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Abstract of the Dissertation 

New Development in Cluster Analysis and Other Related 
Multivariate Analysis Methods 

 

By 

Shaonan Zhang 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

Stony Brook University 

2011 

 

Cluster analysis is a multivariate analysis method aimed at (1) unraveling the 

natural groupings embedded within the data, and (2) dimension reduction. With the wide 

application of cluster analysis in the diversified modern research/business fields 

including machine learning, bioinformatics, medical image analysis, pattern recognition, 

market research and global climate research, many clustering algorithms have been 

developed to date. However, novel and/or special circumstances always call for better 

customized cluster analysis methods, and thus this thesis. 

This thesis work consists of two parts. In the first part, we extend the modern 

multiple-objective cluster analysis from using a single set of features to multiple distinct 

sets of features by developing the novel compound clustering method and the 

constrained clustering method. We also developed a new statistic, the “complete 

linkage” R2 along with the well-known largest average silhouette, to determine the 

optimal number of clusters in the compound clustering. The novel 

compound/constrained clustering methods are illustrated through a gene microarray 

study with both gene expression data and gene function information.  
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In the second part of this thesis we propose a novel algorithm for the weighted k-

means clustering. Weighted k-means clustering is an extension of the k-means 

clustering in which a set of nonnegative weights are assigned to all the variables. We 

first derived the optimal variable weights for weighted k-means clustering in order to 

obtain more meaningful and interpretable clusters. We then improved the current 

weighted k-means clustering method (Huh and Lim 2009) by incorporating our novel 

algorithm to obtain global-optimal guaranteed variable weights based on the method of 

Lagrange multiplier and the Karush-Kuhn-Tucker conditions. Here we first present the 

related theoretical formulation and derivation of the optimal weights. Then we provide 

an iteration-based computing algorithm to calculate such optimal weights.  Numerical 

examples on both simulated and well known real data are provided to illustrate our 

method. It is shown that our method outperforms the original proposed method in terms 

of classification accuracy, stability and computation efficiency.  
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Chapter 1 

Introduction 

1.1 Overview 

Born to solving quantitative problems arising from all research and business 

disciplines, statistics is facing increasing challenges from the emerging applications and 

problems from the rapidly evolving science and industry fields. Previously, statistical 

problems often came from agricultural and industrial experiments with limited size and 

scope. In the recent decades, however, people are able to gather huge amount of data 

that are not only large in sample size, but often more so in dimension – i.e. the number 

of variables; with the explosive growth of computer and information technology, it 

becomes more feasible and attractive to let the machine to discover the hidden patterns 

and useful information from the data, and for dimension reduction -- the so-called 

“(automated) learning from the data”, or “machine learning”.  

One important feature of machine learning is that the patterns and information 

are not usually suggested by experts in the field, but rather, extracted and optimized by 

data-driven techniques. Rising up to the challenge, a large number of statistical 

approaches have been developed and widely applied to machine learning tasks such as 

pattern recognition (Nakatani and Hirschberg 1993; Breiman 2001), data mining 

(Mitchell 1999; Eyke 2005), bioinformatics (Vlahou, et al. 2003; Izmirlian 

2004; Larrañaga, et al. 2006), medical image analysis (Pham, et al. 2000; Igor 

2001; Rahman, et al. 2007), natural language processing (Ratnaparkhi 1999; Collobert 

and Weston 2008), document classification and credit scoring (Grossman and Poor 

1996; Huang, et al. 2007a). Based on whether the sample is labeled, machine learning 

algorithms can be classified as supervised and unsupervised learning (Bernd 
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1994; Figueiredo and Jain 2002; Cohen, et al. 2004; Caruana and Niculescu-Mizil 

2006; Chen, et al. 2009; Hastie, et al. 2009). 

Supervised learning studies the objects with “label”, which is an outcome 

measurement of interest. The outcome could be a categorical variable (classes) in 

classification-type problems or a continuous variable (predictor) in regression-type 

problems. However, in most cases, supervised machine learning refers to the 

classification-type problems. Thus a typical supervised learning problem is to predict the 

outcome measurement (say, “diseased” or “normal”) based on a set of features or 

attributes (such as the expression levels of a set of biomarkers). A general process of 

applying such supervised learning to a real-world problem has been described by 

Kotsiantis (2007). Supervised learning can be very useful for diagnostics/predictions. 

Consequently, many supervised learning methods have been developed and 

continuously improved to date including Decision Tree (Kass 1980; Breiman, et al. 

1984; Quinlan 1986), Logistic Regression (Menard 2001; Zhu and Hastie 2004), 

Nearest Neighbor (Dasarathy 1991; Boiman, et al. 2008), Discriminant Analysis (Press 

and Wilson 1978; McLachlan 2005), Neural Network (Ripley 1994; Bishop 1995; Ripley 

1996), Bayesian Network (Jensen 1996; Friedman and Koller 2003; Zou and Conzen 

2005), Support Vector Machine (Burges 1998; Suykens and Vandewalle 1999) and 

Random Forest (Breiman 2001). A thorough discussion on the recent development in 

supervised learning can be found in the review by Kotsiantis (2007) as well. 

However, real world is full of mystery and we are often confronted with realms 

and phenomena where human beings have never known nor explored before. When it 

is difficult, too expensive, or simply impossible, to label a sample with it true class, 

unsupervised learning algorithm is then extremely useful to explore and reveal the 

hidden data structure based on unlabeled objects. Another situation call for 

unsupervised learning is “dimension reduction” when one faces a data set with more 

variables (dimension) than the number of subjects (sample size). In this case, one finds 

it virtually impossible to apply the usual statistical analyses without first reducing the 

dimension of the data. The central problem in unsupervised learning is to find natural 

groupings, or clusters, in multidimensional data, based on measured or perceived 
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similarities, which can be obtained through a set of features, among the objects (Jain 

and Dubes (1988). Compared to supervised learning, unsupervised learning can be 

more challenging due to the lack of label information. Without the “ground truth” 

information, it is very difficult to evaluate the model and make the adjustment. Major 

unsupervised learning approaches include feature extraction techniques (e.g. Principal 

Component Analysis (PCA) (Wold, et al. 1987; Schölkopf, et al. 1997), Multidimensional 

Scale(MDS) (Green and Carmone 1969; Reidenbach and Robin 1990), Self-Organized 

Map (Kohonen 1990; Michael 2000; Vesanto and Alhoniemi 2000)), and Cluster 

Analysis. To certain extent, feature extraction methods can also be considered as 

clustering algorithms. Ding and He (Ding and He 2004), for example, had discussed the 

connection and relationship between k-means clustering and PCA in their 2004 paper. 

Cluster analysis is a very important and versatile unsupervised learning 

technique that has seen applications in a wide range of fields such as data mining (Judd, 

et al. 1998), information retrieval (Carpineto and Romano 1996; Bhatia and Deogun 

1998; Messai, et al. 2008), image segmentation (Frigui and Krishnapuram 1999; Tung, 

et al. 2010), and bioinformatics (Eisen, et al. 1998; Andreopoulos, et al. 2009). This 

thesis is devoted solely to the improvement and generalization of traditional cluster 

analysis methods as summarized in the following section.  

 

1.2 Contributions 

The focus of this thesis, is on the theory and application of cluster analysis, both 

hierarchical clustering and partitional clustering where we propose a generalized 

method for hierarchical clustering and an improved algorithm for partitional clustering 

analysis. Validation studies confirmed the increased versatility and efficiency of our 

methods.  

1.2.1 Multi-objective Hierarchical Clustering 

Traditional cluster analysis is data-driven algorithms without prior information. It 

has been shown in some cases, incorporating knowledge from multiple sources with 
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multiple objectives could lead to enhanced performance of existing clustering methods 

(Cheng, et al. 2004; Huang and Pan 2006). We extend the modern multiple-objective 

cluster analysis from using a single set of features to multiple distinct sets of features by 

developing the novel compound clustering method and the constrained clustering 

method. We have also developed a new statistic, the “complete linkage” R2 along with 

the well-known largest average silhouette, to determine the optimal number of clusters 

in the compound clustering. The novel compound/constrained clustering methods are 

illustrated through a gene microarray study with both gene expression data and gene 

function information. 

1.2.2 Weighted K-means Clustering 

K-means clustering, a partitional clustering algorithm, is widely used because it is 

easy to implement and interpret. Weighted k-means clustering is an extension of the 

traditional k-means clustering in which a set of nonnegative weights, possibly unequal, 

are assigned to all the variables. Solid improvement on clustering performance has 

been reported by assigning heterogeneous variable weights when performing k-means 

clustering (Tseng 2007; Shen, et al. 2010). In this thesis, we improve the current 

weighted k-means clustering method (Huh and Lim 2009) in two aspects. First, we 

derive the global-optimal guaranteed variable weights for weighted k-means clustering 

theoretically utilizing the method of Lagrange multiplier and the Karush-Kuhn-Tucker 

conditions. Subsequently, we improve the current weighted k-means clustering method 

by incorporating our novel algorithm to obtain global-optimal guaranteed variable 

weights based on the method of Lagrange multiplier and the Karush-Kuhn-Tucker 

conditions. Numerical examples on both simulated and well known real data are 

provided to illustrate our method. It is shown that our method outperforms the original 

weighted K-means clustering method in terms of classification accuracy, stability and 

computation efficiency. 
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1.3 Thesis Structure and Overview 

This thesis work is organized as follows. In Chapter 2, we provide a broad 

literature review of cluster analysis. Chapter 3 and Chapter 4 are devoted to of the novel 

multi-objective hierarchical clustering method. In Chapter 3, background and several 

existing multi-objective clustering methods are introduced. In Chapter 4, we describe 

our proposed compound/constrained clustering methods with application to a temporal 

gene microarray study. Starting from Chapter 5, we move on to the second contribution 

of this thesis – namely, the improved weighted k-means algorithm. Chapter 5 provides a 

literature review on k-means clustering and motivates the modern weighted k-means 

clustering method. Chapter 6 is dedicated to our proposed weighted k-means clustering 

computational algorithm. In Chapter 7, we apply the newly improved weighted k-means 

method to both simulated datasets and real-application datasets with the results 

compared to those obtained with existing methods. Finally, directions for future work are 

laid out in Chapter 8. 
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Chapter 2 

Cluster Analysis 

Cluster Analysis or clustering is a generic label for a variety of procedures 

designed for unsupervised classification. Cluster Analysis identifies and classifies 

objects into different groups, so called “clusters”, based on the similarity or dissimilarity 

of a set of features the researcher concerned, or more precisely, partitions a data set 

into subsets, so that the data in each subset share some common features. The result 

of cluster analysis is a number of groups, which there are substantial differences 

between the groups, but strong similarities within a group. The early study of cluster 

analysis can be referred to R. C. Tryon (1939) who concerned individual difference in 

his psychology research. And later, from mid-1950’s, he used cluster analysis to classify 

social area and improved the theory. Hierarchical clustering (Ward 1963; Johnson 1967) 

and partitional clustering (Steinhaus 1957; MacQueen 1967) are the two major types of 

cluster analysis. Now cluster analysis is a very important and useful technique for 

exploratory data analysis, widely used in many fields, such as machine learning, data 

mining, pattern recognition, image analysis, document retrieval and bioinformatics. 

 

2.1 Notations 

To help our readers better understand the ensuing discussions, we have 

provided major notations on cluster analysis used throughout this thesis below. ݉ Number of features or variables ܰ Number of objects ݇ Number of clusters ܺ݅ ith object with m features: ܺ݅ ൌ ,1݅ݔ) ,2݅ݔ … , ,(݉݅ݔ ݅ ൌ 1, 2, … , ܰ 
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)ܦ ଵܺ, ܺଶ) Distance between object ܺ1 and ܺ2 ݃ܥ jth cluster center: ݃ܥ ൌ ൫ܿ݃1, ܿ݃2, … , ܿ݃݉൯, ݃ ൌ 1,2, … , ܦ :Distance matrix ܦ ݇ ൌ ൛݀௜௝ൟேൈே, ݀௜௝ ൌ ,݅ܺ)ܦ ݆ܺ) ܹ Variable Weighting vector: ܹ ൌ ,1ݓ) ,2ݓ … ,  Feature-wise standardized ith object ܼ݅ (݉ݓ

 

2.2 General Procedure of Cluster Analysis 

A universal cluster analysis generally includes the following five steps (Jain and 

Dubes 1988): 

1) Pattern representation 

2) Definition of similarity/dissimilarity measure appropriate to the data domain 

3) Clustering process with specified algorithm 

4) Data abstraction 

5) Output validation  

Cluster analysis is an exploratory tool and usually followed by other analytical 

techniques as the next step. Steps 4 and 5 described above mainly serve for future 

confirmatory analysis and are therefore not mandatory for cluster analysis. Usually, a 

clustering algorithm refers to the first three steps. Figure 2.1 below shows a typical work 

flow of the first three steps (Jain, et al. 1999). 

 

Figure 2.1 General procedure in cluster analysis (Jain, et al. 1999) 
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Pattern Representation 

The first step is pattern representation. It refers to the step to determine the 

number of clusters (for the partitional clustering analysis methods), the number and type 

of the features available and also relevant to the clustering problem. As an exploratory 

data analysis method, without knowing the “ground truth” behind, cluster number 

determination in cluster analysis could be very difficult in some cases. So far, there are 

no theoretical guidelines to suggest the appropriate cluster number in any specific 

situation. Indeed, this process is not fully controllable yet. The most common methods 

to determine the cluster number is through experts’ experience or simple descriptive 

statistics and graphic tools. However, such approaches are very subjective and, 

sometimes, may yield to a situation where true structure is hidden. Figure 2.2 provides a 

simple example. The figure is plotted from the well-known Iris data which we will discuss 

more in Chapter 7.  



9 
 

Figure 2.2 Iris four-dimensional data with three groups 

In the Iris data, there are three classes representing three species of Iris. 

However from the graph, we may mistakenly consider that two clusters may be more 

appropriate. In hierarchical clustering, determination of cluster number does not need to 

be done at the beginning of the analysis which renders hierarchical clustering analysis 

relatively easier compared to the partitional clustering methods, which will be discussed 

later in this chapter.  

Feature extraction and feature selection are used to find the most relevant 

features for the task. Feature extraction is to generate new features from the original 

feature set while feature selection is to identify a subset of features. Again, due to the 

exploratory nature of cluster analysis, feature extraction and feature selection become 

very difficult and usually done ad hoc as a part of the data abstraction. 

Definition of Similarity/Dissimilarity 

Similarity is to measure how similar two objects are in terms of falling into the 

same cluster. Cluster is defined based on the similarity measurement. The similarity 

measurement is essential to most clustering algorithms. In practice, it is more common 

to calculate the dissimilarity between two objects instead of similarity. Dissimilarity is the 

opposite of similarity. If two objects are close and highly likely to be clustered together, 
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then the similarity between them should be large and the dissimilarity should be low, 

and vice versa. Dissimilarity is usually calculated using a distance function defined on 

the feature space. Because of the diversity of features, which could either be 

quantitative features, such as continuous values or discrete values, or qualitative 

features, such as nominal variables or ordinal variables, the distance function must be 

chosen carefully and appropriate for the specific feature space.  

Table 2.1 Common distance function for continuous variables 

Manhattan 

Distance 
)ெ௔௡ܦ ଵܺ, ܺଶ) ൌ ෍ ଵ௜ݔ| െ ଶ௜|௠௜ୀଵݔ  

Euclidean 

Distance ܦா௨௖( ଵܺ, ܺଶ) ൌ ൤෍ ଵ௜ݔ) െ ଶ௜)ଶ௠௜ୀଵݔ ൨ଵଶ
 

Minkowski Distance 

of order p ܦெ௜௡( ଵܺ, ܺଶ, (݌ ൌ ൤෍ ଵ௜ݔ| െ ଶ௜|௣௠௜ୀଵݔ ൨ଵ௣
 

Chebyshev 

Distance 
)஼௛௘ܦ ଵܺ, ܺଶ) ൌ lim௣՜ஶ ெ௜௡ܦ ൌ max௜ ଵ௜ݔ|) െ  (|ଶ௜ݔ

Mahalanobis 

Distance ܦெ௔௛( ଵܺ, ܺଶ) ൌ ሾ( ଵܺ െ ܺଶ)்ିߑଵ( ଵܺ െ ܺଶ)ሿଵଶ, ߑ ൌ )ݒ݋ܿ ଵܺ, ܺଶ) 

Correlation-based 

Distance 
)஼௢௥ܦ ଵܺ, ܺଶ) ൌ 1 െ )ݎݎ݋ܿ ଵܺ, ܺଶ)2  

 

A lot of distance metrics (Huttenlocher, et al. 1993; Xing, et al. 2003) has been 

used in cluster analysis as similarity measurement. The most commonly used distance 

metric for continuous features is the Euclidean distance (Per-Erik 1980) which is a 

special case of the Minkowski metric. Mahalanobis distance is used if the correlation 

between the features may distort the distance measure. A list of distance functions for 

continuous variable has been shown in Table 2.1. Practitioners also developed distance 

metrics for discrete features or qualitative features (Ichino and Yaguchi 1994; Wilson 

and Martinez 1997; Finch 2005). Different distance functions may yield different results 

for the same pair of objects. Subsequently, same clustering algorithm with different 

distance measure could yield dramatically different clusters. For example, in Figure 2.3, 
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we show three objects A, B and C with 5 continuous features. Euclidean distance 

function concludes the distance between A and B is smaller than the distance between 

A and C, but correlation distance function gives the opposite conclusion. In cluster 

analysis, it is very critical to know the appropriate distance function and understand the 

difference. 

 

Figure 2.3 Comparison between Euclidean distance and correlation-based distance 

 

Clustering Algorithm 

After defining the appropriate distance, or similarity measurement, the next step 

is to choose the right clustering algorithm. Given the popularity and usefulness of cluster 

analysis, hundreds of clustering algorithms have been proposed in the literature (Jain, 

et al. 1999; Jain, et al. 2000; Steinley 2006). However, as previous mentioned, most of 

algorithms belong to two major classes: hierarchical clustering, and partitional clustering. 

In hierarchical clustering, a nested series of partitions are produced. When 

performing a hierarchical clustering, users do not need to determine the cluster number 
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at the beginning. Instead, the best partition plus the corresponding cluster number can 

be selected from the series of partitions afterwards. In hierarchical clustering, one can 

also choose either agglomerative (bottom up) approach or divisive (top down) approach 

combined with different ways of measuring cluster centers/distances such as the single 

linkage algorithm, complete linkage algorithm or average linkage algorithm (Ward 

1963; King 1967). Detailed discussion on hierarchical clustering will be discussed later 

in this chapter. 

In partitional clustering, only a single partition of the data is obtained instead of a 

group of partitions. As a consequence, the cluster number must be decided before 

performing the partitional clustering. As we discussed in Chapter 1, cluster number is 

always difficult to decide. Milligan and Cooper (Milligan and Cooper 1985) reviewed 

some ideas to help making this choice. Partitional clustering algorithms usually produce 

the clusters by optimizing a defined criterion function. A partitional algorithm can be 

classified as a hard algorithm if each object can only be allocated to a single cluster, 

such as the K-means algorithm (MacQueen 1967); or a soft algorithm when each object 

can be assigned to several clusters with degrees/probabilities of membership, such as 

the fuzzy c-means clustering (FCM) (Ruspini 1969; Bezdek, et al. 1984; Bezdek, et al. 

2005).  

While Hierarchical clustering has only agglomerative algorithm and divisive 

algorithm, partitional clustering has various choices in algorithm (Jain, et al. 1999). 

Without any distribution assumptions, one can apply nonparametric approach, density-

based clustering (Jain and Dubes 1988), such as Nearest Neighbor clustering (Yianilos 

1993; Kenward, et al. 2001), DBSCAN (Ester, et al. 1996; Arlia and Coppola 2001) and 

OPTICS (Ankerst, et al. 1999). Then, with mixture Gaussian assumption, such as 

Expectation Maximization (EM) algorithm (Dempster, et al. 1977; Redner and Walker 

1984; Peel and McLachlan 2000), and Cross Entropy (CE) algorithm (Botev and Kroese 

2004; Rubinstein and Kroese 2004) also have been applied to solve partitional 

clustering problems. Most recently, subspace clustering and correlation clustering have 

been developed specifically for high-dimensional data to deal with the curse of 

dimensionality (Agrawal, et al. 2005; Kriegel, et al. 2009). In general, K-means 
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clustering is the simplest and most commonly used partitional clustering algorithm 

thanks to its considerable efficiency, which will be further discussed later in this chapter. 

Data Abstraction and Cluster Validation 

If the goal of a study is just to discover the number of clusters or the structure in 

a data set, then a partition of the data set is the end product and there is no need to do 

data abstraction or cluster validation. However, in most real world applications, cluster 

analysis is usually the first step to explore the data, and then other statistical methods or 

data analysis techniques will be applied either on each cluster separately, or on the 

cluster centers/seeds. In cluster analysis, data abstraction is used to extract a simple 

and common representation of each cluster. The most popular way is to use of the 

cluster center to represent each cluster (Diday and Simon 1976). The first principal 

component has also been used as representation of a cluster in many fields (Zhang, et 

al. 2008). The best way of cluster representation depends on the application itself as 

discussed in Duran and Odell (1974).  

Cluster validation is used to evaluate the performance and assess the output of a 

clustering algorithm. There are two types of validation. In external evaluation, the 

clustering output is assessed using external data which was not used for clustering (e.g. 

class labels if available; external benchmarks). Some external criterions include Rand 

measure (Rand 1971), F-measure (Manning, et al. 2008), Jaccard index (Hamers, et al. 

1989) and Confusion matrix (Townsend 1971). External evaluation methods evaluate 

the clustering output with extra knowledge. However, the recovery of known knowledge 

may not necessarily to be the primary intention of exploratory data analysis. In internal 

evaluation, by contrast, the output is evaluated, based on the data used for clustering, 

by determining if the output is essentially appropriate for the data. However, as pointing 

out by Manning (2008), a high score in internal evaluation do not necessarily result in 

effective information recovery. Commonly used internal criterions include Davies-

Bouldin index (David and Donald 1979) and Dunn index (Dunn 1974). For interests in 

this direction, please see the detailed discussion in (Jain and Dubes 1988) 
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2.3 Hierarchical Clustering 

Hierarchical clustering algorithm is also called connectivity based clustering, 

which will produce a hierarchy of partitions. The output of a hierarchical clustering is a 

tree structure called dendrogram representing the nested grouping of objects and 

similarity levels. An example of dendrogram is shown in Figure 2.4. By cutting the 

dendrogram at different levels (Height in Figure 2.4), different clusters of the data can 

be obtained. 

 

Figure 2.4 Dendrogram 

As shown in Figure 2.5, the first step in hierarchical clustering is to define the 

similarity/dissimilarity using distance measure as we mentioned before. Hierarchical 

clustering is very flexible in selecting distance functions. However, different distance 

functions identify different features in the data and thus the dendrogram structure using 

different distance functions may naturally differ. 

 

Figure 2.5 General procedure of hierarchical clustering 
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When a distance function is determined, the distance is properly defined between 

any two objects. Then hierarchical clustering offers several linkage criteria to define the 

distance between two sets of objects. Some commonly used linkage criteria are listed 

below: 

Single linkage: also called minimum linkage, defined as the minimum distance 

between any two objects from two sets. 

Complete linkage: also called maximum linkage, defined as the maximum 

distance between any two objects from two sets. 

Average linkage: also called mean linkage or UPGMA, defined as the mean of 

the distance of all paired objects from two sets. 

Ward’s criterion: in ward’s criterion, the distance between two sets of objects is 

defined as the increase in variance if two sets of objects are merged. 

 
Figure 2.6 Dendrograms with three difference linkage criteria using same distance function on same 

data 
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For the same data, different linkage criteria will lead to different tree structure, 

even with the same distance measure (Figure 2.6). Ward’s criterion only works well if 

the data is approximately normal. It has been reported that single linkage always results 

in a chaining effect (Nagy 1968) as well as average linkage frequently produces the 

snowballing effect (Huth, et al. 1993; Serrano, et al. 1999). Although such limitations 

can be partially eliminated by stopping the clustering process at different level of 

dissimilarity for different parts of data, complete linkage is still preferred and the most 

commonly used in many applications. It has been observed that complete linkage 

hierarchical clustering produces tight and compact clusters as well as more meaningful 

dendrogram than the single linkage method (Jain and Dubes 1988; Baeza-Yates 1992). 

Hierarchical clustering is a “step by step” algorithm allows either building up 

(agglomerative), or breaking down (divisive), the hierarchy of clusters (Figure 2.7). The 

agglomerative algorithm, also called “bottom-up” approach, begins at the bottom of the 

tree with each object as a single cluster. Then in each step, the closest two clusters, 

measured by the distance metrics and selected linkage, are merged as a larger cluster 

until all elements are in one cluster. The divisive algorithm, also called “top-down” 

approach, on the other hand, has the reverse order. It begins at the top of the tree with 

a single cluster including all the objects and split is produced in each step recursively 

until no further splits any more. In practice, agglomerative algorithm is more popular 

compared to divisive algorithm because of the complexity. The complexity of divisive 

algorithm is O(2n) while the complexity of agglomerative algorithm is O(n3) in general 

and O(n2) for some special cases. 

Hierarchical clustering provides a wide choice on cluster number, there is no 

needs to determine the cluster number in advance. Each level in the dendrogram 

provides a unique partition of the data and the final clusters can be decided by 

comparing all the possible results. More details about determining cluster number will 

be introduced later. Dendrogram provides very high interpretability of the whole 

procedure, which makes hierarchical clustering a very popular choice. However, on the 

other hand, such tree structure is very sensitive and instable. Different linkage methods, 

a small change in the data, or a perturbation at early steps, can results in significant 
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difference in dendrogram. More important, the hierarchy structure imposed by 

hierarchical clustering may not actually exist in the data. 

 

Figure 2.7 Divisive and agglomerative hierarchical clustering 

 

2.4 K-means Clustering 

K-means clustering is the earliest and most commonly used partitional clustering 

algorithm in the literature “from more than a dozen different fields” (Steinley 2006). Back 

to 1960’s, many researchers (Thorndike 1953; Cox 1957; Fisher 1958; Engelman and 

Hartigan 1969) suggested to partition the data by minimizing within-group variation so 

that the final partitions produced can reflect a certain level of homogeneity within 

clusters and heterogeneity between clusters. Then the terminology “K-means” was first 

used by James MacQueen in 1967. However, the original idea was proposed by Hugo 
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Steinhaus (1957) in 1957. The basic idea is to assign all subjects into k clusters in 

which each subject belongs to the cluster with the nearest center represented as the 

mean of all the objects in the cluster. Unlike hierarchical clustering, k-means clustering 

requires determining the cluster number k in advance and only produces a single 

partition with k clusters. When cluster number k is fixed, K-means clustering is actually 

an optimization problem to find the best k subgroups with k cluster centers  ݃ܥ by minimizing the sum of within group sum of squares (WGSS) as follow: 

෍ ෍ ෍(ݔ௜௝ െ ܿ௚௝)ଶ௠
௝ୀଵ௜אூ೒

௞
௚ୀଵ  

 

(2.1)

The standard K-means algorithm, also known as Lloyd’s algorithm (Figure 2.8), 

was originally proposed by Stuart Lloyd in 1957 and first published in (1982). In Lloyd’s 

algorithm, first, k cluster centers are initialized randomly and each subject is assigned to 

the nearest center. Then in each step, k cluster centers are re-calculated based on the 

assignment and all subjects are re-assigned to new clusters until the k cluster centers 

remain no change.  

 

Figure 2.8 Lloyd’s algorithm 

With additional assumption that each cluster follows a multivariate normal 

distribution, k-means problem can be solved by estimating a finite Gaussian mixture 

model. Then either Expectation-Maximization algorithm (Dempster, et al. 1977; Redner 
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and Walker 1984; Peel and McLachlan 2000) or Cross-Entropy algorithm (Botev and 

Kroese 2004; Rubinstein and Kroese 2004) is used to fit the model and each object is 

assigned to the cluster with highest probability. These distribution-based algorithms 

outperformed the standard algorithm in specific data structures. However, it has been 

shown that EM algorithm has the issue to identify the within-in cluster covariance 

matrices when solving a k-means problem (De Backer and Scheunders 1999) and in 

high dimensional data, even dimension>2, both EM and CE algorithms will possibly 

generate spurious clusters (sometimes called degenerate clusters) (McLachlan and 

Peel 2000) Furthermore, several alternatives have been reported in the literature using 

K-median (Kaufman and Rousseeuw 1990; Park and Jun 2009), K-midranges (Späth 

1985; Carroll and Chaturvedi 1998) or K-modes (Huang 1998; Chaturvedi, et al. 

2001; Huang and Ng 2003), instead of K-means, as k cluster centers. However, these 

k-means-like algorithms only works well as expected in special cases (Carroll and 

Chaturvedi 1998; Garcia-Escudero and Gordaliza 1999), but they shared the same 

limitations presented in original K-means clustering (Huber 1981; Arabie and Hubert 

1994; Chaturvedi, et al. 2001). 

A well-known problem of k-means clustering is that it may fail to provide the 

global optimum and very sensitive to the randomly initialized centers (Steinley 2003). 

Even through, it has been reported that k-means algorithm usually shows very good 

cluster recovery properties (Dimitriadou, et al. 2002; Steinley 2003). K-means clustering 

is favorable because it is easy to implement and very fast with time complexity of O(n). 

Compared to hierarchical clustering, it makes k-means clustering unattractive to 

determine cluster number k in advance. However, given the low time complexity, it is 

possible to run K-means algorithm with a range of cluster number k and selected the 

most appropriate one afterward, just like the way hierarchical clustering does. 
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2.5 Application of Cluster Analysis 

Cluster analysis, as the major unsupervised learning technique, has been heavily 

used in many disciplines to discover the ground truth, recover hidden information and 

explore the unknown portion of the world.  

In biology, cluster analysis has been applied in transcriptomics, evolutionary 

biology and bioinformatics. In transcriptomics, cluster analysis is used to build groups of 

genes with gene expression patterns (Subramanian, et al. 2005). These groups often 

contain functionally related proteins. Varela, et al. (2011) performed hierarchical 

clustering for transcriptome, proteome and endometabolome to study the biology of win 

yeast in 2011. In evolutionary biology and bioinformatics, cluster analysis is widely 

involved into the studies related with high-throughput genotyping platforms (Hormozdiari, 

et al. 2009), microarray data analysis (Eisen, et al. 1998) and protein-protein interaction 

network (Ito, et al. 2000; Uetz, et al. 2000; Chua, et al. 2006; ,55-59). Andreopoulos and 

colleagues (2009) reviewed around 40 clustering algorithms applied in bioinformatics. A 

separate section will be provided in next chapter to discuss the application of cluster 

analysis in microarray data analysis. 

In ecology, cluster analysis is used to reveal biogeographical or temporal 

patterns by clustered patterns of molecular sequences (Whitaker, et al. 2003). Another 

application is to find out clones or variants from environmental samples based on 

genetic features or phenotypic markers (Acinas, et al. 2004). Ramette Alban (2007) 

conducted a review on statistical analysis in microbial ecology. The review includes 

7748 publications which are published between 1900 and 2006. Around 40%-50% 

publications used the word “cluster analysis” in the titles or abstracts. 

In medicine research, cluster analysis is mainly used in medical imaging study to 

analyze the data obtained from Functional MRI (Goutte, et al. 1999; Baumgartner, et al. 

2000; Cordes, et al. 2002) and PET (Wong, et al. 2002; Guo, et al. 2003; Kamasak and 

Bayraktar 2007). O’Sullivan (1993) used partitional clustering to transform a set of 

tissue time-activity curve (TAC) into groups of homogeneous TAC. Liptrot and 

collaborators (2004) applied a two-stage hierarchical k-means clustering algorithm on 
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PET time series to extract a cerebral vasculature ROI and built a kinetic model of the 

brain. Also clustering analysis has been used to improve the Signal-to-Noise Ratio 

(SNR) of dynamic PET data (Kimura, et al. 1999). Recently, Robinette’s team (2009) 

applied hierarchical clustering and biclustering algorithm on nuclear magnetic 

resonance (NMR) imaging data to profile the changes in biofluid metabolic composition. 

Desai and colleagues (2011) used cluster analysis to analyze cytokine profile in severe 

asthma subphenotypes. 

In business and marketing, cluster analysis has been used starting from 1960s 

(Punj and Stewart 1983; Arabie and Hubert 1994). The primary application of cluster 

analysis in marketing is for market segmentation (Wind 1978; Saunders 1980; Spiller 

and Lohse 1997). Another important use of cluster analysis in business and marketing 

is to understand clients’ behaviors by grouping homogeneous clients (Kiel and Layton 

1981; Desarbo, et al. 1991) and subsequently make marketing decisions and strategies 

(Flavián and Polo 1999). Most recent, Hosseini’s group (2010) developed a customer 

relationship management (CRM) method using k-means clustering to assess customer; 

Zhang and other researchers (2011) employed Kohonen clustering (Tsao, et al. 1994) 

algorithm to study telecom customers’ behavior. 

In computer science, cluster analysis is an essential tool to handle large data. 

Jain (1999) explained the importance of clustering in image segmentation (Frigui and 

Krishnapuram 1999; Tung, et al. 2010), information retrieval (Carpineto and Romano 

1996; Bhatia and Deogun 1998; Messai, et al. 2008) and data mining (Judd, et al. 1998). 

For example, in image segmentation, cluster analysis is used to group an input image 

into homogeneous regions based on some image-specific features. Cluster analysis is 

also widely used in pattern recognition (Ester, et al. 1996; Hinneburg and Keim 

1998; Jain, et al. 2000; Han, et al. 2006) and image processing (Bagui 2005; Bezdek, et 

al. 2005; Gerlinger, et al. 2009) 

In atmospheric sciences, cluster analysis is applied to detect circulation regimes 

and classify weather patterns (Mo and Ghil 1988; Michelangeli, et al. 1995; Yiou and 

Nogaj 2004). Both hierarchical clustering (Cheng and Wallace 1993; Mote 1998; Vrac, 

et al. 2007) and k-means clustering (Brinkmann 1999; Solman and Menéndez 
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2003; Santos, et al. 2005; Esteban, et al. 2006) are used in this kind of study. 

Kalkstein’s team (1987) performed a comparison of different clustering techniques in 

clustering weather types. Gong and Richman (1995) discussed the performance of 

cluster analysis in climate regionalization and the effect of different distance 

measurements.  

Furthermore, cluster analysis has also been employed in other fields as well. 

Clatworthy and co-workers (2005) reported a thoughtful review on the application of 

cluster analysis in health psychology in last decade. Basak with colleagues (1988) used 

cluster analysis to find the structural similarity of 3000 chemical compounds. Zhang and 

Maringer (2010) combined clustering technique with traditional asset allocation methods 

in modern portfolio management. With this new approach, they improved portfolio 

stability and resulted in higher risk-adjusted returns.  

 

2.6 Recent Development 

With the wide applications of cluster analysis, new algorithms are proposed 

constantly and considerable effort has been put on improving the performance of 

hierarchical clustering and k-means clustering. Zhang, Ramakrishnan and Livny (1996) 

proposed BIRCH which shorted the runtime and improved the efficiency compared to 

other hierarchical algorithms. This algorithm received the SIGMOD 10-years test of time 

award due to the improvement. Cheng and Church (2000) created “biclustering” which 

performs hierarchical clustering on both object and feature level simultaneously. 

Kanungo’s group (2002) designed a filtering algorithm for k-means clustering with 

increased efficiency as the separation between clusters increases. More recently, fuzzy 

or overlapping clustering drawn many attentions by allowing each object belong to 

multiple clusters while clusters are mutually exclusive in classical cluster analysis 

(Banerjee, et al. 2005; Eyke 2005). Knowledge-based clustering, which incorporating 

extra background knowledge into clustering, becomes an interesting topic in 

bioinformatics while classical cluster analysis is purely data-driven (Hanisch, et al. 

2002; Pan 2005; Tseng 2007). Furthermore, several papers discussed the variable 
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weighting techniques to improve the performance and retrieved more information from 

the data (Modha and Spangler 2003; Tseng 2007; Shen, et al. 2010). 

Besides numerical data clustering, some recent developments are related to 

categorical data. Huang (1998) extended the k-means algorithm to categorical data. 

Kim and colleagues (2004) developed fuzzy clustering, while Guha’s team (2000) and 

He’s group (2002) developed computer-based algorithms for categorical data. Andritsos 

with other researchers (2004) created a new algorithm named “LIMBO” with a novel 

distance measure for categorical data and improved scalability of other hierarchical 

clustering algorithms. Cluster analysis for numerical and categorical mixed data has 

also been developed in the recent years (Chiu, et al. 2001; Li and Biswas 2002; Hsu, et 

al. 2007).  

In this thesis, we shall discuss two new developments on cluster analysis. In the 

first part, we shall extend the modern multiple-objective cluster analysis from using a 

single set of features to multiple distinct sets of features by developing the novel 

compound clustering method and the constrained clustering method. In the second part, 

we theoretically derive the global-optimal guaranteed variable weights based on the 

method of Lagrange multiplier and the Karush-Kuhn-Tucker conditions. Then we shall 

propose a novel algorithm for the weighted k-means clustering to improve the current 

weighted k-means clustering method (Huh and Lim 2009). Numerical examples on both 

simulated and real data are provided at the end to illustrate our method. 
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Chapter 3 

Existing Multi-objective Cluster Analysis 

3.1 Cluster Analysis in Microarray Data 

High throughput techniques are very important nowadays in many areas of 

biology research. Microarray technique is one of such high throughput techniques to 

generate large-scale gene expression data and enable the biological investigation to 

conduct in the gene level, where structural information about protein sequence and 

regulatory information about protein expression are stored. Microarray data is very 

useful to biological research for identifying differentially expressed genes, function 

annotation of coexpressed genes, regulatory mechanisms and diagnostic. The high 

dimensional, large scale nature of microarray data increases the demand of advanced 

and sound statistical methodology. 

Many statistical methods have been applied on microarray data to identify 

differentially expressed genes in high dimensions (Kerr, et al. 2000; Nadler, et al. 

2000; Lin, et al. 2003). For study focused on gene co-expression, functional annotation 

and coregulation, cluster analysis is widely used as the first-step statistical analysis to 

group genes into sets with similar expression patterns. In the last decade, clustering 

algorithms in microarray analysis have been extensively reviewed (Dysvik and 

Jonassen 2001; Boutros and Okey 2005; Gollub and Sherlock 2006), compared and 

validated (Datta 2001; Kerr and Churchill 2001; McShane, et al. 2002; Gat-Viks, et al. 

2003). Generally, if the researcher has a desired cluster number by external knowledge, 

partition clustering, such as K-means clustering or fuzzy C-means clustering (Dembélé 

and Kastner 2003) are preferred due to the time efficiency. If cluster number is unknown, 

hierarchical clustering is better because of the flexibility on cluster number. People 
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usually use normalized Euclidean distance or correlation based distance as well as 

partial correlation based distance (Waddell and Kishino 2000) for hierarchical clustering.  

However, those popular algorithms have limitations when applying to microarray 

data. From statistical point of view, hierarchical clustering is embedded with the 

assumption that the internal structure of the data is essentially hierarchical, which 

implies a hierarchy of genes. However, if this is not the case, or genes are not 

correlated across all levels, the performance of hierarchical clustering may be inferred. 

Also in partitional clustering, the estimated cluster number may not represent the 

inherent one in the data. In that case, such bias will be taken into the clustering 

procedure and the result may be inferred as well. Lots of research have been conducted 

in this area to improve the performance of clustering algorithms for microarray data 

(Yeung, et al. 2001; Hanisch, et al. 2002; Ernst, et al. 2005; Chipman and Tibshirani 

2006).  

More important, from biology point of view, the biological fundamental behind 

cluster analysis is that co-expressed genes are always co-regulated, that is, genes with 

similar expression are supposed to be involved in similar biological processes. However, 

it has been reported in the literature that the similarity in gene expressions may not 

necessarily reveal biological similarity (Clare and King 2002; Gibbons and Roth 2002), 

also genes involved in the same biological process are not always perfectly correlated 

(DeRisi, et al. 1997). To overcome this difficulty and find gene clusters better presenting 

biological process, several novel clustering algorithms has been proposed. Existing 

literature includes Multi-objective clustering and knowledge-based clustering. 

 

3.2 Multi-objective Cluster Analysis 

Traditional cluster analysis algorithms always only use a single criterion or 

objective -- such as the objective of K-means clustering is the compactness of objects 

and the objective of hierarchical clustering is the connectedness of the objects. This 

renders clustering of data with several major features difficult (Figure 3.1). To overcome 
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this un-necessary limitation, some recent works proposed the new idea of multi-

objective clustering (Handl and Knowles 2004, 2005; Cheng, et al. 2006; Korkmaz, et al. 

2006; Mitra and Banka 2006; Di Nuovo, et al. 2007; Handl and Knowles 2007) applying 

multiple cluster criteria (objective functions) simultaneously to one signle data set. An 

alternative approach is clustering ensembles (Strehl and Ghosh 2003) featuring a 

posteriori combination of different clustering results by means of ensemble methods. 

The multi-objective approaches are more robust and stable than the traditional single 

objective cluster methods. Similar to hierarchical clustering, they produce a set of 

partitions as the final result, and from this set, users can choose the result most suitable 

for their particular application (Verma and Blumenstein 2008). Most cluster quality 

validation procedures also determine the cluster number at the same time. A notable 

algorithm is the automatic k-determination scheme (Handl and Knowles 2007; Matake, 

et al. 2007) inspired by the Gap statistic (Tibshirani, et al. 2001). 

 

  

Figure 3.1 Motivation of modern multiple-objective clustering analysis: synthetic 2D data sets 
exhibiting a wide range of different data properties (Handl and Knowles 2007).  

Most multi-objective clustering approaches use the Multi-Objective Evolutionary 

Algorithm (MOEA) obtained via the framework of Pareto optimality, or Pareto efficiency. 

Named after Vilfredo Pareto, an Italian economist who used the concept in his studies 
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of economic efficiency and income distribution, the Pareto optimality has broad 

applications in economics, game theory, engineering and the social sciences. We now 

illustrate this optimization method using terms from its economic roots. Given a set of 

alternative allocations, a change from one allocation to another that can make at least 

one individual better off without making any other individual worse off is called a Pareto 

improvement. An allocation is Pareto efficient or Pareto optimal when no further Pareto 

improvements can be made. 

In the context of multiple-objective clustering, after defining the objectives of data 

clustering, MOEA usually has two steps: initialization and optimization. Initialization will 

build an initial partition of the data. The minimum spanning tree (MST) (Handl and 

Knowles 2007; Matake, et al. 2007) is perhaps the most widely used method for 

initialization. After the initialization, the Pareto optimization algorithm will be performed 

to minimize the objective functions. Theoretically, multiple objective functions can be 

applied, but thus far, only two objectives have been examined in papers published to 

date: one is the connectivity and the other is the overall deviation. These objective 

functions are defined similarly across papers with slight changes. Connectivity 

evaluates whether the most similar objects have been placed in the same cluster. The 

overall deviation expresses the within-cluster compactness by evaluating the overall 

summed distances between objects and their corresponding cluster center. Connectivity 

is minimized by decreasing the cluster number while the overall deviation is minimized 

by increasing the cluster number. Thus the optimization is achieved by balancing these 

two objective functions. Many multi-objective optimization algorithms can be applied, 

such as MOGA (Deb 2003), VIENNA (Handl and Knowles 2004), MOCK (Handl and 

Knowles 2007; Matake, et al. 2007) which is an improvement from PESA-II (Corne, et al. 

2001). These algorithms utilize different combinations of operators such as genetic 

representation, uniform crossover and neighborhood- biased mutation, to optimize the 

initial partition. 

In microarray data analysis, multi-objective approach has recently been used to 

explore the gene clusters which are not only similar in expression profiles but also 

connected in biological process. Fleury (2002) applied multi-objective optimization to 
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reveal temporal patterns in mouse retinal genes. Divina and Aguilar-Ruiz (2007) 

extended the popular biclustering techniques with multi-objective approach. 

Bandyopadhyay (2007) proposed a two-stage clustering algorithm with Fuzzy C-means 

and Multi-Objective genetic algorithms. Faceli and colleagues (2009) combined cluster 

ensembles and multi-objective clustering and applied for gene expression data analysis 

to handle different types of clusters existing in gene expression data.  

In next chapter, we will propose two new multi-objective clustering methods, 

independent from above MOEA, and apply on a microarray study collaborated with Cold 

Spring Harbor laboratory with two objectives: 1) maximize the similarity of gene 

expression; 2) maximize the correlation of biological functions. 

 

3.3 Knowledge-based Cluster Analysis 

Cluster analysis is a data-driven unsupervised learning method. It tries to explore 

the underlying structure from the data completely, without any pre-knowledge or 

information. However, as we discussed before, gene clusters obtained from traditional 

cluster analysis on expression data may not fully uncover the biological meaning behind 

it. Multi-objective clustering approaches still didn’t solve this problem by focusing on 

gene expression data alone. Given the availability of the various sources of biological 

data, it becomes popular to incorporate biological knowledge into cluster analysis to 

improve the performance and retrieve biological meaningful clusters (Cheng, et al. 

2004; Huang and Pan 2006). Such approaches are called knowledge-based clustering. 

Gene Ontology (GO) (Ashburner, et al. 2000) is usually used as the prior 

biological knowledge in microarray data analysis (Dahlquist, et al. 2002; Zeeberg, et al. 

2003; Pan 2005). GO is a hierarchical classification structure displayed as a direct 

acyclic graph (DAG) (Wong, et al. 2002). In DAG, each GO node representing a 

biological process and the end notes are usually the genes. Usually a child node is a 

part of the parent node or a specific case. If two genes share more patient nodes, they 
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are more biological similar. GO annotation has been used in both hierarchical clustering 

and partitional clustering. 

In hierarchical clustering, biological knowledge usually used to define the 

biological similarity between genes and then combined with gene expression similarity 

as overall distance metrics. The first biological similarity measure was proposed by 

Hanisch and collaborators in 2002. They defined the biological similarity using metabolic 

network on enzymes, KEGG database (Kanehisa, et al. 2011) and the overall distance 

as a sum of two logistic functions of both biological similarity and expression similarity. 

This method was criticized because the genes and enzymes are not one-on-one 

corresponding, which makes the result very difficult to interpret. From then, several 

algorithms were proposed using GO annotation as biological similarity. Cheng and other 

researchers (2004) proposed a biological similarity between two genes based on the 

common edges they shared in GO and proposed hierarchical clustering on biological 

similarity alone as well as the average of biological similarity and Euclidean distance on 

expression data.  

In partitional clustering, biological knowledge is incorporated as a weighting 

parameter on expression-based distance measure. Huang and Pan (2006) proposed a 

two step K-medoids methods (Kaufman and Rousseeuw 1990), a robust version of k-

means clustering with a scaled expression distance metric with the nonnegative scale 

parameter ߛ ൏ 1 if two genes have a common biological function indicated by GO or ߛ ൌ 1, otherwise. Tseng (2007) proposed a PW-K-means algorithm with a penalty term 

and a cluster weighting factor defined as a logistic function of prior GO biological 

information, which is similar with Hanisch’s 2002 model. Tari and colleagues (2009) 

extended fuzzy c-means clustering with variable weight obtained from GO annotation. 

Shen’s team (2010) extended k-means clustering with a variable weight from GO 

information and allows for a set of scattered genes remaining un-clustered. 

A common drawback on all existing methods is that only genes from GO or other 

biological database, such as KEGG,  are used. Genes, which are not included in GO or 

other biological database, are assumed to have no function at all. However, this 

assumption is questionable. All the databases are knowledge-based, summarized from 



31 
 

previous experiments and research. A main goal of microarray analysis is to discover 

unknown gene functions. Such assumption will bias the results and limit our findings. 

Furthermore, in partitional clustering, by adding a weighting on cluster level, it may not 

result in the improvement on the gene-level similarity. 

 

3.4 Cluster Number Determination 

No matter which cluster method – hierarchical or partitional, single or multiple 

objective(s), finding the most reasonable cluster number is always critical. There is, 

unfortunately, no standard approach available (Girman 1994) to solve this problem. 

Cluster number determination is still a difficult and open question to date. The 

determination always involves, directly or indirectly, user experience and preference, 

and also the data property and visualization.  

Lots of approaches have been proposed to find the most appropriate cluster 

numbers. Milligan and Cooper (1985) conducted an extensive review of 30 approaches 

used to determine the cluster number for hierarchical clustering. Recently, Salvador and 

Chan in 2004 summarized existing cluster number determination approaches into five 

categories. They are: 

1) Cross-validation;  

2) Penalized likelihood estimation;  

3) Permutation tests; 

4) Resampling; 

5) Finding the knee of an error curve 

They also pointed out that “The majority of these methods to determine the 

number of clusters/segments may not work very well in practice”. First four categories 

are all very computational intensive. These three methods require re-running the 

clustering many times, which is difficult for large dataset.  
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Dudoit and Fridlyand (2002) gave a review on majority methods to find the knee 

of an error curve: 

1) Calinski and Harabasz (1974) index;  

2) Krzanowski and Lai (1985) index;  

3) Hartigans (1975) statistic;  

4) Gap and gapPC (Tibshirani, et al. 2001). 

For a given partition, these methods are aimed to locate the “knee” of an error 

curve, which is the point of maximum curvature as the appropriate number of clusters. 

However, Douglas Steinly (2006) criticized these methods only perform well if all 

clusters have similar size and shape. 

Some other methods have been proposed as well. Sarle (1996) gave such a 

message: “If your purpose in clustering is dissection, that is, to summarize the data 

without trying to uncover real clusters, it may suffice to look at R2 for each variable and 

pooled over all variables. Plots of R2 against the number of clusters are useful.” 

Kaufman and Rousseeuw (1990) proposed a method to determine the cluster number 

for partitional clustering using the largest average silhouette. Chiang and Mirkin 

(2006, 2007) compared eight most popular approaches to determining the cluster 

number for K-means clustering and concluded that silhouette produced the most 

consistent results. 

In this thesis, we will develop a new statistics called “complete linkage” R2 along 

with largest average silhouette to determine the cluster number determination for the 

compound and constrained cluster analysis, which will be introduced in the next chapter. 
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Chapter 4 

Proposed Multiple-objective Clustering 

Approaches and Application in 

Microarray Data Analysis 

Inspired by multi-objective cluster analysis which explores multiple features from 

a single data set and knowledge-based clustering which utilizes the multiple data 

sources available, in this chapter; we developed two novel multiple-objective cluster 

analysis method, the compound cluster analysis and the constrained cluster analysis, to 

cluster data using multiple data sources and multiple similarity measures. We illustrate 

our framework through a dual-objective and dual-data sources problem although the 

ideas are easily generalized to the multiple objective and multiple data sets scenarios. A 

real application in microarray data analysis is provided at the end. 

 

4.1 Compound and Constrained Clustering 

Cluster analysis is a data-driven technique. Traditional clustering algorithms 

consist of a single objective and a single distance metrics generated from a single data 

set. However, in reality, we may obtain heterogeneous data types from multiple sources 

which describe the same object from different views. Integrating all the information on 

hand could lead us to a better understanding of the object of interest. A very good 

example is the knowledge-based clustering we introduced in section 3.3. In biology, we 

have continuous microarray data to describe gene expression profile and also biological 
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network databases to describe the relationship between genes in terms of biological 

processes or functions. By integrating all the information, knowledge-based clustering 

achieves superior performance in grouping genes.  

Here we developed two novel multiple-objective cluster analysis methods, the 

compound clustering and the constrained clustering, to cluster data by integrating 

multiple data sources and multiple similarity measures. We give the general compound 

clustering and constrained clustering first and then illustrate our methods through a 

dual-objective and dual-data sources problem.  

General framework of compound clustering and constrained clustering 

Suppose we have n datasets with n distance/dissimilarity measurements: D1, 

D2, …, Dn. 

Compound clustering:  

We formulate the overall distance as a weighted average of the individual 

measurements. Clusters are obtained by minimizing the overall distance D. 

ܦ ൌ ଵܦଵߣ ൅ ଶܦଶߣ ൅ ڮ ௡ܦ௡ߣ , ݁ݎ݄݁ݓ ෍ ௜௡ߣ
௜ୀଵ ൌ 1 

 

(4.1) 

Constrained clustering: 

Constrained clustering is an n-step algorithm as follow. In each step, we 

minimize Di with the constraint that Dj< dj , j=1,2, …, i-1. 

 

Constrained Clustering Algorithm 

1. perform cluster analysis based on D1 on all objects 
2. for i = 2 to n  

Perform cluster analysis based on Di on each cluster 
generated from step i, that is we minimize Di  



35 
 

In a dual-objective case, that is n=2, compound clustering is to minimize the 

overall distance D with adjustable weighting parameter λ as follow: ܦ ൌ ଵܦߣ ൅ (1 െ ଶܦ(ߣ (4.2)
And constrained clustering is a two-step approach to minimize D2 subject to the 

constraint that D1 ≤ d. First, we perform cluster analysis based on D1; second, in each 

cluster generated in step1, we perform cluster analysis based on D2 to obtain the final 

clustering results.  

It can be shown that compound and constrained clustering are not equivalent. 

For n=2, under compound and constrained approaches, two objects can be clustered if 

they are close enough to satisfy: ܦ௖௢௠௣௢௨௡ௗ( ଵܺ, ܺଶ) ൑ ݀ ฻ ଵܺ, ܺଶ ܽܦ ;݀݁ݎ݁ݐݏݑ݈ܿ ݁ݎଵ( ଵܺ, ܺଶ) ൑ ܿଵ & ܦଶ( ଵܺ, ܺଶ) ൑ ܿଶ ฻ ଵܺ, ܺଶ ܽ݀݁ݎ݁ݐݏݑ݈ܿ ݁ݎ; 
Then the clustering region can be shown in Figure 4.1 below: 

 

 
Figure 4.1. Comparison of compound and constrained clustering approaches 

Visually, we can see these two approaches have different clustering regions, 

thus they are not equivalent. The proof can be easily extended to the case n>2. 

Furthermore, in order to determine the clusters, in each approach, we need to 
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determine two parameters when n=2, (λ,d) for the compound cluster analysis, and (c1, 

c2) for the constrained cluster analysis. In the following sections, illustrate our framework 

through a dual-objective and dual-data sources problem.  

 

4.2 Our Data 

The data we used is a microarray 

data set from the research project 

collaborated with Professor Josh Huang 

and Dr. Anirban Paul at the Cold Spring 

Harbor Laboratory (CSHL). It is a 

temporal cDNA microarray of Purkinje 

(PKJ) and Basket (BAS) neuron cells 

extracted from new born mice (Figure 

4.2). The data consist of 45,000 genes 

from each cell. After primary extraction, 

about 50 PKJ cells and over 100 basket 

cells were retrieved with 5 time points 

(Figure 4.3). Our goal is to find the optimal clusters, where the genes not only share 

similar time course growth patterns, but also common biological functions. Thus we 

have two types of data to be analyzed for each cell -- one is the microarray gene 

expression related to time course pattern and the other is the functional data related to 

the biological function(s) of each gene. 

 

Figure 4.3 Samples are collected at 5 time points for both PKJ and BAS cells 

Figure 4.2 Purkinje cell and Basket cell
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Expression data 

Data pre-processing was performed as shown below (Figure 4.4), after the time 

course filtering and normalization, we chose to focus on the top 1000 common genes 

shared by both cells.  

 

Figure 4.4 Pre-processing procedure for microarray gene expression data 

Function data 

Aiming to group genes based on their biological function and growth pathway 

information, we used the DAVID Functional Annotation Clustering 

(http://david.abcc.ncifcrf.gov/home.jsp) to build the function matrix. Most existing 

methods only incorporated one biological database. Here we input the 1000 top genes 

of PKJ and BAS, respectively, and integrate the GO Molecular Function, GO Biological 

Process, and KEGG Pathway as selection criteria to obtain 117 functional groups for 

each cell, PKJ or BAS (Figure 4.5).  

http://david.abcc.ncifcrf.gov/home.jsp�
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Figure 4.5 Build up the biological function groups 

We subsequently built a binary function matrix [aij] for each cell. For example, for 

the PKJ cell, the function matrix was established as follow (Table 4.1), function groups 

1- 117 as row index and the 1000 genes as column index. If gene i has the function 

group j, then aij is 1, otherwise aij is 0. 

Table 4.1 Function matrix for the selected 1000 genes from the PKJ cell. 

 

 

4.3 Distance Measurement 

Expression distance 

There are many choices of distance measures for microarray data. For 

expression value, researchers usually use the Euclidean distance or correlation based 

distance. When Euclidean distance is used, since the expression value may have 
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different scale at different time point or for different gene, normalization should be done 

first to put values on the same scale. However, Euclidean distance is based on the pair-

wised distance, not the pattern similarity. As shown in Figure 2.3, the Euclidean 

distance between A and B is smaller than that between A and C even A and C have the 

same pattern, which opposite with B. Given that our aim of finding genes with similar 

temporal course, we find the correlation based distance to be a good choice to reflect 

the similarity of gene growth patterns. Because the correlation is between [-1, 1], we 

decided to use ½(1-correlation) as the expression distance, D1. 

Function distance 

Function distance is calculated based on the binary function matrix we defined 

using DAVID. There are many distance measures suitable for binary data, each with 

different criterion and different purpose. For our goal, we want to group genes with 

common functions together, and we examined the following distances.  

1. Euclidean / Hamming distance Although Euclidean distance and Hamming 

distance have distinct definition, we find they are equivalent for binary data. Hamming 

distance can tell us how different two vectors are. It returns the number of positions in 

two equal-length vectors with different values. For our project, it transpires into the 

number of different positions in two functional vectors of two genes.  

The Euclidean distance is defined as  

ඥ(݌ଵ െ ଵ)ଶݍ ൅ ଶ݌) െ ଶ)ଶݍ ൅ ڮ ൅ ௠݌) െ ௠)ଶݍ ൌ ඩ෍(݌௜ െ ௜)ଶ௠ݍ
௜ୀଵ  (4.3) 

For binary data, only when pi and qi are different, (pi - qi)2 returns a value of 1, so 

the summation of (pi - qi)2 equals to the number of different positions between two 

vectors which is exactly the Hamming distance.  

2. Kappa distance We found that developers of DAVID used the Kappa score as 

the distance to identify the functional groups of genes (Huang, et al. 2007b). Thus we 

examined this as well as our second choice of functional distance measure. 
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The Kappa statistic is originally used in medicine and clinical research to see the 

agreement between categorical measurements. The Kappa statistic compares the 

agreement against that which might be expected by chance. For example, 29 patients 

are examined by two independent doctors (see Table 4.2) where 'Yes' denotes a patient 

being diagnosed with disease X by a doctor, and 'No' otherwise. 

ܽ݌݌ܽܭ ൌ ݐ݊݁݉݁݁ݎ݃ܣ݀݁ݒݎ݁ݏܾܱ  െ 1ݐ݊݁݉݁݁ݎ݃ܣ݄݁ܿ݊ܽܥ െ ݐ݊݁݉݁݁ݎ݃ܣ ݄݁ܿ݊ܽܥ  

Table 4.2 An example of the Kappa statistic 

 Doctor A  
No Yes Total 

Doctor B No 10 7 17 
Yes 0 12 12 

Total 10 19 29 

Observed agreement = (10 + 12)/29 = 0.76  
Chance agreement = 0.586 * 0.345 + 0.655 * 0.414 = 0.474 

Kappa = (0.76 - 0.474)/(1 - 0.474) = 0.54 

For our research, the Kappa score is defined in the same way, for two genes A 

and B, their Kappa score of functional agreement is as follow (Table 4.3):  

Table 4.3 Kappa statistics for gene function agreement 

 Gene A  
0 1 R Total 

Gene B 0 C0,0 C0,1 C0,. 
1 C1,0 C1,1 C1,. 

C Total C.,0 C.,1 TA,B 

஺ܱ,஻ :ݐ݊݁݉݁݁ݎ݃ܣ݀݁ݒݎ݁ݏܾܱ  ൌ ଴,଴ܥ ൅ ଵ,ଵ஺ܶ,஻ܥ  
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஺,஻ܣ :ݐ݊݁݉݁݁ݎ݃ܣ݄݁ܿ݊ܽܥ ൌ ଴,.ܥ כ .,଴ܥ ൅ ଵ,.ܥ כ ଵ,.஺ܶ,஻ଶܥ  

ܽ݌݌ܽܭ ൌ  ஺ܱ,஻ െ ஺,஻1ܣ െ ஺,஻ܣ  

Since the Kappa score ranges in [-1, 1], and for two homogeneous genes, the 

Kappa score is 1, we chose (1-Kappa)/max(1-Kappa) as the function distance measure. 

 

4.4 Determination of Cluster Number 

Since our data set is large, we steered away from simulation-based cluster 

number determination method initially, and instead, focused on the computational 

inexpensive R2 and the largest average silhouette methods. 

“Complete linkage” R2 

In fact, it is possible that genes are related in some more complicated way rather 

than “clusters”. Hence, our clustering is probably more of a “dissection”, rather than 

“uncovering the reality”. Sarle (1996) illustrates a way to consider the R2. Larger R2 

means the clusters can present the true structure better. But for the usual R2, the 

hidden assumptions are:  

1) The mean in cluster is used as the “representative component”; 

 2) The error sum of squares is calculated in Euclidean form. 

For the given data set, we adopted the “complete linkage” Hierarchical clustering 

method, which defines the distance between clusters by the maximum of distances 

between any two components. This means both assumptions are not true in our case. 

So we coined our own “complete linkage” R2 as follow: 

ܴଶ ൌ 1 െ  ܶܵܵܧܵܵ
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ܵܵܶ ൌ ෍(ܺ െ തܺ)ଶ ֜ ܵܵܶ ൎ ݊ כ  ଶܦ

Because we use the “complete” linkage method, D here denotes the maximum 

distance within all N objects, and is used to approximate each x x− . 

௝ܧܵܵ ൌ ෍( ௜ܺ െ ூೕא௝)ଶ௜ܥ ֜ ௝ܧܵܵ ൎ ௝݊ כ  ௝ଶܦ

Here SSEj is for cluster j, where nj is the number of objects in cluster j, and Dj is 

the maximum distance within cluster j. Thus our “complete linkage” R2 is as follow:  

ܴଶ ൌ 1 െ ∑ ௝݊ כ ௝ଶ௝݊ܦ כ ଶܦ  

Obviously, the R2 will achieve maximum when each gene is a cluster. In practice 

we go though the output and set certain value as threshold to determine the cluster 

numbers, as will be shown later. 

The largest average silhouette (Kaufman and Rousseeuw 1990) is set as our 

second choice for cluster number determination. The definition of silhouette is as follow: 

Let ai denotes the average dissimilarity between i and all other observations 
within the same cluster; 
Let d(i, C) denotes the average dissimilarity of i to all objects of C, where C 
is any other cluster which i doesn’t belong to; 
Let bi denotes the smallest of these d(i, C); 
The silhouette of observation i is defined as: ݈݅ݏ௜ ൌ ܾ௜ െ ܽ௜݉ܽݔ (ܾ௜, ܽ௜) 

Which is the difference between the smallest average dissimilarity between 
clusters and the average dissimilarity within clusters.  

The overall average silhouette is defined simply as the average of all sili： 

݈݅ݏ  ൌ 1ܰ ෍ ௜ே݈݅ݏ
௜ୀଵ  
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In practice, we also need to set the threshold when we use this parameter. 

Intuition/human input is needed for both threshold settings.  

 

4.5 Heat Diagram 

We developed a method to visualize the biology interpretation for each cluster, 

which is similar to the GO analysis. The difference is that in GO analysis, it only can 

indicate a few high represented function groups in each cluster, but our self-design heat 

diagram will allow you to see the expression pattern of each function group in each 

cluster. In this new visual approach, we first calculate, in each cluster, the gene 

frequency for each function group, and then draw the heat diagram.  

This is illustrated in Figure 4.6 below. The vertical axis represents the 17 (Figure 

4.6, left) and 28 (Figure 4.6, right) clusters for the BAS and the PKJ cells respectively 

obtained through the single-objective clustering (complete linkage hierarchical clustering) 

based on the microarray gene expression data (and thus the correlation based distance 

D1) only. The horizontal axis 1-117 represents the 117 function groups.  The last column 

118 represents genes with no known function. The color bar on the right shows the 

gene percentage level with lighter color indicating higher percentage. Thus each “little 

window” in the graph reflects the percentage of gene in the corresponding cluster 

sharing a certain biological function or non-function group. The lighter a window is, the 

more genes in the corresponding cluster (indicated by vertical axis) share a common 

function (indicated by horizontal axis). More light colored windows in the heat diagram 

would indicate a high concentration of common function genes in the clusters, and thus 

more desirable according to our clustering objectives. However, as we can see, with 

almost no exception, each cluster from the single-objective clustering using the 

expression values only would feature genes from a diversified function groups – 

therefore dual-objective cluster analysis using either the compound clustering or the 

constrained clustering approach is necessary to produce clusters with concentrated 

gene functions by utilizing the gene function distance in the clustering process.   
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Figure 4.6 Customized cluster gene function Heat Diagram revealed that single-objective cluster 
analysis produced clusters with diversified gene functions for both the BAS (left) and the PKJ cells 

(right).  

 

4.6 Results and Comparisons 

The general procedure for compound clustering and constrained clustering is 

shown in Figure 4.7. In analyzing the neuron cell data from CSHL, we used correlation-

based distance as the gene expression distance D1, and tried two types of functional 

distance measure D2, the Hamming/Euclidean distance and the Kappa statistic based 

distance. We also examined two approaches, the “Complete linkage” R2 and largest 

average silhouette, to determine the parameters for compound clustering. However, it is 

difficult to determine parameters for constrained clustering using either the “Complete 

linkage” R2 and largest average silhouette, which we will discuss more in Chapter 8. In 

this section, we performed the compound clustering using the hierarchical clustering 

algorithm. We first show the result from our compound cluster analysis in one example 

and then compared with the traditional cluster analysis utilized only gene expression 

data as well as the effect of two different functional distance measures and two statistics 

for cluster number determination. 
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Figure 4.7 General procedure for compound clustering and constrained clustering 

 
4.6.1 Results of compound clustering 

Here we first give an example of the compound clustering. For compound 

clustering, we need to determine (λ, n) in order to get the optimal result, where λ is the 

compound clustering weight, and n is the total cluster number. In Figure 4.8, they are 

the graphical outputs for the BAS cell with the Euclidean distance as D2, and R2 as the 

cluster number determination parameter. 
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Figure 4.8 Compound clustering result for BAS cell with Euclidean distance and R2.  

Figure 4.8(a) is the 3 dimensional plot of R2 against (λ, k) which is used to decide 

the cluster number k and parameters λ. We can see that the R2 increase when λ goes 

up or k goes up. As we know, a large cluster number renders the result less useful and 

meaningful; however, a higher R2 is always preferred. So determining the cluster 

number k and parameter λ is actually to make the trade-off between R2 and cluster 

number. In order to find the best combination, we decide to set R2 ≥ 0.9, and search for 

the λ that will yield the smallest number of clusters. The result is λ=0.7 with a 

corresponding cluster number of 37. Figure 4.8(b) reveals the temporal gene expression 

pattern for these 37 clusters while Figure 4.8(c) demonstrates the cluster gene function 

patterns using our customized function heat diagram. We can see that the temporal 

patterns are distinct from cluster to cluster, and the gene function groups are 

concentrated within clusters. 

4.6.2 Comparison 

We performed compound cluster analysis on both BAS and PKJ cells with two 

functional distance and two statistics to determine cluster number and generated four 

a. b. 

c. 



47 
 

sets of results with different setting. For each set of results, (λ, k) are determined as the 

way we described above. 

We summarized the results for the four sets of compound cluster analysis in 

Table 4.4. We found that the R2 criterion yields consistent λ for both the BAS and the 

PKJ cells. It also features that with around 35 clusters, it yields high R2 values for both 

function distances. The largest average silhouette method, however, produces different 

λs for different cells, and furthermore, the criterion value is negative which is hard to 

explain. As we introduced before, Silhouette is defined as the difference between 

average dissimilarity between clusters and the average dissimilarity within cluster. 

Therefore, it should be positive because the dissimilarity within cluster should be 

smaller than the dissimilarity between clusters. The negative Silhouette in our case may 

because of the weighted overall distance we employed, which makes Silhouette is not 

feasible for our program. In terms of interpretability and stability, R2 criterion is superior 

for this data set than the largest average silhouette criterion for cluster number 

determination. 

Table 4.4 Summary of results from the compound cluster analysis  

Cluster 
Number 

Determination 
D2 Cell 

Type λ Cluster 
Number

Cluster Number 
Criterion 
Threshold 

R2 
Euclidean BAS 0.7 37 R2 > 0.90 PKJ 0.7 35 

Kappa BAS 0.8 30 R2 > 0.95 PKJ 0.8 34 

Silhouette 
Euclidean

BAS 0.4 33 
Silhouette > -0.3 

PKJ 0.7 35 

Kappa 
BAS 0.3 35 

Silhouette > -0.3 
PKJ 0.2 31 

 

We subsequently compared the ability of finding biological meaningful clusters 

between our compound clustering incorporating biological information to the original 

single-objective hierarchical clustering method. Both the Euclidean distance and the 

Kappa distance are used with R2 to determine the cluster number. Heat diagram is used 

to see which method could give more biological meaningful clusters with more light 
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colored windows. As discussed in Section 4.5, light colored window in heat diagram 

indicates the common functions shared by the genes in each cluster. Therefore, more 

light colored windows in heat diagram, more shared functions in the resulted clusters. 

Figure 4.9 (B1, P1) feature the Euclidean distance while Figure 4.9 (B2,P2) showcase 

the Kappa distance and Figure 4.9 (B3,P3) represent the original hierarchical clustering 

method. We found that with Euclidean distance as functional distance, the algorithm 

yields much better heat diagrams with more light colored windows. 

  

  

  
Figure 4.9 Heat diagram of clusters and gene function groups under different gene function distance 

measure as well as original hierarchical clustering when R2 is adopted as the cluster number 
determination parameter. B: results from BAS cell; P: results from PKJ cell. 1: Euclidean distance as 

B1. P1. 

B2. P2. 

B3. P3 
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functional distance; 2: Kappa distance as functional distance; 3: original hierarchical clustering with no 
functional distance. 

In summary, we performed compound clustering on microarray data to illustrate 

our method. We used two functional distance and two statistics to determine the 

appropriate parameter (λ, k) for compound clustering. From this application, we can 

conclude that Euclidean distance as functional distance with our newly proposed 

“Complete Linkage” R2 is the best combination for compound clustering to generate 

most biological meaningful cluster result. With the best combination, we find the 

meaningful clusters with enriched biological functions as shown below (Table 4.5). 

Table 4.5 Selected clusters with related biological functions in BAS cell using Euclidean distance and 
“Complete Linkage” R2 

Cluster # # of Genes Related Biological Function Groups 
2 69 Lipid Transport, Homeostasis 
3 85 Sphingoid Metabolic Process 
5 34 Calcium-mediated Signaling, 
10 36 Regulation of Cell Morphogenesis 
12 102 Peptide Binding 
14 23 Serine-type Enzyme 
18 31 Neuronal Structure Regulation 
19 90 Urogenital System development 
20 86 Multicellular Organism Growth, GTPase Binding 
21 54 Peroxidase activity 
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Part II. Weighted K-means Clustering 
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Chapter 5 

Weighted K-means Clustering 

5.1 Current Issues in K-means Clustering 

K-means clustering is the most popular partitional clustering method. The 

algorithm is straight forward and easy to implement. With time complexity of O(n), k-

means clustering is capable and favorable to run on high dimensional data structure. 

However, each method has its own limitations, so does the k-means clustering. It is well 

known that k-means clustering may end up with local optimal solution, depending on the 

starting values used. Determining the cluster number k in advance is also very difficult 

and no theoretical solution has been reported on this. At last, researchers have 

recognized that not all variables or features make the same contributions in clustering. 

So how to select and use those variables is another important issue in this field. 

5.1.1 Initialization and local optimal 

K-means clustering starts from a random generated set of k points as initial k 

cluster centers and then, ideally, iteratively relocate to k true cluster centers which 

minimize the with-in cluster sums of squares. However, it has long been known that the 

algorithm may not converge to the global minimum depending on the initial k points. 

In order to find the global optimum result, initialization is the key. Various 

methods have been published in the literature to deal with this problem. The first 

method was proposed by Astrahan  in 1970. He assigned a density to each point based 

on the k-nearest neighbor. Then the points, within a specified distance from the selected 

initial points, had very low probability to be chosen into the initial set. A similar method is 

currently implemented in the PROC FASTCLUS procedure in SAS (SAS 2004). Hajnal 

and Loosveldt (2000) argued that the initialization employed in SAS is better compared 
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to random initialization for k-means clustering. At the same time, many literature 

suggested using the cluster center obtained from another clustering algorithm, most 

likely hierarchical clustering as the initial cluster centers, instead of randomization 

(Milligan 1980; Punj and Stewart 1983; Arabie and Hubert 1994; Huberty, et al. 1997). 

However, the results from hierarchical clustering may not be the ideal case and it is 

cumbersome to perform additional k-means clustering on top of the hierarchical 

clustering. Bradley and Fayyad (1998), on the other hand, proposed a bootstrap 

algorithm to determine the initial points for k-means clustering. 

However, all the methods mentioned above required extra computation time, 

which compromise the time efficiency of k-means clustering. The most popular solution 

for initialization problem is to perform k-means clustering several time with different 

initial sets first (Makarenkov and Legendre 2001) and then select the best one. Steinley 

(2003) compared several initialization methods and confirmed the best one is to use 

multiple initial sets. Even with initialization issue, it has been shown that k-means 

clustering consistently performs reasonable well in recovering data structure 

(Dimitriadou, et al. 2002; Steinley 2003). In this thesis, we performed k-means 

clustering and weighted K-means clustering with multiple initial sets to achieve the best 

performance. 

5.1.2 What is the appropriate cluster number K 

K-means clustering requires determining the cluster number K before performing 

the algorithm. However, determining the appropriate cluster number is one of the most 

difficult problems in cluster analysis. We have introduced the majority of methods in 

determining cluster number in Section 3.4. Most of the methods introduced there are 

also widely used in k-means clustering. However, most the methods require to run k-

means clustering several times and select the best one among them, which needs 

additional computation time. It has just been proven in a recent paper that performing 

the k-means clustering with flexibility on K is NP-hard even in 2-dimensional space 

(Mahajan, et al. 2009). In this thesis, we only examine the performance of our proposed 

method with the correct cluster number. Determining cluster number K for k-means 

clustering is not the focus of this work. 
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5.1.3 How to use the variables 

After determining the cluster number K, data needs to be preprocessed before 

performing k-means algorithms. Common steps include variable standardization, 

selection, reduction and variable weighting. 

 Variable standardization is usually conducted before performing k-means cluster 

analysis. Milligan and Cooper (1988) investigated eight different standardization 

methods which is the most comprehensive review on variable standardization in 

clustering. Dillon, Mulani and Frederick (1989) showed standardized data could result in 

significant difference in cluster results compared to the data without standardization 

which illustrated the importance of variable standardization. Vesanto (2001) suggested 

that z-score, Equation 5.1, should be the first choice in variable standardization because 

of the easy interpretability. Steinley (2004) repeated Milligan and Cooper’s study 

focusing on k-means clustering and recommended standardization by range, equation 

5.2, instead of z-scores. 

ݖ െ :݁ݎ݋ܿݏ ௜௝ݖ ൌ ௜௝ݔ െ ௝ݏҧ.௝ݔ :݁݃݊ܽݎ ݕܾ ݊݋݅ݐܽݖ݅݀ݎܽ݀݊ܽݐݏ  (5.1)  ௜௝ݖ ൌ ௝൯.ݔ൫ݔ௜௝݉ܽݔ െ ݉݅݊൫ݔ.௝൯ 

 
(5.2)  

Variable selection is another important step before performing cluster analysis, 

because of the well known facts that all variables are not equally important, and 

furthermore, some are highly correlated and thereby redundancy results when selected 

collectively. Compared to supervised learning, automated variable selection in 

unsupervised learning is much more difficult and challenging due to lack of class 

information. Friedman and Rubin (1967) first discussed the influence of variable 

selection in clustering by assigning a binary 0 or 1 variable weights. Fowlkes and 

colleagues (1988) discussed three subset selection methods: forward selection, 

backward selection and stepwise selection, just as the subset selection methods in 

linear regression, to find the best subset in hierarchical clustering and note that these 

methods can be extended to K-means clustering. Carmone and co-workers (1999) 

proposed a variable selection technique called HINoV based on the adjusted Rand 
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index (Hubert and Arabie 1985), which is used for cluster validation and cluster number 

determination. Then Brusco and Cradit (2001) presented several limitations with HINoV 

and developed a better variable selection method for K-means clustering named VS-KM. 

A recent summary and comparison of different variable selection methods in k-means 

clustering can be found in Steinley and Bruce (2008). 

Variable reduction is used when dealing with high dimensional data with 

correlated variables. Common data reduction techniques are combined with k-means 

clustering. Principal component analysis (PCA) was the first (Barker 1976) and most 

popular one used in k-means clustering. In this method, PCA is performed first on the 

data, and then the principal components with a corresponding eigenvalue greater than 

one will be used to perform k-means clustering. This technique is frequently used in 

high dimensional data analysis (De Backer and Scheunders 1999; Ben-Hur, et al. 2002). 

But some researchers criticized that the first few components may not guarantee a 

subspace that provides enough information about the true structure in the data (Arabie 

and Hubert 1994; De Soete and Carroll 1994). Instead, De Soete and Carroll (1994) 

proposed a method to minimize the sums of squares between the full dimensional data 

and the low-dimensional cluster centers defined by multidimensional scaling (MDS). 

Some other methods have been developed using MDS (Van Buuren and Heiser 

1989; Heiser and Groenen 1997; Vichi and Kiers 2001). However, a recent comparison 

between k-mean clustering and PCA has theoretically proved that “Cluster centroid 

subspace is spanned by the first k-1 principal directions” (Ding and He 2004). 

In addition, variable weighting, which can be thought as a generalization of 

variable selection, is also a very interesting topic and becomes popular recently. We will 

discuss weighted cluster analysis in next section. 

 

5.2 Existing Weighted K-means Methods 

Weighted Cluster analysis is an extension of the classical clustering analysis in 

which a set of nonnegative weights are assigned to all the variables and then cluster 
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analysis is performed on the set of weighted variables. Variable weighting, which 

increases or decreases the influence of variables by different weighting scheme, can be 

thought as a generalization of variable selection, in which the weights are restricted to 

either 1 or 0 (Wettschereck, et al. 1997). Steinley and Brusco (2008) recently proposed 

a variance-based index which can be applied on both variable weighting and variable 

selection. It has been shown that in real application, by selecting appropriate variable 

weights, k-means clustering performs better and achieves a more meaningful and 

interpretable results (Tseng 2007; Shen, et al. 2010). 

The key step in weighted k-means clustering is to estimate the optimal variable 

weights, on which the weighted clustering will be performed. There are already some 

studies conducted in variable weighting for clustering analysis. In estimating variable 

weights, we usually restrict that all the weights sum up to m, however, in few literature, 

the weights are restricted with a sum of 1. Variables with zero weight are actually 

excluded from the subsequent analysis. Then variables with a weight above 1 (or 1/m, if 

with restricted sum of 1) are considered more informative about the underlying data 

structure, while variables with a weight less than 1 or 1/m are considered less 

informative. There are already some studies conducted in variable weighting for 

clustering analysis. Friedman and Rubin (1967) first introduced the concept of variable 

weighting in the discussion about variable selection with variable weights of 0 and 1. 

Generally, weighted Euclidean distance in k-means clustering is defined as in 5.3. 

However, variable weights were defined differently in the past Literature, which can be 

roughly summarized into three categories. 

݀௜௞ଶ (ݓ) ൌ ෍ ௜௝ݔ)௝ଶݓ െ ௞௝)ଶ௠ݔ
௝ୀଵ  (5.3) 

 

Feature-based weighting 

In feature-based weighting, researchers focused on balancing the influences of 

multiple groups of features by assigning weights on each group of variables. Desarbo 

and colleagues (1984) proposed SYNCLUS model with a two-level weighting scheme 

on each group of variables as well as each variable individually. Then a two-step 
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iteration algorithm was employed to estimate variable weighting on both variable level 

and group level. Modha and Spangler in 2003 improved Desarbo’s method by 

considering the weights only on variable level and minimizing the ratio of with-in cluster 

sum-square over between-cluster distortion.  

Distance-based weighting 

In distance-based weighting, variable weighting were used to make sure the 

weighted distance, defined in 5.3 is geometrically well-defined. De Soete (1986) 

introduced the method for optimal variable weighting by minimizing the following 

objective functions so that the weighted distance satisfies the ultrametric inequality (5.4) 

and additive-tree inequality (5.5).  

(ݓ)௎ܮ ൌ ∑ (݀௜௞ െ ௝݀௞)ଶఆೆ ∑ ݀௜௝ଶ௜ழ௝ , ௎ߗ ൌ ൛(݅, ݆, ݇)|݀௜௝ ൑ ݉݅݊ (݀௜௞, ௝݀௞)ൟ 

 
(5.4) 

(ݓ)஺ܮ ൌ ∑ ൫݀௜௞ ൅ ௝݀௟െ݀௜௟ െ ௝݀௞൯ଶఆಲ ∑ ݀௜௝ଶ௜ழ௝ ,  

஺ߗ ൌ ቊ(݅, ݆, ݇, ݈)|݀௜௝ ൅ ݀௞௟ ൑ min (݀௜௞ ൅ ௝݀௟, ݀௜௟൅ ௝݀௞) ቋ 

 

(5.5) 

Then Makarenkov and Legendre (2001) extended De Soete’s idea to estimate 

variable weights in k-means clustering by minimizing the following weighted sums of 

squared Euclidean distance in 5.6 along with 5.4 and 5.5 using Polak-Ribière 

optimization methods. 

(ݓ)௉ܮ ൌ ෍ ቎ ෍ ݀௜௝ଶ௡ೖ
௜,௝ୀଵ ቏௞

௞ୀଵ /݊௞ 

 

(5.6) 

Objective-based weighting 

It has been reported (Gnanadesikan, et al. 1995) that both SYNCLUS and De 

Soete’s weighting method performed poorly in real data because the way the variable 

weights were defined may not directly guarantee an optimal clustering performance. 

Recently, objective-based weighting method, which estimates the optimal variable 

weights by minimizing the weighted objective function in k-means clustering: 



57 
 

෍ ෍ ෍ ݂൫ݓ௝൯ כ ௜௝ݖ) െ ܿ௚௝)ଶ௠
௝ୀଵ௜אூ೒

௞
௚ୀଵ  

 

(5.7) 

Huang’s group (2005) proposed a three-step iteration method for optimal variable 

weight by minimizing function 5.8 with extra scale parameter u weighting parameter β. 

This method results in balanced cluster size and high efficiency on large data sets but 

lower interpretability on the variable weighting. Several variants have been proposed 

(Tseng 2007; Tsai and Chiu 2008; Shen, et al. 2010). 

෍ ෍ ෍ ௜௝ݖ)௝ఉݓ௜,௚ݑ െ ܿ௚௝)ଶ௠
௝ୀଵ௜אூ೒

௞
௚ୀଵ  

 

(5.8) 

However, one big drawback of all the studies mentioned above is instability on 

variable weighting. The resulted optimal variable weighting is very sensitive with the 

data. Most recently, Huh and Lim (2009) claimed the instability problem was solved with 

a new objective function to minimize the weighted sums of squares with an extra 

penalty term as follow: 

෍ ෍ ෍ ௜௝ݖ)௝ݓ െ ܿ௚௝)ଶ݊ െ 1௠
௝ୀଵ௜אூ೒

௞
௚ୀଵ ൅ ߙ ෍ ௝ݓ) െ 1)ଶ݉ െ 1௠

௝ୀଵ  

 

(5.9) 

They used process optimization in response surface methodology to estimate the 

optimal variable weighting and resulted in stable variable weighting by adjusting the 

penalty parameter α. However, their method performed poorly with large data set. More 

important, Nelder-Mead optimization algorithm (Nelder and Mead 1965) they employed 

cost a lot on running time with increasing dimensionality of data and is not global 

optimal guaranteed. 

In this thesis work, we theoretically derive the optimal variable weights based on 

5.9 and propose a new algorithm to solve it. The theoretical part is illustrated in chapter 

6 while the numerical examples and comparisons are presented in Chapter 7. 
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Chapter 6 

Proposed Method and Algorithm 

As we discussed in Chapter 5, variable weighting in k-means clustering, as a 

generalization of variable selection, has shown good promise and garnered increased 

attention in recent years. Recently, Huh and Lim (2009) proposed a penalized objective 

function that has achieved stable variable weights when applied to low dimensional data. 

However, their method performs poorly for high-dimensional data as shown in their 

paper. Furthermore, the optimization algorithm they utilized may result in local rather 

than global optimality. In this thesis work, we use the same penalized objective function 

Huh and Lim has proposed. However, instead of relying on numerical optimization 

directly, we first derive the theoretical solution for global optimal variable weights and 

then implement a companion numerical algorithm to compute the desired weights. Our 

approach is shown to generate more stable variable weights for high dimensional data – 

and thereby achieve better clustering accuracy. 

 

6.1 Close-form Solution for Variable Weights 

The objective function 5.9 can be written as a function of weights (ݓଵ, ,ଶݓ … ,  :(௠ݓ

෍ ௝ݓ ෍ ෍ ௜௝ݖ) െ ܿ௚௝)ଶ݊ െ 1௠
௝ୀଵ௜אூ೒

௞
௚ୀଵ ൅ ߙ ෍ ௝ݓ) െ 1)ଶ݉ െ 1௠

௝ୀଵ  

 

(6.1)
The coefficient of weight w୨  in the first term is “Within-cluster mean squares on jth 

variable”(jWCMS). Assuming the true cluster centers ܥ௚, ݃ ൌ 1,2, … , ݇ are known, we 

can denote jWCMS as ߚ௝. Without losing generality, we can assume ߚଵ ൑ ଶߚ ൑ ڮ ൑  .௠ߚ
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Then when α is given, the optimal variable weighting is the solution of minimizing the 

following quadratic function with inequality constraints: 

;ݓ)݂  :݁ݖ݅݉݅݊݅ܯ (ߙ ൌ ෍ ௝௞ݓ௝ߚ
௚ୀଵ ൅ ߙ ෍ ൫ݓ௝ െ 1൯ଶ݉ െ 1௠

௝ୀଵ  

෍  :݋ݐ ݐ݆ܾܿ݁ݑܵ                                           ௝௞ݓ
௚ୀଵ ൌ ݉;  

௝ݓ                                                                  ൐ 0, ݆ ൌ 1,2, … , ݉. 
 

(6.2) 

Harold W. Kuhn, Albert W. Tucker and William Karush generalized the method of 

Lagrange multipliers to solve nonlinear programming with inequality constraints (Karush 

1939; Kuhn and Tucker 1951). In their approach, the optimal solution of a nonlinear 

programming problem must satisfy a set of conditions, which are called Karush-Kuhn-

Tucher (KKT) conditions. Here we solve above minimization problem using KKT 

conditions and subsequently find the optimal weighting. 

First of all, the Lagrange function of (6.2) is as follow: 

,ݓ)ܮ ,ߣ ;ߤ (ߙ ൌ ෍ ௝௞ݓ௝ߚ
௚ୀଵ ൅ ߙ ෍ ൫ݓ௝ െ 1൯ଶ݉ െ 1௠

௝ୀଵ ൅ ߣ ቌ෍ ௝௞ݓ
௚ୀଵ െ ݉ቍ ൅ ෍ ௝௞ݓ௝ߤ

௚ୀଵ  (6.3) 

 

Then according to KKT conditions, the optimal weights (ݓଵ, ,ଶݓ … ,  ௠) must satisfy theݓ

following: ߲ݓ߲ܮ௝ ൌ ௝ߚ ൅ ݉ߙ2 െ 1 ൫ݓ௝ െ 1൯ ൅ ߣ ൅ ௝ߤ ൌ 0, ݆ ൌ 1,2, … , ݉ (6.4) 

෍ ௝௞ݓ
௚ୀଵ െ ݉ ൌ ௝ݓ௝ߤ (6.5) 0 ൌ 0, ݆ ൌ 1,2, … , ݉ ௝ݓ (6.6) ൐ 0, ݆ ൌ 1,2, … , ݉ (6.7) 

 

Solving the above equation system, we can find the optimal variable weighting. 
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Before solving for the optimal variable weighting, we first prove the following 

proposition. ࢔࢕࢏࢚࢏࢙࢕࢖࢕࢘ࡼ ૟. ૚   ܹ݄݁݊ ݄݉݅݊݅݉݀݁ܿܽ݁ݎ ݏ݅ ݊݋݅ݐܿ݊ݑ݂ ݃݊݅ݓ݋݈݈݋݂ ݄݁ݐ ݂݋ ݉ݑ, ௜ݓ ൐ ௜ߚ ݂݅ ݕ݈݊݋ ݀݊ܽ ݂݅ ௝ݓ ൏ ௜ݓ  ׌ ݁݉ݑݏݏܣ :ࢌ࢕࢕࢘ࡼ   .௝ߚ ൏ ௜ߚ  ݀݊ܽ ௝ݓ ൏ ,௝ߚ ;ݓ)݂ ݄݊݁ݓ ௜ݓ௜ߚ  ݄݊݁ܶ  ;݉ݑ݉݅݊݅݉ ݏ݅(ߙ ൅ ௝ݓ௝ߚ െ ௝ݓ௜ߚ െ ௜ݓ௝ߚ ൌ ൫ߚ௜ െ ௜ݓ ௝൯൫ߚ െ ௝൯ݓ ൐ 0 ฻ ௜ݓ௜ߚ ൅ ௝ݓ௝ߚ ൐ ௝ݓ௜ߚ ൅ ;ݓ)݂ ,௜;  Thereforeݓ௝ߚ ,௜ݓcan be further minimized by switching ൫(ߙ ;ݓ)݂݂݋ ݉ݑ݉݅݊݅݉  ݄ݐ݅ݓ ݀݁ݐܿ݅݀ܽݎݐ݊݋ܿ ݏ݅ ݄݄ܿ݅ݓ  ,௝൯ݓ  (ߙ

 

Now we start to solve the equation system. From (6.6), for each j, either ߤ௝ or ݓ௝ 

must be zero. Assuming there are only t variables have nonzero weights, based on (6.7) 

and Proposition 1, we have: ݓଵ ൒ ଶݓ ൒ ڮ ൒ ௧ݓ ൐ 0 ൌ ௧ାଵݓ ൌ ڮ ൌ ௠ݓ ଵߤ (6.8) ൌ ଶߤ ൌ ڮ ൌ ௧ߤ ൌ 0 (6.9) 
 

Then substitute those zeros into equation 6.4 and 6.5, we can get the solution 

with t nonzero weights: 

ቐw(j; α, t) ൌ mt ൅ ൫ߚ௧ െ ௝൯(mߚ െ 1)2α j ൑ tw(j; α, t) ൌ 0 j ൐  ݐ

 

(6.10)

where, ߚ௧ ൌ ∑ ఉ೔೟೔సభ௧ , λ(α, t) ൌ െߚ௧. 

In order to find the optimal variable weights, we then need to decide t, number of 

nonzero variable weights. Assuming t* is the true value of t, from equation 6.8,  ݓ௧כ ൐ 0 (6.11)
 
In the other hand, if we mis-specify t= t*+1, equation 6.8 will be violated, which yields: ݓ௧כାଵ ൑ 0 (6.12)
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Then from equation 6.11, we get: 

w୲ ൌ  mt ൅ ൫ߚ௧ െ ௝൯(mߚ െ 1)2α ൐ 0 ฺ α ൐ t ቀߚ௝ െ ௧ቁߚ (m െ 1)2m  

 

(6.13)

Then denote g(t) ൌ t ቀߚ௝ െ ௧ቁߚ (m െ 1)2m  

All possible t for a given α is a set which satisfies: ܶ(ߙ) ൌ ሼ(ݐ)݃|ݐ ൏ ߙ ൑ ݐ)݃ ൅ 1)ሽ
 

(6.14)

The optimal t is: ݐ௢௣௧ ൌ (ఈ)்א௧݊݅݉݃ݎܽ ;ݓ)݂ (ߙ
 

(6.15)

Therefore, replacing t by topt in solution 6.10, we finally get the optimal variable 

weighting: 

൞ݓ(݆; (ߙ ൌ ௢௣௧ݐ݉ ൅ ቀߚ௧೚೛೟ െ ௝ቁߚ (݉ െ ߙ2(1 ݆ ൑ ;݆)ݓ௢௣௧ݐ (ߙ ൌ 0 ݆ ൐  ௢௣௧ݐ

 

(6.16)

 

6.2 Iteration Algorithm 

In 6.1, we derived the close-form solution for variable weighting in k-means 

clustering when β (within-cluster mean squares on each variable) is known for all 

variables. In reality, however, there is no way to know the actual βs unless you know the 

clustering partition. To solve this, we propose an EM-like two-step algorithm to estimate 

βs and α iteratively and therefore find the optimal variable weighting. In step 1, we 

update the variable weighting using βs and α; then in step 2, we calculate new βs by 

performing weighted k-means clustering on weighted variables and subsequently select 

α. These two steps are repeated until βs converge. 
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6.3 Initial β Estimation 

After simple derivations in 6.17, we can easily show the following linear 

relationship between the overall within cluster sums of squares on weighted variables ܼכ 
and the within cluster mean squares on each original variable, βs. 

෍ ௝௞ݓ௝ߚ
௚ୀଵ ൌ ෍ ෍ ෍ ௜௝ݖ)௝ݓ െ ܿ௚௝)ଶ݊ െ 1௠

௝ୀଵ௜אூ೒
௞

௚ୀଵ ൌ 1݊ െ 1 ෍ ෍ ෍(ݖ௜௝ඥݓ௝ െ ܿ௚௝ඥݓ௝)ଶ௠
௝ୀଵ௜אூ೒

௞
௚ୀଵൌ  1݊ െ 1 ෍ ෍ ෍(ݖ௜௝כ െ ܿ௚௝כ )ଶ௠

௝ୀଵ௜אூ೒
௞

௚ୀଵ  

 

(6.17)

Given the constraint that all the variable weights ݓ௝ sum up to m, we formulate 

the following canonical mixture linear model with βs as coefficients and y is the within 

cluster mean squares on weighted variable ܼכ. 
ݕ ൌ ෍ ௝௞ݓ௝ߚ

௚ୀଵ ൅  ߝ

 

(6.18)

Iteration Algorithm 

       Input Initial β estimation, penalty parameter α and 
standardized data matrix Z 

Repeat 
3. calculate optimal variable weight vector (ݓଵ, ,ଶݓ … ,  (௠ݓ

using 6.16 with penalty parameter α and βs; 
4. Run k-means on weighted variable ܼכ ൌ ܼ כ  ܦ where ,ܦ

is a diagonal matrix with (ܦ)݃ܽ݅ܦ ൌ ,ଵݓ√) ,ଶݓ√ … , ඥݓ௠) 
and calculate within-cluster mean squares on each 
variable as βs and updated penalty parameter α; 

Until βs converge 
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To estimate initial βs, we apply a {m, 2} simplex lattice design with center point to 

generate initial variable weighting and estimate βs afterward. Generally, a {m, p} 

simplex lattice design generates a set of m-dimensional points (ݔଵ, ,ଶݔ … ,  ௠) such thatݔ

each component can take the p+1 equally spaced values from 0 to 1, that is, ݔ௜ ൌ0, 1 ⁄݌ , 2 ⁄݌ , … ,1; ݅ ݎ݋݂ ൌ 1,2, … , ݉  and the sum of all the component equal to 1. 

Graphically, it consists of all m vertices and p equal-division-points on ቀ 2݉ ቁ edges of m-1 

dimensional simplex. For example, a {3, 2}simplex lattice design (Cornell 2002) with 

center point consists of the following 6 points (Fig 6.1), which are also 3 vertices, 

midpoints of 3 edges of 2-simplex (the equilateral triangle) and the center. ሼ1,0,0ሽ, ሼ0,1,0ሽ, ሼ1,0,0ሽ, ሼ0, 1 2⁄ , 1 2⁄ ሽ, ሼ1 2⁄ , 0, 1 2⁄ , ሽ, ሼ1 2⁄ , 1 2⁄ , 0ሽ, ሼ0,0,0ሽ  

 

Figure 6.1 {3, 2} simplex lattice design with center point 

So back to our problem, we generate a {m, 2} simplex lattice design as a set of 

vector ܲ ൌ ,ଵ݌) ,ଶ݌ … ,  ௠). Then for each design point P, we run the k-means clustering݌

on weighted variable with weighting ܹ ൌ ݉ כ ܲ and calculate the overall within cluster 

sum of squares and then the response variable y in model 6.18. After this, we fit the 

linear model and calculate the least square estimator as initial βs. 
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6.4 Selection of the Penalty Parameter α 

In optimal solution 6.16, the optimal variable weighting is a function of α. 

Nonnegative parameter α here is the penalty for heterogeneity in variable weighting, 

which is also a tuning parameter to stabilize the optimal weights (Huh and Lim 2009). 

Considering the extreme case of α=0, the objective function (6.2) is minimized when the 

variable with smallest β has weighting m and all other variables has zero weight, that is, ݓଵ ൌ ݉, ଶݓ ൌ ڮ ൌ ௠ݓ ൌ 0. Then by gradually increasing α, the penalty for heterogeneity 

increases as well and all variable weights move towards 1. Therefore, choosing an 

appropriate value for α is critical.  

Huh and Lim proposed a two-step split sample method to select α in order to 

have stable variable weighting. In their method, a range was determined for α in the first 

step so that all variables have stabilized weights within that desired range; then the 

whole sample is split into two to check the stability. However, determining a desirable 

range is very subjective with personal bias and could be very hard when there are lots 

of variables, as shown in their paper. Also, splitting sample could be very tricky in terms 

of remaining the similar structure in each split sample. If one sample mainly contains 

two clusters and another sample contains subjects from remaining clusters, it doesn’t 

make sense to expect that both samples yield similar variable weightings. Furthermore, 

their method mainly focuses on the stability of weighting while may losing the optimality. 

Here we propose a method of determining α, based on variable selection, in 

order to generate optimal clustering result. Recall in the derivation (6.15) and (6.16), α 

determines not only the variable weighting but also the number of nonzero variable 

weights t. However, α doesn’t determine clustering assignment. Instead, the number of 

nonzero variable weights t, which is decided by α, determines clustering assignment 

directly. That is, if we just change α within the range (݃(ݐ), ݐ)݃ ൅ 1)ሿ without changing t, 

only optimal weighting is changed but not clustering assignment. We prove this as the 

following proposition. 
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.૟ ࢔࢕࢏࢚࢏࢙࢕࢖࢕࢘ࡼ ૛   ݖ଴ ൌ ൛ݖ଴௝ൟ א ,௚బܥ ߙ ݈݈ܽ ݎ݋݂ א ,(ݐ)݃) ݐ)݃ ൅ 1)ሿ, כߙ׌ ݂݅ א ,(ݐ)݃) ݐ)݃ ൅ 1)ሿ, ଴ݖ ݐ݄ܽݐ ݋ݏ ൌ ൛ݖ଴௝ൟא  . ௚బܥ
Proof: First, we define the weighted squared-distance between object ݖ଴ and cluster 

center ܥ௚଴ as follow: 

,଴ݖ)ఈܦ ݃଴) ൌ ෍(ݖ଴௝ටݓ௝(ߙ) െ ܿ௚బ௝ටݓ௝(ߙ))ଶ௠
௝ୀଵ  (6.19)

 

Then define function F as the difference between two weighted squared-distances: ܨఈ(ݖ଴, ݃଴, ݃௜) ൌ ,଴ݖ)ఈܦ ݃଴) െ ,଴ݖ)ఈܦ ݃௜) (6.20)
 

 

Figure 6.2 Illustration of k-means clustering 

As shown in Figure 6.2, in k-means clustering, one object is always assigned to 

the nearest cluster with smallest distance to the cluster center. That is, ݖ଴ ൌ ൛ݖ଴௝ൟ א ௚బܥ ,଴ݖ)ఈܦ ֞ ݃଴) ൏ ,଴ݖ)ఈܦ ݃௜)݂ݎ݋ ݅׊ ് 0 ֞ ,଴ݖ)ఈܨ ݃଴, ݃௜) ൏ 0 (6.21)
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Therefore, Proposition 6.2 is mathematically equivalent to the following statement: ܨ௭బ,௚బ,௚೔(ߙ) ൏ 0 ݎ݋݂ ݈݈ܽ ߙ א ,(ݐ)݃) ݐ)݃ ൅ 1)ሿ,݂݅ כߙ׌ א ,(ݐ)݃) ݐ)݃ ൅ 1)ሿ, .ݏ .ݐ (כߙ)௭బ,௚బ,௚೔ܨ ൏ 0 . (6.22)

Thus, we can prove this one instead. First, we can show ܨ௭బ,௚బ,௚೔(ߙ) is actually a 

Hyperbolic function of α with location parameter H1 and scale parameter H2. ܨ௭బ,௚బ,௚೔(ߙ) ൌ ,଴ݖ)ఈܦ ݃଴) െ ,଴ݖ)ఈܦ ݃௜) 

ൌ ෍ ൜൬ܿ௚೔௝ටݓ௝(ߙ) െ ܿ௚బ௝ටݓ௝(ߙ)൰ ൬2ݖ଴௝ටݓ௝(ߙ) െ ܿ௚బ௝ටݓ௝(ߙ) െ ܿ௚೔௝ටݓ௝(ߙ)൰ൠ௠
௝ୀଵ  

ൌ ෍൛ݓ௝(ߙ)൫ܿ௚೔௝ െ ܿ௚బ௝൯൫2ݖ଴௝ െ ܿ௚బ௝ െ ܿ௚೔௝൯ൟ௠
௝ୀଵ  

ൌ ෍ ቎ ௢௣௧ݐ݉ ൅ ቀߚ௧೚೛೟ െ ௝ቁߚ (݉ െ ߙ2(1 ቏ ൛൫ܿ௚೔௝ െ ܿ௚బ௝൯൫2ݖ଴௝ െ ܿ௚బ௝ െ ܿ௚೔௝൯ൟ௧೚೛೟
௝ୀଵ  

ൌ ଵܪ ൅ ߙଶܪ  

where, 

ଵܪ ൌൌ ௢௣௧ݐ݉ ෍൛൫ܿ௚೔௝ െ ܿ௚బ௝൯൫2ݖ଴௝ െ ܿ௚బ௝ െ ܿ௚೔௝൯ൟ௧೚೛೟
௝ୀଵ ; 

ଶܪ ൌൌ ݉ െ 12 ෍ ቄቀߚ௧೚೛೟ െ ௝ቁߚ ൫ܿ௚೔௝ െ ܿ௚బ௝൯൫2ݖ଴௝ െ ܿ௚బ௝ െ ܿ௚೔௝൯ቅ௧೚೛೟
௝ୀଵ ; 

Figure 6.3 shows two standard hyperbolic functions with ܪଵ ൌ 0 and ܪଶ ൌ േ1. 

Hyperbolic function is always monotonic in each branch. We will utilize this monotonic 

feature to prove 6.22. 
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Figure 6.3 Hyperbolic function with H1=0, H2=1 (black) and H1=0, H2=-1 (red) 

We assume the uniqueness of cluster assignment.  The proof contains two part 

with positive and negative scale parameter H2 

1. When ܪଶ ൐ 0, according to monotonic feature of hyperbolic function, ܨ௭బ,௚బ,௚೔(ߙ) is 

strictly decreasing when α >0. To prove 6.22, we only need to show that: ܨ௭బ,௚బ,௚೔൫ߙ௠௜௡ ൌ ൯(ݐ)݃ ൏ כߙ׌ ݂݅  0 א ,(ݐ)݃) ݐ)݃ ൅ 1)ሿ, .ݏ .ݐ (כߙ)௭బ,௚బ,௚೔ܨ ൏ 0 . 
 

Proof by contradiction: Assuming ׌ i ് 0, ௠௜௡ߙ௭బ,௚బ,௚೔൫ܨ ൌ ൯(ݐ)݃ ൐ 0, but  ܨ௭బ,௚బ,௚೔(כߙ) ൏ 0.That means ݖ଴ ൌ ൛ݖ଴௝ൟ ב ௠௜௡ߙ ௚బwhenܥ ൌ  So there must be .(ݐ)݃

another cluster partition Cᇱ ് C existing so that ܨ௭బ,௚బᇲ ,௚೔ᇲ൫ߙ௠௜௡ ൌ ൯(ݐ)݃ ൏ ݅׊ ݎ݋݂ 0 ് 0. 
Then because כߙ ൐ ௠௜௡ߙ ൌ ,(ݐ)݃ ௭బ,௚బᇲܨ ,௚೔ᇲ(כߙ) ൏ ݅׊ ݎ݋݂ 0 ് 0. On the other hand, we 

already know ܨ௭బ,௚బ,௚೔(כߙ) ൏ 0 as well, that means  ݖ଴ א ௚బᇲܥ  and also ݖ଴ א  ௚బat theܥ

same time, which contradicts with the uniqueness assumption. 
2. When ܪଶ ൏  is strictly increasing when α >0. Similarly, we can prove 6.22 is (ߙ)௭బ,௚బ,௚೔ܨ ,0

true by showing: ܨ௭బ,௚బ,௚೔൫ߙ௠௔௫ ൌ ݐ)݃ ൅ 1)൯ ൏ כߙ׌ ݂݅  0 א ,(ݐ)݃) ݐ)݃ ൅ 1)ሿ, .ݏ .ݐ (כߙ)௭బ,௚బ,௚೔ܨ ൏ 0 . 
Now we proved the Proposition 6.2, which implies that, in terms of finding the 

best cluster assignment, the selection of α is equivalent to determination of optimal 

number of nonzero variable weights t. since t only have limited possible choices from 1 
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to m while α could be any positive real number, it is much more efficient to select t in a 

finite space instead of selecting α in infinite space. 

Determining t is similar to the concept of feature selection, but not exactly the 

same. In feature selection, the aim is to reduce the dimensionality and remove 

redundant information while here we are only interested in detecting noisy variables 

which provide little information. Information redundancy is not an issue in our case. For 

example, if two variables are highly correlated, only one is selected in feature selection 

to lower the dimension, but we assign nonzero weights for both variables in weighted k-

means clustering. Therefore, feature selection techniques are not a good choice to 

determine t. Thus we proposed an efficient measurement called “Reduced Variation” 

(RV) to determine the number of nonzero variable weights t. RV of ith variable is defined 

as follow: 

ܴ ௜ܸ ൌ 1 െ ∑௜ߚ (1 െ ௜)௠௜ୀଵߚ ; ෍ ܴ ௜ܸ௠
௜ୀଵ ൌ 1 

 

(6.23)

 

Figure 6.4 An example of Reduced Variation (RV) (left) and cumulative RV (right) 

Here βi is the same as defined before. Since the data is standardized to have unit 

variance, 1 െ  ௜ is actually the reduced variation on ith variable due to clustering. Asߚ

shown in Figure 6.4, if a variable is different in different groups, then variation should be 

reduced a lot by clustering and RV is relatively large; in the other hand, if a variable 
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remains the same level in all groups, then variation cannot be further reduced by 

clustering and RV is very small and close to zero.  

However, RV is a relative measurement which depends on a lot of things, such 

as number of variables, number of clusters and signal to noisy ratio in the data. 

However, there is no unique perfect criterion to determine if RV is large enough. In such 

variable selection problem, there is always an argument about the balance between 

removing noise and losing information. From our experience on various datasets, the 

threshold of 1 െ 1 ݉⁄  on cumulative RVs always have stable performances in terms of 

removing the noisy variables without losing too much information. That is, we will select 

t such that the cumulative RV on first t variables is large than 1 െ 1 ݉⁄ . Then after 

determining t, we know that all α א ,(ݐ)݃) ݐ)݃ ൅ 1)ሿ  are suitable and, according to 

proposition 6.2, they will give the same clustering partition which is the best one. So in 

practice, we will just choose the mean α (6.24). 

௦௘௟௘௖௧௘ௗݐ ൌ ݉݅݊ ൝ݐอ ෍ ܴ ௜ܸ௧
௜ୀଵ ൐ ݉ െ 1݉ ൡ ; 
௦௘௟௘௖௧௘ௗߙ  ൌ (௦௘௟௘௖௧௘ௗݐ)݃ ൅ ௦௘௟௘௖௧௘ௗݐ)݃ ൅ 1)2  

(6.24)
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Chapter 7 

Results and Comparisons 

In this chapter, we will apply our method in two simulated datasets and two real 

datasets from UCI Machine Learning Repository (Frank and Asuncion 2010) to illustrate 

the performance of our method. Due to the purpose of comparison, the simulated data 1 

and the first real dataset we used are the same datasets Huh and Lim used in their 

paper. To better illustrate the method, we add one more simulated data and one more 

real data with higher dimensionality. In section 7.1, four data sets are introduced. Then 

our method is demonstrated on one data set in detail in section 7.2. Section 7.3 

dedicates to the comparison with the original method proposed by Hub and Lim (2009). 

 

7.1 Data Description 

Simulated data 1 (Figure 7.1A): this data consists of five 3-dimensional 

Gaussian groups with 100 observations in each group. Three variables include two 

informative variables and one noisy variable. Five group means are (5,0,0), (-5,0,0), 

(0,5,0), (0,-5,0), (0,0,0) with variable-wise standard deviation followed independent 

normal distribution N(0,1). 

Iris data: this is a well-known dataset in pattern recognition literature. The 

dataset, created by Fisher R.A. in 1936, contains 150 instances of three types of iris, 50 

instances each. For each instance, sepal length, sepal width, petal length and petal 

width were measured in cm as 4 variables. 

Simulated data 2 (Figure 7.1B): This data consists of seven 8-dimensional 

Gaussian groups with 100 observations in each group. Three informative variables and 
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5 noisy variables are generated. Seven group centers are listed in Table 7.1. Then for 

each variable, white noise was added which follows standard normal distribution N(0,1). 

Table 7.1 Centers of seven groups in simulated data 2 

Group 1: (-10, 0, 0, 0, 1, 1, 0, 0) Group 2: (10, 0, 0, 0, 1, 1, 0, 0) 

Group 3: (0, -10, 0, 0, 1, 1, 0, 0) Group 4: (0, 10, 0, 0, 1, 1, 0, 0) 

Group 5: (0, 0, -10, 0, 1, 1, 0, 0) Group 6: (0, 0, 10, 0, 1, 1, 0, 0) 

Group 7: (0, 0, 0, 0, 1, 1, 0, 0)  

 

Breast tissue data: This data was first published in 1996 (Jossinet 1996). In this 

data, 4 classes of breast tissue were studied using electrical impedance measurements 

with multiple frequencies. Then these measurements were transformed into 9 

impedance spectrum parameters from where the breast tissue features can be 

computed. There are 106 observations in total of 4 classes. 

Figure 7.1 Simulated data sets overview: A) simulated data 1 plotted on all three variables; B) 
simulated data 2 plotted on three informative variables 

Four datasets are summarized below (Table 7.2). We will demonstrate the details 

of our method in the first simulated dataset to show how it works. Then we will compare 

our method with Huh and Lim’s method on all four datasets and illustrate the advantage 

of our method. We adopt statistical software R (Version 2.10.0) to finish all the work. 

 

A. B. 
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Table 7.2 Summary of four datasets 

 Classes Variables Noise 
Variables Observations 

Simulation 1 5 3 1 500 
Iris 3 4 NA 150 

Simulation 2 7 8 5 700 
Breast Tissue 4 9 NA 106 

 

7.2 How Our Method Works 

Here we first give a detailed example on how our method works using simulated 

data 1. The data is standardized variable-wise to have zero mean and 1 standard 

deviation on each variable. After standardization, we first estimate the initial βs as 

described in section 6.3. Since we only have 3 variables in this case, a {3, 2} simplex 

lattice with center is formulated to generate seven sets of variable weights. For each set 

of variable weights, we run the k-means clustering on weighted variable and calculate 

the overall within cluster sum of squares and then the response variable y in model 6.18. 

Then after running k-means clustering on all seven sets, we fit the model 6.18 to get the 

initial estimation on βs and calculate α using 6.24. Finally, we follow iteration algorithm 

to refine β estimation and calculate the optimal variable weights and clustering partition 

subsequently. 

Table 7.3 β estimation and α selection on simulated data 1 

 β tୱୣ୪ୣୡ୲ୣୢ (݃(ݐ), ݐ)݃ ൅ 1)ሿ αୱୣ୪ୣୡ୲ୣୢ 

Initial 0.1244,0.1306,0.2313 2 (0.0021, 0.0692] 0.0356 

1st iteration 0.0874,0.0827,0.9881 2 (0, 0.6020] 0.3010 

2nd iteration 0.0874,0.0827,0.9881 2 (0, 0.6020] 0.3010 

 

For this data, our iteration algorithm takes only two iterations (Table 7.3). Each 

iteration takes less than 1 second. The β of first two informative variables are very small 

β while the β of third noisy variable is almost 1, which is as expected. Also the algorithm 

correctly indicates ݐ௦௘௟௘௖௧௘ௗ ൌ 2, which is the true number of informative variables. With 
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the refined estimation on βs and α, we calculated the optimal variable weighting derived 

in equation 6.16 and compared with the true variable weighting. Since we simulated the 

data with two informative variables which are different among groups and one additional 

noisy variable which has nothing to do with the grouping, the true weights should be 

(1.5, 1.5, 0) for this data. As shown in Table 7.4, our estimated variable weights are 

almost the same as the true weights.  

Table 7.4 Estimated variable weights for simulated data 1 

Estimated Variable Weights (1.49, 1.51, 0) 
True Variable Weights (1.50, 1.50, 0) 

 

Then we performed the weighted k-means clustering with the estimated variable 

weights, and the cluster partition is shown in classification table (Table 7.5). We can see 

five groups are almost separated in five clusters, except 1 member in group 5 is 

clustered in cluster 3 instead, which results in 99.8% accuracy. 

Table 7.5 Cluster partition of weighted k-means clustering for simulated data 1 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

Group 1 100 0 0 0 0 

Group 2 0 0 0 100 0 

Group 3 0 0 100 0 0 

Group 4 0 100 0 0 0 

Group 5 0 0 1 0 99 

 

We also plotted the weighting curve against a set of α from 2-5 to 25 with 

increment of 0.01 (Figure 7.2). In the original method proposed by Huh and Lim (2009), 

the weighting curve was used to determine α. In our method, weighting curve is used for 

determining α. However, it is good to use weighting curve to examine the calculated 

weights. Recall in equation 5.9, when ߙ ൌ 0, it becomes a linear function on variable 

weights with all positive coefficient, therefore 5.9 is minimized with one weight equal to 

m and all others equal to 0; when α increases, the penalty part is emphasized and 
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therefore all the weights are forced to gradually move towards 1. Such movement is 

characterized by the way how equation 5.9 is formulated. In Figure 7.2, we can see the 

featured movement is completed captured, which, in some extent, also confirmed our 

algorithm. 

 

Figure 7.2 Weighting curves of weighted k-means clustering for simulated data 1 

The estimated β and selected penalty parameter α obtained using our iteration 

algorithm for all four data sets are given in Table 7.6. In next section, we will give a 

detailed comparison between our method and Hub and Lim’s method. 

 

7.3 Comparisons to Existing Methods 

In this section, we will compare the performance of our method and the method 

proposed by Huh and Lim (2009). The Nelder-Mead simplex method they used is not 

global optimal guaranteed and is designed for unconstrained optimization problems only, 
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which is not our case. We would expect that their method may not be able to find the 

global optimal solution and subsequently ends up with a suboptimal clustering partition. 

Therefore here we mainly focus on the algorithm stability and clustering accuracy in the 

comparison. 

Table 7.6 Estimated β and penalty parameter α for four data sets 

Data estimated β Iteration αୱୣ୪ୣୡ୲ୣୢ
Simulated 1 (0.087,0.083,0.988) 2 0.30 

Iris (0.347, 0.576 0.060, 0.062) 2 0.34 

Simulated 2 
(0.033, 0.032, 0.031, 0.994, 0.988, 0.992, 0.995, 

0.992) 
4 0.63 

Breast 

Tissue 

(0.064, 0.352, 0.669, 0.273, 0.501, 0.377, 0.185, 

0.425, 0.086) 
3 1.07 

 
7.3.1 Algorithm Stability 

Here we compare the algorithm stability by plotting the weighting curves on a set 

of penalty parameter α range from 2-5 to 25 with increment of 0.01. This is very critical, 

especially for their method, because in their method, this graph is used to locate a 

feasible range of α with stable variable weighting. If the algorithm is not stable, then it 

will be very difficult to even find the feasible range.  

As we discussed in previous section, the objective function determines that all 

weights will gradually move towards 1 with the increase of penalty parameter α. Figure 

7.3 gives the weighting curves for all four datasets generated by our method and Huh 

and Lim’s method. For our method, the weighting curves are generated using the 

estimated β in Table 7.6 with different penalty parameter α. We can see our method 

captured this movement very nicely in all four datasets. All the weighting moved slowly 

towards 1. However, in Huh and Lim’s method, this movement was captured only in 

simulated data 1 and iris data with some outliers. In simulated data 2 and breast tissue 

data, both with more than 5 variables, their method failed to capture this movement. 

Instead of expected weighting curve, the plot just looks like random points. The reason 

is because the Nelder-Mead method is designed only for unconstrained optimization 
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problems. In our problem, each variable weight is required to be bounded in [0, m]. 

Thus the Nelder- Mead method fails to find the global optimal, and instead, stops at a 

local optimal solution. For datasets with small number of variables, such as the iris and 

the simulated data 1, such problem is not severe as their method can still capture the 

trend. Those outliers can be easily reduced by increasing the increment and reducing 

the number of points to get a relatively nice-looking and clear curve subsequently. 

However, when dimensionality increases, such as the simulated data 2 and the breast 

tissue data, the problem is aggravated as their method can hardly reflect the trend. In 

this case, one can still reduce the outliers and get a clear plot by reducing the number of 

points (for example, 8~10 points only). However, it is just not the true weighting curve at 

all. 

A1. A2. 

B1. B2. 
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Figure 7.3 Weighting curve comparison between (1) our method and (2) Huh & Lim’s method on four 
datasets: A: Simulated data 1; B: Iris data; C: Simulated data 2; D: Breast tissue data. 

 

7.3.2 Clustering Accuracy 

To investigate the clustering accuracy, we calculated the optimal variable weights 

using both methods and then compared the cluster results, misclassification rate and 

estimated variable weights of both methods. For our method, the optimal variable 

weights and corresponding cluster results are generated using the parameters listed in 

Table 7.6. For Hub and Lim’s method, penalty parameter α also need to be determined. 

However, the graphical method they proposed fails to apply here because of the low 

quality weighting curve. For comparison purpose, we used the same α in Table 7.6 to 

perform Hub and Lim’s method.  

D1. D2. 

C1. C2. 
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Detailed cluster results are presented at the end of this Chapter (Figure 7.4). 

Since we know the true class information for all four datasets, here we first compare the 

clustering performance using misclassification rate (MR). MR is defined as follow: first, 

each cluster is labeled as the group of majority members in the cluster and members 

from groups rather than the labeled group are considered misclassified; then we count 

the misclassified cluster members in all clusters and divide it by the total number of 

observations as misclassification rate (MR). MRs are compared in Table 7.7. We 

presented the misclassification rate in both ratio and percentage. We can see that in 

simulated data 1, both methods did a great job with only 1 (out of 500) misclassified 

observation. However, in all other three datasets, our method performs better with at 

least 50% lower in misclassification rate compared to their method.  

Table 7.7 Misclassification rate comparison for two methods 

Data 
Simulated 1 Iris Simulated 2 

Breast 

Tissue 

m=3,k=5 m=4,k=3 m=8,k=7 m=9,k=4 

Our 

Method 

MR 1/500 6/150 0/700 19/106 

MR in % 0.2% 4.0% 0.0% 17.9% 

Huh and Lim’s 

Method 

MR 1/500 14/150 189/700 35/106 

MR in % 0.2% 9.3% 27.0% 33.0% 

 

The corresponding variable weights are listed below (Table 7.8). In simulated 

data 1, both methods find the same variable weighting. In all other three datasets, our 

method find different variable weighting with their method, which results in difference in 

the clustering partition and misclassification rate. It is interesting to point out that a 

slightly difference in variable weighting could lead to a big difference in clustering 

partition as seen in Iris data. Also please note, in both simulated datasets, our method is 

always able to distinguish the informative variables and noisy variables by assigning 

different weights. But their method fails for the simulated data 2. Given the way the 

simulated data sets are generated, the true variable weights should be (1.5, 1.5, 0) for 

simulated data 1 and (2.67, 2.67, 2.67, 0, 0, 0, 0, 0) for simulated data 2 as the noisy 
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variables have weight 0 and informative variables have same weight. Therefore, our 

method almost successfully find the true variable weights for both simulated data while 

Huh and Lim’s method only be able to approach the truth for simulated data 1. 

Table 7.8 Optimal variable weighting calculated from two methods 

 Our Method Huh & Lim’s Method 

Simulated 

Data 1 
(1.49, 1.51, 0) (1.49, 1.51, 0) 

Iris (0.50, 0, 1.75, 1.75) (0.58, 0, 1.75, 1.67) 

Simulated 

Data 2 
(2.66, 2.67, 2.67, 0, 0, 0, 0, 0) (0, 3.57, 4.43, 0, 0, 0, 0, 0) 

Breast 

Tissue 

(1.94, 0.87, 0, 1.16, 0.32, 0.77, 1.49, 

0.59, 1.86) 

(1.62, 0.06, 0.01, 1.04, 1.96, 0.67, 

1.25, 0.95, 1.54) 

 

The comparisons shown above confirmed that our method is better than Huh and 

Lim’s method in both algorithm stability and clustering accuracy as indicated by 

weighting curve, misclassification rate and optimal variable weights. This result is 

somehow expected due to the nature of the optimization method employed. In low 

dimensional data, Nelder-Mead method performs relatively well. With the increase of 

dimensionality, Nelder-Mead Simplex method yields poor performance and is unable to 

find the global optimal in constrained optimization problems. But in our method, we first 

derive the optimal variable weights theoretically, then we and provide a quantitative 

method to determine the penalty parameter, which guarantee the performance of our 

method. 
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A1. A2. 

B1. B2. 

C1. C2. 
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Figure 7.4 Cluster results of both (1) Our method and (2) Huh & Lim’s method on four datasets: A: 
Simulated data 1; B: Iris data; C: Simulated data 2; D: Breast tissue data. T stands for “True group” and 

C stands for “Cluster” 

D1. D2. 
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Chapter 8 

Discussion and Future Work 

8.1 Compound Clustering and Constrained Clustering 

In part I of this thesis work, we developed two new multi-objective clustering 

methods: compound clustering and constrained clustering to cluster objects based on 

multiple objectives using multiple data sources. One real dual-objective application on 

microarray data was provided to illustrate the methodology. It demonstrated that with 

appropriate distance measures for both gene expression data and binary biological 

functional data, the newly proposed compound clustering is superior, compared to 

traditional hierarchical clustering, to find desired clusters with dual-objective: similar 

gene expression profile and common biological functions. Furthermore, the newly 

proposed statistic “complete linkage” R2 appears to be suitable for cluster number 

determination in this case. The methodology of compound clustering and the statistic 

“complete linkage” R2 for cluster number determination on dual-objective case can be 

easily extended to a general n-objective problem. 

While we have successfully completed the development of compound clustering, 

there are spaces for the development of constrained clustering.  Constrained clustering 

is a step-by-step approach. A cluster number needs to be specified for each step before 

moving on to the next step. Given the nature of the nested structure and the lack of an 

overall distance measurement, It is much harder to define an overall statistic for cluster 

number determination comparable to the “complete linkage” R2 for the compound 

clustering, for the entire constrained clustering procedure. We illustrate our point with a 

dual-objective constrained clustering analysis on the same temporal gene microarray 

data from Cold Spring Harbor Laboratory. The “Complete linkage” R2 is used as a 

goodness of fit measure. For constrained clustering, we need to determine (n1, n). Since 
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this is a nested two-step algorithm, the total cluster number n will exponentially increase 

with the cluster number n1 in the first step, therefore n1 cannot be very large (<10). We 

found, as expected, that the R2 is not suitable for this case. As shown in Figure 8.1, by 

roughly setting n1=5, 6, we can see that the R2 is still very low (<0.7) even when the 

cluster number is over 100.  

 

(a) n1=5                                                                         (b) n1=6 

 

(c) n1=5                                                                          (d) n1=6 

Figure 8.1 R2 vs. cluster number under different initial conditions. (a), (b) are for BAS and (c), (d) are 
for PKJ cells. The x axis is the cluster number, and the y axis is the R2. 
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Finding the appropriate way to determine cluster number is the first priority for 

our future work on constrained cluster analysis. One possible solution is to determine 

cluster number dynamically and iteratively. Also in step 2, we can determine cluster 

number for each cluster resulted from step 1 individually. However, both ideas require 

significant computation time which is not favorable. Once it is done, we can also embark 

on the comparison of the compound and constrained cluster analysis methods to other 

multiple-objective clustering analysis methods – using common data sets. Furthermore, 

we can also extend the application of compound /constrained framework into other 

fields with multiple data sources, rather than bioinformatics. This work has the potential 

to lend insight to further development of the multiple-objective clustering framework. 

 

8.2 Weighted K-means Clustering 

In part II of this thesis work, we derived the close-form theoretical solution of 

optimal variable weights for the weighted k-means clustering analysis with a penalized 

objective function proposed by Huh and Lim (2009). Then we proposed an EM-like 

iteration algorithm to numerically solve for the optimal variable weights and subsequent, 

the clustering result. The performance of the proposed method has been demonstrated 

with two simulated datasets and two real datasets in this paper.  

The performance of Huh and Lim’s method became poor with increase in data 

dimensionality. Our proposed method outperformed Huh and Lim’s method on both 

algorithm stability and clustering accuracy, especially with higher dimensional data. It is 

also interesting to note that our method, by deriving the optimal weights in closed form 

theoretically, can also be implemented efficiently to estimate the optimal weights. Such 

time efficiency provides an opportunity for our method to be applied on high dimensional 

data, such as genetic research and bioinformatics.  

To further reduce the time cost when applying to high dimensional data, Principal 

Component Analysis can be used first to reduce the dimensionality first and then, for a 

desired cluster number K, our weighted k-means method can be performed on first K-1 
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principal components instead. Ding and He’s paper (Ding and He 2004), which 

discussed the connection between PCA and k-means clustering, provides the 

theoretical support for such strategy.  

Furthermore, as part of the development, we proposed the cumulative reduced 

variation (RV) to quantitatively determine the penalty parameter α. Further statistical 

inference is encouraged to perform on penalty parameter α.  

In the examples, we only illustrated our method with correct cluster number K. 

However, since k-means clustering requires the pre-determined cluster number K, mis-

specified cluster number K could have a significant effect on the final cluster result. 

Therefore, the effect of mis-specified cluster number K should also be investigated for 

our method. 

Finally, the optimal variable weighting we discussed here is based on the 

objective function which penalize for heterogeneity in variable weights, as shown below. 

One also can investigate the optimal variable weights from different point of view with 

other types of penalty functions. 
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