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Abstract of the Dissertation
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Ziyi Zheng
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Cone-beam CT (Computed Tomography) has become ar nmajaging
technique thanks to its image-fidelity and scannitige. Scientists and
practitioners frequently utilize volume visualizati tools for diagnosis and
decision-making. The thesis work presented herksseeimprove on the volume
visualization pipeline for CT generated data. Wenswarize our contributions
into three categories.

Cone-beam CT scanners typically use analytical ralguns to reconstruct
volumetric data. We studied the interpolation eobvisualization tools and built
a verifiable visualization tool and efficient datructure to enable users to enjoy
interactive rendering speed to freely examine ftiga hesolution data at minimal
error.

For the recently developed low-dose CT which sgffesm either noisy or an

insufficient number of X-ray projections, we propdsan optimization framework



to determine effective parameters for the data demp and volume
reconstruction stage. We have devised an effiaieetthod to optimize various
parameters for iterative CT reconstruction using e colony optimization
algorithm. We also developed an interactive uségriace to visually explore
various acquisition settings. Our preliminary résushow that the learned
parameters can be readily applied to similar seatispromising results.

Lastly, we provide visual guidance which can boesér efficiency when
exploring the data. For guided visualization, wepase a view suggestion
framework rooted in high-dimensional feature spadgch does not rely on

particular transfer functions or volume segmentetias an initial input.
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Chapter 1. Introduction

1.1 Problem Statement

Computed Tomography (CT) is a widely employed imggnodality in medical and
industrial application. Many researchers and ptiacters make evaluations or diagnosis
decisions by examining CT scanned data. For martesfe applications, high accuracy
and fast speed are of major importance.

Visualization researchers and practitioners eiltm@w or at least suspect that their
visualization tools may not be completely truthfalthe underlying data. This is often
rooted in compromises that need to be made fombaig rendering speed and quality.
An often-studied error source is the interpolatdroff-grid samples, where aliasing can
lead to misleading artifacts and blurring, potdhtidhiding fine details of critical
importance. As for CT, the volumetric data subjecinterpolation in the rendering stage
are often not the actual raw data, but only derifrech them. This implies the quality-
enhancing effort in visualization can be rooted ioterpolation in X-ray projections.
However, traditionally volume rendering algorithrfessor grid-only data in terms of
computational cost. There is a crucial need of Hitient rendering method taking
consideration of projection domain data.

Before visualization stage, CT reconstruction atata-generation that takes X-ray
projections and create 3D volumetric data withichflindustrial value. With the growing
concerns of the X-ray radiation to the patientsnedical applications, more and more
researches have been interested in lowering taertotmber of projection or reducing the
radiation dose per projection. To cope with thevsloreconstruction speed and lower
guality, computational-efficient regularization afghm becomes a hot topic. There are a
great amount of image denoising algorithms. Buttnobshem require manually chosen
parameters thus cannot be claimed as general@muthutomatically choosing effective
parameters to perform image processing remains aleolging problem in data

generation stage.



Chapter 1 Introduction

During the visualization stage, the visual exploratand extraction of relevant
information from 3D volume data can be a dauntagktas it often requires users to try
out many different combinations of views and trangtinctions. In this regard, having
proper views to start with can greatly improve #féciency of the data exploration
process. Hence, given an arbitrary volume datéisetsuggestion of a set of interesting

views has been a research topic of great intdsasglso one of challenges.

1.2 Approach

To address the three problems above, we proposesponding improvements in
data generation domain, data transformation angalimation domain. These algorithms

can be illustrated in a general framework listelble

' )
CT Reconstruction Reconstruction Optimizer
’ i Re-sampling Verification

£ Sy

Figure 1. The overview of the proposed reconstruction and visualization framework.

As seen in Figure 1, the CT reconstruction optimimcuses on an automatic
parameter tuning. In the pre-computation step af parameter learning framework,
effective parameters are learned with the access khown gold-standard. As these
domain-specific and algorithm-dependent parameter®btained, they are applied in the
similar incoming data. In addition, an edge-enhar@& component is introduced and
automatically tuned to increase the sharpness @mative reconstruction. The
implementation details of the automatic paramepgmaozation method can be found in
Chapter 3. Chapter 2 presents the concept and nmgpliations in CT reconstruction. It
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also includes discussions about acceleration tqaksi used in GPU-based cone beam
CT reconstruction.

Aiming to account for visualization errors direcily the volume generation stage,
we propose a verifiable visualization method. foims the CT reconstruction process of
the specific filter intended for interpolation ihet subsequent visualization process, and
this in turn ensures an accurate interpolationetlatra set tolerance. Chapter 4 discusses
the proposed verifiable visualization in details.

Finally, the automatic viewpoint advisor — iView -suggests promising views
based on the high-dimensional clustering. It inferasers of promising views before
laborious transfer function exploration even beginsgl so prevents “dead-end” transfer
function exploration experiences. Our view suggestiare adaptive to what the user has
already seen. Users can explore the entire viewespath progressive suggestions of
promising viewpoints. This facilitates a fully umsirained volume exploration, but
ensures that all important features are eventg&gn. In addition the viewpoint advisor
provides viewpoint set solutions that are optirGdlapter 5 presents this view suggestion
method.

Finally in Chapter 6, we summarize the contributaom provide potential directions

for future work.



Chapter 2. Computed Tomography

2.1 Analytical Reconstruction

Filtered back-projection (FBP) is a popular anabitireconstruction method in CT.
The theoretical bases of FBP are Radon transfodhfaarier slice theorem. Here we use
a 2D case for ease of illustration (pictured FigRyeAny point within the circle defined
by the intersection of all detector shadows camdmmunted for in the X-ray projections
and later be reconstructed via FBP. The back-ptiojecs essentially an inverse (X-ray)
volume rendering, that is, a volume point is calted by summing the contributions of
all rays that emanate from the corresponding ptigjeixels and pass through the point.
For parallel-beam projection geometries, the Foutransform for each projection
constitutes a radial slice of the imaged signatiarier spectrum, as shown Figure 2(b)
for the amplitude portion. This spectrum is avdeabn a polar grid and is bandlimited to
#N/2, whereN is the projection’s resolution (the number of p&xeThis existence of a
bandlimit will play an important role in error agais in Chapter 4. Also note that the
outer circle areas are less tightly sampled. This loe compensated for by pre-filtering
the data by a ramp (Ram-Lak) filter, or more n@sgpressing filters, such as the Shepp-
Logan [80], which multiply the ramp by a windowde-emphasize high frequencies.

The analytical 2D filtered back-projection formiga

f=[ [ R@lole™ do=[ g (1)

wheret = xcos6@ + ysin6 is the projected location of poitt, y) andé is the projection
angle.Py(w) is the 1D Fourier transform of a 1D projectiy(t). The inner integral is
the 1D inverse Fourier transform resultinggy(t). The outer integral represents the
summed back-projection of aj} (t).

In practice,

K
f(x Y)z%zclgi (xcosd, + ysing,) (2)
i=1
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whereqy, (t) are the ramp-filtered projections. Equation (13l &guation (2) formalize
the reconstruction pipeline. For each 1D projectigiit), we first apply a 1D Fourier
transform to yieldPy, (w). EachPy,(w) is ramp filtered and then an inverse Fourier
transform computegy, (¢) (for 2D data the ramp filtering needs to be dolwa@ the
projection rows in 1D). Finally, we sum all baclefactedqy, (t) at the voxels and divide
this sum by the number of projectiokis ThisK should be at leagir/2)N such that the
polar Fourier transform has about the same reswilti 6 at the periphery and K (see
Figure 2(b)) [80]. Filtered back-projection algbrts can be generalized in Cone-beam
geometry. Feldkamp-Davis-Kress (FDK) algorithm [29pne popular method.

The filtered backprojection algorithm is well adeghtto GPU. The RabbitCT
benchmark [71] shows the speed of 5¢@lume for a given projection data using FDK.
The current fastest solution is GPU in around ®sds [65].

X-ray ky
Attenuation Projection P(e, k)_ .

”(xy yy z(l) -

\

/
/ (
X-ray \\)
Projection Frequency

Space
(a) (b)

Figure 2. The X-ray transform and its Fourier spectrum in 2D.

2.2 lterative Reconstruction

The filtered-backprojection algorithms can provitgh resolution results but
requires several hundreds of patient X-ray progesti With the growing concern about
the potential risk of X-ray radiation exposure tee thuman body, low-dose CT has
become a significant research topic. Dose reducigually involves lowering the X-ray
energy per projection and/or reducing the total bemof projections. Both methods

typically suffer from low signal-to-noise ratio (8 in the reconstructions. lterative
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reconstruction schemes [95] [60] have been showope well with these few-view or
high-noise scenarios.

Iterative reconstruction consists with two basimponents: forward projection and
back-projection. The forward projection operatanglates X-ray images at a certain
viewing angled. The result of this projection is then comparedhe acquired image
obtained at the same viewing configuration. Hehe, weight factow;; determines the
contribution of a voxeb, to a rayr; is given by the interpolation kernel used for

sampling the volume. The forward projection caridsenulated as:
r=Y Wy i=12..M 3

whereM andN are the number of rays and voxels, respectivety. BS-SIRT [95]

algorithm, the correction update is computed as:

Z piN_ " W

peos, D W (4)
N
W
i=1 1
N
=W v (5)

Here, p; represents the pixels in tid¢/S acquired images that form a specific

v =y 4 2

(ordered) subséSs wherel < s < S andS is the number of subsets. The factas
the relaxation factor that scales the correctivelabp to each voxel. This factor is
important in balancing quality and speed and wéldptimized by our parameter tuning
in Chapter 3. The factdr is the iteration count, whefeis incremented each time after
all M projections have been processed.

The iterative reconstruction algorithm is computaél intensive task. It is beneficial
to use GPU to accelerate the forward projectione Torward projection as X-ray
projection simulator uses a ray-driven approachereteach ray is mapped to a parallel
thread and interpolates the voxels on its path. él@r the back-projection still uses a
voxel-driven approach, where each voxel is mappea parallel thread and interpolates

the 2D correction projections. Thus, the weightsdus the projection and the back-
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projection are slightly different but it has minimueffect on the reconstruction quality
[97] [101].

2.3 Regularization

One of challenges of low dose CT reconstructiothéslack of sufficient data. The
regularization algorithm usually employed is Toté&riation Minimization (TVM) as
used in the Adaptive-Steepest-Descent-Projectioto-@onvex-Sets (ASD-POCS)
algorithm[76]. Besides TVM, de-noising filters suah the bilateral filter (BF) [84] and
the non-local means (NLM) filter [9], can also bsed in regularization [97] [98] [109].
Here we discuss these two image denoising filiEns. bilateral filter (BF) [7] is an edge-
preserving non-linear filter. It replaces a pixelaue to the weighted average of nearby
pixels. The weighting is a multidimensional Gausstansiders both the pixel-location’s
distance and pixel-value’s difference. A fixed wamdarea is usually used to achieve fast

and accurate computation:

ztewc(t)s( f(R, f(x+ D) f(x )

PRO=NT SO, 1 B) ©
c(t) = expeﬁh) ()

2.0y
S(f (%), f (x+ 1)) =exp LI TXO) ©)

2-0;
Here,t andx represent the spatial variabl&g.is the window centered at f is the

input image. The multi-dimensional Gaussian weigdtiunction can be separated into
two parts: the measured closeness and pixel vatiésty. The closeness functianis
a spatial filter to average nearby pixels while #milarity functions is a range filter
used to exclude dissimilar pixels,; and o, control the amount of smoothing.
Normalization forces the sum of pixel weights to 1.

The NLM filter is another non-linear filter. Inturely, it replaces the pixel located at
x with the mean of the pixels whose Gaussian-wetymighborhood looks similar to
the neighborhood of:
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D EXPOU(X, Y)) - F(y)

NLM(X) =
WY eonty) ®
wix, ) = — 2SOl f(ﬁ;t)— f(y+1)] 10)

Here,x, y andt are spatial variable$V is the window centered at. N is the
neighborhood centered atory. G, is a Gaussian kernel of zero-mean and a standard
deviationa. The variableh acts as a filtering parameter and when it is asee, the
weights to dissimilar pixels are increased to alfswmore smoothing. Thus, the NLM
filter contains several parameters to achieve tpeslity.

In contrast to the BF, the NLM removes the spaimbothing form but increases the
dimension of the range filter. The comparison af ghmilarity of two neighborhoods,
represented by the high dimensional vectors isiegplThis modification brings more

accuracy to the de-noising but costs much more ttneempute.

2.4 GPU Accelerations
2.4.1 SIMT Architecture

Here we take the NVIDIA GeForce GTX 480 GPU as a&angple to discuss the
GPU architecture. A GTX 480 GPU card contains 4Rf@ssors. These 480 processors
are grouped into 15streaming multi-processor (SMP) which can perform tasks
independently from each other. As shown in Figurea&&h SMP contains 32 processors,
which allow 32 threads (a warp) to execute coneulye Thus each SMP is inherently
based on single instruction multiple threads (SIM&$ign. In the best case, the GTX 480
has theoretical computational power reaching 1.Ba-Foating Point Operations Per
Second (TFLOPS) in single floating-point precisiehich largely outperform the CPU

computational power.
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SMP (32 cores)

Shared L1 Texture

Memory Cachi Cachi
| L2 Cachi |
| DeviceMemory |

Figure 3. The GPU processor-memory configuration for one SMP

GPU device memory is an off-chip memory that stdahesinput data and receives
the output from the processors. The GTX 480 ha&R.DDR5 device memory with
peak bandwidth 177.4 GB/s. Although the bandwidttG®U memory is much faster
than that of the CPU memory, it has several linute. First, each off-chip memory (also
called device/global memory) access instructioresakeveral hundreds of clock cycle.
This latency needs to be alleviated by issuing rgelaamount of threads which will
automatically enable hardware context switchingco®d, the memory instructions
should better to be coalesced or at least haveeaifigal granularity (128 bytes). The
maximum GPU global bandwidth can only be achiewedsbuing 1 memory instruction
for 128 bytes data. This implies 32 neighbouringedids (a warp) should read/write
within a 128-byte-aligned segment. With proper raingnt, sequential mapping of
threads to memory address will yield a coalescechong access pattern.

To further reduce the huge costs associated witbhih memory access, the cache
can be leveraged. Constant memory cache is thdestrtygpe of cache. It is an off-chip
memory with the similar bandwidth as device memdry.speed up the constant data
access rate, a GTX 480 contains an 8KB cache peo@&essors for constant memory
access. Besides the constant cache, 32 procesisoirs ene SMP share an L1 cache and
a user-controllable cache known as the shared mem®rshown in Figure 3. The
difference between the L1 cache and the shared myenso that the former is
automatically scheduled by the hardware and ttierlaan be controlled by the user to
perform prefetching. The amount of shared memoxy lah cache in one SMP is user-
configurable (16KB + 48KB or 48KB + 16 KB).

9
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NVIDIA GPUs can be programmed via a C-like APl —CRAIDCUDA is a general
purpose APl which exposes more control over hovask tis computed on the GPU
hardware, as compared to graphics-based APIs (CSLY5 The task-hardware mapping
is enabled by introducing the concept bidck”. Eachblockis mapped to an SMP.

The key difference between CPU implementation dadGPU counterpart is the
parallel programing. While typically CPU programliwaunch one thread, GPU will
launch millions of threads with the same instructid large amount of threads are
executed in terms of threddlocks whereas the total task is callgdd. On the hardware
level, eachblock is mapped to a single SMP. In the back-projecstage of the CT
reconstruction, SMPs are assigned to different oreggi of the resulting volume
sequentially. This enables a mapping where dghd-block decomposition in CUDA
corresponds to the volumetric reconstructed 3Ds#atd o avoid misunderstanding, we

useblockandgrid only as terms in CUDA, not for their geometry miegn

2.4.2 GPU Accelerated Back-Projection

Recent researches focus on how to perform the ctata on parallel computing
devices, to yield the speed satisfying the clinfeeéd. GPU implementation is a feasible
high-performance solution along with other choisech as Cell processors and FPGAs.
For the analytical reconstruction algorithm, such RDK, GPU-based solutions can
match the speed of data generation by X-ray scanB&j [94]. Nevertheless, for low-
dose CT which typically requires iterative reconstions, GPU-based reconstructions
have a much longer running time [41]. In the baobjgrtion computation, the commonly
used method is the voxel-driven method. For exangéds in the volume (Figure 4) are
mapped to threadlocksin CUDA. This volume-to-slabs decomposition hasrbased in
[33] [41] and [74]. Another type of mapping is bdsen decomposing the volume into
horizontal tiles and each tile is mapped to a Cubweadblock as used in [63] and [64].
While the former use 2D square tiles, the lattexsusD linear tiles. We take the slab-
based approach as an example to show how to optithie hardware mapping to
improve cache hit rate.

Each 3D slab of the reconstructed-volume is asdigimea SMP. In the depth

10
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dimension, the brick extends through the reconsttuwolume. The slab is further
divided into vertical tiles. Here, the product béttile’s widthw and heighh needs to be
below the maximum number of threads péwck L. In the NVIDIA Fermi GPUL =
1024. The tile’s width should be a multiple of 82einsure a coalesced writing pattern.

When performing the back-projection inside each,sllae order of execution of this
back-projection follows along the set of 2D vertitikes arranged in depth order. After
we finish back-projecting, we incrementally stohee tresulting slices back in global
memory.

The mapping of the kernel to the projection geoynetrdepicted in Figure 4. The
concurrent execution of threads inside an SMPnstéid by the maximum number of
threads that can be run there. The NVIDIA 480 HaSMPs. A set of projectiongtoiy
is processed at the same time. Then the total giegjearea processed by the GPU, arising
from projectioni, to projectiony is:

> A=18 2@ MT]|cos(6,)|) (11)

i=iy

In Equation (11)MT is the maximum resident threads for each SK}Hs the
projection angle foi™ projection and is the ratio of source-object distance over source
detector-distance. Assunig, . IS the constant representing the amount of L2 esch
the projected area should be smaller than the dauitg Equation (12)) to ensure better
cache hit-rate.

> A<Coe 12)
Many back-projection implementations ([33] [41] [684] [74] [94]) use texture
memory for projection data storage to deal witegular memory fetching pattern. Using
texture memory has several advantages. First, titieear/bilinear interpolation is
supported at hardware level, which can reduce omepatation cost of GPU processors.
Second, hardware-scheduled cache can benefit dathng with locality. Last, except

locality, texture memory has no other constrairhsas coalescing or confliction.

11
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Figure 4. lllustration of bricks, slices, slices’ projections and corresponding SMPs. In the volume,
different numbers represent the different SMPs. The red color indicates the input and output
regions involved in SMP number 2.

2.4.2.1 Back-Projection Ordering
According to different orderings of back-projectimops, the published methods can

be classified into three categories: single projactethod, multiple projections method

and hybrid ordering method.

FOR each projection
FOR each (slab) slice along the depth dim
Accumulate projected values in the current slice
Write results to current slice
END
END

Figure 5. The single projection method.

Figure 5 shows the single projection method. Theaitbehind this scheme is to
obtain a maximum reuse of the SMPs’ L2 cache hgldive projection. The locality of
the texture reading is increased since the amdumiarspreading of the reading location
is restrained. Then for each slice there is a catise at the beginning but not likely
thereafter. The disadvantage of this method is nngwoiting overhead. N projections

will require reading and writing the computed résWNl times. Also, when we perform

12
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incremental writing on the global memory, the LZta will also cache the output slices.
This undesirable cache behavior will reduce theatiffe capacity of L2 cache. Keck et.
al. [41] used this method in CUDA-based SART. Thisthod is better when cache-miss
penalty is larger than memory writing overhead.

FOR each (slab) slice
FOR each projection
Accumulate projected values in the current slice
END
Write results to current slice
END

Figure 6. The multiple projections method.

Figure 6 shows the multiple projections method. &uwd Muller [94] used this
method but their work was based on the classichitapipeline. This method does not
have writing output overhead (N projection only chée write the computed result once).
The cache performance will be the bottleneck o @ypproach. The downside of this
method is that cache for the input projection Wil depleted very fast. Noél et. al. [63]
also used this method in their tile-based decontiposCUDA kernel. This method is

better when cache-miss pentaly is less than memnoting overhead.

FOR each set of N/J projections
FOR each (slab) slice
FOR each J projections
Accumulate projected values in the current slice
END
Accumulate results to current slice
END
END

Figure 7. The hybrid ordering method.

13
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Figure 7 shows the hybrid ordering method. Okitsuak [64] used this method in
their tile-based decomposition kernel. This metheguires the trade-off between better
cache and less output. The hybrid ordering imprakescache hit rate. The downside of
this method is that the innermost loop fbiprojections is usually unrolled to avoid
conditional branches. But it will require more ggrs and will result in register spilling
which will reduce concurrency in the GPU.

This method helps explore the balance between esimgljection and multiple-
projections. The innermost loop number J needstsnball enough to not exceed the L2
cache size (Equation (12)). On the other hand,edls'\¢o be large enough such that the

number of slice updates in global memory is minexiz

2.4.2.2 Cache Optimization
As for projection angles, there can be two cases:

1. Back-Projection within [45,135), [225, 315) degre&<D slice with areav X h
is projected into a region with area withidy (vV2/2)w’ x (v2/2)R'], the cache
problem is not very severe. Problem only arise whrefections are concentrated
on 45+90k degrees, whekes N.

2. Back-Projection around [135,225), [-45, 45) degie&D slice with areav X h
is projected into a region with area withi/2/2)w’ x (v2/2)h',w’ x h']. Then
the SMP will be depleted of cache frequently.

We propose a method using a 3D transpose to imgtm/eache-hit rate. Note that
rotating the volume by 90 degree will change caset@ case 1, but writing the results
directly into global memory will cause the coalegciproblem. The reason can be
explained for the 2D case since we essentiallycéwttie row-major storage into column-
major, which is not sequentially stored in memony anore but scattered into different
memory segments. We use shared memory as a baffggrtorm the matrix transpose
inside each SMP before writing to the device memtrypreserve the coalescing pattern
of the output. Also, we avoid shared memory bankflais by using a 334 byte pitch.
This will facilitate 32 parallel memory-conflictde threads. Another copy of the volume

need to be allocated in the device since the 3spase is not in-place.
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The reshuffling from XYZ to ZYX is listed below:

1. Load a 2D XZ slices into shared memory

2. 2D transpose to ZX slices

3. Write to ZYX in device memory

The implementation was based on NVIDIA’'s CUDA 3ridaon the GTX 480. All
CUDA Kernels had the same configurationx82hreads per block. The inputs were 364
1024768 projections on a half circal trajectory. Weamstructed a 3D volume within
the FOV with two different resolution, 25@&nd 513. We tested the different running
times for the Single projection method (S), Mukipdrojection method (M) and Hybrid
ordering method (H). We then added the comparisoour optimized 3D transpose
methods (T). As shown in Table 1, our transposehatethad better performance

regardless of the back-projection loop-ordering.

Table 1. The running time for 364 projections (in millisecond)

Data Size S M H S+T  M+T  H+T
256’ 1110 1018 1181 785 688 785
512° 4814 4880 5001 4360 4263 4060

The 3D Transpose method used 16x16 CUDA blockshotigh it wasted some
bandwidth, as opposed to the 32x32 CUDA block, esithe memory accesses were not
fully aligned, the 16x16 configuration was expenttadly faster than 32x32 and it
achieves ocupancy 1. Our 3D transpose method towekf@r a 256 volume and 20ms for
a 512 Volume.

Table 2. The final results and speedup

Data Size Our (in millisecond)  Projection/sec  Speeg
256’ 688 529 1.48
512 4060 90 1.18

The final back-projection performance is shown a&ble 2. For a 256volume, our
remapping method with shared-memory-enabled trasespahieved a total speedup of

1.48. For a 512volume, our remapping method achieved a totaldygeef 1.18.
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Besides NVIDIA, other major GPU manufactures arel Ahd Intel. Here we
focused on NVIDIA’'s GPUs to evaluate different decation techniques. Although the
specification of GPUs may change, the concept dgadrithm can generally port to a
different GPUs by using a cross-vendor programnii®t)] — OPENCL. The volume
reshuffling scheme can improve the locality of themory reading pattern in GPU-based
back-projection. The optimized scheme can yieldebbetache hit rate and can be added
to variety of existing methods with different bagfejection ordering ([33] [41] [63]
[74]), except for those implementations that useare-tile in block-level mapping [64].
The results show our method is particularly uséureconstructions with low-resolution

volume with high-resolution projections.

2.4.3 GPU Accelerated Regularization

Neighborhood filter CUDA kernels are similar to th€G implementations —
fragment programs. If we assume one CUDA kernelction only computes one
resulting pixel, a neighborhood filter fragment gmam can be changed into its CUDA
kernel without much modification. In the SIMD artguture, the same kernel/fragment
program will replicate itself to all different pressors. These threads on different
processors have unique two-dimensional IRsy| to guide them to read neighborhood
data aroundx y) and output to the value & ().

Here we list the pseudo-code for a 2D neighborHuted kernel:

Neighborhood_filter_2D
Obtain the current thread ID (x, J))
Collect all pixels’ values in 2D neighborhood within the mask
Calculate output pixels value defined by filtering algorithm
Output results (x,)) at the resulting image
End

Figure 8. Pseudo-code for 2D neighborhood filter kernel.

CUDA has more sophisticated controls which are anmilable in CG. CUDA’s
execution configuration guides how the parallel patations are assigned on GPU
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hardware on streaming-multi-processor (SMP) letkis can be done by dividing the 2D
image into tiles and assign them to a CUbBlAck Each of the 2D tiles will be mapped
into a SMP.

To achieve maximum bandwidth in reading, the ouimatge is stored in 2D pitched
memory and the input is stored in a read-only 2fute. In addition, to confirm the rule
that each warp (32 threads) writes to a 128-bygensat, each thread should output a 4-
byte unit. This 4-byte unit can be 4 charactershart integers or 1 single-precision
floating-point number.

2.4.2.3 Pre-computation
Some of neighborhood filters such as the bilatéiter or the non-local means

(NLM) filter involve 2 Gaussian weightsy, y. They define the smoothing parameters in
the X, y axis respectively.

Pre-computing techniques can be applied on ther fiti reduce computational cost.
Given the mask size, we can pre-compute a discnetk for the 2D Gaussian smooth
kernel and store it in the GPU’s constant memoherronce cached in SMP, these pre-
computed weights will be ready to use which wilVesa huge amount of exponential
computations. However, the Gaussian in the intgndiimain which is inherently
different from spatial dimension since it is santpla a continuous domain. Although
similar pre-computing method exists, which disaetthe continuous intensity domain
and lookup the pre-computed weightings, we haveemptored the speed-quality trade-
off of this approximation technique. We calculateensity Gaussian on the fly, therefore
let our GPU algorithm is an exact method.

We store the output volume in 2D pitched memoryprider to achieve better global
memory bandwidth. The output is decoupled from dhder of the loops in the CUDA
kernel computation. Switching the order of the loap changing the output storage to
YX will result in non-coalesced memory writing patts that downgrade the
performance. Furthermore, this loop order also caigis the pre-computed weights

should be organized in XY order.

17



Chapter 2 Computed Tomography

2.4.2.4 Prefetching
We also use the prefetching method to reduce thetdansfer cost, based on huge

difference between on-chip and off-chip memory hedth. Prefetching is done
according to thepron which is the image region served as input dlack of threads.
The size of the 2D preloading apron is:

(W 2r,+2r)) - (h+2r+2r ) (13)
wherew,,andh, are width and height of a 2D CUDA blodk. is the patch radius ang
is the windows radius in non-local mean filler [@hile for bilateral filter [84]r,= 0.

The apron is usually larger than the output regaod thus aprons from different
CUDA blocksare overlapped. Since neighborhood filters reinpat data in an apron
multiple times, shared memory can serve as a us#rddlable cache to reduce the off-
chip memory access. Then a 2D prefetching approanhyield less cache misses which

will result in better performance.

T I T T 0 i T

O (@ M

Figure 9. An example to illustrate prefetching procedure. (a) shows the configuration with one
CUDA block (in green). (b-e) show the neighborhood pixels are loaded into shared memory (in
gray). (f) shows the data configuration after loading all the input into the user shared memory.
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Figure 9 illustrates the prefetching scheme for 2Beneighborhood filters. In this
case, a 16x16 CUDA block (in green) needs to réa®3 pixels in its neighborhood (all
pixels in panel (a)). Performing neighborhood filtg directly on (a) will result in low
performance. Panel (b-e) shows the proposed phéfetenethod will load 4 16x16 tiles
into shared memory (in gray) in sequence. Finallpanel (f), the CUDA threads in the
green CUDA block can fast access the input in dp-clache (shared memory). Then
applying neighborhood filters on (f) will guarantdere will be no cache miss afterward
thus will boost the performance.

2.4.2.5 Experiments
Our experiments were conducted on an NVIDIA GTX 48BU, programmed with

CUDA 3.2 runtime API and with an Intel Core 2 Du®C @ 2.66GHz. We built the
program in 32bit mode. In the experiment, the sizéhe CUDADIock is set to 32x32.
The first dimension is chosen to be 32 to confoonthte coalescing rule. The second
dimension we choose the maximum number as 32 dtigetblock’s size limit 1024 in
the NVIDIA Fermi card.

We did a performance and image quality study on sliee of a human head. We
simulated 90 parallel beam projections and addeds§&dan noise SNR=25 (SNR is
computed by the ratio of the mean pixel value te shandard deviation of Gaussian
noise) into the projections. Figure 4(a) shows ghbtl-standard and Figure 4(b) shows

the iterative reconstruction results from noisyjgctions.

(b)

Figure 10. Testing image with size 256°. (a) shows the gold-standard. (b) shows iterative
reconstruction from 90 noisy projections.

19



Chapter 2 Computed Tomography

Figure 10 shows images restored bilateral filterifige image quality of the bilateral
filtering depends on smoothing parameters and winsiaes. Herer, and oy control the
spatial Gaussiam; controls the range Gaussian agds the window radius. The window
size is 2,,+1. Here we show approximately the best paramdétereach window size.

The large window size case (17x17 in Figure 11(@g))erated better results than 11x11
(Figure 11(b)) and 7x7 (Figure 11(c)).

(a)ox=0,=30 (b) ox =0y = 38 (c)ox=0y=40
o, =19r,=8 o, =19r,=5 o, =20r,=3

Figure 11. Bilateral filtering results.

We extend the performance test of bilateral filr larger image sizes. The
computation time is listed in Table 3(in millisechnBesides the computation timing, we
note that the memory transfer time from CPU and G$0.7 ms for 256data, 2.0 ms
for 517 data, 7.5 ms for 1034lata. By using the prefetching scheme, a speeatipaf
20% is achieved for the bilateral filter.

Next, the NLM filter is applied to the test datadaégure 12 demonstrates the image
quality of the NLM filter with different window s&s. In the NLM filter, there is a
parameteh that controls the noise reduction effédte also find the approximately best
parameters for different windows sizes. The largigitborhood size ((11+1%jn Figure
12 (a)) resulted better quality than in the smafleighborhood case ((11+%£ip Figure
12 (b) and (11+P)in Figure 12(c)).
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Table 3. The performance of bilateral filter (in millisecond)

Image size nghst?;éhmd Bilateral Optimized Bilateral Speedup

256 7 0.192 0.131 1.46
112 0.309 0.246 1.25

172 0.650 0.539 1.21

512 7 0.411 0.326 1.26

11° 0.927 0.705 1.31

172 2.150 1.760 1.22

1024 7 1.446 1.120 1.29

112 3.374 2.473 1.36

17 8.080 6.545 1.23

The NLM filter’'s performance is shown in Table seélprefetching method resulted
up to 4x speedup in this filter. This is becauseNiLM filter has one order of magnitude
more neighborhood searching to do than the bilafdt@r, which make them clearly a
memory bounded problem. Our optimized filters otftened the bilateral filter and the
NLM filter implemented in the CUDA SDK 3.0 by sirail speedups. The performance
shows the more neighborhood lookups, the more tefeecthe shared-memory
acceleration will be. Based on the fact that theNfilter is usually one order of
magnitude slower than bilateral filter but has é&ettienoising quality, our proposed
method would make expensive neighborhood filtergsenqractical while enjoying the

superior image quality.

W
(a)h=17 (byh=17 (c)h=18
p=5r,=8 p,=5r,=5 ry=5r,=3

Figure 12. NLM filtering results.
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By using single precision floating point data, thegest amount of required shared
memory is (32+2x(8fx4 = 9216 byte for the bilateral and the NLM filtéthey are
below 48KB as the limit of shared memory per SMMwidia’s Fermi card. With the
development of more advanced GPU hardware, we xja@ecethat larger preloads such
as 64x64 in 32bit floating point data will be suppd in the future.

Table 4. The performance of Non-Local Mean filter

Image Neighborhood Optimized NLM

Size Size NLM ( millisecond) Speedup
256° (7+7Y 8.708 2.097 4.15
(7+11¥ 23.927 5.034 4.75
(7+17¥ 51.095 12.703 4.022
512 (7+7Y 31.026 7.339 4.23
(7+11¥ 76.494 17.756 4.31
(7+17¥ 182.497 42.066 4.34
1024 (7+7Y 118.831 28.041 4.24
(7+11¥ 292.970 67.727 4.33
(7+17¥ 699.231 161 4.34

The results showed that advanced acceleration itpolncan further speedup
straightforward GPU implementations of nearest meighood filters. The speedup can
be up to 4 times for the large window size casdclvhan bring high-quality denoising
filters real-time performance. The optimized desmoy filter lends itself as an
independent component which can be plugged intaten&tive reconstruction framework

and boost the performance of the whole pipeline.
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Flat panel cone-beam CT has become a major imatgobnique due to its
simplicity, uniform resolution, and low scanningng. The traditional cone-beam CT
reconstruction method is the FDK algorithm [29],ig¥h can provide high resolution
results but requires several hundreds of X-raygmta@ns. With growing concerns about
the potential risk of X-ray radiation exposure tee thuman body, low-dose CT has
become a significant research topic ([36] [76] [9@)ose reduction usually involves
lowering the X-ray energy per projection (i.e. lawAs) and/or reducing the total number
of projections. Both methods suffer from low sigt@noise ratio (SNR) in the
reconstructions. In the low mAs case, the recontdiimage is typically noisy, while in
the low projection number case the result can sufiem streak artifacts. Iterative
reconstruction schemes, matched with suitable agigaltion techniques have been
shown to cope well in the adverse settings of l@sedCT. Both iterative reconstruction
and regularization typically offer a diverse sefpafameters that allow control over their
quality and computational speed. As such they igreficantly more complex to use than
FDK. Given a specific imaging task, choosing thstlsetting of each of these parameters
can be tedious and is often a matter of domain réspeand intuition. Further
complicating the situation is that this expertise both domain-specific and dose-
dependent. The knowledge on which setting to pickypically acquired through many
experiments, and only domain experts have thetyhilibalance trade-offs that may exist
among different parameters. Due to this complexityieashing the true potential of
iterative methods for everyday clinical use id stil on-going process.

What is lacking is an automated procedure thatateme at good parameter settings
— and furthermore, enable the use of these settorgany new reconstruction within a
similar scenario. With prolonged training such ateyn would then store a good deal of
scanning expertise and could serve as an advigbetbuman operator. An early attempt
in this direction was a framework which used thenpatational power of GPUs to

quickly compute the outcome of all possible paramebmbinations, at some level of
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discretization, and then present the optimal comtimn to the user ([97] [95]). While
this work revealed interesting relationships amtiregparameters tested — there were two
— such an exhaustive scheme is clearly not scalalitee number of parameters. In this
work we derive such a scalable framework. It usepexific form of genetic algorithm —
ant colony optimization [22] — to navigate the hidjmensional parameter space
efficiently.

Image quality and radiation dose are importantdigctbut when it comes to clinical
practice, the time it takes to arrive at a suitakleonstructed image also plays a critical
role The latter is an objective often disregardedhie literature, but it can be of great
importance when CT scanning is part of a surgicat@dure, in emergency departments,
but also when the patient is anxiously waiting éodiagnosis. Thus altogether we are
facing three co-dependent objectives — radiatiosedaeconstruction quality, and
computational speed (DQS). This three-tier muljeobve optimization problem has
several well-known non-linear trade-offs governgdite native domain. For example, a
lower radiation dose will require a higher computadl effort to reach a certain
reconstruction quality — but it may never reach theality of a regular-dose
reconstruction no matter how involved the compatediare. This is true even for an
optimal parameter configuration, and it essentiallgans that there are many parameter
configurations that are non-competitive. This eaablis to efficiently cull the search
space in the optimization procedure. Essentialy,can reject any solution which, at the
same quality and dose, has a lower computatiore@dsp-urthermore, assuming similar
growth patterns in quality, we can reject, for cangpional reasons, all solutions that at
any stage of the iterative process have fallenifstgmtly behind the others in terms of
quality.

Our optimization is geared towards quality (Q) apeed (S) — dose (D) is an input
factor. To demonstrate how our QS optimization vgovke have chosen an algebraic
reconstruction framework with an interleaved rega&ion via non-local means (NLM)
filtering [9], which has been used for regularipatiin the past with good success [34]

[97] [109]. Further encouraging is the recent wbykLi et al. [51] which makes a strong
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case for NLM as a possibly superior alternativédM. We have further augmented the
NLM-based filtering with unsharp masking for edgehancement. . Our research
advances the early work of Xu and Mueller [101] ethiused a standard genetic
algorithm in conjunction with bilateral filterin@#] for regularization.

Our QS optimization component is quite general @ad also be used to find good
parameter settings for other iterative reconstomctilgorithms, such as EM, and other
regularization techniques, such as TVM ([75] [7B3]), soft-threshold filtering [103] or
Tight Frame (TF) regularization [36]. In fact, wieosv that our algorithm compares quite
favorably with ASD-POCS [76]. It differs from thscheme in that it does not require a
special — and time consuming — control unit to guihd discover regularization
parameters during the convergence. Rather, our adetb fully informed by prior
knowledge and so can complete its procedure alorgiven path deterministically
without any further probing of the current state.

As mentioned, DQS advisor adds the reconstructpmed component to the more
standard DQ comparison. Tang et al. [82] performech a DQ study on a single mAs
setting and found that it is preferable to disttébtotal imaging dose into many view
angles to reduce the streak artifacts caused bylangnder-sampling. Yan et al. [102]
investigated this subject with multi-mAs settinghely plotted both quality and dose as
functions of number of projections and mAs per @ctpn. Based on this insight,
protocols can then be developed to maximize the deduction while minimizing the
loss of image quality for various imaging tasks.r@QS optimizer enables similar
insight but in the context of the time needed todpice the reconstruction.

When it comes to DQS, there are always trade-dffsl if only for educational
purposes, visualizing these tradeoffs in a glolmaltext can be immensely helpful to
appreciate their extent. Since we have a tertiatgtionship a bivariate linear graph is
insufficient to capture these relationships. Arerattive parameter space visualization
framework for iterative CT was introduced by Xu avideller [99] which used icons to
visualize additional variables in a 2D plot. We @ashosen a different approach that

requires less interaction. It plots the third valgaas a backdrop layer of a 2D plot and it
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allows users to click on this plot to visualize aotual reconstructed image. Upon
clicking a marker is placed into the plot and theage is inserted into a comparative
matrix of images. We believe that comparing actoeges is ultimately the best way to

appreciate quality since any error metric, RMS, GS]M, CNR, and various others,

never capture the full impact an image has on thman visual system. Finally, the

knowledgebase through its visual front-end is egdoas a web service and can be
accessed via standard web browsers. Future gemesati this service will allow users to

upload their own data, simulate low-dose effectsy the optimizer, and visualize the

DQS.

Figure 13 illustrates the parameter optimizationmkffow during the training stage.
The gold-standard was generated by the high doag, sand we perform iterative
reconstruction with regularization in low-dose asgions. The optimization was done
per iteration in iterative reconstruction. Figurel 1lists the reconstruction and

regularization parameters inside the iterative r@lgomn component.

Projection Data
(Low Dose Scan) Optimization per Iteration

Parameters, Parameter
Iterative CT Learning

Algorithm Component

Gold-Standard

Similarity Metric )
(High Dose Scan)

Results

Figure 13. Parameter optimization for the training dataset.

3.1 Ant Colony Optimization (ACO)

We model iterative CT reconstruction as a pathckaag problem, as illustrated in
Figure 15. In this graph of nodes and edges, eade nepresents a unique state of the
volume that is being reconstructed, while each edgeesents the computation of a
correction pass and a regularization pass. The wegght represents the time cost, which

in our case can be uniformly set to 1 since alkpashave a fixed constant cost. Each
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node is tagged with a score that encodes a quaktyic. The overall goal is to find the
node that has the highest score within a given &ste all edges have the same weight,

the problem is reduced to find the best score affeted number of steps.

Iterative Reconstruction and Parameter:

Forward Proiection

Correction Relaxation factok

NLM h factor,
Back Projection NLM window size,
NLM block size,
NLM Gaussiar,
Regularization Un-sharp masking

Figure 14. Iterative reconstruction and parameters.

Initial guess 1% iteratior 2"jteratior 3iteration ... n'" iteration

Figure 15. Ant colony optimization searches best parameters per iteration.

The ant colony optimization (ACO) algorithm [22]asswarm intelligence method to
search for good paths in discrete graphs. Intuitjivé launches a large number of
artificial ants searching for the best score. Eacfificial ant independently moves
through the graph and receives a score based ayeiopaality, reconstruction time, and
dose. Ants with good scores have their paths resetbwith pheromones to attract other
ants. The probability for an ant to choose an exgecting two nodes is affected by the
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moving trend of all ants. The probability for chows an edge will increase if a large
number of high score-ants have traversed it.

We attempt to optimize the parameters includingréiexation factoi in Equation
(4), theh factor, Gaussian blur factor, window size and klsize for the NLM filter in
Equation (9) and Equation (10), and the un-sharpking factor. These parameters can
be different per iteration, resulting in an astnomoal search space. For example,
assuming we allow 100 discretized values for earfarpeter and run the pipeline for 10
iterations, the search space will be'®20This search space is so huge that simple
exhaustive search algorithms will fail to find tbetimal solution in a reasonable amount
of time.

We adopt a greedy heuristic to prune the seareh Ti@is heuristic guides ants with a
“best guess” for the path on which the solutios.lids shown in Figure 15, the greedy
ant system only searches the best parameter séitirggsingle iteration, then adopts the
best setting and moves on to the next iteratiore Jdiution space can then be reduced

from 10 to 13°. The pseudo code for this algorithm is shown guFé 16.

1 FOR each iteration in iterative reconstruction

2 SET GENERATION_COUNT = 1

3 WHILE GENERATION_COUNT <= MAX_GENERATION

4 FOR each ant in the current generation with size ANT_GN

5 Use prev-iteration-best-results as input

6 Obtain a set of randomized parameters using pheromone

7 Perform one iteration of iterative reconstruction

8 Record the quality scores using quality metric and gold standard
9 Update current-generation-best-results

10 ENDFOR

11 Update pheromone

12 IF ABS(current-generation-best-results - prev-generation-best-results) < ¢
13 AND current-generation-best-results > prev-iteration-best-results

14 SET prev-iteration-best-results = current-generation-best-results
15 GOTO LINE 19

16 ENDIF

17 SET GENERATION_COUNT = GENERATION_COUNT +1

18 SET prev-generation-best-results = current-generation-best-results

19 ENDWHILE

20 ENDFOR

Figure 16. The pseudo code for per iteration optimization.

For each iteration of iterative reconstruction €lir2-19), our system creates
generations of artificial ants. The input for eggneration (line 6-9) is the previous CT
iterations result, which is initialized to zero ampdated per CT iteration (line 14). Line
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6-7 is the most time consuming part. In that stageh ant first obtains their parameters
probabilistically using pheromones, and then ubesd parameters to perform one pass
of forward projection, correction, back-projectiand regularization. Then the system
stores a quality score for each ant. In line 11update the pheromone value after a
generation of ants finish their run. Line 12 andat8 the two convergence conditions. It
will make sure the optimization converges and theent iteration should have better
scores than in the previous iteration, otherwisdauach another generation of ants until

both conditions being met.

Relaxation factor A NLM factor NLM window size NLM block size NLM Gaussian o Un-sharp masking

Figure 17. Different settings of parameters shown in parallel coordinate.

Figure 17 uses parallel coordinate show four semammeters. An ant’s choice is a
6-tuple shown as a line. Ant colony algorithm ldues many lines and eventually
converge them into a single line through pheromooetrol. The pheromone for the
current generation is updated for the next germratise, making ants more likely to
choose parameters similar to previous best parasadtethe following, we describe the
pheromone’s role in detail. The probability for amt to choose a discretized vajuier

ith parameter is:
PG, j) = _ b 14
22;0 Tiq ( )

wheret;; is the pheromone on valyidor ith parameter an8; is the discrete resolution
of theith parameter. The value of; is initially set to one; this will allow the ant take
purely random decisions. After a small group ofsaimh our case it is 50) finishes their
moves for all 6 parameters, the pheromone is uddsde

_( m+1)

Z-I,J = (l_p)z-i(,T) + §i,j (15)
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wheres; is the normalized score (with 0% <1) of an ant choose the valpdor ith

parameters; ; is the average score of all the ants ant choosedlue] for ith parameter.

7(mis the pheromone on valjdor theith parameter for theth generation of antg. is

the pheromone evaporation factor (with @<1). The range of pheromone is clamped
within [0,1]. The Equation (15) updates the pheramsuch that later ants will be more

likely to follow the path of previous high-scoretanin the absence of a human observer,
s, IS generated by a computer based on a qualityiendtr this work, we use the

correlation coefficient (CC) to determidg;.

3.2 Single mA Experiments

In our experiments, we collected two sets of datenfa cone-beam CT scanner
(Medtronic O-arm). We perform the reconstructiogoaithms on the central slice only.
The detector 1D resolution was 1,024 pixels wittepsize 0.388mm. The low-dose case
was set as 72 evenly-distributed projections ardgihid-standard was generated by the
FDK algorithm with 360 projections. In the OS-SIRTheme, we made 20 subsets and
each subset contains 3-4 projections. Head phanteens used to test the parameter
optimization algorithm and the training results ah®wn in Figure 18. The result from
50 iterations of the OS-SIRT algorithm with a camé2 = 1 is in panel (a) and the gold-
standard is in panel (b). 50 iterations of the ABDES result is displayed in panel (c).
This result is smooth but has some typical cartdan-structures due to the TVM
scheme. On the other side, our trained resultar@jhe most similar to the gold standard
(b) and can preserve sharper details than ASD-P&@$c).

The CC metric was applied to central 256x256 regjittn emphasis the region of
interest. Figure 19 shows the plot of trained patans through 50 iterations with CC
scores. We can see that there was very little impgoin CC after 40 iterations and CC
stopped improving after 50 iterations. Figure 2®veh the plot of the relaxation-
correction factor in Equation (4). The optimizedgraeter suggests starting with a bigger
value around 2.0 and gradually decreasing to Odte Nhe overall decreasing trend

contains a certain amount of perturbations.
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Figure 18. A central slice of a reconstruction for a training dataset. (a) low-dose OS-SIRT. (b)
gold-standard FDK by 360 projections. (c) low-dose ASD-PCOS and (d) optimized low-dose. (a),
(c) and (d) use 72 projections and 50 iterations.
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Figure 19. The Correlation-Coefficient (CC) through 60 iterations.
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Figure 20. The relaxation factor A through 60 iterations.
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We tested the learned parameter setting on ansitmédar head phantom. The central
slice was shifted to another autonomy region initbad phantom. Figure 21 documents
the image quality of the new dataset with (a) ®0aitions of OS-SIRT with a constant
A =1, (b) 360 projection FDK, (c) 50 iterations of ASBBCS and (d) 50 iterations of
optimized parameters. We observed that even inhanatcan, the parameters can guide

the reconstruction to achieve better visual qualtign ASD-POCS.

(b)

(©

Figure 21. A central slice of a reconstruction for a new dataset. (a) low-dose OS-SIRT. (b) gold-
standard FDK by 360 projections. (c) low-dose ASD-PCOS and (d) optimized low-dose. (a), (c)
and (d) use 72 projections and 50 iterations.

3.3 Visualization Interface

We use our parameter optimization engine to perfaptimization-guided CT
reconstruction and take both quality and speed timoconsideration. The optimization
generates multi-dimensional data containing maeiddi (dose, quality, reconstruction

time, parameters). We presented the interactivetiqtimhensional interface as a web
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service for easy access. Users can compare imegesdifferent settings and to make

informed decision.

3.3.1 Visualization Design

Instead of an interactive system, a straightforwaltdrnative method is to display
several individual plots using visualization softe/do look at the different domains one
by one. These plots can by created by many sofsyasech as Excel, Matlab or
Mathematica. One major disadvantage of this methidlde lack of user invention during
the data exploration. The images created by thesergl purpose software’s are usually
considered as static. It can not support the vieyploration, when users want try out a
different visualization setting or look at the ineagssociated with a certain data point. On
the other side, the advantage of interactive sysieen multiple static plots is that user
can have the better understanding of the big pctusers will be able to travel in the
high dimension space identify similar solutions nyga This will help users to identify
the trend of the converging.

We chose to use the continuous scatter plot teaenig present the underlying data.
In our problem, there are four dimensions to regmesne reconstruction: X-ray current
(mAs), number of projections, quality and time. TMhgualization system presents these
four-dimension data into a single picture. We adain auxiliary axis -- dose axis as X-
ray current multiplying number of projections. ligére 22, a multi-mAs experiments
data is presented by a 3D plot. Figure 22(a) i®as&atter plot. Dose, quality and speed
are mapped into a three spatial axis respectivelyure 22(b) shows an interpolated
surface space with color showing the time axidmparison, the continuous scatter plot
used in Figure 22(b) is more effective to convesuai information.

The data points cluster around several verticatslifior two reasons. First, our
iterative reconstruction optimization engine wasning per iteration. Thus the generated
data shows the optimized quality and speed of temative reconstruction for each
iteration. As the iteration number grows, the dyaéind time changes but the radiation
dose will not, since they are still based on saeguisition data. Thus we see series
points changing in Y coordinate and color but mo¥i coordinate. Second, X-ray tube
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current and projection number only have discrete@esaavailable on the CT scanner,

thus the data points will be grouped into seveisdrdte values along dose axis.

Time

0.5

Duality oo Dose iy

() (b)

0 0

Figure 22. The input data in 3D visualization.

The remaining challenge is to embed the informa@tout mA and number of
projection. We can express Figure 22(b) by usisgwb orthogonal projections. Thus we
have two projection images: One is a quality vsedplot with time mapped to color. The
other one is a time vs. dose plot with quality megpo color. Conflict happens when two
data points are projected into the same 2D locatdith the rest of fields being equal,
the preference will go to the better speed and drigiuality. This can be easily
implemented by OPENGL depth-culling. We can flige tHepth testing direction by
setting GL_GREATER or GL_LESS. Both modes are iah#y scatterplots but are
triangulated in order to have smooth color inteagtiohs for arbitrary locations. Users can
have both plot available and choose the desiralidento look at. Here we use the

guality vs. dose mode as an example to describegeinterface.

3.3.2 Interface

The interface of the DQS Advisor is composed of @mplot and some control
sliders and picture displayer as shown in FigureT2& main plot is a 2D scatter plot of
dose and quality with different colors to show rimgntime. The background color of the
pixel represents the nearby tuples’ time field #melglobal colormap can be adjusted by

users through a range slider at the bottom. Therdvweo sliders along the X and Y axis
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respectively. They can be jointly used to displayighlighted view of a certain region.

On the top of the plot there are two lines to tilate dose composition. By adjusting four
sliders on the right, users can specify the regbnhe plot to be visualized. On the
bottom-right there are four image slots to displegonstruction results of marked data

points. Here we discuss the supported user interaict details.

Quality: X-Ray Current Projection Number:
o —— 100 feft

S0mA | 0
25 mA| e T Right: 2650
0ma

Top:

Boftom: &

21 2
32mA, 89proj, 0.831915Quality, 6325 32mA, 59proj. 0.799151Quality. 55285

Figure 23. The quality vs. dose plot.

Main plot: The X axis shows the dose as product of mA amdbax of projections.
The Y axis shows the measured quality in exponkst@e. All data points are displayed
as white points and the user has the option tolermatdisable the data points.

Adjustable colormap: users can use a range slider to adjust the vabues mapped
to the color spectrum. The color spectrum is desigms static, from black on one side to
yellow on the other side. This colormap is placetow of the plot and is shown in
Figure 24. Users can dynamically adjust the uppegl values to be mapped to the
black and yellow respectively. As shown in Figude ganel (a) shows the default color-
coded plot and panel (b) shows the updated plet aftljusting upper bar of the range
slider. This help user to identify the patterniod tmapped value for different regions .

Dose representationdose is represented as mA multiplying numberrofgetions.

In this way, two dimensions are compressed into swaar value, represented in the X
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axis. To present the missing value of the mA anahlmer of projections, we display two

lines on the top region of plot. These two linepresented the mA and number of
projections respectively, showing the different pasition to a same total dose, as
shown Figure 25. For example, the dose level inndtchy the blue vertical line is made
from 16 mA and 89 projections.

I

Color Map

@) = ()

Color Map

Time range: 0.00s - 5.0(

Figure 24. Changing the colormap.

X-Ray Current Projection Number:

S0ma
25mA
0maA

//\

(@) (b)

Figure 26. Changing the region of interest.
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Region of interest users could choose to better plot the resultsnbdifying the
left/right/top/bottom boundary of the main plot.this way, users can pan or zoom in/out
to inspect the plot. This functionality can helperssto explore the sparse space. The
zoom in/out is a linear function that will preseme neighbourhood without extortion.
Figure 26 shows two detailed visualizations aftfusting the region of interest. In panel
(a), a small region containing 80+ points are @dgetl in a zoomed in manner. These
details can not be captured well without the hélpegion of interest visualization. Panel
(b) shows another region containing color interpofawith the data points disabled. We
see that the background color can be better vizedhvithout data points.

Image Displayer. Users can mark up to four data-points and theesponding
images will be displayed for side-by-side comparisbhe data information will also be
displayed. This function is based on left click. 8dkver a left click occur, the system
will find the nearest data point around the cursbne nearest neighbor search is
accelerated on an R-tree structure which will bgcused in Chapter 3.3.1. In the
meantime, a numbered icon will be marked on theketi location. In Figure 27, four
images were put side by side for comparison wittirggs on the top. The first image was
reconstructed from 32mA and 89 projections withligpacore 0.8319 and speed 6.32
seconds. The last image was reconstructed from 1&ntA59 projections with quality
score 0.7425 and speed 6.14 seconds. In this wsays can understand the image quality

much better than plain numbers.

@1 2 &3 @4
32mA. 89proj. 0.831915Quality. 6.32s  32mA 39proj. 0.799151Quality, 3.528s 32mA, 39proj, 0.720511Quality, 8. 795s 16mA, 59%roj, 0.742539Quality, 6.143s
\| \| \| :

Figure 27. A side-by-side images comparison.
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Highlighting slider: When enabled, user can spotlight a certain 2Qhtur using
a vertical slider and a horizontal slider. Otherhighlighted region will be gradually
color-blended.

Right click menu: A popup menu will show up when a right click occUser can
set preference on some display mode. User can dilgway/hide the data points,

horizontal lines, vertical lines, highlighting stidand grayscale color.

3.3.3 Scalability

We host our visualization tool on a Web Server aad be accessed publicly at

http://vail.cewit.stonybrook.edu/Projects/CTPIdthe webpage is based on WebGL and

JavaScript. Users are required to have a WebGLastgagpbrowser (such as Chrome and
Firefox) installed. In this way, out platform enjdiie worldwide access and cross-
platform support. We carefully designed the systembe capable of interactively
displaying relatively large data sets. A typicalsktep browser could interactively
manage 2.2k data points and 2.2k 512x512 images.

Data input: The input data is consisted of 4-tuples. The faelds of the tuples are
ordered as mA, projection number, quality and tifffee tuple are stored in a CSV file.
The images associated with data points are storexdfolder. The name format of the
images are the same as the 4-tuple. We use JPEGtftw store the compressed images
to minimize the storage and data transfer latency.

R-tree: A naive search algorithm will take linear seatioie which does not perform
well with large dataset. The running timeOién) if there aren data points. We used a
non-recursive R-tree to facilitate interactive 28ach. The R-tree’s nearest neighbour

searching time i® (logn).

3.4 Multi-mA Experiments

In this experiment, we performed training acrosietent mA setting and projection
number. The aim of this experiment was to createsarable scan protocol with the help
of the DQS advisor. We collected four sets of deden Medtronic O-arm system. They

are under 10mA, 16mA, 20mA and 32 mA respectivd@lye exposure time for each
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projection is 10ms. So for a single projection thAs value will be the mA setting
multiplying 0.01. Under each mA setting, we seldctvenly distributed projections
according the separation angle. The X-ray anglars¢ipns used were 4, 5, 6, 7, 8, 9 and
10 degrees. The subset number in OS-SIRT was 2teadl phantom was used in this

experiment and we optimized the central slice retrotion.

100

s = 50

S0mA 0

®

Botton:

©1 B3
32mA. 89proj, 0.841033Quality, 12.752s 20mA. 89proi, 0.82337Quality, 5.148s

Figure 28. The speed vs. dose plot.

The training results are display as a web servicgraviously shown in Figure 23
described in Chapter 3.3.2. Here we look at therothode: the speed vs. dose plot as
shown in Figure 28. Similarly, the X axis showee throduct of mA and number of
projections. The Y axis shows the time spent ommstruction. The quality is color-
coded and we apply triangulation to interpolate téor in 2D space. The interface
assists users to quickly find the preferred actjarsisettings under the input constraints.
It provides a dynamic view of subtle parameter gesnby moving the control bars so
that users could be aware of the impact of someifspparameter.

The results confirm the result of the recent stadgducted by Yan et al. [102]. By
observing the dose composition and image qualitifigure 23 and Figure 28, we can
easily identify the positive correlation betweenntoer of projection and maximum
quality. The projection number affects the imagalify more than X-ray current. With
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similar overall dose, higher projection number caseally can reach better quality than
higher mA case. The possible explanation is thatfeprojection create streak artifacts.
Compared to the Gaussian noise created by a lowey>turrent, streak artifacts are
more likely to be treated as a feature in the rgrdtion algorithm and thus more

difficult to remove.
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Chapter 4. Verifiable CT Visualization

In this chapter we concentrate on error propagdtiovolume rendering of the data
acquitted by CT scanner. We propose a Verifiableed®i Volume Rendering method
which is able to certify a CT reconstructed volufoe use with a given interpolation
filter, explicitly specifying the maximum error thanight occur in the rendering. It uses a
mixed-resolution volume encoding computed in apgnaeess. This representation can
maintain the advantages of real-time rendering, arttie same time gives the verifiable

results.

4.1 Volume Rendering

Volume rendering includes a wide range of techreqé@gel et al. give an overview
of real-time volume rendering methods [23]. Theuwoé rendering technique can be
classified as indirect method, such as iso-surfacenstruction and direct method that
immediately display the voxel data. Compared wittirect rendering techniques (e.g.
the Marching Cube algorithm [58]) using surface hwgeometric primitives, Direct
Volume Rendering (DVR) is a more attractive applodt is more accurate since the
rendering samples are given by direct interpolatiafithout any intermediate
representation.

DVR as a large category, contain several methods.ekample, ray casting, cell
projection, shear-warp, splatting and texture-basethods. The common theme is an
approximate evaluation of the volume rendering grdk for each pixel. The light
intensity! is calculated through integration along the rafie Tcontinuous integration

along the ray(t) can be computed through

| = [ c(x(t) exp-[[ r(x(t))dt )t (16)

where D is the length of the ray(t) represent the scalar value of volumetric field

sampled the along the rag(v) is the color transfer function andv) is the opacity
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transfer function representing attenuation coedfiti The volume rendering integral is

approximated by Riemann sum:

= 3 (e(xiA)At [ ] explr(xADAD)) (7

By introducing the opacity value; = 1 — exp(—7(x(iAt))At) and defineC; =

c(x(iAt))At, then the equation can be simplified as:

1~>°C,

T a-a) (18)
i=0  j=0

The computation can be formulated as front-to-backiposition during the ray
tracing. To perform this front-to-back compositisaquires the use of 3D texture
supported in graphics hardware to produce viewaligtied slices. This will reduce one
stage of resampling and reduce some artifacts.

In volume rendering, material classification isesftdone via transfer functions. The
traditional 1D transfer function is based on scalalues only. Recent research has
investigated a plurality of new transfer functioontains which have been used together
with scalar values and results from these are ygomising. They include gradient
magnitude [45], curvature [43], features size [IR]¢lusion spectrum [14] and visibility
[14]. Perception can be also added into the trarfafection design [11]. Mai et al. [56]
presented a semi-automatic 2D transfer functiomgdesethod based on segmented data.
These user-controlled or semi-automatic transfections assume a given viewpoint.
There are works on designing transfer function d¢asefeature clustering. Sereda et al.
[73] proposed to use clustering to design tranéfieiction. Maciejewski et al. [55]
proposed feature detection in 2D transfer functEpace automatically or semi-
automatically. We focus on using clustering in tbatext of viewpoint suggestion.

To enrich the volume rendering images, focus+cdrphniques are widely used to
enhance the volume rendering. Wang et al. [89pdhiced the magnification lens into
volume rendering. Viola et al. [88] proposed anomdtic cut-away view based on
assigned importance weight on segmentation. Krégel. devised the ClearView [47]
system using spherical hot-spots based on disctet@ature based importance. There is
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also research on adding multiple view informatioraisingle view. Kohlmann et al. [46]
presented a deformed viewing sphere based onyiSadarsanam et al. [75] proposed a

widget to incorporate multiple views into a singleage.

4.2 Verifiable Direct Volume Rendering (VDVR)

CT reconstruction provides a major source of voluerelering. The raw scalar field
is naturally available from the CT acquisition pges and therefore a verifiable
visualization pipeline must integrate the rendestages with the scalar field generation.
The recent insightful volume rendering approachRautek et al. [69] recognized this
important relationship. Their algorithm, termed &ir DVR (FVR), integrates the raw
data transformation (the CT reconstruction) stage the rendering stage by directly
generating the samples required for rendering ftbenraw data (X-ray projections) in
place. In other words, they generate a transiehinve dataset that does not require any
further interpolation in volume space. They coningty show that this has great
potential for improving rendering quality. Similgrlthe CT community also noticed
these resampling issues that motivatéd'®, suggesting the same direct pipeline [47].

As past efforts show, directly visualizing CT rawta is an expensive operation,
since it neglects the inherent advantages of CDbnscuction, that is, the spatial
coherence and data compression it provides. Finsgtandard DVR to render an image
of n? pixels one require® (n®) off-grid sample interpolations in volume space (to
generate the densities along the rendering rays).th@ other hand, assumidgn)
projections, for BVR to generat® (n3®) volume samples one requir@én*) projection
data interpolations. Translating these complexityuments into practice, this causes
DR to be about 50 times slower than DVR, assumiridinear and bi-linear
interpolation for DVR and BVR respectively. In fact, this led the CTZR researchers
to only develop a real-time 2D slice-viewer, shyaway from volume rendering arguing
the lack of sufficient computing power. Second, @iE-reconstructed volume grid also
avoids the poor locality of the projection data whmapping spatially coherent data
access requests. The texture fetching pattern 2RDin volume rendering is aine

function (also called thainogran) which does not map well into a GPU rendering
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pipeline. We can observe this from the results iabthby Xu and Mueller [93]. Their
GPU-accelerated R only achieved speedups of 1.3-1.5 after applyingumber of
acceleration schemes, such as occlusion cullingeamaty-space skipping.

In order to bring verifiable visualization into gatice, we propose an integrated
rendering solution we call Verifiable DVR, or VDVRwWr verification procedure bridges
the currently existing disconnect between the ragjegtion data and their visualization
via volume rendering. It helps to make visualizasioverifiable since we guarantee a pre-

set error tolerance that is applied in the CT retrmiction step.

Unverifiable Pipeline Unverifiable Pipeline Verifiable Pipeline

No Interpolation Trilinear Interpolation Trilinear Interpolation

CT Reconstructed
Volume Samples
Requiring Trilinear
Filter

Bilinear

A- Interpolation In Place CT
CT Scan _ Reconstruction

X-Ray Projections (a) DVR based on bilinear  (b) Improved DVR based on  (c) VDVR based on sinc
interpolated projections  sinc interpolated projecti interpolated projecti

Frequency Domain (sinc) Interpolation
Figure 29. CT data acquisition, reconstruction and visualization pipelines for (a) D2VR [69], (b)
unverifiable, (c) our verifiable method.

The fundamental difference betweerfVR, standard DVR and our VDVR is
illustrated in Figure 29. Apart from the naturetbé interpolated data (raw projection
data for BVR, volume data for DVR and VDVR), the differencetem from the filter
used for the interpolation. @R, shown in panel (a), interpolates the projectitaia
using a bilinear filter rather than the idesahc filter. Thus, although BVR effectively
eliminates sampling errors in the volume domaistiilt commits errors in the projections
domain, which are not explicitly verified (we wilhow later that such a verification
would lead to a prohibitively inefficient iR algorithm). We can observe the resulting
fidelity losses especially for the fine details the fish tail. Conversely, both standard
DVR and VDVR can effectively usesincinterpolated projections, since the CT
reconstruction is only a one-time process. Howevelumes used in standard DVR
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typically are not generated with the sample intifdon errors in mind, and so they must
use an ideasdincfilter to make guarantees on accuracy. Therefsh&n a more practical
trilinear interpolation filter is used instead, dirdetails cannot be preserved which is
evidenced in panel (b). On the other hand, a remdamesented with a VDVR-certified
volume may safely use the interpolation filter ¥dnich the volume has been verified (we
demonstrate this with the trilinear filter to shtlve gains in speed that can be obtained).

This enables more details to be recovered in theéarng, as is evidenced in panel (c).

4.3 Frequency Domain Projection Upsampling

In FBP, after ramp-filtering, the projections artered as discrete samples, to be
interpolated in the later back-projection stagereibi-linear interpolation is mostly used
in GPU-based CT reconstruction for its fast speedopmance. But this inexpensive
filter cause artifacts which we would like to avoid

The general mindset of our approach is to providesufficient amount of
up/oversampling to allow for a verifiable approxtma of the underlying continuous
function by a piecewise linear function, which waencthen interpolate by means of a
linear filter. This mindset applies to both the jpotion domain and later to the volume
domain. Our first task is to provide such a faithfpsampling for the projection data. As
mentioned, frequency domain upsampling is the mapgropriate solution for this. It is
equivalent to using an idesincfilter, but without the high cost of its infinisupport. In
a 2D Fourier transform, a signal given in frequespgice can be up-sampled by padding
zeros at both ends of the spectrum (used, for ebearp[57] to improve the quality of
Fourier volume rendering). One can then convertadb&ined signal back into signal
space at the new (higher) resolution. A potentsslué in frequency domain-based
upsampling are sharp boundaries that may exishénsignal. Discontinuities at these
boundaries introduce high frequencies. These highquencies can be avoided by a
mirror extension, which ensures a smooth transiéibthe boundaries [3]. Alternatively,
one can also use spatial-domain windowing [50].

More concretely, our goal is a high-quality upsanglof the ramp-filtered data. Let
us denote the signal &sthe upsampling operator 8sand the ramp filter aB. Since the
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operators are linear we may either perf&ti® U ® F orS @ F @ U. If we use filters
other than thesinc either option will contain strong aliasing, sinte affected high
frequency bands are magnified by the high-passrifilg of F. It is straightforward to
either integrate on-the-flgincinterpolation or prior frequency domain upsamplintp
the VDVR pipeline. It merely forms a pre-processistage and the additional
computation or samples will only be needed in tAer€onstruction. On the other hand,
D®/R cannot incorporate on-the-flsincfiltering or pre-computed upsampling easily.
For the former the computational overhead woulgitmhibitive, and for the latter a 64x
storage increase in GPU memory (for 8x upsamphngild be challenging. Therefore
they do not perform any projection upsampling.

The upsampling process is plugged into the CT retcoction pipeline as follows.
The inputs are the 2D X-ray projections obtainedanfithe CT scanner (or obtained with a
high-quality raycaster used in our simulations)r each projection, a 2D FFT is
obtained, zero-padded, and a 2D inverse FFT isroltowing, we perform a 1D FFT for

each line, ramp-filter, and do a 1D inverse FFT.

4.4 Interpolation Error Assessment
441 Error Assessment for the Linear Filter

For the linear filter the largest error occurs la tocal peak or valley where the
maximum curvature is located [77]. Figure 30(ajstlates this scenario for a single
frequency, where the largest error occurs aroumdsihe function’s peak. Given the
sampling distancel, the max absolute errdf; for a specific wavelengttf; with

amplitude4; is:
. d ,
E = |A|( S'”gTT” GT-S0 d<T 1 (19)

where the maximum interpolation ermris a function of the sampling distandeand
the signal period;. The distancéd and period; are connected by the oversampling rate.
If d = T;/2, the sampling rate is just below the Nyquist sangptate. In this case, the

maximum error for linear interpolation could be ¥W®f the sine peak value. df=
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T;/16 (equivalent to an 8x oversampling rate), this wilarantee that the error is less
than 1.92% of the maximum (peak) value. Figure Bolisstrates the error as a function
of oversampling rate and signal frequency. The remlecreases with increasing
oversampling rate and/or decreasing signal frequenc

Figure 30. Sine signal reconstructed with linear interpolation and its error.
Of course, a signal is a composite of multiple @reracies and therefore these errors

A- Asin(%l_—” (%T —%)))

.2
y:ASIn(?(H‘(P)) oVersampIinQ:]L216 20 T

(@) (b)

would possibly compound. However, most likely thdssquencies would be phase
shifted which would reduce the local curvature #ng alleviate the error. Given a set of
A;, the largest error occurs when all sine peaksraatate in one point. The largest error

for this composite signal is:

N-1

N-1 E
Emaxs; | A ImaxfZ )=

whereN is the length of the signal which is also the nemtif frequencies obtained with
the FFT.

A1 sinéE ¢T-5)) (20)

i=0

We give a general impression on what this meangractice. In Figure 30(a) the
blue curve shows the frequency amplitude for th@reéline of the X-ray projection of
the carp dataset, while the red curve shows thegditades after ramp-filtering. For the
blue curve, we see that the highest amplitudedoaiaed at the low frequencies (left).
The panel (b) shows the errors as a function @fueacy and oversampling. We observe
that for 1x resolution the highest error (100%)ocated at the highest frequencies and
falls off according to Equation (19), while for 8&solution the errors all stay below 2%.

Next, panel (c) shows the product of the amplitu@les blue curve) and the error map.
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The plot shows the error at the traditional resofubn a scale from 0 to 0.006 (1.0 is the
maximum). Summing the errors for the full amplitugfgectrum will amount to 22% of
the maximum scalar value of the carp. Conversélg, drrors for the 8x oversampling
case are reduced by almost two orders of magnitadd, their sum is 0.4% of the
maximum scalar value. We thus conclude that thidwats overall impact is negligible.
Furthermore, for the filtered signal (red curvék sum is even less.

As mentioned, the amplitude-based theoretical eassuming the worst phase shift
is too conservative and likely impractical to useother error can be derived by taking
phase shift into consideration. L be the maximum absolute value of the curvature.

Then the maximum error for the sampling distath¢e

E max S%(g)z =%d2 (21)

The proof [77] of Equation (21) is based on Tayomheorem. In general, the
amplitude-based error bound is tighter for singkqfiency signals and the curvature-
based error bound is tighter for compound frequesiggals. We can use both to estimate

the error.

4.4.2 Error Assessment for the Bilinear Filter

For the 2D case, the amplitude-based error bound is

M-1N-1
Emaxsg(;; | A Imaxﬁi—:jl} (22)
whereN andM are the width and height of the signal as a 2Dgen&ince there is no
straightforward analytical solution, we computed tlesulting 2D percentage-error map
by extensive exhaustive search. For a given frequgn,we generated 2D sine waves
with a uniform distribution of phase shiigsand then find the maximum error inside a

bilinearly interpolated unit square.
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Figure 31(d-f) show the results for this 2D anay$or a 2D X-ray projection of the
carp dataset. We observe similar effects thanerlih case. Panel (d) shows the image’s
amplitude spectrum using a log-scaled colormapePR@) shows the error for the regular
1x sampling case (top) and the 8x oversampling (fasttom). Finally, panel (f) shows
the errors multiplied by the amplitude spectrum. \Meserve that 8x oversampling

removes the error almost completely.

3500

Error Map
1X sampling '

N

(d) spectrum of a 2D imagge) percent error per fi,j (f) abs error per fi,j

Figure 31. Linear interpolation error for oversampling. (a-c) show the largest errors for
frequencies in 1D and (d-f) show the largest error for frequencies in 2D. (a) shows one half of the
spectrum obtained by FFT since the other half is symmetric.

An important observation we can make in Figure Bif¢hat the 8x sampling error
map is a direct copy of the 1/8x1/8 center square 1x sampling error map (see the
illustration linking the top and bottom plots of e (e)). So the higher degree of
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oversampling, the more one zooms into the 1x emap. Also, since the raw data (the
sinogram) is band-limited, the amplitude spectrumth® reconstructed signal stays
constant but the overall spectrum bandwidth gromtberate of the oversampling. Both
of these facts have important implications for thaximally needed resolution of the
verifiable grid, as we shall see soon.

The curvature-based error bound can be derivedasignfor the bilinear filter. We
use this notation later although it is not exattlg definition of curvature. In [106], we
proves an error bound based on the local secoret Giaylor expansion which is similar
to [77] [20]. Assuming the signdlis of classC3, letM 2, M2, M2, andM,,. be the
largest absolute values ff, fz, f,2, andf,, respectively. An error bound for the

sampling distance is

2 3

d d
E <—(MX2+My2)+7(MX2y+MXy2) (23)

max — 8

We can use this error bound in similar ways asénltD case.

4.4.3 Error Assessment for the Trilinear Filter

If N, M andL are the size of the 3D signal, the maximum esor i

L-1M-1N-1 E . (24)
max = z |A,jk|max = }

k=0 j=0i= ik |

E

Similarly to the 2D case, we compute the 3D erraprm 3D by exhaustive search. For a
sine function with frequency ;,, we test a uniform distribution of phase shiftslan
measure for each the error inside a trilinear pakted unit cube. Also similar to the 2D
case, the oversampling error map can be obtaineextrgcting the center cube of the
standard 1x error map volume and expanding it. Tdieen all4; ;, (the 3D amplitude
spectrum), we multiply this spectrum by the errolumne and compute the sum, which
will give us the error bound at the worse phas# sbnstellation.

For the trilinear filter, the curvature-based eround can also be derived [106]. If
M, is the max-absolute value fif ande {x?,y?,z%, x%y, xy?, v%z,yz?, x?z,xz*, xyz},

an error bound for the sampling distaCis

50



Chapter 4 Verifiable CT Visualization

d? d?
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45 Error Control for the Verification

Our aim is to use linear interpolation within oweriiable visualization method and
to use FBP for CT reconstruction. This requirestaisformally quantify the errors
incurred with FBP using bilinear or trilinear inp@lations (note that other constellations
are possible but would have to be formally evaldae well). There are two sources of
error: (i) the interpolation of the 2D projectioa) data during CT reconstruction of the
verifiable volume and (ii) the interpolation of shvolume during rendering. We discuss
these two errors next.

Error control in 2D projection interpolation : In FBP, the ramp-filtering is
performed in the frequency domain so no error ¢aiiired at this stage. Then, following
Equation (2), the filtered projections are integietl and the values summed, multiplied
by m and divided by the number of projectioks Directly applying the bilinear
interpolation error on the filtered projections lwdive usK errors (one error per
projection). However, we are interested in how ¢hesors are reflected in the 3D scalar
field. Essentially, this error bound is the sunathfmaximum errors for th& projections,
multiplied (normalized) by /K.

Error control in 3D volume interpolation : After FBP, the reconstructed 3D scalar
field is sampled and stored as a volume array strdie samples. Thanks to the
important fact that the 3D signal is band-limited @an perform the analysis on a volume
reconstructed at Nyquist resolution (1x oversang)liBased on this reconstruction we
can then estimate the error bound for any oversagphte, for both amplitude and
curvature-based error. In the carp dataset, asguB¥nsampling, the amplitude-based
bound is 0.4 and the curvature-based error boudis (1 is the maximum scalar value).

Flat-panel detectors produce cone-beam data. Othrotheextends quite naturally to
this case. First, the corresponding reconstruaigorithm would be the FDK algorithm
[29] [94]. While the max errors for each 2D projentcan be analyzed similarly, depth-
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weighting factors are now involved in the backpctign. These depth-weighting factors
will multiply the projected values and so amplifeterrors. Therefore the resulting error
bound will be the sum of the max errors multipledthe max depth-weight factor. The
rest of the error analysis factors in the beam ggpnbut is principally the same as for

the parallel beam case.

X Ray Projection Data

1D Ramp Filtering 53;";2"9 2D Upsampling 1D Ramp Filtering

Verifying Filtered Projections

#{ Back-Projection Sa;-u;:ng Back-Projection On High-Res

Error Verifying CT Reconstruction

#{ Error Checking REEZ:S::nm Creating Initial Index

Verifing Mixed-Resolution Octree

Feedi
Affected Neighbor Checking | Lo Data Feeding

— Adding Continous Boundary

Figure 32. VDVR pipeline.

The entire verifiable pipeline is shown in Figur@. 3The inputs are the X-ray
projections and an error threshald We first determine the upsampling rate of the
fillered projections by estimating the error bounthis analysis is based on the
projections after ramp-filtering. Then we run fregay domain upsampling according to
the verified upsampling rate and ramp-filter thesaippled projections. Following, we
perform a CT reconstruction at the Nyquist resolut{1x up-sampling), perform the
error analysis and determine theerified oversampling rate for the 3D volume. Then
we perform back-projection again but now on a hgéelution grid which captures all
possible details. We call this the gold-standard.K€ep within the memory limit, we
generate the gold standard in blocks of multiplésc&Vithin each such block, and from
the gold-standard, we then build the mixed-resotutiepresentation only keeping the
detail needed. Starting from the typical base tggm commonly used, we classify those
cells as subdivision cells which contain finer dstaThese cells are then represented

52



Chapter 4 Verifiable CT Visualization

with more data points. Finally, any potential T-¢tions in the mixed-resolution data are

removed. In the following, we describe the firsbterror control processes.

4.5.1 Verifying the Projections

For the amplitude-based error bound, the maximtror éor a filtered projection is
the sum of its frequency errors. Then it is erraultiplied byr/ to yield the final
reconstruction error. We compute the curvaturetbaseor bound in the frequency
domain as well. Taking the derivatives of a sigmathe spatial domain corresponds to
multiplying it by a unit ramp function (the radiftequencyjw) in the frequency domain
[8]. Thus, if the amplitude spectrum is multipliég jw the IFFT will reconstruct the
analytical derivative at the grid points. We useés tApproach to a compute a set of
images, one for each derivative specified in Equma{23). We then find the maximum
values in each and compute the error accordingjt@tion (23). The reconstruction error
is then the sum of thi errors for theX filtered projections, multiplied by /K.

If both error bounds are larger thanthis means we need to increase the upsampling
rate. For the amplitude based error, we replaceettar map with the one for a 2-times
higher sampling rate. The curvature-based errotbeasimply re-evaluated. We continue

this iterative process until the error is belew

4.5.2 Verifying the Gold-Standard Volume

The error of the gold-standard volume can be esichalso by ways of these two
methods. Both use back-projection to reconstrueblame at the traditional resolution.
For the amplitude-based error bound, we take a BD Bultiply the spectrum by the 3D
error map for a certain oversampling rate and shenerrors. For the curvature-based
error bound, we use Equation (25) and estimatenthgimum derivatives by taking
derivatives in frequency space. Note that hereetiher bounds are already in 3D space
and there is na/K factor involved. With these two error bounds, teeolution of the

gold-standard can be determined.
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4.6 Mixed-Resolution

To enable verifiable visualization with efficientaddware-accelerated trilinear
filtering (instead of the ideainc filter or higher-order filters), we need to kedy data
at a higher resolution. As argued above, our gotd preserve the local maxima/minima
of the reconstruction, because the trilinear fitannot interpolate values beyond these
limits. In our mixed-resolution building stage, giva set tolerance (the verification or
certification stamp) some cells may be classifisdsabdivision cells. As mentioned
above, these cells contain fine details and mustepeesented by additional data sample
points, generated within a progressive refinemeotgss. We store these cells separately
as a progressive refinement structure.

Compared to the gold-standard the coarse volumeusaally represent the data
fairly well and only needs a few locations to refiThe refinement regions contain high
frequencies in forms of sharp edges. The high faqies give rise to a line-shape which
is typically sparse in nature. It often occurs asrthe whole volume which makes brick-
boundaries inefficient.

Our mixed-resolution based adaptive refinementthasstorage cost of a 3D index
volume. The index granularity can be chosen astaindevel of the octree. Each level
has a 1/8 smaller storage (1/2 sampling rate inthBjy its next-lower level. The error
determining the local sampling rate is described as

B0y A= 1100y 2= 3 Wi dix %2 (26)
i ke
Here, the oversampled reconstruction d4dta y, z) is the gold standaray; ; , represent
the filter's weights (we use the trilinear filtemdg(x; , y; , z;) are the grid samples at the
coarser level. If the reconstructed signal erranpared to the gold standard is larger
than the (verified) fidelity threshold, we subdivide the current cell and increase the
sampling rate by two.

Cell-based and node-based methods are two apm@icghblemes to represent octree
subdivisions. We chose to implement a cell-baseéreedecause the duplicated value on
the boundary can overcome the boundary disconyinpibblem well. We need the
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boundary values to preserve the thin structuresdfian occur in medical datasets. In
this cell-based method, the base cell has 2x2x8asies, while the refinement cell could
have 3x3x3 or 5x5x5 elements. A 2x2x2 base cellbbeasubdivided into eight children
(a 3x3x3 cell) or sixty-four children (a 5x5x5 gelDur scheme first estimates the error
for a 2x2x2 cell, which is the traditionally usessolution in CT. If in this cell all the
errors (compared to the 9x9x9 gold standard) a@bthe threshold, then we stop and
return the refinement index as 0. If there is astyneator reporting an error larger than
we try a 3x3x3 cell. When the 3x3x3 cell is gooénthwe return a positive index.
Otherwise, when the 3x3x3 cell fails then we tfyx®x5 cell whose refinement index is
always returned as a negative number. We end upanbarse volume, an index volume
and two volumes.

The error checking process can be straightforwacdiyputed on the GPU using 3D

textures mapping. The equation to guide the textaoedinate transform is:

(0.5,0.5,0.5)) L-(,-1) , (050505)
|1 (ll - 1) ’ |2 |2

wherev;.xyz is the texture coordinate inlicube ands,.xyz is the texture coordinate

V,.XyzZ= (V,.Xyz—

(27)

in al3 cube. In our implementation, to better utilize 88U bandwidth, we process
multiple cells simultaneously in multiple threadgiich can greatly accelerate this pre-
processing procedure.

Our mixed resolution representation which has &wiht goal than octree-based
multi-resolution frameworks, such as [25] [48] [62for example, the Gigavoxel
framework [16] can provide interactive rendering méssive volume data. Aimed at
providing aliasing-free level-of-detail (LOD), most these multi-resolution approaches
store multi-resolution data in different texturesdaender each brick individually. The
high resolution of their input also hides, to soexéent, aliasing issues [16]. Similarly, in
the physics simulation domain, AMR is a refinemstticture which was first developed
by Kahler et al. [37] [38] and further improved Marchesin et al. [58]. In contrast to
these methods, our representation data is direletived from the raw projection data

and can so extend resolution only when neededesepve detail. Therefore, our mixed-
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resolution method is more adaptive and less barmefwhen it comes to data storage. In
addition, we do not aim for a multi-resolution regpentation that can provide smooth
transitions from low-resolution to high-resolutiddather, we only keep the leaves of the
octree, at the local level that preserves theitief the (transformed) raw data.

T-intersections occur when two boundaries of d#ferresolutions meet. They can
cause visible banding artifacts if not handled prbp The approach by Ljung et al. [53]
smoothly interpolates between these mixed-resalutioundaries, and Beyer et al. [5]
introduce a scheme that blends samples nearbyappi®ach does not give explicit error
control and therefore it is not verified by the rdata. Also, because the refinement cell
position is grouped into a coarse granular octoedy(2 levels), it is inefficient to handle
sparse refinement regions (void region and thincstire). In contrast, our data method
can directly account for visualization errors aogort finer granularity.

4.7 Continuous Boundary

In the end, there are two textures storing allnesfient cells, first level and second
level. The element sizes of these two volumes &®x3 and 5x5x5. Along with the
2x2x2 cell in the coarse resolution, we have a v@llemixed-resolution data
representation.

Problems in this mixed-resolution representatiorsearwhen we are trying to
reconstruct values on a mixed-level cell boundahe trilinear filter itself can preserve
C° continuity across a uniform grid. However, if wavie a high resolution cell on one
side and low resolution cell on the other, therimiéation scheme would result inC4
discontinuity. To keep with our verified renderiagproach, we need to avoid schemes
that blur this T-junction. Instead, we augment fRgunction with the underlying
continuous data and upgrade the low-resolution isitdea finer resolution. Any cell with
high resolution neighboring this cell is affecte¢y i@ and changes its interface
accordingly. Filling the low resolution cell withriginal data selectively will not
dramatically increase the data storage. Most inapdit, feeding the gold-standard data

will preserve the verifiable threshold in Equati{@®).
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Figure 33. The data feeding algorithm ensuring a trillinearly interpolated CO continuous boundary.
A 2 level boundary region is shown in (a-c) and a 3 level boundary region is shown in (d-g).

The key idea is to only upgrade the high-low regofuboundaries, while the rest of
the points are generated by trilinear interpolatimncomply with the low-low resolution
boundary). Otherwise the high-low resolution bougdaill propagate and we will end
up with high resolution everywhere. We illustrater @lata feeding process in 2D in
Figure 33. In panel (a), there are eight base 2x@eils and one 3x3x3 cell with
refinement. Each of the 4 neighbors of the refinenoell contains a high-low resolution
boundary. In panel (b), we feed the center elemé&oi® the gold-standard into the
affected cells (with the same blue color). Finaltypanel (c), the yellow points are
further added into the 4 affected cells. These oyellpoints are obtained from
interpolations and all the T-junctions can be reath\By adding the raw-data rather than
blending, our method can adhere to previous el@sholds, and even further increase
the authenticity.

The algorithm ensuring @& continuous boundary in 3-level overlapping regims
shown Figure 33(d-g). If the cell is only affectby a 3x3x3 region, then data filling
occurs similarly as before. If the cell is alsoeated by a 5x5x5 region, we first fill
3x3x3 data accordingly (panel (e)), perform anothezar interpolation (green samples
in panel (f)) and then fill 5x5x5 data accordin@ganel (g)).

Our method performs two processes after building thitial index of data
refinement. They are the affected neighbor checkind the data feeding as shown in
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Figure 33. The first process scans the initial n@®ad generates maps recording all
affected neighbors and the affected boundariesu¥¢el8 bits to encode different cases
because between two neighboring cells, the posshdeing boundaries can be 6 faces
and 12 edges resulting in a total of 18 boundafiesis we store 18 bits information for
each 2x2x2 base cell. Totally there are totally2t836 bits recording the affected cells
by 3x3x3 and 5x5x5 cells.

The next procedure is filling the low-resolutioril@ecordingly, as shown in Figure
33. The previously generated high-resolution deg¢astored on disk so we do not need to
re-generate the original data again. Firstly weklabthe cells affected by 3x3x3 cell, fill
the low-resolution cell accordingly and add thos&ly upgraded cells into the textures.
Then we process the cells affected by 5x5x5 calllar. The added interpolated data of

a new 5x5x5 cell can be based on interpolatingZx2>cell or a 3x3x3 cell.

4.8 Implementation and Results

While our method can be generally applied to higteo filters, we choose the
trilinear filter in this work for its efficiency,sadiscussed above. Our fine granular octree
method lends itself quite well to GPU acceleratidfe store the base volume and index
volume into 3D textures. During ray tracing, eaaeimple position is interpolated and if
the current region indicates a finer subdivisioantithe index points to corresponding
children in the octree.

To correctly fetch the index, the index volume ddoube shifted by
(0.5,0.5,0.5)/volume_size before applying the netameighbor filter. When the ray enters
into a refinement cell, the local coordinates vii# changed. The texture coordinate
mapping between two levels follows the same promeds the data refinement. So, if
one cell has more detail and needs finer resolutiben via the index pointer, the
fragment program goes to that position in the @poading level refinement texture to
fetch the data. The positive index will be directedthe first level refinement and the
negative index will be directed to the second leeéhement.

Finally, since our method serves as an extensigdheoDVR pipeline, many existing
acceleration techniques available to DVR can berparated into our pipeline without
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much modification. We currently use block-based smgpace skipping and early
fragment kill [23] in our visualization pipeline.uBfacilitated by our mix-resolution data
representation, we can also readily perform raghtigawith adaptive step sizes controlled
by the local resolution.

We use the FFTW library [31] to perform the Fouaad inverse Fourier transform.
The GPU components are based on NVIDIA CG.

There are some implementation issues related tag#cand speed. To avoid having
to store all high-resolution data in memory at gnge use a block-marching approach
which keeps the size of active memory reasonalbie.block size should not be too small
because the CT reconstruction is done on the GRU([%ing projective textures) and
the bandwidth between GPU memory and CPU memonrglagively low. Therefore we
take 32x32x32 of 9x9x9 cells as a block and recoatsall of them together. Each block
is a 257x257x257 floating point data array whicketa64.75 MB of storage. This
structure is scalable to large datasets with hagolution. Afterwards, some parameters
in our method can also be fine-tuned for betterfgperance. Note that the finer
granularities of refinement cells will have morepticated boundaries. In order to have
better storage, we chose the granularity of thimeeient to be a factor of 4. Therefore,
64 neighboring 2x2x2 cells correspond to one elenmethe index volume instead of 64
elements. The merged index volume then consumest &d64 of the storage of a
traditional scalar volume.

In practice the height of the refinement comporantld be larger than the current
dimension limit of 3D textures. It is often neceys# regroup the two refinement
component. Under the 4-granular index, the refimgmeell would be 9x9x9 and
17x17x17. Instead of a 9x9x9xh 3D volume texture, @an regroup the data into
90%x90x9h/100. For a 17x17x17xh volume, we can rggrahe data into
170x170%x17xh/100. The rearrangement of the wid@fthe transform parameters.

We compare results obtained with traditional resofy D?VR, and using our
verifiable pipeline. We did an experiment compateslitional volume upsampling

(increasing a volume’s resolution via frequencycgpapsampling) and our verifiable
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volume oversampling (reconstructing the volume &igher resolution from upsampled
projection data). For this, we simulated a set #fXzray projections (size 8pof the
analytical Marschner-Lobb (ML) function [58]. Figur34(a) shows the results of
upsampling pipeline: from the projection data, restcuct a volume at the base resolution
of 64° and then double the resolution to i128ing frequency-space upsampling (note
that this is different from sampling the origindd 3L function and upsampling it, our
experiment more closely simulates a practical easee in which an object is acquired
via CT scanning). Conversely, Figure 34(b) showes ribsult of our verifiable pipeline:
upsample the projection data by 8x using the frequespace method and then
reconstruct a mixed-resolution volume (2% erroeshiold) that also has about ¥2fta
points. We can clearly observe that both renderarg=f fairly high quality, but only the
verifiable method can represent all function ddthi€ deep grooves between the rings).

(@) (b)

Figure 34. Iso-surface rendering (using trilinear interpolation) of the ML dataset represented by
the same number of volume samples: (a) volume resolution doubled via frequency space
upsampling; (b) mixed-resolution reconstructed from upsampled projections and a 2% error
threshold.

Figure 35 plots an error map of the results obthiméth (a) VR, (b) DVR
(uniform resolution), and (c) VDVR (mixed resolutjo For the projection data, both (b)
and (c) use frequency space projection upsamplimtewa) uses bilinear interpolation as
described in [69]. We observe that all pixels ie MDVR panel (c) fall below the set
error level of 3%, while without the verifiable neid-resolution the error increases to 4%.
D®/R has strong ringing errors in the high frequesdiep to 6%). These error rings
result in some missing or reduced high frequenogsiin the function (rings 4 and 6 in
Figure 36).
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0% 1% 2% 3% 4% 5% 6% 6.66%

Figure 35. Error in (a) D2VR, (b) DVR at uniform coarse resolution and (c) VDVR using the ML
dataset at a 3% error threshold. Projections of (b)(c) are interpolated via the frequency domain
interpolation method. (b)(c) use the trilinear filter to interpolate the volume samples.

Figure 36. ML comparison between analytical function in (a) and D?VR in (b).

We also performed these comparisons using a pahctiataset. In clinical or
industrial settings the CT scanner X-ray detectoiten have higher resolution, and
typically a bin decimation procedure | used to remmoise and aliasing. In order to
mimic a real-life CT scanning scenario, we perfadmen 8x8 down-sampling for
decimation. Figure 37 shows volume renderings o darp dataset, where 142
projections of resolution 256x129 each were useddoonstruction to obtain both the
traditional volume dataset pictured on the top tradverifiable representation pictured at
the bottom. However, the trilinear filter in ther®y projection simulation would result in
strong aliasing, especially along the z-axis. THY® paper [69] suggests a solution
employing a spiral CT simulator. We chose a diffiénoute. We first generated an 8x
high-resolution sinogram, added Gaussian noise dathsity 0.05, and then convolved
the projections with a 5x5 median kernel and a Giauskernel witho = (0.1, 4.0)
before performing an 8x downsampling. This procedeffectively eliminated the

aliasing along the z-axis and also reduced theenois
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Figure 37. Renderings of the carp dataset represented in the various grid resolution types.
(@)(d)(f) uniform (coarse) resolution, (c)(e)(h) mixed-resolution, (b)(d) frequency-domain
upsampled resolution using the same storage than the mixed resolution (magnified cuts only).

Using these simulated projections the dataset wesnstructed and then rendered
using a standard trilinear interpolation filter.giie 37 panels (a), (d) and (f), were
rendered from a uniform 128256 volume (base) resolution, which is the resotubne
would typically pick given the 256x129 projectiomatd. We observe strong aliasing
artifacts in these renderings. On the other hamelyénderings obtained from the mixed-
resolution volume (3% error threshold, 2.4x moage) and shown in panels (c), (e)
and (h) can resolve small detail, such as thelibires, rather well. We also took the base
resolution volume of (d) and used frequency domgisampling to generate a volume of
the same storage than the mixed resolution oP@)els (b) and (g) show magnified cuts
of a rendering of this volume. These images exhillitle aliasing is suppressed, small
detail cannot be solved. The highlighted fish imifhown in Figure 29 which compares
our VDVR with D’VR. Panel (a) shows thatBR still smoothes out some fine details on
the tail, while VDVR in panel (c) provides sharpemages, showing the thin bones
clearly.

The performance was measured on a PC with Intee QoDuo 3.00GHz CPU,
1.75GB RAM, and a NVIDIA GeForce 9800 GX2 GPU. Talkl! gives insight into the
rendering speed and compares it witAVvR. For these results, we rendered into a

512x512 window and used a ray step size of 1. Veluaxtures were RGBA 32 bit
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floating point. Central-difference-based gradiestireation was used in the volume
rendering. Since the Shepp-Logan dataset has eergdntrast tumors and high intensity

bones, verification was only performed on inteesitaround this tissue intensity range.

Table 5. The performance of VDVR with 3% error tolerance

Base Resolution Pre-

Dataset (# of 2x2x2 cells)  Processing Rendering Storage
Shepp-Logan 128x128x128 12 min 10 fps 4%
Carp 128x128%256 35 min 11 fps 2x
Beetle 102x62x128 6 min 13 fps 5x
ML 64x64%64 4 min 20 fps 6x

In Table 5, the error threshold was set to 0.03albrdatasets. We observe that a
rendering speed of about 10 frames/s is possiblgractical datasets. VDVR requires
about 4 times more storage than DVR and likewiééRD However, we also note that if
D?/R were to store high-resolution projection dataotcercome the aliasing effects
incurred from sampling ramp-filtered projection aatith an inferior filter, its storage
requirements would be significantly higher.

Figure 38 shows the qualitative effects of the rertlreshold, using the ML
projection data. It appears that refinements viifitfpick up high-frequency details (the

outer rings), and then expand to lower-frequendgitie(the ring close to the center).

Eventually, fine details no longer improve duetlte implicit band limit of the ML.

4% 3% 2% 1%
Figure 38. ML rendered with VDVR at different error thresholds.

Finally, Table 6 examines the effect of differemtoe thresholds on rendering
performance. While the ML function is small, it iich in fine details. Therefore its
storage increases dramatically when the error tiotdss lowered. The rendering speed,
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however, is stable since the required renderingrefis still small for the GPU.
Conversely, the carp dataset is larger in sizealvand so requires a larger rendering
effort, but it contains only sparse details. Therefthe storage is less sensitive to the

error threshold.

Table 6. The effects of different error thresholds

Dataset Threshold RMS Rendering Storage

4% 0.0156 20 fps 2.34x
ML 3% 0.0123 20 fps 6.04x
2% 0.00917 20 fps 8.35x
1% 0.00747 20 fps 32.0x
3.0% 12 fps 2.41x
Carp 2.5% NA 11 fps 3.03x
2.0% 8.6 fps 4.23x
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Chapter 5. View Suggestion

In this chapter we concentrate on the problem gfgesting to the user a set of
potentially good views. We leave the design of tla@sfer function needed to highlight
the exposed features to the user, supported bgbdeiexisting interactive algorithms.
There are many of these (e.g. [14] [14]) and s@weot discuss them in this work.

We propose a viewport advisor — iView [107] — rabia high-dimensional feature
space which does not rely on transfer functionwaume segmentations as an initial
input. By applying high-dimensional feature clustgr our proposed method can
automatically detect salient composite features aaded on this analysis suggest
promising viewpoints. The user may then inspecse¢hgromising views more closely by
interactively exploring the transfer function, ounr one of numerous automatic
algorithms to optimize visibility. We henceforthlicthis method viewpoint suggestion
since it helps users to navigate to favorable msstthat potentially show interesting
structures. In this way our approach is less amimstithan a full-fledged view selection
pipeline, but at the same time more versatile goprapriate for data exploration. It
supports the extraction of a set of good views ayppately refined with different transfer
functions instead of a set of good views limiteaie fixed transfer function.

Our approach also offers advantages in terms efantive data exploration. This is
especially important when users are not certairuatiee properties of the structures of
interest and need to refine the renderings. Trauli view selection algorithms [7] [10]
involve full volume rendering from all possible wipoints and calculate the viewpoint
entropy from all voxels. This can result in proliNe wait times if users want to update
the transfer function during the search for thet bmswpoint. In contrast, our method
splits this process into two separate and subseégumraises: (1) the determination of a set
of good viewpoints using relatively inexpensive @®ns (GPU-accelerated clustering,
cluster-based visibility test and entropy calcwaa}i and (2) the interactive refinement of
the transfer function from these promising viewp®ito generate the desired salient

volume rendered images. This approach allows usgrsnaintain a stable spatial
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reference (and one at which many features arel@)sivhile exploring these features and
their relationships one by one by modifying thensfer function.

To address the problem of fully covering all featin a volume, our viewpoints
suggestion method provides a two-fold solutionstriour system not only suggests a
single best viewpoint, but also provides an intévacnavigation interface where all the
views are color-labeled with a relative measuréeafure exposure. Also, the system can
progressively mark visited features and only shbe distribution of the unknown, yet
undiscovered information. This type of interactimas already been useful in specialized
applications, for example in virtual colonoscopy]4vhere colon wall patches already
viewed are painted in green on the fly-through,bdéing doctors to focus their attention
onto unpainted areas. Second, to effectively gugbrs in their exploration of the entire
volume, our system provides an automated viewpsuggestion module, effectively
minimizing the number of views to be inspected. @Quultiple-viewpoint suggestion
algorithm seeks to determine the minimal set ofvgi¢hat can cover all features, which
maps to the Set Cover Problem (SCP). Our set-conarlem solver together with the
interactive viewpoint navigation tool then aids ngsi gaining a complete understanding
of the features in the volume.

Our view suggestion pipeline is shown in Figure 38e first stage is a multi-
dimensional data clustering. Given a certain ntesel for the dataset, we consider
voxels with high gradient/normal variation as tmeportant features. We perform k-
means clustering to group voxels into blobs, fokovby a visibility test. In the next stage
we compute the information gain for all viewpoirdsound the object and create an
entropy map that we display on a sphere that dsuldea track-ball interface used to
change viewpoints. Thus, by mapping the entropy chegctly on the track-ball, users
can directly and intuitively identify and navigat® favorable view locations. The user
can also add or delete viewpoints by clicking oa fiphere and the displayed entropy
map is updated accordingly.

Alternatively, the SCP solver can be used to suggethe user a set of optimal or at

least near-optimal viewpoints from which to visaalithe volume. It provides a series of
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viewpoints that covers all features. The set ofrogt views suggested by the SCP solver
is annotated onto the navigation sphere and theaasecontinue navigating through the
sphere with these added suggestions in hand. Im#antime the user can also use the
transfer function designer to explore settings &éhxqose features at the given viewpoints.

Feature
| Descriptor Feature

q — e e Clustering

A4

Cluster Coverage for Each View

Entropy Map Set-cover Problem Solver

e
<\°@\
PS\

) Interaction
Navigation Sphere : User

Figure 39. Viewport suggestion pipeline.

5.1 Viewing Entropy

Information theory defines entropy as a measuranzertainty associated with an
information source. Since, to resolve this uncatigithe amount of data we need to
transmit to the receiver defines the amount ofrimi@tion content, entropy of the source
hence also measures information. Let us considgr iaformation sourceA which
transmits a random sequence of symbols taken fripimabet{a,, a4, ..., ax_1} where

occurrence probabilities afgy, py, ..., Pk—1}- Entropy of this information flow is given

by,
K
H(A) == pilogp, (28)
i=1

Now, say, in addition to the given probabilitielse treceiver also has the knowledge
that a certain symbal, is always followed by some other symhm|, Presence of this
knowledge to the receiver, let us define ittagseduces uncertainty regarding the source.

Entropy after this knowledge would bié(A|E).
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In the context of volumetric data, we have an infation source — the volume itself,
the information receiver — the viewer and a trarssion process which includes the
whole pipeline of volume rendering. If the volunsenot shown to the viewer, then the
uncertainty associated with the volume is at maxmand it represents the total
information content of the volume, say we denote Hy H(X). Now, in the event that
we render a particular view;, partial information of the volumetric featurescbme
revealed to the user. The uncertainty remainingroaghly be defined ak (X|V = v,).
Since we are interested in finding the view thateeds most information, from the
perspective of information theory, what we wantdsfind a viewv,,;, that minimizes
H(X|V = v;) with respect to all possible views. From the chaile of entropy we can
write,

HX|V=v) =HX,V=v;)—HV =v,) (29)

Here,H(X,V = v;) is the information content of the volume and iisw taken
togetherH(V = v;) denotes entropy of a particular view and as ssch measure of
information content of a rendered view. Since awig just a projection of the volume
data, we can considéf(X,V = v;) to be constant across views. Hence, minimizing
H(X|V = v;) effectively means maximizing (V = v;). So, a good view is identified as
the one that has large view entropy.

Vazquez et al. [86] [87] firstly applied the contep viewpoint entropy to determine
the best viewpoints for polygon-based scenes. Inme rendering, a straightforward
way [7] [81] to measure the view entropy requirdsaasfer function to perform volume
rendering for the view. Bordoloi et al. [7] propds® use voxel-based entropy to select
viewpoints in volume rendering, assuming that tr@nfinctions are given. Takahashi et
al. [81] proposed a similar framework based onssdace entropy, weighted by a given
transfer function. Chan et al. [10] extended Boodsl work by considering spatial
relations between structures, after a user-spdcgmgmentation has been given. Our
viewpoint suggestion algorithm is fundamentallyfeliént from these works as it does not

depend on either prior transfer functions or segatem.
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Most of the recent research in view selection usegics based on scalar values to
locate regions of interest, that is, before sabgcthe views the user is either required to
design a 1D transfer function [7] [81] or performs@gmentation [10] to classify these
regions. Then, once this has occurred, the viewmetection algorithm will search for
the best viewpoint to display the maximum amouninédrmation. However, there are a
number of potential pitfalls with this methodolodyirst, before we can start searching
for the best view, the user is required to knowdbt@ar values of the hidden structures to
be classified. But without having a proper lookhre data first (and without the presence
of strong domain knowledge), the user might notehawclear idea what these structures
actually are, even in a coarse sense. Any initiedsg will likely not be able to classify
the hidden features successfully, and so the vedacgon algorithm in turn will not help
to find the best viewpoint. Also, due to the fawttthese methods require input in form
of a transfer function or segmentation, if the usecides to change either of these a re-
computation of the entire pipeline is needed tagssythe new best view. This iterative
process can potentially take a long time and thake® exploring transfer functions in an
interactive manner impossible. Secondly, many stres in 3D volumetric data require
more than scalar values to be classified propdiey may require gradient magnitudes
(or even higher-order metrics), in conjunction withilti-dimensional transfer-functions.
Given all these inherent shortcomings, purely seadsed view selection algorithms can
be quite limited for practical use.

The selection of multiple views or view planningshfound application in many
domains. A variety of methods seek to solve thet mest view problem, such as the
entropy-based method [90], the visibility-based oet [30], and the silhouette-based
method [1]. They have wide application in the ptaeet of laser sensors [6] and RFID
sensors [92] and for determining the best circtrigectory [2] or angles [108] in cone-
beam CT. These view planning methods cannot bettirapplied in volume rendering

but they can provide useful insights.
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5.2 Entropy Calculation
5.2.1 Feature Descriptor

Our method is based on feature detection and higlestsional data clustering. As
for the question how to define features in highelsional space as potentially
interesting structures, there are many choicesthan suitability can be application-
dependent. We chose to provide a very general pplitation-neutral importance metric
based on normal-variation. Normal-variation playsignificant role in lighting. In this
work, we shall assume that an area with large nidgnaalient variations contains salient
information, while regions with similar gradientrelttions have less information. This
metric is an extension of 2D curvature estimatind & generally belongs to the group of
Laplacian operators. The discrete importance esomdor a voxel located dtxg, vy, Zo)
is:

w(xo, Yo, Zo) = Z [Vf(x,y,2) — Vf(xo, Y0, Z0)| (30)

(x,y,2)EN (x0,¥0,20)

wheref (x,y, z) is the volumetric scalar field, is the gradient operator andx, y, z) is
the set containing a neighborhood (afy,z). In our estimation, only the 6 closest
neighboring points are considered. This metric iffeient from the classic Laplacian
operator which is defined as the divergence ofgitaglient vector field and thus can be
negative. The importance weight here sums up tkelate values of gradient difference
individually which can guarantee the weight to besipve. The intuition behind this
metric is that we want to have a measure of théugmations of gradient/normal in a
region.

Most practical volume data contain a certain leskehoise which will affect the
feature detection. In the pre-processing stagetake the ambient noise level as an input
to threshold the scalar values. We also considernitise removal as a thresholding
procedure on gradient variation. After applyingslehresholds, the resulting voxels are
considered the important voxels and are clustened five-dimensional space: scalar

value, gradient magnitude, aqw, y, z) coordinate.
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5.2.2 K-Means Clustering

The k-means algorithm is one of the most well-knasustering algorithms. Given
an input valuek, it can partition n objects intb clusters based on some similarity
(distance) measure. We apply k-means clusteringet& blobs in 5D space. We also
record the voxels inside each cluster and remoslesder if the number of voxels is too
small (less than 5). The gradient/normal directfon each cluster is computed as a

Gaussian-weighted average which enhances spatiateace.

n ._ ) = : -... (a) :_-:. re -.; '.: (b)

Figure 40. K-means feature clustering with gradient vectors shown for (a) a standard cube and (b)
a cube with text on the back surface.

An example of computed gradient vectors is showrrigure 40. The clustering
phase can employ automatic feature detection ifathéient noise level is known. We
build our system in the high-dimensional featurandm. Hence it can detect local
structures with high gradient variation and adjuisws for these local features. This
provides a general importance metric well suitednfon-expert users, to minimize user
invention. But we note that our data-clusteringefiige can readily support other more
specific metrics if more specific domain knowleddmut dataset and task is available.

An important aspect in k-means clustering is theuinvaluek. The value ofk
controls the resulting number of clusters and &t she grouping of similar features of
the input dataset. For a given dataset, to idenkigy features distinctly, the algorithm
requires a certaik that will ensure separation of features such tiatclusters truthfully
represent the features. Having a smallealue will merge a set of features into a big
cluster, whereas a larger value will produce chgst®vering fine details. From a multi-
resolution point of view, the choice &faffects the resolution of the features to be
extracted. Therefore, the valiewill reflect the average size of the feature adust We

base the choice @&f on the average cluster size (and therefore detenad of structure
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detail), chosen by the user via a slider interfd¢en the valué is found by dividing the
total number of noise-free voxels by the desiredrage cluster size. But alternative
approaches such as the elbow criterion [42] andeéms [66] may also be utilized to
obtain an appropriatle. Finally, users may also inspect the clusters isyalizing them
in the 3D interface.

Another factor in k-means clustering is the cha€dhe initialk seeds, which can
produce a certain level of randomness in the dsdtemed. To overcome this problem
we use the standard practice of clustering the ohatitiple times with different random
seeds and picking the clustering that has the leestall L2 error with respect to the
clustered data points. Since we use the GPU-basedaks library [27] the performance

hit is relatively minor.

5.2.3 Transfer-Function Independent Entropy

Once we have defined the feature set, what we leed to find are the views that
can show the features distinctly on the screenutiintagraphical rendering. To facilitate
comparison among all these views, we assign a fooeach of them. And to compute
this score, we apply concepts from information tlygn a similar fashion as in previous
work [7] [10] [81].

Our entropy estimation is different since we do want to involve transfer function
as an input and later restrict the decision omglsifixed transfer function. Instead, we
propose to measure the maximum possible informatammoss all possible transfer
functions) for a viewpoint. This is possible sirtbe 2D image generated by computing
the volume rendering equation depends on not dr@yttansfer function but also on the
shading (lighting) effect. Shading plays a sigrficrole in conveying information about
shape and is well-studied in computer graphics. d&fne potential information for
shading as blobs of voxels and we compute the pptbmsed on how well one can
resolve these feature-clusters at a given view dasethe shading (lighting) effect. It
serves as an extension of Bordoloi's work [7] inieththe visibility of each voxel is
computed together with the transfer function toleat the entropy. Here we group
voxels in the volume according into clusters. Thpeabability distributions associated
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with voxel-clusters are needed to calculate entrdyeyq; represent the contribution of

clusterj in a viewpoint.q, iIs a special case indicating the background volume
(containing all voxels that do not belong to anystérs). Then the view entropy for a

certain viewH (V = v;) is:

K
H(Vzvi)z—qu-logij (31)
=0
1 VC(v) CVC(vy)
q;=q;(V) = = ——= where o = i (32)
Y o W = W;

HereK is the total number of feature clusters. The fastwill make sure that alj; sum
up to 1.VC;(v;) is the visibility of clustej in view v;. W; the noteworthiness [7] of
clusterj, is defined as:

|7

W,=1 =—log,pj = —log, =% N
i=0 1M

(33)

wherep; represent cluster probability, calculated from thember of voxels in each
cluster normalized by total number of voxels. We #ige consideration of background.
n,y is number of voxels that do not belong to any telyg, is the probability of
background andl/, is the noteworthiness factor for background.

For the cluster-based entropy, we mark all voxieéd to not belong to any clusters
as ‘background’, which is similar to the backgroufeture definition in viewpoint
selection methods for polygonal models [86] [87hisTwill remove singularities where
only one cluster is shown in a viewpoint but itdrepy is 0. After considering all
background voxels, if no feature cluster is shotie, view will have zero entropy. In
contrast, if any feature cluster is shown thenahigopy will be non-zero.

When we are suggesting views onto the volume, bediithding a single view that
reveals information in the best way, we also warguide the user such that they will not
miss out on any of the features. In the languagmfofmation theory, a single view
might be the optimal view in terms of view entropyt it may be the case that

H(X|V = v;) # 0. So, we propose to suggest to the user a senemfs‘{iﬂl,vz, ...v]-} o)
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thatH(X|V = v,V = v,,..,V = v;}=0, that is, find a set of views that collectivelgn
give the viewer a total picture of all the impottd@atures of the volume data. Chapter
6.3 shows how we compute such set by solving theaser problem.

The k-means algorithm outputs a series of 5D ctasiad gradient/normal values at
the centers of the clusters. For each cluster, xta@ its spatial information as a 3D
ellipsoid and estimate visibility based on the tdu's normal direction.

We assume the center of a cluster to fall withim ¢hipping window. Then there are
three major factors that contribute to a good viély: the angle between the cluster’s
normal and the viewing direction (the eye ray), 2 number of clusters that can be
shown, and (3) the total number of voxels withitgodially visible clusters.

Our goal is to calculate the maximum potential @pyrfor the feature clusters. We
established a set of criteria for a feature clusidrye classified as invisible. We first set a
threshold on a clusters’ normal range and latereméepy to measure viewpoint quality.
The first criterion is that the gradient directiand eye-ray should be within a certain
range, enabling shading effects to enhance smtllldie the volume rendering. Shading
conveys a strong cue for shape (see “shape fromirgiiain computer vision, graphics
and robotics [105]). An important observation istttat 45° the Lambertian cosine
shading functions starts to loose strength, siheederivative of the cosine function has
an extreme point in the vicinity d@f5°. So if the normal vector of the cluster and viegvin
vector make an angle of greater than 45°, our niethtes the viewpoint as inadequate to

cover the feature cluster’s information.

(@

Figure 41. Silhouettes fail to convey concave shape.
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Silhouettes can also be salient in conveying shiafigmation (this is a popular
method in non-photorealistic rendering). Silhouetstart to become visible when the
view and normal vectors are close to 90°. Consdtyyeme may allow clusters that are
close to 90° to be visible as well. This criterignespecially effective in dynamic flow
visualization, in which interesting wave fronts da@ represented as silhouettes. But in
static data with concave shapes, it may produce pesults as shown in a simple
example (Figure 41). Figure 41(b) is a good view the silhouette criterion but it
provides only little information. In contrast, Figu41(c) emphasizes only normal
deviations and is a more informative view. Hence,find that shading effects tend to be
a safer way to test the visibility of the featurespecially when the user is facing non-
convex shapes. Since in this work we only focusralnme rendering of static datasets,
we prefer the shading-based method to point oigrgadetails.

Our visibility test so far did not account for tbeclusion among clusters, since our
target was the maximum possible exposure of adlidetvithin a given viewpoint. This is
less of an issue since advanced methods (such cigsion-spectrum based transfer
function) have the capability to explore data wattclusions. In addition, conceptually
we place no limitation on the number of imagesrangfer functions per viewpoint. As
such, at a given viewpoint, the user may theoryicgee all the structures within a
normal range by applying different transfer funoiocone by one. In fact, this was our
initial design choice: giving the user the freedtmthoose any type of transfer function
or take any number of rendering results later aut. @actically speaking, the occlusion
effect among the ellipsoids represents an additibm& overhead (and therefore cost) in
the data exploration process. So we provide a weiyhwhich the user can set a
preference on less occlusion which in turn easesréimsfer function design.

By applying the visibility test, we measure the lgyaof a viewpoint in terms of
view entropy (Equation (34) and (35)), and find thegest entropy by extensive search.
As discussed, the major difference between ourso#imer work [7] [10] is that instead of
representing information according to scalar value define it on important features in a

high-dimensional feature descriptor domain.
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5.3 Viewpoint Information Exploration

(a) (b) (©) (d)
Figure 42. Viewpoint navigation for a cube dataset. (a): display window for the rendered object.

(b): view navigation sphere (track-ball). Upon rotating the track-ball. Both (c) the rendered object
and (d) the view navigation sphere will rotate in a synchronized manner.

If we assume that all viewpoints have the same candistance, the possible
projection locations will be on a sphere with ra&dRuand can be parameterized by
longitude and latitude. We further assume thatadoheview position we use the same
field-of-view (FOV) and we are looking at the cent the sphere. Rendering the
viewpoint entropy map onto a sphere, every singiatpon this sphere then represents
one view position and the intensity of a point desothe amount of information this
viewpoint can possibly cover. As shown in Figure #2 nearest point to the user (screen
center) is the current viewpoint. The navigatiomaaw and volume rendering are
displayed side by side. The user can rotate therspih the arc-ball interface and in the
meantime the volume will rotate in a synchronoushifan. The user can then check on
the map which view position would possibly be miotteresting to look at.

Deviating from the previous works that use singkeampoint selection interface, we
provide progressive navigation tools. Users caacsed complete set of views to render
the volume data in a greedy manner. The systenshbip user to navigate and allows
them to select a series of viewpoints. When the usarks a point on the sphere to
represent the selection of a viewpoint, the systhows the rendered image and updates
the entropy information interactively, reducing thetropy map to that of the
undiscovered features. Users may then continudndéose several more views until not
much color is left. Also, the user may undo thedsatselection and the system will then
add the affected clusters back into the map. Tlee omy also undo selections multiple

times which will be reflected on the entropy mapenerse order.
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We then explain how to update the entropy calcoatfter a user’'s interaction.

Initially, all clusters are set as unknown, denotek; = 1 for thejth cluster. The

clusters that have been explored by the user arketea as inactive. Thus:

0 if user visted cluster j and j # 0
= 34
Y { 1 otherwise (34)
1 VG(V)
qj =~ —p— (35)

]
Undoing a user selection will mark the correspogdipas active again. We do not

perform further normalization of the noteworthinefestors during user selection,
considering the fact that the amount of total infation is constant. In this way, the user
will observe the color fading from red to blue tongey the amount of information that
has now been explored.

As most users tend to use this tool in a greedyn@iit may not be the optimal way
for choosing the camera positions that cover aéced features. For this purpose, we
incorporate our SCP solver to help users to firddgptimal viewpoints. This is explained

next.

5.4 Ant Colony Algorithm for Set-Cover Problem

We suggest an optimal series of viewpoints by sgithe SCP. We first generate a
large number of views as candidates to choose fEanh view will then cover a number
of features. Thus we make each viewed while the features that need to be covered
form elementsThe optimization objective is to find the minimummber of views that
cover all salient features.

The SCP was one of Karp's 21 NP-complete probl&8k A mathematical model
for the SCP is usually described by a 0-1 matrixL& A(a;;) be an m-row, n-column,
zero—one matrix. We say that a column j coversva irdf a;; = 1. Each columiis
associated with a nonnegative real apstet! = {1,...,m} and] = {1,...,n} be the

row set and column set, respectively. The SCP eastdied as:
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n
min{z Cj * X} (36)
j=1
subject to
al-j-xj21 and XjE{O,l}, VlEI,V]E] (37)

j=1
where,x; = 1if setj is selected, otherwisg = 0. The matrix4(a;;) encodes the all
viewpoints strength to cover the feature clusterthe volume.

The SCP can be solved by many algorithms and theaony algorithm is one of
the fastest solvers [68] [70]. It is inspired by thbservation of real ant colonies. The
general mind-set behind ant colony algorithm ist thdarge amount of artificial ants
search for an optimal solution defined by Equa(i®9). Each artificial ant chooses a set
one by one until it achieves a complete cover @efiny Equation (40). The decisions for
choosing different sets are partially based on Ruos®ulette. Additionally, the
probability for choosing one set will increase ifiage number of ants choose it, which is
in the way of pheromone information exchange. la fbllowing, we explain the ant
colony algorithm for the SCP in detail.

The probability for an ant to choose set j isdoasn the state transition rule:

T'hﬁ
. — 1T ifjeJ\S
P(sy = j|Se-1) = Yaens, s thg =1 (38)
0 otherwise

whereS;_, denotes the partial solution constructed befoep st j\S;_; denotes the
subset of unselected columagdenotes the set that will be chosen at the st the
parametes (f >= 0) determines the relative importance of the heuwrifdictor with
respect to the pheromone.

The heuristic is usually defined by a greedy methb# is the set of still uncovered

elements and; is the cost associated to geThe heuristic value of sgts:
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The pheromone trials are stored at each sef. ahey are initially set to zero and

updated later as:

1
- €S
A= Teesnca 0o (40)
0 otherwise
7j « (1 —p)7; + At Vie] (41)

whereSg, is the current best solution across all apts, pheromone evaporation factor
(with 0 < p < 1) and4z; is the amount of pheromone put on coluimiThe range of

pheromone should be clamped with a rajmgg,,, Tmaex] Where:
1
(1= p) Xjesy, ¢

Tmin = € " Tmax 0<e<1 (43)

(42)

Tmax =

For more a detailed description of the ant colotyor@hm applied for the set

covering problem, the reader is referred to [70].

5.5 Suggesting Best Combination of Views

As mentioned, a greedy search is not always thet mpsmal approach when
searching for a set of views covering all clust&tse entropy-rated viewpoints are only a
result of a local heuristic which is not adequaiefind a global optimum. Hence we
provide the user with the minimum number of viewpsineeded for full exploration
based on an ant colony optimization of the set kngeroblem.

The ant colony optimization method createartificial ants to search for the viable
solution to Equation (39). After afi ants find viable solutions the system keeps tdck
the best ant (with minimum cost), updates the pheree and runs n more artificial ants
until the desirable cost is found by an ant. In puoblem, the user can specify the
number of views he/she wants to have to expodeatilire clusters. Then the SCP solver
will run multiple ants to search for the solutidach ant will make a decision on what is
the next viewpoint to choose based on probabilityg pheromone. The probability is
proportional to the number of unknown clusters ttat be covered and the pheromone.

And the pheromone reflects how many other antsipusly chose this viewpoint. After
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all ants have finished, the ant with the minimunmimer of viewpoints will deposit the
pheromone to the viewpoints it chose. The systethreport a success if an ant has
found the desired solution. If in a limited amowfttime, the ants cannot find a set of
views under the desired cost, the system will refi@t no solution has been found.

We have implemented the ant colony algorithm in Garel validated it against
several test problem cases [4] with known solutiditee ant colony algorithm can run for

a given limit of time and the time limit for seanshset to 10 seconds in our method.

5.6 Results

In our experiments, we set the viewing angle litoit45° and assuming a voxel
distance of 1 mm we set the viewing distance t®®,,m. The image size is always
512 pixels. The view positions on a sphere are sampted 60x30 grid, with a total of
1,800 viewpoints. All volume-rendered results shawrthis work were obtained using
the rendering software Imagevis3D [27] [32].

We first tested our method on a simple cube datd$et cube’s size is 80residing
in a 256 volume grid. We added a shift vector (10, 20, t8Ghe cube which moves it off
the volume grid center. Figure 43 displays the eeimg) results obtained with our system.
In this case, the SCP solver automatically suggésisferent views, looking down the
cube diagonals. All of these 4 views coincide wiith best views provided by Bordoloi et
al. [7]. It appears that two images are not sudfitisince each viewpoint will resolve
three edges in the center through shading, whdedkt of the edge features are partially
but not completely visible. As seen in Figure 41{c)s not safe to only have two views
to visualize the cube, since we do not have gotwinmation about the 6 edges appearing
in the silhouettes. Conservatively speaking, onljietpoints will be able to see all 12
edges with full exposure of all features. The cgpomnding entropy map is shown in the
bottom row of Figure 43. The initial high entropyamwith no views selected shows 8
favorable regions, identifying the cube’s 8 versices best views. The entropy map is
then updated gradually as views are selected. Helecting a given view typically

removes more than one local maximum from the egtrogp.
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Figure 43. standard cube dataset (4 viewpoints computed by the SCP solver). The cube is shifted
from the center. (a): the initial entropy map. (b-e): the suggested viewpoints rendered (top) and

the maps with remaining entropy (bottom).

- —
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(d)
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Figure 44. The cube with text on one face (5 viewpoints computed by the SCP solver), with
transfer function highlighting the text. (a): the initial entropy map. (b-f): the suggested viewpoints
rendered (left) and the maps with remaining entropy (right).

For our next experiment, we add the text “Vis20bh’ one of the surfaces of the
cube (normal perturbation). The results for thidified cube are shown in Figure 44. In
this case, we need 5 views to fully visualize théadet. In navigation mode, the entropy
map clearly highlights the surface with text, irating that in this region there is
something important. In the automatic view suggestnode, one of the resulting views
specifically targets the text while the other vi@iygs aim to look along the diagonals. In
contrast, scalar-value based methods [7] [81] wilt be able consider the text as an

important feature and so will display the entropgpnof a uniform cube. Our method, on
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the other hand, can faithfully detect this typeimficate surface feature and suggest

something of possible interest is hiding in a danéew.

-

(b)

(o) 0 @ (h)

Figure 45. The tooth dataset — the set of 7 salient representative viewpoints returned by the SCP
solver. (a): the initial entropy map, (b-h): the images rendered from the suggested viewpoints
(left) with remaining entropy map (right). (g): modifying the transfer function to see the detailed
shape of the tooth surface.

We also tested our pipeline on medical data, whygically do not have strong
regular edges like the cube. Our experiment usesviil-known tooth dataset. Figure 45
shows the resulting 7 views suggested by the SGRrsfihe progressive entropy maps
are shown on the right of each image). We note hb#h the rendering results and the
entropy maps have been re-oriented using the wefered up-directions since the default
up-direction does not conform to the user-prefetaath direction. In accordance with
Bordoloi’s result, the entropy map of this dataseliicates the north-pole and the south-
pole as the two most interesting regions. The SéNessubsequently chooses the north-
pole and the south-pole as the first two viewpogiatel therefore the resulting 2 images
are deemed to reveal the most interesting infoonatin the data. We also see that after
the first 2-3 views have been selected the remgiaitropy is rather low and sparse, but
our system includes them in the gallery to provdideplete coverage. Another important
aspect to note in this particular experiment isutikzation of multiple transfer function
in the same view. For some of the viewpoints, tbeeiptial information is hidden if only
one transfer function is considered, as shown en@tn viewpoint in Figure 45(g). But
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once the user is given a view that can guaranteetésence of useful information, he
can always refine the transfer function to freekplere the interesting structures best
revealed by this view.

Next, we test our method on a practical datasedioétl from CT scanner. Figure 46
shows the results for the carp dataset. Accordinthé entropy maps, the first 3 views
cover the most important features of the carp. iap also indicates that one side of the
carp is slightly more interesting than the othelesidue to the carp’s bent body as shown
in Figure 46(d). The remaining two views are leaportant, but again we provide them

for completeness of the gallery.

Figure 46. The carp dataset (5 viewpoints computed by the SCP solver). (a): the initial entropy
map. (b-f): the suggested viewpoints rendered (left) and the maps with remaining entropy (right).
The transfer function could be changed in different views.

Figure 47 shows a gallery obtained for the engiaagkt where panels (d) and (g)
each show images of the same view but rendereddiffgrent transfer function settings
to visualize different aspects of the engine. Tigly illustrates the benefit of the two-
phase design of our system. First obtain a vieection at which many different types of
features can be observed well, and then maintainview and visualize these features in

a number of ways to accentuate their various amatiips in turn. This approach allows
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the user to maintain a coherent spatial referenbée learning about the dataset through

dynamic feature exploration.

Y

.
M“!lm |

_______________________

il

Figure 47. The engine dataset (7 viewpoints computed by the SCP solver). (a-g): the suggested
viewpoints rendered with different transfer functions. (d) and (g) shows the need to use multiple
transfer functions to explore features.

______________________________________________________

NG
) e ————

Figure 48. The bluntfin dataset (5 viewpoints resulting from the SCP solver).

Finally, we also tested our method on a fluid seioh dataset, e.g., the well-known
blunt fin. Figure 48 shows the 5 views suggestedhieySCP solver. The view in Figure
48(a) is suggested as the most important view, lwhic fact is close to the most
commonly selected view onto this dataset.

Our experiments were conducted on an NVIDIA GTX 48PU, programmed with
CUDA 3.2 runtime API, hosted by an Intel Core 2 BTiBU @ 2.66GHz. Table 7 shows
the performance of the different stages of our wethThe feature extraction part
includes the thresholding and randomization of bgulting voxels. The visibility test
portion is for testing the cluster normal direcBoat all views and also includes the
splatting-based occlusion number computation. Thestmime-consuming part is the
visibility test which would be much slower witho@PU acceleration. The total
processing time is about 2-8 times faster thanlame rendering of 1,800 views with a
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fixed transfer function. Table 8 shows the optimamber of viewpoints computed by the
ant colony-based SCP solver in 10 seconds and tingber it finally converges to
(marked byx). For practical datasets, the voxels were filtee@édabove 3% of the
maximum scalar value to remove noise, and the geethuster width was in the range of

10-20 voxels.

Table 7. The performance of different stages of our viewpoint suggestion pipeline

Dataset Datasize Feature FTxtractio_n /_K—Means Rendering Time /
Clustering / Visibility Test Speedup
Cube 256x256x256 0.9s/0.9s/7.3s 18s/2.0x
Cube + Text 256%256x256 1.2s/0.5s/7.9s 18s/1.9x
Tooth 256x256x161 1.2s/1.3s/8.9s 93s/8.2x
Engine 256%256x110 1.1s/0.6s/10.4s 53s/4.4x
Blunt Fin 256x128x64 0.7s/0.6s/8.2s 26s/2.7x
Carp 256x256x512 2.5s5/25s/9.2s 87s/6.1x

5.7 Evaluations

We performed a simple user study to evaluate thiecttfeness of our iView
interface. For this, we invited 9 graduate studestdamiliar with volume rendering and
transfer function design. At all time, the subjeatsre permitted to use the 1D or 2D
transfer function editor and choose any preferied/\to look at the volume, with a fixed
front-light and using the track-ball interface. Thely testing condition was that they
either had access to our entropy map or not. Iratier case the track-ball surface was
simply left blank.

Table 8. The problem size of the K-Means clustering and the minimum number of views
found by the SCP solver

Dataset Voxels Initial k / Resulting k  Averaged Clgter Width Views (10s /o)

Cube 968 50/ 47 2.7 4/4
Cube + Text 1278 60 /58 2.8 5/5
Tooth 170228 100/ 79 12.9 716
Engine 529050 120/111 16.4 716
Blunt Fin 65053 50/50 10.9 6/5
Carp 331894 80/69 16.9 5/5
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Each subject/user would render two different ddtasturn — the tooth and the carp.
For each dataset, a user was asked to construcgahleries (that is, select a set of
viewpoints) that would best expose the salientrmfation of the given dataset. The first
gallery was always constructed with no entropy-ngajdance, while for the second
gallery this guidance was available. Prior to udimg system, each user was trained on
how to navigate with the entropy sphere (if prodidehow to interpret its data, how to
observe the clustering results and also how tokess to add/delete views from the
gallery.

We compared the views selected with and withoutithew guidance. We found
that in general users would pick fewer views with@uidance. The mean of the
difference between two sets of views was 0.90 Kfpaind 0.56 (carp). We used the
dependent t-test for paired samples to analyzeidve numbers with the hypothesis that
that two means (with/without entropy map) are it The p-values for tooth and carp
were 0.003 and 0.05, respectively. Thus, the faat isers would consistently pick fewer
views without guidance indicates that iView helpsens in locating commonly
overlooked regions.

It was also interesting to observe that no galggerated without guidance would
include all of the top three views found with guida (or with the SCP solver). There
were often redundant views in the uninformed ggller views with low entropy. To
capture this behavior more quantitatively, we measwa given gallery’s information
coverage by the sum of entropy left in the maprajedlery composition. When a user
was allowed to use the map, the sum of the entiefp@ropped from 51% to 24% for the
tooth and from 37% to 19% for the carp, on averageswise, the percentage of entropy
covered per view increased from 11% to 15% forttlmeh and from 14% to 16% for the
carp. This demonstrates that our navigation interfean clearly help users to optimize a

set of viewing positions and with it the informatiseen.
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6.1 Summary

In this dissertation, we present our recent reseaesults on an integrated

reconstruction and visualization framework, inchgli reconstruction optimizer,

resampling verification and viewport advisor. Thismework is applicable to many CT

scanning scenario as occurring in medical, indaistaind security scanning applications.

It contributes to the research of medical imaging @olume visualization. Theoretically,

it helps the understanding of parameter optimiraaod error propagation in CT data

processing. Practically, our GPU-accelerated fraatkwhas great potential in many

valuable real-world applications.

Our contributions in the CT reconstruction and gisgzation domain include:

We develop cache-aware algorithms to further acaeeCT reconstruction
process. While in back-projection and in bi-latefiiter the improvement
over straightforward GPU implementation are margittee 4-fold speedup
achieved in NLM filter implementation makes it aagtical candidate for
low-dose CT reconstruction.

We propose a CT reconstruction optimizer can auticalyy search
parameters for iterative CT reconstruction. Theining algorithm can
efficiently learn reconstruction parameters to gpph similar data. It
incorporates an interactive parameter visualizatiaerface that can help
researchers to understanding of X-ray dose, imagéitg and reconstruction
speed.

We present a systematic resampling verificationhagtwhich is tightly
coupled with the data generation process itsebfolinds the loss of accuracy
associated with off-grid sample interpolation dgrirendering. Our method is
able to certify a CT reconstructed volume for usthwa given interpolation
filter, explicitly specifying the maximum error thamight occur in the
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rendering. It uses a mixed-resolution volume emmgpdiomputed in a pre-
process. This representation can maintain the adges of real-time
rendering, and at the same time gives the verdiadsults.

e We devise a viewport advisor which can suggestsys®mising viewpoints
for volume visualization prior to transfer functiafesign activities. This
transfer function neutral approach cuts down orvtilame exploration effort
since it selects potentially interesting views leftaborious transfer function
exploration begins. This is cognitively less chadimmg than changing
viewpoint and transfer function at the same tiheah automatically suggest

a set of optimal views automatically to composeagrview gallery.

6.2 Future Works

There are some research topics which directly ektemr work. The CT
reconstruction can be further accelerated in CPUWGRIsters. We used ant colony
optimization in CT reconstruction parameter searghiThe parameter searching is an
extremely computational intensive that could takeesk to run in a single workstation
with advanced GPUs. Recently cloud computing bssieg provide infrastructure as a
service (ISSA), which make high-end GPU clustefsrdfble. For example, currently
Amazon Elastic Compute Cloud (Amazon EC?2) ratettieir CPU/GPU clusters is about
a dollar per hour. These advancements bring a hegd for designing and developing
software as a service (SAAS), which open a newctoe for CT research and
development. With the growing accessibility to GElUsters, we are also planning to
extend the current parameter search framework ¢tude full 3D reconstruction and
study parameter optimization in different scanngtgnarios, for example, patient size,
X-ray tube’s voltage.

Our parameter search is based on an automatidyjoakerver in place of a human
observer. We could improve the automatic qualitgesteer by studying the link between
the quality metric and the clinical need. Perceptjuelity metrics are good candidates
for this purpose. Ultimately, the goal is to deyelan advanced quality metric which
would pass doctors’ validation.
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Our current parameter visualization interface isigieed to be available after
parameter searching. For the future work, we caoNglve user interaction during the
optimization stage. This more sophisticated intfavill be an online monitoring tool. It
can visualize the searching process while the caoatipn is going on in the background.
It can also open the doors for dynamic optimizatfanctionality. The current web
service interface is well adapted to SAAS model am plan to work on additional
support for gestures in mobile device.

There are also many future directions on the volumeealization side. Future work
on resampling will adapt the verification concefaismore efficient grids, such as BCC.
We would like to further evaluate and incorporatieeo errors occurring in the rendering
such as shading, gradient estimation, transfertimng, perception, and the like.

For future work in viewport suggestion, we planetdend our feature descriptor to
other known metrics, such as suggestive contouher@vthe derivative of the normal
vector is 0) and other well-known descriptors fr@wmputer vision: the multi-scale
Harris detector [32] or SIFT [54], which we usedeady in other work for feature
detection [62]. Further, we also believe that thieosiette metric would be a promising

candidate for dynamic flow visualization and werpta research this more thoroughly.

89



[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]
9]

[10]

[11]

[12]

[13]

[14]

References

S. Abbasi and F. Mokhtarian, “Automatic view selectin multi-view object recognition,” in
Proceedings of International. Conference on Patfeatognitionvol. 1, pp. 13-16, 2000.

A. Amirkhanov, C. Heinzl, M. Reiter, and E. GrolléWisual optimality and stability analysis of
3DCT scan positions[EEE Transactions on Visualization and Computer [@rias vol. 16, no. 6,
pp. 1477-1487, 2010.

M. Artner, T. Mdller, I. Viola, and M.E. Groéller High-quality volume rendering with resampling in
the frequency domain,” iProceedings of Eurographics/IEEE VGTC SymposiunVignalization
pp. 85-92, 2005.

J. E. Beasley, “OR-library: distributing test prefils by electronic mailJournal of the Operational
Research Societyol. 41, no. 11, pp. 1069-1072, 1990.

J. Beyer, M. Hadwiger, T. Moller, and L. Fritz, “®mth mixed-resolution GPU volume rendering,”
in Proceedings of IEEE International Symposium on Wawand Point-Based Graphjcpp. 163-
170, 2008.

P. S. Blaer and P. K. Allen, “View planning and aaaited data acquisition for 3-D modeling of
complex sites”Journal of Field Roboticsvol. 26, no. 11, pp. 865-891, 2009.

U. Bordoloi and H.-W. Shen, “View selection for uate rendering,” IrProceedings of the IEEE
Visualization pp. 487-494, 2005.

R. Bracewell,The Fourier Transform and its Applicatiar@&d edition, McGraw-Hill, 1999.

A. Buades, B. Coll, and J. M. Morel, “A non-locdgjarithm for image denoisingComputer Vision
and Pattern Recognitiqmpp. 60-65, 2005.

M.-Y. Chan, H. Qu, K.-K. Chung, W.-H. Mak, and Y.uW\V“Relation-aware volume exploration
pipeline,” IEEE Transactions on Visualization and Computer (3rias vol. 14, no. 6, pp. 1683-
1690, 2008.

M.-Y. Chan, Y. Wu, W.-H. Mak, W. Chen, and H. Q&erception-based transparency optimization
for direct volume rendering [EEE Transactions on Visualization and Computer |@ias vol. 15,
no. 6, pp. 1283-1290, 2009.

L. Condat, T. Blu, and M. Unser, “Beyond interpaat optimal reconstruction by quasi-
interpolation,” inProceedings of IEEE. International Conference otaden Processingpp. 33-36,
2005.

C. Correa and K.-L. Ma, “Size-based transfer fuondi a new volume exploration techniqusEE
Transactions on Visualization and Computer Graphicd. 14, no. 6, pp. 1380-1387, 2008.

C. Correa and K.-L. Ma, “The occlusion spectrumvfolume classification and visualizationEEE
Transactions on Visualization and Computer Graphicd. 15, no. 6, pp. 1465-1472, 2009.

90



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

C. Correa and K.-L. Ma, “Visibility histograms andsibility-driven transfer functions,"EEE
Transactions on Visualization and Computer Graphvcd. 17, no. 2, pp. 192-204, 2011.

C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemd@@igaVoxels: ray-guided streaming for
efficient and detailed voxel rendering,” Broceedings ofACM Symposium on Interactive 3D
Graphics and Gamegp. 15-22, 2009.

B. Csébfalvi, “An evaluation of prefiltered reconsttion schemes for volume renderingZEE
Transactions on Visualization and Computer Graphicd. 14, no. 2, pp. 289-301, 2008.

B. Csébfalvi and B. Domonkos, “Frequency-domainampsling on a body-centered cubic lattice for
efficient and high-quality volume rendering,” Rroceedings of Vision, Modeling, and Visualization
Workshop pp. 225-232, 2009.

D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and @antella, “Suggestive contours for conveying
shape,”ACM Transactions on Graphicgol. 22, no. 3, pp. 848-855, 2003.

W. Degen, “Sharp error bounds for piecewise linetarpolation of planar curvesComputing vol.
79, no. 2, pp. 143-151, 2007.

M. do CarmoDifferential Geometry of Curves and Surfadeeentice Hall, 1976.

M. Dorigo, G. DiCaro, and L. M. Gambardella, “Argarithms for discrete optimizationAtrtificial
Life, vol. 5, no. 2, pp.137-172, 1999.

K. Engel, M. Hadwiger, C. Rezk-Salama, and J. Krisal-Time Volume GraphicAK Peters Ltd,
2006.

A. Entezari and T. Mdller, “Extensions of the Zw&dwell Box Spline for Volumetric Data
Reconstruction on the Cartesian LatticéPEE Transactions on Visualization and Computer
Graphics vol. 12, no. 5, pp. 1337-1344, 2006.

A. Entezari, T. Meng, S. Bergner, and T. Méller, gkanular three dimensional multiresolution
transform,” inProceedings of Eurographics/IEEE-VGTC SymposiuriWisnalization pp. 267-274.
2006.

T. Etiene, C. Scheidegger, L. Nonato, R. Kirby, &dilva, “Verifiable visualization for isosurface
extraction,”|EEE Transactions on Visualization and Computer @tias vol. 15, no. 6, pp. 1227-
1234, 2009.

W. Fang, K. -K. Lau, M. Lu, X. Xiao, C. Kit Lam, F.. Yang, B. He, Q. Luo, P. V. Sander, and K.
Yang, “Parallel data mining on graphics proces$arschnical ReportHKUST-CS08-07, 2008.

T. Fogal and J. Kriiger, “Tuvok - an architecture lfwge scale volume rendering,” Rroceedings
of Vision, Modeling, and Visualization workshap. 139-146, 2010.

L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Rica cone-beam algorithm,Journal of the
Optical Society of Americaol. 1, no. A6, 612-619, 1984.

S. Fleishman, D. Cohen-Or, and D. Lischinski, “Aattic camera placement for image-based
modeling,”Computer Graphics Forunvol. 19, no. 2, pp. 101-110, 2000.

91



References

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

M. Frigo and S. Johnson, “The design and implentemtaf FFTW3,” inProceedings of the IEEE
vol. 93, no. 2, pp. 216-231, 2005.

C. Harris and M. Stephens, “A combined corner adgeedetector,” inProceedings of 4th Alvey
Vision Conferencepp. 147-151, 1988.

L. Hillebrand, R. Lapp, Y. Kyriakou, and W. KalemdéInteractive GPU-accelerated image
reconstruction in cone-beam CT,”lroceedings of SPIEvol. 7258, pp. 72582A-72582A-8, 2009.

J. Huang, J. Ma, N. Liu, H. Zhang, Z. Bian, Y. Fe Feng, and W. Chen, “Sparse angular CT
reconstruction using non-local means based itexatorrection POCS,Computers in Biology and
Medicine vol. 41, no. 4, pp. 195-205, 2011.

http://www.imagevis3d.org, ImageVis3D: A Real-tindblume Rendering Tool for Large Data.
Scientific Computing and Imaging Institute (SCI).

X. Jia, B. Dong, Y. F. Lou, and S. B. Jiang, “GP&kbd iterative cone-beam CT reconstruction
using tightframe regularizationPhysics in Medicine and Biologyol. 56, no. 13, pp. 3787-3807,
2011.

R. Kéahler, M. Simon, and H. Hege, “Interactive voki rendering of large sparse data sets using
adaptive mesh refinement hierarchiedEEE Transactions on Visualization and Computer
Graphics vol. 9, no. 3, pp. 341-351, 2003.

R. Kahler, J. Wise, T. Abel, and H. Hege, “GPU-st&sl raycasting for cosmological adaptive mesh
refinement simulations,” ifProceedings of Eurographics/IEEE Workshop on Vol@n&phics pp.
103-110, 2006.

R. Karp, “Reducibility among combinatorial problein€omplexity of Computer Computatiomp.
85-103, 1972.

A. Kaufman, S. Lakare, K. Kreeger, and |. BitteYjirtual colonoscopy,”Communication of the
ACM, vol. 48, no. 2, pp. 37-41, 2005.

B. Keck, H. Hofmann, H. Scherl, M. Kowarschik, add Hornegger, “GPU-accelerated SART
reconstruction using the CUDA programming environthieln Proceedings of SPIEvol. 7258, pp.
7258-72582B, 2009.

D. J. Ketchen and C. L. Shook, “The applicationcbdster analysis in strategic management
research: an analysis and critiqu&trategic Management Journalol. 17, no. 6, pp. 441-458,
1996.

G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Mdll“Curvature-based transfer functions for
direct volume rendering: methods and applicatioimsProceedings of IEEE Visualizatippp. 513-
520, 2003.

R. Kirby and C. Silva, “The need for verifiable waization,” IEEE Computer Graphics and
Applications vol. 28, no. 5, pp. 78-83, 2008.

J. Kniss, G. Kindlmann, and C. Hansen, “Multi-dim@mal transfer functions for interactive

volume rendering,IEEE Transactions on Visualization and Computer (drias vol. 8, no. 3, pp.
270-285, 2002.

92



References

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

P. Kohimann, S. Bruckner, A. Kanitsar, and M. E6l@r, “LiveSync: deformed viewing spheres
for knowledge-based navigatiodEEE Transactions on Visualization and Computer @rias vol.
13, no. 6, pp. 1544-1551, 2007.

J. Kruger, J. Schneider, and R. Westermann, “CleavVan interactive context preserving hotspot
visualization technique,/JEEE Transactions on Visualization and Computer (3rias vol. 12, no.
5, pp. 941-948, 2006.

E. LaMar, B. Hamann, and K. Joy, “Multiresoluticechniques for interactive texture-based volume
visualization,” inProceedings of IEEE Visualizatippp. 355-361, 1999.

P. La Riviere, J. Bian, and P. Vargas, “Penalizkelihood sinogram restoration for computed
tomography,”lEEE Transactions on Medical Imagingpl. 25, no. 8, pp. 1022-36, 2006.

A. Li, K. Mueller, and T. Ernst, “Methods for effent, high quality volume resampling in the
frequency domain,” ifProceedings of IEEE Visualizatippp. 3-10, 2004.

Z. Li, L. Yu, J. Trzasko, J. Fletcher, C. McColldygand A. Manduca, “Adaptive nonlocal means
filtering based on local noise level for CT denogsf in Proceedings of SPIEvol. 8313, pp.
83131H, 2012.

P. Ljung, C. Lundstrdm, A. Ynnerman, and K. Musetfiransfer function based adaptive
decompression for volume rendering of large mediedh sets,” ifProceedings of IEEE Volume
Visualization and Graphics Symposiupp. 25-32, 2004.

P. Ljung, C. Lundstrém, and A. Ynnerman, “Multireg@®n interblock interpolation in direct
volume tendering,” irProceedings of Eurographics/IEEE VGTC Symp on \fizai#on, pp. 259-
266, 2006.

D. Lowe, “Distinctive image features from scaledniant keypoints,”International Journal of
Computer Visionvoal. 60, no. 2, pp. 91-110, 2004.

R. Maciejewski, I. Woo, W. Chen, and D. Ebert, t8turing feature space: a non-parametric
method for volumetric transfer function generatiofEEE Transactions on Visualization and
Computer Graphigsvol. 15, no. 6, pp. 1473-1480, 2009.

W.-H. Mai, Y. Wu, M.-Y. Chan, and H. Qu, “Visibilitaware direct volume renderingJburnal of
Computer Science and Technolpggl. 26, no. 2, pp. 217-228, 2011.

T. Malzbender, “Fourier volume renderinddCM Transactions on Graphicsol. 12, no. 3, pp.233-
250, 1993.

S. Marchesin and G.C. de Verdiere, “High-qualitgm$-analytical volume rendering for AMR
data,” IEEE Transactions on Visualization and Computer fgdias vol. 15, no.6, pp. 1611-1618,
20009.

S. Marschner and R. Lobb, “An evaluation of recnmgton filters for volume rendering,” in
Proceedings of IEEE Visualizatippp. 100-107, 1994.

C. Men, X. Gu, D. Choi, A. Majumdar, Z. Zheng, Kubller, and S. B. Jiang, “GPU-based ultra fast
IMRT plan optimization, Physics in Medicine and Biologyol. 54, pp. 6565-6573, 2009.

93



References

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

T. Méller, R. Machiraju, K. Mueller, and R. YagéEvaluation and design of filters using a Taylor
series expansionfEEE Transactions on Visualization and Computer [ihias vol. 3, no. 2, pp.
184-199, 1997.

J. Nam, M. Mauer, and K. Mueller, “High dimensiofiehture descriptors to characterize volumetric
data,” inProceedings of Knowledge-Assisted VisualizationRalorp 2008.

P. Noél, A. Walczak, J. Xu, J. Corso, K. Hoffmarand S. Schafer, “GPU-based cone beam
computed tomographyComputer Methods and Programs in Biomediciw@. 98, no. 3, pp. 271-
277, 2010.

Y. Okitsu, F. Ino, and K. Hagihara, “High-perfornc@ncone beam reconstruction using CUDA
compatible GPUs"Parallel Computingvol. 36, no. 2-3, pp. 129-141. 2010.

E. Papenhausen, Z. Zheng, and K. Mueller, “GPU{acatd back-projection revisited: squeezing
performance by careful tuning,” IfProceedings of Workshop on High Performance Image
Reconstructionpp. 19-22, 2011.

D. Pelleg and A. Moore, “X-means: extending k-meuiith efficient estimation of the number of
clusters,” InProceedings of the 17th International ConferenceMathine Learningpp. 727-734,
2000.

R. Pito, “A solution to the next best view problefior automated surface acquisitionEEE
Transactions of Pattern Analysis and Maching ligelhce vol. 21, no. 10, pp. 1016-1030, 1999.

M. Rahoual, R. Hadji, and V. Bachelet, “Parallet apstem for the set covering problerhgcture
Notes in Computer Scienocel. 2463, pp. 249-297, 2002.

P. Rautek, B. Csébfalvi, S. Grimm, S. Bruckner, ah. Groller, “D°VR: high-quality volume
rendering of projection-based volumetric data, Pimceedings of Eurographics/IEEE VGTC Symp
on Visualizationpp. 211-218, 2006.

Z. Ren, Z. Feng, L. Ke, and Z. Zhang, “New ideasdpplying ant colony optimization to the set
covering problem,Computers and Industrial Engineeringpl. 58, no. 4, pp.774-784, 2010.

C. Rohkohl, B. Keck, H. G. Hofmann, and J. Hornegd®abbitCT - an open platform for
benchmarking 3D cone-beam reconstruction algorithiiedical Physicsvol. 36, no. 9, pp. 3940-
3944, 2009.

W. Scott, G. Roth, and J. Rivest, “View planningr fautomated three-dimensional object
reconstruction and inspectiolACM Computing Surveysol. 35, no. 1, pp. 64-96, 2003.

P. Sereda, A. Vilanova, and F. A. Gerritsen, “Austimg transfer function design for volume
rendering using hierarchical clustering of materiddoundaries,” In Proceedings of
Eurographics/IEEE VGTC Symp on Visualizatjgap. 243-250, 2006.

H. Scherl, B. Keck, M. Kowarschik, and J. HorneggEast GPU-based CT reconstruction using the

common unified device architecture (CUDA)Nuclear Science Symposium Medical Imaging
Conferencevol. 6, pp. 4464-4466, 2007.

94



References

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

E. Y. Sidky, C.-M. Kao, and X. Pan, “Accurate imageonstruction from few-views and limited-
angle data in divergent beam CTDournal of X-Ray Science and Technolpgegl. 14, no. 2, pp.
119-139, 2006.

E. Y. Sidky and X. Pan, “Image reconstruction incalar cone-beam computed tomography by
constrained, total-variation minimizationPhysics in Medicine and Biologyol. 53, no. 17, pp.
4777-4807, 2008.

J. Smith and P. Gossett, “A flexible sampling-ranversion method,” irProceedings IEEE
International Conference Acoustics, Speech, andnagigpp. 112-115, 1984. (Tutorial at
http://ccrma.stanford.edu/~jos/resample

J. Song, Q. H. Liu, G. A. Johnson, and C. T. Bad&parseness prior based iterative image
reconstruction for retrospectively gated cardiacroiCT,” Medical Physicsvol. 34, no. 11, pp.
4476-4483, 2007.

N. Sudarsanam, K. Singh, and C. Grimm, “Non-linparspective widgets for creating multiple-
view images,” inProceedings of Symposium on Non-photorealistic Ation and Renderingpp.
69-79, 2008.

P. Suetendrundamentals of Medical ImaginGambridge University Press, 2002.

S. Takahashi, I. Fujishiro, Y. Takeshima, and Tshita, “A feature-driven approach to locating
optimal viewpoints for volume visualization,” iRroceedings IEEE Visualizatiprpp. 495-502,
2005.

J. Tang, B. E. Nett, and G. H. Chen, “Performarmamarison between total variation (TV)-based
compressed sensing and statistical iterative réaarion algorithms,”Physics in Medicine and
Biology, vol. 54, no. 19, pp. 5781-5804, 2009.

P. Thevenaz, T. Blu, and M. Unser, “Interpolatiavisited,” IEEE Transactions on Medical
Imaging vol. 19, no. 7, pp. 739-758, 2000.

C. Tomasi and R. Manduchi, “Bilateral filtering fgray and color imagesfEEE International
Conference on Computer Visiqup. 839-846, 1998.

M. Unser, “Sampling — 50 Years after Shannon,Pinceedings of the IEERoI. 88, no. 4, pp. 569-
587, 2000.

P.-P. Vazquez, M. Feixas, M. Sbert, and W. Heidristiewpoint selection using view entropy,” In
Proceedings of Vision Modeling and Visualizatioméoence pp. 273-280, 2001.

P.-P. Vazquez, M. Feixas, M. Sbert, and W. Heidri¢tutomatic view selection using viewpoint
entropy and its application to image-based modgli@@mputer Graphics Forumvol. 22, no. 4,
pp. 689-700, 2003.

I. Viola, A. Kanitsar, and M. E. Groller, “Importae-driven feature enhancement in volume
visualization,”IEEE Transactions on Visualization and Computer f@hias vol. 11, no. 4, pp. 408-
418, 2005.

95



References

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

L. Wang, Y. Zhao, K. Mueller, and A. E. Kaufman, H8 magic volume lens: an interactive
focus+context technique for volume rendering,”"Hroceedings IEEE Visualizatiopp. 367-374,
2005.

S. Wenhardt, B. Deutsch, J. Hornegger, H. Niemamd, J. Denzler, “An information theoretic
approach for next best view planning in 3-D recargtton,” International Conference on Pattern
Recognition pp.103-106, 2006.

R. Westermann and B. Sevenich, “Accelerated volumecasting using texture mapping,” in
Proceedings of the conference on Visualizatigm 271-278, 2001.

Y. Wu, K.-K. Chung, H. Qu, X Yuan, and S.C. Cheufimteractive visual optimization and
analysis for RFID benchmarking|EEE Transactions Visualization and Computer Graghvol.
15, no. 6, pp. 1335-1342, 2009.

F. Xu and K. Mueller, “GPU-accelerated\IR,” in Proceedings of Eurographics/ IEEE VGTC
Workshop on Volume Graphijgsp. 23-30, 2006.

F. Xu and K. Mueller, “Real-time 3D computed tomagic reconstruction using commodity
graphics hardwarePhysics in Medicine and Biologyol. 52, no. 12, pp. 3405-3419, 2007.

F. Xu, W. Xu, M. Jones, B. Keszthelyi, J. Sedat,Agard, and K. Mueller, “On the efficiency of
iterative ordered subset reconstruction algoritHorsacceleration on GPUsComputer Methods
and Programs in Biomedicingol. 98, no. 3, pp. 261-270, 2010.

W. Xu and K. Mueller, “Accelerating Regularized riive CT Reconstruction on Commodity
Graphics Hardware (GPU)IEEE International Symposium on Biomedical Imadii8Bl), 2009.

W. Xu and K. Mueller, “A performance-driven studfregularization methods for GPU-accelerated
iterative CT,” inProceedings of Workshop on High Performance ImagmoRstruction2009.

W. Xu and K. Mueller, “Evaluating popular non-limeemage processing filters for their use in
regularized iterative CT Nuclear Science Symposium Medical Imaging Confexe2td0.

W. Xu and K. Mueller, “Parameter space visualizar:interactive parameter selection interface for
iterative CT reconstruction algorithms” Rroceedings of SPIEol. 7625, pp. 76251Q, 2010.

W. Xu and K. Mueller, “A reference image databagpraach for NLM filter-regularized CT
reconstruction,” inProceedings of Fully 3D Image Reconstruction in iBlady and Nuclear
Medicing pp. 116-119, 2011.

W. Xu and K. Mueller, “Using GPUs to learn effediyparameter settings for GPU-accelerated
iterative CT reconstruction algorithm&GPU Computing Gems Emerald Editiddhapter 43, 2011.

H. Yan, L. Cervino, X. Jia, and S. B. Jiang, “A qu@hensive study on the relationship between
image quality and imaging dose in low-dose conarb€d,” Physics in Medicine and Biologyol.
57, no. 7, pp. 2063-2080, 2012.

H. Yu and G. Wang, “A soft-threshold filtering appich for reconstruction from a limited number
of projections,”Physics in Medicine and Biologyol. 55, no. 13, pp. 3905-3916, 2010.

96



References

[104] W. Zbijewski and F. Beekman, “Efficient Monte Cabased scatter artifact reduction in cone-beam
micro-CT,” IEEE Transactions on Medical Imagingpl. 25, vol. 7, pp. 817-827, 2006.

[105] R. Zhang, P.-S, Tsai, J.E. Cryer, and M. Shah, i8Hfeom shading: a surveylEEE Transactions
Patten Analysis and Machine Intelligeneel. 21, no. 8, pp. 690-706, 1999.

[106] Z. Zheng and K. Mueller, “VDVR: verifiable volumeasualization for projection-based datéZEE
Transactions on Visualization and Computer Graphicd. 16, no. 6, pp. 1515-1524, 2010.

[107] Z. Zheng, N. Ahmed, and K. Mueller, “iView: a featuclustering framework for suggesting
informative views in volume visualizationfEEE Transactions on Visualization and Computer
Graphics vol. 17, no. 12, pp. 1959-1968, 2011.

[108] Z. Zzheng and K. Mueller, “Identifying sets of faade projections for few-view low-dose cone-
beam CT Scanning,” iRroceedings of The 11th International Meeting otiyFlihree-Dimensional
Image Reconstruction in Radiology and Nuclear Miegjqp. 314-317, 2011.

[109] Z. Zheng, W. Xu, and K. Mueller, “Performance tupifor CUDA-accelerated neighborhood

denoising filters,” InProceedings of workshop on High Performance ImageoRstructionpp. 52-
55, 2011.

97



