per query.

2.2 Recent Developments

An ORAM mechanism, presented in the context of Private Information Retrieval (see Chap-
ter [8.1.1)) is introduced by Wang et al. [125]. It has an amortized cost of O(n/k) where n is
the database size and k is the amount of secure storage (in blocks). The protocol is based
on scrambling of a minimal set of server-hosted items. A partial reshuffle costing O(n) is
performed every time the secure storage fills up, which occurs once every k queries. While an
improvement for small databases, this result is not always practical since the total database
size n often remains much larger than the secure hardware size k. Boneh et al. [17] examine
a similar construction, formalizing the security model.

12



Starting with my work [127], presented in Chapter (4] researchers have sought to improve
the overhead from the poly-logarithmic performance of the original ORAM. I then present
in Chapter [0 work I first introduced in 2008 [128], a faster ORAM variant which also fea-
tures correctness guarantees, with computational complexity costs of only O(logn log®logn)
(amortized per-query), under the assumption of O(y/nlogn) client memory, and requiring
O(n) server storage. The assumed client storage is used to speed up the reshuffle process by
taking advantage of the predictable nature of a merge sort on uniform random data.

2.2.1 Cuckoo Hash ORAMs

A new approach to speed up ORAM was revealed by Pinkas et al. [108], showing the applica-
bility of the cuckoo hash construction [102]. This has the same motivation as our revamped
ORAM structure (Chapter [5)): to speed up querying and shuffling by finding a construction
more efficient than bucket-scanning. Instead of using Bloom filters to separate level mem-
bership testing from the stored data, they represent the levels as a cuckoo hash. In a cuckoo
hash table, each item can exist in one of two places. If both places are occupied, then one
of the items is kicked out into its alternate location (possibly pushing over a whole chain of
items); this is usually fairly easy since there are twice as many slots as items. The essential
challenge solved in this paper is obliviously, and efficiently, finding a mapping of items to
slots. The rest of the slots are filled with fake items. The idea is that when looking up
an item in the hash table, it suffices to check two locations, and the server does not learn
whether the item was found. Unfortunately, this construction was shown [44,72] to leak
access privacy information. The problem is that not all hash functions result in a successful
mapping of items to slots. For example, three items might all be mapped to the same two
slots. Limiting the selection to those hash functions that do have a successful mapping (e.g.,
by retrying until it finds one that succeeds) reveals something significant about the hash
function chosen.

A similar, but secure, approach, allowing efficient item lookup while hiding success was
developed by Goodrich et al. [44]. The idea is to use a small “stash” to absorb the conflicting
items when the selected hash function does not result in a successful mapping. The result
is a O(log®n) solution requiring logarithmic client storage and requiring only O(n) server
storage. This approach has been re-applied by Goodrich et al. [45] (where it is turned into
a de-amortized solution) and by Kushilevitz et al. [72] (who include a good review recent
developments).

2.2.2 De-amortized ORAMs

Researchers have long recognized the utility of de-amortized constructions (i.e., in which the
worst case cost matches the average cost). Recently, Kushilevitz et al. [72], Goodrich et
al. [45], and Boneh et al. [17] all provide de-amortized constructions. The first de-amortized
construction, however, follows soon after the original ORAM, going all the way back to
1997 [101]. An elegant construction is provided by Shi et al. [114], which structures the
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ORAM as a tree and specifies the set of shuffle operations to perform on each query—
resulting in a verifiably de-amortized solution, whereas the other de-amortized solutions
typically specify only the asymptotic size of the amount of shuffie work to perform on each
query. Recognizing the importance of providing efficient worst-case costs, I show in Chapter|[6]
how to de-amortize this construction. De-amortized constructions do not always lead readily
to an actual implementation. Instructions such as “perform a chunk of work sized thusly,” or
“run the shuffle in the background while querying,” are fine for establishing existence proofs,
but can be devastatingly inappropriate in achieving an actual prototype. Nevertheless, I

provide my own implementation in Chapter [6, and demonstrate it to be efficient.

2.2.3 Recursive ORAM

A promising recursive construction is introduced by Stefanov et al. [120] under the assump-
tion of O(n) words / O(nlogn) bits of client storage. Using this storage, it promises to
reduce the level construction cost. Meanwhile, it requires only a constant number of online
round trips (which is an important trait when employing over high latency links, as we will
see in Chapters[6land [7). The main idea of this construction is to split the remote database
across y/n smaller mini-ORAMs, each sized O(y/n). These can be built from an existing con-
struction or using the one they provide. The local storage is used for three purposes: one, to
keep track of which items live in which mini-ORAMs (which is randomized and constantly
changing). Two, it is used to speed up the shuffles within the mini-ORAMSs. Since each are
small enough to fit into client memory in entirety, any shuffle within a mini-ORAM can be
performed in a linear number of accesses, requiring just a scan, some client processing, and
a write back. Third, the storage is used to keep a cache of recently accessed items (similar
to a construction by Wang et al. [125]), to locally shuffle items before writing them back to
a new mini-ORAM.

The challenge in this construction is hiding which items come from which mini-ORAMs—
and any other information that might be revealed by the choice of mini-ORAM to read from
or write to. The authors mitigate this leak by ensuring that an item gets written back to
a random mini-ORAM after it has been read. The idea is to cache items over a period
long enough to ensure that each of the y/n mini-ORAMSs has a roughly equal number of
items waiting to be written back, then to insert cached items to their randomly selected
target mini-ORAM, inserting fake items as necessary to equalize the number of writes to
each mini-ORAM.

The clear drawback there is the assumed O(n) client storage. The authors present the
O(n) client storage assumption as not necessarily unreasonable, since a large block size means
that the client only needs a constant fraction of the outsourced storage. Their alternate
construction recursively uses another, smaller? instance of this ORAM to store the position
map (and to provide the working memory for shuffles). This loses some of their performance
edge and requires multiple round trips per query.

2provided that the block size is larger than logn
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2.2.4 Randomized Shell Sort

A randomized shell sorting network identified by Goodrich [46] was subsequently employed
to construct Oblivious RAMs [44,108]. Goodrich et al. [44] claim logarithmic overhead, in a
model calculating message complexity and based on some assumptions of block sizes, rather
than the traditional computational or communication complexity models. Since it uses the
randomized shell sort to perform oblivious sorts of the data, it has a lower bound on par
with existing work.

This sort procedure was used in the first design of PD-ORAM (Chapter [6), but was
found to unfortunately result in simply too many disk seeks to make it usable on a even a
medium-sized database. The randomized nature of the shell short guarantees that the order
of item access appears non sequential and random, making efficient use of rotational hard
disks difficult. The amortized cost of constructing the bottom level in a terabyte database
with an acceptable failure rate is in the range of hundreds of disk seeks per query, already
putting the implementation outside of the targeted performance goals. See the Appendix
for this analysis.

It has been observed that this sort is significantly less efficient than non-oblivious sorts.
In particular, Pinkas and Reinman [108] opt to use a standard sort on the client for those
levels that fit in memory. Where client memory assumptions make it possible, I choose to
use my own asymptotically equivalent merge sort, described in Chapter 3l This sort runs
faster (requiring log, n sequential passes instead of 6¢log, n random passes), but imposes a
client storage requirement of cy/nlogn, for a security parameter c.
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Chapter 3

Oblivious Sort with Local Storage

This chapter examines a key building block of most Oblivious RAMs: the mechanism to
perform an oblivious sort. An adversary (the server) has stored a list of items encrypted
by the client. The client’s job is to rearrange this remotely stored list without revealing
anything to the about the permutation. The client has some amount of working memory
available to perform this sort; the requirements vary under different constructions.

I establish two new constructions providing this building block: the Merge Sort and the
Merge Scramble, which are necessary for the next chapters. I also review constructions in
related work, which will be useful in scenarios with only logarithmic client memory.

3.1 Oblivious Sorting in Related Work

3.1.1 Sorting Network

Starting at the extreme end of the client-memory spectrum, let us consider clients with only
logarithmic memory. As identified by Goldreich and Ostrovsky [41], sorting networks are
naturally suited to this scenario. They go on to suggest employment of the O(slog? s)-time
Batcher odd-even sorting network [6], where s is the input size. At the time of that publica-
tion, this was the fastest practical sorting network. An asymptotically superior O(slog s)-
time AKS sort [2] is significantly slower in practice for all currently feasible database sizes
due to a large constant.

3.1.2 Randomized Shell Sort

In 2010, Goodrich et al. [46] presented a randomized shell sorting network that requires
O(slogs) comparisons and succeeds with high probability (e.g., ¢ repetitions can be com-
bined to guarantee success with high probability in ¢). In comparison, traditional sorting
networks always succeed. Nevertheless, this result is directly relevant to all logarithmic-
client-memory ORAM scenarios. There are still significant overheads involved, however,
making other oblivious sorts more efficient when there is more client memory. This is both
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because the sort requires a random, non-sequential access pattern, and because the repeated
application requires a significant number of passes over the data.

This section analyzes the practical performance of the randomized shell sort in ORAM
settings on large databases. Consider the construction of the largest level of a 1 TB database.
This level contains at least 0.5 TB of data. For 10 KB blocks, this translates into 50 million
blocks. The randomized shell sort makes 6¢log, n random passes across the database, incur-
ring a total of 6¢n log, n seeks every n queries, where ¢ influences the sort failure probability.
For n =5 x 107, log, n = 23, translating to 138 x c disk seeks per query for the largest level
alone.

For ¢ = 4 as suggested in the original paper, this amortizes to 550+ disk seeks per
query. Even for high-speed, low-latency disks with 6ms seek times, this becomes at least 3.3
seconds/query (in addition to any/all other significant network and CPU overheads)!

Unfortunately, ORAM imposes a unique sorting requirement that is difficult to satisfy
using the randomized shell sort. This requirement derives from the requirement that, to
maintain privacy, the sort must succeed with overwhelming probability. Moreover, all sorts
must be indistinguishable, eliminating the possibility of retrying in the case of failure. This
is because observation of a sort failure translates into an advantage at distinguishing the
permutation from random, which translates into a privacy leak.

While in other applications it may suffice to repeat the sort until it succeeds, when ap-
plied to ORAM, the sort parameter ¢ must be chosen to guarantee success with overwhelming
probability. In Goodrich’s presentation of the sort [46], the failure rate is determined exper-
imentally; it is not obvious from the proofs what ¢ is necessary to obtain a given acceptable
error rate on database sized n. While the paper does prove that the probability of failure
is negligible in ¢, which is sufficient for a construction existence proof, it is unclear what
parameters can be safely chosen for a practical implementation.

3.1.3 External Memory Sort

An external memory oblivious sort is provided by Goodrich et al. [47]. They use a modified
sorting network to make efficient use of local memory; the idea is to apply the k-way merge
sorting network introduced by Lee and Batcher [73]. This provides a promising result,
allowing a sort of s items, requiring O(slog,, s) network transfers, for local memory k. For
any constant d, and k = s*/¢, this provides a sort requiring an amount of network transfer
only linear in s. However, the constant factors are not considered.

3.2 Merge Sort

I now present an algorithm that performs a merge sort on an array of size s, with 2cy/s
local memory, in O(slog, s) time, without revealing any correlation between the old and
new permutations. The algorithm runs recursively on the remote array as described in
Procedure ObliviousMergeSort. The recursion depth is log, s, and each level of recursion
entails a single pass of size s across the entire array.
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The idea is to perform a merge sort with a fixed access pattern. A traditional merge
sort splits an array to be sorted into two, recursively sorts the subarrays, then merges the
two subarrays together. This last “merge” step performs the work: combining two sorted
subarrays together. Traditionally, the merge maintains two pointers: one at the head of
each array. It incrementally compares the values at the pointers, outputs the smaller, and
advances that one pointer. The insight here is that since we will use random sort keys, these
pointers will remain very close together. With high probability, in fact, they will deviate
only by O(y/s) (Theorem [4).

This means a fixed access pattern can merge any two arrays using a small local cache.
First sort the two subarrays (line [I) Fill each O(y/s)-sized buffer halfway full, reading from
the fronts of each array (line 2)). Now, read two more items (one from each subarray, line
and output two (according to the sort keys, line [4]).

The correctness of this algorithm depends on the uniformity of the starting permutation of
the items being sorted, as illustrated in Theorem |4l Its oblivious nature derives immediately
by construction:

Theorem 3. The Oblivious Sort algorithm is private: no more than a negligible amount of
information about the new permutation is leaked to a computationally bounded adversary.

Proof. (outline): The ordering of reads and writes in every instantiation of the scram-
ble is identical: observe that in the supplied pseudo-code for ObliviousMergeSort, the
readNextBlockFrom and writeNextBlockTo functions are called in the same pattern ev-
ery time, depending only on s, not the comparisons made on the output of HashLocation.

The semantic security properties of the symmetric encryption scheme guarantee that the
adversary cannot correlate any two blocks based on the encrypted content (the server cannot
determine whether ¢ is from ¢; or ¢»). Therefore, every instantiation of the scramble appears
identical to the server: it sees a fixed pattern of reads interspersed with a fixed pattern of
writes of unintelligible data. The specific fixed pattern is known beforehand to the server
(from the algorithm definition), and the content of the reads has no correlation to the content
of the writes since the blocks are re-encrypted with a semantically secure encryption scheme
at the client.

Therefore, in observing any iteration (or sequence of iterations) of the oblivious merge
sort, the (computationally bounded) adversary learns nothing. Moreover, the final permu-
tation is chosen from among all possible permutations. Since the access pattern is identical
when generating each of these permutations, the server has no ability to guess the resulting
permutation.

A small number of permutations will cause the algorithm to fail and output L, if the
queues overflow, but this absence of a failure reveals only a negligible amount of information
about the new permutation, since failure occurs with negligible probability, as shown next.

U

Theorem [4] proves that 2¢y/n memory is sufficient for the Oblivious Sort algorithm, with
high probability in c. I prove this by showing that all but a negligible portion of the possible
permutations encode walks that remain within +cy/n of the starting location. This is a
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/* ObliviousMergeSort: Recursively sort the server-stored array A on
HashLocation(a) in a manner such that the server learns nothing about the
permutation. A may be too big to fit entirely in client memory.

if A is size 1 then

| return A

end

s < size of A

A7 <« first half of A

As < second half of A

Aj + ObliviousMergeSort(A;)

Ag + ObliviousMergeSort(As)

B < New remote buffer with the same size as A

g1 <+ empty queue stored locally, to fit up to ¢/s items

g2 < empty queue stored locally, to fit up to ¢y/s items

/* Each queue may contain up to cy/s items; however |qi|+ |q2| < cv/s

for z = 1 tocy/s/2—1do
q1-enqueue(decrypt(readNextBlockFrom(A41)))
g2.enqueue(decrypt(readNextBlockFrom(A4s)))

end

/* At this point, each queue will have ¢y/s/2 — 1 blocks

for z = c¢\/s/2 to s/2 do

q1-enqueue(decrypt(readNextBlockFrom(A1)))

gz2.enqueue(decrypt(readNextBlockFrom(As)))

/* Now we’ve read 2 blocks; time to output 2 blocks

for i =1to 2 do

t1 < peek(q1);

t2 < peek(ga);

if HashLocation(t1) > HashLocation(tz) then

|t qi.dequeue()

else
|t <+ go.dequeue()
end
writeNextBlockTo(B, encryptWithNewNonce(t))
end
end
for z =1 to ¢y/s do

/* Now output the remaining c¢y/s items distributed between the queues
t1 < peek(q1);
t2 < peek(ga);
if t; # 0 and (t2 = 0 or HashLocation(t,) > HashLocation(ts)) then
|t qi.dequeue()
else
|t go.dequene()
end
writeNextBlockTo(B, encryptWithNewNonce(t))

end
return B

*/

*/

*/

*/

*/

Procedure ObliviousMergeSort(A)
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tighter bound on the required memory bound than what is achieved in Phases 1 and 3; and
I note that as an alternative proof, the random walk proof used in Phase 1 can be applied
here to achieve a looser bound.

I show now that queues of size c¢y/s are sufficient (with high probability) for random
sorting of an array of length s. That is, when selecting elements in a random order from
two arrays, the array sizes will likely remain close over time. The queue size can be modeled
intuitively as a one-dimensional random walk with s steps, with the additional property, since
selection is performed without replacement, that the further the deviation from balance, the
more likely each step is to return back towards balance.

The queue size at step j in any step of the merge sort algorithm is a probabilistic function
Q(j) defined iteratively as follows:

Q(0) = cy/5/2
QU)=QU—1)+5 Pr. 5-(Q( —1) —cv/s/2)/(s =)
QU)=QU—1)—3 Pr. 3+(QG—1)—cy/s/2)/(s—j)

On each step, we either dequeue an item from this queue or the other, symmetric queue
(not modeled here). If we dequeue an item from this queue, the queue size will decrease by
one; if not, it will remain the same. Additionally, once every two steps we enqueue one item
to the queue; my model captures this by enqueueing half an item on every step. This results
in stepping —i—% or —% (instead of +0 or —1) depending on whether we dequeue an item on
this step.

I show that with high probability, the queue size at any step along the walk will be greater
than zero, and less than 2@/3/7. The step function is chosen to select with equivalent
probability one remaining item from either array. Since the arrays are both size s/2, when
the arrays finally empty, we will have selected an equal number of items from each. Observe
that Q(s) = c\/S,TQ: as j approaches s, the “pressure” to tend Q(j) to c\/S,TQ increases.

This function is equivalent to pulling steps out of an urn without replacement, starting
with s/2 step-ups and s/2 step-downs in the urn. The further we deviate from an equivalent
number of each step, the more likely it is for the next step to bring the tally closer to
equivalent counts.

Let us re-frame the probabilistic function ) — c\/S,TQ as a random walk of length s,
starting and ending at 0, with d = Q(j) — ¢+/s/2, according to the following step function,

with step size %

1 d  (s—j—2d)

Plp) = 57523 = 569
1 d o (s—j+2d)
P(down) = §+s—j_ 20— )

Let us define a biased random walk to be a sequence of steps chosen according to the step
function defined above. I now show that all such biased walks are equally likely. Intuitively,
the bias in each step is exactly the amount necessary to choose equally from all the remaining
walks that end at 0.
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Lemma 1. All biased walks are all equally likely

Proof. At any position in the walk, 2 steps constituting an up followed by a down can be
replaced by a 2 steps constituting a down followed by an up to obtain an equally likely walk.
This property falls from the step function, (height d, step j, length s):

(s—j—2d) (s — (j+ 1)+ (2(d+ 1))
2(s — J) 2(s — (j + 1))

(s —j—2d)(s—j+2d)
45— j)s—j—1)

(s—j+2d) (s —(j+1)—(2(d - 1))
2(s — j) 2(s— (j + 1))

= Pr[down@yj,d|Prlup@j + 1,d — %]

1
Prlup@j, d|Pr{down@j +1,d + 7]

This shows that at any point in a walk the pair of steps up-down (UD) is as likely to exist
as the pair down-up (DU), independent of the rest of the walk. Thus, any such pairs can be
interchanged in any walk to find an equally likely walk. This covers all possible biased random
walks, showing they are all equally likely: UUUUDDDD=UUUDUDDD=UUDUDUDD, etc.

O

Let us define an unbiased random walk to be a random walk starting at 0, and defined

according to this following step function, with step size %:

PrlupQj,d] =
Pr[down@j, d] =

D[ =D =

Lemma 2. There is a one-to-one correspondence between the biased random walks of length
n and the unbiased random walks of length n that end at 0

Proof. Every biased random walk of length s can be mapped to a unique unbiased random
walk that has the same sequence of steps, ending at 0. Moreover, every unbiased random
walk of length s that ends at 0 can be mapped to a unique biased random walk that follows
the same sequence of steps. U

As shown by Feller in 1967 [31], there is a one-to-one correspondence between random
walks starting at position (0,0), reaching (j,d) at some j along the way, and ending at
A = (s,0), with the random walks that start at position (0,0) and end at A" = (s,2d).
Namely, for every walk that goes through (j,d) and eventually makes it to (0,0), there is
another walk that is equivalent until (7, d), at which point it begins mirroring the original
walk over y = d. This provides an easy way to compute the number of walks that go “out
of bounds”. This reflection principle is illustrated in Figure

Lemma 3. There are ( ) unbiased random walks from 0 to 0 that hit d on the way.

§+2d)
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Figure 3.1: Feller’s Reflection Principle [31]. Every one-dimensional walk of s steps that
starts and ends at 0, but reaches a distance d from the origin along the way, corresponds to
exactly one walk of length s that starts at 0 and ends at 2d.

This lemma is included here for completeness; it may be found in Feller’s book [31].

Proof. A walk of length s from (0, 0) to (s, 2d) consists of 4d more step-ups than step-downs
(step sizes are still %) Therefore, it must consist of 5 + 2d step-ups and § — 2d step-downs.
These steps can be in any order; therefore there are a total of (ﬁjz d) such walks.
2
The reflection principle shows that there are hence a total of (§j2 d) walks from (0,0) to
2
(s,0) that hit d somewhere on the way. O

(3/212(1)

(532)

Proof. Lemma[3shows that there are (§j2 ;) walks from (0,0) to (s,0) that hit d somewhere
2

on the way. Lemma 2] shows that since each of these unbiased random walks goes from (0, 0)

to (s,0), it constitutes a valid biased random walk as well. Therefore, there are ( N ) biased

s+2d
random walks that hit d.

Lemma [1] shows that all biased random walks are equally likely. Since there are (;2)

biased random walks total, a randomly chosen biased random walk hits d with probability

Lemma 4. A randomly selected biased random walk hits d with probability

(s /2j—2d)

(s72)

O

Our queue size function is a biased random walk from (0,0) to (0,s) (with height 0 on
the walk corresponding to size cy/s/2 on the queue). The queue overflows, if at any point,
the walk is above ¢y/s/2 (and “under-runs” if below —cy/s/2).

Lemma [4] shows that the chance a uniformly randomly selected biased walk hits d is
(yoroa) / (50) = (4o 0g)/(,5,)- By showing this quantity is negligible in ¢ when d = ¢4/s/2,

s/242d s/2 s/2—2d s/2
I now show that with high probability the queue will remain within bounds.
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We can upper-bound the value of ((/22)d) as follows: We have that

S

s/2

s s!
(5/2—2d) _ G2 GRd) (s/2)(s/2—1)...(s/2 —2d+ 1)
(;2) W('sﬂ)' (s/2+2d)(s/2+2d—1)...(s/2+1)
Since the function f(z) = ;% is increasing for a > 0, we conclude that

(8/28—2d) _ (s/2)(s/2-1)...(s/2-2d +1) <( 5/2 )Qd,

() G2T20)(/2+2d—1). . (s5/2+1) ~ \5/2+2d

For d = ¢\/s/2 we get:

Gpaaeyamd) _ <L>2m ) <1 ) 1 )20\@
R SR )
For s > 2, 1/\/8/72 < 1 and thus we obtain:
Efé%:g;l{gzgz_ < (]__ 1 ) 2c\/§7§
(s72) - s/2(1/(2¢) +1)
572(1/20)+1)\ 2¢/(1/(2e)+1)
1
— ((1 B \/3/—2(1/(20) + 1)) ) . (3.1)

We substitute m := 1/s/2(1/(2¢) + 1) to find that:

1
(1 R+ 1)

From we now conclude that

=(1—-1/mm<el.

) \/$/2(1/(2¢)+1)

(S”L v/2) < ¢m2/(1/e)+1)

(s72)

For ¢ >

Y

N[

(s/2—2i 5/2) e
SEENVIE <o
(5/2)

It remains to mention that in fact, for sufficiently large s, the value of 1/4/s/2 can be

arbitrarily small, which implies that for large s, the term e~2¢(//(29+1) can be replaced by
e~ 2e(1/(29+1/v/3/2) which can be made smaller than e=2(1/(29+9) for any § > 0 by choosing
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s sufficiently large. Therefore, the upper bound on the probability that a walk exceeds the
allowed bounds can in fact be made close to e, Tt follows that to get the probability of
a random walk of length s exceeding bounds +cy/s/2 smaller than 271 it is sufficient to
set s > 300 and ¢ > 6.

Theorem 4. With probability > 1 — 2e™¢, Oblivious Merge Sort queues never overflow or
empty early.

Proof. We have already established that the queue size is a biased random walk of length
s, offset by the constant c¢y/s. Therefore, the chance that a queue hits 2¢y/s is < e~
Symmetrically, the chance that a queue hits 0 is also < e™¢, so the chance that a queue goes
out of bounds during one instance of the merge sort phase is < 2e~¢. This is negligible for
a security parameter ¢, which is independent of s.

For sorting of level i, which contains < 4° items, the number of steps in the walk is
s < 4% < n. Following from the bounds derived above on symmetric walk overflow, with
probability > 1—2e~¢ the walk remains within +cy/n, and 2¢\/n < ¥ (n) memory suffices. [

In summary, the Oblivious Sort algorithm sorts all the data blocks on the server into
their final permutation, without revealing anything that could allow the server to correlate
the two permutations.

3.3 Merging Multiple Arrays: Oblivious Merge Scram-
ble

I now describe an algorithm that performs an oblivious scramble on an array of size m, with
cv/mlogm local memory, in O(mloglogm) time with high probability. This is based on the
algorithm I present in Section [3.2] which scrambles an array obliviously in time O(m logm)
by ways of a merge sort. When the application only requires a scramble, and not a complete
sort, the asymptotic complexity can be improved by merging multiple arrays at once.

Informally, the algorithm is still a merge sort, except a random number generator is
used in place of a comparison, and multiple arrays are merged simultaneously. The array is
recursively divided into subarrays, which are then scrambled together in batches. The time
complexity of the algorithm is better than merge sort since multiple subarrays are merged
together simultaneously. Randomly selecting from the remaining arrays avoids comparisons
among the leading items in each array, so it is not a comparison sort—allowing us improved
asymptotics.

The Oblivious Scramble Algorithm proceeds recursively as follows, starting with the
remote array split into subarrays of size s = 1, a security parameter ¢, and an array to
scramble of size m.

1. For subarrays sized s, allocate [y/m/s] buffers of size ¢y/slogm (requiring cy/mlogm
space total)
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2. Divide the m/s subarrays into batches of y/m/s subarrays to merge together.

3. For each of the \7% = /m/s batches:

e Obliviously merge the subarrays in this batch together into one new subarray of
size (s)\/m/s = y/ms, by performing the Oblivious Merge Step on the allocated
buffers. The Oblivious Merge Step requires cv/slogm local working memory for
each of the /m/s buffers, for a total of ¢/mlogm working memory, and operates

in O(y/ms) time.

4. In the end there are \/m/s subarrays of size y/ms. Recurse with this larger subarray
size.

One recursion of this algorithm requires a single pass across the level, costing O(4%) for
level i. Each pass brings the total number of subarrays from m/s to \/m/s, and we repeat
until there is one subarray left. After iteration p, the number of subarrays remaining will
be m!?". There will be 2 subarrays left when p = log,log, m. Since it takes log,log, m
passes to go from m to 2 subarrays, and each pass involves a single read and write of the
entire array, the total running time / communication complexity for running the oblivious
scramble on an array sized m is O(mloglogm).

I now describe the last remaining piece of the Oblivious Merge Scramble Algorithm, the
Merge Step.

3.3.1 Oblivious Merge Step

The Oblivious Merge Step, whose pseudo-code is included here, takes r arrays of size s, and
merges them randomly into a single array of size rs, preserving the ordering among the input
arrays in the output arrays: if an item a is before item b in original array ¢, it will also be
before b in the final array.

The permutation is chosen uniformly randomly out of all permutations that preserve the
ordering of the original input items. To ensure this, we will take rs steps, choosing an item
from the front of one of the r arrays at every step. The choice is biased since we choose each
item without replacement randomly from the remaining items. If a particular array has a
items left at step 7, it has a Ts‘”_j chance of being chosen at this step. The pseudo-code uses
the procedure RandomlyChooseASubarray for this purpose.

Implementation of such a random function is not quite trivial, so we also include its
description. Given a set of partially filled arrays the RandomlyChooseASubarray procedure
chooses, in O(1) expected time, using cry/s < cy/n local memory, one of the arrays such
that the probability of being chosen is proportional to the number of items remaining in the

array.
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B < New remote destination buffer size rs
t < size of local queues, 2c/slogm
for i = 1 to r do
¢; < empty queue stored locally, size t
for x = 1 to t/2 do
| Enqueue(g;, decrypt(readNextItemFrom(4;)))
end
end
/* At this point, each queue will have t/2 items
for z = t/2 to rs + t/2 do
if z <rsthen
for « = 1 tor do
| Enqueue(g;, decrypt(readNextItemFrom(4;)));
end
end
/* Now we’ve read r items; time to output r items
for i = 1 to r do
v < RandomlyChooseASubarray
x  dequeue(q,)
writeNextItemTo(B, encryptWithNewNonce(x))
end

end
return B

Procedure ObliviousMergeStep(A4, ... A4,)

26




RandomlyChooseASubarray Algorithm

This algorithm outputs a random permutation of the sequence of length sr consisting of r
values each repeated s times, i.e., a random permutation of 1°2%...7r2. All permutations are
chosen with equal likelihood. This algorithm requires O(cry/s) memory.

For first sr/2 selections, a table T of r numbers is used; each entry is initialized to s.
For the selection, a random number v is simply chosen from 1...sr. The candidate array
is [Z]. If v mod sr < TVi], decrement T'[i] and return ; else pick a new v. This allows us
to pick items without replacement, in expected O(1) time, with only r working memory (to
record the remaining items left in each array).

This will succeed in an average of 2 tries for the first & sr/3 choices. After this, we must
decrease the target range (and thus decrease the expected number of required repicks). If
the target number space is viewed as a dartboard with region size T'[i] proportional to s — i,
this can be viewed as cutting off an empty half of the dartboard, to double the probability of
hitting a region instead of an empty space. Importantly, this does not affect the odds that
the next number output will be i: it remains at T'[i]/ Y 7_, T[j].

To achieve this, let us change to pick the random number v from 1...sr/2, this time
choosing candidate array |22, repicking if v mod sr/2 > T'[i]. This halving of the target
range can be repeated in the future since the arrays are picked from with roughly equal
frequency; the discrepancy between any two arrays will never pass cy/s as shown in the
following theorem. Once the arrays are down near size ¢y/s, they can no longer be divided
into equal-sized arrays that are dense enough to successfully pick in a small number of tries.
However, at this point the remaining sequence will now fit in local memory: there are only
rcy/s numbers left to output. The table T' is now expanded into a list of numbers: each 7 is
repeated T'[i] times. A standard Fisher-Yates scramble is then performed, and the resulting

sequence output.

Analysis of the Oblivious Merge Scramble

The key to obliviousness is to perform the random array merging without affecting the actual
access pattern of reading from the server. In Section this is implemented for 2 arrays; I
now extend this to merge r arrays. By simply reading the input evenly at a fixed rate, and
outputting the items indicated by the random function, the uniform nature of the random
function will cause the output rates to be very similar with high probability.

In other words, we can maintain a series of caching queues that are fed at a certain rate.
According to a random function, we remove items from the queues. By the nature of the
random selection, with high probability the queues will never overflow from being dequeued
too slowly, nor empty out from being dequeued too quickly, as shown in Theorem

Now, to show that the Oblivious Merge Scramble produces output indistinguishable
from a uniformly randomly chosen permutation (from here on referred to as a “random
permutation”), we will start with a set of theorems proving that a single Oblivious Merge
Step outputs a random permutation of the contents of its input queues. We will break
this into three steps. First I show that choosing a random permutation is equivalent to
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selecting according to a random interleaving of the input queues (Theorem [5). Second, I
show that given random coin flips, the RandomlyChooseASubarray algorithm produces such
a random ordering of the input queues (Theorem [6). Theorem [7] shows the combination of
these procedures produces a random permutation of the elements of the input arrays.

Theorem [8 shows that these constructions can be combined to produce a uniform random
permutation of a single array. Finally, I show that the ability to distinguish the output
permutation from a random permutation reduces to the ability to distinguish these coin flips
from random (Theorem [9).

Theorem 5. Selection from a set of randomly permuted input queues, according to a random
interleaving of the input queues, produces a random permutation of all the elements of the
input queues. In particular, given input queues I ... I, of unique elements whose contents
have been randomly permuted, removal from the queues according to a random permutation
of the sequence 1111121221 pIIl = (the “interleaving”), produces a random permutation of all
the elements of Iy ... I,.

Proof. Since each output element belongs to a single (un-permuted) input queue, each output
permutation is generated by a unique set of input queue permutations and interleaving. The
reverse mapping from output to input is identified thusly: each input queue permutation is
obtained by taking the ordering in the output array of the elements belonging to the given
input array. The interleaving is obtained by taking the input queue identifier of each element
in the output array. It follows from this one-to-one mapping of all output permutations back
to the unique input that generates it, that all output permutations are possible.

Moreover, all possible input array permutations are independent and equally likely (by
definition). All possible interleavings are also equally likely (also by definition).

Because there is a one-to-one mapping from inputs to the outputs, all outputs are possible,
and all combinations of input permutations and interleavings are equally likely, it follows
that all output permutations are equally likely. O

I now show that we can build a random interleaving of the r subarrays by repeatedly re-
moving and outputting the head of one of the r subarrays selected randomly, with probability
weighted according to the number of elements left in each subarray. More specifically, we
show that the order of subarray selection, denoting subarray ¢ by the integer ¢, is a random
permutation of the sequence 1°2°...r° with all permutations equally likely.

Theorem 6. Choosing elements of a sequence S of rs integers 1 through s, with element
Si (for i from 0 through rs — 1) chosen according to the probability density function p(S; =
x) = (r— Z;;%(Sj = 2?1 :0))/(rs — i), results in a random permutation of the sequence
1525 .. .r%.

Proof. 1 show that all sequences are equally likely to be chosen this way. First, I show that
swapping any two consecutive elements in any given sequence S results in an equally likely
sequence.

Take consecutive positions ¢ and ¢ + 1 in a sequence S, with elements from S; = k and
Sit1 =1, where k # [. The chance P(S) of generating S using the incremental construction
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is poi—1P(S; = k|So..Si—1)P(Si+1 = 1]50..5:))Di+2,rs—1, Where pg,_1 is the probability of
choosing the portion of the sequence leading up to position 7, according to the incremental
definition. P(S; = k|Sp..S;—1) is the chance that a sequence starting as such will be followed
by k, and is obtained from the definition, (r — Z;:E(SJ = k71 :0))/(rs —i). Letting Ny
be the number of times the element k£ appears in the subsequence Sy..S;_1, this simplifies to
(r — Ng)/(rs — i). Likewise, P(S;y1 = l]So..5;) is seen to be (r — N;)/(rs — 1), letting N,
similarly be the number of times the element [ appears in the subsequence Sj..5;_1. Note
that [V; is also the number of times [ appears in Sj..5;, since S; # [. Let us define p;19,5-1 as
the product of the probabilities of each choice in the rest of the sequence, S;;5..5,s_1. This
allows us to express the likelihood of S as P(S) = po,;— ITT_SNZ L TT;NZ Dit2.rs—1-

Consider now the sequence S’ obtained by swapping positions ¢ and i+1. Since S{..S!_; =
So.-Si—1, the probability of obtaining S(..S/_; is still pg,—1. The probability that preﬁx
subsequence is to be followed by [ is now P(S. = [|S}..S/_;) = P(S! = 1|So..S;—1) = (r —
N;)(rs —i). The probability of choosing S, = k is P( o =1S8p..8)) = (r 2220(55- =
171:0))/(rs —i) = (r — N)(rs —i). Finally, we see that the choice of the elements at the
end of the sequence, 5] ,..S],_; is unaffected by the order of elements at S; and S;, ;. This
is because the choice of each element depends only on the number of times each element
precedes it, not the order of those elements. Thus, P(S’) = pg,— 17;SN21 TrstpHg rse1 = P(9).

Finally, observe that any permutation can be obtained by repeatedly swapping consec-
utive elements. Since we are equally likely to generate any two sequences that have only
swapped consecutive elements, we are equally likely to generate any permutation. O

Theorem 7. Running the Oblivious Merge Step on unbiased random coin flips and randomly
permuted input arrays generates a random permutation.

Proof. This follows from Theorems [5l and [6] and the definitions of the Oblivious Merge Step
and RandomlyChooseASubarray algorithms: the Oblivious Merge Step selects a random per-
mutation of input queues, according to an interleaving provided by RandomlyChooseASub-
array. Theorem [6] shows this interleaving to be random, and Theorem [5 shows this output
to be a random permutation. O

Theorem 8. Given unbiased random coin flips, the Oblivious Merge Scramble produces a
permutation selected with equal probability from all possible permutations of inputs.

Proof. The scramble consists of a series of array merge-scrambles, starting with arrays of
size 1 on the first merge and resulting in an array of size n after the last merge.

Let us use an inductive argument on the merge step j.

As a base case, the inputs to the first merge step (7 = 1) are arrays of size 1. These
arrays are already in the only possible permutation, so by definition, this is a permutation
selected uniformly randomly from all possible permutations.

Assume as the inductive hypothesis that the input to step j is a set of random permuta-
tions of the input arrays.

The Oblivious Merge Scramble produces as the output of step j (the input to step j+ 1)
the set (referred to as a “batch of subarrays” in the Oblivious Merge Scramble definition)
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of outputs of Oblivious Merge Step, which is run multiple times across a partition of the
output arrays from step j. By Theorem [7| each Oblivious Merge Step instance outputs a
permutation of the elements of those input arrays selected uniformly randomly. Thus the
input to step 7 + 1 is a set of randomly permuted arrays.

By induction, the output of any merge step past j = 1 is a set of randomly permuted
arrays. In particular, the output the final merge step (j = loglogn), which is a set containing
a single element, consists of a randomly permuted array. O

Now I show that replacement of the source of randomness can be safely replaced with a
PRNG source indistinguishable from random. That is, I will show that an adversary with an
advantage € at distinguishing the output array from a random permutation of the contents of
the input arrays also has an advantage € at distinguishing the PRNG output from random.

Theorem 9. (Replacement of the random source with a source indistinguishable from ran-
dom.) The advantage of an adversary at distinguishing the output of Oblivious Merge Scram-
ble from a uniformly randomly chosen permutation of the elements in the Merge Scramble
input is equal to the advantage of the adversary at distinguishing the coin flips used in Merge
Scramble from random.

Proof. An adversary B, given a source of coin flips, can distinguish it from uniform random
as such: simulate the Merge step procedure using the set of coin flips; run A on the output.
The advantage of adversary B at distinguishing the set of coin flips from uniform random
will equal to the advantage of A at distinguishing the merge step output from random.

Take an algorithm A with advantage € at distinguishing the Oblivious Scramble output
from a true random permutation. This allows construction of an algorithm B that distin-
guishes the output of the employed PRNG from random, as follows. Algorithm B is given
a sequence of bits S, with the goal of outputting 0 if it believes they are random, and 1 if
it believes they are from the PRNG. Algorithm B takes the input and runs the Oblivious
Merge using the bit sequence S, to produce a permuted array P. It then returns A(P).

By definition, the probability that A(P) = 1 for a randomly permuted array P is at least
¢ less than the probability that A(P) = 1 for an array constructed by the Oblivious Merge
Step using bits from the PRNG. Since running the Oblivious Merge Step on random coin
flips generates a random permutation, as shown in Theorem 7] the probability that A(P) =1
when S is a random set of bits is at least € greater than when S is chosen by the PRNG.

The advantage of the algorithm at distinguishing the permutation from random thus
reduces to its advantage at distinguishing the PRNG output from random. U

I now show correctness of the probabilistic Oblivious Merge Step. As described above,
the Merge Step starts with a warm up phase (input but no output) in which each of r
local queues are half-filled with elements from the corresponding input array. Next, there
is a series of iterations, which each read 1 element from each of the r arrays, and output
r elements, chosen randomly from the input arrays, according to the random permutation.
Finally, in a “cool down” phase (output but no input), the remaining elements are emptied
out of the queues, again according to the permutation. The warm up and cool down phases
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have no chance of overflowing or prematurely emptying the queues; I just need to show that
the queues stay within their bounds in the main phase.

First consider the notion of a zero-sum asymmetric random walk. Given a list of scalars
that sum to 0, in the form of sp scalars of value 1 and s(1 — p) scalars of value —ﬁ, a zZero-
sum asymmetric random walk consists of the sequence of steps described by a randomly
selected ordering of those scalars. We will show that the queue sizes over an execution of
the ObliviousMergeStep algorithm corresponds to a zero-sum asymmetric random walk, and
moreover, that the overwhelming majority of random orderings result in a walk that remains
within ¢)(n). Let us first build probabilistic bounds on the extents of a zero-sum asymmetric

random walk.

Probabilistic bounds on a zero-sum asymmetric random walk

Here we are interested in the probability that a walk of length s, starting at 0, and containing
sp +1-steps and s(1 —p) —ﬁ—steps, exceeds bounds —cy/pslog s or cy/pslogs. I show that
for any s > 1, this probability is negligible in c.

First, I show that we can upper-bound the probability that a walk drawn from a hy-
pergeometric distribution (i.e. containing the fixed number of up-steps and down-steps)
exceeds the given bounds by the probability that a walk drawn from the associated binomial
distribution exceeds some bounds close to the given ones.

Definition 3. We will say that a sequence (aq,...,as) € R® exceeds u > 0, if for some
ke{l,...sh |3r  al >

To prove the following two statements, the Chernoff bound [52] is used, which we briefly
recall.

Theorem 10 (Chernoff bound). For i.i.d. random variables X; € {0,1} with E(X;) = p
and € > 0,
1 s—1
Prilp—-S"X,

Lemma 5. LetY := (Y1,...,Y;) whereY;’s are i.i.d. random variables such that Py,(1) = p
and Py, (—p/(1 —p)) =1 —p. Let us assume that a sequence sampled uniformly from the set
of sequences W of length s, containing sp +1-items and s(1 — p) —p/(1 — p)-items, exceeds
u with probability k. Then a sequence drawn from Py exceeds u — d+/s with probability at

least /2 for § > 24/log(4)p.

Proof. Note that sp € N and s(1 — p) € N. Let U denote the set of sequences from W
exceeding u. First, notice that all sequences drawn from Py and having s(p + d) positive
items are equally likely (each of them is just a permutation of another one). Furthermore,
any such sequence can be obtained from some sequence in W, by replacing ds negative items
with positive items (if d > 0) or by replacing ds positive items by negative items (if d < 0).

Let us analyze the first case in detail. The transformation can be done in (S(Z;p)) ways,

62
> e] < 2e %,
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since a sequence from W contains exactly s(1 — p) negative items. On the other hand, each
sequence having (p+d)s positive items can be obtained from at most ((p td)s ) sequences from
W. Therefore, replacing ds positive items by negative items in all sequences from U, maps
these sequences into at least |U |(5(1 P ))/ ((p;j)s) sequences having (p + d)s positive items.
Furthermore, any such sequence exceeds u — ds(1 4+ p/(1 —p)). Let a set of these sequences
be denoted by U;. Let W, denote the set of all sequences having (p + d)s positive items.

Since
Wil = ()"
’ (S(p + d)) |
we obtain ) )
Wil _ (ora) _s(=p)...(s0—p=d)+1) _ (")
W) () s(p+d)...(sp+1) (D)
Consequently,
Wil _ (s(1=0)) , ((p+d)s _ lhd
IW| ds ds — U’
yielding
s
L
For d < 0 we get an analogous result. Therefore, we can write:
6v/s
PI[Y exceeds (u — 5\/5)] >Pr|Y e U uj/(s(1+p/(1_p)))
Jj==0s
NG
= Y PrY € Wytuspa-my) - PrlY € Uyjaipa-mlY € Wistsarp/a-m)]
Jj==0s
ENE ,
(6v35/9)? 2
> kY PrlY € Wisuepa-pn] 2+ (1 —2e ) =K (1 = 26‘31’) > K[2,
j=—03

(52
since according to the assumption for §, 2e” % < % To conclude that for each j, Pr[Y €

U 1(s(11p/(1—p) Y € Wi /(s(14p/(1—p)))) = K, we will use the fact that all walks having the same
number of steps up occur with the same probability. Inequality

55 -
> PrlY € Wysaap/a—pyl = 1 -2
j=—06/s
follows from the Chernoff bound. O

Now we are ready to formulate and prove the desired statement.
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Theorem 11. Let p < % Let W be a random variable distributed uniformly on the set of all
walks W of length s, starting at 0, and containing sp +1-steps and s(1—p) steps of —p/(1—p).
For such a walk w, let f(w) =1 if and only if w exceeds c\/pslogs. Let Fy = f(W). Then

_ c2 log s(lfp)2

for each s > 1, Pp, (1) < 4se”— 16 which is negligible for ¢ > 4,/log(4)/+/log s.

Proof. For a walk y of length s, starting at 0, and containing +1 and —p/(1 — p) steps, let
f'(y) = 1if and only if y exceeds cy/pslogs/2. Again, let Y = (Y7,...,Y;) where Yj’s are
iid. random variables with Py (1) = p and Py,(—p/(1 —p)) = 1 —p. Let F} = f'(Y).
Lemma [5] then implies that for ¢y/logs > 44/log(4),

We will now bound Py (1), and show that it is negligible in c.

To prove the statement, we use the Chernoff bound and the union bound. For j € [s], let
X, € {0,1} be ii.d. random variables with E(X;) = p. Random variables Z; := l%p iT 15
then correspond to the steps of a random walk described in the statement. Let u > 0. We

get 3770 Z; > u if and only if

1 — 1-—
-SX s+ U=p) x4 el=p)
5= s
Analogously, we get Zj;(l] Z; < —u if and only if
u(l —p)

1 s—1

~Y X <E(X;) - ———.
S £ S
7=0

According to the Chernoff bound,

| u(1 —p)] <9 _w?(-p)?

1

P - - g X ips
1" [p s =" S =

J=1

yielding
12 _w2(1-p)?
qs :=Pr | |- Zil > u| <2 s
s
i=1

where g, denotes the probability that a random walk of length s exceeds either v or —u at
the last step. Let p, denote the probability that a random walk of length s exceeds either u
or —u at any step (i.e. exceeds u according to Definition [3]). By applying the union bound,
we get



_u2(1-p)?
Since ¢(s) :=2e”~ %= is an increasing function, we can write:

—_

o
W2(1-p)?

<3 g < ase (3.3)
J
Therefore, p is negligible if u > ¢v/pslogs/2 (for ¢ > 44/log(4)//log s).

It follows that the probability that a walk drawn from Py, exceeds cy/pslog s with prob-
ability 2ps, is also negligible. O

Il
o

Theorem 12. The Oblivious Merge Step succeeds, with high probability: for any s such that
1 < s < mJ/2, the chance that the queue buffers sized cv/slogm overflow or under-run is
negligible w.r.t. the security parameter c.

Proof. Each instance of the Oblivious Merge Step reads from the set of r = y/m/s input
arrays sized for some 1 < s < m/2 in a random order. This order is chosen according to a
random permutation of 1°2%...r% as shown in Theorem [6l The walk is length rs = /ms.
The size versus time of any array in the merge step is a walk chosen according to a random
permutation of s (+1)-steps and s(r — 1) steps sized (—(1 —r)/r).

Setting p = 1/r = 1/y/ms and z = rs = \/ms, Theorem [11]shows that the chance of such
a walk exceeding a bound of +¢v/slog+/ms is negligible in ¢. Since s < m, cy/slog/ms <
cv/slogm, and the buffers sized cy/slogm suffice. O

Theorem 13. Any advantage of the adversary (server) at deciding any function of the
permutation output by Oblivious Merge Scramble on input of a publicly known size, gained by
learning the sequence of reads and write tuples of the form (“read” or “write” location,value),
translates into a violation of the semantic security of the encryption.

Proof. The sequence of locations read and written by the oblivious scramble defined in
Algorithm [ObliviousMergeStep|is deterministic for a given input array size and independent
of the permutation being performed. The encrypted blocks are all equivalently sized, and
value is always a fresh output of a semantically secure encryption algorithm.

Any knowledge gained about the permutation from the encrypted values directly implies
the server’s ability to distinguish between or correlate different instances of encrypted equally
sized data values. This violates the semantic security of the encryption algorithm. O
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Chapter 4

An Applied Approach to Existing
ORAMs

In this chapter I introduce a technique speeding up Oblivious RAM by an order of magnitude.
In the presence of a small amount of temporary memory (enough to store O(y/nlogn) items
and IDs, where n is the number of items in the database), we will achieve access pattern
privacy with computational complexity of O(log® n) per query (as compared to e.g., O(log® n)
for the traditional Oblivious RAM).

I achieve these novel results by applying the probabilistic-minded insights presented in
Chapter[3/to Oblivious RAM, allowing me to significantly improve its asymptotic complexity.
Not only do I replace the sorting networks with my fast Oblivious Merge Sort, but I show
how to use related techniques to avoid paying for the costly shuffle of O(nlogn) fake items.

This results in a protocol crossing the boundary between theory and practice and becom-
ing generally applicable for access pattern privacy. I show that on off-the-shelf hardware,
large data sets can be obliviously queried, orders of magnitude faster than in existing work.

4.1 A Solution

My solution deploys new insights based on probabilistic analyses of data shuffling in ORAM
allowing a significant improvement of its asymptotic complexity. These results can be applied
under the assumption that clients can afford a small amount (¢)(n) = 4cy/nlogn blocks,
where ¢ is a constant) of temporary working memory.

For simplicity, this chapter assumes a curious but honest provider. Among other things,
the next chapter shows how to remove this assumption.

4.1.1 Additional Client-side Working Memory

Simply adding memory to ORAM in a straightforward manner does not significantly improve
its complexity. Consider that there are two stages where additional memory can be deployed.
First, the top levels could be stored exclusively on the client, allowing the bypassing of all
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reads and writes to the top levels, as well as the re-shuffling of these levels. Since there are
log, n levels, with sizes (number of buckets) 4° for ¢ from 1 to log, n, the blocks belonging to
the first log,(¢(n)) = log,(4cv/nlogn) = log, 4c + 1 log,n + 3 log, logn levels can fit in this
memory. This however, would only eliminate slightly more than a constant fraction of the
log, n levels, leaving the most expensive levels operating as before.

Second, as indicated by Goldreich and Ostrovsky [41], additional client-side memory can
be deployed in the sorting network used in the level reshuffie. The sorting network is the
primitive that performs all the level reordering, requiring O(nlogn) time for the client to
obliviously sort data on the server (with no client memory). Then, in the presence of ad-
ditional memory, the normal sorting network running time can be improved by performing
comparisons in batches on the client. However, performing batch comparisons with a lim-
ited amount of memory does not greatly improve the complexity of the sorting network.
Moreover, no amount of memory can cause the sorting network to do a comparison sort (as
required in Oblivious RAM) in the standard computational complexity model better than
Q(nlogn) [25]. This still results in overall amortized overhead of Q(log®n). !

An Approach. I propose to tackle the complexity of the most time-consuming phase of
ORAM, the level reorder step. We shall take advantage of the consistent nature of uniform
random permutations to perform an oblivious scramble with a low complexity and little client
memory. The intuition is that given two halves of an array consisting of uniformly randomly
permuted sequence of items, the items will be distributed between the halves almost evenly.
That is, if we pick the permuted items in order, counting the number of times each array
half is accessed, the counts for each array half remain close for the entire sequence, with high
probability.

This allows us to implement a novel merge sort that hides the order in which items
are being pulled from each half. Once the two array halves are each sorted and stored on
the server, we can combine them into a sorted whole by reading from each half into the
client buffer, then outputting them in sorted order without revealing anything about the
permutation. By the uniform nature of the random permutation, for arrays of size n, I show
that the running tally of picks from each array half will never differ by more than (n),
with high probability in the security parameter c¢. This means that we can preset a read
pattern from the server without knowing the permutation, and still successfully perform the
permutation! The pattern of accesses between the two array halves will deviate slightly, but
with high probability they will fall within the window of 1(n) from the fixed pattern.

This oblivious merge sort is the key primitive that allows us to implement access pattern
privacy with O(log®(n)) overhead. We will use it to implement a random scramble, as well
as to remove the fake blocks that are stored in each level. Being able to do both of those
steps efficiently, we can then replace the oblivious permutation used in ORAM with a more
efficient version.

Recall that buckets in ORAM are sized A logn, where ) is a security parameter chosen to

!Considering cost in other models, besides asymptotic communication / computational overhead, however,
can be useful, since the cost of making Q(nlogn) numerical comparisons is typically smaller than the Q(n)
required network transfer.
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reduce the possibility of a bucket overflow due to hash function collisions—representing an
access pattern leak—to < e™*. See the balls and bins result used in [14] for a precise relation
between the overflow probability and .

From here on, we will be concerned mainly with the process of re-ordering a level, since the
rest of my algorithm is unchanged from ORAM. A level re-ordering entails taking the entire
contents of level 7, consisting of 4 buckets of size Xlogn, containing a total number of real
blocks between 4°~! and 4%, with the remainder filled with fake blocks, and rearranging them
to the new permutation obliviously—without revealing anything about the new permutation
to the server.

4.1.2 Strawman: Client with n Blocks of Memory

Before describing the main result, let us informally analyze a strawman algorithm that
achieves my desired time complexity, in the presence of enough client-sided memory to fit
the entire database (n blocks).

Observe that if the client has n blocks of temporary memory, it can perform a reorder
of level 7 in only O(4%logn) steps, in the following manner. By reading the entire level into
the temporary memory, throwing out the fake blocks as they are encountered, it can store
all 4° blocks locally. This requires processing 4°Xlogn blocks (4° real ones, and the rest
fakes) It then performs a comparison sort on the local memory (which is hence done without
revealing the new permutation to the server) to permute these blocks to their new location
at a computational cost of O(4%log,(4%)) = O(i4%). The blocks are then all re-encrypted with
new nonces for a cost of O(4%) (so the server is unable to link old to new blocks). Copying
this data back to the server, while inserting fakes to fill the rest of the buckets, requires
writing another 4°Xlogn blocks to the server, for a cost of O(4'logn) . The total cost of
reordering is O(4'(i +logn)) = O(4*logn).

Since each level i overflows into level 7 + 1 once every 4% accesses, level i + 1 must be
reordered at each such occurrence. As there are log, n levels total, the amortized compu-
tational cost per query of this level reordering approach, across all levels, can therefore be
approximated by

logy n log, n

Z O#'logn) Z O(logn) = O(log®n)

47, T Li-1
=1

This offline level reordering cost must be pald in addition to the online query cost to scan
a bucket at each level. This part of the algorithm is equivalent to ORAM. Since the buckets
have size Alogn, the online cost of scanning log, n buckets is O(log®n). Thus the average
cost per query, including both online cost and amortized offline cost, is O(log2 n).

In summary, in the presence of O(n) client memory the amortized running time for
ORAM can be cut down from O(log®n) to O(log?n). Of course, assuming that the client
has n blocks of local working memory is not necessarily practical and could even invalidate
the entire cost proposition of server-hosted data. Thus little has been gained so far.
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Figure 4.1: Solution Overview. Building a new level consists of obliviously removing fakes
from the old levels, obliviously permuting, and obliviously adding new fakes back (to provide
uniform bucket sizes).

4.1.3 Overview: Client with only (n) Blocks of Memory

I will now describe an algorithm for level re-ordering with identical time complexity, but
requiring only t(n) = 4cy/nlogn blocks of local working memory from the client. The
client’s reordering of level i is divided into Phases (refer to Figure [4.1). We now overview
these phases and then discuss details.

1. Removing Fakes. Copy the 4° original data blocks at level i to a new remote
buffer (on the server), obliviously removing the (Alogn — 1)4° fake blocks that are
interposed. Care must be taken to prevent revealing which blocks are the fakes—thus
copying will also entail their re-encryption. This decreases the size of the working
set from 4°Alogn to 4° if the level is full, or to $4°, $4°, or 347 for the first, second,
and third reorderings of this iteration of level i. Let us assume we are dealing with a
full level (fourth reordering) to make the remainder of this description simpler; earlier
reorderings proceed equivalently but with slightly lesser time and space requirements.
The computational complexity of this phase is O(4'logn). (see Section [4.1.4

2. Oblivious Merge Sort. Obliviously merge sort the working set in the remote
buffer, placing blocks into their final permutation according to the new hash function
for this level. Perform the merge sort in such a way that the server can build no
correlation between the original arrangement of blocks and the new permutation. The
computational complexity of this phase is O(4'logn). (see Section [4.1.5

3. Add Fakes. Copy the 4! blocks, which were permuted by Phase 2 into their correct
order, to the final remote storage area for level i. They are not in buckets yet, so
we build buckets, obliviously adding in the 4'(Alogn — 1) fake blocks necessary to
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guarantee all buckets have the same size. The computational complexity of this phase
is O(4'logn). (see Section [4.1.6

The above algorithm reorders level 4 into the new permutation, in time O(4°logn). There-
fore the derivation of the amortized overhead is equivalent to the derivation performed for
the strawman algorithm, leading to an amortized overhead of O(log®n) per query. I now
show how to efficiently implement each phase, using only ¢ (n) local memory.

4.1.4 Phase 1: Remove Fakes

Fake blocks can be removed from level 7 in a single pass, without revealing them, by copying
into a temporary buffer that hides the correspondence between read blocks and output blocks
(refer to the illustration in Figure[4.2land provided pseudo-code for Procedure RemoveFakes).
The client scans the level, storing the real blocks into a local queue and tossing the fake
blocks. Once the queue is expected to be half full, the client starts writing blocks from the
queue (while also continuing the scan), at a rate corresponding to the overall ratio of real
to fake blocks. The goal is to keep the queue about half full until the end. (The server can
observe the total number of fake and real blocks in a particular level, which is independent of
the data access pattern.) Assuming the temporary queue never overflows or empties entirely
until the end, the exact pattern of reads and writes observed by the server is dependent
only on the number of blocks, and the ratio of fakes. The server learns nothing of which are
the fake blocks by observing the fake removal scan. I show in Theorem [14] that, with high
probability, a queue of size 1(n) will not overflow or empty out.

This phase requires time linear to the size of the level being read. For level ¢, which
contains 4° buckets of size Alogn, the running time is O(4'logn).

Since the location of real blocks is determined by a secure hash function on the unique
block index, the distribution of the blocks (and fakes) is indistinguishable from the case
where each real block is assigned a bucket, chosen independently and uniformly at random
from the set of all buckets on the actual level.

Theorem 14. The probability the Remove Fakes queue overflows or empties early is negli-
gible in c. ILe., for NMlogn > 4 and ¢ > 4\/log(4)/+v/1og s, the probability of failure due to
1

2

overflow or underflow is < 2e~“ 51, where Alogn denotes the bucket size.

Proof. Using balls and bins analysis to bound the acceptable probability of a bucket overflow
to p’ (given n balls and n bins), we take A = max{e, #ﬁ@gm}' Because this probability
derives from a balls and bins result, note that A > n/logn provides an overflow probability
of exactly 0 (since we are only placing n items into bins sized Alogn), so it is safe to assume
A <n/logn < n.

First, observe that the real items are positioned according to a uniform random distribu-
tion among the fake items. Since a secure hash function builds a uniform random distribution

of real items in buckets (each real item is equally and independently likely to end up in any
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/* RemoveFakes: Scan all items at level 7 on the server, and write them
back excluding the fake ones. Use a local buffer to hide which were
the fake ones. */

q < empty queue stored locally, with room for up to ¥(n) elements

r < ratio total blocks to real blocks (Alog(n))

/* There are 4' real items and (r —1)*4’ fakes at this level. */

y < 0 /* Number of blocks output thus far */

forz=1tor*4"+rx(n)/2 do

if © <rx4 then
/* Read one item on every iteration (until all are read) x/
t < decrypt(readNextBlockFromLevel());
if tis a real block then

| q.enqueue(t)
end

end

if y<az/r—1(n)/2 then
/* Output one real item every r iterations, starting once the queue

is expected to be about half full. x/
y<—y+1
t < g.dequeue()
writeNextBlockToRemoteBuffer(encrypt(t))
end

end

Procedure RemoveFakes(i)

40




. Data Item
[ ] Fake “bucket filler”

Large remote buffer
(no privacy)

Encrypt items

— | IEEEm

Small local buffer

Discard (read / write privacy)

Fakes

Download
Bucket

Figure 4.2: Reshuffie Phase 1: Remove fakes. In a single pass, the client obliviously removes
all the fake items from remotely stored buckets, cutting the sort data size by a factor of
Alogn. The total number of fakes is public, but the location of the fakes is secret.

bucket), the fake items are also distributed uniformly randomly; that is, the permutation of
real and fake items is chosen with equal probability from all possible permutations.?

Take r to be our bucket size, Alogn. Disregarding for now the first and last r¢(4")/2
iterations, which are used to prime the queue at the beginning and empty it at the end, the
queue size in the RemoveFakes algorithm can be modeled by a zero-sum asymmetric random
walk, according to this distribution of fake and real items. On the iterations where a real
item is encountered, the queue size increases by 1 (due to the queue append command).
Once every r iterations, the queue size decreases by 1.

The queue is easier to model if we assume that instead of decreasing in size by 1 once
every r iterations, the decrease is amortized over the r iterations. This idealized queue size
differs by at most 1 at any point from the actual queue size. Thus, there are 4° iterations in
which the queue size increases by 1, and in all iterations, the queue size decreases by 1/r.
This is represented by a walk that increases by 1 — 1/r in 4° steps and decreases by 1/r in
(r — 1)4° steps. On any particular execution, the ordering of these steps is chosen uniformly
randomly from the set of all possible orderings.

Theorem states that zero-sum asymmetric random walk containing sp steps sized
+1 and s(1 — p) steps sized —p/(1 — p) remains within 4cy/pslogs with high probability

2The presence of hash collisions (and buckets to resolve these collisions) creates a potential deviation
from this idealized uniform distribution. This is resolved if we ensure all items in a bucket are stored in a
random permutation. This requirement is unnecessary in practice because our idealized queue size remains
within +Alogn of the actual queue size, even without the requirement of individual bucket contents being
randomly permuted. This is because the buckets are of size Alogn.
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in c. Specifying s = r4’, and p = 1/r proves that that a walk containing 4' steps sized
1 and 74(r — 1/r) = (r — 1)4° steps sized —1/r/(1 — 1/r) = —1/(r — 1) remains within
+cy/(1/r)(rd?) log(rd’) = £c/(4%) log(rd?) with high probability in c.

In order to apply this result, we scale the step size down to (1 — 1/r) on the up-step,
multiplying by 1 — 1/r. This gives us 4' step-ups of size 1 — 1/r, and (r — 1)4’ step-downs

of size:
1 ] y 1 r—1\ 1
r—1 r)  r—1 r o

Thus, a random walk containing 4° steps sized 1 — 1/r and (r — 1)4° steps sized 1/r
remains within £(1 — 1/7)cy/(4%) log(r4?) with high probability in c.

The largest number of real items a level can possibly contain, for a database sized n, is
n items. On the bottom level, where i = log, n, 4° = n (recall that a level may have from
4= to 4% items during the shuffle; we consider the maximum 4! items here). On every other
level i, 4 < n. Thus, since 4° < n, and with r = Xlogn, with high probability, the random
walk for level ¢ remains under

1 . .
(1 — =)ey/(41) log(r4t) < cy/nlog(nXlogn) = cv/ny/logn + loglogn + log A
r

< cv/ny/3(logn) < 2cy/nlogn = 1(n)/2.

To apply the upper bound on this probability derived in Theorem [11] we substitute
s =nAlogn and p = 1/Alogn.

For ¢ > 44/log(4)/+/log(n\logn), We obtain that the probability that a walk con-
sisting of n +1-steps and nAlogn — n steps of -1/(Alogn — 1) will overflow bounds of

cy/nlog(nAlgn) < (n)/2 with probability

2 log(/\nlogn)(lfﬁgn)2 ‘22(17@)2

< 4(Anlogn)e” 16 s Ta—

which decreases in n. For, e.g., Alogn > 4, this quantity is less than 2e=<"1 .

An equivalent symmetric argument holds for the lower bound on the random walk. I
have shown that with high probability in ¢, the walk representing the queue size never
exceeds +1(n)/2. The actual queue size must never be negative, of course, and we solve this
apparent discrepancy using the first and last 7 (n)/2 steps of the walk. In particular, items
are never removed from the queue during the first 7¢)(n)/2 iterations. This has the effect of
increasing the number of items in the queue in relation to the model walk by (1/7)1(n)/2
each iteration. Thus, past the beginning of the walk, and until the cleanup phase at the end,
the actual queue size contains exactly ¢(n)/2 items more than the model walk. Thus, since
the model walk remains within £ (n)/2, accounting for this difference, the actual queue size
remains between 0 and (n).

I just need to show now that the queue size is also within bounds in the beginning and
ending phases. In the beginning, observe that an “underflow” is impossible since we are
not removing items in this phase. Moreover, since the model walk remains below t(n)/2,

42



and since our actual queue size is at any point always x more than the model walk, for
some 0 < z < 9(n)/2, our actual queue size in the beginning is below t(n). Finally, in
the ending phase (the last r¢(n)/2 iterations), we are past the end of the walk since we are
no longer reading items from the server. The job here is simply to empty out the queue,
which contains exactly ¢(n) at the end of the walk, since the model walk ends at 0. Thus,

overflow /underflow does not occur here either.
U

To summarize, Phase 1 copies all of the real blocks out of level i, into a new remote
(server-side) storage buffer that only contains real blocks. In copying, a small local (client-
side) buffer is used to avoid leaking which blocks were fake. This is possible since the fake
blocks are evenly distributed throughout the level.

4.1.5 Phase 2: Oblivious Merge Sort

An oblivious merge sort, as described in the previous chapter, is performed, sorting items by
the new keyed hash of its item ID. This obliviously puts the level items into a new, random,
permutation, according to the new hash function for this level.

4.1.6 Phase 3: Add Fakes

In the final phase, the permuted blocks are added back to server-hosted buckets where they
will be located by the next iteration of the secure hash function. At the same time, fake
blocks are added to make all buckets mutually indistinguishable. This is the exact inverse of
Phase 1. Pseudo-code is provided for Procedure AddFakesToLevel; an illustration is provided
in Figure

For correctness I must also show here that the buckets of size A logn will not overflow. It
is easy to see that if s blocks are randomly thrown into s buckets, the fullest bucket has more
than ¢ blocks with probability at most 5. This follows from the fact that each bucket gets
at least ¢ blocks with probability at most (i) é < % and the union bound. Using Stirling’s
approximation of t! & e*'°e(®~ it follows that for t = Alog s, the probability that each bucket
gets at most ¢ blocks is therefore at least 1 — (s/t!) ~ 1 — s~A(oglogstloe(N)  If we fix the

probability of bucket-overflow to be at most p/, then for a database of size n (which is the size
of the lowest pyramid level), Alog n-sized buckets are sufficient for A = max{e, #ﬁM}.
For all practical purposes, A can be considered a constant once p’ is fixed. For example, for
a reasonable p’ = 27100 if n > 2 (more than 16384 blocks) \ = e.

When blocks are placed into the buckets on higher levels, having less than n buckets,
the probability of bucket-overflow is upper-bounded by the probability that buckets on the
lowest level overflow. In the event that an overflow ever does occur, the original ORAM [41]
prescribes a level re-order abort and restart; the expected time complexity of that algorithm is
not affected. However, notice that by conditioning on the fact that no bucket ever overflows,
we differentiate the distribution of bucket assignments from the truly uniform one. Since the
original ORAM algorithm prescribes to randomize the pyramid traversal once the desired
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/* AddFakesToLevel: Scan all items in array A on the server, which are
sorted by the bucket they belong in, and write them to level ¢, adding
fakes to make equal-sized buckets. Use a local buffer to hide which
are the fake ones. x/

q < empty queue stored locally, with room for up to ¥ (n) elements

r < ratio total blocks to real blocks (Alog(n))

y <— 0 /*x Number of blocks read so far */

b < 0 /* Current bucket number */

q' < empty queue stored locally, with room for r elements

forz =1 tor«4 +rx(n)/2 do

if y<az/r andy < 4’ then

/* Input one real item every r iteratioms. */

y<—y+1

g.enqueue(decrypt(readNextBlock(A)));

end

f z>rxy(n)/2 then

/* Add one item to the bucket every iteration, real if there is one
waiting for this bucket, fake otherwise (starting once the queue
is about half full) x/

t < peek(q)

if BucketNumber(t) = b then

‘ ¢’ .enqueue(encrypt WithNewNonce(q.dequeue(),t))

o

else
| ¢ .enqueue(encryptWithNewNonce(fake))

end

if b<az/r—rx1(n)/2 then
/* Output one bucket every r iteratioms. */
writeBucket ToLevel(q’ )
b« b+1
empty(q')

end

end

end

Procedure AddFakesToLevel(A,i)
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Figure 4.3: Reshuffle Phase 3: Add fakes. Analogously to Phase 1, the client adds fake items
in a single pass. This makes the buckets equivalently sized, despite collisions in the hash
function that determines item locations.

block is found, this can potentially become a privacy leak. Hence, we need to ensure that
throughout the whole program execution, the need for restarting a level re-order happens
with sufficiently low probability. If the probability of bucket-overflow for one level-reorder
step is at most p’, then the union bound yields the probability of level re-order restart
throughout the whole execution of an ORAM program (query sequence) to be at most p’- k,
for k being the number of level re-order steps. Since the i-th level is re-ordered every 4° steps,
where ¢ > 0, for a query sequence of length K, there are k < > 7, % = % level re-order
steps. Hence, the probability of bucket-overflow in any step for a query sequence of length
K is at most Kp'/3.

As in Phase 1, we will employ a local buffer of size i)(n) to prevent the server from
learning where fakes are being added. The client scans the array of real blocks stored in
the remote server by Phase 2 into a local queue. Once the local queue is half full, it begins
constructing server-side buckets with the blocks from the queue, writing into one bucket for
every block read. As long as the temporary queue does not overflow or become empty, the
exact pattern of reads and writes observed by the server is dependent only on the number of
blocks. Therefore, the server learns nothing of which are the fake blocks by observing this
process. Moreover, it does not reveal the number of blocks in each bucket, since the buckets
are written sequentially to the server in full, so the read and write pattern for this step is
identical on every repetition.

The algorithm runs in time linear to the size of the level being written. For level ¢, which
contains up to 4° buckets of size Alogn, the running time is O(4‘logn). We now establish
correctness: showing that the assumed amount of client storage suffices.
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Theorem 15. With high probability, the Add Fakes algorithm queue never overflows or
empties early.

Proof. The result is a random distribution of fake and real items. This distribution encodes
a zero-sum asymmetric random walk, as in the Remove Fakes algorithm. Every iteration
adds one item to a bucket. On iterations in which there is a real item to add (on average
once every r iterations), the queue size decreases by 1. When we read from A, once every r
iterations, the queue size increases by 1. As in the analysis of the RemoveFakes algorithm,
we instead consider the queue size to increase by 1/r every iteration, giving us 4’ step-downs
of size 1 —1/r and (r — 1)4" step-ups of size 1/r. The remainder of this proof is an exact
parallel of Theorem [14], with the step sizes inverted. O

Theorem 16. Correctness. After Phase 3, all blocks will be in the correct bucket (deter-
mined by the secure hash function).

Proof. This proof follows from the construction of Phases 2 and 3. Phase 3 correctly builds
the buckets for level i when its input array satisfies the follow properties: (1) all data blocks
corresponding to ¢ are in the array. (2) For all data blocks b, ¥', if the bucket corresponding
to data block b precedes the bucket corresponding to data block b’, then b is listed in the
array before Y. After the sort in Phase 2, all blocks are in sorted order, according to their
bucket, therefore meeting the two requirements for the input to Phase 3. O

Theorem 17. Privacy. The contents of the level make it from the old permutation to the
new permutation without revealing any non-negligible information about either permutation.
The location of the fake blocks is not revealed.

Proof. Theorem [3] shows that the level permutation performed in Phase 2 does not reveal
any correlation between the old locations and the new locations. Furthermore, the read and
write pattern of Phase 3 is independent of the data items and the final permutation, so Phase
3 does not reveal anything about the location of the fake blocks, or the permutation. O

4.2 Discussion and Extensions

Handling Duplicates. While for simplicity, I did not discuss this aspect, the following sce-
nario can ensue and requires handling. Read blocks are added back to the top of the ORAM,
resulting in potentially conflicting versions that need to be reconciled. To prevent this, we
perform an extra step in the online query phase: scanning a bucket entails downloading the
bucket to client memory, removing the item we were looking for and replacing it with a fake
item, re-encrypting, and writing it back. This results in doubling the network traffic in the
online query phase: every bucket read is accompanied by a write. This is reflected in Figure
4.7,

Goldreich and Ostrovsky’s ORAM handles this scenario by reconciling multiple versions
of an item in the reshuffle phase; as an alternative to the above online-phase mechanism
we could adopt a similar approach. This will improve the overhead of the online phase in
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exchange for extra work in the reshuffle. To achieve this, we could add an extra pass during
the reshuffle to remove duplicates after Phase 2 (Oblivious Merge Sort), then repeat Phase 2.
Recall that after the Phase 2, the blocks are sorted by the buckets they will end up in. This
single pass reads blocks, re-encrypts them, replaces them with fakes if they are duplicates,
and writes them back, ensuring there are no duplicates during the second iteration of Phase
2. This step can be performed without affecting the asymptotic complexities since the
communication, computational, and memory requirements, are less than the requirements
of the other phases of the shuffle.

Asymptotic Considerations. To maintain indistinguishability between reads and inserts,
the database size increases on every access. Of course, this property may be undesirable for
some users; if so, it is simple to consolidate the duplicates periodically, at the expense of
revealing the ratio of reads to inserts over that period.

This growth affects computation of the asymptotic complexity. Indeed, for simplicity rea-
sons, the above complexity is an overestimation of the actual cost seen in an implementation.
This is so because earlier queries operate over a smaller n. Nevertheless, in computing the
complexity, we consider the current, larger n. Overall, this should not significantly diverge
from the actual seen amortized cost since the cost of recent queries dominates. To see why
this is the case, consider that every 4n accesses a new level is created, resulting in the size of
the database effectively quadrupling in size. Thus, for any considered period ending in the
creation of a new level, we are overestimating at most for a quarter of the queries.

Implementation: Required Memory. Finally, for a fixed size of the database, larger
blocks require more memory on the client side to achieve the same privacy guarantees. For a
database of size N bytes, with n = N/B blocks of size B, By/nlogn=+/NB(log N — log B)
memory is needed. Hence, the amount of memory scales proportionally to v/B.

As can be seen in the pseudo-code for Procedure AddFakesToLevel, in the actual imple-
mentation, we use slightly more than ¢(n) storage. In particular, we need room for a small
amount of additional memory, e.g., to store temporary data. In the provided pseudo-code
this amounts to approximately one more bucket (sized Alogn).

4.3 Performance

In evaluating the feasibility and performance of the architecture we consider the sample
configuration illustrated in Figure Further, Figures and illustrates multiple such
data points. We set the bucket size to be Alogn = elog10. Using the formula from
Section we obtain the probability of bucket overflow to be at most 271,

Online Cost. The query requires online scans of one bucket at each level, plus a write to
the top level. The scan of the log, n levels are interactive; the bucket scanned at each level
depends on the results of the previous level. Figure displays the expected online cost.
It is clear from these estimates that in a sequential access model, the network latency is
responsible for most of the query latency. This is due to the interactive nature of the scans;
the client cannot determine the next bucket until it has seen the contents of the previous.
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Server Client
RAM 4 GB 1 GB
Processor 2 GHz
Disk seek time 5 ms
Sustained disk read/write | 50 MB/s
Link bandwidth 10 MB/s
Link round trip time 50 ms
En/Decryption 100 MB/s (AES [77])
Outsourced data set size 1 TB, in 1000-byte blocks; n = 10°

Figure 4.4: Configuration used to compute sample values in the following tables and graphs.

Offline Reorder Cost. The offline cost resulting from the reordering of level ¢ (performed
once every 47! accesses) consists of three phases including a sequential level scan of size
4'Xlogn, and a sequential write-back of size 4’ to remove fakes (Phase 1). The oblivious
sort (Phase 2) consists of log, 4" sequential scans of size 4°. Adding fakes (Phase 3) requires
requires copying back 4°\ logn items. To estimate this cost we must sum over all log, n levels,
recalling that each level is reordered only once every 4'~! queries. We therefore remove a
factor of 4=t and sum over all levels, to calculate the amortized overhead. Figure shows
the resulting formulas. If all of these costs are incurred sequentially, we have an amortized
response rate of approximately 1.5 sec/query offline plus 1.5 sec/query online, for 3 sec/query.

The bottleneck when determining the parallel query throughput is the network through-
put, at 842 ms/query. Thus, when making simultaneous use of multiple resources by running
queries in parallel, this results in a query throughput of over a query per second.

By comparison, in ORAM, the network transfer time alone for reshuffling level 7 consists
of about 10 sorts of 4’ logn data, each sort requiring 4'log(n)log?(4’logn) block transfers,
for a total of 10 - 4% - log(n) - log®(4’logn) - 21°/10M B/sec. Summing over the log, n levels,
and amortizing each level over 4! queries, ORAM has an amortized network traffic cost
per query of 3217, 10-4-15-log?(15-4%) - 2"°B = 614K BY",°, (log 15 + log 4')? ~ 3.680G B.
Over the sample 10 MB/s link this is a 368 sec/query amortized transfer time, almost three
orders of magnitude slower.

4.4 Conclusions

I introduced a (first) practical oblivious RAM mechanism, orders of magnitude faster than
existing mechanisms. I have analyzed its overheads and security properties. I validated its
practicality by exploring achievable throughputs on current off-the-shelf hardware.

Future chapters will increase achievable throughputs an de-amortize the offline level re-
order cost. Moreover, as the bulk of the overhead in this technique is related to the fake
blocks, I next present an alternate construction that hides which level is accessed for a
particular query, bringing the amortized overhead to O(lognlog?logn) per query.
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Resource use per query: normal client
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Figure 4.5: Amortized use of resources per query (top) for a normal client and (bottom)

using a IBM 4764 SCPU as a client.
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Resource usage per query vs. database blocksize for 1TB database
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of 1TB is assumed.
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Formula

Sample

Network latency
Disk seek
Network transfer

Client en/decryption
Server disk transfer time

RT Ty - logy(n)

Latencyseer. - log,(n) - 2
log,(n) - AMlog(n) - 2 - blocksize/ Throughputy;,,, | 168 ms
log,(n) - AMog(n) - 2 - blocksize / Throughput
log,(n) - AMog(n) - 2 - blocksize /Throughput 4y, | 34 ms

750 ms
150 ms

17 ms

crypto

Figure 4.7: Online cost per query, resulting from scanning a bucket at each level.

Formula Sample
Network latency. | n/a < 1 ms | Level reordering is not interactive, so
idling can be avoided here.
Network transfer log“(")T'ﬁrlziézgi?"bIOCkSize 842 ms | The Phase 1 and 3 scans account for
" its bulk.
Disk seek latency | n/a < 1 ms | Seek time will be hidden by disk
transfer during reordering.
Disk transfer bg“("E;gfézgig'mowswe 168 ms | This load can be split among several
o disks.
Client processing | galr)Alos(n)10-blocksize | g/ )¢

Throughput ;. pto

Figure 4.8: Amortized offline cost per query.
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Chapter 5

A Fresh Approach: Revamping the
Query Process

I now build on my results in Chapters [3] and [4/ to introduce an efficient ORAM protocol with
significantly reduced communication and computation complexities. My protocol still uses
the ORAM-based [41] pyramid-shaped database layout and reshuffling schedule employed in
the last chapter. This yielded a protocol with a communication complexity of O(log?n) in
the presence of O(y/nlogn) client working memory, for a database sized n. Here, however,
we shall deploy a new construction and more sophisticated reshuffling protocol, to reduce
both the communication complexity (to O((logn)(log*logn))) and the server storage over-
heads (to O(n))—yielding a comparatively fast and practical oblivious data access protocol.
Moreover, we restore the correctness guarantees that were suspended in the last chapter, and
ensure privacy even under an actively malicious service provider. I describe a practical sys-
tem that can execute an unprecedented several queries per second on terabyte-plus databases
while maintaining full computational privacy and correctness.

Efficiency. One of the main intuitions here is to store each pyramid level as an encrypted
hashtable and an encrypted Bloom filter (indexing elements in the hashtable). The Bloom
filter allows the client to privately and efficiently—without scanning of O(logn) fake block
buckets for each stored block to hide the success of each level query as in previous ORAMs—
identify the level where an item of interest is stored, which is then retrieved from the cor-
responding hashtable. Less server-side storage is required (O(n) instead of O(nlogn)), thus
both increasing throughput and reducing required server-side storage by an order of magni-
tude.

Privacy. The approach guarantees client access pattern privacy, since the same operations
are performed at all pyramid levels, in the same sequence for any item of interest. The
use of the encrypted Bloom filters allows the client to query an item directly at each level
without revealing the success, instead of relying on a series of O(logn) fake blocks for each
stored block to hide the success of each level query. My contributions consist also of a new
reshuffling algorithm that obliviously builds and maintains the encrypted Bloom filters and
of a more efficient oblivious merge-and-scramble.
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Correctness. Moreover, authenticated per-level integrity constructs provide clients with
correctness assurances at little additional cost, specifically ensuring that illicit server behavior
(e.g., alterations) does not go undetected.

5.1 A Solution

In Chapter 4 we achieved a complexity of O(log?n) in a protocol offering access privacy
but no correctness assurances. Here I build on that result by deploying a new construction
and more sophisticated reshuffling protocol, to reduce communication complexity to only
O((logn)(log?logn)) (amortized per-query), under the same assumption of cy/nlogn tem-
porary client storage, while reducing the required server storage from O(nlogn) to O(n),
and endowing the protocol with correctness assurance.

5.1.1 Overview

Similar to ORAM (see Section for more details), data is organized into log(n) levels,
pyramid-like. Level i consists of up to 4¢ items, stored on the server as label-value pairs.
These pairs can be stored and retrieved in O(1) time if the storage provider implements a
suitable hash table (such as a constant time, constant space hash [91]). This differs from
ORAM, which stores an item at level ¢ using a keyed hash function to determine its storage
bucket (of size O(logn), to allow for hash collisions) within the level. The use of fized-
sized hash buckets in ORAM instead of a simple hash table adds a O(logn) storage overhead
multiplier, and slows down query processing, but the buckets are necessary; otherwise queries
to a hash table could reveal whether the item was found at this level.

Here we will avoid the overhead of using buckets to mask the query result by using Bloom
filters [12] (constructed to be collision-free). Before attempting to query for an item that
might not be at the current level, a per-level Bloom filter is queried first. The bits of the
Bloom filter are encrypted, hiding the result of the query. If the Bloom filter indicates that
the item is not at this level, we query the level for a unique fake item instead and continue
with the next level. Once we eventually find the desired item (at a future level)—it will be
moved into the top pyramid level—above the levels where it was searched for before (as in
ORAM). This ensures that the same item will never be queried for in that instantiation of
the Bloom filter again (as now it will be found higher in the pyramid, or a reshuffle would
have been triggered).

Insight One: Faster Lookup. Thus one key insight in this mechanism is that we can
construct an encrypted Bloom filter to perform set membership tests, without revealing the
success of our query. Additionally, I design a novel construction procedure that assembles
the encrypted Bloom filter without revealing any correlation between scanned items and
associated Bloom filter positions. The final benefit of using encrypted Bloom filters is that
all unique queries are computationally indistinguishable due to the nature of the keyed
hash function used to index the filter. This allows us to modify ORAM with significant
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performance benefits, since we can avoid handling hash collisions, which add a logn factor
in total database size as described above.

The notion of encrypting a Bloom filter has been studied previously [9]. However, here
we use a novel construction that hides the construction process, the inputs, and the results
of the Bloom filter.

Insight Two: Correctness. Moreover, we deploy a set of authenticated, per-level integrity
constructs to provide clients with correctness assurances at minimal additional cost. We
specifically ensure that illicit server behavior (e.g., alterations) does not go undetected.

I now detail these components.

5.1.2 Bloom Filters

Bloom filters [12] offer a compact representation of a set of data items. They allow for
relatively fast set inclusion tests. Bloom filters are one-way, in that, the “contained” set items
cannot be enumerated easily (unless they are drawn from a finite, small space). Succinctly,
a Bloom filter can be viewed as a string of b bits, initially all set to 0. To insert a certain
element z, the filter sets to 1 the bit values at index positions Hy(z), Ha(x), ..., Hy(x), where
Hy, H,, ..., Hy are a set of h crypto-hashes. Testing set inclusion for a value y is done by
checking that the bits for all bit positions Hy(y), Ha(y), . .., Hn(y) are set.

By construction, Bloom filters feature a controllable rate of false positives r for set inclu-
sion tests—this rate depends on the input data set size z, the size of the filter b and the num-

h
ber of cryptographic hash functions h deployed in its construction: r = (1 -(1-1/ b)hz> .

Encrypted Bloom Filters. An Encrypted Bloom filter, once we construct it obliviously,
will allow us to quickly an obliviously query check any level for the presence of the desired
item. We shall make a set of four modifications to turn a Bloom filter into a remote data
structure that we can query privately. First, we use keyed hash functions in place of public
hash functions. Second, we store their bit representation encrypted while still allowing
client-driven Bloom filter lookups. This is done by dividing the Bloom filter into small
chunks, encrypting each chunk individually, and attaching a message authentication code
(MAC) for integrity. Third, we use an oblivious construction process that guarantees that
the construction transcript appears independent of the contents and queries. Fourth, we
sacrifice the constant time query cost in exchange for a guarantee that the possibility of a
false positive is negligible.

5.1.3 Query Processing

A query consists of a read or write request for a data item. These items are kept at the
storage provider at a particular level; part of the client’s job is to determine which level the
item is at without revealing this to the server. Algorithm [15] shows the pseudo-code of this
operation; it is also illustrated in Figure [5.1l

To process a query, the client first downloads and scans the server-stored item cache
(line [I)) then proceeds to search each level, starting at the top (line [2). A labeling function
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(limited storage)
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filter:

Random Bloom

O] filter queries — (©® Retrieve fakes % fake ﬁ-; item

Figure 5.1: Sample query. The client first checks the level 1 Bloom filter (1) to see whether
the item is at Level 1. Finding at least one encrypted bit set to 0, the client knows it is not.
The client then asks for a fake item (2) at Level 1. This fake item was previously placed
here for just such a scenario; the server does not know that it is fake. The client then queries
the Level 2 Bloom filter (3). Seeing all encrypted bits are set to I, the client knows the
item is stored at Level 2. It requests the item (4); again, the server does not know whether
it is returning a fake or real item. On subsequent levels (5), the client now issues random
Bloom filter queries and requests for fake items, to prevent the server from learning that the
item was found at Level 2. Not illustrated in this figure is the final step, which places the
discovered item back into the top level, and possibly initiates a reconstruction.

consisting of a hash of the item ID with several level parameters (fakeAccessCtr(level) and
Gen(level)) generates the unique label by which the client can find the item at a particular
level, if the item is indeed there. fakeAccessCtr(level) represents the number of accesses to
level since the last reshuffle, and Gen(level) represents the number of times level has been
reshuffled. The use of fakeAccessCtr (line[3) ensures that successive queries request unique
fake items, which the client knows are stored on the server. The use of Gen(level) ensures
that items on every subsequent reshuffle of a level have unique labels. Both functions are
computed from the total number of accesses to the system thus far.

The search of any one level requires O(loglogn) time since the number of hash functions
to request h is O(loglogn). If at the ith level the item has not already been found (in the
cache or a previous level) (line[5)) the client first computes the positions where the item would
be stored in the ith level Bloom filter (line [6). It then retrieves those encrypted bits from
the server-stored Bloom filter (line[7)). If the decrypted bits are all 7 (line ®)), the client has
found the item at the ith level. It then computes the label under which the item is stored
in the level (line [9) and asks the server to remove and return the corresponding item (line
[10). If at least one decrypted Bloom filter bit is 0 (line[11), the client instead performs the
same operation using a fake label (built at line [4]), known to be stored at the server.

Once the client has found the item (line , it proceeds by seeking fake items on the
subsequent levels. This avoids revealing which level answered the query, which would provide
a correlation between queries. The client first searches a random set of positions (line in
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the Bloom filter at the ith level (line [14)), then asks the server to retrieve and remove a fake
item from the level (line [15).

Note that the client queries the remotely-stored encrypted Bloom filter by requesting
the encrypted values of positions indicated by the label function. While this reveals the
requested Bloom filter positions to the remote server, nothing is lost as we prevent correlation
by guaranteeing that any Bloom filter is only ever queried for any particular item once. Since
the positions in the filter are each encrypted, the server never learns the result of the Bloom
filter query.

5.1.4 Access Privacy

The client achieves access pattern privacy by maintaining two conditions. First, no item
15 ever queried twice using the same label. This is achieved by removing the item, once it
is found, and placing it in the item cache. Thus, on future queries the client will locate it
in the item cache before repeating a label request; fake requests will be substituted on the
lower levels. As items propagate out of the item cache (described in Section [5.1.5)), the label
functions are updated, so that the item has a different label by the time it makes it back
down to a particular level.

Second, the access patterns must appear indistinguishable from random no matter where
the item is located. A set of fake items is used to guarantee this: if the Bloom filter returns
negative, indicating that the item is not stored at this level, a fake item from this level is
retrieved instead.

On every single query, the server observes the same pattern. The client first scans the
item cache, then queries a random value (chosen uniformly randomly, independently from
all other information available to the server) from the level 1 encrypted Bloom filter—never
queried by the client before. The server can observe the position of bits in the Bloom filter
accessed, but it cannot observe whether each bit is set to 7 or (. The server then observes
the client retrieve and delete one item from the level 1 hash table—never retrieved by the
client before. This identical pattern of a random Bloom filter lookup followed by a random
label-value retrieval and deletion continues through each level. Finally, the client appends a
(semantically secure) encrypted value to the item cache.

Success or failure at each level is not revealed—the server cannot distinguish queries to
fake entries in the Bloom filter from queries to real items in the filter, and the server cannot
distinguish either of those from real items that are not in the filter. Additionally, the server
cannot distinguish requests to real items from requests to fake items from the hash table,
since the secure hash function used is non-invertible.

In addition to the constant amount of data transfer and computation exercised on each
level by every query, we will see that O(loglogn) bits are examined to perform a Bloom filter
lookup. Since there are log, n levels, the online cost per query is O(logn loglogn) (measured
in computation or transfer of words). Level reshuffling, described in the next section, will
bring the total amortized cost per query of O((logn)(log?logn)).

I now fill in the missing pieces: how to empty the item cache when it becomes full, and
how to build the levels and the Bloom filters obliviously.
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server: Server /* Server stub
bits: int|] /* encrypted bit values of Bloom filter
label, fakeLabel: int|] /* search labels
bfpositions: int|] /* search labels
fakeAccCtr: int]] /* per level access counter
found: boolean
K: byte]] /* secret key
h: int < cloglogn /* number of Bloom filter hash functions
k: int /* Bloom filter configuration parameter
v: Object /* value for name x
L: Object[] «+ server.itemcache /* scan of item cache
m;: int /* Size of level i
found,v < L.search(x) /* Check recent queries first
for ¢+ <— 1 to log,n do
fakeAccCtr[i]++
fakeLabel < hash(i||' fake'||Gen(i)|| fake AccCtri]|| K)
if found = false then
for j <1 to h do
| Dbfpositions[j] < hash(i||j]|' BF'||Gen(i)||z||K) mod k- h-m;
end
bits < server.getBloomFilter(i,bfpositions)
if decrypt(bits) = “11..1” then
label < hash(i||‘datd’||Gen(i)||x|| K)
v < server.getAndRemove(label)
found <« true
else
| server.getAndRemove(fakeLabel)
end
else
for j < 1 to h do
| bfpositions[j] < random mod k- h - m;
end
server.getBloomFilter(i,bfpositions)
server.get AndRemove(fakeLabel)
end
end
itemCache.append(x,v)
return (v)

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

Procedure Query(x)
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5.1.5 Handling Level Overflows: Reshuffle

The construction of the initial database structure is explained by the process of emptying the
item cache: items are inserted into the item cache, which then overflows into the lower levels.
Similar to ORAM, when the item cache is emptied, the contents are poured into level 1. In
that process, level 1 and its new contents are reshuffled according to new label functions,
removing any correlations between past and future lookups. When level 1 becomes full, it
is poured into level 2, and so forth. Thus, the reshuffle process empties one level i — 1 into
the level 7 below it, which is four times as large as level ¢ — 1. Level ¢ is then scrambled,
hiding the correlation with the items’ previous levels. A new Bloom filter for the lower level
is constructed—even items which happened to be at level ¢ anytime in the past are now
identified by a new unique label.

Let m be the size of the new level (m < 4%). Let h = O(loglogm) be the number of hash
functions used to generate a Bloom filter. The number of bits in the Bloom filter BF' at
level ¢ will be equal to a constant k, times the number of hash function A and the number
of items in the Bloom filter m. This ensures that any single bit in the Bloom filter is set
with probability less than 1/k. The database size n grows by one on each query, and thus
varies over the lifetime of this level; A is chosen based on the value of 2n at the time of level
construction, since n will never double during this period. The constant k is a configuration
parameter balancing a trade-off between the number of Bloom filter hash functions and the
Bloom filter size to meet the configured acceptable failure rate (e.g. 27128).

The client secret key is K. Let W be a working set stored on the server. Let L be a list
of O(m) entries, stored on the server. Let T be a /m integer array stored at the client. Let
Bkt be a server-hosted list of O(y/m) buckets, of y/m entries each. Initially, W, L, T" and
BFEt are empty and all the bits in the server-stored BF' are set to 0.

The overflow process, performed by the client to pour level i — 1 (or the item cache) into
level 7 proceeds as follows (see Figure for an illustration).

After merging the levels (step 1), steps 2 and 3 place the items in the new level while
eliminating any correlation between the old and the new level structures. Costs are expressed
in terms of m = 4°, the size of the current level.

Finally, we create a list of what positions must be set in the Bloom filter to add each
item, and store this list encrypted on the server (step 4). This will be used to construct the
Bloom filter in step 5.

1. Merge levels. Move all items from level ¢ — 1 and level i into W, a working buffer
on the remote server. Discard the Bloom filters attached to both levels.

2. Scramble the items. Finally, the client uses the Oblivious Merge Scramble Algo-
rithm to scramble the actual items in the working buffer W. The Oblivious Merge
Scramble requires O(mloglogm) time and O(y/mlogm) private storage.

3. Add items back to level i. Once scrambled, the items inserted under their new
labels, according to the new labeling function for level i. For each item in x € W let
label(x) = hash(i||'datd’||Gen(L;)||x.id|| K). Insert the pair (z,label(z)) into the set
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of items stored at level i. Add m fake items to level i, so that a query that turns out
not to be for this level will have an item to retrieve instead (most of these m fakes will
be deleted by the query process before the next reshuffle).

4. Build a list representation of the new Bloom filter. Increment Gen(i): the
generation of level ¢ has increased. Read each item x € W exactly once, and for each
compute its h = O(loglogn) positions of bits p;(z) = hash(i||j||' BF'||Gen(i)||x.id|| K)
mod k-h-m, for j = 1..h, in the new Bloom filter. Encrypt each p;(z) separately and
store all E(p;(x)) values on the server-side list L. This step takes O(mloglogn) time,
and O(1) private (client-side) storage.

5. Obliviously construct the Bloom filter. Options for this step are described in
the following sections. Section provides a solution requiring O(mlogn) time and
either O(logn) client memory, or O(cy/mlogm) client memory, depending on whether
a randomized shell sort or Oblivious Merge Sort is employed. Section provides
a solution requiring O(mlog®logn) time and O(cy/mIogm) client memory, employing
only the Oblivious Merge Scramble.

Level ¢ — 1 is now empty, and level i now contains all the items that were in level 1 — 1. If
level 7 is now full, this is then repeated as level 7 is then dumped into level i + 1; the process
is repeated recursively.

This procedure shows how level i—1 can be dumped into level i at a cost of O(m log? log m)
= O(4'log?i). Level i — 1 is emptied once every 4~ queries, thus resulting in an amortized
cost per query due to reshuffling of

logyn logy n

> O = 3 Ologt) = Ollogn)(g? o)

As described below, client memory sized cy/m logm is required for this procedure. The
most stringent requirement is for the construction of the bottom level, when m = n. This
case requires cy/nlogn memory.

The positions of the Bloom filter bits retrieved to check an item will appear to be chosen
uniformly random, and completely independently of each other; therefore, any bit pattern
indicates nothing about the query or the success of the query. They are independent of the
bucket sort write pattern, which is the only other piece that could be tied to it, since the
bucket sort write pattern is the only access pattern that varies during the reshuffie. The
bucket writes are all identical except for the order of the writes, which is uniform random
because of the scramble. The scramble has no bearing on the Bloom filter access pattern,
which is dependent only on the query and the current Bloom hash function. Therefore the
Bloom filter construction process yields no information about the items to the server in the
resulting Bloom filter.

The level reorder process results in a new level that has no correlation to the old level,
since the new permutation is chosen uniformly randomly (Theorem [8)). The scramble process
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itself reveals no information about the new or old permutations, since the scramble has the
same access pattern in all instantiations.

5.1.6 Oblivious Bloom Filter Construction (Simpler)

The idea is to use an oblivious sort that puts the indices into the positions corresponding to
segments. However, any sort requires some extra computation (at least O(mlogm) compu-
tation to sort m items instead of scrambling them). Such an oblivious sort can be obtained
by replacing the client random array selection described in Section with a comparison
that returns the smallest of the items in the fronts of the queue buffers. This does not affect
the communication complexity, but it does slightly raise the mechanism’s overall amortized
computation complexity.

5a Add segment identifiers. In a single pass over the encrypted items of the level
undergoing construction, build an encrypted, server-stored, list of the positions that
need to be set in the encrypted BF. Divide the BF into segments of size O(logn).
Append one encrypted segment identifier for each possible segment to this list, stored
in such a way that the server cannot distinguish segment identifiers from BF positions.

5b Sort the list by segment. Obliviously sort this entire list with segments distributed
among the positions, directly following the positions they belong in.

5¢ Set the right positions. In a single pass over this sorted list, output one BF segment
for every list element. For each segment identifier, this is an encrypted segment, with
the appropriate positions set. Recall that these positions immediately preceded this
segment identifier in the sorted list. For each position encountered in this list, this is
a dummy (empty) segment.

5d Move the dummies to the end. Obliviously sort the resulting list by segment
identifier, with the dummy segments at the end.

5¢e Remove the dummies. Truncate off the dummy segments from this list. The result
is the encrypted BF.

The advantage of this approach over the one described in Section is that using a
logarithmic-space O(mlogm) oblivious sort [46] provides a logarithmic-space construction
still running in O(log®n) time. As will be discussed in Chapter 6] because log, n levels must
be shuffled simultaneously, employing this as a de-amortized ORAM increases the client
storage requirement to O(log?n).

This construction process is secure, provided (a) the oblivious sort is private, (b) the
server cannot distinguish an encrypted dummy segment from an encrypted BF segment,
and (c) the server cannot distinguish an encrypted segment identifier from an encrypted BF
position. If these three conditions are satisfied, then every run of this process over a set of
m items appears identical to the server, regardless of the positions in the BF being set.
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Figure 5.2: Level reshuffle: Bloom filter construction, Improved Asymptotics

5.1.7 Oblivious Bloom Filter Construction, Improved Asymptotics

I now show how to construct the Bloom filter in O(mlog®logm) time. In the next steps
(illustrated in Figure we build the encrypted Bloom filter without revealing the positions
set in the Bloom filter.

To turn the list into a proper Bloom filter bit array, it will be sorted with a bucket sort—
with \/m buckets of size /m, so that any bucket fits in private storage. To keep the buckets
indistinguishable, we ensure they will all have the same size. In step 1, we calculate the size
of each bucket, by scanning the list of Bloom filter positions, incrementing the appropriate
bucket size tally for each position. In step 2 we add fake positions that will end up in those
buckets that are lacking, according to the above (step 1) tally. Each bucket corresponds to
a fixed range of positions in the final filter, so j/m is used as a position that will wind up
in bucket j. At this point the server will be able to identify the fake positions, since they
are all at the end of the list. We then (step 3) scramble the list of positions to destroy all
correlation between items and positions, and hide the fakes. In step 4 we move the scrambled
positions into their buckets. Step 5 constructs the final Bloom filter, building a piece from
each bucket.

5a Tally Bloom filter positions to determine future bucket sizes. Read each entry
of L (the list of encrypted Bloom filter positions prepared in the previous step) exactly
once. At the client side, for each entry E(p) € L, let idz(p) be the logm/2 most
significant bits of p. Then, increment T[idz(p)]. This step allows the client to compute
the number of bit-positions of L that will later (Step 4) end up in the Bkt structure.
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Effectively, the client builds a tally in local storage calculating the future size of each
of the /m buckets that will be built on the server in the step 4 bucket sort. We use
v/m buckets of size \/m so that each bucket will fit in private storage in step 5, and
the tally built here, with one counter per bucket, also fits in private storage. The step
requires O(mloglogn) time and O(y/m) private storage. (To avoid redundant scans,
this step can be merged with the previous).

Add fake bits to make the bucket sizes equivalent. The local tally from step
1 indicates the size of the largest bucket. We scan the tally, adding fake encrypted
positions to the server-side list of encrypted positions as we go, so that all the buckets
will have the same size as the largest bucket after the step 3 bucket sort. To add a fake
position that will correspond to bucket j, the position ji/m is added to the list. (A
simple balls and bins result predicts that the y/m-sized buckets all have similar sizes,
already; the number of fakes to add is small compared to the number of real items).

Let max be the index of T" such that T|max] = maat;/flT[j]. For each j = 1.../m
generate T'|max] — T[j] fake values v; such that the logm/2 most significant bits of
each v; are equal to j. Store the encrypted, E(v||'fake’) value in L. This operation
ensures that all the buckets of Bkt will store the same number of elements. The bucket
size tally is discarded after this step. This step requires O(mloglogm) time.

Obliviously scramble the list of Bloom filter positions. The encrypted indexes
(the bit-positions of L, including the fakes) are scrambled, according to my Oblivious
Merge Scramble Algorithm, which destroys all correlation between the old positions
and the resulting positions, which are a new uniform random permutation. The new
list L stores the scrambled values. The algorithm requires O(mlog®logm) time and

O(yv/mlogm) private storage.

Bucket-sort the list of Bloom filter positions. For each E(p) € L, let idx(p)
be the logm/2 most significant bits of p. Then, do Bkt[idx(p)].add(E(p)). Here the
Bloom filter’s scrambled, encrypted positions are bucket-sorted. The client retrieves
each bit index, decrypts it to read it, and writes the encrypted value back to the
bucket on the server corresponding to the 10g2m most significant bits of the position.
The bucket sort allows us to construct the encrypted Bloom filter in the next step
without revealing to the server which bits are set: if we were to simply scan the entire
list of positions setting the corresponding bits to true, the server would observe the bit
flips in our encrypted array and learn what positions are set. The bucket sort groups
related positions together so that we can build the Bloom filter from left to right in a

single pass. This step requires O(m) time.

Construct the Bloom filter. For each j = 1..Bkt.size, download Bkt[j]. Note that
the size of Bkt[j] is v/m. Let BF[j\/m]..BF[(j + 1)y/m| be the segment of the Bloom
filter corresponding to Bkt[j|, where BF[idx] denotes the idxth bit of BF. For each
E(p) € Bkt[j], let 2 be the least significant logm/2 bits of p. Do BF[j/m + z| = 1.
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Store E(BF[jy/m]..E(BF[(j+1)/m] on the server. Finally, store the oblivious Bloom
filter of the working set W on the server.

Here the client downloads each bucket (which conveniently fits into local storage). The
bucket corresponds to a y/m-sized segment of the final Bloom filter—all positions in
this bucket refer to a bit in this segment of the filter. The bits corresponding to listed
positions are set to true, with all other bits set to false, in the local copy. The client
encrypts this Bloom filter segment and uploads it to the server. Observe that the
server has no indication of how many bits are true in this segment (other than that it
is limited by the bucket size), nor which are true. The Bloom filter is finished at the
end of this step. This step requires O(m) time, and O(y/m) private storage.

5.1.8 Bloom Filter and Query Privacy

Recent analysis of my construction by Pinkas and Reinman [108] reminds us that any Bloom
filter false positives result in an access pattern leak. Further, it was suggested by Kushilevitz
et al. [72] that eliminating the possibility of false positives could result in a performance
penalty. To address these observations, I show here that the construction avoids false posi-
tives with high probability.

A Bloom filter containing z items has two more parameters: h, the number of hash
functions used (the number of bits set per item in the filter), and z, the number of bits in

h
the Bloom filter, yielding the false positive rate r = (1 — (1 — %)hz) .

The number of items z is determined by the level size, at 4° for level i. The number of
hashes used h is set to the security parameter c. Finally, we set the size of the Bloom filter
x to scale proportionally with 2z and the number of hashes h, at 4ick for a constant k. 1
show now that the probability of a false positive r for a single Bloom filter lookup with these
parameters is negligible in the security parameter.

Observe, as pointed out by Pinkas and Reinman [108], that we are not restricting the
number of Bloom filter hashes to minimize the false positive rate. This allows flexibility in
finding the performance optimal trade-off between Bloom filter size (determining construc-
tion cost) and the number of hash functions (determining lookup cost).

Lemma 6. A Bloom filter containing z = 4° items, using h = c¢ hashes, and with x = 4'ck
bits has a false positive rate negligible in the security parameter ¢ for k > 1.

Proof. The portion of bits in the Bloom filter that are set is upper bounded by %, yielding

the looser bound r < (Zm—h)h

NI NORCES

This quantity is negligible in c. O
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With x > cz, the cost to obliviously construct a Bloom filter sized x is shown earlier
to be O(zloglogx) (with sufficient storage); since x is proportional to z, the asymptotic
performance is not affected by the Bloom filter. Moreover, the time required to query this
Bloom filter is O(c), which is constant for any chosen security parameter c.

However, we require log, n lookups (in different Bloom filters) to perform an access.
k=¢log,n is not strictly negligible for a variable n. Thus, we instead require the failure
probability per Bloom filter lookup to be within £7¢/log, n, so that the union bound gives
us a total probability of failure per access of k~¢.

To achieve this we revise the Bloom filter parameters. The number of items z is still
determined by the level size, at 4° for level . The number of hashes used h is now set to
c+log, log, n. The size of the Bloom filter = should still scale proportionally with z and the
number of hashes h, at * = khz = 4'k(c + log,, log, n) for a constant k. The probability of a
Bloom filter false positive with these parameters is negligible in the security parameter, now
over a period of log, n lookups.

Since the value of n increases by one each query, n is not constant over the lifetime of a
level instance. However, once n > 2, the database size will never again double during this
period. Thus, choosing a number of hash functions ~ based on a value of ¢ + log, log, 2n <
c+ 1+ log, log, n suffices to limit the probability of a false positive over the entire duration
of a level, even as n is increasing.

Theorem 18. A set of log, n queries over a Bloom filter containing z = 4° items, using
h = c + log, logn hashes, and with v = 4'k(c + log, log,n) bits has a false positive rate
negligible in the security parameter ¢ for k > 1 over a period of log, n lookups.

Proof.

h i c+log; log, n —c
e ﬁ _ 4 (¢ + logy log,n) o o8 _ j—c—logylogyn _ k
—\z 4'k(c 4 log; log, n) logyn

Taking the union bound over log, n Bloom filter lookups, the probability of failure is bounded
by rlog, n < k~¢. This quantity is negligible in c. O

The time to query this Bloom filter is O(c+loglogn). The time/communication required
to construct this Bloom filter obliviously is O(z loglog z) = O(4%k(c+log,, log n) log log(4'k(c+
log,. logn))). Choosing a constant k, and amortizing over the shuffle period of 4° queries, this
simplifies to a shuffle cost per query of O((c+loglogn)(loglog n+loglog((c+loglogn)))). For
a constant security parameter ¢, and since loglogloglogn < loglogn for n > 1, this shuffle
cost is O(log® logn) (per level). The construction cost across all levels is O((log n)(log® logn)).
In summary, guaranteeing a failure rate negligible in the security parameter ¢ across all logn
lookups for a given query raises the amortized shuffle cost per query from O(logn loglogn) to
O(lognlog®logn). Further, it raises the online lookup cost from O(logn) to O(log nloglogn).

Theorem 19. The server learns nothing about the client access pattern by observing queries.
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Proof. Theorem [8 shows that all items at a particular level are scrambled uniformly ran-
domly. The Bloom filter construction algorithm also scrambles the positions uniformly ran-
domly, so that no correlation can be maintained before and after the scramble. Semantic
security of the encryption function ensures that the encoding of an item reveals nothing
about its position after the scramble.

The use of keyed secure hash functions guarantees that unique queries will appear uniform
random; the server gains no additional information by watching the queries. The reshuffle
schedule ensures that the same lookup is never run against a particular Bloom filter or level
instance twice between scrambles; after an item is queried it is placed in the top level, where
it will be detected the next time it is queried. As the levels overflow, reshuffling ensures
that the item will have a new label when it reaches a level at which it had previously been
located. Since the scrambles destroy all correlation, all queries therefore appear independent
and uniform random to an observer.

The overall access pattern appears constant and predictable to the server; reshuffles
happen at fixed, predetermined positions, and the only difference is in the uniformly random
selection without replacement of the items queried at each level. O

5.2 Correctness and Integrity

In this section we introduce a set of integrity constructs that endow the above solution with
correctness assurances. Specifically, we would like to guarantee that any storage provider
tampering behavior is detected. All of these constructs can be implemented efficiently, with
few or almost no overheads: (i) Message Authentication Codes (MACs) are added for all the
stored items and Bloom filters; (ii) unique version labels for each item in the data covered by
the MAC are added to prevent any replay-type attack in which the server incorrectly replies
with a previously MAC-signed message; (iii) incremental, collision-resistant commutative
checksums are added to checksum the item sets contained in each level, to prevent the server
from hiding or duplicating items during the level reshuffle process.

For (i) we require a MAC function, such that the computationally bounded adversary
has no non-negligible ability to construct any message, MAC pair (M, MAC(M)) for an
M that did not originate at the client. Every item uploaded to the server is protected by
such a MAC. (ii) is straightforward since level construction already labels items uniquely,
and the non-repeating generation of each level is known by the client. For (iii), besides the
requirement of being collision-resistant, it should be easy for clients to maintain and update
a checksum of a set. In particular, when adding or deleting items, it should be possible to
to so incrementally, without recomputing the entire checksum value.

The incremental hashing paradigm of Bellare and Micciancio [8] can be used to construct
exactly such a checksum. Fix any cryptographic hash function H (viewed as random oracle)
and a large prime p. To hash a set B = {by,..., b}, we compute the product

l
H*(B) = [ [ H(b;) modp. (5.1)

i=1
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Note that this hash construction allows both for easy addition of item b (multiplication with
H (b)) and removal of any b; (multiplication by (H(b;))~!) without needing to recompute the
hashes of all values by, ..., ¥b.

It can be shown in the random oracle model [40] that it is computationally infeasible to
find two sets that have the same checksum; the hash function thus forms an easy and
efficient way to authenticate the set of items in a level:

Theorem 20. If the discrete logarithm problem in Z,, is hard it is computationally infeasible
to find two sets A # B with H*(A) = H*(B).

Theorem 21. A client interface correctly implementing the above integrity constructs will
detect all incorrect server responses before they reveal any part of the access pattern, or return
an incorrect answer to the user of the interface.

Proof. The proof is straightforward by construction. We enumerate all ways in which the
server can violate correctness.

If the server does not respond to a query at all, the client will detect the denial of service,
with the caveat that over any asynchronous communication line it may be impossible to
determine who is responsible the denial of service, or whether the response may eventually
arrive.

Construct (i) guarantees that if the server replies with to a query with data that is not
accompanying a valid MAC for that data, the client will immediately detect the invalid MAC
and return 1, thus limiting the damage done to denial-of-service.

Thus, it now suffices to consider only those attacks in which the server responds with data
authenticated by a valid MAC. If the MAC function is secure, this reduces to considering
only attacks in which the server responds with out-of-date data that was originally sent from
the client (e.g., a replay attack).

Since every correct server response in this protocol consists of one item initially uploaded
by the client, the only type of tampering attack that remains is one in which the server
returns the wrong item or version of items in any response.

Construct (ii) attaches a unique version ID to every subsequent version of an item.
Moreover, at every step the client knows the exact unique version ID of the desired item a
priori. The version id label is simply a combination of the desired item’s label/id, the level
id, and the reshuffle count of the level. Thus, any attack in which the server returns the
wrong item or version of an item, the returned version ID (which is MAC-protected), will
mismatch the expected version ID.

Finally, due to its incremental, collision-resistant nature, construct (iii) allows clients to
properly authenticate the accumulated per-level writes/reads of items during the reshuffle
phase. Specifically, at all points during the online query phase, the client maintains the
incremental commutative checksum for a level—when a client removes/adds an item it also
updates the checksum accordingly. Then, during the reshuffle phase, the level is scanned
and copied at once. The client can now verify the previous operations by re-computing the
checksum for the level and comparing it with the locally maintained one. O
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5.2.1 Acknowledging Protocol Deviations

As discussed in the model (Section [1.2), acknowledging when the (potentially actively ma-
licious) server violates the protocol could result in a privacy leak in itself. A protocol that
halts when a MAC computation fails, for example, reveals to the server that the client is
aware that the MAC fails, potentially linking this query to an item that the server had previ-
ously corrupted. Although economic incentives can discourage detectable protocol violation,
and I show in Theorem [21] that protocol violations are, in fact, detectable, it is nevertheless
informative to consider how to prevent a leak.

Acknowledgement of outright violation of message format specifications do not leak any-
thing to the server, other than that the client has received and attempted to parse the
message. In particular, the server only gains knowledge from deviating when it does not
know ahead of time when the client will acknowledge the deviation.

We just have to show that two conditions of the protocol hold. First, that the client val-
idates the (replay-resistant) MACs of server responses immediately, regardless of the nature
of the data (e.g., fake or real item). This prevents the server from performing the previously
described attack of corrupting data and waiting to see when the client acknowledges the
corruption. This is because the server already knows exactly when the client will respond
to the failure, since the client never modifies and propagates corrupted data to handle at a
later time.

Second, since there is a phase of the level shuffle, where the MACs are not immediately
replay-resistant, we have to show that no leaks result from in these delayed-MAC messages.
That is, since we only verify the incremental level hash after shuffling, we have to show
this does not introduce a vulnerability due to replay attacks. Fortunately, the server again
already knows exactly when the client will observe a replay attack: at the end of the level
shuffle. This is regardless of which data is replayed, so again the server does not learn
anything by triggering client failure.

5.3 Performance Analysis

We now discuss main performance projections based on the network traffic, computation, and
disk accesses. considering the following configuration: disk throughput = 80 MBytes/sec;
disk sector size = 4096 bytes; disks are rotational-latency-free solid state disks (SSDs); client
symmetric encryption crypto throughput = 100 MBytes/sec (from benchmarks produced by
Lipmaa [77]); network throughput = 1 Gbit/sec; network latency = 5ms. We set the number
of Bloom filter hash functions to 50, and determine from that the corresponding Bloom filter
size required to establish a false positive rate of 27128, The construction cost amortized per
query, plus the online cost per-query cost, is graphed against a growing database size in
Figure

This plot assumes an optimal implementation in which resource costs of level construction
can be paid in parallel: the server disk writes simultaneously with the client encrypting data
and sending it on the network. That is, instead of paying these costs sequentially, we
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Expected amortized query cost vs database size, bounding failure rate at 27128
0.2 T T

Amortized o'ffline + onIir'1e cost
portion of cost relating to Online querying
0.18 | portion of cost relating to item shuffling ----/---
portion of cost relating to Bloom filter construction
0.16 |
0.14 |
0.12 |
0.1 |

0.08 |

Amortized query cost (sec)

0.06 |

0.04

0.02

0 i 1 1 1 1
10000 1e+06 1e+08 1e+10 1e+12 le+14 1e+16
Database size (bytes), logscale

Figure 5.3: Plot of the expected amortized query cost, broken down by source. The sort cost
plotted is the bottleneck resource usage, summed over each of the log,(N/blocksize) levels.

assume that the there is a bottleneck formed by the most limiting resource (in this case, the
server disk throughput). Aside from start-up costs, this is roughly accurate for an optimized
implementation. Reads during level construction, for example, are all deterministic; the
server can read ahead to keep the disk busy even while the client is processing other data.

We plot three costs and their sum. The online query cost reflects the cost of performing
log, n Bloom filter lookups on the server and reading the resulting items. This includes
reading of 50log, n disk sectors: one for each Bloom filter position indicated by the secure
Bloom filter lookup hash function at each level. It also models the disk read, network
transfer, and decryption of the log, n items themselves.

The Bloom filter construction cost models the simplified Bloom filter construction proce-
dure, in which a merge Sort is used in place of the merge Scramble. The merge scramble has
an equivalent I/O cost but requires slightly more client computation (negligible in this sce-
nario). The plot models the bottleneck resource usage, in this case disk throughput, limiting
at 80 MBytes/sec. As justified below, we assume the full disk throughput can be obtained,
despite the use of scattered reads smaller than a sector in this construction.

The item Oblivious Merge Scramble cost is analogous: it represents the bottleneck cost
of log, log, n passes over the data at each level.
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5.3.1 Discussion

The graph suggests an optimized implementation can achieve over 8 queries per second on a
1 terabyte database, and over 5 queries per second on a 10 petabyte database. This assumes,
of course, the previously established cv/nlogn client storage.

We assume rotational-latency-free solid state disks (SSDs) because our sort requires scat-
tered data reading. However, use of SSDs does not immediately bring the observed disk
throughput up to the optimal disk throughput, for the following reason. Although the
disk throughput is roughly on par with the other potential bottlenecks of client encryption
throughput and network throughput, the granularity of disk I/O comes into play. That is,
even though we assume a latency-free SSD, scattered reads and writes smaller than a sector
size still have the cost of reading and writing the entire sector.

As an example, a somewhat tricky case to analyze arises once the data associated with
Bloom filter construction is too big to fit in server memory. The Bloom filters themselves
contain approximately 250 bits (= 50 of them set to 1) for every item stored at the level. In
our configuration, assuming Bloom filter segments of 16 bytes (each with a 16 byte MAC),
this works out to only around 6.25 GB of Bloom filter data for a 1 TB database. However,
the temporary lists used to scramble and build this same Bloom filter with privacy and
correctness require a whopping 320 GB. Recall that &~ 50 Bloom filter positions per level
item are appended to a list, along with a MAC for each, and padded to be the same size as
a 32-byte Bloom filter segment.

The apparent effect is that sorting this 320 GB list might require a full disk sector read
and write per sort operation, when only 32 bytes are needed. This involves no additional
penalty when sorting items as big as (or a multiple of) the disk sector size, but potentially
cuts disk throughput by a factor of 128 when sorting our 32-byte Bloom filter positions.
This penalty is imposed in most of the passes, for example, of a Randomized Shell Sort [46].
On the other hand, the Oblivious Merge Sort described in Chapter [3] would not impose this
penalty (or even an analogous disk seek penalty), since the data is read sequentially.

Where, then, does the Oblivious Merge Scramble stand? I show now that with intelligent
caching and room for y/n sectors in server RAM, (e.g., 1 GB of RAM for a 1 TB database
is more than enough) we can avoid this disk I/O penalty. In the first step of the Oblivious
Merge Scramble, there are y/n items being merged together at once. In this case, the entire
contents of any single merge operation fit in RAM simultaneously, requiring only a single
sequential read at the beginning and a single sequential write at the end.

Observe that the remaining merge steps (2 through log,log, n), have two properties.
First, the subarrays are all size at least y/n, which is greater than a disk sector for all
potentially problematic database sizes. That is, databases smaller than, e.g., 40962 blocks,
have Bloom filters small enough to be constructed entirely in server RAM. Second, the total
number of subarrays is at most y/n. This means that an entire sector (e.g. 4096 bytes) of
every subarray can fit in server RAM. With careful disk cache use, we can read data sector-
by-sector without wasting disk throughput. This means we can operate at the full SSD disk
throughput. Note that this does not imply sequential reading of the data (nor avoidance of
any rotational disk seek costs).
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5.4 Conclusions

In this chapter we introduced a first practical oblivious data access protocol with correct-
ness. The key insights lie in new constructions and sophisticated reshuffling protocols that
yield practical computational complexity (to O((logn)(log?logn))) and storage overheads (to
O(n)). This mechanism simultaneously provides full computational privacy and correctness.
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Chapter 6
De-amortized and Parallel ORAM

We will tackle three more barriers to ORAM practicality in this chapter: serially-limited
querying, usability, and worst case query cost. First, instead of waiting for the completion
of all ongoing client-server transactions, client threads can now engage a server in parallel
without loss of privacy.

This critical piece is missing from existing Oblivious RAMs, which can not allow multiple
clients threads to operate simultaneously without revealing intra- and inter-query correla-
tions and thus incurring privacy leaks. And since ORAMs typically require many communi-
cation rounds, this significantly and unnecessarily constrains throughput. The mechanisms
introduced here eliminate this constraint, allowing overall throughput to be bound by server
bandwidth only (and thus increase by an order of magnitude).

To tackle worst case query cost, new de-amortization techniques bring the worst case
query cost in line with the average cost. Though I am not the first to provide an ORAM with
similar worst and average case query costs, this property has been shown to be fundamental
to any ORAM.

To address usability, I designed, built and analyzed PD-ORAM, a high performance, fully
functional implementation. It performs multiple queries per second on a 1TB+ database
over 50ms latency links, with unamortized, bound query latencies. Based on PD-ORAM,
privatefs, the first oblivious file system, was built and deployed on Linux as a userspace file
system, and will be made available to the open-source community.

6.1 Model Extensions

The adversary is assumed throughout the bulk of this chapter to be honest but curious;
however, Section[6.3.6/ details inexpensive adjustments that ensure “fork consistency” against
even an actively malicious adversary. Defined by Li et al. [75], fork consistency acknowledges
that a malicious server can present different versions of the database to different clients, e.g.,
by not including updates from some of the other clients, but guarantees that each “fork”
view is self-consistent. Moreover, clients will detect this behavior if they ever communicate
with each other, or if the server ever attempts to rejoin the views. For simplicity, timing
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attacks are not handled.
Let us consider some new definitions, which allow us to model parallel clients, as well as
apply these techniques to other ORAMs.

6.1.1 Parties

An ORAM setup consists of three types of parties: ORAM Clients, who issue read and write
queries, the limited-storage ORAM Instances, who satisfy these queries for their client while
maintaining privacy, and the ORAM Server, who has plentiful storage and is willing to help
the ORAM Instances, but is deemed untrustworthy (Figure )

The semantics used here correspond to existing ORAMs (read and write of fixed-size
blocks is supported), with the addition of concurrency and multiple “Instances”. Because
of the introduction of concurrency, it is also appropriate to offer an atomic test-and-set
instruction to ORAM clients. Analogous to the CPU primitive, it updates the value stored
at a location, returning the value previously stored there.
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Figure 6.1: Overview: ORAM Clients access data obliviously through a simple interface of
an ORAM Instance. The stateless ORAM Instances use an (untrusted) ORAM Server to
store and retrieve the data obliviously.

ORAM Client. a party who is authorized to issue reads and writes to the ORAM Interface.
Data is accessed in “blocks”, a term used to denote a fix sized record. “Block” is used instead
of “word” to convey target applications broader than memory access (including file system
and database outsourcing). Block IDs are arbitrary bit sequences. There are multiple clients.
Each ORAM client has access to the following interface provided by a corresponding ORAM
Instance: read(id): val; write(id, val); test-and-set(id, val): val.
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Accesses are serialized in the order the ORAM server receives them, which guarantees
each client sees a serialized view of its own requests. Among multiple clients, however, the
ordering is not guaranteed to correspond with the time-ordering of incoming client requests.

ORAM Instance. a trusted party providing an ORAM interface to ORAM Clients.
Instances are stateless but have access to the ORAM key (a secret shared among instances,
enabling access to the ORAM) and address of the server.

The Instance-to-Server protocol details are implementation-specific (and typically opti-
mized to the instance to minimize network traffic and the number of round trips).

ORAM Server. the untrusted party providing the storage backend, filling requests from
the instance. It is assumed here to be honest but curious.

The ORAM Instances communicate only with the server (not with each other). The
server is curious but otherwise honest. Thus, “fork (in)consistency” attacks [75]—in which
a malicious server presents different versions of the database to different clients, e.g., by
not including updates from some of the other clients—are not considered. Additionally, for
simplicity, timing attacks are also not handled here.

Communication between the ORAM Client and ORAM Instance is assumed secured,
e.g., with access controls on IPC if they are on the same machine, or with SSL otherwise.
Communication between the ORAM Instance and Server is also secured, e.g., with SSL.

Notation. p = upper bound on number of parallel clients, i = a level within a pyramid-
based ORAM (for the smallest, “top” level, i = 0), ¢ = security parameter, n = database
size, in blocks, =, is equivalence modulo p.

6.2 Parallel Queries: a First Pass

We now examine how to query existing ORAMs in parallel. The idea is to start with an
ORAM on which it is safe to run non-repeating unique queries (queries targeting different
data records in the underlying database) simultaneously, and to build from this an ORAM
which can also safely run colliding queries (targeting the same underlying data record).

Consider a classic ORAM [41]. We can augment it to handle parallelism for sets of unique
queries as follows.

e First, consider that as a client query searches across the database for a particular item,
its accesses are by design indistinguishable from random.

e Second, by ORAM construction, different unique queries touch independent sets of
database locations (because their coin-flips are independent).

e Now consider a set of multiple queries. Any of its reorderings results in accessing the
same locations (provided each query gets the same coin flips), albeit in a different
order.

e Thus, intuitively, it is safe for clients to submit unique queries simultaneously: the
server sees an identical transcript independent of the queries.
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The above privacy intuition only holds for non-repeating unique sets of queries, of course.
Clients simultaneously querying the same item reveal this to the server, as their accessed
locations are substantially similar. This raises the interesting question of how to guarantee
query uniqueness over arbitrary incoming client query patterns, without revealing any inter-
query collisions to the server.

Since the model requires the ORAM Instances to communicate only via the ORAM
Server!, one idea is to have Instances synchronize with each other via a server-hosted data
structure, in a way that prevents overlapping equivalent queries while still guaranteeing
indistinguishability of all query patterns.

Strawman. The simplest approach to ensuring uniqueness is for each new client to examine
ongoing queries. Finding an intersection, the client can then wait for ongoing queries to
complete before trying again. This is fundamentally insecure, however, since the server
learns when a query is being repeated by a later client, since the later client waits for the
previous client. Further, correcting this by making all clients wait for all previous queries to
complete before initiating their own query defeats the goal of parallelism.

Alphaman. To fix these issues, the server will help clients maintain an encrypted query
log. Scanning this query log allows an Instance to identify simultaneously ongoing requests.
In the case of overlap, a random unique query is executed instead. Once its query (real or
random) is completed, the Instance reports its result back to the shared cache/result log. It
then searches in the log for the result of the simultaneously ongoing overlapping query it had
identified (if any). This guarantees that in either case the Instance gets to learn the result
it seeks.
I detail this below (Section [6.3.2] Figure :

6.3 Abstractions and Solutions

This section defines the properties required to build parallel, de-amortized ORAMs, and
provides corresponding constructions.

6.3.1 Abstraction for Parallelism: “Period-based ORAM?”

The main idea is to run queries simultaneously between reshuffies. We are limited by the
size of the top level: this is the number of appends that can be performed before a shuffle is
required. Thus, let us designate the maximum parallelism and the size of the top level as c.
Subsequent levels will be sized ¢2¢ for this reason.

Definition 4. A period-based stateless ORAM Instance is an ORAM that performs
a series of p queries between each shuffle. The transcripts of unique queries within a period
are independent of their order. Previously executed queries are scanned from a server-stored
cache sized p, triggering a fake lookup instead.

Lcapturing an adversary with a complete view of the network
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Insight. The goal of this abstraction is to capture the fact that the underlying ORAM
already supports up to p simultaneous wunique queries. Specifically, the ORAM runs in
periods of queries over which the transcripts of unique queries are independent (e.g., the
original ORAM [41] satisfies this). For a given period between reshuffling (which lasts
several queries, until the top level overflows), and choosing the random number generator
coin flips for two unique queries ahead of time, the transcript for each query is the same
regardless of the order they are run. The transcripts of two identical queries, however, are
inter-dependent, since the first-to-execute query necessarily searches farther down in the
database than the second query, as the item is moved up to the top level once the first query
completes. The second-to-execute query finds the item immediately at the top, and thus the
remainder of the search is random.

6.3.2 A Solution for Parallelism

The motivation behind this protocol is to minimize waiting, while guaranteeing serializabil-
ity. The basic assumption about the underlying ORAM is that its data structure supports
simultaneous querying for unique blocks. Then, the ultimate purpose of this protocol is to
make sure all the simultaneous queries are unique. The challenge is to juggle this uniqueness
requirement (especially in the presence of colliding queries from different clients) with the
requirement that the server not learn any inter-query correlation.

One solution is to obliviously guarantee uniqueness of queries using an append log in
combination with a results log. Clients will still need to wait for previous queries to complete
before outputting a result, but now there is no requirement of blocking on other clients during
query execution. This increases throughput significantly (Figure :

1. The Client issues a query to its ORAM Instance.

2. The ORAM Instance generates the request, consisting of the block ID, and a bit
indicating whether this is a read or a write/insert. Test-and-set operations are identified
as writes.

3. The request is encrypted and sent to the server.

4. The server appends this to the query log (analogous to the top level), and returns a
sequential query ID, together with the query log, containing all queries since the top
level was last emptied.

5. The ORAM Instance interactively queries the underlying ORAM. If the query was
already in the query log (i.e., from another running client), the instance runs a dummy
query instead.

6. The ORAM Instance sends its result, encrypted, back to the server, which appends it
to the query result log.
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Figure 6.2: Parallel query protocol, as described in the text. This illustrates the interaction
between a single client and the server for performing a single query. Other clients may be
performing queries simultaneously; the challenge here is to avoid intersections during parallel
query execution, without revealing when any queries intersect.
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7. The ORAM Instance reads the results log up to its own entry (only interested in previ-
ous clients’ results), in case the current query is accessing a block that was previously
read or written. This is the only step that requires waiting for the earlier queries to
complete.

8. The ORAM Instance returns to the ORAM Client the result (obtained from the
database, or the result log).

Server network traffic over a period of p parallel client queries is thus quadratic in p, since
each Instance needs to be aware of what each simultaneous Client is doing?. As a result, the
number of parallel clients that optimizes total throughput is a function of network bandwidth,
latency, and database size.

On the one hand, for p clients, and a database of n blocks, the sequence of log,(n) + 3
round trips per query imposes a network-latency based maximum query throughput of

p
((logyn) + 3) x latency

On the other hand, the cost of supporting multiple clients (quadratic in p over p queries;
linear in p per query), and the online data transfer cost of log, n blocks, impose a server
bandwidth based maximum throughput:
bandwidth
((p—1)/2 + log, n) x blocksize

To find the optimal number of clients p for a given configuration the lower of these upper
bounds needs to be maximized. This relationship is plotted in Figure for a representative
setting.

After p queries execute, the query log is converted into the ORAM top level and thus
the queries are applied to the database, in the ORAM-sense (Figure . This is where the
requirement of a “period-based” Instance is necessary.

In the process, the shuffler has the role of consolidating the query log. A single block
may be accessed multiple times by different queries, but is placed only once back into the
database. The value chosen for a given block is either the last write, if there is one, or
otherwise the first read. Recall that subsequent reads are associated with fake results.

Properties. It is now time to informally define and sketch proofs for two main properties:
optimality and query privacy.

Theorem 22. In any model in which the server can associate all visible read/write data ac-
cesses corresponding to a given query, hiding access patterns in a “non-simultaneous ORAM”
requires waiting for the results of all previous queries (“wait-optimality”).

2To disseminate this information in a more network-efficient manner, e.g., by only requesting the log
entry the client is interested in (instead of the entire log) a PIR, protocol may be deployed in accessing the
log. This would results in a trade-off between server bandwidth and server CPU time. As shown by Sion
and Carbunar [116], this trade-off is mostly unfavorable, yet recent results [99] indicate that it may become
feasible in the near future.
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Figure 6.3: Upper bound on online query rate of a 100GB database (blocksize = 10* and
n = 107) and assuming a 100 Mbit (12.5 MB/sec) network link. The plot is shown for various
network round trip times, from 0 ms through 75 ms. Observe that single clients, incurring
log, n round trips per query, are tightly bound by the round trip time. Adding more parallel
clients increases this throughput linearly, up to the point where bandwidth limits from the
query log traffic take over.
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Figure 6.4: Reconciliation of the query log into the new top level. After a period of p
queries, the query log is shuffled and becomes the top level. Regarding the query log hosted
set of ids, consider that a block can only be read once from the ORAM during this period.
Thus, the correct value for a given block is either the last write of this period, if there is one,

or otherwise the first read.
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Proof. (outline) Given any ORAM, unless it supports simultaneous execution of equivalent
queries (for the same underlying block), Instances must wait for all queries prior to theirs
to complete before outputting a final result. This is since repeating the query before the
previous query has completed, (resulting in overlap among the visible data accesses) would
leak the correlation between these queries. Instead of attempting to repeat a previous query,
clients must obtain the result from it—but they can do so only once that query has finished
executing.

Now, for parallel execution, to make all query sequences indistinguishable to the server,
clients still need to wait for the prior queries, as if their query depended on all of the previous
queries (lest they reveal which query they are waiting for, if any). O]

Theorem 23. If there exists an adversary with non-negligible advantage at violating query
privacy in a parallel ORAM, there is an adversary with non-negligible advantage at violating
the privacy of the underlying single-client ORAM (“query privacy inheritance”).

Proof. (outline) Consider that in the parallel case, client behavior from the perspective of
the server is identical for each new query instance regardless of whether and how often the
same equivalent query appears “earlier” in the log. For every query, the server always sees a
semantically secure encrypted append operation to the query log, a query to the underlying
ORAM, and a scan of the results log up to that point.

Intuitively, the only difference now is that transcripts of the different queries are inter-
leaved, but otherwise contain the same accesses as when executed in a traditional ORAM.
This is so because in the parallel case, if a client queries for a block that is already queried
for by a simultaneously ongoing query, the client’s ORAM Instance will instead issue a fake
query—which is exactly what it would have done anyway in the traditional ORAM (had it
found the query result at the top level). Thus, from the server’s point of view, the transcripts
contain the same (random looking) accesses.

Further, query transcripts are independent of their query and, without knowledge of the
secret ORAM key, indistinguishable from random.

Then, an advantage at distinguishing the new transcripts translates into an equivalent
advantage at distinguishing the underlying ORAM’s if parallelism were not enabled. The
reduction is straightforward and both inter-query correlation and access privacy can be shown
to be protected in the IND-CQA model (Section [1.5.1]). Details are out of scope. O

6.3.3 “Level-based Amortized ORAM?” Abstraction

This section introduces a generic de-amortization technique, together with the abstractions
necessary to deploy it to de-amortize a large class of ORAMs and reduce their worst case
query cost to the average case.

Consider a “level-based amortized ORAM” which divides the database into levels, with
the more recently accessed items stored in the smaller top levels. Retrieval requires searching
within a set of specific locations in each level from the top down, and, once found, lifting
the result back up into the top level. The next time the same query is repeated, the block
is discovered at the top, which causes the ORAM Instance to instead access a random set of
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locations at each level below. The top level overflows periodically into the lower levels, and
a level is guaranteed to get re-shuffled before a given query is repeated at that level. Thus
each query looks like only an selection of random, independent locations in each level.

Definition 5. A level-based amortized ORAM Instance is an ORAM that searches
levels recursively, appending the result back to the first level. Privacy results from the property
than an item is sought at a particular level no more than once between two consecutive shuffles
of that level.

Intuition. The goal of this definition is to identify those ORAMs that recursively query
a data structure divided into multiple levels. These ORAMs guarantee privacy by enforcing
that blocks are never sought in the same location twice. That is, after seeking a block
once at a given level, that level will be “re-constructed” before the block is sought there
again. Level-based ORAMs move each retrieved block up to the top level of the ORAM,
from where it slowly makes its way back down the data structure as the lower levels are re-
constructed. Level-based amortized ORAMs include constructions presented by Goldreich
and Ostrovsky [41], Goodrich and Mitzenmacher [44], Pinkas and Reinman [108], as well as
the constructions presented in Chapters [4] and [5]

6.3.4 A De-amortized ORAM Construction

I now construct a level-based de-amortized ORAM from a level-based amortized ORAM.

De-amortization techniques for level-based amortized ORAMs need to deal efficiently
with the level constructions resulting from overflow of the top levels. Their goal is to arrange
the levels such that they can be queried while the items are simultaneously being inserted
and re-shuffled into new levels. That is, instead of suspending querying to wait for shuffling
to proceed, a new level must be available as soon as it is needed.

The main idea is to provide pre-emptive shuffling. Rather than waiting for querying to
complete before shuffling a level, its transformation into a new level begins as soon as a level
is constructed, and right as its querying begins.

To allow this, one idea is to duplicate a level into two copies: a read-only variant that is
used in the querying process, and a writable variant which is dynamically updated into the
new generation of this level. The read-only copy is discarded at the end of the period, since
it is no longer needed for either queries or level construction.

Level De-amortization. Consider first the de-amortization of a single level. In a tradi-
tional ORAM, a level is reconstructed by combining into it the above level that has filled up
and now overflows (Section . This necessarily stops the query process for its duration.
To de-amortize this, when beginning its construction, instead of pausing queries and
waiting for the construction to finish, querying can continue via the read-only level copy
while a new generation is produced into the writable variant. Critically, during this process,
existing levels can overflow into a fresh, empty, replacement for this level. (Figure [6.5]).

Delete Log. The second change is to delay any level updates until the end of the shuffle.
This is important because some ORAMSs avoid the complexity of reconciling multiple versions
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Figure 6.5: In-background construction of a single level. The top section represents the
initial database state; the middle section shows the database state during the process of
constructing the new bottom level; the bottom section shows the resulting database state.
The scenario illustrated is as follows. The third level is full, so it needs to be combined with
the fourth level. Read-only copies of those two levels are made, and can be queried while the
combination is occurring. Simultaneously, overflows from the top level are placed into the
a replacement third level. All five levels are accessed during queries at this time. Once the
construction of the bottom level is complete, querying resumes with this new bottom level
replacing the two read-only levels (which contain the same items).
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of an item (and in the process also reducing storage overheads) by deleting blocks from
the levels in which they are found. In the de-amortized construction, though, this is no
longer possible, since the queried level copies are now read-only. Instead, these changes are
appended to an update log—e.g., items marked for deletion in this log are now deleted by
the server before the next shuffle of the level. Note that not all ORAMs modify the pyramid
structure during queries; some [41] do not need such modification. This de-amortization
protocol simply requires that those changes that are made can be applied after the level has
been reconstructed.

Details. A level at height i, containing m = p2¢ items, is queried m times. At the end of
the mth query, the shuffle will have completed, and the remaining items from this level are
now in a new level.

Each level is a data set, completely specified by its height i, the sequentially increasing
“generation” j at that height, and a one-bit marker for the odd generations. The two levels
at an even generation j, denoted by 4.7 and i.j.%, are combined to produce a level at the
next height i 4+ 1, generation j/2. Those levels at a height ¢ with an odd generation j are
reshuffled to produce level 7.5 4 1.x.

The levels currently being reshuffled are the ones queried. This means at any one time
there are either one or two active levels (queried and being shuffled) at each given height,
for i <log,n. an illustration of the resulting shuffle schedule, is provided in Figure [6.6

The above construction allows de-amortization of the construction of all the levels except
the top level. De-amortization of the top level appears to be possible using a rotating query
log, but is left as future work (since its impact is minimal as the top level is very small).

If based on an underlying stateless period-based amortized ORAM, the result is a stateless
period-based de-amortized ORAM, suitable for parallelization.

Theorem 24. If there exists an adversary with non-negligible advantage at violating query
privacy in a de-amortized ORAM, then as long as the underlying level-based ORAM con-
structs levels according to an ideal secret random permutation, there is an adversary with
non-negligible advantage at violating the privacy of this underlying level-based ORAM (“query
privacy inheritance”).

Proof. (outline) The new construction maintains the same privacy-preserving property as
the underlying level-based ORAMs: once a query seeks an item at a given level, no further
query seeks that item at that level until reshuffied.

The construction of any given level proceeds equivalently to the level-based ORAM,
except that during-query level changes are postponed to after reconstruction. When applied
after level reconstruction these in effect reveal to the server portions of the level’s reshufling—
since the server needs to know what to update or delete.

This is the only new information given to the adversary. Informally, privacy is shown by
reducing to a property of ideal permutations: uncovering a portion of a permutation does
not reveal anything about the remaining portion. Since the underlying level-based ORAM
selects the level permutation according to an ideal secret permutation, this follows trivially:
all arrangements of the elements in the “still secret” portion are equally likely. It constitutes
a secret permutation in itself.
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Figure 6.6: Shuffle schedule: Query numbers are listed in the first column. For a given query,
the dark outlined boxes overlapping that row specify which levels and generations to access
(from left to right). The light boxes identify the simultaneously occurring reshuffle.
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The reduction proceeds by showing that the only additional information available to an
adversary derives from these postponed level changes. Any advantage at violating IND-
CQA in the de-amortized scheme translates to an advantage at violating IND-CQA in the
underlying ORAM scheme. 0

Storage overhead. Assuming the client storage required to shuffle level i is less than
or equal to the space required to shuffle the next larger level, ¢ 4+ 1, then de-amortization
requires an extra factor of client storage upper-bound by log, n (since all log, n levels are
being shuffled at once).

Communication overhead. This construction requires querying up to twice as many
levels simultaneously. However, since it is known in advance that the item won’t show up in
both levels, this querying can be done in the same number of round trips.

Shuffling overhead. The amount of work performed per query is roughly similar. Addi-
tional overhead may stem from shuffling being done before level items are removed. But since
only half of the items would be removed anyway, for ORAMs where the level ¢ construction

cost is smlog, m for constant s and m = 2°, this keeps the new overhead for shuffling within
s(2mlog, 2m) =924 1 <3

s(mlogy, m) logo m

a factor of

6.3.5 Bloom filter ORAM with Logarithmic Client Memory

I now detail the final piece of the construction: the underlying base ORAM mechanism. In
Chapter [5/T introduced an ORAM that stores each pyramid level as an encrypted hashtable
and an encrypted Bloom filter (BF)—indexing elements in the hashtable. The BF allows
the client to privately and efficiently—no linear scanning of O(logn) fake block buckets for
each stored block to hide the success of each level query as in previous ORAMs—identify
the level where an item of interest is stored, which is then retrieved from the corresponding
hashtable.

I use the simple Bloom filter construction described in Section[5.1.6/because of the reduced
client storage requirements. This results in an O(log®n) BF-based ORAM requiring only
logarithmic storage. Instead of using the “bucket sort” method that builds y/n-sized chunks
of the encrypted BF in client storage, the idea is to securely construct a list of all the BF
segments and indexes, and sort them together using the memory-restricted Randomized shell
sort provided by Goodrich et al. [46].

The PD-ORAM implementation assumes c/n logn client storage to employ the Oblivious
Merge Sort instead of the disk-seek intensive inefficient randomized shell sort. Nevertheless,
this simpler BF construction process is employed instead of the ¢y/n variant.

6.3.6 Security against malicious adversaries

Ensuring security against a malicious adversary first requires an underlying ORAM providing
these guarantees. Fortunately, the Bloom filter-based ORAM I presented in Chapter
provides such a mechanism. Second, maintaining security in a parallel setting requires clients
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to test that they all see a consistent view. This is achieved using a hash tree over the set
of all previous queries. Whenever a client performs the top level shuffle, it is responsible for
updating this hash tree, and signing and attaching the root value to the new query log. This
entails hashing the current query log, appending it as a new leaf node to the hash tree, and
recomputing hash values along the path from this new node to the top.

Second, whenever a client performs a query, it performs one additional operation: it
verifies that the last query it performed is included in the hash tree, whose root corresponds
to the value attached to this query log. This is done by verifying all nodes in the hash tree
adjacent to the path from the root to its last request.

The PD-ORAM implementation analyzed in the following sections, however, assumes an
honest but curious adversary.

6.4 Performance Analysis and Experiments

6.4.1 When Theory Meets Real Asphalt

Amortized Measurements. A significant challenge in measuring the performance of
any amortized system is ensuring the trial captures the average performance, not just peak
performance. This is complicated by the requirement of running trials for periods that are too
short to encompass the full period over which the amortization is performed. For example, at
even several queries per second, the reconstruction of the lowest level of a terabyte database
is amortized over a period on the order of weeks or longer.

De-amortizing the level construction provides the opportunity of improving measurement
accuracy. The challenge remains, however, of ensuring the de-amortized background shuffle
proceeds proportionally to the query rate: the de-amortization is perfect when the new level
construction is completed at the instant it is needed by a query. Inaccuracies in this rate
synchronization will affect the measured results, since measured query throughput of a short
period might be higher or lower than the sustainable rate.

To avoid this effect, PD-ORAM maintains progress meters for level construction, and
only allows queries to proceed when every level is at least proportionally constructed. The
level constructions processes are also suspended when a level gets too far ahead of the current
query. This keeps querying and level construction smooth, minimizing worst case latency.

Proper de-amortization: Theory vs. Reality. Performing proper de-amortization
proved a non-trivial systems challenge. Research solutions, including a construction by
Goodrich et al. [45], and our own PD-ORAM (Section[6.3.4) express de-amortization in terms
such as “perform the proportional amount of work required”, or “perform the next O(f(z))
accesses.” While these terms suffice for proving existence of a de-amortized construction,
programming models don’t typically provide this type of abstract control over code execution.
PD-ORAM achieves this control using progress metering over the construction of individual
levels. Since the level construction is a non-trivial operation involving different types of

computation across the client and server, accurate progress metering required splitting level
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construction into tasks whose progress can be reported over time. Moreover, this metering
uses experimentally determined values to identify what portion of the level construction
corresponds to which subtasks. Figure illustrates the result of informing the progress
meter with experimentally determined values.

As an aside, suspending the level construction when it outpaces the queries proved criti-
cal on the larger database sizes. The sheer number of requests being sent from the ORAM
Instance to the ORAM Server for construction tended to starve the requests of actual queries
(much fewer in number), causing the query rate to drop quickly as more levels were intro-
duced. This behavior was corrected by forcing level construction to remain proportional to
query progress: this keeps the individual query rates much closer to their average.

Due to the impracticality of repeatedly running trials over the entire (up to 1TB) mea-
sured database epoch, the database for these trials is first constructed non-obliviously on
the server via a specially designed module. The items are inserted in a random order so that
the final result mirrors an oblivious construction (as would occur from a sequence of write
queries).

6.4.2 Setup

PD-ORAM is written in Java. Clients are distributed evenly across several Intel Xeon
machines, each with two quad-core 3.16GHz Xeon X5460’s. The Server runs on a single
Quad-Core Intel i7-2600K Sandy Bridge 3.4GHz (3.8GHz Turbo Boost) LGA 1155 95W
CPU, with 16GB DDR3 1600 (PC3 12800) SDRAM and seven HITACHI Deskstar 2TB
7200 RPM SATA 3.0Gb/s 3.5” SATA disks (software RAIDO/LVM).

All the machines share a gigabit switch. Network latency is shaped by forcing server
threads to sleep for the desired round trip duration upon receiving a request. This allows
simulation of link latency without capping link bandwidth.

The implementation uses a BF with 8 hash functions, and 2400 bits of space per item
which allows an efficient construction within the false positive rate of 27% per lookup. The
resulting BF constitutes roughly 25% of the database records size.

Optimization. Rather than optimizing the BF size required to obtain this error rate by
using a larger number of hashes, as suggested by Pinkas and Reinman [108], PD-ORAM uses
larger BFs with fewer hashes, to minimize item lookup disk seeks while obtaining the same
error rate.

6.4.3 Experiments

One main goal of the experiments is to understand the interaction between network perfor-
mance parameters and the parallel nature of PD-ORAM.

Size + clients vs. query throughput + latency. Figurel6.7/plots the effect of database
size and client parallelization on overall query throughput and latency. Fresh databases were
used for all trials to prevent dependency of the measurements on the order of the trials,
except for the 1TB trials, where this proved impractical. Even though individual query
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latency increases with more clients contending for resources, the benefit of parallelization
are obvious: significantly higher overall throughputs is achieved.

Clients 4+ network latency vs. performance. Figure plots the effect of parallel
clients and network latency on overall query throughput and per-client latency for a fixed
database size. The premise of this measurement is that parallelization becomes significantly
more important as network latency increases.

De-amortization optimality. Figure plots the observed latency of individual queries
vs. time on a growing database. With perfect de-amortization, all queries would require the
same amount of time. The majority of the queries take around 1200ms; a fixed lower limit is
imposed by the network latency. The bands at 2600ms and 3100ms reflect the construction
of the top, smallest level, which is not de-amortized. The slight downward slope indicates
the progress estimation at the beginning of the shuffle is conservative.

Progress metering. To validate the accuracy of the progress metering, Figure shows
the reported construction progress of a single level as sampled every 5 seconds. Strict de-
amortization and querying is disabled for this trial, to avoid cool-down periods when con-
struction has progressed farther than is needed, and to ensure measurement of its progress
only.

6.4.4 Impact of Rotational Hard Disk Speeds

The experiments were repeated (for database sizes up to 300GB) in a different setup, in
which the server was run on dual 3.16GHz Xeon X5460 quad-core CPUs and siz 0.4 TB 15K
RPM SCSI (hardware RAIDO) disks.

This configuration surprisingly outperformed the setup above by a factor of 2x in most
trials. The primary advantage is the superior seek time on the server disks, so the markedly
different results suggest that server disk seek costs play an important role in overall per-
formance. This was somewhat surprising, since the level construction mechanisms were
designed specifically to minimize disk seeks (with the hash table insertion being the only
random-access operation during level construction, requiring an average of 2 random writes
per insert). The rest of the level construction simply requires reading from one or two
sequential buffers, and writing out sequentially to one or two.

The culprit is most likely the de-amortization process, which constructs different levels in
parallel, and in effect randomizes disk access patterns. While individual level construction
is mostly limited by sequential disk throughput, running many of these processes in parallel
across the same file system results in disk seeks even in the sequential access regions, resulting
in a much lower overall disk throughput.

Several software and hardware solutions present themselves. Better data placement would
split data in a more efficient manner across the available disks (instead of using a RAID
configuration), to allow the sequential nature of each level construction process to transfer
to sequential disk access. Obtaining optimal throughput in this manner would require a
relatively large number of disks. Further, the use of more expensive (but quickly dropping in
cost) low-latency solid state disks (SSDs) would be a simple hardware solution to eliminate
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Overall query throughput vs. database size and num clients, 50ms network latency
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Figure 6.7: Performance vs. data size for varying number of clients. Top: throughput vs.
database size. x-axis is log scale. Bottom: query latency vs. database size. Each point is
sampled over 3000 queries.
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Overall query throughput vs. net latency and num clients, 1.3e+10-byte database
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Figure 6.8: Performance vs. network latency for varying number of clients. Top: query
throughput vs. network latency. Bottom: query latency vs. network latency. Each point is
sampled over approx. 3000 queries.
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Query latency vs. time on 1.3e+10-byte database, 50 ms latency
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Figure 6.9: Individual query timings. Query latencies of a trial using a single client are
plotted, along with the running average. With perfect de-amortization, all queries would
require the same amount of time.
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this performance bottleneck. It remains to be seen however, whether the sustained random
write performance degradation plaguing current SSDs does not constitute a bigger bottleneck
in itself, as preliminary throughput experiments on several recent 128GB Samsung SSDs with
2011 firmware updates seem to suggest.

6.5 An Oblivious File System

ORAM lends itself naturally to the creation of a block device. Due to existing results’
impractical performance overhead this has not been previously possible. A Linux-based de-
ployment of PD-ORAM is used here to design and build privatefs, a fully-functional oblivious
network file system in which files can be accessed on a remote server with computational
access privacy and data confidentiality.

An initial implementation was built on top of the Linux Network Block Device (NBD)
driver, which is the simplest and most natural approach, since PD-ORAM already provides
a block interface. However, NBD supports only serial, synchronous requests. To take ad-
vantage of the parallel nature of PD-ORAM, privatefs is instead built on FUSE (Filesystem
in Userspace [56]).

A second attempt used ext2fuse, a FUSE-based ext2 implementation [112], by rerouting
block access through PD-ORAM. However, thread safety difficulties prevented us from mod-
ifying it to support parallel writes or reads. Additionally, because of its nature as a block
device file system, ext2fuse requires mechanisms for allocating blocks for files, such as block
groups, free block bitmaps and indirect file block pointers inside inodes. These mechanisms
are not all thread-safe and pose a challenge to synchronize. Moreover, locking the code using
synchronization primitives would not result in a sufficient degree of parallelization.

Instead, with the help of Alin Tomescu, we implemented our own privatefs using the
FUSE libraries in C++. It fully leverages the parallelism of PD-ORAM. Moreover, it takes
advantage of the non-contiguous block labeling of PD-ORAM in a way that block-device file
systems cannot.

Following the Linux file system model, in privatefs files are represented by inodes. Direc-
tories are inodes containing a list of directory entries; each directory entry is the name of a
file or subdirectory along with its inode number. Inodes are numbered using 256-bit values
and are mapped directly to ORAM blocks, such that inode x is stored in ORAM block z.
Inodes hold metadata such as type, size and permissions. Both privatefs and (this instance
of) PD-ORAM use 256-bit block identifiers and 4096-byte blocks.

Because the ORAM provides random access to 256-bit addressable blocks, a block can
be allocated simply by generating a random 256-bit number. We take advantage of this in
two ways. First, to read or write the i** block of file with inode number z, the pair (z,1)
is hashed with the collision-resistant SHA256 hash, yielding the 256-bit ORAM block 1D
for that file block. Second, when a new file is created, a 256-bit inode number is randomly
generated, as opposed to maintaining and synchronizing access to an inode counter.

Our design eliminates the complexity of contiguous block device file systems and mini-
mizes the need for locking when writing or reading files. As opposed to ext2fuse, privatefs
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File System Write speed Read speed
NBD (ext2) 14.80KB/s 10.45KB/s
ext2fuse 7.11KB/s  9.62KB/s
privatefs 83KB/s 61.69KB/s

Figure 6.11: Measured file system performance in a zero latency environment for our two
trial implementations, plus our privatefs implementation.

does not incur the overhead of maintaining free block or inode bitmaps, grouping blocks
into block groups, or traversing indirect block pointers to read files. The potential drawback
is that sequential blocks of a given file will not be stored contiguously in the file system.
However, this is harmless when using an ORAM, since there is no notion of sequential block
numbers (which would compromise access privacy).

privatefs employs exclusive locks when reading and writing directories. In addition, an
LRU cache is implemented to quickly retrieve an inode’s data given its inode number and
also for file path to inode number translation, which helps avoid long directory traversals
(and associated locking). privatefs communicates with the ORAM server by means of a
proxy (written in Java), which receives block requests from the file system and satisfies them
using parallel connections to the ORAM server. This design choice affords us a higher degree
of modularity, enabling us to connect privatefs to other ORAM schemes in the future. This
arrangement is illustrated in Figure

We benchmarked privatefs along with our previous file system attempts, using a parallel
workload writing ten, 512KB files simultaneously to the file system, then checking their
integrity (also done simultaneously) using the sha256sum utility. The set of tests in Figure
considered a 0O-latency environment. The performance results for privatefs indicate a
major improvement relative to our previous implementations using NBD and ext2fuse.

Our benchmarks (Figure indicate that privatefs is benefiting from the high degree of
parallelism in high-latency environments. We ran five trials for each point, varying the num-
ber of ORAM clients used by the proxy to satisfy file system block requests and performance
increased proportionally with the degree of parallelism.

Reads are less expensive than writes in the 40ms and 160ms trials, because the individual
writes are performed synchronously, while the reads can be parallel, resulting in a higher
overall degree of parallelism. On the other hand, the low latency in the Oms trial prevents
this parallelism from having an impact. The reads are, in turn, more expensive, due to
inefficiencies in the de-amortization method resulting in slightly slower queries at later points
in the process.

Overall, privatefs features a throughput modest when compared to unsecured file systems.
However, this is the inherent cost of achieving privacy. privatefs is the first file system to
provide access pattern privacy, and is fully functional and immediately usable.
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privatefs throughput vs. degree of parallelism, for various network latencies
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Figure 6.12: privatefs read and write performance vs. the number of ORAM Clients, for
various network latencies. The zero latency environment is mostly unaffected by the degree
of parallelism, as expected. In higher latency environments, the throughput grows with the
number of clients; having parallel clients offsets the effect of the latency.
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Figure 6.13: Implementing an Oblivious File System: the ORAM Client provides a virtual
block interface. A FUSE-based file system converts reads and writes into sequences of block
requests. The result is a parallel-access oblivious file system, wherein the data is stored
remotely but accessed with access privacy and data confidentiality:.

6.6 Conclusions

The contributions of this chapter include mechanisms for secure parallel querying of existing
ORAMSs to increase throughput, a generalization of ORAM de-amortization, a logarithmic-
storage construction of a Bloom filter-based ORAM, and implementation of an efficient
ORAM based on these techniques, performing a transaction per second on a 1TB database
in an average-latency network, a first. Finally, an implementation of privatefs, the first
oblivious networked file system, is provided.
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Chapter 7
ORAM in a Single Round Trip

I now present SR-ORAM, the first single-round-trip poly-logarithmic time Oblivious RAM
requiring only logarithmic client storage. Taking only a single round trip to perform a query,
SR-ORAM has a communication /computation cost of O(logn), with O(log? nloglogn), and
under 2 round trips, overall amortized per-query communication requirements. The trusted
client folds an entire interactive sequence of ORAM requests into a single query object
that the server can unlock incrementally, to satisfy a query without learning its success
status. SR-ORAM additionally defends against an actively malicious polynomially bounded
adversary.

7.1 Introduction

One of the most significant challenges to providing practical ORAM is that these interactive
protocols require a large number of client-server round trips, resulting in large, often im-
practical, online query latencies. For example, a recent construction by Goodrich et al. [45]
requires log, n round trips, translating to an online cost alone of over 1200-1500ms per query
on a 1 terabyte database (e.g., for 10KB blocks), assuming a network link with a latency of
just 50ms.

This chapter provides a simple and direct solution to the challenge: SR-ORAM, a non-
interactive, single-round-trip ORAM. SR-ORAM requires a single message to be sent from
the client to the server and thus incurs a single round-trip (for a total online cost of 50ms
in the example above). Moreover, SR-ORAM does not greatly affect the offline, amortized
cost.

The basic idea behind SR-ORAM is to fold the interactive queries into a single non-
interactive request without sacrificing privacy. The client constructs a set of values (a
“query object”) that allows the server to selectively decrypt pieces, depending on new val-
ues obtained during its traversal of the database. Critically, each component of the query
object unlocks only a specific single new component—which allows server database traversal
progress while preventing it from learning anything about the overall success of the query.

My construction is based on the Bloom filter ORAM from Chapter [5] since it lends itself
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conveniently to use of a non-interactive query object and provides defenses against actively
malicious adversaries (not only curious). We also make use of the randomized shell sort [46],
since it allows the more stringent client storage requirements of SR-ORAM (when compared
to the sorts I present in [3)).

Other non-interactive ORAMs exist; Chapter [2] reviews recent solutions. However, SR-
ORAM is the first to provide a non-interactive poly-logarithmic time construction that as-
sumes only logarithmic client storage.

Bloom filters. As in the other Bloom-filter based ORAMSs I present (Chapters [5] and [6]),
the SR-ORAM Bloom filters are constrained by important considerations. First, we need
to minimize the number of hash functions h, since this determines directly the number of
disk reads required per lookup. Second, we need to guarantee that with high probability,
there will be no false positives, since a false positive reveals a lookup failure to the curious
server. Third, as will be shown, in SR-ORAM, instead of storing an encrypted bit for each
position of the Bloom filter, we now store part of a decryption key. Since the server cannot
distinguish between the keys for bit-values of 7 and keys for bit-values of 0, we retain the
property that the server does not learn the success of the Bloom filter lookup.

7.1.1 Model

Unlike previous chapters, we assume here that the client has only enough local non-volatile
storage to manage keys and certificates, plus enough volatile RAM to run the ORAM client
software (logarithmic in the size of the outsourced data).

We will assume in this chapter, and defend against, an actively malicious, curious poly-
nomially bounded adversary in the random oracle model. The actively malicious defense is
inherited from the underlying ORAM.

Additional Notation. The client secret key is sk. The number of times a given level has
been shuffled (i.e. reconstructed) is called the “generation,” and is abbreviated as gen. Key
size and hash function output size are both assumed to be cgy; ¢; is the Bloom filter security
parameter.

7.1.2 Other Single-Round-Trip ORAMs

While Chapter [2] reviews recent ORAM related work, they are not examined in the context
of the number of round trips required. We will revisit in this section the work that is relevant
to reducing the number of round trips.

Indeed, other recent approaches provide ways around the penalty of highly interactive
protocols, at the cost of additional hardware or overwhelming requirements of client storage.
The main issue in constructing a single round trip ORAM is that a request for an item
depends on how recently an item was accessed. Maintaining this information at the client
requires storage at least linear in the size of the outsourced database. Moreover, retrieving
this information privately from the server is almost as difficult as providing ORAM. (With
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the difference that this recursive ORAM only requires storing O(loglogn) bits per item,
which is enough location information about the item to build the query).

Secure Hardware. Secure Hardware modules such as the IBM 4764 [59] can be placed
server-side, while using remote attestation to retain some level of security guarantees for
clients [5]. Secure hardware, however, is typically an order of magnitude more expensive
than standard processors, and due to heat dissipation difficulties, is typically also an order
of magnitude slower. Moreover, the necessity of physical security in order to provide any
guarantees makes such solutions vulnerable to a whole class of new attacks.

Non-interactive protocols using client storage. A new construction by Stefanov et
al. [120] maintains item location information at the client. Although at the outset, nlog, n
bits of client storage seems like a big assumption, the authors argue this is reasonable in some
situations, since the block size is typically larger than logn. They show that in practice, the
local required client storage in practice is only a small fraction of the total database size. The
recursive construction, using a second ORAM to store this level membership information,
however, is interactive. SR-ORAM requires only O(log, n) bits of client storage (Section
.

A non-interactive cache-based ORAM by Wang et al. [125] relies on k client storage to
provide an amortized overhead of O(n/k). The idea is to take add previously unseen items to
a cache which is shuffled back into the remote database when it fills. Again, the high client
storage requirements (and poor storage/performance trade-off) make it unsuitable for my
model. This idea is revisited under different assumptions by Boneh et al. [17], with better
security formalization, but still requiring this client storage.

7.2 A First Pass

This strawman construction modifies the Bloom filter ORAM of Chapter [5. This strawman
construction has the structure, but not yet the performance, of the SR-ORAM construction.
As detailed in Section that Bloom filter ORAM uses encrypted Bloom filters to store
level membership of items. To seek an item, the querying client must request a known fake
item from each level, except from the level containing this item: the item is requested here
instead. Which level the item is at depends only on how recently this item was last accessed.
Since the client does not have storage to keep track of that, it checks the Bloom filters one
at a time to learn if the item is at each level.

Moreover, since the main principle of level-based ORAMSs requires each item be sought
once per level instance, it is unsafe to query the Bloom filters past the level where this item
is present. This explains why the checks must be interactive: once the item is found at level
i, further accesses at the levels below (i + 1 through log, n) entail only random Bloom filter
queries corresponding to fake item requests. Then, putting the found item back at the top
of the pyramid guarantees that later, it will be sought and found elsewhere, since the only
way it gets back down to the lower levels is by riding a wave of level reshuffles.
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I now describe how to safely turn this into a non-interactive process. Observe that in
an interactive ORAM, if the client is requesting a recently accessed item j that happens to
be in level 2, the access sequence will proceed as follows. This example is also illustrated in

Figure

1. The client checks the level 1 Bloom filter for the item: reading the positions generated
by Hash(sk | level =1 | gen | j )

2. Upon seeing Encrypt(0) at one or more of those positions in the Bloom filter, the client
learns the item is not at level 1. So it asks for a fake item instead, that is labeled as
Hash(sk | level =1 | gen| “fake” | accesscount )

3. The client now checks the level 2 Bloom filter for the item: reading the positions
indicated by Hash(sk | level =2 | gen | j )

4. Seeing Encrypt(1) at all of those positions, the client learns the item is at this level.
This means it is safe to request the item here; the client asks for the block labeled
Hash(sk | level = 2 | gen | “block” | accesscount )

5. Having already found the item, to maintain appearances and not reveal this fact to
the server, the client continues to issue random Bloom filter lookups at each level @
below. At each level it requests the fake blocks labeled Hash(sk | level | gen | “fake”
| accesscount )

Note that there are only log, n possible such access sequences, based on which level the
item is found at (Figure . Each path starts with a real query. Real queries continue
until an item is found, at which point only fake queries are issued from there on down. This
limited number of possible sequences makes non-interactive querying possible.

Since we have a finite number of these paths, our goal is to follow one of these paths
non-interactively, not knowing ahead of time which level the item is at (and thus which of
the log, n paths will be followed).

To achieve this, I propose to have the Bloom filter results themselves be used in unlocking
one of the two possible edges leading to the next query. A successful lookup will unlock the
edge leading to a “finished” set, under which only fake queries will follow. Conversely, failure
must unlock the edge continuing down the “active” search set. Once in the “finished” set, it
is impossible to return back to the “active” set. Most importantly, the server must not gain
any ability at identifying which path it is currently on.

One strawman idea, exponential in the number of Bloom filter hashes k, is to make each
bit in the Bloom filter a piece of a decryption key unlocking an edge to the next node. For each
level, the client prepares 2* results, corresponding to each possible state of the Bloom filter.
The Bloom filter keys are generated deterministically by the client using a cryptographic
hash, so that the client can efficiently keep track of them with only logarithmic storage.
That is, a bit set to I at position pos in the Bloom filter is represented by 71},,; = Hash(sk |
pos | level | gen | 1), and a bit set to 0 by F,,s = Hash(sk | pos | level | gen | 0). The server
learns only one of the two (never both).
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Left: potential query paths in unmodified BF-based ORAM. The client does

not know at the time of querying which of the logn possible paths will be taken; it depends
on where the data is ultimately found. In this example, the level 1 BF lookup returns false,
indicating a fake should be retrieved from level 1. The level 2 BF lookup returns true,
indicating the item should be retrieved from level 2. A fake BF query is run for level 3 since
the item has already been found. Right: the query object in SR-ORAM. The server learns
the edges corresponding to exactly one path. The server will be able to decrypt one such
edge at each level, revealing the data ID, to retrieve and include in the response to the client,
and decrypting a node of the query object in the level below.
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A Bloom filter lookup involves k bit positions (k is the number of underlying Bloom filter
hash functions). For each new level it traverses, the server needs to know the k associated
Bloom filter bit positions to retrieve, constituting this level’s query. For the first level, these
are provided by the client. For each successive level, the server will get this information by
incrementally decrypting portions of a client-provided “query object” data structure.

[lustrated in Figure (right), the “query object” is composed of logn levels and is
traversed by the server top-down synchronized with the traditional ORAM traversal. The
query object allows the server to progress in its database traversal without learning anything.

Each level in the query object (with the exception of the root), contains two nodes:
a “finished” node and an “active” node. Each node contains the k positions defining the
current level Bloom filter query. The nodes also contain a “keying” set of 2¥ elements."

After performing the Bloom filter lookup, the server will be able to decrypt one of these
elements (only). Once decrypted, this element contains a key to decrypt one of the query
object’s next level two nodes; it also contains the identifier for a current level item to return
to the client. To prevent leaks, the server will be asked to return one item for each level,
since we do not want to reveal when and where we found the sought-after real item.

In effect this tells the server where to look next in the query object—i.e., which of the
query object’s next level two nodes (“finished” or “active”) to proceed with. This guides the
server obliviously through either the “finished” or the “active” set, as follows:

e [f the current level contains the sought-after item, the server’s work is in fact done.
However, the server cannot be made aware of this. Hence, it is made to continue its
traversal down the ORAM database, via a sequence of fake queries. The “finished”
node of the next query object level allows the server to do just that, by providing the
traversal information down the “active” set.

e If however, the current level does not contain the sought-after item, the server must
be enabled to further query “real” data in its traversal down the ORAM database—it
will thus receive access to “active” node of the next query object level.

To prevent the server from decrypting more than one element from a node’s “keying”
set, a special encryption setup is deployed. Each of the 2 elements of the “keying” set is
encrypted with a special query object element key (QOEK), only one of which the server
will be able to reconstruct correctly after its Bloom filter query.

More specifically, for a Bloom filter lookup resulting in k bit representations (i.e., bit; is
the representation of the bit at position i — either T; or F; %), the QOEK is defined as QOEK

The encryption setup of the “keying” set ensures that this key decrypts exactly one of
its elements. The element corresponding to a Bloom filter “hit” (the sought-after element

LAfter encryption, these elements are sent in a random order to prevent the server from learning any
information.

2Recall that bit; does not reveal to the server anything about the actual underlying Bloom filter bit since
the server does not know the hash key sk.
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Fo=To+ v key,: all True =H(T, +T,+T,
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3= 13+Vy — T, =H(sk | level | gen | 5) key,: one False = H(F, + T, +T)
Fa=Ta+v = H(T +F,+T)

° ° =H(T +T,+F)

: : =H(T+T,+T,+v)

key,: two False positions

=H(T,+T,+T,+2v)

Bloom filter, with client secret key sk, Query object decryption keys
for generation gen of level (stored on server) for Bloom filter lookup (x, y, z)

Figure 7.2: Left: Bloom filter format. A bit set to I in the Bloom filter is represented by a
hash of the position and current level key; a bit set to 0is represented by the same value, plus
the secret value v. Right: decryption keys used with the query object. The server obtains
the decryption key for a given query stage by hashing together the specified Bloom filter
results. Since there are h hash functions used in a Bloom filter check, the client includes in
the query object an edge corresponding to each of the h + 1 possible keys.

was found at this level, i.e., all the underlying Bloom filter bits are set to 1) leads down the
“finished” set, i.e., the element that QOEK decrypts now, leads down the “finished” set in
the query object’s next level.

7.3 Efficient Construction

I now present an efficient construction, with only O(logn) client storage, O(logn) per-query
online message size, O(log? nloglogn) amortized communication, and still only O(1) round
trips. We reduce the size of the query object of Section from 2" logn to just hlogn.

The main insight is to allow compression of the 2" decryption key possibilities into only
h+1 possibilities. This is achieved by representing the Bloom filter bits and their combination
in a commutative format. By allowing the decryption key pieces stored in the Bloom filter
(described in the previous section) to be added together, rather than concatenated, the client
only has to account for h + 1 different outcomes at each level.

To this end, let us start by first establishing a secret level-instance-specific token v =
Hash(sk | level | gen), not known to the server. In the Bloom filter, a bit set to 1 at position
pos is represented as T),,s = Hash(sk | level | gen | pos); a bit set to 0 is represented as
Foos = Tpos +v mod 2 (Figure [7.2), where ¢y is a security parameter. In the following we
will continue to operate in Zse,. We also assume that Hash(-) operates in Zge.

Now, the query object encryption key (QOEK) is generated by combining (adding) values
using modular arithmetic, instead of concatenation as in the strawman solution. This allows
the client to only account for h 4 1 possibilities, each key corresponding to the number of
times v might show up among the selected Bloom filter positions.

The server sums together the values found in the Bloom filter, and performs a hash,
yielding, e.g., Hash(bit; + bity... 4+ bit;, mod 2%) as the QOEK. The commutativity of
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modular addition means each permutation of bits set to 0 and bits set to I in a given Bloom
filter yields the same key. A successful Bloom filter lookup occurs in the case that the QOEK
is Hash(Tpos, + Tpos, + -+ + Tpos, mod 2%), which unlocks the edge from the real to the fake
path.

Further, each of the h values from Hash(7}os, + Tpos, + - + Tpos, +v mod 2%) through
Hash(T}os, + Tpos; + --- + Lpos, +hv mod 2°°)—the result of Bloom filter lookup failures (the
server does not know they are failures)—unlocks an edge in the query object that results in
continuing on the current (fake or real) path (Figure . Figure provides a summary
of the query object format.

Let us now consider an example from the perspective of the server. Say the client sends a
query object for an item x. This query object contains a single Level 1 node in cleartext, and
two nodes for every level below. The Level 1 active node tells it to query positions L1pos;
... L1posy. The server retrieves the values stored in the Bloom filter at these locations, adds
them modulus 2%, and applies the one-way hash function. This yields a decryption key. The
server now tries this key on all k encrypted values included in the Level 1 node. It finds
one that successfully decrypts, revealing a data ID to retrieve from Level 1, as well as the
decryption key for one of the two Level 2 nodes. The server appends the retrieved Level 1
data item to its result, then decrypts the Level 2 node that it has the key for.

The server now repeats for the Level 2 node. It finds a list of Bloom filter positions,
which it again retrieves, adds modulus 2%, and hashes, yielding a decryption key which it
tries on the encrypted values included in the Level 2 node. Again, only one will decrypt.
The server never learns which are the active or finished nodes; it simply sends back log, n
data values to the client, of which one will be a real item, and the others fake items.

7.3.1 Obliviously Building the Bloom Filter and Levels

This section describes how to construct the Bloom filter without revealing to the server
which Bloom filter positions correspond to which items. Further, it shows how to obliviously
scramble the items as a level is constructed. Both processes are mostly non-interactive (only
a constant small number of round trips).

In the Bloom filter construction, the key privacy requirement is that the server is unable to
learn ahead of time any correlation between Bloom filter positions and data items. Note that,
now, instead of storing single encrypted bits in the Bloom filter, components of decryption
keys are stored. Recall that these components are computed on the client by a secure keyed
hash of the position, and added to the value v if this position is intended to represent a bit
value of 0.

We use the storage-free Bloom filter construction method described in Section [5.1.7]
Afterwards, the encrypted bit-storing Bloom filter needs to be converted into a key-storing
Bloom filter in one final step: in a single non-oblivious pass, we read each bit and output
either T}, for Is and F),s for 0s (where pos is the current bit’s position in the Bloom filter).
Note this multiplies the size of the remotely stored object by the key size.

We do not need to otherwise modify the level construction from Chapter [5] except in
replacing their storage-accelerated merge sort with the storage-free randomized shell sort.
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e Level 1:

— L1 active node, in cleartext:

* Level 1 Bloom filter lookup index positions L1posi ... Llpos (integer values)
* the client computes, but does not send, these k + 1 keys:

. keyLl, success — HaSh(TLlposl + TL1p052 + ...+ TLlposk)

- keyp1,1 = Hash(Tripos, + TLiposs + - + TLipos;, + )

. keyLl,k = HaSh(TLlposl +TL1p032 +...+ TLlposk + k”U)
* k + 1 encrypted values, included in a random order:

Eleyr1 succese (L1 real data ID, and key2F: the key for the L2 finished node)
Ekeyry 4 (L1 fake data ID and key2A: the key for the L2 active node)

Ereyy, , (L1 fake data ID and key2A: the key for the L2 active node)

e Level 2: Both the L2 active and the L2 finished nodes, in a random order:

— L2 active node, encrypted with randomly generated key2A:

* Level 2 Bloom filter lookup index positions L2posi ... L2posy

* the client computes, but does not send, these k + 1 keys:
. keyLZsuccess = HaSh(TL2posl + TL2p052 + ...+ TL2posk)
. keyLZ,l = HaSh(TL2posl + TL2p052 + ...+ TL2pos;C + U)

. keyLZ,k = HaSh(TLonsl + TL2p032 +...+ TLonsk + k”U)
* k4 1 encrypted values, included in a random order:

* Ereyrs quccess (L2 real data ID, and key3F)
Ekeyraa (L2 fake data ID and key3A)

 Blrey,, ,, (L2 fake data ID and key3A)
— L2 finished node, encrypted with randomly generated key2F:

* k random Bloom filter lookup index positions for Level 2 L2posy ... L2posy
* the client computes, but does not send, these k + 1 keys:

. keyLZO = HaSh(TL2posl + TL2p052 + ...+ TL2posk)

. keyLZ,l = HaSh(TL2posl + TL2p052 + ...+ TL2pos;C + U)

: kEyLZk: = HaSh(TL2posl + TL2p082 + ...+ TL2posk + k‘U)
* k4 1 encrypted values, included in a random order:

* Bleypo,o (L2 fake data ID and key3F)
* Bleyp,, (L2 fake data ID and key3F)

 Bley,, ,, (L2 fake data ID and key3F)

e Both the L3 active node (encrypted with key3A) and the L3 finished node (encrypted with key3F), in a random order.

e And so forth, for each of the log, n levels.

Figure 7.3: Query Object Format. For each level, the query object is composed of two possi-
ble nodes (with the exception of the root/top which only has one node), and is constructed
thusly. This set constitutes a total of 2logn nodes (containing associated Bloom filter re-
quests), and 2hlogn edges. Of these nodes, the server will be able to unlock logn. Each of
the unlocked ones provides h edges, of which the server will be able to unlock exactly one.
This contains the decryption key for a single node at the next level, as well as the data item
ID to retrieve etc. 104



Non-interactivity of sort. It is worth noting that the shell sort, like the storage-
accelerated merge sort, is mostly non-interactive. Each step in both sorting algorithms
requires reading two items from the server, and writing them back, possibly swapped. How-
ever, the item request pattern (of both sorting algorithms) is known ahead of time to the
server, so it can send the answer back to the client without waiting for the request from the
client. This process is trivial in the merge sort: the access pattern consists of simultaneous
scans of two (or sometimes up to \/n) arrays; the server streams these to the client. This
process of non-interactive streaming of sort data to the client is not as trivial in the random-
ized shell sort. Once the random seed is chosen, however, both the client and server know
in advance the order the items will be requested in. The server can run a simulation of this
sort, for example, to know which items the client needs to read next, and avoid waiting for
network round-trips throughout the construction of the level.

7.4 Security

SR-ORAM directly inherits the privacy properties of the server-side ORAM database traver-
sal, as well as the integrity defenses from the base ORAM construction of Chapter[5. However
we still need to establish the privacy of the query object construction, as well as the new
Bloom filter construction.

I establish privacy of the query object construction in Theorem The server learns
only one set of Bloom filter positions and one item label to retrieve at each level for a given
query. In other words, the server sees only what it would see in an equivalent, interactive
instantiation.

Lemma 7. The server gains no non-negligible advantage at guessing v = Hash (sk | level
| gen) from observing (i) the Bloom filter contents or (ii) the hashes included in the query
object.

Proof. (outline) For each position pos in the Bloom filter, the server sees a single value X
that is either a random number T}, or T},,s + v mod 2%. If T,,, and v are both chosen
randomly from Zseo, then seeing the entire set of values gives the server no knowledge of v.
There is one subtlety here: if the server has some external knowledge about how recently
a given query was last issued, it can determine that the set of corresponding Bloom filter
positions at that level are all Is (and thus, that the values observed at some positions are in
fact Tpos +v mod 2, rather than T),). However, knowing this still does not give the server
any knowledge of v: all possible values of T},,s and v are still equally possible and likely.
The only other values observed by the server that are linked to v are the outputs of the
one-way hash functions, included in the query objects. Seeing the hash outputs in the query
object provides no advantage at determining the inputs, beyond using dictionary attacks
which are infeasible for a computationally bounded adversary (in the security parameter c),
since the inputs all include the random v, which is ¢y bits long. O

Theorem 25. The server can only unlock one path down the query object, and all paths
appear identical to the server.
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Proof. (outline) Each of the 2log, n nodes in the query object, as illustrated in Figure [7.1]
provides simply a list of Bloom filter indices, and a set of encrypted values unlocking edges
to one of the two next nodes. The negligible Bloom filter false positive rate, established
by the base Bloom filter ORAM, guarantees that the set of indices will be unique for every
query. Moreover, these indices, chosen by a keyed secure hash, are indistinguishable from
random.

Each edge contains an item label which is again uniquely requested, only up to once per
level. The label is also determined by the keyed secure hash. Since the contents of any single
edge for a given query is indistinguishable from random, and since these edges are included
in the query object in a random order, unlocking the edge provides no information to the
server about the path.

The contents of the Bloom filter provide the key and determine which one edge the server
can unlock. Since, as shown in Lemma 7| the server has no advantage at determining the
blinding value v, the server has no advantage at guessing the alternate value at any position
of the Bloom filter, and it is limited to a dictionary attack against the ciphertexts of the
other edges. Thus, the server can only unlock the edge corresponding to the contents of the
Bloom filter. O

Theorem 26. The server learns nothing from the Bloom filter construction.

Proof. (outline) All Bloom filter construction processes for any particular level appear equiv-
alent to the server, regardless of which bits are set. The server sees only the number of bits
in the Bloom filter, which is known beforehand. O

Theorem 27. An honest but curious adversary gains no non-negligible advantage at guessing
the client access pattern by observing the sequence of requests.

Proof. (outline) Because of Theorem the adversary learns nothing it would not learn by
observing a standard, interactive, Bloom filter-ORAM. We defer here to the security claims
of previous ORAMs (e.g. Theorem [18] which shows that the probability of Bloom filter
failure in each ORAM query is negligible in the considered security parameter. O

Theorem 28. An actively malicious adversary has no advantage over the honest but curious
adversary at violating query privacy.

Proof. (outline) In the underlying Bloom filter ORAM from Chapter 5 the client detects
server protocol deviation, preventing the server from learning anything new from issuing
incorrect responses. The non-interactive construction creates a slight difference in the Bloom
filter authenticity check: the Bloom filter correctness check is now implicit. That is, the
server can only unlock the key if the stored value is the one placed by the client, whereas in
previous Bloom filter ORAMSs, the client had to test the authenticity of the stored Bloom
filter bits before it was safe to continue the query. O
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disk seek cost || 0
disk throughput || 400 MBytes/sec
server RAM || 24GB

crypto throughput || 200 MBytes/sec Acceptable failure rate || 2712
net throughput || 125 MBytes/sec Item block size || 10,000 bytes
net round trip || 50 ms Symmetric key size || 256 bits

Bloom filter hashes || 50
Figure 7.4: Assumed Hardware Configu-
ration Figure 7.5: Database Parameters

7.5 Analysis

Following from the construction in Section [7.3] the query object size is O(logn). This is
transmitted to the server, which performs hlogn decryption attempts (of which logn are
successful) before sending logn blocks back to the client. This yields the online cost of
O(logn).

The amortized offline cost per query considers the time required to build each level. A
level sized z is built twice every z queries. Shuffling these items using a randomized shell sort
costs O(zlog z). Since the Bloom filter is sized zloglogn, and it must also be shuffled, the
Bloom filter construction cost of O(zlog z log log n) dominates asymptotically. Summing over
the 4 levels sized z = 4!, and amortizing over the queries for each level between rebuilding,
we find a total amortized offline cost of O(log®nloglogn)

We also estimate the cost of querying and shuffling for a sample hardware configuration.
The online cost is now limited by network, disk, and encryption throughput (instead of, e.g.,
network round trips in related work). The offfine cost is limited, as in existing work, by
network, disk, and encryption throughput.

To make the comparison between SR-ORAM and existing work as general as possible,
we consider an ideal storage-free interactive ORAM, which includes just two core costs inex-
tricably linked to any pyramidal storage-free ORAM, and ignores any other costs.

First is the online cost of retrieving an item from an ORAM interactively, requiring
log, n round trips and the data transfer cost of log,n blocks. Second is the offline cost
of obliviously constructing each level, assuming 2° real items and 2' fakes at each level i,
using a randomized shell sort. Thus, this ideal storage-free interactive ORAM provides a
lower bound for any existing ORAMs that do not assume super-logarithmic client storage.
Existing work, including constructions by Goldreich and Ostrovsky [41], and Goodrich and
Mitzenmacher [44], fall into the category of a storage-free interactive ORAM, but have
significant other costs, pushing their complexity in fact much above this lower bound.

As discussed in Section [5.1.8] given an upper bound on acceptable failure (false positive)
rate r, we can calculate the necessary Bloom filter size as a function of the number of hashes
used for lookup h.

For example, for a Bloom filter false positive rate of r = 27 and h ~ 50 (chosen
to optimize a trade-off between the Bloom filter construction and online query costs—see
Theorem [18)), the resulting optimal Bloom filter size is under a third of the item storage size
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(of 2n blocks), for a wide variety of database sizes ranging from a megabyte up to a petabyte.
For bounding the false positive rate at 27128, as we shall assume for the performance analysis
below, Bloom filter storage of less than the total item storage size still suffices.

The target hardware configuration is listed in Figure[7.4] and the target database config-
uration in Figure Solid state disks are assumed, resulting in a low disk seek cost. Disk
access time is modeled as a function of the disk throughput; divergence between this model
and reality is examined and resolved in Section [7.5.1l

The results are illustrated in Figure The item shuffle cost is unchanged over the
ideal ORAM construction, but the Bloom filter shuffle cost adds a significant fraction to
the overall level construction cost. As can be seen, however, the log, n round trips imposed
by existing work quickly add up to exceed the SR-ORAM shuffle cost, in even moderate
latency networks. In general, the additional offline cost is small compared to the savings in
the online cost.

The SR-ORAM online performance cost encompasses the cost of transferring the query
object across the network, reading each key part from disk, server-side decryption, and
transmitting the results back to the client. The offline performance cost encompasses the
disk, encryption, and network costs of shuffling the items using a 4-pass random shell sort,
and constructing the Bloom filter. The step shape results from the additional level that
is shuffled and queried every time the database size doubles. While this no longer adds
an additional round trip, it does increase the query object size, require reading an extra
set of (e.g. 50) Bloom filter positions (key components) from disk, and require additional
construction time.

Discussion. Offline shuffling in both the ideal storage-free ORAM and SR-ORAM takes
somewhat longer than that described in Chapter [6] (where we achieve several queries per
second on a 1TB database) because we are eliminating the assumption of client storage.
Instead of using a storage-based merge scramble that requires loglogn passes to sort n
items, we use a randomized shell sort, that requires ~ 24 logn passes. This is not a result

of my technique—storage can be applied to speed up our result equivalently—but a result
of the different model here, under which we do not provide O(y/nlogn) client storage.

7.5.1 Dealing with Reality

Although it is convenient to model disk data transfer costs based only on the average disk
throughput, this is not a complete model, not even for solid state disks. In the solid state
disks we consider above, the disk sector size must be considered: it specifies the minimum
size of a read or write we can perform. That is, reads or writes of smaller amounts cost the
same as reading/writing the entire sector. This is problematic for one piece of the SR-ORAM
cost analysis: the random shell sort of segments during the Bloom filter construction. The
Bloom filter segments (e.g., 32 bytes) are potentially much smaller than a disk sector (e.g.,
4096 bytes), and are accessed in a random pattern during the random shell sort.

I now describe implementation details that avoid the expense resulting from short disk
reads. First, leading to a simple but expensive potential solution, recall that the disk costs
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Amortized cost per query vs database size, 150ms RTT
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Figure 7.6: Comparison of amortized (online plus offline) cost of SR-ORAM to the ideal
interactive storage-free ORAM, assuming the hardware configuration of Figure Left:
query cost plotted as the database size grows on a logarithmic X axis. Right: comparison
vs. latency for a fixed database size.
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are all server-side costs. This makes it plausible to solve this cost discrepancy with additional
hardware. For example, a large amount of server RAM (e.g., 48 GB for a 1TB database)
would make it possible to cache the entire Bloom filter during construction, requiring only
a single contiguous write at the end. A key point is that the Bloom filter is smaller during
these sort procedures than the final resulting Bloom filter will eventually be. For example, it
is blown up by about a factor of 4 when converting the bits (with their, e.g., 64-bit positions)
into (e.g., 256-bit) keys at the end. This conversion process requires only a single, sequential
scan and write. This amount of RAM would result in a sort faster than the estimates used
above (pushing the bottleneck to client crypto speeds instead of disk I/O speeds), which
assume that disk transfer is required for each of the ~ 24log,n passes across the data in
the random shell sort. This is not necessarily an unreasonable scenario, as the RAM is only
used for the duration of the sort, making it feasible to “pool” resources across many clients.

A second option is to assume enough client memory to build the Bloom filter locally.
For a 1 TB database consisting of 10KB blocks, and taking the acceptable failure rate to
be 2728 and 50 hash functions, the total number of Bloom filter positions to set can be
under 16 billion bits. This fits in 2GB of client memory. Moreover, since this construction is
now done in private client memory, the oblivious Bloom filter sort can be avoided, speeding
up the Bloom filter construction significantly. This process now requires only the network
transfer, and sequential disk write of the final key-storing Bloom filter (.5TB). However, the
client memory requirement for that (cost-optimal) Bloom filter construction process is linear
in the total database size, a trait I desire avoiding.

Fortunately, such a workaround is not necessary. I now illustrate how the randomized
shell sort can be performed without incurring the overhead resulting from the minimum
sector size. In exchange, we require extra server-side sequential scans of the data. Observe
that a randomized shell sort consists of dividing the array to be sorted (sized s) into equal
sized regions, and swapping items between the two regions (called the “compareRegions”
operation). The region sizes start at s/2 and decrease all the way down to 1. In any
compareRegions operation, one region is read sequentially, while the other region is read
randomly. Likewise, the regions are written back in the order they are read. Two properties
are key to eliminating disk seek and partial sector read costs. First, observe that for regions
that fit entirely in the server available cache sized M, the disk seek / minimum sector cost
can be avoided altogether with an aggressive read-ahead page cache. This is because any one
region can be read and cached in its entirety, and small regions are accessed contiguously.

Second, when the regions are too big to fit in the server page cache, the access pattern
is still predictable by the server. This means it can sort data according to the future access
pattern. Moreover, this sort can be performed in only log,,n passes. This is 2 passes
whenever the server has /n blocks of RAM, which I believe to be a more than reasonable
assumption. The idea is, in one pass, sort data in groups sized M. In the second pass, merge
these n/M regions together, reading contiguous chunks from each region into the page cache
(the default behavior of a read-ahead page cache). This way, during the shell sort, the items
being read can be accessed contiguously.

For simplicity, the data is sorted back into its start location after being written. The
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result is a sort that performs efficiently, even when the sort item size is much smaller than
the disk sector size. The penalty is that now data is scanned from the disk up to four times
in each sort pass (but this is more than made up for by the savings of not having to read an
entire disk sector for every access of a 32-byte element).

This cost is reflected in the graphs above.

A similar argument comes into play when modeling the encryption/decryption through-
put; my model considers the sustained throughput over large blocks of data, while when
sorting the Bloom filter positions, many of the decryptions and encryptions are on short
(e.g. 64-bit) blocks. Fortunately, the encryption block size (e.g., 256-bit) is much closer
to the encryption size, resulting in the actual crypto throughput staying within a factor of
1/4 of the modeled crypto throughput. This analysis is also reflected in my graphs, which
measure the entire cost of decrypting a cipher block even when the amount of data to be
decrypted in a single operation is smaller than the block.

7.6 Conclusion

I introduced a new single-round-trip ORAM. I analyzed its security guarantees and demon-
strated its utility. While non-interactivity is of significant theoretic interest in itself, I also
showed this to be the most efficient storage-free-client ORAM to date for today’s average
Internet-scale network latencies.
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Part 11

Access Privacy in Other Scenarios
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Chapter 8
Approaches Outside Oblivious RAM

8.1 Private Information Retrieval (PIR)

Private Information Retrieval (PIR). PIR addresses a similar scenario of private query-
ing. In contrast to ORAM, PIR targets scenarios involving multiple, unrelated clients query-
ing a public database. And, while the data in most cases is not confidential, PIR does not
assume nor usually require client-side credentials management, in contrast to ORAM which,
in principle assumes all accessing clients have access to the same credentials and the data is
to be protected from the server. Unlike ORAM, PIR typically only provides read privacy, not
update privacy, though notable exceptions include constructions by Lipmaa and Zhang [78§]
and Boneh et al. [16].

PIR. Private Information Retrieval has been proposed as a primitive for accessing out-
sourced data over a network, while preventing its storer from learning anything about client
access patterns [23]. In initial results, it was shown [23] that in an information-theoretic
setting in which queries do not reveal any information at all about the accessed data items,
any solution requires Q(n) bits of communication, for a database of size n. To avoid this
overhead, if multiple non-communicating databases can hold replicated copies of the data,
PIR schemes with only sublinear communication overheads are shown to exist [23]. For
example, Sassaman et al. [111] applied such a scheme to protect the anonymity of email
recipients. In the world of data outsourcing, in which there are only a few major storage
providers, I do not believe the assumption of non-collusion among such untrusted servers
is always practical, so I do not wish to rely on this assumption. Goldberg [39] introduced
a construction that combines a multi-server PIR scheme with a single-server PIR scheme,
to guarantee information-theoretic PIR if the servers are not colluding, but still maintain
computational privacy guarantees when all servers are colluding.

It is not my intention to survey the inner workings (beyond complexity considerations)
of various PIR mechanisms or of associated but unrelated research. I invite the reader to
explore a multitude of existing sources, including the excellent, almost complete survey by
William Gasarch [34,35].
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Figure 8.1: (left) Simple ORAM Protocol between a client and a server. (right) A trusted
server-side client proxy can be used to build a PIR interface on top of ORAM assurances.

8.1.1 Secure Hardware-aided PIR

The recent advent of tamper-resistant, general-purpose trustworthy hardware such as the
IBM 4764 Secure Co-Processor [59] has opened the door to efficiently deploying ORAM
privacy primitives for PIR purposes (i.e., for arbitrary public or private data, not necessarily
originated by the current client) by deploying such hardware as a trusted server-side client
proxy.

Asonov was the first to introduce [5] a PIR scheme that uses a secure CPU to provide
(an apparent) O(1) online communication cost between the client and server. However, this
requires the secure CPU on the server side to scan portions of the database on every request,
indicating a computational complexity cost of O(n), where n is the size of the database.

An ORAM-based PIR mechanism is introduced by Iliev and Smith [61], who deploy se-
cure hardware to achieve a cost of O(y/nlogn). This is better than the poly-logarithmic
complexity granted by ORAM for the small database sizes they consider. This work is
notable as one of the first implementations of ORAM-based PIR setups. Figure summa-
rizes the interaction between the client and server in ORAM, and how to turn an ORAM
implementation into a PIR implementation using a Secure CPU.

Achieving PIR. Part I described providing access pattern privacy for private data. A
general PIR implementation requires a client to be able to download from a public server,
meaning the client does not have access to prearranged secret keys. By implementing the
access pattern privacy on a server-side tamper-proof trusted processing component such as
a Secure Co-processor, PIR can be achieved. The secure CPU maintains the encrypted
database, and never leaks any of the encryption keys to the server or clients. Clients who
wish to retrieve an item privately then interact with the main data through the SCPU.
Predicted performance will be considered in Section [4.3l Taking the IBM 4764 as an
example, Figure shows that when PIR is implemented on the secure CPU, the bottleneck
is no longer the network bandwidth, but the en/decryption times. Additionally of concern
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is the limited SCPU storage. The 64 MB of RAM available on a 4764 can support a 10 GB
database with the probability of overflowing the queue space of less than 27194, derived from
the bounds established in Theorem

Memory Pooling. A key advantage to my algorithm is that the working buffers are only
used for a small period of time and are transient, thus requiring no backup. Therefore the
high cost of client storage maintenance is avoided since no data is lost if the working memory
is lost. A second advantage is that resources can be pooled between SCPUs to support larger
databases. For example, if a storage provider manages 10 SCPUs for 10 customers, and if
the working buffer is only in use for 10% of the time, the provider can pool the secure
storage between SCPUs, allowing for an effective secure storage area of 640 MB instead of
just 64 MB; this is enough allow the provider to support 1 TB databases.

The limiting factor in pooling is the percentage of time the secure CPUs are put to use.
This will vary based on the actual transaction patterns of the clients. If transactions are run
continuously at the maximum throughput, I expect the idle time to be around 50%. If there
are idle periods, however, and the average throughput is lower, each SCPU may see a much
higher idle time.

Existing PIR. Trivial PIR (transferring the entire database to the SCPU for every
query) will have a bottleneck shared by the bus transfer time and the disk transfer time, of
50 MB/sec. For a 1 TB database, this will require about 22000 seconds per query.

A PIR protocol introduced by Wang et al. [125] offers an amortized complexity of O(n/k)
for database size n and secure storage size k. For k = O(y/nlogn), this yields an overhead
of O(y/n/logn) per query. This is proving to be a reasonable estimate of k, since as de-
scribed earlier, database sizes and hard disk capacity are increasing much faster than secured
storage capacity. As databases become larger, my superior O(log?(n)) complexity becomes
increasingly necessary for obtaining practicality.

8.1.2 Related Constructions

Practicality of PIR. In initial results, Chor et al. [24] proved that in an information the-
oretic setting, any single-server solution requires €2(n) bits of communication. PIR schemes
with only sub-linear communication overheads, such as the seminal construction provided
by Chor et al. [24], require multiple non-communicating servers to hold replicated copies of
the data. The information theoretic guarantees can be relaxed to assume a computationally
bounded adversary, in which case single-server solutions have been proposed.

For single-server PIR, initial results [116], seemed to suggest it is extremely difficult to
provide PIR implementations that are faster than the trivial case (downloading the entire
public database to the client).

Recent work [99] however, has shown that multi-server schemes as well as more recent
lattice-based mechanisms are 10-1000 times faster than downloading the entire database.

PIR vs. ORAM. Unfortunately, this still leaves PIR several orders of magnitude behind
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ORAM mechanisms — which are faster at the expense of requiring client-side key manage-
ment. For example, for the 1TB database considered here, over a dedicated 100Mbps link,
in the absolute ideal case, ignoring any other constants, round-trip times and systems issues,
a lattice-based single-server PIR query would still take upwards of 3 minutes (2 orders of
magnitude slower than PD-ORAM).

When considering client query encoding, network round-trips, server disk seeks! as well
as the cost of the extremely high server CPU utilization, the ORAM-PIR difference can grow
beyond 3 orders of magnitude.

8.2 Other Approaches

Anonymity. The goal of anonymous communication is to hide not the data being ac-
cessed, but the identity of the party accessing this data. In many cases this provides suit-
able privacy. Anonymous communication approaches are less complete, however; efficient
anonymous communication is able to provide only weak security guarantees, relying on the
adversary’s inability to obtain any sort of global network view. Johnson et al. present a dis-
cussion of state of the art anonymous routing approaches [65]. Moreover, often anonymous
communication is not sufficient. Combined with external knowledge, the access patterns can
compromise anonymity, or reveal sensitive information in themselves.

Oblivious Transfer (OT). OT [63,96,110] is a related cryptographic primitive in which
clients can request a number of database records from a server with full privacy. Further,
clients are prevented from learning any additional database entries. In contrast to ORAM
and PIR, OT does not aim to achieve any efficiency targets, e.g., such as sublinear commu-
nication in the database size etc.

'Possibly catastrophically dominant, as our results on deploying the Goodrich et al. theoretically-

attractive randomized shell sorting network [46] have shown (see above discussion and analysis in Section
3.1.2
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Chapter 9

Transaction Privacy

I introduce a new paradigm for outsourcing the durability property of a multi-client trans-
actional database to an untrusted service provider. Specifically, I enable untrusted service
providers to support transaction serialization, backup and recovery for clients, with full
data confidentiality and correctness. Moreover, providers learn nothing about transactions
(except their size and timing), thus achieving read and write access pattern privacy.

I build a proof-of-concept implementation of this protocol for the MySQL database man-
agement system, achieving tens of transactions per second in a two-client scenario with
full transaction privacy and guaranteed correctness. This shows the method is ready for
production use, creating a novel class of secure database outsourcing models.

9.1 Introduction

Increasingly, data management is outsourced to third parties. This trend is driven by growth
and advances in cheap, high-speed communication infrastructures.

Outsourcing has the potential to minimize client-side management overheads and benefit
from a service provider’s global expertise consolidation and bulk pricing. Providers such
as Amazon [79-81], Google [48], and others—ranging from corporate-level services such as
IBM Data Center Outsourcing Services [26] to personal level database hosting [62/100] —are
rushing to offer increasingly complex storage and computation services.

Yet, significant challenges lie in the path of a successful large-scale adoption. In business,
health care and government frameworks, clients are reluctant to place sensitive data under
the control of a remote, third-party provider, without practical assurances of privacy and
confidentiality. Yet today’s privacy guarantees of such services are at best declarative and
often subject customers to unreasonable fine-print clauses—e.g., allowing the server operator
(or malicious attackers gaining access to its systems) to use customer behavior and content
for commercial, profiling, or governmental surveillance purposes [20,66]. These services are
thus fundamentally insecure and vulnerable to illicit behavior.

Existing research (discussed in Section [9.1.1) addresses several important outsourcing
aspects, including direct data retrieval with access privacy, searches on encrypted data,
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and techniques for querying remotely-hosted encrypted structured data in a unified client
model [29,/92]. These efforts are based on the assumption that, to achieve confidentiality,
data will need to be encrypted before outsourcing to an untrusted provider. Once encrypted
however, inherent limitations in the types of primitive operations that can be performed
on encrypted data by untrusted hosts lead to fundamental query expressiveness constraints.
Specifically, reasonably practical mechanisms exist only for simple selection and range queries
or variants thereof.

In this chapter, I introduce an orthogonal thesis spurred by the advent of cheap and fast
disks and CPUs. I believe that in many deployments, individual data clients’ systems are in
a position to host and access local large data sets with little difficulty at no additional cost.

Holding data locally may appear to contradict the spirit of outsourcing, yet I argue that
there is one essential data management aspect that cannot be hosted as such: transaction
processing for multiple concurrent clients. In a world where client machines have become
powerful enough to run local databases, I predict data management outsourcing markets will
converge on supplying the transactional, network intensive services and availability assur-
ances which are not trivially achievable locally.

In this chapter, I thus introduce a novel paradigm for solving the data management
outsourcing desiderata: a mechanism for collaborative transaction processing with durability
guarantees supported by an untrusted service provider under assurances of confidentiality
and access privacy. In effect, I achieve the cost benefits of standard outsourcing techniques
(durability, transaction processing, availability) while preserving the privacy guarantees of
local data storage. This is accomplished by enabling data clients to collaboratively perform
runtime transaction processing and interact through an untrusted service provider that offers
durability and transaction serializability support.

In this context, data outsourcing becomes a setting in which all permanent data is hosted
securely encrypted off-site, yet clients access it through their locally-run database effectively
acting as a data cache. If local data is lost, it can be retrieved from the offsite reposi-
tory. Inter-client interaction and transaction management is intermediated by the untrusted
provider who also ensures durability by maintaining a client-encrypted and authenticated
transaction log with full confidentiality.

In our model, each client maintains its own cache of (portions of) the database in client-
local storage, allowing it to perform efficient reads with privacy, while relieving local system
administrators of backup obligations. The key benefit thus becomes achieving data and
transaction privacy while (1) avoiding the requirement for persistent client storage (clients
are now allowed to fail or be wiped out at any time), and (2) avoiding the need to keep any
single client-side machine online as a requirement for availability.

9.1.1 Related Work

Queries on Encrypted Data. The paradigm of providing a database as a service recently
emerged [51] as a viable alternative, likely due in no small part to the dramatically increasing
availability of fast, cheap networks. Given the global, networked, possibly hostile nature of
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the operation environments, security assurances are paramount.

Hacigumus et al. [50] propose a method to execute SQL queries over partly obfuscated
outsourced data. The data is divided into secret partitions and queries over the original
data can be rewritten in terms of the resulting partition identifiers; the server then performs
queries over the partitions. The information leaked to the server is claimed to be 1-out-of-s
where s is the partition size. This balances a trade-off between client-side and server-side
processing, as a function of the data segment size. At one extreme, privacy is completely
compromised (small segment sizes) but client processing is minimal. At the other extreme,
a high level of privacy can be attained at the expense of the client processing the queries in
their entirety after retrieving the entire dataset. Moreover, Hore et al. [58] explore optimal
bucket sizes for certain range queries. Similarly, data partitioning is deployed in building
“almost”-private indexes on attributes considered sensitive. An untrusted server is then
able to execute “obfuscated range queries with minimal information leakage”. An associated
privacy-utility trade-off for the index is discussed. The main drawbacks of these solutions
lies in their computational impracticality and inability to provide strong confidentiality.

Recently, Ge et al. [36] discuss executing aggregation queries with confidentiality on an
untrusted server. Unfortunately, due to the use of extremely expensive homomorphisms
(Paillier [103,[104]) this scheme leads to impractically large processing times for any reason-
able security parameter choices (e.g., for 1024 bit of security, processing would take over 12
days per query). Current homomorphisms are not fast enough to be usable for practical data
processing.

Avoiding the trade-off between processing and computation time altogether, I allow effi-
cient queries on encrypted data with full privacy by running queries on a client-side decrypted
copy of the data. Thus, with no additional network transfer, and with a computational cost
equivalent to running the query on an unencrypted database, I provide full query privacy.
Since we will run the queries on a copy of the database at the client side, so there is no need
for expensive homomorphisms, either.

Query Correctness. In a publisher-subscriber model, Devanbu et al. deployed Merkle
trees to authenticate data published at a third party’s site [29], and then explored a general
model for authenticating data structures [83,84]. Hard-to-forge verification objects are pro-
vided by publishers to prove the authenticity and provenance of query results. Mykletun et
al. [92] introduce mechanisms for efficient integrity and origin authentication for simple selec-
tion predicate query results. Different signature schemes (DSA, RSA, Merkle trees [89] and
BGLS [15]) are explored as potential alternatives for data authentication primitives. Myk-
letun et al. [94] also introduce signature immautability for aggregate signature schemes—the
difficulty of computing new valid aggregated signatures from an existing set. Such a property
is defeating a frequent querier that could eventually gather enough signatures data to an-
swer other (un-posed) queries. The authors explore the applicability of signature-aggregation
schemes for efficient data authentication and integrity of outsourced data. The considered
query types are simple selection queries. Similarly, Narasimha and Tsudik [97] deploy digi-
tal signature and aggregation and chaining mechanisms to authenticate simple selection and
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projection operators. While these are important to consider, nevertheless, their expressive-
ness is limited. A more comprehensive, query-independent approach is desirable. Moreover,
the use of strong cryptography renders this approach less useful. Often simply transferring
the data to the client side will be faster. Pang and Tan [106] deploy verification objects to
authenticate simple data retrieval in “edge computing” scenarios, where application logic
and data is pushed to the edge of the network, with the aim of improving availability and
scalability. Lack of trust in edge servers mandates validation for their results—achieved
through verification objects. Pang et al. [105] deploy Merkle tree and cryptographic hash-
ing constructs to authenticate the result of simple range queries in a publishing scenario in
which data owners delegate the role of satisfying user queries to a third-party un-trusted
publisher. Additionally, Narasimha and Tsudik [98] deploy closely related mechanisms in
database outsourcing scenarios. Devanbu et al. [28] propose an approach for signing XML
documents allowing untrusted servers to answer certain types of path and selection queries.

Sion [115] explored query correctness by considering the query expressiveness problem
where a novel method for proofs of actual query execution in an outsourced database frame-
work for arbitrary queries is proposed. The solution is based on a mechanism of runtime
query “proofs” in a challenge-response protocol built around the ringer concept first intro-
duced by Golle and Mironov [43]. For each batch of client queries, the server is “challenged”
to provide a proof of query execution that offers assurance that the queries were actually
executed with completeness, over their entire target data set. This proof is verified at the
client site as a prerequisite to accepting the actual query results as accurate.

While many of these efforts have produced efficient query correctness verification mech-
anisms for specific kinds of queries, unique approaches are required for different queries.
Moreover, it has proven difficult to simultaneously provide correctness and privacy with these
techniques, since the construction of a query verification object typically requires knowledge
of the query. To simultaneously ensure query correctness, query privacy, and database pri-
vacy for fully general queries (on relational or other types of databases), we can instead
verify only the updates. This mechanism guarantees that clients have correct views of the
database, thus ensuring they also obtain correct query results.

Database Integrity and Audit Logs. In a different adversarial and deployment model,
researchers have also proposed techniques for protecting critical DBMS structures against
errors [13,124]. These techniques deal with corruptions caused by software errors. In work
on tamper proof audit logs by Snodgrass et al. [107,[118] introduces the idea of hashing
transactional data with cryptographically strong one-way hash functions. This hash is peri-
odically signed by a trusted external digital notary, and stored within the DBMS. A separate
validator checks the database state against these signed hashes to detect any compromise
of the audit log. If tampering is detected, a separate forensic analyzer springs into action,
using other hashes that were computed during previous validation runs to pinpoint when the
tampering occurred and roughly where in the database the data was tampered. The use of
a notary prevents an adversary, even an auditor or a buggy DBMS, from silently corrupting
the database.

This notion of a cryptographically protected log provides the framework for this solution.

120



Rather than using an audit log to identify errors, however, I propose use of an update log
stored by an untrusted party as the authoritative version of the database; the cryptographic
hash properties are used to prevent tampering by the untrusted party. Our log does not
protect from software bugs in the DBMS, as audit logs traditionally do, since our logs store
only a list of updates, not checksums on the contents.

Databases Replication. Database replication has been pursued as a means to improve
query latency and throughput, and eliminate any single point of failure. Researchers have
found efficient solutions guaranteeing various levels of consistency. In particular, Kemme
and Alonso [68], and later Amir and Tutu [4], build replicated databases on top of existing
RDBMS’s using a reliable group communication system with total message ordering and (in
Amir and Tutu’s work) message logging.

I employ a similar model of operation, in which clients simulate transactions locally
before distributing them. In place of the group communication system, however, we will
use a dedicated, untrusted provider, and provide cryptographic guarantees of security and
privacy. This allows us to remove the availability and write durability requirements from
the replication servers in previous work, assigning them to the untrusted provider, making
client system administration much simpler.

Encrypted Storage. FEncryption is one of the most common techniques used to protect
the confidentiality of stored data. Several existing systems encrypt data before storing it
on potentially vulnerable storage devices or network nodes. Blaze’s CFS [11], TCFS [19],
EFS [90], StegF'S [88], and NCryptfs [131] are file systems that encrypt data before writing
to stable storage. NCryptfs is implemented as a layered file system [54] and is capable of
being used even over network file systems such as NFS. SFS [49] and BestCrypt [64] are
device driver level encryption systems. Encryption file systems are designed to protect the
data at rest, yet only partially solve the outsourcing problem. They do not allow for complex
retrieval queries or client access privacy.

Integrity-Assured Storage. Tripwire [69,70] is a user level tool that verifies file integrity
at scheduled intervals of time. File systems such as I3FS [67], GFS [37], and Checksummed
NCryptfs [117] perform online real-time integrity verification. Venti [109] is an archival
storage system that performs integrity assurance on read-only data. Mykletun et al. [92]
93] explore the applicability of signature-aggregation schemes to provide computation- and
communication efficient data authentication and integrity of outsourced data.

In integrity-protected random-access storage, significant computational overhead is typ-
ically required to prevent rollback attacks, in which an adversary replaces a portion of the
data with an older version. The party intending to detect such an attack may need a proof
of the latest versions identifier of all stored data, for example. We avoid this overhead since
each client keeps track of this information in a locally stored copy. We are then left with
only the task of ensuring a consistent version sequencing on updates, which we provide using
a hash chain.
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Keyword Searches on Encrypted Data. Song et al. [119] propose a scheme for per-
forming simple keyword search on encrypted data in a scenario where a mobile, bandwidth-
restricted user wishes to store data on an untrusted server. The scheme requires the user
to split the data into fixed-size words and perform encryption and other transformations.
Drawbacks of this scheme include fixing the size of words, the complexities of encryption
and search, the inability of this approach to support access pattern privacy, or retrieval cor-
rectness. Eu-Jin Goh [38] proposes to associate indexes with documents stored on a server.
A document’s index is a Bloom filter [12] containing a codeword for each unique word in
the document. Chang and Mitzenmacher [21] propose a similar approach, where the index
associated with documents consists of a string of bits of length equal to the total number
of words used (dictionary size). Boneh et al. [14] proposed an alternative for senders to
encrypt e-mails with recipients’ public keys, and store this email on untrusted mail servers.
Golle et al. [42] extend the above idea to conjunctive keyword searches on encrypted data.
The scheme requires users to specify the exact positions where the search matches have to
occur, and hence is impractical. Brinkman et al. [18] deploy secret splitting of polynomial
expressions to search in encrypted XML.

We will see that we can efficiently (and trivially) achieve the spirit of this goal—running
searches with full privacy on “outsourced” data—by adjusting the model to redefine “out-
sourced”. Specifically, we provide a model that achieves the bulk of the cost savings of
outsourcing while retaining the performance benefits of locally managed data.

9.2 Model

I provide details of the participants in this protocol, the required transaction semantics, and
the cryptographic primitives employed.

Parties

Provider/Server. The provider owns durable storage, and would like to provide use of
this storage for a fee. The provider, being hosted in a well-managed data center, also has
high availability. I will investigate ways that clients can make use of these attributes.

Since the provider has different motivations than the clients, I assume an actively mali-
cious provider. However, I do not try to prevent denial of service behavior from the provider.
There are techniques beyond the scope of this work, that can be employed to help clients de-
tect denial of service behavior, such as attaching timestamps to messages to measure server
latency.

Clients. In our model, the clients are a set of trusted parties who must run transactions
on a shared database with full ACID guarantees. Since storage is cheap, each client has a
local hard disk to use as working space; however, due to the fragile nature of hard disks, we
shall not assume this storage is permanent. Additionally, the clients would like to perform
read queries as efficiently as possible without wasting network bandwidth or paying network
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latency costs. Each of the trusted parties would also like to be able to continue running
transactions even when the others are offline, possibly making use of the provider’s high
availability.

The clients would like to take advantage of the durability of the provider’s storage, but
they do not trust the provider with the privacy or integrity of their data. Specifically, the
provider should be prevented from observing any of the distributed database contents. I
define a notion of consistency between the clients’ database views to address integrity. It
is not imperative that all clients see exactly the same data as the other clients at exactly
the same time, however, they need to agree on the sequence of updates applied. I define
trace.; to be the series of the first ¢ transactions applied by client ¢ to its local database
copy. Clients c and d are considered i-trace consistent if trace.; = traceg;.

In some scenarios the provider might be able to partition the set of clients, and maintain
separate versions of the database for each partition. This partitioning attack has been
examined in previous literature; if there are non-inter-communicating asynchronous clients,
the best that can be guaranteed is fork consistency, first defined by Mazieres and Shasha [85].
Any adopted solution should guarantee that the data repository is fork consistent; that is, all
clients within each partition agree on the repository history. This guarantee is not as weak it
may appear to be on the surface, as once the provider has created a partition, the provider
must block all future communication between partitioned clients, or else the partition will
be immediately detected.

I assume that clients do not leak information through transaction timing and transaction
size. Clients in real life may vary from this with only minimal loss of privacy, but I use a
timing and size side-channel free model for illustration purposes.

The first part of this chapter assumes a potentially malicious provider, but trusted clients.
Section relaxes this assumption to provide protection against not only a potentially
malicious provider, but against malicious clients at the same time.

Transaction Semantics

I provide a general protocol that supports nearly any class of transaction. Transactions
can be simple key-value pair updates, as in a block file system, or they can be full SQL
transactions. Clients can even buffer many local updates over a long period of time, e.g.
when the client is disconnected, and then send them as a single transaction. The only
requirements for using this protocol are that the underlying transaction-generating system
implement the following:

RunAndCommitLocalTransaction(Transaction 7") applies transaction t to the local database
and commits.

DetectConflict(TransactionHandle h, Transaction C') returns true if the external (visible
to the program) outcome of Transaction 7}, would have been different had transaction
C' been issued before T},. It does not matter whether the local database contents
would be different; all that matters is whether the transaction issuer would have acted
differently.
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Retry(TransactionHandle h) rolls back all changes (in the local database, and any side-
effects external to the database) for uncommitted transaction 7}, and re-attempts the
transaction.

RollbackLocal(TransactionHandle h) rolls back local database changes from uncommitted
transaction T},

I provide the following interface to the transaction-running system:

DistributeTransaction(Transaction 7', TransactionHandle h) returns once transaction T
has been successfully committed to the global database image. Implementations of
this command will invoke the callbacks above.

Conflicts

In the protocols described later, multiple clients will simultaneously run transactions that
ultimately end up in a different order than the clients see. Therefore, I define the notion of
conflicts to indicate whether this re-ordering affects the client computation.

Let us say transactions a and b conflict if changing the order of these transactions affects
the return value of one of the operations, or the client state that results from executing these
operations. This definition allows us to provide the highest level of transactional isolation,
serializability, as defined in the ANSI SQL-92 standard [3]. Client implementations may
substitute a lower isolation level, such as the one defined by Adya and Liskov [1], to improve
performance by reducing the number of conflicts.

For example, if this system represents a block file system, clients may abort transactions
that read the value of a block that is written in a prior, pending transaction. If this system
represents a relational database, clients may use row-based or table-based conflict detection.
Alternatively, some transactions could be implemented as PL/SQL procedures that avoid
sending any values back to the initiator, avoiding any possibility of conflicts altogether!

For correctness, there must be no false negatives returned by the DetectConflict com-
mand (no client decides its transaction is conflict-free based on the transaction list, when
it in fact is not). Of course, the definition of conflict-free depends on the particular im-
plementation. For optimal performance, the number of false positives returned by the
DetectConflict command must also be low.

We shall require several cryptographic primitives with all the associated semantic secu-
rity [40] properties: (i) a secure, collision-free hash function which builds a distribution from
its input that is indistinguishable from a uniform random distribution (we use the notation
h(x)), (ii) an encryption function that generates unique ciphertexts over multiple encryp-
tions of the same item, such that a computationally bounded adversary has no non-negligible
advantage at determining whether a pair of encrypted items of the same length represent
the same or distinct items, (iii) a pseudo-random number generator whose output is indis-
tinguishable from a uniform random distribution over the output space, and (iv) a recursive
hash chain construction used to incrementally build a secure hash value over a sequence of
items.
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The first part of this chapter assumes a potentially malicious provider, but trusted clients.
All transactions are encrypted by a symmetric key shared by the set of clients, and kept secret
from the provider. Message authentication prevents tampering, and the use of a versioning
structure guarantees database cache consistency. A strawman protocol introduces solution by
providing the security guarantees trivially using a global lock (Section[9.3). My main result is
a protocol providing these guarantees using an optimistic wait-free protocol (Section |
then describe several extensions to this protocol, including in Section protection against
not only a potentially malicious provider, but against malicious clients as well. Finally, my
implementation shows how this protocol can be layered on top of existing SQL-based relation
database management systems while obtaining practical performance overheads.

9.3 Strawman Protocol: Outsourced Durability with a
Global Lock

I start by illustrating the main concepts through a strawman protocol that allows multiple
clients to serialize their transactions through an untrusted server—transaction atomicity
being guaranteed through a single global lock. Naturally, in practice, global locking is not
a viable option as it would constitute a significant bottleneck. My main result, described in
Section is optimistic and lock-free.

An encrypted transaction log is the central data structure in all versions of this model.
This log is the definitive representation of the database; the protocols described here simply
allow clients to append to this log in a safe, parallel manner while preventing the potentially
malicious provider from interfering with operations on the log.

At a high level, in this strawman protocol, clients maintain their own copy of the database
in local temporary storage. They perform operations on this copy and keep it synchronized
with other clients. Clients that go offline and come back online later, obtain a client-signed
replay log from the untrusted server in charge of maintaining the log.

9.3.1 Transaction Protocol: the Lock-based DistributeTransaction

Informally, to run a transaction a client (1) “reserves” a slot in the permanent transaction
log, (2) waits for the log to “solidify” up to its assigned slot, (3) runs the transaction, (4)
“commits” that slot by sending out a description of the transaction to the untrusted server.
The untrusted server then archives and distributes this encrypted transaction.

1. The client issues a “request slot” slot reservation command to server, along with a
number [ representing the last slot the client knows about (has seen updates for). The
server assigns the next available transaction slot s to the client. The server sends back
to the client this slot number s, with a list of all commits since the last update T;
received by the client, T, ...Tj. Note that j < s — 1 if there are clients reserving
slots that have not yet committed at the instant the server issues the response to this
message.
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2. The client waits until all transactions T}, ... Ts_; in slots before its assigned slot have
committed. The client receives the updates from the server as they come in. Af-
ter verifying checksums and authentication tokens (hash chain and signatures; see
below) on each update, the client applies them to its local database copy (using
RunAndCommitLocalTransaction) in order.

3. Once the client has received T,_1, it has in effect obtained a global lock, since all other
clients are now waiting for it to perform a transaction. The client now runs its own
transaction on its local copy of the database, recording the sequence of updates.

4. The client commits (relinquishing the lock) by sending a complete encrypted descrip-
tion of the transaction updates Ty back to the server (which will relay it back to the
other clients).

Finally, each client ¢ applies transaction 7; (using RunAndCommitLocalTransaction)
to its database once all the following conditions hold: (i) the contents of 7; have a valid
signature from a valid client (using client-shared symmetric key K), (ii) the client has applied
transactions T} ... T;_q, and (iii) the hash chain link 7;_;.hashchain matches the client’s own
computation of link HC;_;.

Each transaction T; is encrypted and signed using a symmetric key K shared by all
clients. It contains the following fields: desc= a transaction description, e.g., a sequence of
SQL statements; hashchain= the signed hash chain link HC;_4, verifying the sequence of
transactions T3 ... T;_1. HC; is calculated as Hy(HC;_1||T;_1.desc), with HCy = Hy ().

hashchain := Hy(0)
hashchain_pos := 0
k := ClientSharedKey

Procedure Initialize Global Variables

9.3.2 Correctness

I now show that this protocol is correct and offers fork consistency: all clients are trace
consistent (their transaction traces are identical) as long as the server has not partitioned
the clients. If the server has partitioned the clients, then all clients within a partition will
be trace consistent.

Theorem 29. If client ¢ applies an update T; of client d, then clients ¢ and d are i-trace
consistent.

Proof. Assume that client ¢ has applied 7; from client d, but suppose that trace., differs
from traceq;. W..o.g. assume that at position a, trace.; contains transaction 7, while
traceq; has a different value 7. Client ¢’s computation of HC, therefore differs from client
d’s computation of HC,, since it involves a collision-free hash function. Additionally, the
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Result: Retrieves and runs the next waiting transaction
t := server_getNextTransaction()
if lverifySignature(t) then

‘ return L
end
T := decrypt(t)
if T.hashchain != hashchain then

‘ return L
end
RunAndCommitLocaltransaction(T.desc)
hashchain := Hj(hashchain || T.desc)
hashchain_pos ++

Procedure GetlncomingTransaction

Result: Initiates a transaction
s := server_requestSlot ()
while hashchain_pos < s-1 do
| GetIncomingTransaction()
end
RunAndCommitLocal Transaction(d)
T := new Transaction
T.desc :=d
T.hashchain := hashchain
server_commit(Enc(k,T))

Procedure DistributeTransaction(d)
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collision-free property guarantees that any later link in these hash chains will also differ, and
client ¢’s computation of HC;_; differs from client d’s computation of HC;_;. Since client ¢
has applied T;, it had to have successfully verified that T; did indeed originate from client
d. However, as a pre-condition to client ¢ applying T;, the hash chain link 7;_;.hashchain,
which is client d’s computation of HC;_;, would have to match client ¢’s own calculation of
HC;_4, giving us a contradiction. O

9.3.3 Privacy

Without knowledge of the shared symmetric key K, the server is unable to obtain any infor-
mation from the encrypted transaction descriptions, aside from timing and size. Transaction
slot requests contain no additional information.

9.4 Lock-free Outsourced Serialization and Durability

The obvious disadvantage to the above protocol is that it requires a global lock, restricting
transaction processing as only one client may be active at a time. I now remove all locking
from the protocol described above, and replace it with an optimistic conflict-detection mech-
anism. This allows clients to run transactions simultaneously, but adds the requirement that
transactions are rolled back and reissued in the case of conflicts.

At an overview level, this protocol works as follows. Clients first issue an (encrypted)
notification of their pending transaction, relayed to the other clients through the untrusted
server. This contains enough information to allow other clients to determine whether it might
cause a conflict with their own pending transactions. After this notification (“pre-commit”),
clients then check to see if their pending transaction might conflict with any transactions
scheduled to run before theirs. If not, they issue the commit; otherwise they retry with a new
request. As in the previous protocol, clients maintain a transaction hash chain to guarantee
consistency for mishehaving servers.

9.4.1 Transaction Protocol: the Lock-free DistributeTransaction

In this solution, running a transaction entails the following steps, outlined in figure

1. The client simulates the intended transaction on its local database copy, then undoes
this transaction on its own database copy. (Issuing the RollbackLocal client command
defined in the Model section). It will properly apply the transaction only once it has
applied the pending transactions first.

2. Once ready to commit, the client issues the “Request slot” command to the server, at-
taching an encrypted pre-commit transaction description P of its intended transaction,
and the slot number [ which is the latest the client knows about.
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Figure 9.1: Performing an update: overview of DistributeTransaction execution, provid-
ing lock-free outsourced serialization and durability

3. The server allocates a slot s, and sends back a list of all new pre-commit descriptions
P ...P,_1 up to s. The server may choose to also send any previously committed
transactions that the client has not seen yet at this point (e.g., this is the case if the
client just joined or has been offline for a while).

4. The client verifies the signatures on each pre-commit, and checks whether its transac-
tion conflicts with these pre-committed transactions (conflict semantics were discussed
in Section[9.2)). E.g., a conflict occurs with pre-commit P;, [ < j < sif the external state
would be different depending on which of P; or P; is run first (the DetectConflict
command identifies these conflicts). If there are no conflicts, the client commits by
sending a final encrypted transaction commit Cy. If there are conflicts, the client still
sends the commit Cy, but sets its abort flag first (see below). In the case of a conflict,
the client also rolls back the external effects of running the transaction locally (using
the Retry command).

5. The server commits by logging the encrypted transaction to permanent storage. It
informs all other clients about the new transaction by sending the final encrypted
transaction C.

The pre-commit transaction description P; contains the following information, encrypted
and signed with the symmetric key K shared by all clients: desc= a transaction description,
e.g., a sequence of SQL statements

The final encrypted, signed transaction C; contains the following information: commit=
a single bit indicating whether this is a commit or an abort; prehashchain= hash chain
link HC' Pre;, verifying the sequence of pre-commits P ... P;.

Note that when issuing commit ¢, the client has seen all pre-commits up through 7, because
the pre-commits up to ¢ are returned when the client is assigned slot i. However, the client
may not have yet seen all commits up to ¢ when issuing this commit C;.

Client ¢ applies transaction ¢ (invoking client command RunAndCommitLocalTransaction,
originating from client d, once the following conditions hold: (i) the contents of P; and C; have
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a valid signature from a valid client (using client-shared symmetric key K), (i) C;.commit
indicates this is a committed transaction (not aborted), (iii) the client has applied transac-
tions 1...7 — 1, and (iv) the hash chain link C;_;.pre-hashchain matches the client’s own
computation of link HC;_; A pseudo-code approximation of these steps is included for ref-
erence.

prehashchain|] := [H(0)]
links := 0

Procedure Initialize Global Variables

Result: Verifies and runs the transaction, reported by the server

if lverifySignature(p) or lerifySignature(c) then

‘ return L

end

P := decrypt(p)

C := decrypt(c)

if prehashchainfid] != T.prehashchain then

‘ return L

end

if id == links+1 then
prehashchain.append(Hy (prehashchain|links] || T.desc))
links++

end

if C.commit then

| RunAndCommitLocaltransaction(T.desc)

end

Procedure IncomingTransaction(p,c,id)

Note that this protocol is wait-free: if a client reserves a slot, sends its pre-commit but
never completes, other clients can still perform transactions as long as they never access
uncommitted data.

9.4.2 Correctness

We can again prove “fork consistency” for clients, as in the locking version. The difference
here is that clients must agree on both C; and P; (the commit/abort status). Fortunately,
only the client that issued C; is allowed to issue P;, so the proof follows.

Theorem 30. If client ¢ ever applies an update T; of client d, clients ¢ and d are i-trace
consistent.
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Result: Runs a transaction initiated locally
RollbackLocal(h)
P := new Pretransaction
P.desc :=T
s,pending := server_requestSlot( Encg (P),prehashchain.length)
conflict := false
foreach p,id € pending do
if fverifySignature(p) then
‘ return L
end
Ppia := decrypt(p)
prehashchain.append(Hy, (prehashchain|links] || T.desc)
links++
if DetectConflicts(h, p;q.desc) then
‘ conflict := true

end
end
¢ := new Commit
c.commit := !conflict

c.prehashchain := prehashchain
server_commit(Encg(c))
if conflict then
| return Retry(h)
end

Procedure DistributeTransaction(T, h)
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Proof. Assume that client ¢ has applied transaction ¢ from client d, but suppose that trace.;
differs from traceq; at position a. There are two possible ways in which trace.; could
differ from traceq;. Either the transaction description P,.desc differs between clients, or the
commit status C,.commit differs. If the transaction description differs, then this reduces to
logic in Theorem there is a hash function collision. Now consider the second case, that
the commit status C,.commit differs between two clients. The C,.commit is obtained in a
signed message from the client originating transaction a; therefore, since we assume clients
follow the protocol, the originating client has signed two separate commit statements for
the same transaction. Thus, the client has misbehaved, which contradicts our assumption
of correct client behavior. O

In summary, we can guarantee fork consistency in the presence of a potentially malicious
server using a shared hash chain. If two views of the ordered list of transactions ever differ
between two clients, this will result in the shared hash chain diverging at the point of
the inconsistency. This proof assumes correct clients. Section shows how to prevent
misbehaving clients from causing inconsistencies.

9.4.3 Privacy

In the absence of timing attacks, content, read/write access patterns and transaction de-
pendencies are hidden from the server. This follows by construction as the contents of all
messages are encrypted.

9.4.4 Forward Progress

Clients running this protocol will never deadlock, as long as they are not blocking for any
external resources, since there is always the ability to make progress. This is evident since
each transaction depends only on the transactions preceding it; the serialization numbers
ensure there can never be any circular dependencies. At any point in time, there is always at
least one transaction, at the front of the list, without any pending transactions to interfere.

For clients that are waiting on external resources, we can guarantee they will avoid
deadlock as long as they (directly or indirectly) hold only external resources unneeded by
prior, pending transactions. That is, my serialization technique assigns all transactions an
ordering that makes it easy to prevent external resource deadlock as well.

“Livelock” and starvation are relevant concerns, however, and their applicability will
depend on particular implementations. If a client detects it is being continually starved (i.e.,
there are always pending conflicting transactions), one solution is to block while waiting for
the transaction chain to solidify up to a particular slot, since forward progress is guaranteed
for the pending transactions. Conversely, a client must never block for a transaction past
its slot. This forward independence prevents deadlock, and it also gives flexibility to client
implementations; if a client needs a lock on a set of records, for example, it can request a
transaction slot, then block until all transactions prior to the slot are committed. The client
can then perform reads and writes with the equivalent of a lock. Meanwhile, other clients
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can prepare transactions to run in the future, under the restriction that their transactions
do not conflict with the pending transaction. Random backoff is an alternate solution. This
will let clients escape from livelock, but requires active participation of both the starved and
the healthy parties.

9.4.5 Client Initialization

When a new client comes online, there may be a long list of updates it must apply from the
transaction log. To the time required for client initialization, I recommend clients create and
sign periodic database snapshots, up to any particular transaction number. The untrusted
server hosts these database snapshots, which can be used by clients to recover a particular
version of the database. The remaining uncovered portion of the log is then used to get fully
up to date.

Database snapshots can similarly be used to reduce the storage requirements of the
untrusted provider. Once a snapshot of version i exists, the transaction log entries from 0
to ¢ can be discarded. Using database snapshots in combination with the transaction log to
allow faster recovery is a traditional DBMS method in common use.

9.4.6 Privilege Revocation

Depending on the particular implementation, it may also be useful for the decision to revoke
access from a client to be made externally, by a trusted party/system administrator, or
internally, by a quorum of clients. Once the remaining clients agree to revoke access, they
choose a new symmetric encryption key. Additionally, clients agree on a slot at which the
client is considered terminated. This termination point can be determined by a system
administrator, or by a quorum of clients. Modifications to the database after this slot by
the terminated client are all rejected (ignored) by everyone else. Incomplete transactions
are easy to discard once the remaining clients can come to an agreement about which are
incomplete.

After revocation, the only abilities retained by the terminated client from its former
access is read access on the database for transactions before the termination point, and
potentially the ability to cause denial of service. To remove the advantage the revoked client
has in performing a denial of service attack on the database, the service provider should be
notified. This operation is not strictly necessary, since we still provide correctness even when
the revoked client and the storage provider are colluding.

9.5 Protocol Extensions

I now briefly describe several protocol extensions.
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9.5.1 Malicious Clients

I describe here a simple extension to the lock-free protocol that allows us to prevent a
malicious client from bringing the rest of the system into an inconsistent state. Preventing
data overwriting by a malicious client is a separate concern, which is most appropriately
addressed at the database access control level.

To detect malicious client behavior before the system becomes inconsistent, we will re-
quire two modifications. First, we shall extend the transaction integrity checks to include
non-repudiation, so that each message is traced back to the issuing client. Specifically, we
can replace the symmetric MAC function with a public key signing system. This prevents
one client from impersonating another, and is required both to enforce the access control
policy, and to gain accountability if incorrect behavior is detected.

The pre-commit hash chain already ensures that all clients agree on the pending trans-
action; to additionally protect from misbehaving clients colluding with the server, we simply
need to ensure that all clients also agree on the commit/abort status of each transaction.

Since the protocol is lock-free and wait-free, clients will not necessarily know the com-
mit/abort status of every transaction prior to their own as they issue a commit. Therefore,
we can employ a delayed-verification mechanism: as part of commit Cj, the client includes
the following items: (i) commit-hashchain-position= the position j < i of the last ele-
ment in the chain this client can build (i.e., this client has received Cj ... C; but has not yet
received Cj41), and (ii) commit-hashchain= The value of hash chain element j.

Clients must also cache some prior hash links in order to verify the link included with
commit C;, since C};. commit-hashchain-position might be less than ¢ — 1. This cache size can
be configured, and for most transaction scenarios it is likely safe to keep only a few entries.

Note this provides a slightly weaker guarantee concerning the status of commit/abort. In
the presence of a malicious client colluding with the server, clients ¢ and d will not necessarily
be k-trace consistent. However, after both ¢ and d have applied the inconsistent transaction
Jj, the next update issued by client d (which must contain a commit-hashchain-position > j)
will reveal the inconsistency to client c.

Theorem 31. If clients ¢ and d behave correctly, and client ¢ has applied transaction j and
1ssued a transaction for slot k > 7, and client d applies the update at k from client ¢, then c
and d are j-trace consistent.

Proof. Assume that client d has applied update k from client ¢. Thus, client d’s computation
of HC(k) agrees with Cy.pre-hashchain, and the contents of the transactions are consistent;
the inconsistency is therefore in the commit/abort status of transaction j. Since client ¢
applied transaction j before issuing update k, Cj. commit-hashchain-position > j. Similarly,
since client d has applied transaction i, client d verifies that C}. commit-hashchain matches
d’s own computation of that chain link. However, since these two chain links have different
values as inputs (one indicating that transaction j committed, and one indicating it did not),
there is a hash function collision. O

In summary, we can prevent malicious clients from causing inconsistency using an access
control policy framework to limit data damage, non-repudiability of messages to prevent
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cross-client impersonation, and an additional hash chain to ensure clients agree on transac-
tion commit/abort status.

9.5.2 Lowering Transaction Latency

We can reduce the number of network round trips required for a transaction commit from
two to one by eliminating the commit messages C;, as long as all clients have identical conflict
detection logic. If we add another field to P; indicating the last transaction the submitter
has applied to its local database copy before this attempted transaction, other clients have
enough information to determine the conflict status of this transaction! Thus, the commit
flag in C;.commit is redundant, at the expense of performing the conflict detection across all
clients instead of just one.

The hash chain confirmation C;.pre-hashchain will need to be placed in P;, while adding
another field C;.pre-hashchain-location, since the submitter does not have enough informa-
tion to build the entire pre-commit hash chain at this point. Thus, inconsistency checking is
delayed slightly, and it requires longer to detect malicious behavior. Specifically, an incon-
sistency introduced due to server misbehavior will be detected only once a client that has
applied the inconsistent transaction has sent a later update out to other clients who have
seen a different transaction in that slot. This guarantee about detecting server misbehavior
is similar to the guarantee about detecting client misbehavior in Section

In conclusion, a simple modification to this protocol improves transaction latency by
eliminating the commit message, at the expense of slightly more client computation time
and slightly weaker consistency guarantees.

9.5.3 Large Databases

So far I have not discussed the issue of local space limitations. We assumed up to now that
clients can fit the entire database in local (volatile) storage, so that they can run queries
without any help from other parties. If this is not the case, protocol extensions are necessary
to allow clients to run queries. I discuss several mechanisms below.

On-demand data Clients can use a separate query protocol to pull pieces of recent
database snapshots from other clients, or authenticated database snapshots directly from
the provider. This work-around has two drawbacks: first, access pattern privacy is forfeited
if clients query the provider directly for only portions of the database. Second, performance
suffers since sections of the database must travel the network multiple times.

Large object references If clients can fit the database except for a set of large objects,
the client can fetch these encrypted objects from the provider using a separate protocol.
Access pattern privacy to these objects is lost, however access pattern privacy to the database
indexes is preserved. In practice, privacy to the indexes is the most important part of
privacy, since the indexes are subject to the largest semantic leaks, since positions within
the index are correlated to contents of the database itself. Thus, this technique offers a
useful privacy /storage trade-off.
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Performance will be mostly unharmed by the large object references work-around, as
long as the bulk of the transaction processing work concerns only index data. The client’s
available storage is well suited for caching some of the most popular items, so most objects
will traverse the network only a small number of times under most usage patterns. This
technique suggest a modification to the transaction protocol to improve performance, to
surpass in some scenarios even the performance of the original model: for operations on sets
of large objects, clients announce the writes in the transaction log, but include only a hash
of the large object content. This way, since the large object content is excluded from the
transaction log, clients will not download the large objects at all, unless they are specifically
needed for a query.

The only modification to the transaction protocol necessary to perform this operation is
that clients include the object ID and a hash of the object content, as the content in the
transaction field. Thus, the link (with a checksum and version) to the object is the stored
content in the log and databases, and the object itself is an external entity. Clients treat
the external object as if the updates occur when the link occurs in the transaction log, with
naturally following semantics for transaction aborts and so forth.

Large object references with PIR A Private Information Retrieval algorithm can
be used to retrieve these large objects without revealing which objects are being retrieved,
provided that the PIR algorithm does not reveal the size of the object, or that the size
of the object is not unique enough to allow an access pattern privacy-defeating correlation
between the objects. The advantage of the overall scheme in this context is that access
pattern privacy is preserved efficiently for the bulk of the computation; when large objects
are retrieved (presumably less frequently), the more expensive PIR is employed to preserve
access pattern privacy.

The key to the practicality of all of these alternatives is that all the database indexes
required to satisfy a particular query can fit simultaneously on a client, and that the client
has enough working memory to perform the necessary joins efficiently. In practice I believe
many databases are of a suitable form, with the bulk of the space consumed by large objects
that do not need to be retrieved to compute joins.

9.5.4 Expiring Slots

There is a potential denial of service behavior if a client reserves a transaction slot but never
commits; no transactions past this slot will be applied. A potential solution is using “mortal
locks” that expire.

The following scenario outlines a method by which clients can safely delete expired locks:
a pre-transaction reserved slot is only useful for a predetermined amount of time, specified by
the client as it reserves its slot (or set as parameter). Clients timestamp the pre-transaction.

If this time has expired and the transaction is still in the pre-transaction phase, any client
is now allowed to abort this transaction. The client desiring to abort the transaction simply
issues to the storage provider an abort entry for this slot, which is then appended to the
transaction log. The provider ensures that only the abort or the commit are appended to the
log. The provider decides race conditions, and one of the operations will fail if both the abort
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and commit are issued. Clients can guarantee consistent provider behavior in fulfilling these
new obligations, by using transaction hash chains as before: if the (untrusted) provider ever
accepts both the abort message and the commit for a particular transaction, it will be obvious
from the conflicting hash chains once the provider sends updates out (thus maintaining fork
consistency).

9.5.5 Vague Pre-commit

I describe an extension here that allows clients to issue vague pre-commits, determining the
final transaction contents only after their request slot has been reserved. This technique
allows improved performance in certain conflict-heavy scenarios, by giving clients the flexi-
bility to choose their transaction after they are informed of current operations. Clients might
choose to modify their transaction to avoid conflicts, as an example.

In the above described lock-free protocol, clients submit a pre-commit indicating their
pending transaction, then issue a commit or abort on this transaction after checking for
conflicts. With an extension, we can allow the commit version of the transaction to differ from
the pre-commit version, adding the following field to the commit message C;: description=
The actual transaction to run (instead of the P;.description.

The only requirement added is that C;.description be a “subset” of P;.description. That
is, any conflict that the final commit C; might cause with future transactions would also be
caused by the pre-commit P;.description. With this requirement enforced, all client behavior
is identical to what it would have been if the original P;.description was Cj.description, with
the exception that there might be more aborts than otherwise. This requirement is thus
sufficient to ensure consistency when clients are honest. In the malicious client scenario, it
is additionally required that all clients can determine whether any commit C;.description is
indeed a subset of the pre-commit P;.description, as they don’t trust the issuer to make that
declaration.

9.6 Implementation and Experiments

Strawman Implementation (ODP). I built a proof-of-concept strawman implementation
of the Outsourced Durability Protocol (ODP) using different components in Java, Python
and C. The implementation handles SQL queries and relational data sets and runs on top
of MySQL 5.0 [95], though with minor modifications it can support other RDBMS’s. The
protocol enables parties with low uptime to keep databases synchronized through a single,
untrusted third party that has high uptime. Thus we can allow safe outsourcing of both
data backups and data synchronization through an untrusted provider.

In my particular setup I aimed towards simplicity rather than performance, giving each
client application its own connection to a single database in the client’s cluster. These con-
nections are filtered through a proxy, which captures queries for the protocol to ensure proper
propagation and conflict avoidance. Each cluster runs a single process that communicates
with an untrusted service provider conduit through symmetric XML-RPC channels.
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Figure 9.2: Query throughput in transactions per second vs. link latency, with log scale
axes. Both MySQL and ODP quickly converge to a relationship inversely proportional to
link latency.

To filter queries we use MySQL Proxy [71], an open source scriptable tool built by the
creators of MySQL, allowing capture and insertion of SQL queries and database responses.
This simple setup shows that we can deploy quickly on existing systems while obtaining
reasonable performance; a tailored solution would improve overhead by eliminating the nu-
merous process forks, file writes, and TCP connections initializations in every transaction in
the simple strawman implementation.

Strawman: Throughput Experiments. I performed experiments aimed at understand-
ing the throughput behavior of our mechanisms. Given their network-dependent nature we
focused on understanding how network characteristics impact performance.

The experimental setup consists of an (untrusted) “server” and several “clients” con-
nected directly through a 1Gbps router. The server is a Dell PowerEdge 2850 running
CentOS 4.1 with 4 Dual core Xeons and 4GB RAM, The clients were Lenovo Thinkpads
with an Intel Pentium Core 2 Duo 1.8GHz CPU running Red Hat Fedora 9, and Pentium
4 Red Hat Fedora 8 desktop machines. I measured overall throughput in a setting where
the two clients simultaneously issued transactions to the server running my ODP software,
connecting to a MySQL database through MySQL Proxy [71]. As a baseline control setup I
ran the same clients connected directly to the server-hosted MySQL database.

I soon discovered that in this setup the 1Gbps network bandwidth is easily surpassing
the processing ability of the baseline, thus we focused mainly on understanding the behavior
of ODP vs. baseline MySQL as a function of network latency. To this end I modulated
network latency at the kernel level using the NetEm [55] network emulation tool, which
delays packets in the outgoing network queue!

IEffective bandwidth was also slightly decreased by the latency, since the TCP window sizes are fixed.
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Figure shows the throughput in queries per second obtained using a remote MySQL
database with no server guarantees, and the throughput obtained in a strawman ODP im-
plementation with full privacy and correctness assurances. I vary link latency from 0.1ms to
100ms, sampling at growing intervals to suit the log scale X axis.

From Strawman to Efficient Prototype. The strawman ODP implementation could
support over 30 queries per second with full assurances. I believe this throughput can be
increased by at least one order of magnitude by an industry level prototype which would
consider the following bottlenecks of the strawman solution.

Multiple process forks. 1 used Java to manage all the communication aspects, as its pre-
existing constructs reduce coding and debugging time. Additionally, a C-based Lex/Yacc
parser was the most natural mechanism to detect conflicts between SQL transactions. To
obtain the most functionality in the shortest amount of time, I decided to launch a new
Lex/Yacc based conflict detection process from Java for every SQL statement. The result
is that I incur several process forks for each processed transaction, launching both a shell
and the parser once for each statement in each transaction on each client. Additionally, the
conflict detection operates as a separate C-based executable. While process forks themselves
are relatively cheap, incurring several in succession while the client waits for the commit
creates a low performance cap. I profiled the time required to launch a shell and application
at approximately 2ms—this accounts for a large portion of our overhead.

Synchronous client. The MySQL command line and stdin piping was used as our ap-
plication client. This incurs the full latency of each transaction as a transaction throughput
cap. Having two concurrent clients alleviates this slightly, but issuing multiple simultaneous
transactions from each client would decrease the impact of latency on throughput. Addi-
tionally, part of this benefit can be received by continuing each single-threaded client before
the commit has been applied—even at the risk of causing more conflicts, e.g., by creating
the possibility for client conflicts with itself.

Multiple TCP connection setups. Instead of reusing client-server TCP connections, the
strawman creates a new connection on each request. Multiple requests are constructed per
transaction. This design choice is a result of the Java XMLRPC server I am building on;
this slowdown can be eliminating by choosing a different XMLRPC implementation.

Java VM overhead. Choosing Java as the implementation language allowed quick pro-
totyping. The disadvantage is that the Java VM (even after just-in-time compilation) can
run many (I/O) tasks slower than a streamlined implementation compiled to machine byte
code. MySQL, by comparison, is implemented in C.

Lua scripting overhead. MySQL Proxy [71] allows the capture of sessions without build-
ing a custom MySQL listener. This allows easy integration with MySQL-enabled applica-
tions. The interface to MySQL Proxy is a Lua script parsed at runtime. Application logic
in this Lua script runs considerably slower than it would if implemented directly.

Also, a set of costs cannot be eliminated due to the core nature of the protocol, including:

e Symmetric key encryption: two symmetric key encryptions, one approximately the
size of the transaction description, and the fixed size commit of around 100 bytes.
Additionally, this ciphertext must be decrypted on each client.
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e Hash function computations, for MACs and hash chains: the overall quantity of data
hashed per transactions per client is the size of the transaction description, plus a small
amount around 100 bytes.

e Two asynchronous TCP round trips: latency will not affect the throughput of asyn-
chronous (conflict-free) clients. The network bandwidth consumed per transaction is
slightly higher than in MySQL, since this we send transactions back out to all clients.

e Proxy costs: organizing hash chains, ordering and transmitting incoming transactions.
This program overhead however, is likely always smaller then the actual transaction
application times.

e Conflict detection cost: the time required to determine if the order of two transactions
affects the outcome. This is an application specific cost—a function of the conflict
definition.

e Clients running each individual transaction description: This cost is incurred at the
server in a MySQL-only scenario.

Ultimately, in an industry-level prototype, I estimate throughputs of roughly the same
order of magnitude as an un-secured MySQL server.

9.7 Conclusions

In this chapter, I introduced a novel paradigm for secure outsourcing of data management
primitives, specifically durability and availability with assurances of data confidentiality and
access privacy. I designed, implemented, and evaluated a strawman implementation that
validates the feasibility of the new paradigm, running at tens of queries per second. I
identified key efficiency bottlenecks that can be eliminated in an industry-level prototype to
achieve orders of magnitude higher throughputs.
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Chapter 10

Untrusted clients

This chapter looks at the question of providing access privacy in a shared database, when
not all clients are trusted. I provide only brief excerpts here, referring the reader instead
to external work. The first paper shows how to provide the notion of delegation through
temporary access privileges. The idea is to provide another party with enough information
to perform a single query, at point in the future they choose.

The second paper proposes a model under which mutually non-trusting clients share a
single database with access controls. Moreover, it shows how to hide even the sets of clients
that are sharing data.

10.1 Oblivious Outsourced Storage with Delegation

The following is an excerpt from the paper “Oblivious Outsourced Storage with Delegation”
I co-authored with Franz et al., presented in 2011 [33].

Abstract. In the past few years, outsourcing private data to untrusted servers has become
an important challenge. This raises severe questions concerning the security and privacy of
the data on the external storage. In this paper we consider a scenario where multiple clients
want to share data on a server, while hiding all access patterns. We propose here a first
solution to this problem based on Oblivious RAM (ORAM) techniques. Data owners can
delegate rights to external new clients enabling them to privately access portions of the out-
sourced data served by a curious server. Our solution is as efficient as the underlying ORAM
constructs and allows for delegated read or write access while ensuring strong guarantees for
the privacy of the outsourced data. The server does not learn anything about client access
patterns while clients do not learn anything more than what their delegated rights permit.

Introduction

As data management is increasingly being outsourced to third party “cloud” providers such
as Google, Amazon or Microsoft, enabling secure, distributed access to outsourced data
becomes essential. This raises new requirements concerning the privacy of the outsourced
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data with respect to the external storage, network traffic observers or even collaborators
who might have access to parts of the outsourced database. In this scenario, a data owner
O outsources his data items to a server S. At a later time, he wishes to delegate read- or
write-access to individual data items to third party clients C; , ..., C, . Since the data is
potentially privacy sensitive, strong confidentiality and privacy guarantees should be in place.
Clients should only be able to access those items they are given access to. Moreover, potential
adversaries should be unable to derive information from the observed access patterns to the
outsourced database. This is necessary, as even the observation that one item is accessed
more frequently than others or the fact that one item is accessed by multiple clients, might
leak sensitive information about this particular item. In the particular case where the owner
is the sole client accessing the data stored on the server, the problem can be solved by
applying techniques from Oblivious RAMs. An ORAM structure preserves not only data
confidentiality but also provides privacy for client data accesses. So far, the problem of hiding
access patterns in outsourcing database scenarios containing multiple (distrusted) clients is
open. In this paper we show that ORAM techniques can be adapted to this scenario as well.
To this end, we introduce a new ORAM feature: delegated access. Data owners can delegate
controlled access to their outsourced database to third parties, while preserving full access
privacy and data confidentiality. Achieving this turns out to be non-trivial: in addition to
preserving the owners access privacy, we also need to ensure that (i) the server is unable to
learn the access patterns of any of the clients, (ii) no client is able to learn or modify any
information of items she cannot access and (iii) no client can learn about the access patterns
to items which she cannot access herself.

Applications. We now describe several applications that can be built on the constructions
we propose in this paper. Anonymous Banking: The numbered accounts supported by
several banks claim to provide user privacy. However, by allowing banks to trace the currency
flow and build access pattern statistics, they can be used to learn undesired information,
ultimately compromising privacy. The solution proposed in this paper can be used toward
preventing such leaks: Account numbers and details are stored as records by the bank
and account owners can delegate access rights to other clients as desired. Since the data
is accessed obliviously, the bank can learn neither which records are being accessed nor
the access rights associated with users. Oblivious Document Sharing: Document sharing
applications such as Google Docs suffer from obvious security and privacy shortcomings.
Not only is the central storage able to access the cleartext documents but it can also learn
access privileges as well as access patterns and exact contributions from individual users.
Our solution is the perfect fit for this problem as users encrypt stored documents, privately
outsource read and write privileges and obliviously and efficiently access desired documents
as allowed by their permissions. Rating Agency Access: Privacy is of paramount importance
in financial markets. Public knowledge of investor interest can influence the ratings and
prices of company shares in undesired ways. The natural question to ask is, can an investor
privately obtain desired information about companies of interest? The solution we provide
in this paper answers this question affirmatively. A rating agency maintains an ORAM with
records containing ratings and general information for individual companies. Each company
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owns its own records and can delegate write access to specialized rating assessing companies
and on-demand, read-only access to clients that pay to privately access them.

Contributions. We devise delegated ORAM privacy and security properties, expressing
the fact that clients cannot learn any information about items which they are not allowed
to access. We provide a first construction of an ORAM with delegation that satisfies this
property while preserving the original ORAM privacy properties. The construction relies on
a new type of read, write and insert capabilities issued by data owners for items that clients
should be able to access. We also show how data owners can efficiently revoke access rights.

10.2 Oblivious Databases without Central Authority

The following is an excerpt from the unpublished paper “Oblivious Databases without Cen-
tral Authority” I co-authored with Martin Franz, Stefan Katzenbeisser, and Radu Sion.

Abstract. It has been shown both feasible and desirable to obtain access privacy, the
ability to perform reads or writes without revealing to the storage provider any correlation
of accesses. Existing work typically assumes one party reading and writing (Oblivious RAM),
or multiple parties reading shared data (Private Information Retrieval).

We motivate the scenario where any number of clients can update a shared database
according to an access policy, obtaining read- and write-access privacy not just from the
provider but from each other. The server sees only a sequence of indistinguishable accesses,
and the clients—even colluding with each other—remain oblivious to any accesses outside
their permitted access list. While these desired privacy guarantees seem almost contradictory,
we find (perhaps surprisingly) a construction with sublinear complexity that achieves just
this.

Our novel construction enables sharing of data between clients with strong privacy guar-
antees previously impossible (or prohibitively expensive) to enforce, opening up the possibil-
ity of novel applications through this new data sharing model. We show how to construct an
oblivious database with no central authority, i.e. where no party is allowed to see all items
stored in the database, or the access patterns of other clients.

Introduction

Databases form the backbone of modern networked applications; collaborating parties fre-
quently outsource private data to a service provider and give other parties selective access
(social networks constitute important examples). Given the global utility of such applica-
tions, and the often sensitive nature of the stored content, there is the critical need for
technologies that protect outsourced data against the database. In currently deployed sys-
tems, this demand for privacy is (insufficiently) filled with encryption, such that that the
database operator is unable to access the data items in the clear.

However, encryption of database content is not enough to fully protect the privacy of
the involved parties: in particular, the sequence of accesses to items in the database (i.e.,
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knowledge which client accessed which item at what time) can reveal critical information. For
instance, despite encryption a database server can collect statistics on the most “valuable”
data items in its possession. Any ability to link this with external information greatly
increases the magnitude of the leak; in general, it is difficult to place a satisfactory upper
bound on what is revealed to the server about stored data through this side channel. In
particular, the server still sees which clients collaborate and how much data they share.
Thus, to fully protect the privacy of the involved parties, access patterns must be hidden in
addition to the actual database contents and collaboration patterns. This holds for both the
server and the clients accessing the database.

Our goal is to provide a scheme that allows construction of a database, in which multiple
clients can privately (contents of items are hidden) and obliviously (access patterns are
hidden) outsource their data to a central database server, while granting each other selective
access and preserving privacy of the collaboration patterns. While desirable, these guarantees
prove non-trivial to provide at reasonable cost.

Scenario Description. We target a scenario as follows: client parties (e.g., financial ana-
lysts, agents and investors) jointly work on some documents containing highly sensitive data
(e.g., a company’s balance records, countries’ national debts, or financial standings). Even
the mere interest of an investor or analyst in this data might trigger enormous movements
in the markets. Thus, the documents which are stored in a central database need to be pro-
tected, and it is indispensable to hide who accesses which documents, even from the owner
of the database.

In this paper we propose an efficient solution in which k clients share a single database
on a single untrusted server. Our solution protects the documents as well as the access
patterns of the clients, even when there is no central authority among the clients that runs
the database. They operate jointly on their documents, hiding both the access patterns
and their contents from unauthorized accesses. Borrowing a theme from Oblivious RAM,
the database undergoes periodic reshuffling to maintain indistinguishability between queries.
Rather than requiring trust in any single client to be perform the reshuffles, however, our
construction shares the trust among a subset of the clients using a well known concept from
threshold cryptography.
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Chapter 11

Guarantees from Trusted Hardware

Chapter[8]briefly explored the use of trusted hardware in the context of access privacy, specif-
ically as a mechanism of converting an Oblivious RAM solution into a Private Information
Retrieval (PIR) solution. This chapter examines trusted hardware from a different perspec-
tive: how to design high-performance trusted hardware, with strong privacy and integrity
assurances to software. After analyzing what we need from hardware to obtain these security
guarantees, we shall look at access privacy. In particular, we explore in Section how
this trusted hardware design can guarantee access pattern privacy to software.

11.1 Introduction

To protect software and data against vulnerabilities and malware, we describe simple exten-
sions to the Power Architecture for running Secure Executables. By using a combination
of cryptographic techniques and context labeling in the CPU, these Secure Executables are
protected on disk, in memory, and through all stages of execution against malicious or
compromised software, and other hardware. Moreover, I show that this can be done effi-
ciently, without significant performance penalty. I take a transparency-focused approach,
emphasizing ease of software deployment. Secure Executables can run simultaneously with
unprotected executables; existing binaries can be transformed directly into Secure Executa-
bles by re-linking. Moreover, Secure Executables can safely make use system calls provided
an untrusted operating system. In sum, I show that a simple set of processor modifications
suffices to provide secure execution in an untrusted environment, without significant changes
to the executable.

Almost every week, we hear of incidents in which systems are compromised and sensitive
information is stolen in an Internet-based attack, with victims suffering significant financial
harm. There have been many startling examples recently [10,/53,82,121]. While I do not
believe a single solution can solve the entire problem, part of the comprehensive approach
required is to focus on protecting the sensitive information itself. This protection should
come in the form of a simple, robust barrier against potential attackers. Moreover, I believe
that to be broadly applicable to today’s software industry, such a solution needs to work
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transparently with existing software, given the prevalence of legacy software and the expense
of developing new software.

Given the evident difficulty in creating bug-free operating systems that reliably protect
software, hardware support should be employed to minimize the trusted code base. In
particular, to achieve a meaningful protection boundary around the sensitive information,
the operating system must be outside the trusted base. On the other hand, I believe a small
set of architecture extensions is acceptable if they realize guarantees of software protection
while avoiding significant performance penalty. Existing work (described below) has looked
into this approach; I will identify and attempt to solve the set of issues still preventing these
approaches from revolutionizing the security industry.

In summary, a dire need exists for systems and methods to prevent the theft of information
from a computer system in an Internet-based attack. In particular, this includes the need
to protect sensitive data and software on a computer system from other software, including
software that an attacker may be able to introduce into a targeted computer system. I take
a fresh look at hardware-based isolation techniques in this chapter, providing a developer-
transparent solution for achieving strong protection of sensitive software.

I describe an architecture that protects the confidentiality and integrity of information
in an application so that other software or hardware cannot access that information or
undetectably tamper with it. In addition to protecting a secured application from attacks
from outside the application, the architecture also protects against attempts to introduce
malware “inside” the application via attacks such as buffer overflow or stack overflow attacks.
Finally, a strong root of trust is established to guarantee confidentiality and attest to the
integrity of results. In sum, this architecture provides a foundation for strong end-to-end
security in a network or cloud environment.

The architecture, called SecureBlue++, builds upon the IBM SecureBlue [60] secure
processor technology. SecureBlue has already been used in tens of millions of CPU chips to
protect sensitive information from physical attacks. In a SecureBlue system, information is
“in the clear” when it is inside the CPU chip but encrypted whenever it is outside the chip.
This encryption protects the confidentiality and integrity of code and data from physical
probing or physical tampering.

SecureBlue++ builds upon SecureBlue. Like SecureBlue, we can continue to protect
against physical attacks. SecureBlue++, though, uses “fine-grained” SecureBlue-like cryp-
tographic protection that also protects the confidentiality and integrity of information in an
application from the other software on a system. Moreover, it does this in a way that is
transparent to applications.

11.1.1 Overview

SecureBlue++ provides a trusted execution environment for individual applications, protect-
ing an application from other software, including privileged software such as the operating
system and malware that manages to obtain root privileges. The set of hardware changes
described below provides this strong isolation in a way that is nearly transparent. In par-
ticular, we can run Secure Executables side-by-side with unprotected software, with only

146



Untrusted OS N7

& v

Secure Other
Executable Software Malware

Figure 11.1: Overview: the Secure CPU provides a boundary of protection around the Secure
Executable, protecting its confidentiality and integrity from other software, malware, or a
compromised operating system.

a small performance impact to the Secure Executable, and no performance impact while
running unprotected software. The software source code requires no changes to build a Se-
cure Executable; we simply link with new initialization code and system call handlers. The
idea is that the CPU uses encryption and integrity checks to prevent the OS from reading
or tampering with application memory. At the same time, it enforces some basic seman-
tics of system calls that allow applications to safely make use of them, even when they are
implemented by an untrusted OS.

I show the full set of required hardware changes is limited in scope, and convenient
for integration into mainstream CPUs. I begin now with a brief summary to provide the
intuition behind how sensitive applications are protected at all stages—on disk, in memory,
in cache lines, and in registers. A “Secure Executable” is an executable file, encrypted
(aside from the loader) so that only a specific target Secure-Executable-enabled CPU can
access it. The included cleartext loader sets up the memory space and enters secure mode,
enabling the CPU to decrypt the rest of the executable. Confidentiality and integrity of the
encrypted portion of the Secure Executable in memory are protected by keys not available
to software. Cache lines are stored in cleartext, but associated with a Secure Executable 1D
that restricts access of the cache line. Reads and writes to locations in the CPU cache incur
no new overhead aside from verifying the cache label. Finally, on interrupts, the contents of
the registers are protected from the operating system by moving them to protected memory.
Figure provides an overview of this approach.

11.1.2 Related Work

There is a long history of using hardware features to isolate software from a compromised
operating system, starting with XOM [76]. Figure compares Secure Executables to

147



SCPU Flicker TrustVisor SP Secret- XOM Aegis Overshadow Secure
(IBM 4758) Protecting Executables
Architecture
Requirements
Works without Hardware Changes N 4 v N N N v
No OS in Trusted Code Base Card OS v v v v v Host OS v
in TCB in TCB
Works without OS Support N 4 v N N N v
Transparent to Developers N N N N N N v v
Protection
Code privacy (transparently) v 4 v N N v N v
Resilient to Memory Replay Attacks v 4 v N N v v v
Protection from Physical Attacks v N N 4 v v N v
Features
Multiple Simultaneous Instances v N N N 4 v v v
Multi-threading / Multi-core support v N v ? N N v v
Support Shared Memory Regions v N N N N N N v
Virtualization Support N N v N N N v v

Figure 11.2: Comparison with existing work

related work.

XOM. XOM [76] is a set of architecture changes that extends the notion of program isola-
tion and separate memory spaces to provide separation from the OS as well. They introduce
“secure load” and “secure store” instructions, which tell the CPU to perform integrity ver-
ification on the values loaded and stored. For this reason, the application transparency is
limited: developers must tailor a particular application to this architecture.

Aegis. Aegis [122] fixes an attack in XOM by providing protection against replay attacks.
This requires using an integrity tree to protect memory. The authors also offer optimiza-
tions specific to hash trees in this environment that greatly reduce the resulting performance
overhead. These optimizations include batching multiple operations together for verification,
and delaying the verification until the time where the values affect external state. Again, the
approach is not transparent to developers: the set of sensitive code areas must be explicitly
specified by the developer. Additionally, the developer must identify the specific calculations
requiring expensive integrity checkpoints, which are the only places tamper checking is per-
formed. In contrast, SecureBlue++ maintains integrity guarantees across all code sections
and computations within the Secure Executable.

Secret-Protecting Architecture. Secret-Protecting Architecture [74] provides a mech-
anism to run code in a tamper-protected environment. Dwoskin and Lee [30] design a
mechanism extending a root of trust to supporting devices. However, this technique does
not have the transparency of other techniques. For example, there can be only one Secret-
Protected application installed and running at a given point in time. The ability of protected
applications to make use of system calls is likewise limited.
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TPMs. The Trusted Platform Module, widely deployed on existing consumer machines,
can be used to provide guarantees of the integrity of the operating system. It does not
exclude the operating system from the trusted code base, however. Instead, the TPM signs
the current memory and register state, and it is up to other parties to decide if this signed
value constitutes a valid operating system state.

There is a separate class of approaches, including Flicker [87] and TrustVisor [86], using
the TPM late-launch feature to protect software from a compromised operating system.

Flicker. Flicker [87] provides a hardware-based protection mechanism that functions on
existing, commonly deployed hardware (using mechanisms available in the TPM). As with
other solutions, this incurs only minimal performance overhead. It provides a protected
execution environment, but without requiring new hardware changes. The trade-off is that
software has to be specifically developed to run within this environment. The protected
environment is created by locking down the CPU using TPM late-load capabilities, so that
the protected software is guaranteed to be the only software running at this point. System
calls and multi-threading in particular do not work for this reason. Moreover, hardware
interrupts are disabled, so the OS is suspended while the protected software is running.
Thus, software targeted for Flicker must be written to spend only short durations inside the
protected environment. The advantage of Flicker is the reduced hardware requirements: it
is supported by existing TPM-capable processors.

TrustVisor. TrustVisor [86] guarantees software isolation using a trusted hypervisor. A
root of trust is established using hardware features of recent Intel and AMD processors to
attest to the integrity of the hypervisor. Simultaneously, TrustVisor dramatically improves
performance over Flicker by using the hypervisor—which has the ability to make physical
pages inaccessible by the OS—to do the loading and measuring of security-sensitive regions
of the application. For comparison, Flicker required TPM measurements at every security-
sensitive region entrance and exit. Speeding up this task is critical since the system operates
with interrupts disabled while running the security-sensitive application regions. TrustVisor
does not consider physical attacks, but it does protect against DMA (Direct Memory Access)
attacks by compromised devices.

Overshadow. Overshadow [22] provides guarantees of integrity and privacy protection
similar to AEGIS, but implemented in a virtual machine monitor instead of in hardware.
This approach has several other advantages as well; making the implementation transparent
to software developers—for example, software shims are added to protected processes to
handle system calls seamlessly. This means, however, that there is no protection provided
against a malicious host OS or against physical attacks. Nonetheless, the authors provide
an updated approach that incorporates techniques we can adapt to our hardware-based-
protection model. One example is the use of system call wrappers, which transparently
manage system calls from a secured application, otherwise unmodified.
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11.1.3 New Contributions

I detail several novel contributions in this chapter, addressing components missing from much
of the related work. Moreover, I believe these features need to be provided by any secure
architecture that will achieve widespread adoption. See Figure for a comparison with
existing work.

I

minimal size of trusted computing base (TCB). In SecureBlue++, the TCB consists
of just the secured application and the hardware. Relying on the security of any other
components makes it much more difficult to obtain reasonable security guarantees.

minimal changes to hardware and software, including minimal changes to OS. Instead
of defining a new hardware architecture altogether, I provide a small set of changes
that can be applied to existing architectures, without affecting other software running
on the system.

transparency to applications. Developers do not need to design programs any dif-
ferently in order to make Secure Executables. An existing program can quickly and
easily be rebuilt into a Secure Executable (not even requiring recompilation from source
code). I believe this is key to enabling widespread adoption.

transparency with respect to build tools. There are no language changes required
to take advantage of Secure Executables, and we remain compatible with existing
compilers and link editors. I do introduce a new linking step that links system call
wrapper code in with an existing application, and a final step to encrypt the application
and enable Secure Mode.

protecting confidentiality and integrity of sensitive information. We will encrypt the
Secure Executable binary, so sensitive information is protected even in the file system
before execution. The architecture establishes a root of trust guaranteeing the integrity
of a Secure Executable, ensuring its sensitive information is readable only by the target
CPU, and only during execution of that Secure Executable.

shared memory. SecureBlue++ provides a mechanism allowing seamless sharing of
memory regions between Secure Executables. Furthermore, as long as values stay in
the cache, this sharing avoids the need for any cryptographic operations.

multi-threading. SecureBlue++ supports multiple threads (again, seamlessly) for a
single Secure Executable. This is a critical feature if the architecture is to be used by
modern day applications.

virtual machine support. Our architecture is compatible with both type-1 and type-2
virtual machines, and can be used to establish a root of trust all the way up to the
physical CPU.

now describe the precise security guarantees I wish to achieve, and the architecture

changes necessary to achieve them.
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11.1.4 Model

A user wishes to run a particular application (the Secure Executable) with integrity and
confidentiality guarantees. The target system is simultaneously executing untrusted software,
including a potentially untrusted or compromised operating system. This chapter develops
a set of extensions to the CPU running on this untrusted system that make these integrity
and confidentiality guarantees achievable. The specific guarantees are revisited again at the
end of this section.

We will employ standard cryptographic constructions, using hashes, symmetric encryp-
tion, and public-key encryption to maintain the integrity and privacy of information. I do
not specify the particular constructions to use at this point, however; potential candidates
include AES, and RSA with 1024 bit keys. Since the security of our mechanisms rely on
these cryptographic mechanisms, I assume our adversaries are unable to defeat the employed
cryptographic encryption primitives.

We shall consider an attacker who has full control of the software running on the sys-
tem, aside from the Secure Executable. The protection of memory regions established at
launch leads naturally to enforcement of no-write and no-execute regions, which is useful
for discouraging buffer overflow and stack writing. However, we do not otherwise protect
the Secure Executable from itself: vulnerabilities in the Secure Executable will remain ex-
ploitable. We significantly reduce the size of the trusted code base—instead of trusting the
entire OS, developers merely have to trust the code that they have control over. I believe
a Secure Executable can be much smaller, and consequently more easily verifiable, than an
entire operating system.

The attacker may also have physical access to the system, and we protect against attacks
to this memory, disk, buses, and devices. However, I assume that it is beyond the abilities
of the attacker to successfully penetrate the CPU boundary. That is, the gates and registers
inside the CPU are not considered subject to tampering or leak. I believe this is a reasonable
assumption for most scenarios and adversaries. However, in situations where it is not, there
are existing physical protection techniques, such as those employed on the IBM 4764 [59]
that can be used to increase the cost of physical attacks against the CPU. These techniques
typically result in increased CPU cost and/or decreased performance due to limited heat
transfer capacity.

It is beyond the scope of this work to consider side channel attacks such as power analysis
and timing attacks. We will, however, briefly consider access pattern privacy in Section
[11.7.4. This section explores ways of efficiently hiding the addresses of the accessed memory.

The mechanism I provide consists of a set of changes to a CPU architecture (in this
chapter I address the POWER architecture specifically, but the techniques can be adapted
to most modern CPU architectures). Four new instructions enable execution of a Secure
Executable, under which decryption and execution of protected code is possible, while outside
tampering or snooping is simultaneously prevented.
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11.1.5 Integrity and Confidentiality Guarantees

We consider here informal definitions of the desired security guarantees.

Application Integrity. A polynomially-bounded adversary has control over all values read
from external memory and all software on the system. An architecture provides application
integrity if the adversary’s ability to tamper with the code or data of a secure executable
(that is, to get the Secure Executable to operate out of the range of behaviors allowed by its
source code), taken over the possible choices of Secure Executable secret keys, is negligible.

Defining confidentiality is more difficult. It might be desirable to provide a confidentiality
guarantee such as that a fully malicious adversary gains no advantage at guessing the code
or data of a secure executable through physical access to the system, and through specifying
all software running on the system besides the secure executable. This could be captured
with a game in which the adversary specifies two Secure Executables, observes the system,
and guesses which of the two is run.

This is definition is not helpful, however, since any secure executable performing useful
computation trivially reveals itself to the adversary if allowed to even output a result or inter-
act with its environment. Moreover, the operating system in any practical construction still
has the ability to observe system calls (the inputs and outputs to the Secure Executables),
and the pattern of memory locations accessed. A narrower definition is needed, closer to the
model we are working within, to capture the notion that an adversary gains no advantage
from compromising the operating system.

Application Data Confidentiality. An architecture provides application data confiden-
tiality if the advantage of any polynomially-bounded adversary, with control over all values
read from external memory and all software on the system, to answer any question about
the observed Secure Executable, is negligibly better than the advantage of an adversary that
observes only the sequence of system calls, memory access pattern (but not contents), file
size, inputs, and outputs.

11.2 Approach

In our design, sensitive information is cryptographically protected whenever it is outside the
CPU chip. It is available in cleartext inside the chip but only by the software that “owns”
the sensitive information. The sensitive information is decrypted as it moves from external
memory into the chip, and encrypted as it moves from the chip into external memory.
Integrity values are also checked when information moves into the chip and updated when
information moves back out. This approach is illustrated in Figure

A public/private key pair is installed in the CPU at manufacture time, with the public
portion signed by the factory. This is used to establish the root of trust, allowing Secure
Executable binaries to be encrypted so that only a target CPU can access the embedded
code and data.
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Figure 11.3: The main idea: sensitive information is cryptographically protected whenever
it is outside the CPU chip, and visible as cleartext inside the chip, but only by the software
that owns the sensitive information.

11.2.1 New Hardware Logic

Memory encryption. Encryption/decryption is performed between cache and main mem-
ory. Cache lines corresponding to the protected region are decrypted as they are brought
into the cache, and encrypted as they are evicted.

Integrity tree verification/update. A cache line is verified using the integrity tree when
data is brought into the cache. This may require performing additional fetches to make sure
enough of the tree is present to perform this verification. When lines are evicted from the
cache, the corresponding parts of the integrity tree are updated.

Cache line label. On loads from a protected region, the ID of the Secure Executable
associated with that cache line (linked indirectly, though the Memory Region ID described
later) is compared to the current Secure Executable ID. If there is a mismatch, the access is
treated as a cache miss. On stores, the cache line Secure Executable ID is updated to match
the currently running Secure Executable.

Register protection. The CPU ensures that application registers are not visible, or un-
detectably modified while the Secure Executable is suspended. The two obvious approaches
are to encrypt the registers before giving control to the OS interrupt handler, or to store
the registers on chip while the Secure Executable is suspended. Both approaches have draw-
backs. Encryption takes time, and is potentially vulnerable to replay attacks unless a hash
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is stored on chip; storing a copy of the registers on chip uses valuable space and severely
limits the number of supported simultaneous suspended Secure Executables.

We choose instead to store the register set in protected memory corresponding to each
Secure Executable (allocated by the loader code). The registers end up protected in the
cache (and ultimately by the Secure Executable root hash value, if these values get evicted
from the cache). Only the Secure Executable root hash value, plus the metadata required
to use this hash value, are stored on-chip. This eliminates the performance penalty of the
cryptographic operations, while greatly reducing the amount of required on-chip storage.

11.2.2 Software Changes

Because software transparency is a main goal, we allow existing applications to be trans-
formed into Secure Executables by relinking. This relink process attaches initialization code
(Section [11.2.3]), reserves portions of the address space for the integrity tree (Section [11.3
and thread restore locations (Section [11.4.3)), attaches system call wrapper code (Section
, and reserves a portion of the application memory address space for use during launch
as follows.

A metadata region is stored in the Secure Executable application memory space. It is
used to register initial parameters with the CPU, as well as establish memory regions. It
is encrypted with the Executable Key, and protected by a keyed hash, the initial value of
which is loaded on chip with the Enter Secure Mode instruction (described below). Updates
to this region require the CPU to re-compute the metadata hash before the next interrupt
can be dispatched.

e Metadata region size

Code entry point

Signal handler entry point

Core dump data key

Location of the protected memory region table (within metadata region)

Location of the thread restore list (outside metadata region)

The metadata region size specifies the total size of this region. The code entry
point is a 64-bit memory location identifying the next instruction the CPU should execute
after running ESM. The signal handler entry point is a 64-bit memory location identify-
ing the first instruction of the Secure Executable signal handler. This is the only location the
OS can jump to in this program; see the discussion of signal handling, under system calls, for
more information on the use of this value. The core dump data key is an AES encryption
key, that if non-zero, will be used by the CPU to encrypt the dynamically generated data
keys and export to software when requested by the OS (in case of a core dump). This allows
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software that has access to the core dump data key to decrypt the protected memory regions
in the core dump.

Finally, two more values specify the location of data structures maintained by the helper
library linked with the Secure Executable. The protected memory region table keeps track
of the ranges of protected memory, and the memory region ID corresponding to each. This
fixed-size list is stored on chip every time the Secure Executable is entered (e.g., with the
RestoreContext instruction). This is necessary to allow quick translation from memory
location to Region ID on memory accesses. The thread restore list keeps track of the re-
entry points into the Secure Executable, used with the RestoreContext instruction.

11.2.3 Launching

At run time, when the Secure Executable is to be launched, the OS executes the Secure
Executable binary, as a normal ELF file. The ELF file consists of a protected region and a
cleartext region. The confidentiality of the protected region is protected using a symmetric
encryption algorithm; the integrity of the protected region is protected by an integrity tree in
the cleartext region. The cleartext region also includes loader code and an ESM instruction.
The loader code copies the initial integrity tree into memory. It then issues the ESM instruc-
tion, which enables decryption of protected regions, and jumps to the entry point (identified
in the ESM operand). Integrity and confidentiality protection of memory accesses is also
enabled at this point. The ELF application binary format is illustrated in Figure [11.4]

11.2.4 Root of Trust

The root of trust is established as illustrated in Figure I1.5l In the factory, a hardware
private key (1) is embedded in the CPU. ! The public portion of this key is signed by the
manufacturer, producing a public key certificate (2) asserting that this private key corre-
sponds to a CPU supporting Secure Executables. To build a Secure Executable for this
chip, the Secure Executable decryption is encrypted using the signed public key (3). Finally,
the Secure Executable code itself is encrypted with this executable key. This ensures that
knowledge of the hardware-installed private key is necessary to access the sensitive code and
data distributed through the Secure Executable.

11.3 Integrity Tree

An integrity tree consists of a set of encrypted hash values of memory locations, with these
hashes themselves protected by parent hashes. This tree is used to protect memory at
runtime. The branching factor of this tree is taken to be the number of hashes that fit in a
cache line. For 128-byte cache lines, and 128-bit hash values, for example, each node of the
tree protects 8 nodes directly below.

'While T do not specify the details here, Physically Unclonable Functions (PUFs) [123] provide a conve-
nient and inexpensive mechanism to do just this.
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The initial value of the integrity root is signed and loaded with the Enter Secure Mode
(ESM) instruction, used to start of the Secure Executable. This root ensures that the CPU will
only use an intact version of the code; the CPU provides the guarantee that only integrity-
verified words are visible to the application in regions of the protected address space.

Ancestors of a dirty cache line are pinned in the cache to avoid updating the tree all the
way to the top on each write. Evicting a node from the cache requires updating its parent,
which might require evicting another node. By locking all ancestors in the cache, however, it
suffices to simply update the parent of a node (assuming it can be brought into the cache).
Thus, every dirty line in the cache has all the ancestors pinned in with a reference counter.

This requires considering the case in which a parent cannot be brought in, because all
the lines where it could go are already pinned. In this case, the tree computation must be
performed immediately, as far up the tree as necessary (until a line whose ancestors all fit
is found). The procedure to perform a store from a Secure Executable context is as follows.
First, bring ancestors in, starting at top (if they’re not already there). Lock each parent
when one of its children comes in, by incrementing its reference counter. If a child cannot be
brought in, compute the path up to this point, reading and writing all the children directly
to/from memory. Then the parent is updated to reflect the new value, and marked as dirty
in the cache.

This approach has the property that the CPU can evict a cache line with a zero reference
count at any time, with one hash operation but requiring no additional loads or stores. Lines
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representing instructions or data can always be evicted, as can nodes of the integrity tree
whose protected lines are no longer in the cache. Flushing the cache requires starting with
all the lines with a zero reference count, evicting these, and repeating as many times as
necessary (which can be up to the tree height). On each iteration one level of the integrity
tree is evicted.

Due to cache locking conflicts, we do not guarantee that a write requires only updating
the parent; it could require up to (e.g.) logg(n) loads/stores. But this stalls only the current
running Secure Executable, and it can be paused and resumed later. This case should be
rare, with high enough cache associativity.

This integrity tree needs to be correct over the whole protected address space, even those
parts of the address space that have not yet been allocated. Moreover, the parts of the
tree covering these unallocated regions should not require initialization, since the protected
memory region is potentially much larger than the portion ever accessed. I introduce the
notion of a “sparse” integrity tree: one that correctly protects the whole memory region,
but is zero everywhere that it protects unallocated memory. In this sparse integrity tree,
these zeros protecting unallocated memory are implicit. Memory is not allocated for these
integrity values until they are accessed, at which point they are initialized (by the OS)
to zero. Implementing this sparse integrity tree requires a property of the integrity hash
function: the hash of an empty region must be zero.

A second requirement for this property of integrity tree correctness over uninitialized
data is that the cleartext corresponding to uninitialized memory is also zero. To achieve this,
we consider all memory locations protected by a hash value of zero to be zero themselves.

11.3.1 Overcommit

Since we are targeting a 64-bit architecture, the size of protected memory regions can be
large. For this reason, we need a simple way to dynamically grow the integrity tree. The
Linux overcommit mechanism allows us to reserve room in the address space corresponding to
a tree protecting large memory regions, while delaying the physical memory allocation until
each page is accessed. In overcommit mode, available in recent Linux kernels, application
memory allocations always succeed, even if there is not enough physical memory or swap
space to support the entire allocation. That is, pages are not mapped to physical memory
until they are accessed. This OS mechanism is particularly useful in 64-bit mode, since
the size of the address space we are protecting is potentially much larger than the available
physical memory. Without overcommit, applications would need to specify a limit on the
total memory use beforehand, since we must use a much smaller integrity tree (that can fit
entirely in RAM or swap space).

Since the hash tree is maintained by the CPU, instead of the software, any solution
must involve the CPU as little as possible; the CPU in particular should not be involved
in memory management, and should not issue memory allocation requests. Overcommit
provides a convenient solution: the Secure Executable loader can allocate a portion of the
virtual address space large enough to contain a hash tree over the rest of the address space.
With overcommit enabled, this can be much larger than the available physical memory
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plus swap space. When the CPU attempts to access an address in this range, a page fault
is generated, since this address has not yet been assigned to physical memory. Since the
virtual address has been reserved by the Secure Executable process (with the mmap syscall),
the OS handles this fault transparently by assigning a physical page to this location. This
provides exactly the behavior we desire, with no changes to the OS (aside from enabling
overcommit).

Downsides to using overcommit. When overcommit is enabled, processes run the
risk of running out of physical memory at any time—and being targeted by the kernel’s
out-of-memory killer. A potential workaround described here prevents this from occurring.
That is, to guarantee that when the machine is out of memory, only new allocations will
fail (matching traditional behavior when physical memory is fully consumed), rather than
leaving the potential for any process at all to be killed. The OS provides a new type of
memory allocation, specifically for integrity trees. Processes are still allowed to allocate the
large integrity tree, but the OS is now aware that the total space used by this integrity tree
will stay within a fraction of the rest of the process’s used memory. Thus, instead of over-
committing to the entire allocation, the OS is only committing to the normally allocated
memory plus a constant fraction.

11.3.2 Integrity Tree Extensions

The integrity tree provides complete integrity protection for a reasonable performance over-
head. However, in certain scenarios the entire range of integrity protection may not be
necessary. It may be desirable to have a more limited form of integrity protection at a signif-
icantly reduced cost. In particular, by storing keyed checksums of the data, but no integrity
tree, we can prevent all integrity attacks except for rollback attacks. This means the only
modification an adversary can get away with undetected is restoring a given block of data to
an earlier state. For read-only segments of memory this is not a problem. For example, the
adversary cannot modify undetectably the read-only code segments since there is no other
version of these to successfully roll back to. This is the level of protection that XOM [76]
provides; Suh et al. [122] explain how XOM protection is vulnerable to such replay attacks.

11.3.3 Integrity Tree Optimizations

A more sophisticated layout of the integrity tree can minimize the number of memory pages
needed to cover a particular region. The idea is that each page of memory is organized as
a local breadth-first tree, containing only nodes under the first entry in the page. The next
page begins with the first node (according to global breadth-first order) not yet included.
The calculation to determine where in memory a given node is more complicated in this
case; we shall favor simplicity of design by simply using the global breadth first layout.
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11.4 Extensions

11.4.1 Memory Regions and Shared Memory

The ability to share protected memory regions between Secure Executables is critical. This
could potentially be implemented in software using cryptography. However, to achieve trans-
parency and avoid the need to intercept all memory writes, it is still desirable to have hard-
ware support (even if the cryptographic performance were not a concern). There are two
issues to consider with respect to sharing memory: how to provide this mechanism trans-
parently to the application, and how to implement it efficiently.

For common cases of inter-process communication, we automatically create the protected
shared memory region. One case is anonymous pipes opened before a fork: it is apparent
these two Secure Executables need to communicate. The custom system call wrapper sets
up the shared memory region over which to implement the pipe. Additionally, on fork,
the software system call wrapper assigns an MRID (Memory region ID) to all anonymous
memory regions. Memory-mapped files cannot be shared securely and transparently without
new semantics, however, since it is not known ahead of time what processes and Secure
Executables will be accessing this memory-mapped file.

To allow multiple protected regions per application, with various share options, these
protected regions are registered at runtime by the applications, by adding an entry to the
Protected Memory Region table.

First we consider the hardware implementation of shared memory. Tagging the cache
line with the Secure Executable ID of all sharing processes is insufficient, since any number
of Secure Executables will potentially share this location. Instead, the cache line is tagged
with the Memory Region ID. This MRID indexes into an on-chip table containing information
allowing efficient verification of the current Secure Executable’s permission to access this
shared memory region.

We keep only a minimal amount of mapping information stored on-chip in a shared
memory region table. This mapping contains two Secure Executable IDs (SEIDs): one for
the creator, and one for the first sharer. This allows handling the most common memory
region cases (private, or shared among two processes) without penalty. To handle the rest
of the cases, a secret is associated with the memory region. Secure Executables are allowed
access to this region if the secret is installed at a registered location in the SE memory.

The MRID of the cache line simply points to an entry in the Protected Memory table that
indicates both the integrity root and Memory Region secret. Access is verified by checking
the SEID1 and SEID2 of the Memory Region. Failing this, the secret corresponding to this
region is compared at the registered virtual memory location of the current process with the
secret in the on-chip memory region table.

The CPU needs to determine whether an access is to a protected region, and to which
region. Since this determination needs to be made on every access resulting in a cache miss,
the information needs to be stored on chip. We reserve a location in the Secure Executable
metadata region to serve this purpose. On every context switch into the Secure Executable,
the mapping table linking memory locations to the appropriate MRID is loaded into this
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hardware table.

To protect the integrity of these shared memory regions, Secure Executables share the
integrity tree. This is supported by the OS as a standard shared memory region; the vir-
tual pages for each Secure Executable participating in the sharing are mapped to the same
physical page.

11.4.2 Memory Policies: Protecting the Secure Executable from
Itself

The mechanisms used to register memory regions and support shared memory lend them-
selves readily to enforcement of no-write and no-execute policies over specific regions. While
modern processes already support page-based access flags restricting writing and execution,
they cannot prevent a compromised operating system from tampering with these flags. This,
of course, is not an issue in standard processors, because without a Secure Executables ap-
proach, a compromised operating system already leads to compromised applications.
Secure Executable support for such policies (e.g. write XOR execute), to protect against
attacks such as stack overflow and buffer overflow, includes new parameters to the ESM
instruction. These set up the address ranges for an application. One of these will tell the
CPU hardware that the address range corresponding to the application’s code is, from the
application’s perspective, “read-only”. The other will tell the hardware that the address
range corresponding to the application’s data, stack and heap is “no-execute”. Thus if an
attacker attempts to exploit a bug in an application so that the application will attempt to
write into the code region or execute instructions from the data region, the attempt will fail.

11.4.3 Multi-threading

We must distinguish here between user threads and kernel threads. User threads are imple-
mented in user space; that is, a user space dispatcher maintains and schedules the threads.
This means user thread libraries typically do not support true concurrency: only one user
thread runs at a time. Kernel threads are instead maintained and scheduled by the operat-
ing system. At the price of slightly increased thread switching latency (due to kernel-user
context switches), kernel threads allow true concurrency on multi-threaded, multi-core, or
multi-chip systems.

User threads succeed in our model without any additional changes, since the previously
described protection mechanisms protect the user-space dispatcher compiled into the Secure
Executable. Kernel threads require CPU awareness, since this means a given Secure Exe-
cutable must support multiple simultaneous saved contexts; the OS scheduler is allowed to
choose between several available contexts for a given Secure Executable.

Kernel thread creation via the clone system call creates a new context restore point
equivalent to the current running one, except for a different stack pointer. Our system call
wrapper takes care of the bulk of the work in creating a new thread, then registers a new
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stack pointer with the OS and the CPU. Registration with the OS works as in existing
POSIX systems, by using the clone system call.

Using part of the application protected memory space to store register restore sections
provides a convenient method to support threads. The thread is registered with the CPU by
creating a new entry in the protected memory region of this Secure Executable corresponding
to the restorable register sets. Then, the OS kernel can switch to this context by providing
the memory location of the thread state.

The Secure Executable meta data region contains a pointer to the thread restore table.
This thread restore table contains the following rows:

e Restorable flag, to prevent the OS from reusing the restore point

e Register set (including program counter)

Since threads share a common memory image, all context restore points associated with
a given SE share the same integrity root. There is only one entry in the hardware Secure
Executable table, covering all threads belonging to the Secure Executable. Thus, the thread
count is not subject to hardware limits, while the number of simultaneous Secure Executables
is limited to the size of the hardware Secure Executable table. The CPU is not even directly
aware of the number of running threads for a given Secure Executable; the OS merely
provides it with the restore point, which it validates by checking that it is a valid offset into
the thread restore region.

This model works for multi-core CPUs as well; of course, the cores need to maintain
coherency. This can be achieved, for example, by enforcing exclusive access to a shared Secure
Executable table. Running multiple threads within a SE across multiple CPUs requires a
more sophisticated coherency protocol.

11.5 System Calls

Since we prevent any other process from reading values in our Secure Executable’s registers
or address space, we naturally need a new mechanism to support passing data in system calls.
Nevertheless, we support system calls transparently to both the Secure Executable and the
operating system. I describe two mechanisms here to support system calls transparently.
To make both approaches transparent to the operating system, the CPU leaves the general
purpose registers alone on a system call interrupt, so that these registers can still be used
to pass parameters to the OS system call handler. Recall that on all other interrupts, the
registers are hidden before control is giving to the interrupt handler. For this reason, both
approaches move the application registers to protected memory before invoking the system
call.

11.5.1 Approach: System Call Wrappers

I use this approach in my proof of concept implementation. The application is linked with a
customized version of libc, that replaces system calls with wrappers. These wrappers serve
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the purpose of copying the system call parameters from the protected memory region to the
unprotected, OS-readable region.

On invocation, each wrapper performs the appropriate copy, depending on the parameter
types. Note that in order to correctly copy the system call parameters, the wrappers have
to be aware of each system-call. The wrapper then copies the general purpose registers to
the stack, and zeros them, aside from the ones being used as parameters in the system call.
Each wrapper then invokes the appropriate system call, and copies the result back into the
protected region. Finally, it restores the registers from the stack.

Naturally we must consider the privacy and integrity of the parameters while they are
in unprotected memory. We necessarily give the OS the ability to read the parameters and
choose arbitrary return values. There is nothing we can do to ensure the OS is correctly
handling these system calls; thus we leave it to the Secure Executable application code to
make the appropriate decisions about the information it passes to the system call. For
example, we do not prevent the Secure Executable from printing out sensitive information
if that is what it is programmed to do.

11.5.2 Approach: New System Call Instruction

This approach allows for better application transparency, by avoiding the requirement for a
modified version of libc (and thus, now supporting executables that are not even linked with
libc). We still add a layer to the system call invocation, but rather than adding this layer as
a set of wrappers sitting between the Secure Executable and its system call invocation, we
add the layer after the invocation.

To do this we employ two system call instructions, illustrated in Figure The first,
existing PowerPC sc (System Call) instruction behaves as today (passing control to the
OS system call handler), unless we are in Secure Mode. If we are in Secure Mode, this
instruction instead returns control to a previously registered location within the application.
A new PowerPC instruction, sesc (Secure Executable System Call) gives control to the OS
system call handler, regardless of whether we are in Secure Mode.

Now, the Secure Executable registers a system call wrapper to the CPU, so that when
sc is issued, the system call wrapper gets control. The system call wrapper performs the
equivalent memory copies / register cleanup as the previous approach, then invokes the new
system call instruction sesc to give control to the operating system.

The advantage of the second approach is that we do not have to modify libc (thus
eliminating part of the complexity of turning a conventional binary into a Secure Executable).
The system call wrapper still needs to be located somewhere in the application address space,
and registered by the Secure Executable loader as a parameter to the ESM operand. I believe,
however, that this address space modification is more application-agnostic than modifying
the linked libc. For example, this transformation can be performed directly on a statically
compiled binary. Moreover, this modification to the address space and entry point are also
performed in other steps as part of the Secure Executable build process.

In both approaches, the CPU needs to keep track of the valid return points; the OS is
not allowed to jump to arbitrary positions within the Secure Executable. At any time, the
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Figure 11.6: sesc (Secure Executable System call) handling. The idea is that a standard
system call instruction (sc) gets intercepted by the CPU and redirected to the registered
Secure Executable software system call wrapper. This wrapper, when ready, issues sesc. At
this point, the CPU passes control on to the OS system call handler.

OS can redirect control to one of a fixed set of locations: the program counter associated
with a thread restore point, or the registered signal handler (see handling the signal call
below). In the case a system call is being run (the InSystemCall flag is set in the restore
point), the OS is also allowed to redirect control to the restore point plus 4. These semantics
are used in PowerPC to indicate a system call failure. The CPU sets the InSystemCall flag
when creating the restore point as sesc is executed, and clears it after a RestoreContext
to that restore point.

11.5.3 Handling Specific System Calls

The majority of system calls are handled in the straightforward manner described above—the
only change required is moving the parameters to and return values from the unprotected
region to enable communication with the OS. However, several system calls require spe-
cial support, e.g., those with side-effect semantics that modify the application memory or
registers. We now consider specific cases of system calls.

read, write, socketcall, mmap, sbrk, etc. No special hardware support is needed for
those system calls which the OS can handle without looking inside the application. The calls
listed above fall into this class. The wrappers merely move parameters and results from and
to the protected region as described above. The wrapper must be aware of the size and type
of each argument so that it can perform this transformation.
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signal. The signal system call requires specific hardware support in our model, since
the OS is no longer allowed to set the program counter to run arbitrary code in the Secure
Executable. We handle the signal system call similarly to Overshadow [22]. This entails
registering with the CPU a top-level signal handler as part of the ESM instruction operand.
When a signal occurs, this application-level signal handler within the Secure Executable then
dispatches the signal to the appropriate handler within the Secure Executable. The CPU
then enforces that the OS can only to reset the program counter of a Secure Executable to
its top-level signal handler. This gives the Secure Executable protection of the entry points
into its code, so that the OS can not invoke code at arbitrary locations.

The signal system call wrapper stores the re-entry point in a table, and replaces the
entry point in the system call to point to the top-level signal handler. This way, when the
OS dispatches the signal, it gives control to the top-level signal handler. The CPU allows
this since this is the registered signal handler of the Secure Executable. This top-level signal
handler then dispatches the signal to the appropriate code, as indicated in its local table.
This approach is transparent to the OS—it simply appears to the OS that the application
is using a single signal handler for all signals.

fork. Supporting the fork system call requires defining the new semantics. When a Secure
Executable process forks, we need to decide whether the new process is still considered part
of the old Secure Executable, or whether it should be considered a new Secure Executable.
Required considerations include how to preserve traditional fork behavior; in particular, the
new process should begin with a memory space identical to the old process. POSIX semantics
also specify several options with respect to what information should be preserved after the
fork, and the system call wrapper must be aware of these options. Since we associate each
process with a single Secure Executable, the most natural semantics for fork are to create a
new Secure Executable on fork.

To obtain copy on write behavior, we use OS support. The OS sends a signal, which is
handled by library code. It thusly notifies the Secure Executable when it needs to duplicate a
particular page. Each copy requires un-sharing both the page and the regions of the integrity
tree protecting those pages.

clone (Threads). As described in Section[11.4.3] the clone system call wrapper registers
a new thread restore point in memory.

exit. To make sure the Secure Executable does not run unintended code after the exit
system call has been issued, we wrap the exit call in an infinite loop in the system call
handler. Thus, if control unexpectedly returns from the system call, no other code is run.

11.5.4 Return Value Validation

Being in the unique position of not trusting the OS, we need to ensure no new vulnerabilities
arise out of the OS feeding unexpected return values from the system calls. The return
values of the majority of system calls must be checked for sanity, matched up with the
passed parameters as necessary. For example, the number of bytes written back to the
Secure Executable after a read system call must be within the range specified by the caller.

164



The system call wrapper is in the right position to ensure this, since it runs within the
protected region yet sits at the interface between the Secure Executable and the OS. If a
violation of expected semantics such as this is detected, the system call wrapper has two
options: it can put the response back into the range allowed by semantics if possible, or it
can throw an integrity exception. Throwing an integrity exception is preferable to silently
changing behavior since it is more visible and indicates either a bug in the system call
wrapper validation or the operating system, or malicious operating system behavior.

11.6 Hardware Changes

Recall that our goal is to provide the hardware mechanisms necessary to build a boundary
of protection for sensitive applications. I detail a series of architecture extensions here that
enable construction of this boundary in a manner that is transparent to existing applications.

11.6.1 New Instructions

Part of the Secure Executable loading process is to issue the ESM (Enter Secure mode)
instruction. The ESM instruction allocates a new Secure Executable 1D, while enabling
memory protection for the regions identified in the instruction operand.

Enter Secure Mode (ESM). The instruction itself identifies two registers, R, and R,. R,
points to the memory location of the operand. R, specifies both the size of the operand,
and an operand version identifier (to allow backwards compatibility in the future). The size
is in the lower 32 bits of R,.

The operand, starting at memory location R,, contains the fields depicted in Figure
[11.7. Executable Key is an AES encryption key, that has been encrypted with the public
System Key. The CPU decrypts this value to obtain the Executable Key, which it then uses
to decrypt the rest of the operand. The rest of the operand has been encrypted with the
Executable Key.

Finally, ESM integrity value is a cryptographic checksum over the cleartext of the rest
of the fields encrypted with the Executable Key (starting with the code entry point). This
field is encrypted with the executable key, along with the other ones.

RestoreContext. RestoreContext is a privileged instruction issued by the OS to return
control to a Secure Executable, comparable to the PowerPC rfid instruction. The OS sets
the Secure Executable ID Save/Restore (SEIDSR) register, described below, to the value that
was present when the Secure Executable was interrupted. Then, when the OS issues the
RestoreContext instruction, the CPU restores the general purpose registers to the state
they were in when this Secure Executable was interrupted, resuming execution. The Secure
Executable ID (SEID) register (not accessible to software) is restored with these registers, so
that cache lines owned by this Secure Executable are once again accessible.

DeleteContext. Another privileged instruction, DeleteContext instructs the CPU that
the Secure Executable indicated in the SEIDSR register has finished running, and the CPU
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ESM instruction: ESM Rx Ry

Rx = Register containing memory location of ESM operand
Ry = Register with size of ESM operand in low 32 bits;
version # in high 32 bits

ESM instruction operand in memory:
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ESM integrity value
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Figure 11.7: ESM (Enter Secure Mode) instruction

can free any CPU resources that were allocated to this Secure Executable. Additionally, the
CPU clears all cache lines owned by this Secure Executable.

The OS should issue this instruction when the Secure Executable process exits; however
there is no vulnerability resulting from the OS choosing to issue this instruction at other
times. If the OS issues this before the Secure Executable process exits, all protected values
relating to this Secure Executable become inaccessible (since the CPU will no longer allow a
RestoreContext to this Secure Executable, and the key to access the memory is discarded).
This constitutes only a Denial of Service attack, which I do not claim to prevent. If the
OS fails to issue this instruction when the process exits, the CPU resources allocated to
this Secure Executable remain in use; however other parties can only use this information
to resume execution of the Secure Executable where it left off. This results in repeating
the instruction that caused the Secure Executable to exit last time it was running. See the
description of the exit system call in Section for an analysis of the case that the Secure
Executable is resumed by the OS after exiting.

Secure Executable System Call (sesc). This instruction behaves like the existing
PowerPC sc instruction: it throws an interrupt, giving control to the OS system call handler.
However, we will modify sc to give control instead to a Secure Executable-registered system
call handler. Thus, I introduce sesc to obtain the original sc behavior when executing inside
a Secure Executable. See the description in Section for more details.
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11.6.2 New Registers

Secure Executable ID Save/Restore(SEIDSR). This register (privileged access) is used
by the OS to save and restore the ID of the current Secure Executable. It is set when a Se-
cure Executable is interrupted, and is accessed by the RestoreContext and DeleteContext
instructions.

11.6.3 New State

Current Secure Executable ID. This state is not accessible by software, and contains the
ID of the currently running Secure Executable. Software can only read or write it indirectly,
through the SEIDSR register on the RestoreContext instruction.

Metadata corresponding to the current Secure Executable. This information is
loaded from the Secure Executable metadata region on every return from interrupt. This
region is protected by a single keyed hash value, which is stored on chip at all times in the
Secure Executable table.

This information includes the following:

e Core dump data key

e Signal handler

e Memory address of the thread restore list
e The memory region mapping table

The memory region mapping table corresponds to the current Secure Executable. This
allows quick mapping (on cache misses) from memory location to the memory region ID.
Each row in the memory region mapping table has the following fields. This table is simply
a read-only cache information stored elsewhere in memory.

e logical memory location and size: to quickly test which region an access corresponds
to.

e Share Secret: for quick verification of the MRID share secret on regions shared by more
than two Secure Executables

e memory region ID (MRID): index into the Protected Memory Table.

Private System Key. This information also cannot be accessed by software; it is used by
the CPU only to decrypt the Executable Key in the ESM operand.

Cache Line MRIDs. Cache lines are labeled with the ID of the associated Memory
Region.

Secure Executable Table.
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e SEID Secure Executable ID (implicit: determined by the table position)
e Metadata hash

e Metadata region location.

Protected Memory Table. For each protected memory region, the following is stored on
chip:

e MRID Memory region ID (implicit: determined by the table position)

e SEID1 Creator SEID: this is the primary Secure Executable corresponding to the mem-
ory region (the one that first created it)

e SEID2 Secondary SEID: this Secure Executable also always has access; allows quick
access check of regions shared two-ways.

e Read only flag (boolean)
e Encryption and integrity key
e Integrity root value

e Share Secret: knowledge of this enables read /write access to this region by other Secure
Executables (e.g. other than the ones listed as SEID1 or SEID2)

e Memory Region Size

11.7 Other Considerations

11.7.1 Shared Libraries and Dynamic Linking

Our current description requires a statically linked binary, since it is unsafe to allow the
host machine to load untrusted code into our memory space at runtime. Statically linking
allows all code to be verified at compile time, on the build machine. There are a few
downsides to statically linked executables. First, they require extra storage space, since
common libraries used by multiple applications cannot be consolidated. Second, the libraries
cannot be updated once the Secure Executable has been deployed—in particular, bugs in
these libraries cannot be fixed without rebuilding the Secure Executable. This property is
necessary for Secure Executables because they do not allow untrusted code to access their
memory space. Finally, statically linking with GNU libc in particular is only allowed under
the Lesser GPL (LGPL) if certain conditions are met. Specifically, the LGPL requires that
customers be able to relink vendor applications to replace the libc version [32]. This poses
a challenge since in the Secure Executable model, the customer does not necessarily know
the Executable key. One way around this issue is to use a private non-GPL version of libc
for static linking.
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Another potential solution is to use signed libraries, that are loaded and verified at
runtime. A Secure Executable library loader, in protected memory, verifies the integrity
of the library as it loads it in protected memory, and provides dynamic linking. That is,
a module can be linked at build time with the Secure Executable that will load external
libraries of unresolved symbols. These external libraries will only be accepted if there is a
certificate chain, with the root signed by a party trusted by the developer, attesting to the
trustworthiness of the library code. This mechanism provides integrity guarantees of the
shared library, while allowing the library to be patched or replaced in the future. However,
it is not as simple as merely dynamically linking to the host libc: the matching certificate
must be generated and transmitted to the host.

11.7.2 Virtual Machines

We consider support for two types of virtual machines (VMs) here. By “hardware” virtual
machines I refer to VMs that do not require software assistance in executing non-privileged
instructions (e.g., “Type 17, or “bare-metal” VMs). Non-privileged instructions in the guest
are run directly on hardware. By “software” virtual machines, I refer to VMs that have
a software hypervisor to assist in executing instructions (e.g., “T'ype 2", or most “hosted”
VMs).

While the Secure Executable model can be applied to both virtualization scenarios, we
consider hardware virtual machines to be the more relevant case for the high-performance
server market. In a hardware virtual machine model, a Domain 0 OS typically controls
switching between domains. The guest OS remains outside the TCB; Secure Executables
operate as in the non-virtualized case. The Domain 0 OS is also outside the TCB, since
hypervisor interrupts are treated as regular interrupts with respect to hiding the register
contents. We simply require the Domain 0 OS to save and restore the SEIDSR register along
with the rest of the registers during domain switching. The trick is that the Domain 0
interrupt handler needs to invoke the RestoreContext instruction to return to a Secure
Executable, if one was running (the SE-ID register is set) during the hypervisor interrupt.

Software virtual machines require a different approach, since the software hypervisor
needs access to the sensitive application in order to process its code and data. Thus, we
wrap the VM inside the Secure Executable boundary. This is illustrated in Figure [11.8]
Note that any VM that emulates instructions in software must be included in the trusted
code base, since the instructions and data are considered sensitive. Any exception to allow
an untrusted virtual machine to safely handle sensitive instructions and data would require
expensive multi-party secure computation approaches, which we will not consider here.

In neither scenario is the host OS part of the TCB. The interesting question is whether,
in software VMs, the guest OS must be part of the TCB. I show it does not have to be.
Building the software VM as a Secure Executable offers an environment where the VM is
protected from the host OS. With support from the software VM, constructing virtual Secure
Executables protects guest applications from both the host OS and the guest OS. Compare
this to Overshadow, which protects guest applications in software VMs from the guest OS
but not the host OS. The TCB in our case is just the guest application plus the VM.
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Figure 11.8: Virtual Machine Configurations

The Secure Executable uses an ESM operand encrypted for the virtual machine to de-
crypt. The virtual machine monitor, in turn, emulates the ESM instruction semantics,
performing memory encryption and integrity checking. I assume for the sake of simplicity
here that these cryptographic operations are performed in software; however, they can be
hardware accelerated by a CPU with suitable cryptographic extensions. In principle, since
the VM is already a Secure Executable, and thus protected by hardware, the VM does not
need to encrypt the application data at all, except when those pages are accessed by the
guest OS. In turn, the VM runs in its own Secure Executable on the physical CPU. A certifi-
cate signing the public key of the VM, signed by the VM developers, asserts that the private
key is available only to VMs running on Secure Executable-enabled CPUs. This builds the
chain of trust, establishing for the application developers that the trusted base is limited to
the guest application code, the VM, and the SE-enabled CPU.

To illustrate this point, consider first that the guest OS has been compromised. The
encryption and integrity protecting mechanisms built into the VM ensure that the guest
OS cannot access sensitive information in the guest Secure Executable. When the host OS
has been compromised, the Secure-Executable mechanisms in hardware ensure that the VM
cannot be tampered with. The chain of trust is established as follows. A public-private key
pair is embedded with the VM, encrypted inside the Secure Executable binary so that only
the target SE-CPU can access this VM keypair. The VM developer asserts the privacy of
the VM key by signing the public key embedded in the VM Secure Executable. Finally,
the developer of the guest Secure Executable encrypts the guest Secure Executable so that
only parties knowing the VM private key (in particular, the VM targeted for the SE-CPU)
can decrypt the Secure Executable. This isolates the root of trust, guaranteeing that the
application developer only need to trust the VM software and SE-CPU (and of course, the
SE-CPU factory and VM developer for key management).
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11.7.3 Achieving OS Transparency

I believe that OS kernel support for these chip modifications is a reasonable requirement.
It is still of interest to make Secure Executable support completely transparent to the OS,
however, to allow legacy operating systems to run unmodified. In related work, Overshadow
[22] and Flicker [87] provide this.

There are several aspects of this approach to consider with respect to OS transparency. In
particular, the interrupt handlers must be able to save and restore the application registers
correctly. Moreover, when the interrupt handlers return control to a Secure Executable, the
CPU must be able to identify the Secure Executable as such, without help from the OS. We
can ensure that no return to an application besides a Secure Executable can accidentally be
labeled as a Secure Executable return (which would crash the application).

We will use as an indicator a new instruction, se-jump. If on rfid the return is to
an address containing this instruction, this indicates a return to a Secure Executable. Since
these are invalid instructions in the current PowerPC architecture, no correct program would
return to this point unless it is a Secure Executable.

In the case of a Secure Executable, when an interrupt occurs, recall that the CPU saves
the registers to a restore point in application memory. At this time, the CPU also changes
the program counter to point to a se-jump instruction in the restore point. When returning
from the interrupt, this se-jump instruction restores the correct program counter from a
register.

Note that we need the functionality of a jump (instead of, e.g., a se-no-op instruction)
to handle system call returns. This is because PowerPC semantics specify that a system
call success is specified by the return point. A system call returns to either the instruction
following the entry point, or the following instruction. Providing the se-jump instruction
allows the application return-from-interrupt code to determine the success value, and return
to the appropriate code location.

This approach has an added complication: in PowerPC, Linux relies on the value of
the program counter to resolve instruction page faults. By hiding this value from the OS,
replacing it with an instruction in the restore point, an unmodified OS is unable to determine
which page needs to be brought into memory. We can get around this with legacy operating
systems by throwing a data page fault instead of an instruction page fault. In this case, the
OS determines the location of the page fault from the data fault register instead of from the
program counter.

We also require the OS to indicate to us when a Secure Executable has exited, so the
processor can free the attached resources. A potential approach is to maintain a privileged
process (distinct from the OS, but with hooks telling it when processes exit) that maps
processes to Secure Executable IDs. This privileged process is then in charge of informing
the CPU when a Secure Executable exits.

Finally, the overcommit workaround described in Section requires OS support.
This means overcommit must be enabled to achieve OS transparency.
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11.7.4 Memory Access Pattern Privacy

Let us consider now the issue of memory access privacy in a Secure Executable. In particular,
memory locations are revealed in two ways. First, accessed locations are revealed to the
operating system, which is necessary to allow it to service page faults. Second, locations are
written to the hardware memory bus, which is necessary for RAM to be able to satisfy read
and write requests.

There are existing techniques which can hide the access patterns, such as Oblivious RAM
[41]. Implementing Oblivious RAM within a secure executable, adding a layer of indirection
over every memory access, would provide a provable guarantee of access privacy. However,
notwithstanding the leaps towards practicality identified in Part (I) of this dissertation,
existing access-pattern-hiding techniques have a significant overhead, and my goal in this
chapter is to provide an inexpensive solution free of any noticeable performance overhead.

It turns out we can modify the hardware design to mitigate, to an extent, both loca-
tion privacy leaks, with minimal cost overhead. We now take a cursory look at potential
approaches. First, the memory regions of a Secure Executable designated as access-privacy-
sensitive must be paged in at all times. Effectively, we need to adjust the page size of the
protected region (and its integrity tree region), so that either the whole region is paged in or
out. Page faults, in particular, must not be delivered individually to the Operating System.
This can be effected by clipping the last few bits off of the faulting the virtual address (to
correspond to the entire access-private memory region), and modifying the OS to respond
appropriately. The whole region, registered with the OS, will be paged in simultaneously,
since the does not know where in this region a page fault occurred.

This can be enforced in an architecture supporting multiple page sizes. The CPU should
enforce that the page size of an access-private memory region matches the size of the region.

Second, we need to address hardware attacks. I propose extending the boundary of the
trusted hardware base from the CPU alone, to include the RAM chips as well. From a
hardware perspective, there are several parts to this design change. Bus traffic for such
regions must be encrypted. The CPU and RAM negotiate an encryption key on boot.

Since we do not want to require that the CPU and RAM chip be provided by the same
vendor, we require software to perform separate authentication of the two pieces of hardware.
One option, assuming a sufficiently low-cost asymmetric cryptography hardware implemen-
tation, is to use a public/private keypair installed in each RAM chip. A public key certificate
installed here is used to negotiate a key with the CPU (preventing man-in-the-middle attacks
on the bus), and is provided to software to verify. This attestation is only an assurance of
access pattern privacy: confidentiality and integrity is already provided by in-CPU cryptog-
raphy as discussed earlier.

Only accesses to protected memory regions should be subject to bus encryption. DMA
regions, and memory regions not marked access-sensitive are exempted from encryption, to
allow the bus controller to work unmodified. The physically protected regions can be denoted
using a fixed physical memory range corresponding to protected access.

Software, when registering a memory region as access privacy protected, will be offered
the RAM certificate corresponding to the bus encryption key. It is up to software to verify
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this certificate and decide whether to continue. Even though this somewhat defeats the
transparency goal of the Secure Executable design, it offers in exchange efficient guarantees
of physical security of access patterns.

11.8 Analysis

11.8.1 Build Process

System call wrappers are linked in (or, the sc handler if using the sesc approach described
in Section . The Secure Executable also needs unencrypted loader code that initializes
the integrity tree and issues the ESM instruction. This code is linked in, and the entry point
of the ELF is set to point here. This process is illustrated in Figure

|
Unmodified :
source files o
| 7| Compute Target
integrit
1] | Randomly UL A/ system
| generated tree public key
Compiler  |qms Libc with system Executable key v
| call wrappers Root hash
¥ | v { v
| Encrypt Encrypt Encrypt
_ _ | ESM loader library code integrity ESM
Linker - I (Wlth placeholder for and data tree Operand
| ESM operand)
I A 4 A 4
v [ Encrypted v ESM
Statically : binary Integrity tree Operand
linked
binary | y y y
| | Output Secure Executable
|
| Secure Executable
Existing : New parts of the build process binary

build process

Figure 11.9: Build Process. Operations are represented with a blue background; data is
represented with a white background. For encrypt operations, the encryption key applied
points the side.

The Executable Key protecting this Secure Executable is randomly generated. This will

be used to encrypt the static code and data sections, as well as in the computation of the
integrity tree.
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Let us now discuss how the ESM integrity value is computed by the build machine and
how the initial integrity tree is constructed. In the secure build environment, the Secure
Executable binary is statically linked with loader code and libraries. The initial integrity
tree is included in the binary; the loader must insert it into the unprotected memory region.
As discussed in Section above, the bulk of the address space assigned to the integrity
tree may be unused; therefore we use a compact representation of the tree on disk. This
representation is a list of blocks of the tree as contiguous region (position, size, value) tuples.
The loader simply copies these regions into the appropriate memory location (adjusting for
the tree offset). Overcommit techniques (described above) ensure that only the pages that
are used are allocated physical memory pages.

Finally, all sections of the ELF that overlap the protected region are encrypted with the
newly generated Executable Key. The ESM operand detailed in Figure is constructed by
concatenating the various parameters, encrypting with the executable key, then encrypting
the executable key with the target system key and attaching.

11.8.2 Performance Estimation

It is beyond the scope of this project to obtain performance results from a full CPU sim-
ulation. Future work includes both extending a POWER architecture system simulator to
provide cycle-accurate timing results, and expanding the system wrapper library to the point
where we can support existing of-the-shelf software. Ideally, measurements will look at the
performance in real software.

Instead, we built a simple cache simulation to validate the memory protection model.
This simulation shows that it is practical to implement the integrity trees as described in
this chapter. Even though verifying a memory location potentially requires verifying several
locations, up to the memory root, we see that with normal cache hit rates, the overhead due
to the integrity trees is very reasonable.

Figure (left) shows the new overhead per load, as a function of the measured cache
hit rate. A sequence of 10° addresses sampled from an exponential distribution was chosen
to simulate a normal application. The hit rate and number of RAM accesses was measured.
The cache is first put through a warm-up phase of 10° accesses before we begin measuring,
to avoid being affected by the cold-start cache misses. This is not ideal, since it fails to
capture the cost overhead at the start of program execution, but is necessary for the results
to be independent of the simulation length. This limitation can be properly addressed in
the future by measuring real software usage patterns across a full simulator.

A fixed cache size (4096 rows with 8 associative columns of 32 words each) is used
for all simulations. For a normal application, the RAM accesses measured matches the
number of load instructions when the cache hit rate is near zero. As the cache hit rate
increases, the number of RAM accesses decreases linearly (following from the definition).
The simulation was repeated, with the same address distribution parameter, for a Secure
Executable. We then vary the exponential parameter to obtain different cache hit rates. The
Secure Executable cache hit rate is lower than the normal application hit rate since cache
lines are occupied with integrity tree values in the Secure Executable case. To capture the
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Figure 11.10: Left: RAM accesses per load. Right: RAM accesses per store

performance penalty of this aspect, the values are plotted against the normal application hit
rate corresponding to this distribution.

Figure (right) repeats this simulation, measuring stores instead of loads. While
the cache logic is significantly different in the Secure Executable case, we see the measured
performance exhibits similar behavior to the loads test. Note that in both figures, the
integrity tree lookups dominate at low cache hit rates. Even so, the bulk of the integrity tree
levels remain in cache, such that only a few locations at the lower level need to be brought
in. For cache hits, the integrity tree does not even need to be consulted. This is reflected in
the better performance at high cache hit rates.

These figures do not address cryptographic performance. Since the number of crypto-
graphic operations is equivalent to the number of RAM accesses, these graphs can be trivially
adjusted to reflect this performance penalty by scaling the Y axis to the ratio of the latency
of a hardware cryptographic verify and decrypt operation plus RAM access vs. a RAM
access alone.

11.9 Conclusion

11.9.1 Limitations of this Approach

First, we use a separate binary for every target machine. This does not require re-compilation,
merely re-encryption. If we consider a Distribution Server to be the party that encrypts the
code for each target CPU, the developer must trust the Distribution Server with the code
and static data. This is necessary since this server decides who can read the code (and
attached data). We can thus assume this Distribution Server is part of the trusted build
environment; however, this may not always be a convenient assumption.
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A separate useful approach to this issue is to install a single Secure Executable on the
target CPU, which we will call a Deployment Server. This Deployment Server will then
decrypt future binaries that are distributed under a single key, and re-encrypt them for
the target CPU. This allows a kind of boot-strapping of the application distribution: once
a single trusted entity exists on the target system, it can be use to safely re-target other
executables for that CPU.

Next, my description is for a RISC-like architecture; this may be stretching the definition
of RISC since we require multiple memory accesses in a single instruction. However, existing
POWER instructions already have this requirement. Moreover, we still fit in the definition of a
”load/store” architecture (under which each instruction can do only one or the other), since
the ESM instruction is implemented as a "load”.

Finally, it can be argued that we are minimizing the software trusted code base and
optimizing application transparency at the expense of increasing hardware complexity, and
thus the size of the hardware trust base. Acknowledging that we are increasing hardware
complexity, I make the case that the sum of changes required is still reasonable. We shall
require only a specific set of changes, which each have only a limited scope.

11.9.2 Final Notes

This chapter outlines the comprehensive set of hardware changes that together enforce the
software isolation guarantees the Operating System is expected to provide, as well as pro-
tecting from physical attacks, malicious Operating Systems, and malware. This in turn
minimizes the size of the software trusted code base. Notably, we can achieve this in a man-
ner mostly transparent to the application developers, and compatible with existing software.
By providing a convenient way to achieve fundamental guarantees about the security of a
software execution environment, the adoption of such an architecture will address some of
the most pressing security issues today.
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Chapter 12

Conclusions

This dissertation described how to overcome a broad set of challenges related to access pri-
vacy. We first looked at tackling the immense shuffle cost in the original Goldreich and
Ostrovsky ORAM [41] by assuming some local storage. A set of probabilistic techniques—
relying on the uniformity of the randomness in generating these permutations—assured us
that a small amount of local storage suffices to retain privacy in Chapter[3. These techniques
were applied in Chapter [4] to both to speed up both an oblivious sort, and the process of
obliviously managing a large number of remotely stored fake items. Further analysis of these
techniques resulted in an asymptotically faster oblivious scramble. This was employed in
Chapter [5, with a new data structure that speeds up both the querying and level construc-
tion. We made the observation that the large number of fake items in existing ORAMs are
used only to hide the success of a lookup at each level. This resulted in separation of the
membership from the lookup and a faster ORAM, while restoring correctness guarantees
against an actively malicious adversary.

Having successfully tackled the level construction process, we moved on to other barriers
to practicality. Chapter [6/showed how to bring the worst case query cost in line with the av-
erage case, generalizing an approach used in existing work, and providing an implementation
of these techniques. I showed how to apply the solution to high-latency networks, despite
the high degree of query interactivity. This parallel approach allowed multiple clients to
query simultaneously, while privately resolving any query conflicts between clients. Mea-
surements of a real implementation showed the results to be practical and useful, even over
large databases. A first oblivious file system then improved usability. Chapter [7] provided a
new different approach to the issue of query latency, compacting the whole interactive query
process into a single round trip, while retaining correctness guarantees.

Part (IT) showed how to extend privacy to related scenarios: efficient transaction privacy
in a multi-client scenario was showed possible in Chapter 9l Chapter examined the
feasibility of hardware approaches, as well as the relevance of ORAM solutions for hardware.

The constructions of Part (I) proved that access privacy can be practical, despite the large
number of involved challenges. In combination with the extensions in Part (II), I motivated,
designed, and analyzed solutions that achieve access privacy with unprecedented speeds.
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