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Abstract of the Dissertation

A Stochastic Approximation Interpretation for

Model-based Optimization Algorithms

by

Ping Hu

Doctor of Philosophy

in

Applied Mathematics and Statistics

(Operations Research)

Stony Brook University

2012

This thesis studies a class of model-based randomized algorithms for solv-

ing general optimization problems. These are iterative algorithms that sam-

ple from and update an underlying distribution over the feasible solution

space. We find that the model-based algorithms can be interpreted as the

well-known stochastic approximation (SA) method. Following the connection

between model-based algorithms and SA, we build a framwork to analyze

the convergence and the convergence rate of these algorithms. Moreover, we
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present an instantiation of this framework which is the modified version of

the Cross Entropy (CE) method, and analyze its convergence properties and

numerical performance. In addition, we also propose a novel random search

algorithm called Model-based Annealing Random Search (MARS). By ex-

ploiting its connection to SA we provide its global convergence result and

analyze the asymptotic convergence rate as well. Finally, the empirical re-

sults of MARS show promising performance in comparison with some other

existing methods.
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Chapter 1

Introduction

In the past decades, optimization techniques have been very important in

industry for improving system performance, including control systems, bio-

statistics, communication, scheduling, and so on. However, finding the glob-

ally optimal set of decision variables or parameter settings of the objective

function is very difficult in general, especially for problems that contain many

local optima. Furthermore, for many complex systems, it is often the case

that the explicit relation between the objective function value and the un-

derlying variables is unknown. In other words, the objective function is

considered to be a “black-box”, where we could only take observations of

the outputs corresponding to some input values without knowing how these

outputs are generated. For some problems, even if we know this relation

explicitly, we may still be unaware of the entire structure of the problem. An

example of such case is the famous traveling salesman problem (TSP), where
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we know the value of the cost function for every given path, but still cannot

find the optimal path easily. These difficulties has inspired the development

of many randomized search algorithms that only depend on the observation

of the objective function value. Such methods include simulated annealing

[40], [45], genetic algorithms [25], tabu search [24], nested partitions [62],

pure adaptive search [77], stochastic ruler algorithm [72], stochastic compar-

ison [26], stochastic adaptive search [76], and so on. These algorithms have

been very successful for their outstanding performance on many difficult op-

timization problems.

Throughout this thesis, we focus on a class of randomized search al-

gorithms called the model-based methods (see [20]). Different from other

algorithms, model-based algorithms use an intermediate probability model

as a guideline for the search. Typically, the algorithm works in an iterative

way. In each iteration, the algorithm randomly generates a population of

candidate solutions from certain probability distribution, and then use these

samples to update the distribution that would be used to guide the search

in the next iteration. The key idea of these algorithms is to iteratively mod-

ify the intermediate probability model based on the quality of the samples

so that it will lead the search towards the promising region that contains

high quality solutions. Examples of these model-based algorithms are ant

colony optimization [14], [70], estimation of distribution algorithms [47], an-

nealing adaptive search [57], the cross entropy method (CE) [60], [42], and

the model reference adaptive search (MRAS) [32], [33]. Compared with other
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algorithms that perform the local enhancement search, the model-based al-

gorithms explore the entire solution space at each iteration. This important

feature has made these algorithms very successful for many optimization

problems ([14],[2], [47], [79], [76] ) as well as other applications ( [59], [60],

[42], [65], [48], [12], [33], [51] ). However, in contrast to those existing al-

gorithms that are well-studied, many model-based algorithms are heuristic

approaches without theoretical convergence proofs, while in the meantime,

the empirical study on the performance of model-based algorithms shows

that there is still space for further improvement. For instance, before the

collaborative work in [37], [34], there are only few convergence results of the

CE method (e.g., [11]).

This thesis is based on the collaborative work by the author and Dr.

Jiaqiao Hu and Dr. Hyeong Soo Chang (see [34], [37], [35], [36] ). The

first contribution of this thesis is that we establish a connection between

the model-based algorithms and the well-known stochastic approximation

(SA) method (literatures for SA can be found in [43], [44], [56], [66] and

etc.). Generally speaking, a model-based algorithm can be interpreted as a

stochastic approximation procedure. By exploiting this connection and the

existing theories in gradient search and SA, we develop a framework to an-

alyze the convergence properties of a class of model-based algorithms. In

particular, we take the CE method as an exemplary instance. We slightly

modify the standard version of the CE method (see [60], [42]) based on its

SA interpretation, and prove the convergence of the modified version of CE.
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Moreover, we provide some numerical examples to show that the modified

CE inspired by SA has promising practical performance, and may outper-

form the standard version of CE. The second contribution of this thesis is

that, inspired by annealing adaptive search (AAS, see [57]), CE, model refer-

ence adaptive search (MRAS, see [32], [33]), as well as the SA framework for

model-based methods, we develop a novel adaptive randomized search algo-

rithm called Model-based Annealing Random Search (MARS). By studying

its connection to SA, it can be shown that MARS converges to the global op-

timum. Moreover, from the numerical examples it can be seen that MARS

outperforms many existing searching algorithms, especially on those high

dimensional optimization problems. Although most of the discussion is cen-

tered at the modified CE method and MARS, we hope that the idea can be

generalized to other algorithms that also fall into this model-based category.

The rest of the thesis is structured as follows. In Chapter 2, we per-

form the literature review on some of the optimization algorithms, including

methods for deterministic and stochastic optimizations in both continuous

and discrete cases. Particularly, we briefly review the stochastic approxi-

mation method and the model-based methods. In Chapter 3, we present

the stochastic approximation framework for certain model-based randomized

algorithms, and then use it for analyzing the convergence properties of the

cross entropy method in Chapter 4. Further in Chapter 5, based on the same

framework, we present the MARS algorithm, prove its global convergence,

and provide some numerical results as well. Finally, we conclude the thesis
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in Chapter 6. We also move the proofs for many lemmas and propositions

to the Appendix at the end of this thesis.
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Chapter 2

Literature Review

2.1 Deterministic Optimization

Optimization problems can be categorized into deterministic optimization

and stochastic optimization. For deterministic optimization, we are con-

cerned with finding the optimal solution to the problem of the form:

x∗ ∈ arg max
x∈X

H(x), (2.1)

where x is a vector of n decision variables, X is a non-empty set in <n, and

H(·) : X → < is a deterministic function. We assume the existence of an

optimal solution x∗.

There are many algorithms designed for solving deterministic optimiza-

tion problems, from the classic Newton method to the randomized algo-
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rithms. Some examples are the well-known steepest-descent methods, pure

random search [9], pure adaptive search [77], simulated annealing [40], [45],

tabu search [24], nested-partition [62], and genetic algorithms [25], etc. We

now give a brief introduction to these optimization algorithms.

Pure Random Search (PRS) ([9]) is the algorithm that generates a se-

quence of uniformly distributed random points on the solution space. When

the stopping criterion is met, the best candidate generated so far is used

to approximate the global optimum. Though the idea behind the algorithm

is easy, there are two disadvantages for its practical performance. First,

the number of iterations needed for the kth best solution to come out will

increase exponentially in k. Second, the complexity of the algorithm will

also increase exponentially in the dimension of the solution space, see [9] for

detailed discussions .

Pure Adaptive Search (PAS) ([77]) is an extension of the pure random

search. It is an iterative algorithm for solving global optimization problem

as well. The idea of the algorithm is simply as the following. Starting from

a point xk ∈ S, where S is the solution space, it first evaluates Yk = H(xk),

where H is the objective function, then it uniformly samples a point in the

region whose function value is better than Yk. It is very easy to show that

PAS will almost surely converge to the global optimum. Moreover, under

certain conditions, the complexity of this algorithm only increases at most

linearly in the problem dimension (see [77]). Specifically, the complexity of

the algorithm is measured by the expected number of iterations needed for a

7



given accuracy. However, although PAS has nice theoretical properties, it is

very hard to implement the algorithm because of the difficulty of sampling

uniform random variates in an arbitrary region. Nevertheless, PAS provides

an insight to develop an algorithm whose complexity only increases at most

linearly [77] to the problem dimension. Meanwhile, other sampling tech-

niques such as Hit-and-Run (e.g., [4], [76]) have been proposed to make the

random sampling procedure computationally tractable.

The Simulated Annealing (SAN) ([40]) Algorithm is inspired by the an-

nealing process in a physical system, where each feasible solution is analogous

to a state of the system. The function value to be minimized corresponds

to the internal energy of the system on that state. Doing minimization on

the solution space is equivalent to bring the physical system to a state with

the minimum internal energy. SAN is an iterative algorithm. At each step,

the algorithm searches in the neighborhood of the current state, and prob-

abilistically decides whether it should move to a new state. If the function

evaluation at the new state is better than the current state, then it moves to

the new state. Otherwise, it still moves to the new state with some probabil-

ity p, or stays at the current state with probability 1−p. In other words, the

algorithm will sometimes transit to the candidate solution whose function

value is worse than the current candidate. This is an important feature that

leads the algorithm to escape from local optima. As the iteration number

increases, the probability p will decrease to zero, and this feature guarantees

the global convergence of the algorithm. In addition, under certain condi-
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tions, SAN can be extended to solve stochastic optimization problems (e.g.,

[21]).

Tabu Search (TS) ( [24]) is a meta-heuristic approach to solve optimiza-

tion problems. It is widely used in many areas such as scheduling, resource

planning, telecommunications, network routing, manufacturing system, bio-

engineering, logistics and many others. Compared with other “memoryless”

approaches such as genetic algorithms and annealing algorithms, Tabu Search

introduces the “adaptive memory” feature that economically and effectively

searches the feasible region (e.g., [22], [24]). This is a general framework and

can be implemented differently depending on the structures of the problems.

An important feature of Tabu search is that it could jump out of the neigh-

borhood of a local optimum. For example, once the algorithm is doing local

search around some local optimal solution, after visiting this area and mak-

ing that area as “Tabu” (meaning to force this area to be a forbidden area),

it will search towards the area outside this local optimum area to achieve

the global optimum. Tabu search also has other variations such as restarting

strategy, see [22] and [23] for detailed discussions.

The Nested Partition (NP) ([62]) Algorithm is a random search algo-

rithm to solve global optimization problems. It divides the solution space

into sub-regions under some predetermined scheme. At each iteration of the

algorithm, we have a special sub-region which is considered to be the most

promising region. Then we continue to divide it into M sub-regions while

union the other regions as the surrounding region. After that, each of these
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regions is sampled using some random sampling scheme. Based on the func-

tion evaluations of those samples, the new promising region is determined.

If the function performance (deterministic function) of one of those M sub-

regions is found to be the best, it is the most promising region for the next

iteration. However, if the function performance in the surrounding region is

found to be the best, the algorithm then backtracks to the previous partition

level and makes the old most promising region as the new most promising

region. Then the new most promising region is partitioned in the similar

fashion. It can be shown that once we consider each partition as a state,

the algorithm produces a Markov chain. It also can be proved that, the al-

gorithm will almost surely converge to the globally optimal solution, where

the global optimum is considered as a singleton region (i.e., a region that

contains one single solution).

Genetic Algorithm (GA) ([25]) is a meta-heuristic algorithm inspired by

genetic science in biology. It inherits the idea of how the chromosomes evolve

during the generation process between parents and their offsprings. In GA,

each candidate solution can be encoded into a chromosome. At the begin-

ning, the algorithm generates random population of chromosomes. After

evaluating the function values, or the “fitness” of these chromosomes, the

algorithm selects two chromosomes according to their fitness. Typically, the

better fitness it is, the higher probability will it be chosen. Once we have

chosen two chromosomes as the parents, we “crossover” these two chromo-

somes to generate two new chromosomes. Moreover, after the crossover step,
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we also do the “mutation” that mutates the new chromosomes in each posi-

tion to get the offspring chromosomes. We do the same procedure until we

get a new population, which is considered to be the second generation of the

previous population. Iteratively, this new population continuously “evolves”

under similar manners until a stopping criterion is met. Note that the prac-

tical implementation of the crossover step and mutation step will depend on

the structure of the specific problem. Although there is no guarantee of the

convergence of Genetic Algorithms so far, it is very popular for its good prac-

tical performance. GA falls into the class of Evolutionary Algorithm, which

also includes Differential Evolution ([69]), Evolutionary Strategies ([7]) and

Evolutionary Programming ([18]).

2.2 Stochastic Optimization

In practice, it is often the case that the objective function value cannot be

evaluated explicitly. In other words, we could only take observations which

are under the effect of noise, and the goal is to find the best decision variable

that returns the maximum or minimum of the expected value of the objective

function. For stochastic optimization, we are concerned to find the optimal

solution to the problem of the form:

x∗ ∈ arg max
x∈X

EΨ[F (x,Ψ)], (2.2)
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where X is a non-empty compact set in <n. The quantity Ψ represents the

stochastic input to the simulation, and its distribution might depend on x.

We assume that F (x,Ψ) is measurable and integrable with respect to the

distribution of Ψ for all x ∈ X so that the expectation is well-defined. Fur-

thermore, we let f(x) = EΨ[F (x,Ψ)] and assume that f(x) cannot be evalu-

ated easily but the random variable F (x,Ψ) can be observed via a simulation

experiment at x.

There are many techniques designed to solve this stochastic optimization

problem, such as the extended version of nested partition ([63]) and sim-

ulated annealing ([21]), sample average approximation [28], [41], stochastic

ruler [72], stochastic comparison [26], COMPASS [31], adaptive search with

resampling [3], deterministic shrinking ball and stochastic shrinking ball [3],

and the well-known stochastic approximation (SA) ( see [56], [43], [66], [44],

and etc.). We now give a brief introduction to some of these algorithms.

The idea of the Sample Average Approximation (SAA) algorithm ([28],

[41]) is simple. In the algorithm, the expected objective function value is

approximated by the corresponding sample average of the simulated function

values. It can be shown that, with the number of evaluations increasing

to infinity on each candidate solution, the optimal solution for the sample

average optimization will converge to the optimal solution of the original

optimization problem. Also, the rate of convergence is provided.

The Stochastic Ruler (SR) Algorithm ([72]) is designed to solve stochastic

optimization problems. It assumes a neighborhood structure on the solution
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space so that any two candidate solutions can be reachable from each other

( i.e., we say x is reachable from y if there exists a sequence y0, . . . , yn such

that y0 = y, yn = x and yk+1 ∈ N(yk) for k = 0, . . . , n − 1, where N(z) de-

notes the neighborhood of z. See [72]), and this property is necessary for the

global convergence. The algorithm works in an iterative way and constructs

a transition probability on the solution space. Specifically, in each iteration,

the algorithm will randomly select a new solution in the neighborhood of

the current candidate solution under certain probability distribution. Then

it will compare the simulated function evaluation on the new candidate so-

lution to a “stochastic ruler”, which is uniformly distributed on the range

of the objective function values. Depending on the comparison results, the

algorithm decides whether it should move to the new solution from the cur-

rent one. Along this procedure, the algorithm in fact generates a Markov

chain on the solution space. By analyzing the limiting distribution, it can

be shown that under general conditions, the algorithm will converge to the

global optimum with probability one, while the rate of convergence is also

provided ([72]).

The Stochastic Comparison (SC) Algorithm ([26]) is very similar to Stochas-

tic Ruler Algorithm, except that, instead of comparing the sample average of

the objective function to a “random ruler”, it directly compares the sample

average of the objective functions on two candidate states, and then decides

whether it will transit from the old state to the new one. Similar to Stochas-

tic Ruler Algorithm, when carefully controlling the number of simulations on
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each state, it will converge to the global optimum ([26]) .

Adaptive Search with Resampling (ASR) ([3]) is a framework of stochastic

optimization problems on continuous domain. It consists of three important

components which are a sampling strategy, a resampling strategy, and an ac-

ceptance criterion. For certain iterations, it samples a candidate solution on

the solution space using the sampling strategy and takes several observations

on that solution. Then, based on the acceptance criterion, the algorithm de-

cides whether to include the new solution in the set of accepted solutions.

The idea of this step is to ensure those promising solutions will eventually

be evaluated enough. For other iterations, it resamples the set of accepted

solutions to improve the estimator of the global optimum. This step makes

the search more economically and effectively, since it spends more simula-

tion budget on the solutions in the set that are considered more promising,

and spends less on other inferior solutions. The algorithm can be proved for

global convergence, under some mild assumptions.

Deterministic Shrinking Ball (DSB) and Stochastic Shrinking Ball (SSB)

([3]) are based on Pure Random Search ([9]). However in DSB and SSB, it

is not necessary take several observations on each candidate solution to get

the approximation of the expected function value using the sample average.

Instead, the estimation of the objective function on each candidate solution

x is the average of the objective function observations on all samples that are

close to the candidate solution. Specifically, in DSB it constructs a “ball”

that centers at x with some radius r, and the average function observations

14



on those samples in the ball is used to estimate the expected function value

on x. While in SSB, it constructs a “ball” that centers at x and contains n

nearest samples inside the ball, and those n samples will be used to estimate

the expected function value on x. Under certain conditions, convergence

results can be provided for both DSB and SSB.

2.3 Stochastic Approximation

Stochastic Approximation (SA) is a general technique for finding approxima-

tion for roots or the minima or maxima of a given function. SA is especially

useful when there is scant information of the explicit value and structure

of the objective functions and one can only perform experiment or simula-

tion to get observations which involve noise. Robbins and Monro ([56]) first

discussed a stochastic approximation technique for estimating the root of a

regression function, and later Kiefer and Wolfowitz ([39]) presented the pro-

cedure of finding minima and maxima of regression functions. We note that

Kiefer-Wolfowitz procedure can be interpreted as an extension to the classic

Steepest-Descent method for finding minima and maxima, where the true

gradient is estimated by the finite difference method. We first review the

literatures of the gradient estimation in Stochastic Approximation, and then

discuss the general Stochastic Approximation.
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2.3.1 Gradient Estimation in Stochastic Approxima-

tion

The well-known Steepest-Descent method is a classic approach which is car-

ried out originally for searching local minima of an objective function. The

method could also be easily adapted for maximization problem problem (2.1).

Note that there are different ways to present the Steepest-Descent method.

To be consistent with the term “descent”, we present it as a method for

solving minimization problems. Specifically, one starts with an initial guess

x0, and iteratively generate a sequence x1, x2, ... such as

xn+1 = xn − an∇f(xn),

where {an} is a sequence of constants and f is the objective function. For

many practical problems, however, the true gradient cannot be evaluated

explicitly. Therefore, some gradient estimation techniques need to be in-

troduced. There is a vast amount of literatures that discuss the gradient

estimation methods. See Fu [19] for a review. The main gradient estimation

methods can be divided into two categories: Indirect gradient estimation and

direct gradient estimation. For indirect gradient estimation, the estimator

of the true gradient usually involves bias. Two examples of indirect gradient

estimation are the finite different method [39] and the simultaneous pertur-

bation [66] method. In the finite difference method, the gradient is estimated

by a one-sided finite difference
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f̂(x+ ciei)− f̂(x)

ci

or a two-sided finite difference

f̂(x+ ciei)− f̂(x− ciei)
2ci

where c = (c1, ..., cd) is the vector of differences (amount of perturbation),

θ is the candidate solution on whose gradient is being estimated, ei denotes

the unit vector in the ith direction, and f̂ is an observation of the objective

function on x that involves noise. We note that we need to carefully choose

the parameter sequence {an} and {cn}. For {an} it needs to decrease to

zero to make the algorithm convergent, while it cannot decrease too quickly

which may cause the prematurity of the search (i.e., the search sticks at some

region before it reaches a global/local optimum). A typical condition on {an}

is that

lim
n→∞

an = 0,
∑

an =∞, and
∑

a2
n <∞.

For cn, it also has to be chosen carefully to balance the variance and bias. A

typical condition on cn is that

∑
ancn <∞,

∑ a2
n

c2
n

<∞.
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Note that in one-sided finite difference method, it requires d+1 evaluations on

each solution; in two-sided finite difference method, it requires 2d evaluations

on each solution, where d is the dimension.

Simultaneous Perturbation Stochastic Approximation (SPSA) method is

given by Spall [66]. It is similar to the finite difference method, except that it

only needs 2 evaluations on each solution. In SPSA, the gradient estimator

is

f̂(x+ c∆)− f̂(x− c∆)

2ci∆i

,

where ∆ = (∆1, ...∆d) is a d−dimension vector of perturbations. Specifi-

cally, ∆ is a vector of d mutually independent mean-zero random variables

(∆1, ...∆d) satisfying some conditions, see [66] for details. It can be shown

that under some conditions, SPSA will converge locally, and it only requires

2 evaluations on each solution, regardless of the problem dimension. In sum-

mary, the advantage of finite difference method and SPSA is that they are

model-free and easy to implement, since they only depend on the value of

function evaluations. Meanwhile, the practical performance of finite differ-

ence method and SPSA may depend on the setting of parameters, see [67]

for further discussions.

On the other hand, if some additional knowledge about the objective

function is available, direct gradient estimation often provides the unbiased

estimator which could lead to faster convergence rate when implemented in a

stochastic optimization problem. Moreover, it does not need to determine the
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difference sequence cn in the finite different method, and it makes the com-

putation more efficient. A brief summary of the direct gradient estimation

can be found in [19].

2.3.2 General Stochastic Approximation

A general Stochastic Approximation (SA) procedure is an iterative technique

for finding roots and extreme values of an objective function. It has the

following general form:

Xn+1 = Xn − Vn, n = 0, 1, 2, ...,

where Vn is a sequence of random variable andX0 is an initial random variable

(see [16]). The stochastic term Vn may have different meanings. For example

(see [66]), assume f(x) is the objective function to be minimized on a solution

space X, and f(·) is differentiable with respect to x ∈ X. A steepest-descent

style SA has the following form:

x̂n+1 = x̂n − αkf̃k(x̂n),

where f̃n(x̂n) is an estimator of the true gradient at x̂n, and {αk} is a sequence

of constants (gain sequence). In this case, Vn stands for the product of the

gradient estimator and a constant.

A main research interest focuses on the conditions on the variables Vn
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that ensure the almost sure convergence of Xn, see Robbins and Monro 1951

[56], Fabian 1968 [17], Ljung 1977 [50], Kushner and Clark 1978 [43], Evans

and Weber 1986 [16], Benveniste et al. 1990 [6], Benaim 1996 [5], Kushner

and Yin 1997 [44], Borkar 2008 [8] etc.

2.4 Model-Based Method

As we mentioned before, the model-based methods differs from other random

search methods in that a set of population is generated at each iteration by

sampling from an intermediate probability model, while this population is

then used to update the model for the random sampling in the next iteration.

Some examples of model-based methods are ant colony optimization [14], [70],

estimation of distribution algorithms [47], annealing adaptive search [57], the

cross entropy method [60] and model reference adaptive search [32].

The Ant Colony Optimization (ACO) is a classical nature-inspired al-

gorithm ([14], [70], [13]). It is inspired by the natural phenomenon that

how ants would travel between food source and home, and then it is applied

to solve many difficult optimization problems such as Traveling Salesman

Problem (TSP) (see [14]). It is well known that ants use pheromone as a

communication media to cooperate when they are traveling. Based on that

idea, in Ant Colony Optimization, it uses “Artificial Ants” as the cooperating

agents to find good solutions for the optimization problem ([14], [13]).

The Annealing Adaptive Search (AAS) algorithm was introduced in Romeijn
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and Smith ([57]). The algorithm generates candidate solutions by sampling

from a sequence of Boltzmann distributions parameterized by the tempera-

tures that are time-dependent. As the iteration number increases, the tem-

perature will decrease to zero so that the Boltzmann distribution will asymp-

totically concentrate on the region that contains the global optimum. The

AAS algorithm has the nice theoretical property that the expected number

of iterations only increases linearly with the number of dimension ([57], [76]).

However, AAS is difficult to directly implement since it is very hard to gen-

erate random samples under a Boltzmann distribution. Fortunately, some

Markov chain-based sample techniques such as Hit and Run can be used to

soften the difficulty ([58], [76], [78]).

The cross entropy (CE) method was introduced to solve rare event prob-

ability estimation problem ([59]), and it then became a general approach for

solving optimization problems ([60]). The CE method involves an iterative

procedure where each iteration consists of two steps. First, it generates a

population of random samples according to a specified mechanism; second,

it updates the mechanism based on the performance of the sample generated

in the first step. The CE method involves the idea of Importance Sampling

(IS). Specifically, after the random mechanism generates the sample, the CE

method tends to pay more attention to those “good samples”. In other words,

based on the performances of those random samples, CE method tends to

search more on those feasible regions that seems to be more promising, and

this feature may explain its excellent practical behavior. However, there are
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only few results for the convergence of CE (e.g., [11]).

The model reference adaptive search (MRAS) is a randomized method

given by Hu et al. ([32], [33]) to solve both continuous and combinatorial

optimization problems. MRAS resembles CE in that they both work with a

family of parameterized distributions on the solution space ([32]). The key

idea of MARS is to use a sequence of pre-determined intermediate distri-

butions as the reference distribution models to facilitate the search. Specifi-

cally, the reference distribution is pre-specified and has convergence property.

Therefore it could guide the updating of the parameterized distributions so

that the search will asymptotically concentrate on the region containing the

global optimum. The significance of MRAS is that it provides a framework

for global optimization that allows the flexibility of choosing the reference

models. Also, a proof of the global convergence for one instantiation of the

framework can be found in [32].
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Chapter 3

A Stochastic Approximation

Method for Studying a Class of

Randomized Optimization

Algorithms

3.1 A Framework for Model-based Algorithms

In this chapter we focus on finding the optimal solution to the problem of

the form:

x∗ ∈ arg max
x∈X

H(x), (3.1)
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where H(·) : X → < is a deterministic objective function, X ⊂ <n is a

solution space that could be continuous or discrete, x is a decision variable

(a vector with n entries). We assume that H(·) is bounded, X is compact,

and there exists a global optimal solution x∗. Note that here we haven’t

addressed any other assumptions on H(·), i.e., H(·) may not necessarily be

differentiable or continuous, and it may possess multiple local optima.

The framework of iterative model-based algorithms for solving (3.1) gen-

erally consists of the following steps at each iteration:

1) randomly generate candidate solutions by sampling from a distribution

gk;

2) observe the objective function values of these generated candidate so-

lutions, update gk to obtain a new distribution gk+1;

where gk is the probability model (specifically, a probability density function

or a probability mass function) at the kth iteration of the algorithm. Our

key idea here is to find a desirable sequence of distributions {gk} that will

converge to an “optimal distribution” g∗ which concentrates its mass around

the area containing the global optimum, as k goes to infinity. Intuitively,

if we generate random samples from g∗, the samples should be close to the

global optimizer with high probability. Throughout this thesis, we call the

sequence {gk} the reference distributions, as it is used as a guideline for the

random sampling procedures.

As in the existing model-based methods, different {gk} is chosen as the
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reference probability model. Some examples are:

a) proportional selection scheme which is introduced in MRAS:

gk+1(x) =
S(H(x))gk(x)

Egk [S(H(X))]
,

where S(·) is a positive increasing function and X is a generic random

variable taking values in X,

b) important sampling scheme which is used in the CE method:

gk+1(x) =
S(H(x))fθk(x)

Eθk [S(H(X))]
,

where fθk is some parameterized sampling distribution, and S(·) is a

positive increasing function as in a),

c) Boltzmann distribution with decreasing temperature schedule which is

used in AAS:

gk+1(x) =
eH(x)/Tk+1∫

X e
H(x)/Tk+1dx

=
e
H(x)( 1

Tk+1
− 1
Tk

)
gk(x)

Egk [e
H(X)( 1

Tk+1
− 1
Tk

)
]
,

where {Tk} is a sequence of parameters determined by an annealing

schedule;

Throughout this thesis, for any reference distribution g (i.e., gk in a)

and c) above), Pg(·) and Eg[·] denote the probability and expectation taken

with respect to the density/mass function g. On the other hand, for any
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sampling distribution fθ that is parameterized by θ, Pθ(·) and Eθ[·] denote the

probability and expectation taken with respect to the density/mass function

fθ as in case b).

Intuitively, in each of the updating procedure mentioned above, the dis-

tribution model is updated according to the objective function value on each

solution in the feasible region. It “tilts” the current probability model to

increase the probability density/mass on solutions whose objective function

values are relatively large, and reduce the probability density/mass on those

solutions whose performances are relatively poor. Note that in a) and b),

S(·) is a positive increasing (possibly iteration-varying) function to keep the

density/mass positive. It can be shown that, under some mild conditions,

the sequence of the probability models in a) will converge to a distribution

g∗ that assigns all its mass on the global optimum (see [32] ). This desired

property also holds for case c).

An obvious difficulty in all these three cases is that, the sequence {gk}

depends on H(·), therefore is unknown a priori. Moreover, even if we know gk

explicitly, it is difficult to use gk to effectively generate random samples. To

overcome this difficulty, at each iteration we try to use a surrogate sampling

distribution to approximate gk. Naturally, we would expect two features

on the surrogate distribution. First, it should be easy to generate random

samples on the solution space from the surrogate distribution. Second, it

should be as close to gk as possible so that the surrogate distribution could

share some properties with the reference distributions, e.g., if the reference
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distributions converge to a limiting distribution, the surrogate distributions

are expected to converge to the same limiting distribution as well. To achieve

the first feature, we specify a family of parameterized distributions {fθ(·), θ ∈

Θ}, where Θ is the parameter space. Once we choose a surrogate sampling

distribution from this family, it should be easy for us to generate random

samples from this distribution. To achieve the second feature, we would select

the parameterized sampling distribution fθk from the distribution family so

that the Kullback-Leibler (KL) divergence between the reference distribution

gk and the sampling distribution fθk is minimized, i.e.,

θk = arg min
θ∈Θ

D(gk, fθ), (3.2)

where D(gk, fθ) := arg minθ∈ΘEgk

[
ln
gk(X)

fθ(X)

]
, and X here is a random vari-

able whose probability density/mass function is gk.

Although there are other ways to construct the surrogate distributions

(see [58],[76] and [78] for AAS), this approach has the following advantages.

First, by choosing a special distribution family called the Natural Exponential

Families (NEFs) as the parameterized families, the random samples could be

generated easily. Moreover, under NEFs, the optimization problem (3.2) can

be solved analytically in closed form for any arbitrary gk+1, and this attractive

feature has made our approach very easy to implement. In addition, the

task of updating the entire sampling distribution is simplified to the task of
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updating its associated parameter. We now provide the definition of NEFs

as follows:

Definition 1. A parameterized family {fθ(·), θ ∈ Θ ⊆ <d} on X is called a

natural exponential family if

fθ(x) =
exp

(
θTΓ(x)

)∫
X exp(θTΓ(x))ν(dx)

,

where Γ : <n → <d is a continuous mapping, ν is the Lebesgue/discrete

measure and the natural parameter space Θ consists of all the θ that satisfies∫
X exp(θTΓ(x))ν(dx) < ∞. Also, K(θ) := ln

∫
X exp(θTΓ(x))ν(dx) is called

the log partition function.

Note that if X is a random variable with the probability density/mass

function fθ, then Γ(X) turns out to be the sufficient statistics ofX. Moreover,

we define m(θ) := Eθ[Γ(X)], i.e., m(θ) is the expected value of the sufficient

statistics Γ(X) under distribution fθ.

Many commonly used distributions belong to NEFs, e.g., exponential

distribution, univariate/multivariate normal distributions, Poisson distribu-

tions, etc. NEFs have an important property (see [53]) that the function

K(θ) is strictly convex on the interior of Θ with ∇K(θ) = Eθ[Γ(X)]. In

addition, the Hessian matrix of K(θ) is Covθ[Γ(X)], where Covθ[·] is the co-

variance with respect to fθ. Note that Covθ[Γ(X)] is the Jacobian of m(θ)

and Covθ[Γ(X)] is strictly positive definite and invertible, therefore, m(θ) is

also invertible by the inverse function theorem. As a consequence, there is
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a one-to-one mapping between θ and m(θ). In other words, for NEFs, the

expected value of the sufficient statistics would be sufficient to describe the

associated distribution. For instance, consider the exponential distribution

with parameter λ. It is obvious that Γ(x) = x, θ = −λ, and m(θ) = 1/λ.

Another simple example is the univariate normal distribution with mean µ

and variance σ2. It can be shown that Γ(x) = (x, x2)T , θ = ( µ
σ2 ,− 1

2σ2 )T and

m(θ) = (µ, σ2 + µ2)T . In summary, m(θ) could determine the parameterized

distribution fθ as well.

Let gk+1(x) be a given reference distribution (e.g., case a), b) and c) in

the previous example), and fθk be the surrogate sampling distribution ob-

tained at the kth iteration of the algorithm. We consider a general reference

distribution in the following form:

g̃k+1(x) = αkgk+1(x) + (1− αk)fθk(x), (3.3)

where αk ∈ (0, 1] ∀k is a “smoothing” parameter ensuring that the new

distribution fθk+1
obtained by minimizing D(g̃k+1, fθ) does not deviate too

much from the current distribution fθk .

3.2 Connection to Stochastic Approximation

When {g̃k+1} in (3.3) is used as the reference distribution sequence, the

following key lemma states a key relation between the two successive mean
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vectors in model-based algorithms.

Lemma 3.2.1. If fθ belongs to NEFs and the new parameter θk+1 obtained

via minimizing D(g̃k+1, fθ) is an interior point of Θ, i.e., θk+1 ∈ int(Θ) for

all k, where int(Θ) denotes the set of interior points of Θ, then

m(θk+1)−m(θk) = −αk∇θD(gk+1, fθ)
∣∣
θ=θk

∀ k.

Proof. Since θk+1 ∈ int(Θ), it satisfies the first order necessary condition for

optimality. It follows from (3.2) that

∇θEg̃k+1
[ln fθ(X)]

∣∣
θ=θk+1

= 0.

By the dominated convergence theorem, we could exchange the order of the

expectation and the differential,

Eg̃k+1
[∇θ ln fθ(X)

∣∣
θ=θk+1

] = 0,

which in further gives us

m(θk+1) = Eθk+1
[Γ(X)] = Eg̃k+1

[Γ(X)].

It follows from (3.3) that

m(θk+1) = αk
Egk [S(H(X))Γ(X)]

Egk [S(H(X))]
+ (1− αk)m(θk).
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Therefore, the recursion of the mean parameter vector can be written as

m(θk+1) = m(θk) + αk
Egk [S(H(X))(Γ(X)−m(θk))]

Egk [S(H(X))]

= m(θk)− αk∇θD(gk+1, fθ)
∣∣
θ=θk

, (3.4)

where the last equality follows from the properties of NEFs.

We note that Lemma 3.2.1 shows that the updating direction of the mean

vector at each step is of the negative gradient of a time-varying objective func-

tion for the minimization problem minθ∈Θ D(gk+1, fθ) ∀k. As a result, the

updating procedure in the model-based algorithms could be interpreted as a

gradient search method. Particularly, if the sequence of the reference model

{gk} converges to some limiting distribution function g∗, then the algorithm is

implicitly solving another optimization problem, which is finding the optimal

parameter θ∗ so that fθ∗ is the best approximation for g∗. This gradient in-

terpretation suggests that, those model-based algorithms that can be accom-

modated by this framework are essentially gradient recursions that implicitly

transform the original optimization problem (3.1) into a new optimization

problem on the parameter space with smooth structures (i.e., continuous and

differentiable), and this could explain why the model-based algorithms work

well for those optimization problems with little structure information. More-

over, the ample theories from gradient methods and SA enable us to perform

theoretical analysis on model-based algorithms. In the next chapter, we use

the (modified) CE method as a concrete example.
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Chapter 4

Convergence Properties of the

CE method

4.1 Connection between CE and SA

As we mentioned in the literature review, the CE method was originally

motivated by the rare event probability estimation [59]. It was then found

that the method could be adapted to solve combinatorial and continuous

optimization problems [60]. Furthermore, the CE method works very well

for multi-extremal nonlinear optimization [60] even in high dimensions. CE

also belongs to model-based algorithms. As we mentioned in the previous

chapter, CE uses the following model updating procedure:

gk+1(x) =
ϕ(H(x))fθk(x)

Eθk [ϕ(H(X))]
,

32



where ϕ(·) is a positive increasing function and fθk is the parameterized

sampling distribution with the parameters calculated by (3.2). Note that

throughout this chapter we use the notation ϕ instead of S in Chapter 3 for

the analysis of the CE method.

If we apply this updating procedure to Lemma 3.2.1, then (3.4) becomes

m(θk+1) = m(θk) + αk
Eθk [ϕ(H(X))(Γ(X)−m(θk))]

Eθk [ϕ(H(X))]

= m(θk) + αk∇θ lnEθ[ϕ(H(X))]
∣∣
θ=θk

, (4.1)

where the interchange of derivative and integral above is guaranteed by the

dominated convergence theorem. We can see that, in CE, the updating

procedure can be interpreted as the gradient method for the maximization

problem maxθ∈Θ lnEθ[ϕ(H(X))]. Because of the monotonicity of ϕ(·) and

ln(·), it can be seen that the optimal solution θ∗ of this maximization problem

would correspond to the sampling distribution fθ∗ that mostly concentrates

on the area with maximum values of H(·).

We present the idealized version of CE for solving (3.1) as below:

Algorithm 4.1. Idealized CE Method

Step 0: Choose an initial pdf/pmf fθ0(·) on X, with θ0 ∈ int(Θ). Specify

a non-decreasing function ϕ(·) : < → <+, a gain sequence {αk}, two

constants, ρ ∈ (0, 1) and ε > 0. Set k = 0.
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Step 1: Calculate the (1− ρ)-quantile γk of H(X), i.e.,

γk := supl{l : Pθk(H(X) ≥ l) ≥ ρ},

where X is a random vector with respect to distribution fθk that takes

values in X.

Step 2: Update parameter θk+1 = arg minθ∈Θ D(g̃k+1, fθ), where g̃k+1 is

given by (4.2).

Step 3: If a stopping rule is satisfied, then terminate and return θk+1;

otherwise set k = k + 1 and go to Step 1.

Following the idea in the framework, instead of using gk+1(x) =
ϕ(H(x))fθk (x)

Eθk [ϕ(H(X))]

as the model updating procedure, we use g̃k+1(x) as the reference distribution

where g̃k+1(x) is updated by

g̃k+1(x) = αk
ϕ(H(x))I(H(x), γk)fθk(x)

Eθk [ϕ(H(X))I(H(X), γk)]
+ (1− αk)fθk(x) (4.2)

with αk ∈ (0, 1] ∀ k, where ϕ(·) is a non-decreasing positive-valued function

as ϕ(·) in the framework of model-based methods, γk is the (1-ρ)-quantile of

H(X), and I(·, ·) is a threshold function:

I(y, γ) :=


1 if y ≥ γ,

(y − γ + ε)/ε if γ − ε < y < γ,

0 if y ≤ γ − ε.
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Intuitively, using such a threshold function could lead the computational

effort to approximately focus on the top ρ-percent of the selected “elite”

solutions. This approach inherits the idea of importance sampling as well

as the spirit in the selection scheme employed in many population-based

approaches such as genetic algorithms. Note that for pure technical reasons,

we make another slight modification of the standard CE method by replacing

the original indicator function with our threshold function. On the other

hand, the positive-valued function ϕ(·) is needed to ensure the reference

probability density to be positive in the case where H(x) is negative. In the

standard implementation of CE, ϕ(·) is often taken to be a constant function,

i.e., ϕ(x) ≡ 1 for all x.

Note that the approach of using the smoothing parameter αk here is

slightly different from the standard CE method presented by Rubinstein and

Kroese [60]. In [60], the smoothing parameter αk is used for smoothing the

parameter (i.e., θk) rather than the entire parameterized distribution as we

perform here.

The following proposition is an instantiation of Lemma 3.2.1.

Proposition 4.1.1. In Algorithm 1, if fθ belongs to NEFs and θk+1 ∈ int(Θ)

for all k, then the mean parameter vector function m(θk+1) satisfies

m(θk+1) = αk
Eθk [ϕ(H(X))I(H(X), γk)Γ(X)]

Eθk [ϕ(H(X))I(H(X), γk)]

+ (1− αk)Eθk [Γ(X)] ∀ k. (4.3)
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Proof. Follows from the proof of Lemma 3.2.1.

Once we get Proposition 3.1, we are able to write the gradient recursion

of the mean vector as in Lemma 2.1. However, Algorithm 2.1 involves the

expectation and the quantile which cannot be evaluated directly. Thus, based

on the sample generated by the parameterized distribution, we have to use

sample average to estimate the true expectation and use sample quantile to

estimate the true quantile value. This brings out the following Monte Carlo

version of the CE method.

Algorithm 4.2. The Monte-Carlo Version of CE

Step 0: Choose an initial pdf/pmf fθ̂0(·) on X, θ̂0 ∈ int(Θ). Specify a

bounded non-decreasing function ϕ(·) : < → <+ satisfying infy ϕ(y) >

0, parameter sequences {αk} and {λk}, constants ρ ∈ (0, 1) and ε > 0.

Set k = 0.

Step 1: Randomly sample Nk i.i.d. solutions Λk = {X1, . . . , XNk} from the

distribution fθ̂k .

Step 2: Calculate the sample (1− ρ)-quantile γ̂k = H(d(1−ρ)Nke), where dae

is the ceiling function that returns the smallest integer greater than a,

and H(i) is the ith order statistic of the sequence {H(Xi)}Nki=1.

Step 3: Compute a new parameter θ̂k+1 = m−1(ηk+1), where η0 := m(θ̂0) =
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Eθ̂0 [Γ(X)], and

ηk+1 = αk

∑
x∈Λk

ϕ(H(x))I(H(x), γ̂k)Γ(x)∑
x∈Λk

ϕ(H(x))I(H(x), γ̂k)

+ (1− αk)
( λk
Nk

∑
x∈Λx

Γ(x) + (1− λk)ηk
)

(4.4)

is an empirical estimate of recursion (4.3) based on the sampled solu-

tions in Λk.

Step 4: If a stopping rule is satisfied, then return θ̂k+1 or the best candidate

solution thus far and terminate; otherwise set k = k+ 1 and go to Step

1.

Since the main purpose of this section is to analyze the convergence prop-

erties of the CE method, we do not specify a stopping criterion. In practice,

the user could terminate the algorithm whenever it reaches the computational

budget or the parameter θ̂k does not vary too much for several successive it-

erations. A detailed discussion of the stopping criterion can be found in [60].

On the other hand, from a practical point of view, when the algorithm ter-

minates, we could choose to return the current best solution, instead of the

solution generated in the last iteration.

Since Algorithm 4.2 is randomized, we need to clarify some probabilistic

definitions as follows:

• (Ω, P,F ): A probability space on which the random samples Λ0,Λ1, . . .

generated by the algorithm are defined.
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• E[·]: Expectation taken with respect to P (·).

• Fk: The σ-field generated by the random samples up to the kth iter-

ation, i.e., Fk = σ({Λ0, . . . ,Λk}). Note that Fk is increasing with k,

and it determines all the information up to the kth iteration.

• Eθ̂k [·|Fk−1]: Conditional Expectation taken with respect to distribu-

tion fθ̂k , where parameter θ̂k is completely determined by σ-field Fk−1.

• Pθ̂k(·|Fk−1): Conditional Probability taken with respect to distribution

fθ̂k .

• Λk = {X1, . . . , XNk}: The population of Nk random samples generated

by distribution fθ̂k in iteration k. Note that X1, . . . , XNk are i.i.d. and

conditionally independent of the past information.

After we establish these definitions, everything should be well-defined with-

out ambiguity. In addition, we also need to state the big O notation in the

algorithm complexity:

Definition 2. Let f(x) and g(x) be two functions defined on some subset of

the real numbers. One writes f(x) = O(g(x)) if there is a positive constant

M and a real number x0 such that |f(x)| ≤ M |g(x)| for all x > x0, or

equivalently speaking, lim supk→∞ |
f(k)
g(k)
| < ∞; one writes f(x) = Ω(g(x)) if

g(x) = O(f(x)); in addition, one writes f(x) = Θ(g(x)) if f(x) = O(g(x))

and g(x) = O(f(x)).
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Finally, we define I{A} as the indicator function of the set A.

Similar to the connection between the idealized version CE and gradient

search, we expect to connect the Monte-Carlo version CE to a stochastic

gradient search. To do so, we make the following assumption on the θ̂k+1

computed in Algorithm 5.2. Note that this assumption is not fundamentally

necessary. However, it avoids the complicated projection step when the pa-

rameter θ̂k+1 hits or goes out of the boundary. See Kushner and Clark [43]

for detailed discussion.

Assumption A1. The parameter θ̂k+1 computed at step 3 of Algorithm 4.2

always lies on the interior of Θ, i.e., θ̂k+1 ∈ int(Θ) for all k.

Under the above assumption, we define the following terms:

L(ηk) :=
Eθ̂k [ϕ(H(X))I(H(X), γk)Γ(X)|Fk−1]

Eθ̂k [ϕ(H(X))I(H(X), γk)|Fk−1]
− ηk

= ∇θ lnEθ[ϕ(H(X))I(H(X), γk)]
∣∣
θ=θ̂k

,

bk(θ̂k) :=
1
Nk

∑
x∈Λk

ϕ(H(x))I(H(x), γ̂k)Γ(x)
1
Nk

∑
x∈Λk

ϕ(H(x))I(H(x), γ̂k)

−
Eθ̂k [ϕ(H(X))I(H(X), γk)Γ(X)|Fk−1]

Eθ̂k [ϕ(H(X))I(H(X), γk)|Fk−1]
,

ξk(θ̂k) :=
λk(1− αk)

αk

( 1

Nk

∑
x∈Λk

Γ(x)− ηk
)
,

where γk represents the true (1 − ρ)-quantile of H under fθ̂k . Using these

terms, we could rewrite (4.4) as a generalized Robbins-Monro recursion al-
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gorithm as follows,

ηk+1 = ηk + αk
[
L(ηk) + bk(θ̂k) + ξk(θ̂k)

]
, (4.5)

where L stands for a gradient, bk stands for a combined error term due to the

bias and noise term from the gradient estimation, and ξk is an extra error

term which comes from the estimation of the mean vector by the sample

average.

Note that in ξk, λk ∈ [0, 1] is the parameter that controls the injected

noise in the SA recursion (4.5) . When λk = 0, then ξk = 0, which brings out

the basic SA recursion, while a positive λk has the effect of injecting noise

into (4.5). The idea of using an injected noise is to allow the algorithm to

escape from local optima, and this is a common way for the gradient-based

algorithm to achieve global optima (e.g., [52, 74]).

4.2 Convergence of the CE method

Throughout this section, we use the standard ordinary differential equation

(ODE) approach to study the convergence of Algorithm 4.2 (modified version

of the CE method). This ODE approach was first proposed by Kushner and

Clark [43] and Ljung [50] to study the stochastic approximation algorithm,

and has been developed as a powerful tool for studying other related recursive

algorithms, see [5, 6, 8, 43, 44, 66, 67]. In the proof of the convergence of
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Algorithm 4.2, the basic idea is to show that the sequence of the mean vector

{ηk} generated by (4.5) asymptotically approaches the solution of the ODE:

dη(t)

dt
= L(η), t ≥ 0, (4.6)

where L(η) := ∇θ lnEθ[ϕ(H(X))I
(
H(X), γ(m−1(η))

)
]
∣∣
θ=m−1(η)

, and γ(m−1(η))

is the true (1-ρ)-quantile of H with respect to fm−1(η). Pay attention that

here in L(η) and  L(ηk), the differentials are calculated by freezing γ(m−1(η))

and γk. Furthermore, we need to assume the continuity of L(η) on <d. Note

that since m−1(·) is continuous, the continuity of L(·) could be verified easily.

Recall that we have modified the discontinuous indicator function I into a

continuous threshold function I(·, ·), which is used to ensure the continuity

of L. In addition, we assume that the ODE (4.6) has a unique integral curve

for any initial condition.

Following this idea, if the solution curve of ODE (4.6) has a unique asymp-

totic stable point, then we could expect once the sequence {ηk} asymptoti-

cally approaches the solution curve, it will converge to that asymptotic stable

point. However, since the L(η) involves the quantile value that essentially

depends on the objective function H(·), it becomes difficult to analyze the

structure of ODE (4.6) in an explicit way. Moreover, (4.6) may have other

limiting behavior instead of have a unique equilibrium point. Therefore, be-

fore we present the convergence theorem for Algorithm 4.2, the following

definitions and assumptions are needed.
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Definition 3. Let η(t) be a flow on a metric space (X, d) and ηx(·) denote

the trajectory with an initial point x ∈ X, i.e., ηx(0) = x. A point x ∈ X is

said to be chain recurrent if for any ε > 0 and T > 0, there exists a sequence

of points y0, . . . , yk ∈ X and a sequence of time t0, . . . , tk−1 > T , such that

yk = x, d(x, y0) < ε and d(yi+1, ηyi(ti)) < ε ∀i = 0, ..., k− 1; A set S is said

to be an invariant set if ∀z ∈ S , the trajectory with the initial point z will

stay in S , i.e., ηz(t) ⊂ S ∀t ∈ <; Moreover, a compact invariant set A is

said to be internally chain recurrent if every point in A is chain recurrent.

Assumptions:

A2. The gain {αk} satisfies αk > 0∀ k, limk→∞ αk = 0, and
∑∞

k=0 αk = ∞.

On the other hand, λk = O(k−λ) for some constant λ ≥ 0 and Nk = Θ(kβ),

where β > max{0, 1− 2λ}.

A3. For a given ρ ∈ (0, 1) and a distribution family {fθ(·), θ ∈ Θ}, the

(1− ρ)-quantile of {H(X), X ∼ fθ(x)} is unique for each θ ∈ Θ.

In A2, the condition on the gain sequence {αk} is standard in the analysis

of stochastic approximation. Note that the sample size parameter Nk is

generally increased to infinity at a polynomial rate. The intuition here is

that we need the sample size to go to infinity so that the bias and noise

term {βk} will asymptotically vanish. On the other hand, A3 is necessary

for showing that the estimated sample quantile sequence {γ̂k} in Algorithm

4.2 will converge to the true quantile. This assumption is satisfied for many

objective functions and for many distributions in the parameterized family.
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We now present the convergence theorem for Algorithm 4.2 as follows, and

the same result can be obtained under other similar conditions, see [8] and

[44].

Theorem 4.2.1. Assume that L(η) is continuous with a unique integral

curve and A1-A3 hold. Then the sequence {ηk} generated by (4.4) converges

to a compact connected internally chain recurrent set of (4.6) w.p.1. Further-

more, if the internally chain recurrent sets of (4.6) are isolated equilibrium

points, then w.p.1 {ηk} converges to a unique equilibrium point.

This theorem follows from Theorem 1.2 in [5], and the idea of the proof

is to verify that conditions A1-A3 in [5] hold. A potential difficulty here is

the sample (1 − ρ)-quantile γ̂k that appears in bk(θ̂k) in (4.5). Fortunately,

the following proposition and lemma ensure that, under some conditions the

bias term bk(θ̂k) will ultimately vanish as k −→∞.

Lemma 4.2.1. Let γk be the true (1 − ρ)-quantile of H(X) with respect to

fθ̂k and γ̂k be the corresponding sample (1 − ρ)-quantile. If A2 and A3 are

satisfied, then γ̂k → γk as k →∞ w.p.1.

Proof. Similar to the proof of Lemma 7 in [32]; see also the proof of Lemma 4.3.1.

Proposition 4.2.1. If assumptions A2 and A3 are satisfied, then

bk(θ̂k)→ 0 as k →∞ w.p.1.
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Proof. We prove Proposition 4.2.1 in Appendix.

Proof of Theorem 4.2.1 : To proof the theorem we could simply verify

that conditions A1-A3 in [5] hold. As X is compact and Γ is continuous,

the sequence {ηk} is bounded, which ensures A1 in [5] hold. A2 in [5] is

a direct consequence of Proposition 4.2.1. To establish A3 in [5], we let

Mn =
∑n

k=0 αkξk(θ̂k) so that {Mn} is a martingale. Furthermore, we have

E[‖Mn‖2] = E
[∥∥∥ n∑

k=0

αkξk(θ̂k)
∥∥∥2]

=
n∑
k=0

α2
kE
[∥∥ξk(θ̂k)∥∥2]

=
n∑
k=0

α2
kE
[
Eθ̂k [ξk(θ̂k)

T ξk(θ̂k)|Fk−1]
]

=
n∑
k=0

(1− αk)2λ2
kN
−1
k E

[
Eθ̂k [Γ(X)TΓ(X)|Fk−1]−m(θ̂k)

Tm(θ̂k)
]

= O
( n∑
k=1

1

kβ+2λ

)
<∞

where the last equation holds since β + 2λ > 1 by A2. Therefore, the L2-

bounded martingale convergence theorem (e.g., [64]) implies that {Mn} con-

verges w.p.1 to a finite random vector M∞ which shows that condition A3

in [5] holds, and this completes the proof. �

Several remarks are needed to explain the theorem. First, the mean vec-

tor function η = m(θ) is invertible, therefore we could also use η as the

parameter for the parameterized distribution family. Moreover, the optimal

parameter η∗ is expected to be the one whose associated parameterized dis-

tribution concentrates its mass on the set of optimal solutions to (3.1) (cf.
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(4.5)). However, compared with case a) and c) in the examples in Chapter

3, the model updating procedure for Algorithm 4.2 and the CE method may

not necessarily lead to such an optimal reference distribution g∗ that only

concentrates on the global optimum. This implies that Algorithm 4.2 and the

CE method may not converge to the global optimum. On the other hand,

Theorem 4.2.1 shows that the sequence of the iterates {ηk} will asymp-

totically approach the limiting solution of ODE (4.6). In other words, after

certain regular conditions are satisfied, the asymptotic behavior of Algorithm

4.2 merely depends on its underlying ODE. To our best knowledge, the con-

clusion given by Theorem 4.2.1 is the strongest result we could obtain. In

particular, there exist counterexamples indicating that the CE method and

its variants do not converge to the global optimum, see [32]. To better ex-

plain the statement, we provide the following example to show that, the

local/global convergence properties of the CE method can be determined by

the solution of the underlying ODE.

Example 3.1: Consider maximizing the function

H(x) =


0 x ∈ {(0, 1), (1, 0)}

1 x = (0, 0)

2 x = (1, 1)

(4.7)

by sampling from the parameterized p.m.f.

fθ(x) =
(δ + eϑ1

1 + eϑ1

)x1
( 1− δ

1 + eϑ1

)1−x1
(δ + eϑ2

1 + eϑ2

)x2
( 1− δ

1 + eϑ2

)1−x2

,
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where x := (x1, x2)T ∈ X := {(0, 0), (0, 1), (1, 0), (1, 1)}, θ := (ϑ1, ϑ2)T ∈ <2,

and δ ∈ (0, 1). By definition of NEF, it can be verified that Γ is given by

Γ(x) = (x1, x2)T and η := (η1, η2)T :=
(δ + eϑ1

1 + eϑ1
,
δ + eϑ2

1 + eϑ2

)T
.

Take ρ ∈ (0, δ2), ϕ(x) ≡ 1 and ε ∈ (0, 1), then since Pθ
(
X = (1, 1)

)
≥ δ2 > ρ

for all θ, we have γ(m−1(η)) = 2. Therefore

Eθ[I(H(X), γ(m−1(η)))] = η1η2

and

Eθ[I(H(X), γ(m−1(η)))Γ(X)] = (η1η2, η1η2)T .

Consequently,

L(η) = (1− η1, 1− η2)T .

To find the equilibrium point, we simply set L(η) = (0, 0)T . Then it is obvious

that η∗ = (1, 1)T is an equilibrium point of the ODE dη(t)/dt = L(η). We

then use the Lyapunov function approach to prove the uniqueness of the

equilibrium point.

We construct the Lyapunov function as V (η) = 1
2
[(η1−1)2 +(η2−1)2]. It

is easy to see that the derivative of V is V̇ (η(t)) = (η1 − 1)η̇1 + (η2 − 1)η̇2 =

−(1− η1)2− (1− η2)2. Apparently, V̇ (η(t)) is negative definite for all η 6= η∗.

Therefore, η∗ = (1, 1)T is the unique globally asymptotically stable point, in

which case Theorem 4.2.1 implies that the sequence of sampling distributions
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{fθ̂k} obtained in Algorithm 4.2 will converge to a degenerate distribution

that assigns unit mass to the optimal solution x = (1, 1).

On the other hand, if we use the p.m.f.

fθ(x) =
(δ + eϑ1

1 + eϑ1

)1−x1
( 1− δ

1 + eϑ1

)x1
(δ + eϑ2

1 + eϑ2

)1−x2
( 1− δ

1 + eϑ2

)x2

for some constant δ ∈ (1
2
, 1), it is straightforward to see that

Γ(x) = (x1, x2)T and η =
( 1− δ

1 + eϑ1
,

1− δ
1 + eϑ2

)T
.

If we take ρ ∈
(
(1 − δ)2, δ2

)
, then since Pθ

(
H(X) ≥ 1

)
≥ Pθ

(
X = (0, 0)

)
≥

δ2 > ρ and Pθ
(
H(X) ≥ 2

)
= Pθ

(
X = (1, 1)

)
≤ (1− δ)2 < ρ, by definition of

quantiles we get γ(m−1(η)) = 1. Therefore, we have

L(η) =
( η1η2

η1η2 + (1− η1)(1− η2)
− η1,

η1η2

η1η2 + (1− η1)(1− η2)
− η2

)T
.

By setting L(η) = (0, 0)T and solving the equation, it can be seen that the

isolated equilibrium points (0, 0)T , (1
2
, 1

2
)T and (1, 1)T are the only chain

recurrent points to the ODE dη(t)/dt = L(η). Therefore, Theorem 4.2.1

implies that the sequence {ηk} generated by Algorithm 4.2 will converge to

one of them.

In a third case, if we use the p.m.f.

fθ(x) =
(δ + eϑ1

1 + eϑ1

)x1
( 1− δ

1 + eϑ1

)1−x1
(δ + eϑ2

1 + eϑ2

)1−x2
( 1− δ

1 + eϑ2

)x2
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for some constant δ ∈ (0, 1), we have

Γ(x) = (x1, x2)T and η =
(δ + eϑ1

1 + eϑ1
,

1− δ
1 + eϑ2

)T
.

If we take ρ ∈ (1−δ2, 1), then since Pθ(H(X) = 0) = Pθ(X ∈ {(0, 1), (1, 0)}) ≥

δ2, it follows that Pθ(H(X) ≥ 1) = 1 − Pθ(H(X) = 0) ≤ 1 − δ2 < ρ and

Pθ(H(X) ≥ 0) = 1 > ρ. Thus, we have γ(m−1(η)) = 0 and L(η) ≡ (0, 0)T .

It follows that the sequence {ηk} will converge to the set of chain recurrent

points of (4.6), which is the set of all η = (η1, η2)T satisfying η1 ∈ [δ, 1] and

η2 ∈ [0, 1− δ].

There are other ways to address the convergence analysis with the ODE

approach. In [43], it is assumed that the underlying ODE has a locally

asymptotically stable point η∗. Moreover, it is assumed that there exists

a compact set in the domain of attraction of η∗, where the sequence {ηk}

will enter this domain infinitely often. For the ODE with a unique globally

asymptotically stable point, Algorithm 4.2 will converge to the global opti-

mum. However, for an arbitrary and complicated ODE, it is very difficult

to verify this assumption, and this becomes a major constraint for the ODE

analysis approach.
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4.3 ASYMPTOTIC NORMALITY

Throughout this section, we assume the random sequence {ηk} generated

by Algorithm 4.2 converges to a unique limit point and then analyze the

asymptotic convergence rate of Algorithm 4.2. In particular we consider the

special case that the underlying ODE has a unique globally asymptotically

equilibrium η∗, and

ηk −→ η∗ w.p.1 as k −→∞.

For the convenience of analysis, we assume that m−1(η∗) ∈ int(Θ). Since

m(·) is continuously differentiable on int(Θ) and m−1(·) is invertible, by

inverse function theorem we know that m(·) is also continuously differentiable

in some open neighborhood of η∗. This statement implies that, as long as the

mean vector sequence {ηk} converges to η∗, the sequence of the parameterized

sampling distributions {fθ̂k} in Algorithm 4.2 will converge point-wise to a

limiting distribution fm−1(η∗) w.p.1.

Note that L(η) can be viewed as the gradient of some function F (η),

therefore recursion (4.5) could be interpreted as a gradient search algorithm

for solving the maximization problem maxη F (η). Once we have the conver-

gence result, which states that {ηk} converges to η∗ with probability one,

it is natural to expect that η∗ is a local or global optimum of the objective

function F (η) in its neighborhood (see [1] for a detailed discussion). We de-

note the Jacobian matrix of L(·) in (4.6) by JL(η), which could essentially
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be viewed as the Hessian matrix of the objective function F (η). Moreover,

it is reasonable to make the following assumption on JL.

Assumption B1. The Jacobian matrix JL(η) is continuous, symmetric and

negative definite in a small neighborhood of η∗.

In the convergence rate analysis we choose a standard gain sequence as

αk = c/kα for constants c > 0, α ∈ (0, 1), and let λk = Θ(k−λ) for λ ≥ 0.

It is very easy to verify that both αk and λk satisfy A2. Once we define the

difference δk := ηk − η∗, the recursion (4.5) can be rewritten into the form:

δk+1 = δk + αkL(ηk) + αkbk(θ̂k) + αkξk(θ̂k).

Using a Taylor expansion of L(ηk) in a small neighborhood of η∗, we could

get the following equation:

δk+1 = δk + ck−αJL(η̄k)δk + ck−αbk(θ̂k) + ck−αξk(θ̂k),

where η̄k lies on the line segment between ηk and η∗. Note that since η∗ is a

local optimum, we have the fact that L(η∗) = 0. Thus the Taylor expansion

above only contains the second order of derivative. This equation, which

can be viewed as an evolution of δk, also involves the bias/noise term bk and

injected noise term ξk. Therefore, similar to the analysis for the convergence

of Algorithm 4.2, we need to carefully examine the parameters to ensure that

{δk} converges to zero under certain rate.
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In this thesis, we follow Fabian’s approach [17] to analyze the asymptotic

convergence rate of the SA recursion. The convergence rate analysis in [17]

provides generally sufficient conditions to establish asymptotic normality re-

sults for SA. To get the convergence rate for Algorithm 4.2, We rewrite the

above equation as the same form in [17]:

δk+1 = δk − k−αΥkδk + k−
α+τ

2 ΦkVk + k−α−
τ
2Tk,

where τ > 0 is a constant, Υk = −cJL(η̄k), Φk = cId×d, Vk = k−
α
2

+ τ
2 ξk(θ̂k),

Tk = ck
τ
2 bk(θ̂k), and Id×d denotes a d-by-d identity matrix. In addition,

for a technical reason, we need the following regularity condition on the

distribution function of the objective function. Let fH
θ̂k

be the probability

density/mass function of H(X) when X is distributed with respect to fθ̂k .

Assumption B2.

• Continuous optimization: For a given ρ ∈ (0, 1), there exist constants ζ̄ > 0

and δ̄ > 0 such that fH
θ̂k

(γ) > ζ̄, ∀ γ ∈ (γk − δ̄, γk + δ̄) almost surely for k

sufficiently large.

• Discrete finite optimization: For a given ρ ∈ (0, 1), there exists a constant

ζ̄ > 0 such that Pθ̂k(H(X) ≥ γk|Fk−1) ≥ ρ+ ζ̄ and Pθ̂k(H(X) > γkFk−1) ≤

ρ− ζ̄ almost surely for k sufficiently large.

Generally speaking, B2 is not easy to verify a priori since the distribu-

tion of the random variable H(X) depends on the objective function and
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the sampling distribution selected from the parameterized families. Fortu-

nately, since in this section it is already assumed that the SA recursion (4.5)

converges to a unique global optimum and the sequence of the sampling dis-

tributions also converges (point-wisely) to a limiting distribution, B2 can be

considered reasonable. For example, in the continuous case, if fHm−1(η∗) is

the limiting distribution of {fH
θ̂k
} and fHm−1(η∗)(γ∗) > 0 where γ∗ is the true

(1 − ρ)-quantile of H under fHm−1(η∗), Assumption B2 holds; in the discrete

finite case, if the sequence of the sampling distributions converges to a unit

mass function, Assumption B2 also holds.

As the convergence rate theorem follows from the asymptotic normality

result in [17], the following proposition and lemmas show that conditions

(2.2.1), (2.2.2), and (2.2.3) in [17] hold in the case of Algorithm 4.2.

Lemma 4.3.1. Let Nk = Θ(kβ). For any τ > 0, if A3 and B2 hold, and

β > 2τ , then limk→∞ k
τ
2 |γ̂k − γk| = 0 w.p.1.

Proof. See Appendix for a proof.

Proposition 4.3.1. For any constant τ > 0, let β > 2τ . If A3 and B2 hold,

then Tk → 0 as k →∞ w.p.1.

Proof. The proof is given in Appendix.

Lemma 4.3.1 is a strengthened version of Proposition 4.2.1. It shows that,

by carefully controlling the parameter of the sample size at each iteration of

Algorithm 4.2, the sample quantile γ̂k would converge to the true quantile γk
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at a desirable polynomial rate. Moreover, Proposition 4.3.1 is a strengthened

version of Proposition 4.2.1, which claims that the amplified bias term Tk

vanishes to zero asymptotically. Moreover, the amplified noise Vk has the

following properties.

Lemma 4.3.2. Let αk = c/kα, λk = Θ(k−λ), and Nk = Θ(kβ) for con-

stants α ∈ (0, 1), λ ≥ 0, and β > max{0, 1 − 2λ}. If A1 and A3 hold,

and in addition, β ≥ α + τ − 2λ for τ > 0, then Eθ̂k [Vk|Fk−1] = 0 and

there exists a matrix Σ such that Eθ̂k [VkV
T
k |Fk−1] → Σ as k → ∞ w.p.1.

Moreover, the sequence {Vk} is uniformly square integrable in the sense that

limk→∞E
[
I{‖Vk‖2≥rkα}‖Vk‖2

]
= 0 ∀ r > 0.

Proof. See Appendix.

By directly applying Theorem 2.2 in [17] with lemma 4.3.2 and Proposi-

tion 4.3.1 above, we could get the asymptotic normality of Algorithm 4.2.

Theorem 4.3.1. Let αk = c/kα, α ∈ (1
2
, 1) and λk = Θ(k−λ), λ ∈ [0, α− 1

2
).

If A1, A3, B1, and B2 hold, τ ∈ (1− α, α− 2λ), and β ≥ α + τ − 2λ, then

k
τ
2 (ηk − η∗)

dist−−−→ N(0, QMQT ),

where Q is an orthogonal matrix such that QT (−JL(η∗))Q = Λ with Λ

being a diagonal matrix, and the (i, j)th entry of M is given by M(i,j) =
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(QTΣQ)(i,j)(Λ(i,i) + Λ(j,j))
−1,

Σ :=

Covm−1(η∗)(Γ(X)) if β = α + τ − 2λ,

0 if β > α + τ − 2λ.

Theorem 4.3.1 indicates that the asymptotic rate for Algorithm 4.2 is

bounded below by O(1/
√
kτ ). This is different from O(1/

√
k) which is the

optimal convergence rate for general stochastic approximation algorithms.

Note that by choosing τ close to α − 2λ, α close to 1 and λ close to 0,

we could approximately achieve the optimal bound. In particular, when

β > α+ τ − 2λ, Theorem 4.3.1 implies that kτ/2(ηk− η∗)→ 0 in probability.

However, the asymptotic rate only describes the limiting behavior of the

convergence, and does not directly determine the convergence speed of the

algorithm in practice. Meanwhile, the asymptotic rate is carried out in terms

of the iteration number rather than the sample size. As a result, we need to

carefully choose those parameters when implementing Algorithm 4.2 in order

to achieve a good practical performance.

4.4 Numerical Examples

In this section, we provide some numerical examples for Algorithm 4.2 and

compare it with the standard CE method in [60]. The examples would pri-

marily focus on continuous optimization problems. We choose a set of twelve

benchmark problems from [32], [46], [60].
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(1) Shekel function (n = 4, 0 ≤ xi ≤ 10, i = 1, . . . , n):

H1(x) =
5∑
j=1

( 4∑
i=1

(xi − Ai,j)2 +Bj

)−1

− 10.1532,

with B = (0.1, 0.2, 0.2, 0.4, 0.4)T , A1 = A3 = (4, 1, 8, 6, 3), and A2 =

A4 = (4, 1, 8, 6, 7), where Ai represents the ith row of A. The function

has a global maxima x∗ = (4, 4, 4, 4)T and H1(x∗) = 0.

(2) Rosenbrock function (n = 10, −10 ≤ xi ≤ 10):

H2(x) = −1−
n/2∑
i=1

[
100(x2i − x2

2i−1)2 + (1− x2i−1)2
]
,

where H2(x∗) = −1.

(3) Zakharov function (n = 20, −10 ≤ xi ≤ 10):

H3(x) = −1−
n∑
i=1

x2
i −

( n∑
i=1

0.5ixi

)2

−
( n∑
i=1

0.5ixi

)4

,

where H3(x∗) = −1.

(4) Rastrigin function (n = 30, −5.12 ≤ xi ≤ 5.12):

H4(x) = −
n∑
i=1

(
x2
i − 10 cos(2πxi)

)
− 10n,

where H4(x∗) = 0.
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(5) Ackley function (n = 40, −32 ≤ xi ≤ 32):

H5(x) = −20− e+ 20e−0.2
√

1
n

∑n
i=1 x

2
i + e

1
n

∑n
i=1 cos(2πxi),

where H5(x∗) = 0.

(6) levy function (n = 50, −50 ≤ xi ≤ 50):

H6(x) = −1− sin2(πy1)− (yn − 1)2(1 + sin2(2πyn))

−
n−1∑
i=1

[
(yi − 1)2(1 + 10 sin2(πyi + 1))

]
,

where yi = 1 + (xi − 1)/4, i = 1, . . . , n and H6(x∗) = −1.

(7) Trigonometric function (n = 50, −50 ≤ xi ≤ 50):

H7(x) = −1−
n∑
i=1

[
8 sin2

(
7(xi − 0.9)2

)
+6 sin2

(
14(xi − 0.9)2

)
+(xi−0.9)2

]
,

where H7(x∗) = −1.

(8) Griewank function (n = 50, −50 ≤ xi ≤ 50):

H8(x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos
( xi√

i

)
,

where H8(x∗) = −1.
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(9) Brown function (n = 50, −50 ≤ xi ≤ 50):

H9(x) = − 1

25

n/2∑
i=1

[
(x2i − 3)2 − (x2i−1 − x2i) + e20(x2i−1−x2i)

]

− 1

25

( n/2∑
i=1

(x2i−1 − 3)
)2
,

where H9(x∗) = −1.

(10) Powell function (n = 50, −50 ≤ xi ≤ 50):

H10(x) = −
(n−2)/2∑
i=1

[
(x2i−1 + 10x2i)

2 + 5(x2i+1 − x2i+2)2

+(x2i − 2x2i+1)4 + 10(x2i−1 − x2i+2)4
]
− 1,

where H10(x∗) = −1.

(11) Cragg and Levy function (n = 50, −50 ≤ xi ≤ 50, i = 1, . . . , n):

H11(x) = −
(n−1)/2∑
i=1

[
(ex2i−1 − x2i)

2 + 100(x2i − x2i+1)4

+ tan2(x2i+1 − x2i+2) + x8
2i−1 + (x2i+2 − 1)4

]
,

where H11(x∗) ≈ −21.51.
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(12) Pintér function (n = 50, −50 ≤ xi ≤ 50):

H12(x) = −
n∑
i=1

ix2
i − 1−

n∑
i=1

20i sin2
(
xi−1 sinxi − xi + sinxi+1

)

−
n∑
i=1

i log10

(
1 + i(x2

i−1 − 2xi + 3xi+1 − cosxi + 1)2
)
,

where x0 = xn, xn+1 = x1, and H12(x∗) = −1.

Also, we would consider multivariate normal distributions and independent

univariate normal distributions as two parameterized distribution families in

Algorithm 4.2 and the standard CE. Note that when we use multivariate

normal distributions N(µ̂k, Σ̂k) with λk = 0 for all k, the the parameter

updating step (i.e., Step 3) in Algorithm 4.2 induces an explicit parameter

updating procedure as the following:

µ̂k+1 = αk

∑
Λk
ϕ(H(x))I(H(x), γ̂k)x∑

Λk
ϕ(H(x))I(H(x), γ̂k)

+ (1− αk)µ̂k and

Σ̂k+1 = αk

∑
Λk
ϕ(H(x))I(H(x), γ̂k)(x− µ̂k+1)(x− µ̂k+1)T∑

Λk
ϕ(H(x))I(H(x), γ̂k)

+ (1− αk)
(
Σ̂k + (µ̂k − µ̂k+1)(µ̂k − µ̂k+1)T

)
.

For independent univariate normal distribution, the parameter updating pro-

cedure is similar, where each of the variances is updated in a point-wise

manner.
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On the other hand, the parameter updating procedure in [60] is carried

out by

θ̃k+1 := νkθ̄k+1 + (1− νk)θ̃k, with θ̃0 = θ̂0, (4.8)

where θ̄k+1 is the new parameter calculated at Step 3 of Algorithm 4.2 with

αk = 1 in (4.4), and νk is a smoothing parameter imposed on the parame-

ters of the parameterized distributions. However, as far as we can see, this

smoothing procedure in the standard CE method may not have a strong

theoretical support. In contrast, the smoothing parameter αk in Algorithm

4.2 is used on the entire reference distributions in order to prevent the sam-

pling distributions from varying too fast. By establishing the connection

between Algorithm 4.2 to SA, we could see that the smoothing parameters

{αk} become the gain sequence in (4.4). Therefore, Algorithm 4.2 provides

a theoretical guarantee of its convergence. Consequently, we expect that

Algorithm 4.2 would show better performance in the numerical tests.

Parameter Settings

When performing Algorithm 4.2 through the test problems, we use the fol-

lowing parameter setting.

• Initial parameters of the sampling distributions: The initial means are

uniformly generated from the solution space, and the initial covariance

matrix is set to be a n× n diagonal matrix with diagonal entries equal

to 1000.
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In our preliminary experiments, we found that the practical perfor-

mance of Algorithm 4.2 is insensitive to the initial parameters of the

sampling distributions. Therefore, we choose a large initial variance

(e.g., 1000) so that the search could cover the entire solution space at

the beginning of the algorithm.

• Smoothing parameters/gain sequence: αk = 2/(k + 100)0.501.

The choice of the gain sequence {αk} reflects the trade-off between ex-

ploitation and exploration, and our preliminary results show that the

practical performance of Algorithm 4.2 is mainly sensitive to {αk}. A

fast decay rate for {αk} tends to lead a rapid convergence, in which

case the search may only stop at a local optimum. On the other hand,

a slow decay rate tends to lead the algorithm to search more region in

the solution space. Although this feature may lead the search towards

the global optimum, the algorithm would keep oscillating for a long

period before it converges. Generally speaking, for those high dimen-

sional multimodal problems, a relatively slow decay rate is preferred

since “exploration” is more desirable under this scenario. For our test

problems, we use αk = 2/(k + 100)0.501 as a conservative choice. Note

that this setting of {αk} satisfies Assumption A2, and the constant 100

is merely used to keep the initial step size small to prevent unnecessary

unstable behavior in the early stage. Further discussions on choices of

the gain sequence can be found in [67].
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• Proportion for elite set: ρ = 0.1.

All ρ ∈ [0.01, 0.2] works well in our preliminary experiments.

• Parameter of injected noise: λ = 0.

In our implementation, we ignore the manner of injecting extra noise.

• Sample size: Nk = max{400, k1.01}.

Note that this setting also satisfies Assumption A2, where the constant

400 is to ensure that the number of the top-ρ elite samples is still

enough for model updating, see [60] for a detailed discussion. Note

that our settings of Nk and λ also satisfy Assumption A2.

The performance of Algorithm 4.2 was also compared with that of the

standard CE with the smoothed parameter updating procedure (4.8). In

standard CE, the smoothing parameter νk was set equal to αk in Algorithm

4.2, while all other settings were taken to be the same as in Algorithm 4.2.

Also we have put same computational budget on both algorithms for the

performance comparison, i.e., for H1 and H8, the total number of function

evaluations is set to 105; for H5-H7 the number is 3 × 105; for H2-H4 and

H9-H12, the number is 8× 105.

For each benchmark function, we performed 100 independent replication

runs of all algorithms. Table 4.1 and 4.2 keep the report of all the tests, where

for each algorithm, H̄∗i is the average of the best function value Hi obtain

in each run (with standard error given in parentheses), and Nε indicates

the number of replication runs (out of 100) in which it achieves ε-optimal
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solution (i.e., a solution whose function value is within ε of H(x∗) and ε is

set to 0.001 in our tests). Moreover, for test functions H7-H12, we plotted

the averaged estimated optimal function value, as a function of the number

of function evaluations used thus far, in Figure 4.1. The results indicate

that the performance of Algorithm 4.2 that performs the smoothed reference

distribution updating procedure is promising, compared with the standard

CE using updating procedure (4.8). In particular, we found that in the

multivariate normal case, Algorithm 4.2 achieves the ε-optimal solution in

more than 90% of replication runs in H4, H11 and H12, and 100% for other

objective functions. On the other hand, the standard CE with updating

procedure (4.8) failed to find the ε-optimal solution in all replication runs

for most of the problems. For the univariate normal case, although both

Algorithm 4.2 and the standard CE failed in many problems (which shows

that using multivariate normal distributions as the sampling distributions

family is more effective), Algorithm 4.2 still had much better average of

optimal estimations in H10, H11 and H12.
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Table 4.1: Performance of Algorithm 4.2 vs. CE with smoothed parame-
ter updating on benchmark problems H1 − H12, based on 100 independent
replications and multivariate normal distributions ( standard errors in paren-
theses).

Alg. Algorithm 4.2 CE
(multivariate normal) (multivariate normal)

Prob. H̄∗i Nε H̄∗i Nε

H1 3.2e-7 (2.16e-16) 100 3.2e-7 (1.90e-16) 100
H2 -1.00 (1.55e-06) 100 -7.92 (2.30e-2) 0
H3 -1.00 (2.45e-12) 100 -1.00 (0e+00) 100
H4 -1.09 (2.89e-2) 91 -2.10 (1.04e-1) 10
H5 -6.35e-6 (1.05e-7) 100 -3.86 (0.27) 0
H6 -1.00 (1.60e-6) 100 -2.51e+2 (1.02e+1) 0
H7 -1.00 (1.07e-06) 100 4.55e+3 (1.69e+2) 0
H8 -1.00 (4.47e-06) 100 -3.12 (4.82e-2) 0
H9 -1.00 (2.40e-12) 100 -2.43e+4 (4.78e+2) 0
H10 -1.00 (9.19e-17) 100 -6.22e+5 (1.18e+5) 0
H11 -24.60 (0.42) 94 -3.09e+6 (7.72e+8) 0
H12 -2.24 (0.48) 96 -8.23e+4 (3.13e+3) 0
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Table 4.2: Performance of Algorithm 4.2 vs. CE with smoothed parameter
updating on benchmark problems H1−H12, based on 100 independent repli-
cations and univariate normal distributions (standard errors in parentheses).

Alg. Algorithm 4.2 CE
(univariate normal) (univariate normal)

Prob. H̄∗i Nε H̄∗i Nε

H1 -3.13 (0.37) 59 -3.43 (0.37) 54
H2 -7.45 (2.18e-3) 0 -8.62 (5.89e-3) 0
H3 -1.86e+2 (1.05e+2) 0 -2.88e+2 (12.30) 0
H4 -1.00 (1.69e-6) 100 -1.00 (1.29e-6) 100
H5 -1.28e-5 (4.07e-7) 100 -1.09e-5 (4.24e-8) 100
H6 -1.00 (8.74e-5) 100 -1.00 (1.02e-5) 100
H7 -1.00 (3.53e-6) 100 -1.00 (7.10e-7) 100
H8 -1.00 (2.08e-6) 100 -1.00 (2.25e-6) 100
H9 -1.00 (1.45e-8) 100 -2.97 (0.85) 0
H10 -9.16e+3 (7.78e+2) 0 -1.10e+5 (5.60e+3) 0
H11 -101.04 (3.51) 0 -1.65e+5 (3.06e+4) 0
H12 -29.92 (0.22) 0 -96.20 (0.42) 0
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Figure 4.1: Average Performance of Algorithm 4.2 vs. CE with smoothed
parameter updating procedure on test functions H7-H12.
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Chapter 5

Model-based Annealing

Random Search for Global

Optimization

5.1 Model-based Annealing Random Search

and its connection to SA

The Model-based Annealing Random Search (MARS) for solving problem

(3.1) is inspired by the Annealing Adaptive Search (AAS) [57] and the Cross

Entropy method [60]. As we mentioned in the introduction, AAS uses Boltz-

mann distribution as the probability model, i.e., it generates candidate solu-
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tions by sampling from a sequence of Boltzmann distributions:

gk(x) =
eH(x)/Tk∫

X e
H(x)/Tkν(dx)

, (5.1)

Note that the Boltzmann distribution has a time-dependent parameter Tk

that could be interpreted as the temperature in a real physical annealing

process. Intuitively speaking, as the temperature Tk decreases to zero, the

Boltzmann distributions will asymptotically concentrate on the region that

contains the global optima (i.e., the set on which H(·) achieves global max-

imum). Although AAS has certain nice theoretical properties [57],[76], the

idealized AAS cannot be directly used to solve optimization problems in

practice since it is well known that sampling directly from a Boltzmann

distribution is a difficult task. Although some Markov chain Monte Carlo

(MCMC) techniques can be used to approximate the sampling procedure

and soften the difficulty [58, 78, 76], it is still not convenient for practical

implementation.

To inherit the advantages from AAS as well as CE and other model-based

methods such as model reference adaptive search (MRAS) [32], we follow the

same framework as Algorithm 4.2, and choose the Boltzmann distributions

as the reference probability model, see case c) in the example in Chapter

3. Specifically, in the idea of MARS, the target reference distribution is the

Boltzmann distribution (5.1). Note that when it comes to discrete cases, the

integral in (5.1) is simply replaced by summation. Intuitively, as the tem-
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perature parameter Tk decreases to a small constant T ∗ ≥ 0, the sequence

of the Boltzmann distributions {gk} will converge to a limiting distribution

g∗ that puts most of the weight on the region that contains promising so-

lutions, and solutions generated with small T ∗ will be close to the global

optima with high probability. However, an obvious difficulty is that the

Boltzmann distributions involve the objective function H(·), which is un-

known explicitly a priori. Also as we mentioned in AAS, sampling directly

from this Boltzmann distribution with explicit structure is still intractable.

To address this problem, as what has been done in the CE method [60], we

specify a family of parameterized distributions {fθ, θ ∈ Θ} as the surrogate

sampling distributions which are approximations of the Boltzmann distribu-

tions. The approximation follows (3.2), i.e., it minimizes the KL divergence

between the reference Boltzmann distribution gk+1 and the parameterized

family. Compared with CE and MRAS, MARS eliminates difficulty of the

quantile estimation of an unknown objective function under a given distri-

bution. At the same time, this approach avoids the task of directly sampling

from the Boltzmann distribution. In contrast, generating random samples

from the surrogate distributions becomes much easier, while these surrogate

distributions are expected to asymptotically track the target Boltzmann dis-

tributions.

In MARS, similar to (3.3), instead of directly using the Boltzmann se-

quence {gk} in (5.1) to minimize the KL-divergence as in (3.2), we consider
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a more general sequence of distributions in the recursive form

g̃k+1(x) = αkgk+1(x) + (1− αk)fθk(x) with αk ∈ (0, 1] ∀ k = 0, 1, . . ., (5.2)

where αk is a smoothing parameter so that each g̃k+1 is a mixture of the

Boltzmann density function gk+1(x) = eH(x)/Tk+1∫
X e

H(x)/Tk+1ν(dx)
and the sampling dis-

tribution fθk obtained at the kth iteration. Intuitively, such a mixture g̃k+1

leads the sampling distribution to be updated in a smooth way. It retains

the properties of the new k+ 1 th Boltzmann distribution, while making the

new sampling distribution fθk+1
not to deviate too much from the current

sampling distribution fθk . From our preliminary numerical implementations,

this smoothing step is especially useful.

We now present the simple idealized MARS algorithm as follows:

Algorithm 5.1. Model-based Annealing Random Search (Idealized

Version)

Step 0: Specify an initial parameterized density/mass function fθ0(x) on X,

θ0 ∈ Θ, an annealing schedule {Tk}, and a sequence {αk}. Set iteration

counter k = 0.

Step 1: Compute the new parameter θk+1 = arg minθ∈Θ D(g̃k+1, fθ), where

g̃k+1 is given by (5.2).

Step 2: If a stopping rule is satisfied, then terminate; otherwise set k = k+1

and go to Step 1.
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As in CE and Algorithm 4.2, we choose the Natural Exponential Family

(NEFs) to be the parameterized family. Again, a significant advantage for

choosing NEFs is that the parameters generated in Step 1 could be computed

analytically in a closed from for arbitrary g̃k in step 1. When NEFs are used in

Algorithm 5.1 to approximate the generalized target Boltzmann distributions

(5.2), the following lemma establishes a key connection between the idealized

MARS and the gradient search.

Lemma 5.1.1. If fθ belongs to the NEF and the new parameter θk+1 obtained

via minimizing D(g̃k+1, fθ) satisfies θk+1 ∈ int(Θ) for all k, then

m(θk+1)−m(θk) = −αk∇θD(gk+1, fθ)|θ=θk ∀ k = 0, 1, 2, . . . , (5.3)

Proof. Note that since θk+1 is an interior point of Θ, it satisfies the first order

necessary condition for optimality of the problem minθ∈Θ D(g̃k+1, fθ). Thus,

by directly applying Lemma 2 in [32], we have m(θk+1) = Efθk+1
[Γ(X)] =

Eg̃k+1
[Γ(X)]. It follows from (5.2) that

m(θk+1) = Eg̃k+1
[Γ(X)] = αkEgk+1

[Γ(X)] + (1− αk)m(θk).

Thus, the difference between the two successive mean parameter vectors can

be written as

m(θk+1)−m(θk) = αk

(
Egk+1

[Γ(X)]−m(θk)
)
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= αkEgk+1

[
Γ(X)−

∫
X e

θTk Γ(x)Γ(x)ν(dx)∫
X e

θTk Γ(x)ν(dx)

]
= −αk∇θD(gk+1, fθ)|θ=θk ,

where the second equality above follows from the definitions of m(θ) and

NEFs, and the interchange of derivative and integral in the last step is guar-

anteed by the dominated convergence theorem.

Similar to the discussion of Lemma 3.2.1, Lemma 5.1.1 states that MARS

implicitly interprets a deterministic gradient search method for a time-varying

objective function on the parameter space, where the sampling distribution

parameterized by the optimal parameter θ∗ is the best approximation to the

limiting Boltzmann distribution g∗. Moreover, the smoothing parameter αk

turns out to be the step size in the gradient recursion. As in Algorithm 4.2,

MARS implicitly solves the counterpart problem of (3.1) with nice structures,

and this may explain its outstanding performance on hard optimization prob-

lems in practice. As we know that a careful control of the gain sequence will

lead the gradient-based method to convergence, it is natural to expect the

global convergence for MARS as well.

Since the idealized MARS algorithm involves calculating the true expec-

tation with respect to gk, it is difficult to compute the new parameter θ̂k+1 in

Step 2. To address this issue, we present the Monte Carlo version of MARS

algorithm that uses the random samples to estimate those expected values.

Before we bring out the Monte Carlo version of MARS, we need to define
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two additional parameter sequences. The first one is the sample size se-

quence {Nk, k = 0, 1, . . .}, which specifies the number of candidate solutions

to be generated at each iteration. The second one is a constant sequence

{λk, k = 0, 1, . . .} called sample allocation rule. Specifically, in Monte Carlo

MARS, we use a mixing parameter λk ∈ (0, 1] to mix the current sampling

distribution and the initial sampling distribution, and then use the mixture

instead of the current sampling distribution to generate random candidate

solutions.

Algorithm 5.2. Model-based Annealing Random Search

Step 0: Choose an initial density/mass function fθ̂0(x) on X, θ̂0 ∈ int(Θ).

Specify an annealing schedule {Tk}, a gain sequence {αk}, a sample

size sequence {Nk} and a sample allocation rule {λk}. Set iteration

counter k = 0.

Step 1: Generate a population of Nk i.i.d. solutions Λk = {X1, . . . , XNk}

from f̂θ̂k(x) := (1− λk)fθ̂k(x) + λkfθ̂0(x).

Step 2: Compute the new parameter θ̂k+1 = arg minθ∈Θ D(ĝk+1, fθ), where

ĝk+1 is given in (5.4).

Step 3: If a stopping rule is satisfied, then terminate; otherwise set k = k+1

and go to Step 1.

Several remarks are listed as follows.
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• Initial sampling distribution: In practice, if there is no information

at the very beginning on where the global optima are located, the

initial sampling distribution fθ̂0 should be chosen in a way that it could

cover the entire solution space X. In other words, any region in X

would have a positive probability of being sampled. For this purpose,

one could simply choose an approximate uniform distribution, e.g., a

normal distribution with sufficiently large variance.

• Initial reference distribution: The initial Boltzmann distribution g0 is

chosen in a similar way as the choice of the initial sampling distribution

fθ̂0 , i.e., it is expected to cover the entire X. For this purpose, we simply

set the initial temperature T0 to a sufficiently large value.

• Sample allocation rule: An intuitive explanation of the sample alloca-

tion rule {λk} is that at each iteration, we tend to spend a proportion

of the sampling effort to the blind search (i.e., it searches the entire

solution space with equivalent priority) carried out by fθ̂0 . This ef-

fort may prevent the algorithm from premature convergence. As the

iteration number increases, the distribution fθ̂k becomes more likely to

concentrate on the promising region. As a result, this “back door” trick

becomes less attractive and therefore we could let {λk} vanish to zero.

• Reference distributions in Monte Carlo MARS: At Step 2, the KL di-

vergence is with respect to ĝk+1, an estimate of g̃k+1 (cf. (5.2)) based
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on the sampled solutions in Λk, i.e.,

ĝk+1(x) = αk
∑
y∈Λk

ḡk+1(x)δ(x− y) + (1− αk)fθ̂k(x), x ∈ X, (5.4)

where δ is the Dirac delta function and we have replaced the Boltzmann

distribution gk+1 in (5.2) by a discrete empirical distribution

ḡk+1(x) :=
e
H(x)
Tk+1 /f̂θ̂k(x)∑

x∈Λk
e
H(x)
Tk+1 /f̂θ̂k(x)

∀x ∈ Λk. (5.5)

Note that in Monte Carlo MARS, we use the Monte Carlo technique

to estimate the true expectation as well as some other incalculable in-

tegrals. The division by f̂θ̂k in ḡk+1 is used to guarantee the sample

average 1
Nk

∑
x∈Λk

e
H(x)
Tk+1 /f̂θ̂k(x) to be an unbiased estimator of the in-

tegral
∫
X e

H(x)
Tk+1 ν(dx).

Similar to Assumption A1 in Chapter 4, we assume that the new param-

eter obtained in Algorithm 5.2 satisfies the following condition:

Assumption C1. The parameter θ̂k+1 computed at Step 2 of Algorithm 5.2

satisfies θ̂k+1 ∈ int(Θ) for all k.

Similar to Lemma 5.1.1, the following result shows the connection between

the successive mean parameter vectors obtained in Algorithm 5.2.

Lemma 5.1.2. If C3 holds, then the mean parameter function m(θ̂k+1) of
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fθ̂k+1
satisfies

m(θ̂k+1)−m(θ̂k) = −αk
(
m(θ̂k)− Eḡk+1

[Γ(X)]
)
∀ k = 0, 1, 2, . . . . (5.6)

Proof. Follows from Lemma 2 in Hu et al. [32] and the definition of ĝk+1.

To state the connection between Algorithm 5.2 ( the Monte Carlo version

of MARS) and SA, we rewrite (5.6) as follows:

m(θ̂k+1) = m(θ̂k)− αk
(
m(θ̂k)− Egk+1

[Γ(X)] + Egk+1
[Γ(X)]− Eḡk+1

[Γ(X)]
)

= m(θ̂k)− αk∇θD(gk+1, fθ)|θ=θ̂k

− αk

(∫
X e

H(x)
Tk+1 Γ(x)ν(dx)∫
X e

H(x)
Tk+1 ν(dx)

−
1
Nk

∑
x∈Λk

e
H(x)
Tk+1 Γ(x)/f̂θ̂k(x)

1
Nk

∑
x∈Λk

e
H(x)
Tk+1 /f̂θ̂k(x)

)
. (5.7)

This is a typical SA recursion in Robbins-Monro’s form with the true gra-

dient of D(gk+1, fθ) with respect to θ and an error term due to the bias and

noise caused by Monte Carlo random sampling in MARS.

5.2 Global Convergence of MARS

Note that the stochastic approximation recursion (5.7) involves a time-varying

function D(gk+1, fθ). However, as we expect that the sequence {gk} will con-

verge to some g∗, the time-varying function D(gk+1, fθ) will finally converge

to D(g∗, fθ). This desired property would imply the convergence of the op-

timal solution {θk} to some θ∗. Moreover, if g∗ concentrates on the globally
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optimal solutions, fθ∗ is expected to concentrate on the globally optimal so-

lutions as well. Throughout this and the next section, we follow the approach

in [16] to study the convergence properties of MARS.

Since the MARS algorithm is randomized, we need to establish some prob-

abilistic definitions. Throughout this chapter, all the definitions such as P (·),

E[·], Fk = σ{Λ0,Λ1, . . . ,Λk−1} where k = 1, 2, . . ., Pf̂
θ̂k

(·|Fk), Ef̂
θ̂k

[·|Fk] are

carried out in the same manner as they are defined in the analysis of Algo-

rithm 4.2 in Chapter 4. We also use the following shorthand notations to

simplify the presentation.

Uk =
1

Nk

∑
x∈Λk

e
H(x)
Tk+1 Γ(x)/f̂θ̂k(x), Ūk = Ef̂

θ̂k

[Uk|Fk] =

∫
X
e
H(x)
Tk+1 Γ(x)ν(dx)

Vk =
1

Nk

∑
x∈Λk

e
H(x)
Tk+1 /f̂θ̂k(x), V̄k = Ef̂

θ̂k

[Vk|Fk] =

∫
X
e
H(x)
Tk+1 ν(dx). (5.8)

For the convergence analysis, we make the following assumptions that

will be used throughout this chapter.

Assumptions:

C2. The problem (3.1) has a unique globally optimal solution, i.e., ∃x∗ ∈ X

such that H(x) < H(x∗) ∀x 6= x∗, x ∈ X. Moreover, H(x) > 0 ∀x ∈ X.

C3. For any ε < H(x∗), the set {x ∈ X : H(x) ≥ ε} has a positive Lebesgue/dis-

crete measure.

C4. For any δ > 0, supx∈Aδ H(x) < H(x∗), where Aδ := {x ∈ X : ‖x− x∗‖ ≥ δ}
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with ‖ · ‖ being the Euclidean norm in <n, and we define the supremum

over the empty set to be −∞.

C5. The mapping Γ(x) given in Definition 1 is bounded on X. Moreover, for

any ξ > 0, there exists δ > 0 such that ‖Γ(x) − Γ(x∗)‖ ≤ ξ whenever

‖x− x∗‖ ≤ δ.

C6. The gain sequence {αk} satisfies αk > 0 ∀ k,
∑∞

k=0 αk = ∞, and∑∞
k=0 α

2
k <∞.

C7. (a) The annealing schedule {Tk} satisfies Tk > 0 ∀ k and Tk → T ∗ ≥ 0

as k →∞;

(b) The sample allocation rule {λk} satisfies λk > 0 ∀ k and λk → λ∗ ∈

[0, 1) as k →∞;

(c) e2H
∗/Tk

Nkλk
→ 0 as k →∞, where H∗ = H(x∗).

Assumptions C2-C4 are reasonable conditions on the objective function

H. Intuitively, under C2, the limiting reference distribution g∗ is expected to

become degenerated, which assigns unit mass on the globally optimal solution

x∗. Without loss of generality, we just assume H(x) > 0. C3 ensures that

the area (may not be a continuous open set) containing ε-optimal solutions

has a positive probability to be visited by the sampling distribution f̂θ̂k . C4

ensures that the global optimum could be distinguished from other solutions

outside its neighborhood by a positive difference, so that the algorithm will

finally concentrate on this neighborhood and will not be disturbed by other
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solutions outside this area. On the other hand, Assumptions C5−C7 are

regularity conditions on the input parameters. Since Γ(·) is continuous and

X is compact, C5 becomes trivial and holds for natural exponential distribu-

tions, e.g., normal, exponential, and Gamma distribution, as well as many

discrete mass functions encountered in practice, e.g., Bernoulli, Binomial

and Poisson. As a result, since Γ(x) is bounded, the initial parameterized

density/mass function fθ̂0(x) is bounded away from zero on X for any given

θ̂0 ∈ int(Θ), i.e., f∗ := infx∈X fθ̂0(x) > 0. C6 is a typical SA condition; it

ensures that the gain sequence {αk} will not decay too fast or too slow which

may cause premature convergence or an extremely slow convergence speed

(see [67] for a detailed discussion). C7(a) and (b) assume that both the tem-

perature annealing schedule and the sample allocation rule should converge

to certain limits. (Note that Tk is not necessarily monotone. In practice,

some non-monotonic annealing schedules may lead to superior performance,

see [45, 61, 76]). C7(c) states that all the parameters {Tk}, {Nk} and {λk}

should be chosen in balance. Roughly speaking, the annealing schedule {Tk}

determines the convergence speed of the sequence of (idealized) Boltzmann

distributions {gk} to the limiting distribution g∗, whereas {Nk} determines

how the surrogate distributions {fθ̂k} approximate the target Boltzmann dis-

tributions. Thus, if the temperature Tk decays to zero at a fast rate, it means

that gk will converge to g∗ very fast. Then the sample size Nk should also

increase sufficiently fast to ensure that the surrogate distributions {fθ̂k} can

keep “tracking” the sequence of convergent Boltzmann distributions. Intu-
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itively, as the iteration number k increases, gk becomes more likely to con-

centrate on the region containing the global optimum. Therefore, we would

need a better approximation between fθ̂k and gk, in order to keep fθ̂k staying

close with gk. Moreover, we consider the following special cases of C7(c):

• Positive limiting temperature. T ∗ > 0.

It is obvious that when T ∗ > 0 and λ∗ > 0, C6 simply holds if Nk →∞

as k →∞. As we will see, T ∗ > 0 would bring out an easy theoretical

analysis, since in this case the Boltzmann distributions just converge

to a regular distribution rather than a degenerated distribution (i.e.,

δ-function). Moreover, from a practical point of view, by selecting a

sufficiently small positive T ∗, one could still get any desired level of

precisions (see the remark after the proof of Lemma 5.2.1).

• Logarithmic annealing schedule. Tk = T0

ln(1+k)
.

It can be shown that when Tk = T0

ln(1+k)
, Nk = Θ(kβ), and λk = Ω(k−γ)

for some constants T0 > 0, β > 0, and γ > 0, C6 is satisfied for β > γ,

with T0 sufficiently large. Here the logarithmic annealing schedule {Tk}

is frequently used in simulated annealing algorithms.

• Polynomial annealing schedule. Tk = T0

1+ck
.

It can be shown that when Tk = T0

1+ck
, Nk = Θ(βk), and λk = Ω(k−γ)

for constants T0 > 0, c > 0, β > 1, and γ > 0, it is easy to verify that

C6 is satisfied by taking β > e2H∗c/T0 . Moreover, it is easy to see that

in the polynomial annealing schedule, the sequence of temperatures
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has a faster decay rate in contrast to the sequence in the logarithmic

annealing schedule.

We present the following convergence theorem for MARS.

Theorem 5.2.1. If Assumptions C1 to C7 hold, then

m(θ̂k)→ Γ∗ as k →∞ w.p.1,

where the limit is taken component-wise, Γ∗ := Γ(x∗) if T ∗ = 0, Γ∗ :=

Eg∗ [Γ(X)] whenever T ∗ > 0, and g∗ is the limiting Boltzmann distribution

parameterized by T ∗ > 0.

The interpretation of Theorem 5.2.1 depends on the parameterized distri-

butions chosen by MARS. For example, if we choose the independent univari-

ate normal distribution or multivariate normal distribution for continuous op-

timization problems as in Section 4.4, and set T ∗ to zero, then Theorem 5.2.1

implies that

lim
k→∞

Ef
θ̂k

[X] = x∗ and lim
k→∞

Covf
θ̂k

[X] = 0 w.p.1,

where fθ̂k is the corresponding parameterized distribution. In this case, the

parameterized distribution will converge to a delta distribution that assigns

unit mass on the unique globally optimal solution x∗. We take a discrete

optimization problem as the second example. Assume that the feasible region

X consists of m distinct points, and Q is a m × 1 vector whose ith entry qi
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denoted the probability mass corresponding to the ith point in X. Therefore

the p.m.f of the sampling distribution can be written as

fθ(x) =
m∏
i=1

q
I{x=xi}
i := eθ

TΓ(x),

where θ = [ln q1, . . . , ln qm]T and Γ(x) = [I{x = x1}, . . . , I{x = xm}]T . With

T ∗ = 0, Theorem 5.2.1 yields that

lim
k→∞

∑
x∈X

m∏
i=1

(
qki
)I{x=xi}I{x = xj} = I{x∗ = xj} ∀ j w.p.1,

where qki is the ith entry of the vector Qk obtained at the kth iteration of

MARS. In other words, the p.m.f Qk will converge to a unit mass function

that degenerates at the global optimum x∗. Note that this example is very

easy to extend to general discrete optimization problems in <n, where we

just need to slightly adapt the corresponding p.m.f.(e.g., see Section 5.4.)

Before we prove Theorem 5.2.1, we first show a property of the Boltzmann

distribution with Γ in the parameterized family.

Lemma 5.2.1. If Assumptions C3, C4, C5, and C7(a) are satisfied, then

Egk [Γ(X)]→ Γ∗ as k →∞.

Proof. The T ∗ > 0 case is trivial and is thus omitted. Note that when

T ∗ = 0, we have Γ∗ = Γ(x∗). By Assumption C5, for any ξ > 0, we can

find a δ > 0 such that ‖x − x∗‖ < δ implies ‖Γ(x) − Γ∗‖ < ξ. Define
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Aδ = {x ∈ X : ‖x− x∗‖ ≥ δ}. We have by C4 that H̄ = supx∈Aδ H(x) < H∗.

Take ε = H̄+H∗

2
. By C3, the set Bε := {x ∈ X : H(x) > ε} has a positive

Lebesgue/discrete measure. Thus,

‖Egk [Γ(X)]− Γ∗‖ ≤ Egk
[
‖Γ(X)− Γ∗‖

]
=

∫
Acδ

‖Γ(x)− Γ∗‖gk(x)ν(dx) +

∫
Aδ

‖Γ(x)− Γ∗‖gk(x)ν(dx)

≤ ξ + sup
x∈X
‖Γ(x)− Γ∗‖

∫
Aδ
e
H(x)
Tk ν(dx)∫

X e
H(x)
Tk ν(dx)

≤ ξ + sup
x∈X
‖Γ(x)− Γ∗‖

∫
Aδ
e
H(x)
Tk ν(dx)∫

Bε
e
H(x)
Tk ν(dx)

≤ ξ + sup
x∈X
‖Γ(x)− Γ∗‖e

−(H∗−H̄)
2Tk

ν(Aδ)

ν(Bε)
.

Since Γ(x) is bounded, ξ is arbitrary and H∗ > H̄, we have Egk [Γ(X)]→ Γ∗

as Tk → 0.

From the proof of Lemma 5.2.1 we can see that for any given ε > 0,

there exists a sufficiently small T ∗ > 0 such that ‖Eg∗ [Γ(X)]− Γ(x∗)]‖ ≤ ε.

Therefore, if in practice we only search for ε-optimal solution with a desired

precision ε , we could in fact set T ∗ to a small positive value.

The next intermediate result shows that the conditional bias of the error

term in (5.7) converges to zero w.p.1.
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Lemma 5.2.2. If Assumptions C4 and C6 hold, then

Ef̂
θ̂k

[
Uk

Vk

∣∣∣∣Fk

]
→ Ūk

V̄k
as k →∞ w.p.1,

where the limit is component-wise.

Proof. See Appendix.

Proof of Theorem 5.2.1. We rewrite (5.6) in the following recursive form:

ηk+1 = ηk − ξk,

where ηk := m(θ̂k) − Γ∗, and ξk = αk

(
m(θ̂k) − Uk

Vk

)
. Let Mk = Ef̂

θ̂k

[ξk|Fk]

and Zk = ξk−Mk. To show the desired convergence result, we establish that

the multivariate versions of conditions (i)-(iv) in [16] hold.

[i] First we show that for every ε > 0, the probability that {‖ηk‖ > ε, ηTkMk <

0} occurs infinitely often (i.o.) is zero. To this end, we write Mk as

Mk = αk

(
m(θ̂k)− Γ∗ + Γ∗ − Egk+1

[Γ(X)] + Egk+1
[Γ(X)]− Ef̂

θ̂k

[
Uk

Vk

∣∣∣Fk

])
.

(5.9)

It follows that

ηTkMk = αk

(
‖ηk‖2+ηTk

(
Γ∗−Egk+1

[Γ(X)]
)
+ηTk

(
Egk+1

[Γ(X)]−Ef̂
θ̂k

[
Uk

Vk

∣∣∣Fk

]))
.

Since ηk is bounded, by Lemma 5.2.1, the second term in the parenthesis

above vanishes to zero as k → ∞, whereas Lemma 5.2.2 implies that the
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third term also vanishes to zero w.p.1. as k → ∞. Therefore, for almost

every sample path generated by MARS, we must have ηTkMk > 0 whenever

‖ηk‖ > ε for k sufficiently large, i.e., P (‖ηk‖ > ε, ηTkMk < 0 i.o.) = 0.

[ii] Note that m(θ̂k) = Ef
θ̂k

[Γ(X)] and Uk
Vk

= Eḡk+1
[Γ(X)], where ḡk+1 is

defined in (5.5). Since the mapping Γ is bounded on X by C5, both m(θ̂k)

and Uk
Vk

are bounded. Moreover, we have from Assumption C6 that αk → 0

as k →∞. Therefore, ‖Mk‖(1 + ‖ηk‖)−1 → 0 as k →∞ w.p.1, which shows

condition (ii) in [16].

[iii] By definition, we have Zk = αk

(
Ef̂

θ̂k

[Uk
Vk

∣∣Fk

]
− Uk

Vk

)
. Therefore,

∞∑
k=1

E[‖Zk‖2] =
∞∑
k=1

α2
kE

[(
Ef̂

θ̂k

[Uk

Vk

∣∣Fk

]
−Uk

Vk

)T(
Ef̂

θ̂k

[Uk

Vk

∣∣Fk

]
−Uk

Vk

)]
<∞,

since Uk
Vk

is bounded and
∑∞

k=1 α
2
k <∞ by C6.

[iv] Finally, we establish condition (iv) in [16] by showing that

P
(

lim inf
k→∞

‖ηk‖ > 0,
∞∑
k=1

‖Mk‖ <∞
)

= 0.

From (5.9), we have

‖Mk‖ ≥ αk

(
‖ηk‖ − ‖Γ∗ − Egk+1

[Γ(X)]‖ −
∥∥∥∥Egk+1

[Γ(X)]− Ef̂
θ̂k

[
Uk

Vk

∣∣∣Fk

]∥∥∥∥).
Let Ω1 = {lim infk→∞ ‖ηk‖ > 0} and Ω2 = {

∑∞
k=1 ‖Mk‖ < ∞}. For every

sample point ω ∈ Ω1, we can find a δ > 0 such that lim infk→∞ ‖ηk‖ >
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δ > 0. This implies that there exists a Kδ(ω) such that ‖ηk‖ ≥ δ ∀ k ≥

Kδ(ω). In addition, let Ω3 = {
∥∥Egk+1

[Γ(X)] − Ef̂
θ̂k

[Uk
Vk

∣∣Fk

]∥∥ → 0}. Note

that Lemma 5.2.2 implies P (Ω3) = 1. Since Egk+1
[Γ(X)] → Γ∗ as k → ∞,

there exists a K̄δ/2(ω) for every ω ∈ Ω3 such that

∥∥Γ∗ − Egk+1
[Γ(X)]

∥∥+

∥∥∥∥Egk+1
[Γ(X)]− Ef̂

θ̂k

[
Uk

Vk

∣∣∣Fk

]∥∥∥∥ < δ

2

for all k ≥ K̄δ/2(ω). Consequently, we have for every ω ∈ Ω1 ∩ Ω3, ‖Mk‖ >
δ
2
αk for all k ≥ K∗(ω) := max{Kδ(ω), K̄δ/2(ω)}. Thus by C6,

∞∑
k=1

‖Mk‖ ≥
∞∑

k=K∗(ω)

‖Mk‖ ≥
δ

2

∞∑
k=K∗(ω)

αk =∞ ∀ω ∈ Ω1 ∩ Ω3.

This implies P (Ω1 ∩ Ω2 ∩ Ω3) = 0. Thus, it follows that P (Ω1 ∩ Ω2) =

P (Ω1 ∩ Ω2 ∩ Ω3) + P (Ω1 ∩ Ω2 ∩ Ωc
3) ≤ P (Ωc

3) = 0.

Finally, by directly applying the result of Evans and Weber [16], we have

ηk → 0 as k →∞ w.p.1, which completes the proof of the theorem.

5.3 Asymptotic Normality of MARS

Similar to Algorithm 4.2 and its convergence rate analysis in Section 4.3, we

perform the convergence rate analysis for MARS following the asymptotic

normality analysis of SA recursion in Fabian [17], i.e., we will show that

the conditions (2.2.1), (2.2.2) and (2.2.3) in [17] will be satisfied under the

scheme of MARS. In order to do so, we need the following two assumptions.
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Assumptions:

D1. For a given sample size sequence Nk = Θ(kβ) and a gain sequence αk =

Θ(k−α), the sequence {Tk} satisfies Tk > T ∗ > 0 ∀ k and limk→∞ k
α+β

2

(
1
T ∗
−

1
Tk

)
= 0, and the sequence {λk} satisfies λk > 0 ∀ k, λk → λ∗ ∈ [0, 1)

as k →∞, and λk = Ω(k−γ) for some positive constant γ < β
2
.

D2. The limit of the sequence of parameters {θ̂k} generated by MARS as

k →∞ is an interior point of Θ, i.e., m−1(Γ∗) ∈ int(Θ).

D1 is reasonable since it could be satisfied by carefully controlling the an-

nealing schedule. Moreover, D1 is a strengthened version of Assumption C7.

Note that Theorem 5.2.1 still holds true with Assumption C7 replaced by D1.

In particular, throughout this section we set Nk = Θ(kβ) for some constant

β > 0. Moreover, we set αk = c/kα for some constants c > 0, and α ∈ (1
2
, 1).

Note that the gain sequence {αk} satisfies Assumption C6. On the other

hand, D2 is similar to Assumption B2 in Section 4.3. By the invertibility

of m(·), the sequence of parameters {θ̂k} generated by MARS converges to

a limiting parameter m−1(Γ∗) w.p.1, which is assumed to be lying on the

interior of Θ.

As in the discussions in section 4.3 (following Assumption B2), by inverse

function theorem and the boundness of Γ,the sequence of sampling distribu-

tions {fθ̂k} converges point-wise to a limiting distribution fm−1(Γ∗) w.p.1.

Given the specific forms of Nk and αk, we can rewrite (5.6) in the form
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of a recursion in Fabian (1968):

ηk+1 = (1− ck−α)ηk + k−(2α+β)/2Rk + k−(3α+β)/2Wk,

where ηk = m(θ̂k)− Γ∗,

Rk = ckβ/2
(
Uk

Vk
−Ef̂

θ̂k

[
Uk

Vk

∣∣∣∣Fk

])
and Wk = ck(α+β)/2

[
Ef̂

θ̂k

[
Uk

Vk

∣∣∣∣Fk

]
−Γ∗

]

are the amplified noise and bias caused by Monte-Carlo sampling procedure

in Step 1 of MARS (Algorithm 5.2).

The term Rk has the following properties:

Lemma 5.3.1. If Assumptions C1−C5, D1, and D2 hold, then there ex-

ists a symmetric positive semi-definite matrix Σ such that the conditional

covariance of the amplified noise Ef̂
θ̂k

[RkR
T
k |Fk] → Σ as k → ∞ w.p.1. In

addition, the sequence {Rk} is uniformly square integrable in the sense that

lim
k→∞

E
[
I{‖Rk‖2 ≥ rkα}‖Rk‖2

]
= 0 ∀ r > 0.

Proof. See Appendix for the proof.

We next show that the term Wk vanishes to zero w.p.1. We break Wk

into two parts and write Wk = ck(α+β)/2W1,k + ck(α+β)/2W2,k for better rep-
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resentation, where

W1,k =
Ef̂

θ̂k

[Uk|Fk]

Ef̂
θ̂k

[Vk|Fk]
− Γ∗ and W2,k = Ef̂

θ̂k

[
Uk

Vk

∣∣∣∣Fk

]
−
Ef̂

θ̂k

[Uk|Fk]

Ef̂
θ̂k

[Vk|Fk]
.

The convergence of Wk is a direct consequence of the following propositions,

which are strengthened versions of Lemma 5.2.1 and Lemma 5.2.2.

Proposition 5.3.1. If Assumptions C3, C4, and D1 hold, then

k
α+β

2 W1,k → 0 as k →∞.

Proof. We prove Proposition 5.3.1 in Appendix.

Proposition 5.3.2. Assume C1−C5, D1, and D2 hold, and β > α, then

k
α+β

2 W2,k → 0 as k →∞ w.p.1,

where the limit is component-wise.

Proof. It is not difficult to show that the result of Theorem 5.2.1 still holds

under the conditions of Proposition 5.3.2. We can bound ‖W2,k‖ by terms

[i]−[v] as in the proof of Lemma 5.2.2. Next, invoking the strong conver-

gence of the sequence {θ̂k}, an argument similar to the proof of Lemma 5.3.1

implies that all terms [i]−[v] are on the order of O(N−1
k ), independent of Tk.

Therefore, k
α+β

2 W2,k approaches zero as k →∞ by taking Nk = Θ(kβ) with

β > α.
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We have the following asymptotic convergence rate result for MARS.

Theorem 5.3.1. Let αk = c/kα and Nk = Θ(kβ) for constants c > 0,

α ∈ (1
2
, 1), and β > α. Assume Assumptions C1−C4, D1, and D2 hold, then

k
α+β

2

(
m(θ̂k)− Γ∗

)
dist−−−→ N

(
0,Σ

)
as k →∞,

where Σ = ΥCovf̂m−1(Γ∗)

[(
Γ(X) − Eg∗ [Γ(X)]

)
g∗(X)/f̂m−1(Γ∗)(X)

]
for some

constant Υ > 0.

Proof. Follows from Proposition 5.3.1, Proposition 5.3.2, and Lemma 5.3.1

above, and then by applying Theorem 2.2 in Fabian [17].

Theorem 5.3.1 implies that one could achieve a sufficiently large rate

by choose a large β (α is bounded above by 1). However, the asymptotic

convergence rate is defined in terms of the iteration number k rather than

the sample size Nk, and increasing the sample size too fast (i.e., choosing a

sufficiently large β) may have a negative impact on the practical performance

of the algorithm, since it needs a large number of samples in each iteration.

Moreover, the asymptotic rate only describes the limiting behavior of the

algorithm, and does not specify its actual speed in practice. Therefore, from

a practical point of view, we need to choose an appropriate β to balance the

trade-off between a fast asymptotic convergence rate and a small number

of samples consumed in each iteration. On the other hand, note that the

convergence of the SA recursion (5.7) can be viewd as a combinition of two
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“parallel” convergences, i.e., the convergence affected by the true gradient

and the convergence affected by the noise and bias. Theorem 5.3.1 indicates

that given {αk} fixed, the asymptotic rate is only determined by β, which

further implies that the convergence of MARS will be finally dominated by

the noise and bias.

5.4 Numerical Examples

We test the MARS algorithm (Algorithm 5.2) on both continuous and dis-

crete optimization problems, and compare MARS to simulated annealing

(SAN) algorithm, Hide-and-Seek (HAS) algorithm [58, 76], and model refer-

ence adaptive search (MRAS) [32].

Continuous Optimization

In the continuous case, we consider 12 benchmark problems frequently used

in global optimization literature [55], [60], [61] ,[73], and they range from

highly multimodal problems to badly-scaled problems. We also test MARS

in different dimensions that varies from four to one hundred.

(1) Shekel’s function (n = 4, 0 ≤ xi ≤ 10, i = 1, . . . , n)

H1(x) =
5∑
j=1

( 4∑
i=1

(xi − Ai,j)2 +Bj

)−1

− 10.1532,

with B = (0.1, 0.2, 0.2, 0.4, 0.4)T , A1 = A3 = (4, 1, 8, 6, 3), and A2 =
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A4 = (4, 1, 8, 6, 7), where Ai represents the ith row of A. The function

has a global maximizer x∗ = (4, 4, 4, 4)T and H1(x∗) = 0.

(2) Hartmann function (n = 6, 0 ≤ xi ≤ 1, i = 1, . . . , n)

H2(x) =
4∑
i=1

ci exp
(
−

6∑
j=1

Bi,j(xj − Ai,j)2
)
− 3.32237,

with c = (1, 1.2, 3, 3.2)T ,

A =



0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

0.4047 0.8828 0.8732 0.5743 0.1091 0.0381


,

B =



10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14


.

The global maximizer x∗ = (0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573)T

and H2(x∗) = 0.

(3) Sinusoidal function (n = 30, 0 ≤ xi ≤ 180, i = 1, . . . , n)

H3(x) = 2.5
n∏
i=1

sin
(πxi

180

)
+

n∏
i=1

sin
(πxi

36

)
− 3.5,
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where x∗ = (90, . . . , 90)T and H3(x∗) = 0.

(4) Rastrigin function (n = 50, −5.12 ≤ xi ≤ 5.12, i = 1, . . . , n)

H4(x) = −
n∑
i=1

(
x2
i − 10 cos(2πxi)

)
− 10n,

where H4(x∗) = 0.

(5) Pinter’s function (n = 50, −10 ≤ xi ≤ 10, i = 1, . . . , n)

H5(x) = −
n∑
i=1

ix2
i −

n∑
i=1

20i sin2
(
xi−1 sinxi − xi + sinxi+1

)
−

n∑
i=1

i log10

(
1 + i(x2

i−1 − 2xi + 3xi+1 − cosxi + 1)2
)
− 1,

where x0 = xn, xn+1 = x1, x∗ = (0, . . . , 0)T , H5(x∗) = −1.

(6) Weighted Sphere function (n = 100, −10 ≤ xi ≤ 10, i = 1, . . . , n)

H6(x) = −1−
n∑
i=1

ix2
i ,

where x∗ = (0, . . . , 0)T and H6(x∗) = −1.

(7) Griewank function (n = 100, −10 ≤ xi ≤ 10, i = 1, . . . , n)

H7(x) = − 1

4000

n∑
i=1

x2
i +

n∏
i=1

cos
( xi√

i

)
− 1,

where x∗ = (0, . . . , 0)T , H7(x∗) = 0.
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(8) Trigonometric function (n = 100, −10 ≤ xi ≤ 10, i = 1 . . . , n)

H8(x) = −1−
n∑
i=1

[
8 sin2

(
7(xi − 0.9)2

)
+6 sin2

(
14(xi − 0.9)2

)
+(xi−0.9)2

]
,

where x∗ = (0.9, . . . , 0.9)T , H8(x∗) = −1.

(9) Powell function (n = 100, − 10 ≤ xi ≤ 10, i = 1 . . . , n)

H9(x) = −1−
(n−2)/2∑
i=1

[
(x2i−1 + 10x2i)

2 + 5(x2i+1 − x2i+2)2

+(x2i − 2x2i+1)4 + 10(x2i−1 − x2i+2)4
]
,

where x∗ = (0, . . . , 0)T and H9(x∗) = −1.

(10) Levy function (n = 100, − 10 ≤ xi ≤ 10, i = 1 . . . , n)

H10(x) = −10 sin2(πx1)−
n−1∑
i=1

100x2
i (1+10 sin2(πxi+1))−100(xn−1)2−1,

where x∗ = (0, . . . , 0, 1)T , H10(x∗) = −1.

Note that for each problem the domain is constrained in a hyperrectangle,

i.e, for all x = (x1, . . . , xn)T ∈ X, li ≤ xi ≤ ui for all i, where li ≤ ui are the

respective lower and upper bounds of the ith component xi.

For MARS and MRAS in continuous problems, we use independent mul-

tivariate normal distributions as the parameterized sampling distributions
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whose density function in iteration k is:

fθ̂k(x) =
n∏
i=1

1√
2π(σik)

2
exp

(
− (xi − µik)2

2(σik)
2

)
.

It is easy to see that in Step 2 of MARS, the new parameters could be solved

analytically:

µik+1 = αk

∑
x∈Λk

e
H(x)
Tk+1 /f̂θ̂k(x)x∑

x∈Λk
e
H(x)
Tk+1 /f̂θ̂k(x)

+ (1− αk)µik

(σik+1)2 = αk

∑
x∈Λk

e
H(x)
Tk+1 /f̂θ̂k(x)(x− µik+1)2∑
x∈Λk

e
H(x)
Tk+1 /f̂θ̂k(x)

+ (1− αk)
(
(σik)

2 + (µik+1 − µik)2
)
,

for all i = 1, . . . , n.

To determine the Boltzmann reference distributions, we choose two stan-

dard annealing schedules for their simplicity:

• polynomial schedule (PS): Tk = T ∗ + |H(x∗k)|/(1 + k0.6);

• logarithmic schedule (LS): Tk = T ∗ + 0.1|H(x∗k)|/ log(1 + k),

where x∗k denotes the current best solution found so far at the kth iteration.

Note that |H(x∗k)| is brought to the schedule to roughly counterbalance the

effect of the magnitude of H(x) in the term eH(x)/Tk . This is useful for those

badly-scaled objective functions where the Boltzmann distribution is very

sensitive to the topology of the functions, in which case the sequence of

the Boltzmann distributions will vary too fast. Note that we use |H(x∗k)| to
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systematically achieve this goal since the objective function value is unknown

a priori. In both PS and LS, we set the limiting temperature T ∗ = 10−5 which

is considered sufficiently small to achieve the desired accuracy and could

prevent the instability in parameter updating, which may happen when the

distribution is very closed to be degenerated. Our preliminary result shows

that, T ∗ also works well between 10−1 and 10−5. In addition, it is easy to

verify that both PS and LS satisfy condition C7(a).

After the annealing schedule is determined, we empirically found that

the performance of MARS is also sensitive to the choice of the gain sequence

{αk}, while it does not depend too much on the choices of {Nk} and {λk}.

Similar to the parameter settings and their discussions for Algorithm 4.2 in

Section 4.4, for all our test problems the parameters are set as follows:

• Gain sequence: αk = 1/(k + 100)0.501,

• Sample size: Nk = max{N0, bk0.502c},

• Sample allocation rule: λk = 1/(k + 1)0.5,

where bac is the floor function which returns the largest integer that is

no greater than a, and the initial sample size N0 is set to 10 to keep a

low computational effort at initial iterations.

On the other hand, SAN and HAS both use the Boltzmann distribution

with the proposed annealing schedules as a selection mechanism to accep-

t/reject candidate solutions sequentially. In SAN, as we described in the
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Table 5.1: Performance of MARS, HAS, and SAN on test problems H1−H10

with polynomial schedule, based on 50 independent replications (standard
errors in parentheses).

Test. MARS HAS SAN
Prob. PS PS PS
H1 -5.19e-2 (0.04) -3.77 (0.82) -2.89 (0.66)
H2 -2.68e-6 (1.4e-8) -3.66e-2 (0.02) -3.86e-2 (0.02)
H3 -4.13e-2 (0.02) -3.17e-4 (5.1e-5) -1.87 (0.31)
H4 -6.02e-2 (0.03) -3.19e+2 (10.82) -5.15e+2 (12.49)
H5 -1.00 (8.2e-5) -1.41e+4 (430.6) -1.56e+4 (9.40e+2)
H6 -1.00 (2.1e-6) -1.26e+2 (8.48) -4.11e+3 (1.07e+2)
H7 -6.4e-9 (7.5e-11) -7.57e-2 (1.3e-3) -8.67e-1 (1.3e-2)
H8 -1.00 (6.9e-7) -9.40e+2 (21.64) -8.04e+2 (13.05)
H9 -1.00 (4.6e-4) -1.01e+2 (5.78) -5.30e+3 (3.04e+2)
H10 -1.00 (4.6e-7) -3.34e+5 (9.41e+3) -1.17e+6 (5.8e+4)

literature review, it performs a local search on the neighborhood of the cur-

rent state. For the test problems, our preliminary results suggest a neigh-

borhood structure as N(x) = {y ∈ X : max1≤i≤n |xi − yi| ≤ 1
20
|ui − li|} that

empirically generates good practical performance. In contrast, HAS samples

globally from the entire solution space according to an underlying Markov

chain that asymptotically approximates the Boltzmann distributions. When

implementing HAS in our test problems, we use a hyperspherical direction

to implement the Markov chain sampler (see [76] for a detailed discussion).

For each comparison algorithm, the average value of the best estimated

for H(x∗) of the 50 replication runs and its standard error is shown in Table

5.1 and 5.2. Moreover, Figure 5.1 and Figure 5.2 compare the performances
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Table 5.2: Performance of MARS, HAS, and SAN on test problems H1−H10

with logarithmic schedule, based on 50 independent replications (standard
errors in parentheses).

Test. MARS HAS SAN
Prob. LS LS LS
H1 -3.2e-7 (1.8e-12) -3.62 (0.78) -5.05 (0.81)
H2 -2.0e-6 (1e-11) -4.52e-2 (0.02) -2.24e-2 (0.02)
H3 -2.86e-1 (0.04) -3.26 (0.22) -1.72 (0.45)
H4 -1.86e+2 (3.23) -2.91e+2 (3.87) -5.87e+2 (17.73)
H5 -1.00 (3.3e-5) -8.58e+3 (1.76e+2) -1.48e+4 (8.06e+2)
H6 -1.00 (2.3e-6) -3.87e+2 (21.7) -3.68e+3 (39.8)
H7 -6.4e-9 (6.7e-11) -1.27 (4.7e-3) -7.94e-1 (7.75e-3)
H8 -1.00 (2.1e-6) -8.02e+2 (14.67) -7.79e+2 (8.63)
H9 -1.00 (3.8e-4) -2.77e+1 (1.15) -4.68e+3 (2.85e+2)
H10 -1.00 (4.3e-2) -4.27e+5 (9.91e+3) -9.94e+5 (3.39e+4)

of all the algorithms by plotting the average current best values of H as a

function of the number of samples that has been generated so far.

Our results indicate that MARS yields reasonably good performance with

both annealing schedules in all benchmark problems. It can be seen that

MARS significantly outperforms other algorithms for most high-dimensional

problems. In particular, MARS-PS finds more than 90% of the ε-optimal

solutions in cases H1, H3, and H4, and finds ε-optimal solutions in all 50

runs in the rest seven test cases, where the specific precision ε = 10−3. On

the other hand, MARS-LS has similar performances as MARS-PS except in

H3 and H4. A possible explanation of this behavior is that given the param-

eter setting, the performance of the algorithms more or less depends on the
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Figure 5.1: Average Performance of MARS, HAS, and SAN on test functions
H1 to H4.
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topology of test functions. H3 and H4 is highly multimodal that contains a

large number of local optima whose value is closed to the global optimum.

Therefore a relatively slow annealing schedule may cause a slow convergence

of the underlying Boltzmann distribution, which further slows down the al-

gorithm. Preliminarily, we have extended the experiment of MARS-LS on

H4. We found that when the number of function evaluations increases to 107,

MARS-LS could find the ε-optimal in 80% of the replication runs. Intuitively

speaking, for problems in which the function values of local optima are very
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Figure 5.2: Average Performance of MARS, HAS, and SAN on test functions
H5 to H10.
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closed to the global optimum, we may need a relatively faster cooling sched-

ule to accelerate the algorithm; on the other hand, we may need a relatively
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slower cooling schedule to prevent the underlying Boltzmann distribution to

vary too fast, and this is consistent with the idea of choosing a |H(x∗k)| in

the annealing schedule. In contrast, SAN shows adequate performance on

H1 and H2, but quickly becomes far less competitive on high dimensional

problems. This is mainly because the size of the neighborhood N(x) to be

searched at each iteration grows exponentially in the problem dimensions.

The performance of HAS may be improved by careful selection of anneal-

ing schedules, which are adaptively determined so that it could have a high

probability to visit a improving solution, see [57, 58, 61, 76]. However, the

performance of adaptive annealing schedule often varies in practice. The

reason is that the appropriate annealing schedule often depends on specific

problem structures, e.g., convex quadratic function, and often assumes that

the samples could be generated exactly from the Boltzmann distribution.

Discrete Optimization

We campare MARS, HAS, SAN and MRAS for discrete problems. To do so,

we consider discretized versions of test functions H1, H3, H4, H6, H8, and

H10. In each problem, we use the same domain constraint as their continu-

ous version but evenly discretize the region by the same mesh size h = 0.5.

As a result, the global optimum for H8 becomes -9.2985, while the global

optimum for other problems remain unchanged. Empirically speaking, the

global optimization for discrete problems is harder than that for continuous

problems, therefore we have reduced the dimension for the test functions.

100



To be specific, we take n = 10 for H3 and n = 50 for problem H4, H6, H8

and H10. After the discretization, problem H1 has 214 = 194, 481 feasible

solutions, H3 has 36110 ≈ 3.76 × 1025 feasible solutions, while other prob-

lems have 4150 ≈ 4.36×1080 feasible solutions each. Although these problems

have a large amount of feasible solutions and do not have differentiable struc-

ture, MARS still shows outstanding performance, since it implicitly does the

gradient search in a parameter space with smooth structures.

In both MARS and MRAS, we generate candidate solutions by an n×m

stochastic matrix Q, whereas the (i, j)th entry q(i,j) denotes the probability

that xi takes the jth value in the discretized set Xi := {li + ui−li
m−1

(j− 1), j =

1, . . . ,m}. In iteration k, step 2 in MARS updates the parameters as

q
(i,j)
k+1 = αk

∑
x∈Λk

e
H(x)
Tk+1 /f̂θ̂k(x)I{x ∈ xi,j}∑
x∈Λk

e
H(x)
Tk+1 /f̂θ̂k(x)

+ (1− αk)q(i,j)
k

for i = 1, . . . , n and j = 1, . . . ,m, where xi,j is the set of solutions in

X whose ith component takes the jth value in Xi, and f̂θ̂k(x) = (1 −

λk)
∏n

i=1

∏m
j=1(q

(i,j)
k )I{x∈xi,j} + λk

∏n
i=1

∏m
j=1(q

(i,j)
0 )I{x∈xi,j}. The parameter

updating for MRAS is in a similar manner. For the discrete problems, the

initial sampling matrix Q0 is set to the uniform stochastic matrix. In MRAS,

the initial mean for each dimension is uniformly drawn between the upper

and lower bounds, while the initial variances are set to 100, which is con-

sidered large enough for covering the entire region, and all other parameter

settings can be found in [32]. The algorithm settings for both HAS and SAN
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Table 5.3: Performance of MARS, HAS, and SAN with polynomial schedule
and performance of MRAS on discrete test problems H1, H3, H4, H6, H8, and
H10, based on 50 independent replications (standard errors in parentheses).

Test. MARS HAS SAN MRAS
Prob. PS PS PS N/A
H1 -1.02 (0.34) -3.58 (0.42) -1.72 (0.34) -1.21(0.31)
H3 -3.3e-4 (1.3e-4) -2.91e-4 (7.9e-5) -0.34 (0.12) -0.73(0.03)
H4 -0.00 (0.00) -5.93e+2 (19.2) -5.41e+2 (11.6) -3.11e+2(5.69)
H6 -1.00 (0.00) -7.36 (1.32) -3.82e+2 (9.58) -13.2(1.25)
H8 -9.298 (1.2e-15) -2.58e+2 (6.90) -3.72e+2 (5.19) -25.4(1.28)
H10 -1.00 (0.00) -1.44e+5 (5.52e+3) -3.46e+5 (1.42e+4) -2.57e+2(25.2)

Table 5.4: Performance of MARS, HAS, and SAN with logarithmic sched-
ule on discrete test problems H1, H3, H4, H6, H8, and H10, based on 50
independent replications (standard errors in parentheses).

Test. MARS HAS SAN
Prob. LS LS LS
H1 -1.69 (0.43) -3.37 (0.41) -3.76 (0.46)
H3 -1.31e-4 (8.9e-5) -2.28e-2 (0.02) -0.48 (0.15)
H4 -0.00 (0.00) -5.12e+2 (14.7) -5.91e+2 (16.7)
H6 -1.00 (0.00) -6.22 (1.55) -3.78e+2 (9.65)
H8 -9.298 (0.00) -2.15e+2 (7.25) -3.67e+2 (7.41)
H10 -1.00 (0.00) -1.53e+5 (5.38e+3) -3.40e+5 (1.18e+4)

are similar to the continuous case.

As in the continuous case, for each problem, we performed 50 independent

replication runs for MARS, HAS, SAN and MRAS. The average value of the

50 sampled-optimal solutions and its stand error are reported in Table 5.3

and Table 5.4. Also, we plot in Figure 5.3 the function values (averaged over

50 runs) of the current best solution as a function of the number of samples

generated so far.
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Figure 5.3: Average Performance of MARS, HAS, and SAN on discretized
test functions H1, H3, H4, H6, H8 and H10.

The average performance of the four algorithms is summarized in Table

5.3 and Table 5.4 In high dimensional cases, Both MARS-PS and MARS-LS
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consistently find the global optimum in all runs while showing a superior

performance over SAN, HAS and MRAS, which is similar to the continuous

case. However, we see that for low dimensional problems H1 and H3, MARS

shows a slower improvement in early stage, but outperforms SAN and HAS

on H1, and has equal performance with HAS (while still outperforms SAN)

in the later stage of H3. We conjecture this is due to the topology of the ob-

jective functions. After the discretization, the optimal function value H(x∗)

is “isolated” within the neighborhood of x∗ (like a needle on the haystack),

i.e., the neighbors of the global optimum x∗ does not provide too much in-

formation on where x∗ is located. Since MARS is a randomized algorithm,

the chance for grasping the “needle” is relatively small. On the other hand,

since SAN does the local enhancement search, for low dimensional problems

it could quickly find the global optimum once it has been in its neighborhood.
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Chapter 6

Conclusions

We have proposed a novel framework to study a class of model-based op-

timization algorithms by exploiting their connections to the stochastic ap-

proximation procedure. Through this connection, we proved the convergence

for the CE method (modified version) and analyzed its convergence rate. At

the same time, our numerical examples indicate that, our modified version of

CE whose parameter updating procedure is based on the SA interpretation

may have improved practical performance over the standard CE method.

Moreover, inspired by CE and AAS, we proposed a novel model-based search

algorithm called MARS for solving global optimization problems. As in CE,

by studying the properties of Boltzmann distribution and the connection

between MARS and SA, we proved the global convergence for MARS and

provided the asymptotic convergence rate. In addition, MARS also shows a

promising practical performance for both continuous and discrete optimiza-
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tion problems.

Our analysis provides new insights into the model-based algorithms, while

generalizing SA procedure to problems that are not differentiable or continu-

ous. By the SA interpretation, CE and MARS implicitly transform a target

optimization problem into a counterpart optimization problem on a param-

eter space with smooth structures (i.e., continuous and differentiable). This

may explain the fact that, for many high-dimensional multi-extremal op-

timization problems, model-based algorithms achieve superior performance

over some of the existing algorithms.
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[3] S.Andradóttir and A. A. Prudius, “Adaptive random search for continu-

ous simulation optimization,” Naval Research Logistics, vol. 57, pp. 583-

604, 2010.

[4] C. J. P. Bélisle, H. E. Romeijn, and R. L. Smith, “Hit-and-Run Algo-

rithms for Generating Multivariate Distributions”, Mathematics of Op-

erations Research, vol. 18, pp. 255-266, 1993.

[5] M. Benaim, “A dynamical system approach to stochastic approxima-

tions,” SIAM Journal on Control and Optimization, vol. 34, pp. 437-472,

1996.

[6] A. Benveniste, M. Metivier, and P. Priouret, Adaptive algorithms and

stochastic approximation, Springer Verlag, Berlin - New York, 1990.

[7] H. -G. Beyer and H. -P. Schwefel, “Evolution Strategies: A Comprehen-

sive Introduction,” Journal Natural Computing, vol. 1, pp. 3-52. 2002.

[8] V. S. Borkar, Stochastic approximation: a dynamical systems viewpoint,

Cambridge University Press, New Delhi: Hindustan Book Agency, 2008.

107



[9] S. H. Brooks, “A discussion of random methods for seeking maxima,”

Operations Research, vol.6, pp.244-251, 1958.

[10] Y. Cai, Y. Sun, X., and P. Jia, “Probabilistic Modeling for Continu-

ous EDA with Boltzmann Selection and Kullback-Leibeler Divergence.”

Proceedings of the 8th Annual Conference on Genetic and Evolutionary

Computation, Seattle, WA, 2006, pp. 389-396.

[11] A. Costa, O. D. Jones, and D. Kroese, “Convergence properties of the

Cross-Entropy method for discrete optimization,” Operations Research

Letters, vol. 35, pp. 573-580, 2007.

[12] F. Dambreville, “Cross-Entropic learning of a machine for the decision

in a partially observable universe,” Journal of Global Optimization, vol.

37, pp. 541-555, 2007.

[13] M. Dorigo and C. Blum, “Ant colony optimization theory: a survey,”

Theoretical Computer Science, vol. 344, pp. 243-278, 2005.

[14] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative

learning approach to the traveling salesman problem,” IEEE Transactions

on Evolutionary Computation, vol.1, pp. 53-66, 1997.

[15] A. Dukkipati, M. N. Murty, and S. Bhatnagar, “Cauchy Annealing

Schedule: An Annealing Schedule for Boltzmann Selection Scheme in

Evolutionary Algorithms,” Proceedings of the 2004 Congress on Evolu-

tionary Computation, CEC 2004, June 19-23, 2004, Portland OR, USA.

[16] S.N. Evans and N.C. Weber, “On the Almost Sure Convergence of A

General Stochastic Approximation Procedure,” Bulletin of the Australian

Mathematical Society, vol. 34, pp. 335-342, 1986.

[17] V. Fabian, “On asymptotic normality in stochastic approximation,” The

Annals of Mathematical Statistics, vol. 39, pp. 1327-1332, 1968.

[18] L. J. Fogel, A. J. Owens and M. J. Walsh, Artificial Intelligence through

Simulated Evolution, John Wiley, 1966.

108



[19] M. C. Fu, “Gradient Estimation,” Handbook in OR & MS, chapter 19,

2006.

[20] M. C. Fu, J. Hu, and S. I. Marcus, “Model-based Randomized Methods

for Global Optimization,” Proceedings of the 17th International Sympo-

sium on Mathematical Theory of Networks and Systems, pp. 355-363,

2006.

[21] S. B. Gelfand and S. K. Mitter, “Simulated annealing with noisy or

imprecise energy measurements,” Journal of Optimization Theory and

Applications, vol. 62, pp. 49-62, 1989.

[22] F. W. Glover, “Tabu Search - Part I”, ORSA Journal on Computing,

vol. 1, pp. 190-206, 1989.

[23] F. W. Glover, “Tabu Search - Part II”, ORSA Journal on Computing,

vol. 2, pp. 4-32, 1990.

[24] F. W. Glover, “Tabu Search: a Tutorial,” Interfaces, vol.20, pp. 74-94,

1990.

[25] D. E. Goldberg, Genetic algorithms in search, optimization, and ma-

chine learning, Kluwer Academic Publishers, Boston, MA, 1989.

[26] W .Gong, Y. Ho and W. Zhai, “Stochastic Comparison Algorithm for

Discrete Optimization with Estimation,” SIAM J. Optim., vol. 10, pp.

384-404, 1999.

[27] W. Hoeffding, “Probability inequalities for sums of bounded random

variables,” Journal of the American Statistical Association, vol. 58, pp.

13-30, 1963.

[28] T. Homem-de-Mello, “Monto Carlo methods for discrete stochastic

optimization,” Stochastic optimization: algorithms and applications,

S.Uryasev, P.M.Pardalos, eds. Kluwer Academic Publishers, Boston, MA.

[29] T. Homem-De-Mello, “A study on the Cross-Entropy method for rare

event probability estimation,” INFORMS Journal on Computing, vol. 19,

pp. 381-394, 2007.

109



[30] T. Homem-De-Mello, “On rates of convergence for stochastic optimiza-

tion problems under non-independent and identically distributed sam-

pling,” SIAM Journal on Optimization, vol. 19, pp. 524-551, 2008.

[31] L. J. Hong, B. L. Nelson, “Discrete Optimization via Simulation Using

COMPASS,” Operations Research, vol. 54, pp115-129, 2006.

[32] J. Hu, M. C. Fu, and S. I. Marcus, “A model reference adaptive search

algorithm for global optimization,” Operations Research, vol. 55, pp. 549-

568, 2007.

[33] J. Hu, M. C. Fu, and S. I. Marcus, “A model reference adaptive search

algorithm for stochastic optimization with applications to Markov deci-

sion processes,” Proceedings of the 46th IEEE Conference on Decision

and Control, pp. 975-980, New Orleans, LA, USA, 2007.

[34] J. Hu and P. Hu, “On the performance of the Cross-Entropy method,”

Winter Simulation Conference, pp. 459-468, 2009.

[35] J. Hu and P. Hu, “An approximation annealing search algorithm to

global optimization and its connection to stochastic approximation,”

Winter Simulation Conference, pp. 1223-1234, 2010.

[36] J. Hu and P. Hu, “Annealing adaptive search, cross-entropy, and

stochastic approximation in global optimization,” Naval Research Logis-

tics, vol. 58, pp. 457-477, 2011.

[37] J. Hu, P. Hu and H. S. Chang, “A stochastic approximation framework

for a class of randomized optimization algorithms,” IEEE Transaction on

Automatic Control, vol. 57, pp. 165-178, 2012.

[38] A. W. Johnson and S. H. Jacobson, “A class of convergent generalized

hill climbing algorithms,” Applied Mathematics and Computation, vol.

125, pp. 359-373, 2002.

[39] J. Kiefer and J. Wolfowitz, “Stochastic Estimation of the Maximum of

a Regression Function,” The Annals of Mathematical Statistics, vol. 23,

pp462-466, 1953.

110



[40] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by sim-

ulated annealing,” Science, vol. 220, pp. 671-680, 1983.

[41] A. Kleywegt, A. Shapiro and T. Homem-de-Mello, “The sample average

approximation method for stochastic discrete optimization,” SIAM J.

Optim. vol. 12, pp.479-502, 2011.

[42] D. P. Kroese, R. Y. Rubinstein, and T. Taimre, “Application of the

Cross-Entropy method to clustering and vector quantization,” Journal of

Global Optimization, vol. 37, pp. 137-157, 2007.

[43] H. J. Kushner and D. S. Clark, Stochastic approximation methods for

constrained and unconstrained systems, Springer-Verlag, New York, NY,

1978.

[44] H. J. Kushner and G. G. Yin, Stochastic approximation algorithms and

applications, Springer-Verlag, New York, NY, 1997.

[45] P. J. M. Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory

and Applications, Kluwer Academic Publisher, Norwell, MA, 1987.

[46] M. Laguna and R. Marti, “Experimental testing of advanced scatter

search designs for global optimization of multimodal functions,” Journal

of Global Optimization, vol. 33, pp. 235-255, 2005.
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Appendix

Proof of Lemma 4.2.1: Since infy ϕ(y) > 0, there exists a constant ζ > 0

such that ϕ(y) ≥ ζ for all y ∈ <. We have

Eθ̂k [ϕ(H(X))I(H(X), γk)|Fk−1] ≥ ζEθ̂k [I(H(X), γk)|Fk−1]

≥ ζEθ̂k [I{H(X)≥γk}|Fk−1] ≥ ρζ > 0, (1)

where the second inequality follows from the definition of the threshold

function I(·, ·), and the third equality follows from the definition of quan-

tiles. Thus, it is sufficient to show that 1
Nk

∑
x∈Λk

ϕ(H(x))I(H(x), γ̂k)Γ(x)→
Eθ̂k [ϕ(H(X))I(H(X), γk)Γ(X)|Fk−1] as k →∞ w.p.1. For notational conve-

nience, define Ŷk(x) = ϕ(H(x))I(H(x), γ̂k) and Yk(x) = ϕ(H(x))I(H(x), γk).

Note that

1

Nk

∑
x∈Λk

Ŷk(x)Γ(x)− Eθ̂k [Yk(X)Γ(X)|Fk−1]

=
( 1

Nk

∑
x∈Λk

Ŷk(x)Γ(x)− 1

Nk

∑
x∈Λk

Yk(x)Γ(x)
)

+
( 1

Nk

∑
x∈Λk

Yk(x)Γ(x)− Eθ̂k [Yk(X)Γ(X)|Fk−1]
)
.

Since the mapping Γ is continuous and X is compact, it is clear that Γ(x)

is bounded for all x ∈ Λk. Thus, by Proposition 4.2.1 and the continuity of

I(·, ·), the first term above vanishes to zero w.p.1.

To show that the second term also converges to zero, note that conditional

on Fk−1, {Yk(x)}x∈Λk are i.i.d. and there exist constants a and b such that

a ≤ Yk(x)Γi(x) ≤ b ∀x ∈ X, where Γi(X) is the ith component of the vector

Γ(X). For any ε > 0, Let Ak be the event that Ak =
{∣∣ 1

Nk

∑
x∈Λk

Yk(x)Γi(x)−
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Eθ̂k [Yk(X)Γi(X)]
∣∣ ≥ ε

}
. We have from the Hoeffding inequality [27] that

Pθ̂k
(
Ak
∣∣Fk−1

)
≤ 2 exp

(−2Nkε
2

(b− a)2

)
= 2 exp

(−2Ckβε2

(b− a)2

)
,

for some constant C > 0. Next by conditioning, we get

P
(
Ak
)

= E
[
Pθ̂k
(
Ak
∣∣Fk−1

)]
≤ 2 exp

(−2Ckβε2

(b− a)2

)
.

Moreover, we have from A2,
∑∞

k=0 P
(
Ak
)
≤
∑∞

k=0 2 exp
(
−2Ckβε2

(b−a)2

)
< ∞.

Finally, the Borel-Cantelli lemma implies that P (Ak i.o.) = 0. Since this

holds for arbitrary ε > 0, we have 1
Nk

∑
x∈Λk

Yk(x)Γi(x)→ Eθ̂k [Yk(X)Γi(X)]

w.p.1.

A similar argument can be used to show that 1
Nk

∑
x∈Λk

Yk(x)→ Eθ̂k [Yk(X)]

w.p.1. Therefore, by (1) we have bk(θ̂k)→ 0 as k →∞ w.p.1. �

Proof of Lemma 4.3.1: Our proof is based on the proof of Lemma 2.4 in

[30]. Let Hl and Hu be the lower and upper bound for H. For given fθ̂k and

ρ ∈ (0, 1), it can be shown that the (1 − ρ)-quantile γk can be obtained as

the optimal solution of the following problem (e.g., [29])

min
v∈V

`k(v), (2)
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where V = [Hl, Hu], `k(v) := Eθ̂k [φ(H(X), v)|Fk−1], and

φ(H(x), v) :=

 (1− ρ)(H(x)− v) if v ≤ H(x),

ρ(v −H(x)) if v ≥ H(x).

Similarly, the sample (1− ρ)-quantile γ̂k can be expressed as the solution to

the sample average approximation of (2),

min
v∈V

̂̀
k(v), (3)

where ̂̀k(v) := 1
Nk

∑Nk
j=1 φ(H(Xk

j ), v) and Xk
1 , . . . , X

k
Nk

are i.i.d. with distri-

bution function fθ̂k .

For a given ρ ∈ (0, 1) and a constant δ > 0, define r = δ
3 max{ρ,1−ρ} . Let

{Bv,r, v ∈ V} be a collection of open balls centered at v ∈ V with radius r.

Since V is compact, we can find a collection of finite points Cv = {v1, . . . , vs}
such that V ⊆

⋃
v∈Cv Bv,r. Moreover, for an arbitrary v ∈ V, there exists

vk ∈ Cv such that |v − vk| < r. Thus, by the constructions of `k and ̂̀k, we

have

|`k(v)− `k(vk)| ≤ Eθ̂k
[
|φ(H(X), v)− φ(H(X), vk)|

∣∣Fk−1

]
≤ max{ρ, 1− ρ}|v − vk| ≤ δ/3,

|̂̀k(v)− ̂̀k(vk)| ≤ 1

Nk

Nk∑
j=1

∣∣φ(H(Xk
j ), v)− φ(H(Xk

j ), vk)
∣∣

≤ max{ρ, 1− ρ}|v − vk| ≤ δ/3.
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It follows that if |`k(vk)− ̂̀k(vk)| < δ/3, then for all v ∈ Bvk,r

|`k(v)− ̂̀k(v)| ≤ |`k(v)− `k(vk)|+ |̂̀k(v)− ̂̀k(vk)|
+ |`k(vk)− ̂̀k(vk)| < δ.

This implies that

Pθ̂k
(
|`k(v)−̂̀k(v)| < δ, ∀ v ∈ Bvk,r

∣∣Fk−1

)
≥ Pθ̂k

(∣∣`k(vk)−̂̀k(vk)∣∣ < δ/3
∣∣Fk−1

)
.

Next, by using Bonferroni’s inequality, we have

Pθ̂k

(
|`k(v)− ̂̀k(v)| < δ, ∀ v ∈ V

∣∣∣Fk−1

)
≥ Pθ̂k

(∣∣`k(vk)− ̂̀k(vk)∣∣ < δ/3, ∀ vk ∈ Cv
∣∣∣Fk−1

)
≥ 1−

s∑
k=1

[
1− Pθ̂k

(∣∣`k(vk)− ̂̀k(vk)∣∣ < δ/3
∣∣∣Fk−1

)]
≥ 1− κ(δ) max

1≤k≤s
Pθ̂k

(∣∣`k(vk)− ̂̀k(vk)∣∣ ≥ δ/3
∣∣∣Fk−1

)
(4)

where κ(δ) = 3 max{ρ,1−ρ}(Hu−Hl)
δ

. Thus, by noting that 0 ≤ φ(H(x), v) ≤
max{ρ, 1−ρ}(Hu−Hl) < Hu−Hl ∀ v ∈ V and applying Hoeffding’s inequality

[27] to the right-hand-size of (4), we get Pθ̂k
(
|`k(v) − ̂̀k(v)| < δ, ∀ v ∈

V
∣∣Fk−1

)
≥ 1 − 2κ(δ) exp

( −2Nkδ
2

9(Hu−Hl)2

)
. Next, by unconditioning on Fk−1, we

have

P
(
|`k(v)− ̂̀k(v)| < δ,∀ v ∈ V

)
≥ 1− 2κ(δ)e

−2Nkδ
2

9(Hu−Hl)2 . (5)

To complete the proof of Lemma 4.3.1, we need the following intermediate

result, which states that if the two functions `k(v) and ̂̀k(v) are sufficiently

close, then their optimal solutions will also be close.

Proposition .0.1. Assume that A3 and B2 hold. There exists a constant
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K > 0 such that

K|γ̂k − γk|2 ≤ max
v∈V
|`k(v)− ̂̀k(v)| (6)

almost surely for k sufficiently large.

Let Dk be the event that (6) holds at the kth iteration of Algorithm 4.2.

We have for a sufficiently small ε > 0,

P
(
{|γ̂k − γk| ≥ ε} ∩Dk

)
≤ P

(
{max
v∈V
|`k(v)− ̂̀k(v)| ≥ Kε2} ∩Dk

)
≤ P

(
max
v∈V
|`k(v)− ̂̀k(v)| ≥ Kε2

)
= 1− P (|`k(v)− ̂̀k(v)| < Kε2, ∀ v ∈ V)

≤ A

ε2
exp(−BNkε

4) by (5),

where A = 6 max{ρ,1−ρ}(Hu−Hl)
K

and B = 2K2

9(Hu−Hl)2 .

It follows that for a given τ > 0,

P
(
{k

τ
2 |γ̂k − γk| ≥ ε} ∩Dk

)
= P

(
{|γ̂k − γk| ≥ k−

τ
2 ε} ∩Dk

)
≤ Akτ

ε2
exp

(
−Bε4kβ−2τ

)
.

Since β > 2τ , it is easy to verify that
∑∞

k=1 P
(
{k τ2 |γ̂k− γk| ≥ ε}∩Dk

)
≤∑∞

k=1
Akτ

ε2
exp

(
− Bε4kβ−2τ

)
< ∞. Since P (Dk i.o) = 1, the Borel Cantelli

lemma implies P (k
τ
2 |γ̂k − γk| ≥ ε i.o.) = P (k

τ
2 |γ̂k − γk| ≥ ε ∩Dk i.o.) = 0.

Hence we have k
τ
2 |γ̂k − γk| → 0 as k →∞ w.p.1. �
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Proof of Proposition .0.1: Define the difference ∆k = γ̂k − γk, and let Y =

H(X) for notational convenience. Note that the function `k(v) is convex, and

for a given ρ ∈ (0, 1), its subdifferential is given by ∂v`k(v) = [ρ − Pθ̂k(Y ≥
γk|Fk−1), ρ − 1 + Pθ̂k(Y ≤ γk|Fk−1)] (e.g., [29]). Before we proceed any

further, we need to distinguish between the continuous and the discrete finite

optimization cases.

Case 1: (Continuous optimization) It is easy to see that `k(v) is twice

differentiable. Let ζ̄ > 0 and δ̄ > 0 be constants as defined in B2. Since

γ̂k → γk w.p.1 as k →∞ by Proposition 4.2.1, a Taylor expansion of `k(γ̂k)

in a small neighborhood (γk − δ̄, γk + δ̄) of γk implies that

`k(γ̂k)− `k(γk) =
1

2
`
′′

k(γ̄k)∆
2
k,

where γ̄k lies on the line segment between γk and γ̂k, and we have used the fact

that `
′

k(γk) = 0 since γk is the optimal solution to the convex optimization

problem (2). It is straightforward to verify that `
′′

k(γ̄k) = fH
θ̂k

(γ̄k). Thus, for

almost every sample path generated by Algorithms 2, we have from B2 that

for k sufficiently large,

ζ̄

2
∆2
k ≤ |`k(γ̂k)− `k(γk)|

≤ |`k(γ̂k)− ̂̀k(γ̂k)|+ |̂̀k(γ̂k)− `k(γk)|
≤ |`k(γ̂k)− ̂̀k(γ̂k)|+ max

v∈V
|`k(v)− ̂̀k(v)|

≤ 2 max
v∈V
|`k(v)− ̂̀k(v)|,

where the third inequality follows from the inequality |minx u(x)−minxw(x)| ≤
maxx |u(x) − w(x)| for any two real-valued functions u and w. Conse-

quently, it is clear that there exists a constant K > 0, such that K∆2
k ≤

maxv∈V |`k(v)− ̂̀k(v)| almost surely for all k sufficiently large.

Case 2: (Discrete finite optimization) Since the solution space X is finite,

the function `k(v) is convex and piece-wise linear, and its subdifferential at γk
can be written as ∂γk`k(γk) = [ρ−Pθ̂k(Y ≥ γk|Fk−1), ρ−Pθ̂k(Y > γk|Fk−1)].
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We have from part (ii) of B2 that for almost every sample path generated

by Algorithm 4.2, ρ− Pθ̂k(Y ≥ γk|Fk−1) ≤ −ζ̄ and ρ− Pθ̂k(Y > γk|Fk−1) ≥
ζ̄. For a sufficiently small ∆k, by the definition of subderivatives, we have

`k(γ̂k)− `k(γk) ≥ C∆k for any C ∈ [−ζ̄ , ζ̄] ⊆ ∂γk`k(γk). It follows that

ζ̄|∆k| ≤ `k(γ̂k)− `k(γk)
≤ |`k(γ̂k)− ̂̀k(γ̂k)|+ |̂̀k(γ̂k)− `k(γk)|
≤ 2 max

v∈V
|`k(v)− ̂̀k(v)|.

Hence, the desired result holds when |∆k| is sufficiently small. �

Proof of Proposition 4.3.1: Again, we define Ŷk(x) = ϕ(H(x))I(H(x), γ̂k)

and Yk(x) = ϕ(H(x))I(H(x), γk). By (1), it is sufficient to show that

k
τ
2

(
1
Nk

∑
x∈Λk

Ŷk(x)Γ(x) − Eθ̂k [Yk(X)Γ(X)|Fk−1]
)
→ 0 as k → ∞ w.p.1.

Note that

k
τ
2

( 1

Nk

∑
x∈Λk

Ŷk(x)Γ(x)− Eθ̂k [Yk(X)Γ(X)|Fk−1]
)

=k
τ
2

( 1

Nk

∑
x∈Λk

Ŷk(x)Γ(x)− 1

Nk

∑
x∈Λk

Yk(x)Γ(x)
)

+ k
τ
2

( 1

Nk

∑
x∈Λk

Yk(x)Γ(x)− Eθ̂k [Yk(X)Γ(X)|Fk−1]
)
.

Thus, by Lemma 4.3.1 and the continuity of I(·, ·), the first term above con-

verges to zero as k →∞ w.p.1. By using the same argument as in the proof

of Lemma 4.2.1, it is easy to show that the second term also vanishes to zero

as k →∞ w.p.1. �
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Proof of Lemma 4.3.2: Recall that Vk = k−
α
2

+ τ
2λk
(

1−αk
αk

)(
N−1
k

∑
x∈Λk

Γ(x)−
m(θ̂k)

)
. Note that conditional on Fk−1, the solutions in Λk are i.i.d.. Thus

it follows trivially that Eθ̂k [Vk|Fk−1] = 0. To show the second claim, let

Σk = Eθ̂k [VkV
T
k |Fk−1]. We have

Σk = Eθ̂k [VkV
T
k |Fk−1]

= k−α+τEθ̂k [ξk(θ̂k)ξk(θ̂k)
T |Fk−1]

= k−α+τ
(1− αk

αk

)2 λ2
k

Nk

Covθ̂k [Γ(X)|Fk−1]

= k−α−β+τ−2λ
(1− αk

αk

)2

Covθ̂k [Γ(X)|Fk−1].

Since under A1, A3, and the choices of αk and βk, the sequence of sampling

distributions {fθ̂k} converges point-wise to fm−1(η∗) w.p.1, the dominated

convergence theorem implies that the sequence {Σk} converges w.p.1. to a

limiting matrix Σ given by

Σ :=

Covm−1(η∗)[Γ(X)] if β = α + τ − 2λ,

0 if β > α + τ − 2λ.

By Hölder’s inequality, for any 1 < p, q <∞ with 1/p+ 1/q = 1, we have

lim
k→∞

E[I{‖Vk‖2≥rkα}‖Vk‖
2]

≤ lim sup
k→∞

[
P (‖Vk‖2 ≥ rkα)

]1/p[
E[‖Vk‖2q]

]1/q
(7)

Also,

P (‖Vk‖2 ≥ rkα)
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≤ P
((1− αk

αk

)2

λ2
k

∥∥ 1

Nk

∑
x∈Λk

Γ(x)−m(θ̂k)
∥∥2 ≥ rk2α−τ

)
≤ P

(∥∥N−1
k

∑
x∈Λk

Γ(x)−m(θ̂k)
∥∥ ≥ C

√
rk−τ/2+λ

)
(for some constant C > 0)

≤
E[‖N−1

k

∑
x∈Λk

Γ(x)−m(θ̂k)‖2]

C2rk−τ+2λ
(by Chebyshev’s inequality)

≤
E
[
Eθ̂k [‖N

−1
k

∑
x∈Λk

Γ(x)−m(θ̂k)‖2 |Fk−1]
]

C2rk−τ+2λ

=
E
[
Eθ̂k [Γ(X)TΓ(X)−m(θ̂k)

Tm(θ̂k)|Fk−1]
]

C2rk−τ+2λNk

= O(kτ−β−2λ). (8)

By taking q = 2, we have

E[‖Vk‖4] = E
[
(V T

k Vk)
2
]
≤ O(k2(α+τ−2λ))×

E
[(( 1

Nk

∑
x∈Λk

Γ(x)−m(θ̂k)
)T ( 1

Nk

∑
x∈Λk

Γ(x)−m(θ̂k)
))2]

(9)

A straightforward calculation shows that the right-hand-size of (9) is on the

order of O
(
k2(α+τ−β−2λ)

)
. Thus, combining (8) and (9), the right-hand-side

of (7) is on the order of O(kα+3(τ−β−2λ)/2), which vanishes to zero as k →∞
by taking β ≥ α + τ − 2λ. This completes the proof of the lemma. �

Proof of Lemma 5.2.2: To simplify exposition, we focus on the ith compo-

nents of Uk and Ūk (i = 1, . . . , d), and define

U i
k =

1

Nk

∑
x∈Λk

e
H(x)
Tk+1 Γi(x)/f̂θ̂k(x), Ū i

k = Ef̂
θ̂k

[U i
k|Fk] =

∫
X
e
H(x)
Tk+1 Γi(x)ν(dx),
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where Γi(x) is the ith component of Γ. Denote by V the volume of X. Note

that since H(x) > 0 ∀x, we have V̄k > V (cf. Equation (5.8)). Moreover, by

C5, since the mapping Γ is bounded on X, there exist constants C1 and C2

such that C1 ≤ Γi(x) ≤ C2 ∀x and C1V̄k ≤ Ū i
k ≤ C2V̄k. Define ε = V

2
, and

let Ωk = {|U i
k − Ū i

k| < ε ∩ |Vk − V̄k| < ε} and Ωc
k be the complement of Ωk.

By using a second order two-variable Taylor expansion of
U ik
Vk

around the

neighborhood Ωk of (Ū i
k, V̄k), we can write, for every sample path generated

by MARS,

U i
k

Vk
=

[
Ū i
k

V̄k
− Ū i

k

(V̄k)2
(Vk − V̄k) +

1

V̄k
(U i

k − Ū i
k) +

Ũk

Ṽ 3
k

(Vk − V̄k)2

− 1

Ṽ 2
k

(Vk − V̄k)(U i
k − Ū i

k)

]
I{Ωk}+

U i
k

Vk
I{Ωc

k}, (10)

where Ũk and Ṽk are on the respective line segments from Ū i
k to U i

k and from

V̄k to Vk. By rearranging terms in (10), we have

U i
k

Vk
− Ū i

k

V̄k
=

1

V̄k
(U i

k − Ū i
k)−

Ū i
k

(V̄k)2
(Vk − V̄k)

+

[
Ũk

Ṽ 3
k

(Vk − V̄k)2 − 1

Ṽ 2
k

(Vk − V̄k)(U i
k − Ū i

k)

]
I{Ωk}

+

[
U i
k

Vk
− Ū i

k

V̄k
− 1

V̄k
(U i

k − Ū i
k) +

Ū i
k

(V̄k)2
(Vk − V̄k)

]
I{Ωc

k}.

(11)

Next, by taking conditional expectations at both sides of (11), the following

inequality, consisting of five terms labeled [i]−[v], holds w.p.1.

∣∣∣∣Ef̂θ̂k
[
U i
k

Vk

∣∣∣Fk

]
− Ū i

k

V̄k

∣∣∣∣ ≤ Ef̂
θ̂k

[
|Ũk|
|Ṽk|3

(
Vk − V̄k

)2
I{Ωk}

∣∣∣Fk

]
+ Ef̂

θ̂k

[
1

Ṽ 2
k

∣∣(Vk − V̄k)(U i
k − Ū i

k)
∣∣I{Ωk}

∣∣∣Fk

]
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+ Ef̂
θ̂k

[∣∣∣∣U i
k

Vk
− Ū i

k

V̄k

∣∣∣∣I{Ωc
k}
∣∣∣Fk

]
+ Ef̂

θ̂k

[
1

|V̄k|
∣∣U i

k − Ū i
k

∣∣I{Ωc
k}
∣∣∣Fk

]
+ Ef̂

θ̂k

[
|Ū i

k|
(V̄k)2

∣∣Vk − V̄k∣∣I{Ωc
k}
∣∣∣Fk

]
.

For every (U i
k, Vk) pair in Ωk, it is easy to see that Ṽk > V̄k − ε > V /2 and

|Ũk| ≤ CV̄k + ε, where C = max{|C1|, |C2|}. Therefore, a bound on the first

term [i] is

[i] ≤ CV̄k + ε

(V̄k − ε)3
Ef̂

θ̂k

[
(Vk − V̄k)2

∣∣Fk

]
≤ C + ε/V̄k

(1− ε/V̄k)(V̄k − ε)2

1

Nk

[ ∫
X
e

2H(x)
Tk+1 /f̂θ̂k(x)ν(dx)

]
≤ e

2H∗
Tk+1

Nkλk

(
C + 1/2

V 2/8

)
V

f∗
since f̂θ̂k(x) ≥ λkf∗ ∀x, f∗ := infx∈X fθ̂0(x) > 0

≤ e
2H∗
Tk+1

Nkλk

8C + 4

V f∗
. (12)

Regarding term [ii], we have

[ii] ≤ 1

(V̄k − ε)2
Ef̂

θ̂k

[
|Vk − V̄k| · |U i

k − Ū i
k|
∣∣Fk

]
≤ 4

V 2
Ef̂

θ̂k

[
(Vk − V̄k)2

∣∣Fk

]1/2
Ef̂

θ̂k

[
(U i

k − Ū i
k)

2
∣∣Fk

]1/2
(by Hölder’s inequality)

≤ 4

V 2

1√
Nk

[ ∫
X
e

2H(x)
Tk+1 /f̂θ̂k(x)ν(dx)

]1/2 1√
Nk

[ ∫
X
e

2H(x)
Tk+1 Γ2

i (x)/f̂θ̂k(x)ν(dx)
]1/2

≤ e
2H∗
Tk+1

Nkλk

4C

V f∗
. (13)
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For term [iii], we have

[iii] = Ef̂
θ̂k

[∣∣∣Eḡk+1
[Γi(X)]− Egk+1

[Γi(X)]
∣∣∣I{Ωc

k}
∣∣Fk

]
where ḡk+1 is given by (5.5)

≤ |C1 − C2|Pf̂
θ̂k

(
Ωc
k

∣∣Fk

)
≤ |C1 − C2|

[
Pf̂

θ̂k

(
|U i

k − Ū i
k| ≥ ε

∣∣Fk

)
+ Pf̂

θ̂k

(
|Vk − V̄k| ≥ ε

∣∣Fk

)]
≤ |C1 − C2|

[Ef̂
θ̂k

[∣∣U i
k − Ū i

k

∣∣2|Fk

]
ε2

+
Ef̂

θ̂k

[∣∣Vk − V̄k∣∣2|Fk

]
ε2

]

≤ e
2H∗
Tk+1

Nkλk

4|C1 − C2|(1 + C2)

V f∗
. (14)

where the third inequality is by Chebyshev’s inequality.

Also for term [iv],

[iv] ≤ 1

V
Ef̂

θ̂k

[
|U i

k − Ū i
k|I{Ωc

k}
∣∣Fk

]
≤ 1

V
Ef̂

θ̂k

[
(U i

k − Ū i
k)

2
∣∣Fk

]1/2
Pf̂

θ̂k

(
Ωc
k

∣∣Fk

)1/2
(by Hölder’s inequality)

≤ C√
V f∗

e
H∗
Tk+1

√
Nkλk

[
Pf̂

θ̂k

(
|U i

k − Ū i
k| ≥ ε

∣∣Fk

)
+ Pf̂

θ̂k

(
|Vk − V̄k| ≥ ε

∣∣Fk

)]1/2

≤ e
2H∗
Tk+1

Nkλk

2C
√

1 + C2

V f∗
. (15)

By using a similar argument, it is straightforward to verify that term [v] is

also upper bounded by

[v] ≤ e
2H∗
Tk+1

Nkλk

2C
√

1 + C2

V f∗
. (16)

Finally, the proof is completed by applying C7 to (12), (13), (14), (15), and
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(16). �

Proof of Lemma 5.2.2: Let U i
k = N−1

k

∑
x∈Λk

e
H(x)
Tk+1 Γi(x)/f̂θ̂k(x) and Ū i

k =

Ef̂
θ̂k

[Uk|Fk] =
∫
X e

H(x)
Tk+1 Γi(x)ν(dx) be the ith components of Uk and its

conditional expectation. Denote by Σk
i,j the (i, j)th entry of the matrix

Σk := Ef̂
θ̂k

[RkR
T
k |Fk].

By using the same argument as in the proof of Lemma 5.2.2, we have

from (11) that

U i
k

Vk
− Ū i

k

V̄k
=

1

V̄k
(U i

k − Ū i
k)−

Ū i
k

(V̄k)2
(Vk − V̄k)

+

[
Ũk

Ṽ 3
k

(Vk − V̄k)2 − 1

Ṽ 2
k

(Vk − V̄k)(U i
k − Ū i

k)

]
I{Ωk}

+

[
U i
k

Vk
− Ū i

k

V̄k
− 1

V̄k
(U i

k − Ū i
k) +

Ū i
k

(V̄k)2
(Vk − V̄k)

]
I{Ωc

k},

where Ũk, Ṽk, and Ωk are defined as in the proof of Lemma 5.2.2. Therefore,

we can split Σk
i,j into five terms labeled [i]−[iv] plus a higher-order term as

follows:

Σk
i,j = c2kβEf̂

θ̂k

[(U i
k

Vk
− Ef̂

θ̂k

[U i
k

Vk

∣∣∣Fk

])(U j
k

Vk
− Ef̂

θ̂k

[U j
k

Vk

∣∣∣Fk

])∣∣∣∣Fk

]
= c2kβ

1

V̄ 2
k

Ef̂
θ̂k

[
(U i

k − Ū i
k)(U

j
k − Ū

j
k)
∣∣Fk

]
− c2kβ

Ū j
k

V̄ 3
k

Ef̂
θ̂k

[
(U i

k − Ū i
k)(Vk − V̄k)

∣∣Fk

]
− c2kβ

Ū i
k

V̄ 3
k

Ef̂
θ̂k

[
(U j

k − Ū
j
k)(Vk − V̄k)

∣∣Fk

]
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+ c2kβ
Ū i
kŪ

j
k

V̄ 4
k

Ef̂
θ̂k

[
(Vk − V̄k)2

∣∣Fk

]
+ c2kβRk

= [i]− [ii]− [iii] + [iv] + c2kβRk,

where Rk represents a remainder term.

[i] = c2kβ
1

V̄ 2
k

(
Ef̂

θ̂k

[U i
kU

j
k |Fk]− Ū i

kŪ
j
k

)
= c2kβ

1

V̄ 2
k

[
1

N2
k

Ef̂
θ̂k

[ ∑
x∈Λk

e
H(x)
Tk+1 Γi(x)/f̂θ̂k(x) ·

∑
x∈Λk

e
H(x)
Tk+1 Γj(x)/f̂θ̂k(x)

∣∣∣∣Fk

]

− Ū i
kŪ

j
k

]

= c2kβ
1

V̄ 2
k

1

Nk

(
Ef̂

θ̂k

[
e

2H(X)
Tk+1 Γi(X)Γj(X)/f̂ 2

θ̂k
(X)

∣∣∣Fk

]
− Ū i

kŪ
j
k

)
=
c2kβ

Nk

(
Ef̂

θ̂k

[ 1

V̄ 2
k

e
2H(X)
Tk+1 Γi(X)Γj(X)/f̂ 2

θ̂k
(X)

∣∣∣Fk

]
− Ū i

kŪ
j
k

V̄ 2
k

)
=
c2kβ

Nk

(
Egk

[
Γi(X)Γj(X)

gk(X)

f̂θ̂k(X)

∣∣∣Fk

]
− Egk [Γi(X)]Egk [Γj(X)]

)

Similarly, we also have

[ii] =
c2kβ

Nk

(
Egk

[
Γj(X)

]
Egk

[
Γi(X)

gk(X)

f̂θ̂k(X)

∣∣∣Fk

]
− Egk [Γi(X)]Egk [Γj(X)]

)
,

[iii] =
c2kβ

Nk

(
Egk

[
Γi(X)

]
Egk

[
Γj(X)

gk(X)

f̂θ̂k(X)

∣∣∣Fk

]
− Egk [Γi(X)]Egk [Γj(X)]

)
,

[iv] =
c2kβ

Nk

(
Egk

[
Γi(X)

]
Egk

[
Γj(X)

]
Egk

[ gk(X)

f̂θ̂k(X)

∣∣∣Fk

]
− Egk [Γi(X)]Egk [Γj(X)]

)
.
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Note that |e
H(x)
Tk+1 Γi(x)/f̂θ̂k(x)| ≤ e

H∗
T∗ |Γi(x)|/λkf∗. Thus by Assumption C5,

the Hoeffding’s inequality [27] shows that

Ef̂
θ̂k

[I{Ωc
k}|Fk] ≤ Pf̂

θ̂k

(
|U i

k − Ū i
k| ≥ ε

∣∣Fk

)
+ Pf̂

θ̂k

(
|Vk − V̄k| ≥ ε

∣∣Fk

)
= O(e−CNkλ

2
k) for some ε-dependent constant C > 0.

This result, when combined with the conditions Nk = Θ(kβ), λk = Ω(k−γ),

and γ < β
2

(Assumption B1), indicates that all terms containing I{Ωc
k} in

the remainder Rk are on the order of o(k−β). Moreover, a straightforward

calculation also shows that all terms involving I{Ωk} in Rk are higher order

terms of N−1
k . Consequently, we have ckβRk = o(1) by taking Nk = Θ(kβ).

Since Tk → T ∗ and T ∗ > 0, it is easy to see that limk→∞ gk(x) = g∗(x) for

all x ∈ X, where g∗(x) = eH(x)/T∗∫
X e

H(x)/T∗ν(dx)
. Thus, by the point-wise convergence

of {fθ̂k} (see the discussion after Assumption B2), the dominated convergence

theorem implies that the (i, j)th entry of Σk as k →∞ is

Σi,j = Ψ

(
Eg∗

[
Γi(X)Γj(X)

g∗(X)

f̂m−1(Γ∗)(X)

]
− Eg∗

[
Γj(X)

]
Eg∗

[
Γi(X)

g∗(X)

f̂m−1(Γ∗)(X)

]
+ Eg∗

[
Γi(X)

]
Eg∗
[
Γj(X)

]
Eg∗

[
g∗(X)

f̂m−1(Γ∗)(X)

]

− Eg∗
[
Γi(X)

]
Eg∗

[
Γj(X)

g∗(X)

f̂m−1(Γ∗)(X)

])

= ΨEg∗

[(
Γi(X)− Eg∗

[
Γi(X)

])(
Γj(X)− Eg∗

[
Γj(X)

]) g∗(X)

f̂m−1(Γ∗)(X)

]
= ΨÊm−1(Γ∗)

[(
Γi(X)− Eg∗

[
Γi(X)

])(
Γj(X)− Eg∗

[
Γj(X)

])( g∗(X)

f̂m−1(Γ∗)(X)

)2]
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for some constant Ψ > 0. Therefore, the limiting matrix Σ is given by

Σ = ΨCovf̂m−1(Γ∗)

[(
Γ(X)− Eg∗

[
Γ(X)

]) g∗(X)

f̂m−1(Γ∗)(X)

]
,

where Covf̂m−1(Γ∗)
(·) is the covariance under

f̂m−1(Γ∗)(x) = (1− λ∗)fm−1(Γ∗)(x) + λ∗fθ̂0(x)

.

We now show the second claim. By Hölder’s inequality, we have

lim
k→∞

E
[
I{‖Rk‖2 ≥ rkα}‖Rk‖2

]
≤ lim sup

k→∞

[
P
(
‖Rk‖2 ≥ rkα

)]1/2[
E
[
‖Rk‖4

]]1/2

.

(17)

By the definition of Rk, it follows that

P
(
‖Rk‖2 ≥ rkα

)
= P

(∥∥∥Uk

Vk
− Ef̂

θ̂k

[Uk

Vk

∣∣∣Fk

]∥∥∥ ≥ √r
c
k
α−β

2

)

≤
E
[∥∥Uk

Vk
− Ef̂

θ̂k

[Uk
Vk

∣∣Fk

]∥∥2
]

r
c2
kα−β

(by Chebyshev’s inequality)

=
E
[
Ef̂

θ̂k

[∥∥Uk
Vk
− Ef̂

θ̂k

[Uk
Vk

∣∣Fk

]∥∥2∣∣Fk

]]
r
c2
kα−β

=
E
[
Ef̂

θ̂k

[
c2kβ

∥∥Uk
Vk
− Ef̂

θ̂k

[Uk
Vk

∣∣Fk

]∥∥2∣∣Fk

]]
rkα

=
E[tr

(
Σk
)
]

rkα

= O(k−α)

by taking Nk = Θ(kβ) and using an argument similar to the proof of the
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previous part of the theorem, where tr(Σk) is the trace of Σk. On the other

hand, it is tedious but straightforward to show that

E
[
‖Rk‖4

]
= c4k2βE

[∥∥∥Uk

Vk
− Ef̂

θ̂k

[Uk

Vk

∣∣∣Fk

]∥∥∥4
]

= c4k2βE

[
Ef̂

θ̂k

[∥∥∥Uk

Vk
− Ef̂

θ̂k

[Uk

Vk

∣∣∣Fk

]∥∥∥4∣∣∣Fk

]]
= c4k2βO(N−2

k )

= O(1)

Consequently, the right-hand-size of (17) is bounded above by O
(
k−α/2

)
,

which approaches to zero as k →∞. �

Proof of Proposition 5.3.1: Note that since Tk′ > T ∗ ∀ k′, for any k > 0, we

can find a monotonically non-increasing subsequence {Tki , i = 0, 1, . . .} such

that Tk0 = Tk+1 and limi→∞ Tki = T ∗. We have for any integer N > 0,

∫
X

∣∣gkN (x)− gk+1(x)
∣∣ν(dx) ≤

∫
X

N−1∑
i=0

∣∣gki+1
(x)− gki(x)

∣∣ν(dx)

=
N−1∑
i=0

∫
X

∣∣gki+1
(x)− gki(x)

∣∣ν(dx)

≤
N−1∑
i=0

√
2D(gki+1

, gki)

(by Pinsker’s inequality (e.g., [71])),
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On the other hand, we have from the definition of KL-divergence,

D(gki+1
, gki) = Egki+1

[gki+1
(X)

gki(X)

]
=
( 1

Tki+1

− 1

Tki

)
Egki+1

[H(X)]− lnEgki

[
e

( 1
Tki+1

− 1
Tki

)H(X)
]

≤
( 1

Tki+1

− 1

Tki

)[
Egki+1

[H(X)]− Egki [H(X)]
]

(by Jensen’s inequality)

=
( 1

Tki+1

− 1

Tki

)∣∣∣ ∫
X
H(x)

(
gki+1

(x)− gki(x)
)
ν(dx)

∣∣∣
≤
( 1

Tki+1

− 1

Tki

)
H∗
∫
X

∣∣gki+1
(x)− gki(x)

∣∣ν(dx)

≤
( 1

Tki+1

− 1

Tki

)
H∗
√

2D(gki+1
, gki)

(by again applying Pinsker’s inequality).

This implies
√

2D(gki+1
, gki) ≤ 2H∗

(
1

Tki+1
− 1

Tki

)
. Therefore,

∫
X

∣∣gkN (x)− gk+1(x)
∣∣ν(dx) ≤

N−1∑
i=0

2H∗
( 1

Tki+1

− 1

Tki

)
= 2H∗

( 1

TkN
− 1

Tk+1

)
.

(18)

We now use (18) to bound ‖k α+β
2 W1,k‖.

‖k
α+β

2 W1,k‖ =
∥∥k α+β

2

(
Egk+1

[Γ(X)]− Eg∗ [Γ(X)]
)∥∥

= k
α+β

2

∥∥Egk+1
[Γ(X)]− lim

N→∞
EgkN [Γ(X)]

∥∥ (by Lemma 5.2.1)

≤ k
α+β

2 lim
N→∞

∫
X
‖Γ(x)‖

∣∣gkN (x)− gk+1(x)
∣∣ν(dx)

≤ Ck
α+β

2 lim
N→∞

∫
X

∣∣gkN (x)− gk+1(x)
∣∣ν(dx)
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(where C is an upper bound for ‖Γ(X)‖)

≤ 2H∗Ck
α+β

2

( 1

T ∗
− 1

Tk+1

)
,

which approaches zero as k →∞ by Assumption D1. �
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