Stony Brook University

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

© All Rights Reserved by Author.

Using Type I nference and Abstract
Interpretation for Static Binary Analysis
A Thesis Presented
by
Alireza Saberi
to
The Graduate School
in Partial Fulfillment of the
Requirements
for the Degree of
Master of Science
in

Computer Science

Stony Brook University

December 2012

Stony Brook University

The Graduate School

Alireza Saberi

We, the thesis committee for the above candidate for the
Master of Science degree, hereby recommend

acceptance of thisthesis.

Prof. R. Sekar
Thesis Advisor
Computer Science Department
Stony Brook University

Thisthesisis accepted by the Graduate School

Charles Taber
Interim Dean of the Graduate School

Abstract of the Thesis
Using Type Inference and Abstract
Interpretation for Static Binary Analysis
by
Alireza Saberi
Master of Science
in

Computer Science

Stony Brook University

2012

In recent years, many research efforts have been dedicated to detect vulnerabilities in software.
Most of these techniques are based on source code anaysis. However, source code-based
anaysis methods are ineffective when the program source code is not available. In such a case,
binary analysis is the only option. Yet, all binary anaysis methods have to address serious
challenges such as indirect memory access, missing functions and data abstraction. Historically,
these problems have been addressed using rather ad hoc techniques. However, recent research
has begun to reverse this trend. In this thesis, we cover Value-Set Analysis (VSA) and Abstract
Stack Analysis (ASA) that use abstract interpretation to address aforementioned challenges in a
principled way. We then move on to binary analysis methods that try to recover the missing type
information in binaries. We describe TIE, Howard and REWARD as three binary type analysis

methods and compare their effectiveness.

Contents
1 Introduction

2 Type Analysis for executable binaries

2.1 Motivationo e
2.2 Background
2.3 Type Information Categories
2.4 Source of Information
2.5 Type Analysis Steps
2.6 Constraint Generation
2.7 Constraint Solving L
2.8 Type Analysis Challenges
2.9 Static Type Analysis vs Dynamic Type Analysis
2.10 Arrays and Structures
2.11 Summary
Abstract Interpretation
3.1 Motivation
3.2 Definition
3.3 The Design of Abstract Interpretation
34 Example L
3.5 Property of Interest
3.6 Abstract Domain
3.7 Operations in Abstract Domain
3.8 Improvements L
3.81 Wideningo
3.8.2 Affine Relation Analysis
3.9 Summary e

List of Figures

HSQDOO\IO}OT-BOD[\DH

—_

13
14

15
16

TIE type lattice showing the hierarchy of type [15]
A sample RTL code, corresponding constraints [17]
Example rules for type constrain generation in TIE [15]
Three different access patterns[24]
Collatz Problem [14]
Abstract Domain for finding even or odd numbers
The abstract domain for ASA [23]
Sample assembly code using ebp value
ASA operations in abstract domain [23] L.
VSA Operations in Abstract Domain[3]
Different cases to consider for adding two two’s-complement num-

bers [12]
Four value-set types [3] L.
Value-set type produced by addition[3]
(a) Example program; (b) ranges for i and j at back-edge 3 — 2

without widening; (c) ranges for ¢ and j at back-edge 3 — 2 with

widening [3]
A sample code to traverse an array of struct [3]
VSA result on sample code [3] oL

1 Introduction

In recent years, many research efforts have been dedicated to detect bugs and
vulnerabilities in software. Most of these techniques are based on source code
analysis. Source code based analysis techniques need source code or source
code derived information such as intermediate representation and symbol table.
Although, source code analysis methods are usually effective, there are situations
that source code analysis methods cannot be applied or they cannot provide
required results.

For instance, Commercial Off-The Shelf (COTS) software is only available in
binary format. There is a great need to ensure COTS software does not perform
malicious activity or cannot be subverted by exploiting a vulnerability.

Most malware is only available in binary format. There is a great need to
understand their behavior and be able to detect and mitigate them based on
their signatures and behaviors. In both cases, we need analysis methods to
reason about binary without having extra information, such as symbol table,
that is not required for binary execution .

There are also situations where binary analysis is used to complement source
code analysis. For instance, Automatic Exploit Generation (AEG) [2] uses bi-
nary analysis to assist source code analysis result. AEG performs source code
analysis to find vulnerabilities, but it needs low level information about activa-
tion record of vulnerable function to automatically produce exploit. AEG uses
binary analysis to reveal required low level information such as activation record
size and positions of variables in activation record.

Situations where binary analysis is used, can be categorized as:

e Hidden Details. Guided fuzz testing is an example where source code
analysis is not helpful [16]. In general there are lots of additional details
in binary which are not available in source code. Compiler makes many
decisions during code optimizations and code generation which are hidden
from source code analysis methods. Guided fuzz testing uses binary anal-
ysis to find variable adjacency in activation records and heap structure.
This information helps fuzzer to mark potentially vulnerable variables.

e Unified View. Source code analysis techniques ran into trouble when
they face a program that is coded in different programming languages.
It is a challenging task to develop a source code analysis method that
can operate on multiple languages simultaneously. Binary analysis can
provide a unified view of the whole program. For instance, if there is an
inline assembly snippet in a source code, it is usually omitted by source
analysis methods. Binary analysis methods are useful in this case because
they analyze inline assembly code consistently.

e Library. Dealing with libraries is another challenging issue for code anal-
ysis approaches, especially if the source code of library is not available.
Most of the code analysis techniques simulate library calls by using func-
tion summaries or making stubs that simulate library calls. Since these

stubs are usually developed by hand, they may contain errors which lead
to incorrect results. On the other hand, binary analysis approaches can
handle library code similar to program code and there is no need to rely
on potentially incomplete call stubs.

e Global View. Binary based analysis approaches can provide unified
global view of programs that source centric analysis usually cannot pro-
vide. For instance, many source code analysis techniques are limited to
analyzing only one module at a time, similar to the way how a compiler
processes source code.

Research Interest. Our research is focused on securing COTS software
using Binary Rewriting and Transformation. We can use binary rewriting and
transformation to retrofit security defenses in binaries such as “stack canary” or
function-pointer protection. It can also be used to implement security-enhancing
transformations that maintain and check metadata associated with a program’s
data such as taint-tracking.

we are interested in binary rewriting and transformation with low overhead.
Although dynamic binary rewriting techniques are less complicated than static
techniques, they usually have high overhead. Thus, we have to use static binary
rewriting approach that can provide us low overhead.

Challenges. To understand challenges in binary analysis, we consider a
typical data flow analysis such as liveness analysis that can be used in binary
rewriting and transformation. Liveness analysis involves distinguishing variables
in the first step. Unfortunately, distinguishing between variables and identifying
their boundaries is a challenging task in binaries. Furthermore, liveness analysis
needs to keep track of read and write to variables. It is not an easy task if read
or write operations use indirect memory access addressing.

The main source of challenges in binary analysis is missing abstractions
which are available at source code and can be easily accessed by source code
analyzers. For instance, variable types and sizes are readily available to source
code analysis methods while there is no notion of variables or types in bina-
ries. Binary analysis approaches usually have to perform expensive analysis to
discover variables and infer about their types.

Function abstraction is another missing point at binary level. Even though
there is a “call” instruction in binary, it has a very different notion than “call”
in high level languages. In practice, there are calls to the middle of functions
in binary and a high level function may be compiled to non-contiguous code
snippets. Missing function abstraction can have negative effect on scalability of
binary analysis approaches.

Indirect memory access is another serious challenge in binary analysis, es-
pecially static approaches. A simple access to an array or struct member is
translated to a sequence of address arithmetic operations followed by indirect
memory accesses. Having many address arithmetic operations makes reasoning
about indirect memory access operations a difficult task. The lack of variable
type and size infomation limits us to conservatively reason about the entire
memory space for each operation which involves indirect memory access.

The lack of symbol table information is another challenge. Binary analysis
methods cannot rely on debugging or symbol table information because COTS
software or malware do not embed this information.

Approaches. In this report, we focus on Type Inference and Abstract
Interpretation [10] as two fundamental techniques which are frequently used to
address binary analysis challenges.

Type inference refers to the automatic deduction of the type of an expres-
sion in a programming language. Since high-level type information is discarded
during compilation, binary analysis methods have to reverse engineer data ab-
straction. It is a challenging task. Section 2 describes how type inference basics
are used to recover variables and their types in binaries.

Abstract interpretation is a non-standard program execution technique which
attempts to obtain information about program run-time properties by using ab-
stract values in place of actual values. Abstract-interpretation techniques try
to reason about all program’s behaviors for all possible inputs and all reachable
program states. Section 3 is devoted to abstract interpretation on binaries.

2 Type Analysis for executable binaries

Compilers perform type checking on source code to prevent potential errors in
programs. Type checking ensures operand with appropriate types are used by
each operation in programs.

Since type information is not required for binary execution, many COTS
software is shipped without any type information.

Type analysis for binaries is a process of associating each piece of data in
binary with appropriate higher level type. Readers familiar with concept of type
theory may have observed that this description is very similar to definition of
type inference. Although some binary analysis techniques are based on type
inference, all of them rely on heuristic methods to some extend; hence type
inference results on binaries are not sound or complete all the time. Note that
in some contexts like fuzzing and binary image forensics, these incomplete results
are acceptable, because we try to infer as much as possible about binaries.

2.1 Motivation

Type information is required to address many challenges in binary analysis.
For instance, binary analysis methods cannot disassemble binaries completely
because of indirect control-flow transfer instructions. Type analysis can improve
binary disassembly coverage by differentiating between integers and code pointer
values. Disassembler considers code pointer values as valid starting addresses
and disassembles instruction located after these addresses.

Vulnerability detection methods are another example that uses type informa-
tion to reveal potential vulnerable variables. In this case, binary type analysis
is used to detect variables that are adjacent to arrays. These variables are po-
tential candidates to be overwritten by a write to array which fails to check
array boundary. Guided fuzz testing is a vulnerability detection method that
uses adjacency information [26].

Memory image forensics heavily rely on type analysis as well. For example,
the first step to analyze a memory dump is to type all reachable memory. It
can be very important to find out whether a four-byte value in memory dump
represents an integer or an IP address [26].

Decompilation is the process of translating a binary to source code. Since
each and every variable in source code should have a proper type, decompilation
techniques [25] depend on binary type analysis. Binary rewriting techniques also
benefit from type analysis. Binary rewriting techniques that use fine-grained
type information get better performance when compared to binary rewriting
methods that utilize only coarse-grained type information. DisIRer [13] is a
binary rewriter that lifts up a binary to GCC IR, (Intermediate Representation)
by using coarse-grained type information. Since DisIRer does not recognize all
the variables, it must simulate binary access to memory at the IR level. This
prevents the compiler from performing many optimizations when the GCC IR
is recompiled.

On the other hand, secondwrite [18] is a binary rewriter that uses fine-
grained type information. Since secondwrite recognizes most of variables, it can
generate IR which includes distinct variables. Compiler can produce optimized
code using secondwrite IR.

2.2 Background

In this section we briefly go through background material in typing, subtyping
and lattice theory [15]. Interested readers are referred to programming languages
book such as Pierce [20] for more details.

Inference Rules. Typing rules are defined as Inference rules in the follow-
ing form:

PP.. P,
C

Premises Py, ..., P, are on the top of the inference rule bar. We can conclude
the statements below the bar C, if all the premises are satisfied. A rule is called
axiom when there is no premise. Inference rules provide a formal compact
notation for single-step inference. We can specify an inference algorithm by
recursively applying inference rules on premises until an axiom is reached.

Typing. Let us use term ¢ to refer to variable, value or expression. A term
t is typable or well typed if there is some type T such that ¢ : T (term t has type
T). The types of terms are specified as conclusion of inference rules while the
sub-terms type are specified as the premise. We use typing context (also called
type environment) I' to make sure variables are typed consistently. Context I'
is a sequence of variables and their types. The type of term ¢ is denoted by
I' -t : T which means term ¢ has type T under context T.

For instance, if variable = has type T', we update I' to include a new variable
x : T. Later on, we can find type of x by looking it up in I'. It is shown as:

z:int €T
I'kx :int

We can type an expression by recursively typing each sub-expression. For
example, the type of expression z+y is integer when = : int € I'and y : int € T'.
The same expression can be inferred to be pointer if any of its operands has type
pointer, since the plus operator accepts pointers and integers as arguments.

Subtyping. Type S is a subtype of T', S <: T, if any term of type S can be
safely used where a term of type T is expected. The subtype relation is reflexive
and transitive.

The bridge between the typing relation and subtype relation is provided by
the subsumption rule:

't:S S<:T
't: T

This rule says if ¢ has type S and S <: T, then every element ¢ of S has also
type T

The depth subtyping rule expresses the subtype relation for records (e.g. C
structures) where each field has a I; label:

for each 7 S; <: T;
{lz . Szzeln} < {l2 . T’;EL“H}
This rule says if each record filed [; has type S; and S; <: T;, then we infer

record S is a subtype of record T
The subtype relation is also defined for function types as follows:

T < 5 So <: Th
S1— Sy <: Ty = Ty

A function type is defined S; — S2 where 57 is the argument and S5 is the
result type. Notice that in a function subtype relation, the subtype relation is
reversed (contravariant) for the argument type, while it remains in the same
direction (covariant) for the result type.

2.3 Type Information Categories

So far, several applications of binary type analysis are provided. Although all
mentioned applications try to infer higher level type information from binaries,
they have different definitions for higher level type. Considering different binary
analysis techniques, we categorize them in two groups:

e The first group is interested in primitive types such as integer, pointer,
char and array. DIVINE [5] and TIE [15] are two well-known members of
the first group.

e Members of second group are more interested in semantic types. For
example, REWARDS [26], tries to find out if a 4 byte variable represents
an IP address or a file descriptor.

2.4 Source of Information

The main sources of type information in binary are library calls, system calls
and machine opcodes. Generally, signatures of system calls and well-known
library functions are known. In other words, each system call or library call
reveals type information about input arguments and return value.

Each machine instruction has a semantic that imposes restrictions on its
operands. These restrictions are very helpful in type inference. Almost all
instructions have fixed size operands. The operand size is a good start but
is not sufficient for finding exact type. Move, load and store instructions give
us more hints such as the source type is a subtype of its destination type. A
load instruction with 4-byte operand does not clarify whether the operand is an

T

N

reg32_t regi6_t reg8_t regi_t
num32 t ptr(a) code_t num1i6_t nums_t

int32 t umt32 t \\16 t uint16_t int8_t uint8_t

Figure 1: TIE type lattice showing the hierarchy of type [15]

integer, a float or a pointer. As a result, all binary type inference techniques
have an expressive internal type representation with special types whose only
information is the size, i.e. size32 for any 32-bit piece of data. Binary type
analysis methods use lattice to represent their internal type hierarchy. Figure 1
shows hierarchy of types used in TIE.

Limited type information comes from the values of some constants. In many
operating systems or architectures, we can rule out some values as pointers. For
example, knowing Linux reserves 0xC0000000 to OxFFFFFFFF for kernel, we can
assume that a constant value grater than 0xC0000000 is not a function pointer.

Debugging information, as a part of a binary, contains some type informa-
tion. Since debugging information is optional and is not available in all binaries,
we do not focus on it as a main source of type information. In general, we are
interested in analyzing stripped binaries, i.e., binaries without debugging or
symbol table information.

2.5 Type Analysis Steps

Unlike source code analysis methods which have the list of all variables, binary
analysis methods have to perform some analysis to discover variables in binaries.
Thus, most of binary analysis methods have a variable recovery step.

All binary type inference methods, static or dynamic, consist of two main
steps:

1. Variable Recovery
2. Type Reconstruction

Variable recovery phase uses memory access pattern to uncover variables. In
dynamic methods [24, 26] every access to memory reveals a new basic variable.
Accessing 4-byte values inside a loop is an access pattern corresponds to an
array.

Static methods [5, 15] analyze the code to find memory access patters like
ebp+0x0c that represents local variable. Emmerik [25] categorizes several mem-
ory access patterns to find variables. For example, accessing memory using a
constant address represents a global variable.

Type reconstruction is concerned with finding types for variables that are
recovered in the previous phase. It consists of constraint generation and con-
straint solving. In the former phase, each instruction semantic is considered
to produce constrains accordingly. For instance, moving a constant value zero
to register rl produces two constraints: a) rl is an int, b) rl is pointer and
initialized to null. Constraint solving phase is concerned with finding answers
(types) for all variables while satisfying all of the constraints.

2.6 Comnstraint Generation

Mycroft [17] was the first one who used type analysis for decompilation. Figure
2 shows a sample RTL (Register Transfer Language) code and the corresponding
constraints. The sample code is presented in SSA (Static Single Assignment)
form.

Although constraint generation may seem easy, it requires careful consider-
ations in order to produce sound and complete constraints. For example, an
arithmetic add instruction is used to add two integers, or an integer with a
pointer. Thus three different constraint sets are generated for add instruction.
Figure 2 shows the constraints genereted for the arithmetic add instruction.

All the constraints generated in Mycroft’s paper [17], REWARD [26] and
Howard [24] are in equality form. TIE [15] generates constraint with subtype
relation. Figure 1 shows TIE type hierarchy and figure 3 gives some example
rules for TIE inequality constraint generation. As illustrated in figure 1, TIE
does not recover float and double variables.

2.7 Constraint Solving

In the constraint solving phase, we try to assign types to all variables in such
a way that all the constraints are satisfied. Equality constraints are solved by
unification. Unification is the process of substitution, where having A = B, we
substitute all occurrences of A with B.

In equality constrains solving, occurs-check [20] should be performed to de-
tect equalities in the form a = ptr(a), where a variable is in both side of equation.
TIE raises an error and drop such a constraint. Mycroft [17] tries to cope with
occurs-check constraint failure by using structure. Solving constraint in figure
2 leads to an occur-check failure as tOc appears on both sides of the equation:

t0c = t0b = ptr(mem(4 : t0c)) = ptr(mem(0 : t2a))

This is fixed by using struct G {t2a m0; t0cm4; ...} i.e.,

t0c = ptr(mem(0 : t2a, 4 : t0c)) = ptr(struct G)

int f(struct A *x)
{ int r=0;
for (; x !=0; x = x->t1)
r += x->hd;

Destination is last operand

r0a, rOb are SSA versions of register
r0

t1a = type of rla

return x; mem(n:t) means a pointer offset n
} bytes from pointer ¢
(a) Original C program (b) Legend
£: tf = t0 — t99
mov r0,rOa t0 = t0a
mov #0,rla tla = int V tla = ptr(a;)
cmp #0,r0a t0a = int V t0a = pir(as)
beq LAF2
L3F2: mov ¢(r0a,r0Oc),r0b t0b = t0a, t0b = t0c
mov ¢(rla,ric),rlb t1b = tla, t1b = tlc
1d.w 0[rOb]l,r2a t0b = ptr(mem(0 : {2a)
add r2a,rib,rlc t2a = ptr(as), t1b = int, tlc = pir(as) V

t2a = int, tla = pir(ay), tle = ptr(aq) V
t2a = int, t1b = int, tlc = nt

t0b = ptr(mem(4 : t0c))

t0c = int V t0c = pir(as)

1d.w 4[rOb]l,r0c
cmp #0,r0Oc
bne L3F2

L4F2: mov ¢(rla,rlc),rld tld = tla, t1d = tlc
mov rid,r0d t0d = tld
ret t99 = t0d

(c) SSA machine code (d) Constraints

Figure 2: A sample RTL code, corresponding constraints [17]

Inequality constraints are solved by constraint propagation. Backtracking,
local search and constraint propagations are the three most used techniques
to solve Constraint Satisfaction Problem [1]. TIE is the only approach which
has inequality constraints and propagates them via transitive subtype relations.
For example, if we have a subtype relation S = {a <: b} and we append the
constraint {b <: ¢}, the constraint propagation algorithm, called closure by TIE,
makes new subtype relation set three constraints S = {a <: b, b <: ¢, a <: c}.

The main challenge in constraint solving is conflicts. There are situations
that conflicting constraints are generated in constraint generation phase. The
most common way to deal with conflicts is to drop one of them and try to solve
the remaining constraints. If constraint solver cannot find a solution, it drops
the other constraint and tries again.

Statement Generated constrains
r:=e Tz = Te
gotoe Te = ptr(code_t)

if ethen gotoe; else gotoey

Te = regl t A7y = ptr(code_t) A7y = ptr(code_t)

call fwithmov® retr

T = Tm g ANy (To = Top.[V]) ATr = Ty
(Where F = f T = Tof — Trf, Try = #update(m))

Expression Generated constraint for term with type variable 7
x (variable) Tz
v (integer) Tv

—neé (unary neg)

Te <:intn_t AT:> intn_t

€1 +32 €2

(Tey <tTy ANTey <: Ty AT :> Ty AT <: num32_t)
V(Te, <:ptr(Ta) A Te, <:numd2_t A7 :>ptr(1p))
V(Te, <:num32_t A Te, <:ptr(Ta) AT :>ptr(Ts))

€1 +n#32 €2

Tey <t Ty ANTey <:Ty AT :>Ty, NTy <: numn_t

~n €

Te <:uintn_t A7:>uintn_t

e; <g, €2

Te; <:intn_t ATe, <:intn_t A7:>regl.t

load(m,i,d, regn_t)

Ti = ptr(Tm.[i]) AT =T [i] AT <: regn_t

store(m,i,v,d, regn_t)

Ti =ptr(T) AT =T {i: 7w} AL.[i] <: regn_t

cb(el" cC 76")

T < Ty NN T,

Figure 3: Example rules for type constrain generation in TIE [15]

10

P

1. ’ variable offsets ‘
— —
2. ’ stride != wordsize ‘

i Vel Vil Vil Vil Vel \

3. ’ stride == wordsize ‘

. 32b , 32b , 32b , 32b , 32b , 32b , 32b , 32b ,

Figure 4: Three different access patterns[24]

2.8 Type Analysis Challenges

There are several challenges in variable recovery and type reconstruction phase.
Indirect memory access is one of the main challenge in variable recovery that
has great effect on final result. Indirect memory accesses also make it difficult
for static analysis methods to reason about array boundary and structure size.

Dynamic analysis methods rely on different input samples to find array
boundary and structure size; hence if they are not fed by appropriate inputs,
they are not capable to produce the correct result. Static methods usually use
heuristic to find the result.

There are situations that we face challenges in constraint generation. Fig-
ure 4 shows different memory access patterns to a memory region. Since we
use memory access patterns to produce appropriate constraints, we should sort
out memory access conflicts. For example pattern 1 and 2 help to generate
appropriate constraints based on access to structure’s element, but pattern 3 is
generated by using a general function like memcpy. These general functions are
used to copy or manipulate structures without having any idea about internal
structure. In 32 bit machines, general functions like memcpy and memset access
memory in 32 bit strides that is misleading and generate conflicting constraints.

2.9 Static Type Analysis vs Dynamic Type Analysis

Dynamic type analysis approaches such as REWARD [26] and Howard [24] are
light-weighted techniques when compared to static approaches such as TIE [15]
and VSA [4]. Dynamic approaches have runtime information about memory
access pattern and this information helps them to improve the final results.

Main challenge for dynamic approaches is code coverage. If dynamic ap-
proaches cannot provide appropriate test to cover all the code then some vari-
ables are left out. Experimental results in REWARD and Howard shows 60%
variable coverage. It means if there is no error in type inference analysis, RE-
WARD and Howard can only discover and type 60% of variables in their test
cases.

11

Static type analysis approaches such as TIE and VSA are considered to
be heavy-weighted analysis. TIE and VSA does not have runtime information
such as location accessed by indirect memory access; hence they have to make
over approximation in order to produce sound results. In some cases, this over
approximation affects the accuracy of the results.

2.10 Arrays and Structures

Identifying arrays and their boundaries in binaries is a challenging task. Al-
though there are distinct differences between arrays and structures in source
code, they are very similar in binary. Some type analysis techniques such as
TIE [15] does not distinguish between array and strucures and type them in the
same way.

REWARD [26] and Howard [24] rely on memory access pattern and heuristic
to find arrays and array boundaries. For example, REWARD marks a region
as an array when adjacent elements in memory are accessed within a loop.
REWARD makes use of well-known library function signatures to find well-
known structures. For example, when there is a call to the function send (sock
*s,...), REWARD considers the first element as a pointer to socket structure
and type memory according to the socket structure definition in the library
source code. If the source code is not available, REWARD cannot find struc-
tures.

Howard has a more specialized array detection component. It can de-
tect different pattern of accessing elements of an array. For instance, an el-
ement may be accessed using base address by basetindex*stride pattern or
it may be accessed by incrementing to a pointer pointing to previous element
in *(prev_pointer++) pattern. Howard array detection component has some
heuristics to detect boundary elements. However, loop unrolling changes the
access pattern of array, Howard has introduced some heuristics to deal with it.

DIVINE [5] (an improved VSA algorithm) is the only static approach that
tries to reveal internal structure of aggregates in binaries. DIVINE uses VSA
and Aggregate Structure Identification (ASI) [21] algorithm. ASTis a unification-
based flow-insensitive algorithm to identify the structures of aggregates in a
program (such as array and C structs). ASI basically generates some equality
constraints based on access patterns and uses a unification flavor algorithm to
solve the constraints.

2.11 Summary

In this chapter, we focused on type analysis as an essential analysis that helps us
to find out more about binary internal and behavior. However, type inference
on source code is flow-insensitive; type analysis in binaries is a bidirectional
flow-sensitive analysis.

We introduced two different categories of type in binary and showed sources
of type information in binary. Variable recovery and type reconstruction are

12

discussed as the two main steps of binary type analysis. We showed how con-
straint generation and constraint solving can be used in type analysis. Finally,
we discussed different approaches for identifying the structure of aggregates.

13

3 Abstract Interpretation

Abstract Interpretation [10] is a theory of sound approximation that is used in
many areas such as proofs, static analysis, model-checking, counter-example-
based refinement, program transformation, watermarking, information hiding,
code obfuscation, malware detection and verification [9]. Abstract Interpreta-
tion has been applied successfully in static analysis domain to automatically
infer about run-time properties of programs. In this section we focus on using
abstract interpretation in two static binary analysis methods called Abstract
Stack Analysis (ASA) [23] and Value Set Analysis (VSA) [4].

ASA is applied on function granularity and use abstract interpretation to
keep track on local variables and register values. VSA [4] is a combined pointer-
analysis and numeric-analysis algorithm based on abstract interpretation. VSA
computes an over-approximation for registers and variable values.

3.1 DMotivation

Abstract Interpretation can assists static analysis. For instance, consider the
case that we use static binary rewriting to perform taint tracking. If a static
binary analysis method analyzes a function £ and shows that a local variable
x is only accessed within f then the binary rewriting can use a local variable
as taint metadata which is more efficient than using global variable as taint
metadata. ASA [23] technique shows how an abstract interpretation analysis
result assists escape analysis.

Although indirect memory access is very common in X86 binary, static anal-
ysis methods have hard time to reason about them. In general, a register used
as indirect memory access operand may be initialized by a read from memory.
In this case, it is necessary to know the value of that memory location to deter-
mine the value of the register. This is a very challenging task for static analysis
methods, thus many of them ignore memory operations [11] or treat memory op-
erations in a unsound manner [8]. VSA uses abstract interpretation to computes
an over-approximation for registers and variable values. Static analysis methods
can use result of VSA to reason about indirect memory access operations.

3.2 Definition

Abstract Interpretation ! is described as a non-standard execution which tries

to reason about all possible program executions by using “abstract values” in
place of actual computed values. Abstract Interpretation associates with each
program point the set of all memory stores (C') that can occur when program
control reach that point. In static analysis, these stores represent variables
located in memory. The set p(Store) of all sets of stores form a complete lattice
that is called concrete domain. Concrete domain is represented by p(Store)
or p(C). Abstract interpretation uses simpler lattice (Abs) that is connected
to p(Store) by an abstraction function o : p(Store) — Abs where Abs is a

'We description abstract interpretation in the context of static analysis.

14

lattice of abstract stores that is called abstract domain. Section 3.6 describes
two abstract domains based on interval and strided intervals that is used by
static analysis methods.

We assume standard abstract interpretation where concrete and abstract
domains, L given by (C) and A, are complete lattice (L, C,N,U,C, D) and
(A,C,M,U, Ta,La), respectively. The two lattices are related by abstraction
and concretization maps « and « forming a Galois connection ¥Yc € L : Va €
A: a(c)Ca < cCy(a)|19]. We write this fact as: (L, C) & (A,).

Galois connection represents the notion of abstract soundoréless. We say that
an abstraction is sound (or correct) if the abstract semantics covers all possible
cases of the concrete semantics. In context of ASA and VSA, it means for every
program point p in the program, an abstract value a, associated with variable v,
covers all the possible values for variable v at point p in the normal execution.
In other words, if value v is not in abstract representation of a variable, it must
be impossible for the variable to have value v in any run of the program.

3.3 The Design of Abstract Interpretation

An Abstract Interpretation for a program can be designed in the following steps
[7]:

1. Identify the interesting property

2. Choose an appropriate abstract domain that captures above property pre-
cisely while balancing computational and representational constraints

3. Establish a precise connection between the concrete and abstract domain
4. Define the required operations in abstract domain

In this section we focus on two abstract interpretation-based static analysis
methods called VSA [6] and ASA [23]. We describe these two methods by going
through steps of Abstract Interpretation design.

3.4 Example

In this section, we illustrate the idea of abstract interpretation using Collatz
problem as example. We try to find out whether variable n is even or odd at each
point of program. Figure 5 shows Collatz problem and corresponding flowchart.
Collatz problem is about determining whether this program terminates for all
possible initial n. To our knowledge it is still unsolved.

The property of interest is whether n is odd or even in different points of
program.

Accumulating semantics associate for each point in program (A, B, ..,G) all
the possible values of variable n at that point. Then we choose abstract values
as {L,even,odd, T}. The abstract values form a complete lattice as abstract
domain. Figure 6 shows the abstract domain.

15

A: while n # 1 do
B: if n even
then (C:n:=n-+2;D:)
else (E:n:=3xn+1;F:)
fi
od
G:

n:=3n+1

| F

Figure 5: Collatz Problem [14]

Figure 6: Abstract Domain for finding even or odd numbers

For this sample the connection between concrete values and abstract values
is obvious. The abstraction function map each number to abstract value (even
or odd). We define two operations for n + 2 and 3n + 1 over abstract domain.

1 difabs =1
Jn-2(abs) {T else
1 ifabs = L, else
even if abs = even, else
odd ifabs = odd, else
T ifabs =T

fam+1(abs) =

Now we define a set of approximate data-flow equations that describe pro-
gram’s behavior.

16

absa = «(So)

absp = (absaUabsp Uabsp)MT
absc = abspMeven

absp = faz2(absc)

absg = absgModd

absp = fant1(absg)

absg = (abspUabsp Uabsp) Modd

Final step is to compute the fixpoint for a simple input. Following shows
fixpoint calculation for Sy = {5}.

abspy absgp absg absp absg absgp absg iteration

1 1 1 1 L 1 1L 0
odd 1L 1 L L L 1L 1
odd odd 1L 1 1L 1L odd 2
odd odd 1 1 odd 1 odd 3
odd odd 1L 1 odd even odd 4
odd T 1 1 odd even odd 5
odd T even L odd even odd 6
odd T even T odd even odd 7,8,...

The conclusion is that n is always even at points C and F, and always odd
at E and G.

3.5 Property of Interest

Although both ASA [23] and VSA [4] are designed to assist binary analysis,
they address this goal with different point of views and ideas, thus property of
interest is not the same for both of them.

ASA is more interested in analysis methods that can assist binary rewriting.
For instance, in the context of taint-tracking, we want to maintain and update
metadata (taint information) for each variable and register using static binary
rewriting. There are several optimizations that can reduce the taint-tracking
overhead. Tag sharing is an optimization that uses ASA results. Using ASA
result, tag sharing optimization can statically find all the variables that can
share a single copy of metadata tag. These variables usually keep the same
value or slightly different value (in the form of ¢ = j+5) that produce the same
metadata value.

As property of interest, ASA keeps track of register values, variable values
and the simple linear relation between them. This information is useful for
optimization methods like tag sharing. Although the register or memory values
are not always available for static analysis, we can still apply the optimization if
we keep the linear relation between variable and registers. For example, if ASA

17

result shows register esp and a local variable inside function £ keep the same
value, we can apply the tag sharing, without knowing the exact value of esp or
local memory.

Recovering information about indirect memory-access operations is a chal-
lenge in X86 binary analysis. Most of data flow analysis methods cannot work
on binaries without having information about indirect memory access. VSA
addresses this issue by combining a pointer-analysis and a numeric-analysis al-
gorithm. As property of interest, VSA computes an over-approximation of all
possible concrete values at each program point. The result of VSA can be used
in “dependence analysis” and “resolving indirect jumps and calls”.

3.6 Abstract Domain

Both VSA [4] and ASA [23] use accumulating semantics similar to [10]. Accu-
mulating semantics associates with each program point, the set of all memory
stores that can occur when program control reaches that point. In other words,
VSA and ASA try to compute all the possible variables and register values for
each line of assembly code in binary. This kind of analysis is very expensive, thus
we define an abstract domain and continue our analysis on abstract domain.

ASA. Points in ASA abstract domain are represented as Base+[l, h], where
Base and h are optional. Base denotes the value of a register or local memory
at the entry point of a function. A missing Base is treated as equivalent to zero,
and a missing h is treated as equal to [. Both [and h can be negative integers.
Base is usually represented by a symbolic value X. Base + [I, h] represents any
concrete value in range of X + [to X + h (concretization).

ASA is interested in analysis on function granularity and the initial value
of esp, denoted by BaseSP, has an important role in defining the notion of
local variable. Figure 7 shows the ASA abstract domain that is in the form of
complete lattice . The abstract value const denotes an unknown concrete value
that does not point to local memory addresses. Abstract value const capture
the assumption that address of local variable i is created inside its function f
and cannot exist before activation of f.

VSA. VSA shows every memory address is a pair of memory region and off-
set (memoryregion, of fset). VSA uses a set of tuples of the form (region; —
{of festi,of fseth,...,of fseti}), called absEnv, to represent its abstract do-
main. VSA uses a k-bit strided-interval (SI) [22] to represent the set of offsets
in each memory region. A k-bit strided interval s[l, u] represents a set of integers
{ie[-2k1 2k —1] |1 <i < w, i=[l]} where

e congruence class of [mod m, defined as [I], = {l+ix s|i € Z}

s is called the stride.

[, u] is the interval.
e 0[l;1] represents the singleton {I}.

e we consider L as strided interval with empty set of offsets.

18

T

N

const

Xa+[liy k] o0 X+ [, ha]
0.

7

Figure 7: The abstract domain for ASA [23]

ui

Consider the set of addresses
S = {(Global — {2,6,14,18}), (ARmain — {—20,—16})}
The VSA abstract store, called value-set, for S is the set
{(Global — 4[2,18], ARmain — 4[—20,—16])}

Note that the value-set for S is an over-approximation; the value-set includes
the global address 10, which is not an element of S.

Value-set forms a complete lattice. Relation (vs; CY® vss) means value-
set vsy is subset of vsy. Meet (intersection) and join (union) are shown by
(vs1 M¥® vsy) and (vsy LY vss) respectively.

Comparison. Figure 8 shows a sample assembly code that VSA cannot
infer about the values but ASA produces useful result. In this sample, the value
of ebp is moved to eax, then increased by 5. If we use VSA to infer about eax
just before instruction 4,we get T as a result that is not useful. Register ebp
can have any value (T) at the beginning and adding 5 to it does not change the
result. ASA cannot infer the exact value of eax before instruction 4,but it can
infer eax has value ebp + [5, 5] which is useful.

Another advantage of ASA is being able to capture the equality between
registers and variables. For instance, consider the case that eax has two poten-
tial values {1000, 1004} before the instruction mov eax,ebr. Then ASA can
easily capture the equality between eax and ebx, but VSA cannot. VSA can
infer that eaz and ebx have SI 4[1000, 1004], but it does not mean eax and ebx
have the same value.

VSA gains advantage by using SIs instead of simple interval, because SIs are
more accurate and can keep alignment information. SI helps VSA to achieve
more accurate results on indirect addressing operations such as field-access op-
erations in an array of structs or dereferencing a pointer. For instance, let *t
denotes a 4-bytes fetch from address ¢ . Suppose ¢ contains the set {2000,

19

push ebp

mov esp, ebp

mov [esp], eax
add 5, eax

mov eax, [esp-12]

O W N

Figure 8: Sample assembly code using ebp value

2004} that is represented as SI 4[2000, 2004]. Since VSA uses SI representation,
it fetches exactly from two memory addresses 2000 and 2004. On the other
hand, the interval [2000,2004] contains addresses 2001, 2002, 2003; hence
*[2000, 2004] could result in forged addresses.

Although each abstract store in VSA is associated with only one abstract
value, ASA associates a set of abstract values to each abstract store. This set
can have up to k members where k is a small constant value. If the number
of abstract values in the set exceeds k, an appropriate generalization is used to
reduce the number of values to less than k.

3.7 Operations in Abstract Domain

Both ASA and VSA address basic operations like assignment, dereferencing,
and addition, but they have different abstract domain; hence different ways for
applying these operations on abstract domain.

ASA. Figure 9 describes ASA operations in a simplified RISC format. In
this figure, Instruction I is applied on abstract store A and abstract store A’ is
produced. R denotes the registers and A[l] denotes abstract store at location .
If the location being updated is precisely known then ASA uses “strong update”
to replace the abstract value. If it is not known precisely, then ASA cannot use
“strong update”; instead, we use the notion of “weak update” by adding the value
of the right-hand side of the assignment to each of these potential locations.

As we have mentioned before, ASA is only interested on function granu-
larity and only distinguishes between local memory locations. For instance, it
differentiate between BaseSP + a and BaseSP + b when a # b.

Static operation “@” denotes arithmetic addition “+” in abstract domain.
ASA simply interpret X + [I1, h1] @ [l2, ho] as X +[l1 +12, b1 + ha]. The result of
X+[l1,h] ® Y +]la, ho is const if it cannot represent address of local variables;
in other words neither X nor Y should not be BaseSP. If any of X or Y is
equal to BaseSP the result would be T.

ASA captures a single summery for each function f. This summary includes
change in esp, maximum size of f activation record, input parameters to £ and
change to registers and parameters of £. Having function summary, abstract
interpretation uses a function applysum to update the abstract store to reflect
local memory and register changes specified in the summary.

VSA. As we have mentioned before, tuple AbsEnv is used to store abstract
values for registers, global variables, local variables and X86 flags at each point
of program. Figure 10 shows main VSA operations in abstract domain. In this

20

Instruction (I) | Abstract store (A")
R:=c Upd(A,[R — [c,]])
R:=R Upd(A, R — A[R']])
R:==x(R) | Upd(A [R— UaceA[R’ Alz]])
*(R) =R’ Upd(A, [z — A[R]]), if A[R] = {z}
Upd(: - (Upd((21 = Alza] U A[RT])]) - -
), — Alea] U AIRT)
if A[R]:{ml,.. Tnt,m > 1
R=Ri + R2 | Upd(A B~ U, catmiiwsc a7 ® 72])
call(f) Upd(- - - (Upd(A, [z1 — applysum(Alzi], f,z1)]) -
); [£n — applysum(Alz,], f,zn)])
where ModifiedNonLocals(f) = {z1,...,xn}

Figure 9: ASA operations in abstract domain [23]

figure instruction [is applied on input abstract store, in:AbsEnv, and produces
AbsEnv tuple, called out, as output abstract store. In this figure in[R] denotes
value-set of register R in abstract store in. The abstract domain for X86 flags,
called Bool3, is defined as: Bool3 ={False, Maybe, True}. The value Maybe
means “may be False, maybe True.

Three operators and couple of interesting point about figure 10 are described
as:

(vs +v% ¢): Returns the value-set obtained by adjusting all values in vs
by the constant c, e.g., if vs = (4,4[4,12]) and ¢ = 12, then(vs +"% ¢) =
(16,416, 24]).

e x(vs, s) :Returns a pair of sets (F, P). F represents the set of “fully ac-
cessed” memory location: it consists of the memory locations that are of
size s and whose starting addresses are in vs. P represents the set of “par-
tially accessed” memory location: it consists of memory location whose
starting addresses are in vs but are not of size s.

e RemoveLower Bounds(vs): Returns the value-set obtained by setting the
lower bound of each component SIto —23!. For example, if vs = ([0, 100], [100, 200]),
then RemoveLower Bounds(vs) = ([—23!,100], [-23!, 200]).

e RemoveUpper Bounds(vs): Similar to RemoveLowerBounds, but sets
the upper bound of each component to 23! — 1.

e Fach AR region of a recursive procedure , potentially represents more
than one concrete data object, assignments to their local variables must
be modeled by weak updates, i.e., the new value-set must be joined with
the existing one, rather than replacing it (case two of figure 10).

21

Instruction AbstractTransformer(in: AbsEnv): AbsEnv

Let out := in and vsgy := in[R2]
R1=R2+c¢ out[R1] := vsga +" ¢
return out

Let vsgy := in[R1], vspo := in[R2], (F, P) = *(vsp1 +"* 1, s), and out := in

Let Proc be the procedure containing the instruction

if (|F| =1 A |P| = 0 A (F has no heap a-locs or a-locs of recursive procedures)) then
out[v] := vspa +" o, where v € F // Strong update

else
for eachv € F do
(Rl+c1) =R2+ ¢ out[v] := out[v] LI" (vspa +* c2) // Weak update
end for
end if

for each v € P do // Set partially accessed a-locs to T"
out[y] :=T%

end for

return out

Let vsgo := in[R2], (F, P) = #(vspa +"* ¢1, s) and out := in
if (| P| = 0) then
Let vsy, := | " {in]v] | v € F}

R1 = #(R2 + ¢1) + ¢ out[R1] := vsyps +"° co

else
out[R1] :=T*
end if
return out
Letvs, := ([-2%,¢], T, ..., T*) and out := in
R1<c out[R1] := in[R1] " vs,.
return out

Let vspy := in[R1] and vspy := in[R2]

Let vsy, := RemoveUpperBounds(vsgz) and vs,;, := RemoveLowerBounds (vsp)
out :=in

out[R1] := vsg; 1% vsy

out[R2] := vsgz MY vsyp

return out

R1 > R2

Figure 10: VSA Operations in Abstract Domain|[3]

22

at+c< =28 b4d< —23 atc<x+y<b+d

at+c< =28 b4+d> 2% —2 <x 4y <23t -1

2l <at+e< 2 b+d>2%

(1) =
(2) =
3) -2 <a+c<22b+d<2¥ > a+c<x+y<b+d
(4) = -2 <Ix+4+y<23 -1
(5) =

a+c>2 b+d> 2% atc<x+y<b+d

Figure 11: Different cases to consider for adding two two’s-complement numbers
[12]

e Unaligned writes can modify parts of various variables that could create
forged addresses. In case 2 of figure 10, such writes are treated safely by
setting the values of all partially modified variables to TV*. Similarly, case
3 treats a load of a potentially forged address as a load of Tv%.

Although arithmetic addition is the only arithmetic operation presented in figure
10, VSA support subtraction, bitwise And(&"®), Or(|*®) and Xor("”*?). In this
section, we present arithmetic addition on SIs and how VSA use that to define
value-set addition. Interested readers are referred to [3] for more details on
remaining supported arithmetic operations.

VSA uses H. Warren’s [12] algorithms for performing arithmetic and bit-
level operations on intervals (i.e., strided interval with stride 1). Figure 11
shows stride addition for two two’s-complement values x and y where a < x < b
and ¢ < y < d. The result of z + y is not always in the interval of [a + ¢,b + d]
because of overflow in either positive or negative direction.

Using the definition for arithmetic operation on SIs, VSA defines the value-
set arithmetic. VSA classifies value-sets in four categories and the result of
value-set arithmetic is defined for each value-set type. Figure 12 shows different
value-set groups and figure 13 shows the value-set type produced by value-set
addition.

The valus-set operation +"* is defined as follow:

® VSgioh +°° VSgiop : Let vsy = (sig, L,...) and vsg = (sid, L,...).
Then vsy +% vsg = (sif +°¢ sid, L,...).

o VSgiop +7° VSsingle + Let vsg = (sip, L,...) and vsy = (L, ...,sil2, 1,0
Then vsy +% vsg = (L, ..., siy +°¢ si?, L, ...).

® VSingte +"° VSgiop + Let vsy = (L, e sif, L) and vse = (sid, L,...) .
Then vsy +% vsy = (L, ..., sif +5 sid, L, ...).

® VSart +°° VSgiop : Let vsy = (sig, ,sz}f,) and vsy = (si3, L, ...) .
Then vsy +% vsy = (sif +5 i3, ..., sir +°7 si, ...).

o VSgiop +VSar : Let vsy = (sig, L,...) and vsy = (si3, ...,sii, o)
Then vsy +% vsy = (sif +5 i3, ..., si§ +5 si2, ...).

23

Kind | Form of value-set
VSeiop || (sio, L,...) sip is a set of offsets in the
Global memory-region
VSgingte || (L, ..., si, L,...) | si;is a set of offsets in the
{-th memory-region (I # Global)
VSars | (sioy...,Sig,...) | sixis a set of offsets in the
k-th memory-region
T | (T T all addresses and numeric values
Figure 12: Four value-set types [3]
\& Vs
+ VSglob VSsingle VSarb T
vs
VSglob VS glob VSsingle VSarb T

VSsingle
VSarb VSarb

TVS TVS

VSsingle

TVS —I—VS TVS
TVS TVS TVS
TVS —I—VS TVS

Figure 13: Value-set type produced by addition|[3]

24

v [1,11} [9?9] 1
[1,2] | [8,9] old; | new; | old;Vnew; | 1 < 10
. L3 | [7.9 T Ly L] | L1
3: E’ 3% E)’ g} old; | new; old1Vnewj i<10
’ o L 19,9 [9,9] [9,9]
. OO 0,0 | 8.9] | [=o00.9] | [=00.9)
(a) (®) (c)

Figure 14: (a) Example program; (b) ranges for ¢ and j at back-edge 3 — 2
without widening; (c) ranges for 7 and j at back-edge 3 — 2 with widening [3]

3.8 Improvements

There are different techniques to improve abstract interpretation result. Widen-
ing is a technique that is used to improve the abstract interpretation perfor-
mance. Affine relation analysis is a technique used by VSA to improve the
accuracy. In this section we show these two techniques are used by ASA and
VSA.

3.8.1 Widening

Widening is an extrapolation technique used to ensure the termination of abstract-
interpretation algorithms with lattices of infinite, or very large, height. Both
ASA and VSA use widening to reduce the analysis time for loops. ASA apply
a simple widening by expanding integer intervals to [—oo, 0], [0, 0] or [—o0, 0]
after inspecting the abstract values of the first two iterations of the loop.

VSA defines the widening operator (V) for intervals as follows:

l I <1 >
[th%mﬂ=%%wMMJ:{l Lo ={“ =

.) .
—o00 otherwise oo otherwise

VSA only apply widening to the back-edge of loops. For example, in figure
14(a) the widening operator is applied to edge from node 3 to node 2. The
ranges computed with widening for variables at each iteration is shown in figure
14(c). By using widening, interval analysis terminates faster when compared to
figure 14(b) where the widening is not applied.

3.8.2 Affine Relation Analysis

One of the main drawback of VSA is the loss of precision due to non-relational
nature of VSA abstract domain. ASA can maintain basic relation between

25

typedef struct { proc main H
int x,y; 1 sub esp, 44 ;Allocate locals
} Point; 2 lea eax, [esp+8] ;t1 = &pts[0].y
3 mov [esp+0], eax ;py = t1
int a =1, b = 2; 4 mov ebx, [4] ;ebx = a
5 mov ecx, [8] ;ecx = b
int main(){ 6 mov edx, O ;i =0
int i, *py; 7 lea eax,[esp+4] ;p = &pts[0]
Point pts[5], *p; L1: mov [eax], ebx ;Pp>x = a
py = &pts[0].y; 8 mov [eax+4],ecx ;p—>y =D
p = &pts[0]; 9 add eax, 8 ;p += 8
for(i = 0; i < 5; ++i) { 10 inc edx sit+
p~>x = a; 11 cmp edx, 5 5
p->y = b; 12 j1 L1 ;(i < 5)?L1:exit loop
p += 8; 13 mov edi, [esp+0] ;t2 = py
} 14 mov eax, [edi] ;set return value (*t2)
return *py; 15 add esp, 44 ;Deallocate locals
} 16 retn ;

Figure 15: A sample code to traverse an array of struct [3]

abstract values if they are equal (v; = vg) or have a difference of constant value
(v1 = v2 + ¢). To recover some of the losses in precision, VSA uses an auxiliary
analysis, ARA, to track relations between registers.

An integer affine relation among variables r; (i = 1...n) is a relationship of the
form ag + >_;—, a;r; = 0, where the a; represents integer constants. VSA uses
Affine Relation Analysis (ARA) to improve the interpretation of conditional-
branches and widening operation. Figure 15 shows a sample program and cor-
responding assembly code. By running VSA algorithm for this code, we get
abstract values for registers and memory locations at each point of program.
Figure 16 shows the VSA result in Instruction L1, 8 and 14. VSA cannot make
a precise estimation for upper bound of eaz at instruction L1. Looking carefully
figure , we can infer there is an affine relation between eax, esp and edx in the
form of eax = (esp + 8 x edzr) + 4. When the true branch of condition j1 L1
is interpreted, edx is bounded on the upper end by 4; hence it is represented
by value-set ([0,4], L) at instruction L1. The value of esp at the same place is
(L, —44). Putting all the these value-sets and solving the affine relation yields

ear = (L, —44) + 8 x ([0,4], L) + 4 = (L, 8][40, —8])

In this way, a more precise value for upper bound of eax at L1 is obtained
that is impossible to infer by simple VSA without ARA.

3.9 Summary

In this chapter, we focus on using abstract interpretation for static analysis of
binaries. This chapter introduces two abstract interpretation techniques, called
ASA and VSA. Although ASA and VSA use abstract interpretation to assist

26

Instruction L1 and 8 Instruction 14
esp — (L,—44) esp +— (L,—44)
mem 4 — (1,1) mem 4 — (1,1)
mem 8 — (2,1) mem 8 — (2,1)
eax > (1,8[—40,23 — 7)) eax + (L,8[—40,23 —17])
ebx +— (1,1) ebx — (1,1)
ecx > (2,1) ecx —(2,1)
edx + (1[0,4], 1) edx +— (5,1)
edi +— T edi > (L,—36)
var_ 44 +— (L,—36) var 44 +— (L,—36)

Figure 16: VSA result on sample code [3]

static binary analysis, they try to address different challenges. Thus, they have
different abstract domains and different abstract operations. ASA is designed to
make an abstract summery for functions and it only cares about local variables.
ASA is more interested in capturing simple linear relation between abstract
points.

On the other hand, VSA is more interested in global analysis. VSA tries
to address the indirect memory access challenge, thus it uses SI that is more
accurate than simple interval. VSA loses some precision because of using SI as
non-relation abstract representation. Affine relation analysis is used to recover
some of these losses.

We describe property of interest, abstract domain and operations of abstract
domain for ASA and VSA. Finally, widening and affine relation analysis are
discussed as two improvement methods for ASA and VSA.

27

References

[1]

2]

3]

4]

[5]

[6]

7]

18]

[9]

[10]

[11]

[12]
[13]

Krzysztof R. Apt. Principles of constraint programming. Cambridge Uni-
versity Press, 2003.

Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and David Brum-
ley. Aeg: Automatic exploit generation. In Network and Distributed System
Security Symposium, February 2011.

Gogul Balakrishnan. Thesis: WYSINWYX: What You See Is Not What
You Ezecute. PhD thesis, University of Wisconsin Madison, USA, 2007.

Gogul Balakrishnan and Thomas Reps. Analyzing memory accesses in x86
executables. Proc. Int. Conf. on Compiler Construction, Springer-Verlag,
New York, NY, 2004.

Gogul Balakrishnan and Thomas Reps. Divine: Discovering variables in
executables. In Verification, Model Checking, and Abstract Interpretation,
pages 1-28. Springer, 2007.

Gogul Balakrishnan and Thomas Reps. WYSINWYX : What You See Is
Not What You eXecute. ACM Trans. on Program. Lang. and Syst., 2009.

Patricia Mary Benoy. Polyhedral Domains for Abstract Interpretation in
Logic Programming. PhD thesis, University of Kent, Canterbury, UK, 2002.

Cristina Cifuentes and Antoine Fraboulet. Intraprocedural static slicing
of binary executables. In Proceedings of the International Conference on
Software Maintenance, pages 188—, Washington, DC, USA, 1997. IEEE
Computer Society.

Patrick Cousot. Abstract interpretation. Technical report,
http://www.di.ens.fr/ cousot/AI/, 2008.

Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lat-
tice model for static analysis of programs by construction or approximation
of fixpoints. In Proceedings of the jth ACM SIGACT-SIGPLAN sympo-
sium on Principles of programming languages, POPL ’77, pages 238-252,
New York, NY, USA, 1977. ACM.

Saumya Debray, Robert Muth, and Matthew Weippert. Alias analysis
of executable code. In Proceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL 98, pages 12—
24, New York, NY, USA, 1998. ACM.

Jr H.S. Warren. Hacker’s Delight. Addison-Wesley, 2003.

Yuan-Shin Hwang, Tzong-Yen Lin, and Rong-Guey Chang. Disirer: Con-
verting a retargetable compiler into a multiplatform binary translator.
ACM Trans. Archit. Code Optim., 7:18:1-18:36, December 2010.

28

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

N.D. Jones and F. Nielson. Abstract interpretation: a semantics-based tool
for program analysis. Oxford University Press, 1995.

Jonghyup Lee, Thanassis Avgerinos, and David Brumley. TIE: Principled
reverse engineering of types in binary programs. In Proceedings of the 18th
Annual Network and Distributed System Security Symposium, 2011.

Zhigiang Lin, Xiangyu Zhang, and Dongyan Xu. Automatic reverse en-
gineering of data structures from binary execution. In Network and Dis-
tributed System Security Symposium, February 2010.

Alan Mycroft. Type-Based Decompilation. 8th European Symposium on
Programming, ESOP99, 1999.

Padraig OSullivan, Kapil Anand, Aparna Kotha, Matthew Smithson, Ra-
jeev Barua, and Angelos Keromytis. Retrofitting security in cots software
with binary rewriting. In Future Challenges in Security and Privacy for
Academia and Industry, IFIP Advances in Information and Communica-
tion Technology, pages 154-172. Springer Boston, 2011.

Jean-Francois Rask Patrick Cousot, Pierre Ganty. Fixpoint-guided ab-
straction refinements. In 14th Int. Symp. on Static Analysis, 2007.

B. C. Pierce. Types and Programming Languages. The MIT Press, 2002.

G. Ramalingam, John Field, and Frank Tip. Aggregate structure iden-
tification and its application to program analysis. In Proceedings of the
26th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’99, pages 119-132, New York, NY, USA, 1999. ACM.

Thomas Reps, Gogul Balakrishnan, and Junghee Lim. Intermediate-
representation recovery from low-level code. ACM/SIGPLAN Workshop
Partial Evaluation and Semantics-Based Program Manipulation, page 100,
2006.

Prateek Saxena, R Sekar, and Varun Puranik. Efficient fine-grained binary
instrumentationwith applications to taint-tracking. In Proceedings of the
6th annual IEEE/ACM international symposium on Code generation and
optimization, CGO 08, pages 74-83, New York, NY, USA, 2008. ACM.

Asia Slowinska, T. Stancescu, and Herbert Bos. Howard: a dynamic exca-
vator for reverse engineering data structures. In Network and Distributed
System Security Symposium, 2011.

M.J. Van Emmerik. Static Single Assignment for Decompilation. PhD
thesis, The University of Queensland, Australia, 2007.

7.1.X.Z.D. Xu. Automatic Reverse Engineering of Data Structures from
Binary Execution. In Proceedings of the 17th Network and Distributed
System Security Symposium, 2010.

29

