

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Some Path Planning Algorithms

in Computational Geometry

and Air Traffic Management

A Dissertation Presented
by

Shang Yang
to

The Graduate School
in Partial fulfillment of the

Requirements
for the Degree of

Doctor of Philosophy
in

Computer Science

Stony Brook University
August 2012

Stony Brook University
The Graduate School

Shang Yang

We, the dissertation committee for the above candidate for the
Doctor of Philosophy degree,

hereby recommend acceptance of this dissertation.

Dissertation Adviser – Professor Joseph S. B. Mitchell
Department of Applied Mathematics and Statistics

Chairperson of Defense – Associate Professor Jie Gao
Computer Science Department

Professor Esther M. Arkin
Department of Applied Mathematics and Statistics

Assistant Professor Jiaqiao Hu
Department of Applied Mathematics and Statistics

This dissertation is accepted by the Graduate School.

Charles Taber
Interim Dean of the Graduate School

ii

Abstract of the Dissertation
Some Path Planning Algorithms

in Computational Geometry and Air Traffic Management
by

Shang Yang

Doctor of Philosophy
in

Computer Science

Stony Brook University
2012

Computing optimal routes subject to geometric constraints is a fundamental
area of research in computational geometry. This thesis is devoted to the study
of some specific geometric routing and optimization problems.

The first main area of the thesis addresses a class of multicommodity flow
problems in geometric domains: For a given planar domain P populated with
obstacles of different types, we consider routing thick paths corresponding to
motion of vehicles of different classes, from a source edge on the boundary of
P to a sink edge on the boundary of P. Each class of vehicle has an associated
path width required and a given set of types of obstacles it must avoid, while
it can freely pass through other types of obstacles. The problem arises in air
traffic management with different classes of aircraft that must avoid various
types of weather disturbances. We show that the decision problem is NP-hard
even when there are only two classes of vehicles and two types of obstacles. We
present approximation algorithms for the multicriteria optimization problems
that arise when trying to maximize the number of routable paths. We also
give heuristics and provide an experimental analysis of their effectiveness.

The second problem we address is that of computing a path or cycle that
is constrained to be convex and to intersect a given set of connected, compact
sets. In particular, we resolve an open problem posed more than two decades
ago by Arik Tamir: Given a collection of compact sets, can one efficiently
determine if there is a convex body whose boundary intersects every set in the
collection? We prove that it is NP-hard, in general, to decide the existence of
a convex traversal path, even if the input is a set of line segments in the plane.
Further, we generalize our proof to show that deciding the existence of a convex
surface stabbing a set of balls in three dimensions is NP-hard. On the positive
side, we give a polynomial-time algorithm to find a convex transversal of a

iii

maximum number of pairwise-disjoint segments in 2D, assuming the vertices
of the transversal are restricted to a given set of points.

In the third part of the thesis, we investigate the problem of computing
paths and trees within an uncertain geometric domain, in which the set of
obstacles is not known deterministically, but is specified by a stochastic model.
The problems arise in routing aircraft through uncertain weather systems,
especially in the case of merging flows of aircraft arriving to a terminal airspace
in the presence of uncertain events that impact the availability of airspace.
We formalize the problem of computing a highly probably path in geometric
settings and prove NP-hardness of the general problem. Further, we develop
efficient algorithms for computing paths and trees in the presence of uncertain
geometric obstacles. We apply our methods to the problem of computing routes
and trees for flows of aircraft that are designed to be robust to off-nominal
events that may impact the super-dense operations airspace through which
they are routed.

iv

Contents

List of Figures . ix
Acknowledgements . x

1 Introduction 1

2 Routing Multi-Class Traffic Flows in the Plane 3
2.1 Introduction . 4

2.1.1 Motivation . 4
2.1.2 Related Work . 6
2.1.3 Summary of Contributions 6

2.2 Problem Formulation and Overview of the Results 7
2.2.1 Type Sequence and Uppermost Paths 7

2.3 Testing type sequence feasibility
in the monochromatic case . 11

2.4 Hardness results . 13
2.4.1 Only blue obstacles . 17
2.4.2 Hardness of approximation 17
2.4.3 Hardness of the Two Widths paths problem 18

2.5 Approximation . 19
2.6 Small number of holes . 22
2.7 Practical Heuristics: Implementation and Experiments 24

2.7.1 Data Sets . 26
2.7.2 Enumeration of Type Sequences 26
2.7.3 A Heuristic for Short Paths 28
2.7.4 Experimental Results 29

2.8 Conclusion . 30

3 Flexible Air Lane Generation to Maximize Flow Under Hard
and Soft Constraints 32
3.1 Introduction . 33

v

3.1.1 Related Work . 35
3.1.2 Chapter Organization 36

3.2 Modeling . 36
3.2.1 Airspace Model . 37
3.2.2 Hard and Soft Constraints 38
3.2.3 Objective . 39

3.3 Maximum Flow Rate Theory 40
3.3.1 Flows in Discrete Networks 40
3.3.2 Multi-Class Throughput Problem Formulation 42
3.3.3 Class Sequences . 43
3.3.4 Bottommost Paths . 43
3.3.5 Theoretical Results . 43

3.4 Algorithmic Solution Approaches 44
3.4.1 Bottommost Path Filling Algorithm 44
3.4.2 Postprocessing: Tautening Bottommost Paths 47

3.5 Experiments . 47
3.5.1 Real Weather Data . 47
3.5.2 Experimental Results 48
3.5.3 Probabilistic Weather Maps 49

3.6 Conclusion . 51
3.7 Future Research . 52

4 Convex Transversals 54
4.1 Introduction . 55

4.1.1 Contributions . 55
4.1.2 Closed stabbers vs. Terrains 56

4.2 Hardness results . 56
4.2.1 Stabbing segments in the plane is NP-hard 56
4.2.2 Stabbing squares and scaled copies of a convex polygon 59
4.2.3 Stabbing balls in 3D is NP-hard 62

4.3 Stabbing disjoint segments 70
4.4 Stabbing with vertices of a regular polygon 77

4.4.1 The decision problem . 77
4.4.2 Optimization problem: Symmetry with imprecision . . 78

4.5 Conclusion . 81

5 Robust Trees and Highly Probable Path Problem 83
5.1 Problem Formulation and Results 84

5.1.1 Related Work . 85

vi

5.1.2 Hardness Results for the Segment Case 86
5.1.3 Exploring the Disk Case 89

5.2 Practical Heuristics: Implementation 91
5.2.1 Grid Generation . 92
5.2.2 Search Graph Generation and Test Graph against Weather

Constraints . 95
5.2.3 Phase 1 Tree Computation 97
5.2.4 Phase 2 Tree Optimization 99
5.2.5 Operational Flexibility 100
5.2.6 Illustrations . 103

5.3 Practical Heuristics: Experiments 103
5.3.1 Speed Tests . 104
5.3.2 Robustness Tests . 105

6 Open Problems and Future Research 109

Bibliography 111

vii

List of Figures

2.1 An example of the multi-class routing problem 5
2.2 An example of uppermost paths 8
2.3 The critical graph of a polygonal domain 13
2.4 Hardness gadgets illustration 14
2.5 An example of the hardness reduction 15
2.6 Correctness of vertex gadgets 16
2.7 An example of the 2-width path routing problem hardness re-

duction . 18
2.8 Approximation . 21
2.9 Pareto Frontier . 21
2.10 Transforming bundles into thick paths 22
2.11 Creating a polygonal domain from a 3-PARTITION instance . 23
2.12 Reducing the number of color swaps 24
2.13 Routing bottommost paths in the grid 25
2.14 An example of a real weather test case 27
2.15 Examples of routing and Pareto frontier 27
2.16 Examples of routing in a randomly generated test case 28

3.1 Mapping real weather obstacles into geometric constraints . . . 37
3.2 Airlane packing . 38
3.3 Min-Cut in geometric domains 41
3.4 A thick path . 42
3.5 The underlying graph used in bottommost filling 45
3.6 An example of bottommost filling 46
3.7 Real weather experiments . 49
3.8 Probabilistic weather maps experiments 51
3.9 Synthesized weather data experiments 52

4.1 Transversals v.s. terrains . 57
4.2 Hardness proof for stabbing segments 58

viii

4.3 Hardness proof for stabbing squares 60
4.4 An example of the hardness gadgets construction 61
4.5 Variable hardness gadgets for stabbing balls in 3D 63
4.6 Clause gadgets for stabbing balls in 3D 65
4.7 An overview of the hardness proof for stabbing balls in 3D . . 66
4.8 Correctness of the hardness proof (1) 69
4.9 Correctness of the hardness proof (2) 71
4.10 Correctness of the hardness proof (3) 72
4.11 Arcs, bridges and chords . 73
4.12 A segment-free triangle . 74
4.13 Finding the segment-free triangle 76
4.14 The dynamic programming algorithm recursion 77
4.15 Symmetry with imprecision 80

5.1 Highly probable path problem 85
5.2 Vertex gadgets construction 86
5.3 Edge gadgets construction . 87
5.4 An example of the hardness construction 88
5.5 Dual graph construction and approximation 90
5.6 Mathematical model of SDO airspace and quadrants 92
5.7 Representation of weather constraints 93
5.8 Search graph generation . 95
5.9 Testing edges/nodes against weather cells 97
5.10 Phase 1 bottommost tree computation 98
5.11 Phase 2 optimized tree computation 99
5.12 An example of a quadrant . 101
5.13 Examples of weather instances 101
5.14 Examples of generated trees 102
5.15 An example of the DAG used in tree generating 102
5.16 Examples of operational flexibility properties 103

ix

Acknowledgements

My deepest gratitude goes to my advisor, Professor Joseph S. B. Mitchell, also
a great mentor and friend. Joe’s computational geometry course introduced me
to this fascinating field. Given that I have been a dedicated fan of geometric
puzzles since the age of 4, being able to work in this field is really nothing
short of a dream come true. Since joining the group in the end of 2007, I have
witnessed Joe’s expertise in the field and his attitude and passion of doing
research and I am extremely impressed. For me, it’s a great lesson and an
eye-opening experience. Hope some day in the future, I will love my job as
much as Joe loves computational geometry. I will certainly miss the research
environment he created, which is as good as one could ever imagine. There is
always a perfect life-work balance; There is always enough flexibility to choose
personally to work on interesting problems from the weekly Computational
Geometry Seminar; And, there is no push, but always warm encouragement.
To be completely honest, my 6-year PhD study working with Joe has no pain,
only innumerable gains.

My sincere thanks to Professor Esther M. Arkin, one of the smartest
persons I have ever met. Estie is the first person that I consult whenever I have
difficulties in hardness proofs and other theoretical research problems. And,
she is one of the best instructors, always very patient to explain clearly the
detailed thinking process of conquering hard problems. I also learnt from her
and her lectures the way to become a good presenter, including how to choose
appropriate topics and how to make the audience understand.

It is a great pleasure to work with Professor Jie Gao, who is always very
friendly, knowledgable and helpful. I enjoyed her lectures very much and I
really like her handwritings. Special thanks to Professor Xianfeng David Gu.
David was the first person I met in this country and he helped me in so many
ways. Chats with David are always highly enjoyable in that he always tells
many interesting stories with knowledge from various subjects.

Dr. Valentin Polishuchuk deserves special mention too. I enjoyed every
discussion with him and learned from him how to write research papers properly.
He passes me the confidence that a non-native English speaker can also write
beautiful papers. How can I forget to thank Professor Jiaye Wang from
Shandong University and Professor Wenping Wang from the University of
Hong Kong? They introduced me to my first research project in 2005.

Working on NextGen projects, I have been fortunate to know Dr. Rafal
Kicinger and Dr. Jimmy Krozel from Metron Aviation. The same thanks also
goes to Dr. Jit-Tat Chen and Dr. Moein Ganjin. I will certainly miss our

x

weekly teleconferences very much.
Many thanks to Stony Brook professors that taught me and helped me in

the past 6 years: Professor Leo Bachmair, Professor Michael Bender, Professor
Himanshu Gupta, Professor Ker-I Ko, Professor Jerome Liang, Professor
Dimitris Samaras, Professor Steve Skiena, Professor Scott Smolka, Professor
Anita Wasilewska, and Professor Rong Zhao.

To my fellow students working in Joe’s group, the discussions with you will
forever be the sweetest memories in my life. I want to say thank you to Michael
Biro, Justin Iwerks, Joondong Kim, Irina Kostitsyna, Girishkumar Sabhnani,
and Jason Zou. The thanks also goes to Yao Chen, Wei Hu, Zhitao Li, Senlin
Liang, Wei Xu, Yun Zeng and Dengpan Zhou. We have been enjoying our PhD
life together!

In the summer of 2009, I attended the 6-day computational geometry
summer school in Kanazawa, Japan. We, 25 students from all around the
world, hung out together in a completely isolated seminar house (on top of a
mountain, no phone, no internet, no TV...), an one-of-a-kind experience. I’d
like to thank all my fellow students and the 5 professors: Tetsuo Asano, Sergey
Bereg, Stefan Langerman, Ryuhei Uehara and Jack Snoeyink. More thanks go
to Jack who was the session chair that helped make my research presentation
debut a pleasant experience.

It’s always hard to feel like at home for a student studying in a foreign
country. But fortunately there are no worries for me, because of the endless love
from my girlfriend Jieruo Liu. The thesis could never be completed without
the sweet conversations and countless surprises from her. She is neither an
expert in algorithms nor a patient person, but she listens to me carefully and
patiently every time I talked to her about my research problems and every time
I practiced my presentations. Actually when listening, she also discussed with
me. Proved many times, her intuitive algorithmic ideas and technical support
are surprisingly helpful! I don’t know how to express the tons of thanks that I
owe her. Besides thanks, I want to say sorry for the numerous times that she
stayed up late for me when I work for various deadlines. Fortunately she is
also a PhD candidate, in Economics, so I should have enough opportunities to
do more than what she does for me for her. Special thanks should be given to
the delicious dinners she cooked and the various best-tasting cookies and cakes
she baked. Her love is always the source of my confidence and will always help
me conquer difficulties.

The thesis is dedicated to my parents. Your love and support is and will
always be the most precious gift in my life. Thank you for being with me.

xi

Chapter 1

Introduction

In computational geometry, path planning is one of the most studied subjects,
dealing with motions of objects in 2D or 3D geometric environments containing
various types of obstacles. The goal is to determine appropriate paths for
moving objects so that they satisfy various constraints (e.g., avoiding obstacles)
and optimize some specified objective function. Path planning research has
broad areas of applications in robotics, automation, transportation, logistics,
and modern computer games [116]. In this thesis, we study some fundamental
path planning problems in geometric domains, in which optimal routes are
subject to geometric constraints. Specifically, we study some optimization
problems arising from Air Traffic Management (ATM) in which the goal is
to route thick paths (or trees) in geometric domains. In addition, we study
the problem of computing a convex polygonal path (or cycle) that intersects a
given set of objects.

The thesis is organized as follows.
Chapter 2 and 3 address a class of multicommodity flow optimization

problems in 2D geometric domains arising in an Air Traffic Management
application in which different classes of aircraft have to avoid different types
of weather constraints. Specifically, given a geometric domain P , populated
with different classes of polygonal obstacles, we consider the problem of routing
different types of thick paths from a source edge of P to a sink edge of P . The
obstacles correspond to weather disturbances while the thick paths correspond
to the lanes of different kinds of aircraft with a certain width. The requirement
is that each type of thick path must avoid a given set of types of obstacles,
while it can pass the other types of obstacles. Chapter 2 presents mostly
theoretical results, with some practical heuristics and experimental analysis.
Chapter 3 discusses the problem from an empirical point of view, providing

1

detailed routing algorithms and experimental results on real weather data.
Chapter 4 considers an open problem proposed by Arik Tamir more than two

decades ago: Given a collection of compact sets, can one efficiently determine
if there a convex body whose boundary intersects every set in the collection?
We present theoretical complexity analysis and algorithms for the convex
transversals problem. We specifically discuss the cases in which the compact
sets are line segments in 2D or balls in 3D.

Chapter 5 addresses the robust tree routing problem arising from Air Traffic
Management. The goal is to merge air traffic arriving in the vicinity of an
airport, while avoiding obstacles, such as hazardous weather constraints and
no-fly zones. The extra challenge is to deal with the uncertainty in the weather
forecast data. The chapter describes in detail the heuristic algorithms for tree
generation we develop and analyze experimentally in our prototype simulation
software. We also present theoretical complexity analysis for one special version
of the problem, that of routing a “highly probable path” in a domain with a
discrete stochastic model of uncertain obstacles.

Chapter 6 concludes with a list of open problems from the previous chapters.

2

Chapter 2

Routing Multi-Class Traffic
Flows in the Plane1

In this chapter, we study a class of multicommodity flow problems in geometric
domains: For a given planar domain P populated with obstacles (holes) of
K ≥ 2 types, compute a set of thick paths from a “source” edge of P to a “sink”
edge of P for vehicles of K distinct classes. Each class k of vehicle has a given
set, Ok, of obstacles it must avoid and a certain width, wk, of path it requires.
The problem is to determine if it is possible to route Nk width-wk paths for class
k vehicles from source to sink, with each path avoiding the requisite set Ok of
obstacles, and no two paths overlapping. This form of multicommodity flow in
two-dimensional domains arises in computing throughput capacity for multiple
classes of aircraft in an airspace impacted by different types of constraints,
such as those arising from weather hazards.

1This work grew out of discussions during participation in the ATM-Wx Impact Modeling
Workshop 2: ATM Weather Constraint Modeling, at the National Center for Atmospheric
Research, Boulder, CO, March 3-4, 2008. We thank William Chan (NASA Ames), Nathan
Downs (Metron Aviation), Jimmy Krozel (Metron Aviation), Tenny Lindholm (STAR),
Joseph Prete (Metron Aviation), and Bob Sharman (STAR) for their input in formulating
the algorithmic model and providing aviation expertise and weather data for our experiments.
We thank Nathan Downs (Metron Aviation) for assistance in FACET simulations. FACET
is provided by NASA Ames. We thank Esther Arkin, Petteri Kaski, Jukka Suomela, Girish
Sabhnani and Charles Ward for helpful discussions. We thank the anonymous reviewers
for their suggestions that improved the presentation of the results. This work was partially
funded by NASA Ames, Metron Aviation, the National Science Foundation (CCF-0431030,
CCF-0528209, CCF-0729019), and Academy of Finland (grant 138520). A preliminary
version appeared in the abstracts of the 18th Annual Fall Workshop on Computational
Geometry, 2008.

3

We give both algorithmic theory results and experimental results.
We show hardness of many versions of the problem by proving that two

simple variants are NP-hard even in the case K = 2. If w1 = w2 = 1, then the
problem is NP-hard even when O1 = ∅. If w1 = 2, w2 = 3, then the problem is
NP-hard even when O1 = O2. In contrast, the problem for a single width and
a single type of obstacles is polynomially solvable.

We present approximation algorithms for the multicriteria optimization
problems that arise when trying to maximize the number of routable paths.
We also give a polynomial-time algorithm for the case in which the number of
holes in the input domain is bounded.

Finally, we give experimental results based on an implementation of our
methods and experiment with enhanced heuristics for efficient solutions in
practice. Our algorithms are being utilized in simulations with NASA’s Future
Air traffic management Concepts Evaluation Tool (FACET). We report on
experimental results based on applying our algorithms to weather-impacted
airspaces, comparing heuristic strategies for searching for feasible path orderings
and for computing short multi-class routes. Our results show that multi-class
routes can feasibly be computed on real weather data instances on the scale
required in air traffic management applications.

This chapter presents joint work with Joondong Kim, Joseph S. B. Mitchell,
Valentin Polishchuk and Jingyu Zou [90].

2.1 Introduction

Many applications of path planning in polygonal domains—VLSI routing,
robotics, air traffic management (ATM), sensor networks—call for finding
multiple disjoint thick paths serving as “lanes” along which non-point objects
may move without conflicting with each other. Studying disjoint thick paths is
also of theoretical interest as it leads to developing geometric counterparts of
classical network flow results: the Max-flow Min-cut, the Flow Decomposition,
and Menger’s theorems. In this sense, the present chapter addresses the
geometric version of the multicommodity network flow problem.

2.1.1 Motivation

Our problem statement is natural in any multiple path routing setting involving
separation standards and different constraints on paths. We suspect it has
several possible applications; however, our specific motivation comes from

4

the domain of ATM. The aircraft differ in their capabilities, which impacts
which regions of airspace they can traverse (e.g., due to hazardous weather
conditions) and how much separation is needed between parallel “flows” of
aircraft. In particular, one weather system can serve as an obstacle for one class
of aircraft while being safely passable by another class of better equipped (or
larger) aircraft. A good route planner must take this into account by possibly
permitting “stronger” aircraft to fly through certain weather conditions, which
serve as obstacles to “weaker” aircraft. In general, each class of aircraft is
restricted to avoid certain types of airspace. See Fig. 2.1. (Note: our figures
are best viewed in color.)

Our goal is to provide algorithms for decision support tools for the Next
Generation Air Transportation System [162], specifically, to perform capac-
ity estimation to determine how constraints, such as weather events, impact
throughput capacity of airspace. The problem studied here is that of de-
termining the maximum number of air lanes of multi-class aircraft that can
permeate an airspace, given the constraints implied by weather forecast data.
It is not expected that the routes computed with our algorithms will be the
actual routes flown; many other complex issues affect the exact routes (jetways,
winds, controller workload, etc). Rather, our goal is to be able to compute the
maximum theoretical throughput possible across, e.g., a “flow-constrained area”

Flow

Flow
Class of Aircraft 1 2 3 4

3

2

1

Weather Impact Interaction Grid

Figure 2.1: Example of the multi-class routing problem from ATM: A flow-
constrained area having four different types of weather constraints impacting
three different classes of aircraft. (All classes of aircraft must avoid the hard
(red) constraints. As specified in the interaction grid, class 2 aircraft can freely
penetrate type 3 weather events.)

5

(FCA), given a mixture of classes of aircraft and types of constraints, so that
this information can be used as part of a decision support tool for traffic flow
management.

2.1.2 Related Work

While we know of no prior results on the multi-class geometric flow routing
problem studied here, multicommodity flows in discrete networks have been a
subject of extensive research [35]. There is also an abundance of related work
on computing multiple (single-class) paths and flows in geometric domains.
A classification of existing approaches to multiple paths planning is given
by van den Berg and Overmars [170]. In prioritized planning the paths are
found one-by-one; all routed paths are declared as obstacles for a new path.
The algorithms that do not use prioritized planning range from centralized
over roadmap-based to decoupled (see [170] for details). A polynomial-time
algorithm for finding a maximum number of thick paths in a polygonal domain
is presented in [14]. The geometric versions of the Max-flow Min-cut, the Flow
Decomposition, and Menger’s theorems were established in [14,127,133,161].

In the ATM literature, there has been considerable interest in capacity
estimation using weather forecast data. Our multi-class flow problem arises
when weather forecast data is translated to impact on airspace by “causality
analysis” [100], which considers how different classes of aircraft respond to
various types of weather hazards, such as convection, in-flight icing, turbulence,
and visibility. The use of geometric flow theory for capacity estimation of a
sector or an FCA in ATM is discussed in [91,104,108,126,145].

2.1.3 Summary of Contributions

1. We introduce the multi-class routing problem and prove hardness of its
most basic versions: Routing two classes of vehicles among two types of
obstacles, and routing paths of two distinct widths among one type of
obstacle. We also prove some hardness of approximation results and the
(likely) nonexistence of a fixed-parameter tractable algorithm.

2. We give approximation algorithms for multi-class routing and a polynomial-
time algorithm for the case in which the number of holes in the input
domain is bounded.

3. We give experimental results based on an implementation that is currently
being used in simulations with NASA’s Future Air traffic management

6

Concepts Evaluation Tool (FACET). We devise, implement, and compare
efficient heuristics for exact solutions in practical settings.

2.2 Problem Formulation and Overview of the

Results

The input to our problem is a polygonal domain P , consisting of an outer
polygon and polygonal obstacles (holes). Let n denote the (total) number
of vertices of P , and h denote the number of holes. Two edges of the outer
polygon are designated as the source and the sink.

A w-thick path is the Minkowski sum of a usual (thin) source-sink path and
disk of radius w/2 centered at the origin. As is common in the thick-paths
literature [14, 127, 133], we assume that the polygonal domain is augmented by
attaching Riemann flaps to the source and the sink so that the endpoints of
the path belong to the source and the sink.2

The holes in the domain, as well as the paths sought are of one of K types.
The width of a type k path is wk, k = 1 . . . K. A path of type k must avoid the
holes, Ok, of type k, but may pass freely through the holes of the other types.
The decision version of our problem is: Given a set of numbers N1, . . . , NK ,
determine if it is possible to route Nk width-wk paths of type k from source to
sink, so that no two paths overlap. This is the Multi-Class paths problem.

Note that the number of paths that exist in a domain may be exponential in
the input size; e.g., there may exist Ω(M) width-1 paths in a 2×M rectangle,
specified with O(logM) bits. By the Continuous Flow Decomposition Theorem
[133], thick paths can be encoded succinctly by representing a “bundle” of
paths of total thickness W by one W -thick path. Our positive results should be
understood in the sense that the paths can be found in pseudopolynomial time,
or that the representations of the paths can be found in strongly polynomial
time.

2.2.1 Type Sequence and Uppermost Paths

The source and sink edges split the boundary of the outer polygon of the
domain into two parts — the top T and bottom B (Fig. 2.2). We will assume

2Alternatively, we may consider only the canonical parts of the thick paths [133], which
are the “rectilinear strips” of width w with opposite sides of length w residing on the source
and the sink.

7

Figure 2.2: Uppermost paths for the type sequence (red, red, blue).

that in any collection of paths, the paths are numbered in the order as they
are encountered when going along the source or sink from T to B. Let
τ = (t1, . . . , tM), tm ∈ {1 . . . K} be a sequence of path types. We say that τ is
the type sequence of a collection of M paths if the mth path in the collection
is of type tm.

If the type sequence of the paths sought is specified, the Multi-Class paths
problem can be solved in polynomial time by routing uppermost paths, as we
now explain. Paths (Π1, . . . ,ΠM) are called uppermost [14, 127] if Π1 runs
“as close as possible” to T , and Πm runs “as close as possible” to Πm−1, for
m = 2 . . .M . Specifically, imagine that the domain is grass, over which fire
travels at speed 1; imagine also that, at the mth stage of our algorithm (when
routing Πm) the type-tm holes, Otm , are saturated with a highly flammable
material so that whenever fire touches such a hole, the entire hole is ignited
instantaneously. Ignite T at time 0, and let P ′ be the part of the domain that
has burned by time w1 (see [14, Theorem 2.2] for details of simulating the fire –
handling events, attaching Riemann flaps, etc.). The (first) uppermost path
is a w1-thick path routed within P ′. The second uppermost path is the thick
path of type t2 routed by iteratively treating the lower boundary of the first
uppermost path as T and using obstacle set Ot2 ; the other uppermost paths
are defined recursively in a similar manner.

We obtain the following straightforward extension of Theorem 2.2 in [14]:

Theorem 2.2.1. If there exist M paths with type sequence τ , then there exist
uppermost paths with type sequence τ , and a representation of the paths can be
found in O(nh+nlogn+M) time.

For the case in which the holes are all of the same type, and paths only differ
by their widths, we also have a “query” version of Theorem 2.2.1 (the benefit

8

of the query version is the running time). In contrast with Theorem 2.2.1, the
algorithm for Theorem 2.2.2 does not produce the paths; it just tests whether
the routing is possible. (We have been unable to obtain a result similar to
Theorem 2.2.2 in the case that holes are of two or more different types; this
remains open.)

Theorem 2.2.2. If all holes are of the same type, a graph can be built in time
O(nh) such that given a type sequence τ , it can be tested in O(M + h2 logM)
time whether it is possible to route the M paths with type sequence τ , by solving
a variation of the shortest path problem in the graph.

See Section 2.3 for the proof of the theorem.

For most of the chapter we speak about two types of paths (K = 2), and
concentrate on two cases:

Red/Blue paths problem: The paths have the same width (w1 = w2 = 1), but
the holes are of two types, Red and Blue.

Two Widths paths problem: The holes are of one type, but the paths have
different widths, w1 = 2, w2 = 3.

We focus on these special cases only for ease of presentation, and actually lose
no generality by considering them: we give hardness proofs for these restricted
cases, and our algorithms extend to the case of an arbitrary number of types
of paths of many different widths.

Our main hardness result, proved in Section 2.4, is as follows.

Theorem 2.2.3. (i) Given two integers, r and b, and a polygonal domain with
red and blue holes, it is NP-hard to decide if it is possible to route r red and b
blue pairwise-disjoint width-1 paths. (ii) Given two integers, N1 and N2, and a
polygonal domain with (monochromatic) holes, it is NP-hard to decide whether
it is possible to route N1 width-2 and N2 width-3 pairwise-disjoint paths.

In fact, our hardness proof for (i) holds even when only blue obstacles are
used in the reduction. Thus, Theorem 2.2.3(i) can be strengthened to show
that an even more special case is hard:

Corollary 2.2.4. Given two integers, r and b, and a polygonal domain with
only blue holes, it is NP-hard to decide if it is possible to route r red and b
blue pairwise-disjoint width-1 paths.

9

Since finding an exact solution to our bicriteria optimization problem is
NP-hard, we turn the attention to approximation algorithms. Suppose that
there exist r red and b blue paths in P . There are (at least) three approaches
to approximation of the problem:

(i) approximate the maximum number of routable blue paths while making
sure that r red paths are routed;

(ii) approximate the numbers of paths of both colors, i.e., give an algorithm
to route αr red and βb blue paths, for some α, β ∈ (0, 1); and,

(iii) approximate the maximum number of routable blue paths while making
sure the total number of routed paths stays equal to r + b.

We leave approach (i) as an open problem. In Theorem 2.2.7 we show that (ii)
is possible for essentially any α, β with α + β = 1. The reduction employed in
the proof of Theorem 2.2.3 shows that (iii) is NP-hard:

Corollary 2.2.5. Let P a polygonal domain with n vertices in which there
exist r red and b blue paths. Let γ = Ω(n1/6−ε) be a number, for some ε > 0.
Unless P=NP, one cannot find in polynomial time a set of r − γb red and γb
blue paths in the domain.

In the Red/Blue (resp., Two Widths) paths problem, a type sequence
is just a sequence of R’s and B’s (resp., 2’s and 3’s). In certain cases, one
can go through all possible type sequences in polynomial time. For example,
suppose that in the Red/Blue paths problem, the number of color changes in
the type sequence is bounded by a number L. Then the number of different
type sequences, for a total of M red and blue paths, is O(MO(L)) – polynomial
for a constant L. For each of the sequences, we can use Theorem 2.2.1 to route
the red/blue paths or to conclude that it is not possible. Define a switch to be
a change from R to B, or from B to R (resp., from 2 to 3, or from 3 to 2) in
the type sequence for the Red/Blue (resp., Two Widths) paths problem. Then,
we have

Lemma 2.2.6. If the number of switches is at most L, both the Red/Blue and
the Two Widths paths problems can be solved in O(poly(nMO(L)) time.

One may hope to have a fixed-parameter tractable, O(f(L) poly(n,M))-
time algorithm (where f could be exponential). However, in our reduction from
INDEPENDENT SET to the Red/Blue paths problem (proof of Theorem 2.2.3),

10

the existence of an independent set of size L in the graph implies a solution
to the Red/Blue paths problem with at most L + 1 switches. Thus, an
O(f(L) poly(n,M)) algorithm for the Red/Blue paths problem would imply
an O(f ′(L) poly(n)) algorithm for INDEPENDENT SET in an n-vertex graph,
which is unlikely to exist due to W [1]-completeness of the problem [51]. Thus,
our problem is W [1]-hard with respect to the number of switches.

On the positive side, we show that any sequence of paths can be ap-
proximated by a sequence with a small number of switches. Choosing the
best type sequence out of all sequences with few switches, and appealing to
Lemma 2.2.6, we obtain an approximation algorithm for the Red/Blue paths
problem. Specifically, in Section 2.5 we prove

Theorem 2.2.7. Let r and b, r ≤ b, be two integers such that there exist r red
and b blue thick paths in P . Let L ≤ r + b and ` ≤ L be two arbitrary integers
such that r/L and b/L are integers. One can find `

L
r red and L−`

L
b blue paths

in O(poly(n, rL)) time.

An analogous statement holds for the Two Widths paths problem.
As another application of Lemma 2.2.6, we give a polynomial-time algorithm

for the case when h, the number of holes in the domain, is small. In this case, the
number of relevant “threadings” of the paths is small, and within a subsequence
of paths of common threading, it is enough to have at most one switch in the
type sequence. We prove in Section 2.6:

Theorem 2.2.8. If the number of holes in the domain is bounded (h = O(1)),
both the Red/Blue and the Two Widths paths problems can be solved in polyno-
mial time.

In the remainder of the chapter we give proofs of the above theorems. In
Section 2.7, we discuss an implementation and experimental results.

2.3 Testing type sequence feasibility

in the monochromatic case

In this section the holes and the paths are all of the same color; the paths
differ only in width (i.e., a type sequence is a sequence of numbers – the paths
widths). We build a data structure to answer efficiently the following queries:
“Given a type sequence τ , is it possible to route a set of paths with type sequence
τ?”:

11

Theorem 2.2.2 (stated again). If all holes are of the same type, a graph
can be built in time O(nh) such that given a type sequence τ , it can be tested
in O(M + h2 logM) time whether it is possible to route the M paths with type
sequence τ , by solving a variation of the shortest path problem in the graph.

Note that here we do not find the paths themselves; we only test whether
the routing is possible in principle.

Proof. We build the graph on the holes of the domain. Specifically, the critical
graph of the domain [14,65,127] has a vertex for each hole, for T , and for B;
the length of an edge between two vertices is equal to the Euclidean distance
between the corresponding holes (Fig. 2.3). The graph can be built in O(nh)
time by using the linear time algorithm in [10] to compute the Euclidean
distance between every pair of holes. The length of a shortest T -B path in
the graph is equal to the value of the maximum flow [127]. In the thresholded
version of the graph the length of each edge is thresholded down to the nearest
integer; the length of a shortest T -B path in the graph is equal to the maximum
number of width-1 paths that can be routed though P . See [14, 65, 127] for
details.

We use a Dijkstra-like algorithm to find a shortest T -B path in the critical
graph, conforming to the sequence τ . We label the vertices of the graph by
positions in τ . The permanent label `(v) assigned to a vertex v after the
algorithm completes, is the largest index such that the paths 1, . . . , `(v) can
be routed between T and the hole corresponding to v.

We start with assigning permanent label `(T) = 0 and temporary labels
`(·) =∞ for the other vertices (just like in Dijkstra’s algorithm, the temporary
label of each vertex is an upper bound on its permanent label). Next, we
propagate the labels, Dijkstra-style from the vertex v with the smallest label.
For each edge (v, u) out of v, we see how far along τ it is possible to go by that
edge, and update the label of u:

`(u) ← min

 `(u) , arg max
m

m∑
i=`(v)+1

wti ≤ d(u, v)


where d(u, v) is the length of the edge (u, v) in the critical graph, and wti is the
width of the path of type ti. The propagation along an edge takes O(logM)
time (after storing an array of τ ’s partial sums).

Just like in Dijkstra’s algorithm, the induction on the label shows that the
final label of B is the length of the longest subsequence of τ (starting from t1)
that can be routed through the domain.

12

�

2.4 Hardness results

In this section we show that even very simple versions of our geometric mul-
ticommodity flow problem are NP-hard. For instance, an important special
case of the Red/Blue paths problem is when the holes are nested, i.e., when
the set of the red holes is a subset of blue, modeling the situation when the
capabilities of one class of vehicle is a subset of the capabilities of the other
class. (Then, the red paths must avoid only the red obstacles, while the blue
paths must avoid both red and blue.) We now show that even this special
case of the Red/Blue paths problem is NP-hard; in Section 2.4.3 we show the
hardness of the Two Widths paths problem.

We reduce from INDEPENDENT SET [64]. Let G be a graph with n
vertices and m edges. In the independent set problem, the question is: Given
an integer k, do there exist k vertices of G no two of which are connected by an
edge? (In this section n denotes the number of vertices in G, and k denotes the
size of the independent set.) We construct from G an instance of the Red/Blue
paths problem as follows.

For each vertex of G we create a vertex gadget (Fig. 2.4(a)). We create a
column of n aligned vertex gadgets, one on top of another, forming the vertex

Figure 2.3: The edges of the critical graph are dashed. The numbers are labels
of holes, corresponding to a sequence of widths τ = (3, 2, 1, 1). For another
sequence, say, τ ′ = (3, 2, 4), the label of B would have been 2 since there would
not be room for the third path.

13

part of the construction (Fig. 2.4(b)).
For each edge of G we create an edge gadget. To build the gadget, we first

create an 8n-by-8n square with top and bottom sides being red segments; we
put n equally spaced blue segments of height 4 along the right side of the
square (Fig. 2.4(c)). If edge e is incident to a vertex i, we add length 1 to the
top and the bottom of the ith obstacle in the edge gadget corresponding to e
(thus, there are exactly two stretched obstacles in each edge gadget). Finally,
the top and the bottom boundary of each edge gadget are shifted by 1 up and
down (Fig. 2.4(d)).

Figure 2.4: (a) Top: the vertex gadget is an 8-by-8 square with top and bottom
sides being red segments; there are three blue obstacles inside the gadget, each
is a vertical segment of height 4. (a) Middle and bottom: if the paths going
through the gadget are of one color, they are either (at most) four blue paths
or (at most) eight red paths. (b): the vertex part — n stacked vertex gadgets.
(c): each edge gadget is built from an 8n-by-8n square with n blue obstacles,
each being a height-4 blue segment. (d): in the gadget for an edge (i, j), we
stretch ith and jth obstacles by extending them upwards and downwards by
length 1; also, the top and the bottom sides of each edge gadget are shifted
by 1 up and down respectively.

14

1

2

AEdges

Vertices

3

4

B C D

42

3

B

C

A
D

3

4

2

1

1

Figure 2.5: The vertex parts and the edge gadgets are put one after another.
The edge gadgets are not to scale. Stretching the obstacles shifts the paths
by 1 up and down; the shifted paths fit fine into the gadgets because the top
and the bottom of the gadgets were shifted by 1 too. The outer polygon of the
domain is shown black. This example shows the construction for the graph at
the bottom.

To finish the construction, we put the vertex part and the m edge gadgets
side by side from left to right; we align the obstacles in the edge gadgets
with the rightmost obstacles in the vertex part. We then insert a vertex part
between consecutive edge gadgets; this way, the paths are always aligned in the
same way before entering any edge gadget (Fig. 2.5). Overall, our construction
has, from left to right: vertex part – edge 1 gadget – vertex part – edge 2
gadget – vertex part – · · · – vertex part – edge m gadget. Since the paths are
non-crossing, the ordering of the paths from top to bottom is the same in every
gadget.

We now prove that there exists an independent set of size k in G if and
only if 8(n− k) red and 4k blue paths can be routed all the way from the left
of the construction to the right.

First, suppose there is an independent set of size k in G. Route four
blue paths through each vertex gadget that corresponds to a vertex in the
independent set; route eight red paths through the other gadgets. We claim

15

that the paths may pass through all edge gadgets. Indeed, consider any edge
gadget. If the gadget did not have obstacles with additional length, the paths
could go through the gadget in the same way they came out of the vertex
gadgets. Adding height 1 to the top and bottom of an obstacle in the gadget
may have a pair of blue paths shifted up and down, causing also shifting of
the other paths. But since the blue paths go through vertex gadgets that
collectively correspond to an independent set, there is at most one pair of
shifted blue paths within one edge gadget. Thus, the shifted paths will fit into
the extra space at the top and the bottom. This proves that if there is an
independent set of size k in G, there exist 8(n− k) red and 4k blue paths in
our instance of the Red/Blue paths problem.

On the other hand, suppose that there exist 8(n− k) red and 4k blue paths.
We first show that no vertex gadget has both red and blue paths passing through
it. Let B0 (resp., B1, B2, B3, B4) be the set of gadgets through which 0 (resp.,
1, 2, 3, 4) blue paths pass. As can be seen by inspection (Fig. 2.6), the number
of red paths going through a gadget in B0 (resp., B1, B2, B3, B4) is at most 8
(resp., 4, 2, 1, 0). Thus, the total number of red paths is at most 8|B0|+4|B1|+
2|B2|+ |B3| = 8n−4|B1|−6|B2|−7|B3|−8|B4| = 8n−8k−2|B1|−2|B2|−|B3|,
where the first equality uses |B0|+ |B1|+ |B2|+ |B3|+ |B4| = n, and the second
uses |B1|+ 2|B2|+ 3|B3|+ 4|B4| = 4k. Since we assumed that there are exactly
8n− 8k red paths, we have:

Lemma 2.4.1. |B1| = |B2| = |B3| = 0.

By Lemma 2.4.1, there are k vertex gadgets filled with blue paths, and
n − k gadgets filled with red. Suppose that two gadgets, corresponding to
endpoints of an edge e, are both filled with blue paths. Then the 8(n − k)

Figure 2.6: The maximum number of red paths going through a gadget with 1,
2, and 3 blue paths.

16

red and 4k blue paths will not fit through the edge gadget corresponding to e,
since the topmost and the bottommost paths in the gadget will have to shift
up and down by 2, and there is no space for it. Thus, the 4k blue paths go
through vertex gadgets corresponding to an independent set of size k in G.

This proves

Theorem 2.4(i) (stated again). Given two integers, r and b, and a polyg-
onal domain with red and blue holes, it is NP-hard to decide if it is possible to
route r red and b blue pairwise-disjoint width-1 paths.

2.4.1 Only blue obstacles

In the above construction we can replace all red obstacles with blue obstacles.
Indeed, the only place where the red obstacles appear is the vertex gadget.
Lemma 2.4.1 remains true after the replacement, and so does the claim that
independent sets of size k in G are in one-to-one correspondence with 8(n− k)
red and 4k blue paths. Thus, the Red/Blue paths problem is hard even when
restricted to instances with only blue obstacles:

Corollary 2.2.4 (stated again). Given two integers, r and b, and a polyg-
onal domain with only blue holes, it is NP-hard to decide if it is possible to
route r red and b blue pairwise-disjoint width-1 paths.

2.4.2 Hardness of approximation

Assume there exist r and b red and blue paths in the problem instance con-
structed from a graph G with N vertices and M edges. Let now n = O(NM) =
O(N3) be the complexity of the domain constructed from G. We know from
the reduction that there exists an independent set of size b/4 in G. If we could
find r − γb red and γb blue paths, for some γ, we could find an independent
set of size γb/4. This is not possible in polynomial time (unless P=NP) for
γ = Ω(N1/2−ε), where ε > 0 is an arbitrary positive number [44]. This means
that one cannot approximate, to within any factor γ = Ω(n1/6−ε), the maximum
number of routable blue paths while keeping the total number of routed paths
equal to r + b:

Corollary 2.2.5 (stated again). Let P a polygonal domain with n vertices
in which there exist r red and b blue paths. Let γ = Ω(n1/6−ε) be a number, for
some ε > 0. Unless P=NP, one cannot find in polynomial time a set of r − γb
red and γb blue paths in the domain.

17

2.4.3 Hardness of the Two Widths paths problem

The reduction showing NP-hardness of the Two Widths paths problem is very
similar to the reduction used above for the Red/Blue paths problem. The
vertex gadget is a 6-by-6 square with top and bottom sides being obstacles. If
the paths going through the gadget are of the same thickness, they are either
(at most) three width-2 path or (at most) two width-3 paths. As in the proof
of hardness of the Red/Blue paths problem, n vertex gadgets are stacked one
on top of another forming the vertex part (Fig. 2.7).

Figure 2.7: Construction for the proof of Theorem 2.2.3(ii). The edge gadgets
are not to scale. This example shows the construction for the graph at the
bottom.

Each edge gadget is a 6n-by-(6n+ 4) rectangle with top and bottom sides
being obstacles. In the gadget for an edge (i, j), we put a pair of point obstacles
at distance 2 apart, aligned with vertex gadgets i and j.

The rest of the construction is identical to the one for the Red/Blue paths
problem. The edge gadgets are put next to the vertex part, one-by-one from
left to right. We also insert a vertex part between consecutive edge gadgets to
ensure the paths are aligned in the same way before entering any edge gadget.
There is an independent set of size k in G if and only if we can route 3(n− k)
width-2 and 2k width-3 paths; the wider paths must go through vertex gadgets,

18

corresponding to an independent set.

Theorem 2.2.3(ii) (stated again). Given two integers, N1 and N2, and a
polygonal domain with (monochromatic) holes, it is NP-hard to decide whether
it is possible to route N1 width-2 and N2 width-3 pairwise-disjoint paths.

2.5 Approximation

We now turn to positive results. In this section we show how to approximate
any type sequence by a sequence with few switches. Choosing the best sequence
with the few switches allows one to approximate simultaneously the number of
paths of each color in polynomial time:

Theorem 2.2.7 (stated again). Let r and b, r ≤ b, be two integers such
that there exist r red and b blue thick paths in P . Let L ≤ r + b and ` ≤ L be
two arbitrary integers such that r/L and b/L are integers. One can find `

L
r red

and L−`
L
b blue paths in O(poly(n, rL)) time.

Proof. Consider the collection of r red and b blue paths. Consider also L+ 1
(thin) source-sink paths π∗0, π

∗
1, . . . , π

∗
L (where π∗0 = T , π∗L = B) that split the

domain so that there is exactly (r + b)/L thick paths (both red and blue)
between π∗i−1 and π∗i for each i = 1 . . . L (Fig. 2.8). Call the part of the domain
between π∗i−1 and π∗i the ith slot. Let R∗ = (r∗1, . . . , r

∗
L), B∗ = (b∗1, . . . , b

∗
L), be

the sequences of the numbers of red and blue paths in the slots; r∗1 + · · ·+r∗L = r,
b∗1 + · · ·+ b∗L = b, r∗1 + b∗1 = · · · = r∗L + b∗L = (r + b)/L.

We go through all O(rL) possible representations of r as a sum of L integers
each less than or equal to (r + b)/L. The integers specify one possibility for
how many of the r paths reside in each of the L slots. For each representation
R = (r1, . . . , rL), we run the algorithm RedBluePaths that routes successively
either ri red uppermost paths or r+b

L
− ri blue uppermost paths; the choice of

the color is determined by whether ri is one of the ` largest numbers in R:

19

Algorithm RedBluePaths(R)
Input. r, b ∈ N; domain in which there exist r red and b blue paths; integers L, `;
sequence of integers R = (r1, . . . , rL), such that r1 + · · ·+ rL = r.
Output. A collection of `r/L red and (L− `)b/L blue paths (if one exists).

1 max`(R)← indices of ` largest integers in R
2 for i = 1 to L
3 if i ∈ max`(R)
4 route ri uppermost red paths
5 else

6 bi ← r+b
L − ri

7 route bi uppermost blue paths
8 endif
9 endfor

Now, one of the representations examined will be R∗. Let Π∗i be the set
of uppermost paths routed by RedBluePaths(R∗) in the ith for loop; Π∗i is a
collection of either r∗i red or b∗i blue uppermost paths, depending on whether
i ∈ max`(R) or not. Since the first slot contains r∗1 red and b∗1 blue paths, the
uppermost paths Π∗1 (which are either r∗1 reds or b∗1 blues) will stay within the
slot:

Fact 1. The lower boundary of Π∗1 is above π∗1.

The second slot contains r∗2 red and b∗2 blue paths. Again, r∗2 red or b∗2
blue uppermost paths, routed within the slot (i.e., treating π∗1 as the top of
the domain), will stay within the slot. RedBluePaths(R∗) actually routes Π∗2
treating the lower boundary of Π∗1 as the top. Thus, by Fact 1, Π∗2 will not
cross π∗2. By induction, we obtain that RedBluePaths(R∗) will successfully
route the paths without crossing π∗L = B.

The number of red paths routed by RedBluePaths(R∗) is∑
i∈max`(R)

r∗i ≥ `r/L .

The number of blue paths routed is∑
i/∈max`(R)

bi = b −
∑

i∈max`(R)

bi ≥ b− `b/L

�

20

Figure 2.8: Left: In ith slot there exist r∗i red and b∗i blue paths; r∗i + b∗i =
(r+ b)/L. Right: RedBluePaths(R∗) routes either r∗i red or b∗i blue uppermost
paths; thus, the paths do not go below the boundary of the slot.

Figure 2.9: Left: The line segment (0, b)-(r, 0) is the dual of (r, b). Right: We
obtain the upper envelope of the segments dual to the Pareto optimal pairs
(filled circles); the half-optimal solutions (hollow circles) are below the envelope.

Approximating Pareto-optimal solutions. Applying Theorem 2.2.7 to
all possible values of (r, b) such that there may exist r red or b blue paths, we
obtain an approximation to the Pareto frontier of optimal solutions to the
problem. Specifically, for a pair of numbers (r, b) let the dual of the pair be a
line segment from (0, b) to (r, 0) in the (r, b)-plane (Fig. 2.9). Let P be the set
of Pareto optimal pairs (r, b), i.e., such that there exist r and b red and blue
paths through the domain ((r, b) is feasible), but (r, b+ 1) and (r + 1, b) are
not feasible pairs. We say that pairs (r/2, b/2) for (r, b) ∈ P , are half-optimal
solutions.

Let r∗ (resp., b∗) be the maximum number of red (resp., blue) paths that
can be routed in the domain without routing any blue (resp., red) paths. For
each pair (r, b) ∈ [0, r∗]× [0, b∗] and each ` = 0, 1, . . . , r we apply Theorem 2.2.7
with L = r. This gives a set of line segments, which includes the segments
dual to the points in P. Since for each pair (r, b) ∈ P we obtain at least

21

Figure 2.10: Two bundles (left) may be transformed into two thick paths
(middle). Then the order of width-2 and width-3 paths may be changed so
that there is one switch per bundle.

(r/2, b/2) paths (by setting `/L = 1/2), half-optimal solutions lie below the
upper envelope of the segments.

2.6 Small number of holes

In this section we show that our problems are tractable when the number of
holes is constant:

Theorem 2.2.8 (stated again). If the number of holes in the domain is
bounded (h = O(1)), both the Red/Blue and the Two Widths paths problems
can be solved in polynomial time.

Proof. We first prove the theorem for the Two Widths paths problem. Take
an optimal collection of paths in the Two Widths paths problem. Fix the start
and the destination of each path, and consider the collection of shortest paths
with the fixed starts and destinations. A threading of a source-sink path is a
vector of length h, indicating for each hole whether the hole is above or below
the path [133]. Call a (maximal) set of paths of the same threading a bundle.
By the Continuous Flow Decomposition Theorem [133], each bundle can be
pulled taut so that it becomes one thick path, with the thickness equal to the
total width of the paths in the bundle (Fig. 2.10).

Number the bundles in the order as they appear along the source when
going from T to B. If a hole H is above bundle i, then it is also above bundle
i+1. Thus, the number of threadings of the bundles – and hence the number of
the bundles – is at most h+ 1. Within one bundle, the paths may be reordered
so that there is at most one switch in the paths’ type sequence: first all width-2
paths, and then all width-3 paths.

22

Figure 2.11: The 3-PARTITION problem asks if the numbers a1 . . . a3n (
∑
ai =

nB, B/4 < ai < B/2) can be split into n groups of 3, such that the sum
of numbers in each group is B. The polygonal domain created from a 3-
PARTITION instance has n − 1 holes; each hole is a point. The distance
between ith and (i+ 1)st hole is B. The paths’ thicknesses are a1 . . . a3n; all
paths can be packed into the domain if and only if the 3-PARTITION instance
is solvable.

Moreover, if bundle i only has one type of paths, there is no switch in the
bundle. Otherwise, the paths in the bundle can be ordered so that there is no
switch when going to the bundle i from the bundle i− 1 (e.g., if the bundle
i−1 had width-2 paths below width-3 ones, then the bundle i can have width-2
paths above width-3 ones). This way we have at most one switch per bundle,
and the total number of switches is at most h+ 1.

Theorem 2.2.8 for the Two Widths paths problem follows from Lemma 2.2.6
now. The above proof extends verbatim to the case when there are more
than two, but a constant number, of path widths. On the contrary, if the
number of widths is large the problem becomes NP-hard by a reduction from
3-PARTITION (Fig. 2.11).

The proof for the Red/Blue paths problem is similar. Suppose that the first
path is red. So the type sequence τ starts from some number, m, of reds, and
then follows some blues. Consider the first time the type sequence switches
back to red; say this happens when going from kth path to (k+1)-st (τk = blue,
τk+1 = red). Do the “bubble sort” on the paths: Try swapping the (k + 1)st
and the kth paths; if this is possible, do the swapping (so that the kth path is
red) and try swapping the kth and the (k − 1)st path, etc. Continuing this
way, either the red path floats all the way up to become the (m+ 1)st path, or
it gets stuck; in the former case, try swapping the (k + 2)nd (red) path with

23

B1

B2

B1

B2

B1

B2

Figure 2.12: Left: Initial type sequence. Middle: Two red paths floated up,
but the third is stuck because it intersects a blue hole B1. Right: Two charged
blue holes B1, B2 are separated by blue paths: the second layer of blue paths
is below B1 but is above B2.

the (k + 1)st (blue) path. In the end, either we have reduced the number of
swaps by 2 (because the first layer of blue paths “drowns out” the next layer
of blues), or we get stuck. Refer to Fig. 2.12.

But what does it mean to “get stuck”? It means that a red path ρ cannot
be switched with a blue path β. This can only be due to either ρ passing
through a blue hole B or β passing through a red hole R (or both). We charge
the blue-red switch to the holes, and continue the bubble sort starting from
the next blue-red switch; whenever we are stuck we again charge the blue-red
switch to the holes that prevent the switch. It is easy to see that no hole is
charged twice. Indeed, two consecutive charged holes are either of different
colors or are separated by paths of their common color.

Thus, the number of blue-red switches is at most the number of the holes,
and overall the number of the switches is at most 2h. The claim of the theorem
follows now from Lemma 2.2.6. �

2.7 Practical Heuristics: Implementation and

Experiments

We have implemented algorithms for multi-class routing and applied them to
weather data for use in capacity estimation experiments and in NASA’s FACET
simulation tool. The FACET-based scenarios are performed in collaboration
with colleagues at Metron Aviation and are reported separately [102,178]; here,

24

Figure 2.13: Routing bottommost paths in the grid. The grid step is equal to
the path width. Starting at the lowest available grid point at the sink, the path
proceeds to the next grid point, with the priority to turn to the right as much
as possible; the constraints are that the path stays away from obstacles and
the already routed paths, and that it is x-monotone. The routing continues
until the sink is reached. If the sink is not reached, the search retracts (e.g.,
the DFS retracts twice when routing the second, blue path).

we report experimental results involving algorithmic design choices.
The implementation is in C++. The user interface allows one to import

weather data, specify the outer boundary of P , mouse-in polygonal obstacles,
and select algorithm parameters. The algorithms implemented are based on
uppermost (or bottommost) filling of P with thick paths, according to a type
sequence τ . Paths are inserted one by one, checking for feasibility according
to the type of the path and the types of the obstacles. For purposes of these
experiments, rather than doing offsetting using Voronoi methods, we use a
simple method of computing bottommost routes by means of a depth-first
search in a search grid that is superimposed over the domain (Fig. 2.13); this
permits us to easily adapt to a wide variety of constraints, including weather
data of various types, turn constraints, directionality constraints, etc. It also
allows us to use sets of constraints (obstacles) that may not be disjoint from
each other, as we simply have to have a predicate that tests if a given segment
connecting two grid points satisfies the requisite lane width and obstacle type
constraints.

For the experiments reported here, we imposed a monotonicity constraint
that routes be x-monotone (in the direction of the flow of air traffic from a

25

western source edge to an eastern sink edge). The monotonicity constraint
is often imposed on ATM-relevant routes, as one does not fly routes that are
highly non-monotone, with many switchbacks.

2.7.1 Data Sets

We used two kinds of data: real weather data, and simulated sets of obstacles.
For real weather data, we used segmentations at two levels, a high threshold
for red obstacles, and a lower threshold for blue obstacles. The weather data is
of three varieties: convective weather (vertically integrated liquid), icing data,
and turbulence data (Graphical Turbulence Guidance) [155]. Real weather
data is usually composed of big blocks of weather constraints staying near each
other, and the red constraints are typically inside the blue constraints. The
example shown in Fig. 2.14 is based on a sample of convective weather data.

For simulated data, we randomly generate two sets of quadrilaterals, with
one set designated as red obstacles and the other set as blue obstacles; quadri-
laterals from the two sets possibly overlap with each other, and/or cross the
boundary of the outer polygon. In more details, for each set, we use a uniform
distribution in an axis-aligned bounding box of P to generate a pre-specified
number of center points; around each center point, we first generate an L1-
metric circle of radius R from a fixed uniform distribution, and then perturb
the coordinates of each vertex by U(−R,R) – a random amount uniformly
distributed in (−R,R). An example is shown in Fig. 2.16(a).

2.7.2 Enumeration of Type Sequences

We experimented with different ways of enumerating the set of
(
r+b
r

)
type

sequences. If (r, b) is feasible, i.e., there exist r red and b blue paths, we hope,
by choosing a smart way of enumeration, that we hit the first feasible type
sequence after only a small number of steps.

Because only red paths may go through blue obstacles, intuitively it is
beneficial to have red paths go through blue obstacles whenever possible in
order to leave enough free space (without any obstacle) for the blue paths.
Therefore, in a feasible routing scheme, it is likely that the red paths stay
together inside a blue obstacle, so that the blue ones can stay together in the
“free” space. This leads to an intuition that, in most cases, a type sequence
with a smaller number of color changes has a greater chance of being feasible.
Hence, we experimented with the following enumeration strategies:

26

(a) (b) (c)

Figure 2.14: Example of a real weather test case: (a). The Map of Continental
United States, (b). The Region of Interest: Nebraska, Kansas and part of
Wyoming, Colorado, Iowa and Missouri, (c). The test case extracted from (b):
Yellow and Green hazards are light weather constraints and red ones are severe
weather constraints. We consider yellow hazards to be blue constraints and red
hazards to be red constraints. The test case is a typical one extracted from
real weather data: the constraints are forming large clusters, staying near to
each other, and the red constraints are typically inside the blue ones.

0 5 10 15 20

5

10

15

b

r

(a) (b) (c)

Figure 2.15: Example of routing in the test case from Fig 2.14(c): (a). Result
of (bottommost) routing 4 red paths and 17 blue paths, (b). result of heuristic
shortening, (c). the Pareto frontier of the routing instance.

(1) Starting with the initial sequence of r R’s, followed by b B’s, we enumerate
the type sequences in lexicographically increasing order.

(2) Break into subcases according to the number, L, of color changes in the
subsequence, and enumerate in one of the following ways: (a) increasing L,
lex-increasing; (b) decreasing L, lex-decreasing; (c) increasing L, lex-decreasing;
(d) decreasing L, lex-increasing.

If (r, b) is infeasible, the hope is to be able to conclude so without having
to try all permutations. To achieve this goal, we implemented a method of
pruning the search tree using red and blue indices: for each node of the search

27

(a) (b) (c)

Figure 2.16: Example of routing in a randomly generated test case: (a). The
instance, (b). Result of (bottommost) routing 5 red paths and 9 blue paths,
(c). result of heuristic shortening.

grid, we first compute the maximum number of red/blue paths that can pass
above it. If, during our bottommost fill algorithm according to a type sequence
we ever pass through a node such that its blue index is less than the number of
blue paths remaining in the type sequence, we terminate early, concluding that
any sequence that begins with the prefix of the sequence just tested cannot
lead to a successful routing of r red and b blue paths.

2.7.3 A Heuristic for Short Paths

While it remains an open problem to compute a set of thick paths to minimize
the sum (or the maximum) of the path lengths, we implemented a method
for local optimization of paths for a given feasible pair (r, b). In addition to
studying the length optimization problem, our goal was to compute paths
that could be used in simulation experiments with FACET on real data; thus,
we were expected to generate routes that were at least plausibly flyable (and
bottommost fill routes fail this criterion).

Our heuristic does the following tautening of the routes computed by
bottommost fill for a feasible pair (r, b) with a given type sequence. First, the
topmost route (route number r + b, denoted γr+b) is shortened by computing a
shortest thick route, γ∗r+b, of the width corresponding to the class of the route,
from source to sink, lying between route γr+b−1 and T , the top of P , while
avoiding the relevant obstacles. (Note that the homotopy type of γ∗r+b may be
quite different from that of γr+b.) Then, iteratively, each route γi is shortened
by computing a shortest source-to-sink thick path that lies between γi−1 and
γ∗i+1. Fig. 2.15(a),(b) and Fig. 2.16(b),(c) show the results of the bottommost
routing and the tautening process.

28

2.7.4 Experimental Results

We ran each data set multiple times, for each enumeration strategy, iterating
over choices of (r, b), thereby obtaining the Pareto frontier; see Fig. 2.15(c). In
order to test instances that were not feasible, we also ran the algorithm for
choices of (r, b) just above the Pareto frontier (i.e., at (r, b∗(r)+1)). We measure
(a) the number of type sequences tested before termination, (b) whether the
pair (r, b) is feasible or not, and (c) the path length (sum of lengths and max
of lengths) of the solution after local tautening.

We tested over 2000 test cases on our data sets. For both feasible and
infeasible pairs (r, b), we recorded the average number of type sequences tested
for each of the enumeration strategies. For feasible pairs, we differentiate the
test cases by heavy loads and light loads, where heavy loads test cases refer to
the pairs (r, b) on the Pareto frontier and light loads cases refer to pairs (r, b)
that are inside the Pareto frontier. For each of the test cases, we tested six
(r, b) pairs corresponding to three light loads cases, two heavy loads cases, and
one infeasible case.

The test results are shown in Table 2.1. For all strategies, we see that we
obtain early termination with success far sooner than the overall average value
of
(
r+b
r

)
. This suggests the practical efficiency of our implementation, since

testing a given type sequence is a very fast operation (essentially, a depth-first
search, in the grid, for the bottommost paths).

We see that for feasible pairs, though, the enumeration strategies 2(a) and
2(c) are the overall winners (this is inline with Theorem 2.2.8 as the number of
holes is small). They are better strategies than simply using lexicographic order,
which proves our conjecture above that enumerating type sequences in order of
increasing L (the number of color changes) allows one to spot a feasible type
sequence more quickly. In heavy load cases, where there are usually only few
successful type sequences, the strategies 2(b) and 2(d) perform poorly. In real
weather data sets, the weather constraints are typically forming large clusters,
staying near to each other, and the red constraints are typically inside the blue
constraints. Consequently, the red paths are more likely to be adjacent to each
other so that they take more space occupied by blue constraints. Therefore,
for real weather test cases, the strategies 2(b) and 2(d) perform extremely bad
compared to strategies 2(a) and 2(c).

For infeasible pairs (r, b), a naive approach tests all
(
r+b
r

)
type sequences.

With our early termination method to do pruning of the enumeration, though,
we find that, on average, a small fraction, 39.55%, of the total number of
possible sequences needs to be tested before discovery of infeasibility. (It is

29

Data Sets Random Data Sets Real Weather Data Sets
Strategy FCHL FCLL INF FCHL FCLL INF

(1) 9.38 (0.4s) 4.09 (0.3s) 58.48 (5.2s) 3.26 (0.3s) 3.04 (0.3s) 50.87 (3.1s)
(2a) 4.25 (0.4s) 2.27 (0.2s) 58.48 (5.2s) 3.80 (0.3s) 2.85 (0.2s) 50.87 (3.2s)
(2b) 15.28 (1.8s) 6.67 (0.5s) 58.48 (5.2s) 31.23 (2.1s) 17.13 (1.6s) 50.87 (3.2s)
(2c) 3.81 (0.3s) 2.20 (0.2s) 58.48 (5.2s) 3.15 (0.2s) 2.65 (0.2s) 50.87 (3.2s)
(2d) 15.33 (1.8s) 6.96 (0.5s) 58.48 (5.2s) 31.79 (2.1s) 17.31 (1.5s) 50.87 (3.2s)(r+b
b

)
245.92 55.75 320.35 957.65 212.39 4077.06

Table 2.1: The comparison among different enumeration strategies. FCHL
stands for feasible cases (heavy loads), FCLL stands for feasible cases (light
loads) and INF stands for infeasible test cases. We provide the average number
of type sequences tested to find a feasible one or report infeasible, and the
average running time of our algorithms (in seconds, in parentheses). The
first column shows the strategy used, where (1) stands for lexicographically
increasing order, (2a) for increasing L, the color changes, lex-increasing, (2b)
for decreasing L, lex-decreasing, (2c) for increasing L, lex-decreasing, (2d) for
decreasing L, lex-increasing;

(
r+b
b

)
is the binomial coefficient, i.e., the overall

number of possible type sequences that one would have to test using brute-force
enumeration – it provides the baseline to which our methods are compared.
The remaining columns show the average number of type sequences tested to
find a feasible one for randomly generated data sets and real weather data sets.

easy to see that all five of the enumeration strategies search the same subset of
sequences, so we do not differentiate by strategy.)

We also examined the path lengths obtained by our heuristic shortening
method. We found that there is little difference among the results according
to different enumeration strategies (about a 10% variability). We also found
that the total length of the routes are fairly close (within about 10%-15%) to
the lower bound on possible length (computed using (r + b) times the length
of a single shortest path from source to sink). We do not provide lengths
related data because the path lengths highly depend on the size of the region
of interest.

2.8 Conclusion

We considered routing multiple types of paths in a polygonal domain containing
obstacles of multiple types. The very basic versions of the problem have been
proved to be NP-hard. We presented approximation algorithms for different
variations of the problem, as well as efficient heuristic to find the paths amidst

30

real-world and synthesized obstacles.
We left open approximating the maximum number of blue paths that can

be routed while ensuring that a specified number of red paths exists in the
domain. Another natural problem to study is maximizing the total number of
all-type paths routed. For the Two Widths problem, we were not able to show
hardness in the case when the width of the thinner path divides perfectly the
width of the thicker ones; say, if w1 = 1, w2 = 2. On the experiments frontier,
it would be interesting to investigate alternative heuristics for minimizing path
lengths.

31

Chapter 3

Flexible Air Lane Generation to
Maximize Flow Under Hard and
Soft Constraints1

In this chapter, we consider a multicriteria optimization problem of simultane-
ously routing several classes of aircraft through an airspace at a fixed flight level
in the presence of various types of constraints. Hard constraints are formed
by hazards through which no aircraft can safely fly (e.g., severe convection,
turbulence, or icing). Soft constraints are formed by hazards through which
some pilots or airlines decide to fly while others do not (e.g., moderate tur-
bulence or icing). We compute flight paths for two aircraft classes: Class-1
aircraft avoid hard constraints but are willing to fly through soft constraints,
and Class-2 aircraft avoid both hard and soft constraints. Our work assists in
the design of future operational concepts in which jetway routing is retired and
aircraft paths are allowed to adjust to shapes and positions of constraints. We
are interested in determining the capacity of an airspace with hard and soft
constraints, given as input the demand profile indicating how many Class-1 and
Class-2 aircraft are scheduled to enter the airspace. We report on experiments

1This research was funded by NASA Ames Research Center under contract NNA07BB36C
for the NextGen Air Traffic Management (ATM) - Airspace Project - Subtopic 15: Translation
of Weather Information to Traffic Flow Management Impact. The authors appreciate the
frequent inputs from our contract monitor, Mr. William Chan from NASA Ames Research
Center. Finally, we appreciate the financial support of the sponsor of the research, NASA
NextGen Project Manager, Dr. Paramal Kopardekar. J. Mitchell is partially supported by
the National Science Foundation (CCF-0528209, CCF-0729019). V. Polishchuk is partially
supported by a personal grant from the Academy of Finland grant 118653 (ALGODAN)

32

both with real and with synthesized weather data.
This chapter discusses a similar set of problems as in Chapter 2, but from

an empirical point of view. The chapter presents joint work with Joondong
Kim, Jimmy Krozel, Joseph S. B. Mitchell, Valentin Polishchuk, and Jingyu
Zou [178].

3.1 Introduction

A fundamental problem in Air Traffic Management (ATM) is estimation of the
capacity of an airspace. The capacity measures the capability of the airspace to
accommodate a predicted traffic demand through it, with the demand specified
as the number of aircraft, of each of a set of aircraft classes, that intend to use
the airspace during a given time interval. Capacity is impacted by constraints
that come from various sources, including forecasted hazardous weather and
planned Special Use Airspace (SUA) constraints. Such constraints may arise
from typical, daily weather conditions, e.g., convective weather or turbulence,
as well as from less frequent conditions such as in-flight icing, volcanic ash in the
atmosphere, or other phenomena (see the survey of Krozel and Murphy [105]).
The capacity is the number of aircraft of each class that can be routed through
the airspace while avoiding all constraints. When the demand for an airspace
exceeds its capacity, a Traffic Flow Management (TFM) strategy, such as an
Airspace Flow Program (AFP) [98] [27], may be required to adjust the demand
to remain at or below the estimated capacity.

We study the problem of computing flow rates for capacity estimation of
an airspace at a fixed flight level in the presence of two types of constraints:
hard and soft. Hard constraints are portions of airspace through which no
aircraft can fly safely; these include SUA as well as severe hazardous weather
phenomena (convection, turbulence, icing, or volcanic ash). Soft constraints
are portions of airspace through which some aircraft classes can safely fly, while
other aircraft classes may either need to avoid or choose to avoid (e.g., due to
pilot or air carrier preferences). Soft constraints may arise, for instance, from
certain weather hazards, such as moderate convection, turbulence, or icing. In
this chapter , we concentrate on the case of two aircraft classes and two types
of constraints (hard and soft); nevertheless, most of our results extend directly
to multiple classes of aircraft and multiple types of constraints. (In general,
the problem can be analyzed in terms of a weather impact interaction grid,
which specifies which types of constraints must be avoided by which classes of
aircraft [120].) We assume the aircraft fall into two classes: Class-1 aircraft

33

avoid hard constraints but are willing to fly through soft constraints, while
Class-2 aircraft avoid both hard and soft constraints.

In contrast to the majority of the models used in the previous research on
capacity estimation, our problem formulation recognizes the need to model
weather hazards in terms of hard and soft constraints and (at least) two
classes of aircraft. To the best of our knowledge, we are the first to present
an algorithmic technique for capacity estimation addressing several types of
constraints for multiple classes of aircraft.

Our previous work, Krozel et al. [101] showed that the airspace capacity
depends on the ATM control laws being implemented. These laws may represent
decentralized techniques, such as Free Flight [1], or centralized controls, such as
flow-based routing [146] [144] [104]. In this chapter, we investigate centralized
flow-based routing for two classes of flows. Our model assumes that there
is a horizontal separation requirement between centerlines of flows, specified
by given air traffic lane width, ω. In addition, aircraft flying along one route
are separated from each other by a Miles-in-Trail (MIT) requirement. The
width ω is quite general; it may depend on the class of aircraft and will, in
general, be dependent on the Required Navigation Performance (RNP) of the
aircraft utilizing an airlane. For current-day applications, lateral separation
requirements and MIT requirements of 7, 10, 15, or 20 nmi may be appropriate;
for future operations, smaller separation requirements (e.g., 5 nmi or 3 nmi)
may be utilized.

The research in this chapter is in support of both the Next Generation Air
Transportation System (NextGen) and the Single European Sky ATM Research
(SESAR) operational concepts. The presented solution is not dependent on
existing jet routes or ATM practices; our model assumes that the flight paths
can be designed to pass through the airspace wherever constraints allow for
feasible Class-1 or Class-2 traffic flows. Our study may help NextGen policy
decision makers to determine the extent to which convection, turbulence, icing,
as well as SUA may limit en route capacity in NextGen. The results establish
theoretical upper bounds on capacity imposed by hard and soft constraints at
a given flight level for two (or more) classes of aircraft. However, the chapter
does not address the more general three-dimensional (3D) routing problem
with aircraft that are climbing or descending to avoid hard or soft constraints;
we leave this problem for future research.

Our model is intended to support the design of new roles for controllers
and pilots in NextGen and SESAR. With this in mind, we address capacity
estimation in terms of the limitations on traffic utilization based on the geometry

34

of the airspace and the constraints within it; we do not directly address here
the limitations on traffic utilization imposed by workload considerations of
the people that monitor the airspace. In particular, we are not addressing
maximum aircraft count per sector (e.g., Monitor Alert Parameter (MAP)
values).

3.1.1 Related Work

In [104], we reported on capacity estimation techniques for airspaces with
convective weather constraints (of a single type); related prior research surveyed
in that paper includes [152] [157] [47] and [34]. An experimental comparison
of techniques for estimating the sector capacity given convective weather
constraints in today’s ATM system is presented in [159].

In NextGen we expect that jet routes can be dynamically redefined to
adjust flows of traffic around weather constraints, and that controller workload
will not be a limiting factor. In such a setting, the maximum capacity of an
airspace can be assessed using extensions of maximum flow theory in networks
(see, e.g., [6]) to maximum flows in geometric domains. The standard network
MaxFlow/MinCut Theorem extends to geometric domains [161]; its algorithmic
properties have been studied originally in [127] and more recently in [133]
and [14]. The MaxFlow/MinCut theory has been applied in ATM capacity
estimation tasks, for determining the maximum throughput across an en route
airspace with hard constraints given either by a traffic flow pattern [159], or by
a uniform distribution of flow monotonically traversing in a standard direction
(e.g., East-to-West), or random, Free Flight conditions [104]. The maximum
capacity of terminal airspace may also be determined by transforming the
problem into an effectively two-dimensional (2D) domain on the ascent or
descent cone modeling the transition airspace [99].

We know of no prior algorithmic results directly related to the multi-class
geometric flow routing problem studied in this chapter. At the same time,
there is an abundance of work on computing multiple paths and flows (of
a single class) in geometric domains. In [170], a classification of existing
approaches to multiple paths planning is suggested. In particular, in the
prioritized planning, the paths are found iteratively, one by one, treating
already routed paths as obstacles for each newly added path. This is the
same strategy as employed in [40] [146] and [144], who developed routing
algorithms for multiple aircraft based on iterative packing in space-time. Apart
from the prioritized routing, other routing schemes include centralized path
planning, roadmap-based methods, and decoupled path planning [170]. In [14],

35

a pseudopolynomial-time dual-approximation algorithm was given to determine
a maximum number of trajectories for velocity-bounded agents (disks) moving
in a polygonal domain in which there are moving (polygonal) constraints.
In ATM terms, the diameter of the disks corresponds to lane width or the
horizontal separation standard.

3.1.2 Chapter Organization

We first discuss the modeling of the problem. We then review the theory of
capacity estimation. Next, we present our main contribution - algorithmic
methods for capacity estimation in presence of hard and soft constraints, and
applications of our methods to icing and turbulence constraints. We conclude
with a discussion of our results and future work.

3.2 Modeling

To motivate our model, we present two examples of weather impacts on the
National Airspace System (NAS) - turbulence and icing.

The first example is turbulence. Krozel et al. [109] studied the rules
and regulations associated with turbulence, and have found that there are
two significant levels of turbulence that determine hard and soft constraints.
Moderate-or-Greater (MoG) turbulence tends to limit the capacity of en route
airspace since passenger comfort and safety is a high priority for many airlines;
thus, many airlines choose to avoid MoG turbulence. Still, some aircraft
and airlines do fly through MoG turbulence; for instance, ferry flights, cargo
flights, and some business jets. However, if Severe-or-Greater (SoG) turbulence
is forecast or reported, it poses an immediate safety hazard, which closes
airspace and, if encountered, may require diversion due to injuries and/or
required aircraft inspections. SoG turbulence can cause aircraft structural
damage/failure, loss of control, and injury or death to passengers. Thus, SoG
turbulence areas of the NAS are not safe for flight, and therefore represent
hard constraints.

The second example is in-flight icing. Krishna and Krozel [97] studied
the rules and regulations as well as pilot/aircraft/airline responses (e.g., can-
cellations, en route holding, altitude deviations, and diversions) related to
significant in-flight icing events that result in SIGMETs (Significant Meteo-
rological Information). SIGMET airspace regions severely restrict the flow
of traffic through a region of airspace described by the horizontal polygon

36

(a) (b)

Figure 3.1: Mapping forecasts into hard and soft constraints. (a) GTG flight
level turbulence data. Red: areas with severe turbulence; Orange: areas with
moderate turbulence; Green: areas with light turbulence. (b) Hard and soft
constraints model. We model the red areas as hard constraints (still shown in
red) and the orange areas as soft constraints (shown in light blue).

boundaries and the lower and upper altitude limits. The SIGMET generally
describes a hard constraint region due to the severity of the icing potential
within it, which is, generally, a SoG icing level. For MoG icing levels, aircraft
and airlines may enter the airspace; however, the decision generally depends on
the aircraft and equipment. If aircraft are equipped to address icing conditions,
then they may flight through MoG icing. However, other aircraft, e.g., General
Aviation (GA) aircraft, may not be equipped to fly through icing, in which case
even MoG icing regions should be avoided. In-flight icing is thus determined
by MoG or SoG icing severity levels and the pilot, airline policy or aircraft
capability.

Fig.3.1 illustrates the modeling of turbulence, showing the conversion of a
turbulence forecast (Graphical Turbulence Guidance (GTG)) into hard and
soft constraints.

3.2.1 Airspace Model

The traffic flow at a fixed flight level is modeled as a 2D problem. The airspace
is modeled by a polygonal domain P, representing a NAS sector, center, or
Flow Evaluation Area (FEA). The traffic enters P through a specified source
edge, and exists through a sink edge. Envisioning West-to-East traffic, assume
that the source and the sink are the “left” and the “right” edges of P (Fig.3.2).
Furthermore, we do not consider flows of aircraft originating or terminating

37

Hard
Constraints

Constraints
Soft

Source
Sink

Flow
Flow

Flow

Flow

Flow

Flow

Figure 3.2: Airlane packing for two classes of aircraft among hard and soft
constraints. Class-1 (red) air lanes avoid only hard constraints while class-2
(blue) air lanes avoid both hard and soft constraints. In the example presented,
while one could route 5 class-1 air lanes, once a class-2 air lane is established,
there is capacity for only 3 class-1 air lanes. (The class sequence from bottom
to top is class 1, class 1, class 2, class 1.)

within airspace P.
For throughput calculations, aircraft within the airspace are assumed to

have a constant speed along each flow. While our model allows speeds to be
different on different flows, our experiments assumed all aircraft had the same
speed (we used 420 nmi/h). Additionally, the model allows for any specified
horizontal separation requirement (which determines the airlane width, ω); for
our experiments, we assumed a horizontal separation requirement of 5 nmi for
en route airspace. One may also specify an additional safety margin, δ with
respect to hazardous weather constraints; Airlanes are required to be at least
distance δ from a constraint that it must avoid (we used δ =0). For simplicity,
we do not account for the earth’s curvature.

3.2.2 Hard and Soft Constraints

The severity of hazardous weather may be quantified by an intensity threshold
in the National Weather Service (NWS) scale and a clearance level over the echo
top height - the Convective Weather Avoidance Model (CWAM) [157] [47] [34]
and [159]. Regions of high convective weather intensity, such as CWAM Weather
Avoidance Fields (WAFs), define airspace constraints. However, Kuhn [112]
suggests that there is no single threshold that defines a constraint region for

38

all aircraft; instead, there is a need for more than one threshold to reflect
different aircraft/pilot behavior with respect to convective weather constraints.
This gives rise to the modeling of hard and soft constraint thresholds for TFM
planning in the presence of convective weather: Regions with intensity above
a threshold, τhard,define hard constraints, while those regions with intensity
above a threshold, τsoft, but below τhard (τsoft < τhard), define soft constraints.
Similarly, there are different levels of severity for turbulence and for icing,
and these, together with pilot/airline preferences and aircraft type, determine
regions defining hard or soft constraints. For example, as illustrated in Fig.3.1,
the classification of turbulence or icing as SoG may define hard constraints,
and the classification as MoG may define soft constraints.

Our analysis is with respect to short time intervals over which the forecast
accuracy justifies the assumption that weather cells form static constraint
regions. Yet, we discuss issues related to forecast uncertainty, and apply our
methods to yield a stochastic throughput analysis. We leave for future work the
extension of our methods to dynamic forecasts, for which we want to account
explicitly for the time-varying nature of the weather constraints.

3.2.3 Objective

Our goal is to determine maximum throughput for a demand that consists of a
mixture of Class-1 and Class-2 aircraft that are to cross airspace P from source
to sink. Class-1 aircraft avoid hard constraints but are willing to fly through
soft constraints, while Class-2 aircraft avoid both hard and soft constraints.
Our formal goal is to establish if it is possible to route a specified number, I, of
Class-1 airlanes and a specified number, J, of Class-2 airlanes. Each airlane is
a thick path, whose centerline represents a route and whose width w represents
the accuracy with which aircraft are expected to be able to navigate the route.
Airlanes must be pairwise-disjoint and not overlapping the set of constraints
relevant to the traffic utilizing the airlane (hard constraints for Class-1, and
hard and soft constraints for Class-2). Thus, our problem is that of packing
within the airspace a set of airlanes of two classes: I airlanes of Class 1 and J
airlanes of Class 2, with each set of airlanes satisfying its corresponding set of
constraints. Maximizing the throughput is a bicriteria optimization problem:
one may want to maximize the number of Class-1 airlanes subject to a lower
bound on the number of Class-2 airlanes or to maximize the number of Class-2
airlanes subject to a lower bound on the number of Class-1 airlanes. We provide
algorithms that serve as centralized strategies for this optimization problem.

39

3.3 Maximum Flow Rate Theory

We now review the theoretical solutions to the problem of computing a maxi-
mum flow rate from source to sink through an airspace.

3.3.1 Flows in Discrete Networks

Recall some basic notions and results about flows in graphs. A directed graph,
G=(N,A), consists of a set N of nodes and a set A of (directed) arcs (or edges)
connecting pairs of nodes. A flow network is a directed graph G in which
each edge e has a capacity, c(e), and two nodes of N are designated as the
source and the sink. All other nodes of N are internal nodes. A flow in G is
an assignment of a flow value, f(e) ≤ c(e), to each edge e in A, such that for
each internal node v the flow through v is conserved : the sum of the flows on
edges going into v is equal to the sum of the flows on edges going out of v. The
value of the flow in G is defined to be the total flow out of the source node,
which equals (by flow conservation at internal nodes) the total flow into the
sink node. In the maxflow problem, one seeks a flow with maximum value. A
cut is a partition of the nodes N into two sets, X and Y, such that the source is
in X and the sink is in Y. An edge e=(u,v) crosses the cut if u ∈ X and v ∈ Y.
The capacity of the cut is the sum of the capacities of the crossing edges. The
capacity measures the maximum amount of net flow possible from the source to
the sink. A fundamental result in network flows is that maxflow equals mincut :
the maximum flow possible is equal to the capacity of a minimum-capacity
cut. This “maxflow/mincut” theorem is a manifestation of “duality” in linear
programming and optimization theory; see, e.g., [6]. Efficient (polynomial-time)
algorithms are known for computing maximum flows and minimum cuts in
networks.

The notion of flow in a discrete network can be extended to a continuous
geometric domain P [161] [127]. Similar to the source and sink nodes in discrete
networks, two edges on the boundary of the outer polygon of P are designated
as the source and sink. Now, the source and sink edges split the outer boundary
into two parts: top T and bottom B. More precisely, the outer boundary of
P is partitioned into four portions, appearing in the clockwise order: bottom,
source, top, and sink. Polygonal domain P contains constraints; the constraints
are pairwise-disjoint simple polygons (Fig.3.3).

As with networks, a cut in P is a partition of the domain into two parts
such that the source edge is in one part, and the sink edge is in the other; the
capacity of the cut is the length of the common boundary of the parts. With a

40

Source
Sink

Flow
Flow

Flow

Flow

Flow

Flow

Top T

Bottom B

mincut

Figure 3.3: The Min-Cut defined by the source, sink, hazards, and sector
geometry.

slight abuse of terminology, we usually refer to this common boundary as the
cut. A mincut is a cut of minimum length. A mincut is therefore a sequence
of line segments, connecting B to T, “hopping” from constraint to constraint
in such a way as to minimize the total distance travelled within P(Fig. 3.3).
Strang [161] shows that, as in discrete networks, the maxflow/mincut theorem
also holds for geometric domains, where flow refers to a divergence-free vector
field in P, and the flow value is defined as the path integral, along the source,
of the inner product of the flow field with an inward-pointing unit normal
vector. (The divergence-free property of the flow field is the analogue of the
flow conservation at internal nodes of a network.) Mitchell [127] develops
algorithms to compute a mincut efficiently in 2D polygonal domains using
geometric shortest path techniques (the “continuous Dijkstra” paradigm); his
algorithm also produces a flow field, which can be envisioned as a continuum
of flowlines from source to sink. The mincut is the “bottleneck” to fluid flow
from source to sink; its length quantifies the maximum achievable flow rate.

In order to apply the theory of continuous flows to our ATM model, we
consider a variant of the theory, in which flowlines are grouped into discrete
bundles of thick paths (airlanes of width w). The maxflow/mincut theory is
extended to compute the maximum number of thick paths across the domain,
from source to sink [14]. Formally, a thick path is the Minkowski sum of a (thin)
path, from a point on the source to a point on the sink, and a disk of diameter
ω centered at the origin. (E.g., if the thin path is polygonal, the thick path is
the union of a set of rectangles of width ω - one per edge of the centerline path,

41

ω

Figure 3.4: A thick path defines an airlane of width ω.

and a set of circles of diameter ω - one per turn point of the centerline path).
See Fig.3.4. The discrete maxflow problem in P is to compute a maximum
number of pairwise-disjoint thick paths within P from source to sink. The
maxflow/mincut theory extends to this “discrete” variant of the continuous
maxflow problem [14].

3.3.2 Multi-Class Throughput Problem Formulation

We now describe a new problem, which generalizes the discrete maxflow in
geometric domains to multi-class aircraft routing.

As before, the input to our problem is a polygonal domain P with a source
and a sink edges on the boundary, and a set of polygonal constraints. The new
aspect of the problem is that the constraints are of K types and the sought
thick paths are of M classes. The width of a class-m path is ωm, m= 1,2,3,...,M.
A path of class m must avoid the constraints of types Om ⊆ {1,...,K}, but can
pass through the constraints of the other types. (The specification of the sets
Om for each m gives the weather impact interaction grid, as discussed in [120].)
The capacity estimation problem is: Given integers n1,n2,n3,...,nM ,decide if
there exist n1 class-1 paths, n2 class-2 paths,..., and nM class-M paths from
source to sink through P, with no overlap among the (thick) paths, and each
class-m path avoiding constraints of types in the set Om.

While the model just described applies to a wide range of possible types
of constraints and aircraft classes and interactions between them, our focus
for the remainder of the chapter is on the case of just two types of constraints
(i.e., K =2) and two classes of aircraft (i.e., M =2). Specifically, in our airlane
routing problem, the constraints are either hard (type 1) or soft (type 2). The
two classes of aircraft/paths, Class-1 and Class-2, have the sets of obstacles
specified by O1 = 1 and O2 = 1, 2, indicating that Class-1 aircraft avoid hard
constraints (but can travel through soft constraints), while Class-2 aircraft
avoid both hard and soft constraints.

42

3.3.3 Class Sequences

For any set of airlanes through P linking the source to the sink, the airlanes
are ordered from bottom B to top T, with the ith airlane being the one with
(i-1) airlanes below it. The specification of the ordered list of path classes
is a class sequence, C =(c1,c2, ...), where each ci is one of the M classes of
airlanes. Here, M =2, so each class sequence is a sequence of 1’s and 2’s, which
we often denote without the parentheses and commas (e.g., 11222122 instead
of (1,1,2,2,2,1,2,2). For example, Fig.3.2 illustrates the class sequence C =1121.

3.3.4 Bottommost Paths

Paths (airlanes) p1, p2, ..., pm are called bottommost paths if p1 runs “as close
as possible” (in a sense made rigorous in [14]), to the bottom B, and pi runs as
close as possible to pi−1, for i=2,3,..,m.

3.3.5 Theoretical Results

Kim et al. [90] prove that if there exist m paths with class sequence C, then
there exist m bottommost paths with the same class sequence C, and the paths
can be found efficiently by a “bottommost filling of the domain” with the paths.
Therefore, if the class sequence C is given, the capacity estimation problem can
be solved efficiently by computing bottommost paths. However, Kim et al. [90]
also show that the problem is NP-hard if the type sequence is not known: it
is NP-hard to decide if it is possible to route I lanes of Class 1 and J lanes
of Class 2. An alternation in a class sequence C is a place where C changes
from 1 to 2 or vice versa (note that the number of alternations, na, can be
larger than the number of classes, e.g., the sequence 1211221212 has na = 7);
For cases in which when the maximum number, na , of alternations in a class
sequence is small (e.g., 111221111 has only na = 2 alternations, when there
is a change from 1 to 2 or vice versa), the problem can be solved exactly in
polynomial time, where with the exponent in the running time dependings
on na. Further, from the point of view of approximation algorithms, Kim et
al. [90] shows that for the problem in which there are two classes of paths
and two types of constraints, one can obtain a provable approximation to the
optimal number of Class-1 and Class-2 paths.

43

3.4 Algorithmic Solution Approaches

Next, we outline a routing algorithm that solves the problem: Given two
integers, I and J, route I Class-1 paths and J thick Class-2 paths, each having
width ω, in a polygonal region P populated with hard and soft constraints. For
problems with more than two classes/types of thick paths and constraints, with
possibly different thicknesses, our methods extend to yield a similar solution.

Our algorithm works by scrolling though class sequences. For each class
sequence C we use an efficient way to either compute the paths with the class
sequence given by C (in which case the algorithm terminates with a success),
or to determine that no collection of paths with sequence C exists (in which
case we proceed to the next sequence). The total number of different sequences
equals to (I+J)!/(I!J!) which is the number of ways to choose I places for 1
and J places for 2 in a sequence of 1’s and 2’s of total length I+J ; here N !
denotes N -factorial - the product of all integers from 1 to N. This number
grows fast as a function of I and J ; hence, we use several heuristics (described
below) to guide the scrolling and prune large fraction of infeasible sequences.

For any particular given class sequence C, we find the paths by a bottommost
fill, the details for which are presented next.

3.4.1 Bottommost Path Filling Algorithm

Rather than working with the continuum of all possible thick paths, we take
a practical approach to generating bottommost paths that are restricted to a
discrete set of possibilities, by searching for paths within a regular square grid
V inside P. We add to V a group of source and sink nodes, which are discrete
points uniformly distributed along the source and sink edges. See Fig.3.5.

A directed graph G=(V,E) is formed. The edge set E contains directed
edges (p,q) connecting points p=(px, py) and q=(qx, qy) in V whenever q is to
the right of p, and is “close” to p; specifically, we require that 1 ≤ qx− px ≤ D,
using D=5 (a default parameter). We keep only those segments pq as edges
in E, for which no point of pq lies within distance ω/2 of any hard constraint.
Moreover, within the set E, we mark an edge pq as a Class-2 edge if, in addition,
no point of pq lies within distance ω/2 of any soft constraint. This models the
fact that all edges are feasible for Class-1 aircraft, while only Class-2 edges are
feasible for Class-2 aircraft.

In our bottommost path filling algorithm, we compute bottommost paths
from source nodes to sink nodes within graph G, according to the path class.
Since our directed edges are all oriented from left to right (recall that 1 ≤ qx−px

44

Hard
Constraints

Edges

Class− 2 edges

Soft

Source

Source Sink
Nodes Nodes

Bottom B

G = (V,E)

SinkTop T

Constraints

Figure 3.5: Graph G used in the bottommost path filling algorithm. Vertex
set V is composed of grid points (intersections of dashed grey lines) and nodes
along the source and sink edges.

for edge (p,q)), the computed paths are necessarily x -monotone; this enforces
that the paths make progress in the direction from source to sink (left to right),
without doubling back. One bottommost path is routed by a Depth-First Search
(DFS) [43] within G. Specifically, the path originates at the bottommost feasible
source node, and progresses monotonically to the right, giving preference to the
bottommost (most clockwise) feasible edges leading out of a node. The DFS
succeeds in finding a path if it reaches a sink node; otherwise, the search from
the source node fails, and we move to routing from the next available source
node. Fig. 3.6 shows an execution of the algorithm for the sequence “121”. At
the highlighted nodes in the search, there is branching, as the depth-first search
has to retrace its steps and choose a different branch, after having hitting a
“dead end”.

At the completion of the bottommost fill, we either have a sequence of I
Class-1 and J Class-2 paths as desired, or we know that the current choice
of class sequence is infeasible, so the algorithm moves on to the next class
sequence.

Sequence Pruning. Our algorithm maintains a black list of infeasible
subsequences. Sequences that begin with a black-listed subsequence are imme-
diately ruled out as infeasible. For instance, if sequence “1212212121” fails
after testing only “1212”, then “1212” is added to the black list so that all

45

Source

Source
Nodes

G = (V,E)

Soft

Sink

Constraints

Hard

Bottom B

Constraints

Top T Sink

Nodes

Figure 3.6: The bottommost fill algorithm for sequence “121”. Small circles
represent branch backtrack points in the depth-first search.

permutations starting with “1212” are immediately recognized as infeasible
(without having to perform a bottommost fill search).

Leftover Space Testing. After routing a bottommost path, our algorithm
computes two mincuts in the leftover space Pl above the routed paths in P :
the mincut m1 in Pl with only hard constraints and the mincut m2 in Pl with
both hard and soft constraints. We use the capacities m1 and m2 to judge if
the leftover space can accommodate the remaining Class-1 paths and Class-2
paths. For instance, if we have successfully routed already i ¡I Class-1 paths
and j ¡J Class-2 paths, then we know that the remaining (I -i)+(J -j) paths
(of either class) cannot be routed if m1¡ (I -i)+(J -j); this is because m1 is the
maximum number of thick paths that can be routed through Pl. Similarly, we
know that the remaining (J -j) Class-2 paths yet to be routed cannot exist in
Pl if m2¡J -j ; this is because m2 is the maximum number of thick paths that
can be routed through the remaining airspace while avoiding both hard and
soft constraints.

Strategic Enumeration of Class Sequences. The order in which class
sequences are explored makes a considerable difference in the speed with which
our algorithm finds a routable class sequence, if one exists. (Recall that the
algorithm concludes once a first feasible class sequence is discovered, for which a
bottommost fill succeeds.) Instead of enumerating class sequences in arbitrary
order or in a natural lexicographic order, our algorithm uses the order of

46

increasing number of class alternations. For example, if we are searching for
I =5 Class-1 paths and J =5 Class-2 paths, then lexicographic ordering would
explore (1111122222, 1111212222, ...), while enumeration by increasing number
of class alternations would explore (1111122222, 2222211111, ...). Kim et al. [90]
experimentally proved that this enumeration strategy helps find a feasible class
sequence much faster than some competing alternatives.

3.4.2 Postprocessing: Tautening Bottommost Paths

The bottommost paths are generally unreasonably long and are unrealistic
for ATM. Hence after the bottommost paths are routed, we “pull them taut”
using an iterative local shortening heuristic. Specifically, take the last-but-one
topmost path pI+J−1, and declare it as an obstacle. Then replace the topmost
path pI+J with the shortest path p∗I+J routed in the space between the top
T and pI+J−1 (of course, we make sure p∗I+J is a feasible path by not letting
it penetrate any constraints). Next, declare p∗I+J and pI+J−2 as obstacles,
and replace pI+J−1 with the shortest path pI+J−1 between p∗I+J and pI+J−2.
Continuing this way, we obtain a set of I +J short paths p∗I+J ,...,p∗l. Our
experimental results indicate that this taughtening heuristic is very useful in
producing flyable, monotonically increasing paths in the direction from source
to sink (see Fig. 3.7(d,f) and Fig. 3.8(c)).

3.5 Experiments

We applied our solutions from the previous section to two sets of data. The
first is the real-world weather forecast maps based on GTG and CIP forecasts
over the NAS at 3:00 pm on Jan. 24, 2007 at 38000 ft. The second set is based
on synthesized weather data that simulates real weather data and allows us to
investigate the effectiveness of our algorithms on a broader class of constraints
than is readily available in selected real datasets.

3.5.1 Real Weather Data

In our experiments with real weather data, the FEA is a rectangular domain
extracted from a GTG map; the FEA covers a portion of Midwest of the US.
Aircraft fly through the FEA from West to East; i.e., the source is the west
side of the rectangle and the sink is the right side. (For our analysis it would
not matter if the roles of source and sink are reversed.) The distance from

47

the northern to the southern boundary of the FEA is 313 nmi. We assume
that both Class-1 and Class-2 airlanes have width 8 nmi, with an additional
separation of 8 nmi between airlanes; thus, the total distance from centerline
to centerline of two adjacent airlanes is 16 nmi.

We conducted three experiments: (1) Given two integers I and J, as well
as a designated class sequence C of I 1’s and J 2’s, determine if I Class-1 and
J Class-2 airlanes can be routed from source to sink according to C. (2) Given
integers I and J, but no class sequence, determine if I Class-1 and J Class-2
airlanes can be routed from source to sink. (3) Given prescribed entry and exit
points on the source and sink edges, as well as integers I and J, determine if
there exist I Class-1 and J Class-2 airlanes between the entry and the exit
points. Results of these experiments are shown in Fig.3.7.

3.5.2 Experimental Results

We tested over 2000 test cases, including both real weather data and synthesized
weather data cases. Results show that our capacity estimation algorithm is
practical and efficient. The algorithm’s implementation is fast because it tests
far fewer than the maximum possible number of sequences. For almost all test
cases where the given lanes are routable, the algorithm tests only very few
permutations (less than 10), even for very large scenarios, e.g. I + J > 100.
The test for each permutation is very fast: For a rectangular region partitioned
into a base grid of 125-by- 63 cells, in which there are 5 obstacles of average size
(area) 176 cells, it takes 11.61ms, on average, to test a specific class sequence
(using a 2.6G Intel CPU). For smaller regions that have sparse obstacles, e.g.
with a base grid of 40-by-40 cells (a resolution that likely suffices for an airspace
sector), it takes on average 3.32ms to test one class sequence. Therefore, for
routable test cases, the algorithm usually reports results very quickly (less than
4 seconds even for very large instances).

For fail-to-route test cases, if there are only sparse obstacles, the algorithm
usually returns “unroutable”very quickly (within 5 seconds), thanks to leftover
space testing and sequence pruning. But there are extremely slow fail-to-route
cases for which the algorithm must test up to 20% of the maximum number,
(I +J)!/(I !J!), of class sequences. (This, of course, is expected, since we know
the problem is NP-hard.) Fortunately, for cases in which I + J < 20, the
algorithm was always able to report the result in less than 120 seconds, in all
of the experiments.

The path tautening phase of the algorithm was found, on average, to take,
per path being optimized, 2.16 s for the smaller instances (based on a 40-by-40

48

(a) (b) (c)

(d) (e) (f)

Figure 3.7: Experiments using real weather, with I=5, J=4. (a) The GTG
map. (b) FEA and the constraints. (c) An example of bottommost paths. (d)
Pulled taut paths. (e) Bottommost paths with given entry and exit nodes. (f)
Pulling taut the paths shown in (e).

grid of cells), and 7.97 s for the large instances (based on a 125-by-63 grid
of cells). Examples of paths after tautening are shown in Fig. 3.7(d,f) and
Fig. 3.9(c); the resulting paths appear to be reasonable for ATM applications.

3.5.3 Probabilistic Weather Maps

So far we assumed that the position and size of the constraints in the airspace
were known precisely in advance, with no source of randomness. While this
assumption may be valid over short time horizons, when forecast data is highly
accurate, it is more realistic to expect that weather data is described by a
stochastic forecast, perhaps represented as a weighted ensemble set of forecasts
(with weights corresponding to probabilities or “beliefs”). The ensembles may,
e.g., be generated by numerical prediction models with randomly perturbed
initial conditions, by multiple models applied to the same initial conditions, or
by a data assimilation process. In [134], maximum throughput and capacity
estimation is studied for stochastic weather models based on an ensemble
of forecasts. Specifically, for each forecast, the mincut is computed and the
probability distribution of the mincut value is calculated explicitly, based on

49

the probabilities associated with members of the ensemble. More sophisticated
stochastic weather models, e.g., based on probabilistic weather maps and
ensembles of probabilistic weather maps, can also be considered, together with
an explicit modeling of the spatial correlation between nearby points.

These methods can form the basis of a TFM strategy for mixed equipage
aircraft classes involved in an AFP [98]. Specifically, for a given probabilistic
weather map associated with a look-ahead time (e.g., 1-h, 2-h, or 3-h forecasts),
predicting levels of turbulence and/or icing, we can compute the probability of
being able to route I airlanes for Class-1 traffic and J airlanes for Class-2 traffic.
Then, based on how high these probabilities are, a threshold-based policy can
be used to decide whether to continue flights on their predicted flow across
a FEA, or to reroute the flights around the FEA, or to perform an altitude
change (based on computing the probabilities of routability at other altitudes
using our capacity algorithm). That is, we convert a probabilistic forecast to
an ensemble of forecasts, each with an associated probability. Then, we run
our deterministic algorithm for each member of the ensemble, and compile
the data to determine the probability of successful routing over a full set of
ensemble forecasts.

In our experiments, given one forecast for the region of interest P, which
yields a set of hard/soft constraints (based on MoG or SoG levels of turbulence
or icing), we generate an ensemble of forecasts to represent a stochastic forecast
model. The generation is based on randomly selecting a seed point q inside
P. If q is within a constraint (hard or soft), we place, with probability p (a
user-defined parameter, close to 1) a random polygonal constraint centered at
q. (In our experiments, we used random quadrilaterals, generated by selecting
four points at random in the four quadrants centered at q ; other random shapes
are possible too, e.g., random disks, polygons, etc.) If the seed point q falls
outside all constraints then random polygonal constraint is placed at q with
probability 1-p. This way we obtain a set of forecasts each looking similar to
the nominal input forecast.

The test results of the probabilistic weather maps are shown in Fig. 3.8.
Based on the same weather map that was used in Fig.3.7, we generate 1000
random instances of a weather forecast and test the probability that I Class-
1 and J Class-2 airlanes can be routed through the FEA by executing the
algorithm on each generated instance (member of a synthetic ensemble).

Additional results for capacity estimation based on synthesized weather data
are shown in Fig.3.9. The algorithm succeeds upon discovering the routable
class sequence “1111122222211112”, which is found quickly, since it has only 3

50

(a) (b) (c)

(d)

(g)

(e)

(h)

(f)

(i)

Figure 3.8: Paths computed using probabilistic weather maps. (a), (b) and
(c) present 3 randomly generated weather maps. (d), (e) and (f) shows the
bottommost paths routed in (a), (b), (c) respectively, when the number of
class-1 lanes, I, is 5 and that of class-2 lanes, J , is 3. Bottommost routing in
instance shown in (b) failed. (g), (h) and (i) shows the routed bottommost
paths when I = J = 3.

alternations.

3.6 Conclusion

We present a mathematical model and an algorithmic method for capacity
estimation in airspaces with hard and soft constraints for two classes of aircraft.
We discuss related theoretical results and propose a practical algorithm for
throughput computation and routing of two-class airlanes among hard and
soft constraints. Further, we demonstrate results from these algorithms and

51

(a) (b) (c)

Figure 3.9: Synthesized weather data, with I=9, J=7. (a) The airspace model.
(b) Bottommost paths. (c) Pulled taut paths.

report on experience in applying them to perform capacity estimation using
deterministic and probabilistic weather maps based on real weather data as
well as on synthetic data. The algorithms presented here are well grounded in
theory and are shown experimentally to be practical and efficient.

3.7 Future Research

Future research includes:

1. Better approximation algorithms for capacity estimation in the presence
of hard and soft constraints. Can we obtain an approximation algorithm
for maximizing the number, I, of Class-1 airlanes, given a lower bound on
the number, J, of Class-2 airlanes? (Known approximation algorithms [90]
relax the optimality of the number of airlanes of both classes.)

2. Allowing non-monotone airlanes. (Our implementation is based on an
algorithm that searches over sets of x-monotone airlanes.)

3. 3D airspaces, allowing multiple altitudes and climb/descent profiles.

4. Multiple sources/sinks on the boundary of the airspace and to crossing
patterns of traffic, in which the demand includes flows of aircraft that
must cross. This introduces scheduling into the problem, and the search
becomes one of computing a maximum number of thickened “tubes” in
space-time, with tubes of different classes, corresponding to the aircraft
capabilities with respect to hard and soft constraints. Our current
techniques do not extend straightforwardly to this scenario.

52

5. Three or more types of constraints (K 3) and three or more aircraft classes
(M 3). This will allow us to compute capacities for multiple classes of
aircraft whose constraints are determined by a general weather impact
interaction grid [120].

6. Modeling limitations that come from controller workload for monitoring
the airspace.

7. Dynamic aspects of the problem, including: moving weather cells, chang-
ing traffic composition, and organizing classes of traffic prior to entering
into a FCA. Our methods assume that the traffic mix is known (or at
least estimated) over a given time horizon. In order to address general
changes in traffic mix over a planning time horizon, it is necessary to
solve the problem in the space-time domain, e.g., using techniques of [14];
these techniques have not yet been generalized to the mixed equipage
domain, though, so this remains a topic for future research. If weather
cells move, particularly if they move “as a whole”, then it would be
advantageous to extend our work to design “flexible” airlanes, as has
been studied recently by Krozel et al. [178] in the case of a single class of
aircraft.

8. Introduction of a cost function. While our post-processing method of
pulling paths taut is a heuristic intended to produce short paths, it does
not come with theoretical guarantees on the optimality of the set of paths.
The problem of computing an “optimal” set of (thick) paths in a domain
is known as the geometric minimum cost flow problem, which has been
studied by Mitchell and Polishuchuk [133] for single class flows. Future
work will examine the extension of that theory to hard/soft constraints
and multiclass (multicommodity) flows.

53

Chapter 4

Convex Transversals1

In this chapter, we address the question initially posed by Arik Tamir at the
Fourth NYU Computational Geometry Day (March, 1987): “Given a collection
of compact sets, can one decide in polynomial time whether there exists a
convex body whose boundary intersects every set in the collection?”

We prove that when the sets are segments in the plane, deciding existence
of the convex stabber is NP-hard. The problem remains NP-hard if the sets
are scaled copies of a convex polygon. We also show that in 3D the stabbing
problem is hard when the sets are balls. On the positive side, we give a
polynomial-time algorithm to find a convex transversal of a maximum number
of pairwise-disjoint segments (or convex polygons) in 2D if the vertices of the
transversal are restricted to a given set of points.

We also consider stabbing with vertices of a regular polygon – a problem
closely related to approximate symmetry detection.

This chapter presents joint work with Esther M. Arkin, Claudia Dieckmanny,
Christian Knauerz, Joseph S. B. Mitchell, Valentin Polishchuk and Lena
Schlipf [13].

1We thank the reviewers for helpful comments. E. Arkin, J. Mitchell, and S. Yang are
partially supported by the National Science Foundation (CCF-0729019, CCF-1018388). Work
by L. Schlipf was supported by the Deutsche Forschungsgemeinschaft within the research
training group “Methods for Discrete Structures”(GRK 1408). V. Polishchuk is funded by
the Academy of Finland grant 138520.

54

4.1 Introduction

Let S be a finite set of line segments in the plane. We say that S is stabbable if
there exists a convex polygon whose boundary C intersects every segment in S;
the closed convex chain C is then called a (convex) transversal or stabber of S.

Research on transversals is an old and rich area. Most of the work, however,
has focused on line transversals, i.e., on determining properties of families
of lines that stab sets of various types of geometric objects. Stabbing has
attracted interest from various perspectives: purely combinatorial (complexity
of the set of transversals, orders induced by stabbers), algorithmic (computing
the stabbers), and applied (using transversals in curve reconstruction, line
simplification, graphics, motion planning) – see [86] and references therein.
In some of these applications it is natural to consider convex transversals as
generalizations of line transversals.

The problem of computing a convex transversal was posed in 1987 [164].
For the case of stabbing vertical line segments, an optimal algorithm for the
problem was presented by Goodrich and Snoeyink in [68]. They stated the
problem of finding a convex stabber for a set of arbitrary segments in the plane
as open. To the best of our knowledge, there has been no progress on the
problem in the roughly 20 years since then.

4.1.1 Contributions

We prove that finding a convex transversal for a set of segments in the plane is
NP-hard; the problem remains NP-hard for a set of scaled copies of a given
convex polygon. We also show that in 3D, it is NP-hard to decide stabbability
of a set of balls.

We then turn to positive results: Section 4.3 presents a dynamic program
(DP) to decide if a set of pairwise-disjoint segments is stabbable by a stabber
whose vertices are a subset of a given candidate set of points; if the segments
are not stabbable, we can output a convex stabber that intersects the maximum
number of segments. The algorithm readily generalizes to the case of disjoint
convex polygons. (In an earlier version of the chapter (see, e.g., [15]) we
erroneously claimed that there always exists a stabber with edges supported
by bitangents between elements of S. We also claimed that our algorithm
extends directly to the case of convex pseudodisks; however, the details of that
extension are not straightforward and will be the topic of a future follow-on
paper.)

We also consider the approximate symmetry detection problem: Given a

55

set of n disks in the plane and an integer k, is it possible to find one point per
disk such that the points form a set invariant under rotations by 2π/k? For
general k, the problem is NP-hard [85]; in Section 4.4 we give a polynomial-time
algorithm for the case k = n. That is, we answer the question: is it possible to
find one point per disk such that the points are vertices of a regular polygon?
We also consider an optimization variant of the problem: Given a set of points
in the plane, find the minimum δ∗ such that shifting each point by at most δ∗

brings the points into a symmetric position.

4.1.2 Closed stabbers vs. Terrains

The stabbing problem formulation is isotropic in the sense that it does not
single out any specific direction in the space. In function approximation and
statistics applications (unlike in surface reconstruction), it is often the case
that the transversal represents the graph of a function. That is, the stabber is
a terrain – a surface that intersects every vertical line in at most one point. A
convex terrain is a part of the boundary of a convex polygon (polytope in 3D).

Finding a convex terrain stabber is a special case of finding a convex stabber
– to see this, just place one point far below the input (Fig. 4.1). Our results, both
positive and negative, are as strong as possible with respect to the distinction
between convex terrain and convex stabbers: Our DP allows one to find even a
convex stabber (and, hence, also to find a convex terrain stabber); our negative
results show that it is hard already to find a convex terrain (and, hence, it is
also hard to find a closed convex stabber).

4.2 Hardness results

This section gives an answer to the question from [68,164] by showing that the
problem is NP-hard.

4.2.1 Stabbing segments in the plane is NP-hard

Our reduction is from 3SAT. Our reduction is very similar to the one used to
show hardness of finding the largest-area convex hull of a set of points that
are restricted to lie on line segments [122]. The reduction is shown in Fig. 4.2.
We use n and m to denote the number of the 3SAT variables and clauses,
respectively.

56

p

S

Figure 4.1: S ′ is S augmented with a point p. S can be stabbed by a convex
terrain if and only if S ′ has a convex stabber. Thus, any algorithm that finds a
stabber can also find a terrain. Conversely, if finding a terrain is hard, finding
a stabber is also hard.

Variable gadget For each variable we have a gadget that consists of three
points (segments of zero length) and one segment. There are two ways to
traverse the gadget (shown with dotted and dashed paths) that differ in the
order in which the middle point and the segment are visited. The two ways
correspond to setting the variable True or False. The important property of
the gadget is that it will be possible to place a certain “connecting” segment
in either of the two ways: so that it touches only the False subpath but not
the True, and vice versa.

“Squashing” We make the variable gadget “thin” by moving all three points
close to the supporting line of the segment, and, in addition, by moving the
non-middle points far apart.

Variable chain Variable gadgets are placed along a convex chain, called the
variable chain. The chain is almost vertical, bending to the right only slightly.
The variable gadgets are “clenched” onto the chain, and the distance between
consecutive gadgets is large. Thus, the only way to traverse the gadgets with a
convex terrain is to visit them one by one, in the order as they appear along
the chain, assigning truth values to the variables in turn in each gadget.

Clause gadgets The clause gadgets are similarly arranged, one after one, on
another almost vertical convex chain, slightly bending to the left; this clause

57

x1

x2

xn

C1

Cm

F

T

F

T

F

T

F

T
xi

xj

xk

C

Figure 4.2: From left to right: The variable gadget and the two ways to traverse
it. The variable gadgets are threaded onto a convex chain; similarly, the clause
gadgets are threaded. The chains (dotted) are not parts of the construction
and are shown only for reference. The clause gadget can be traversed in only
one way. A clause C = xi ∨ x̄j ∨ x̄k: three paths are shown that pick different
subsets of the three connecting segments. The gadgets and their locations are
not to scale: the gadgets are thinner, so that the points are very close to the
supporting line of the segment – this makes the turn angles of the paths close
to π; also, consecutive gadgets along each chain are separated so that a convex
terrain can make independent choices in each of them.

chain is placed to the right of the variable chain. Each clause gadget consists
of 2 points and a segment; the only way to traverse the gadget is to visit the
first point, then the segment and then the second point – the only flexibility is
where to touch the segment.

Connectors We now place 3m more segments, connecting a variable gadget
to a clause gadget whenever the variable appears in the clause. The placement
of the segments’ endpoints within variable gadgets is as follows: if the variable
appears unnegated, the segment touches the True path through the gadget and
does not intersect the False subpath; on the contrary, if the variable appears
negated, the segment touches only the False subpath. In every clause gadget,
segments’ endpoints look the same – see Fig. 4.2; as can be easily checked, a
convex terrain can intersect any two of the segments, but not all three. This
finishes the construction.

The reduction If the 3SAT instance is feasible, the stabber can traverse
the variable gadgets according to the satisfying truth assignment. In each of

58

the clauses, at least one of the connecting segments (the one connecting to the
satisfying variable) can be omitted; the other two are picked up by one of the
three paths.

Conversely, if there exists a stabber, it must omit (at least) one connecting
segment per clause. Set the variable True or False depending on whether the
omitted segment connects from a True or False part of the variable gadget;
this satisfies all the clauses. The True/False setting is consistent because any
segment omitted by the stabber in the clause gadget must have been stabbed
in the variable gadget, and there either only the True-subpath or only the
False-subpath segments could have been stabbed, but not both.

We thus have our main negative result:

Theorem 4.2.1. Finding a convex (terrain) transversal for a set of segments
in the plane is NP-hard.

In the remainder of this section we modify our proof to show hardness of
stabbing scaled copies of a convex polygon (Section 4.2.2) and hardness of
stabbing balls in 3D (Section 4.2.3).

4.2.2 Stabbing squares and scaled copies of a convex
polygon

To show hardness of stabbing squares we again reduce from 3SAT. The con-
struction (Fig. 4.3) is very similar to the one for segments.

Variable gadgets The variable gadget consists of three points (squares
of zero area) and a square. There are two ways to traverse a gadget; one
corresponds to setting the variable True and the other to setting the variable
False.

“Fitting” We fit the variable gadget into a circular arc by putting the two
non-middle points on the arc. The middle point and the lower edge of the
square (the edge that is closest to the three points) lie inside the circular arc,
see Fig. 4.3. Each variable gadget is fit into an arc of 1/(8n) of a unit circle.

Variable arc The variable gadgets are placed next to each other on an arc
of one eighth of a unit circle. We call this arc the variable arc. The only way
to traverse the variable gadgets with a convex terrain is to visit them one by
one, in the order they appear on the arc, assigning truth values in turn in each
gadget.

59

x1

x2

xn

C1

Cm

F

T

a1

a2

V

C

Figure 4.3: From left to right: The variable gadget and two ways to traverse it;
the gadget is nearly the same as in the construction for segments, but instead
of a segment we use a square (the same holds for the clause gadgets). The
variable gadgets are placed on an arc of one eighth of a unit circle; the clause
gadgets are placed also on an arc of one eighth of the unit circle, next to the
variable gadgets. In total, the gadgets occupy an arc of one fourth of the circle.
The gadgets are not to scale: each variable gadget is fit into the circular arc
of length 1/(8n) and each clause gadget is fit into the circular arc of length
1/(8m); also consecutive gadgets are separated so that a convex terrain can
make independent choices in each gadget. On the right, V and C mark the
placements for the variable and the clause gadgets respectively; the points
a1, a2 ensure that the connector squares can either be intersected at a variable
gadget or a clause gadget but nowhere else.

Clause gadgets The clause gadgets are placed in the same way as the
variable gadgets, on an arc of one eighth of the unit circle and next to the
variable arc. Each clause gadget consists of two points and a square.

Connectors We place 3m more squares, connecting a variable gadget to a
clause gadget whenever the variable appears in the clause (Fig. 4.4). One edge
of each square is placed exactly in the same way as the connector segment in
the construction for line segments. This means that one endpoint of the edge
lies within the variable gadget as follows: if the variable appears unnegated,
the edge touches the True subpath through the gadget and does not intersect
the False subpath; on the contrary, if the variable appears negated, the edge
touches only the False subpath. In every clause gadget, the endpoints of these
edges look the same.

60

F

F

T

xi

xj

xk

C

T

T

F

Figure 4.4: Clause C = xi ∨ x̄j ∨ x̄k. Three path are marked that pick up
different subsets of the three connecting squares.

To ensure that a convex terrain can intersect connecting squares only near
the gadgets, we add two points to the construction (Fig. 4.3, right); a convex
terrain that traverses these points and all gadgets cannot intersect the unit
circle (on which the gadgets are placed) except at the gadgets. Thus, the
connectors can be intersected only at endpoints of the edges that are placed in
the same way as the connector segments in the construction for line segments.
(Note that for the latter property to hold, it was crucial to fit all variable and
clause gadgets on the quarter of a unit circle – this way all connector squares
lie inside the unit circle.)

The reduction Assume that the 3SAT formula is feasible. Then the stabber
can traverse the variable gadgets according to the satisfying assignment. In
each clause gadget one of the three connecting squares has to be omitted by
the stabber; let this be the one connecting to the satisfying variable.

On the other hand, if there exists a stabber, it must omit at least one

61

connecting square per clause. Set the variables True or False depending on
whether the omitted square connects from a True or False path of the variable
gadget; this satisfies all the clauses. This setting is consistent since any square
omitted by the stabber in the clause gadget has to be stabbed in the variable
gadget and there either only the True-subpath or the False-subpath squares
could have been traversed, but not both.

Theorem 4.2.2. Finding a convex (terrain) transversal for a set of squares
in the plane is NP-hard.

Generalization The above proof can be adapted to show that stabbing
regular k-gons is NP-hard for any k > 2: just replace the squares with the
k-gons, and (to ensure again that the connectors lie inside the unit circle) place
the variable and clause gadgets on an arc of 1/(2k) of a unit circle. That is, fit
each variable gadget into an arc of 1/(4kn), and each clause gadget into an arc
of 1/(4km).

Theorem 4.2.3. For arbitrary k > 2, finding a convex (terrain) transversal
for a set of regular k-gons in the plane is NP-hard.

It is not crucial that the polygons are regular, as only one edge of each
polygon is important for the construction. Hence, the construction works in
the same way if we consider a set of scaled copied of a given polygon instead
of regular polygons.

Theorem 4.2.4. Finding a convex (terrain) transversal for a set of scaled
copies of a given convex polygon in the plane is NP-hard.

An interesting open question is whether stabbing disks is NP-hard. Our
reduction above does not extend to this case – the reason is that we want the
connectors to lie inside the unit disk onto which the variable and clause gadgets
are threaded (this is needed to ensure that the connectors cannot be stabbed
outside the unit circle – the only places to stab them are near the gadgets).

4.2.3 Stabbing balls in 3D is NP-hard

We again reduce from 3SAT, employing similar ideas as those for segments in
2D.

(a) Variables

62

x1

x2

xn

F

T
a

b

c

d

x

y

z

x

y

z

x1
x2

xn

x
y z

strip

t

f

B

Figure 4.5: Left: The (cross-section by the supporting plane of the) variable
gadget. The gadget is not to scale; actually, the turn angles of both the dashed
and the dotted paths are close to π. Middle: The variable gadgets are threaded
onto a convex chain; the chain (dotted) is not a part of the construction and is
shown only for reference. Right: The variable grid.

Variable gadget The basic variable gadget consists of three points a, b, c
(balls of 0 radius) and one ball B of large radius whose center is denoted by
d (Fig. 4.5, left). The three points and the center of the ball all belong to a
horizontal plane, which we call the supporting plane of the gadget.

True and False touches The cross-section of B by the supporting plane
is a disk. The points t, f where the tangents from a and b touch the disk are
called the True and the False touches.

“Squashing” As with the segments in 2D, we make the dashed and dotted
paths (see Fig. 4.5, left) have the turn angles close to π. For that, we make
the three points a, b, c almost collinear, moving a and b far apart, and using a
large radius for the ball B.

Variable chain Also as with segments in 2D, the variable gadgets are placed
along an almost “flat” convex chain (Fig. 4.5, middle). Again, the gadgets are
“clenched” onto the chain so that the three points of every gadget are very close
to the chain. All gadgets and the chain are aligned, in that the supporting
planes of all gadgets coincide, and the chain also lives in this common horizontal
plane. We thus also call the plane the supporting plane of the chain. The balls
are “sticking out” of the chain, i.e., the centers of the balls are placed outside
the convex hull of the chain.

As with segments in 2D, consecutive gadgets along the chain are separated by

63

large enough distance so that the cross-section of the stabber by the supporting
plane must visit the gadgets one by one, assigning truth values to the variables
in turn in each gadget. We call this whole construction—the gadgets threaded
on the chain—the variable chain.

Variable grid We place m+ 2 copies of the variable chain, one copy directly
above another (Fig. 4.5, right). We number the copies from 0 to m+ 1. The
first and the last copies are “dummy”; we have them only to enforce consistency
of the “choices” that the stabber must make in each of the chains (see below).
The other copies correspond to the clauses.

We call the m+ 2 gadgets corresponding to variable xi in all m+ 2 chains
the i-th variable strip. This way, our construction so far is a “grid” of n strips
× m+ 2 chains (see also Fig. 4.7 below).

Consistency In Section 4.2.3 we argue that any convex terrain must make
the same “choices” at each of the m copies of the variable in a strip. That is,
for all j = 1, . . . ,m, in the cross-section by the supporting plane of the jth
chain, the stabber either uses the True touch or uses the False touch.

(b) Clauses

Clause chains Place 2(2m + 2) points (0-radius balls) on two identical
parallel almost vertical convex chains P,Q, slightly bending to the left, lying
in planes that are perpendicular to the y-axis (Fig. 4.6, left). More specifically,
the first two points p0, p

−
1 of P are the endpoints of a segment parallel to the

z-axis. The next two points, p+1 , p
−
2 are the endpoints of a segment making

a slightly larger than 0 angle with the z-axis. The next two points, p+2 , p
−
3

are endpoints of a segment making even larger angle with the z-axis, and
so on: the segments p+j p

−
j+1 make larger and larger angles with the z-axis as

j = 1, . . . ,m− 1 increases. The last two points of P are p+m, pm+1. That is, P
has 2 points per clause, plus the points p0, pm+1.

The chain Q is a parallel shift of P in the y direction. The points belonging
to Q are analogously numbered q0, q

−
1 , . . . , q

+
m, qm+1. We place P and Q to the

right of the variable grid (see Fig. 4.7, left).

Plates Because P and Q are parallel to each other, the quadruple of points
p0, p

−
1 , q

−
1 , q0 lie in the same (vertical) plane parallel to the y-axis; we call

64

p0

p−1

p+1

p−2

p+2

p−3

yz q0

q−1

q+1

q−2

q+2

q−3

x

p+j

p−j

q+j

q−j

p+j−1

q+j−1

p−j+1

q−j+1

bj

aj

Bj

a∗j

b∗j

a∗j aj

b∗j bj

Bj

yz

x

plate

screen

prism

Figure 4.6: Left: The chains P,Q. Middle: The plates (dashed), and the prism
and the screen (dotted). The figures are not to scale; actually, the chains are
almost vertical (and the supporting planes of screens are almost horizontal).
Right: The cross-section of the gadget for clause j by the supporting plane of
the jth screen.

the rectangle p0p
−
1 q
−
1 q0 the 0th plate. Similarly, p+1 , p

−
2 , q

−
2 , q

+
1 lie in the same

plane (making a positive angle with the z-axis) also parallel to the y-axis; the
rectangle p+1 p

−
2 q
−
2 q

+
1 is the 1st plate. In general, points p+j−1, p

−
j , q

−
j , q

+
j−1 lie in

a plane parallel to the y-axis, making larger angle with the z-axis for larger j;
the rectangle p+j−1p

−
j q
−
j q

+
j−1 is the jth plate (Fig. 4.6, middle).

Clause gadgets By construction, the plates must be inside the convex hull
of the stabber (including the possibility of some plates being part of the stabber
itself). Extend the plates by sliding out the sides p+j q

+
j , p

−
j q
−
j until the sides

intersect along a segment ajbj. The points p+j , q
+
j , p

−
j , q

−
j , aj, bj define a right

triangular prism (with bases perpendicular to the y-axis), which we call the
jth prism. (Note that the triangles in the prism base are not right; it is the
prism that is right.)

The jth screen is the rectangle ajbjb
∗
ja
∗
j where aja

∗
j , bjb

∗
j are altitudes of the

triangles p−j p
+
j aj , q

−
j q

+
j bj , respectively. The gadget for the clause j is a ball Bj

with the center in the supporting plane of the screen. The ball intersects ajbj
but does not intersect a∗jb

∗
j (Fig. 4.6, right). The exact placement of Bj depends

on which variables constitute the clause j, as detailed below in Section 4.2.3.

(c) The reduction

The points and balls described so far can be stabbed by a convex (surface)
stabber: the stabber can traverse the variable grid making arbitrary (but

65

x

y z

variable
chain

clause
chain

variable
strip

xi

xl

jth variable chain

xk

a∗j

b∗j
B′j

B′lj

B′kj

B′ij

bj

aj

Figure 4.7: Left: The “frame” of the construction. Right: The cross-section by
the supporting plane of the jth screen.

consistent, across the chains) truth assignments for the variables, and then
turn onto the P,Q-side where the stabber can use plates and prisms. We now
place 3m more balls, connecting a variable gadget to a clause gadget whenever
the variable appears in the clause; this turns our instance into one that has a
stabber if and only if there exists a satisfying assignment in the 3SAT.

Tall, narrow and deep First of all, we align the variable grid and clause
chains P,Q so that each pair (jth chain, jth clause gadget) lives in its own
horizontal slab, called the jth slab. We fine-tune the angles of P,Q so that the
supporting plane of the jth screen almost coincides with the supporting plane of
the jth variable chain (they cannot coincide fully because the supporting plane
of the variable chain is horizontal, while that of the screen is not). Next, we
make the whole construction “tall” and “narrow” so that the distance between
the jth chain and the jth clause gadget is smaller than the height of the jth
slab. We also make the construction “deep” in the y direction: the y-span of a
variable chain, as well as the distance between P and Q, is large in comparison
to the distance between the jth variable chain and the jth clause gadget, for
any j. Refer to Fig. 4.7, left.

Connectors Suppose now that the jth clause contains variables xi, xk, xl, i <
k < l. We place three connecting balls Bij, Bkj, Blj with the centers lying in
the supporting plane of the jth screen (Fig. 4.7, right). The balls are placed

66

opposite the variable gadgets for xi, xk, xl in the jth variable chain, and each
ball spans the space inside the construction between the jth variable chain
and the jth clause gadget (the height, the narrowness and the depth of the
construction allows us to place the balls so that they are disjoint from the
analogous balls in the other slabs).

Similarly to the case of segments in 2D, if xi is unnegated in clause j,
the ball Bij touches the True (dotted, in Fig. 4.5, left) path through the
xi’s gadget in the jth variable chain and does not touch the False (dashed)
path. Otherwise, the ball touches the False path and not the True path. The
placement of Bkj, Blj is analogous. The interaction of the balls with the jth
clause gadget is also similar to the segments in 2D: we place the balls so that
there exists a convex terrain intersecting any two of the three balls, but not all
three (Fig. 4.7, right). Section 4.2.3 details how to do this.

Correctness If the 3SAT instance is feasible, then the stabber can traverse
the variables gadgets according to the satisfying truth assignment. In each of
the clauses, the ball connecting to the satisfying variable is omitted by the
stabber; the other two are picked up in the clause gadget.

Conversely, if there exists a stabber, it must consistently traverse the
variable gadgets in the variable grid setting the truth assignment. On the
clauses side, the stabber must contain (inside its convex hull) all plates. “In
between” the plates (i.e., inside the prisms) the stabber is free to do whatever
it likes; however, no matter how it goes it will not be able to stab more than
two connecting balls per clause. The unstabbed ball satisfies the clause; the
consistency of the satisfying assignment follows from the fact that a variable
cannot be set both to True and to False by the same stabber.

Precision We were informal in saying that parts of the construction are
“large” enough, “far” enough, etc. Still, the equations and inequalities involving
the coordinates of the points in the gadgets have polynomial-size coefficients.
E.g., a variable (resp. clause) chain can be part of the boundary of the regular
O(n)-gon (resp. O(m)-gon). Thus, the construction can be done so that it has
the required properties and the coordinates specifying positions of the parts of
the gadgets are polynomial in n and m.

Overall, we have:

Theorem 4.2.5. Finding a convex (terrain) transversal for a set of balls in
3D is NP-hard.

67

(d) Consistency of choices in a variable strip

Let T be a convex terrain stabber, and consider a fixed i. We claim that
the cross-section of T by the supporting plane of the jth chain looks the same
for all j = 1, . . . ,m in the vicinity of the variable gadget for xi: the stabber
either uses the True touch or uses the False touch of the gadget. The proof is
based on the following straightforward observations:

Lemma 4.2.6. Let C be the convex hull of T. Consider any basic variable
gadget for xi (Fig. 4.5, left). We have:

i. Either the True or the False touch belongs to C, but not both.

ii. No point of the segment cd other than c belongs to C; i.e., cd ∩ C = c.

Say that the stabber makes a switch if it sets xi True in the jth variable
chain but sets xi False in the j+ 1st chain, or vice versa, for some j = 1, . . . ,m.
Consider the two cases:

There is more than one switch. Without loss of generality suppose that
xi is set to True in chains j−, j+ and to False in a chain j, for j− < j < j+.
Let t−, t, t+ be True touches in xi’s gadget in the chains j−, j+; let f be
the False touch in the chain j (Fig. 4.8, left). We know that t−, t+, f ∈ C.
The True touches of xi’s gadgets in all chains lie on a common line, i.e.,
t is a point on the segment t−t+. Thus, since C is convex, t ∈ C. This,
together with f ∈ C contradicts Lemma 4.2.6i.

There is exactly one switch. Without loss of generality suppose that xi is
set to True in a chain j and to False in the chain j+ 1. Since j ≥ 1, there
exists chain j − 1. If xi is set to False in it, then there is more than one
switch. Otherwise, let t− be the True touch in j−1st chain and let f+ be
the False touch in j + 1st chain (Fig. 4.8, right); let h be the intersection
of the segment t−f+ with the supporting plane of the jth chain. By
symmetry, h ∈ cd where c and d are the middle point and the center
of the large ball in the jth gadget for xi (refer to Fig. 4.5, left). Since
t−, f+ ∈ C and C is convex, h ∈ C. This, together with h ∈ cd, h 6= c
contradicts Lemma 4.2.6ii.

68

F

a

b

c

t

f

T

j−

a

b

c

t+T

a

b

c

t− T

j

j+

z

F

a

b

c

t

f

T
j

j + 1

F f+

j − 1

t−T

h

Figure 4.8: Left: If f is in the stabber, then t is not; however if t−, t+ are in,
then t must be in too. Right: If t−, f+ are in the stabber, then a point h 6= c
of the segment cd is in the stabber.

Two, but not three, connecting balls can be stabbed in a clause
gadget

We show how to place the three connecting balls and the ball of the jth clause
gadget so that any two balls can be stabbed by a convex terrain, but all three
cannot.

At most two balls are stabbed. First of all, each of the segments aja
∗
j , bjb

∗
j

(sides of the jth screen) must have a point of the stabber in it. Denote
by B′ij, B

′
kj, B

′
lj, B

′
j the cross-sections of the balls Bij, Bkj, Blj, Bj by the

supporting plane of the jth screen (Fig. 4.9). Let a∗jak, b
∗
jbk be the

rays from a∗j , b
∗
j tangent to B′kj. Choose the radius of B′kj so that the

intersection point of the tangents is close to ajbj (but is still inside the
screen rectangle ajbjb

∗
ja
∗
j).

Increase the radius of Bij from 0 just past the value at which B′ij is tangent
to a∗jak (i.e., the ray a∗jak cuts off a positive-area cup from the disk B′ij).
Choose the radius of B′lj similarly. Now draw the tangent a∗jai from a∗j to
B′ij and the tangent b∗jbl from b∗j to B′lj; let rk be the intersection of the
tangents. We place the ball Bj so that B′j goes through rk and is tangent
to the rays a∗jak, b

∗
jbk (the tangency points are denoted ri, rl). It easy to

see that no convex terrain can stab all 3 balls Bij, Bkj, Blj provided it

69

stabs Bj.

Stabbing two balls. On the other hand, any two of the balls can be inter-
sected by a convex stabber. For that, one can use a barn roof (Fig. 4.10)
which is a construction, with 4 faces, fully lying inside the jth prism (so
as not to break the overall convexity of the stabber). The two opposite
faces of the roof are congruent triangles p−j q

−
j sj, p

+
j q
−
j tj attached to the

adjacent plates coplanarly with the plates. The segment sjtj is parallel to
p−j p

+
j (and q−j q

+
j). The segment can be shifted between p−j p

+
j and q−j q

+
j

arbitrarily so that the cross-section of the roof by the supporting plane of
the jth screen looks like either of the 3 paths a∗j -ri-b

∗
j , a
∗
j -rk-b

∗
j , a
∗
j -rl-b

∗
j in

Fig. 4.9. That is, the roof can intersect any two of the balls Bij, Bkj, Blj

in the clause gadget (Fig. 4.10, right).

4.3 Stabbing disjoint segments

This section presents a dynamic program (DP) to decide stabbability of a
set S of pairwise-disjoint segments in the plane by a convex stabber whose
vertices are restricted to come from a given discrete set C ⊂ R∈ of candidate
points. A subproblem in the DP is specified by a pair of potential stabber
edges together with a constant-complexity “bridge” between the edges (the
bridge is either a single segment or a segment—visibility-edge—segment chain).
The disjointness of the segments allows us to determine which segments must
be stabbed within the subproblem. We show that a segment-free triangle can
be found that separates a subproblem into smaller subproblems, which allows
the DP to recurse.

Arcs and nodes, chords and bridges A straight-line segment between
two points from C (i.e., a potential stabber edge) is called an arc. Two arcs
pq, rt are compatible if either they have a common endpoint or the supporting
lines of the arcs intersect outside each of pq, rt. In other words, the points
p, q, r, t are in convex position, and pq, rt have the potential to be sides of a
convex polygon – the stabber. Refer to Fig. 4.11, left.

Let P ′ denote the set of points at which arcs intersect segments from S.
Let P be the union of P’, C, and endpoints of segments from S; call points
in P nodes. A chord is a straight-line segment whose interior intersects no
segment from S, and whose each endpoint is a node.

A bridge is a polygonal path with the following properties:

70

xi

xl

jth variable chain

xk

a∗j

b∗j

bk

ak

bl

ai

rk

B′j

B′lj

B′kj

B′ij

rl

ri

bj

aj

Figure 4.9: The cross-section by the supporting plane of the jth screen.

71

p+j

p−j

q+j

q−j

p+j−1

q+j−1

p−j+1

q−j+1

bj

aj
sj

tj

sj

tj

q−j

q+j−1

q−j−1

q+j−2

q−j−2

q+j

q−j+1

q+j+1

p−j
p+j−1

p−j−1

p+j−2

p−j−2

p+j

p−j+1

p+j+1

Figure 4.10: Left: The roof. sjtj is below ajbj . sj (resp. tj) lies in the plane of
the plate p+j−1p

−
j q
−
j q

+
j−1 (resp. p−j+1p

+
j q

+
j q
−
j+1). Right: View of the clause-side of

the stabber from a point at +∞ on the x-axis; the stabber edges are bold, the
plates boundaries are dashed. sjtj can be shifted freely to grab any two of the
balls Bij, Bkj, Blj as in Fig. 4.9; similarly, the ridges of the roofs can be shifted
independently within each clause gadget.

- Its endpoints are nodes.

- It has at most three links.

- (i) If it has exactly one link, then the link is either a chord or a part
of a segment from S – in the latter case, the bridge is chordless ; (ii) if
it has exactly two links, then one of the links is a chord, and the
other is a part of a segment; (iii) if it has exactly three links, then
they are a part of a segment from a node to the segment endpoint, a
chord, and a part of another segment from the segment endpoint to
a node (that is, the chord connects endpoints of the two segments).

Subproblems A subproblem in our DP is specified by two compatible arcs
and a bridge. More specifically, let p, q, r, t ∈ C be the four candidate points
forming compatible arcs pq, rt. Without loss of generality let rt be below the
line pq, and let q, p, r, t be the order in which the nodes appear counterclockwise
on the convex hull of the arcs. We define the wedge W to be the region that is
below the line supporting pq and above the line supporting rt. In addition to
the two arcs, the subproblem has in the input a bridge B that connects some
point of pq to some point of rt. Refer to Fig. 4.11, middle.

72

u

b
a

v

p

r

u

b

a

tW

a′

b′

a′

b′

r t

p
q

B

r′

p′p
q

r t

q

v

Figure 4.11: Left: p, q, r, t ∈ C, aa′, bb′ ∈ S, u, v ∈ P ′, p, q, r, t, a, a′, b, b′, u, v ∈
P. pq, rt are compatible arcs. rp, ba, bu, av, ta, aq, tu, bp, rb, ra, ap are chords.
rp, vbau, vau, vbu, vbp are some of the bridges; rp is chordless. Middle: The
wedge W (boundaries dashed) and the bridge B = vbau. The segments in
Spq,rt,B that have to be stabbed to the left of B are solid; the segments in
S \ Spq,rt,B are dash-dotted. Right: An empty subproblem (pq, rt, B) and an
induced subproblem (p′p, r′r, rp).

Subproblem’s responsibility The crucial observation that allows us to
run the DP is the following: Assuming that the arcs pq, rt are part of the
stabber, we know for each segment s ∈ S whether it should be stabbed to
the left or to the right of the bridge. Indeed, only those segments that have
non-empty intersection with the wedge W can be stabbed. On the other hand,
no segment can have points on both sides of the bridge – for that it would
have to cross the bridge, and this is impossible: the chord is not crossed by
definition, and no segment is crossed by another segment due to the assumption
of pairwise-disjointness of segments in S.

Let Spq,rt,B denote the segments that must be stabbed to the left of the
bridge B; i.e., the segments that intersect W in the part of the wedge that lies
to the left of B.

The function Stab(·) Define a Boolean function Stab(pq, rt, B) to be True
if the segments Spq,rt,B can be stabbed (assuming pq, rt is a part of the stab-
ber), and to be False otherwise; for an incompatible pair of arcs pq, rt define
Stab(pq, rt, ·) to be always False. The function shows whether the stabber can
be “completed” having pq, rt as its part. In the remainder of this section we
show how to evaluate the function on a subproblem given its values at other
subproblems, i.e., how to solve the DP.

Empty subproblems The subproblem (pq, rt, B) is empty (Fig. 4.11, right)
if no segment from S penetrates the region of W that is to the left of the bridge
but to the right of rp (this includes the possibility that the bridge is the segment

73

p

r

q

b

a

t

a′

b′

c

C
P ′

B

Figure 4.12: The (unknown) part of the stabber C is dotted. P ′ is the simple
polygon bounded by the unknown part of C, by pq, rt, by the bridge B = tbaq,
and by the piercing segments. abc is a separating, i.e., segment-free triangle
inside P ′.

rp itself). An empty subproblem is closed if p = r. Closed subproblems are at
the lowest level of our DP: clearly, Stab(σ) = True for a closed subproblem σ.

Let (pq, rt, B) be an empty subproblem. We say that a subproblem
(p′p, r′r, rp) is an induced subproblem of (pq, rt, B) if pp′ is below (the sup-
porting line of) pq, and rr′ is above rt. That is, the angles qpp′ and trr′

are convex, and thus both qpp′ and trr′ can potentially be parts of a convex
chain – the stabber-to-be. Empty subproblems are easy to reduce to induced
subproblems: Stab(pq, rt, B) = True for an empty subproblem (pq, rt, B) if
and only if Stab(p′p, r′r, B) is True for at least one subproblem induced by
(pq, rt, B).

General subproblems Let C be the sought stabber that has pq, rt as two
of the sides (Fig. 4.12). (Of course, we do not know C, but we will not use
its existence in the algorithm, we will only use C to argue that we can split
the subproblem into smaller ones.) Let C’ be the (convex) region bounded
by C, and let P be the part of C’ to the left of the bridge B (i.e., P is what
is chopped off C’ by B). Consider the set P ′ = P \⋃s∈Spq,rt,B s. That is, P ′

is P “pierced” by the segments Spq,rt,B that are stabbed in the subproblem
(pq, rt, B).

Because C is a stabber, every segment in Spq,rt,B intersects the boundary of
P . This means that P ′ is a (weakly) simple polygon (i.e., no segment makes a
hole in P ′ by being fully contained in the interior of P ′). Each vertex of P ′

belongs to one of the following 5 (overlapping) sets:

P0: p, q, r, t

P1: vertices of the bridge;

74

P2: nodes that reside on the arcs pq, rt;

P3: nodes that belong to C except those in P2;

P4: endpoints of segments from Spq,rt,B that are stabbed by pq or rt;

P5: endpoints of segments from Spq,rt,B that are stabbed by C \ √q,∇t.

Note that only P3 is not known to us (because we do not know C); all the other
sets are known as soon as the subproblem (pq, rt, B) is specified.

We define the important link ba of the bridge B as follows: if B is chordless,
then ba = B; otherwise ba is the chord of B. We assume that a is closer to pq,
and b is closer to rt along B. Our algorithm will search for a separating, i.e.,
segment-free triangle abc within P ′ where c is a vertex of P ′ and c /∈ P3. We
first argue that such a triangle exists, and next describe what to do depending
on the set, among P1, P2, P4, P5, to which c belongs.

Lemma 4.3.1. There exists a vertex c of P ′ such that c /∈ P3 and no segment
intersects the interior of abc.

Proof. The link ba is a side of P ′; thus, any triangulation of P ′ has a triangle
abc, with c being a vertex of P ′. If there exists a triangulation such that c /∈ P3,
we are done. Otherwise, let xy be the segment that contains c; i.e., c = xy ∩ C
(Fig. 4.13). Move c along xy inside P ′. Either c reaches the endpoint of the
segment (in which case we are done because c ∈ P5) or one of the sides of abc,
say, bc hits an endpoint z of a segment from Spq,rt,B; let c′ be the position of c
on xy when this happens. The convex quadrilateral cc′ba has no segments in
the interior, and abz is the sought triangle. �

We emphasize that even though we used C in arguing the existence of the
vertex as in the above lemma, we can find such a vertex without knowing C
(e.g., just by trying all vertices in P1, P2, P4, P5).

Let B = vbau be the bridge. We now show how our DP recurses into
subproblems defined by the sides of the triangle abc (Fig. 4.14):

Case I: c is a vertex of the bridge; c ∈ P1. Then the bridge has one fewer
links, and Stab(pq, rt, B) = Stab(pq, rt, B′) where B′ is the new bridge.

Case II: c is on pq, rt; c ∈ P2. Without loss of generality suppose that
c ∈ rt. If there exists a segment s ∈ Spq,rt,B that lies in the interior of the
triangle vbc (i.e., s is not stabbed by tc), then s cannot be stabbed in the
subproblem, and, hence, Stab(pq, rt, B) = False. Otherwise (i.e., if no segment

75

p

r

q

b

a

t

a′

b′

c c′
x

y
z

C
P ′

B

Figure 4.13: abc is a triangle in a triangulation of P ′; move c inside P ′. abz is
the sought triangle.

intersects vbc or any segment that intersects tbc is already stabbed by rt),
Stab(pq, rt, B) = Stab(pq, rt, cau).

Case III: c is an endpoint of a segment from Spq,rt,B stabbed by pq, rt; c ∈ P4.
Without loss of generality suppose that c is the endpoint of a segment that
is stabbed by rt; let z be the point of the stabbing. If there exists a segment
s ∈ Spq,rt,B that lies in the interior of the quadrilateral vbcz (i.e., s is not
stabbed by tz), then s cannot be stabbed in the subproblem, and, hence,
Stab(pq, rt, B) = False. Otherwise, Stab(pq, rt, B) = Stab(pq, rt, zcau).

Case IV: c is an endpoint of a segment from Spq,rt,B stabbed by C \√q,∇t;

c ∈ P5. Let d be the other endpoint of the segment touched by the triangle abc.
Then Stab(pq, rt, B) = True if and only if there exists an arc xy that intersects
dc (say, at a point z) such that both Stab(pq, xy, zcau) and Stab(yx, rt, vbcz)
are true. Formally,

Stab(pq, rt, B) =
∨

arc xy :
dc∩xy=z 6=∅

(Stab(pq, xy, zcau) ∧ Stab(yx, rt, vbcz))

Extensions Our DP can be modified straightforwardly to find a convex
stabber that stabs as many segments as possible. For that, we let the function
Stab(pq, rt, B) denote the number of elements of S stabbed by pq, rt plus the
maximum number of other segments that can be stabbed in the subproblem
(pq, rt, B). The recursions for the function change to reflect that Stab(pr, qt, B)
is the sum of the values of the function on the subproblems. Further, our DP
extends immediately to solve the convex stabbing problem for disjoint convex
polygons.

76

p

r

q

b

a

t

B
B′

v

u

p

r

q

b

a

t

B

c v

u

p

r

q

b

a

t

Bc

z v

u

p

r

q

b

a

t

zd
c

B
x

y
v

u

Figure 4.14: The DP recursion. Top: c ∈ P1, c ∈ P2. Bottom: c ∈ P4, c ∈ P5.

4.4 Stabbing with vertices of a regular poly-

gon

In this section we present an algorithm to decide whether a given set of disks
can be stabbed by a regular polygon. Specifically, the approximate symmetry
detection problem is: Given a set of n disks in the plane and an integer k, is it
possible to find one point per disk such that the points form a set invariant
under rotations by 2π/k? While the problem is NP-hard for general k [85], we
solve the case k = n, i.e., we determine whether it is possible to find one point
per disk so that the points are vertices of a regular n-gon.

4.4.1 The decision problem

Let D = {d1, . . . , dn} be the given disks. For points p, c ∈ R∈ and integer k let
ρkc (p) denote the image of p after rotation around c by the angle k2π/n. For a

pair of disks di, dj ∈ D, let Akij = {(p, c)|c ∈ R∈,√ ∈ d〉, ρ‖c(√) ∈ d|} ⊂ R4 be

the set of all pairs (p, c) of points p ∈ di, c ∈ R∈ such that p moves to dj after
rotating by k2π/n around c; we call Akij the apex region.

Fix a disk d1. A regular n-gon with a vertex per disk of D exists if and only
if there exist p ∈ d1 and c ∈ R∈ (the center of the n-gon) such that ρjc(p) ∈ dj+1

for j = 1, . . . , n− 1, or in other words, if and only if the intersection of n− 1
apex regions Aj1j+1 is non-empty (here the vertices of the regular n-gon stab
the disks in the order d1, d2, . . .; of course this order is not known in advance).

77

This prompts us to go through “all possible” intersections between the apex
regions, checking for each of the intersections whether an n-gon exists.

Specifically, consider the (n − 1)2 apex regions Ak1,j, j = 2, . . . , n, k =
1, . . . , n − 1. Call a point (p, c) ∈ R4 feasible if it belongs to some n − 1 of
the regions, with each region being from a different disk with a different angle.
Our problem has a feasible solution if and only if there exists a feasible point
in R4.

There are O(n2) apex regions, and each is defined by 2 polynomials of
constant degree; thus, the arrangement of the regions has polynomial complexity.
The feasibility of a point in R4 does not change as the point moves inside the
cell of the arrangement; hence, in order to determine existence of a feasible
point, it is enough to check the feasibility of an arbitrary representative point
r = (p, c) inside every cell. By [19], a representative for each cell can be
obtained in O(n2) time.

To check if r = (p, c) is feasible, build the bipartite graph Gr; the n − 1
nodes on one part correspond to the disks D \ d1, the n− 1 nodes on the other
part correspond to the angles {π/n, 4π/n, 6π/n, . . . , (n− 1)2π/n}. There is an
edge between a disk node dj and an angle node k2π/n if p rotated around c by
the angle k2π/n lands in dj (i.e., ρkc (p) ∈ dj). There is a perfect matching in
Gr if and only if c is the center of a regular n-gon with vertices in the disks
from D.

The above algorithm can be used for objects other than disks, only the
running time will change depending on the complexity of the apex regions.

4.4.2 Optimization problem: Symmetry with impreci-
sion

We now consider the following problem: Given a set P = {p1, . . . , pn} of n
points, find minimum δ∗ such that shifting each point by at most δ∗ brings
the points in symmetric position (which means they are vertices of a regular
n-gon). We give an exact algorithm, a quick constant-factor approximation,
and a PTAS for the problem.

(a) Exact solution

It is immediate that in the optimal solution, some J points of P are shifted by
exactly δ∗; we argue that J ≤ 5. Renumber the points in P so that the points
shifted by δ∗ are p1, . . . , pJ , and let q1, . . . , qJ be the shifted points. Suppose

78

we know that qj is the kj-th vertex of the optimal n-gon, where k1, . . . , kJ are
some distinct integers between 1 and n. We can then write one equation for
each j = 1, . . . , J :

|Rkj
2π
n (pj − c)− (q1 − c)| = δ∗

where c is the center of symmetry of the n-gon and Rkj2π/n is the rotation
matrix with rotation angle kj2π/n. Overall, we have J equations in 5 variables
(two for each of c and q1, and one for δ∗) . The system has a solution with an
isolated δ∗ when J = 5.

The above observations lead to a (high) polynomial-time algorithm for the
problem: Guess 5 points of P and 5 numbers k1, . . . , k5. For each guess, solve
the above described system of 5 equations in 5 unknowns to get (a constant
number of) candidate values for δ∗; for each candidate run the symmetry
detection algorithm from Section 4.4.1 with radius-δ∗ disks centered on points
of P in the input.

(b) O(1)-approximations

We start with two auxiliary lemmas:

Lemma 4.4.1. Let Q be an arbitrary regular n-gon; let g be its center. Let
r ∈ R∈ be an arbitrary point; let q be the vertex of Q closest to r. Moving each
vertex of Q by at most |qr|, the regular n-gon Q can be modified to a regular
n-gon Qg,r that is also centered at g and has r as a vertex.

Proof. Let the vertices of Q be q, q1, q2, . . . , qn−1 in counterclockwise direction.
Consider the translation vector ~pr that moves p to r. Each vertex qi of Q is
translated by a vector that is defined by ~pr rotated by i2π/n around g, see
Fig. 4.15. Hence, each vertex is moved by a distance of |qr| and the points
r, q′1, . . . , q

′
n−1 build a regular n-gon with center g, Qg,r. �

Let Q∗ = q∗1, . . . , q
∗
n be the optimal regular n-gon (|piq∗i | ≤ δ∗), and let c∗ be

the center of Q∗. Let g be the centroid of P .

Lemma 4.4.2. |c∗g| ≤ δ∗.

Proof.

|c∗g| =
∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

q∗i −
1

n

n∑
i=1

pi

∣∣∣∣∣
∣∣∣∣∣ ≤ 1

n

n∑
i=1

||q∗i − pi|| ≤ δ∗

�

79

q

r

g

Figure 4.15: Q can be moved to Qg,r (the dashed polygon).

We are now ready to give our constant-factor approximation algorithms.

A 4-approximation Take any point p ∈ P and compute, in O(n) time, the
regular n-gon Qg,p that has p as a vertex and g as center. Compute bottleneck
matching between P and vertices of Qq,p, i.e., find the ordering q1, . . . , qn of
vertices of Qq,p and minimum δg,p such that for any i = 1, . . . , n, |piqi| ≤ δg,p.

Lemma 4.4.3. δg,p ≤ 4δ∗

Proof. The n-gon Qg,p can be obtained from the optimal n-gon Q∗ as follows:
First, shift Q∗ by g − c∗ (so that the center of the shifted polygon Q is at g),
and then apply Lemma 4.4.1 (so that the polygon has p as a vertex). Let q∗

be the vertex of the optimal n-gon Q∗ closest to p. Before the shifting, we had
|q∗p| ≤ δ∗. By Lemma 4.4.2, the shift is not larger than δ∗, and, hence, there
is a vertex of the shifted polygon within distance 2δ∗ from p. By Lemma 4.4.1,
Qg,p can be obtained from the shifted polygon, moving every vertex by at most
2δ∗. Overall, any vertex of Qg,p finds itself within distance δ∗ + δ∗ + 2δ∗ from
the corresponding point of P . �

Interestingly, constructing Qg,p alone does not yield a 4-approximation of the
value of δ∗ (even though we know that Qg,p is a 4-approximation); this is
because (other than for p) we do not know which point of P moves to which
vertex of Qg,p. To know the value of δg,p, one needs to compute the bottleneck
matching between P and vertices of Qg,p. While Qg,p itself can be computed in
linear time, we know of no faster algorithm for computing δg,p than the general
O(n1.5 log n)-time algorithm of [53].

80

A 3-approximation To improve the approximation, run the above approxi-
mation algorithm with each point of P serving as the point p, and choose the
one that leads to the smallest δq,p (overall, this algorithm takes O(n2.5 log n)
time).

Lemma 4.4.4. minp∈P δq,p < 3δ∗

Proof. Consider the set of vectors V = ~piq∗i , i = 1, . . . , n; they must “span
the full 360o” (formally, any vector in R∈ must be representable as a linear
combination of vectors in V with non-negative coefficients). Thus, at least one
vector ~p∗q∗ ∈ V makes a positive angle with ~c∗g – the shift vector. Hence, the
shift brings q∗ closer to p∗ – after the shift, the distance between the shifted
vertex and p∗ is smaller than it was before the shift, i.e., is smaller than δ∗.
Applying the operations from Lemma 4.4.1 to the shifted polygon and p∗, moves
each point of the shifted polygon by at most δ∗. Overall, any vertex of Qq,p∗

finds itself within distance 2δ∗ + δ∗ from the corresponding point of P . �

A PTAS Compute a 4-approximation δ of δ∗, and lay out 1
ε
× 1

ε
grids Gg and

Gp in the δ-neighborhood of g and the δ-neighborhood of some point p ∈ P ,
respectively. Then, for each pair (g′, p′) of grid points from Gg ×Gp, compute
the regular polygon Qg′,p′ centered at g′ and having a vertex at p′, and find
the value δg′,p′ of the bottleneck matching between P and the vertices of Qg′,p′ ;
this can be done in overall O(1

ε4
n1.5 log n) time.

Lemma 4.4.5. ming′,p′ δg′,p′ ≤ (1 +O(ε))δ∗

Proof. Some vertex q∗ of Q∗ is within distance δ from p; thus, q∗ is within
distance O(εδ∗) from some gridpoint p∗ ∈ Gp. Shift the optimal polygon Q∗ so
that its center c∗ moves onto the closest point g∗ ∈ Gg. The shift moves each
vertex of Q∗ by O(εδ∗); in particular, the shifted q∗ remains O(εδ∗)-close to p∗.
Applying Lemma 4.4.1, we obtain that each vertex of Qg∗,p∗ finds itself within
distance δ∗ +O(εδ∗) +O(εδ∗) from the corresponding vertex of P . �

4.5 Conclusion

We resolved a long-standing open question: Can one determine in polynomial
time whether a set of objects has a convex transversal? We gave negative
answers for segments and scaled copies of a convex polygon in 2D and for balls
in 3D.

81

Our construction showing hardness of stabbing non-disjoint segments in
2D can be lifted to 3D while removing the intersections between the segments;
hence, stabbing disjoint objects in 3D is also hard. Note that the segments/balls
used in our hardness proofs are of drastically different sizes. But — at least for
segments — our construction can be extended to the case where all segments
have a length between 1 and 1+ε for any ε > 0. However, for unit line segments
the construction fails. We leave this as an open problem.

On the positive side, we gave a polynomial-time algorithm to determine a
convex stabber, if it exists, for a set of disjoint line segments or disjoint convex
polygons under the restriction that the stabber vertices come from a given
set C of candidate points. The most intriguing open question is whether the
restriction can be removed.

In general, convex transversals open a whole new research direction. Apart
from the algorithmic study, it could be of interest to investigate combinatorial
properties of convex stabbers, e.g., the number of geometric permutations
induced by convex stabbers for different classes of objects.

82

Chapter 5

Robust Trees and Highly
Probable Path Problem1

Super-Dense Operations (SDO) is an operational concept for Next Generation
Air Transportation System (NextGen) designed to enable very high arrival
and departure throughput at metroplexes. In a metroplex, several airports
are located in close proximity such that their collective arrival and departure
operations form a coupled system. Given the increased throughput and com-
plexity, it is critical to ensure that when off-nominal conditions occur, the
safety of system can be maintained. (Emergency and failure conditions of the
system are also part of the ongoing research, but not discussed in the chapter.)
Off-nominal conditions are defined to be the situations in which all elements of
the system are operating as designed, but operational or environmental factors
are not as planned or forecasted. An example is the situation in which weather
materializes differently than forecasted, thereby causing a significant reduction
in arrival capacity.

In SDO-Airspace, arrival and departure air traffic flows follow tree-like
routing structures that connect the outer boundary of the airspace with the
metering fixes distributed along the boundary of terminal airspace, where
metering fixes can be considered to be directly connected to the runway.
(Between the fixes and the runway there are Terminal Radar Approach Control
(TRACON)’s airspace and a final approach fix, which we will not discuss here.)

In this chapter, we study approaches to design and implement an enhanced
tree-based routing structure that provides robustness to SDO. By robustness,

1This research is funded by NASA Ames Research Center under NRA contract
NNA10DF52C, “Mitigation of Off-Nominal Events in Super Density Operations”, and
Metron Aviation.

83

we mean that our tree structure is better equipped for off-nominal conditions
such as weather changes, in that it provides pre-computed operational flexibility
properties to allow conduction of various mitigation strategies, such as route
stretching, airborne holding, and comprehensive traffic flow deviation in extreme
cases, such as airport closure. (We define mitigation strategies to be a collection
of control actions necessary to adapt the SDO system to off-nominal conditions
and then to return the system back to nominal conditions in a safe and efficient
manner.) We describe the “Robust Tree Planner” prototype software that
we developed to generate robust trees with respect to a spectrum of possible
weather scenarios.

We also study the highly probable path problem, a theoretical problem
that is directly abstracted from the application above. In robust tree routing,
we compute a tree with respect to a set of weather instances, each of which is
composed of a group of weather constraints and has an estimated probability
of occurrence. The goal is to compute a tree whose edges and nodes have a
high probability to be clear of constraints. The highly probable path problem
deals with the specific case in which we are routing a single path. Then, in
the case that the instances have the same occurrence probability, the question
becomes: Find a path from start to goal that avoids as many sets of constraints
as possible.

5.1 Problem Formulation and Results

The input to our HIGHLY-PROBABLE-PATH problem in the plane are a set
of n geometric objects, S, and two points s (the source) and t (the sink) in
the plane. We study the problem of finding a path from the source to the sink
that intersects the minimum number of objects in S. In other words, our goal
is to remove the minimum number of objects in S so that there exists an s− t
path that does not intersect any of the remaining objects.

We are particularly interested in the cases where the objects in S are line
segments or (unit) circles. Fig. 5.1 shows 2 instances of the highly probable
path problem. It is easy to see that in the first case, one needs to erase 4
segments to connect s and t. While in the second case, the answer is to remove
3 circles.

Our main results are as follows. We prove that the line segment case is
NP-Hard and we present a fast and simple approximation algorithm for the
unit disk case which can be extended to non-unit disk cases should the ratio
between radii of the largest and the smallest disks is fixed.

84

s t

(a) (b)

ts

Figure 5.1: Definition of the highly probable path problem. (a) The case where
objects in S are line segments. (b) The case where objects in S are circles.

5.1.1 Related Work

The segment version of the highly probable path problem is mainly discussed
in the context of a series of optimization problems in segment arrangements.
Independently to our work, Alt et al. [9] proved that the problem is NP-Hard
and it is also NP-Hard to decide the minimum number of segments whose
removal leaves the arrangement of the remaining segments with a single cell.
They gave a polynomial time algorithm to solve the 2-CELL-SEPARATION
problem. Kirkpatrick and Tseng [166] proved the NP-Hardness of the unit-
length segment version. Kloder and Hutchingson [92] presented a polynomial
time algorithm to find a minimum-sum-of-length set of segments in a polygonal
domain that separates two regions.

The complexity of the disk version of the highly probable path problem
remains unknown. However, it has been actively researched in the context of k-
barrier path coverage problems in Wireless Sensor Networks [33] [37] [38]. Bereg
and Kirkpatrick [21] studied the exact problem and give a 1.666-approximation
under certain circumstances. Kumar et al. [113] proposed efficient algorithms
to determine whether a belt region is k-barrier covered with a set of sensors
and also considered coverage with high probability. In addition, Gibson et
al. [66] studied a closely related problem of separating k disks and presented a
O(1)-Approximation algorithm. The disk version of the highly probable path
problem can be considered as path-coverage problem. For related problems of
covering points, Brönnimann and Goodrich [28] and Mustafa and Ray [136]
provided O(1) approximation and even PTAS.

85

5.1.2 Hardness Results for the Segment Case

Theorem 5.1.1. Given two points s and t, and a set S of n arbitrary line
segments in the plane, it is NP-hard to decide if there exists an s− t path that
intersects k(k < n) of the segments.

Proof. We prove the NP-hardness by reducing from INDEPENDENT SET. Let
G = (V,E) be an undirected graph with n vertices and e edges, the independent
set (IS) problem asks if there exist k vertices in V such that no two of which
are connected by an edge in E. We construct from graph G an instance of the
highly probable path problem.

For each vertex of G, we construct a vertex gadget. As shown in Fig. 5.2(a),
a vertex gadget has its top and bottom boundaries and a black rectangular
area in between that creates two channels. For vertex vi, we call the upper
channel Cu

vi
and the lower channel C l

vi
. Note that all the boundaries and black

areas in our proof are essentially dense segments that a path will never cross.
Therefore, a path going from node Svi to node Evi in the vertex gadget must
use one of the two channels. Finally, if the degree of vi in G is deg(vi), we add
deg(vi) segments, which will be connected to edge gadgets, that block the lower
channel C l

vi
, and deg(vi)− 1 short segments just blocking the upper channel

C l
vi

.
We then create a channel of n vertex gadgets aligned from left to right,

forming the vertex part (Fig. 5.2(b)). The leftmost and rightmost nodes in the
vertex part are Sv1 and Evn .

Svi Evi

Cu
vi

Cl
vi

......

......

......V Gv1 V Gv2 V Gvn

Sv1
Evn

(a) (b)

deg(vi)

Figure 5.2: Vertex gadget construction. (a) The vertex gadget for vertex vi. (b)
Connecting the vertex gadgets together (V Gvi is the vertex gadget for vertex
vi).

For each edge of G, we create an edge gadget similarly. As shown in
Fig. 5.3(a), the edge gadget for ei = (vi, vj) also has top and bottom boundaries
and a black area that separates the wide corridor from Sei to Eei into two

86

narrower channels, Cu
ei

and C l
ei

. Note that when approaching Eei , the original
upper channel Cu

ei
is below the original lower channel C l

ei
. Two segments

coming from the vertex gadgets for ei’s two endpoints vi and vj are used to
block the two channels.

We then use segment-free channels having a similar shape to an edge gadget
to connect the edge gadgets together, forming the edge part (Fig. 5.3(b)). The
edge part starts at node Se1 and ends at Eem .

SeiEei

Cl
ei

Cu
ei Eei Sei+1

Cl
ei

Cu
ei

Cu
ei+1

Cl
ei+1

(a) (b)

Cu
ei

Cl
ei

from V Gvi
from V Gvj

Figure 5.3: Edge gadget construction. (a) The edge gadget for edge ei = (vi, vj).
(b) Using a segment-free channel from Eei to Sei+1

to connect the end of the
edge gadget for ei to the start of the gadget for ei+1.

To finish the construction, we use a segment-free corridor from the end of
the vertex gadget for vn, Evn , to the start of the edge gadget for e1, Se1 , to
connect the vertex part to the edge part. An example of the construction is
shown in Fig. 5.4. In the constructed instance of highly probable path problem,
the source s is Sv1 and the sink t is Eem . It is easy to see that an s− t path
must pass through all vertex and edge gadgets one by one.

We now prove that there exists an independent set of size k in G if and only
if there is an s− t path that intersects exactly

∑
vi∈V deg(vi)− k segments in

the construction. Or in other words, if and only if there is an intersection-free
s − t path after the removal of exactly

∑
vi∈V deg(vi) − k segments in the

construction.
First, suppose there is an independent set of size k in G. For each vertex in

the independent set, we remove the segments blocking the upper channel in its
vertex gadget. Hence the number of segments removed is

∑
vi∈IS(deg(vi)− 1).

Then in the remaining vertex gadgets corresponding to the vertices not in the
independent set, we remove the segments that block the lower channels. The
number of segments removed is

∑
vi /∈IS deg(vi). Therefore, the total number of

segments removed from vertex gadgets is
∑

vi∈IS(deg(vi)−1)+
∑

vi /∈IS deg(vi) =

87

A B

C D
t

s

e1

e2 e3e4
e1

e2e3

e4

A B C D

Figure 5.4: A complete example of the hardness gadgets construction from a
graph.

∑
vi∈IS deg(vi) +

∑
vi /∈IS deg(vi)−

∑
vi∈IS 1 =

∑
vi∈V deg(vi)− k.

Because each edge has at most one vertex in the independent set, it has
at least one vertex not in the independent set. Thus, at least one of the two
channels in every edge gadget is segment-free. In other words, no segments need
to be removed from edge gadgets. This proves that if there is an independent set
of size k, after erasing

∑
vi∈V deg(vi)− k segments in the constructed instance,

there exists an s− t path that does not intersect any segment.
On the other hand, suppose there is a segment-free s − t path after the

removal of
∑

vi∈V deg(vi)− k segments. Without loss of generality, we assume
that

∑
vi∈V deg(vi)− l(n > l > k) segments are removed from the vertex part

and (l − k) segments are removed from the edge part. It follows directly from
the construction that in the vertex part, the s− t path uses l upper channels
and (n− l) lower channels to go from Sv1 to Evn . In edge part, let es = (vss, vse)
be an edge both channels of whose gadget are blocked by segments. Then
the s− t path must clear one of the channels to get through. Without loss of
generality, suppose it is the segment from vertex gadget V Gvse blocking the
upper channel Cu

es that is erased, which implies that the s− t path must have
used the upper channel in V Gvse . But what if the path is modified to use the
lower channel C l

vse? In that case, the upper channel Cu
es in edge gadget for es

is free. The segment originally removed from Cu
es is now removed from C l

vse

in V Gvse instead. It is easy to see that the total number of segments erased
remains unchanged, but the s− t path now uses one more, (n− l + 1), lower

88

channels in the vertex part and removes one less segments in the edge part.
(Note that the total number of removals can be fewer in case that more than
one segments originally removed from the edge part come from the same vertex
gadget.)

By repeating the process, all the segment removal operations that were
done in the edge part are now conducted in the vertex part, while the total
number of removals is at most

∑
vi∈V deg(vi)− k. Consequently, the s− t path

goes through at least k upper channels in the vertex part. And those vertex
gadgets whose upper channels are used correspond to an independent set of
size at least k. Hence there exists an independent set of size k in G. �

Because the independent set problem is hard to approximate within a
logarithmic, this proof also suggests that the highly probable path problem for
segments is hard to approximate.

5.1.3 Exploring the Disk Case

In the highly probable path problem for disks, we are interested in finding an
s− t path intersecting the minimum number of disks (Fig. 5.1(b)). As part of
future research, our conjecture is

Conjecture 5.1.2. Given two points s and t, and a set S of n arbitrary disks
in the plane, it is NP-hard to compute the minimum number, k (k < n), of
disks whose removal connects s and t with a path intersecting none of the
remaining (n− k) disks.

Bereg et al. [21] proves the following lemma: For an arbitrary disk di in S, a
highly probable s− t path crosses the boundary of di at most four times, given
(1) either s or t is at least

√
3− 1 away from the boundary of di; (2) neither s

nor t is in di. In other words, the s− t path enters and exits the boundary of
di at most twice. Fig. 5.5(a) shows an example where the boundary of a disk
is crossed four times and the minimum number of disks one needs to remove is
one.

The lemma leads to a straightforward 2-approximation algorithm. Given
the arrangement of disks, we build up its directed weighted dual graph Ḡ
which has a vertex corresponding to each face in the arrangement and an edge
joining two vertices whose corresponding faces are neighbors (a pair of faces
that can be connected by removing one disk). Fig. 5.5(c) shows the dual graph
(undirected version) of the arrangement in (b).

89

In Ḡ, edges that go into another disk are assigned weights 1, while all the
other edges have weights 0. (By an edge (fi → fj) going into a disk dr, we
mean that (fi → fj) crosses the boundary of dr and fi /∈ dr, fj ∈ dr.) As
shown in Fig. 5.5(d), the solid directed edges have weights 1, while the dashes
ones have weights 0.

We now compute the shortest path from vertex fs to vertex ft in Ḡ, where
fs’s and ft’s corresponding faces in the arrangement contain s and t, respectively.
Since each disk’s boundary can be entered and exited at most twice, the length
of the shortest path is at most 2k, hence a 2-approximation.

s t

t
s

s

t

(a) (b)

(c) (d)

Figure 5.5: Dual graph construction. (a) An s− t path which intersects only
one disk (thick boundary). (b) An arrangement of disks. (c) The directed
dual graph of the arrangment in (b). (d) Assigning weights to the edges in the
directed graph.

90

5.2 Practical Heuristics: Implementation

We have implemented algorithms for robust tree generating and applied them
to weather data for use in super dense operation(SDO) experiments and in
NASA’s FACET simulation tool. The FACET-based scenarios are performed
in collaboration with colleagues at Metron Aviation. The implementation is in
C++ and the the heuristic is based on bottommost filling of SDO airspace with
tree branches. We call the prototype software “The Robust Tree Planner”.

The Robust Tree Planner implements an algorithm for computing “robust”
arrival trees within SDO airspace populated with weather cells. We describe
each component of the algorithm below, including the grid generation, the
search graph generation, the Phase 1 tree computation, the Phase 2 tree
optimization, and operational flexibility properties computation.

The SDO airspace is mathematically modeled as an inverted cone shape
(Fig. 5.6(a)). While this cone indicates a constant descent rate, which is
unrealistic, our model generalizes directly to the case of a prescribed descent
profile specifying the altitude of arriving flights, as a function of the distance
from the airport. (Part of the future research is to design a more complex
model to address the situation in which different flights can have substantially
varying descent profiles.) The apex C sitting on the ground represents the
airport runway and the periphery of its inverted base represents the outer
boundary (entry ring) of the airspace, the altitude of which is |CCo|. The
inner boundary of the airspace, where the metering fixes are, is a range ring
in between the base and the apex, parallel to the base. We define a quadrant
to be a quarter (90-degree section) of the surface of a cone. The Robust Tree

Planner computes trees within quadrants, in between the outer boundary
−−−→
AoBo

and the inner boundary
−−→
AiBi (Fig. 5.6(b)).

The weather constraints come from forecasts that are grid-based, indicating
for each pixel at a certain altitude what the intensity value is. From the
forecast data, using the CWAM model, we obtain a grid of cells in 3D with
associated probabilities of avoidance. Thus, in our mathematical model, we
consider a very simple model in which weather constraints are modeled as
uncertain rectangular axis-aligned boxes with square top and bottom faces, at
the altitude extremes of the weather cell. (We are using a Cartesian coordinate
frame, not accounting for the curvature of the earth.) Note that weather cells
can, in general, overlap in our model; if they arise from CWAM data, though,
the cells are pairwise-disjoint. For experimentation purposes, we allow weather
cells that are more general, and our software includes the option to generate

91

Outer Boundary

Inner Boundary

C

A0 B0

E0 D0

C0 Ao Bo

Ai Bi

Outer Boundary

Inner Boundary

C

Ai Bi

Ent1
Ent2

Ent3

Entn

Internal

Fix1

(a) (b)

Nodes

Figure 5.6: The mathematical model of SDO Airspace and quadrants. (a) An
inverted cone shape is used to represent the SDO airspace. The base of the
cone centered at Co is the outer boundary. The inner boundary (range ring) is
the circle centered at Ci parallel to the base. (b) A quadrant AoBoC is shown,
with entry nodes (indicated with small, solid squares), fix nodes (small crosses

along
−−→
AiBi) and internal nodes (small solid circles). The quadrant is a quarter

of the cone shape shown in (a). (For illustration only; the figure is not to scale
and distance measurements are not precise.)

random sets of weather cells. Therefore, A cell can be specified by the position
of the lower left vertex of its bottom face B1 and its width cw and height ch
(Fig. 5.7(a)). In addition, each cell has an associated deviation probability
value, devp, indicating the estimated probability that flights will avoid the cell
as given by the CWAM model. In general, the more severe the weather is in
the cell, the more likely a flight is to avoid it. A weather instance is given by a
set of weather cells (Fig. 5.7(b)). A weather ensemble E is given by a group
of N weather instances W1, W2, ..., WN , each with an associated probability
value pwi estimating the likelihood that the instance is realized. (Naturally,
the probabilities sum to one:

∑N
i=1 pwi = 1).

5.2.1 Grid Generation

The Robust Tree Planner algorithm utilizes a discretization of airspace in its
search and optimization. This discretization is based upon establishing discrete
grid points of three types: entry nodes, arrival fix nodes, and internal merge

92

B1
B2

B3
B4

T3T4

T2

T1

cw

ch

O x

y z

O

y

z

x

C7

C2
C1

C6

C5

C8

C4

C3

(a) (b)

Figure 5.7: Weather constraints representation. (a) A weather cell of width cw,
height ch. (b) A weather instance consisting of 8 weather cells C1, C2, ..., C8.

nodes. All grid points are on the surface of the cone (quadrant), as shown in
Fig. 5.6.

Entry Nodes

A user-specified parameter n determines the number of equally spaced
arrival nodes (entry segments) on the outer boundary of the SDO airspace.
We index the nodes counter-clockwise using Ent1, Ent2, ..., Entn. Associated
with each entry node Enti is an RNP (required navigation performance, rep-
resenting the width of the tree branch) requirement, RNPi, indicating the
maximum RNP for arriving flights to that entry node over the look-ahead
planning horizon. Our search algorithm establishes flight legs consisting of air
lanes of clearance width 2×RNPi (Fig. 5.8(a)) for the path in the tree from
entry node Enti, through the tree, to the arrival fix. The first (resp., last) entry
node Ent1 (resp., Entn) has distance 2×RNP1 (resp., 2×RNPn) to the right
(resp., left) boundary of the quadrant, along the outer range ring (Fig. 5.8(a)).
All other entry nodes are equally spaced along the outer range ring of the
quadrant, or picked from a set of equally spaced candidate positions along the
outer range ring. All entry nodes have altitudes the same as that of the outer
boundary of the quadrant (|CC0| in Fig. 5.6(a)). If there is insufficient room
to space the nodes while respecting the RNP values, the software reports “The
quadrant cannot accommodate the RNP requirement.”

Arrival Fix Nodes

93

The Robust Tree Planner allows up to three arrival fix nodes. We re-
quire the fix nodes to accommodate at least the maximum RNP requirement,
RNPmax, among the associated entry nodes. We search for feasible placements
of the fix nodes, starting from the center point of the inner boundary of the
quadrant. (In this step, “feasible” placements are the positions centered at
which the RNPmax-radius balls do not overlap with weather constrained cells,
as shown in Fig. 5.8.) We continue the search by walking to the left and right
simultaneously. We search for at most three fix nodes. If there is no fix node
that satisfies the RNP requirement, the tree planner reports “A tree cannot be
generated.” We have the option to require that arrival fix nodes are spaced at
least a certain minimum distance from each other.

Internal Merge Nodes

Our goal is to generate enough internal nodes to serve as a rich set of
candidate merge nodes, while not overcrowding the airspace, causing the search
graph to explode in size. We use the minimum RNP requirements RNPmin
among entry nodes as a key parameter. The search graph has multiple layers,
organized in concentric circular arcs on the surface of the cone (quadrant).
Adjacent layers have separating distance at least 3 × RNPmin (Fig. 5.8(c)).
Based on this requirement, we generated as many layers as possible within
the SDO airspace. We let rq denote the radial thickness of the quadrant; i.e.,
rq equals the difference between the distance to the apex of the cone from
the outer range ring and that from the inner range ring (|AoAi| or |BoBi| in
Fig. 5.6(b)). Then, the number of layers in our search graph is equal to the
maximum integer nl that satisfies (3×RNPmin)× nl < rq. Next, we generate
internal nodes on each of the nl levels. A pair of adjacent internal nodes is
separated by at least 2×RNPmin + 2. Thus, if the arc length of the current
layer is arci (which can be computed easily), the number nli of nodes on a
specific layer is the maximum integer that fulfills (2×RNPmin+ 2)×nli < arci
(Fig. 5.8(c)). To generate the nodes in each layer, we partition the arc equally
into 2×nli parts, resulting in (2×nli+1) candidate positions, and place the nli
nodes at the 2nd, 4th, 6th, ..., 2× nlith positions (the first and last candidate
positions are on the right and left boundaries of the quadrant, respectively).

94

v v13

v11

v12

v14

v15

v21

v22

v23

v24

v25

v31

v32

v33

v34

v35

2×RNPi

2×RNP1

Enti Ent1

lli

lri

Fixi

(a)

(b) (d)

layerilayeri+2

≥ 3 ∗RNPmin

≥ 2×RNPmin + 2

(c)

Figure 5.8: Search graph generation. (a) Generating entry nodes on the outer
boundary of the quadrant. (b) Generating fix nodes on the inner boundary.
(c) Generating layers between the outer and inner range rings and generating
internal merge nodes on each layer. (d) Generating graph edges that connect
pairs of grid nodes. Node v has outgoing edges to 3 nodes in the next level, 5
nodes each to the 2nd and 3rd next levels, 13 in total.

5.2.2 Search Graph Generation and Test Graph against
Weather Constraints

After determining the grid nodes as described above, we generate a directed
acyclic graph (DAG) as our search graph by making selected edge connections
among the nodes. The rule is as follows: a node at level i has outgoing edges
to selected nodes at the three succeeding levels, (i + 1), (i + 2), and (i + 3).
(The parameter “3” can be modified.) For a specific node Ni at level i, we find
the closest node to Ni at each of the next 3 levels, say nodes Ni+1, Ni+2 and
Ni+3. Then Ni is designed to have outgoing edges to Ni+1 and its left and right
neighbors. Node Ni also has outgoing edges to Ni+2, Ni+3 and their two direct
left and two direct right neighbors. Therefore, a typical node has 3+5+5=13
outgoing edges (Fig. 5.8(d)). If any of the 13 nodes do not exist, no action
will be conducted to search for a replacement. Instead, we simply ignore them.
The rule is slightly different for incoming edges to fix nodes: Only the nodes
on the last two levels have outgoing edges to fix nodes, and they are connected
to each of the fix nodes.

Given a weather forecast ensemble E, together with an RNP value rnp and
a deviation threshold value devthres, we test each edge in the graph against
each member of the ensemble to compute the probability that a cylinder
corresponding to a flight leg of radius rnp, centered on the edge segment is

95

clear of weather constraints; similarly, we test each node in the graph against
each member of the ensemble, computing the probability that a ball of radius
rnp, centered at the node, is clear of weather constraints. Suppose E is
composed of a set of weather instances W1, ..., WN , each of which has an
associated probability pwi, with each instance Wi consisting of a set of weather
cells C1,..., Cm, each having an associated deviation probability devpi.

Our current implementation of the algorithms to test weather cell avoid-
ance are based on two-dimensional computations, in the horizontal plane,
based on projecting search graph edges and weather cells into the plane.
(Since our weather data will be given to us at certain fixed altitude layers,
our three-dimensional computation in fact is partitioned into a set of two-
dimensional computations between horizontal slices of weather data; thus, our
two-dimensional implementation is almost fully general in three dimensions.
Plus, 3D collision detection algorithms between cylinders or balls and weather
cells are unacceptably slow and unnecessarily complicated.)

We test an edge ei = (vi, vj), with RNP requirement RNPij, against a
weather ensemble E by testing the edge against each weather instance in
E. For a specific weather instance WI , we use a variable resi to denote the
test result of whether ei is free (resi = 1) of weather constraints in WI or
not (resi = 0). After conducting the test against all of the WI ’s, the overall
probability of clearance is obtained by conditioning on the instance, yielding
pei =

∑n
i=1(pwi × resi).

In order to test if ei is in conflict with a weather cell C, we first compare the
deviation threshold devthres with C’s deviation probability, devp. The test is
continued only if devthres < devp, since, otherwise, the weather cell is not severe
enough and the result is “no conflict”. Next, as a heuristic to accelerate conflict
detection, we compare the axis-aligned bounding box of the edge with the
(already axis-aligned) weather cell box; we proceed with further computation
only if the boxes overlap. (More sophisticated methods of intersection testing,
e.g., using bounding volume hierarchies or range search data structures are
possible and may be investigated in future research.)

Given a cell C, we first extract the relevant subsegment, e′i = (vi1, vj1), of
ei = (vi, vj) that lies in between the top and bottom (horizontal) faces, Su
and Sl, of C; see Fig. 5.9(a). (In case ei only intersects one of the faces Su
and Sl, depending on which one it intersects, ei could be (vi1, vj) or (vi, vj1).)
Next, we project ei on Sl and call the projected subsegment (v′i1, vj1). Then we
determine if the rectangle of width 2×RNPij centered at (v′i1, vj1) intersects
with the bottom, BC , of C (Fig. 5.9(c)).

96

Su

Sl

vi

vj

vi1

vj1
v′i1

C Su

Sl

C

vk

vk1

vk2
vj1

BC

vk2

2×RNPk

2×RNPij
y

xO
(a) (b) (c)

v′i1

BC BC

Figure 5.9: Testing edges/nodes against weather cells. (a) Weather clearance
testing between an edge and a weather cell. (b) Weather clearance testing
between a node and a weather cell. (c) Clearance testing after projecting nodes
and edges on the plane Sl.

A similar sequence of tests is done for nodes of the search graph: For a
node vk with RNP requirement RNPk (which models the required clearance
at this location, if it is to be used as a merge node), we consider the node to
have a conflict with a weather cell if vk lies vertically in between Su and Sl
(i.e. the altitude of the node places it within the range of altitudes spanned
by the weather cell) and the (two-dimensional) disk of radius RNPk centered
at the projection node vk2 intersects the projection, Bc, of the weather cell
(Fig. 5.9(b)(c)). Then, the probability of clearance associated with vk is
pvk =

∑n
i=1(pwi × resi).

Each edge and node of the DAG stores this probability. Furthermore, for
each edge of the DAG, we compute the probabilities of having operational
flexibility airspace of a width w to the left and to the right (separately) of the
centerline (detail in section 5.2.5).

5.2.3 Phase 1 Tree Computation

Phase 1 of our algorithm is based on a tailored depth first search (DFS) in the
search graph, utilizing only those edges and nodes of the DAG that satisfy a user-
specified robustness criterion, which is represented by a threshold probability
on the availability of a lane with the RNP width, pnodeEdge. Consequently, a
generated tree must have all its nodes (resp., edges) to satisfy pvk > pnodeEdge
(resp., pei > pnodeEdge), where pvk (resp., pei) is the probability of clearance.
Other examples of such criteria include a threshold probability on the probability
of availability of sufficient operational flexibility airspace on either side of the
flight leg.

The search starts from each entry node from Ent1 to Entn, giving priority

97

to the edges that go towards the right side of the quadrant (viewing from inner
to outer range ring, B0Bi in Fig. 5.6(b)), as shown in Fig. 5.10(a). We also
give secondary priority to long edges because the search graph is fine enough
that we want the flight segments of tree branches to be reasonably long, both
for compactness of the tree description and for having sufficient length between
consecutive merge points. We stop the DFS as soon as we reach an arrival fix
node. After completing DFS starting from Enti, we start a new DFS from
Enti+1.

There is a condition that can trigger the early termination of a DFS: when
a new branch goes to a node trij that is on the previous branch (by “previous”,
we mean if the current branch starts from Enti, the one starting from Enti−1).
As long as (1) node trij has in-degree less than 2 (usually at most 2 air lanes
are allowed to merge together, but the parameter can be adjusted), and (2)
the remaining part of the previous branch can accommodate the new RNP
requirement, we stop the DFS immediately and the new branch merges into
the previous branch.

right boundary

v12

v11
v21

v22

v32

v31

v33 v

Ent1

Ent2

Ent3

Fix1

tr11

tr12 tr21
tr22

tr31

(a) (b)

Figure 5.10: Bottommost tree computation. (a) When the graph search
algorithm looks for the next node from v, the priorities from high to low of the
outgoing nodes are: v11, v21, v31, v32, v22, v12, v33. (b) The problem with phase
1 bottommost trees: branches tend to bias towards the right boundary of the
quadrant, hence highly suboptimal.

When a DFS cannot continue (i.e., the stack is empty and the search has not
reached an arrival fix node), the software reports that a tree cannot be found
that accommodates the demand input with the specified RNP requirements. In
future work, we will add a dynamic programming component to the algorithm
to optimize over the possibilities when the demand cannot be fully satisfied;
the full model involves a complex, multicriteria optimization problem.

98

5.2.4 Phase 2 Tree Optimization

The Phase 1 tree generation determines the availability of a robust routing
tree; however, the tree is not optimized for length and appears to be highly
suboptimal (Fig. 5.10(b)). Our Phase 2 algorithm optimizes the merge tree
using a tautening function to “pull taut” (locally shorten) the branches of the
Phase 1 tree. We tauten the branches in the opposite order of bottommost
branches, starting from Entn to Ent1. An important property that should be
satisfied is that as long as there is a bottommost tree, this tautening algorithm
should always produce a better tree; it cannot fail.

When tautening the ith branch, we conduct a shortest path algorithm
starting from the ith entry node Enti. We use the previous branch (or the right
boundary) and the next branch (or the left boundary, with definition of next
branch similar to that of previous branch) as “soft” constraints, which means
we cannot cross them, but we are allowed to use the nodes that are part of
them to enable natural merging (Fig. 5.11). Again, the merge nodes must have
in-degree at most 2, and that once the current branch merges into the next
branch, it cannot leave that branch (by the property of a tree). Therefore, when
a possible merging happens, we test the remaining part of the next branch to
see if it can accommodate the new requirement of RNPi. If not, the potential
merge node cannot be used. The algorithm finds the shortest feasible path in
between these “soft” constraints that connects Enti to a fix node.

Ent1

Ent2

Ent3

Fix1

tr11

tr12 tr21
tr22

Ent1

Ent2

Ent3

Fix1

tr11
tr12

tr31
tr32

Ent1

Ent2

Ent3

Fix1

tr31
tr32 tr21

tr22

(a) (b) (c)

Figure 5.11: Three steps to optimize the bottommost tree in Fig. 5.10(b). The
shadowed regions are where the shortest path algorithm operates. (a) “Soft”
constraints are the left quadrant boundary and the bottommost branch starting
from Ent2. (b) “Soft” constraints are the tautened branch starting from Ent3
and the bottommost branch starting from Ent1. (c) “Soft” constraints are
tautened branch starting from Ent2 and the right quadrant boundary.

The algorithm above works well in most cases in which weather is not too
severe. However, there is an undesirable behavior: the branches generated tend
to merge late (near the arrival fix nodes). For the case in which there are a lot

99

of weather cells near the fix nodes, the region near the arrival fixes may be a
bottleneck through which there is only room for one branch to go. Then, it is
very likely that the Phase 1 tree branches must merge very early in order to
form a single branch well before reaching the bottleneck area, hence the arrival
fix nodes. However, the Phase 2 algorithm, which employs a shortest path
algorithm for tautening branches, is a form of “greedy” algorithm, attempting
to route tree branches to a fix node as soon as possible. Hence, the first few
tautened branches may have already “filled up” the bottleneck area, causing
all the tree nodes near the bottleneck area to have in-degree 2, so that the
subsequent branches have no possibility to merge into the taut branches of
the tree before the bottleneck. This problem causes the Phase 2 algorithm
to fail. To solve this problem, we employ a simple new method to relax the
“greediness” of the algorithm.

We use a new parameter called mergeEarly: when mergeEarly is j, for a
specific branch i that is tautened by the shortest path algorithm, the (i+ 1)th,
(i + 2)th, ..., (i + j − 1)th branches will try to merge into the ith branch as
early as possible. For example, when mergeEarly is 2, then every other branch
attempts to merge to its next branch as early as possible.

The technique used in early merging is simple: As soon as the shortest
path algorithm reaches a node vm belonging to the next branch, and the part
of the next branch from vm to its fix node is able to accommodate the new
RNP requirement, the algorithm stops and the current branch merges into the
next branch. It is easy to see that the new algorithm is effective because now
a branch always merges into the next branch at least as early as the original
branch generated by the tautening algorithm without mergeEarly. And in
most cases, much earlier.

We start the tautening process with mergeEarly set to 1, meaning that
the original greedy approach is tried first. If the algorithm fails to optimize the
tree, mergeEarly is increased by 1. We continue in this way until mergeEarly
is (n− 1). Through experimentation, we have found this revised algorithm to
be quite effective, always generating an optimized tree for a given Phase 1 tree.

5.2.5 Operational Flexibility

After the generation of the Phase 2 optimized tree, a set of j user-specified width
values w1, w2, ..., wj are used to generate probability distributions quantifying
operational flexibility properties for each edge of the tree: the operational
flexibility wiggle airspace for holding patterns (left of the edge), the operational
flexibility airspace for path stretch maneuvers (right of the edge), and the

100

(a) (b) (c)

Figure 5.12: Viewing a quadrant from different angles. The green plane is
z = 0. (We use black background color to emphasize the 3D effect.) The
grey balls along the outer boundary mark the entry node positions and their
corresponding RNP requirements. (a). Front View. (b). Side View. (c). Back
View.

(a) (b) (c)

Figure 5.13: Example of a weather ensemble consisting of 3 instances, shown
in (a)(b) and (c).

operational flexibility airspace centered along the edge (extending on both sides
of the edge). For each property, we compute j probabilities of clearance, one
for each choice of wi. The way to compute the probabilities is the same as
testing edges and nodes against weather ensembles, described in section 5.2.2
and Fig. 5.9.

For each edge, we compute and store j probability values corresponding to
operational flexibility airspace for holding patterns. In other words, if wHP is
a random variable specifying the width of a maximum-width constraint-free
rectangle to the left of an edge, we are computing the probabilities p(wHP > wi),
for each wi, yielding an approximation of the cumulative distribution function
of the random variable wHP . Similar computations are done for rectangles of
width wi to the right of and centered on each edge.

Additionally, off-nominal exit points (ONEPs) are generated along edges
of the tree, spaced evenly according to a spacing parameter that depends on

101

(a) (b) (c)

Figure 5.14: Examples of Phase 1 and Phase 2 trees. Orange balls along the
outer boundary of the quadrant represent entry nodes. Their radii correspond
to the RNP requirements (a) The front view of the quadrant. (b) The Phase 1
bottommost tree. (c) The Phase 2 optimized tree.

(a) (b) (c)

Figure 5.15: The underlying routing DAG (directed acyclic graph) used to
generate the trees shown in Fig. 5.14. (a) The DAG (shown in green). (b)(c)
The center lines of Phase 1 and Phase 2 tree branches, shown together with
layers of nodes in the DAG.

the length of each edge and its associated RNP value rnp. The current default
is that each edge has at most 3 evenly spaced ONEPs along the edge, with
the requirement that the radius-rnp disks centered at the ONEPs are disjoint,
so that ONEPs are not placed unnecessarily close to each other. The number
of ONEPs could be 0, 1, 2, or 3, depending how the edge length compares
with rnp. The ONEPs are prepared for the next phase of experiments, in
which contingency trees to alternate airports are generated. In those trees, the
ONEPs are used as the new entry nodes.

This computed information is stored with each tree edge so that our al-
gorithm can reason about the probabilities of availability of different sizes
and types of operational flexibility airspace for holding patterns and path
stretch maneuvers, and can compute contingency trees that allow diversions to
alternate fixes or airports.

102

(a) (b) (c)

Figure 5.16: Examples of operational flexibility properties. (a) Wiggle airspace
for holding patterns (left of the center lines). (b) Path Stretching airspace
(right of the center lines). (c) Deviation nodes on the center lines, shown in
small red dots.

The same set of operations are conducted on each node of the tree as well.
We compute for a set of disks centered at the node with radii w1, w2, ..., wj,
the probability of clearance. The information is stored with each tree node as
its operational flexibility property.

5.2.6 Illustrations

Fig. 5.12– 5.16 illustrate images from the Robust Tree Planner software.
Fig. 5.12 shows a 3D quadrant viewed from different angles and Fig. 5.13
shows a randomly generated weather ensemble consisting of 3 instances. The
underlying search DAG and examples of generated Phase 1 and Phase 2 trees
are shown in Fig. 5.14 and Fig. 5.15.

Fig. 5.16 illustrates 3 types of operational flexibility properties. Different
colors illustrate the free-of-constraints probabilities of the corresponding rect-
angles (for edges) or disks (for nodes); green indicates high probability (at or
near 1) that the area is free of weather, dark grey indicates lower probability,
orange indicates lower still, and dark red indicates lowest non-zero probability.

5.3 Practical Heuristics: Experiments

We report experimental results involving algorithmic design choices. The user
interface allows one to use a mouse to adjust the quadrant, setting its center
position, inner and outer radii, inner and outer heights, and starting angle
relative to the positive x axis. The weather data used for testing can be real
weather from NASA’s FACET simulation tool, or can be randomly generated

103

by our random weather generator. The key parameters specifying a weather
ensemble are: (1) The number of weather instances numInstances; (2) The
probability that each instance happens pwi, which sum up to 1. (3) The number
of weather cells in each weather instance numCells; (4) Range of cell widths
cellWidth; (5) Range of cell heights cellHeight; (6) The deviation threshold
of each weather cell devthres, and (7) a bounding box of all the cells specifying
approximately where they are. Our random weather generator simulates each
of these parameters based on the position of the quadrant and a set of user
input ranges.

5.3.1 Speed Tests

In our tree generating speed tests, the quadrant has inner radius 15, outer
radius 100, inner height 0 and outer height 37. (The position, size and height
of the quadrant is not important in the experiments because the parameters of
weather ensembles can always be adjusted accordingly. The reason we choose
to set the quadrant with the group of parameters above is that they allow
us to use the user interface to adjust and view the quadrant most efficiently.)
The parameters used to generate simulated weather ensembles are carefully
chosen so that the instances have their cells evenly distributed, neither overly
crowded nor overly light. Ensembles are generated within the axis-aligned
bounding box of the quadrant, with numInstances between 1 and 5, the same
pwi = 1/numInstances across all the instances, numCells between 5 and 17,
cellWidth between 5 and 15 and cellHeight between 10 and 20, all uniformly
distributed. The deviation probabilities (devp) of cells are defaulted to 1 so
that every cell always has its impact on the tree generating.

The two important parameters for trees are rnp, measuring the thickness
of a tree, and pnodeEdge, the threshold probability criterion no less than which
each node and edge in the tree must have its probability of clearance be. rnp
(resp., pnodeEdge) is randomly generated to be uniformly distributed between 1
and 4 (resp., 0.6 and 1.0).

We tested 2000 randomly generated test cases on a 2.26GHz Intel CPU
computer. Trees are successfully generated in 1505 cases. On average, the time
to compute a Phase 1 bottommost tree is 0.9084s and that to compute a Phase
2 optimized tree is 1.7345s. Out of the remaining 495 cases where the software
fails to generate a tree, the average time to report failure is 0.8717s.

104

5.3.2 Robustness Tests

We design robustness testing experiments to prove that our robust tree gen-
erator indeed generates more robust trees. By robust, we mean that when
tested against a set of randomly generated weather instances, a more robust
tree should have a higher probability of clearance. In the experiments, we use
the same quadrant as in Section. 5.3.1.

Test Setup

In order to test robustness, instead of generating purely random weather
ensembles, we simulate weather in real world scenarios where for a specific
time point tf , there are a set of weather forecasts, W1, ..., WN , each of which

has a probability, p(Wi), that it happens. The p(Wi)’s satisfy
∑N

i=1 p(Wi) = 1.
When the time tf approaches, the real weather condition is usually very similar
to one of the forecasts Wi, but with slight difference, such as offsets in cell
positions or changes of cell severities.

To better simulate real world weather scenarios, we first generate 3 sets of
random seed weather cell positions, which correspond to 3 weather forecasts.
The seed positions are a group of 3D vertices with cardinality numCells. We
call them Sw1, Sw2 and Sw3. The seeds are used to generate more weather
instances for testings, which simulate the real weather condition at time tf .
We use a parameter rangeFromSeed to specify the allowed range of cell
offsets relative to their corresponding positions in Swi. The range we use
is (0, rangeFromSeed). It is easy to see that the larger rangeFromSeed is,
the more the possible offset from the seed positions to their newly generated
positions can be.

In the experiment, we compute trees in the quadrant populated with weather
ensembles consisting of instances generated from one or more of the 1st, 2nd
or 3rd seeds, and then test the generated trees against more of such seed-based
weather instances. We compare the probabilities of clearance, pt’s, among the
trees and expect that the trees generated with instances from all 3 seeds to
have higher pt’s, hence to be the more robust ones.

We are also interested in testing another way to enhance robustness. The
idea is simple and straightforward: To generate a robust tree with RNP require-
ment (lane width) rnps, we compute a tree with a larger RNP requirement
rnpl (rnpl > rnps). The effect of using rnpl is similar to that of adjusting a
weather ensemble’s rangeFromSeed. The meanings are different though. One
is to shrink the widths of trees so that they can avoid more weather cells, while

105

the other is to gain robustness by limiting the space occupied by cells. We use
newRNPRatio to represent rnps/rnpl (newRNPRatio 6 1).

To conclude the parameters used in our robustness tests, besides the ones
used in Section. 5.3.1, including the number of instances in an ensemble
numInstances (each instance has the same 1/numInstances probability of
happening), the number of cells in an ensemble numCells, the width range of
cells cellWidth, the height range of cells cellHeight, the deviation probability
of a cell devp, the tree thickness measurement rnp, and the threshold probability
criterion pnodeEdge, we also have the following new parameters involved and
adjustable: rangeFromSeed and newRNPRatio. (In the experiments, the
parameter cellHeight is defaulted to a constant because it is essentially the
same parameter as numCells. Also devp is defaulted to be 1 as explained in
Section. 5.3.1.)

Instead of thoroughly testing all the combinations of parameters, we first
conduct a careful pre-selection process that helps select the combinations
with higher qualities, which measures the crowdedness of weather ensem-
bles provided trees’ rnps. The definition of the quality of a combination
combi = (numInstances, numCells, cellWidth, pnodeEdge, rangeFromSeed,
newRNPRatio), Qcombi , is as follows. Based on combi, we generate 1000 ran-
dom weather instances, and then compute trees out of these instances. We call
the number of successful cases ns and Qcombi is defined to be Qcombi = ns/1000.
The pre-selection process evaluates the quality of each combination and only the
ones satisfying Qcombi >= 0.3 are used in the experiments. The pre-selection
step is necessary in that it still allows us to test most of the meaningful combi-
nations while helping us avoid spending excessive amount of time on testing
cases with overly crowded weather ensembles.

Test Results Analysis

We tested and analyzed over 10 million [tree, weather instance] pairs on
our randomly generated data sets. The test results are shown in tables 5.1 and
5.2. Elements in the first column of each table are in the form of (i1, i2, i3),
which refers to a weather ensemble that has in total (i1 + i2 + i3) instances.
And i1 of the instances are generated from seed Sw1, i2 of them are from seed
Sw2 and i3 are from Sw3. We call such an ensemble an (i1, i2, i3)-ensemble.

The tables present the average robustness of the trees generated with a
specific combination of parameter values. For example, the number 0.5682
(numCells = 5.0, (i1, i2, i3) = (1, 0, 0)) in Table 5.1 represents the test result

106

that on average, trees computed against an ensemble containing 1 weather
instance generated from seed Sw1, consisting of 5 cells (other parameters are
random), have a probability of 56.82% to be clear of weather instances that are
randomly generated from one of the three seeds with the same set of parameters.
The quick fact is that the larger the number in a cell is, the more robust the
corresponding tree is.

We see that throughout the tables, the numbers in the first 3 rows in the
same column are monotonically increasing, so are the numbers in the last 3
rows, which meets our expectations and testifies that with the same set of
parameters, trees from weather instances generated based on more seeds are
more robust than that from less seeds. One more fact is that in the same
column, the value in the ith (1 6 i 6 3) row is always less than that in the
(i+ 3)th row, where the number of instances in the ensemble is 3 times larger.
The explanation of the fact is that the more the number of instances generated
from a seed Swi are, the farther away that the tree is from Swi’s positions.
Hence when a new instance is generated from Swi, the tree is more likely to be
clear of that instance.

Further, we examined the robustness of trees with different newRNPRatio
values as shown in the last 4 columns of Table 5.2. Again, the results proves our
conjecture that the trees generated with a larger newRNPRatio = rnpl > rnps
are less robust than the ones with a smaller newRNPRatio. The tables show
these additional stylized facts as well: (1) The larger numCells is, the less
robust the generated tree is; (2) Similarly, robustness decreases as cellWidth
increases; (3) When rangeFromSeed increases, the weather instances generated
are more random. Hence the robustness decreases.

We analyze the parameter pnodeEdge separately. All the tables report the
experiment results when pnodeEdge is within the range of [0.7, 0.1]. But when
pnodeEdge is smaller, the test results are mixed, where a tree computed from
an (1, 1, 1)-ensemble may perform even worse than that from an (1, 1, 0)-
ensemble or an (1, 0, 0)-ensemble. We explain the reason with an example:
When pnodeEdge = 0.6, every node or edge in a tree generated from an (1, 1, 1)-
ensemble needs to be free of weather cells from only 2 of the 3 instances, because
2
3
≈ 0.67 > 0.6. But different edges or nodes in the same tree may be clear of

different sets of instances. For example, edge ei is clear of instances 1 and 2,
while edge ej is clear of instances 1 and 3. Consequently, when considered as a
whole, the tree is only clear of part of each instance in the ensemble. Therefore,
when tested against a new weather instance, the tree has a high probability to
fail. Although all the nodes and edges in the tree are robust, the tree itself is

107

Parameters numCells cellWidth
(i1, i2, i3)-ensemble 5.0 8.0 11.0 3.0 5.5 8.0

(1, 0, 0) 0.5682 0.4417 0.3400 0.5314 0.4421 0.3765
(1, 1, 0) 0.6733 0.5624 0.4873 0.6272 0.5716 0.5242
(1, 1, 1) 0.7885 0.7019 0.6352 0.7478 0.7037 0.6742
(3, 0, 0) 0.6083 0.4942 0.4192 0.5679 0.5007 0.4531
(3, 3, 0) 0.6879 0.5778 0.4983 0.6357 0.5851 0.5434
(3, 3, 3) 0.8015 0.7245 0.6591 0.7546 0.7307 0.6998

Table 5.1: Robust tree test results(1). The number in each cell represents
the robustness of trees generated from its corresponding values of a set of
parameters. The larger the number is, the more robust the trees are. This
table presents the results of testing parameters numCells and cellWidth.

Parameters rangeFromSeed newRNPRatio
(i1, i2, i3)-ensemble 1.0 3.0 5.0 0.4 0.6 0.8 1.0

(1, 0, 0) 0.4894 0.4466 0.4139 0.4960 0.4631 0.4351 0.4037

(1, 1, 0) 0.6832 0.5575 0.4822 0.6435 0.6053 0.5574 0.4912

(1, 1, 1) 0.8425 0.6976 0.5855 0.7856 0.7396 0.6871 0.6246

(3, 0, 0) 0.5256 0.5101 0.4860 0.5606 0.5214 0.4922 0.4547

(3, 3, 0) 0.6822 0.5694 0.5124 0.6565 0.6121 0.5672 0.5164

(3, 3, 3) 0.8595 0.7180 0.6075 0.7996 0.7609 0.7137 0.6392

Table 5.2: Robust tree test results(2). This table presents the results of testing
parameters rangeFromSeed and newRNPRatio.

not a robust tree.
In order to avoid the problem, pnodeEdge must be large enough so that an

edge or node needs to be clear of at least one weather instance generated
from each seed. Specifically, suppose there are n seeds, Sw1, ..., Swn and an
(i1, ..., in)-ensemble generated from the seeds, the instances of whom have the
same probability of happening 1/

∑n
i=1(ii). Then based on the pigeonhole

principle, pnodeEdge must satisfy pnodeEdge > 1− (min(i1, ..., in)− 1)/
∑n

i=1(ii).
To solve the problem, a straightforward method is that each edge or node

stores the subset of weather instances that it is free of and the tree has all its
edges and nodes clear of the instances generated from the same subset of seeds.
But this is essentially the same as computing a tree directly from an ensemble
of instances generated from less seeds. A better way to solve the problem and a
possibly better definition of robust trees will be investigated in future research.

108

Chapter 6

Open Problems and Future
Research

1. In Chapter 2, we proved that routing r red and b blue thick paths in a
polygonal domain in the plane is NP-Hard. Further, we designed and
implemented a heuristic using a bottommost lane packing technique. The
hardness proof applies directly to the three-dimensional version of the
problem. How can we extend the heuristic to three dimensions, where
there is not a clear notion of “bottommost”? What other heuristics can
be devised for this case?

2. Instead of routing red and blue thick paths as described in Chapter 2,
we can consider the problem of routing the maximum number of paths,
for a single class of aircraft, but with the constraint that the thick paths
are disjoint and homotopically distinct (i.e., “threaded differently”, in a
topological sense).

3. In Chapter 4, we proved that it is NP-Hard to find a convex transversal
for a set of (intersecting) 2D segments. What is the complexity of the
problem for a set of unit length segments, a set of disks, or a set of
pseudo-disks? Our conjecture is that it remains NP-Hard for these cases.
It may be possible to extend our proof technique to these cases.

4. Also in Chapter 4, we proved that in 3D, it is NP-Hard to find a convex
transversal for a set of balls. Can the proof be adapted to apply to unit
balls? Our conjecture is that the problem remains NP-Hard for unit balls
in 3D.

109

5. Still in Chapter 4, we gave a dynamic program to solve the case for
disjoint segments, if the vertices of the transversal are from a given set
of candidate positions. We do not know if the problem is solvable if
the candidate set is not provided. This seems to be a challenging open
problem.

6. In Chapter 5, we showed that to find a highly probable path for a set of
(unit) segments is NP-Hard. The complexity is open, as far as we know,
for the case of disks or unit disks in the plane. We are also interested
in finding polynomial-time algorithms to solve some special cases of the
problem, with different types of restrictions, e.g., when we require the
path to be monotone,or we restrict the size of the domain so that the
total number of substantially different disks is limited. Further, we are
interested in realistic input models for sets of constraints that arise in our
motivating application – hazardous weather avoidance. Sets of constraints
that arise from an ensemble of weather forecasts are likely to show special
structure, which may be captured in an appropriate model, allowing us
to obtain efficient (provable) algorithms for these cases.

110

Bibliography

[1] Report of the RTCA Board of Directors’ Select Committee on Free Flight.
RTCA, Inc., Washington, DC, Jan. 1995.

[2] P. K. Agarwal, P. Raghavan, and H. Tamaki. Motion planning for a
steering-constrained robot through moderate obstacles. In Proc. 27th
Annu. ACM Sympos. Theory Comput., pages 343–352, 1995.

[3] P. K. Agarwal and M. Sharir. Arrangements and their applications. In
Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computa-
tional Geometry, pages 49–119. Elsevier Science B.V. North-Holland,
Amsterdam, 2000.

[4] A. Aggarwal, M. M. Klawe, S. Moran, P. W. Shor, and R. Wilber.
Geometric applications of a matrix searching algorithm. In Proc. 2nd
Annu. ACM Sympos. Comput. Geom., pages 285–292, 1986.

[5] N. Aggarwal and K. Fujimura. Motion planning amidst planar moving
obstacles. In Proceedings of ICRA, pages 2153–2158, 1994.

[6] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

[7] D. Alberts and M.R. Henzinger. Average case analysis of dynamic graph
algorithms. In SODA ’95, pages 312–321, 1995.

[8] D. Alevras, M. Grotschel, and R. Wessali. Capacity and survivabil-
ity models for telecommunication networks. Konrad-Zuse-Zentrum fur
Informationstechnik, Berlin, Germany, 1997.

[9] H. Alt, S. Cabello, P. Giannopoulos, and C. Knauer. On some connection
problems in straight-line segment arrangements. In Abstracts of the 27th
European Workshop on Computational Geometry (EuroCG 11), pages
27–30, 2011.

111

[10] N.M. Amato. An optimal algorithm for finding the separation of simple
polygons. In WADS ’93: Proceedings of the Third Workshop on Algo-
rithms and Data Structures, pages 48–59, London, UK, 1993. Springer-
Verlag.

[11] E. J. Anderson, P. Nash, and A. B. Philpott. A class of continuous
network flow problems. Math Oper Res, 7(4):501–514, 1982.

[12] E. M. Arkin, R. Connelly, and J. S. B. Mitchell. On monotone paths
among obstacles, with applications to planning assemblies. In Proc. 5th
Annual ACM Symposium on Computational Geometry, pages 334–343,
1989.

[13] E. M. Arkin, C. Dieckmann, C. Knauer, J. S. B. Mitchell, V. Polishchuk,
L. Schlipf, and S. Yang. Convex transversals. In Jörg Rüdiger Sack
Frank Dehne, John Iacono, editor, Proc. 12th Workshop Algorithms
Data Struct., volume 6844 of Lecture Notes Comput. Sci., pages 49–60.
Springer-Verlag, 2011.

[14] E. M. Arkin, J. S. B. Mitchell, and V. Polishchuk. Maximum thick paths
in static and dynamic environments. Computational Geometry: Theory
and Applications, 43(3):279–294, 2010.

[15] E. M. Arkin, J. S. B. Mitchell, V. Polishchuk, and S. Yang. Convex
transversals. In Fall Workshop on Computational Geometry, 2010.

[16] David S. Atkinson and Pravin M. Vaidya. Using geometry to solve the
transportation problem in the plane. Algorithmica, 13(5):442–461, 1995.

[17] S. Bae, J. Kim, and K. Chwa. Optimal construction of the city voronoi
diagram. In ISAAC, pages 183–192, 2006.

[18] O. Bastert and S.P. Fekete. Geometric wire routing. Technical Report
332, Zentrum für Angewandte Informatik, 1998.

[19] S. Basu, R. Pollack, and M. Roy. On computing a set of points meeting
every cell defined by a family of polynomials on a variety. J. Complex.,
13(1):28–37, 1997.

[20] S. Bereg and D.G. Kirkpatrick. Curvature-bounded traversals of narrow
corridors. In Symposium on Computational Geometry, pages 278–287,
2005.

112

[21] S. Bereg and D.G. Kirkpatrick. Approximating barrier resilience in
wireless sensor networks. In 5th ALGOSENSORS, volume 5804 of LNCS,
pages 29–40. Springer, 2009.

[22] S. Bespamyatnikh. Computing homotopic shortest paths in the plane. J.
Algorithms, 49(2):284–303, 2003.

[23] S. Bespamyatnikh. Encoding homotopy of paths in the plane. In Proc.
of the 6th Latin American Theoretical INformatics (LATIN’04), LNCS
2976, pages 329–338, 2004.

[24] A. Bley. On the complexity of vertex-disjoint length-restricted path
problems. Computational Complexity, 12(3-4):131–149, 2003.

[25] J. Boissonnat, J. Czyzowicz, O. Devillers, J. Robert, and M. Yvinec.
Convex tours of bounded curvature. Comput. Geom. Theory Appl.,
13:149–159, 1999.

[26] J. Boissonnat and S. Lazard. A polynomial-time algorithm for computing
a shortest path of bounded curvature amidst moderate obstacles. In Proc.
12th Annu. ACM Sympos. Comput. Geom., pages 242–251, 1996.

[27] M. Brennan. Airspace flow programs - a fast path to deployment. Journal
of Air Traffic Control, 49(1), 2007.

[28] H. Brönnimann and M.T. Goodrich. Almost optimal set covers in finite
vc-dimension. Discrete & Computational Geometry, 14(4):463–479, 1995.

[29] R. L. Brooks. On colouring the nodes of a network. Proc. Cambridge
Phil. Soc, 37:194–197, 1941.

[30] S. Cabello, Y. Liu, A. Mantler, and J. Snoeyink. Testing homotopy for
paths in the plane. In SCG ’02: Proceedings of the eighteenth annual
symposium on Computational geometry, pages 160–169, New York, NY,
USA, 2002. ACM Press.

[31] J. Canny, A. Rege, and J. Reif. An exact algorithm for kinodynamic
planning in the plane. Discrete Comput. Geom., 6:461–484, 1991.

[32] J. Canny and J. H. Reif. New lower bound techniques for robot motion
planning problems. In Proc. 28th Annu. IEEE Sympos. Found. Comput.
Sci., pages 49–60, 1987.

113

[33] R. D. Carr, S. Doddi, G. Konjevod, and M. Marathe. On the red-blue
set cover problem. In 11th Annual ACM-SIAM Symposium on Discrete
algorithms, pages 345–353, 2000.

[34] W. Chan, M. Refai, and R. DeLaura. Validation of a model to predict
pilot penetrations of convective weather. In AIAA Aviation, Technology,
Integration and Operations Conf., Belfast, Northern Ireland, Sept. 2007.

[35] C. Chekuri. Multicommodity flow, well-linked terminals and routing prob-
lems. In Ming-Yang Kao, editor, Encyclopedia of Algorithms. Springer,
2008.

[36] C. Chekuri, S. Khanna, and F. B. Shepherd. Edge-disjoint paths in
planar graphs. In FOCS ’04: Proceedings of the 45th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’04), pages 71–
80, Washington, DC, USA, 2004. IEEE Computer Society.

[37] A. Chen, S. Kumar, and T. H. Lai. Designing localized algorithms for
barrier coverage. In 13th Annual ACM International Conference on
Mobile Computing and Networking (MobiCom’07), pages 63–74, 2007.

[38] A. Chen, T. Lai, and D. Xuan. Measuring and guaranteeing quality of
barrier-coverage in wireless sensor networks. In 9th ACM international
symposium on Mobile ad hoc networking and computing, pages 421–430,
New York, NY, USA, 2008.

[39] L. P. Chew. Planning the shortest path for a disc in O(n2 log n) time. In
Proc. SoCG’85, pages 214–220, 1985.

[40] Y.-J. Chiang, J.T. Klosowski, C. Lee, and J.S.B. Mitchell. Geometric
algorithms for conflict detection/resolution in atm. In IEEE Conf. on
Decision and Control, San Diego, CA, 1997.

[41] F. Chin, J. Snoeyink, and C. A. Wang. Finding the medial axis of a
simple polygon in linear time. Discrete Comput. Geom., 21(3):405–420,
1999.

[42] R. Cole and A. Siegel. River routing every which way, but loose. In Proc.
25th Annu. IEEE Sympos. Found. Comput. Sci., pages 65–73, 1984.

[43] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, Cambridge, MA, 2009.

114

[44] P. Crescenzi and V. Kann. A compendium of NP optimization problems.
In Complexity and Approximation. Combinatorial Optimization Problems
and Their Approximability Properties. Springer, Berlin, 1999.

[45] T. Dayan. Rubber-Band Based Topological Router. PhD thesis, UC Santa
Cruz, 1997.

[46] M. de Berg, M. van Kreveld, M.H. Overmars, and O. Schwarzkopf.
Computational Geometry: Algorithms and Applications. Springer-Verlag,
Berlin, 1997.

[47] R. DeLaura and J. Evans. An exploratory study of modeling en route
pilot convective storm flight deviation behavior. In 12th American Mete-
orological Society Conf. on Aviation, Range, and Aerospace Meteorology,
Atlanta, GA, Jan./Feb. 2006.

[48] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271, 1959.

[49] D. P. Dobkin and D. L. Souvaine. Computational geometry in a curved
world. Algorithmica, 5:421–457, 1990.

[50] D. P. Dobkin, D. L. Souvaine, and C. J. Van Wyk. Decomposition and
intersection of simple splinegons. Algorithmica, 3:473–486, 1988.

[51] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer,
1999.

[52] C.A. Duncan, A. Efrat, S.G. Kobourov, and C. Wenk. Drawing with fat
edges. In GD ’01: Revised Papers from the 9th International Symposium
on Graph Drawing, pages 162–177, London, UK, 2002. Springer-Verlag.

[53] A. Efrat, A. Itai, and M.J. Katz. Geometry helps in bottleneck matching
and related problems. Algorithmica, 31(1):1–28, 2001.

[54] A. Efrat, S. Kobourov, M. Stepp, and C. Wenk. Growing fat graphs.
In SCG ’02: Proceedings of the eighteenth annual symposium on Com-
putational geometry, pages 277–278, New York, NY, USA, 2002. ACM
Press.

[55] A. Efrat, S.G. Kobourov, and A. Lubiw. Computing homotopic shortest
paths efficiently. In Proceedings of the 10th Annual European Symposium
on Algorithms, pages 411–423, London, UK, 2002. Springer-Verlag.

115

[56] S. Foldes. Conditions for the separability of objects in two-dimensional
velocity fields. Canad. Math. Bull., 35(4):484–491, 1992.

[57] A. Fournier and D. Y. Montuno. Triangulating simple polygons and
equivalent problems. ACM Trans. Graph., 3(2):153–174, 1984.

[58] A. Frank. Packing paths, cuts, and circuits — a survey. In B. Korte,
L. Lovasz, H.J. Promel, and A. Schrijver, editors, Paths, Flows, and
VLSI Layout, pages 49–100. Berlin: Springer-Verlag, 1990.

[59] K. Fujimura. Motion planning amid transient obstacles. The International
Journal of Robotics Research, 13(5):395–407, 1994.

[60] K. Fujimura. Time-minimal paths amidst moving obstacles in three
dimensions. Theor. Comput. Sci., 270(1-2):421–440, 2002.

[61] K. Fujimura and H. Samet. Planning a time-minimal motion among
moving obstacles. Algorithmica, 10(1):41–63, 1993.

[62] H.N. Gabow, S.N. Maheswari, and L.J. Osterweil. On two problems
in the generation of program test paths. IEEE Trans. Software Eng.,
2(3):227–231, 1976.

[63] S. Gao, M. Jerrum, M. Kaufman, K. Mehlhorn, and W. Rülling. On
continuous homotopic one layer routing. In SCG ’88: Proceedings of the
fourth annual symposium on Computational geometry, pages 392–402,
New York, NY, USA, 1988. ACM Press.

[64] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, New York, NY,
1979.

[65] L. Gewali, A. Meng, Joseph S. B. Mitchell, and S. Ntafos. Path planning
in 0/1/∞ weighted regions with applications. ORSA J. Comput., 2(3):253–
272, 1990.

[66] M. Gibson, G. Kanade, and K. Varadarajan. On isolating points using
disks.

[67] J. Glimm and D.H. Sharp. Complex fluid mixing flows: Simulation vs.
theory vs. experiment. SIAM News, 39(5), June 2006.

116

[68] M.T. Goodrich and J. Snoeyink. Stabbing parallel segments with a
convex polygon. Comput. Vision Graph. Image Process., 49(2):152–170,
1990.

[69] R.L. Graham, B.D. Lubachevsky, K.J. Nurmela, and P.R. J. Österg̊ard.
Dense packings of congruent circles in a circle. Discrete Mathematics,
181(1-3):139–154, 1998.

[70] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan. Linear
time algorithms for visibility and shortest path problems inside simple
polygons. In SCG ’86, pages 1–13, New York, NY, USA, 1986. ACM
Press.

[71] V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yan-
nakakis. Near-optimal hardness results and approximation algorithms
for edge-disjoint paths and related problems. pages 19–28, 1999.

[72] M. Harris, A. Raza, Z. Rojas, E. Price, and S. Rajlawat. Preliminary
design analysis of dynamic airspace super sectors DASS, 2006.

[73] H. Hering. Air traffic freeway system for Europe. Report
EEC Note No. 20/05, EUROCONTROL Experimental Centre, 2005.
www.eurocontrol.int.

[74] J. Hershberger and J. Snoeyink. Computing minimum length paths of a
given homotopy class. Comput. Geom. Theory Appl., 4:63–98, 1994.

[75] J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest
paths in the plane. SIAM J. Comp., 28:2215–2256, 1999.

[76] S. Hirsch and E. Leiserowitz. Exact construction of minkowski sums
of polygons and a disc with application to motion planning. Technical
report ECG-TR181205-01, Tel-Aviv University, 2002.

[77] H. van der Holst and J. C. de Pina. Length-bounded disjoint paths in
planar graphs. Discr. Appl. Math., 120(1-3):251–261, 2002.

[78] J. Hopcroft and R. M. Karp. An n(5/2) algorithm for maximum matchings
in bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.

[79] C. Hsu. General river routing algorithm. In Proceedings of the twentieth
design automation conference on Design automation, pages 578–583,
1983.

117

[80] T. C. Hu. Integer programming and network flows. Addison-Wesley,
Reading, MA, 1969.

[81] T.C. Hu, A.B. Kahng, and G. Robins. Solution of the discrete plateau
problem. Proc. Natl. Acad. Sci., pages 9235–9236, October 1992.

[82] T.C. Hu, A.B. Kahng, and G. Robins. Optimal robust path planning in
general environments. IEEE Transactions on Robotics and Automation,
9:775–784, 1993.

[83] M. Iri. Survey of mathematical programming. (A. Prékopa, Ed.) North-
Holland, Amsterdam, Netherlands, 1979.

[84] A. Itai and Y. Shiloach. Maximum flow in planar networks. SIAM J.
Comput., 8(2):135–150, May 1979.

[85] S. Iwanowski. Testing approximate symmetry in the plane is NP-hard.
Theor. Comput. Sci., 80(2):227–262, 1991.

[86] H. Kaplan, N. Rubin, and M. Sharir. Line transversals of convex polyhedra
in R3. In SODA ’09, pages 170–179, 2009.

[87] R. M. Karp. On the computational complexity of combinatorial problems.
5:45–68, 1975.

[88] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars. Prob-
abilistic roadmaps for path planning in high dimensional configuration
spaces. IEEE Trans. Robot. Autom., 12:566–580, 1996.

[89] K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan
regions and collision-free translational motion amidst polygonal obstacles.
Discrete Comput. Geom., 1:59–71, 1986.

[90] J. Kim, J. S. B. Mitchell, V. Polishchuk, S. Yang, and J. Zou. Routing
multi-class traffic flows in the plane. Computational Geometry: Theory
and Applications, 45:99 – 114, Apr. 2012.

[91] A. Klein, L. Cook, B. Wood, and D. Simenauer. Airspace capacity
estimation using flows and weather-impacted traffic index. In Integrated
Communications, Navigation and Surveillance (ICNS’08), pages 1–12,
2008.

118

[92] S. Kloder and S. Hutchinson. Barrier coverage for variable bounded-range
line-of-sight guards. In ICRA, pages 391–396. IEEE, 2007.

[93] R. Kohn and G. Strang. Optimal design and relaxation of variational
problems. Communications on Pure and Appl. Math., (39):113–137, 1986.
(Part I), 139–182 (Part II), 353–377 (Part III).

[94] R. Kohn and G. Strang. The constrained least gradient problem. In
R. Knops and A. Lacey, editors, Nonclassical Continuum Mechanics,
pages 226–243. Cambridge Univ. Press, 1987.

[95] S.G. Kolliopoulos and C. Stein. Approximating disjoint-path problems
using greedy algorithms and packing integer programs. Lecture Notes in
Computer Science, 1412:153–168, 1998.

[96] M. R. Kramer and J. van Leeuwen. Wire-routing is NP-complete. Tech-
nical report RUU-CS-82-4, Department of Computer Science, University
of Utrecht, 1982.

[97] S. Krishna and J. Krozel. Impact analysis for in-flight icing hazards. In
AIAA Guidance, Navigation, and Control Conf., Chicago, IL, Aug. 2009.

[98] J. Krozel, R. Jakobovits, and S. Penny. An algorithmic approach for
airspace flow programs. Air Traffic Control Quarterly, 14(3), 2006.

[99] J. Krozel, W. McNichols, J. Prete, and T. Lindholm. Causality analysis
for aviation weather hazards. In AIAA Aviation Technology, Integration,
and Operations Conf., Anchorage, AK, Sept. 2008.

[100] J. Krozel, W. McNichols, J. Prete, and T. Lindholm. Causality analysis
for aviation weather hazards. In AIAA Aviation Technology, Integration,
and Operations (ATIO) Conference, Anchorage, AK, Sept. 2008.

[101] J. Krozel, J. S. B. Mitchell, V. Polishchuk, and J. Prete. Airspace capacity
estimation with convective weather constraints. In AIAA Guidance,
Navigation, and Control Conference, Aug 2007.

[102] J. Krozel, J.S.B. Mitchell, V. Klimenko, T. Lindholm, J. Prete, N. Downs,
and S. Krishna. Translation of weather information to traffic flow man-
agement (TFM) impact: Weather translation model for TFM decisions
including FACET demonstrations. Technical Report 34N0707-002-R0,
Metron Aviation, October 2008.

119

[103] J. Krozel, J.S.B. Mitchell, V. Polishchuk, and J. Prete. Maximum flow
rates for capacity estimation in level flight with convective weather
constraints. Air Traffic Control Quarterly, 15(3), 2007.

[104] J. Krozel, J.S.B. Mitchell, V. Polishchuk, and J. Prete. Maximum flow
rates for capacity estimation in level flight with convective weather
constraints. Air Traffic Control Quarterly, 15(3):209–238, 2007.

[105] J. Krozel and Jr. Murphy, J.T. Weather hazard requirements for ngats
aircraft. In Integrated Communications, Navigation, and Surveillance
Conf., Herndon, VA, May 2007.

[106] J. Krozel, S. Penny, J. Prete, and J.S.B. Mitchell. Automated route gen-
eration for avoiding deterministic weather in transition airspace. Journal
of Guidance, Control, and Dynamics, 30(1):144–153.

[107] J. Krozel, S. Penny, J. Prete, and J.S.B. Mitchell. Comparison of algo-
rithms for synthesizing weather avoidance routes in transition airspace.
In AIAA Guidance, Navigation and Control Conf., August 2004.

[108] J. Krozel, J. Prete, J. S. B. Mitchell, Joondong Kim, and Jason Zou.
Capacity estimation for super-dense operations. In AIAA Guidance,
Navigation, and Control Conf., Aug 2008.

[109] J. Krozel, J. Prete, J.S.B. Mitchell, J. Kim, and J. Zou. Capacity
estimation for super-dense operations. In AIAA Guidance, Navigation,
and Control Conf., Honolulu, HI, Aug. 2008.

[110] J. Krozel, J. Prete, J.S.B. Mitchell, J. Kim, and J. Zou. Capacity
estimation for super-dense operations. In AIAA Guidance, Navigation,
and Control Conference, 2008.

[111] J. Krozel, J. Prete, J.S.B. Mitchell, P. Smith, and A.D. Andre. Designing
on-demand coded departure routes. In AIAA Guidance, Navigation, and
Control Conference, 2006.

[112] K. Kuhn. Analysis of thunderstorm effects on aggregated aircraft trajecto-
ries. Journal of Aerospace Computing, Information and Communication,
5, April 2008.

[113] S. Kumar, T.-H. Lai, and A. Arora. Barrier coverage with wireless sensors.
Wireless Networks, 13(6):817–834, 2007.

120

[114] Y. Kusakari, H. Suzuki, and T. Nishizeki. Finding a shortest pair of paths
on the plane with obstacles and crossing areas. In J. Staples et al., editor,
Algorithms and Computation, pages 42–51. Springer, Berlin,, 1995.

[115] J.-C. Latombe. Robot Motion Planning. Kluwer, Boston, 1991.

[116] S.M. Lavalle. Planning Algorithms. Cambridge University Press, New
York, NY, 2006.

[117] D. T. Lee, C. D. Yang, and C. K. Wong. Rectilinear paths among
rectilinear obstacles. Discr. Appl. Math., 70:185–215, 1996.

[118] C. E. Leiserson and F. M. Maley. Algorithms for routing and testing
routability of planar VLSI layouts. In Proc. 17th Annu. ACM Sympos.
Theory Comput., pages 69–78, 1985.

[119] Z. Li and J. F. Canny, editors. Nonholonomic Motion Planning. Kluwer,
Norwell, MA, 1992.

[120] T. Lindholm, J. Krozel, and J. S. B. Mitchell. Concept of operations
for addressing multiple types of en route hazardous weather constraints
in nextgen. In AIAA Aviation Technology, Integration, and Operations
Conf., Hilton Head, SC, Sept. 2009.

[121] Y.-H. Liu and S. Arimoto. Finding the shortest path of a disc among
polygonal obstacles using a radius-independent graph. IEEE Trans.
Robot. Autom., 11(5):682–691, October 1995.

[122] M. Löffler and M.J. van Kreveld. Largest and smallest convex hulls for
imprecise points. Algorithmica, 56(2):235–269, 2010.

[123] J. F. Lynch. The equivalence of theorem proving and the interconnection
problem. ACM SIGDA Newsletter, 5:31–65, 1975.

[124] F. M. Maley. Single-Layer Wire Routing and Compaction. MIT Press,
Cambridge, MA, 1990.

[125] E. A. Melissaratos and D. L. Souvaine. On solving geometric optimization
problems using shortest paths. In Proc. 6th Annu. ACM Sympos. Comput.
Geom., pages 350–359, 1990.

121

[126] D. Michalek and H. Balakrishnan. Identification of robust routes using
convective weather. In Eighth USA/Europe Air Traffic Management
Research and Development Seminar (ATM), 2009.

[127] J.S.B. Mitchell. On maximum flows in polyhedral domains. Journal of
Computer and System Sciences, 40:88–123, 1990.

[128] J.S.B. Mitchell. A new algorithm for shortest paths among obstacles in
the plane. Ann. Math. Artif. Intell., 3:83–106, 1991.

[129] J.S.B. Mitchell. L1 shortest paths among polygonal obstacles in the plane.
Algorithmica, 8:55–88, 1992.

[130] J.S.B. Mitchell. Shortest paths and networks. In Jacob E. Goodman
and Joseph O’Rourke, editors, Handbook of Discrete and Computational
Geometry, chapter 24, pages 445–466. CRC Press LLC, 1997.

[131] J.S.B. Mitchell. Geometric shortest paths and network optimization. In
Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computa-
tional Geometry, pages 633–701. Elsevier Science B.V. North-Holland,
Amsterdam, 2000.

[132] J.S.B. Mitchell and C.H. Papadimitriou. The weighted region problem:
finding shortest paths through a weighted planar subdivision. J. ACM,
38:18–73, 1991.

[133] J.S.B. Mitchell and V. Polishchuk. Thick non-crossing paths and
minimum-cost flows in polygonal domains. In 23rd ACM Symposium on
Computational Geometry, pages 56–65, 2007.

[134] J.S.B. Mitchell, V. Polishchuk, and J. Krozel. Airspace throughput
analysis considering stochastic weather. In AIAA Guidance, Navigation,
and Control Conference, Aug 2006.

[135] J.S.B. Mitchell and M. Sharir. New results on shortest paths in three
dimensions. In SCG ’04: Proceedings of the twentieth annual symposium
on Computational geometry, pages 124–133, New York, NY, USA, 2004.
ACM Press.

[136] N.H. Mustafa and S. Ray. Ptas for geometric hitting set problems via
local search. In In Symposium on Computational Geometry(SoCG), pages
17–22, 2009.

122

[137] D. Nieuwenhuisen, J.P. van den Berg, and M.H. Overmars. Efficient path
planning in changing environments. In Proc. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems - IROS’07, 2007.

[138] A. Orda and R. Rom. On continuous network flows. Operations Research
Letters, 17, February 1995.

[139] J.B. Orlin. A faster strongly polynomial minimum cost flow algorithm.
In STOC ’88: Proceedings of the twentieth annual ACM symposium on
Theory of computing, pages 377–387, New York, NY, USA, 1988. ACM
Press.

[140] J.B. Orlin, 2007. Personal communication.

[141] E. Papadopoulou. Personal communication.

[142] E. Papadopoulou. k-pairs non-crossing shortest paths in a simple polygon.
Int. J. Comp. Geom. Appl., 9(6):533–552, 1999.

[143] V. Polishchuk. Thick Non-Crossing Paths and Minimum-Cost Continuous
Flows in Geometric Domains. PhD thesis, Stony Brook University, Aug
2007. Available at http://cs.helsinki.fi/~polishch/pages/thesis.
pdf.

[144] J. Prete. Aircraft Routing in the Presence of Hazardous Weather. PhD
thesis, Computer Science, Stony Brook University, Stony Brook.NY.,
2007.

[145] J. Prete, J. Krozel, J. S. B. Mitchell, Joondong Kim, and Jason Zou.
Flexible, performance-based route planning for super-dense operations.
In AIAA Guidance, Navigation, and Control Conf., Aug 2008.

[146] J. Prete and J.S.B. Mitchell. Safe routing of multiple aircraft flows in the
presence of time-varying weather data. In AIAA Guidance, Navigation
and Control Conf., August 2004.

[147] J. Reif and M. Sharir. Motion planning in the presence of moving
obstacles. J. ACM, 41(4):764–790, July 1994.

[148] J. Reif and H. Wang. The complexity of the two dimensional curvature-
constrained shortest-path problem. In Proc. 3rd Workshop Algorithmic
Found. Robot., pages 49–57, 1998.

123

http://cs.helsinki.fi/~polishch/pages/thesis.pdf
http://cs.helsinki.fi/~polishch/pages/thesis.pdf

[149] D. Richards. Complexity of single-layer routing. IEEE Trans. Computers,
33(3):2860–288, 1984.

[150] N. Robertson and P. D. Seymour. Graph minors. xiii: the disjoint paths
problem. J. Comb. Theory Ser. B, 63(1):65–110, 1995.

[151] M. Sato, J. Sakanaka, and T. Ohtsuki. A fast line-search method based on
a tile plane. In IEEE International Symposium on Circuits and Systems,
pages 588–591, May 1987.

[152] D. K. Schmidt. On modeling atc work load and sector capacity. Journal
of Aircraft, 13(7), 1975.

[153] Y. Schreiber. Shortest paths on realistic polyhedra. In SCG ’07: Proceed-
ings of the twenty-third annual symposium on Computational geometry,
pages 74–83, New York, NY, USA, 2007. ACM Press.

[154] Y. Schreiber and M. Sharir. An optimal-time algorithm for shortest paths
on a convex polytope in three dimensions. In SCG ’06: Proceedings of
the twenty-second annual symposium on Computational geometry, pages
30–39, New York, NY, USA, 2006. ACM Press.

[155] R. Sharman, C. Tebaldi, G. Wiener, and J. Wolff. An integrated approach
to mid- and upper-level turbulence forecasting. Weather and Forecasting,
21:268–287, 2006.

[156] Y. Shiloach. A polynomial solution to the undirected two paths problem.
J. ACM, 27(3):445–456, 1980.

[157] L. Song, C. Wanke, and D. Greenbaum. Predicting sector capacity for tfm
decision support. In AIAA 6th Technology, Integration, and Operations
Conf., Wichita, KS, Sept. 2006.

[158] L. Song, C. Wanke, and D. Greenbaum. Predicting sector capacity under
severe weather impact for traffic flow management sector capacity under
severe weather impact for traffic flow management. In AIAA Aviation
Technology, Integration, and Operations Conf., Belfast, Northern Ireland,
Sept. 2007.

[159] L. Song., C. Wanke, D. Greenbaum, S. Zobell, and C. Jackson. Method-
ologies for estimating the impact of severe weather on airspace capacity.
In 26th Intern. Congress of the Aeronautical Sciences, Anchorage, AK,
Sept. 2008.

124

[160] P. Sternberg, G. Williams, and W.P. Ziemer. The constrained least
gradient problem in Rn. Transactions of the American Mathematical
Society, 339(1):403–432, September 1993.

[161] G. Strang. Maximal flow through a domain. Math. Program., 26:123–143,
1983.

[162] H. Swenson, R. Barhydt, and M. Landis. Next generation air transporta-
tion system (NGATS) air traffic management (ATM)-airspace project.
Tech. Report, Version 6.0, NASA, 2006.

[163] J. Takahashi, H. Suzuki, and T. Nishizeki. Finding shortest non-crossing
rectilinear paths in plane regions. In ISAAC, pages 98–107, 1993.

[164] A. Tamir. Problem 4-2 (New York University, Dept. of Statistics and
Operations Research), Problems Presented at the Fourth NYU Compu-
tational Geometry Day (3/13/87).

[165] E. Tardos. A strongly polynomial minimum cost circulation algorithm.
Combinatorica, 5(3):247–255, 1985.

[166] K.-C. R. Tseng. Resilience of wireless sensor networks. Master’s thesis,
The University Of British Columbia (Vancouver), April 2011.

[167] J.P. van den Berg. Path Planning in Dynamic Environments. PhD thesis,
Utrecht University, 2007.

[168] J.P. van den Berg, D. Ferguson, and J. Kuffner. Anytime path planning
and replanning in dynamic environments. In ICRA, pages 2366–2371,
2006.

[169] J.P. van den Berg, D. Nieuwenhuisen, L. Jaillet, and M.H. Overmars. Cre-
ating robust roadmaps for motion planning in changing environments. In
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems - IROS’05,
pages 2415–2421, 2005.

[170] J.P. van den Berg and M.H. Overmars. Prioritized motion planning
for multiple robots. In IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems - IROS’05, pages 2217–2222, 2005.

[171] J.P. van den Berg and M.H. Overmars. Roadmap-based motion planning
in dynamic environments. IEEE Transactions on Robotics, 21(5):885–897,
2005.

125

[172] J.P. van den Berg and M.H. Overmars. Planning the shortest safe
path amidst unpredictably moving obstacles. In Proc. Workshop on
Algorithmic Foundations of Robotics - WAFR’06, 2006.

[173] J.P. van den Berg and M.H. Overmars. Kinodynamic motion planning
on roadmaps in dynamic environments. In Proc. IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems - IROS’07, 2007.

[174] J. Vygen. Disjoint paths. Research Institute for Discrete Mathematics,
University of Bonn, Report No. 94816, 1998.

[175] R. Wein, J.P. van den Berg, and D. Halperin. The visibility-voronoi
complex and its applications. In Symposium on Computational Geometry,
pages 63–72, 2005.

[176] C. D. Yang, D. T. Lee, and C. K. Wong. On bends and lengths of
rectilinear paths: a graph theoretic approach. Internat. J. Comput.
Geom. Appl., 2(1):61–74, 1992.

[177] C. D. Yang, D. T. Lee, and C. K. Wong. The smallest pair of noncrossing
paths in a rectilinear polygon. IEEE Trans. Comput., 46(8):930–941,
1997.

[178] S. Yang, J. Kim, J. Krozel, J. S. B. Mitchell, V. Polishchuk, and J. Zou.
Flexible airlane generation to maximize flow under hard and soft con-
straints. Air Traffic Control Quarterly, 19(2):1–26, 2011.

[179] A. Yousefi, G.L. Donohue, and L. Sherry. High-volume tube-shape sectors
(HTS): A network of high capacity ribbons connecting congested city
pairs. In Proc. 23rd Digital Avionics Systems Conference, volume 1,
pages 3.1–7, Salt-lake City, 2004.

126

	List of Figures
	Acknowledgements
	Introduction
	Routing Multi-Class Traffic Flows in the Plane This work grew out of discussions during participation in the ATM-Wx Impact Modeling Workshop 2: ATM Weather Constraint Modeling, at the National Center for Atmospheric Research, Boulder, CO, March 3-4, 2008. We thank William Chan (NASA Ames), Nathan Downs (Metron Aviation), Jimmy Krozel (Metron Aviation), Tenny Lindholm (STAR), Joseph Prete (Metron Aviation), and Bob Sharman (STAR) for their input in formulating the algorithmic model and providing aviation expertise and weather data for our experiments. We thank Nathan Downs (Metron Aviation) for assistance in FACET simulations. FACET is provided by NASA Ames. We thank Esther Arkin, Petteri Kaski, Jukka Suomela, Girish Sabhnani and Charles Ward for helpful discussions. We thank the anonymous reviewers for their suggestions that improved the presentation of the results. This work was partially funded by NASA Ames, Metron Aviation, the National Science Foundation (CCF-0431030, CCF-0528209, CCF-0729019), and Academy of Finland (grant 138520). A preliminary version appeared in the abstracts of the 18th Annual Fall Workshop on Computational Geometry, 2008.
	Introduction
	Motivation
	Related Work
	Summary of Contributions

	Problem Formulation and Overview of the Results
	Type Sequence and Uppermost Paths

	Testing type sequence feasibility in the monochromatic case
	Hardness results
	Only blue obstacles
	Hardness of approximation
	Hardness of the Two Widths paths problem

	Approximation
	Small number of holes
	Practical Heuristics: Implementation and Experiments
	Data Sets
	Enumeration of Type Sequences
	A Heuristic for Short Paths
	Experimental Results

	Conclusion

	Flexible Air Lane Generation to Maximize Flow Under Hard and Soft ConstraintsThis research was funded by NASA Ames Research Center under contract NNA07BB36C for the NextGen Air Traffic Management (ATM) - Airspace Project - Subtopic 15: Translation of Weather Information to Traffic Flow Management Impact. The authors appreciate the frequent inputs from our contract monitor, Mr. William Chan from NASA Ames Research Center. Finally, we appreciate the financial support of the sponsor of the research, NASA NextGen Project Manager, Dr. Paramal Kopardekar. J. Mitchell is partially supported by the National Science Foundation (CCF-0528209, CCF-0729019). V. Polishchuk is partially supported by a personal grant from the Academy of Finland grant 118653 (ALGODAN)
	Introduction
	Related Work
	Chapter Organization

	Modeling
	Airspace Model
	Hard and Soft Constraints
	Objective

	Maximum Flow Rate Theory
	Flows in Discrete Networks
	Multi-Class Throughput Problem Formulation
	Class Sequences
	Bottommost Paths
	Theoretical Results

	Algorithmic Solution Approaches
	Bottommost Path Filling Algorithm
	Postprocessing: Tautening Bottommost Paths

	Experiments
	Real Weather Data
	Experimental Results
	Probabilistic Weather Maps

	Conclusion
	Future Research

	Convex TransversalsWe thank the reviewers for helpful comments. E. Arkin, J. Mitchell, and S. Yang are partially supported by the National Science Foundation (CCF-0729019, CCF-1018388). Work by L. Schlipf was supported by the Deutsche Forschungsgemeinschaft within the research training group ``Methods for Discrete Structures''(GRK 1408). V. Polishchuk is funded by the Academy of Finland grant 138520.
	Introduction
	Contributions
	Closed stabbers vs. Terrains

	Hardness results
	Stabbing segments in the plane is NP-hard
	Stabbing squares and scaled copies of a convex polygon
	Stabbing balls in 3D is NP-hard

	Stabbing disjoint segments
	Stabbing with vertices of a regular polygon
	The decision problem
	Optimization problem: Symmetry with imprecision

	Conclusion

	Robust Trees and Highly Probable Path ProblemThis research is funded by NASA Ames Research Center under NRA contract NNA10DF52C, ``Mitigation of Off-Nominal Events in Super Density Operations'', and Metron Aviation.
	Problem Formulation and Results
	Related Work
	Hardness Results for the Segment Case
	Exploring the Disk Case

	Practical Heuristics: Implementation
	Grid Generation
	Search Graph Generation and Test Graph against Weather Constraints
	Phase 1 Tree Computation
	Phase 2 Tree Optimization
	Operational Flexibility
	Illustrations

	Practical Heuristics: Experiments
	Speed Tests
	Robustness Tests

	Open Problems and Future Research
	Bibliography

