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Abstract of the Dissertation

Dielectron Mass Spectra in
√

sNN = 200 GeV Cu+Cu
Collisions at PHENIX

by

Sarah Catherine Campbell

Doctor of Philosophy

in

Physics

Stony Brook University

2011

The dielectron mass spectrum consists of light vector meson decays, correlated
heavy quark contributions and decays from other hadronic and photonic sources.
Thermal radiation and modifications to the light vector mesons may provide
additional signals at low masses above known hadronic sources. The PHENIX√

sNN = 200 GeV Au+Au and Cu+Cu analyses have measured a centrality de-
pendent excess in the the low mass region between 0.15 GeV/c2 and 0.75 GeV/c2.
Between the φ and the J/ψ, in the intermediate mass range, the correlated heavy
quark decays are the primary dielectron source; direct photons may augment this
region as well.

The Cu+Cu system is sensitive to the onset of the dielectron excess. By studying
the Cu+Cu mass spectra and yields as a function of pair pT and collision central-
ity we obtain further understanding of its behavior. Comparisons to the PHENIX
Au+Au and p+p measurements an extrapolations from theory are presented.

iii



I take to your reckless and composite chords - I add to them, and cheerfully pass them
forward.

– Walt Whitman



Contents

List of Figures viii

List of Tables xii

Acknowledgements xiv

1 Introduction 1
1.1 Theory of nuclear matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Strong interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Quantum-chromodynamics . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Quark-gluon plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.4 Chiral symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Relativistic heavy-ion collisions . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Experimental history . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Definitions of terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.3 Collision evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.4 QGP signals at RHIC . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Dielectron mass spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.1 Light vector meson modification theories . . . . . . . . . . . . . . . . 17
1.3.2 Dielectron continuum measurements . . . . . . . . . . . . . . . . . . 20

1.4 Purpose of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Experimental Apparatus 27
2.1 Relativistic Heavy-Ion Collider . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 PHENIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Global Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Beam-beam Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.2 Zero Degree Calorimeters . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Central Arm Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Drift Chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.2 Pad Chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

v



2.4.3 Ring Imaging Cherenkov Detector . . . . . . . . . . . . . . . . . . . . 35
2.4.4 Electro-magnetic Calorimeter . . . . . . . . . . . . . . . . . . . . . . 37

3 From hits to electron tracks 39
3.1 Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 The EWG data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Central track variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Tracking variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Electron variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Recalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.1 Beam shift calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Quality requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 Electron identification cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Making pairs, identifying backgrounds 50
4.1 Backgrounds removed by pair cuts . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Detector overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.2 Conversion pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Combinatorial background pairs . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Correlated pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Jet correlated background pairs . . . . . . . . . . . . . . . . . . . . . 57
4.3.2 Correlated pairs with a common ancestor . . . . . . . . . . . . . . . . 61

5 Statistical background removal 66
5.1 Event mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.1 CabanaBoy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.2 UltraLights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.1 Correlated pairs with a common ancestor . . . . . . . . . . . . . . . . 71
5.2.2 Iterative normalization procedure . . . . . . . . . . . . . . . . . . . . 72

5.3 Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.1 Like-sign subtracted spectra . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.2 Unlike-sign subtracted spectra . . . . . . . . . . . . . . . . . . . . . . 78

6 Efficiency corrections 86
6.1 Generating electron-positron pairs . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 Simulating the detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2.1 Simulation calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2.2 Mass and pT weights . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.3 Checking the acceptance . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 Applying the correction to the data . . . . . . . . . . . . . . . . . . . . . . . 95

vi



6.3.1 The efficiency correction . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Systematic Errors 101
7.1 Efficiency correction systematic errors . . . . . . . . . . . . . . . . . . . . . . 101

7.1.1 Error from the simulation’s acceptance . . . . . . . . . . . . . . . . . 101
7.1.2 Error from the electron identification . . . . . . . . . . . . . . . . . . 102
7.1.3 Error of the simulated pair . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Subtraction systematic errors . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2.1 Common ancestor background errors . . . . . . . . . . . . . . . . . . 104
7.2.2 Combinatorial and jet normalization error . . . . . . . . . . . . . . . 106
7.2.3 Jet background shape error . . . . . . . . . . . . . . . . . . . . . . . 108
7.2.4 Combinatorial background shape error . . . . . . . . . . . . . . . . . 108

7.3 Combined systematic errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.4 Component variations effect on the background . . . . . . . . . . . . . . . . 114

7.4.1 Common ancestor background adjustment . . . . . . . . . . . . . . . 114
7.4.2 Jet background adjustment . . . . . . . . . . . . . . . . . . . . . . . 116
7.4.3 Combinatorial normalization region adjustment . . . . . . . . . . . . 117

8 Cocktail generation 121
8.1 Hadronic cocktail generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.1.1 Fitting the pion pT spectra . . . . . . . . . . . . . . . . . . . . . . . . 122
8.1.2 Transverse mass, mT , scaling . . . . . . . . . . . . . . . . . . . . . . 124
8.1.3 High mass corrections to mT scaling . . . . . . . . . . . . . . . . . . 126
8.1.4 Radiative tails in the J/ψ and ψ’ . . . . . . . . . . . . . . . . . . . . 127

8.2 Correlated heavy quark and Drell Yan . . . . . . . . . . . . . . . . . . . . . 130
8.2.1 Random heavy quark component . . . . . . . . . . . . . . . . . . . . 134

8.3 Comparison to data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.3.1 Comparison to data in pT slices . . . . . . . . . . . . . . . . . . . . . 141

9 Comparisons and Conclusions 144
9.1 Comparison to other systems . . . . . . . . . . . . . . . . . . . . . . . . . . 144
9.2 Theoretical comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
9.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Bibliography 158

vii



List of Figures

1.1 Feynman diagrams for various strong interactions . . . . . . . . . . . . . . . 2
1.2 The coupling constant, αS, vs. the momentum transfer, Q . . . . . . . . . . 4
1.3 The QGP phase transition in ε/T 4 vs. T/TC . . . . . . . . . . . . . . . . . . 6
1.4 The QGP phase diagram in µB vs. T . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Light meson chiral pairs and mass splittings . . . . . . . . . . . . . . . . . . 8
1.6 Mexican hat potential in 3D and a slice at π = 0 . . . . . . . . . . . . . . . . 9
1.7 Centrality determination using spectator nucleons . . . . . . . . . . . . . . . 12
1.8 Diagram of the Bjorken picture of the collision . . . . . . . . . . . . . . . . . 13
1.9 Diagram of the evolution of a heavy ion collision . . . . . . . . . . . . . . . . 14
1.10 PHENIX results highlighting QGP behavior . . . . . . . . . . . . . . . . . . 15
1.11 The shape of the dielectron mass spectrum . . . . . . . . . . . . . . . . . . . 16
1.12 Diagram of pion annihilation with an intermediate ρ meson . . . . . . . . . . 18
1.13 CERES dimuon spectra in multiple collision systems . . . . . . . . . . . . . 21
1.14 NA60 In+In 158 AGeV dielectron spectrum . . . . . . . . . . . . . . . . . . 22
1.15 PHENIX p+p and Au+Au dielectron spectra . . . . . . . . . . . . . . . . . 23
1.16 STAR p+p and Au+Au dielectron spectra . . . . . . . . . . . . . . . . . . . 24

2.1 Diagram of the Relativistic Heavy-Ion Collider . . . . . . . . . . . . . . . . . 28
2.2 Beam- and side-views of the PHENIX detector . . . . . . . . . . . . . . . . . 28
2.3 Schematic drawing of the beam-beam counter . . . . . . . . . . . . . . . . . 29
2.4 The zero degree calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 The drift chamber frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 A drift chamber keystone with X, U, and V wires modules . . . . . . . . . . 32
2.7 Diagram of a pad chamber board . . . . . . . . . . . . . . . . . . . . . . . . 33
2.8 The pad chamber’s pad configuration with nine pixel cells . . . . . . . . . . 34
2.9 Diagram of the ring imaging Cherenkov detector . . . . . . . . . . . . . . . . 35
2.10 Internal view of the ring imaging Cherenkov detector . . . . . . . . . . . . . 36
2.11 A PbSc EMC calorimeter tower module . . . . . . . . . . . . . . . . . . . . . 37
2.12 PbGl electro-magnetic supermodule . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Diagram of the α and φDC tracking variables . . . . . . . . . . . . . . . . . . 40
3.2 E/p distibution with and without the EWG cuts applied . . . . . . . . . . . 41

viii



3.3 East arm α vs. φDC for run 152825 before calibration . . . . . . . . . . . . . 44
3.4 φ0 vs. charge/pT overlaid with aperture lines . . . . . . . . . . . . . . . . . . 46
3.5 E/p distributions in the EWG dataset applying various cuts . . . . . . . . . 48

4.1 The mass distribution of all electron-positron pairs . . . . . . . . . . . . . . 51
4.2 The mass distributions of all measured like-sign pairs . . . . . . . . . . . . . 52
4.3 Diagram of the RICH focusing light onto the PMT array . . . . . . . . . . . 53
4.4 Mass distributions for all pairs with the overlap pair cut . . . . . . . . . . . 53
4.5 Diagram of the conversion geometry . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Unlike-sign mass distribution with the conversion cut . . . . . . . . . . . . . 55
4.7 Mass spectra with combinatorial background subtraction . . . . . . . . . . . 56
4.8 Combinatorial backgrounds in fine centrality groups . . . . . . . . . . . . . . 57
4.9 Diagram of the jet correlated background . . . . . . . . . . . . . . . . . . . . 58
4.10 Simulated unlike-sign jet correlation and underlying event . . . . . . . . . . 58
4.11 Simulated like-sign jet correlation and underlying event . . . . . . . . . . . . 59
4.12 The measured IAA in Cu+Cu collisions vs. NColl . . . . . . . . . . . . . . . . 60
4.13 The jet background shape variation due to jet suppression . . . . . . . . . . 61
4.14 Simulated common ancestor mass distributions . . . . . . . . . . . . . . . . . 65

5.1 Diagram of the rolling event buffer method . . . . . . . . . . . . . . . . . . . 67
5.2 Combinatorial shape variations in different centralities . . . . . . . . . . . . 68
5.3 Diagram of the PHENIX data class inheritance tree . . . . . . . . . . . . . . 69
5.4 Unlike-sign, conversion and common ancestor spectra . . . . . . . . . . . . . 72
5.5 Jet and combinatorial normalizations vs. iteration step . . . . . . . . . . . . 74
5.6 Like-sign and total background pairs with ratios by centrality . . . . . . . . 75
5.7 Like-sign mass spectra with background subtraction . . . . . . . . . . . . . . 76
5.8 Rebinned like-sign spectra with background subtraction . . . . . . . . . . . . 77
5.9 Like-sign mass and background distributions in pT slices . . . . . . . . . . . 78
5.10 Unlike-sign and total background pairs with ratios by centrality . . . . . . . 79
5.11 Ratio of unlike-sign pairs over total background . . . . . . . . . . . . . . . . 80
5.12 Unlike-sign mass distributions with subtraction . . . . . . . . . . . . . . . . 81
5.13 Rebinned unlike-sign mass spectra, background subtracted . . . . . . . . . . 82
5.14 Unlike-sign and background pairs’ mass distributions in pT slices . . . . . . . 83
5.15 Minimum bias unlike-sign mass distributions . . . . . . . . . . . . . . . . . . 84
5.16 Minimum bias subtracted spectrum . . . . . . . . . . . . . . . . . . . . . . . 85

6.1 φ0 vs. charge/pT for the ideal aperture and generated pairs . . . . . . . . . . 87
6.2 Simulated electron emcsdphi e vs. p . . . . . . . . . . . . . . . . . . . . . . . 90
6.3 Simulated positron emcsdphi e vs. p . . . . . . . . . . . . . . . . . . . . . . 91
6.4 Simulated emcsdz e vs. p . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.5 E/p vs. p in data and the simulation . . . . . . . . . . . . . . . . . . . . . . 93

ix



6.6 Weighted simulation and the pT weights for certain masses . . . . . . . . . . 95
6.7 φ0 vs. charge/pT in data and simulation . . . . . . . . . . . . . . . . . . . . 96
6.8 φDC distributions in data and simulation . . . . . . . . . . . . . . . . . . . . 96
6.9 Simulated m vs. pT with weighting and aperture cuts . . . . . . . . . . . . . 97
6.10 The efficiency as a function of mass and pT . . . . . . . . . . . . . . . . . . . 98
6.11 Effective efficiency vs. mass and pT . . . . . . . . . . . . . . . . . . . . . . . 98
6.12 Mass spectra with and without the efficiency correction . . . . . . . . . . . . 100

7.1 Combinatorial shape with centrality pool segmentation . . . . . . . . . . . . 109
7.2 Combinatorial shape with z-vertex pool segmentation . . . . . . . . . . . . . 110
7.3 Zoomed in combinatorial shape variation . . . . . . . . . . . . . . . . . . . . 111
7.4 1/NEvent dN/dm vs. m with the systematic error bars . . . . . . . . . . . . . 113
7.5 Ratios of outcomes with varied common ancestor component . . . . . . . . . 115
7.6 1/NEvent dN/dm vs. m, common ancestor factor varied . . . . . . . . . . . . 116
7.7 Ratio of outcomes with jet component altered . . . . . . . . . . . . . . . . . 118
7.8 1/NEvent dN/dm vs. m, varied jet background . . . . . . . . . . . . . . . . . 119
7.9 1/NEvent dN/dm vs. m, varied normalization regions . . . . . . . . . . . . . 120

8.1 π pT spectra and modified Hagedorn fit . . . . . . . . . . . . . . . . . . . . . 123
8.2 Description of η mT scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.3 φ and J/ψ pT spectra in data and the corrected cocktail . . . . . . . . . . . 128
8.4 Example of J/ψ and ψ’ radiative tail correction . . . . . . . . . . . . . . . . 128
8.5 The dielectron hadronic cocktail . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.6 Feynman diagrams of heavy quark production . . . . . . . . . . . . . . . . . 130
8.7 Diagram of the c− c̄ correlation through D mesons . . . . . . . . . . . . . . 130
8.8 Diagram of the Drell Yan interaction . . . . . . . . . . . . . . . . . . . . . . 131
8.9 The cocktail with hadronic and heavy quark components . . . . . . . . . . . 132
8.10 Dielectron cocktail in centrality and pT bins . . . . . . . . . . . . . . . . . . 133
8.11 c− c̄ correlations from Pythia and random correlations . . . . . . . . . . . . 134
8.12 Comparison of c− c̄ correlations in pT slices . . . . . . . . . . . . . . . . . . 135
8.13 Comparison between the Cu+Cu spectra and cocktail . . . . . . . . . . . . . 136
8.14 Data and cocktail with π, η and η’ signals removed . . . . . . . . . . . . . . 138
8.15 NColl scaled spectra with hadronic components removed . . . . . . . . . . . . 139
8.16 Additional subtraction to remove the excesses . . . . . . . . . . . . . . . . . 140
8.17 Data and cocktail in pT slices shown by centrality . . . . . . . . . . . . . . . 142

9.1 PHENIX p+p, d+Au and Au+Au dielectron spectra . . . . . . . . . . . . . 145
9.2 PHENIX dielectron spectra in each system by centrality . . . . . . . . . . . 146
9.3 Shape comparisons of selected Cu+Cu and Au+Au spectra . . . . . . . . . . 147
9.4 Low mass excess as a function of centrality . . . . . . . . . . . . . . . . . . . 148
9.5 Intermediate mass yield as a function of centrality . . . . . . . . . . . . . . . 148

x



9.6 PHENIX p+p, Au+Au mass spectra in pT slices . . . . . . . . . . . . . . . . 149
9.7 CERES Pb+Au results, above (below) pT 0.5 GeV/c . . . . . . . . . . . . . 150
9.8 PHENIX p+p, Au+Au and Cu+Cu mass spectra in pT slices . . . . . . . . . 151
9.9 PHENIX yields as a function of pT in each system . . . . . . . . . . . . . . . 152
9.10 Direct photons in the high pT Min. Bias Cu+Cu spectrum . . . . . . . . . . 153
9.11 Low mass spectra with theoretical curves . . . . . . . . . . . . . . . . . . . . 155
9.12 Low mass spectra in pT slices with theoretical curves . . . . . . . . . . . . . 156

xi



List of Tables

1.1 Quark charges and masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 EWG data set cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Quality values with the bit patterns and their meanings . . . . . . . . . . . . 42
3.3 Good track requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 Acceptance mask defining the ideal aperture and dead areas . . . . . . . . . 47
3.5 Electron identification cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 π and η Dalitz and Double Dalitz decays . . . . . . . . . . . . . . . . . . . . 63
4.2 η → 3π0 decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Linear fit of the like-sign pairs over the total background . . . . . . . . . . . 76

6.1 Fit parameters for emcsdphi e simulated distributions . . . . . . . . . . . . . 89
6.2 Fit parameters for emcsdz e simulated distributions . . . . . . . . . . . . . . 89
6.3 Fit parameters for ecore/p distributions . . . . . . . . . . . . . . . . . . . . . 94

7.1 Systematic error of simulated acceptance . . . . . . . . . . . . . . . . . . . . 102
7.2 Systematic error of single electron identification cuts . . . . . . . . . . . . . 102
7.3 The systematic error of the simulated pair . . . . . . . . . . . . . . . . . . . 103
7.4 Relative errors for the common ancestor normalization . . . . . . . . . . . . 104
7.5 Systematic errors for the common ancestor background . . . . . . . . . . . . 106
7.6 Systematic errors for the combinatorial normalization . . . . . . . . . . . . . 107
7.7 Systematic errors for the jet background normalization . . . . . . . . . . . . 107
7.8 Combinatorial background shape errors with centrality pools . . . . . . . . . 112
7.9 Combinatorial background shape errors with z-vertex pools . . . . . . . . . . 112

8.1 Hadronic decays and branching ratios . . . . . . . . . . . . . . . . . . . . . . 122
8.2 Pion yield and pT parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.3 High pT meson-to-pion ratios . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.4 Inclusive meson-to-pion ratios . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.5 Parameters for the J/ψ pT adjustment . . . . . . . . . . . . . . . . . . . . . 127
8.6 Number of parton collisions in Cu+Cu collisions . . . . . . . . . . . . . . . . 131

xii



8.7 Like-sign yields with and without the additional subtraction . . . . . . . . . 141

xiii



Acknowledgements

Thank you to my husband, my friends and my family. I could not have done this without
your support.



Chapter 1

Introduction

The high temperatures and densities created in a relativistic heavy ion collision break
down the protons and neutrons within the nucleus restoring chiral symmetry and creating a
deconfined plasma of the underlying particles, quarks and gluons. As the plasma cools and
expands it forms particles that stream out of the collision and are measured in the PHENIX
detector. Through these particles we glean information about the plasma and its production.
By studying this extreme condition of nuclear matter we gain insight into the underlying
physics and symmetries in nuclear materials.

The dielectron spectrum is particularly illustrative of these medium effects. It contains
all processes that produce electron-positron pairs. Electrons can provide direct information
about all stages of a heavy ion collision. This is because they do not participate in strong
interactions. Once emitted electrons are unaffected by later stage effects such as hadroniza-
tion. Signals within the dielectron spectrum can contain direct information about the early
collision. However, these early collision pairs are hidden among all of the other dielectron
production mechanisms. By studying the entire mass spectrum out to 4 GeV/c2, we look
beyond specific resonances and see deviations from the expected hadronic behavior.

The dielectron mass spectrum contains an excess over expected yields in Cu+Cu collisions
with a collision energy per nucleon pair of 200 GeV. The spectrum was measured by the
PHENIX experiment using data taken in 2005 at the Relativistic Heavy Ion Collider at
Brookhaven National Laboratory. Within the dielectron mass spectrum, the expected signals
are enhanced with additional production processes and modified by the interaction with the
deconfined material created in the collision, a new phase of matter called a quark gluon
plasma.

This document details the measurement and meaning of the dielectron excess in Cu+Cu
collisions as determined by the PHENIX experiment. The remainder of this chapter provides
introductory information on nuclear interactions, the history and evolution of relativistic
heavy ion collisions, and the characteristics of the dielectron spectrum with a focus on in
medium modifications.
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(a) Quark annihila-
tion

(b) Quark annihilation with
gluon bremstralung

(c) Gluon-Compton scattering

Figure 1.1: Feynman diagrams for quark annihilation, quark annihilation with gluon brem-
stralung and gluon-Compton scattering. In each diagram time runs to the right, quarks are
denoted by lines with arrows, anti-quarks have backward facing arrows, gluons are spiral lines
and photons are sinusoidal lines. Virtual photons created in these processes are detected as
dielectron pairs.[1]

1.1 Theory of nuclear matter

The theoretical understanding of high energy nuclear phenomena is based on the stan-
dard model and field interactions. A short introduction to strong interactions and quantum
chromo-dynamics is given focusing on the fundamental concepts of nuclear interactions. The
extreme cases at high temperature or density of quark-gluon plasma and chiral symmetry
restoration are also presented.

1.1.1 Strong interactions

The standard model characterizes the four physical forces (strong, electromagnetic, weak,
gravitational) as field interactions between elementary particles with mediating bosons. This
text focuses on the strong force where quarks interact via mediating gluons. There are six
quarks, the three light quarks (up, down, strange) and the three heavy quarks (charm,
bottom, top).

Feynman diagrams provide a graphical understanding of the interactions between quarks
and gluons. A few diagrams for processes that produce dielectron pairs from virtual pho-
tons are in Figure 1.1. In each, the horizontal direction is time and different line types
correspond to different particle types as listed in the caption. In the strong interaction the
system’s energy, momentum, charge, color charge, spin and parity are conserved. Certain
particle numbers such as lepton number, baryon number and strange quark number are also
conserved.
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Table 1.1: Quark charges and masses
Quark charge intrinsic mass meff in mesons meff in baryons
up 2/3 0.0075 GeV/c2 0.310 GeV/c2 0.363 GeV/c2

down -1/3 0.0042 0.310 0.363
strange 2/3 0.150 0.483 0.538
charm -1/3 1.1 1.5 [4] 1.5
top 2/3 >23 >23
bottom -1/3 4.2 4.7 4.7

Each quark has fractional electromagnetic charge (±1/3 or ±2/3), an intrinsic spin of
±1/2 and carries a color charge (red, green, blue). Anti-quarks carry anti-color charges.
There are eight gluon types, each carries a color and anti-color charge. A quark interacting
with a gluon is altered, its color charge changes. Gluons can interact with other gluons.
These gluon loops complicate calculations and provide some of the higher order effects that
make in understanding strong interactions so difficult.

Individual quarks are confined into colorless bound states. Quarks and anti-quarks com-
bine in twos or threes creating colorless composite particles where the color charges either
cancel (a red anti-red pair) or combine (red-green-blue). Three quarks bind together to
produce a baryon; a quark anti-quark pair produces a meson.

Light quark meson masses

Equation 1.1 gives simple calculation of the light quark meson masses,

m = mq1 + mq2 + A
S1 · S2

mq1mq2

(1.1)

where m is the meson mass, mq1 and mq2 are the effective quark masses, S1 and S2 are the
quark spin states and A is a coefficient related to |ψ (0) |2. The quark spin coupling term,
S1 ·S2, is reminiscent of the hyperfine splitting seen in the hydrogen atom. This term has two
states, either the quark’s spins are aligned as in the vector meson case or the quark spins are
not aligned as is the pseudo-scalar meson case. For example, the ρ meson is a light vector
meson made up of a superposition of u and d quarks,

(
uū− dd̄

)
/
√

2. Equation 1.1 uses the
fit value for A of 0.16 GeV/c2 and the effective quark masses, meff , for mesons are used as
listed in Table 1.1. The mass of the ρ meson is calculated as 0.78 GeV/c2 and measured as
0.77 GeV/c2 [2] an agreement within one percent. [3]

This explanation of the light meson masses is over-simplified. The effective quark masses,
meff , of the light quarks (up, down and strange) are much larger than the intrinsic quark
masses listed in Table 1.1. For the light quarks the effective quark masses are primarily from
the dynamical properties of the quantum-chromodynamics, in particular the relationship of
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Figure 1.2: The coupling constant, αS, dependance on the momentum transfer, Q. Various
experimental results are shown. The lines correspond to a pQCD calculation. [6]

the quarks to the chiral and gluon condensates.

1.1.2 Quantum-chromodynamics

Quantum-chromodynamics (QCD) is the theoretical framework for quark-gluon interac-
tions. The QCD lagrangian is

L = q̄k (iγµδµ −mk) qk − g (q̄kγ
µTaqk) Ga

µ −
1

4
Ga

µνG
µν
a (1.2)

where qk and q̄k are the kth quark color fields, γµ are the Dirac matrices, mk is the kth

quark’s mass parameter, Ga
µ are the gluon gauge fields, and Ga

µν is the gluon field strength
tensors. The QCD lagrangian follows the symmetry of the super unitary group of dimension
three, SU(3). The Ta terms are the 3 × 3 generating matrices for the color SU(3) group.
The coupling strength between the gluons and quarks, g, is related to the strong coupling
constant αS, g =

√
4παS. [5]

QCD’s theoretical framework is analogous to the framework in quantum-electrodynamics
(QED), the theory for electromagnetic interactions. The strength of QCD and QED inter-
actions is determined by their coupling constants, αs and α respectively. In QED, α is
relatively stable with values of approximately 1/137. In QCD, αS varies with the distance
between the interacting partons or the interaction’s momentum transfer, Q2, as detailed in
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Equations 1.3.

αS

(
Q2

)
=

12π

(11 ∗Nc − 2 ∗Nf ) log (Q2/Λ2)
(1 + higher log terms) (1.3)

where Λ is related to the scale constant and Nc and Nf are the number of color charges
and light quark flavors respectively. At large distances, i.e. Q2 ≈ Λ2, αS increases and
the interactions become stronger. Confinement is a result of this behavior. Should a quark
attempt to leave a bound state, quark loops begin to form and polarize the vacuum enhancing
the system’s color charge until a qq̄ pair is pulled out of the vacuum creating bound states. At
small distances, i.e. Q2 >> Λ2, αS is weakened allowing quarks and gluons to move freely.
This is called asymptotic freedom and is a result of the distributed gluon cloud reducing
the effective color charge for interactions within the cloud. Figure 1.2 shows experimental
confirmation of this asymptotic behavior. The scale constant, Λ, is set by fixing the αS value
at the mass of the Z0 boson, αS (mZ0) = 0.118± 0.002, giving a Λ of 217+25

−23 MeV [7].
QCD calculations at small αS are feasible using perturbative QCD because higher or-

der effects, requiring higher powers of αS, are small. These calculations are relegated to the
close neighborhood of the parton or large momentum transfers, Q2. The long range behavior
describing the probability of parton hadronization is parameterized from electron-positron
collider measurements. These probabilities called fragmentation functions and are indepen-
dent of the original collision process. In a heavy ion collision we must also consider the
motion of the parton within each nucleon. Parton distribution functions provide a partons’
momentum distribution; they are measured in deep inelastic scattering experiments. The
patching together of parameterized and calculated information is called factorization. In this
method theorists have calculated cross sections for various interactions including, jets and
dileptons from hard processes and Drell-Yan. Unfortunately many of the low mass dielectron
signals are in the non-perturbative regime where αS is large and factorization is known to
fail. [8]

At low Q2, QCD calculations are extremely difficult due to the higher order terms that
must be considered. Lattice QCD calculations provide an alternative method to quantify
the QCD interactions in this regime. It is a computationally intensive process. The action
of the QCD lagrangian is calculated in small regions of four dimensional time-space, called
plaquettes. By restricting the calculations to small plaquettes many of the large scale com-
plications of QCD are avoided. A lattice of plaquettes is calculated and integrated. This
process is repeated with random variations in the quark and gluon fields until the stable
state is found. Physical quantities are obtained once the plaquette size is extrapolated to
zero. [7] [9]
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Figure 1.3: The energy density in units of T 4 is plotted a function of the temperature scaled
by the critical temperature for a variety of quark numbers or flavors. The arrows on the
right mark the Stefan-Boltzman limit for an ideal gas of quarks and gluons. [10]

1.1.3 Quark-gluon plasma

A consequence of asymptotic freedom is that at very short distances, or very large Q2,
confinement breaks down and quarks and gluons move freely. A system at high temperature
or density achieves the small distances or large Q2 to create deconfined matter. This idea
was first raised in 1975 by Collins and Perry for low-temperature high-density neutron stars
[11]. In the same year Cabibbo and Parisi described the deconfined material as a new phase
of matter [12]. In 1978 Shuryak extended the theory to high temperatures and named the
new phase of matter a quark-gluon plasma (QGP) [13]. The required energy density, ε,
and critical temperature, TC , to achieve the phase transition can be approximated using
dimensional arguments resulting in values of ε ≈ 1 GeV/fm3 and TC ≈ 175 MeV. This
places the phase transition region in the nonperturbative regime of QCD. [10]

Lattice QCD calculations are necessary to further our theoretical understanding of the
QCD phase transition accessible at RHIC. Figure 1.3 shows lattice QCD results for phase
transitions assuming different numbers of quark flavors. The energy density in units of
temperature to the fourth is plotted a function of scaled temperature. A steep transition
in energy density occurs at the critical temperature, T = TC . The plateau ε/T 4 values are
below the Stefan-Boltzman limit that assumes an ideal gas of quarks and gluons. The phase
transition is not first order and is most likely a smooth crossover. First order phase transitions
are discontinuous between the two phases and include a period where the temperature is
constant and the latent heat increases results in a slushy mixed phase where both states
coexist in equilibrium. Smooth crossover transitions are extended continuous transitions
without a mixed phase. Both first order and crossover transitions restore broken symmetries.

The phase diagram for the QGP transition is shown in Figure 1.4. This is plotted as
a function of the system’s temperature, T, and baryo-chemical potential, µB. The baryo-
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Figure 1.4: The QGP phase diagram plotted as a function of the baryo-chemical potential,
µB and the temperature, T. The QGP phase transition is shown as the hatched arc region.
At below this arc a hadron gas phase and normal nuclear matter is present, above it a QGP
is formed. At high µB and low T, a color superconductor is expected. Points show the areas
of phase space that are accessible at heavy ion colliders. [14]

chemical potential is analogous to the chemical potentials seen in thermodynamics. It is the
amount of energy increased in the system when a baryon is added assuming the system’s
volume and entropy are constant [15]. The baryo-chemical potential is related to the system’s
net baryon density, the number of baryons minus the number of anti-baryons. Higher values
of µB can be reached experimentally by reducing beam energies. RHIC beam energies are
large enough so that the µB and net baryon density are low. This is a result of transparency,
a phenomena where the non-interacting partons in the colliding nuclei pass through the
collision region and continue in the beam direction away from any created material.

A critical point is expected but its location is unknown. Scans of the collisions energy
in the range

√
sNN = 9− 200 GeV extend RHIC measurements to higher µB hoping to find

the critical point. Above the critical point, a first order phase transition is expected. Below
the critical point, in the region of the

√
sNN = 200 GeV RHIC collisions, the transition is

a smooth crossover. The lack of a mixed phase in the RHIC QGP transition complicates
the understanding of ρ mesons modified by the QGP. However it is possible that the hadron
formation could occur at differing stages of the transition for the various bound states. This
could allow for early ρ formation within residual QGP material.

1.1.4 Chiral symmetry

In the QGP phase transition confinement is lifted and chiral symmetry is restored. In
a chiral symmetric system, quark masses reduce to zero and left- and right-handed chiral
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Figure 1.5: The light meson chiral pairs with the mass splitting between the pseudoscalar
and scalar mesons, (π, f0), and the axial vector and vector mesons, (ρ, a1), (ω, f1) and (φ,
f1). The masses of each particle are listed in parenthesis and the vertical scale displays the
energy separation. [14]

states no longer mix. A brief discussion of chirality and chiral symmetry is presented below.
QCD states have either left or right chirality or handedness based on how they permute

under rotations in flavor space, eiφ·(λF /2) where φ is the rotation angle and λF is the generator
of the transformation. The vector and axial vector currents are presented in Equation 1.4

jµ
V a = q̄γµ λa

F

2
q and jµ

Aa = q̄γµγ5
λa

F

2
q (1.4)

where q and q̄ are the quark states, γµ and γ5 are related to the Dirac matrices and λF is
related to the flavor transformation. Chiral symmetry follows the SUL(3)×SUR(3) symmetry
relation. The left and right chiral states do not mix and opposite parity states are degenerate.

When quarks are massive, chiral symmetry is explicitly broken. The vector current can
only be conserved when the quark flavors have the same mass, the axial vector current
requires quark masses of zero. Even with massless quarks the axial vector current is not con-
served. Light quark mesons obtain their masses primarily from their QCD interactions such
as the quark condensate and not from the intrinsic quark masses. These QCD interactions
generate the effective quark meson masses listed in Table 1.1. However, light quark mesons
do not show a mass degeneracy between with their chiral partner mesons. The masses of
the ρ and a1 mesons differ, mρ = 0.770 GeV and ma1 = 1.230 GeV [2]. The meson couplets
are shown in Figure 1.5. When massless quarks do not reconcile the gauge transformation,
the symmetry is spontaneously broken.

The order of the chiral symmetry is related to 〈qq̄〉, the quark condensate. When chiral
symmetry is restored, the quark condensate is zero, 〈qq̄〉 = 0. In the spontaneously broken
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chiral state, there is a non-zero quark condensate, 〈qq̄〉 6= 0. Another consequence of spon-
taneous chiral symmetry breaking is that the ground state solution q = |0〉 is not invariant.
This means that the potential is non-zero in the ground state. Since QCD has parity conser-
vation, ie the potential has reflection symmetry, there are multiple invariant solutions and
potential minima. Choosing between the solution states breaks the chiral symmetry and
produces eight massless Goldstone bosons.

(a) V(σ, π) (b) V(σ, π = 0)

Figure 1.6: The mexican hat potential in three dimensions and shown as a slice at π = 0.
[16]

Figure 1.6 shows a mexican hat potential modeling the effective QCD behavior at zero
temperature. Here fπ is related to the order of the chiral symmetry, and π and σ fields
describe the set of axial vector transformations. In this example the π field is rotational.
Rotational movements along the bottom of the potential well are energetically identical,
these are called π-excitations and correspond to the massless Goldstone bosons. The σ field
is radial, movement on this axis requires additional energy. The additional energy creates
a mass difference between a meson and it’s chiral partner. Theoretical calculation of this
additional energy find the a1 mass follows ma1 =

√
2mρ [17], which is in agreement with the

measured values [2]. When chiral symmetry is restored these chiral partner states become
degenerate and the π excitations will become massive. [14] [15] [16] [18] [19] [20]

1.2 Relativistic heavy-ion collisions

In a relativistic heavy ion collision, the colliding particles undergo a cacophony of nuclear
interactions. The goal here is not to study one type of interaction for its own sake but to
use these signals to understand the many-bodied behavior of the nuclear material. D. Allan
Bromley put this nicely when he wrote:

[I]n contrast to particle physics, where ever more energy is delivered to ever-
decreasing volumes, in high-energy heavy ion work we are delivering ever-increasing
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energies to much larger volumes - volumes large enough to contain a large number
of nucleons and thus at least in principal large enough to display entirely new
collective phenomena. [21]

A relativistic heavy ion collision creates the high temperatures and density needed to
restores chiral symmetry and create a quark gluon plasma. The QGP phase transition is
exactly the sort of collective phenomena Bromley is referring to. This section continues with
a brief overview of previous heavy ion experiments and the definitions a few relevant terms.
A description of the evolution of a heavy ion collision and key measurements identifying
QGP formation at RHIC are presented.

1.2.1 Experimental history

Relativistic heavy ion interactions were first measured in cosmic ray balloon flights in
the 1940s [22]. By the late 1950’s scientists were able to create relativistic heavy ions in
the laboratory by re-purposing proton synchrotrons to accelerate heavy ion beams. In 1971
at Lawrence Berkeley National Laboratory, a beam from the SuperHilac was injected into
the Bevatron creating the Bevalac. The Bevalac was able to look beyond the interactions
between nuclei and generate collisions between individual nucleons [21].

At this time promising theoretical work predicted the QGP phase transition. This gen-
erated interest in relativistic heavy ion collisions as they provide a mechanism to obtain the
high energy densities necessary for QGP. Unfortunately the 1-2 GeV per nucleon nitrogen
beams available at the Bevalac were not up to the task. [23]

Accelerator advances in the 1980’s led to higher energy beams of heavier nuclei directed
at fixed target experiments. The Alternating Gradient Synchrotron (AGS) at Brookhaven
National Laboratory (BNL) provided oxygen and silicon beams at collision energies per
nucleon pair,

√
sNN ≈ 5 GeV, and the Super Proton Synchrotron (SPS) at European Orga-

nization for Nuclear Research (CERN) accelerated oxygen, sulfur, lead and indium beams
to collision energies per nucleon pair of around 20 GeV. At AGS energies nuclear stopping
created a baryon rich collision region. Higher energies at SPS allow the nonparticipating
spectator nucleons to pass through the interaction region lowering the net baryon density.
Measurements of strangeness enhancement relative to elementary interactions confirm that
thermal equilibrium is reached at AGS and SPS. J/Ψ suppression, a signal of QGP formation
[24], was measured at SPS but a misunderstanding of cold nuclear effects complicated the
interpretation delaying the discovery of the QGP at SPS.

In 2000 the Relativisitic Heavy-Ion Collider (RHIC) program started at BNL. RHIC
collides gold and copper at

√
sNN = 200 GeV using the AGS as an injector. The RHIC

experiments were the first to identify QGP formation and study the characteristics of the
plasma. The heavy ion program at the Large Hadron Collider (LHC) at CERN, started in
2010 with

√
sNN = 2.76 TeV lead collisions. Measurements from the LHC experiments have

already begun to produce interesting new results in a higher energy regime.
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1.2.2 Definitions of terms

• Leptons are a class of point-like particle consisting of neutrinos, electrons, muons and
taus. Muons and taus are heavier versions of electrons. All of these particles are
without color charge and interact primarily electromagnetically or weakly.

• The collision energy per nucleon pair,
√

sNN , relates the beam energies and the number
of accelerated nucleons. For p+p collisions at

√
sNN = 200 GeV, there are two colliding

proton beams at 100 GeV. For Au+Au and Cu+Cu collisions at the same
√

sNN the
beams are at 19.7 and 6.3 TeV respectively.

• A particle’s transverse momentum, pT , is the momentum perpendicular to the beam
direction, pT = |p|sin(θ) where p is the particle’s momentum and θ is the direction
of the particle relative to the beam axis. The longitudinal momentum, pL is the mo-
mentum parallel to the beam direction. Transverse kinetic energy, KET , is calculated
much like standard kinetic energy but with the transverse momentum instead of the
momentum. Transverse mass, mT is calculated from the mass and transverse momen-
tum in much the same way energy is calculated,

√
m2 + p2

T . Within this dissertation
the pT often refers to the pT of the dielectron pair.

• Rapidity, y, is a kinematic variable related to the relativistic velocity in the beam
direction. It is defined in Equation 1.5.

y =
1

2
ln

(
E + pL

E − pL

)
(1.5)

Rapidity is invariant under Lorentz transformations making it preferable for theoretical
calculations. Unfortunately, it is hard to determine experimentally. An approximate
value of the rapidity, the pseudorapidity, η, is measurable using the angle of particle
emission relative to the beam axis, θ, η = −ln[tan(θ/2)]. In a relativistic environment
where p >> m, the pseudorapidity and rapidity are essentially equal.

• Centrality characterizes the amount of overlap in a heavy ion collision. Collisions where
the nuclei completely overlap are called central while more glancing collisions are called
peripheral. Centrality is determined by measuring the amount of non-interaction nu-
cleons downstream from the collision. In Figure 1.7 the spectator nucleon distribution
measured in the PHENIX Beam-beam counter is divided into centrality classes ac-
cording to population percentages. The 0-10% centrality group is made up of central
collisions while 80-90% has peripheral collisions. For minimum bias data the trigger is
set so the number of events within centrality groups of the same percentage width are
approximately the same.

• Characterizations of the collision centralities are calculated using a geometric model,
called the Glauber model. It uses the shapes of the nuclei to estimate the number of
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Figure 1.7: The distribution of the spectator nucleon population measured in the PHENIX
Beam-beam counter (BB or BBC). The distribution is divided into percentage based cen-
trality groups. [25]

nucleons participating in the collision, NPart, and the number of independent nucleon-
nucleon collisions, NColl. A constant nucleon-nucleon cross-section of 42 mb is assumed
[26]. Medium and collective effects are not included. Because NColl is not measureable,
a Glauber Monte Carlo is used to find the mean NPart and NColl for a given centrality
group in a collision system.

These two numbers provide a mechanism to compare the collision environment in
Cu+Cu to that in Au+Au. Central Cu+Cu collisions of 0-10% centrality have NPart =
98.2± 2.4 and NColl = 192.7± 20.7. This is similar to 35-40% Au+Au collisions where
NPart = 102.7±4.3 and NColl = 188.6±20.6. The variation in the centrality bin width
between collisions with the same NPart and NColl shows that the Cu+Cu system can
study the onset of QGP formation with increased resolution in centrality.

1.2.3 Collision evolution

Relativistic heavy ion collisions evolve through a variety of stages. Dielectron are emitted
in each stage. The accelerated nuclei are Lorentz contracted into flat pancakes. As they ap-
proach the collision the nuclei quickly decelerate emitting coherent bremsstrahlung radiation
[28]. The initial collision consists of hard scattering interactions between the partons in the
nuclei. These interactions have large momenutum transfers and scale as a function of the
number of collisions, NColl. Dielectrons produced from Drell-Yan processes and jets formed
from fragmenting partons are created in these hard interactions.

In the collision, the two ions pass through each other creating a hot dense matter at
central rapidities [27], Figure 1.8. The nuclei’s non-interacting components continue in the
beam direction. The generated matter at midrapidity is a result of the high temperatures
and energy densities created during the collision allowing a phase transition from the normal
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Figure 1.8: Diagram of the nuclear matter distribution in rapidity, y, according to the Bjorken
picture. The upper plot shows the approach of two relativistically flattened nuclei. After the
collision, in the lower plot, the non-interacting partons move away from the collision. The
mid-rapidity region is populated by material created in the collision. [27]

nuclear regime and into a region where confinement is broken and a plasma of quarks and
gluons is created. In this plasma, quarks become massless and chiral symmetry is restored.
Dielectrons are produced as a result of processes in the Quark Gluon Plasma (QGP).

As the matter cools, quarks become confined creating a resonance gas of interacting
hadrons. Hadronic collisional broadening and pion-pion annihilation provide additional the
dielectron yields. The hadronization stage ends when inelastic collisions cease and the final
particle mesons and baryons are formed. At this point the relative hadron compositions
are set. Chemical-hydrodynamic models extract the temperature of this so-called chemical
freeze out using various hadronic ratios [29].

The remaining matter quickly thermalizes and expands. Elastic collisions are no longer
possible as the hadron’s mean free path is larger than the remaining fireball. The momentum
distributions of particles are set. The expansion creates an excess of high pT particles beyond
what is expected from a simple thermal distribution; this is called radial flow. The almond
shape of the matter, a result of the geometric overlap between the two nuclei, leads to a
momentum asymmetry as particles stream out traveling with different path lengths in the
medium. This phenomenon is called elliptic flow, v2. These flows are well described by ideal
hydrodynamic models that characterize the matter as a nearly perfect fluid. Each of these
stages are depicted in Figure 1.9.

1.2.4 QGP signals at RHIC

Heavy ion collisions at RHIC have obtained the high energy densities necessary to produce
a quark gluon plasma (QGP). The signatures of QGP formation in Au+Au collisions have
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Figure 1.9: Diagram of the space-time evolution of a heavy ion collision plotted on the
relativistic light cone. [7]

been detailed at length in the RHIC experiments’ white papers [10] [30] [31] [32]. The QGP
is known to produce large energy loss and partonic elliptic flow for both light [33] [34] [35]
and heavy quarks [36] [37]. This energy loss is studied with the nuclear modification factor,
RAA, defined in Equation 1.6.

RAA =
dNAA

〈NColl〉dNpp

(1.6)

where dNii is the differential yield in either the p+p or Au+Au collision system and 〈NColl〉
is the mean number of collisions in the centrality bin. RAA values of one mean that the heavy
ion collisions are like 〈NColl〉 independent p+p collisions. RAA values below one means that
particle production is suppressed below what is expected from 〈NColl〉 independent p+p
collisions.

Figure 1.10(a) shows the RAA for pions and direct photons as a function of the num-
ber of participating nucleons in the collision, NPart. The plot shows that neutral pions are
suppressed below NColl scaled p+p collisions while direct photons are unaffected. The az-
imuthal asymmetry, v2, for light quarks follows quark scaling as shown in Figure 1.10(b).
Figure 1.10(c) presents the RAA and v2 for non-photonic single electrons. Non-photonic elec-
trons are the result of open charm decay providing a measure of the heavy quark behavior.
High pT non-photonic electrons exhibit the same suppression and flow effects as the light
quark mesons. This characterizes the QGP as having very early thermalization and a strong
interaction even for the heavy charm quarks. The direct photon pT spectrum for central
Au+Au collisions, Figure 1.10(d), is compared to theoretical calculations of thermal photon
emission. These thermal models find initial QGP temperatures between 300 and 600 MeV
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Figure 1.10: PHENIX results highlighting QGP behavior.
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Figure 1.11: The dielectron mass spectrum contains various signals including dalitz decays
from pseudoscalar mesons (π0, η), resonances from vector mesons (ρ, ω, φ, J/ψ and ψ’) and
the correlated open charm (DD̄) and Drell Yan components. The different mass regions are
clearly marked with the low mass region below the φ, the intermediate mass region between
the φ and the J/ψ and the high mass region above the J/ψ. [20]

[40], well above the expected transition temperature of 175 MeV.
Measurements in the Cu+Cu collisions system have shown the same QGP signatures [38]

[41] confirming that QGP is created at Cu+Cu energy densities. Cu+Cu collisions provide
an system with a similar geometry as Au+Au collision but with fewer participating partons,
resulting in a lower energy density. This allows us to study the nature of the QGP onset
and separate geometric and energy density effects.

1.3 Dielectron mass spectrum

The dielectron mass spectrum contains signals continuously emitted throughout the colli-
sion. As colorless particles, electrons primarily interact electromagnetically and have limited
final state interactions. This makes dielectrons an ideal probe of the QGP. They can measure
quantities from early stages of the collision. Direct photon measurements have similar early
stage access but are hindered by lower signal to backgrounds rates particularly at low mo-
menta. Dielectron spectral measurements provide the potential to measure the temperatures
and the time-spans of various collision stages by decomposing the emission yields of various
sources with theoretical understanding of the emission rates.

The dielectron spectrum contains a variety of signals, many are shown in Figure 1.11. The
free streaming vector mesons (ρ, ω, φ, J/ψ and ψ’) decay into dielectrons forming resonance
peaks. The pseudoscalar mesons (π0, η and η′) Dalitz decay creating exponentially falling
line shapes. Pre-collision coherent bremstralung radiation from decelerating nuclei has a
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negligible contribution and is not included [28]. Hard processes such as Drell Yan and
prompt photons primarily from qq̄ annihilation provide additional early collision signals.
Drell Yan pairs are seen in Figure 1.11 at masses above the J/ψ. Prompt photons are not
included in Figure 1.11 but they are expected at high and intermediate masses. Thermal
radiation emitted in the fireball produces virtual photons that decay into dielectrons; these
have been identified at low masses and high pT [42]. Dielectron emission may even occur
before the QGP equilibrates [43].

Pair production of heavy quarks results in another dielectron signal. The correlated
heavy quarks hadronize into open charm or bottom meson pairs. When both of the mesons
decay semi-leptonically the resulting electron-positron pair maintains the correlation from
the pair production of the heavy quarks. This is true for both charm and bottom quark
production, cc̄ → DD̄ → e + e− and bb̄ → BB̄ → e + e−. The open charm component
peaks at masses of 0.5 GeV/c2, but it is the dominant signal in the region above the φ. The
open bottom component is expected to overwhelm open charm at masses above the J/ψ.
The heavy quark behavior in the QGP is its own interesting field of study. Suppression at
high pT [39] and changes in the angular distributions [44] [45] have been measured. There is
the potential of centrality dependant changes in the intermediate mass region due to these
modifications of the heavy quarks. Statistical limitations have hindered the understanding
of this region.

Additional modifications to the dielectron spectrum as a result of the QGP include the
suppression of mesons formation due to energy loss and enhanced thermal and prompt photon
emission leading to dileptons. A variety of theoretical work considers the modifications of
light vector mesons in the collision medium. In particular, the short-lived ρ meson, τ ≈ 1.3
fm/c, provides a probe to study the effects of the residual medium on it’s mass. These
light vector meson mass modifications will be presented in more detail later in this section
followed by a review of recent continuum dilepton mass spectrum measurements in heavy ion
systems. One caveat related to the various dilepton signals is that the signal strength of any
one process in the spectrum depends on its relative production rate and emission timespan.

1.3.1 Light vector meson modification theories

Dilepton spectrum modifications have been proposed through a variety of mechanisms.
Here we discuss three of them, a broadening of the ρ mass from medium hadron-hadron
interactions, a dropping of the ρ mass due to medium temperature effects, and a combination
of broadening and/or dropping masses assuming parton hadron string dynamics (PHSD).
One relevant difference between the theories is what is the nature of the medium leading to
the modification, in the broadened ρ theory it is the hadron gas, in the dropping mass it is
a medium undergoing chiral symmetry restoration and in the PHSD it is a pre-hadronized
medium with massive quasi-particles. First the broadened mass theory will be presented,
then the dropping mass mechanism and finally PHSD.
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Figure 1.12: Diagram of pion annihilation forming an intermediate ρ meson. The ρ becomes
a virtual photon and decays into an electron-positron pair. [20]

Broadened ρ masses

Medium broadened ρ mesons result from pion annihilation and other many-body interac-
tions in the expanding hadronic fireball. A Feynman diagram for pion annihilation with the
intermediate ρ meson is in Figure 1.12, the ρ becomes a virtual photon before decaying into
dielectrons. The hadron gas phase exists for approximately 10 fm/c allowing for multiple
generations of ρ mesons to be created, decay and regenerate throughout the phase’s duration.
When a ρ decays into dielectrons, the electrons pass through the hadronic gas with minimal
interaction since the electron’s mean free path is larger than the size of the fireball.

The broadened ρ contribution is calculated with an effective lagrangian and either the
vector dominance model or a chiral reduction formulism. In the chiral reduction formulism,
in medium electromagnetic correlators are constructed based on the vacuum correlators with
QCD sum rules, nuclear photo-absorption and lattice QCD constraints. These correlators
while not vector dominant maintain a ρ and a1 dominance.

In the hadronic many-body approach the ρ meson propagator is defined as Equation 1.7,

DL,T
ρ (q0, q; µB, T ) =

1

M2 −m2
ρ − Σρππ − ΣL,T

ρM − ΣL,T
ρB

(1.7)

where mρ is the mass of the ρ, M is the dielectron pair mass, the L and T superscripts refer
to the longitudinal and transverse modes and Σρi are the in medium self-energies related to
the various interactions, ie with the pionic cloud (ππ), mesons (M) or baryons (B). In the
vacuum, baryon and meson self energies are zero and ΣL,T

ρππ provides the width of the pion

resonance. In medium, ΣL,T
ρM and ΣL,T

ρB are non zero and ΣL,T
ρππ includes additional contributions

such as pion Bose enhancement.
In a heavy ion collision, the temperatures are high enough that the width as a result of

this broadening grows to the size of the mass itself, a ’melted’ resonance. The broadened
ρ contribution is often considered with additional hard and thermal QCD processes. The
hadron gas contributions must be folded into the full space time integrated spectrum so
proper characterization of the temperature, lifetime and expansion rate of the hadronic
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phase must be known. The broadened ρ has explained the excesses measured at CERES
and NA60 and the enhancement at masses above 0.6 GeV/c2 in the PHENIX minimum
bias Au+Au spectrum. The PHENIX Au+Au excess at masses below 0.6 GeV/c2 is not
understood.

Brown-Rho scaling

In 1991 Gerry Brown and Mannque Rho predicted that the masses of the light vector
mesons decrease as the temperature and/or density of the medium increases [46]. The masses
drop proportionally as a result of the restoration of chiral symmetry according to Equation
1.8,

m∗
N

mN

≈ m∗
V

mV

≈ f ∗π
fπ

(1.8)

where the asterisks refers to a property in medium, mN is the mass of the nucleon, mV is
the mass of the ρ or ω vector mesons and fπ is the pion decay constant, which is related
the order of the chiral phase transition. This scaling relation is a obtained by starting with
an effective chiral lagrangian in free space and maintaining the symmetries constraints of
QCD as the scale changes to account for the hot/dense medium. An alternative derivation
of the scaling property can be produced using hidden local symmetry theory with a vector
manifestation [47]. Theories based on in medium QCD sum rules resulted in similar mass
reductions in medium [48].

Brown-Rho scaling has been shown to be linked to effects in a variety of measurements
including the anomalously long lifetime of C14 [49] and mass shifted omega mesons produced
in the nucleus via photo-production [50]. In a heavy ion experiment, the scaling behavior
manifests itself as a superposition of mass shifted ρ mesons each emitted at different temper-
atures as the medium cools. Initial calculations of Brown-Rho scaling successfully described
the CERES data [51] [52]. But when ρ mesons produced by pion annihilation in the hadron
gas stage are considered, Brown-Rho scaling was not needed to describe the NA60 data.
More recent theories have questioned whether the dielectron channel is capable of providing
a direct measure of Brown-Rho scaling in heavy ion collisions.

Parton hadron string dynamics

Parton hadron string dynamics (PHSD) is a parton transport model that describes
the full evolution of the system including hard scattering, string formation, QGP forma-
tion, hadronization and interactions among hadrons. It takes an effective theory approach.
Hadronic yields are calculated using a statistical hadronization model. Inelastic baryon-
baryon and meson-baryon collisions are included. The pre-hadronized system is modeled on
interacting massive quasi-particles with broad spectral functions and off-shell non-perturbative
versions of pQCD processes such as:

• quark annihilation, q q̄ → l+ l−
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• quark annihilation with gluon bremstralung, q q̄ → g l+ l−

• gluon-Compton scattering, q g → q l+ l−

• virtual gluon decay, g∗ → q q̄ l+ l−

• virtual quark decay, q∗ → q g l+ l−

Some of the Feynman diagrams for these interactions were presented earlier in Figure 1.1.
One of the nice aspects of this model is that it considers not only a dropping mass scenario
and a broadened mass scenario but also a scenario where the mass drops and broadens. It
has successfully reproduced the low mass excess for both the CERES and NA60 data and
describes the PHENIX excess above 0.6 GeV/c2 but not the excess at lower masses. In
the comparison to PHENIX data, the hadron decay channels are tuned to match the p+p
spectrum and the hadronic contributions are extended to the Au+Au spectrum. [53] [1]

1.3.2 Dielectron continuum measurements

The DLS experiment at the Bevatron found an enhancement in the dilepton spectrum
[54]. The dilepton excess called ”the DLS puzzle” was later confirmed by the HADES exper-
iment at the SIS at GSI [55]. Modified spectral shapes of light vector mesons were measured
at lower energies using photo-production by the TAPS experiment at MAMI [50], although
modifications were not seen in the CLAS experiment at Jefferson National Laboratory [56].
Recent high energy heavy ion dilepton continuum measurements, from the CERES and NA60
experiments at the SPS in CERN and the PHENIX and STAR experiments at RHIC are
presented in more detail below.

CERES

The Cherenkov Ring Electron Spectrometer (CERES) experiment [57] [58] located at
CERN used a fixed target bombarded with a beam from the SPS. Data was collected between
1992 and 2000. The dielectron continuum mass spectra is measured at midrapidity focusing
on the low mass region in a variety of collision systems and energies.

Figure 1.13 displays two proton+nucleus collision systems, p+Be and p+Au at 450 AGeV,
and two nucleus+nucleus collision systems, S+Au at 200 AGeV and Pb+Au at 158 AGeV.
The spectra in both of the proton+nucleus systems are in good agreement with the hadronic
cocktail of expected yields. The nucleus+nucleus spectra show excesses above the hadronic
cocktail for masses above 0.2 GeV/c2. In each case the excess is quantified in the mass region
0.2 to 1.5 GeV/c2 with an enhancement factors, F =

∫
spectrum/

∫
cocktail; the factors are

5±0.7 [stat] ±2 [sys] in S+Au and 2.31±0.19 [stat] ±0.55 [sys] ±0.69 [decays] in Pb+Au.
In Figure 1.13(b) the Pb+Au CERES data is compared to the unmodified cocktail (thin

solid) and theoretical calculations assuming ρ production through pion annilhation where
the ρ’s mass distribution is unmodified, i.e. the vacuum spectral function (solid), modified
with a reduced mass (dash-dot) or modified with a broadened mass (solid). The data are
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Figure 1.13: CERES dimuon spectra for p+Be and p+Au at 450 GeV/A, S+Au at 200
GeV/A, Pb+Au at 158 GeV/A. The Pb+Au spectrum is compared with the standard cock-
tail of hadronic sources (light solid line) and theoretical calculations including a vacuum ρ
spectral function (dashed line), dropping ρ mass (dash-dot line) and a broadened ρ (solid).
[59]

well described by both the dropping and broadened ρ. The vacuum ρ spectral function is not
sufficient. PHSD calculations (not shown) also describe the data using both the broadened
mass and the combined broadened and shifted mass curves [53]. It is apparent that ρ’s are
modified but the exact nature of the modification, either broadening and/or dropping mass,
is unclear.

Further study of the excess in the Pb+Au 158 AGeV spectra provide insight into the
ρ modification. It increases at a faster than linear rate with the charged particle density,
consistent with production in two-body collision processes such as pion-pion annihilation.
The mass spectra partitioned for pair transverse momenta above and below 0.5 GeV/c,
show the enhancement is primarily at low pT and a smaller enhancement exists for pairs
with transverse momentum above 0.5 GeV/c. Each of the modification theories are able
to reproduce the pT behavior via different mechanisms [59]. At reduced beam energies of
40 AGeV, the Pb+Au dielectron spectrum has a larger excess than at 158 AGeV with an
enhancement factor of 5.9 ± 1.5 [stat] ± 1.2 [sys] 1.8 [decays]. The system’s total baryon
density, the sum of the baryon and antibaryon number, is maximal at 40 AGeV. The increase
in F suggests that total baryon density is a significant contributing factor. [60]

NA60/NA50

The NA60 experiment was also located at CERN. A beam from the SPS hit a fixed
target upstream of the detector. NA60 was an upgrade of the NA50 experiment [61] with
the addition of a silicon-vertex telescope [62]. The dimuon spectrum are measured in a
variety of proton+nucleus and nucleus+nucleus collision systems. Dimuon pairs have the

21



Figure 1.14: NA60 In+In 158 AGeV dielectron spectrum with (left) and without (right) the
subtraction of the η, η’, ω, and φ cocktail contributions. The remaining excess after the
cocktail subtraction is compared to the unmodified vacuum ρ cocktail contribution and two
theoretical contributions, the Brown-Rho dropping mass scenario and the broadened mass
Rapp-Wambach theory. Both calculations were provided by Rapp. [63]

benefit of excluding the π dalitz source increasing the signal to background relative to a
similar dielectron measurement. Relevant NA60 and NA50 results are briefly discussed.

NA50 p+nucleus collisions used Al, Cu, Ag and W targets. The resulting mass spectra
are well described by hadronic, Drell Yan and correlated heavy quark contributions. NA50
nucleus+nucleus collisions of S+U at 200 AGeV and Pb+Pb at 158 AGeV found an excess
at intermediate masses, inconsistent with Drell Yan [64]. The addition of the silicon-vertex
telescope improved mass resolution and provided the ability to identify off-vertex decays from
open charm at NA60. The 158 AGeV In+In measurement confirmed the NA50 intermediate
mass excess and found that it was not due to off-vertex charm decays but thermal photons
[65]. NA60’s improved resolution and high statistics led to a very precisely measured spec-
trum. The ρ meson’s spectral function was isolated by subtracting the cocktail components
of the other hadronic signals and compared to both a dropping mass scenario (Brown-Rho)
and a broadened mass shape (Rapp-Wambach). Figure 1.14 shows the spectrum with and
without the cocktail subtraction and with the theoretical lines calculated by Rapp [63]. The
broadened ρ line describes the data better than the dropping mass line particularly at masses
above the ρ resonance. The PHSD lines broadened mass scenario (not shown) best describes
the excess; the PHSD theoretical broadened ρ line is highly similar to the broadened curve
calculated by Rapp seen in Figure 1.14 [53].
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(a) p+p and Min. Bias Au+Au dielectron spectra

(b) Min. Bias Au+Au spectrum compared to theoretical curves

Figure 1.15: PHENIX dielectron spectra for p+p and Au+Au collisions at
√

sNN = 200
GeV are shown on the upper plots. These spectra are restricted to pairs within the PHENIX
acceptance. On the lower plots the low mass region of the minimum bias Au+Au data is
compared with theoretical calculations by Rapp (left) and PHSD calculations by Cassing
and Bratkovskaya (right). [40]
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PHENIX

PHENIX first measured the dielectron continuum at midrapidities in the Au+Au system
at
√

sNN = 200 GeV using data taken in 2004 [40]. This
√

sNN = 200 GeV p+p measurement
soon followed using data from 2005 [66]. The p+p spectrum agrees well with cocktail of
known hadronic sources. The Au+Au minimum bias measurement shows no excess in the
intermediate mass region but the centrality dependent spectra are less clear in this region.
The Au+Au minimum bias, 0-10% and 10-20% spectra shows a large excess at low masses.
The low mass excess increases at a rate faster that NPart with centrality. The excess yield is
dominated by the low pT contribution. At high pT the excess is attributed to a virtual photon
contribution; this seen in both the p+p and Au+Au spectra [42]. Theory comparisons to the
minimum bias Au+Au low mass measurement are unable to describe the full extent of the
excess, particularly at masses below 0.6 GeV/c2 and pT below 0.5 GeV/c. In Figure 1.15(b),
curves from both PHSD [53] and broadened ρ [67] provide the best agreement [40]. Further
theoretical work on the lowest mass and pT component and the centrality dependence of the
excess is necessary. [40]

STAR

(a) p+p (b) Au+Au

Figure 1.16: STAR dielectron spectra for
√

sNN = 200 GeV p+p and minimum bias Au+Au.
Both spectra are compared with the cocktail of known hadronic sources. The spectra are
into the full 2π acceptance. [68]
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In May 2011, STAR presented preliminary
√

sNN = 200 GeV Au+Au and p+p dielectron
spectra with data taken at RHIC. The Au+Au minimum bias and most central, 0-10%,
spectra show excesses above the expected hadronic sources. Excess factors in the mass
region 0.15 to 0.75 GeV/c2 are 1.4± 0.06± 0.38 and 1.54± 0.09± 0.45 for the minimum bias
and 0-10% spectra respectively. Because these spectra are so recent theoretical comparisons
are not yet available. [68]

This is not the first time the STAR experiment has measured the ρ meson. In 2004, STAR
published a ρ meson measurement in the pion channel, ρ → π π, for

√
sNN = 200 GeV p+p

and peripheral (40% - 80%) Au+Au [69]. At low pT , pT < 2 GeV/c, the Au+Au ρ meson’s
mass peak shifts downward relative to the p+p peak position by approximately 0.3 GeV/c2.
A weaker mass shift of is seen in the high multiplicity p+p collisions suggesting a multiplicity
dependance. These small mass shifts may be the result of Bose-Einstein correlations and
rescattered pions from the π π → ρ → π π interaction in medium. Theoretical study by the
proponents of both the dropping and broadened ρ scenarios agree that the small decrease
of the ρ mass in the pion channel is most likely the effect of dynamical interactions in the
hadron gas phase [70] [71]. Since pions are measured in the final state they are influenced
by the hadronic gas phase to a higher degree.

1.4 Purpose of thesis

The dielectron spectrum in Cu+Cu collisions provides increased accuracy to study the
onset of the enhancement at low masses seen in PHENIX Au+Au measurements. Addition-
ally the Cu+Cu system compared with the Au+Au could allow the separation of collision
multiplicity and flow effects. This enhancement is due in part to modification of the ρ me-
son, with various theories for different types of modification. Additional sources of dielectron
pairs stem from thermal and prompt photons from virtual photon emission from the fireball
and hard qq̄ annihilation processes. There is also a heavy quark contribution that may be
modified by QGP energy loss such as the known suppression of high pT non-photonic single
electrons produced by open heavy meson semi-leptonic decays [39] and the known variation
of opening angles between leptons from heavy quarks [44].

The dissertation is organized as follows. Chapter 2 describes the RHIC accelerator com-
plex and the PHENIX experiment. Chapter 3 focuses on how detector hits are processed
into tracks, the data quality and identification cuts are also discussed. Chapters 4 and 5
detail the various backgrounds occurring in the dielectron spectrum and how backgrounds
are removed. Chapter 6 presents the efficiency corrections that repair the subtracted spectra
adjusting for detector dead areas and poor detector response. Chapter 7 studies the system-
atic errors inherent in the analysis focusing particularly on the background subtraction and
the efficiency correction. In Chapter 8, the hadronic cocktail of known sources is produced
and compared to the Cu+Cu spectra. Chapter 9 relates the Cu+Cu results to previous di-
electron measurements and theoretical calculations. Finally, the conclusions and some ideas
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for future measurements are presented.
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Chapter 2

Experimental Apparatus

2.1 Relativistic Heavy-Ion Collider

The Relativistic Heavy-Ion Collider (RHIC) is located at Brookhaven National Lab in
Upton, NY. Heavy ions, or polarized protons, are accelerated to relativistic speeds using a
series of accelerators. Figure 2.1 shows the location of each component of the accelerator
complex. Particles start at the Tandem Van de Graaff accelerator (1), pass through to
the Booster (3), enter the Alternating Gradient Synchrotron (5) and are injected into the
RHIC ring (6). Once in the 2.4 mile RHIC ring, they are split into two counter circulating
beams of particle bunches (each 25 cm long for Au+Au collisions) that orbit and cross at
six interaction points [72]. Experiments detect the collision ejecta at the interaction points
along the ring. Currently two experiments, STAR and PHENIX, take data at RHIC at
the 6 o’clock and 8 o’clock positions respectively. In the past two additional experiments,
PHOBOS and BRAHMS, also performed RHIC measurements.

2.2 PHENIX

The PHENIX detector measures photons, leptons, and hadrons, both the identified (i.e.
π, K, p) and at high transverse momenta. This is done using a variety of subsystems. The
subsystems are divided among the central arm detectors, muon detectors and global detec-
tors. Figure 2.2 provides beam- and side- views of the detector; the central arm detectors are
represented in the beam-view and the global and muon detectors are shown in the side-view.
The interaction region is surrounded by the central magnet with an axial field parallel to the
beam. The central arm detectors measure photons, electrons and hadrons and are located at
mid-rapidity and have only partial azimuthal coverage. The muon arms detect muons using
a pair of forward spectrometers and tracking detectors with full azimuthal coverage. The
global detectors are located along the beamline and measure the interaction’s start time,
vertex and multiplicity. The global and central arm detectors are the primary detectors used
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Figure 2.1: Diagram of the Relativistic Heavy-Ion Collider complex. Particles start at the
Tandem Van de Graaff accelerator (1), pass through to the Booster (3), enter the Alternating
Gradient Synchrotron (5) and are injected into the RHIC ring (6). [72]

Figure 2.2: Beam- and side-views of the PHENIX detector in 2004 and 2005. [73]
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Figure 2.3: Schematic drawing of the beam-beam counter shown in magenta.

in this analysis and are presented in more detail below [74].

2.3 Global Detectors

The relevant global detectors for this analysis are the beam-beam counters (BB) and zero
degree calorimeters (ZDC). Both of these detectors measure beam fragments to determine
the event’s start time, z-vertex and centrality. The detectors are located along the beamline,
each with a module north and south of the interaction region. The BB is closer to the
collision region while the ZDC is located past the muon arms as seen in the side-view of the
detector in Figure 2.2.

2.3.1 Beam-beam Counter

The beam-beam counters (BB) are located around the beampipe outside of the poles of
the central magnet 144 cm from the center of the interaction region. They consist of two
counters, one north and one south of the collision point, each with full azimuthal coverage
and a pseudo-rapidity range of ±|3.0− 3.9|. The counters have an outer diameter of 30 cm
and an inner diameter of 10 cm with a 1 cm clearance between the detector and the beampipe.
Each counter consists of an array of 64 Cerenkov counters with 3 cm quartz radiators and a
photo-multiplier tube readout. Due to it’s location near the beampipe and central magnet
the detector functions within in a high radiation environment. It is used in heavy ion and
p+p collisions and is responsive in both high and low multiplicity environments.

The BB measure the timing and energy deposition of forward charged particles. It
determines the collision time and position along the beam axis and produces a trigger on
minimum bias events. The collision time is obtained by measuring the arrival time of prompt
charged particles. It provides a start time for the hadron identification in the Time-Of-Flight
detector; the resulting start time resolution of 96 ps, which allows us to separate pions and
kaons up to a momentum of 2.4 GeV/c. The beam axis or z-vertex position is determined
by comparing the average hit times of particles in the north and south counters. A z-vertex
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Figure 2.4: Zero degree calorimeter.

position of less than 30 cm and multiple hits on both sides of the BB are required for an
event to be classified as minimum bias. The collision centrality is determined using the
BB multiplicity measurement. Centrality is classified into percentage centrality classes with
0 − 10% being the most central portion and 60 − 94% being the most peripheral portion.
In Cu+Cu measurements only the BB measurements are used; Au+Au collisions have used
the BB in conjunction with the ZDC to determine centrality. [75]

2.3.2 Zero Degree Calorimeters

The zero degree calorimeters (ZDC) measure neutrons in 4 mrad cones around the
beampipe, 18 m north and south of the collision point beyond the muon arms. They are 10
cm wide and 13.6 cm high hadronic calorimeters with 5 mm tungsten alloy absorber plates.
While the hadronic showers are not fully contained, the energy resolution at 100 GeV is
between 19% and 17.6% depending on whether three or four modules are used. The single
neutron energy resolution is 25%.

The measured neutrons come from beam fragments and evaporative emission from the
colliding nuclei. Charged particles are deflected by the nearby magnets as shown in Figure
2.4. As in the BB case, a ZDC coincidence in the north and south is used for minimum
bias selection. In the event that the BB is unable to reconstruct the z-vertex, the timing
difference between the north and south ZDC modules can also be used to determine the
z-vertex position; this was not necessary in the Cu+Cu measurements. The total neutral
energy measured by the ZDC allows us to monitor the luminosity and determine event
multiplicities. [76] [77]

2.4 Central Arm Detectors

The two central arms of PHENIX are located at mid rapidity, |η| < 0.35, on the east
and west sides of the interaction region beyond the range of the magnetic field. They are
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Figure 2.5: The drift chamber frame. [79]

cylindrical arcs around the beam axis with a partial azimuthal coverage of about 90o for
each arm.

The detectors in the central arms are layered as shown in the beam-view of Figure 2.2.
The drift chamber (DC) is the inner most layer, followed by the first pad chamber (PC1),
the ring imaging cherenkov detector (RICH), the second pad chamber (in the west arm
only), the time expansion chamber (in the east arm only), a third pad chamber and the
electro-magnetic calorimeter (EMC). Aerogel and time-of-flight detectors, which are useful
for particle identification [78], are located between the second and third pad chambers in
the west arm and between the third pad chamber and the electro-magnetic calorimeter in
the east arm respectively. This analysis uses the DC and PC1 for tracking and momentum
determination and the RICH and EMC for electron identification; these detectors will be
discussed in further detail below.

2.4.1 Drift Chambers

The drift chambers are located 2 m along the beam axis with inner and outer radii
from the beam axis of 2.02 and 2.46 m respectively. Titanium frames with mylar windows
at the front and back enclose the chamber volume, Figure 2.5. The volume is filled with
approximately 3200 anode wires stretched, primarily in the z direction, across the interior
and a gas mixture of 50% argon, 50% ethane and < 1% ethanol. Charged particles pass
through the detector ionizing the gas. The free electrons drift onto the anode wires and
register as detector hits. To ensure hit recognition at high multiplicities (up to 500 tracks in
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Figure 2.6: A drift chamber keystone with X, U, and V wires modules. The wire orientation
and location in a drift chamber sector are shown. The wire configuration that makes up a
cell is also presented including the anode wire, two gate wires, a back wire and the potential
wires. [79]

a
√

sNN = 200 GeV Au+Au event), the wires are divided within each arm into north and
south regions using a non-conductive kapton separator. This segmentation also allows for a
100 µm carbon fiber support beam that lightens the wire tension load on the titanium frame
to 4.5 tons and introduces only a small amount of additional material into each chamber.

The two DC arms consist of twenty keystones each with an angular bite of 4.5o in φ.
Figure 2.6 presents top- and side-views of a DC keystone. A keystone has two layers of
wire modules (X1 and X2) that follow the beam axis and four layers of stereo wire modules
(U1, V1, U2 and V2). Stereo wires are tilted azimuthally at angles of 6o relative to the X
wire modules. Stereo wires beginning in one keystone end in the neighboring keystone. The
top-view diagram in Figure 2.6 shows this. The X modules allow for track measurements
in the r-φ plane. Stereo modules allow for additional pattern recognition and z position
determination, ideally to match the position measurement in the PC1. The modules are
stacked radially. The inner wire module layer is an X module (X1), followed by two stereo
wire modules (U1, V1) which are tilted in opposite directions in φ; this is then repeated in
the same order for a second layer of each module type (X2, U2, V2). The positions and
relative geometry of pieces within the DC are calibrated at the beginning of the yearly data
taking using zero-field data. For the 2005 data set I performed this calibration.
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Figure 2.7: Diagram of a pad chamber board. [79]

The wire modules contain eight alternating anode and cathode wire planes in the r-z
plane and each located at different φ positions. Each plane consists of twelve wires in an
X module and 4 wires in a U or V module. Between the anode and cathode there is a 2
to 2.5 cm drift distance in the φ direction. The cathode wires produce a constant electric
field causing the ionized electrons to drift with a constant velocity toward the anode wires.
Anode wires are surrounded by additional wires that facilitate the drift measurement, Figure
??. These wires are potential wires, gate wires and back wires.

Potential wires are located above and below each anode wire; they produce a strong
electric field and define active regions for each wire. Two gate wires are located to one side
in front of the anode wire. They focus the drifting electrons toward the anode wire and
separate the regimes of neighboring anode wires; as a result a single wire samples only 3 mm
of the ionization trail. Back wires are held at a low potential and block the flow of electrons
from the non-gate wire side reducing the signal rate by a factor of two. There remains a 2
mm left-right ambiguity between the back wire and the anode wire. The probability of the
anode registering a hit from the back wire side is less than 5%. The gate and back wire
configuration alternates for neighboring anode wires. A cell consists of a collection of one
anode wire, two gate wires, a back wire and the potential wires.

The DC measurement is a series of timing pulses at each cell; the mean timing pulse
width is approximately 35 ns. The time difference between the DC measurement and the
event start time from the BB is used to calculate the hit position using the drift velocity.
The drift velocities are determined using drift chamber online calibrations, a system which I
maintained and oversaw for Run 5. Typical drift velocity values are 5 cm/µs. The resulting
single wire efficiency is 95− 96% and the single wire resolution is 165 µm. [79]

2.4.2 Pad Chambers

The pad chambers provide three dimensional spatial point measurements using a multi-
wire proportional chamber. They are the only non-projective detectors in the central arms.
There are three pad chambers in PHENIX. The first pad chamber (PC1) is located in both
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Figure 2.8: A pad chamber pad configuration with nine pixel cells.

arms between the DC and the RICH. The second pad chamber (PC2) is in the west arm
behind the RICH. The third pad chamber (PC3) is in front of the EMC in both arms.
PC1 provides the z position confirmation in the tracking algorithm. It contributes to the
momentum measurement via the pZ component and the track vector direction. PC2 and PC3
provide hadron rejection in the EMC allowing us to remove secondary particles from decays
after or outside the aperture of the DC and PC1. While important, hadron rejection and
secondary interactions are not issues in this analysis and the dead areas in these detectors
would further complicate our understanding of the detector’s aperture. The remainder of
this section focuses on PC1.

PC1 consists of anode wires inside a gas volume bounded by cathode planes. This sounds
similar to the DC but it is quite different. Instead of many planes of anode wires strung
through a large volume, there is only one plane of anode wires within each detector and the
cathode planes are panels that define the gas volume. A charged particle travels through
the gas volume creating an avalanche on the anode wire. As a result of the avalanche,
image charges are formed on a segmented pixel array on the top cathode; the effected pixel
locations provide the position measurement and pattern recognition. The detector’s position
resolution is determined by the pixel size.

PC1 has eight independent 0.5 m2 volumes in each arm located at eight φ positions.
Each volume is made up of two cathode panels stacked on top of each other with anode
wires strung in the layer between the panels and oriented in the z direction, as seen in
Figure 2.7. The anode wires are separated by 8 mm to achieve a position resolution of ±
4 mm. The cathode panels are placed on FR4-honeycomb-FR4 sandwich boards. The top
cathode is segmented into a pixel array while the lower cathode is solid copper. Readout
electronics lie on top of the sandwich board and are connected to the pixel (or pad) board via
a microconnector and kapton cable. The resulting detector is very light with little material
inside the fiducial volume and a radiation thickness of 1.2% including the electronics.
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Figure 2.9: Diagram of the ring imaging Cherenkov detector. [80]

The PC1’s position resolution are determined by the pixel size. A response area of 8.4 x
8.4 mm2 is desired. Reading out such a large number of individual pixels is not possible due
to the required readout channel cost and the likelihood of false hits using the discriminator
readout method. A novel pad design was created to deal with these issues, Figure 2.8. A
pad consists of nine pixels, three parallel sets of three diagonal cells each, Image d in Figure
2.8. Cells within a pad are read out together. A hit requires three distinct but interwoven
pad responses, which reduces electronic noise and the likelihood of a false hit. The triple hit
requirement reduces the number of channels read out by a factor of three. It also provides
enough information to identify the individual neighboring pixels within the three pads that
are the hit source, Image c in Figure 2.8. This is possible because with our interleaved pixel
geometry and pad definitions three nearby pads only have one set of neighboring cells. The
desired response area of 8.4× 8.4 mm2 is divided between the three pixels, defining two side
pixels of 2.7× 8.2 mm2 and one center pixel of 1.5× 8.2 mm2. The resulting pad geometry
has a z direction resolution of ±1.7 mm. [79]

2.4.3 Ring Imaging Cherenkov Detector

The ring imaging Cherenkov detector (RICH) is a threshold gas Cherenkov detector.
Electrons pass through the gas emitting a cone of Cherenkov photons. The photons are
focused into a ring by spherical mirrors and reflected onto a photo-multiplier tube (PMT)
array. The ring position characterizes the direction of the electron track; parallel tracks that
fire the RICH illuminate the same ring. An average of twelve photons per ring are created
for β = 1 particle with a path-length of 1.2 m. The projected cherenkov rings form ellipses
with typical diameters of 8 cm or 11.8 cm on the PMT array.
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Figure 2.10: Internal view of the ring imaging Cherenkov detector showing the spherical
mirrors nd focal plane. [81]

The RICH is located at radii between 2.575 and 4.1 m from the beamline and have a θ
angular bite ranging from 70o to 110o. There is one 40 m3 aluminum walled gas volume in
each arm with available radiation lengths varying from 87 to 150 cm depending on incident
angle. Material within the detector volume is minimized to prevent photon conversions and
multiple scattering. The radiator length from the entrance window to the mirror surface
ranges from 0.9 to 1.5 at 90o and deviations of 20o from normal. The vessel is filled with
CO2 radiating gas at a pressure of 0.5 inches of water above the ambient pressure. CO2

gas optimizes the electron pion discrimination by reducing background rates, has a high
pion threshold, and provides stability in the number of photoelectrons generated from one
electron. It has an electron threshold of 18 MeV/c with a much higher pion threshold of
4.65 GeV/c.

Each RICH vessel contains two PMT arrays and two mirror arrays. The PMT arrays
are placed outside of the gas volume near the mirror’s focal plane. They are tucked behind
the central magnet protecting them from particles produced by the collision, and encased
in ferroperm shielding to block stray magnetic fields up to 100 G. A PMT array consists of
16× 80 tubes divided into modules of 32 tubes each. There are 5120 PMTs total.

Each PMT has a UV transparent glass window, a 25 m diameter bi-alkaline photocathode
and a 50.8 mm diameter Winston cone that serves as a light collector. They have gains
greater than 107 and a quantum efficiency of 20% at 300 nm. The mirror arrays consist of
48 carbon fiber epoxy mirror panels in two 2 x 12 groupings that form intersecting spherical
surfaces with a total reflecting area of 20 m2. [80] [81]
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Figure 2.11: A PbSc EMC calorimeter tower module. [82]

2.4.4 Electro-magnetic Calorimeter

The electro-magnetic calorimeter (EMC) measures the energies and spatial positions of
photons and electrons. The calorimeter consists of six lead scintillator (PbSc) sampling
calorimeters and two lead glass cherenkov detectors (PbGl). Four of the PbSc sectors are
located in the west arm and the other two are in the top two sectors of the east arm. The
PbGl sectors are located at the two lower sectors of the east arm behind the Time-of-Flight
detector. The PbSc sectors provide a better linearity, timing and hadronic response. The
PbGl sectors have better granularity and energy resolution. [82]

PbSc

The PbSc is a shashlik-type sampling calorimeter meaning that the intensity of the
measured shower light corresponds to the deposited energy. Photons and electrons enter
the calorimeter and hit the lead absorber layer creating a shower at the front of the towers;
typical showers have a radiation length of 18 χo. Hadrons may also shower in the calorimeter
but they will travel farther down the tower before radiating and may punch through the back
of the tower without depositing all of their energy. A separate re-calibration is required to
identify the hadrons in the calorimeter using the time of flight response. I performed the
hadronic time of flight re-calibration for the PbSc in the 2004 Au+Au data set.

A single tower in the PbSc consists of sixty six alternating cells of lead and plastic
scintillator edge plated with aluminum. Wavelength shifting fibers are threaded through the
layers and connect to a 30 mm photomultiplier tube at the back of the tower. Four towers
are grouped into a module, optically isolated and read out together, Figure 2.11. Thirty six
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Figure 2.12: PbGl electro-magnetic supermodule. [82]

modules are grouped together in a steel frame to form supermodules; Eighteen supermodules
make up a sector.

The PbSc tower gains are calibrated using a pulsed ultra-violet YAG laser distributed
across different modules using optical splitters and fibers grated to simulate a 1GeV shower
across each module. The final energy resolution for photons and electrons after noise cor-
rections of the PbSc detector is 8.1%

√
E (GeV )⊕ 2.1% with the 8.1% stochastic error from

the sampling and the 2.1% intrinsic error due to non-uniformities in the detector such as
boundary effects, tower hot spots, variations in shower depth and attenuation angle.

PbGl

The PbGl is a Cherenkov calorimeter. Cherenkov radiation is emitted as photons and
electrons pass through the leaded glass. Hadrons with momenta above their respective
Cherenkov thresholds (pions ≈ 106 MeV/c, protons ≈ 715 MeV/c) may generate light in
the PbGl. But typically, hadron measurements in these sectors rely on the high-precision
TOF detector located directly in front of the PbGl.

The PbGl has 9216 towers. Towers are 40 mm x 40 mm x 400 mm in volumes of leaded
glass. They are wrapped in aluminized mylar and read out with photomultiplier tubes. Each
sector has 192 supermodules laid out 16 × 12. Supermodules consist of twenty four towers,
glued together in a self-supporting array of six towers by four towers. Six supermodules, in
a two by three array, share a readout motherboard for data acquisition.
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Chapter 3

From hits to electron tracks

The detector hits detailed in the previous chapter are decoded into particle track infor-
mation and individual electron tracks are identified for the analysis. This is done in a process
called production. The produced data is recalibrated, correcting any minor initial calibration
errors. The data must then pass a series of cuts designed to maintain data quality at the run
level, the event level and the track level. The surviving good tracks pass a series of electron
identification cuts. This chapter details production, recalibration, quality requirements and
electron identification.

3.1 Production

Production is the computational process by which particle tracks are formed out of the
individual hits in each detector. The raw data files with the hit information are processed
by computer codes into data files that contain event and track information. Year to year the
production code changes with the introduction of new detectors and methods of calibration.
The pro.73 production library is used in this analysis. The production of the 2005 Cu+Cu
200 GeV data set was lead by Carla Vale at Brookhaven National Laboratory and took six
to seven months; this includes the additional time used to aggregate the file segments into
larger run based file outputs.

The production algorithm works in high multiplicity environments such as central Au+Au
collisions and has a low rate of producing false or ”ghost” tracks. All tracks start at the
primary vertex and are mapped in the r-φ direction displayed in Figure 3.1. Individual tracks
are assumed to follow a straight trajectory once they reach the central arm detectors since
they are outside of the range of the central magnet’s field.

A Hough transform algorithm is used to discern between potential track trajectories.
This consists of making all possible tracks using the hits in the X1 and X2 layers of the
DC within a reasonable region. Each potential track is characterized by two orthogonal
parameters, the azimuthal angle of the track at the DC, φDC , and the angular deviation of
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Figure 3.1: Diagram of the α and φDC tracking variables.

the track slope from φDC , α; shown in Figure 3.1. These parameters are used, as opposed to
the standard y=mx+b formalization, because they are bounded by 2π. A two-dimensional
Hough array stores these parameters for all possible tracks. Local density maxima, deter-
mined by a minimum threshold requirement, in the Hough array space provide most-likely
track candidates. Later steps improve the characterization of the tracks and perform back-
ground track removal. The track finding efficiency is better than 99%. The double track
resolution is better than 2 mm, this is due to the 35ns mean timing pulse width in the DC
[83].

Additional association between the tracks and other detectors reduces background and
ghost tracks. In most cases this is done at the analysis stage by cutting on the separation
between the track projection and the hit location in the respective detector. The RICH is
an exception to this method. The pattern recognition for the Cherenkov rings in the RICH
uses the track candidate as a seed in the search to find Cherenkov rings.

3.2 The EWG data set

Production output consist of various root files for the different data sets. The root files
contain data nodes in ROOT’s TTree format. This analysis uses the EWG Minimum Bias
data set which consists of electron candidate tracks that satisfy the minimum bias trigger.
EWG files contain a central arm node, a global node, the sync object and various additional
nodes. The central arm node consists of the central arm track information the production of
which we have discussed above. The global node contains event specific information such as
the event centrality and z-vertex position. The sync object ensures that when multiple files
are opened in the PHENIX input-output framework that they will access the same events
at the same time. The global node and central arm node are the data nodes primarily used
in this analysis.

The EWG data set is a subset of the CNT data set, charged particle tracks in the central
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Table 3.1: EWG data set cuts
EWG Cut
n0 > 1 ‖ sn0 > 1
0.3 < ecore/p < 2 c
0.15 < pT < 25 GeV/c
emcsdphi e < 4 && emcsdz e < 4

E/p [c]
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Figure 3.2: The Energy over momentum, E/p, using a subset of the CNT dataset with the
EWG cuts detailed in Table 3.1 applied.

arms. EWG files have a reduced content in the central arm node. They only contain events
where the vertex is within ±50 cm of the detector’s center. The number of tracks are also
reduced by requiring rudimentary electron identification cuts listed in Table 3.1; the track
variables mentioned here are described in detail in the next section. Figure 3.2 shows the
reduction in tracks due to these cuts. This means the EWG file set has a much smaller foot
print in the PHENIX computing universe than the CNT file set. As a result Run 5 EWG
files are all available on disk for any user to access at any time. In contrast only a portion of
the Run 5 CNT data set is available on disk; the full Run 5 CNT data set is in dCache and
accessible via the AnalysisTrain. The AnalysisTrain is a code submission architecture that
aims to efficiently access the files in dCache in an organized fashion for multiple analyses.
The AnalysisTrain was created by Thomas Hemmick, Nate Emerson, Wolf Holzmann and I
and is currently maintained and run by Chris Pinkenburg and Nathan Grau.
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Table 3.2: Quality values with the bit patterns and their meanings
Quality Bit pattern Meaning according to the bit pattern
61, 62, or 63 1 1 1 1 x x (X1, X2, or X1 & X2) unique PC1 and UV hits
49, 50, or 51 1 1 0 0 x x (X1, X2, or X1 & X2) unique PC1, no UV hits
29, 30, or 31 0 1 1 1 x x (X1, X2, or X1 & X2) unique UV hit, a PC1 hit
21, 22, or 23 0 1 0 1 x x (X1, X2, or X1 & X2) UV and PC1 hits
17, 18, or 19 0 1 0 0 x x (X1, X2, or X1 & X2) PC1 hit, no UV hits

3.3 Central track variables

As mentioned in the earlier section production results in file outputs containing the event
and track information. Only the relevant variables for this analysis are discussed. For clarity,
we’ve separated these variables into two groups: tracking variables and electron variables.
Tracking variables are based on primarily DC and PC1 information and detail the track
geometry, momentum and matching between DC and PC1. The electron variables provide
electron identification using information from the RICH and EMC. Hit quality (ring or
shower characteristics), hit geometry and matching of detector hit to track are the relevant
fields.

3.3.1 Tracking variables

The tracking variables consist of quality, the momentum, p, and geometric values. The
geometric variables are the polar angle, θ, the azimuthal angle at the DC, φDC , the azimuthal
angle at the vertex, φ0, and angular deviation of the track slope from φDC , α. Figure 3.1
displays the relationship between φDC and α. The PC1 z-coordinate, zed, the East/West
location of the track, arm, and the north/south half of the hit in the drift chamber, dcside,
are additional geometric variables. The nx1hit and nx2hit variables are the number of hits
in the X1 and X2 sections of the DC respectively.

The quality variable, refers to the track quality or matching between the PC1 and DC in
the tracking algorithm. PC1 matching is important because while the U and V layers of the
DC provide some z-position information, the z-position is primarily determined by a PC1
hit. The quality variable allows the analyzer to differentiate between tracks with different
levels of coincidence and uniqueness in the PC1, U/V and X layers of the DC. The quality
values are determined by a bit pattern; the values, bit pattern and meanings are detailed in
Table 3.2.
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3.3.2 Electron variables

Electron variables using the RICH detector are center z, center phi, npe0, n0, chi2, disp,
and sn0. The center z and center phi variables are the ring’s z and φ coordinates. The npe0
and n0 variables are the number of photoelectrons and number of fired phototubes within
an annulus with an inner radius 3.8 cm and outer radius 8.4 cm. The chi2 variable is a
χ2-like value with units of cm2 that characterizes the ring shape; a cut on chi2/npe0 mimics
a reduced χ2. The disp variable characterizes the displacement between the track projection
in the RICH and the ring center. The sn0 variable takes into account the probability of
a random association between a track and a Cherenkov ring. It is a ”swapped” variable
meaning that the n0 is calculated in the same way as described earlier but with false cor-
relations. False correlations are constructed by keeping the tracks in the same location but
flipping the RICH geometry across the North/South line. The sn0 is looking for the number
of phototubes fired in a ring on the track’s mirrored side of the RICH.

Electron variables using the EMC are the core shower energy, ecore, the probability
that the shower was electro-magnetic, prob, and track separation variables for electrons,
emcsdphi e and emcsdz e. The track separation variables are sigmalized, meaning that they
are not distances or angular differences but are the sigma away from zero assuming a gaussian
spread.

3.4 Recalibration

After data production, some variables have sub-optimal distributions. Additional cali-
brations are calculated based on this output. Ideally the production code would be corrected
and the data would be re-produced with the new calibrations in effect. However, it is not
cost effective or timely to rerun the production to implement these calibrations when they
can be corrected using the existing information in the output. A MasterRecalibrator frame-
work was created to apply calibrations to the data nodes at run time. Different calibrations
are registered to the MasterRecalibrator and then they are available to all users. This was
managed by Anne Sickles and created with the help of Chris Pinkenburg.

Two relevant recalibrations were applied in this analysis, one for the electron track sep-
aration variables in the EMC and a second for the beam shift calibration. The electron
track separation variables in the EMC, emcsdphi e and emcsdz e, are calibrated to provide
the correct sigma variation as opposed to the distance or angular separations. This was
done using gaussian fits of the distributions by Susumu Oda. The beam shift calibration
compensates for variations in the vertex position by shifting the location of the detectors in
the tracking space such that the distance between the vertex and the detector position is
correct. I calculated and implemented the beam shift calibration for the 2005 dataset.
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Figure 3.3: The α versus φDC distributions for the east arm of the DC for the zero field run
152825. The blue points are the data and the black line represents the fit using Equation
3.1.

3.4.1 Beam shift calibration

The beam shift calibration is done using zero field runs taken in 2005. This is a secondary
alignment calibration adjusting for changes in location of the detectors due to moving the
arms during the access or shifts in the beam location. These secondary shifts are typically at
or below a millimeter. A full DC alignment was performed at the beginning of the 2005 run
by myself and my advisor, Thomas Hemmick. The full alignment consists of determining
the tilts of individual wire boards and the locations of the X1 and X2 layers within the DC
as well as the location of the whole DC. This is a more involved process but it is similar to
the beam shift calibration described below.

Zero field runs allow us to determine the vertex position. All tracks are straight and their
α values should be zero. Plotting α versus φDC shows any deviation. Deviations follow the
functional form

α =
dx

R
∗ sinφDC +

dy

R
∗ cosφDC (3.1)

where R is 220 cm. The vertex offsets, dx and dy, are found by fitting the α versus φDC

curves with Equation 3.1 as seen in Figure 3.3. This is done separately for each arm; in 2005
the two arms gave consistent offsets.

The vertex offsets are applied in the recalibrator adjusting the α value by Equation 3.1.
The transverse momentum, pT , is then scaled by the absolute value of the ratio of the old
α over the new α; the momentum is scaled as well. Similarly the track’s charge and φ0, the
azimuthal angle at the vertex, are adjusted to be consistent with the new α value.

Once the vertex offset is settled the momentum scale is set using the J/ψ mass as a
standard candle. This entails making a J/ψ mass spectra using electron-positron pairs where
the pair mass is dominated by the lepton momenta. The J/ψ peak is fit. The momentum
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Table 3.3: Good track requirements
Cut on Good Tracks
quality = 63, 51, or 31
θ ≥ 0
20 ≥ pT ≥ 0.2 GeV/c

scale is set to adjust the mass scale so that the J/ψ peak occurs at the correct location, 3.096
GeV. For the 2005 dataset, the momentum scale adjustment is 2%.

3.5 Quality requirements

The quality requirements maintain acceptance and detector stability between runs, be-
tween events and between tracks.

At the run level, quality assurance is performed on the data to determine which run
numbers are associated with poor running conditions. These run-time problems are typically
associated with dead areas in the aperture or other variations in the detector response due
to voltage and temperature fluctuations. This is based off of an initial run list available from
the production website [84]. The run list is cross referenced with the electronic logbook to
remove any additional runs flagged as bad. Bad runs consist of converter runs, zero field
runs, runs with drastic reductions of acceptance due to detector holes and runs where the
necessary detectors are operating sub-optimally as determined by the online monitoring. The
remaining run list is cross referenced with the output from the PHENIX quality assurance
website [85] looking at the electrons per event in the different detector arms.

At the event level the primary cut is the z-vertex cut. Only events that occur with a z-
vertex position within ±25 cm of the detector origin are used. Outside of this z-vertex range
events have an acceptance that is not as well understood due to edge effects. Additionally
larger portions of these events are missed because they are more likely to be outside the
detector aperture. The only other requirement is that the magnetic field is on, this is
confirmed using the inner and outer coil currents.

High quality tracks consists of a track reconstruction component and an acceptance
component. Ensuring tracks are well reconstructed is done by using cuts on the quality
variable and requiring other sanity checks. These cuts are listed in Table 3.3. The quality
variable was detailed in an earlier section with the meanings listed in Table 3.2. We require
a quality of 63, 51 or 31; this insists on both the X1 and X2 layers in the DC and a PC1 hit
that is unique or a PC1 hit with a unique UV hit. The θ cut ensures that any track in the
central arms has a θ in between 60o and 120o. The transverse momentum is restricted to
within the detector’s measurable range. An additional cut, not listed in Table 3.3, requires
that the track not cross from the north side of the detector to the south side and vice versa.
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Figure 3.4: A map of the detector acceptance, φ0 vs. charge/pT , overlaid with ideal aperture
lines in blue, EMC sector lines in red and the fiducial cut lines in green. The acceptance
lines are listed in Table 3.4

The acceptance component consists of providing a mask of acceptance lines restricting
tracks to the standard detector acceptance. This prevents any over correction of these accep-
tance holes, one of this measurements larger source of systematic errors. The requirements
of the mask are shown in Figure 3.4 and are listed in Table 3.4.

3.6 Electron identification cuts

Electrons are identified using the EMC and RICH detectors. Electron tracks fire a
Cherenkov ring in the RICH and shower in the EMC. The electron identification cuts shown
in Table 3.5 ensure that the tracks are well matched to both the RICH ring and EMC shower
and that the ring and shower are well characterized. The RICH ring requirements ensure
that a ring fired, n0 ≥ 1, that the ring has a typical ring shape, chi2/npe0 < 15, and that
the ring aligns with the track, disp < 10. The EMC shower requirements guarantees that
there is a shower, ecore ≥ 0.15, it is an electro-magnetic shower, prob > 0, due to an electron,
ecore/p ≥ 0.5, that is located near the track, 5 sigma matching cut.

The energy over momentum, E/p or ecore/p, quantity best displays the ability of these
cuts to remove non-electron tracks. Electrons are characterized by energy over momentum
values close to one since the electron mass is minimal. Figure 3.5 displays the electron
identification cuts from Table 3.5 successively applied on the EWG data set in the following
order: the RICH disp cut, the RICH ring shape cut, the RICH n0 cut, the EMC track
matching cut, the electromagnetic shower probability, the EMC shower energy cut, the pT

cut and finally the energy over momentum cut.
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Table 3.4: Acceptance mask defining the ideal aperture and dead areas
Cut Value

Ideal East arm aperture φ− 0.309 ∗ charge
pT

> 2.16

φ− 0.309 ∗ charge
pT

< 3.731

φ− 0.206 ∗ charge
pT

> 2.16

φ− 0.206 ∗ charge
pT

< 3.731

φ− 0.275 ∗ charge
pT

> 2.16

φ− 0.275 ∗ charge
pT

< 3.731

Ideal West arm aperture φ− 0.309 ∗ charge
pT

> 0.982

φ− 0.309 ∗ charge
pT

< −0.589

φ− 0.206 ∗ charge
pT

> −0.589

φ− 0.206 ∗ charge
pT

< 0.982

φ− 0.275 ∗ charge
pT

> −0.589

φ− 0.275 ∗ charge
pT

< 0.982

EMC sector boarders φ− 0.275 ∗ charge
pT

= 2.5528

φ− 0.275 ∗ charge
pT

= 2.9455

φ− 0.275 ∗ charge
pT

= 3.3383

φ− 0.275 ∗ charge
pT

= −0.1963

φ− 0.275 ∗ charge
pT

= 0.1965

φ− 0.275 ∗ charge
pT

= 0.58925

Dead areas 0.193 > φ− 0.219 ∗ charge
pT

> −0.0614

−0.0614 > φ− 0.219 ∗ charge
pT

> −0.1272

0.5877 > φ− 0.219 ∗ charge
pT

> 0.522

3.022 > φ− 0.219 ∗ charge
pT

> 2.956

3.1316 > φ− 0.219 ∗ charge
pT

> 3.1096

−0.107 > φ− 0.206 ∗ charge
pT

> −0.181

3.731 > φ− 0.206 ∗ charge
pT

> 3.6692

−0.5664 > φ− 0.206 ∗ charge
pT

> −0.589
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Table 3.5: Electron identification cuts
Cut
n0 ≥ 1
chi2/npe0 < 15
ecore/p > 0.5 c
ecore > 0.15 GeV
prob > 0
disp < 10.0
5 sigma emc track matching cut
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 < 25
T

0.15 < p
E/p > 0.5

Figure 3.5: Histogram of the Energy over momentum, E/p, using the EWG dataset. Various
electron identification cuts are applied in succession and detailed in the legend.
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The electron cuts detailed here are fairly loose compared to what is typically used in
single electron analyses. The loose electron identification cuts are not a problem since this is
a pair analysis and the correlation between an electron-positron pair is the measured signal
not individual electrons. Electron tracks are quite rare; typically we see one electron per
twenty events in minimum bias collisions. A mis-identified electron track is unlikely to have
another electron to pair with it. In the rare event where that does happen, the pair is
unlikely to be truely correlated and a combinatorial pair is generated. The following section
will discuss the removing combinatorial pairs and other background pairs in more detail.
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Chapter 4

Making pairs, identifying backgrounds

Identified electron and positron tracks within an event are paired. The mass and pT are
calculated for each pair according to Equations 4.1.

m = c−2

√
(E+ + E−)2 − (p+ ¦ p−)2 c2

pT =

√
(p+x + p−x)

2 + (p+y + p−y)
2

E+ =
√

p+
2c2 + m2

ec
4

E− =
√

p−2c2 + m2
ec

4 (4.1)

All possible pairs within an event are made. This is done because it is difficult to
determine which electrons and positrons share the same source. The resulting spectrum,
Figure 4.1, contains the signal pairs in addition to a large number of background pairs. The
background sources are:

• combinatorial pairs

• detector overlap effects

• conversion pairs

• correlated pairs due to jets

• correlated pairs with a common ancestor

The largest background is the combinatorial background. These are non-physical pairs
from unrelated electrons and positrons in the same event. Non-physical background pairs
are also due to detector overlap effects. These pairs result from the finite segmentation in
the RICH detector and the difficulty separating adjacent rings on the RICH PMT array.
The remaining background sources contain physical correlations that we are not interested
in measuring. Conversion pairs result when a photon converts in the detector material or
gas. Correlated jet pairs occur when both the electron and positron are from separate decays
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Figure 4.1: The mass distribution of all electron-positron pairs.

produced within the same jet pair. Pairs correlated by a common ancestor are produced in
decay chains where multiple electron-positron pairs are created, a combinatorial pair within
the chain is correlated by their common ancestor.

We are able to remove the backgrounds using two strategies, pair cuts and statistical
background removal. Conversion pairs and detector overlap are identified and discarded
by applying pairs cuts. The remainder of the backgrounds, combinatorial pairs and both
types of correlated pairs, are removed statistically. This is done by first generating the
background shapes, normalizing the shapes to the background levels and then subtracting
each background component. The statistical background removal method is explained in
more detail in Chapter 5.

To aide normalizing and removing the backgrounds statistically, like-sign pairs are gen-
erated. The like-sign pair spectra contain only background pairs, there are no like-sign
signal pairs. We mention the like-sign pairs here to include like-sign background pairs in
the discussion of the various backgrounds. All of these background sources produce like-sign
background pairs except for the conversion pairs. Figure 4.2 presents the electron-electron
and positron-positron mass spectra. The like-sign mass spectra are drastically different from
the unlike-sign pair mass spectrum in Figure 4.1. This is the result of the lack of physical
signal and the different detector acceptances as a result of the magnetic field. Similarly, the
background sources generate different unlike- and like-sign distributions.

This chapter presents the various backgrounds in detail for both unlike- and like-sign
pairs. Pair cuts, when applicable, are described. The generation of the various backgrounds
needed for the statistical removal method are also discussed.

4.1 Backgrounds removed by pair cuts

Pair cuts consist of identifying and removing the background pair. The individual elec-
trons and positrons that make up the pairs are still available for other pairings. We use

51



]2 [GeV/ceem
0 0.5 1 1.5 2 2.5 3 3.5 4

C
o

u
n

ts
/E

ve
n

t

-910

-810

-710

-610

-510

]2 [GeV/ceem
0 0.5 1 1.5 2 2.5 3 3.5 4

C
o

u
n

ts
/E

ve
n

t

-910

-810

-710

-610

-510

Figure 4.2: The mass distributions of all measured electron-electron and positron-positron
pairs.

pair cuts to reject backgrounds from detector overlap effects and photon conversions. These
background pairs are classified in part by their track geometry.

4.1.1 Detector overlap

The RICH detector is the source of overlap background pairs. Overlap in the RICH
occurs when parallel tracks enter the detector. Spherical mirrors focus light emitted from
either track onto the same location in the PMT array, Figure 4.3 contains a diagram of the
focusing. This results in false electron identification for tracks that are coincidentally parallel
to a true electron track. This creates a variation in the hadron rejection that is correlated
the pT of the electrons within the event, since the slope of a track is roughly 1/pT . The
variation in hadron rejection changes event-by-event because the sampled electron pT differ.
When these hadrons pair with other electron identified tracks they generate the standard
combinatorial background pairs. When they pair with their parallel electron they do so
above the combinatorial rate creating a peaked structure.

Both like- and unlike-sign background pairs are created by detector overlap. The leptons
in like-sign pairs are bent equally by the magnetic field resulting in pairs with a small
opening angle and therefore a small mass. The leptons in unlike-sign pairs are bent in
opposite directions by the magnetic field; this results is a larger opening angle and masses
near 0.6 GeV/c2. Figure 4.4 shows the unlike- and like-sign mass distributions with overlap
pairs and with the pairs removed using the pair cut.

We remove these pairs by requiring that the ring centers are separated by more than
twice the nominal ring size. This is calculated using each track’s ring location according to
Equations 4.2. A requirement of a distance greater than or equal to ten is applied which
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Figure 4.3: Diagram of the ring imaging Cherenkov detector focusing of the Cherenkov light
into a ring on the PMT array.
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Figure 4.4: The mass distributions for electron-positron, electron-electron and positron-
positron pairs with and without the overlap pair cut. The removed pairs are shown in red.
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Figure 4.5: Diagram of the opening angle orientation of conversion pairs. It is compared to
the random orientation of the opening angle for pairs from a Dalitz decay.

prevents any overlap in the PMT array and requires fully distinct rings.

δcenter =

√(
centerφ1 − centerφ2

0.01

)2

+

(
centerz1 − centerz2

3.6

)2

(4.2)

4.1.2 Conversion pairs

High energy photons interact with the nuclei in the detector material and convert into
electron-positron pairs. The detector is designed to minimize conversions by using materials
with large radiation lengths, 1/χ0. As a result pair production occurs primarily in the
beampipe with some additional conversions in the air and the detector support structure.
As mentioned earlier, photon conversion produces only electron-positron pairs; no like-sign
background pairs are generated.

When the photon converts the electron-positron pair are originally co-moving. Once they
enter the magnetic field region they separate as a result of their opposite charges creating a
small opening angle. The conversion pair’s opening angle is in the plane perpendicular to
the magnetic field as shown in Figure 4.5. The two leptons travel through the detector and
are reconstructed as separate tracks. The momentum of off-vertex decay products, such as
the electron and positron, are mis-reconstructed since the tracking algorithm automatically
connects tracks back to the collision vertex. This results in a pair mass that is roughly
proportional to the distance between the conversion point and the collision vertex. Beam
pipe conversions peak at a pair mass of 0.02 GeV/c2. Air conversions extend to masses of
0.4 Ge/c2 with peaks due to the PHENIX support structure structure at masses of 0.07 and
0.12 GeV/c2.
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Figure 4.6: The mass distribution of electron-positron pairs with and without the conversion
cut applied in blue and black respectively. The removed pairs are shown in red.

The pair’s orientation relative to the magnetic field, φV , and mass serve as indicators of a
pair’s photon conversion origins. This helps us distinguish conversion pairs from signal pairs
with small opening angles, such as pion Dalitz decay pairs. We remove electron-positron
pairs with opening angles within 0.06 rad of the plane perpendicular to the magnetic field
and masses below 0.6 GeV/c2 where conversions are prevalent. A stronger φV cut, removing
φV less than 0.25 rad, is applied at masses below 0.05 GeV/c2 where beampipe conversions
are strongest. Figure 4.6 shows the mass spectrum with and without the conversion cut
applied in blue and black respectively. The removed pairs are shown in red. The detector
overlap cut described earlier is applied. In Figure 4.6 the beampipe conversions are clear
at mass 0.02 GeV/c2. Peaks due to the support structure are seen at masses of 0.07 and
0.12 GeV/c2. Air conversions produce a peak at a mass of 0.28 GeV/c2. The peak at 0.45
GeV/c2 is due to the combinatorial background pairs that coincidentally fail the conversion
cut.

4.2 Combinatorial background pairs

Some backgrounds can not be identified making background removal with pair cuts im-
possible. This is the case for combinatorial pairs and correlated pairs due to jets and common
ancestry. Instead we remove these backgrounds statistically. Combinatorial background pairs
are presented. Both types of correlated pairs are discussed in the next section.

Combinatorial background pairs are due to uncorrelated electrons and positrons in the
same event. For example an event with four electrons from two uncorrelated pion Dalitz
decays result in two signal pairs, from the Dalitz pairs, and two combinatorial unlike-sign
pairs, from pairs across the two separate decays, and two combinatorial like-sign pairs, one
of each sign. In general, as the number of electrons, N− and positrons, N+, within an
event increase the number of combinatorial pairs increases roughly as that number squared;
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Figure 4.7: The mass spectra for electron-positron, electron-electron and positron-positron
pairs. Combinatorial background spectra, roughly normalized, are shown in red and the blue
histogram is the subtraction.

N− ∗ N+ unlike-sign pairs are created and N− (N− − 1) or N+ (N+ − 1) for the electron-
electron and positron-positron pairings respectively. The combinatorial background is the
largest background and is typically orders of magnitude larger than the desired signal.

The combinatorial background shape is generated, normalized and subtracted from the
signal measurement. Figure 4.7 shows the unlike- and like-sign mass spectra with the pair
cuts applied overlaid with the roughly normalized combinatorial background shape achieved
via event mixing. The blue histogram is the spectrum with the combinatorial removed. The
majority of the measured pairs are due to the combinatorial background. This background
has a substantially different shape in the unlike- and like-sign spectra because of the different
pair acceptance as a result of the charges moving the in magnetic field. A small excess
background remains in the like-sign spectra at low mass. These pairs are the remaining
correlated backgrounds due to jets and common ancestors described in the next section.

The combinatorial background shape is generated by creating non-physical pairs from
similar events guaranteeing pairs without any physics signals. This is called event mixing.
We ensure that the similar events are used for creating these background pairs by classifying
each event in groups by their centrality and z-vertex values. This is necessary because the
combinatorial shape changes with the multiplicity, pT distribution and acceptance variations
across the group classification. Event mixing in is described in more detail in Chapter 5. Fig-
ure 4.8 show the generated combinatorial backgrounds for the dielectron mass spectra using
fifty groups divided according to ten centrality and five z-vertex classifications. In Figure 4.8
the drastic increase in the size of the combinatorial background in more central collisions is
apparent. This is because the combinatorial background grows with the multiplicity squared
and central collisions have higher multiplicities. The combinatorial background shapes are
also vary with centrality. Event mixing and the generation of the combinatorial background
will be discussed in more detail in Chapter 5.
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(a) Unlike-sign pairs
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(b) Like-sign pairs

Figure 4.8: The like- and unlike-sign combinatorial shapes generated for centralities sepa-
rated in 10% groupings, with 80-90% and 90-94% summed together. Here the sum of both
the electron-electron and positron-positron pairs are combined for the like-sign pairs.

4.3 Correlated pairs

There are two types of correlated background pairs, those from an underlying jet corre-
lation and those from hadronic decays that share a common ancestor. These backgrounds
are similar to the combinatorial background in that they are the result of pairing many
leptons in the event. However these pairings maintain the correlation from their production
dynamics and are not simple random pairings of the electron-positron sample. This means
that their shape can not be reproduced using event mixing. Instead various simulations are
used to generate the correlated background shapes taking into account the restrictions due
to the intrinsic production dynamics.

These simulations are subtracted from the data after being normalized by their back-
ground rates. The simulations are weighted according to the efficiency of the electron iden-
tification cuts and the detector dead areas found in the data are applied. The dead areas
in the detector acceptance detailed in Chapter 3. The electron identification efficiency is
presented in Chapter 6.

4.3.1 Jet correlated background pairs

Background pairs due to jet correlations typically result from two pions within a jet that
Dalitz decay creating two electron-positron signal pairs as seen in Figure 4.9. As in the
example in the combinatorial pairs subsection, two additional non-signal electron-positron
pairs and electron-electron and positron-positron pairs are created. These background pairs
maintain information from the jet correlation of the pions effecting the pair distributions,
particularly the pair variables mass, pT and ∆φ.
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Figure 4.9: Diagram of the jet geometry leading to jet correlated backgrounds.

Figure 4.10: The top row shows the unlike-sign correlated jet pair mass, pT , and ∆φ spectrum
for all pairs (black), background event pairs (red) and background event subtracted pairs
(blue). The second row shows the subtracted spectrum in two-dimensional projections of
mass vs. pT , mass vs. ∆φ, and pT vs. dφ.
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Figure 4.11: The top row shows the like-sign correlated jet pair mass, pT , and ∆φ spec-
trum for all pairs (black), background event pairs (red) and background event subtracted
pairs (blue). The second row shows the subtracted spectrum in different two-dimensional
projections of mass vs. pT , mass vs. ∆φ, and pT vs. ∆φ.
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Figure 4.12: The measured IAA in Cu+Cu collisions vs. NColl. [86]

The jet background is simulated by Torsten Dahms using Pythia, a p+p event and jet
generator. In the simulation the pions created by the jet were modified to preferentially
undergo Dalitz decay to maximize the relevant pairs produced in the simulation. Both
like- and unlike-sign background lepton pairs are made. The Pythia simulation spectrum
contains an underlying p+p event that is removed. This is done by randomly generating
events flat in φ and θ with the Pythia pT distribution, area normalizing these background
events’ spectrum to the simulation in the region ∆φ 70o to 110o and subtracting the event
from the simulation. This subtraction is shown in Figure 4.10 and Figure 4.11 for unlike-
and like-sign pairs respectively.

The subtracted spectrum is the correlated jet background assuming an unmodified p+p
jet. It depicts the standard jet ∆φ distribution with near- and away-side peaks in both the
like- and unlike-sign ∆φ spectrum. This bimodal near- and away-side jet structure are also
seen in the mass and pT spectrum where the near-side jet component peaks at a low masses
and high pT , the away-side jet component peaks at masses near 0.7 GeV/c2 and pT below
0.5 GeV/c. The higher pT in the near-side jet is a result of the low mT acceptance hole due
to the minimum pT cut on single electrons.

Cu+Cu jets differ from p+p jets; they undergo jet suppression [41]. The away-side jets
are altered in the more central collisions. Figure 4.12 shows the IAA, the ratio of the away-
side yield in Cu+Cu over the away-side yield in p+p, versus NColl, the number of collisions,
in Cu+Cu collisions. We expect this suppression to alter the away-side jet shape in mass
and pT . To model this we reduce the away-side jet component as a function of centrality
according to the measured Cu+Cu IAA. Figure 4.13 shows the effect of the reduction in the
away-side jet on the correlated jet mass spectrum.
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Figure 4.13: The jet background adjusted by IAA for each of the centrality bins (0-10% green,
10-20% red, 20-40% blue, 40-94% black) for electron-positron pairs, electron-electron pairs
and positron-positron pairs.

4.3.2 Correlated pairs with a common ancestor

Pairs correlated by a common ancestor are produced in decay chains where multiple
electron-positron pairs are produced, a combinatorial pair within the chain is correlated by
the common ancestor. First lets discuss as an example, a hadronic Dalitz decay with a
photon conversion. In this case the following pairs result:

• the electron-positron pair from the Dalitz decay

• the electron-positron pair from the photon conversion

• the electron-electron pair, one from the Dalitz decay and one from the photon conver-
sion

• the positron-positron pair, one from the Dalitz decay and one from the photon conver-
sion

• two electron-positron pairs, in each one is from the Dalitz decay and one is from the
photon conversion

The electron-positron pair from the Dalitz decay is a physical signal pair that is included
in the dielectron measurement with the many other hadronic Dalitz pairs. The electron-
positron pair from the photon conversion is removed by the conversion pair cuts detailed
earlier in this chapter. The remaining pairs are an example of background pairs correlated
by a common ancestor, the original hadron.

Correlated pairs with a common ancestor are primarily emitted from π0 and η mesons.
Background pairs resulting from other hadronic decay chains are unlikely. Lower production
rates and low branching ratios conspire against additional sources. These mesons produce
correlated background pairs from Dalitz decay with a photon conversion, as described in the
earlier example, double Dalitz decays. The η also decays into three π0 each of which may
dalitz or double Dalitz decay.
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In the double Dalitz decay case it is legitimate to classify all four of the unlike sign pairs as
physics signal, even the pairs could be considered hadronic signal. However we will compare
our dielectron spectrum to a cocktail of known hadronic decays. This cocktail is generated
using Exodus, a hadronic decay simulator. Exodus is described in more detail in Chapter 8.
One important characteristic of Exodus is that it does not create the combinatorial pairing of
decays with more than two electrons. We label the like-sign pairs and two of the unlike-sign
pairs from double Dalitz decay as background to be consistent with EXODUS. Within this
construct, a pion double Dalitz decay have similar background production rates and decay
kinematics and as a Dalitz decay with a photon conversion.

To simulate the η and π0 decays, I create a modified Exodus, exodusDD, that properly
deals with the combinatorial pairings in these decays. The following decay channels are
simulated.

π0 → e+e−e+e−

η → e+e−e+e−

η → π0π0π0 → e+e−e+e− e+e−e+e− e+e−e+e−

→ γγ e+e−e+e− e+e−e+e−

→ γγ γγ e+e−e+e−

→ γe+e− γe+e− γe+e−

→ γγ γe+e− γe+e−

→ γγ γe+e− e+e−e+e−

→ γe+e− γe+e− e+e−e+e−

→ γe+e− e+e−e+e− e+e−e+e−

The decay kinematics are identical to those used in Exodus. Each electron or positron is
weighted by their momentum dependent efficiency and required to pass through the realistic
PHENIX aperture. The simulation gives us an initial estimate of the correlated background
due to a common ancestor. Pairs are classified as unlike-sign signal, unlike-sign background
and the two like-sign backgrounds. Unlike-sign signal is shaped like the standard π0 and η
Dalitz curves and extends no further than the η mass, 0.547 GeV/c2. The unlike- and like-
sign background pairs have humped shapes with kinematic limits at their common ancestor’s
mass, 0.135 GeV/c2 for the π0 and 0.547 GeV/c2 for the η. Background pairs from the η
to three π0 decays have kinematic limits at 2/3 the η mass. These shapes are presented in
Figure 4.14.

Adjusting for the conversion contribution

External conversions, such as the Dalitz decay with a photon conversion, are not directly
simulated and must be included. These decay chains have similar kinematics to the dou-
ble Dalitz decays that are simulated. We calculate the background yields of the external
conversions and the simulated decays and scale the simulated double Dalitz backgrounds ac-
cordingly. Only the background yields are altered. The signal pairs are unadjusted; photon
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conversion pairs in the signal are removed via a pair cut. The scale factor is calculated by
comparing the different yields with and without conversions in the decay chain. The yield
for a decay is calculated according to Equation 4.3.

Y ield =
dN

dy
∗ meson

π
∗ dP ∗ P (meson → NP ) (4.3)

where dN
dy

is the multiplicity, dP is the pair degeneracy, and P (meson → NP ) is the decay
probability of the meson into NP lepton pairs.

The ratio of the expected yield with conversions over the yield without conversions is the
scaling factor. The dN

dy
and meson-to-pion ratios cancel and the ratio consists of the pair

degeneracy and the decay probability. The probabilities for the η and π0 photonic, Dalitz
and double Dalitz decays are calculated according to Equation 4.4.

P (meson → 0) = BRγγ (1− c)2

P (meson → 1) = 2 ∗BRγγ (1− c) c + BRγe+e− (1− c)

P (meson → 2) = BRγγc
2 + BRγe+e−c + BRe+e−e+e− (4.4)

where BR are the branching ratios for the various decays and c is the conversion probability,
0.2429% in PHENIX. Table 4.1 presents the degeneracies and probabilities for the η and
π0 decays with and without photon conversions. The background pair degeneracies follow
Equation 4.5.

dP = NP ∗ (NP − 1) (4.5)

The sum is weighted with dP . The ratios are the summed values with photon conversions,
c 6= 0, over the values without photon conversions, c = 0.The double Dalitz background
pairs are scaled by 2.1178 and 1.0025 for the π and η respectively. These scalings account
for the additional background yield due to Dalitz decays with a photon conversion.

Table 4.1: π and η Dalitz and Double Dalitz decays
P (c 6= 0) P (c = 0)

NP dP π Value η Value π Value η Value π Ratio η Ratio
0 0 0.9832 0.3911 0.988 0.3931
1 0 0.0167 0.0087 0.012 0.0068
2 2 6.64e-5 0.0079 3.14e-5 0.0079
sum 1.33e-4 0.01582 6.28e-5 0.01578 2.1178 1.0025

The η → 3π0 scalings have many decay channels that produce background pairs. The
addition of conversion pairs further complicates this background. Using the pion decay
probabilities listed in Table 4.1 simplifies the calculation. All combinations of pion decay
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Table 4.2: η → 3π0 decays
NP dP Probability P (c 6= 0) P (c = 0) Ratio

0 0 P (π0 → 0)
3

0.9504 0.9644

1 0 3P (π0 → 0)
2
P (π0 → 1) 0.0486 0.0351

2 2 3P (π0 → 0) P (π0 → 1)
2

8.28e-4 4.26e-4

2 0 3P (π0 → 0)
2
P (π0 → 2) 1.92e-4 9.20e-5

3 6 P (π0 → 1)
3

4.7e-6 1.73e-6
3 4 6P (π0 → 0) P (π0 → 1) P (π0 → 2) 6.56e-6 2.23e-6

4 10 3P (π0 → 1)
2
P (π0 → 2) 5.59e-8 1.36e-8

4 8 3P (π0 → 0) P (π0 → 2)
2

1.30e-8 2.92e-9

5 16 3P (π0 → 1) P (π0 → 2)
2

2.22e-10 3.55e-11

6 20 P (π0 → 2)
3

2.92e-13 3.10e-14
sum weighted by dP 5.57e-4 2.84e-4 1.9612

channels are considered and shown in Table 4.2.
The background pair degeneracies in the η → 3π0 case are more complicated as well.

Equation 4.5 no longer holds. We do not want to double count background pairs due to pion
double Dalitz which have already been considered in the double Dalitz factors presented
earlier in this section. As a result Equation 4.5 has an −2 ∗ n correction term where n is
the number of the π0 → 2 decays. Again a pair degeneracy weighted sum is calculated and
the ratio of the sum with conversions and without conversions is the adjustment factor. The
η → 3π0 background pairs are scaled by 1.9612 to account for the additional background
yield from photon conversions in the decay chain.

Each of the individual decay background components are scaled by their appropriate
factors and then summed. Figure 4.14 shows the mass distributions of the correlated back-
grounds with a common ancestor for unlike-sign signal pairs, unlike-sign background pairs
and the positive and negative like-sign pairs.
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Figure 4.14: The simulated common ancestor pair mass distributions for electron-positron
pairs (signal in blue and background in black), electron-electron pairs and the positron-
positron pairs. The sum is the solid line, the pion are dot-dashed lines, the eta are dotted
lines and the eta to three pions are dashed lines.
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Chapter 5

Statistical background removal

Statistical background removal consists of generating the background shape, determining
the background rates and subtracting the background spectrum. The combinatorial back-
ground and the correlated backgrounds due to jet pairs and a common ancestor are removed
with this method. The jet and common ancestor correlated backgrounds are simulated with
Pythia and a modified Exodus. The combinatorial background is created using the event
mixing technique.

When generating the background shapes we produce background pairs above their ex-
pected rates. This is done so that the shape of the background is well understood. However
the generated background must be scaled or normalized to the correct background level.
The like-sign spectra help determine and confirm the background levels; it is instrumental
in calculating the background normalizations. The event mixing technique and the gener-
ator code used are presented in more detail below. This is followed by a discussion of the
background normalization and subtraction.

5.1 Event mixing

Event mixing consists of taking electrons (positrons) from one event and making pairs
with an positrons (electrons) from a separate event. The constructed pairs contain no phys-
ical correlation. Only random combinatorial background pairs are made.

Event mixing is done using a rolling buffer method. The electrons (positrons) in the
current event are mated with the positrons (electrons) in previous events with a similar cen-
trality and z-vertex classification. Figure 5.1 presents a diagram of the mixing for unlike-sign
pairs. First pairs are made between the electrons and positrons in the current event. Then
the electrons (positrons) within the current event are paired up with positrons (electrons)
from previous events. Because the mixing occurs with many previous events in the buffer,
far more combinatorial pairs are generated across events than in the current event. As a
result the combinatorial background distribution is understood to a high statistical accuracy.
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Figure 5.1: Diagram of the rolling event buffer method for electron-positron mixing with a
buffer depth of N. The current event is shown in blue and the collection of electrons and
positrons from previous events are shown in green. The pairing of electrons and positrons in
the current event is shown as the pink arrow whereas the generation of pairs across events
is shown as the red arrows.

However, the combinatorial background rate must be determined to normalize the combina-
torial background distribution to the correct amount, this is discussed in detail later in the
chapter. The number of events that are mixed with the current event is called the depth of
the mixing, Figure 5.1 displays mixing with a depth of N. This analysis uses a depth of one
hundred events. Using such a large depth and a large number of pools has the advantage
of creating a well defined background shape with a reduced shape error. Like-sign pairs are
created in an analogous procedure to the unlike-sign pairs using the same previous event
subset. In this process it is important to treat the mixed event pairs identically to the same
event pairs, any discrepancy could lead to deviations in the combinatorial shapes between
the mixed and same events.

The combinatorial background shape within a event depends upon the event’s multi-
plicity, detector acceptance, and momentum distribution. For this reason events are mixed
among events that are similar in centrality, z-vertex range, and reaction plane orientation.
This is required since the combinatorial shapes differ among these groupings, or pools, often
as a result of the variations in acceptance, particle production rates and pT distributions.
In Chapter 4 the effects of increased multiplicity in more central collisions on the combina-
torial background were presented. Shape combinatorial background variations also occur as
a result of centrality and z-vertex pooling. Figure 5.2 shows the variation of combinatorial
shapes over the centrality groups in like- and unlike-sign pairs. Both the like- and unlike-sign
backgrounds have been scaled to match the 0-10% centrality group below 0.15 GeV/c2 in
mass to make the shape comparison easier. The more peripheral centralities have a lower
combinatorial yield and drop more steeply at high mass in both the like- and unlike-sign
combinatorial backgrounds. All events in this analysis are classified as belonging in one
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Figure 5.2: The combinatorial shapes for like-sign and unlike-sign pairs generated for the
combined z-vertex bins and centralities separated in 10% groupings, with 80-90% and 90-94%
are summed together. The sum of both the electron-electron and positron-positron pairs are
shown. All of the centralities have been scaled to agree with the 0-10% combinatorial back-
ground at masses below 0.15 GeV/c2. This shows the shape variation in the combinatorial
background as a function of centrality.

of fifty event pools, ten centrality groupings and five z-vertex ranges. Detector acceptance
variations are controlled by mixing events with the same run number.

5.1.1 CabanaBoy

The system of event mixing described above is common in pair analyses. Typically each
analyzer generates their own code for event mixing. Thomas Hemmick, Jason Kamin and I
created a generalized mixed event background generator called CabanaBoy. CabanaBoy is
able to maintain generality by utilizing object oriented coding and inheritance structures in
C++. All analysis specific aspects of the code are isolated into two user defined input classes
that follow predefined inheritance structures, called Cutter and Histo classes. Methods and
member objects of the classes are then called within the CabanaBoy structure when it is
necessary to apply the user specific information.

The Cutter object inherits from a base class that requires the class define methods for the
event cut, identify the two particles used in the mixing and any pair cuts. The Histo object
inherits from a base class where deques of pointers to functions and histogram objects are
defined. Inside the user’s specific Histo object the histograms are booked and functions are
defined that characterize the histogram axes. From start to finish, CabanaBoy creates output
histograms, registers them to the input/output manager and initializes the mixing structure
for each pool grouping. The event cut, defined in the user’s Cutter object, is applied and
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Figure 5.3: Diagram of the PHENIX data class inheritance tree.

events are classified among the pools. Within each event, the tracks are identified as the
two desired particle types and placed into smaller container classes reducing the memory
overhead. Same event pairings are made between the container classes. Mixed event pairs
are made between the current event’s container classes and the stored classes from previous
events in the rolling buffer. The current event’s container classes are then stored in the
rolling buffer and the process is repeated with the next event.

Making the same event pairs consist of matching all of the first particle type, Type1,
with all of the second particle type, Type2. For each pair we apply pair cuts from the
user’s Cutter object and calculate the pair output using the functions defined in the user’s
Histo object and fill the appropriate histograms. We also create the pairings of Type1 with
Type1 and Type2 with Type2, apply the pair cuts and store this information in two separate
histograms with the same axes.

Mixed event pairs are generated between the Type1 (Type2) particles from the current
event and Type2 (Type1) particles from the N previous events, creating

∑N
i=0 N1current event∗

N2i + N1i ∗ N2current event pairs before applying the same pair cut. The mixed event pair
output is calculated using the same user’s functions as the same event pairs and mixed event
histograms are filled. Similarly Type1-Type1 and Type2-Type2 mixed event pairs are made,
the pair cut is applied and two more histograms are filled.

For each histogram the user defines six histograms with the same binning and axes are
made per event pool. One set of three histograms (Type1-Type2, Type1-Type1, and Type2-
Type2) for the same event pairings and a second set of three histograms for the mixed event
pairings. This is done separately in each event pool. In my analysis one histogram defined
in the Cutter results in filling three hundred output histograms, six in each of the fifty event
pools.

To maintain generality one more technical aspect had to be overcome in the CabanaBoy
code. The various data sets store the track information in different class objects. CabanaBoy
needs a general track class for all potential particle types. Luckily we were able to exploit
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the polymorphism and covariance that results from the inheritance structure in the PHENIX
track classes. The PHENIX class structure is shown in Figure 5.3, not all classes are shown.
PHObjects serve as a base class to the SingleTrack objects, holding information relating to
one track, and the PHParticle object. The PHParticle class and it’s daughter Track classes
are a container classes holding collections of their respective SingleTrack objects. PHParticle
objects are defined by their ability to create clones and to add to their collections. This
satisfies a necessary requirement in the CabanaBoy code allowing the construction of the
Type1 and Type2 particle collections; these collections are PHParticle class objects. All
daughter track classes are cast via a static cast into PHParticle objects in the top level
CabanaBoy code. They are mixed as PHParticle objects and when user specific cuts or
calculations are applied they are cast back into their original class where they retain access
to the methods of their original class. These casts occur in the user supplied Cutter or Histo
codes. The ability of the class to access it’s original methods after being cast as a base class
is called covariance. This is a key component of C++ which allows the success of the general
mixing engine. As a side comment, we use static casts in order to ensure that the PHParticle
objects are cast back into their original class type, if they are miscast into a different type a
static cast will fail while a dynamic cast will not.

5.1.2 UltraLights

While the majority of the PHENIX container classes inherit from PHParticle there are
exceptions to the class hierarchy. We implement a new container class object called Ul-
traLights that do inherit from PHParticle as a work around for this limitation of our data
classes. UltraLight objects are filled during runtime with UltraLightTrack objects and saved
in the root node tree to be accessed later, presumably by CabanaBoy. The additions to
the node tree exist only during runtime and are not saved to disk. UltraLightTracks in-
herit from the PHObject base class and behave similarly to the SingleTrack objects detailed
earlier. They have a methods to access the px, py, pz and E single track information. The
UltraLight structure allows a user to define their own daughter classes of the UltraLights and
UltraLightTracks for container and single track classes respectively. User-defined daughter
classes allow the user to store additional double and integer track information in the single
track and container class formats. The addition of the UltraLight objects allow analyzers
more flexibility in how they implement their analyses in CabanaBoy.

UltraLights were originally imagined to correct for the exclusion of the photon data
set from CabanaBoy because the photon container class does not inherit from PHParticle.
However, users have implemented UltraLights for as varied uses as storage for triggered
particle types that maintain access to the trigger information and pre-coupling photons into
neutral pions for an ω → π0π+ analysis.
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5.2 Normalization

The event mixing code detailed above generates the combinatorial background at levels
above and beyond the measured combinatorial background. The over-production of com-
binatorial background is done purposefully to ensure that the combinatorial shape is well
defined. The generated combinatorial background must be scaled to the level seen in the
same event pairs.

The like-sign spectrum serves as a testing ground to establish the background normal-
izations. It determines the background rates because it consists entirely of background pairs
and has no physical signal pairs. The backgrounds are fully removed when the subtracted
like-sign spectrum has zero yield. Once this is accomplished the same normalizations are
applied to the unlike-sign spectrum. This is possible because the backgrounds are generated
at the same rates for the like- and unlike-sign spectra.

Initially we hoped to normalize the combinatorial background by calculating the combina-
torial background rate according to pair production rates in the like- and unlike-sign pairs.
This calculation results in a combinatorial background yield of 2

√
< N−− > × < N++ >

where < N−− > and < N++ > are the mean number of electron-electron and positron-
positron pairs respectively. However, this calculation assumes no additional background
sources in the like-sign spectra beyond the combinatorial pairs and those removed by the
pair cuts, i.e. no correlated backgrounds.

The existence of the correlated backgrounds complicates the background normalizations.
The combinatorial background and the two types of correlated background, those from jet
sources and those from common ancestor decays, are present in the like-sign yields. The
measured like-sign pairs must be parsed into each of the component background sources. The
common ancestor correlated background is set using the measured pion signal. Separating
the correlated jet background from the combinatorial background is more difficult. First
we will discuss the normalization of the common ancestor correlated background. This is
followed by a section on the iterative normalization procedure developed to normalize both
the jet and combinatorial backgrounds.

5.2.1 Correlated pairs with a common ancestor

The normalization of the common ancestor background is set using the measured pion
signal. The background simulation described in Chapter 4 calculates the unlike-sign signal
pairs below the η mass in addition to the unlike-sign and like-sign background pairs. The
unlike-sign signal pairs are dominated by pion Dalitz decay pairs. These pairs serve as a
candle to match the scale of our simulated output with the measured unlike-sign signal in
the pion region. The backgrounds in this region are low providing a clean calculation of the
scale factor. Once the scaling for the unlike-sign signal is known it can be applied to the
unlike- and like- sign backgrounds.

71



Figure 5.4: The low mass unlike-sign measured signal (black), a roughly normalized com-
binatorial background (red), and signal minus combinatorial spectra with and without the
conversion pair cut (blue, purple) are shown with the unlike-sign multi-lepton pair decay
signal (orange) and the unlike-sign multi-lepton pair decay background component (green).

Figure 5.4 shows the unlike-sign measured mass spectra with a roughly normalized com-
binatorial background and the subtracted spectra with and without the conversion pair cut.
The simulated unlike-sign signal and correlated background components are shown at their
normalized levels. The subtracted spectra with the conversion pair cut is aligned with the
simulated unlike-sign signal. The correlated common ancestor background is consistently an
order of magnitude lower than the subtracted spectrum.

5.2.2 Iterative normalization procedure

Once the correlated backgrounds due to a common ancestor are removed we focus on
normalizing the remaining two backgrounds, the combinatorial pairs and the jet correlated
pairs. While these two backgrounds have very different shapes, their normalizations are
inversely correlated. An over-estimate of the correlated jet background may be compensated
by an underestimate of the combinatorial background and vice versa. Initially, a χ2 fit
to determine the combinatorial and jet normalizations was attempted. Unfortunately, the
data are unable to resolve stable fits with a χ2 analysis. An iterative procedure determines
normalizations that with the background shapes well describe the like-sign spectra.

An initial normalization for the combinatorial background is calculated by taking like-
sign integral yields in a region where the simulated like-sign jet background is minimal
and the combinatorial background dominates, masses above 0.6 GeV/c2. An initial jet
background normalization is calculated using the measured like-sign yield over the entire
like-sign spectrum after subtracting the initially normalized combinatorial background. By
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construction, this provides a solution with a zero net yield in the like-sign spectrum.
While the net yield is zero there may be a non-flat like-sign shape. There is often a

better solution to describe the like-sign spectra with the combinatorial and jet correlated
backgrounds. To determine this we recalculate the combinatorial background normaliza-
tion. This is done in the same region where it was initially calculated only now we remove
the correlated jet background using the previously calculated jet normalization. The jet
normalization is recalculated using the new combinatorial background normalization. This
procedure is iterated. The general formula for the calculations of the normalizations in the
ith iteration is presented in Equation 7.2.

NCB
i =

∫

R

BGCB
LS

FGLS −NDDBGDD
LS −NJet

i−1BGJet
LS

NJet
i =

∫
BGJet

LS

FGLS −NDDBGDD
LS −NCB

i BGCB
LS

(5.1)

where
∫

R
is the integral over the region above 0.6 GeV/c2 in mass, NCB

i is the ith combi-
natorial normalization, the other integrals are over the entire mass and pT space, BGCB

LS is
the like-sign combinatorial background, FGLS is the measured like-sign spectrum, NDD is
the common ancestor correlated background normalization, BGDD

LS is the common ancestor
correlated background, NJet

i is the ith correlated jet background normalization and BGJet
LS

is the correlated jet background. Over a thousand iterations are calculated to ensure that
the procedure stabilizes. The normalization typically settles within fifty iterations. This
procedure considers the effect of the correlated jet background in the like-sign spectra in
determining the combinatorial background normalization. Figures 5.5 and 5.5(b) show the
combinatorial and jet background normalization parameters as a function of the iteration
step for different centralities.

5.3 Subtraction

Once the background normalizations are determined the backgrounds are scaled accord-
ingly and subtracted from the measured pairs, creating the subtracted spectra as described
to Equation 5.2.

SubLS = FGLS −NCB ∗BGCB
LS −NDD ∗BGDD

LS −NJet ∗BGJet
LS

SubULS = FGULS −NCB ∗BGCB
ULS −NDDBGDD

ULS −NJet ∗BGJet
LS (5.2)

The like-sign subtracted spectra contains no signal and is flat at zero, confirming that all
the backgrounds are at the correct levels. The unlike-sign subtracted spectra contain only
signal. These spectra are uncorrected for any of the cut efficiencies or detector deadarea
effects. These identification and reconstruction efficiencies will be addressed in Chapter 6.
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Figure 5.5: The normalization parameters for the combinatorial and jet backgrounds versus
the iteration step. The centralities 0-10% (black), 10-20% (blue), 20-40% (red), and 40-94%
(green) are shown in different colors.

First we present like-sign background subtracted spectra then the unlike-sign subtracted
spectra. Various cross checks on the subtractions are also performed.

5.3.1 Like-sign subtracted spectra

Before the like-sign spectra is background subtracted it is useful to compare the measured
like-sign pair spectra to the total background determined by the iterative normalization
procedure. Figure 5.6 presents this comparison for each centrality bin. Underneath the
primary plot are ratios, R, of the measured like-sign pairs over the total background for each
of the centrality groups. The comparison between the measured like-sign pairs and the total
background is very good. The ratios are flat as a function of mass and have less than a 5%
variation in all of the centralities until the statistics in the measured like-sign pairs leads
to large fluctuations. These statistical accuracy decreases at higher masses and in the more
peripheral centrality bins. The like-sign spectra has been rebinned into a variable binning
in the main plot and before the ratio is calculated in order to reduce the effects due to
statistical fluctuations. To confirm that the like-sign spectra is well described by all of the
backgrounds we fit the ratio of the measured spectra over the sum of the backgrounds with
a horizontal line over the entire mass range and in the region of masses above one GeV/c2.
The fit results are consistent with one in both regions; they are presented in Table 5.1.

Figure 5.7 shows the like-sign subtracted spectra in four centrality bins. In each centrality
there is zero signal after the backgrounds have been subtracted. While there are fluctuations
in the fully subtracted spectra (blue) the points are consistent with zero. As expected the
combinatorial background (red) is the largest background component with the backgrounds
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Figure 5.6: Like-sign pairs before background subtraction are shown in black for the various
centrality groups. Their respective combined backgrounds are shown in red. The ratio, R,
of the like-sign pairs over the background are shown underneath for each of the centralities.
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Table 5.1: Flat line fit of the measured like-sign pairs over the total background.
Centrality Fit parameter for 0 < m < 4 GeV/c2 For 1 < m < 4 GeV/c2

0− 10% 0.9998± 0.0016 1.0042± 0.0047
10− 20% 0.9995± 0.0025 1.0050± 0.0072
20− 40% 0.9992± 0.0035 1.0052± 0.0100
40− 94% 0.9951± 0.0085 1.0162± 0.0172
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Figure 5.7: The like-sign mass distributions showing the subtraction and backgrounds in
each centrality grouping. All pairs are in black, the combinatorial background is in red, the
double dalitz component is in purple, the jet background is in green and the fully subtracted
data is in blue. Here some of the points have been rebinned to view the plot more easily.
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from common ancestor decays and jets (purple and green respectively) contributing primarily
at masses below 0.6 GeV/c2.
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Figure 5.8: The like-sign mass distributions showing the subtraction and backgrounds in
each centrality bin. All pairs are black, the combinatorial background is red, the double
dalitz component is purple, the jet background is green and the subtracted data, with only
the combinatorial subtracted, is blue.

Figure 5.8 shows the contributions from the correlated backgrounds. These plots are
the same results with a log scale on the y-axis and variable rebinning at the x-axis. Here
the subtraction (blue) is the measured spectra with only the combinatorial background
removed; this shows the nice match between the spectra with the combinatorial background
removed and the correlated backgrounds. An additional cross-check of the like-sign spectra’s
description by the backgrounds consists of comparing the mass spectra in various pair pT

slices. This is shown in Figure 5.9 for each centrality in pT slices 0-5, 0-1, 1-2 and 2-5 GeV/c.
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It is apparent that the like sign mass pairs are well described by the total background in
each of the pT groupings for all of the centralities.

(a) 0-10% (b) 10-20%

(c) 20-40% (d) 40-94%

Figure 5.9: The like-sign mass distributions in pT slices showing the good description of the
like sign by the background in each centrality grouping. All pairs are in black, the total
background is in red. The top plot is the entire pair pT range, from 0-5 GeV/c, the next
three plots are over the pair pT ranges 0-1, 1-2, and 2-5 GeV/c.

5.3.2 Unlike-sign subtracted spectra

The unlike-sign spectra are compared to the determined total background. Figure 5.10
shows the spectra for each centrality class. The ratio, R, of the unlike-sign pairs over the total
background are presented. The R values provide a shorthand for the signal-to-background
ratio for each spectrum. At the lowest masses where there is little background there is a
large signal due to pion Dalitz decay. So much so that it requires a log scale. Signal pairs
from J/ψ decay create a peak near masses of 3 GeV/c2. Figure 5.11 provides a more detailed
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Figure 5.10: Unlike-sign pairs before background subtraction are shown in black for the
various centrality groups. The combined backgrounds are shown in red. The ratio, R, of the
unlike-sign pairs over the background are shown underneath for each of the centralities.
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Figure 5.11: Ratio of unlike-sign pairs over total background.

look at the same values on a linear scale zoomed in the mass region between the π and the
J/ψ mesons. It is clear that as the mass increases and the backgrounds decrease the signal-
to-background rises. The spectrum from more peripheral collisions has a higher signal-to
background than more central collisions. This is the result of a decrease in the correlated
background production and combinatorial background production rates. The combinatorial
background production rates are lower because of the decreased multiplicity in peripheral
events.

When the like sign pairs are well described by the backgrounds, the backgrounds are
subtracted from the unlike sign pairs. Figure 5.12 shows the unlike-sign spectra in the
four centrality bins with the combinatorial background component subtracted (blue). This
is the analogous plot to Figure 5.8. The correlated backgrounds (black and purple) are
below the subtracted spectra in all cases allowing for the physics signal. Once the correlated
backgrounds are subtracted we have the fully subtracted spectra, shown in Figure 5.13. The
fully subtracted spectra appears very similar to the subtraction with only the combinatorial
background removed. This is because the correlated backgrounds are small compared to the
physics signal. As with the like sign spectra we can look at the unlike sign pairs and the
total background in different pT slices, Figure 5.14, showing the total background below all
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Figure 5.12: The unlike-sign distributions showing the subtraction and backgrounds in each
centrality grouping. All pairs are in black, the combinatorial background is in red, the double
dalitz component is in black, the jet background is in green and the subtracted data, with
only the combinatorial subtracted, is in blue.
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of the measured pairs in all pT groups and for all centralities.
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Figure 5.13: The unlike-sign mass distributions showing the unlike sign pairs (black), the
total background (red) and the full subtraction (blue) in each centrality grouping.

Minimum Bias

After the subtracted spectra are determined in each of the centrality groups, a spectrum
containing all measured centralities, also known as a minimum bias spectrum, is obtained.
The minimum bias spectrum is simply the average of subtracted spectra weighted by the
size of the centrality groupings. It is preferable to calculate this average after all of the
subtractions are made, because variations in background shapes are well understood in the
various centrality groupings. Figure 5.15 shows the minimum bias spectrum of dielectron
pairs with the spectra in each of the centrality groups. As expected the minimum bias
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(a) 0-10% (b) 10-20%

(c) 20-40% (d) 40-94%

Figure 5.14: The unlike-sign mass distributions showing the unlike sign pairs (black) and
the total background (red) in each centrality grouping. The top plot is the entire pair pT

range, from 0 -5 GeV, the next three plots are over the pair pT ranges 0-1GeV, 1-2GeV, and
2-5GeV
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(b) Subtracted unlike-sign pairs

Figure 5.15: The minimum bias unlike-sign mass distributions displayed with the various
centrality groupings. Both the background subtracted and unsubtracted spectra are shown.

spectra are located between the 10-20% and 20-40% distributions for both the unsubtracted
and subtracted pairs. The minimum bias subtraction is presented in Figure 5.16 where all
of the background components are calculated using the weighted average method.
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(a) Combinatorial subtraction
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(b) Full subtraction

Figure 5.16: The minimum bias unlike-sign mass spectrum with each of the background
components. Both images show all of the measured pairs (black) and the combinatorial
background (red). On the left only the combinatorial background is subtracted (blue) and the
common ancestor (purple) and jet backgrounds (green) are shown. On the right the common
ancestor and jet backgrounds are also removed creating the full subtraction spectrum (blue).
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Chapter 6

Efficiency corrections

After subtracting the backgrounds, the resulting spectra are corrected for the loss of true
electron pairs due to electron identification cuts, pair cuts and lost tracks during reconstruc-
tion. The electron identification efficiency adjusts the spectra to include signal pairs from
electron tracks that did not satisfy our electron cuts. The pair cut efficiency adjusts the
spectra to include the signal pairs that are removed by pair cuts. The reconstruction effi-
ciency corrects for any electrons lost in holes within the ideal PHENIX aperture and other
issues preventing track reconstruction.

These corrections allow comparisons between different PHENIX results with different cuts
and aperture holes are possible as well as a comparison between the data and the hadronic
cocktail of expected dielectron pairs within the ideal PHENIX aperture. It transforms plots
of Counts/Event into the invariant mass spectra corrected into the PHENIX acceptance, or
dN/dm into the PHENIX acceptance. Equation 6.1 provides a mathematical definition of
dN/dm,

dN

dm
=

Counts

Event

1

δmee

ε (6.1)

where Counts/Event is the number of measured pairs after background subtraction divided
by the number of events, δmee is the x-axis bin width in GeV/c2 and ε is the efficiency correc-
tion. The efficiency correction is found using a 2005 Cu+Cu PISA Monte Carlo simulation
and applied as a function of the pair’s mass and pT .

6.1 Generating electron-positron pairs

Pairs are simulated with a flat distribution in mass, pT , azimuth and rapidity. They are
contained within a larger φ and charge/pT range than the ideal PHENIX aperture, Figure
6.1

Two simulations are used. For both, the rapidities, y, are between positive and negative
0.5 units of rapidity. The first simulation is larger with 20 million events in a mass range
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Figure 6.1: Acceptance, φ0 vs. charge/pT , of the simulated ideal PHENIX aperture overlaid
with aperture lines for the generated input in red.

of 0-5 GeV/c2 and a pair pT range of 0-8 GeV/c. The second simulation is smaller with 10
million events and in a smaller area, a mass range of 0-2 GeV/c2 and a pair pT range of 0-2
GeV/c. The smaller simulation is necessary to increase the statistics in the sensitive region
at low masses and low transverse momenta. For each of the simulations the pair mass versus
pT distributions without any cuts beyond the ideal PHENIX aperture is made. This is the
generated spectra.

Copies of the simulations are processed to reproduce the effects electrons undergo in the
detector, in track reconstruction, in electron identification and pairs cuts. The data-like
mass versus pT spectra is created. The ratio of the surviving pairs over the generated pairs
provides the efficiency. In this way the efficiencies for the electron identification, pair cuts
and reconstruction are combined into one correction. This correction is applied differentially
in the pair’s mass and pT .

6.2 Simulating the detector

The generated pairs are processed through PISA. PISA uses GEANT3 to simulate the
particles’ interaction with the detector material producing simulated track hit information.
A deadmap of the detector dead areas is inserted into the simulated aperture. Reference run
151649 is used to generate the deadmap. Tracks are reconstructed using a code library similar
to the data’s production library. The simulated track variables are adjusted to reproduce
the data’s distributions; this includes calibrating the track parameters and applying pT and
mass weights.

Since the simulation is used find the combined efficiency for electron pairs it is important
that the simulation faithfully reproduces the data. This is ensured by calibrating the simu-
lation variable distributions to match the data, applying a realistic pT and mass weights to
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the simulation and reproducing acceptance effects due to dead areas and detector aperture.
First the simulation calibration is discussed followed by the pT and mass weights and finally
a cross-check of the acceptance effects.

6.2.1 Simulation calibration

The following simulated variables are adjusted so that their distributions reproduce the
measured distributions:

• emcsdphi e

• emcsdz e

• ecore/p

Each of these variables have a momentum dependant calibration and are discussed in more
detail below.

EMC matching variables

The EMC electron matching variables, emcsdphi e and emcsdz e, are presented together
here because the same method is used even though they are calibrated separately. The
emcsdphi e is calibrated separately for both charges in each of the eight EMC sectors. The
emcsdz e is calibrated in each sector; there is no discernable difference in the emcsdz e
distributions of opposite charges. The calibration consists of fitting the variable distributions
in momentum slices with gaussian curves. The centers and sigmas of the gaussian fits are
plotted as a function of the momentum slice center and fit with Equation 6.2

c (p) = a0

(
a3 − e−1∗a1∗(p−a2)

)

σ (p) = b0

(
b2 − e−1∗b1∗p) (6.2)

where c (p) is the function describing the gaussian centers, σ (p) is the function describing
the gaussian widths, p is the slice’s momentum center and ai and bi are the various fit
parameters. These functions were chosen because they reproduce the simulated distributions
well and converge at high momentums. The calculated fit parameters are presented in Table
6.1 and Table 6.2. Figures 6.2, 6.3 and 6.4 show the variable distributions with the fits.

As explained in the Chapter 3, the emcsdphi e and emcsdz e are sigmalized variables.
This means that they have gaussian distributions with centers of zero and widths of one. In
the data these distributions are required by the recalibration process described in Chapter 3.
The simulated data is altered in a similar method to recalibration. Using the fit results from
the simulated distributions we alter the simulated variables track by track, subtracting the
distribution centers and dividing by the distribution widths from each, presented in Equation
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Table 6.1: Fit parameters for emcsdphi e simulated distributions
Arm Sector Charge a0 a1 a2 a3 b0 b1 b2

0 0 -1 0.085 1.75 1.004 0.970 1.158 5.0 0.869
0 0 1 -0.043 1.75 0.907 -0.947 1.216 5.0 0.835
0 1 -1 0.102 0.55 1.699 0.761 0.891 5.0 1.138
0 1 1 -0.077 1.75 0.701 -0.983 1.081 5.0 0.963
0 2 -1 0.008 1.75 1.951 0.194 1.058 5.0 0.969
0 2 1 -0.096 0.80 1.353 0.313 1.293 5.0 0.795
0 3 -1 0.834 1.75 -0.743 -0.025 1.072 5.0 0.957
0 3 1 -0.043 1.75 1.262 0.785 0.943 5.0 1.067
1 0 -1 0.052 1.75 1.358 0.677 -1.851 5.0 -0.530
1 0 1 -0.025 1.60 1.550 0.027 0.259 5.0 3.815
1 1 -1 0.177 1.75 0.061 -0.805 0.466 5.0 2.525
1 1 1 -0.123 1.75 0.584 1.160 2.676 5.0 0.455
1 2 -1 0.042 1.52 1.542 -1.192 1.271 5.0 0.804
1 2 1 -0.100 0.53 1.534 0.756 0.618 5.0 1.670
1 3 -1 0.023 1.75 1.166 -2.124 0.380 2.4 2.634
1 3 1 -0.078 1.75 0.369 0.867 0.659 5.0 1.563

Table 6.2: Fit parameters for emcsdz e simulated distributions
Arm Sector a0 a1 a2 a3 b0 b1 b2

0 0 0.172 0.48 3.148 0.002 1.615 1.1 1.577
0 1 13.555 0.65 -8.240 0.0001 1.378 1.0 1.824
0 2 0.008 0.45 2.766 -1.143 1.685 1.2 1.483
0 3 22.523 -0.0004 -85.133 1.038 1.497 1.0 1.687
1 0 28.197 8.94 -0.192 -0.001 1.256 0.9 1.978
1 1 27.466 3.00 -1.148 -0.0004 1.428 1.1 1.739
1 2 6.577 1.75 -2.124 -0.008 1.611 1.1 1.557
1 3 3.491 1.25 -2.805 -0.013 1.386 1.0 1.803
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(a) Arm 0 Sector 0 (b) Arm 0 Sector 1

(c) Arm 0 Sector 2 (d) Arm 0 Sector 3

(e) Arm 1 Sector 0 (f) Arm 1 Sector 1

(g) Arm 1 Sector 2 (h) Arm 1 Sector 3

Figure 6.2: The simulated electron emcsdphi e vs. momentum distributions. The red points
are the centers. The black lines are the functions of the fit of the center values as a function
of momentum and two lines representing the two sigma cuts above and below.
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(a) Arm 0 Sector 0 (b) Arm 0 Sector 1

(c) Arm 0 Sector 2 (d) Arm 0 Sector 3

(e) Arm 1 Sector 0 (f) Arm 1 Sector 1

(g) Arm 1 Sector 2
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(h) Arm 1 Sector 3

Figure 6.3: The simulated positron emcsdphi e vs. momentum distributions. The red points
are the centers. The black lines are the functions of the fit of the center values as a function
of momentum and two lines representing a two sigma cut above and below.
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(a) Arm 0 Sector 0 (b) Arm 0 Sector 1

(c) Arm 0 Sector 2 (d) Arm 0 Sector 3

(e) Arm 1 Sector 0 (f) Arm 1 Sector 1

(g) Arm 1 Sector 2 (h) Arm 1 Sector 3

Figure 6.4: The simulated emcsdz e vs. momentum distributions for electron and positrons.
The red points are the centers. The black lines are the functions of the fit of the center
values as a function of momentum and two lines representing a two sigma cut above and
below.
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6.3

emcsdphi e′ =
(emcsdphi e− csdphi (p))

σsdphi (p)

emcsdz e′ =
(emcsdz e− csdz (p))

σsdz (p)
(6.3)

where emcsdphi e’ and emcsdz e’ are the corrected simulation variables, emcsdphi e and
emcsdz e are the uncorrected simulation variables. The csd∗ (p) and σsd∗ (p) are the centers
and sigmas calculated from Equation 6.2 using the simulated track momentum as the input.
This creates the desired data-like distributions of the simulation for the EMC matching
variables. This is a minor adjustment for emcsdphi e. The emcsdz e distributions were
made narrower by approximately a factor of two.

Energy over momentum

(a) Data (b) Simulation (c) Data-like Simulation

Figure 6.5: The energy over momentum distributions plotted as a function of momentum
for electron and positrons in data, simulation and the adjusted data-like simulation. The
black lines are functions of the peak center values and plus and minus two sigma using the
respective fit results. The lines in the data and data-like simulation plots are identical.

Adjusting the energy over momentum, ecore/p, distributions is more complicated. This
variable’s distribution in the data is not as simply described. Instead we calculate the
parameters necessary to calibrate the ecore/p for both the data and simulation, creating
ecore/p distributions where the electron identification peak centers at zero and has a width
of one. This is done by a series of gaussian fits in pT slices. The extracted offsets and widths
are plotted and fit as a function of pT and fit according to Equations 6.4

c (p) = a0

(
1− e−1∗a1∗pa2

)

σ (p) =

√(
b0 + b1/

√
E

)2

+ b2
2p

2 (6.4)
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where c (p) is the function describing the peak centers, σ (p) is the function describing the
peak widths, p is the slice’s momentum center and ax and bx are the various fit parameters.
The parameters characterizing the peak widths are the detector resolutions, b0 + b1/

√
E

characterizes the EMC resolution and b2p describes the DC resolution. Table 6.3 presents
the calculated parameters for data and simulation. The data determined EMC and DC
resolutions are in agreement with the known detector response. In contrast the simulation’s
DC resolution, while a good fit, is below the DC detector’s resolution. These functions fit
the data and the simulation well as seen in Figure 6.5. Once this information in known, the

Table 6.3: Fit parameters for ecore/p distributions
Source a0 a1 a2 b0 b1 b2

Simulation 0.9913 3.8115 0.3046 0.0188 0.0665 0.006
Data 0.9535 3.1354 0.3442 0.0111 0.0903 0.020

simulation is altered to produce the data’s distribution by first transforming it to the sig-
malized value and then applying the inverse of the data’s calibration. This is done according
to Equation 6.5,

eop′ =
(

eop− csim (p)

σsim (p)

)
∗ σdata (p) + cdata (p) (6.5)

where eop is a short hand for the simulation’s ecore/p and eop’ is the simulation’s corrected
data-like ecore/p. The ci (p) and σi (p) are functions that calculate the offsets and widths for
the fits to the data and simulation respectively according to the functional form Equation
6.4. The resulting energy over momenutum versus momentum distribution is shown in Figure
6.5.

6.2.2 Mass and pT weights

The simulated pairs are thrown with flat mass and pT distributions, this ensures our
ability to populate the entire of the mass and pT phase space. However the dielectron spectra
fall very steeply in mass and pT . The simulation is weighted as a function of the mass and
pT to account for the effect of the steeply falling distributions. The known hadronic mass
and pT spectra from the simulated cocktail discussed in Chapter 9 are used to obtain the
mass and pT weights. The hadronic cocktail does not have the PHENIX acceptance applied
and narrowly peaked resonances (ω, φ, J/ψ, ψ’) are removed to ensure that the detector
resolution effects are not included. The weights are obtained by fitting the cocktail’s pair pT

spectra with a modified Hagedorn distribution, Equation 6.6, in mass slices.

w (pT ) = A ∗ pT

(
e−1(apT +bp2

T ) + pT /p0

)−n

(6.6)
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Figure 6.6: The generated hadronic components in mass vs. pT used to determine the
weighting. The pT distributions and fits for select masses.

where, w (pT ) is the weight and the five parameters (A, a, b, p0, n) characterize the pT

function in each mass slice. In this way we create a family of curves, wm (pT ), all with the
same functional form but with different sets of parameters (A, a, b, pT , n) depending on the
mass. The mass determines which function, wm (pT ), is applied and the pT is the value used
to evaluate the function. By fitting mass slices ten times smaller than the mass bin widths
in the measured data we account for the data’s steeply falling spectra over the data’s mass
bins. Figure 6.6 shows the hadronic spectrum used to determine the weights and histograms
of the simulated pT distributions in mass slices with their fits.

6.2.3 Checking the acceptance

As a cross-check on our simulation we compare the simulated acceptance with the refer-
ence run’s acceptance. The weighted simulation’s acceptance is compared to the measured
aperture. Figures 6.7 and 6.8 show comparisons between the weighted simulation and data
acceptances. Figure 6.7 presents the acceptance phase space in φ0 versus the charge over pT

of the leptons. Figure 6.8 shows the acceptance distribution in the φ measured at the DC,
φDC . Both show a good agreement between the measured data and the simulation. The φDC

distribution is more dependent on the simulation’s weighting.

6.3 Applying the correction to the data

6.3.1 The efficiency correction

The simulated data is plotted as a function of the pair’s mass versus pT with and without
the dead areas and various cuts applied for both the large and small simulations. The large
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(a) Data Acceptance (b) Simulation Acceptance

Figure 6.7: The φ0 vs. charge/pT of leptons in the reference run, 151649, and the simulation
after applying the fiducial cuts and ideal PHENIX aperture.
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Figure 6.8: The drift chamber φ distributions for the data (blue) and the weighted simulation
(black).
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and small simulations are combined with and without the cuts applied. Figure 6.9 shows
the combined simulations with and without the weighting applied and with and without the
cuts applied.

(a) Cuts applied, unweighted (b) Cuts applied, weighted

(c) No cuts, unweighted (d) No cuts, weighted

Figure 6.9: The simulated mass vs. pT with and without the weighting applied. The
simulation with and without the acceptance and aperture cuts is shown.

The efficiency is determined by taking the ratio of the combined simulations with the
cuts applied over those without cuts. The inverse of the efficiency is applied to the spectra
to correct for the reduced yield as a result of the efficiency. Figure 6.10 shows efficiency
as a function of mass and pT with some rebinning as it extends to higher mass and pT

values. Because it is often difficult to conceptualize the two dimensional correction Figure
6.11 shows the effect of the efficiency correction in the mass and pT axes. The combined
efficiency correction and that for the conversion pair cut, the electron identification and
reconstruction efficiency are presented.

The same efficiency correction is applied to the subtracted spectra in each of the centrality
bins. Figure 6.12 shows the subtracted spectra with and without the efficiency correction
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Figure 6.10: The efficiency as a function of mass and pT .
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Figure 6.11: The ratio of the uncorrected mass spectra over the corrected mass spectra as a
function of mass and pT . The effective efficiency for the various corrections are applied and
the total is also shown. This provides an effective understanding of the efficiency correction
in each dimension.
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applied for each of the centrality groupings. The comparison of the corrected and uncorrected
spectra displays the effect of the two dimensional efficiency correction has on the mass
spectra.
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(c) 20-40%
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Figure 6.12: The mass spectra in each centrality grouping and in the minimum bias with
(circles) and without (squares) the efficiencies applied.
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Chapter 7

Systematic Errors

To understand the meaning of the efficiency-corrected background subtracted spectra
we need to know the systematic errors inherent in this analysis. Systematic errors result
from the efficiency correction and background subtraction including both the background
normalizations and shapes. First the efficiency correction systematic errors are presented.
The systematic errors for the background subtraction for each of the background sources,
combinatorial, jet and common ancestor are then discussed. Each of these systematic er-
rors are combined to produce the systematic error for the mass spectra. The effect of the
component background variation on the iterative normalization procedure is also studied.

7.1 Efficiency correction systematic errors

The systematic errors from the efficiency correction are based on the simulation’s mea-
surement of the acceptance and the single electron efficiency. The systematic error in deter-
mining the pair cut efficiencies are presented. These are combined with additional systematic
errors that take into account occupancy effects, the charm acceptance and centrality deter-
mination. First the systematic error from the simulation’s acceptance is discussed. The
systematic error from the single electron identification efficiency is then presented. Finally
each of these systematics are combined into the efficiency correction’s total systematic error
for electron pairs.

7.1.1 Error from the simulation’s acceptance

The systematic error on the simulation’s acceptance is determined by comparing the φDC

distribution in the simulation to the same distribution in the data. Run 151649 is used as a
reference run for the data comparison and the simulation is pT weighted. Figure 6.8 shows
the comparison of the two φDC distributions where the simulation is scaled to match the
data using the entire φDC area. The systematic error is calculated by comparing the ratio of
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Table 7.1: Systematic error of simulated acceptance
Normalization region Error
φDC ε [-0.52, -0.22] 1.79%
φDC ε [0.22, 0.52] 2.84%
φDC ε [0.56, 0.86] 2.69%
φDC ε [2.41, 2.62] 1.45%
φDC ε [3.24, 3.54] 1.91%
Simulation Acceptance Error 2.84%

Table 7.2: Systematic error of simulated single electron identification cuts.
Cut error
quality cut 3.26%
EWG cut 6.95%
pT cut 0.00004%
disp cut 0.001%
Chisq cut 3.96%
EMC matching cut 0.07%
ecore 0.04%
n0 cut 0.14%
E/p cut 0.28%
quadrature sum 8.64%

yields in five different regions of the φDC distribution. These are presented in Table 7.1. The
systematic error of the simulation’s acceptance is the largest variation; an error of 2.84%.

7.1.2 Error from the electron identification

The systematic error on the simulation’s electron identification efficiency is calculated by
determining the loss of each electron identification cut and assuming that half of the loss
is the error for each cut. Each of these errors are summed in quadrature resulting in the
systematic error on the single electron identification efficiency. The systematic errors for
each cut and the combined electron identification efficiency systematic error are presented in
Table 7.2. The systematic error from the single electron efficiency, 8.64%, is doubled giving
the systematic error in the electron efficiency of the pair, 17.29%.
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Table 7.3: The systematic error of the simulated pair
Source Region Error
Pair e− ID cuts All 17.29%
Occupancy All 3%
Acceptance All 2.84%
Charm acceptance m > 0.5 5%
Centrality All 10%
Conversion pair cut m < 0.6 6%
Overlap pair cut 0.4 < m < 0.6 5%
Total m < 0.4 21.26%
Total 0.4 < m < 0.5 21.84%
Total 0.5 < m < 0.6 22.41%
Total m > 0.6 21.00%

7.1.3 Error of the simulated pair

The systematic errors from the simulated pairs consist of twice the single electron error
summed in quadrature with the acceptance error, the pair cut errors and additional errors
due the centrality selection and occupancy effects. These errors and their sums in various
mass ranges are listed in Table 7.3. The systematic error on the pair cuts are estimated as
5% and 6% for the conversion and detector overlap pair cuts respectively. These systematic
errors take into account the ability of the simulation to determine their efficiency correctly
and the likelihood that backgrounds are not fully removed by the cuts. The occupancy or
embedding systematic error, 3%, considers the effect that high particle density has on the
reconstruction algorithm and therefore the electron efficiency. It is calculated by doubling the
single electron embedding efficiency which is determined by placing one simulated electron
track in a real heavy ion event. The charm acceptance systematic error, 5%, considers
the different kinematics in a heavy quark correlated pair and the resulting variation in
their acceptance compared to the hadron decay pairs considered by the simulation. An
additional 10% systematic error represents the accuracy of the centrality determination.
These additional systematic error values are based on earlier determinations in the p+p and
Au+Au dielectron analyses [40].

7.2 Subtraction systematic errors

The systematic errors for the background subtraction consider the errors in the gener-
ated background shapes and normalizations. Since there are three background types, the
errors in the normalizations and shapes are considered for each. First the common ancestor
background shape and normalization systematic errors are introduced. Then the system-
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atic errors for the jet and combinatorial background normalizations are presented. This
is followed by a discussion of the systematic errors due to shape variations in the jet and
combinatorial backgrounds. Finally the effects of the background shape variations on the
iterative normalization procedure are studied.

7.2.1 Common ancestor background errors

The common ancestor systematic error consists of the normalization error and the shape
error. First the normalization error is presented followed by the shape error. These errors
are then summed in quadrature and applied to the common ancestor background component
and propagated to the subtracted spectra.

Common ancestor background normalization error

The normalization systematic errors are calculated by propagating the statistical errors
of the yields in the normalization calculations. Each of the background normalizations are
integrated yields in regions of the like-sign data’s phase space relative to the generated
backgrounds.

The common ancestor background is normalized using a portion of the measured pion
yield. The size of the common ancestor background is known relative to the generated pion
Dalitz yield; this was discussed in Chapter 4. The normalization is calculated using the ratio
of the generated pion dalitz pairs to the measured unlike-sign pion dalitz spectrum in the
mass region 0 - 0.05 GeV/c2 where pion dalitz decays dominate. The same normalization
is applied to the common ancestor background. The unsubtracted unlike-sign spectra are
used in these normalizations; this is justifiable because all of the backgrounds are minimal
compared to the overwhelming pion Dalitz signal in the low mass region.

Table 7.4: Relative errors for the common ancestor normalization
Centrality ∆

∫
FGULS ∆

∫
BGDD

ULS ∆NDD

0-10% 0.6154% 0.7706% 0.9862%
10-20% 0.7360% 0.7706% 1.0656%
20-40% 0.6883% 0.7721% 0.6927%
40-94% 0.5785% 0.7626% 0.9572%

The relative normalization systematic error is calculated by propagating the statistical
errors of the yields in the normalization region for both the generated and measured pion
Dalitz pairs. Equation 7.1 details the calculation of the normalization systematic error in
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terms of the relative statistical errors of the data and simulated spectra.

∆NDD =

√(
∆

∫
FGULS

)2

+

(
∆

∫
BGDD

ULS

)2

(7.1)

where ∆NDD is the relative systematic error on the normalization, ∆
∫

FGULS is the relative
statistical error of the unsubtracted unlike-sign spectrum integrated in the normalization
region and ∆

∫
BGDD

ULS is the relative statistical error of the generated pion dalitz pair yield in
the normalization region. Table 7.4 shows the data’s relative statistical error, the generated
pion’s relative statistical error and the normalization’s relative systematic error for each
centrality group. The resulting systematic errors on the common ancestor normalizations
are around one percent of the normalization in each centrality group.

Common ancestor background shape error

Each background is generated using a different method. The validity of each generation
method and the resulting background shapes serve as estimates for the systematic error of
these shapes. The common ancestor backgrounds are generated using a modified Exodus, a
phenomenological event generator. Exodus is discussed in more detail in Chapter 8. Here
a quick overview of the modified Exodus framework and adjustments used to create the
common ancestor backgrounds and the expected systematic error on the generated shape is
given.

The modified Exodus framework simulates the common ancestor backgrounds by gen-
erating π’s and η’s within their known yield, pT and rapidity distributions, decaying them
into electrons and positrons using the decay channels presented in Chapter 4, filtering the
decay products through the ideal PHENIX acceptance and applying the detector resolution.
The single particles are efficiency weighted and filtered through detector dead areas. The
background yield is adjusted to include additional yields from conversion pairs as described
in Chapter 5 and pair cut efficiencies are applied. This results in the simulated common
ancestor backgrounds used in this analysis.

The dominant source of systematic error stems from providing the event generator with
the known π and η yield and distributions. The accuracy of the simulated common ancestor
background is limited by the underlying assumptions and the uncertainty in the input π
and η yields and pT spectra. An overall relative systematic error on the common ancestor
background of 20% is applied in each centrality to the common ancestor background com-
ponent. This 20% value is based on the systematic errors from the measured PHENIX π
and η spectra. These systematic errors are summed in quadrature and the resulting relative
errors is presented in Table 7.5.
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Table 7.5: Systematic errors for the common ancestor background
Centrality Systematic error
0-10% 20.0243%
10-20% 20.0284%
20-40% 20.0120%
40-94% 20.0229%

7.2.2 Combinatorial and jet normalization error

The systematic error on the normalizations of the combinatorial and jet backgrounds
are calculated in a similar manner to the common ancestor’s normalization error, propa-
gating the statistical errors of the yields in the normalization regions. The combinatorial
and jet normalization systematic errors are presented together since the normalizations are
determined in the same iterative procedure. From Chapter 5, the combinatorial and jet nor-
malizations are calculated in an iterative process with integrals taken over two normalization
regions, one for the combinatorial normalization and one for the jet normalization, using the
like-sign data and generated backgrounds. Equation 7.2 presents the general formulas for
the two normalizations in the ith iteration

NCB
i =

∫

R

BGCB

FG−NDDBGDD −NJet
i−1BGJet

NJet
i =

∫
BGJet

FGLS −NDDBGDD −NCB
i BGCB

(7.2)

where
∫

R
is the integral over the entire pT space and above 0.6 GeV/c2 in mass, the other

integrals are over the entire mass and pT phase space, NCB
i is the ith combinatorial nor-

malization, BGCB is the like-sign combinatorial background spectrum, FG is the measured
like-sign pair distribution, NDD is the common ancestor correlated background normaliza-
tion, BGDD is the common ancestor correlated background, NJet

i is the ith jet correlated
background normalization and BGJet is the jet correlated background.

By propagating the statistical errors for the integrals of the data and generated back-
grounds we determine the systematic errors on the jet and background normalizations. Equa-
tions 7.3 and 7.4 calculates the systematic errors for the combinatorial and jet normalization
systematic errors respectively.

∆NCB =

√√√√√



√∫
R

FG⊕NDD

√∫
R

BGDD ⊕NJet

√∫
R

BGJet

∫
R

FG−NDD
∫

R
BGDD −NJet

∫
R

BGJet




2

+




√∫
R

BGCB

∫
R

BGCB




2

(7.3)
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∆NJet =

√√√√√



√∫
FG⊕NDD

√∫
BGDD ⊕NCB

√∫
BGCB

∫
FG−NDD

∫
BGDD −NCB

∫
BGCB




2

+




√∫
BGJet

∫
BGJet




2

(7.4)

where ∆NCB and ∆NJet are the relative systematic errors on the combinatorial and jet
normalizations, the remaining symbols have the same designation as in Equation 7.2, ⊕
denotes a sum in quadrature, gaussian errors are assumed for the errors of the integrals
and the converging iteration values for the jet and combinatorial normalizations are applied.
Both of these equations are the quadrature sum of the relative error of the background to
be normalized and the relative error of the partially subtracted like-sign spectra isolating
that background. Table 7.6 presents the relative errors for the combinatorial background
normalization and Table 7.7 presents the jet background normalization values.

Table 7.6: Systematic errors for the combinatorial normalization
Centrality Isolated data rel. error ∆

∫
R

BGCB ∆NCB

0-10% 0.24229% 0.01748% 0.24292%
10-20% 0.39661% 0.04073% 0.39870%
20-40% 0.54570% 0.04058% 0.54720%
40-94% 1.46309% 0.11052% 1.46726%

Table 7.7: Systematic errors for the jet background normalization
Centrality Isolated data rel. error ∆

∫
BGJet ∆NJet

0-10% 11.25614% 2.18360% 11.46598%
10-20% 22.23269% 2.19061% 22.34035%
20-40% 31.63766% 2.02732% 31.71407%
40-94% 24.53453% 2.27446% 24.63973%

For both the jet and combinatorial backgrounds the normalization systematic error is
dominated by the error in the partially subtracted data. The systematic error on the com-
binatorial normalization is below two percent of the normalization in each centrality. If the
combinatorial background normalization errors were much larger the subtracted signal would
be of limited value. The jet normalization has a much larger systematic error, between ten
and thirty percent, but the jet background is a much smaller component and as a result has
a reduced effect on the subtracted spectra.
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7.2.3 Jet background shape error

The jet backgrounds are generated with Pythia, a p+p jet and event generator, where
the pion Dalitz decay’s branching ratio was enhanced to produce more correlated dielectron
pairs in the simulated jets. As with the common ancestor background, the simulated jet
background is weighted by the electron efficiency and filtered through the detector dead areas.
The simulated jet background is isolated from the underlying simulated event correlations
by normalizing and subtracting randomly generated event correlations with the same pT

distribution. The near- and away-side jet components are separated using a ∆φ cut at 90o

and the away-side components are reduced by the measured IAA in Cu+Cu collisions to
model jet suppression in heavy ion collisions [86].

Pythia simulates p+p jets and jet-shapes well. In the p+p dielectron measurement a
systematic error on the jet background shape of 3% and 11% was assumed for the near- and
away-side jet components respectively [20]. The same systematics are assumed here. Jet
shape variations due to the uncertainty in the IAA adjustment of the away-side jet background
are also considered. Two extreme alternative jet background shapes are considered, one
where the away-side jet is not suppressed, i.e. IAA = 1, and one where the away-side jet is
fully suppressed, i.e. IAA = 0. These extremes over-estimate the jet yield variation, especially
compared to the determined uncertainties in the IAA measurement. This is done because
the jet background takes into account the reduced away-side yields but fails to consider the
possible variations in the angular φ correlation of the electrons due to medium effects. The
extreme jet background shapes of full or no away-side jet component should bracket any
angular variations due to jet modification in heavy ion collisions. The away-side jet shape
variation errors are summed in quadrature with the generated shape errors assumed in the
p+p measurement and applied to the subtracted spectra differentially in mass and pT .

7.2.4 Combinatorial background shape error

The combinatorial backgrounds are generated using the event mixing technique where
pairs are generated across events to ensure that only combinatorial pairs are made. This
technique requires that pairs are generated between events with similar production rates, pT

distributions and acceptances. As a result we portion the events between fifty groups, with
ten centrality and five z-vertex classifications. Within each group event mixing is performed
and a different combinatorial background shape is produced. The combinatorial background
shape error is studied by varying the event mixing centrality and z-vertex segmentation.

Figures 7.1 and 7.2 show the variation of the unlike-sign combinatorial shape with differ-
ent amounts of pool segmentation for centrality and z-vertex bins respectively. Figure 7.1
contains the ratio of combinatorial shapes for various numbers of centrality pool classes over
a mixed event with twenty centrality and five z-vertex pools. The combinatorial background
shape with ten centrality pools is in good agreement with the shape from twenty centrality
pools. Figure 7.2 shows the ratio of the combinatorial shapes for various z-vertex poolings
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Figure 7.1: The combinatorial shape variation in unlike-sign pairs generated with different
centrality pool segmentation. This is determined by taking the ratio of the combined cen-
tralities and z-vertex bins generated with respective pool segmentation over the generated
background with twenty centrality bins and five z-vertex bins.
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Figure 7.2: The combinatorial shape variation in unlike-sign pairs generated with different
z-vertex poolings. This is determined by taking the ratio of the combined centralities and
z-vertex bins generated with respective poolings over the generated background with ten
centrality bins and ten z-vertex bins.

110



]2 [GeV/ceem
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

R
at

io
 o

f 
C

o
m

b
in

at
o

ri
al

 B
ac

kg
ro

u
n

d

0.98

0.99

1

1.01

1.02

1.03
Centrality mixing, depth 10/depth 20

0-10%
10-20%
20-40%
40-94%

(a) Centrality depth 10/depth 20

]2 [GeV/ceem
0 0.2 0.4 0.6 0.8 1 1.2 1.4

R
at

io
 o

f 
C

o
m

b
in

at
o

ri
al

 B
ac

kg
ro

u
n

d

0.98

0.99

1

1.01

1.02

1.03
Z-vertex mixing, depth 5/depth 10

0-10%
10-20%
20-40%
40-94%

(b) z-vertex depth 10/depth 20

Figure 7.3: The combinatorial shape variation in unlike-sign pairs generated with the best
centrality and z-vertex pooling focusing on the lowest mass regions. The shape variation
for each centrality group is shown. The plot on the left is determined by taking the ratio
of the combinatorial background with ten centrality bins and five z-vertex bins over twenty
centrality bins and five z-vertex bins. The plot on the right is calculated by taking the ratio
of the combintorial background generated in ten centrality bins and five z-vertex bins over
ten centrality bins and ten z-vertex bins.
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over a mixed event with ten centrality and ten z-vertex bins. The combinatorial background
shape with five z-vertex bins is in good agreement with the shape from ten z-vertex pools.
Figure 7.3 shows the same ratios for the ten centrality pools and five z-vertex pools focusing
on the lowest mass region. The systematic errors for the shape of the combinatorial back-
grounds are determined according to the ratios for the ten centrality pools and five z-vertex
pools respectively. These shape systematic errors are mass dependent and are characterized
in mass ranges as presented in Tables 7.8 and 7.9. At high masses where the statistics are
low, the histograms are rebinned before the ratios are determined providing more meaningful
error values.

Table 7.8: Systematic errors for variations in the combinatorial background shape from
centrality pooling for the various centrality groups

Mass Region 0-10% 10-20% 20-40% 40-94%
m < 1.5 0.25% 0.5% 1% 1%
1.5 < m < 2.5 1% 1.5% 3% 3%
2.5 < m < 3 5% 4% 3% 5%
m > 3 5% 6% 6% 15%

Table 7.9: Systematic errors for variations in the combinatorial background shape from
z-vertex pooling for the various centrality groups

Mass Region 0-10% 10-20% 20-40% 40-94%
m < 1.5 0.5% 0.5% 0.75% 1%
1.5 < m < 2.5 1% 2% 3% 4%
2.5 < m < 3 3% 4% 3% 5%
m > 3 5% 6% 3% 8%

7.3 Combined systematic errors

The efficiency correction systematic error is summed in quadrature with the systematic
errors from the background subtraction and applied at each point in the one-dimensional
mass projections. The subtraction errors consist of both normalization and shape errors.
The shape errors are applied to each of the background components and propagated to
the subtracted spectra. The normalization errors are also applied adjusting each of the
background components to determine a minimal and maximal range. The normalizations
are assumed to be uncorrelated.
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Figure 7.4: The subtracted spectra for the various centrality groupings with the systematic
errors shown as a yellow band around the points.
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This assumption is an over-estimate. The background normalizations are not indepen-
dent. They are correlated by the requirement in the normalization process that the sub-
tracted like-sign spectra have zero yield. This means that any increase in the jet background
will result in decreases to both the combinatorial and correlated ancestor backgrounds. Simi-
larly, a decrease in the jet background requires increases in the combinatorial and correlated
ancestor background. The jet background normalization is therefore anti-correlated with
the combinatorial background normalization and the common ancestor normalization and
the combinatorial background normalization and common ancestor normalizations are cor-
related with one another. The amount of correlation and anti-correlation between the three
normalizations is unknown. As a result we assume they are independent as a conservative
over-estimate of the systematic errors. Figure 7.4 presents the systematic errors applied to
the subtracted spectra for each centrality group. The systematic errors are presented as a
yellow band around each point. The systematic errors for the minimum bias spectrum is the
quadrature sum of the weighted systematic errors of the spectra in the centrality groupings.

7.4 Component variations effect on the background

Now that the background normalization and shape systematic errors have been consid-
ered, the effect of the background’s systematic uncertainty on the iterative normalization
procedure must be addressed. In most cases these uncertainties result in relative adjust-
ments between the various background components with only minor adjustments to the
total background. This is studied by varying individual background components according
to their systematic errors, repeating the iterative normalization procedure and comparing
the resulting total backgrounds. Additionally, the resulting subtracted spectra from these
cross-checks are compared to the nominal subtracted spectra. First, adjustments to the
common ancestor background component are presented. Then variations in the jet back-
ground component shape are studied. Finally, the mass and pT region for the combinatorial
normalization is adjusted.

7.4.1 Common ancestor background adjustment

To study the effect a roughly 20% variation in the common ancestor background sub-
traction has on the total background we have repeated the analysis including the iterative
normalization procedure with the common ancestor background adjusted up and down by
20%. The effect of these changes on the background components, the total backgrounds
and subtractions are shown in Figure 7.5. In Figure 7.5 it is important to remember that
the combinatorial background component is the largest contributor to the background. So
while the common ancestor and jet backgrounds have large variations, the combinatorial
background component and total background are only minimally affected. The subtracted
spectra is slightly affected between 0.5 and 1.5 GeV/c2 in mass as a result of the small vari-
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Figure 7.5: The ratio of the backgrounds and subtraction with the common ancestor com-
ponent changed by 20% in each direction over the backgrounds and subtraction with the
expected common ancestor component. The total background is shown in black with hor-
izontal lines, the combinatorial background is red with vertical lines, the jet and common
ancestor backgrounds are green and purple respectively with diagonal lines and the sub-
tracted spectra are the blue dotted regions.
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ations in the combinatorial normalization compensating for the 20% shift in the common
ancestor component.

Figure 7.6 shows a comparison between the subtracted spectra with the normalized com-
mon ancestor background and the spectra resulting in 20% adjustments to the common
ancestor background normalization. There is no discernable difference.
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Figure 7.6: The a comparison of the resulting subtracted spectra with the initial condition
of the common ancestor component at its normalized position and adjusted by 20% in each
direction. The iterative normalization procedure is applied resulting in separate jet and
combinatorial background normalizations for the three spectra. Each of the subtracted
spectra have been efficiency corrected. The light blue systematic error band is applied only
to the original normalization.

7.4.2 Jet background adjustment

The range of prospective total backgrounds and subtracted spectra due to the jet back-
ground shape is studied in an similar manner as the common ancestor background. The
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iterative procedure for calculating the normalizations is done using jet background compo-
nents with a range of away-side jet suppression factors, IAA, applied. In this way we are able
to study the effects of the jet background shape on the total background and the resulting
subtracted spectra.

Figure 7.7 shows the effect on the background components, total background and sub-
tracted spectra when the jet shape is altered to include the full away-side jet or no away-side
jet component. The common ancestor background component is unaffected by these changes.
The jet background components show larger variations than the combinatorial background
and total background. The effect on the subtracted spectra is much larger here when the
jet shape is altered than when the correlated electron background was adjusted earlier in
the chapter. This is because the combinatorial background normalization is more heavily
anti-correlated to the jet background component than it is correlated to the common ances-
tor background component. In both instances, the variations in the subtracted spectra are
large where the combinatorial background is largest reflecting the importance of even small
alterations to the combinatorial background.

Figure 7.8 shows the variation in the resulting spectra for iteration procedures where
the away-side jet background component has been adjusted from the measured IAA to the
one sigma minimum and maximum of the measured IAA and the extreme examples of an
unmodified away-side jet, IAA = 1, and a fully suppressed away-side jet, IAA = 0. The
agreement is quite good, especially in the more peripheral centrality groups.

7.4.3 Combinatorial normalization region adjustment

Varying the normalization regions in the iterative normalization procedure provides an-
other study of the robustness of the iterative normalization procedure and the resulting total
background and subtracted spectra. The background variation as a result of these normal-
ization regions is studied by altering the low mass limit in the combinatorial normalization
region to 0.4, 0.5 and 0.7 GeV/c2. In a separate test, the region at high and intermediate
masses is restricted for mass regions between the similar lower limits, 0.4 and 0.5 GeV/c2, and
the upper limit 1 GeV/c2. A comparison to normalization with the specific region in mass
and pT identified as containing a minimal jet background in the p+p dielectron analysis [66],
between the functions pT − 1.5m = 0.2 and pT − 0.75m = 0, and the arcs,

√
m2 + p2

T = 0.7

and
√

m2 + p2
T = 1. Figure 7.9 shows the comparison of the subtracted spectra in each

centrality group with the resulting spectra in each of the alternate normalization regions.
Again the agreement between the different normalization regions is very good.

An alternate determination of the systematic error on the normalization is also done. This
consists of calculating sample standard deviation among the fourteen alternate spectra shown
in Figures 7.6, 7.8 and 7.9 and using this value as the systematic error on the normalization
method. This is done bin-by-bin with outliers identified by a three sigma cut removed [87].
The resulting systematic errors are consistent with the results already presented in this
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Figure 7.7: The ratio of the backgrounds and subtraction with the jet component shape
altered to include the full away-side jet component and no away-side jet component over the
backgrounds and subtraction with the expected jet component shape. The total background
is shown in black with horizontal lines, the combinatorial background is red with vertical
lines, the jet background is green with diagonal lines and the subtracted spectra are the blue
dotted regions. The common ancestor background is unaffected by the away-side jet shape.
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Figure 7.8: The comparison of the resulting subtracted spectra with the adjustments to
the away-side jet component. The iterative normalization procedure is applied resulting in
separate jet and combinatorial background normalizations for the various spectra. Each of
the subtracted spectra have been efficiency corrected. The light blue systematic error band
is applied only to the original away-side jet component.
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Figure 7.9: The comparison of the resulting subtracted spectra with various combinatorial
normalization regions. The iterative normalization procedure is applied resulting in sepa-
rate jet and combinatorial background normalizations for the various spectra. Each of the
subtracted spectra have been efficiency corrected. The light blue systematic error band is
applied only to the spectra from the original normalization region.
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Chapter 8

Cocktail generation

Here a brief diversion from the data analysis is taken and the calculation of the cocktail
of known dielectron sources is presented. The cocktail is used to compare the data to the
expected mass spectra to observe any variation in the mass spectra due to the quark gluon
plasma.

The cocktail depicts the known dielectron sources from hadronic decays and heavy quark
correlations. A cocktail consists of dielectron decays from light vector meson decays (ρ, ω,
φ), Dalitz decays from light neutral mesons (π0, η, η′), correlated heavy quark (charm and
bottom) components and a Drell Yan contribution. The hadronic decays are simulated using
Exodus, a locally-made phenomenological event generator described in [88]. The heavy quark
and Drell Yan components are scaled Pythia calculations. The method for generating the
cocktail is presented starting with the hadronic component and then the correlated heavy
quark and Drell Yan components.

8.1 Hadronic cocktail generation

The hadronic cocktail component is simulated with Exodus, a phenomenological event
generator [89]. Exodus generates particles within their known phase-space distributions,
ie their pT and rapidity distributions. The particles then undergo two- and three-body
decays of those particles. The electron and positron decay products are filtered through the
detector’s ideal acceptance and resolution effects are applied. The parent hadron’s relevant
properties, decays and branching ratios are taken from the Particle Data Book [2] and are
listed in Table 8.1. The two- and three-body decays assume a flat phase-space distributions.
All of the vector mesons are assumed to be unpolarized. For Dalitz decays, decays with
a lepton pair and a third particle, the third particle is not isotropic in it’s rest frame. It
has a (1 + cos2θ) distribution where θ is the polar angle of the leptons in the Collins-Soper
frame. Dalitz decays are simulated using the Kroll-Wada formulation [90] and the measured
electromagnetic form factors from the Lepton-G collaboration.
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Table 8.1: Hadronic decays and branching ratios
Decay Branching Ratio
π → γe+e− 1.198x10−2

η → γe+e− 6.8x10−3

η′ → γe+e− 9x10−4

ρ → e+e− 4.71x10−5

ω → e+e− 7.16x10−5

ω → πe+e− 7.7x10−4

φ → e+e− 2.97x10−4

φ → ηe+e− 1.15x10−4

J/ψ → e+e− 5.94x10−2

ψ′ → e+e− 7.52x10−3

To calculate the combined hadronic cocktail for a given centrality, the yield, rapidity and
pT distributions for each parent meson are needed. The parent meson’s rapidity distributions
are assumed to be flat. The pion yield, dNπ0/dy, and pT spectrum is provided for each
centrality grouping. The pion serves as a reference particle to characterize the remaining
mesons. The yields and pT distributions for the other mesons are extrapolated from the pion
by assuming mT scaling and using meson-to-pion ratios, dNmeson

dy
/

dNπ0

dy
. The accompanying

subsections present the parametrization of the pion pT spectra followed by a discussion of the
multiplicity determinations, a description of mT scaling and detailing additional corrections
to the simulated hadronic yield for high mass hadrons. At the end of this section the hadronic
component of the cocktail is presented for each centrality group.

8.1.1 Fitting the pion pT spectra

The measured pion pT spectra in Cu+Cu collisions at PHENIX [91] [92] are used to
determine the input pion pT shape. Both charged and neutral pions are simultaneously fit
assuming the charge symmetry relation, Equation 8.1.

2 ∗ dσπ0

dpT

=
dσπ+

dpT

+
dσπ−

dpT

(8.1)

Neutral pions are measured in the photon channel, πo → γγ, and charged pions are measured
in the PHENIX Time-Of-Flight detector. The use of independently determined pion data
within the same experiment ensures robust and well understood pion measurement. The
inclusion of the charged pions provide more constraints on the fit at low pT .

The combined charge and neutral pion pT spectra are fit with a modified Hagedorn
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Figure 8.1: The pT spectra and fit information of the the charge (green) and neutral (orange)
pions and the ratios of the data over the fits for each centrality group.
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Table 8.2: Pion yield and pT parameters
Centrality dN/dy A a b p0 n
0− 10% 83.914 574.8 0.6794 0.3976 0.2679 7.986
10− 20% 59.944 407.3 0.6937 0.3915 0.2359 8.054
20− 40% 36.612 274.3 0.6664 0.3700 0.2483 7.923
40− 94% 8.912 79.0 0.6179 0.3674 0.2296 7.724

exponential, Equation 8.2.

E
d3σ

dp3
= A

(
e−1(apT +bp2

T ) + pT /p0

)−n

(8.2)

where (A, a, b, p0, n) are the fit parameters. This fit is recalculated in each centrality
grouping. Figure 8.1 shows the fit and data for the centrality groupings and the ratios of
the data divided by the fit results showing the good quality of the fits. Once the pion pT

spectra have been parameterized in each centrality, the pion yields, dNπ0/dy, are obtained
by integrating the respective fit functions. The resulting values for the pion yields and pT

fit parameterizations are shown in Table 8.2.

8.1.2 Transverse mass, mT , scaling

Transverse mass scaling assumes that the pion’s mT distribution is identical to the mT

distribution of the other mesons where mT is the transverse mass as defined by Equation
8.3.

m2
T = m2 + p2

T (8.3)

This assumption is applied by replacing the pion’s pT in Equation 8.2 with
√

m2
T −m2

π0 , for
the various mesons, Equation 8.4

E
d3σ

dp3
= A

(
e−1(a

√
m2

T−m2
π0+b(m2

T−m2
T )) +

√
m2

T −m2
π0/p0

)−n

(8.4)

where mT is defined in Equation 8.3, mπ0 is the mass of the pion and the A, a, b, p0, n values
are listed in Table 8.2. The normalizations for each meson’s pT distributions, and therefore
the meson yields, still need to be determined. The mT scaling assumption is valid at high
pT [93]. At intermediate pT the validity of this assumption is less clear. The 20% systematic
errors on the cocktail cover any deviation from this assumption and contain errors from the
input pion meson spectra.

As a result of mT scaling, the meson-to-pion ratios are constant at high pT and are listed
in Table 8.3. The high pT η/π, ω/π and φ/π values are known from PHENIX measurements
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Table 8.3: High pT meson-to-pion ratios
Meson meson/π
η 0.48
ρ 1.0
ω 0.9
η’ 0.25
φ 0.4

T
p

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

d
y

T
N

/d
p

2
 d

T
1/

p

-410

-310

-210

-110

1

10

210

π
ηunscaled 

η

Figure 8.2: The 0-10% π0, unscaled η created assuming mT scaling, and scaled η pT spectra
using the high pT η-to-π ratio in Table 8.3 to normalize the η.
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Table 8.4: Inclusive meson-to-pion ratios
Centrality η/π η′/π ρ/π ω/π φ/π J/ψ/π ψ′/π
0− 10% 0.1213 0.0187 0.1287 0.1120 0.0387 1.921e-5 5.111e-6
10− 20% 0.1205 0.0186 0.1276 0.1110 0.0385 2.146e-5 5.709e-6
20− 40% 0.1140 0.0174 0.1198 0.1042 0.0361 2.378e-5 6.326e-6
40− 94% 0.0996 0.0145 0.1011 0.0879 0.0298 1.835e-5 4.881e-6

[94] [95] [96]. The ρ/π and η’/π values are predicted by Pythia [89]. The meson pT spectral
shape from Equation 8.4 scaled by the high pT meson-to-pion ratio, listed in Table 8.3,
results in the meson’s pT spectra as shown in Figure 8.2. Integrating this function provides
the inclusive meson yield. A ratio of this yield to the pion’s yield gives the meson-to-pion
ratio, dNmeson/dy

dNπ0/dy
, listed in Table 8.4. A comparison of the determined meson-to-pion ratios

to the ratios of meson cross-sections known from jet fragmentation studies [2] is performed.
The ratio of the cross-sections for ρ over ω, σρ

σω
, is 1.15 ± 0.15 and the cross-sections for

η’ over η,
ση′
ση

, is 0.15 ± 0.15. The values in Table 8.4 are in agreement with these ratios.

Similarly the η’/π and ρ/π columns agree with the inclusive ratio LEP results, 0.018 and
0.14 respectively [89].

The J/ψ and ψ′ to pion ratios are calculated in a different manner. The J/ψ values are
obtained by extracting the dNJ/ψ/dy from the J/ψ’s measured B dNJ/ψ/dy [97], which is
then divided by the appropriate dNπ0/dy. Since the measured J/ψ values are used the J/ψ
component of the cocktail includes the reduced yield due to J/ψ suppression [86]. The ψ’
values in Table 8.4 are scaled from the J/ψ as there are no measured ψ’ yields in Cu+Cu
collisions. At this point we have all the necessary parameters to calculate the hadronic
contributions out to 4 GeV/c2 in mass. These parameters are almost completely extrapolated
from the data with only the mT scaling and flat rapidity distribution assumptions. The
next two sections discuss adjustments to the hadronic cocktail at high mass to account for
corrections to mT scaling and radiative tails.

8.1.3 High mass corrections to mT scaling

Transverse mass scaling may not hold with the higher mass mesons. The φ and J/ψ pT

spectra [96] [97] are used to confirm or correct the mT scaling at high masses. This is done
by comparing the measured pT spectra and the Exodus generated pT spectra that assumes
mT scaling. For both the φ and J/ψ, independent PHENIX measurements in the dielectron
channel are used. In the case of the φ, the measured data [96] and the Exodus result are
consistent. We conclude that mT scaling holds for the φ in Cu+Cu collisions.

The measured J/ψ pT spectra is not in agreement with the Exodus generated J/ψ pT

spectra; mT scaling does not hold for the J/ψ. The measured J/ψ pT distribution is param-
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Table 8.5: Parameters for the J/ψ pT adjustment
Centrality A N p0 n
0− 10% 0.0336 5.2956 ∗ 10−8 3.6636 4.9530
10− 20% 0.1575 5.2955 ∗ 10−8 3.6636 4.9530
20− 40% 0.1615 7.4978 ∗ 10−8 4.3337 4.3337
40− 94% 0.6476 8.1636 ∗ 10−8 13.3182 13.3182

eterized so that the proper pT distribution is used in the hadronic cocktail. Equation 8.5 is
fit to the J/ψ pT distribution with the parameters N, p0 and n.

1/ (2πpT ) dNJ/ψ/dpT = N/(1 + p2
T /p2

0)
n (8.5)

Table 8.5 shows the fit parameter values for each centrality. Since the J/ψ [97] was
measured in groups of 0-20%, 20-40%, 40-60% and 60-94%, the 40-60% and 60-94% groups
are combined creating a 40-94% group. The 0-20% J/ψ measurement is applied to both the
0-10% and 10-20% centrality groups. Once the J/ψ pT spectra is properly characterized,
the J/ψ component of the cocktail is generated using the measured J/ψ pT distribution. An
overall scale factor, A, is also applied to maintain the known J/ψ-to-pion ratio from Table
8.4. This is particularly important for the 0-10% and 10-20% centrality groups where the
individual J/ψ-to-pion ratios are known but only the combined 0-20% J/ψ pT distribution
is available. Figures 8.3 show the comparison of the cocktail pT distributions for the φ and
the corrected J/ψ overlaid with the independently measured data points for the φ and J/ψ
for each centrality group.

8.1.4 Radiative tails in the J/ψ and ψ’

The J/ψ and ψ’ components of the cocktail must also be corrected for their radiative
decays creating extended tails below the J/ψ and ψ’ in the spectra. The radiative tail shapes
are identical to those used in the p+p and Au+Au dielectron analyses [20]. The PHENIX
aperture and resolution effects are applied. The radiative shapes are normalized to the J/ψ
and ψ′ yields determined earlier in this chapter. An example of this correction is shown in
Figure 8.4 for the 0-10% centrality grouping.

Once all of the corrections are applied we combine each of the components from Exodus to
create a cocktail containing only hadronic sources. Figure 8.5 shows the hadronic component
of the cocktail for each centrality grouping with each of the hadronic components displayed.
The minimum bias spectrum in Figure 8.5(e) is calculated with a weighted average of the
spectra in the centrality groups. It can also be simulated in Exodus using the minimum bias
meson to pion ratios and pion pT spectra for the input parameters. Both methods produce
the same minimum bias hadronic cocktail spectrum.
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Figure 8.3: The pT spectra of the φ (black) and J/ψ (blue) from the corrected cocktail and
measured spectra [98] [99].
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Figure 8.5: The dielectron hadronic cocktail with only the EXODUS generated components
included for all of the centrality groupings.
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Figure 8.6: First order Feynman diagrams of heavy quark (Q) production from gluons (g)
and light quarks (q).

Figure 8.7: Diagram of the c− c̄ dielectron correlation through open charm mesons.

8.2 Correlated heavy quark and Drell Yan

Once the known hadronic processes are well simulated we must address the dielectron
correlations from heavy quark and Drell Yan production. These are simulated using Pythia,
an event generator for p+p collisions. The parameterization of Pythia is discussed in detail
in [100]. First we will present the heavy quark components and then the Drell Yan.

The correlated heavy quark component of the expected yield from the semi-leptonic
decays of D and B mesons. Heavy quarks are pair-produced in the collision; diagrams of first
order processes for heavy quark production are presented in Figure 8.6. The heavy quarks
combine with light quarks during hadronization becoming D and D̄ or B and B̄ mesons.
These open charm and open bottom meson pairs maintain a correlation from the heavy
quark production process. When both of the mesons semi-leptonically decay the final state
electrons and positrons maintain this correlation. This is depicted for c − c̄ pairs in Figure
8.7. A similar decay chain exists for b − b̄ pairs with B mesons. This indirect correlation
is similar to the correlated jet background discussed in Chapter 4. Decay products contain
correlations passed down through the kinematic decay process.

The Drell Yan component, shown in Figure 8.8, is due to quark-antiquark annihilation
in hadron-hadron interactions, creating a Z boson or virtual photon which decays into a
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Figure 8.8: Diagram of the Drell Yan interaction with a mediating virtual photon.

Table 8.6: Number of parton collisions in Cu+Cu collisions
Centrality NColl

0− 10% 182.7
10− 20% 59.9
20− 40% 36.6
40− 94% 8.9
Minimum Bias 51.8

lepton pair. This process was first measured at Brookhaven National Laboratory at the
Alternating Gradient Synchrotron with muons in the final state [101]. The mass of the
produced dielectron pair is known to follow Equation 8.6

mee = x1x2sNN (8.6)

where xi
√

sNN is the momentum of one of the interacting quarks. At
√

sNN = 200 GeV
energies the Drell Yan process contributes primarily at high masses, above 3 GeV/c2. The
Drell Yan dielectron production is calculated to next leading order using parton distributions
functions obtained from deep inelastic scattering measurements where a lepton collides with
a nucleon.

The heavy quark and Drell Yan components of the cocktail are generated by Pythia
with a CTEQ5L parton distribution function with modifications detailed in [20]. Earlier
work compared the Pythia Drell Yan shape to Werner Vogelsang’s next to leading order
calculations and found agreement within 20% for masses below 4 GeV/c2. In the Pythia
simulation, the angular correlation for mid-rapidity dielectron pairs is a result of the kT of
the simulated partons. Our simulations used a kT of 1.5 GeV/c, but the effects of various
kT values were also studied. The heavy quark and Drell Yan components from Pythia are
filtered by the ideal PHENIX aperture. The p+p cross-sections for the c − c̄, b − b̄ and
Drell-Yan components are used and scaled upward by the number of parton collisions in the
nucleus-nucleus collision, NColl. Table 8.6 shows the NColl values for each of the Cu+Cu
centrality groupings. [20]
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Figure 8.9: The combined cocktail mass spectra in the various centralities in black. The
hadronic component is shown in blue, the charm, bottom and Drell Yan components are
shown in red, green and purple respectively.
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Figure 8.10: The dielectron cocktail for each of the centrality groups including the minimum
bias is shown on the left. On the right the Min. Bias cocktail is shown in pT slices.

NColl scaling is required because Pythia models hadron+hadron interactions, not heavy
ion interactions. As a result Pythia can not describe the known suppression and elliptic flow
in high pT single electrons [39]. The ramifications of these heavy ion effects on the heavy
quark component in the dielectron spectrum are not known. A study assuming random an-
gular orientation and the measured non-photonic single electron pT distribution is presented
in Section 8.2.1.

Figure 8.9 shows the complete dielectron cocktail in each of the four Cu+Cu centrality
groups and the minimium bias. The charm component peaks at masses of 0.6 GeV/c2 where
it rivals the hadronic sources in yield particularly in the 0-10% centrality group. In the
intermediate mass region between the φ and J/ψ the charm component is the dominant
source of signal. The bottom component has a much lower yield than the charm in the
measured dielectron mass range. It is a relevant source only for masses beyond the J/ψ.
The Drell Yan component is the smallest component and does not provide a substantial
contribution at any region of this measurement but is included for completeness. In Figure
8.10(a) the various cocktails for the different centralities and the minimum bias are shown.
The decreasing cocktail yield with centrality is evident.

The dielectron mass cocktail can also be separated in pair pT slices. This presents a nice
picture of the topology of the expected contributions in the mass-pT phase space as seen in
Figure 8.10(b). The yield decreases as the slices move from low to high pair pT slices. The
exception to this is the lowest pT slice, pT < 0.5GeV/c, where the PHENIX aperture hole at
very low mass and pT leads to a drop at around 0.2 GeV/c2 in mass for both the hadronic
and charm cocktail components. The charm component of the cocktail is largest at low pair
pT . The cocktail slices with pair pT ’s above 2.5 GeV/c have minimal contributions from
the charm component. The bottom and Drell Yan components are not included in this plot

133



although they are expected to have increased significance at high pT .

8.2.1 Random heavy quark component

To account for the potential variation in the heavy quark components due to flow and the
heavy ion pT spectrum, Alberica Toia generated a random heavy quark component. This was
done by taking the Au+Au non-photonic single electron pT distribution and assuming a flat
angular distribution. Since the non-photonic single electron spectrum is used, correlations
from both the charm and bottom quarks are included in the resulting random heavy quark
component.
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Figure 8.11: On the left the c − c̄ correlation from Pythia (black) and the random heavy
quark correlation (red) with and without the PHENIX acceptance applied is shown. On the
right the heavy quark correlations are shown with a p+p cocktail for comparison.

The comparison between the c − c̄ correlation from Pythia and from the random heavy
quark correlation is also considered in pT slices. It is interesting to note that while the
randomly oriented component is smaller that the Pythia charm component at low transverse
momenta. It is larger at high transverse momenta. This is most likely because the a b − b̄
contribution is in the random spectrum from the input Au+Au non-photonic single electron
pT spectrum while the Pythia charm component contains only the charm contribution.

8.3 Comparison to data

With a well determined dielectron cocktail, the data are compared to the expected signals
and any anomolous yields are determined. Figure 8.13 shows the data overlaid with the
generated cocktail. In each centrality bin the pion Dalitz yield is well matched and the
peaks from the ω, φ and J/ψ resonances are seen. Beneath each plot, the ratio of the
data over the cocktail confirms this agreement. The most central spectrum, 0-10%, shows a
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Figure 8.12: The c − c̄ correlation from Pythia (black) and the random heavy quark corre-
lation (red) in pT slices shown with the p+p hadronic cocktail. The pT slices 0-1, 1-2, 2-3,
and 3-5 GeV/c are shown.
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Figure 8.13: The Cu+Cu dielectron spectra in blue compared to the combined cocktail mass
spectra in the various centralities in black. The hadronic component is shown in blue, the
charm, bottom and Drell Yan components are shown in red, green and purple respectively.
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slight excess over the cocktail in the low mass region below the ω meson. As the collisions
become more peripheral the excess in the low mass region disappears. The 10-20% and
20-40% spectra agree with the cocktail albeit with large uncertainties. The most peripheral
spectrum, 40-94%, shows an elongated enhancement over the cocktail in the intermediate
mass region, between the φ and J/ψ, that extends to lower masses.

The π, η and η’ produce a large hadronic yield that we are not directly interested in, it is
useful to remove these components from the data and compare the results to a partial cocktail
where these signals are also removed. This is done in Figure 8.14. Both the statistical and
systematic errors in the data have increased due to the propagation of the errors from the
removed π, η and η’ components. The cocktail shapes with the π, η and η′ removed are
considerably different, making it easier to decipher the low and intermediate mass regions.
Unfortunately the error bars are quite large making it difficult to conclude much from these
plots, especially at low masses. The pion subtraction removes any ability to determine signal
at masses below 0.1 GeV/c2.

Further subtraction of the remaining hadronic sources, the ρ, ω, φ, J/ψ and ψ, results
in Figure 8.15. The imprecise 10-20% and 20-40% spectra have been combined to form a
mid-central spectrum of 10-40%. The subtraction of the ω, φ and J/ψ resonances leads
to large statistical and systematic errors in the subtracted spectra near the peaks. The
correlated charm, bottom and Drell Yan contributions are shown with the random heavy
quark component. In both the peripheral and central spectra the remaining continuum
spectra are larger than the expected heavy quark and Drell Yan contributions at intermediate
masses. The mid-central spectrum is consistent with the expected heavy quark contributions
but the points are consistently above the expected heavy quark contribution. It is not clear
whether the additional yield in the intermediate mass region is the result of a heavy quark
correlations, Drell Yan or a direct photon source. As mentioned in Chapter 1, the NA60
experiment at CERN determined that the excesses in their intermediate mass region was
from thermal photons not heavy quarks [65].

In Figures 8.13, 8.14 and 8.15 show a slight excess in the 0-10% at masses between
0.54-0.75 GeV/c2 and excesses in the 0-10% and 40-94% spectrum at masses between 1.2-
2.87 GeV/c2. To ensure that these excesses are not the result of under subtracting the
backgrounds, we calculate the necessary increase in the total background needed to remove
these excesses and consider the effects of this increased background on the unlike- and like-
sign spectra. For the 0-10% spectrum a 0.7037% increase in the total background is required
to remove the excess above the cocktail in the mass region 0.54-0.75 GeV/c2. For the 40-
94% spectrum a 11.2913% increase in the total background is required to remove the excess
above the cocktail in the mass region 1.2-2.87 GeV/c2. Since neither the 10-20% or 20-40%
centrality spectra show significant excesses this exercise is not performed on these spectra.

Figure 8.16 shows the unlike- and like-sign spectra with and without the additional
subtraction, the blue points are the data as previously subtracted and the purple points are
the data with the additional factor of the total background removed. Comparing the unlike-
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Figure 8.14: The Cu+Cu dielectron spectra with the π, η and η’ cocktail signals subtracted
compared to a partial cocktail where the π, η and η’ are also removed. The correlated charm
and bottom components are shown and included in the partial cocktail. The Drell-Yan
component is included in the partial cocktail but it is not shown because it has a negligible
yield in this mass region.
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Figure 8.15: The 0-10%, 10-40% and 40-94% spectrum scaled by NColl with the hadronic
components removed using the cocktail. The charm, bottom and Drell Yan correlations
simulated with Pythia are also shown with the heavy quark component simulated using the
measured non-photonic single electron pT spectrum and random angular correlations.
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Figure 8.16: The subtracted spectrum (blue) is shown with the same spectrum where an
additional 0.7% or 11% of the total background is removed (purple) for the 0-10% and 40-
94% centralities respectively. On the left, the efficiency corrected unlike-sign spectrum is
compared to the cocktail (black). The additional efficiency corrected background (green) is
also shown. On the right the like-sign spectra is shown with the total background increased
by the same factor as in the unlike-sign. The like-sign spectrum and backgrounds are not
efficiency corrected.
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Table 8.7: Like-sign yields with and without the additional subtraction
Centrality Yield Yield with additional subtraction
0− 10% −2.48 ∗ 10−6 ± 2.75 ∗ 10−3 −1.23 ∗ 10−2 ± 2.75 ∗ 10−3

40− 94% −3.84 ∗ 10−7 ± 9.23 ∗ 10−5 −1.23 ∗ 10−3 ± 9.24 ∗ 10−5

sign spectra with the additional background subtraction to the cocktail in the regions of
the earlier determined excess, 0.54-0.75 GeV/c2 for 0-10% and 1.2-2.87 GeV/c2 for 40-94%,
confirms that this additional subtraction method does remove these excesses. In Figures
8.16(a) and 8.16(c) the unlike-sign spectra result is over-subtracted and has negative yields
in the mass region between 0.2-0.5 GeV/c2 for the 0-10% and 0.2-1.2 GeV/c2 for the 40-94%.

The effect of the additional subtraction on the like-sign spectra is shown in Figures
8.16(b) and 8.16(d). A further reduction of the like-sign spectra brings it significantly below
zero for masses below 1 GeV/c2. Since the signal to background ratio for the excess in the
most central spectrum is a smaller than the excess in the peripheral spectrum this additional
subtraction has a larger effect on the peripheral spectrum. Table 8.7 shows the variation in
the like-sign yields with the standard subtraction and with the additional subtraction. The
like-sign yields are taken over the entire mass region. The expected like-sign yield is zero.
An order of magnitude over-subtraction of the like-sign yield results from the additional
subtraction needed to remove the excess above the cocktail in the unlike-sign spectra. For
both centrality groups the over-subtraction is larger than the error of the integrated yield.
This confirms that the excesses above the cocktail are not the result of insufficient subtraction
of the known background components but are the result of additional physics signals in the
spectra.

8.3.1 Comparison to data in pT slices

To study these enhancements at low and intermediate masses, we consider the spectra
as a function of pT . This is done by slicing the mass spectra in various pT ranges for both
the data and the cocktail. The pT ranges 0-1, 1-2, 2-3, and 3-5 GeV/c are used. Figure
8.17 presents this for each of the centrality groups with the various pT slices scaled for visual
clarity.

In the 0-10% centrality group the majority of the low mass enhancement is evident at
low pT . However we also see an excess in both the low and intermediate mass regions in
the high pT slices. These high pT excesses have a larger excess relative to the cocktail but
they are produced at a lower rates than the low pT excess. The 10-20% and 20-40% spectra
do not have an excess in the low mass region at low pT , but they also see smaller excesses
at high pT ’s in the low and intermediate masses. In the 40-94% spectrum the majority of
the intermediate mass enhancement is in the low pT slice. The trend of smaller excesses at
high pT for the low and intermediate masses continues in the peripheral spectrum. For the
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Figure 8.17: Data and cocktail comparison for all pT slices shown by centrality. The cocktail
contains the hadronic and charm components but not the correlation due to bottom or Drell-
Yan. A second cocktail contains the random heavy quark contributions. The cocktails are
shown with the data in the same color. The systematic error band for each point is presented
in the same tone.
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20-40% and 40-94% these high pT excesses are seen at pT ’s above 2 GeV/c. The 0-10% and
10-20% spectra show similar excesses down to pT ’s of 1 GeV/c.
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Chapter 9

Comparisons and Conclusions

The Cu+Cu mass spectra are compared to the measured dilepton spectra in different
collision systems and theoretical calculations. These comparisons provide an additional
mechanism to study the enhancements in the dilepton mass spectra. Comparisons to the
other PHENIX dielectron spectra will be presented with reference to results from other
experiments when relevant. The theoretical comparisons use scaled Au+Au calculations
applied to the central Cu+Cu dielectron measurement. Finally conclusions and ideas for
future measurements are presented.

9.1 Comparison to other systems

The PHENIX
√

sNN = 200 GeV p+p and minimum bias d+Au and Au+Au dielectron
spectra are presented in Figure 9.1 with their respective hadronic cocktails. The p+p spec-
trum uses 2005 triggered data from

√
sNN=200 GeV p+p collisions [40]. This measurement

was completed by Torsten Dahms. The p+p measurement shows the dielectron spectrum
without the any quark gluon plasma effects. It agrees very well with the hadronic cocktail,
so much so that an independent charm cross section was determined from this measurement
[66]. The good agreement in p+p provides confidence in the hadronic cocktail simulation.

The minimum bias d+Au spectrum uses 2008 triggered data from
√

sNN = 200 GeV
d+Au collisions at PHENIX [102]. This analysis is the preliminary work of Jason Kamin.
The d+Au spectrum also agrees very well with the cocktail. Cold nuclear matter effects
have no effect on the dilepton mass spectrum. This is in agreement with the proton+nucleus
dilepton measurements at CERES [59] and NA60 [65].

The Au+Au dielectron result uses 2004 minimum bias data from
√

sNN = 200 GeV
collisions at PHENIX [40]. This measurement was a first of its kind analysis completed by
Alberica Toia. The Au+Au spectra shows a large excess above the cocktail in the low mass
region extending from 0.15 to 0.75 GeV/c2. As with the p+p and d+Au spectra, the data
reproduces the π, ω, φ and J/ψ resonances. All three spectra agree in the intermediate mass
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Figure 9.1: The PHENIX dielectron mass spectrum in p+p, d+Au and Au+Au at
√

sNN =
200 GeV. The p+p and Au+Au spectra are published [40], the d+Au spectrum is a prelim-
inary result [102].

region with the correlated charm contribution calculated by Pythia.
The variation of the mass spectra with centrality is shown in Figure 9.2; all of the

PHENIX dielectron mass spectra are scaled and shown in NColl order. In this comparison
it is apparent that the very substantial low mass excess seen in central Au+Au collisions
decreases as the collisions become more peripheral. The comparison of the 0-10% Au+Au, 10-
20% Au+Au and 0-10% Cu+Cu spectra scaled by 1/NPart, in Figure 9.3(a), nicely shows the
excess increasing in yields and extending to lower masses as collisions become more central.
Figure 9.3(b) shows the shape comparison of the 40-60% and 60-92% Au+Au spectra with
the 40-94% Cu+Cu. The peripheral Cu+Cu intermediate mass excess, not seen in the p+p
or d+Au spectra, is also evident in the 40-60% and 60-92% Au+Au spectra.

For a more quantitative understanding of the low mass enhancement the scaled yields
as a function of centrality are presented in Figure 9.4 for various collision systems. Figure
9.4(a) shows the PHENIX dielectron yields in the very low and low mass regions. Figure
9.4(b) shows the CERES 158 AGeV Pb+Au enhancement factor, the ratio of the yield over
the cocktail, as a function of multiplicity, dN/dη, for masses below 0.2 GeV/c2 and between
0.2 and 0.6 GeV/c2. Both of the plots show good agreement with the cocktail at very low
masses, in the region where the pion Dalitz decay dominates. This agreement provides
confidence that the efficiency correction is applied properly. At low masses, between 0.15
and 0.75 or 0.2 and 0.6 GeV/c2, there is a remarkable excess that increases faster than linear
with centrality for both the PHENIX and CERES data.

The yields in the intermediate mass range as a function of NPart are presented in Figure
9.5 for various collision systems. Figure 9.5(a) shows the PHENIX yields in the intermediate
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Figure 9.2: All of the PHENIX dielectron measurements in each system in NColl order. The
Au+Au spectra are shown in black, the Cu+Cu spectra are in blue, the d+Au spectrum
is green and the p+p spectrum is red. Each spectra is compared to it’s cocktail using the
Pythia heavy quark correlated components. The spectra are scaled as listed in the legend.
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Figure 9.3: On the left, PHENIX 0-10% and 10-20% Au+Au and the 0-10% Cu+Cu di-
electron spectrum are shown scaled by 1/NPart. On the right, the PHENIX 40-60% and
60-94% Au+Au and the 40-94% Cu+Cu dielectron spectra are shown scaled by 1/NColl.
The respective cocktails for the various spectra are also shown.

mass region, from 1.2 to 2.87 GeV/c2, scaled by NColl with the expected correlated heavy
quark yields, the charm correlations from Pythia and the random heavy quark component.
The p+p and d+Au agree well with the expected correlated charm yields from Pythia. The
most central Cu+Cu and peripheral Cu+Cu and Au+Au yields are somewhat larger than
expected; this reflects the behavior seen in Figure 9.3(b) and in Chapter 8. Figure 9.5(b)
presents NA60’s 158 AGeV In+In excess factors in the mass region, 1.16 to 2.56 GeV/c2.
The NA60 data show a clear increase in the enhancement with at a rate of N2

Part. The NA60
enhancement is from a thermal photon source. It differs from the Drell Yan mass shape
and is not due to off-vertex decays as heavy quark correlated pairs are. The higher energies
obtained at RHIC result in increased heavy quark production rates. The PHENIX yields
at intermediate masses may also contain thermal photons or heavy quark modifications.
Unfortunately, the error bars in PHENIX yields in the intermediate range are sufficiently
large that no trend in centrality can be seen beyond NColl scaling.

The p+p and Au+Au mass spectra have been further studied differentially in pT . This
is published in the 0 to 1.2 GeV/c2 mass range [40] but recently extended out to masses of 4
GeV/c2. The d+Au spectrum is not yet available in pT slices. The substantial Au+Au low
mass excess is primarily in the lowest pT range below 1 GeV/c. Smaller excesses are seen in
the high pT slices at low and the intermediate masses for both the p+p and minimum bias
Au+Au spectra. The majority of the low mass excess is in the low pT spectrum. The 158
AGeV Pb+Au CERES dilepton spectrum shows a similar trend for pT ’s above and below
0.5 GeV/c, Figure 9.7. The high pT CERES spectrum has a similar falling trend extending
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Figure 9.4: The low mass dilepton excess as a function of centrality. On the left, the yields
per NPart from the PHENIX data in each collision system are presented as a function of NPart

with the expected cocktail yields. On the right, the 158 AGeV Pb+Au CERES low mass
excess is presented as an enhancement factor (yield/cocktail) as a function of multiplicity,
dN/dη.

(a) PHENIX (b) NA60

Figure 9.5: The intermediate mass dilepton yield as a function of NPart. On the left, the
yields per NColl from the PHENIX data in each collision system are presented with the
expected correlated charm yields. On the right, the NA60 158 AGeV In+In dilepton excess
factors in the mass range 1.16 and 2.56 Gev/c2 are presented. [65]
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Figure 9.7: The CERES 158 AGeV Pb+Au spectra divided by pT above and below 0.5
GeV/c. [59]

to masses above the φ as is seen in the high pT heavy ion PHENIX spectra.
In Figure 9.8, the shapes of the p+p, Cu+Cu and Au+Au pT sliced mass spectra are

compared. The lowest pT slice, 0 < pT < 1 GeV/c, contains the majority of the low mass
excess in the minimum bias Au+Au and central Cu+Cu spectra and the intermediate mass
excess in the peripheral Cu+Cu spectrum. Between pT ’s of 1 and 2 GeV/c, the minimum
bias Au+Au and 0-10% and 10-20% Cu+Cu show a large excess in the low mass region.
The peripheral Cu+Cu and p+p show a much smaller excess in this region with some of
the yield extending to higher masses. The 2 < pT < 3 and 3 < pT < 5 GeV/c slices show
significant yields in the low and intermediate masses for all of the spectra. The more central
collisions appear to have increased yields at the low masses. The intermediate mass excesses
appear to be an extension of the low mass excess suggesting that they are also photonic in
origin. However, the high pT cocktail comparisons must be cautioned because the cocktail
in these pT slices contains the only correlated charm component. The bottom and Drell Yan
components are not included. At higher pT s, we expect that the bottom contribution will
become more significant at lower masses. The additional cocktail line with random heavy
quark correlations contains both the charm and bottom contribution. It is still below the
high pT spectra, but above the cocktail with the Pythia charm correlations.

Figure 9.9 contains the scaled yields in the low and intermediate mass regions as a function
of pT . The data are compared with the expected cocktail yields. The lower plot in Figure
9.9(a) shows that the NPart scaled yields for masses below 0.1 GeV/c2. These agree well with
the cocktail yields as a function of pT . The upper plot shows NPart scaled yields in the mass
region 0.15 to 0.75 GeV/c2. The minimum bias Au+Au and 0-10%, 10-20% Cu+Cu yields
are above the cocktail for pT above 1 GeV/c. Below 1 GeV/c, the minimum bias Au+Au
has a large excess but the Cu+Cu measurements are less significant. The scaled yield for
the 0-10% Cu+Cu is in agreement with the cocktail in this range; this is most likely because
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Figure 9.8: The p+p, Cu+Cu and Au+Au PHENIX dielectron mass spectra in the pT ranges
0-1, 1-2, 2-3 and 3-5 GeV/c.
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Figure 9.9: The PHENIX dielectron yields as a function of pT in each system.

the mass window extends down to 0.15 GeV/c2 and the Cu+Cu low mass excess does not
go below 0.5 GeV/c2 in mass.

Figure 9.9(b) shows the NColl scaled yields in the intermediate mass region as a function
of pT . All of the yields are above the expected yields for pT above 1 GeV/c. The most
striking feature of this plot is that the pT dependance of the yield seen in the data does not
match the correlated charm trend from Pythia. This is not unexpected. Pythia does not
reproduce the measured p+p non-photonic single electron pT spectrum [88]. The addition
of a correlated bottom component may ease the discrepancy at high pT .

At very low masses, between 0.12 and 0.3 GeV/c2, and pT ’s above 1 GeV/c the excesses in
the PHENIX p+p and Au+Au spectra are identified as virtual direct photons. The p+p and
Au+Au spectra in this region illuminate the low momentum photon spectrum resulting in a
determination of the initial temperatures of the Au+Au system between 300 and 600 MeV.
The direct virtual photon measurement was pioneered in the p+p and Au+Au dielectron
continuum measurement. [42] [40]

The direct photon shape is modeled using Kroll-Wada formulaism filtered into the PHENIX
acceptance. Once the direct virtual photon line shape is determined, the dielectron spec-
trum is fit in high pT ranges with the cocktail and the simulated direct photon component,
Equation 9.1.

fdata = (1− rγ∗) fcocktail + rγ∗fdirect (9.1)

where fcocktail is the cocktail line shape, fdirect is the direct photon component and the rγ∗

parameter is the ratio of the direct virtual photon over the inclusive virtual photon. A fit
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with a rγ∗ value of zero means that the cocktail fully describes the data and there is no
virtual photon component. A fit with a rγ∗ parameter of one means that all dielectron pairs
are from direct virtual photons and there are no pairs from hadronic decays.

(a) Min. Bias Cu+Cu spectrum
(b) rγ∗ in various systems

Figure 9.10: On the right, fdirect and fcocktail are shown with an independantly analyzed high
pT Min. Bias Cu+Cu spectrum. Both the data and the simulations are filtered into the
PHENIX aperture for the pT range between 1 and 1.5 GeV/c. The data is fit with Equation
9.1 in the mass region 0.15 to 0.3 GeV/c2 to find the amplitude of the direct virtual photon
component, rγ∗ . The resulting fit is shown in the range 0.15 to 0.7 GeV/c2. On the left, the
various rγ∗ values are shown as a function of the dielectron pair’s pT for Cu+Cu, Au+Au,
p+p and d+Au collisions. These are compared with theoretical pQCD calculations of the
direct virtual photon fraction [103]. [104]

An independent dielectron analysis has extrapolated the direct photon component for the
minimum bias Cu+Cu spectrum. This is a preliminary result by Daisuke Watanabe [104].
Figure 9.10(a) shows this fit for the Min. Bias Cu+Cu spectrum sliced in the pT range 1 to
1.5 GeV/c and fit over mass range 0.15 to 0.3 GeV/c2, the fit function is shown from 0.15 to
0.7 GeV/c2. These fits are calculated in various pT slices and the rγ∗ value is determined for
each. Figure 9.10(b) shows the rγ∗ parameter as a function of the dielectron pair pT ranges.
It is clear from Figure 9.10(a) that the direct photon line shape is consistent with the high
pT dielectron spectrum out to masses of 0.7 GeV/c2. It may hold at even higher masses in
the Au+Au spectrum accounting for some of the excesses in the intermediate mass region.

9.2 Theoretical comparisons

Little theoretical work has been done in the Cu+Cu system. The one exception is a study
of the hadronic contribution using a statistical hadronization model that includes an increases
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in the relative strangeness production [105]. In Cu+Cu the hadronic contribution from the
statistical hadronization model agrees with the hadronic cocktail describe in Chapter 8. The
low mass excess is not explained.

The PHENIX
√

sNN = 200 GeV minimum bias Au+Au spectrum was compared to
theories from three groups, one for each panel in Figure 9.11(a). On the left, curves by
Rapp and van Hees are presented. Rapp and van Hees calculate a broadened ρ as a result
of hadronic many-body interactions in the hadron gas as described in Chapter 1. They also
produce a dropping mass curve to represent Brown-Rho scaling. The center plot contains
HSD curves made by Cassing, Bratkovskaya and Linnyk, these curves follow the PHSD
method described in Chapter 1. Both a broadened ρ and a broadened and dropping ρ curves
are presented. The rightmost plot shows theory curves from Dusling and Zahed [106]. These
are calculated using a chiral reduction formulism to calculate the effects on the ρ in the
hadron gas. A partonic component from quark annihilation is also included. None of the
theories adequately describe the Au+Au low mass excess particularly in the region below
0.6 GeV/c2.

We extend the theoretical calculations for the Au+Au system to the central Cu+Cu mea-
surement. This is done by scaling the theoretical hadronic yields by NPart and the partonic
yields by NColl. These scaled theoretical contributions are added to the Cu+Cu cocktail with
the ρ meson excluded. The ρ is not included in the cocktail because the theoretical hadronic
components contain the ρ component. Figure 9.11(b) presents a comparison between the
0-10% Cu+Cu data and the scaled theoretical contributions. The 0-10% Cu+Cu data is well
described by the Rapp and van Hees and the HSD lines at low masses. Unfortunately the
data are unable to distinguish between the dropping and broadening curves in the Rapp and
van Hees comparison and the broadened and dropping ρ from HSD.

The theoretical comparison can be further tested by comparing them to the spectra dif-
ferentially in pT . Figure 9.12 shows the minimum bias Au+Au and central Cu+Cu spectra in
the pT ranges, 0 < pT < 1 GeV/c and 1 < pT < 2 GeV/c. In the lowest pT range the Cu+Cu
spectrum is well described by both the Rapp and van Hees and HSD curves. This suggests
that the low mass excess in Cu+Cu collisions is a result of modified ρ mesons produced in
pion annihilation in the hadronic gas phase. In the 1-2 GeV/c pT range, the similarities
between Rapp and van Hees and Dusling and Zahed for both the hadronic and partonic
components are evident. The excess yield is not described by the theories. The HSD curves
come the closest to describing the low mass excess in the 1-2 GeV/c pT range. However,
another dielectron source is evident. The direct virtual photon component mentioned earlier
in this chapter is the high pT low mass dielectron source.

9.3 Conclusions

In conclusion, the central Cu+Cu spectrum shows a low mass excess above the hadronic
cocktail. The low mass excess in Cu+Cu is smaller than the large excess seen in Au+Au
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Figure 9.11: The low mass PHENIX dielectron spectra in Min Bias Au+Au and 0-10%
Cu+Cu compared to theoretical curves from Rapp and van Hees, Cassing an Bratkovskaya,
and Dusling and Zahed. The Cu+Cu hadronic and partonic curves are NPart and Ncoll scaled
versions of the Au+Au. [40]
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(d) 0-10% Cu+Cu, 1 < pT < 2 GeV/c

Figure 9.12: The low mass pT sliced PHENIX dielectron spectra in Min Bias Au+Au
and 0-10% Cu+Cu compared to theoretical curves from Rapp and van Hees, Cassing an
Bratkovskaya, and Dusling and Zahed. The Cu+Cu hadronic and partonic curves are NPart

and Ncoll scaled versions of the Au+Au. [40]
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and only extends down to masses of 0.54 GeV/c2. Shape comparisons with the 0-10% and
10-20% Au+Au spectra suggests that as collisions become more central the low mass excess
grows faster than linear with NPart and extends to lower masses. When the low mass excess
is considered differentially in pT , the majority of the yield is located at low pT . The low
pT , low mass excess in 0-10% Cu+Cu is well described by theory curves from many-body
hadronic interactions and hadron string dynamics.

There exists additional excess yields at high pT in both the low and intermediate mass
regions. The high pT , low mass excess is described by direct virtual photons. In intermediate
masses the excess is most likely due to a combination of bottom correlations and direct photon
contributions.

Future of the dielectron measurements at PHENIX will benefit new detector systems and
increased statistics. The Silicon Vertex Detector [107] will allow us to determine secondary
vertices. It will allow future measurements to discern between intermediate mass dielectron
pairs from correlated heavy quarks and those from direct photons. The Hadron Blind De-
tector detector (HBD) [108] reduces backgrounds by identifying electrons from pion Dalitz
decay and conversions and removing them from our electron sample before making pairs.
Not only are the pion Dalitz and conversion background pairs removed but the combinatorial
backgrounds will be drastically reduced. This detector successfully took p+p data in 2009
and Au+Au data in 2010; analyses of this data are in progress.
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