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Abstract of the Dissertation

Effects of Disordered Dopants on the
Electronic Structure of Functional Materials:

Wannier Function-Based First Principles
Methods for Disordered Systems

by

Tom Berlijn

Doctor of Philosophy

in

Physics

Stony Brook University

2011

Doping is one of the most powerful tools for tuning the electronic

properties of functional materials. Well known examples include

doped semiconductors and the Cu and Fe based high temperature

superconductors. Besides introducing charge carriers and chem-

ical pressure, it is almost inevitable that dopants will introduce

quenched disorder into the system. This can have a wide range

of consequences for the electronic structure, such as electric and

thermal resistance, a deformation of the nodal structure of a su-

perconductor or Anderson localization.

In this thesis the influence of disordered dopants is studied by

calculating the configuration-averaged spectral function 〈A(k, ω)〉
from first principles within the super cell approximation. To over-

come two major problems of the super cell approximation, the
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band folding and the computational expense, two Wannier func-

tion based first principles techniques are developed.

The developed methodology is applied to address three realistic

materials problems. The first problem is on the influence of disor-

der on the Fermi surface of NaxCoO2, an important thermoelectric

material. The second problem is on the role of oxygen vacancies

in the room temperature ferromagnetism in the recently discov-

ered dilute magnetic semiconductor Cu:ZnO. The third problem is

on the carrier doping and charge localization in transition metal

doped iron based superconductors.
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Chapter 1

Introduction: Material Science,

First Principles Simulations,

Crystals and Disorder

In the first section of this chapter we introduce the general area of research,

namely material science and first principles calculations. In the second section

we introduce the topic of this thesis, being disordered materials. What are

they and why should we study them?

1.1 Material Science and First Principles Cal-

culations

Material science studies the mechanical, chemical, electronic and optical prop-

erties of materials and is a very broad area of research that besides being a

discipline of its own, overlaps with chemistry, physics, geophysics, molecular

biology, engineering, etc. Material properties play a key role in modern tech-

nology development. We can think for example of technology related to the

biggest problem of our time, the energy problem. How well a solar cell can

convert sunlight into current, depends on the energy it takes to excite an elec-

tron (bandgap) and how stable this excitation is (exciton lifetime). In order

for a thermoelectric to efficiently convert heat into a voltage, it needs to have

high electric conductivity and low thermal conductivity. The voltage of a bat-
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tery depends on the amount of ions that can be intercalated in the cathode

material. To use superconductivity for transporting electrical energy without

heating losses, a material needs to be found with high transition temperature

and a high critical current. We can also think of information technology. The

amount of data that can be stored in a hard disk depends on the ferromag-

netic “hardness” of the storage material. To continue Moore’s law of yearly

doubling the number of transistors in an integrated chip the traditional silicon

is replaced by materials with a higher dielectric constant (such as hafnium ox-

ide) in order to prevent current leakage. The list of examples goes far beyond

energy and information technology, from the catalytic effect of an enzyme that

depends on its influence on the reaction barrier, to the corrosion resistance of

alloys to produce good coatings.

To study these important properties of materials there exists a tremen-

dous amount of experimental techniques. On the one hand materials can be

exposed to extreme circumstances such as a pressure of 100GPa or a tem-

perature almost at the absolute freezing point. On the other hand, there is

an endless list of experimental probes x-ray absorption, electron microscopy

or photo emission spectroscopy, to mention just a few. Given the resulting

overwhelming amount of experimental data, the role of theoretical material

science is to put it all together in order to gain insight in the origin of the

properties of materials. For example, theoretical material scientists ask them-

selves questions like why do materials with a high superconducting-transition

temperature also tend to become magnetic? The answer to such questions

would not only satisfy scientific curiosity, it could be of guidance in finding

new materials with a higher superconducting-transition temperature.

The traditional approach for theoretical material science is to find the sim-

plest model that is consistent with the given experimental data on a wide

range of materials that behave similarly, lets say the high temperature super-

conductors. The modeling approach aims at getting a general insight for a

wide class of materials. A much younger approach, made possible only by

the invention of the computer, is to simulate materials from first principles. In

this approach the atomic positions and their influence on the electrons are fully

taken into account, without the use of free parameters. One calculation in this

approach corresponds to one specific material, for example Ba8Fe14Co2As16,
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instead of all the iron based superconductors. In some sense the first princi-

ples simulations have the characteristics of an experiment: the theorists puts

Ba8Fe14Co2As16 into the simulation and sees what comes out. One of the ex-

citing aspects of first principles simulations is its potential to virtually design

new materials [1]. Simulating new materials or new phases of materials on the

computer is of course much faster and far less costly then synthesizing it in the

lab. Another important role of the first principles simulations is to function

as a bridge between the modeling approach and the experiments. On the one

hand the first-principles simulations can guide experimentalist in interpreting

their data in terms of physical models. On the other hand first-principles

simulations can provide realistic parameters for models and more importantly

they can provide information on which models to use.

1.2 Crystalline and Disordered Materials

Figure 1.1: Two every day examples of crystals.

In this thesis we are interested in simulating from first principles the prop-

erties of disordered materials. Let us first start by explaining what disordered

materials are, which is best done by explaining what they are not, namely crys-

tals. Crystals are materials consisting of atoms or molecules that are arranged

in a perfectly periodically repeating pattern (see figure 1.1 for two everyday

examples of crystals ). In 1928 Felix Bloch published a remarkable theorem

about the conduction of electrons in crystals. The theorem says that the wave

functions of electrons do not scatter against atoms that are periodically ar-

ranged. Instead the electron wave functions adjusts themselves smoothly to

the periodic atoms and freely flow through the crystal. The energy spectrum of
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these free waves, called the band structure, became one of the most useful con-

cepts from which many electronic properties of crystalline materials could be

understood, such as the conduction of heat and electric charge or magnetism

and superconductivity.

Figure 1.2: Types of disorder. The doping-induced disorders such as substitu-
tions, interstitials and vacancies are also known as cellular disorders, because
there is an underlying lattice present. The glass, edge dislocation and grain
boundary have no such underlying lattice.

The disordered materials are all the other materials that are not crystals.

Why should we study disordered materials? If we just look around us, and

ignore the table salt and the pencils, we see stone, wood, paper, glass, plastic

and water. The atomic and molecular arrangement in these materials are

far from crystalline. But even if we focus ourselves on crystals, as we will

do in this thesis, in reality there will always be disorder present (see figure

1.2). When a crystalline sample is synthesized in the lab it typically tends

to grow not as one single crystal but as many different crystal grains. At the

boundaries of these crystal grains the periodicity is broken. Even within a

single crystal grain small defects occur by random chance. These defects are

not just bad luck, they have to be there according to a fundamental law of

physics called the second law of thermodynamics. Since the materials from

which crystals are made are never a 100 percent pure, crystals will always

contain impurities. What the above mentioned disorders, grain boundaries,

defects and impurities, have in common is that they break the periodicity of
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the crystal and therefore that Bloch’s theorem will not be applicable for them.

The electrons will scatter from the disorders and therefore experience electrical

resistance. This means that unless the crystal is in a superconducting phase,

the more disorder there is, the more electrical energy transported through a

crystal will be lost into heat. Therefore to remove impurities and defects from

crystals as much as possible is an important and difficult challenge for crystal

growers. Surprisingly however, these same crystals growers, more often then

not, deliberately grow defects and impurities into the crystals, by a process

called doping.

Doping is one of the most powerful ways to tune the important properties

of functional materials. The most famous example probably is doped silicon.

Depending on whether silicon is doped with for example phosphorous (which

has one more electron then silicon) or boron (which has one less electron

then silicon) negative (n-type) or positive (p-type) charge carriers are inserted.

From the resulting n-type and p-type semiconductors, transistors and diodes

can be made which in turn are the basic building blocks of all modern electronic

devices. Another famous example are the high temperature superconductors.

La2CuO4 is a so called charge transfer insulator, but when 5 percent of the

La’s are replaced by Sr, it becomes a superconductor. It is indeed truly a

miracle that such a little change in the chemical composition can have such

an extreme consequence for the conductivity.

The dopants have several effects. The dopants generally introduce carriers

into the system like for example in the above mentioned doped semiconductors.

At the same time the dopants will exert what is called a chemical pressure,

for example they might attract their neighboring atoms and thereby compress

the system. Effects very similar to the ones mentioned above can also be

accomplished more directly. A material can be hooked up to a battery to

increase its number of carriers or it can be placed in a pressure cell to get

compressed. However it is clear that a material will not be very useful for

building a device, if it constantly needs to be put under high pressure or

hooked up to a battery. Finally there is also a third effect of the dopants

that does not have such a direct analogue, namely the dopants will break the

periodicity of the crystal and therefore introduce disorder in the crystal.

Sofar we have presented disorder as something that is inevitably present,
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but there is more to it. Disorder itself can play a crucial role for the properties

of materials. For example in a pure crystal, the layers of atoms might easily

slide over one another, but point-defects and dislocations can stop that and

therefore are directly responsible for the hardness of the material. Disorder is

probably even more of a crucial factor for the electronic properties. A famous

discovery by Phil Anderson [2] is that even though individual impurities might

only scatter the electrons, the quantum mechanical interference in a cluster of

impurities can completely localize an electron. In terms of material properties

this means that if a sufficient amount of disorder is introduced in a crystal

it will not just become a bad conductor, it can be made an insulator. De-

fects in a current carrying type II superconductor will pin magnetic flux lines,

which would otherwise move and destroy the superconducting state [3]. The

integer quantum hall effect, good for the Nobel prize of 1985, can only occur

in the presence of disorder [4]. Disorder is capable of forming local magnetic

moments [5–7], which in turn can give rise to important magnetic proper-

ties. Disorder is believed to be one of the key ingredients for the nanoscale

electronic inhomogeneity observed in transition metal oxides such as cuprates,

manganites and cobaltates, but also in the newly discovered Fe based super-

conductors [8]. Elbio Dagotto [9] argues that this disorder induced nanoscale

electronic inhomogeneity is responsible for the collosal magnetic resistance

(CMR) in manganites, an effect that has the potential to drastically enhance

the amount of data stored in hard disks.

So let us now get back to our question, why do we study disordered sys-

tems? On the one hand it is clear that disorder is present everywhere, espe-

cially in the very important doped materials and therefore its influence can

not be ignored. On the other hand disorder is a crucial ingredient for many

important electronic properties.

1.3 Overview of the Thesis

To approach the study of disordered systems we focus ourselves on a limited

kind of disorder in which there is an underlying lattice present. These so-called

cellular disorders include the doping induced impurities such as substitutions,

interstitials and vacancies (the lower three in figure 1.2), but not for exam-
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ple dislocations, grain boundaries or glasses(the upper three in figure 1.2).

Furthermore we will be focusing ourselves on the bandstructure of disordered

materials. As we argued in the beginning of this section, the bandstructure

has been the fundamental quantity from which a tremendous amount of crys-

tal properties have been understood and calculated. In this thesis we want

to study quantitatively what happens to the bandstructure when disorder is

introduced in the crystal.

Figure 1.3: Flow chart of the codes used to obtain bandstructures of disordered
systems from first principles.

In chapters 2 and 3 the methodology is presented that allows the calculation

of the bandstructures of disordered systems from first principles. Behind the
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scenes of the formal presentation of the methods in this thesis, there is a series

of codes that we represent in the flow chart in figure 1.3. In chapter 2 we

will set up the technological background. In chapter 3 we present the newly

developed Wannier function based methods that facilitate the study of the

influence of disorder on the bandstructure from first principles. In chapters 4,

5 and 6 we will use the developed methodology to address realistic materials

problems. In chapter 4 we will compute the influence of disorder on the Fermi

surface of sodium doped cobaltate (NaxCoO2), an important thermoelectric

material. In chapter 5 we will investigate the role of oxygen vacancies in

the room temperature ferromagnetism in copper doped zinc oxide (Cu:ZnO),

a recently discovered dilute magnetic semiconductor. In chapter 6 we will

investigate carrier doping and charge localization in transition metal doped

iron based superconductors.
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Chapter 2

Background: Density Functional

Theory, Linear Augmented

Plane Waves and Wannier

Functions

In this chapter we discuss three general methods that have been developed

outside of the context of this thesis. The first two sections are based on

standard text books. Specifically section 2.1 is based on [10, 11] and section

2.2 is based on [12–14]. The last section, section 2.3, is mostly based on

discussions with Wei Ku.

2.1 Density Functional Theory

The starting point of most first principles methods is the Schroedinger equation

of the electrons in the background of the classical external potentials of the

9



atomic nuclei1(
− ~2

2m

∑
j

∇2
j −

∑
j,l

Zle
2

|rj −Rl|
+
∑
j<j′

e2

|rj − r′j|

)
Ψ(r1, ..., rN) = EΨ(r1, ..., rN)

(2.1)

where j labels the N electrons and l labels the atomic nuclei. From the solu-

tions of the Schroedinger equation Ψ(r1, ..., rN), for which the total wave func-

tion Ψ(r1, ..., rN)χ(s1, ..., sN) are antisymmetric under exchange of electrons,

all properties of all materials can be obtained. However, unless something

fundamentally changes about our computers, it is a pretty safe bet that the

Schroedinger for any reasonably sized system can never be solved. To get a

flavor of how complicated it is lets use Walter Kohn’s “guesstimate” from his

Nobel lecture [15] of the computational expense of calculating the ground state

wave function Ψ0 and ground state energy E0 from the variational principle:

E
minΨ

[Ψ] = E[Ψ0] = E0 ; E[Ψ] = T [Ψ] + U [Ψ] + V [Ψ] (2.2)

where the kinetic energy T [Ψ], the interaction energy U [Ψ] and the external

energy V [Ψ] are given by:

T [Ψ] = − ~2

2m

ˆ
dr1...drNΨ∗(r1, ..., rN)

∑
j

∇2
jΨ(r1, ..., rN)

U [Ψ] =

ˆ
dr1...drN |Ψ(r1, ..., rN)|2

∑
j<j′

u(rj, rj′) ; u(r, r′) =
e2

|r − r′|

V [Ψ] =

ˆ
dr1...drN |Ψ(r1, ..., rN)|2

∑
j

v(rl) ; v(r) =
∑
l

Zle
2

|r −Rl|

Suppose we want to calculate the ground state wave function Ψ0(r1, r2, r3, r4, r5)

of a system with 5 electrons by evaluating it on 10 grid points for each coor-

dinate then we have are left with a 1015 dimensional minimization problem.

The ground state wave function of such a system with such a small amount

1The approximation of separating the nuclear and electronic wave function is based on
the fact that the nuclear mass is much larger then the electron mass. The classical nuclei
approximation is based on the fact that nuclear wave functions are usually smaller than the
distance between nuclei [10].
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of electrons therefore is already practically impossible to solve, let alone the

ground state wave function of a solid containing 1023 electrons.

2.1.1 The Hohenberg Kohn Theorems

The original idea of density functional theory is to exploit the fact that many

relevant material properties can be calculated from a quantity that is much

simpler then the electron wave function, namely the electron density

n(x) = N

ˆ
dr2...drN |Ψ(x, r2, ..., rN)|2. (2.3)

The Hohenberg Kohn theorems [16] prove that in principle it is possible

to calculate the density n(x) directly without calculating the wave function

Ψ(r1, ..., rN). If we realize that the external energy can be expressed in terms

of the density:

V [Ψ] = N

ˆ
dxdr2...drN |Ψ∗(x, r2, ..., rN)|2v(x) =

ˆ
dxn(x)v(x) (2.4)

the Hohenberg Kohn theorems are technically (although not conceptually)

simple to prove, especially when the ground states are assumed to be non-

degenerate.

claim 1 Given an interaction u(x, x′), then for each non-degenerate ground

state density n0(x) there exists a unique external potential v(x)

proof 1 Suppose there are two different external potentials v1(x) and v2(x)

with ground state energies E1 and E2, ground state wave functions Ψ1 and Ψ2,

and identical ground state density n0(x). Applying the variational principle

(2.2) to the system with external potential v1(x) we find:

E1 < E1[Ψ2] = T [Ψ2] + U [Ψ2] +

ˆ
dxn0(x)v1(x) = E2 +

ˆ
dxn0(x)(v1(x)− v2(x))

(2.5)

Similarly using the variational principle for the system with external potential

11



v2(x) we find:

E2 < E1 +

ˆ
dxn0(x)(v2(x)− v1(x)) (2.6)

Adding (2.5) and (2.6) gives the contradiction: E1 + E2 < E1 + E2

claim 2 Given an interacting u(x, x′) and external potential v(x) there exists

an energy density functional which is minimized by the ground state density to

the ground state energy.

proof 2 All eigenstate wave functions, including the ground state wave func-

tion, are a unique functional of the external potential: Ψ0[v]. From claim 1

it follows that the external potential is a unique functional of the ground state

density: v[n0]. Therefore we can define the following energy density functional:

E[n] = T [Ψ0[v[n]]] + U [Ψ0[v[n]]] +

ˆ
dxv(x)n(x) (2.7)

which by construction is minimized by the ground state density to the ground

state energy.

The sum of the kinetic energy and interaction density functional is called

the universal function F [n] = T [Ψ0[v[n]]] + U [Ψ0[v[n]]], because it is inde-

pendent of the form of the external potential. Finally it is important to

remark that the densities over which the energy functional are minimized

are not arbitrary. First of all they have to integrate to the number of elec-

trons
´
dxn(x) = N . A more subtle issue is that the densities have to be

v-representable. A density n(x) is said to be v-representable with respect to

an interaction u(x, x′), if there exists an external potential v(x) that has n(x)

as the ground state. This means for example that the functional derivative

δE[n]/δn(x) is only well defined under the assumption that the variations of

the ground state density are v-representable.

2.1.2 The Kohn Sham System and the Local Density

Approximation

The Hohenberg Kohn theorems formally prove that the universal functional

F [n] exists and therefore that in principle the ground state density can be
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obtained without calculating the wave function Ψ(r1, ..., rN). However, the

Hohenberg Kohn theorems by themselves are not very useful, because they

don’t give any information on the explicit form of the universal functional

F [n]. Density functional theory therefore only became of practical use af-

ter the invention of the Kohn Sham system together with the Local Density

Approximation (LDA) [17]. The Kohn Sham system is defined as the non-

interacting system which has the same ground state density as the interacting

system. This system can then be used to define the exchange correlation

functional:

EXC [n] = F [n]− 1

2

ˆ
dxdx′n(x)u(x, x′)n(x′)− Ts[n] (2.8)

where Ts[n] is the kinetic energy of the non-interacting system. The idea is

that by subtracting the classical coulomb interaction and the non-interacting

kinetic energy from the unknown universal functional F [n], the remaining

exchange correlation functional will be small, such that approximations of it

(such as the LDA) can only result in small errors. Let us first focus on the

question, which non-interacting external potential vs(x) has the same ground

state density as the interacting system?

claim 3 Given interaction u(x, x′) and external potential v(x). If the varia-

tions of the ground state density n0(x) + δn0(x) are interacting v-representable

and non-interacting v-representable, the latter by vs(x) + δvs(x), then

vs(x) = v(x) +

ˆ
dx′u(x, x′)n0(x′) + vXC [n0](x) ; vXC [n](x) =

δEXC [n]

δn(x)

(2.9)

proof 3 First we use the Hohenberg Kohn theorem for the interacting system

together with the assumption that the variations of the ground state density

are interacting v-representable:

δE[n]

δn(x)

∣∣∣
n0

=
δF [n]

δn(x)

∣∣∣
n0

+ v(x) (2.10)

= vXC [n0](x) +

ˆ
dx′u(x, x′)n0(x′) +

δTs[n]

δn(x)

∣∣∣
n0

+ v(x) = 0
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Next we use the Hohenberg Kohn theorem for the non-interacting system to-

gether with the assumption that the variations of the ground state density are

non-interacting v-representable:

δEs[n]

δn(x)

∣∣∣
n0

=
δTs[n]

δn(x)

∣∣∣
n0

+ vs(x) = 0 (2.11)

substituting (2.11) into (2.10) completes the proof

The single particle potential (2.9), together with the single particle Schroedinger

equation

Hs|ϕi〉 = [− ~2

2m
∇2 + vs(x)]|ϕi〉 = εi|ϕi〉 ; ε1 ≤ ε2 ≤ ... (2.12)

and the single particle density

n(x) =
N∑
i=1

|〈x|ϕi〉|2 (2.13)

form the set of Kohn Sham equations from which the ground state density can

be calculated self consistently.

In order to evaluate the exchange correlation potential, an approximation

for the exchange correlation functional has to be made. In the local density

approximation (LDA) the exchange correlation functional is approximated as

an integral over the exchange correlation energy as a function of the local

density.

ELDA
XC [n] =

ˆ
dxn(x)εxc(n(x)) , (2.14)

where the local exchange correlation energy is taken to be that of the homo-

geneous electron gas. The derivation of the exchange correlation energy as a

function of density goes well beyond the scope of this thesis, but nonetheless

it is reassuring to see it in its explicit form [10]. The exchange energy of a

homogeneous gas is known analytically:

εxc(n) = εx(n) + εc(n) ; εx(n) = −3

4

(
3

π

)1/3

n1/3 (2.15)
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The correlation energy of the homogeneous electron gas is nearly exactly repro-

duced by the the parameterization of Perdew and Zunger [18] of the quantum

monte carlo results of [19]:

εc(n) = A ln rs +B + Crs ln rs +Drs ; if rs < 1

= γ/ (1 + β1

√
rs + β2rs) ; if rs ≥ 1 (2.16)

where rs is the Wigner-Seitz radius defined as rs = (3/4πn)1/3.

The Kohn Sham orbitals ϕi in (2.12) so far have been introduced as math-

ematical objects which sole purpose is to calculate the density. Except for

the highest occupied Kohn Sham orbital of a finite system, the energy of

which equals the negative of the ionization energy [20], the Kohn Sham or-

bitals have not been proven to have physical meaning. Nonetheless it is com-

mon practice to interpret them as quasi-particles and the eigenvalues of the

occupied/unoccupied Kohn-Sham orbitals as electron removal/addition ener-

gies. In this way the Kohn Sham energies have often been proven useful in

comparing with Angular Resolved Photo Emission Spectroscopy (ARPES).

Especially within the LDA approximation they are the number one choice

for theoretically determining the Fermi surface for metallic systems, not nec-

essarily limited to weakly correlated systems. Some recent investigations of

correlated systems (for example, the heavily doped cuprates [21, 22] and the

ferro-pnictides [23, 24] have shown that while the Kohn Sham energies might

underestimate the effective mass of the bands, they still produce Fermi sur-

faces with correct size and shape. To a large extend the capability of the LDA

to accurately describe the Fermi surfaces of metallic systems is warranted by

the Luttinger theorem [25] which states that the volume of the Fermi surface

is independent of interaction strength.

2.2 Linear Augmented Plane Waves

In order to calculate the Kohn Sham orbitals the Kohn Sham Hamiltonian Hs

in (2.12) needs to be represented on a basis and transformed into a secular

equation, that can be fed to a diagonalization routine. This basis does not

need to be orthonormal. Given a basis |ai〉 that is complete, but not orthog-
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onal, there exists a dual basis |bi〉 such that:
∑

i |ai〉〈bi| = 1. By using this

fact, which simply states that each complete basis can be represented as an

invertible matrix, we can rewrite (2.12) into the secular equation:∑
j

〈ai|Hs|aj〉︸ ︷︷ ︸
Hij

〈bj|ϕi〉 = εi
∑
j

〈ai|aj〉︸ ︷︷ ︸
Sij

〈bj|ϕi〉 ⇔
∣∣∣Hij − εiSij

∣∣∣ = 0 (2.17)

Figure 2.1: The dual character of the Bloch wave.

Now in order to decide which basis function to use it is necessary to know

the nature of the Kohn Sham orbitals. In this thesis we will work with periodic

external potentials v(x) = v(x+r), which means that the Kohn Sham orbitals,

of interest are Bloch waves.2 On the one hand it is clear that nearby the

atomic nuclei the diverging Coulomb potential will turn the Bloch wave into

an atomic-like orbital. On the other hand, according to Bloch’s theorem (which

2There is a subtlety here, namely that even for a periodic external potential, the transla-
tion symmetry can be broken spontaneously due to the non-linear nature of the Hartree and
the exchange correlation potential. Physically such cases of spontaneous symmetry breaking
correspond to the formation of charge and spin density waves or to orbital ordering [26, 27].
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we will proof in just a minute), the Bloch wave will propagate in a plane wave

like manner between the atoms. In figure 2.1 we sketch this dual character

of the Bloch waves. Also their energy spectrum, the band structure, displays

the dual character. On the one hand the Bloch wave energies are quantized

with a band index, like the the energy levels in an atom. On the other hand

the Bloch wave energies depends continuously on the crystal momentum like

a free electron plane wave does on the plane wave momentum.

Since the Bloch waves are plane wave-like in nature, plane waves, defined

as |k + g〉 =
´
d3xe−i(k+g)x|x〉, where k ∈brillouin zone and g ∈reciprocal

lattice, make a very natural basis set. First off all it is convenient that plane

waves are orthonormal (see appendix C), which reduces the overlap matrix to

the unit matrix: Sk+g,k′+g′ = δk+g,k′+g′ . But more importantly they respect

the translational symmetry of the lattice and therefore block diagonalize the

Hamiltonian.

claim 4 Given a lattice Hamiltonian that commutes with the lattice transla-

tion operators [H,Tr] = 0, the plane waves states block diagonalize the lattice

Hamiltonian

〈k′ + g′|H|k + g〉 = δk′k〈k + g′|H|k + g〉 (2.18)

proof 4 The plane waves are eigenstates of the translation operator

Tr|k + g〉 =

ˆ
d3xei(k+g)x|x+ r〉 = e−i(k+g)·r

ˆ
d3xei(k+g)x|x〉 = e−ikr|k + g〉

(2.19)

Using [H,Tr] = 0 we find

e−ik
′r〈k′ + g′|H|k + g〉 = 〈k′ + g′|TrH|k + g〉

= 〈k′ + g′|HTr|k + g〉 = 〈k′ + g′|H|k + g〉e−ikr

⇔ k = k′ or 〈k′ + g′|H|k + g〉 = 0 (2.20)

Incidentally here we also prove Bloch’s theorem

claim 5 The Bloch waves can be written as a plane wave eikx times a periodic
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function:

〈x|kj〉 = eikxukj(x) ; ukj(x+ r) = ukj(x) (2.21)

proof 5 Since the lattice Hamiltonian is block diagonal per crystal momentum

k the Bloch states are eigenvectors of the translation operator with eigenvalue

Tr|kj〉 = Tr

(∑
g

ckjg |k + g〉

)
= e−ikr|kj〉 (2.22)

from which it follows

eik(x+r)ukj(x+ r) = 〈x+ r|kj〉 = 〈x|T †r |kj〉 = eikr〈x|kj〉 = eik(x+r)ukj(x)

(2.23)

So thanks to the crystal symmetry, the continuously infinite plane wave

based Hamiltonian matrix (i.e. all crystal momenta k and all reciprocal vectors

g) is reduced to a discrete but still infinite block per k-point (all g). Therefore

in practice the number of plane waves needs to be cut off to a maximum

reciprocal lattice vector gmax, which is possible, as long as the Bloch waves

are smooth enough. The problem however is that realistic Bloch waves are

not smooth. Although the Bloch waves oscillate slowly between the atoms,

as the Bloch wave come near the diverging Coulomb potential of the atoms

they start oscillating very rapidly (see figure 2.1). To overcome this problem

the first step is to divide space into two regions. The first type of region is

formed by spheres around the atomic nuclei called atomic muffin-tin regions.

The remaining space is the interstitial region. One approach is to replace the

core electron degrees of freedom and the diverging Coulombic potential in the

atomic muffin-tin regions by a so-called pseudopotential [14], which is smooth

everywhere allowing for finite amount of plane waves to describe the wave

functions.

The other approach is to “augment” the plane waves in the atomic muffin-

tin spheres in such a way that they can better describe the sharp oscillations

of the Bloch waves induced by the diverging coulomb potentials of the atomic

nuclei. Since calculations based on this approach do not sacrifice the core
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electron degrees of freedom they are also known as “all electron” calculations.

Historically the first type of these so-called augmented basis functions were

the Augmented Plane Waves (APW) introduced by John C. Slater [28]. The

APW is a plane wave within the interstitial region, but within the muffin-tin

sphere Sα of atom α it is replaced by a linear combination of atomic orbitals :

ϕAPWk,g (x) = (2π)−3/2eix(k+g) ; if x /∈ Sα

=
∑
lm

Ak+g
αlmuαl(Eαl, x)Ylm(θ, φ) ; if x ∈ Sα (2.24)

Here uαl(E, x) are the radial wave functions that satisfy[
− d2

dx2
+
l(l + 1)

x2
+ vα(x)

]
xuαl(E, x) = Exuαl(E, x) (2.25)

where the radial potential vα(x) is defined as the spherically averaged external

potential around the center of atom α. The coefficients Ak+G
αlm are chosen in

such a way that the APW is continuous at the muffin-tin boundary (see for

example [12] for an explicit analytic expression), a necessary requirement for

the expectation value of the kinetic energy to be well defined. The radial wave

functions are not required to satisfy the boundary condition lim
x→∞

uαl(x) → 0

and therefore the reference energies E are continuous parameters instead of

quantized eigenvalues. The closer the reference energies are chosen to the band

energy εkj the better the quality of the APW basis function becomes. Therein

however lies precisely the disadvantage of the APW basis function namely

that the eigenvalue εkj needs to be known a priori. This turns the eigenvalue

problem into a non-linear problem. Furthermore a separate diagonalization

is necessary for each band j which becomes especially a problem in the case

of big super cells with many bands. This problem was overcome by O. K.

Anderson [29] who extended the APW’s to the Linear Augmented Plane Waves

(LAPW). The basic idea is that since the radial functions continuously depend

on the reference energies, they can be Taylor expended:

u(εkj, x) = u(E, x) + (εkj − E)u̇(E, x) + O((εkj − E)2) (2.26)

By including a linear correction the basis function can still yield accurate
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results even if the reference energy does not precisely equal the eigenenergy.

Explicitly the LAPW is defined as:

ϕLAPWk,g (x) = (2π)−3/2eix(k+g) ; if x /∈ Sα (2.27)

=
∑
lm

(
Ak+g
αlmuαl(Eαl, x) +Bk+g

αlm u̇αl(Eαl, x)
)
Ylm(θ, φ) ; if x ∈ Sα

Here u̇(E, x) are the energy derivatives of the radial wave functions whose

determining equation is obtained by taking the energy derivative of (2.25):[
− d2

dx2
+
l(l + 1)

x2
+ vα(x)− E

]
xu̇αl(E, x) = xuαl(E, x) (2.28)

The coefficients Ak+g
αlm and Bk+g

αlm are chosen in such a way that the LAPW and

its spatial derivative are continuous at the muffin-tin boundary. Per definition,

the radial wave functions are normalized within the muffin-tin radius rmt:

ˆ rmt

0

dxx2(uαl(E, x))2 = 1⇒
ˆ rmt

0

dxx2uαl(E, x)u̇αl(E, x) = 0 (2.29)

where the last equation again simply follows from taking the energy derivative

Having defined the LAPW basis function, the Kohn Sham Hamiltonian can

be cast into a secular equation (2.17). However, the explicit formulas for the

LAPW-represented Hamiltonian and overlap matrix are very complex and far

beyond the scope of this thesis (see for example Singh’s book [13]). In stead

let us make a few remarks. First of all, just like the plane waves, the LAPW’s

are eigenvectors of the translational operator: Tr|ϕLAPWk,g 〉 = e−ikr|ϕLAPWk,g 〉,
meaning that they block diagonalize the Hamiltonian (and the overlap ma-

trix, since of course [Tr, 1] = 0). Second, unlike the plane waves, the LAPW

basis functions are non-orthonormal, meaning that the overlap matrix will

not be the simple unit matrix. Third off all, although the single particle

potential was spherically averaged in order to construct the basis function,

the full non-spherical single particle potential is still included in the LAPW

based Hamiltonian. Fourth, when the Bloch states |kj〉 are represented on the

LAPW basis function, the atomic character of the band can be illustrated by

projecting them onto the spherical Harmonics Ylm in the muffin-tin sphere of
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atom α:

〈αlm|kj〉 =
∑
gα

ckgj

(
Akglmα +Bkg

lmα

ˆ rmt

0

dxx2(u̇αlm(x,Elα))2

)
(2.30)

An example of such a character plot that is produced with WIEN2K [30] is

given in figure 2.2. Fifth, we have not discussed the other three LAPW-like

basis functions LAPW+LO, APW+lo and the APW+lo+LO, that are part

of the WIEN2K package. Their definition and properties are discussed for

example in [12]. Finally we should remark that the LAPW is accepted to

be the most accurate and general basis function for calculating the electronic

structure at present time [14]. Probably less common knowledge is that the

LAPW basis function is also very suitable for the construction of projected

Wannier functions, which brings us to the next section.

2.3 Wannier Functions

The first principles Wannier function is becoming an increasingly important

tool with applications all over electronic structure theory. Wannier functions

can be used to obtain the band structure on a very fine k-mesh (Wannier-

interpolation) which allows for accurate calculations of the Fermi-surface or

the electron-phonon coupling [31]. Wannier functions can be used for cal-

culating from first principles the Berry phase and related quantities such as

electrical polarization [32] or orbital magnetization [33]. Wannier functions

can be used to extract a simple physical insight from the complex output of

first principles calculations [34]. Wannier functions can be used to calculate

the formfactor [35] or transport properties [36]. Probably Wannier functions

are most frequently used as a basis set for the low energy Hilbert space, which

can serve as a starting point for more rigorous treatments of correlation be-

yond the Kohn Sham approximation, for example for dynamical mean field

theory (DMFT) [37, 38], slave boson mean field theory [39], time-dependent

density functional theory [40], renormalization group techniques [41] or the

Gutzwiller method [42]. The technology developed in this thesis, designed to

treat the influence of disorder from first principles, is yet another example in

the long list of applications of first-principles Wannier functions.
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Having motivated the importance of the first principles Wannier functions,

let us now state what they are. Given the Bloch states |kj〉 corresponding to

a set of bands εkj, one can construct a set of Wannier states |rn〉 according to

|rn〉 =
1√
l

∑
k

e−ik·r|kn〉 ; |kn〉 =
∑
j

|kj〉Ujn(k) (2.31)

where l denotes the number of unit cells in the system, r denotes the lattice

vector and n denotes the Wannier orbital index. The |kn〉 are what we shall

refer to as “k-states” and are in fact nothing but the lattice Fourier transform

of the Wannier states. One of the very important properties of the Wannier

functions is that they are exponentially localized. Intuitively we can imagine

why this is the case, since the Wannier transformation (2.31) is similar to

a Fourier transformation and since the Bloch states are similar to a plane

wave. The exponential decay was proven for 1 dimensional systems by Walter

Kohn [43] and for 2 or 3 dimensions it was found to be true if and only if the

Chern number(s) are zero [44, 45]. The gauge of the Wannier functions is set

by the unitary matrix Unj(k) and can be chosen freely. A famous choice of

the gauge results in the so called Maximally Localized Wannier Functions [46],

for which the spread of the Wannier functions,
∑

n〈rn|x2|rn〉 − |〈rn|x|rn〉|2,

is minimized. In this thesis we fix the gauge by using the projected Wannier

function method [37, 47].

2.3.1 Definition of the LAPW-Based Projected Wan-

nier Function

In this subsection we shall describe Wei Ku’s recipe [47] for the LAPW-based

projected Wannier function which has been implemented for WIEN2K [30] and

applied in the first principles studies of real materials [26, 27, 34, 35, 40, 41].

The basic idea of the projected Wannier functions is to define them as the

lattice Fourier transform of the projection of norb orbitals |ϕn〉 onto the Bloch

states of nband(≥ norb) bands:
∑

kj e
ikr|kj〉〈kj|ϕn〉. However, since the projec-

tions
∑

j |kj〉〈kj|ϕn〉 are not orthonormal, neither will be their lattice Fourier

transform. The idea is then to exploit the gauge freedom to orthonormalize the

projections according to Lödwin’s symmetric orthonormalization prescription

22



(see for example [48]):

|kn〉 =
∑
jn′

|kj〉〈kj|ϕn′〉Mn′n(k) (2.32)

where the matrix Mn′n(k) is the inverse square root of the overlap matrix of

the projections:

M−2
n′n(k) =

(∑
j′

〈ϕn′|kj′〉〈kj′|

)∑
j

|kj〉〈kj|ϕn〉 =
∑
j

〈ϕn|ψkj〉〈ψkj|ϕn′〉(2.33)

By choosing the projected orbitals according to the atomic character of the

bands, one can obtain localized Wannier functions, that for practical purposes

are as localized as the Maximally Localized Wannier Functions. Having the

Bloch states represented on a local basis set, such as the LAPW basis, this

choice is greatly facilitated. Focusing on the LAPW basis function we shall now

state the recipe for picking the atomic orbitals explicitly. Given the LAPW

basis function defined in (2.27) the orbitals |ϕn〉, that will be projected on to

the Bloch states are chosen to be:

〈x|ϕn〉 =
∑
αlm

dnαlmuαl(x,Eαl)Y
l
m(x) if x ∈ Sα ; 〈x|ϕn〉 = 0 if x /∈ Sα (2.34)

The definition of the Wannier function is is given by the coefficients dnαlm.

2.3.2 The Tight Binding Hamiltonian

Having defined the Wannier functions in terms of the coefficients dnαlm the tight

binding Hamiltonian can be obtained from rotating the eigenvalues:

〈r′n′|H|0n〉 =
∑
kj

〈r′n′|kj〉εkj〈kj|0n〉 (2.35)

where the rotation matrix depends on the product of the projected orbital and

the Bloch state

〈rn|kj〉 =
√

1/leikr
∑
n′

Mnn′(k)〈ϕn′|kj〉 ; M−2
nn′(k) =

∑
j′

〈ϕn|kj〉〈kj|ϕn′〉(2.36)
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which is in turn reduces to a trace of the LAPW coefficients ckjg and Akglmα and

the Wannier definition coefficient dnlmα:

〈ϕn|kj〉 =

(∑
lm

dnαlm〈uαl(Eαl)|〈Ylm|

)
×(∑

gl′m′

ckjg

(
Ak,gα′l′m′|uα′l′(Eα′l′)〉+Bk,g

α′l′m′ |u̇αl(Eα′l′)〉
)
|Yl′m′〉

)
=

∑
glmα

dnlmαc
kj
g A

kg
lmα (2.37)

where in the last equation we used the properties of the radial wave functions

(2.29).

2.3.3 Example TaSe2

The Wannier functions constructed in this example have been used to explain

the experimentally observed gapless charge density wave [34]. However, here

we shall not be concerned with the physics of TaSe2, rather we will use the

TaSe2 Wannier functions to illustrate the technique of LAPW-based projected

Wannier functions.

In the left side of figure 2.2 we see the lattice structure of TaSe2. It con-

sists of a triangular sheet of Ta atoms sandwiched between two triangular

sheets of Se atoms. In the previous section we mentioned that the projected

orbitals, from which the Wannier functions are constructed, should be chosen

according to the atomic character of the band. When the Bloch states |kj〉
are represented on the LAPW basis function, the atomic character can be il-

lustrated using 2.30. In figure 2.2 the bandstructure of TaSe2 in which the

atomic characters are represented by the radius of the colored circles. The

red circles correspond to the Ta-dxz/Ta-dyz character, the blue circles to the

Ta-dx2−y2/Ta-dxy character and the black circles to the Ta-dz2 character. From

this character plot we learn that the two bands around the Fermi surface are

mostly Ta-dz2 character, although in certain parts of the Brillouin zone, around

the high symmetry points K and H, the character is Ta-dx2−y2/Ta-dxy. There-

fore, if we want to construct the Wannier functions of these two bands that

are as localized as possible, we should use Ta-dz2 as the projected orbitals.
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Figure 2.2: (Left) Unit cell of TaSe2 (Middle) Band structure plot produced
with WIEN2K [30], in which the radius of the colored circles corresponds to
the atomic characters denoted in the upper left corner. (Right) Example of
realistic Wannier functions of TaSe2.

In the upper right corner of 2.2 the isosurface of the Wannier function

is plotted that is constructed of a single Ta-dz2 orbital. The color of the

isosurface corresponds to the gradient of the Wannier function and can be

ignored except for the fact that the blue-green corresponds to a negative sign

and red-yellow to a positive sign of the Wannier function. (See also the cartoon

of the Wannier function on the right as a guidance). The Wannier functions

clearly reflect the atomic characters of the bands. The Ta-dz2 character, by

construction, is concentrated in the center of the Wannier function at the

Ta site and the Ta-dx2−y2/Ta-dxy character is concentrated in the tails of the

Wannier function at the nearest neighboring(NN) Ta sites. The weight in the

next nearest neighboring (NNN) Ta site is exponentially suppressed.

Under the constraint of using the Ta-dz2 character, there is still the freedom

to take any kind of linear combination of Ta-dz2 orbitals located at different

sites. For example the Wannier function in the lower right of 2.2, is constructed
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by projecting on√
1/3
(
|Ta−dz2 , r = (0, 0)〉+ |Ta−dz2 , r = (1, 0)〉+ |Ta−dz2 , r = (1, 1)〉

)
The center of the Wannier function in this case is located between the Ta-sites.

This kind of freedom can be used for example to construct bonding and anti-

bonding Wannier states, which are more intuitive in covalent systems or the

superatom [41], which can serve as a building block for including inter atomic

correlations.

Depending on what gauge we chose we will get different tight binding

Hamiltonians according to the formulas (2.35)-(2.37). However, as long as

the Wannier functions are sufficiently localized they will all practically have

the same band structure. Furthermore as long as the number of bands is

equal to the number of Wannier functions, as is the case in this example, the

Wannier band structure will reproduce the DFT band structure perfectly, as

can been seen for the case of TaSe2, by noticing that the green band structure

corresponding to the Wannier functions, is on top of the DFT band structure.

Finally let’s contrast the delocalized Ta-dz2 Wannier functions in figure

(2.2) with the atomic-like cobalt and oxygen Wannier functions in CoO2 in

figure 4.2 of chapter 4. The general rule of thumb is that the more bands that

are included in the Wannier transformation, the more localized the Wannier

functions get. The Ta-dz2 Wannier functions were constructed out of 1 band

per Ta atom and consequently spreads out to its nearest neighboring Ta atoms.

The cobalt and oxygen Wannier functions in 4.2 are constructed out of the full

Co-d and O-p band complex as a result of which they are extremely localized.

2.3.4 Respecting the Symmetry

One of the great advantages of the projected Wannier functions is that they

respect the symmetry of the Hamiltonian. For example lets look back at

the Ta-dz2 Wannier functions in figure 2.2. The symmetry group of TaSe2

include for example a mirror in the Ta plane, and rotation over 2π/3. Under

these symmetry operations the Ta-dz2 Wannier function will transform into

themselves, just like the projected |z2〉 orbital from which the Wannier function

was constructed. The center of the Wannier function, by construction, will be
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|z2〉-like and therefore could be expected to transform in the same way, but it

is truly amazing that the NN-Ta tails, even though locally of dx2−y2 character,

together combine in a non-trivial way to also respect the symmetry properties

of |z2〉. For simplicity we will now prove the symmetry respecting property

only for the special case of non-degenerate bands and point group symmetry

operators, but keeping in mind that it holds in general. First we need to

establish how a Bloch state will transform.

claim 6 Given a point group symmetry operator S that commutes with the

Hamiltonian [H,S] = 0 and given the Bloch states |kj〉, of a set non-degenerate

bands εkj, which without loss of generality are chosen to have the same phase

at the origin, then S|kj〉 = |Sk, j〉.

proof 6 First off all S|kj〉 is a Bloch state with band index j, since

HS|kj〉 = S(H|kj〉) = S(εkj|kj〉). (2.38)

Second we establish that TrS = STST ·r, from

TrS|x〉 = |S · x+ r〉 = S|x+ S−1 · r〉 = STS−1·r|x〉 = STST ·r|x〉. (2.39)

From which find

TrS|kj〉 = STST ·r|kj〉 = eik·(S
T r)S|kj〉 = ei(Sk)·rS|kj〉, (2.40)

which completes the proof since the bands were assumed non-degenerate.

claim 7 Given a point group symmetry operator S that commutes with the

Hamiltonian [H,S] = 0 under which the projected orbital |n〉 transforms as:

S|n〉 =
∑
n′

|n′〉Sn′n (2.41)

Then the projected Wannier state |rn〉, constructed from a set of non-degenerate

Bloch states |kj〉 , transforms as:

S|rn〉 =
∑
n′

|Sr, n′〉Sn′n (2.42)
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proof 7

S|rn〉 =
1√
l

∑
kj

|S · kj〉
∑
n′

〈kj|n′〉Mn′n(k)e−ik·r

=
1√
l

∑
kj

|kj〉
∑
n′

〈STk, j|n′〉Mn′n(STk)e−i(S
T k)·r

=
1√
l

∑
kj

|kj〉
∑
n′

〈kj|S|n′〉Mn′n(STk)e−ik·Sr

=
1√
l

∑
kj

|kj〉
∑
n′,n′′

〈kj|n′′〉Sn′′n′Mn′n(STk)e−ik·Sr

=
1√
l

∑
kj

|kj〉
∑
n′′

〈kj|n′′〉[SM(STk)]n′′ne
−ik·Sr (2.43)

Next we work on the overlap matrix:

M−2
n′n(STk) =

∑
j

〈n′|STkj〉〈STkj|n〉

=
∑
n′′n′′′

∑
j

STn′n′′〈n′′|kj〉〈kj|n′′′〉Sn′′′n

= [STM(k)S]n′n (2.44)

From which it follows:

M−2(STk) = STM−2(k)S

⇒ M2(STk) = STM2(k)S = STM(k)SSTM(k)S

⇒ M(STk) = STM(k)S

⇒ SM(STk) = M(k)S (2.45)

Plugging this we find

S|rn〉 =
1√
l

∑
kj

|kj〉
∑
n′

〈kj|n′〉[M(k)S]n′ne
−ik·Sr

=
∑
n′′

1√
l

∑
kj

|kj〉
∑
n′

〈kj|n′〉M(k)n′n′′Sn′′ne
−ik·Sr

=
∑
n′′

|Srn′′〉Sn′′n (2.46)
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Chapter 3

Methods: Wannier Function

Based First-Principles Methods

for Disordered Systems

In this chapter we present two newly developed Wannier function based meth-

ods that facilitate the supercell approximation for disorder systems. In section

3.2 we present the unfolding method which has been published in reference [49].

It should be noted that the unfolding method also has an important application

for systems with periodic impurities or spontaneous symmetry breakers such

as charge density waves and orbital orderings. It should also be noted that

for the application to disordered systems, work in parallel has been done [50].

In section 3.3 we present the effective Hamiltonian method which has been

published in reference [51]. Additional technical details and examples of the

methods presented in this chapter are given in appendices A-F.

3.1 Super Cell Approximation for Disordered

Systems

The goal of this thesis is to compute the band structure of disordered systems

from first principles within the quasiparticle interpretation of the Kohn Sham

orbitals. Specifically we are interested in disordered dopants such as substi-

tutions, interstitials and vacancies (see figure 1.2). These kind of disorders
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are also known as cellular disorders because there is still an underlying lattice

present. In the case of the crystalline materials, the Kohn Sham eigenstates

and eigenvalues could be obtained because the lattice translational symmetry

allowed the Kohn Sham Hamiltonian to be block diagonalized. For disordered

systems, cellular or not, the Kohn Sham Hamiltonian is no longer block diag-

onal and therefore cannot be solved without making an approximation.

Roughly speaking there are two ways of studying the band structure of

cellular disordered systems from first principles. Either within the supercell

approximation or within a mean-field approximation [52, 53]. A combination of

these approaches, a so-called cluster mean field approximation, is also possible.

The general idea behind the mean-field methods is to replace the disordered

system with an effective site-averaged medium. A very often used mean-field

method is the Virtual Crystal Approximation (VCA) in which the external

potential of the disordered impurities is replaced by its site-averaged potential

called the virtual crystal. For example suppose that a fraction x of the atoms

with potential VA are randomly substituted with impurities with potential

VB, then the virtual crystal potential would be: 〈V 〉 = (1 − x)VA + (x)VB.

The great advantage of the VCA is that it has a low computational expense.

Since the virtual crystal potential is the same at each site, the VCA restores

the lattice symmetry and therefore makes the Kohn Sham Hamiltonian block

diagonal again. However, for the same reason, the VCA misses one of the most

important aspects of disorder, namely scattering.

Figure 3.1: Three examples of non-local disorder effects.

In the Coherent Potential Approximation (CPA) the local Green’s function

is site averaged self-consistently: 〈G00〉 = (1− x)G00
A + (x)G00

B . In appendix I

we work out the CPA equations for the most simple case of a 1 dimensional 1

30



band model with binary disorder. The CPA is computationally more expensive

then the VCA but does incorporate the single site scattering of the impurities.

However, by construction, it can not incorporate any non-local influence of

disorder that goes beyond one site. In figure 3.1 we illustrate three typical

examples of non-local effects in disordered systems. The disorder induced self-

energy can be bigger than one site, resulting in a crystal momentum dependent

broadening of the bands. A cluster of impurities can trap eigenstates whose

size can be much bigger then a single site. The impurities can be short range

ordered, with a correlation length that spans over many sites.

Figure 3.2: The super cell approximation.

Such non-local effects of disorder can be studied within the super cell ap-

proximation of disorder. In this approximation the disordered system is re-

placed by a large supercell in which a number of impurities are randomly

distributed. The super cell approximation is conceptually a clean way to treat

the disordered systems because it can be systematically converged as a func-

tion of the size of the supercell. In addition an average over multiple supercell

configurations can be used in order to faster reach the convergence (see figure

3.2). Note that in this configurational average it will be desirable to not only

randomly distribute the impurities within the supercells, but also to change

the size, shape and orientation of the supercells themselves. In this way the

artificial periodic boundary conditions of the supercell will be washed out more

efficiently. In practice using the super cell approximation for calculating the

band structure suffers from two problems: the band folding and the compu-

tational expense. In this chapter we will present two Wannier function based

methods to overcome these problems.
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3.2 Unfolding

The electronic band structure is the eigenvalue of εkj of a Bloch wave 〈x|kj〉
as a function of crystal momentum k. Here crystals momentum plays two

roles. One the one hand the crystal momentum is a conserved quantum num-

ber, corresponding to the translational symmetry of the Hamiltonian. As we

have already been discussing, the Hamiltonian can be block diagonalized if a

basis set is used that conserves the crystal momentum (e.g. plane waves or

LAPW’s).

On the other hand the crystal momentum plays a crucial role in extract-

ing physical insight from the first principles calculations. For example within

semi-classical model of electrodynamics, the crystal momentum is the mo-

mentum of the semi-classical particles, when considering dynamical response

to external electromagnetic field. The semiclassical picture allows the band

structures to be connected with experimental electronic and optical properties

such as ac and dc electrical conductivity,thermal conductivity, thermoelectric

effects(Nernst, Peltier, thermopower), Hall effect, magnetoresistance, quantum

oscillations (Shubnikov-de Haas and De Haas-van Alphen) [54]. In metals, the

crystal momentum resolved Fermi surface can be used to study Fermi surface

nesting, a mechanism responsible for many types of phase transitions such

as superconductivity, charge density waves, spin density waves and structural

phase transitions. In semi-conductors, depending on whether the conduction

band minimum and the valence band maximum occur at the same crystal mo-

mentum or not, the bandgap will be either direct or indirect, the difference

of which has dramatic consequences for the absorption of light. Last but not

least, within the quasi-particle interpretation of the Kohn Sham orbitals, the

band structure as a function of crystal momentum, can be directly related to

the Angular Resolved Photo Emission Spectroscopy.

If the translational symmetry of the normal cell is broken by the presence

of a super lattice of impurities, only the crystal momenta in the supercell

Brillouin zone remain good quantum numbers. Bands outside of the supercell

Brillouin zone will be folded into the smaller Brillouin zone. The situation is

illustrated in figure 3.3, for the case of a 1 dimensional 1 band tight binding

model. Substituting one out of every two atoms for an impurity, results in the

supercell that is twice as big as the normal cell. Consequently the Brillouin
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Figure 3.3: Cartoon of folding and unfolding for the case of a 1 dimensional 1
band tight binding model.

zone of the supercell gets twice as small as the normal cell Brillouin zone

meaning that half of the original bands will be folded thereby doubling the

number of bands per k-point.

Unfortunately the usefulness of the crystal momentum resolved band struc-

ture breaks down due to the band folding. If we keep increasing the size of

the supercell, more and more bands will be folded into a smaller and smaller

Brillouin zone. This is a big problem because in this thesis we are interested

in supercells that contain hundreds of normal cells. For such big supercells the

band structure would be nothing but a collection of small horizontal lines pilled

on top of each other. It is clear that from such a dispersionless band structure

no physical insight related to the crystal momentum can be extracted.

3.2.1 The Spectral Function

The resolution of the bandfolding problem is to realize that even though the

normal cell crystal momentum k is not conserved, it is still possible to quan-

tify its probability. Technically this can be accomplished by computing the

diagonal1 elements of the spectral function on the basis of the normal cell

1Focusing on the diagonal normal cell k-state basis is equivalent in real space with taking
the average over lattice sites:

〈kn|G(ω)|kn〉 =
1

l

∑
r,r′

e−ik(r−r
′)〈rn|G(ω)|r′n〉 =

∑
r′′

e−ikr
′′ 1

l

∑
r′

〈r′′ + r′n|G(ω)|r′n〉︸ ︷︷ ︸
site−average

(3.1)
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crystal momentum, which in this thesis we shall simply refer to as the spec-

tral function. The goal is to calculate the spectral function given the Bloch

states 〈KN |KJ〉 on the supercell K-basis and supercell band structure εKJ .

We start by writing the spectral function as the imaginary part of the Green’s

function operator evaluated on the basis of the normal cell crystal momentum

k and Wannier index n:

An(k, ω) = − 1

π
Im〈kn|G(ω)|kn〉 ; G(ω) = (ω − H + i0+)−1 (3.2)

where |kn〉 is the normal cell k-state which is the lattice Fourier transform of

the normal cell Wannier state |rn〉 (see (2.31)). As we shall see the k-state

|kn〉 does not need to be computed explicitly when assuming that the Wannier

functions do not change under the influence of the impurities. By inserting

the completeness relation of supercell Bloch states |KJ〉 the spectral function

can be rewritten as:

An(k, ω) = − 1

π
Im
∑
KJ

|〈kn|KJ〉|2〈KJ|G(ω)|KJ〉 (3.3)

The spectral function is diagonal on the basis of the supercell Bloch states and

reduces to:

AKJ,KJ(ω) = − 1

π
Im〈KJ|G(ω)|KJ〉 = − 1

π
Im

1

ω − εKJ + i0+
= δ(ω − εKJ) (3.4)

So we can rewrite the spectral function in the form:

An(k, ω) =
∑
KJ

|〈kn|KJ〉|2δ(ω − εKJ) (3.5)
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which confirms that it quantifies the probability of normal crystal momentum

k at frequency ω. The overlap matrix element reduces to a structure factor:

〈kn|KJ〉 =
∑
RNr

〈kn|rn〉〈rn|RN〉〈RN |KN〉〈KN |KJ〉

=
∑
RNr

( 1√
l
e−ikr

)(
δr,R+r′(N)δnn′(N)

)( 1√
L
eiKR

)
〈KN |KJ〉

=
∑
RN

( 1√
l
e−ik(R+r′(N))

)(
δnn′(N)

)( 1√
L
eiKR

)
〈KN |KJ〉

=

√
L

l

∑
N

( 1

L

∑
R

eiR(K−k)
)
e−ikr

′(N)δnn′(N)〈KN |KJ〉

=

√
L

l

∑
N

(∑
G

δk,K+G

)
e−ikr

′(N)δnn′(N)〈KN |KJ〉 (3.6)

Here r′(N) is the normal cell lattice index of supercell orbital N within the

zeroth supercell. The relationship between the normal cell and supercell coor-

dinates is given by what we in this thesis refer to as “the map” (see appendix

B). Note that in the second equation we made an assumption, namely that

〈rn|RN〉 = δr,R+r′(N)δnn′(N). To put it in words, we assumed that the Wan-

nier function did not change under the influence of the impurity. We will

come back to this important issue in section 3.3.2. All in all we find the

spectral function An(k, ω) to be the product of the supercell band structure

δ(ω − εKJ) unfolded to the normal cell Brillouin zone according to δk+G,K

and weighted by the sum of the components of the eigenvector 〈KN |KJ〉
modulated by the phase e−ikr

′(N). As we mentioned before the assumptioned

〈rn|RN〉 = δr,R+r′(N)δnn′(N) allowed for the evaluation of An(k, ω) without

calculating |kn〉 explicitly.

Lets go back to the example of the 1 dimensional 1 band tight binding

model illustrated in figure 3.3(c). The first step is to translate the supercell

band structure eigenvalues εKJ in the supercell Brillouin zone over each su-

percell reciprocal vector G in the normal cell Brillouin zone. Then the next

step is to multiply the intensity of the band with the spectral weight (3.6).

As the cartoon suggests, if the symmetry breaking impurity potential is not

to strong, the weight will be such that the “main” bands will have almost a

full intensity and the “shadow” bands will have almost zero intensity except
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around the gapopenings. In appendix D we will work out the example of the 1

dimensional 1 band tight binding model mathematically. Especially the figures

D.1 and D.2 are instructive. The “shadow bands” and the gapopenings to-

gether provide quantitative information about the coupling of the translational

symmetry breaking potential to the normal cell Bloch states.

From the completeness of the supercell Bloch states |KJ〉 we can easily

proof the following sum rule:

claim 8

ˆ
dωAn(k, ω) = 1 (3.7)

proof 8

ˆ
dωAn(k, ω) =

ˆ
dω
∑
J

|〈kn|KJ〉|2δ(ω − EKJ)

=
∑
J

|〈kn|KJ〉|2 =
∑
J

〈kn|KJ〉〈KJ |kn〉 = 〈kn|kn〉 = 1 (3.8)

The spectral function An(k, ω) has an important direct connection to the

ARPES measurement. Within the “one-step model”, the ARPES intensity is

proportional to [55] ∑
KJ

|e · 〈f |p|KJ〉|2AKJ,KJ(ω)

∼
∑
KJkn

|e · 〈f |p|kn〉|2|〈kn|KJ〉|2AKJ,KJ(ω)

=
∑
kn

|e · 〈f |p|kn〉|2An(k, ω) (3.9)

where e denotes the polarization vector of light, and |f〉 the “final state” of

the photo electron. Except the non-diagonal elements 〈kn|A(ω)|k′n′〉 and the

polarization dependent dipole matrix element, |e · 〈f |p|kn〉|2, the unfolded

spectral function, An(k, ω), contains almost the full information of the exper-

imental spectrum by absorbing the additional structure factor 〈kn|KJ〉. The

inclusion of this additional matrix element facilitates the comparison between

the theory and the ARPES experiment.
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3.2.2 Technical Details of Plotting the Spectral Func-

tion

For the purpose of visualization an artificial broadening η is introduced ac-

cording to δ(ω − εKJ) ≈ (η/π)((ω − εKJ)2 + η2)−1, in such a way that the

sum rule (3.7) is conserved. The Wannier orbital resolved spectral function

is presented on a color bitmap consisting of a nω × nk pixel grid. The RGB

value of each pixel is taken to be the complement of (ηπ)
∑

nAn(k, ω)cn (such

that the background appears white), where cn is the RGB value designated to

Wannier orbital n. In figure 3.4 we compare the Wannier orbital resolution

of the k-dependent spectral function An(k, ω) (figure 3.4(a)) with the exact

decomposition in the constant k = k0 spectral function An(k = k0, ω) (3.4(b)),

for Co2O4. The corresponding plotting parameters are summarized in table

3.1.

Figure 3.4: Comparison orbital resolution by color vs. exact decomposition.

η(meV) nω nk ceg cag ce′g cpz cpxy

5 1600 1600 (255,255,255) (0,255,0) (255,0,0) (255,0,255) (255,255,255)

Table 3.1: Plotting parameters corresponding to Fig.3.4(a)
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3.2.3 Realistic Example Unfolding 1: NaxCoO2

As an example, let’s consider the effect of periodic Na impurities in Na-doped

cobaltates, NaxCoO2 at x = 1/3. In typical first-principles studies[56, 57],

the impurity is incorporated via a supercell as demonstrated in figure 3.4(b)

in comparison with the undoped normal cell shown in 3.4(a). Figures 3.4(d)

and (c) show the corresponding folded band structures. Since in this example

the supercell is three times larger than the normal cell, the corresponding

supercell Brillouin zone is three times smaller and contains three times more

bands. Even for such a small supercell, the change of the size/orientation

of the supercell Brillouin zone and more importantly the large number of

folded bands, make it practically impossible to cleanly compare with the band

structure in the normal cell Brillouin zone of the undoped parent compound.

In fact, to many untrained eyes, these two band structures may appear entirely

unrelated.

By contrast, the unfolded band structure shown in Fig. 3.5(e), demon-

strates a strong resemblance to the band structure of the undoped compound.

This allows a clear visualization of the effects of the (periodic) Na impurities

on the original Co and O bands. Specifically, besides the introduction of addi-

tional Na-s bands, one observes shifts in band energies, gap openings and the

nearby “shadow bands”, all of which reflects the influence of the Na impurity

on these bands. What is really nice here is the cleanness of the unfolded band

structure in general, owing to the weak intensity of the shadow bands. As

expected, the influence of the Na impurity is only minor on most Co-d and

O-p bands, while the Na-s bands themselves show sizable effects of broken

translational symmetry. The size of the gap opening and the intensity of the

shadow bands actually reflect directly the strength of each band’s coupling

to the broken translational symmetry of the normal cell (in this specific case,

introduced by the periodic presence of Na atoms).

3.2.4 Realistic Example Unfolding 2: Cu:ZnO (Rock-

salt)

Now lets contrast the weak symmetry breaking due to Na interstitials with

the strong symmetry breaking due Cu for Zn substitution in rock salt ZnO.
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Figure 3.5: Realistic example of folding and unfolding for Na2Co6O12. Lattice
structures of (a) Co2O4 (normal cell) and (b) Na2Co6O12 (supercell), the cor-
responding band structure of (c) the normal cell and (d) supercell calculation,
and (e) the unfolded band structure of the supercell. Insect illustrates the ef-
fects of weak translational symmetry breaking via spectral functions over the
region [-4.6eV,-4.2eV] and [2

5
ΓM , 1

5
ΓM ].
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We perform the simulations with a different functional LSDA+U (U=8eV,

J=0.9eV), The lattice parameter a=4.28 Åwas chosen to match the lattice

structure of rock salt ZnO at ambient pressure as measured by the diffraction

experiments [58, 59]. The low energy Hilbert space is taken within [-8,40]

eV consisting of projected Wannier orbitals Zn-d/Cu-d, O-p, Zn-s/Cu-s and

Zn-p/Cu-p characters (12/normal cell).

In figure 3.6 we show four band structures, corresponding to ZnO with an

increasing amount of Zn for Cu substitutions, starting from pure ZnO (x=0),

increasing to pure CuO (x=1). The great advantage of using the unfolded

band structure is that also the intermediate cases (x=1/8) and (x=1/4), whose

supercell are very different from the 2 limiting cases, can now all be compared

on the same normal cell crystal momentum basis. For example when going

from x=0 to x=1/8, one sees that the zn-d band (around -5eV) is still very

much present yet one can see also see a very weak Cu-O hybrid band appearing

around the Fermi surface. Then, as one increases the doping from (x=1/8)

to (x=1/4) the Cu-O hybrid band increases its intensity and the Zn-d band

starts to weaken. Finally at x=1 the Zn-d band completely dissappears.

Figure 3.6: unfolded band structures of rocksalt Cu:ZnO.
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3.3 The Effective Hamiltonian

The super cell approximation as discussed in the beginning of this chapter has

the clear advantage that it is a conceptually clean approximation, in the sense

that one can systematically converge the quantity of interest with respect to

the supercell size. Moreover this direct approach allows for the investigation

of non-local physics, by which we mean phenomena that involve a length scale

larger then the normal cell size. However, the price one pays is high. The

computational cost of obtaining the eigenvalues and eigenstates will scale with

the systems size cubed. Therefore to be able to reach the convergence or to

be able to reach the length scale of the non-local physics, one could greatly

benefit from some kind of computational approximation method that could

increase the efficiency yet not compromise the accuracy. In this section we

describe the effective Hamiltonian method that will allow us to construct the

low energy effective Hamiltonian of any cellular disordered configuration.

3.3.1 Basic Idea and Explicit Recipe

The Hamiltonian of an arbitrary configuration of N impurities, positioned at

(x1, ..., xN), can be exactly rewritten as

H(x1,...,xN ) = H0 +
N∑
i=1

∆(xi) +
N∑

i>j=1

∆(xi,xj) + ... (3.10)

where H0 denotes the Hamiltonian of the system with no impurities, ∆(xi) =

H(xi) − H0, denotes the linear influence of the impurity at xi and ∆(xi,xj) =

H(xi,xj) − ∆(xi) − ∆(xj) − H0 denotes the two-body correction of a pair of

impurities at (xi,xj), etc. The idea of the effective Hamiltonian method is

to keep only the lower order impurity influences evaluated in the low energy

Hilbert space. In practice we found that it is already highly accurate to keep

only the linear influence of the impurities, as demonstrated for example below

in section 3.3.4.

At first it might not be clear why this cutoff can lead to accurate results.

After all density functional theory is a non-linear theory. Although the external

potentials of the impurities will add linearly, the Hartree potential and the

exchange correlation potential depend on the density which in turn depends
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on the external potential in a non-linear way. But more importantly even if the

Hamiltonian was density independent then still its low energy representation

in general will depend on the change of external potentials in a non-linear

way. Nonetheless there are two basic properties of the influence of disordered

impurities that together can make it possible for the linear cut-off to be an

accurate approximation. First of all the impurity induced changes in the

Hamiltonian will be strongest nearby the position of the impurity. Second

of all an impurity influence is never added at the same position twice. So

the linear influence ∆(xi) = H(xi) − H0 can in fact incorporate the strong

changes of the low energy Hamiltonian nearby the impurity. It is clear that

the importance of the Wannier functions will be two-fold. On the one hand

the Wannier functions can be used to represent the low energy Hilbert space

thereby making the effective Hamiltonian method efficient. On the other hand

the Wannier functions are exponentially localized a necessary condition for the

linear cut-off to give accurate results.

The construction of the effective Hamiltonian explicitly consists of three

steps.

• First, one normal cell DFT calculation is performed for the undoped

system and an additional supercell DFT calculation is performed for

each type of impurity m.

• Second, the low energy Bloch states of the DFT calculations are Wannier

transformed resulting into normal cell and supercell Wannier function

based tight binding Hamiltonians: 〈r′−r′′, n|H0|0n′′〉 and 〈r′n′|H(rm)|r′′n′′〉.
Here, just like in the derivation of the structure factor formula (3.6) the

consistency between the normal and supercell Wannier functions is im-

portant. We will discuss this issue in section 3.3.2.

• Third, linear super position is used to construct the effective Hamiltonian

of any arbitrary configuration. The impurity influence (located in the

zeroth normal cell) is extracted by taking the difference of the two tight

binding Hamiltonians:

〈r′n′|∆(0,m)|r′′n′′〉 (3.11)

=
(
〈r′ − r, n′|H(rm)|r′′ − r, n′′〉 − 〈r′n′|H0|r′′n′′〉

)
p(r,m)(r′ − r, n, r′′ − r, n′)
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Where 0 ≤ p(r,m)(r′, n, r′′, n′) ≤ 1 is the partitioning function that is

necessary to partition the influence of the impurity from its super images.

We will define the partitioning function in section 3.3.3. The effective

low-energy Hamiltonian corresponding to a disorder configuration with

N impurities is then constructed by adding to the undoped Hamiltonian

the impurity influences N times at the corresponding positions:

〈r′n′|H{(r1,m1),...,(rN ,mN )}
eff |r′′n′′〉 (3.12)

= 〈r′ − r′′, n′|H0|0n′′〉+
N∑
i=1

〈r′ − ri, n′|∆(0,mi)|r′′ − ri, n′′〉

where r and n denote the lattice vector and the orbital index of the

Wannier functions, and ri and mi denote the lattice vector and the type

of impurity i, located at xi = ri + xmi .

The notation here also implies possible addition of impurity orbitals and re-

moval of orbitals due to vacancies. A similar recipe could be designed if higher

order contributions in (3.10) are desired.

3.3.2 Consistency Between Normal Cell and Supercell

Wannier Functions

Both for the unfolding method from the previous section (3.2) and for the

effective Hamiltonian method discussed in this section it is important to have

the Wannier functions as robust as possible against the influence of the im-

purity. Mathematically this means that the supercell Wannier functions are

orthonormal to their corresponding normal cell Wannier functions:

〈rn|RN〉 = δr,R+r′(N)δnn′(N) (3.13)

where r′(N) is the normal cell lattice index of supercell orbital N within the

zeroth supercell. The relationship between the normal cell and supercell coor-

dinates is given by what we in this thesis refer to as “the map” (see appendix

B). For the unfolding method the normal cell Wannier states are implicit. The

supercell band structure can be unfolded to the normal cell band structure

without constructing the normal cell Wannier functions. What equation (3.13)
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really means for the unfolding method is that the supercell Wannier states are

as consistent as possible amongst themselves. For the effective Hamiltonian

method the normal cell Wannier functions are explicitly constructed. The im-

portance of (3.13) is obvious because only when the normal cell and supercell

Hamiltonians are represented on the same Wannier basis does their addition

and subtraction become meaningful.

Figure 3.7: Consistency between normal cell and supercell O-pz Wannier func-
tion. On the left the atomic environment of the Wannier functions is displayed.
The black arrow indicates the center of the Wannier function. On the right
the isosurfaces |〈x|rn〉|2 = 10−4bohr−3 of the normal cell and supercell O-pz
Wannier function are displayed.

To accomplish the consistency between the normal cell and supercell Wan-

nier functions (3.13) as much as possible two requirements need to be fulfilled

in their construction. The first requirement is to make sure that within the

energy window of interest, the Hilbert space of the supercell and the normal

cell are the same as much as possible. Under the influence of an impurity the

atomic character of the bands will mix. Typically this mixing happens mostly

within a specific band complex. For example for NaxCoO2 the mixing mostly

occurs within the cobalt and oxygen band complex. Therefore it is desirable

that the entire band complex is included in the analysis, such that certain

atomic characters will not leak out of the Hilbert space under the influence of

the impurity.

The importance of a big window can also be understood from a different

point of view. If the Wannier functions are constructed out of a small number

of bands, they necessarily have to be delocalized, because the corresponding
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atomic character is spread over different bands. For example the Ta-dz2 Wan-

nier functions in section 2.3.3 were constructed out of the Ta-dz2 bands only

and consequently delocalized up to the second nearest neighbors (see figure

2.2). Such delocalized Wannier functions will probably not be good for the

linear cut-off in (3.10). If the Wannier functions are bigger then the minimal

distance between impurities, probably the two-body impurity influences can

no longer be neglected.

So at this point we conclude that the larger the number of Wannier func-

tions on which the Hamiltonian is represented, the more accurate the effective

Hamiltonian will be. Of course the flip side of the coin here is that the larger

number of Wannier functions also makes the effective Hamilotians computa-

tionally more expensive to diagonalize. In practice one needs to find a balance.

The second requirement for the consistency between the normal cell and

supercell Wannier functions is to have the gauge of the Wannier functions as

consistent as possible. This is naturally accomplished with the projected Wan-

nier function method [37, 47] discussed in section 2.3.1, because one can simply

project on the same orbital. Therefore for the methodologies discussed in this

chapter, the unfolding and the effective Hamiltonian method, the maximally

localized Wannier function method [46] might not be suitable, because it could

define the gauge differently in the supercell in favor of better localization near

the impurity.

In figure 3.7 we show an example of the consistency between the normal

cell and supercell Wannier functions for NaxCoO2. Specifically we are showing

the oxygen pz Wannier function which will be most sensitive to the presence

of the Na impurity. The difference between the normal cell and supercell

Wannier functions (e.g. the absence or presence of the Na tail) only becomes

visible for the very low value of the absolute square of the Wannier functions

|〈x|rn〉|2 = 10−4bohr−3 which already indicates that even the O-pz Wannier

function is very robust against the Na impurity. A more quantitative com-

parison between the normal cell and supercell Wannier functions will be given

in the next chapter in figure 4.3 which presents the overlap integrals of the

Wannierfunctions evaluated on a grid.
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3.3.3 Partitioning a Tight Binding Hamiltonian

When one tries to capture a local effect within a supercell calculation (e.g.

frozen phonon calculations or defect formation energy calculations), it is in-

evitable that one needs to partition the influence of this local effect from its

super images. In general there is no unique way for doing this partitioning

and therefore one has to make a choice. Before going into the details of the

particular partitioning method chosen in this work, let us first briefly discuss

a very common application of supercell calculations, namely the calculation of

the force constant matrix from which the phonon spectrum can be obtained.

In such a calculation, one displaces one of the atoms in the supercell and calcu-

lates the forces induced on all the other atoms. In order to partition the forces

induced by the displaced atom, from the forces induced by the super images of

this displaced atom, one typically uses a hard cutoff. If the atom on which the

force is induced is closer to the displaced atom then to its super image, this

force will be fully attributed to the displaced atom and vice versa (see figure

3.8). This intuitive strategy however can not be used for the partitioning of a

tight binding Hamiltonian. The fundamental difference between a force and a

hopping matrix element is that the force is associated with one point in space,

namely the position of the atom on which the force is induced. A hopping

element, on the other hand, is associated with two points in space, the posi-

tion of the orbital from which the electron hops and the position of the orbital

to which the electron hops. Before going into the details of the particular

partitioning method chosen in this work, let us first remark that the effective

Hamiltonian method could probably also be followed with another choice of

partitioning scheme. In fact, one could perhaps entirely avoid the partitioning

by using a cluster DFT code (e.g. GAUSSIAN [60] or FHI-AIMS [61]).

We want to calculate the influence of an impurity on the low energy effec-

tive tight binding Hamiltonian, by subtracting the tight binding Hamiltonian

with no impurities, 〈r′n′|H0|r′′n′′〉, from the tight binding Hamiltonian with

one impurity per supercell, 〈r′n′|H(r,m)+superimages|r′′n′′〉. The objective now is

to define a partitioning function p(r,m)(r′n′, r′′n′′), that will enable us to parti-

tion the influence of a single impurity on the low energy effective tight bind-

ing Hamiltonian, from the influences of its superimages (see equation (3.11)).

Since there is no intuitive choice for this partitioning function at hand, we shall
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Figure 3.8: Partitioning of the tight binding Hamiltonian (Left) The typical
partitioning strategy used in the calculation of the force constant matrix, the
hard cutoff, can not be used to partition hopping elements of a tight binding
Hamiltonian. (Right) Interpolation function fr,c,w(d) as a function of distance
d with the parameters rcut=25a.u., c=2.5a.u., w=1.25a.u.

start from an abstract form and add more and more desirable properties to it

until we arrive at its explicit form. First of all we ensure that the partitioning

function is normalized by defining it as

p(r,m)(r′n′, r′′n′′) =
P (r,m)(r′n′, r′′n′′)∑

R∈superlattice P
(R+r,m)(r′n′, r′′n′′)

(3.14)

The next step is to define a distance between the hopping element 〈r′n′|H|r′′n′′〉
and the impurity (r,m). We choose

d(r,m)(r′n′, r′′n′′) = | r′ + xn′︸ ︷︷ ︸
to−WF

− r + xm︸ ︷︷ ︸
impurity

|+ | r′′ + xn′′︸ ︷︷ ︸
from−WF

− r + xm︸ ︷︷ ︸
impurity

| (3.15)

Here xm,xn′ and xn′′ are the positions within the normal cell of the impurity

of type m and the Wannier state of type n′ and n′′ respectively. To put it in

words the distance between an impurity and a hopping element will be defined

as the sum of the distance of the impurity to the center of the “from-Wannier

function” 〈x|r′′n′′〉 and the distance of the impurity to the center of the “to-

Wannier function” 〈x|r′n′〉. Examples on a square lattice are given in figure

3.9.

Finally we need to define an interpolation function f = f(d), a function of

the distance, that smoothly interpolates between 1 at distance 0 and 0 at a
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Figure 3.9: Examples of impurity-hopping element distances.

distance far away. The unnormalized partitioning function is then given by

P (r,m)(r′n′, r′′n′′) = f(d(r,m)(r′n′, r′′n′′)) (3.16)

The normalized partitioning function is then given by equations (3.14-3.16)

and a yet to be defined interpolation function f .

First of all we want the interpolation function to satisfy the correct bound-

ary conditions at distance 0 and some normalized cut-off distance. Specifically

we require: f(0) = 1 and f ′(0) = f(1) = f ′(1) = 0. The following polynomial,

q(x), satisfies these boundary conditions:

q(x) = 1− 3x2 + 2x3 (3.17)

Second of all we want to have some control over where the interpolating func-

tion drops to zero and how fast. For this purpose we borrow the Fermi-Dirac

distribution function from statistical mechanics

gc,w(x) =
1

exp(x−c
w

) + 1
(3.18)

were the chemical potential corresponds to the center c of the drop and the

temperature corresponds to the width w of the drop. Since the distance needs

to be 0 when x = 0 and 1 when x = rcut we modify the Fermi function:

hc,w(x) =
gc,w(0)− gc,w(x)

gc,w(0)− gc,w(rcut)
(3.19)
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The final interpolation function is obtained from combining (3.17)-(3.19).

fr,c,w(x) = q(hc,w(x))θ(x− rcut) (3.20)

where rcut is the cut-off distance beyond which the influence of an impurity

is taken to be zero. In figure 3.8 the interpolation function is plotted for the

parameters rcut=25a.u., c=2.5a.u., w=1.25a.u., which are typical parameters

used for the construction of the effective Hamiltonians in this work.

In appendix E, we work out the partitioning of a tight binding Hamiltonian

difference, for the case of a simple toy model. As will become clear in that ex-

plicit example, the arbitrary choice of the interpolation function (3.17)-(3.20)

is usually irrelevant for the partitioning.

3.3.4 Testing the Quality of the Effective Hamiltonian

Figure 3.10: Testing quality of effective Hamiltonian: toy examples.

To test the quality of the effective Hamiltonian we will design test systems

that are small enough to be be calculated within the full density functional

theory. Then by comparing the quantity of interest, the spectral function

An(k, ω), computed both from DFT and from the effective Hamiltonian, the

quality of the effective Hamiltonian can be tested. Two aspects need to be

tested, namely the linearity assumption and the quality of the partitioning.

In figure 3.10 we give some two dimensional toy examples of how one can
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design test systems that can test those two aspects. Designing a test system

for testing the linearity is simple, namely the larger the extrapolation of the

concentration of impurities the better the test case. For example in the first

row of figure 3.10 we see a 2×2 input supercell to extract the impurity influence

and a
√

2×
√

2 supercell to test the quality of the effective Hamiltonian. The

reason why this test case tests the linearity is because the concentration of

impurities is extrapolated from 1/4 to 1/2. In that sense the test system in

the second row of figure 3.10 is the ultimate test case of linearity, because the

concentration of impurities is extracted from 1/4 all the way to 1 the maximum

amount of impurities that there can be.

To test the quality of the partitioning is a little bit more of a complicated

issue. A test case that extrapolates the concentration of impurities to a smaller

value is always a good test case for the partitioning. An example of such a

test case is given in the third row of figure 3.10, in which the concentration

of impurities is extrapolated from 1/2 to 1/4. However the other way around

is not true. In other words a good test case for the partitioning does not

necessarily extrapolate to a lower concentration of impurities. For example

the test case in the fourth row extrapolates from 1/4 to 1/3 and yet is a

good test case for the partitioning. Why is that the case? In appendix F

we shall proof the following statement, namely that the effective Hamiltonian,

depends on the partitioning function (3.14)-(3.16) if and only if the input

superlatttice is a subset of the test superlattice.2 The condition of the input

superlatttice being a subset of the test superlattice is conveniently rephrased

as the transformation matrix from the test-supercell to the input-supercell

being an integer matrix:

M test
in = M−1

test ·Min = integer matrix

⇔ 〈rn|Htest|r′n′〉 independent of partitioning function (3.21)

where Mtest is the matrix that transforms from the test-supercell basis to

the normal cell basis and Min is the matrix that transforms from the input-

2This statement is in direct analogy with the more commonly known fact that in a frozen
phonon calculation, the phonon frequency and wave vector become exact when its crystal
momentum is equal to a reciprocal vector of the supercell within which the force constant
matrix was calculated.
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supercell basis to the normal cell basis. For example M test
in in the test systems

in the first two rows of figure 3.10 are integer matrices and therefore these

test systems do no test partitioning. This means no matter what kind of crazy

partitioning scheme is used, the effective Hamiltonian will always be the same.

The transformation matrices M test
in of the test systems in the third and fourth

row of figure 3.10 are non-integer and therefore they do test the quality of the

partitioning.

Figure 3.11: Input systems for studying Zn:BaFe2As2.

Now let us consider test cases for a realistic system, namely Zn for Fe sub-

stitutions in Ba(Fe1−xZnx)2As2. The undoped BaFe2As2 has a body-centered

tetragonal lattice structure of which the primitive cell is depicted on the left

of figure 3.11. The influence of a Fe for Zn substitution is extracted from

of Ba2Fe3ZnAs4 of which the “input” supercell is depicted on the right of

figure 3.11. The space group I4/mmm and the values of the lattice parame-

ters a=b=3.9625 Åand c=13.0168 Åand the As height z=0.3545, were taken

from [62]. The low energy Hilbert space is taken within [-10,4] eV consisting

of projected Wannier orbitals of Zn-d/Fe-d and As-p characters (16/normal

cell).

The test system BaZn2As2 is used to test the linearity the results of which

are displayed in figure 3.12. From comparing the band structures computed

from the effective Hamiltonian and from the full DFT, we can see that linearity

approximation is amazingly accurate considering that the dramatic extrapo-

lation all the way to 100 percent doping and considering that the impurity
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Figure 3.12: Testing the linearity assumption for Zn:BaFe2As2.

itself in this case, the Fe for Zn substitution is a very dramatic perturbation

containing a downwards onsite energy shift of about 8eV. The test system of

Ba8Fe14Zn2As16 is used to test the quality of the partitioning test the results

of which are displayed in figure 3.13. Notice from the transformation matrix

M test
in is only non-integer in the plane, meaning the this particular test system

actually does not test the quality of the out of plane partitioning.

Figure 3.13: Testing the quality of the partitioning for Zn:BaFe2As2.
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Chapter 4

Application 1: Can Disorder

Alone Destroy the eg’ Hole

Pockets of NaxCoO2?

The work presented in this chapter has been published in reference [51].

4.1 Introduction

Like most transition metal oxides, sodium cobaltates obtain their important

properties via the introduction of dopants (Na) between the layered structures

of oxygen and transition metal atoms. Around x = 0.3, NaxCoO2 develops un-

conventional superconductivity under hydration [63], with evidence of a nodal

order parameter [64]. From x < 0.5 to x > 0.5 it changes from a paramag-

netic metal to a Curie-Weiss metal, while it is a charge ordered insulator at

x = 0.5 [65]. At high doping, the combination of high thermopower and high

conductivity is observed [66], together with A-type anti-ferromagnetism [67].

In addition, various Na orderings have been observed throughout the entire

phase diagram [68]. This rich variety of behaviors has thus attracted intensive

research activity.

Nevertheless, even the most basic starting point for an understanding is

still under serious debate, namely the low-energy electronic structure near

the chemical potential that controls most of the above mentioned remarkable

properties. Early density functional (DFT) calculations [69] within the lo-
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cal density approximation (LDA) predicted the existence of a central ag hole

pocket, surrounded by 6 e′g hole pockets. Angle resolved photoemission spec-

troscopy (ARPES) experiments [70, 71] measured the central ag pocket, but

found the e′g bands to be below the Fermi surface. Shubnikov-de Haas mea-

surements [72] observed two pockets, but the assignment to e′g was concluded

incompatible with the specific heat data [73]. On the other hand, the presence

of the second type of pocket was reconfirmed by Compton scattering [74] and

assigned to e′g.

Despite the controversial status on the experimental front, various the-

oretical efforts have been made to investigate the alleged absence of the e′g

pocket. Surface effects were suggested to suppress the e′g pocket [57] under hy-

droxyl contamination. The other usual suspect of many-body correlation was

investigated within dynamical mean-field theory (DMFT) by several groups.

However, the results were inconclusive as the e′g pockets were found to either

grow or shrink depending sensitively on the crystal field splitting [75, 76].

Some researchers [77] argued that the e′g pockets should not exist according to

the specific heat data, while others [78] concluded from an extensive study of

the crystal field that the e′g pockets cannot be removed via local correlation.

Recently, an intriguing alternative resolution was proposed [56, 79]. It was

argued that the random positioning of the Na intercalants alone can introduce

strong disorder effects that mask the e′g pockets from the ARPES experiments.

This physically plausible picture, if proven, would not only enable a new reso-

lution to reconcile the various theoretical and experimental observations, but

would also introduce important novel physics missing in current considerations.

In this chapter, we examine the proposal of disorder-induced destruction

of the e′g pockets in NaxCoO2, using x = 0.3 as a representative case, by ap-

plying the first-principles Wannier function-based methods for the evaluation

of electronic structure of disordered materials that was presented in chapter

3. Remarkable spectral broadenings (∼1eV) of the oxygen bands are found

that provide a natural explanation for the missing oxygen bands in ARPES

studies. However, in contradiction with the current claim [56, 79], we only

find a negligible influence of disorder on the e′g pockets, incapable of masking

them from the ARPES experiments.
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4.2 Computational Details

Figure 4.1: Normal cell Co2O4 with possible Na impurity locations.

The lattice structure of the undoped normal cell Co2O4, is depicted in

the cartoon in figure 4.1. Its space group P63/mmc and its lattice param-

eters a=5.31 bohr, c=21.2 bohr and z=0.086 were chosen to match the lat-

tice structure of Na0.3CoO2 as measured by the diffraction experiments [80–

85]. The lattice vectors expressed in Cartesian coordinates are given by:

a1 = −1
2
ax̂ +

√
3

2
aŷ ; a2 = aŷ ; a3 = cẑ. Following [56] we model the Na

dopants to be located at 4 positions within the normal cell, for which we in-

troduce the corresponding labels Na(1d), Na(1u), Na(2d) and Na(2u). Here

the labels d and u indicate whether the Na is located in the down-layer or

the up-layer. The labels 1 and 2 indicate whether the Na is located at Wyck-

off site 2a (above Co) or 2b (above a hole in the Co-sheet). We applied the

WIEN2K[30] implementation of the full potential linearized augmented plane

wave method in the local density approximation, as employed by [56] to re-

move any ambiguity of basis and functional dependence in the comparison.

The basis size was determined by RKmax=7. The k-point meshes were cho-

sen to be 12×12×3 for the normal cell Co2O4, 6×6×3 for the 2×2×1 super

cells Na(1)Co8O16 and Na(2)Co8O16 and and 8×8×3 for the
√

3×
√

3×1 super

cell Na(2d)Na(1u)2Co6O12.

The Wannier functions are constructed according to the LAPW based pro-

jection recipe described in section 2.3.1. The low-energy Hilbert space is taken

within [-8,3] eV consisting of symmetry-respecting complex Wannier orbitals

of Co-d and O-p characters (22/normal cell) as illustrated in figure 4.2. The

defining coefficients of the projected orbitals (see (2.34)) are chosen such that
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Figure 4.2: The Co-d and O-p Wannier functions. (Left up) Low energy
Hilbert space of the normal cell Co2O4 is shown consisting of 22 bands in the
energy window [-8,3]eV. (Right up) Isosurface plot |〈x|rn〉| = 0.03(bohr)−3/2 of
symmetry respecting Co-d and O-pWannier functions, colored according to the
phase of the complex functions. (Left down) Local crystal field environment
and primed coordinate system. (Right down) Definition of the angular part of
the projected orbitals Pln(Ω) in terms of the primed coordinates.

Figure 4.3: Absolute value of the overlap matrix |〈rn|rn′〉| of the Co-d and O-p
Wannier functions. The overlap integrals are evaluated in the box shown in
upper left. As a function of the grid size, the overlap matrices tend to converge
to |〈rn|rn′〉| = δnn′ .

56



Figure 4.4: Consistency Between Normal and Supercell Co-d and O-p Wannier
Functions. Shown are the absolute value of the overlap matrix |〈rn|rn′〉| of the
Co-d and O-p Wannier functions from the normal cell, compared with overlap
matrix of |〈rn|R(r)N(r, n′)〉| of the Co-d and O-p Wannier functions from the
normal cell and the super cell. The overlap integrals are evaluated in the box
shown to the left of figure 4.3 on a 75-75-75 grid.

they respect the symmetry of the local crystal field environment. From the

smallness (or complete absence) of the tails of the Wannier functions in the

nearest neighboring atoms, it can be seen that the Wannier functions are highly

localized. A more quantitative demonstration of the degree of localization is

given by the overlap matrices presented in figure 4.3. The Wannier functions

for any of the supercell calculations are constructed consistently by projecting

the same orbitals on the supercell Bloch states in the same energy window.

The degree of consistency between the normal cell |rn〉 and the corresponding

super cell |R(r)N(r, n)〉 Wannier states, is quantified by the overlap matrix

presented in figure 4.4.

The effects of impurities are extracted from three DFT calculations: the un-

doped Co2O4 in the normal cell and Na(1)Co8O16 and Na(2)Co8O16 in 2×2×1

super cells corresponding to x = 1
8
. The quality of our effective Hamilto-

nian can be verified by benchmarking the spectral function of a test system,

against the standard DFT. As a highly non-trivial test case we take the peri-

odic Na(2)Na(1)2Co6O12(c.f. figure 4.5(c)), which requires a strongly “incom-

mensurate” extrapolation in the partitioning (from 2 × 2 × 1 to
√

3×
√

3×1

cell) and the linearity (from x = 1
8

to x = 1
2
) of the influence of impurities.

As shown in figure 4.5, the effective Hamiltonian manages to reproduce the

spectral function of the full DFT calculation with high accuracy (in particular

the details around the gap opening), but with only a negligible fraction of the

computational effort. (The full DFT calculation involved ∼20 self-consistent

cycles on a basis of 2019 linear augmented plane waves, while the effective
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Figure 4.5: Benchmarking the quality of the effective Hamiltonian. Shown
are the spectral function of Na(2)Na(1)2Co6O12 obtained from: (a) the full
DFT calculation, on a basis of 2019 LAPW’s (b) a single diagonalization of
the effective Hamiltonian, on a basis of 66 Wannier functions. (c) Na positions
in the super cell, in relation to triangular Co sheet. Light/dark circles denote
Na above/below the Co sheet.

Hamiltonian requires only a single diagonalization on a basis of 66 Wannier

functions.) Additional benchmarks exploring the potential limitations for large

extrapolations are given in appendix G.

In order to estimate the additional influence of the impurities due to lat-

tice relaxation, we perform a relaxation study on the
√

3×
√

3×1 super cell

Na(1d)2Na(2u)2Co6O12, by applying the PORT minimization scheme as im-

plemented in WIEN2K[30]. In figure 4.6 we illustrate the spectral functions

of three systems: Co2O4, Na(1d)2Na(2u)2Co6O12 and Na(1d)2Na(2u)2Co6O12-

relaxed. By comparing the spectral functions of Co2O4 and Na(1d)2Na(2u)2Co6O12,

we can visualize the influence of the Na impurity on the band structure, with-

out relaxation. By comparing the spectral functions of Na(1d)2Na(2u)2Co6O12

and Na(1d)2Na(2u)2Co6O12-relaxed, we can visualize additional change in the

band structure due to relaxation. From figure 4.6 we see that the additional

change in the band structure due to relaxation is much smaller in comparison.

Following the considerations laid out in Ref. [56], all the random configura-

tions of Na are assumed comparable in probability, except the high energy case

containing two nearest neighboring Na atoms located at Na(1) and Na(2) sites
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Figure 4.6: The additional influence of lattice relaxation. Shown are the spec-
tral functions of Co2O4, Na(1d)2Na(2u)2Co6O12 and Na(1d)2Na(2u)2Co6O12-
relaxed.

Figure 4.7: Doping dependence of the short range order. The simple rule of
excluding configurations in which Na(1) sits next to Na(2), induces a short
range order with increasing correlation length as a function of doping.
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(see figure 4.7), which is disregarded due to its low probability. Interestingly

this simple constraint induces a short range order in the distribution of Na

impurities. To illustrate the doping dependence of the short range order of Na

impurities as modeled in our work, we present here a series of configurations

with increasing doping. Each configuration has the fixed geometry of 10× 10

Co atoms. The Na impurities are randomly distributed over Na(1) and Na(2)

positions under the constraint that no Na(1) can sit next to a Na(2) (at a

distance smaller then 1 lattice constant). As can be seen from figure 4.7 this

simple rule induces a short range order with increasing correlation length as

a function of doping. This can be easily understood from the fact that the

“domain walls” between the Na(1) and Na(2) regions requires more Na vacan-

cies. Therefore, with larger x, the domain must grow in size to reduce such

vacancies. Interestingly, at large doping (for example, in the lower right of

x=0.9 panel) the recently experimentally proposed “divacancy” [86] start to

appear in the configuration as a result of the same consideration.

Physically, since the “domain walls” consists of lower Na concentration,

it is reasonable to expect modulation of charge and spin in the nearby Co-

ions, consistent with the reported Co3+/Co4+ ordering within GGA+U [87],

although presumably the long range order of the Na position should not be

necessary for the formation of local moment, in our opinion. For example,

the above random “divacancy” might already suffice to produce well defined

(fluctuating) local moments.

4.3 Results

Having an accurate and efficient method to assemble the effective Hamilto-

nian of any configuration, we proceed to evaluate the configuration-averaged

spectral functions for the case of disordered Na0.3CoO2. Figure 4.8 shows

the resulting spectral function converged with respect to the number of con-

figurations (50) and their average size (∼80 normal cells corresponding to

80×22 = 1760 Wannier functions). Note that it is necessary to consider super

cells (e.g.: figure 4.8(a)) of different sizes, orientations, and shapes in order to

remove the effects of artificial zone boundaries of the super cell.

A remarkable broadening of oxygen bands can be observed in figure 4.8(d)(g),
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Figure 4.8: Configuration-averaged spectral function of Na0.3CoO2, showing
the e′g states to be the least influenced by disorder. (a) One of the 50 large-sized
super cells used for configurational average. (b) A high energy configuration
with Na(1) too close to Na(2). 〈A(k, ω)〉 (c) around the Fermi-surface (d) in
the full low-energy Hilbert space, where the bars correspond to the energy
distribution curves (e) at k0=2ΓK/3, (f) at k0=Γ , (g) at k0=Γ. The Wannier
orbital character is labeled according to the color scheme of figure 4.5.

Figure 4.9: Isosurface plot |〈x|rn〉| = 0.09(bohr)−3/2 of selected Wannier func-
tions, colored according to the phase of the complex functions.
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indicating a short lifetime and mean free path of the quasi-particles due to

strong scattering against the disordered Na atoms. This is easily understood

considering that the Na atoms are located in the oxygen cages defined by

the two oxygen layers, and thus have the largest impact on the oxygen or-

bitals. Interestingly, this huge spectral broadening and low intensity might

explain why some of the oxygen bands are not observed in the ARPES mea-

surements [71, 88], not only in NaxCoO2, but also in most doped layered

transition metal oxides, where the dopants are introduced between the oxygen

layers.

In great contrast, much weaker effects of disorder are found on the Co-d

orbitals (c.f.: figure 4.8(c)(e)(f)). Specifically, the ag orbital picks up some

k-dependent broadening near the Γ point, while the e′g orbitals are almost un-

affected by the disorder. This somewhat surprising result probably reflects

the strong screening of oxygen that shields the cobalt valence orbitals from

the influence of the disordered Na, and the metallic nature of the doped elec-

trons which spread throughout the whole system. Clearly, the localization

and broadening of the e′g and ag bands are not strong enough to shift the e′g

pockets below the Fermi level. Unlike the ag orbital that points directly to-

ward the doped Na atom (c.f.: figure 4.9), the e′g orbitals neither point toward

the Na atom nor the most affected O-pz orbitals near the Na, making them

the least sensitive to the presence of Na intercalants. This could also explain

the negligible effects of lattice relaxation around Na atoms on the e′g pockets.

Obviously, the disorder alone does not destroy the six e′g Fermi pockets of

Na0.3CoO2, in contradiction with the claim [56, 79].

On the other hand, the Na impurities do introduce an important physical

effect on the Co-d shell, namely on the crystal field splitting (the relative on-

site-energy) of the e′g and ag orbitals. Indeed, evaluated from H0 and ∆Na(1),

the crystal field splitting is found to change from 27 meV to -38 meV for Co

atoms right below or above the Na intercalants, consistent with the trend esti-

mated previously from the density of states [77]. Considering the tendency of

strong orbital polarization of the many-body exchange interactions as demon-

strated from the previous DMFT studies [76, 77], the combination of disorder

and strong exchange interactions is very likely to give stronger scattering for

the e′g orbitals. Exactly whether this would lead to a resolution of the highly
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Figure 4.10: Configuration-averaged spectral function of Na0.7CoO2, showing
short range order suppressing the spectral broadening of ag. (a) Small islands
of homogeneous Na(1) and Na(2). (b) 〈A(k, ω)〉 around the Fermi-surface. (c)
energy distribution curve at k0=Γ. The Wannier orbital character is labeled
according to the color scheme of figure 4.5.

controversial status of the e′g pockets of NaxCoO2, remains an interesting chal-

lenge to the theorists. Interestingly, our results also demonstrate a non-locality

of the disorder induced self-energy. Indeed, a strongly k-dependent spectral

broadening can be clearly observed in figure 4.8 that correlates well with the

inverse of the band velocity rather than the energy. For example, at 25 meV

the almost purely ag bands have large (∼200meV) spectral broadening near

the Γ point, but negligible width at k ∼ 1
2
AΓ. Such a strong k-dependence

of the spectral width reflects the intrinsic non-locality of the self-energy, and

highlights the advancement of our method over standard mean-field theories

in which the self-energy is assumed local.

We also found effects of short-range ordering of Na impurities known to

be important for the NaxCoO2 [68, 89]. As demonstrated in figure 4.10(a) for

Na0.7CoO2, the exclusion of nearest neighbor Na positioning introduces auto-

matically a strong short-range ordering of the Na impurities, due to lack of

available locations at high doping (see also figure 4.7). In turn, the resulting

spectral function of the ag orbitals, for example, demonstrates stronger coher-

ence and longer lifetime, as can be seen by comparing figure 4.10(b)(c) with

figure 4.8(c)(f). (The e′g orbitals near the pockets remain perfectly coherent

also at this doping level.) This result, while physically intuitive, is actually

quite non-trivial, since in the mean-field theories the degree of disorder at 0.7

doping level should be exactly the same as that at 0.3 doping level.

In conclusion, we have investigated from first principles the proposed de-

struction of the controversial e′g pockets in the Fermi surface of NaxCoO2 due

to Na disorder. To this end, we used the Wannier function-based disorder

method presented in chapter 3 developed that incorporates the spatial distri-
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butions of impurities beyond the mean field. The new method is benchmarked

against the full DFT calculation and shown to be efficient and highly accu-

rate. Remarkable k-dependent broadenings of the spectral function are found

in the oxygen orbitals due to their vicinity to the Na intercalants. However,

the effects of disorder are found to be negligible on the e′g orbitals. Thus, the

disorder alone does not destroy the e′g pockets, in contradiction with the cur-

rent claim [56, 79]. Interestingly, against the mean-field perspective, enhanced

coherence is found at higher doping where short-range order grows stronger.
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Chapter 5

Application 2: Room

Temperature Ferromagnetism in

Cu Doped ZnO

The work presented in this chapter has been published in reference [90] and

was an experimental-theoretical collaboration.

5.1 Introduction

A Dilute Magnetic Semiconductor (DMS) is a non-magnetic semiconductor

that is doped with a small percentage of magnetic impurities. The potential

of DMS to combine magnetism for memory and semiconductors for logic has

generated a lot of interest from science and industry. Specifically the DMS

are thought to play an important role for spin-injection into spintronic devices

such as the spin-FET [91]. 1 In 1997 Hideo Ohno [92] was the first to discover

ferromagnetism in Mn doped GaAs. Unfortunately the ferromagnetic tran-

sition temperature (nowadays 190K ) is too low for the envisioned industrial

applications. In 2000 Thomas Dietl [93] theoretically predicted high ferromag-

netic transition temperatures (some of which exceeding room temperature) for

a large number of DMS (including ZnO). Dietl’s prediction resulted in an ex-

1The theoretically proposed spin-FET can be turned on and off by flipping the spin of
the electrons rather then pushing them in and out of the channel, a process that is much
faster and takes much less energy.
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plosion of publications reporting new DMS with high ferromagnetic transition

temperatures. Unfortunately it turned out that many of the reported high fer-

romagnetic transition temperatures were the result of magnetic contamination

or simply irreproducible. On the one hand this has created a lot of skepticism

in the field. On the other hand there seems to be a consensus that room tem-

perature ferromagnetism can be accomplished in dilute magnetic oxides that

contain a lot of defects [94]. The current understanding of this phenomena is

based on the bound magnetic polaron model [95] in which electrons trapped by

the defects and the magnetic impurities form bound magnetic polarons. When

the concentration of defects is sufficiently high the bound magnetic polarons

percolate and form a ferromagnetically aligned state.

In this chapter we describe the experimental observation [90] of room-

temperature ferromagnetism in Cu-doped ZnO by a large range of experimen-

tal techniques and the first principles calculations that led us to propose a

microscopic picture of the ferromagnetism that explains the main experimen-

tal findings.

5.2 Experimental Results

Three representative films were grown: 1) a pure ZnO film, 2) Cu doped

ZnO grown under ambient pressure (P = 1× 10−3torr) and 3) Cu doped ZnO

grown at low pressure P = 5×10−6torr. Ferromagnetism was observed only in

the presence of both Cu impurities and oxygen vacancies. The ferromagnetic

transition temperature was obtained from a Curie-Weiss fit of the magnetic

susceptibility and found to be 750K [96], thereby far exceeding room temper-

ature. In this section we will present the main experimental observations.

From an extensive materials characterization [96], consisting of secondary

ion mass spectroscopy (SIMS), high resolution transmission electron microscopy

(HR-TEM), scanning electron microscopy (SEM), the films are found to be ho-

mogeneous. The energy of the detected x-ray in the SEM and TEM is further

resolved by Energy-dispersive X-ray spectroscopy (EDS) from which the ele-

mental compositions in the SEM and TEM images can be analyzed. From the

SEM-EDS and TEM-EDS on the Cu L-edge it is found that the Cu atoms are

homogeneously distributed.
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Figure 5.1: Magnetic hysteresis measured by SQUID.

In figure 5.1 the magnetic hysteresis, measured with a Superconducting

Quantum Interference Device (SQUID), of the three different samples is com-

pared. As can be seen, only the Cu doped sample that is oxygen poor is

ferromagnetic with a saturated moment of 0.7µB/0.5µB and a remanence of

0.2µB/0.1µB for 5K and 300K respectively. The other two samples, the pure

ZnO and the Cu doped ZnO grown at ambient pressure are not ferromag-

netic, and are in fact diamagnetic [96]. This is the first evidence that only Cu

dopants and oxygen vacancies together can give rise to ferromagnetism.

Figure 5.2: XAS on the Cu L-edge.
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In figure 5.2 the x-ray absorption (XAS) data at the Cu L-edge of the

two Cu doped samples is compared. The L-edge process involves an electron

excitation from Cu-2p to Cu-3d, causing copper to go from d9 to the filled d-10

final state. In the oxygen rich sample we see that each of the Cu L-edges (L3

and L2) consist of a single peak(L3 at 932eV and L2 at 952 eV) which is labeled

Cu-d9. If we compare the Cu L-edge of the oxygen poor sample we see that

the Cu-d9 peaks are suppressed approximately by a factor of 7. Furthermore

for each L-edge a new peak is induced which is higher in energy. The new

peaks are labeled by CuVO . Finally we notice that for the oxygen poor sample,

the intensity of the CuVO peak is roughly 4-7 times more intense then Cu-d9

peak.

Figure 5.3: XMCD on the Cu L-edge.

In figure 5.3 the x-ray magnetic circular dichroism (XMCD) spectroscopy

on the Cu L-edge of the oxygen poor sample is shown. It can be seen that

only the oxygen poor sample displays an XMCD signal. More specifically, only

the oxygen vacancy induced CuVO peaks display an XMCD signal, the Cu-d9

peaks do not.

Finally in figure 5.4 we display the XMCD signal on the oxygen K-edge

(involving an excitation from O-1s to O-2p) of the oxygen poor sample. From

comparing the sign of the XMCD signal of the O K-edge with that of the Cu

L3- and L2-edge, it can be concluded that the moment in oxygen is directed
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Figure 5.4: XMCD on the O K-edge.

oppositely from the moment in Cu [90].

experiment(s) observation
1 SQUID, XMCD only VO and Cu impurities together induce RTFM
2 XAS Cu L-edge VO suppress Cu L-edge
3 XAS Cu L-edge VO induces new peak CuVO ∼ 3.4eV higher then Cu-d9

4 XMCD Cu L-edge CuVO peak displays XMCD signal, Cu-d9 peak does not
5 XMCD O K-edge there is an AFM aligned moment in oxygen

Table 5.1: Summary five main experimental observations

In table 5.1 we summarize once more the five main experimental findings.

Together they give rise to one common question, namely what is the influence

of the oxygen vacancy? To address this question we perform first principles

simulations.

5.3 First Principles Simulation

In order to address the question, “what is the influence of the oxygen va-

cancy?”, we will reformulate it. The oxygen vacancy can be thought to consist

of two separate influences. To understand these let us first think about the

role of oxygen in ZnO, which is to accept two electrons and thereby also to
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induce a repulsive potential. Therefore an oxygen vacancy will have the op-

posite influence, which is to effectively donate two electrons and effectively to

induce an attractive potential. Now to reformulate the question, we will add

the the attractive potential of the oxygen vacancy to the system, Cu doped

ZnO, and ask the question: “where will the donated electrons go?” This ques-

tion is formally answered by the one-particle spectral function of Cu-doped

ZnO with the attractive potential of the oxygen vacancy, but without its do-

nated electrons.2 To simulate the properties of ZnO from first principles is

notoriously difficult and controversial. Under heavy debate for example are

the first pricinciples calculation of the bandgap [97, 98] and the formation

energy of oxygen vacancies [99–102]. In this work, rather then addressing

these difficulties we will move around them by inserting all the experimental

properties into the simulation by hand, such that we can focus on our main

question: “where will the donated electrons go?” We will take into account

the strong correlations in Zn-d and Cu-d by inserting a Hubbard U=8eV and

Hund’s coupling J=0.9eV parameters [97] into the simulation by hand within

LDA+U approximation [103]. We will not calculate the formation energy of

the impurities but we will insert them into the simulation by hand using the

experimentally estimated values for the concentrations. We will not predict

the ferromagnetism from first principles, instead we will insert it into the sim-

ulation by hand. We will not try to obtain the band gap from first principles

correctly, instead we will use the scissor operation, or rather the Wannier ver-

sion of it, to match the experimental band gap. Having done all of that, we

are still left with one problem, namely the diluteness of the impurities, which

make it necessary to use very large super cells. For example having an oxygen

vacancy concentration of about 1 percent, implies that we will need a super

cell that (at least) contains 100 oxygen atoms. Of course to handle the big

cells is where the effective Hamiltonian method comes in.

We proceed to calculate the spectral function of Cu doped ZnO with the

attractive potential of the oxygen vacancies but without the donated elec-

trons. The low-energy Hilbert space is taken within [-10,10] eV consisting of

symmetry-respecting complex Wannier orbitals of Zn-d, Cu-d, O-p and Zn-s

characters (18/normal cell). The effects of impurities are extracted from three

2Actually this is not entirely correct. The one-particle spectral function calculates the
probability of adding one electron and not a concentration of electrons.
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Figure 5.5: Illustration supercells used for configurational average.

DFT calculations: the undoped Zn2O2 in the normal cell and Zn7CuO8 and

Zn8O7 in the 2×2×1 super cells. What is different from the NaxCoO2 case

discussed in the previous chapter 4 is that the ZnO calculations were spin po-

larized. From the LSDA+U calculation we obtain two bandstructures, one for

each spin channel, which we Wannier transform to two tight-binding hamil-

tonians, from which extract two impurity influences ∆Cu↑ and ∆Cu↓. Then

when constructing the effective Hamiltonian depending on whether a Cu im-

purity has the spin in the minority/majority direction, we apply ∆Cu↑/∆Cu↓

to the minority effective Hamiltonian and ∆Cu↓/∆Cu↑ to the majority effective

Hamiltonian. A 2 eV correction to the on-site energy of the Zn-s orbitals was

added to counter the self-interaction problem and to reproduce the physical

size of the band gap of 3.4eV [104]. For the configurational average, 10 super

cells were used with different shapes, orientation and size (containing 94.8 Zn

atoms on average). This change of the supercell boundaries is much more im-

portant than in the case of NaxCoO2, since the concentrations of impurities is

so dilute. The small amount of disordered impurities in the simulation is not

as efficient in washing out artificial gap openings in the spectral function at the

configuration-supercell zone boundaries. Within in each cell 1 oxygen vacancy

and 2 Cu impurities were randomly distributed. The moments of the Cu ions

that are nearby the oxygen vacancy were aligned ferromagnetically, while the

Cu ions beyond a certain radius were orientated randomly. This radius was

chosen in such a way that the average moment agrees with the remanence of

0.4 µB as measured by the SQUID. In figure 5.5 two of such supercells are
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illustrated.

Figure 5.6: Configurational-averaged spectral function of Cu doped ZnO, with
∼ 2% Cu impurities and∼ 1% of O vacancies (without their donated electrons)
within the ”LDA+U” approximation. The intensity of the Cu-3d band has
been marked with a pink color and multiplied by a factor of 40 to make the
impurity states more visible. For the same reason, the intensity of the DOS
panels [-10eV, -6eV] and [1eV, 8eV] have been rescaled by a factor of 1/3 and
5 respectively.

The resulting spectral function 〈A(k, ω)〉 is illustrated in figure 5.6. On

the left side the spin minority is shown and on the right side the spin majority

and in the middle the density of states. The valence band consists of O-p and

the conduction band of Zn-s. The pink intensity correpsonds to the spectral

weight of Cu−d and is enhanced by a factor 40 to make it more visible. The

Cu impurity level is splitted in an Cu upper Hubbard level within the band

gap and a Cu lower Hubbard that is at the bottom of the O-p band. 3 Most

3Note that the Cu upper Hubbard level is actually double degenerate. The tetrahedral
coordination of the oxygens around the Zn/Cu atoms results in a splitting between eg
and t2g. The stretching of the tetrahedron along the z-axis in the wurtzite lattice further
splits the t2g resulting into the doublet. Finally the small crystal field splittings will be
dramatically enhanced by the enormous Hubbard U of 8eV.
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interesting is the feature above the pink Cu upper Hubbard level the intensity

of which corresponds to the oxygen vacancy state as we shall further discuss.

Before discussing the impurity levels let us first note that the upper and

lower Hubbard level are not fully spin polarized. Of course this is not sur-

prising because as mentioned a fraction of the moments were chosen to be

randomly orientated. However, this result is in contradiction with a common

misconception that LDA+U cannot describe a paramagnetic insulator. This

latter statement is only true if a small cell is used. If a bigger supercell is

used, that allows for the right ensemble, a PM-insulator can also be described

within LDA+U.

Now let us go back to the original question: “ where does the electron go?”

As we can see the Cu upper Hubbard level is about 1.5eV lower in energy than

the oxygen vacancy level. Therefore the electrons will go into the Cu upper

Hubbard level leaving the oxygen vacancy state empty. This means that the

bound magnetic polaron picture [95] in which a down electron in the oxygen

vacancy level forms a bound magnetic polaron with an up electron in the Cu

does not apply, since there is no down electron in the oxygen vacancy level.

So we looked at the energy levels of the impurity states, now what about

their wave function? For this information we take a closer look at the k-

dependence of the spectral function. If we look at the Cu upper Hubbard

level, we see that its intensity spreads out over the entire Brillouin zone ,

which means that in real space its wave function is localized within one unit

cell. On the other hand if we look at the oxygen vacancy level, we notice that

its intensity is only around Γ, which means in real space that its wave function

spreads out over multiple unit cells. To be more specific, the full width at half

maximum of the intensity is roughly ∼ 1/5ΓM, which by a simple Fourier

transform H can be estimated to correspond in real space to a wave function

with a radius of about 2.25 lattice constants (see appendix H).

Finally let us understand why the oxygen vacancy state is so big. Remem-

ber that the oxygen vacancy state has two influences, besides donating two

electrons it will also induce an attractive potential. This attractive potential

will be most dramatic in the four neighboring zinc atoms. With this in mind

we now identify the oxygen vacancy state consisting of the four neighboring
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Zn-s states whoses energy is lowered by the attractive potential:

|VO〉 ∝ |Zn1− s〉+ |Zn2− s〉+ |Zn3− s〉+ |Zn4− s〉 (5.1)

Note that we identified the oxygen vacancy state as being a symmetric combi-

nation of Zn-s states. This is because the oxygen vacancy states has most of

the spectral weight at Γ as can be seen from 5.6. Also note that there are more

than one kind of “oxygen vacancy state”. For example the flat level around

-9eV corresponds are clearly derived from the Zn-d states at [-7eV,-6eV]. The

Zn-d “oxygen vacancy states” however have their spectral weight extending

over the entire Brillouin zone indicating that they are localized in one unit

cell. This is of course because the Zn-d Wannier functions, unlike the Zn-s

Wannier functions, are very localized. Another “oxygen vacancy state” can be

found around -0.8eV in the spin minority spectral function which is derived

from the Cu upper Hubbard level.

5.4 Microscopic Picture of the Ferromagnetism

The main findings from the first principles simulation are 1) the electrons

donated by the oxygen vacancy will go into the Cu upper Hubbard level and

2) that the oxygen vacancy states are big. From these two findings we can

construct the following picture. Without the oxygen vacancies there are lot

of magnetic moments but they are isolated and therefore dont talk to each

other and do not form a ferromagnetic state. With the oxygen vacancies a

lot of the Cu-d9 states will be filled turning them into seemingly magnetically

inert Cu-d10 states. However some of the Cu-d9 states remain unoccupied and

therefore some of the moments remain. Due to the large radius of the oxygen

vacancy states, most of the Cu-d9 and Cu-d10 states will now be connected

allowing them to form a coherent many-body state. If the moments in the Cu-

d9 states align ferromagnetically this many-body state can gain kinetic energy

from hopping through the oxygen vacancy states, like depicted in the cartoon

to the right of figure 5.7. With this picture in mind let us now go back to the

five main experimental observations that were summarized in table 5.1:

1. The picture explains why one needs oxygen vacancies for the ferromag-
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Figure 5.7: Microscopic picture of the ferromagnetism. (Left) The light blue
circles represent the size of the vacancy orbitals within which Cu atoms receive
two doped electrons per VO and their moments are aligned ferromagnetically.
(Right) Example of the hopping process that will lower the kinetic energy with
snapshots in panel (i)-(v). The long lines represent two overlapped VO orbitals.
The short lines below represent individual Cu ions inside the blue circles (VO

orbitals) with its upper Hubbard band fully filled (Cu-d10) or partially filled
(Cu-d9). The red arrows illustrate the spin-polarized electron hopping process.

netic state to form, because without those the Cu-d9 moments can not

talk to each other.

2. The fact that most of the Cu-d9 are filled by the donated electron and

turned into Cu-d10 explains why the Cu-L edge is suppressed because

the donated electron will Pauli block the Cu-2p to Cu-3d excitation.

3. The observed oxygen vacancy induced peak labelled as CuVO is indenti-

fied with ferromagnetic many-body state. Its higher energy is attributed

to the repulsion of the donated electrons.

4. The remaining Cu-d9 peak is associated with the Cu-d9 states that are

spatially too far from the oxygen vacancy states to participate in the

ferromagnetic many-body state. These states will remain paramagnetic

which explains why they show no signal in the XMCD measurement.

5. As can be see from figure 5.7, the hopping process that is stabilizing the

ferromagnetic moment, necessarily has the moments in Cu-d9 oriented

in opposite direction of the moments in the oxygen vacancies. Since the
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oxygen vacancies hybridize with the O-2p states this explains why an

opposite XMCD signal was observed in the O K-edge.

5.5 Conclusion

Room temperature ferromagnetism has been observed in oxygen deficient Cu

doped ZnO. Neither ZnO or Cu doped ZnO displays magnetic hysteresis in-

dicating that the oxygen vacancies play a critical role in the formation of the

ferromagnetic state. To investigate the role of the oxygen vacancies we apply

the Wannier function based disorder methods presented in chapter 3 to com-

pute the configuration averaged spectral function of oxygen deficient Cu doped

ZnO. The main findings are that the electrons donated by the oxygen vacan-

cies will go to the Cu-d9 states and that the oxygen vacancies will turn Zn-s

states into large sized oxygen vacancy states. Based on these findings we pro-

pose a picture of the ferromagnetism that explains all the main experimental

findings.
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Chapter 6

Application 3: Carrier Doping

and Charge Localization in

Transition Metal Doped Iron

Based Superconductors

The work presented in this chapter is based on unpublished work in progress.

6.1 Introduction

Doping is one of the most powerful ways of tuning the electronic properties of

functional materials. As we discussed in chapter 1, the influence of doping in

general consists of several effects: to introduce carriers, to vary the chemical

pressure and to introduce quenched disorder. Disentangling the influences of

such effects is important for a scientific understanding and further improving

of the desired functional properties.

In this respect, the discovery that isovalent substitutions in FeTe1−xSex [105],

BaFe2(As1−xPx)2 [106] and Ba(Fe1−xRux)2As2 [107] can induce superconduc-

tivity provided an important clue: it seems to suggest that carrier doping is

perhaps not an essential tuning parameter in iron based superconductors. The

role of carrier doping, or rather its absence, took yet another turn when [108]

reported from a density functional theory (DFT) study that the doped elec-

trons in Ba(Fe1−xMx)2As2 and Fe1−xMxTe, with M=(Co, Ni, Cu, Zn, Ru, Rh,
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and Pd) are fully localized at the transition metal dopant site. This lead [108]

to the surprising conclusion that the non-isovalent TM substitions do not dope

carriers into the iron based superconductors. If this conclusion was indeed

correct it would be a significant contribution towards the understanding of Fe

based superconductors.

The reported absence of carrier doping in non-isovalent TM substitions

in iron based superconductors however, seems to be in contradiction with

several experimental observations and theoretical calculations. From angle re-

solved photoemission spectroscopy (ARPES) it was found [109, 110] that the

non-isovalent substitutions Ba1−xKxFe2As2 and Ba(Fe1−xCox)2As2 induce a

chemical potential shift consistent with the doping of hole and electron cariers.

From Hall measurements [111] it was found in Ba(Fe1−xNix)2As2 that for large

dopings the Hall number is proportional to 2x, confirming that each Ni do-

nates two electrons. Furthermore, from theoretical calculations [109, 110, 112]

within the same framework of DFT, a systematic rigid shift of the band struc-

ture around the Fermi level was found consistent with carrier doping. Together

these experimental and theoretical findings raise the following question: do the

non-isovalent substitutions dope carriers into the iron based superconductors

and if so how can this be reconciled with the doped electron being fully local-

ized at the TM dopant site?

In this chapter we reproduce both the carrier doping and the charge lo-

calization for in Co doped BaFe2As2 and explain the apparent contradiction.

Furthermore we investigate Zn doped BaFe2As2 in order to contrast the influ-

ence of the weak impurity potential of Co with the strong impurity potential

of Zn. Due to some technical constraints, at the time of writing this thesis we

are not capable of calculating the Fermi surface of disordered systems. There-

fore the first part of the analysis in which the Fermi surface is calculated, we

approximate the disordered Co’s within the commonly used [108, 109] small

supercell approximation which allows for the use of ordinary DFT. In the

second part of the analysis we compute the disordered bandstructures of Co

and Zn doped BaFe2As2 using the effective Hamiltonian method described in

section 3.3.
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6.2 Ordered Dopant Analysis

Figure 6.1: Two seemingly contradicting results, charge localization and car-
rier doping, obtained from DFT simulations of BaFe2As2 and Ba8Fe14Co2As16.
(a) density difference plot between BaFe2As2 and Ba8Fe14Co2As16, showing
the doped electron to be fully localized at the Co site. (b) atomic positions of
Fe(blue) and Co(red) in relationship to the contour plot. From comparing (c)
the Fermi surface of BaFe2As2 and (d) the Fermi surface of Ba8Fe14Co2As16

(unfolded to the normal cell Brillouin zone), carier doping is observed: the
hole pocket at Γ is shrinking where as the electron pocket at X is growing.

To investigate the influence of non-isovalent transition metal substitutions

in iron based superconductors, we focus on Ba(Fe1−xCox)2As2. Specifically

we performed DFT calculations [113] on two unit cells: the undoped normal

cell BaFe2As2 and the doped x = 1/8 supercell Ba8Fe14Co2As16 that was also

studied by [108] and is depicted in figure 1(b). In figure 1(a) the density of the

doped and undoped case are compared by plotting the density difference in

the lower Fe7Co plane (see figure 1(b)), integrated from 1.32Å(roughly corre-

sponding to the atomic radius of Fe and Co) below the plane to 1.32Å above

the plane in the direction perpendicular to the plane. In agreement with [108],

we find that the doped electron is entirely localized around the Co, seemingly

implying that Co does not dope carriers.

Next we investigate the influence of Co doping on the Fermi surface by using

of the unfolding method presented in section 3.2. By representing the spectral

function A(k, ω = εf ) of the super cell configuration on the normal cell k-basis,

we can remove the artificial band folding effect from our arbitrary choice of

super cell and better focus on the influence of the Co dopant. Furthermore the

spectral function on the normal cell k-basis can be directly compared with the
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ARPES experiments as discussed in 3.2.1. From comparing the Fermi surface

of the undoped (figure 6.1(c))and doped (figure 6.1(d)) case, we clearly see that

the hole pocket at Γ is shrinking and the electron pocket at X is growing, in

other words that Co substitution is doping electron carriers, in agreement with

the previous experimental [109–111] and theoretical findings [109, 110, 112].

We note that the sharp shadow Fermi sheets and the gap-openings in the

unfolded Fermi surface (figure 6.1(d)) are an artifact of the smallness of the

supercell and that in a crude way represent the scattering strength of the Bloch

states from the disordered Co impurities.

Figure 6.2: Comparing the bandstructures of BaFe2As2 and Ba8Fe14Co2As16.
The orbital resolved density of states (DOS) showing Co/Fe spectral weight
transfer to the lower/higher (more/less occupied) frequencies. Carrier dop-
ing is again confirmed by comparing the bandstructure of BaFe2As2 with the
bandstructure Ba8Fe14Co2As16 (unfolded to the normal cell Brillouin zone)
around the Fermi surface.

To reconcile the seemingly contradicting charge localization and electron
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doping obtained in our first principles analysis of Ba(Fe1−xCox)2As2, we will

now focus on the frequency dependence of the Wannier orbital n resolved

spectral function An(k, ω) and its k integration, i.e. the orbital n resolved

density of states DOSn(ω). In figure 6.2 we show the spectral functions of

the undoped (figure 6.2(a)) and doped (figure 6.2(b)) spectral functions and

represent the Wannier orbitals by different colors: blue for Fe and red for

Co. We enhance the intensity of the Co-character by a factor 7, such that we

directly compare it with the Fe character.

First of all, we establish once again what we already know. If we zoom in

around the Fermi energy(figure 6.2(c)), we see that the Co substitution clearly

electron dopes the system: the hole pocket at Γ shrinks and the electron

pocket at X grows. At the same time if we compare the occupied orbital

resolved spectral weights (figure 6.2(d)) we see that the occupation of the Fe

spectral weight remains constant under substitution and that the Co spectral

weights contain the doped electron. However, if we now focus on the frequency

dependence of the orbital resolved density of states(figure 6.2(e)) it becomes

clear how charge localization and carrier doping can coexist. On the one hand

the Co spectral weight (red) is transferred from the higher unoccupied to

the occupied frequencies and for the Fe spectral weight (blue) the opposite is

happening. For example around the Fermi level the spectral weight contains

more Fe character than 7 times the amount of Co character. This will obviously

result in a larger spectral weight occupation for Co than for Fe. However

somewhat below the center of mass of the Fe band, around -4eV, the spectral

weight contains less Fe than 7 times the amount of Co character. On the other

hand the total DOS is remaining more or less constant, meaning that adding

electrons will result in raising the chemical potential. The spectral weight

transfer explains the coexistence of charge localization and the carrier doping,

but it raises yet another question, what is its origin?

To get an understanding of the spectral weight transfer, we will now con-

sider a very simple model and assess qualitatively the consequence of Bloch

states being coupled by an attractive potential. Specifically we consider a

one-dimensional one band tight binding model and periodically introduce a

negative onsite shift for 1 out of 8 sites, corresponding to the donor impurity

substitution. We focus our attention further on two particular unperturbed
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Figure 6.3: Simple cartoon to explain the coexistence of charge localization
and carrier doping, where (b) and (c) are the unperturbed states and (d) and
(e) are the true states of the perturbed system. The host/impurity spectral
weight transfer to higher/lower energy happens naturally as the consequence
of Bloch states mixing by an attractive impurity potential.
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Bloch states at the bottom of the band: one non-propagating state |k=0〉
and one propagating state |k=1/8〉. The real, imaginary and absolute value

squared of these unperturbed wave functions are illustrated in figure 6.3(b) and

6.3(c) respectively. If for convenience we chose our origin at the donor impurity

site, the matrix element coupling those two states will be real and negative:

〈k=0|∆|k=1/8〉 < 0. This coupling will result in a lower energy bonding state

|k=0〉+ α|k=1/8〉 and a higher energy anti-bonding state |k=1/8〉 − α|k=0〉,
where α > 0, as illustrated in figure 6.3(a). If we now focus on the wave

functions of bonding and anti-bonding states, we can understand the spectral

weight transfer. For example if we look at the energetically lower bonding

state, we see that at the donor impurity site the interference of the propagat-

ing |k=1/8〉 and non-propagating |k=0〉 state is maximally constructive, while

4 sites away from the donor impurity, the interference of the propagating and

non-propagating state is maximally destructive. In other words, under the in-

fluence of the attractive potential the energetically lower Bloch state is losing

host character (Fe) and gaining impurity character (Co). For the energeti-

cally higher anti-bonding state the character change is opposite. Of course the

above picture is highly oversimplified compared to the realistic first principles

Bloch states, but as long as the coupling potential ∆ is weak compared with

the bandwidth W it is qualitatively correct.

6.3 Disordered Dopant Analysis

In the previous section we found that the impurity potential of Co remixes the

Co and Fe characters in the bands, but that it is too weak to remove Bloch

states from the hole and electron pockets. It is therefore very interesting to

contrast the weak Co impurity potential with the strong Zn impurity poten-

tial such as was also investigated by [109] for Zn doped LaFeAsO and [108] for

Zn doped BaFe2As2. To investigate the influence of disordered impurities with

strong impurity potentials such as induced by Zinc, it is essential to go beyond

the small supercell approximation that we have been applying so far in this

chapter and that has been applied in the literature [108, 109]. The periodic po-

tential of the strong impurity potentials will induce gap openings and shadow

bands that strongly depend on the artificial choice of the supercell. Therefore
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we now continue the analysis using the effective Hamiltonian to treat disorder

properly with big supercells. The high quality of the effective Hamiltonian

for Zn doped BaFe2As2, was already demonstrated in section 3.3.4. A similar

high quality is found for the effective Hamiltonian of Co doped BaFe2As2. We

perform for both Co and Zn doped BaFe2As2 a configurational average over 10

supercells with different shapes, orientations and size, containing 140 Fe and

20 Co/Zn atoms on average. The resulting configuration-averaged spectral

functions are displayed in figures 6.4 and 6.5.

Figure 6.4: Configuration averaged spectral function and density of states of
Ba(Fe7/8Co1/8)2As2 (Left) in the entire low energy Hilbert space, (Right down)
around the Fermi energy and of (Right up) BaFe2As2.

First let us look at Co doped BaFe2As2 in figure 6.4. We once again

reconfirm the findings of the previous section, namely a growth of the electron

pocket at k = (1
2
, 1

2
, 0) and a shrinkage of the hole pocket at Γ and a spectral

weight shift downward in energy of Co with respect to Fe. If we focus on the

Co weight we see no indication of localized Co impurity states. Instead we see

a structureless blurry Co region with a “band width” that follows the band

width of the Fe band complex. This indicates that each of the Fe Bloch states

in the “blurry Co region” roughly speaking picks up an equal amount of Co

character. This again indicates that the localized charge at the Co site does not
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belong to one localized impurity state but to many Bloch states instead. We

notice the absence of the “Co blur” at the bands at the Fermi surface and also

that these bands remain relatively sharp and coherent contrary to the scenario

of a “washed out Fermi surface” that was suggested in reference [108].

Figure 6.5: Configuration averaged spectral function and density of states of
Ba(Fe1−xZnx)2As2 (Left) in the entire low energy Hilbert space, (Right down)
around the Fermi energy and of (Right up) BaFe2As2.

Now we turn our attention to Zn doped BaFe2As2. Clearly the impurity

potential of Zn is capable of removing carriers from the hole pockets and

electron pockets. A strong shift of -8eV completely removes the Zn-d states

from the Fe-d/As-p band complex. The Zn-d impurity states are very flat

indicative of localization. 1 Despite the removal of Zn-d states we find in

agreement with [109] that the Zn substitutions again dope electron carriers. If

we zoom in on the Fermi level we see that the electron pocket at k = (1
2
, 1

2
, 0)

grows, that the hole pocket at Γ sinks below the Fermi level and that a new

electron pocket is forming around k = (0, 1
2
, 0). The number of doped carriers

is the result of the additional doped electrons from Zn, the removal of Fe states,

and the change of the density of states under the influence of the disordered

1The Zn-d impurity states do not overlap with the semi-core states As-p at -11eV and
Ba-p at -13.5eV
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impurities. To separate the relative importance of all these influences is left

for future investigations.

It is important to keep in mind that when counting the number of carriers

in a disordered band structure, one cannot only rely on the size of the hole

and electron pockets in k-space. For this specific case of Zn doped BaFe2As2

for example it should not be forgotten that 1/8 of the Fe spectral weight

is removed from the Fe-d/As-p complex. One could expect that the bands

decreased their intensity by a same amount. However, if we compare the DOS

of Zn doped and undoped BaFe2As2 around the Fermi surface we see that the

DOS in that region is roughly speaking constant, meaning that the disordered

bands around the Fermi surface roughly contain the same amount of states

as the ordered ones. Of course the big difference is that the states in the

disordered bands are very decoherent with big broadenings in momentum and

frequency corresponding to small scattering lengths and small lifetimes.

Finally we want to point out an interesting impurity state emerging from

the As bands around k = (1
2
, 1

2
, 0) and -5eV. This state is induced by the

attractive potential of Zn impurity in the neighboring As atoms. The whole

situation is very reminiscent of the oxygen vacancy states in chapter 5, where

the Zn substitution plays the role of the oxygen vacancy and the As impurity

state the role of the oxygen vacancy state. In analogy with the oxygen vacancy

state the intensity of the As impurity state spreads over a small region in k-

space implying that in real space it spans over multiple normal cells. What

is different though is that unlike the oxygen vacancy state, the As impurity

state is not at Γ, but around k = (1
2
, 1

2
, 0), implying that it is not a simple

symmetric combination of As states, but a mixture with a complex phase. The

As impurity state demonstrates the value of the effective Hamiltonian method

presented in this thesis over the common practice of focusing on a few numbers

(onsite energy, nearest neighbor hopping). It has only been discovered because

all the influences of the impurity (all the matrix elements of 〈rn|∆|r′n′〉) have

been included in the analysis.
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Appendix A

Notation

We reserve lower case symbols for the normal cell quantities and upper case

symbols for the supercell quantities.

Quantity normal cell supercell
primitive vector a1, a2, a3 A1, A2, A3

lattice vector r R
primitive reciprocal vectors b1, b2, b3 B1, B2, B3

reciprocal vectors g G
crystal momentum k K
band index j J
band εkj εKJ
Bloch state |kj〉 |KJ〉
lattice vector r R
Wannier orbital index n N
Wannier state |rn〉 |RN〉
k-state |kn〉 |KN〉
impurity index m M
number of cells l L
volume of cell v V

Table A.1: Notation
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Appendix B

The Map

The quantities of the normal cell and supercell are related to each other by a

prescription to what we shall refer to as “the map”. The map is the funda-

mental building block of the developed methodology presented in this thesis.

B.1 Definition

The map consist of 2 components:

1. An integer matrix M which expresses the super cell primitive vectors Ai

in terms of the normal cell primitive vectors ai:

~Ai =
∑
j

Mij~aj (B.1)

2. A list of super cell orbitals N belonging to the zeroth super cell R =

(0, 0, 0) and their corresponding normal cell lattice vectors r and normal

cell orbitals n

Once the map is known each super cell lattice vector R and super cell orbital

index N can be mapped to a normal cell vector r and normal cell orbital index

n and vice versa:

R(r) , N(r, n)↔ r(R,N) , n(N) (B.2)
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B.2 Examples

To get a better feeling for the map in figureB.1 we give some examples for

a simple 2 dimensional square lattice with 2 orbitals per normal cell and a√
2 ×
√

2 super cell. Notice in this example that the orbitals do not need to

lie within the cell.

Figure B.1: Example of a map without substitutions or vacancies.

In figures B.2 and B.3 we illustrate examples of substitutions and vacan-

cies. The substitution in B.2 can equivalently be regarded as 2 vacancies with

respect to a normal cell lattice with 3 orbitals per normal cell. The vacancy

in B.3 can equivalently be regarded as an interstitial with respect to a normal

cell lattice with 1 orbital per normal cell.
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Figure B.2: Example of a map with substitution.

Figure B.3: Example of a map with vacancy.
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Appendix C

Reciprocal States

Figure C.1: Four different Hilbert spaces together with their reciprocal spaces.

C.1 Orthonormality and Completeness

For each of the four Hilbert spaces, we need to check the orthonormality and

completeness of the reciprocal states. These properties follow directly from the

mathematical identities in the next subsection. Lets check the orthonormality

and completeness for the states in the “infinite discrete” Hilbert space, which

for example could be Wannier states |rn〉 or phonons. From (C.15) we find
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the orthonormality of the reciprocal states:

〈k′|k〉 = v/(2π)3
∑
r′

e−ik
′r′〈r′|

∑
r

eikr|r〉 = v/(2π)3
∑
r

eir(k−k
′) = δ(k − k′)(C.1)

To check the completeness we use (C.6):

1 =

ˆ
dk|k〉〈k| ⇔ δr,r′ =

ˆ
dk〈r|k〉〈k|r′〉 = v/(2π)3

ˆ
dkeik(r−r′) (C.2)

The orthornormality and completeness for the three other Hilbert spaces “infi-

nite continuous”, “periodic discrete” and “periodic continuous” can be checked

from the rest of the identities.

C.2 Mathematical Identities

claim 9

ˆ
supercell

d3xeiGx = V δG,0 ; G ∈ super reciprocal lattice (C.3)

proof 9 The integrand eiGx satisfies periodic boundary conditions at the su-

percell. Because of this the translation x → x′ + ε will merely reorder the

integral without changing its value.1 Therefore we find

ˆ
supercell

d3xeiGx = eiGε
ˆ

supercell

d3x′eiGx
′ ⇔ eiGε = 1 or

ˆ
supercell

d3xeiGx = 0(C.5)

Since eiGε = 1⇔ G = 0 and
´

supercell
d3x = V this completes the proof.

claim 10

ˆ
normal brillouin zone

d3keirk = (2π)3/vδr,0 (C.6)

1To make this a bit more explicit we follow the integration along one of the directions

ˆ A+ε

ε

dx′eiGx
′

=

ˆ A

ε

dx′eiGx
′
+

ˆ A+ε

A

dx′eiGx
′

=

ˆ A

ε

dx′eiGx
′
+

ˆ ε

0

dx′′eiG(x′′−A)

=

ˆ A

ε

dx′eiGx
′
+

ˆ ε

0

dx′′eiGx
′′

=

ˆ A

0

dx′eiGx
′

(C.4)

where we used G ·A = 2πn
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proof 10 See proof 9

claim 11 ∑
r∈supercell

eirG = (V/v)
∑

g∈normal reciprocal

δG,g (C.7)

proof 11 Similar as in proof 9 the shift r → r′ + a will merely reorder the

sum without changing its value.∑
r∈supercell

eirG = eiGa
∑

r′∈supercell

eir
′G ⇔ eiGa = 1 or

∑
r∈supercell

eirG = 0 (C.8)

Since eiGa = 1 ⇔ G ∈normal reciprocal lattice and
∑

r∈supercell = V/v this

completes the proof.

claim 12 ∑
G∈normal brillouin zone

eirG = (V/v)
∑

R∈super lattice

δR,r (C.9)

proof 12 See proof 11

claim 13

ˆ +∞

−∞
d3xeikx = (2π)3δ(k) (C.10)

proof 13 We use (C.3) to find:

∑
G

f(G)

(ˆ
supercell

d3xeiGx
)

= V f(0) (C.11)

next we simply multiply both sides with the finite volume element (2π)3/V

(2π)3/V
∑
G

f(G)

(ˆ
supercell

d3xeiGx
)

= (2π)3f(0) (C.12)

Then we take the infinite supercell limit, i.e. continuum k-space limit (2π)3/V
∑

G(...)→

100



´
d3k(...)

ˆ
d3kf(k)

(ˆ +∞

−∞
d3xeikx

)
= (2π)3f(0) (C.13)

which completes the proof

claim 14

ˆ +∞

−∞
d3keikx = (2π)3δ(x) (C.14)

proof 14 See proof 13

claim 15 ∑
r∈normal lattice

eikr = (2π)3/v
∑

g∈normal reciprocal

δ(k + g) (C.15)

proof 15 See proof 13

claim 16 ∑
G∈super reciprocal

eiGx = (1/v)
∑

R∈super lattice

δ(x+R) (C.16)

proof 16 See proof 13
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Appendix D

Toy Example Unfolding

D.1 Hamiltionan on Normal Cell k-basis

Consider the 1 dimensional 1 band tight binding Hamiltonian with nearest

neighbor hopping only:

〈r|H0|r〉 = ε ; 〈r + a|H0|r〉 = 〈r|H0|r + a〉 = −t ; t > 0 (D.1)

By transforming to the normal cell k-basis, the system is diagonalized:

〈k|H0|k′〉 =

=

(√
a/2π

∑
r

e−ikr〈r|

)
H0

(√
a/2π

∑
r′

eik
′r′|r′〉

)

=

(√
a/2π

∑
r

e−ikr〈r|

)
H0
(√

a/2πeik
′(r−a)|r − a〉+ eik

′(r)|r〉+ eik
′(r+a)|r + a〉

)
= (a/2π)

∑
r

e−i(k−k
′)r(ε+ e−ik

′at+ ei
′k′at) = δ(k − k′)(ε+ 2t cos ka) (D.2)

D.2 Impurity Hamiltionan on Supercell K-basis

Now we rewrite the problem on supercell basis (two normal cells per supercell).

The tight binding model in this basis becomes

〈RN=0|H0|RN=0〉 = 〈RN=1|H0|RN=1〉 = ε

〈R− A,N=1|H0|RN=0〉 = 〈RN=0|H0|RN=1〉 = −t (D.3)
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Furthermore we introduce the impurity potential:

〈RN=0|∆|RN=0〉 = −∆ ; 〈RN=1|∆|RN=1〉 = ∆ (D.4)

Representing the total on the super cell K-basis block diagonalizes the system:

< KN=0|H0 + ∆|K′N′=0 >

=

(√
A/2π

∑
R

e−iKR〈RN=0|

)
H0 + ∆

(√
A/2π

∑
R′

eiK
′R′|R′N ′=0〉

)

=

(√
A/2π

∑
R

e−iKR〈RN=0|

)
H0 + ∆

(√
A/2πeiK

′R|RN=0〉
)

= (A/2π)
∑
R

e−i(K−K
′)R (ε−∆) = δ(K −K ′) (ε−∆) (D.5)

similarly

〈KN=1|H0 + ∆|K′N′=1〉 = δ(K−K′) (ε+ ∆) (D.6)

For the off-diagonal terms we find

〈KN=0|H0|K′N′=1〉

=

(√
A/2π

∑
R

e−iKR〈RN=0|

)
H0

(√
A/2π

∑
R′

eiK
′R′ |R′N ′=1〉

)

=

(√
A/2π

∑
R

e−iKR〈RN=0|

)
H0
(√

A/2π(eiK
′R|R, 1〉+ eiK

′(R−A)|R− A, 1〉
)

= −(A/2π)
∑
R

e−i(K−K
′)Rt(1 + e−iKA)

= −δ(K −K ′)(1 + e−iKA) = −δ(K −K ′)2t cos(Ka)e−iKa

(D.7)

where in the last step we used 1 + ei2x = 2 cos xeix. Similarly we have

〈KN=1|H|K′N′=0〉 = −δ(K−K′)2t cos(Ka)eiKa (D.8)
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So we have the following block-diagonalized form

〈KN |H0 + ∆|K ′N ′〉 = δ(K −K ′)

(
ε−∆ −2t cos(Ka)e−iKa

−2t cos(Ka)eiKa ε+ ∆

)
(D.9)

Using (D.17) we find:

εKJ=0,1 = ε∓
√

∆2 + 4t2 cos2(Ka) (D.10)

and from (D.18) we find:

〈KN |KJ=0, 1〉 =
√

1/2

 √
1±∆/

√
∆2 + 4t2 cos2(Ka)

±eiKa
√

1∓∆/
√

∆2 + 4t2 cos2(Ka)

 (D.11)

where the compononents of the eigenvectors correspond to the supercell or-

bitals N = 0 and N = 1, which are located at r(N=0) = 0 and r(N=1) = a

within the supercell. Now we use the unfolding formula (3.6) to find

|〈k=K|KJ=0〉|2 =

∣∣∣∣∣12 ∑
N

e−iKr(N)〈KN|KJ=0〉

∣∣∣∣∣
2

=
1

4

∣∣∣∣√1 + ∆/
√

∆2 + 4t2 cos2(Ka) +

√
1−∆/

√
∆2 + 4t2 cos2(Ka)

∣∣∣∣2
=

1

2

(
1 +

√
1−∆2/(∆2 + 4t2 cos2(Ka))

)
=

1

2

(
1 +

√
4t2 cos2(Ka)/(∆2 + 4t2 cos2(Ka))

)
(D.12)

and

|〈k=K± G︸︷︷︸
π/a

|KJ=0〉|2 =

∣∣∣∣∣12 ∑
N

e−i(K+π/a)r(N)〈KN|KJ=0〉

∣∣∣∣∣
2

=
1

4

∣∣∣∣√1 + ∆/
√

∆2 + 4t2 cos2(Ka)−
√

1−∆/
√

∆2 + 4t2 cos2(Ka)

∣∣∣∣2
=

1

2

(
1−

√
4t2 cos2(Ka)/(∆2 + 4t2 cos2(Ka))

)
(D.13)
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Combining (D.12) and (D.13) we find

|〈k|KJ=0〉|2 =
(

1/2 + t cos(ka)/
√

∆2 + 4t2 cos2(ka)
)

(D.14)

Similarly we can find

|〈k|KJ=1〉|2 =
(

1/2− t cos(ka)/
√

∆2 + 4t2 cos2(ka)
)

(D.15)

In figure D.1 and D.2 the spectral weight and the spectral function are plotted

for different values of t and ∆.

Figure D.1: Spectral function for t = 1 and ∆ = 0.
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Figure D.2: Spectral function for t = 1 and ∆ = 0.5.
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D.3 Ever Diagonalized a 2 by 2 Matrix?

claim 17 Given the matrix(
A−B ±Ceiα

±Ce−iα A+B

)
(D.16)

where A, B and C are real and positive and α ∈ [0, 2π), the eigenvalues are

given by

λ1 = A−
√
B2 + C2 ; λ2 = A+

√
B2 + C2 (D.17)

and the eigenvectors (up to an overall phase) are given by

~λ1 =
1√
2

∓eiα√1 +B/
√
B2 + C2√

1−B/
√
B2 + C2

 ; ~λ2 =
1√
2

 ±√1−B/
√
B2 + C2

e−iα
√

1 +B/
√
B2 + C2


(D.18)

proof 17 Solving for the eigenvalues

0 =

∣∣∣∣∣A−B − λ ±Ce−iα

±Ceiα A+B − λ

∣∣∣∣∣ = (A− λ)2 −B2 − C2

⇒ (A− λ) = ±
√
B2 + C2

⇒ λ1 = A−
√
B2 + C2 ; λ2 = A+

√
B2 + C2 (D.19)

Solving for the eigenvector with eigenvalue λ1

(±Ce−iα)〈1|λ1〉+ (A+B − λ1)〈2|λ1〉 = 0

⇒ 〈1|λ1〉 = ∓〈2|λ1〉
A+B − λ1

Ce−iα
= ∓〈2|λ1〉

B +
√
B2 + C2

Ce−iα

⇒ ~λ1 =

(
〈1|λ1〉
〈2|λ1〉

)
∝

(
∓eiα(B +

√
B2 + C2)/C

1

)
(D.20)
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normalizing

~λ1 =

 ∓eiα(B+
√
B2+C2)/C√

1+(B+
√
B2+C2)2/C2

1√
1+(B+

√
B2+C2)2/C2

 (D.21)

Now lets simplify first the second coefficient of this vector:

〈2|λ1〉−2
(

1−B/
√
B2 + C2

)
=

(
1 + (B +

√
B2 + C2)2/C2

)(
1−B/

√
B2 + C2

)
=

(
C2
√
B2 + C2

)−1(
C2 + (B +

√
B2 + C2)2

)(√
B2 + C2 −B

)
=

(
C2
√
D2 + C2

)−1(
2(C2 +B2) + 2B

√
B2 + C2

)(√
B2 + C2 −B

)
= 2

(
C2
)−1(√

B2 + C2 +B
)(√

B2 + C2 −D
)

= 2
(
C2
)−1(

(B2 + C2)−B2
)

= 2

⇒ 〈2|λ1〉 =
1√
2

√
1−B/

√
B2 + C2 (D.22)

Now the absolute value of the first coefficient follows:

|〈1|λ1〉| =
√

1− 〈2|λ1〉2

=

√
1− 1

2
(1−B/

√
B2 + C2)

=
1√
2

√
1 +B/

√
B2 + C2 (D.23)

The second eigenvector follows from orthonormality.
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Appendix E

Toy Model Example

Partitioning

Lets work out the partitioning by hand for a simple toy model with some ar-

bitrary numerical values. For the undoped Hamiltonian H0 we take a square

lattice, with lattice constant a, with one Wannier orbital per site, with an

onsite energy of 2eV, a real nearest neighbor hopping of 1eV and a real sec-

ond nearest neighbor hopping of 0.5eV. In addition we consider a
√

2 ×
√

2

superlattice of impurities, the influence of which we model with some more

arbitrary numbers. We raise the onsite energies of the impurity sites from

2eV to 2.1eV and we lower the rest of the onsite energies from 2eV to 1.9eV.

We lower the nearest neighbor hopping from 1eV to 0.9eV. The second nearest

neighbor hopping from impurity to impurity site we lower from 0.5eV to 0.4eV

and the second nearest neighbor hopping from non-impurity to non-impurity

site we raise from 0.5eV to 0.6eV.

All the hopping elements of the undoped/single-impurity model are sum-

marized in the blocks on left/right side of figure E.1. Each block corresponds to

a pair of lattice vectors, which is specified above the block. Only those hopping

elements are listed that hop from the zeroth unit cell, all the other hopping

elements follow from the translational symmetry. The row and column index

corresponds to the “from” and “to” Wannier orbital indices respectively.

Having the undoped and single impurity Hamiltonians, the impurity influ-

ence can be calculated. If we choose the partitioning radius to be two lattice

constants 2a, then the particular form of the interpolation function is irrele-
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Figure E.1: Tight binding Hamiltonians of the undoped and single impurity
toy models. The hopping elements of the undoped/single-impurity toy models
are summarized by the blocks on the left/right.
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Figure E.2: Tight binding Hamiltonian of the impurity influence, obtained
from partitioning the difference of the undoped and single-impurity Hamilto-
nian. The impurity influence tight binding elements are summarized by the
blocks on the right. The five different partitioning scenarios are illustrated on
the left.
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vant for the case of the square lattice as we shall see. The resulting impurity

influence is summarized in figure E.2. The impurity influence tight binding

elements are summarized by the blocks on the right. The five different parti-

tioning scenarios are illustrated on the left.

Lets work out one of the elements by hand, namely the influence of the

impurity on the nearest neighbor to nearest neighbor hopping from Wannier

state |r′=(1, 0) n′=0〉 to Wannier state 〈r′′=(0, 1) n′′=0|. The partitioning

scenario for this hopping element is depicted in the lowest of the five cartoons.

First of all lets work out the partitioning weights. For this hopping element,

the nearest impurities are located at supercell lattice vectors R = (0, 0) and

R = (1, 0). Both the “from” Wannier state |r′=(1, 0) n′=0〉 and the “to”

Wannier state 〈r′′=(0, 1) n′′=0| are at a distance of one lattice constant a from

the impurities. Therefore the distance of the hopping element according to

formula 3.15 will be two lattice constants. The next nearest impurity is for

example located at R = (1, 1). The “from” Wannier state |r′=(1, 0) n′=0〉 is

at a distance a from the impurity at R = (1, 1), but the “to” Wannier state

〈r′′=(0, 1) n′′=0| is at a distance of
√

5a from the impurity at R = (1, 1).

Therefore the distance of the hopping element to the impurity at R = (1, 1)

is (1 +
√

5)a which is beyond the partitioning radius 2a. So for the particular

hopping element we only need to consider the nearest neighbors. The same is

true for all the other four partitioning scenarios depicted in figure E.2. Since

all the nearest neighbors are equally far away, the partitioning weights will be

equal to the number of nearest neighbors. Now lets complete the calculation
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of the partitioning of that particular hopping element:

〈r′′=(0, 1) n′′=0|∆r=(0,0)|r′=(1, 0) n′=0〉

=
(
〈r′′=(0, 1) n′′=0|H1|r′=(1, 0) n′=0〉 − 〈r′′=(0, 1) n′′=0|H0|r′=(1, 0) n′=0〉

)
×

P r=(0,0)
(
r′′=(0, 1) n′′=0, r′=(1, 0) n′=0

)
∑

R P
r=R
(
r′′=(0, 1) n′′=0, r′=(1, 0) n′=0

)
=

(
〈R′=(−1, 0) N′=1|H1|R=(0, 0) N = 1〉 − 〈r′=(−1, 1) n′=0|H0|r=(0, 0) n=0〉

)
×

P r=(0,0)
(
r′′=(0, 1) n′′=0, r′=(1, 0) n′=0

)
P r=(0,0)

(
r′′=(0, 1) n′′=0, r′=(1, 0) n′=0

)
+ Pr=(0,1)

(
r′′=(0, 1) n′′=0, r′=(1, 0) n′=0

)
= (0.6eV − 0.5eV)× f(2a)

f(2a) + f(2a)
= (0.1eV)× 0.5 = 0.05eV (E.1)

where the values in the last equation were taken from figure E.1. Note that

the interpolation function f dropped out as promised.
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Appendix F

Partitioning Independence

To simplify the following analysis we suppress the Wannier lattice and orbital

indices and the impurity indices, since they play no role for the point we want

to make. Furthermore without loss of generality we consider a test system

with only one impurity located at the zeroth normal cell.

claim 18 If the input superlattice SLin is a subset of the test superlattice

SLtest then the effective Hamiltonian Htest is independent of the partitioning

function p(r).

proof 18 Given a test superlattice of impurities located at the zeroth normal

cell of the test supercells:

Htest = H0 +
∑

Rtest∈SLtest

∆(Rtest) (F.1)

Obviously H0 is independent of the partitioning so we only need to focus on

the second term, the sum of impurity influences. First we will use the fact that

the input superlattice SLin is a subset of the test superlattice SLtest.∑
Rtest∈SLtest

∆(Rtest) =
∑

Rtest∈SCin

∑
Rin∈SLin

∆(Rtest+Rin) (F.2)

where SCin is the input supercell of test supercells. To complete the proof we

plug in the definition of the impurity influence as a function of the normalized
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partitioning function:

∆(r) =
(
H(r) −H0

) P (r)∑
Rin∈SLin P

(r+Rin)
(F.3)

to find that the partitioning functions drops out:∑
Rtest∈SLtest

∆(Rtest)

=
∑

Rtest∈SCin

∑
Rin∈SLin

(
H(Rtest+Rin) −H0

) P (Rtest+Rin)∑
R′in∈SLin P

(Rtest+Rin+R′in)

=
∑

Rtest∈SCin

(
H(Rtest) −H0

) ∑
Rin∈SLin P

(Rtest+Rin)∑
R′in∈SLin P

(Rtest+Rin+R′in)

=
∑

Rtest∈SCin

(
H(Rtest) −H0

)
(F.4)

where in the second equation we used the periodicity of the input superlattice

H(Rtest+Rin) = H(Rtest).
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Appendix G

Additional Benchmarks of the

Effective Hamiltonian against

DFT for NaxCoO2

To explore the applicability and limitation of the effective Hamiltonian for the

case of NaxCoO2, we present here, in addition to figure 4.5 more comparisons

of spectral functions A(k, ω) calculated from the full DFT and the effective

Hamiltonian (see figures G.1-G.4). The size of the deviations between the full

DFT and the effective Hamiltonian should be compared with the size of the

Na impurity induced changes. For this purpose the spectral function of the

undoped Co2O4 is also plotted as a reference for each benchmark. From these

comparisons we see that the Na impurity induced changes on the spectral

functions, are accurately reproduced by the effective Hamiltonian far into the

high doping regime.
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Figure G.1: The spectral functions A(k, ω) of test systems, calculated from
the full DFT and the effective Hamiltonian.
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Figure G.2: The spectral functions A(k, ω) of test systems, calculated from
the full DFT and the effective Hamiltonian.
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Figure G.3: The spectral functions A(k, ω) of test systems, calculated from
the full DFT and the effective Hamiltonian.
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Figure G.4: The spectral functions A(k, ω) of test systems, calculated from
the full DFT and the effective Hamiltonian.

Notice a systematic deviation near x = 1, which reflects the serious extrap-

olation from x = 1
8

to x = 1. To some extent this deviation can be understood

from the fact that at high doping (x & 5/6), the e′g pocket sinks below the

Fermi level, after which it will no longer be exposed to additional electron re-

pulsion. Unlike the DFT, the effective Hamiltonian method (as implemented

in this work) does not treat the electron occupation self-consistently and there-

fore keeps adding additional electron repulsion to the e′g states, even after they

are already filled. If an effective Hamiltonian is needed to calculate the spec-

tral function near x = 1, of course a much better approach would be to treat

the small number of Na vacancies as impurities of NaCoO2. For the present

work however, the deviations near x = 1 are unimportant, because the main

conclusion is on the lower end of the doping range (x = 0.3).
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Appendix H

Estimating the Oxygen Vacancy

Radius from the Theoretical

Spectral Function

Suppose that in the supercell there is an eigenstate |VO〉 associated with the

oxygen vacancy with Gaussian form.

〈r|VO〉 = e−
r2

2σ2 (H.1)

where the normalization constant is omitted and σ roughly equals half of

the FWHM, in other words the radius of the oxygen vacancy state (since

e−
r(N)2

2σ2 = 1
2
⇒ x =

√
2 ln 2σ ≈ σ ). From this the structure factor can be

calculated:

〈k|VO〉 =
∑

r∈supercell

e−ikr〈r|VO〉 (H.2)

Suppose that the size of the oxygen vacancy is bigger then the lattice constant

but smaller then the supercell then we can use the identity

ˆ ∞
−∞

dxe−iαkxe
− x2

2β2 =
√

2πbe−
1
2
α2β2k2 (H.3)
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to approximate the structure factor to be

〈k|VO〉 ≈
ˆ
d3re−ik·r〈r|VO〉

=

ˆ
d3re−i

2π
a
k·re−

r2

2σ2

∝ exp

(
− k2

2((σ 2π
a

)−1)2

)
(H.4)

From the structure factor follows the spectral function

A(k, ω) = δ(ω − εVO)|〈k|VO〉|2

= δ(ω − εVO)

∣∣∣∣exp

(
− k2

2((σ 2π
a

)−1)2

)∣∣∣∣2
= δ(ω − εVO) exp

(
− k2

2((σ 2
√

2π
a

)−1)2

)
(H.5)

So the final conclusion of this exercise is that the radius of the oxygen in real

space is related to the radius in the spectral function by σ̃ = (σ 2
√

2π
a

)−1. In the

theoretically calculated spectral function we find the radius half of the FWHM

to be roughly 1/10 of ΓM, i.e. the radius σ̃ = 1/20. From this it follows that

the corresponding radius in real space is σ = a
2
√

2π
1

1/20
≈ 2.25a.
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Appendix I

CPA Equations for 1

Dimensional 1 Band Binary

Disorder

Before we can write down the CPA equations, we need to establish that the

local Green’s function 〈r|G(z)|r〉 = Grr(z), also known as the locator can be

expressed in terms of an interactor ∆r(z). Here z is the complex generalization

of frequency.

I.1 The Locator and the Interactor

claim 19 Given the Hamiltonian

H =
∑
r

εrc
†
rcr︸ ︷︷ ︸

E

+
∑
r 6=r′

trr′c
†
rcr′︸ ︷︷ ︸

T

(I.1)

then the locator equation of motion (from [53] page 61) is given by

Grr′ = grδrr′ + gr
∑
r′′ 6=r

trr′′Gr′′r′ (I.2)

where the bare locator (with bare referring to no hopping) is given by

gr = (z − εr)−1 (I.3)

123



proof 19

(z −H)G = 1

(z − E − T )G = 1

(z − E)G = 1 + TG

Grr′ = grδrr′ + gr
∑
r′′ 6=r

trr′′Gr′′r′ (I.4)

claim 20 The formal solution of the site diagonal part of G (from [53] page

137):

Grr = (z − εr −∆r)
−1 (I.5)

where the renormalized interactor is given by

∆r =
∑
r′ 6=r

trr′gr′tr′r +
∑

r′ 6=r,r′′ 6=r

trr′gr′tr′r′′gr′′tr′′r + ... (I.6)

proof 20 We start with the off-diagonal part of the locator expansion

Grr′ = gr
∑
r′′ 6=r

trr′′Gr′′r′ = grtrr′Gr′r′ + gr
∑
r′′ 6=r,r′

trr′′Gr′′r′ (I.7)

Then we plug for Gr′′r′ on the right as a first order approximation gr′′tr′′r′Gr′r′

to obtain:

Grr′ = grtrr′Gr′r′ + gr
∑
r′′ 6=r,r′

trr′′gr′′tr′′r′Gr′r′ + ... (I.8)

Now we plug this expansion into the diagonal part of the locator expansion

Grr = gr + gr
∑
r′′ 6=r

trr′′Gr′′r (I.9)

= gr + gr
∑
r′′ 6=r

trr′′gr′′tr′′rGrr + gr
∑
r′′ 6=r

trr′′gr′′
∑

r′′′ 6=r′′,r

tr′′r′′′gr′′′tr′′′rGrr + ...

so we find

Grr = gr + gr∆rGrr (I.10)
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which we can rewrite as

Grr =
gr

1− gr∆r

=
1

g−1
r −∆r

=
1

z − εr −∆r

(I.11)

I.2 CPA Equations for 1 Band and 1 Dimen-

sion Binary Disorder

Now we consider the following one dimensional one band tight-binding model

with nearest neighbor hopping t and a site energy that takes the random values

0 and ε:

H0 =
∑
r

tc†rcr+a + h.c. ; H = H0 +
∑
r

εrc
†
rcr ; εr ∈ {0, ε} (I.12)

The bare local Green’s function for H0 can be taken from the literature (for-

mula (5.29) in [52]):

G0(z) =
−i√

4t2 − z2
(I.13)

From this we can derive an explicit formula for the interactor:

∆0(z) = z −G−1
0 (z) = z − i

√
4t2 − z2 (I.14)

Due to the inbedding in the medium the interactor will shift by the self-energy:

∆(z) = ∆0(z − Σ(z)) (I.15)

Now we can write down the CPA equation as the self-consistent average of the

local Green’s functions:

〈G(z)〉 =
1

z − Σ(z)−∆(z)
=

1− x
z −∆(z)

+
x

z − ε−∆(z)
(I.16)

from which we can obtain the self-energy:

Σ(z) = xε+
(1− x)xε2

z − (1− x)ε−∆(z)
(I.17)
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So all in all we have the following self consistent cycle:

1. Guess an initial self energy function, for example the VCA value: Σ(z) =

xε

2. Plug the self-energy in (I.15) to obtain the locator.

3. Plug the locator in (I.17) to obtain self energy.

4. Plug the self-energy in (I.15) to obtain the locator.

5. etc
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