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Abstract of the Dissertation

A New Regime Switching Model
for Econometric Time Series

by

Ning Sun

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2011

Ever since the publication of Hamilton’s (1989) seminal work on regime switching model,

a large amount of its applications have been found in econometric and statistical problems.

Despite its enormous popularity, one shortcoming of the model is that the model describes

the regime qualitatively instead of quantitatively. In this dissertation research, we first

review the classic regime switching model and its broad applications in different problems.

Then we introduce a stochastic regime switching model in which the parameter in each

regime is a random variable following certain distribution. A forward filtering procedure

shows the posterior distribution of the parameter as a mixture distribution with explicit

weights which can be calculated recursively. Furthermore, based on the reversibility of the

hidden Markov chain, a backward filtering procedure can be conducted in a similar way.
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Based on Bayes’ theorem, both the smoothing estimate of parameter and probabilities can

be calculated explicitly. We also develop an expectation-maximization algorithm to estimate

the hyperparameters in the model. Furthermore, we propose a bounded complexity mixture

(BCMIX) approximation, which has much lower computational complexity yet comparable

to the Bayes estimates in statistical efficiency. We perform intensive simulation studies

to evaluate the Bayes and BCMIX estimates of time-varying parameters, in terms of the

sum of squared errors, L2 errors of the estimates, the Kullback-Leibler divergence, and the

identification ratios of true regimes. We also apply this model to analyze some economic

time series.
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Chapter 1

Introduction

There has been great interest in modeling stochastic systems with time-varying param-

eters. More specifically, the regime switching model (Hamilton 1989, 1994) has proven to

be very useful for modeling economic and financial time series. The model assumes the pa-

rameters of an autoregressive regression as the hidden states of a finite-state Markov chain.

It has been generalized to analyze many economic time series associated with events such

as financial crises (Jeanne and Masson, 2000; Cerra and Saxena, 2005; Hamilton, 2005; Guo

et al., 2011) or changes in government policy (Hamilton, 1988; Davig, 2004; Sims and Zha,

2006; Hauzenberger, 2010).

In this chapter, we review some theoretical works on the regime switching model and its

applications in different problems in the first section. Then a summary of the classic regime

switching model based on Hamilton (1994) is given in the second section. New observations

based on the analysis of real econometric time series are shown in the third section as the

motivation of our study. The last section gives the outline of this dissertation.
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1.1 Literature on Regime Switching Problems

Consider a linear regression model with dependent variable yt and the independent

variable xt which is a (d×1) vector for t = 1, ..., T . For any t, the observations are generated

by one of two regimes:

yt =x′tβ1 + µ1t,

yt =x′tβ2 + µ2t,

where β1 and β2 are (d×1) vectors of coefficients, µ1t and µ2t are assumed to be distributed

as N(0, σ2
1) and N(0, σ2

2) respectively. If it is further assumed that (β1, σ
2
1) 6= (β2, σ

2
2), the

regression is called a switching regression. There are different possible assumptions on the

structure for the switching regression. The simplest assumption is that there is at most one

switch in the data series, that is, the first m observations in a time series are generated by

regime 1 and the remaining T−m observations by regime 2. Problems of this type have been

analyzed in different ways by Quandt (1958, 1960), Brown and Durbin (1968), and Farley

and Hinich (1970).

This simple model permitting only one switch is not realistic and useful in some economic

contexts. A more complex situation arises if it is assumed that the system may switch back

and forth between the two regimes. For example, the first m(1) observations are from regime

1, the following m(2) are from regime 2, and the next m(3) are from regime 1 again. However,

the total number of switches M and m(j) for 1 ≤ j ≤M are not known.

Quandt (1972) introduces a λ-method assuming that nature chooses between regimes 1

and 2 with probabilities λ and 1− λ. The conditional density of yt is

h(yt|xt) = λf1(yt|xt) + (1− λ)f2(yt|xt)

=
λ√

2πσ1
exp

{
− 1

2

(yt − x′tβ1)2

σ2
1

}
+

1− λ√
2πσ2

exp
{
− 1

2

(yt − x′tβ2)2

σ2
2

}
2



and therefore the likelihood function is

l =
n∑
t=1

log h(yt|xt),

which can be maximized with respect to β’s, σ’s, and λ.

The essence of this method is that the choice of regime 1 or 2 at stage t is a Bernoulli

trial by nature and independent of what state the system was in on the previous trial.

This assumption can be relaxed by introducing a transition matrix P , where Pij being the

probability that the system will make a transition from state i to state j. This interpretation

makes the regime switching process governed by a Markov chain.

Goldfeld and Quandt (1973) propose a different τ -method adopting this Markov switch-

ing structure. Denote the probability that the system is initially in one or the other of the

two regimes by λ′0 = (λ1,0, λ2,0) where λ1,0 = 1 − λ2,0, and the probability at stage t is

λ′t = (λ1,t, λ2,t). Then λ′t = λ′t−1A and λ′t = λ′0P
t. The conditional density is

h(yt|xt) = λ1,tf1(yt|xt) + (1− λ1,t)f2(yt|xt) = λ′tft,

where ft = (f1(yt|xt), f2(yt|xt))′. Hence the log likelihood function is

l =
n∑
t=1

log(λ′tft).

Let the transition matrix be  τ1 1− τ1

1− τ2 τ2

 .

Define ptij as the ijth element of P t, then p1i1 = τ1, p
1
21 = 1 − τ2 and we have the difference

3



equation system

pt11 = τ1p
t−1
11 + (1− τ1)pt−121 ,

pt21 = (1− τ2)pt−111 + τ2p
t−1
21 .

The general solution of the system is

 pt11

pt21

 =
(τ1 + τ2 − 1)t

τ1 + τ2 − 2

 τ1 − 1

1− τ2

− 1

τ1 + τ2 − 2

 1− τ2

1− τ2

 .

The substitution of λ′t = (λ1,0p
t
11 + λ2,0p

t
12, λ1,0p

t
12 + λ2,0p

t
22) in the likelihood function makes

it a function of the β’s, σ’s, λ1,0, τ1 and τ2.

Goldfeld and Quandt (1973) applied this method to a model for a housing market in

disequilibrium proposed by Fair and Jaffee (1972) in which the demand function is

Dt = x′tαt + µDt

and the supply function is

St = x′tβt + µSt ,

where yt = min{Dt, St} is the actually observed number of housing starts in month t and

bxt is a vector of independent variables. If there is an excess demand, the observed point

lies on the supply function and if there is an excess demand, it lies on the demand function.

Therefore this is a two-regime problem.

Cosslett and Lee (1985) suggest a recursive algorithm that is computationally tractable

for the evaluation of the likelihood function. Hamilton (1989) extends the above Markov

switching model to the analysis of gross national product (GNP) and business cycle. In

his work, the parameters of an autoregression are viewed as the outcome of a discrete-state

Markov process. Building upon ideas developed by Cosslett and Lee (1985), a nonlinear

4



filter and smoother are presented for uncovering optimal statistical estimates of the state of

the economy based on observations of output. An empirical application of this technique

to postwar U.S. real GNP suggests that the periodic shift from a positive growth rate to a

negative growth rate is a recurrent feature of the U.S. business cycle, and indeed could be

used as an objective criterion for defining and measuring economic recessions. The estimated

parameter values suggest that a typical economic recession is associated with a 3% permanent

drop in the level of GNP.

The work of Hamilton (1989) is an early application of regime switching model in finan-

cial and economic analysis. Moreover, it helps to popularize the regime switching model.

Hamilton (1990) further introduces a vector autoregression model subject to occasional dis-

crete shifts, where a discrete-valued Markov process governs the shifts. It is observed that

the usual numerical maximum of the likelihood functions is subject to computational difficul-

ties associated with the often ill-behaved likelihood surface (multiple local maxima, essential

singularities, and local increases as boundary conditions are approached). He suggests a

numerically robust Expectation-Maximization (EM) algorithm to overcome the numerical

difficulties. This algorithm permits potential application of the approach to large vector

systems.

A lot of literature uses variations of the standard Markov regime switching model to

describe the time series behavior of U.S. short-term interest rates. Cecchetti et al.(1993)

specify aggregate consumption by a regime switching process to explain the first and second

moments of the risk-free rate and the return to equity. Cai (1994), Hamilton and Susmel

(1994) and So et al.(1998) generalize the usual ARCH/GARCH models by encompassing

regime switching properties to model the stochastic volatilities. Garcia and Perron (1996)

identify shifts in the time series of the U.S. real interest rate from 1961 to 1986, using

a regime switching framework by allowing three possible regimes affecting both the mean

5



and variance. Gray (1996) develops a generalized regime switching model of the short-

term interest rate, allowing the short rate to exhibit both mean reversion and conditional

heteroskedasticity and nesting the GARCH and square root process specifications. Dai et al.

(2007) develop a dynamic term structure model with “priced” factor and regime-shift risks

in which the shifts are governed by a discrete-time Markov process with state-dependent

transition probabilities.

Furthermore, regime shifts in foreign exchange rates are also analyzed. Engel and Hamil-

ton (1990) develop a new statistical model of exchange rate dynamics as a sequence of

stochastic segmented time trends, and show that a regime switching model outperforms a

random-walk model as a forecaster. Bekaert and Hodrick (1993) estimate a two-regime model

and find that the variances of forward premiums are nine to ten times larger in the more

volatile regime. Engel (1994) fits a Markov switching model for eighteen exchange rates at

quarterly and monthly frequencies and shows some evidence that the forecast of the Markov

model are superior at predicting the direction of change of the exchange rate. Bollen et al.

(2000) estimate a Markov-switching model with two regimes for log exchange rate changes

and their variances, but with mean and variance regimes allowed to switch independently,

and show that the standard deviations of exchange rate returns are two to three times higher

in the more volatile regime. Frömmel et al. (2005) extend the real interest differential (RID)

model by introducing Markov regime switches for three exchange rates and show that the

key fundamental which determines regimes is the interest rate. Fiess and Shankar (2009)

apply regime switching methods to two simple indices of central bank exchange rate policy

to generate likelihoods of high and low intervention and show strong evidence that the econ-

omy’s balance sheet and economic performance determine the likelihood of switching in the

exchange rate regime.

The regime switching model is also applied to asset pricing. Schwert (1989) models

6



stock volatility using a two-regime model and analyzes the relation of stock volatility with

real and nominal macroeconomic volatility, economic activity, financial leverage, and stock

trading activity. Turner et al. (1989) examine a variety of models in which the variance

of a portfolio’s excess return depends on a state variable generated by a first-order Markov

process, with the state both known and unknown. Cecchetti et al. (1990) consider a Lu-

cas asset pricing model in which the economy’s endowment switches between high economic

growth and low economic growth, and such switching accounts for a number of features of

stock market returns. Abel (1994) derives simple closed-form solutions for expected rates

of return on stocks and riskless one-period bills under the assumption that shocks to the

growth rates of consumption and dividends are generated by a Markov regime switching

process. Abel (1999) incorporates this assumption to a general equilibrium model to analyze

term premia and the risk premia. Veronesi (1999) presents a dynamic, rational expecta-

tions equilibrium model of asset prices where the drift of fundamentals (dividends) shifts

between two unobservable states at random times and shows that in equilibrium, investors’

willingness to hedge against changes in their own “uncertainty” on the true state makes

stock prices overreact to bad news in good times and under react to good news in bad times.

Whitelaw (2000) investigates the empirical contradiction that expected stock returns are

weakly related to volatility at the market level in a general equilibrium exchange economy

characterized by a regime switching consumption process with time-varying transition prob-

abilities between regimes. Lettau et al. (2008) estimate a two-state regime switching model

for the volatility and mean of consumption growth and show the relationship between the

falling macroeconomic risk and the aggregate stock prices.

Asset allocation and portfolio decisions are also modeled in a regime switching frame-

work. Ang and Bekaert (2002) solve the dynamic portfolio choice problem of a U.S. investor

faced with a time-varying investment opportunity set modeled using a regime switching pro-

7



cess which may be characterized by correlations and volatilities that increase in bad times.

Guidolin and Timmermann (2006) study asset allocation decisions in the presence of regime

switching in asset returns, using four separate regimes to capture the joint distribution of

stock and bond returns, and identify the optimal asset allocations. Guidolin and Tim-

mermann (2008) investigate the international asset allocation effects of time-variations in

higher-order moments of stock returns such as skewness and kurtosis. Tu (2010) provides a

Bayesian framework for making portfolio decisions that takes the regime switching between

upturn and downturn into account, and reveal that the economic value of accounting for

regimes is substantially independent of whether or not model and parameter uncertainties

are incorporated.

1.2 A Classic Regime Switching Model

In this section we will restate the classic regime switching model based on Hamilton

(1994).

Let yt be an (n × 1) vector of observed endogenous variables and xt a (d × 1) vector

of observed exogenous variables. Let Ft = (y′t,y
′
t−1, ...,y

′
−m,x

′
t,x
′
t−1, ...,x

′
−m)′ be a vector

containing all observations obtained through date t. If there are K different regimes, and the

process is governed by regime st = j at date t, then the conditional density of yt is assumed

to be given by

f(yt|st = j,xt,Ft−1;α), (1.2.1)

where α is a vector of parameters characterizing the conditional density, and j = 1, 2, ..., K.

These densities will be collected in an (K × 1) vector denoted ηt. For example, consider a

first-order autoregression in which both the constant term and the autoregressive coefficient

8



might be different for different subsamples:

yt = cst + φstyt−1 + εt,

where εt ∼ i.i.d.N(0, σ2). The proposal will be to model the regime st as the outcome of an

unobserved K-state Markov chain with st independent of ετ for all t and τ . In this example,

yt is a scalar (n = 1), the exogenous variables consist only of a constant term (xt = 1), and

the unknown parameters in α consist of c1, ..., cK , φ1, ..., φK and σ2. With K = 2 regimes

the two densities represented by (1.2.1) are

ηt =

 f(yt|st = 1, yt−1;α)

f(yt|st = 2, yt−1;α)

 =

 1√
2πσ

exp
{
−(yt−c1−φ1yt−1)2

2σ2

}
1√
2πσ

exp
{
−(yt−c2−φ2yt−1)2

2σ2

}
 (1.2.2)

It is assumed that st evolves according to a Markov chain that is independent of past

observations on yt or current or past xt:

P (st = j|st−1 = i, st−2 = k, ...,xt,Ft−1) = P (st = j|st−1 = i) = pij. (1.2.3)

The population parameters that describe a time series governed by (1.2.1) and (1.2.3) consist

of α and the various transition probabilities pij, which are collected in a vector θ.

Suppose θ is known, let P (st = j|Ft;θ) denote the inference on the value of st based

on data obtained through date t and based on knowledge of the population parameter θ.

Collect the conditional probabilities P (st = j|Ft;θ) for j = 1, ..., K in an (K × 1) vector

denoted ξt|t, and the forecasts P (st+1 = j|Ft;θ) in an (K × 1) vector denoted ξt+1|t, then
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the optimal inference and forecast for each date t in the sample can be found by iterating on

ξ̂t|t =
ξ̂t|t−1 � ηt

1′ξ̂t|t−1 � ηt
(1.2.4)

ξ̂t+1|t = P · ξ̂t|t, (1.2.5)

where P represents the (K×K) transition matrix defined in (1.2.3), 1 represents an (K×1)

vector of 1s, and the symbol � denotes element-by-element multiplication. Given a starting

value ξ̂1|0 and an assumed value for the population parameter vector θ, one can iterate on

(1.2.4) and (1.2.5) for t = 1, ..., T to calculate the values of ξ̂t|t and ξ̂t|t−1 for each date t in

the sample. The log likelihood function l(θ) for the observed data FT evaluated at the value

of θ that was used to perform the iterations can also be calculated as a by-product of this

algorithm from

l(θ) =
T∑
t=1

log f(yt|xt,Ft−1;θ) =
T∑
t=1

log(1′ξ̂t|t−1 � ηt). (1.2.6)

The proof of (1.2.4) to (1.2.6) can be found on Page 693 in Hamilton (1994).

Let ξ̂t|τ represent the (K × 1) vector whose jth element is P (st = j|Fτ ;θ). For t > τ ,

this represents a forecast about the regime for some future period; for t < τ , this represents

the smoothed inference about the regime the process was in at date t based on data obtained

through some later date τ . The optimal m-period-ahead forecast of ξt+m is

ξ̂t+m|t = Pm · ξ̂t|t,

and the smoothed inferences can be calculated using an algorithm developed by Kim (1994)

as

ξ̂t|T = ξ̂t|t � {P ′[ξ̂t+1|T (÷)ξ̂t+1|t]}, (1.2.7)
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where the sign (÷) denotes element-by-element division. The smoothed probabilities ξ̂t|T are

found by iteration on (1.2.7) backward for t = T−1, ..., 1. This iteration is started with ξ̂T |T ,

which is obtained from (1.2.4) for t = T . This algorithm is valid only when st follows a first-

order Markov chain as in (1.2.3), when the conditional density (1.2.1) depends on st, st−1, ...

only through the current state st, and when xt, the vector of explanatory variables other

than the lagged values of y, is strictly exogenous, meaning that xt is independent of sτ for

all t and τ .

In the iteration on (1.2.4) and (1.2.5), the parameter vector θ was taken to be a fixed,

known vector. The parameters can be estimated by an EM algorithm. Once the iteration has

been completed for t = 1, ..., T for a given fixed θ, the value of the log likelihood implied by

that value of θ is then known from (1.2.6). The value of θ that maximized the log likelihood

can be found numerically. It is shown in Hamilton (1990) that the maximum likelihood

estimates for the transition probabilities satisfy

p̂ij =

∑T
t=1 P (st = j, st−1 = i|FT ; θ̂)∑T

t=1 P (st−1 = i|FT ; θ̂)
, (1.2.8)

where θ̂ denotes the full vector of maximum likelihood estimates. The maximum likelihood

estimate of the vector α that governs the conditional density (1.2.1) is characterized by

T∑
t=1

(
∂ log ηt
∂α′

)′
ξ̂t|T = 0. (1.2.9)

The details can be found in Hamilton (1990).

The above approach readily generalizes to processes in which the probabilities of st = j

depend not only on the value of st−1 but also on lagged values of yt or strictly exogenous

explanatory variables, as in Diebold et al.(1994), Filardo (1994), and Peria (2002). However,

often there are relatively few transitions among regimes, making it difficult to estimate such
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parameters accurately, and most applications have assumed a time-invariant Markov chain.

For the same reason, most applications assume only K = 2 or 3 different regimes.

Several tests have been developed for identifying the number of regimes. Most of them

are based on the likelihood ratio (LR) technique. Hansen (1992) revisits the model of Hamil-

ton (1989) and uses empirical process theory to bound the asymptotic distribution of the LR

test statistic. His method sets a grid over different values of the transition probabilities and

the parameters describing the second state. The constrained likelihood is optimized with

respect to the nuisance parameters at each point of the grid. This method gives a bound

for the likelihood ratio test statistic and not a critical value. Hamilton (1996) applies the

score function technique for different tests of model misspecification. As he has mentioned,

conducting proper inference is regime switching models is especially challenging. When for-

mulated in the natural way, testing the null hypothesis that there is a single regime versus

the alternative of two regimes can involve a nuisance parameter not identified under the

null hypothesis. Thus standard LR tests, the related Lagrange multiplier and Wald tests

cannot be used in the usual manner. Garcia (1998) reviews Hansen’s problem. He treats

the transition probabilities as nuisance parameters and derives the asymptotic distribution

of the Sup LR test in terms of the remaining parameters of the model and uses Monte Carlo

experiments to show that these asymptotic distributions are very good approximations to

their empirical counterparts. Cho and White (2007) include the boundary of the parameter

space when developing their limit theory. But their method needs to specify a parameter

space for the coefficients that vary over regimes. So far, there is no satisfying test for the

number of regimes.

In a Bayesian approach, both the parameters θ and the values of the states s =

(s1, ..., sT )′ are viewed as random variables. A particular Markov Chain Monte Carlo method,

the Gibbs sampler, is widely applicable to obtaining the marginal posterior distributions of

12



interest. The method , in the ith iteration, involves generating a realization θ(i) from the

posterior distribution of θ|{FT , s(i − 1)}, and generating s(i) from the posterior distribu-

tion of s|{θ(i),FT}. An algorithm for generating a draw from the second distribution,

s|{θ(i),FT}, was developed by Albert and Chib (1993).

1.3 A Motivating Question

Although the assumption of a finite (and small) set of regimes in the classic regime

switching model seems adequate for many applications, it is too restrictive for many econo-

metric time series that undergo structural changes occasionally so that the model parameters

at different periods have different values, even though they belong to the same regime.

For instance, to describe business cycles, one tends to classify qualitatively the economic

states as two regimes (“expansion” and “recession”); that is, the model parameters are

represented by a two state hidden Markov chain. Similarly, when modeling the stock market,

one tends to decompose market fluctuations into “bull” and “bear” markets. The classic

regime switching models assume that the model parameters take two values, corresponding

to two states. However, even in the same state, the model parameters at different periods

might not necessarily be the same.

To illustrate the motivation of this dissertation study, we show a real data example.

We use “All Employees: Total nonfarm (PAYEMS)” available from the website of Federal

Reserve Bank of St. Louis at http://research.stlouisfed.org/fred2/series/PAYEMS/.

This data comes from U.S. Department of Labor: Bureau of Labor Statistics. The non-

farm payrolls figure is an extremely important coincident indicator. It is the benchmark

labor statistic used to determine the health of the job market because of its large sample

size and historical significance in relation to predicting business cycles accurately. We use

the monthly data (in thousands) from January 1970 to June 2011. Figure 1.1 shows the

13
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Figure 1.1: PAYEMS series: In thousands. NBER recessions are shown as shaded areas.
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original series. The series shows an increasing trend over time. The shaded areas denote the

recessions identified by NBER. Not surprisingly, each recession is overlapped by a decrease

in the PAYEMS series, indicating a rising unemployment rate during a recession. After each

recession, the employment situation begins to recover to the pre-slump level.

To make the series stationary, we use the change in PAYEMS (in thousands) which is

calculated as the differenced series yt = y′t − y′t−1, where y′t is the original PAYEMS series.

The series is shown in Figure 1.2. It can be seen that during each NBER recession the

differenced series reaches a local minimum and then rebounds. This series is stationary. The

p-value of an augmented Dickey-Fuller test is less than 0.01 for the null hypothesis that the

series is non-stationary.
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Figure 1.2: PAYEMS series: Change in thousands. NBER recessions are shown as shaded
areas.
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We assume a classic regime switching autogressive model

yt = αt + βtyt−1 + εt, (1.3.1)

where αt = α(st) and βt = β(st) are changing from regime to regime. But within each regime,

both coefficients are constant. The random variable εt is normally distributed with mean zero

and variance σ2. To implement the classic regime switching model, we use a Matlab package

written by Marcelo Perlin (http://www.mathworks.com/matlabcentral/fileexchange/

15789-msregress-a-package-for-markov-regime-switching-models-in-matlab). As

mentioned in Perlin (2010), the package estimates the classic regime switching model with

a two-step approximation, and it does not adopt the EM algorithm to estimate the hyper-
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parameters. We assume that there are two regimes, K = 2. The estimated probability of

P (st = 1) is shown in Figure 1.3. The recessions identified by NBER are shown as shaded

areas in the figure. For most of time, the identified regime is 1. There are some transitions

from regime 1 to regime 2. Most of them occur after a NBER recession. To test whether the

coefficients are constant within each regime, we pick two subperiods, August 1986 to May

1990 and December 1994 to December 1999, during both of which the estimated probabilities

P (st = 1) are greater than 0.9. We estimate a regular AR(1) model yt = α+ βyt−1 + εt over

each subperiod. The estimated α and β are 223.02 and 0.01 respectively for the first sub-

period. The estimated α and β are 275.38 and -0.14 respectively for the second subperiod.

The significant difference indicates the possibility that within each regime, the coefficients

are not constant. This is the issue we want to address in this dissertation. In Section 2.1, a

new stochastic regime switching model will be proposed in which within each regime the co-

efficient is defined as a random variable instead of a constant, following some regime-specific

distribution.

Since we do not use the exact method proposed by Hamilton (1989) to estimate the

classic regime switching model, it is possible that the approximating algorithm utilized in

the Matlab package is not accurate in identifying the regimes. In Section 3.2.2, we will apply

the model we propose in Chapter 2 to the same PAYEMS series to compare the results with

Figure 1.3.

1.4 Outline

This dissertation research is motivated by the concerns mentioned above. It studies the

estimation of parameters in a stochastic regime switching model, exploring its applications

to some econometric time series. In Chapter 2, we propose the stochastic regime switch-

ing model with the associated smoothing estimates of parameters and inference on regimes.
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Figure 1.3: PAYEMS: Estimates of P (st = 1) in a classic regime switching autoregressive
model. NBER recessions are shown as shaded areas.
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The proposed model uses a Bayesian framework, and hence contains certain hyperparame-

ters. Their estimation is considered. Furthermore, to improve the computational efficiency

of the estimation, a bounded complexity mixture approximation (BCMIX) is considered in

Chapter 3 where other implementation details are also discussed. In Chapter 4 we conduct

extensive numerical simulation studies to test the accuracy and efficiency of our proposed

Bayes estimate and BCMIX estimate. After that, our model is applied to analyze “To-

tal Financial Assets - Assets - Balance Sheet of Nonfarm Nonfinancial Corporate Business

(TFAABSNNCB)” series and “All Employees: Total nonfarm (PAYEMS)” series to illustrate

its usefulness. Some concluding remarks are given in Chapter 5.
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Chapter 2

Estimation in a Stochastic Regime Switching Model

2.1 A Stochastic Regime Switching Model

The classic regime switching model described in Section 1.2 can be used to model business

cycles. For instance, economic expansion and recession can be described via a two-state

Markov chain. However, in practice, the values of the unknown parameters in α during two

different expansion (or recession) periods are not necessary the same. In this section, we will

consider a stochastic regime switching model to incorporate this feature.

Assume the observations {yt}, t = 1, ..., T follow the stochastic regression model

yt = x′tβt + εt, εt ∼ N(0, σ2), (2.1.1)

where xt is the (d × 1) stochastic regressor consisting of the historical observations and

exogenous variables. So in our model, the lagged variable yt−1 is included in xt. The values

of the piecewise constant parameter βt depend on a hidden state st which satisfy the following

assumptions:

(A1) The Markov chain {st ∈ {1, . . . , K}|t ≥ 0} is irreducible, and follows the transition

probability matrix P = (pij)1≤i,j≤K ; i.e., pij = P{st = j|st−1 = i}.
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(A2) The Markov chain {st, t ≥ 0} has a stationary distribution π = (π1, . . . , πK)′.

(A3) Define s0 6= s1. βt = 1{st=st−1}βt−1 + 1{st=k 6=st−1}zt, in which zt are independent

and identically distributed random variables and follow

zt ∼ N(z(k),V (k)), (2.1.2)

Note that with the assumption (A2), {βt} has a stationary distribution and hence a reversible

Markov chain can be defined. The classic regime switching model described in Section 1.2

does not satisfy (A3). Instead, the classic regime switching model assumes that given st,

βt = β(st), a constant depending on the regime. (A3) adds the new feature to our model by

assuming the parameter in each regime is a random variable following a certain distribution.

Assume there are two regimes; that is, K = 2. Figure 2.1 visually demonstrates the

assumptions, showing an example of possible values of a one-dimensional βt. Four transitions

occur during the period 0 ≤ t ≤ T . Within each regime, βt take different values. The values

are realizations from the regime-specific distribution of β(st). The transitions are governed

by some hidden Markov chain.

Figure 2.1: Illustration: Values of β(st) in a stochastic regime switching model.
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The model is motivated by Lai, Liu and Xing (2005), Lai, Xing and Zhang (2008), Lai

and Xing (2011) in which regression models with piecewise constant parameters are studied.

In this dissertation, we combine the Bayesian approach developed in their works with regime

switching framework. In the following sections, we will derive the filtering and smoothing

estimates of parameters following Lai and Xing (2011).

2.2 The Forward Filtering Estimate of Parameters

First let us see the forward filtering estimate of βt; that is, the estimate of βt for any

time t given all the historical information from the beginning to t. Let yij = (yi, ...,yj),

xij = (xi, ...,xj), Ft = (x1t,y1t) and Fij = (xij,yij). Let J
(k)
t = max{i ≤ t : si−1 6= si =

· · · = st = k} be the most recent switching time less than or equal to t when st switches from

another regime to regime k. Figure 2.2 illustrates the definition of J
(k)
t . At time t, st = 2,

and the most recent switching occurs before t is at time J
(2)
t as shown in the figure.

Figure 2.2: Illustration: Definition of J
(k)
t .
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Define

ξ
(k)
t = P (st = k|Ft), ξ

(k)
i,t = P (J

(k)
t = i|Ft)

for 1 ≤ i ≤ t and 1 ≤ k ≤ K. The quantity ξ
(k)
t is the conditional probability that the

current regime is k, ξ
(k)
i,t is the conditional probability that the current regime is k and the

recent transition occurs at time i. Thus ξ
(k)
t =

∑t
i=1 P (J

(k)
t Ft) =

∑t
i=1 ξ

(k)
i,t . If we know all

the historical information up to time t, Ft, and that the recent transition occurs at time i

from some regime to regime k, we just need to use the information after this transition to

estimate the current value of βt.

Since yt = x′tβt + εt, where εt ∼ N(0, σ2), and βt ∼ N(z(k),V (k)). The posterior

distribution of βt given Fit is:

f(βt|Fit) ∝
t∏
j=i

f(yt|βt) · f(βt)

∝
t∏
j=i

exp(−
(yj − x′jβt)2

2σ2
) · exp(

1

2
(βt − z(k))′V (k)−1(βt − z(k)))

∝
(
βt − z

(k)
i,t

)′(
V

(k)
i,t

)−1(
βt − z

(k)
i,t

)
,

where

V
(k)
i,t =

(
V (k)−1 +

∑t
j=i xjx

′
j

σ2

)−1
, z

(k)
i,t = V i,j

(
V (k)−1z(k) +

∑t
j=i xjyj

σ2

)
.

Thus the conditional distribution of βt is g
(k)
i,t (βt) which is defined as

βt|{Ft, J
(k)
t = i} ∼ N(z

(k)
i,t ,V

(k)
i,t ), (2.2.1)

If no historical information is given and only the event st = k is known, the conditional
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distribution of βt is g
(k)
0,0(βt) which is defined as

βt|{st = k} ∼ N(z(k),V (k)). (2.2.2)

It follows that the posterior distribution of βt given Ft is a mixture of normal distribu-

tions:

βt|Ft ∼
K∑
k=1

t∑
i=1

P (J
(k)
t = i|Ft)f(βt|Ft, J

(k)
t = i)

=
K∑
k=1

t∑
i=1

ξ
(k)
i,t g

(k)
i,t (βt).

(2.2.3)

Let us see how to derive the mixture weight ξ
(k)
i,t . First note that

f(βt, yt, st−1 = k|Ft−1) =
K∑
l=1

f(βt, yt, st−1 = k, st = l|Ft−1).

When l 6= k,

f(βt, yt, st−1 = k, st = l|Ft−1)

=f(βt, yt|Ft−1, st−1 = k, st = l)P (st−1 = k, st = l|Ft−1)

=f(yt|Ft−1, J (l)
t = t)f(βt|Ft, J

(l)
t = t)P (st = l|st−1 = k)P (st−1 = k|Ft−1)

=f(yt|Ft−1, J (l)
t = t)g

(l)
t,t (βt)pk,lξ

(k)
t−1.
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When l = k,

f(βt, yt, st−1 = k, st = k|Ft−1) =
t−1∑
i=1

f(J
(k)
t = i,βt, yt|Ft−1)

=
t−1∑
i=1

f(βt, yt|Ft−1, J
(k)
t = i)P (st−1 = k, st = k|Ft−1)

=
t−1∑
i=1

f(yt|Ft−1, J (k)
t = i)f(βt|Ft, J

(k)
t = i)P (st = k|st−1 = k)P (st−1 = k|Ft−1)

=
t−1∑
i=1

f(yt|Ft−1, J (l)
t = t)g

(k)
i,t (βt)pk,kξ

(k)
i,t−1.

Define

ξ
(k)∗
i,t =


(∑

l 6=k ξ
(l)
t−1plk

)
f(yt|J (k)

t = t) i = t,

pkkξ
(k)
i,t−1f(yt|Ft−1, J (k)

t = i) i < t,

then

f(βt, yt, st−1 = k|Ft−1)

=
∑
k 6=l

f(yt|Ft−1, J (l)
t = t)g

(l)
t,t (βt)pk,lξ

(k)
t−1 +

t−1∑
i=1

f(yt|Ft−1, J (l)
t = t)g

(k)
i,t (βt)pk,kξ

(k)
i,t−1

=ξ
(k)∗
t,t g

(k)
t,t (βt) +

t−1∑
i=1

ξ
(k)∗
i,t g

(k)
i,t (βt).

Thus

f(βt|Ft) ∝
K∑
k=1

f(βt, yt, st−1 = k|Ft−1)

=
K∑
k=1

ξ
(k)∗
t,t g

(k)
t,t (βt) +

K∑
k=1

t−1∑
i=1

ξ
(k)∗
i,t g

(k)
i,t (βt).

So the mixture weight ξ
(k)
i,t is the conditional probability which can be determined by the
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recursions

ξ
(k)
i,t ∝ ξ

(k)∗
i,t :=


(∑

l 6=k ξ
(l)
t−1plk

)
f(yt|J (k)

t = t) i = t,

pkkξ
(k)
i,t−1f(yt|Ft−1, J (k)

t = i) i < t.
(2.2.4)

Define

f
(k)
0,0 = |V (k)|1/2 exp

{
1

2
z(k)′V (k)−1z(k)

}
,

f
(k)
i,j = |V (k)

ij |1/2 exp

{
1

2
z
(k)
ij
′(V

(k)
ij )−1zij(k)

}
.

(2.2.5)

Let us use f
(k)
0,0 and f

(k)
i,j to present the posterior densities f(yt|J (k)

t = t) and f(yt|Ft−1, J (k)
t =

i). For the first posterior density f(yt|J (k)
t = t), note that

f(yt|J (k)
t = t) =

∫
f(yt|βt, J

(k)
t = t)f(βt|J

(k)
t = t)dβt.

Using φz,V (β) to denote the density function of a normal distribution with mean z and

variance V ; that is, φz,V (β) = ((2π)d|V |)−1/2 exp{−1
2
(β − z)′V −1(β − z)}, where d is the

dimension of β. Note that

f(yt|βt, J
(k)
t = t)f(βt|J

(k)
t = t)

=
1√

2πσ2
exp

{
− (yt − x′tβt)2

2σ2

}
((2π)d|V (k)|)−

1
2 exp

{
− 1

2
(βt − z(k))′V (k)−1(βt − z(k))

}
=

1√
2πσ2

((2π)d|V (k)|)−
1
2 exp

{
− (yt − x′tβt)2

2σ2
+−1

2
(βt − z(k))′V (k)−1(βt − z(k))

}
=

1√
2πσ2

((2π)d|V (k)|)−
1
2 exp

{
− 1

2
(βt − z̃)′Ṽ

−1
(βt − z̃)

− 1

2
z(k)′V (k)−1z(k)− y2t

2σ2
+

1

2
z̃′Ṽ

−1
z̃
}
,

where

Ṽ =
(
V (k)−1 +

xtx
′
t

σ2

)−1
= V

(k)
t,t ,

z̃ =Ṽ
(
V (k)−1z(k) +

xtyt
σ2

)
= z

(k)
t,t .
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Thus

f(yt|βt, J
(k)
t = t)f(βt|J

(k)
t = t) =

φ
z(k)

t,t ,V
(k)

t,t

(βt)φz(k),V (k)
(0)φ0,σ2(yt)

φ
z(k)

t,t ,V
(k)

t,t

(0)
.

Therefore

f(yt|J (k)
t = t) =

∫ φ
z(k)

t,t ,V
(k)

t,t

(βt)φz(k),V (k)
(0)φ0,σ2(yt)

φ
z(k)

t,t ,V
(k)

t,t

(0)
dβt

=
φz(k),V (k)

(0)φ0,σ2(yt)

φ
z(k)

t,t ,V
(k)

t,t

(0)
=
f
(k)
t,t

f
(k)
0,0

φ0,σ2(yt).

The second conditional density can be transferred to a similar integral

f(yt|Ft−1, J (k)
t = i) =

∫
f(yt|βt,Ft−1, J

(k)
t = i)f(βt|Ft−1, J

(k)
t = i)dβt,

where f(βt|Ft−1, J
(k)
t = i) = g

(k)
i,t−1 = φ

z(k)
i,t−1,V

(k)

i,t−1

(βt). The integrand can be rewritten as

f(yt|βt,Ft−1, J
(k)
t = i)f(βt|Ft−1, J

(k)
t = i)

=
1√

2πσ2
exp

{
− (yt − x′tβt)2

2σ2

}
((2π)d|V (k)|)−

1
2 exp

{
− 1

2
(βt − z

(k)
i,t−1)

′(V
(k)
i,t−1)

−1(βt − z
(k)
i,t−1)

}
=

1√
2πσ2

((2π)d|V (k)|)−
1
2 exp

{
− 1

2
(βt − z̃)′Ṽ

−1
(βt − z̃)

− 1

2
z
(k)
i,t−1

′(V
(k)
i,t−1)

−1z
(k)
i,t−1 −

y2t
2σ2

+
1

2
z̃′Ṽ

−1
z̃
}
,

where

Ṽ =
(
(V

(k)
i,t−1)

−1 +
xtx

′
t

σ2

)−1
= V

(k)
i,t ,

z̃ =Ṽ
(
(V

(k)
i,t−1)

−1z
(k)
i,t−1 +

xtyt
σ2

)
= z

(k)
i,t .

Thus

f(yt|Ft−1, J (k)
t = i) =

φ
z(k)

i,t−1,V
(k)

i,t−1

(0)φ0,σ2(yt)

φ
z(k)

i,t ,V
(k)

i,t

(0)
=

f
(k)
i,t

f
(k)
i,t−1

φ0,σ2(yt).
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Then

f(yt|J (k)
t = t)

f(yt|Ft−1, J (k)
t = i)

=
f
(k)
t,t /f

(k)
0,0

f
(k)
i,t /f

(k)
i,t−1

. (2.2.6)

which is not a function of yt and xt. Plugging (2.2.6) into (2.2.4) yielding ξ
(k)
i,t =

ξ
(k)∗
i,t∑K

k=1

∑t
i=1 ξ

(k)∗
i,t

,

where

ξ
(k)
i,t ∝ ξ

(k)∗
i,t :=


(∑

l 6=k ξ
(l)
t−1plk

)
f
(k)
t,t /f

(k)
0,0 i = t,

pkkξ
(k)
i,t−1f

(k)
i,t /f

(k)
i,t−1 i < t.

(2.2.7)

From (2.2.1) and (2.2.3), we know that the posterior distribution of βt given Ft is a mixture of

normal distributions. So the filtering estimate can be calculated by the posterior expectation

as

β̂t|t := E(βt|Ft) =
K∑
k=1

t∑
i=1

ξ
(k)
i,t z

(k)
i,t . (2.2.8)

2.3 The Backward Filtering Estimate of Parameters

As indicated at the end of Section 2.1, {βt} is a reversible Markov chain. Therefore

we can obtain a backward filter that is analogous to (2.2.3). That is, we reverse the time,

starting with time T and estimating βt for any time t given the “historical” information

from time T to t.

Define R
(k)
t = min{j ≥ t : k = st · · · = sj−1 6= sj} be the most recent switching time

larger than or equal to t when st switches from the regime k to another regime. Figure

2.3 illustrates the definition of R
(k)
t . At time t, the regime is st = 1, and the most recent

transition occurs after t is at R
(1)
t as shown in Figure 2.3.

Define

η
(k)
t = P (st = k|Ft,T ), η

(k)
j,t = P (R

(k)
t = j|Ft,T )

for t ≤ j ≤ T and 1 ≤ k ≤ K. The quantity η
(k)
t is the conditional probability that the
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Figure 2.3: Illustration: Definition of R
(k)
t .

current state is k given information Ft,T η(k)i,t is the conditional probability that the current

regime is k and the next transition occurs at time j given Ft,T . Thus η
(k)
t =

∑T
j=t η

(k)
t,j . If

we know all the information from time t to T and that the next transition occurs at time j,

we just need to use the information before the switch to estimate the current value of βt.

Similar to (2.2.1), the conditional distribution of βt, given Ft,T and the event R
(k)
t = j, is

g
(k)
t,j (βt). Thus the backward filter is defined as

βt+1|Ft+1,T ∼
K∑
k=1

T∑
j=t+1

P (R
(k)
t+1 = j|Ft+1,T )f(βt+1|Ft+1,T , R

(k)
t+1 = j)

=
K∑
k=1

T∑
j=t+1

η
(k)
t+1,jg

(k)
t+1,j(βt+1),

(2.3.1)

in which the weights η
(k)
t+1,j can be obtained by backward induction using the time-reversed
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counterpart of (2.2.7):

η
(k)
t+1,j ∝ η

(k)∗
t+1,j :=


(∑

l 6=k η
(l)
t+2p̃lk

)
f
(k)
t+1,t+1/f

(k)
0,0 j = t+ 1,

p̃kkη
(k)
t+2,jf

(k)
t+1,j/f

(k)
t+2,j j > t+ 1,

(2.3.2)

where P̃ = (p̃lk) is the transition matrix of the reversed chain of {st}; that is, p̃lk = P (st =

k|st+1 = l) .

We can go one step further to calculate f(βt|Ft+1,T ). Following (2.3.1) and the re-

versibility of {βt},

f(βt|Ft+1,T ) =
K∑
k=1

f(βt, st+1 = k|Ft+1,T ) =
K∑
k=1

P (st+1 = k|Ft+1,T )f(βt|st+1 = k,Ft+1,T )

=
K∑
k=1

K∑
l=1

P (st+1 = k|Ft+1,T )f(βt, st = l|st+1 = k,Ft+1,T )

=
K∑
k=1

K∑
l=1

P (st+1 = k|Ft+1,T )P (st = l|st+1 = k)f(βt|st+1 = k, st = l,Ft+1,T )

=
K∑
k=1

K∑
l=1

P (st+1 = k|Ft+1,T )p̃klf(βt|st+1 = k, st = l,Ft+1,T ).

When k = l,

p̃kkP (st+1 = l|Ft+1,T )f(βt|st+1 = k, st = k,Ft+1,T )

=p̃kkf(β, st+1 = k|Ft+1,T )
∣∣∣
β=βt

=p̃kk

T∑
j=t+1

f(β, R
(k)
t = j|Ft+1,T )

∣∣∣
β=βt

=p̃kk

T∑
j=t+1

P (R
(k)
t = j|Ft+1,T )f(β|R(k)

t = j,Ft+1,T )
∣∣∣
β=βt

=p̃kk

T∑
j=t+1

η
(k)
t+1,jg

(k)
t+1,j(β)

∣∣∣
β=βt

;
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when k 6= l,

p̃klP (st+1 = k|Ft+1,T )f(βt|st+1 = k, st = l,Ft+1,T )

=p̃klη
(k)
t+1f(β|st = l)

∣∣∣
β=βt

= p̃klη
(k)
t+1g

(l)
0,0(β)

∣∣∣
β=βt

.

Thus

f(βt|Ft+1,T ) =
K∑
k=1

f(βt, st+1 = k|Ft+1,T ) =
K∑
k=1

P (st+1 = k|Ft+1,T )

=
K∑
k=1

K∑
l=1

P (st+1 = k|Ft+1,T )p̃klf(βt|st+1 = k, st = l,Ft+1,T )

=
K∑
k=1

p̃kk

T∑
j=t+1

η
(k)
t+1,jg

(k)
t+1,j(β) +

K∑
k=1

∑
l 6=k

p̃klη
(k)
t+1g

(l)
0,0(β)

∣∣∣
β=βt

.

So we have

f(βt|Ft+1,T ) =
K∑
k=1

{
p̃kk

T∑
j=t+1

η
(k)
t+1,jg

(k)
t+1,j(β) +

(∑
l 6=k

p̃klη
(k)
t+1

)
g
(l)
0,0(β)

}∣∣∣
β=βt

. (2.3.3)

2.4 The Smoothing Estimate of Parameters

In this section, we will show how to estimate βt for any time t when all the informa-

tion FT is given. Using Bayes’ theorem, we can combine the forward filter (2.2.3) with its

backward variant (2.3.1)

f(βt|FT ) =
K∑
k=1

f(βt, st = k|FT ) ∝
K∑
k=1

f(βt, st = k|Ft)f(βt, st = k|Ft+1,T )
/
f(β, st = k).

From this we can derive the posterior distribution of βt given FT . Let gt(·|FT ), gt(·|Ft),

and gt(·|Ft+1,T ) denote the density functions of the absolutely continuous components of βt
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given FT , Ft, and Ft+1,T respectively. Applying Bayes’ theorem,

gt(β|FT ) =
K∑
k=1

gt(β, st = k|FT ) ∝
K∑
k=1

gt(β, st = k|Ft)gt(β, st = k|Ft+1,T )
/
f(β, st = k).

The right hand side is a mixture of different states. Following (2.2.3) and the proof of (2.3.3),

we have

gt(β, st = k|Ft)gt(β, st = k|Ft+1,T )
/
f(β, st = k)

=

{∑t
i=1 P (J

(k)
t = i|Ft)f(βt|Ft, J

(k)
t = i)

}{∑K
l=1 P (st+1 = l|Ft+1,T )f(βt, st = k|st+1 = l,Ft+1,T )

}
P (st = k)f(βt|st = k)

=

{∑t
i=1 ξ

(k)
i,t g

(k)
i,t (β)

}{
p̃kk
∑T

j=t+1 η
(k)
t+1,jg

(k)
t+1,j(β) +

(∑
l 6=k p̃lkη

(l)
t+1

)
g
(k)
0,0(β)

}
πkg

(k)
0,0(β)

=
t∑
i=1

ξ
(k)
i,t

(∑
l 6=k

p̃lk
πk
η
(l)
t+1

)
g
(k)
i,t (β) +

p̃kk
πk

∑
1≤i≤t<j≤T

ξ
(k)
i,t η

(k)
t+1,j

g
(k)
i,t (β)g

(k)
t+1,j(β)

g
(k)
0,0(β)

.

Based on the reversibility of P ,

p̃kk =P (st = k|st+1 = k) =
P (st = k, st+1 = k)

P (st+1 = k)

=
P (st = k, st+1 = k)

P (st = k)
= P (st+1 = k|st = k) = pkk.

The definitions of g
(k)
i,j and f

(k)
i,j are

g
(k)
0,0(β) = ((2π)d|V (k)|)−1/2 exp{−1

2
(β − z(k))′V (k)−1(β − z(k))},

g
(k)
i,j (β) = ((2π)d|V (k)

i,j |)−1/2 exp{−1

2
(β − z(k)i,j )′(V

(k)
i,j )−1(β − z(k)i,j )},

f
(k)
0,0 = |V (k)|1/2 exp

{
1

2
z(k)′V (k)−1z(k)

}
,

f
(k)
i,j = |V (k)

ij |1/2 exp

{
1

2
z
(k)
ij
′(V

(k)
ij )−1z

(k)
ij

}
.
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And we have

g
(k)
i,t (β)g

(k)
t+1,j(β)

g
(k)
i,j (β)g

(k)
0,0(β)

=
|V (k)

i,t |−
1
2 exp{−1

2
(β − z(k)i,t )′(V

(k)
i,t )−1(β − z(k)i,t )}|V (k)

t+1,j|−
1
2 exp{−1

2
(β − z(k)t+1,j)

′(V
(k)
t+1,j)

−1(β − z(k)t+1,j)}
|V (k)

i,j |−
1
2 exp{−1

2
(β − z(k)i,j )′(V

(k)
i,j )−1(β − z(k)i,j )}|V (k)|− 1

2 exp{−1
2
(β − z(k))′V (k)−1(β − z(k))}

=
( |V (k)

i,j ||V (k)|
|V (k)

i,t ||V
(k)
t+1,j|

) 1
2

exp
{1

2

(
(β − z(k)i,j )′(V

(k)
i,j )−1(β − z(k)i,j ) + (β − z(k))′V (k)−1(β − z(k))

− (β − z(k)i,t )′(V
(k)
i,t )−1(β − z(k)i,t )− (β − z(k)t+1,j)

′(V
(k)
t+1,j)

−1(β − z(k)t+1,j)
)}
.

Expanding the part inside the parentheses of the second term yields

(β − z(k)i,j )′(V
(k)
i,j )−1(β − z(k)i,j ) + (β − z(k))′V (k)−1(β − z(k))

− (β − z(k)i,t )′(V
(k)
i,t )−1(β − z(k)i,t )− (β − z(k)t+1,j)

′(V
(k)
t+1,j)

−1(β − z(k)t+1,j)

=β′
(

(V
(k)
i,j )−1 + V (k)−1 − (V

(k)
i,t )−1 − (V

(k)
t+1,j)

−1
)
β

− 2β′
(

(V
(k)
i,j )−1z

(k)
i,j + V (k)−1z(k)− (V

(k)
i,t )−1z

(k)
i,t − (V

(k)
t+1,j)

−1z
(k)
t+1,j

)
+ z

(k)
i,j
′(V

(k)
i,j )−1z

(k)
i,j + z(k)′V (k)−1z(k)− z(k)i,t ′(V

(k)
i,t )−1z

(k)
i,t − z

(k)
t+1,j

′(V
(k)
t+1,j)

−1z
(k)
t+1,j.

As later shown in (2.9.2) in Section 2.8, we have

(V
(k)
i,j )−1 + V (k)−1 − (V

(k)
i,t )−1 − (V

(k)
t+1,j)

−1 = 0,

(V
(k)
i,j )−1z

(k)
i,j + V (k)−1z(k)− (V

(k)
i,t )−1z

(k)
i,t − (V

(k)
t+1,j)

−1z
(k)
t+1,j = 0.
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So
g
(k)
i,t (β)g

(k)
t+1,j(β)

g
(k)
i,j (β)g

(k)
0,0(β)

=
( |V (k)

i,j ||V (k)|
|V (k)

i,t ||V
(k)
t+1,j|

) 1
2

exp
{

1
2
z
(k)
i,j
′(V

(k)
i,j )−1z

(k)
i,j

}
exp

{
1
2
z(k)′V (k)−1z(k)

}
exp

{
1
2
z
(k)
i,t
′(V

(k)
i,t )−1z

(k)
i,t

}
exp

{
1
2
z
(k)
t+1,j

′(V
(k)
t+1,j)

−1z
(k)
i,t

}
=
f
(k)
i,j f

(k)
0,0

f
(k)
i,t f

(k)
t+1,j

,

that is,

g
(k)
i,t (β)g

(k)
t+1,j(β)

/
g
(k)
0,0(β) =

f
(k)
i,j f

(k)
0,0

f
(k)
i,t f

(k)
t+1,j

g
(k)
i,j (β).

So the posterior distribution of βt given FT is a mixture of normal distributions:

βt|FT ∼
K∑
k=1

∑
1≤i≤t≤j≤T

P (J
(k)
t = i, R

(k)
t+1 = j|FT )f(βt|FT , J

(k)
t = i, R

(k)
t = j)

=
K∑
k=1

∑
1≤i≤t≤j≤T

α
(k)
ijt g

(k)
i,j (βt),

(2.4.1)

where the mixture weight α
(k)
ijt is the conditional probability which can be calculated recur-

sively as

α
(k)
ijt = α

(k)∗
ijt

/
Dt, Dt =

K∑
k=1

∑
1≤i≤t≤j≤T

α
(k)∗
ijt ,

α
(k)∗
ijt =

 ξ
(k)
i,t

(∑
l 6=k η

(l)
t+1pkl/πl

)
i ≤ t = j,

pkkξ
(k)
i,t η

(k)
t+1,jf

(k)
i,j f

(k)
0,0

/
(πkf

(k)
i,t f

(k)
t+1,j) i ≤ t < j.

(2.4.2)

The advantage of our method is that the posterior distribution is given explicitly. Thus

the smoothing estimate of the parameters βt can be calculated directly based on the posterior

distribution. There is no need to use complicated numerical methods involving numbers of

recursive computations. So this method is more accurate and time saving compared with

existing Bayesian methods. From (2.4.1), βt can be estimated by the posterior mean of βt
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given FT , which is

β̂t|T := E(βt|FT ) =
K∑
k=1

∑
1≤i≤t≤j≤T

α
(k)
ijtz

(k)
i,j . (2.4.3)

2.5 Inference on Regimes

We are also interested in the unknown regime at each time t. The α
(k)
ijt in (2.4.2) are

posterior probabilities that are useful for the inference. The derivation of (2.4.2) shows that,

for i ≤ t ≤ j,

α
(k)
ijt = P (C

(k)
ij |FT ),

where

C
(k)
ij ={si = · · · = sj = k, si 6= si−1, sj 6= sj+1}

={J (k)
t = i, R

(k)
t = j}.

For the problem of classifying the regime at stage t, a natural quantity is

P (st = k|FT ) =
∑

1≤i≤t≤j≤T

P (J
(k)
t = i, R

(k)
t = j|FT )

=
∑

1≤i≤t≤j≤T

α
(k)
ijt .

(2.5.1)

Since the above quantity represents the probability of regime k without specifying the value

of βt, it is more robust than the quantity ξ̂t|T in Section 1.2. Moreover, the computation

of the above probability does not need the complicated iteration of (1.2.7) which further

involves repeated calculation of (1.2.4) and (1.2.5). Thus the proposed quantity in (2.5.1) is

also computationally more efficient.
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2.6 Forecast of Parameters

Other than estimating βt given FT , we are also interested in forecasting βt+1 given Ft.

The forward filiter shows the posterior distribution f(βt|Ft). We can go one step further to

calculate f(βt+1|Ft). Note that

f(βt+1|Ft) =
K∑
k=1

f(βt+1, st = k|Ft) =
K∑
k=1

P (st = k|Ft)f(βt+1|st = k,Ft)

=
K∑
k=1

K∑
l=1

P (st = k|Ft)f(βt+1, st+1 = l|st = k,Ft)

=
K∑
k=1

K∑
l=1

P (st = k|Ft)P (st+1 = l|st = k)f(βt+1|st = k, st+1 = l,Ft)

=
K∑
k=1

K∑
l=1

P (st = k|Ft)pklf(βt+1|st = k, st+1 = l,Ft).

When k = l,

pkkP (st = k|Ft)f(βt+1|st = k, st+1 = k,Ft)

=pkkf(β, st = k|Ft)
∣∣∣
β=βt+1

=pkk

t∑
i=1

f(β, J
(k)
t = i|Ft)

∣∣∣
β=βt+1

=pkk

t∑
i=1

P (J
(k)
t = i|Ft)f(β|J (k)

t = i,Ft)
∣∣∣
β=βt+1

=pkk

t∑
i=1

ξ
(k)
i,t g

(k)
i,t (β)

∣∣∣
β=βt+1

;

when k 6= l,

pklP (st = k|Ft)f(βt+1|st = k, st+1 = l,Ft)

=pklξ
(k)
t f(β|st+1 = l)

∣∣∣
β=βt+1

= pklξ
(k)
t g

(l)
0,0(β)

∣∣∣
β=βt+1

.
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Thus

f(βt+1|Ft) =
K∑
k=1

f(βt+1, st = k|Ft) =
K∑
k=1

P (st = k|Ft)

=
K∑
k=1

K∑
l=1

P (st = k|Ft)pklf(βt+1|st = k, st+1 = l,Ft)

=
K∑
k=1

pkk

t∑
i=1

ξ
(k)
i,t g

(k)
i,t (β) +

K∑
k=1

∑
l 6=k

pklξ
(k)
t g

(l)
0,0(β)

∣∣∣
β=βt+1

.

So we have

f(βt+1|Ft) =
K∑
k=1

{
pkk

t∑
i=1

ξ
(k)
i,t g

(k)
i,t (β) +

(∑
l 6=k

pklξ
(k)
t

)
g
(l)
0,0(β)

}∣∣∣
β=βt+1

. (2.6.1)

We can use the posterior expectation to predict βt+1 given Ft as

β̂t+1|t := E(βt+1|Ft) =
K∑
k=1

{
pkk

t∑
i=1

ξ
(k)
i,t z

(k)
i,t +

(∑
l 6=k

pklξ
(k)
t

)
z(l)

}
. (2.6.2)

In the simulation studies and real data analysis, we will use the forecast shown in (2.6.2) to

predict βt+1, and therefore yt+1.

2.7 Bounded Complexity Mixture Approximation

Although the forward filter (2.2.3) uses a recursive updating formula (2.2.7) for the

weights ξ
(k)
i,t (1 ≤ i ≤ t, 1 ≤ k ≤ K), the number of weights increases dramatically with t,

resulting in rapidly increasing computational complexity and memory requirements in esti-

mating βt as t keeps increasing. To address the issue of computational efficiency, we consider

an approximation procedure with much lower computational complexity yet comparable to

the Bayes estimates in statistical efficiency. The procedure follows Lai, Liu and Xing (2005),

Lai, Xing and Zhang (2008), and Lai and Xing (2011).
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The approximation is to keep only a fixed number M of weights at every stage t (which

is tantamount to setting the other weights to be 0). Following Lai, Liu and Xing (2005)

who consider a change point autoregressive model, we keep the most recent m weights ξ
(k)
i,t

(with t −m < i ≤ t) and the largest M −m of the remaining weights, where 1 ≤ m < M .

Specifically, the updating formula (2.2.3) for the weights ξ
(k)
i,t is modified as follows to obtain

a bounded complexity mixture (BCMIX) approximation.

Let K(k)
t−1 denote the set of indices i for which ξ

(k)
i,t−1 in (2.2.7) is kept at stage t − 1 for

regime k; thus there are M indices in K(k)
t−1 and K(k)

t−1 ⊃ {t− 1, · · · , t−m}. At stage t when

a new observation arrives, define ξ
(k)∗
i,t by (2.2.7) for i ∈ {t} ∪ K(k)

t−1 and let it be the index

not belonging to the most recent m stages, {t, t− 1, · · · , t−m+ 1} such that

ξ
(k)∗
it,t

= min{ξ(k)∗i,t : i ∈ K(k)
t−1 and i ≤ t−m}, (2.7.1)

choosing i
(k)
t to be the one farthest from t if the minimizing set in (2.7.1) has more than one

element. Define K(k)
t = {t} ∪ (K(k)

t−1 − {i
(k)
t }) and let

ξ
(k)
i,t =

(
ξ
(k)∗
i,t

/ ∑
j∈K(k)

t

ξ
(k)∗
j,t

)
, i ∈ K(k)

t , (2.7.2)

which yields a BCMIX approximation to the forward filter.

Similarly, to obtain a BCMIX approximation to the backward filter defined in (2.3.2),

let K̃(k)
t+1 denote the set of indices j for which η

(k)
j,t+1 in (2.3.2) is kept at stage t+ 1 for regime

k; thus, K̃(k)
t+1 ⊃ {t + 1, · · · , t + m}. At stage t, define η

(k)
j,t by (2.3.2) for j ∈ {t} ∪ K(k)

t+1 and

let jt be the index not belonging to the most recent m stages, {t, t+ 1, · · · , t+m− 1} such

that

η
(k)∗
jt,t

= min{η(k)∗j,t : j ∈ K̃(k)
t+1 and j ≥ t+m}, (2.7.3)
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choosing j
(k)
t to be the one farthest from t if the minimizing set in (2.7.3) has more than one

element. Define K̃(k)
t = {t} ∪ (K(k)

t+1 − {i
(k)
t }) and let

η
(k)
j,t =

(
η
(k)∗
j,t

/ ∑
j∈K̃(k)

t

η
(k)∗
j,t

)
, j ∈ K̃(k)

t , (2.7.4)

which yields a BCMIX approximation to the backward filter.

For the smoothing estimate E(βt|FT ) and its associated posterior distribution, we

can construct BCMIX approximations by combining the preceding forward and backward

BCMIX filters, which have index sets K(k)
t for the forward filter and K̃(k)

t+1 for the backward

filter at stage t. The BCMIX approximation to (2.4.2) is defined by

α̃ijt = α∗ijt
/
D̃t, D̃t =

∑
i∈K(k)

t ,j∈{t}∪K̃(k)
t+1

α∗ijt,

α
(k)∗
ijt =

 ξ
(k)
i,t

(∑
l 6=k η

(l)
t+1pkl/πl

)
i ∈ K(k)

t ,

pkkξ
(k)
i,t η

(k)
t+1,jf

(k)
i,j f

(k)
0,0

/
(πkf

(k)
i,t f

(k)
t+1,j) i ∈ K(k)

t , j ∈ {t} ∪ K̃(k)
t+1.

(2.7.5)

The BCMIX approximation to the posterior distribution of βt given FT in (2.4.1) is

f(βt|FT ) ≈
K∑
k=1

∑
i∈K(k)

t ,j∈{t}∪K̃(k)
t+1

α̃
(k)
ijt g

(k)
i,j (βt),

the BCMIX approximation to E(βt|FT )in (2.4.3) is therefore

β̂t|T ≈
K∑
k=1

∑
i∈K(k)

t ,j∈{t}∪K̃(k)
t+1

α̃
(k)
ijtz

(k)
i,j , (2.7.6)
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and the BCMIX approximation to the probability of P (st = k|FT ) in (2.5.1) is

r̂
(k)
t|T := P (st = k|FT ) ≈

K∑
k=1

∑
i∈K(k)

t ,j∈{t}∪K̃(k)
t+1

α̃
(k)
ijt .

The BCMIX procedure fixes the number of filters as M at every stage, keeping the m closest

weights and the other M−m largest weights. Clearly the results depend on the specification

of M and m: If they are too small, computing time is saved at the cost of discarding some

important weights; if they are too large, estimating accuracy cannot be improved by excess

computation. In Section 3.1.1, we will show the effect of M and m on the estimation results.

2.8 Estimation of Hyperparameters

It is shown in Appendix that the conditional density function of yt give F1,t−1 is

f(yt|Ft−1) =
K∑
k=1

t∑
i=1

ξ
(k)∗
it , (2.8.1)

where ξ
(k)∗
it are given by (2.2.7) and are functions of hyperparameter vector θ = (P, z(k),V (k), σ2);

1 ≤ k ≤ K). Given θ and the observed data FT , the log likelihood function is

l(θ) =
T∑
t=1

log f(yt|Ft−1) =
T∑
t=1

log
{ K∑
k=1

t∑
i=1

ξ
(k)∗
it

}
, (2.8.2)

in which f(·|·) denotes conditional density function. Maximizing (2.8.2) over θ yields the

maximum likelihood estimate θ̂.

Since θ is a [(K+2)K+1]-dimensional vector and the functions ξ
(k)
it have to be computed

recursively for 1 ≤ t ≤ T , direct maximization of (2.8.2) may be computationally expensive

due to the curse of dimensionality. In this section, we will follow the procedure in Lai, Xing
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and Zhang (2008) to use the EM algorithm which exploits the much simpler structure of the

log likelihood lc(θ) of the complete data {(yt, st,βt), 1 ≤ t ≤ T}:

lc(θ) =
T∑
t=1

{
log f(yt|βt) +

K∑
k=1

f(βt|st = k)1{st=k} +
K∑

k,l=1

log(pkl)1{st−1=k,st=l}

}
=− 1

2

T∑
t=1

{(yt − β′txt)2

σ2
+ log(2πσ2)

}
− 1

2

T∑
t=1

K∑
k=1

{
(βt − z(k))′V (k)−1(βt − z(k)) + log((2π)d|V (k)|)

}
1{st=k}

+
T∑
t=1

K∑
k,l=1

log(pkl)1{st−1=k,st=l}.

(2.8.3)

The E-step of the EM algorithm calculates E(lc(θ)|FT ) which is

E(lc(θ)|FT ) =− 1

2σ2

T∑
t=1

E[(yt − β′txt)2|FT ]− T

2
log(2πσ2)

− 1

2

T∑
t=1

K∑
k=1

E[(βt − z(k))′V (k)−1(βt − z(k))1{st=k}|FT ]

− T

2

K∑
k=1

log((2π)d|V (k)|)E(1{st=k}|FT ) +
T∑
t=1

K∑
k,l=1

log(pkl)E(1{st−1=k,st=l}|FT ).

(2.8.4)

It involves E[(yt − β′txt)2|FT ], E[(βt − z(k))′V (k)−1(βt − z(k))1{st=k}|FT ], and the con-

ditional probabilities E(1{st=k}|FT ) = P (st = k|FT ) and E(1{st−1=k,st=l}|FT ) = P (st−1 =

k, st = l|FT ). For the first conditional probability,

P (st = k|FT ) =
t∑
i=1

P (J
(k)
t = i|FT ) =

t∑
i=1

T∑
j=t

P (J
(k)
t = i, R

(k)
t = j|FT )

=
∑

1≤i≤t≤j≤T

P (C
(k)
ij |FT ) =

∑
1≤i≤t≤j≤T

α
(k)
ijt .
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For the second conditional probability,

P (st−1 = k, st = l|FT ) = P (st = l|st−1 = k,FT )P (st−1 = k|FT ). (2.8.5)

From the above derivation, we know that

P (st−1 = k|FT ) =
∑

1≤i≤t−1≤j≤T

α
(k)
i,j,t−1.

Furthermore,

P (st = j|st−1 = i,FT ) =
P (st = j, st−1 = i,FT )

P (st−1 = i,FT )

=
P (st = j, st−1 = i,Ft|Ft+1,T )

P (st−1 = i,Ft|Ft+1,T )

=
P (st−1 = i,Ft|st = j)P (st = j|Ft+1,T )

P (st−1 = i,Ft|Ft+1,T )

=
P (st−1 = i,Ft)P (st = j|st−1 = i,Ft)

P (st = j)

P (st = j|Ft+1,n)

P (st−1 = i,Ft|Ft+1,T )

=
P (st−1 = i,Ft)

P (st−1 = i,Ft|Ft+1,T )

P (st = j|st−1 = i, yt)P (st = j|Ft+1,T )

P (st = j)

∝P (st = j, yt|st−1 = i)P (st = j|Ft+1,T )

P (st = j)

=
f(yt|st = j, st−1 = i)P (st = j|st−1 = i)

∑K
k=1 P (st = j, st+1 = k|Ft+1,T )

P (st = j)

=
f(yt|st = j, st−1 = i)P (st = j|st−1 = i)

∑K
k=1 P (st = j|st+1 = k,Ft+1,T )P (st+1 = k|Ft+1,T )

P (st = j)

=
f(yt|st = j)P (st = j|st−1 = i)

∑K
k=1 P (st = j|st+1 = k)P (st+1 = k|Ft+1,T )

P (st = j)

=
f
(j)
t,t /f

(j)
0,0pij

∑K
k=1 p̃kjη

k
t+1

πj
.
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Thus

P (st = l|st−1 = k,FT ) =
f
(l)
t,t /f

(l)
0,0pklP̃

′
l ηt+1/πl∑K

i=1

[
f
(i)
t,t /f

(i)
0,0pkiP̃

′
iηt+1/πi

] . (2.8.6)

Plugging (2.8.6) into (2.8.5), we have

P (st = l, st−1 = k|FT ) =
f
(l)
t,t /f

(l)
0,0pklP̃

′
l ηt+1/πl∑K

i=1

[
f
(i)
t,t /f

(i)
0,0pkiP̃

′
iηt+1/πi

] ∑
1≤i≤t−1≤j≤T

α
(k)
i,j,t−1.

Then the conditional probabilities are:

E(1{st=k}|FT ) =
∑

1≤i≤t≤j≤T

α
(k)
ijt ,

E(1{st−1=k,st=l}|FT ) =
f
(l)
t,t /f

(l)
0,0pklP̃

′
l ηt+1/πl∑K

i=1

[
f
(i)
t,t /f

(i)
0,0pkiP̃

′
iηt+1/πi

] ∑
1≤i≤t−1≤j≤T

α
(k)
i,j,t−1.

(2.8.7)

The M-step of the EM algorithm involves calculating the partial derivatives of (2.8.4)

with respect to θ. The closed-form updating formulas are

p̂kl,new =

∑T
t=2 P (st−1 = k, st = l|FT , θ̂old)∑T

t=2 P (st−1 = k|FT , θ̂old)
,

ẑ(k)new =

∑T
t=1E(βt1{st = k}|FT , θ̂old)∑T

t=1 P (st = k|FT , θ̂old)
,

V̂ (k)new =

∑T
t=1E[(βt − ẑ(k)old)(βt − ẑ(k)old)

′1{st = k}|FT , θ̂old]∑T
t=1 P (st = k|FT , θ̂old)

,

σ̂2
new =

∑T
t=1E[(yt − β′txt)2|FT , θ̂old]

T
.

(2.8.8)

The conditional probabilities (2.8.7) can be used to calculate p̂kl,new in (2.8.8). The other

three posterior expectations needed in the updating formulas are E(βt1{st = k}|FT ), E[(βt−
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z(k))(βt − z(k))′1{st = k}|FT ] and E[(yt − β′txt)2|FT ]. Note that

E(βt1{st = k}|FT ) =
∑

1≤i≤t≤j≤T

E(βt|P (J
(k)
t = i, R

(k)
t = j,FT )P (J

(k)
t = i, R

(k)
t = j|FT ),

in which P (J
(k)
t = i, R

(k)
t = j|FT ) = P (C

(k)
ij |FT ) = α

(k)
ijt . Given C

(k)
ij and FT , the conditional

density of βt is g
(k)
i,j (βt), which is a normal distribution as given (2.2.1) with mean of z

(k)
i,j

and variance of V
(k)
i,j . Thus

E(βt1{st = k}|FT ) =
∑

1≤i≤t≤j≤T

α
(k)
ijtz

(k)
i,j .

Similarly, for the second posterior expectation,

E[(βt − z(k))(βt − z(k))′1{st = k}|FT ]

=
∑

1≤i≤t≤j≤T

E[(βt − z(k))(βt − z(k))′|C(k)
ij ,FT ]P (C

(k)
ij |FT )

=
∑

1≤i≤t≤j≤T

α
(k)
ijtE[βtβ

′
t − z(k)β′t − βtz(k)′ + z(k)z(k)′|C(k)

ij ,FT ]

=
∑

1≤i≤t≤j≤T

α
(k)
ijt

{
E(βtβ

′
t|C

(k)
ij ,FT )− z(k)E(β′t|C

(k)
ij ,FT )− E(βt|C

(k)
ij ,FT )z(k)′ + z(k)z(k)′

}

Here E(βt|C
(k)
ij ,FT ) = z

(k)
i,j and

E(βtβ
′
t|C

(k)
ij ,FT ) = var(βt|C

(k)
ij ,FT ) + E(βt|C

(k)
ij ,FT )E(β′t|C

(k)
ij ,FT )

=
(
V

(k)
i,j + z

(k)
i,j z

(k)
i,j
′
)
.

So

E[(βt − z(k))(βt − z(k))′1{st = k}|FT ]

=
∑

1≤i≤t≤j≤T

α
(k)
ijt

(
z
(k)
i,j z

(k)
i,j
′ + V

(k)
i,j − z(k)z

(k)
i,j
′ − z(k)i,j z(k)′ + z(k)z(k)′

)
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For the last posterior expectation, according to (2.4.1) and the above proof,

E[(yt − β′txt)2|FT ]

=
K∑
k=1

∑
1≤i≤t≤j≤T

α
(k)
ijtE[(yt − β′txt)2|C

(k)
ij ,FT ]

=
K∑
k=1

∑
1≤i≤t≤j≤T

α
(k)
ijt

{
y2t − 2E(β′t|C

(k)
ij ,FT )xt + x′tE(βtβ

′
t|C

(k)
ij ,FT )xt

}
=

K∑
k=1

∑
1≤i≤t≤j≤T

α
(k)
ijt

{
y2t − 2z

(k)
i,j
′xt + x′t(z

(k)
i,j z

(k)
i,j
′ + V

(k)
i,j )xt

}

In summary, the posterior expectations necessary for the updating formulas can be calculated

as

E(βt1{st = k}|FT ) =
∑

1≤i≤t≤j≤T

α
(k)
ijtz

(k)
i,j ,

E[(βt − z(k))(βt − z(k))′1{st = k}|FT ]

=
∑

1≤i≤t≤j≤T

α
(k)
ijt

(
z
(k)
i,j z

(k)
i,j
′ + V

(k)
i,j − z(k)z

(k)
i,j
′ − z(k)i,j z(k)′ + z(k)z(k)′

)
,

E[(yt − β′txt)2|FT ] =
K∑
k=1

∑
1≤i≤t≤j≤T

α
(k)
ijt

{
y2t − 2z

(k)
i,j
′xt + x′tz

(k)
i,j z

(k)
i,j
′xt + x′tV

(k)
i,j xt

}
,

(2.8.9)

which can be used to calculate ẑ(k)new, V̂ (k)new and σ̂2
new in (2.8.8). The iterative scheme

(2.8.8) is carried out until convergence or until some prescribed upper bound on the number

of iterations is reached.

To speed up the computations involved in the EM algorithm, one can use the BCMIX

approximations in Section 2.6 instead of the full recursions to determine ξ
(k)
i,t , η

(k)
j,t , α

(k)
ijt , etc.

Applications to the simulation studies have shown that the EM estimates converge quite

fast.
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2.9 Implementation

We have shown the posterior distribution of parameter βt is mixture of distributions.

In this section, we describe in detail how to implement the algorithms, presenting explicit

formulas. Let us start with a description of Bayes algorithm.

Step 1 Calculating V
(k)
i,j and z

(k)
i,j . Similar to (2.2.1), given FT and C

(k)
ij , i < j we use

V
(k)
i,j =

(
V (k)−1 +

∑j
t=i xtx

′
t

σ2

)−1
,

z
(k)
i,j = V i,j

(
V (k)−1z(k) +

∑j
t=i xjyj
σ2

)
.

The results can be saved in two three-dimensional matrices for future calculation. More

specifically, g
(k)
i,j (βt) is calculated by (2.2.1). If there is no information other than st = k is

given, the conditional distribution is g
(k)
0,0(βt) as in (2.2.2). Using V

(k)
i,j , z

(k)
i,j and (2.2.5), we

can also calculate the conditional densities f
(k)
0,0 and f

(k)
i,j . They are also used to calculate the

smoothing estimate of βt by (2.4.3).

Step 2 Calculating the forward filter (2.2.7) in a recursive manner.

(A) Start with t = 1. According to (2.2.7), we have

ξ
(k)
1,1 ∝ ξ

(k)∗
1,1 =

(∑
l 6=k

ξ
(l)
0 plk

)
f
(k)
1,1 /f

(k)
0,0 .

Substitute ξ
(l)
0 for l 6= k by the stationary distribution πl, use f

(k)
1,1 and f

(k)
0,0 to calculate(∑

l 6=k πlplk
)
f
(k)
1,1 /f

(k)
0,0 , which gives the value of ξ

(k)∗
1,1 , and therefore ξ

(k)
1,1 =

ξ
(k)∗
1,1∑K

k=1 ξ
(k)∗
1,1

.

(B) At t > 1, calculate ξ
(k)∗
t,t =

(∑
l 6=k ξ

(l)
t−1plk

)
f
(k)
t,t /f

(k)
0,0 directly. Use ξ

(k)
i,t−1 to calculate

ξ
(k)∗
i,t = pkkξ

(k)
i,t−1f

(k)
i,t /f

(k)
i,t−1 for i < t. Normalize ξ

(k)∗
i,t by dividing

∑
1≤i≤t ξ

(k)∗
i,t to get ξ

(k)
i,t . Keep

doing (B) until t = T .
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Step 3 Calculating the backward filter (2.3.2) in a recursive manner. The backward

filter η
(k)
j,t+1 can be calculated similarly by starting with t = T .

Step 4 Calculating the smoothing mixture weight (2.4.2) and the smoothing estimate

(2.4.3).

One main challenge for this procedure is the computational complexity due to the space

needed to save the matrices and number of weights which is increasing with t. There are

two ways to increase the computational efficiency of this procedure.

The first modification is to implement the BCMIX approximation so that number of

weights will be a fixed number M . The cost associated with the method is to keep the index

set K(k)
t for forward filter ξ

(k)
i,t and K̃(k)

t+1 for backward filter η
(k)
j,t+1. The basic procedure is

similar to the preceding one with calculation of up to M + 1 weights for each stage t. The

detailed procedure is as follows.

Step 1 Calculating V
(k)
i,j and z

(k)
i,j .

Step 2 Calculating the BCMIX forward filter (2.7.2) in a recursive manner.

(A) For 1 ≤ t ≤M , use the Bayes procedure to calculate ξ
(k)∗
i,t , ξ

(k)
i,t . The index set K(k)

t

at stage t is {1, · · · , t}.

(B) At t > M , use new information at stage t to calculate f
(k)
t,t and therefore ξ

(k)∗
t,t =(∑

l 6=k ξ
(l)
t−1plk

)
f
(k)
t,t /f

(k)
0,0 . Use ξ

(k)
i,t−1 to calculate ξ

(k)∗
i,t = pkkξ

(k)
i,t−1f

(k)
i,t /f

(k)
i,t−1 for i ∈ K(k)

t−1. Com-

pare the weights in K(k)
t−1−{i

(k)
t } and drop the smallest one. The remaining M weights form

the new index set K(k)
t , and ξ

(k)
i,t =

ξ
(k)∗
i,t∑

j∈K(k)
t

ξ
(k)∗
j,t

. Keep doing (B) until t = T , saving both the

index sets and the BCMIX forward filters for future calculation.

Step 3 Calculating the BCMIX backward filter (2.7.4) in a recursive manner starting

with t = T .

Step 4 Calculating the BCMIX smoothing mixture weight (2.4.2) and the smoothing
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estimate (2.4.3).

When one takes a second look at the BCMIX procedure, it is easy to find that only a

small portion of the huge precalculated matrices z
(k)
i,j and V

(k)
i,j have been used. So it wastes a

lot of space and time to calculate all the elements. However, we do not know which elements

to use before calculating the index sets. A better idea is to calculate z
(k)
i,j and V

(k)
i,j when we

need them. One more challenge is that the formulas to calculate z
(k)
i,j and V

(k)
i,j involve matrix

inversion, which will take a long time to implement. Instead of calculating z
(k)
i,j and V

(k)
i,j

directly, we can calculate V I
(k)
i,j := (V

(k)
i,j )−1 and V IZ

(k)
i,j := (V

(k)
i,j )−1z

(k)
i,j by the following

simple recursive formulas if we know V I
(k)
i,j−1 and V IZ

(k)
i,j−1

V I
(k)
i,j = V (k)−1 +

∑j
t=i xtx

′
t

σ2
= V I

(k)
i,j−1 +

xjx
′
j

σ2
,

V IZ
(k)
i,j = V (k)−1z(k) +

∑j
t=i xtyt
σ2

= V IZ
(k)
i,j−1 +

xjyj
σ2

.

(2.9.1)

So the BCMIX algorithm can be further simplified by adding this recursive updating

feature. The detailed procedure is as follows.

Step 1 Calculating the BCMIX forward filter (2.7.2) in a recursive manner from t = 1.

Follow Step 2 in the above BCMIX algorithm. Assume at stage t − 1 we have finished

calculating ξ
(k)
i,t−1 and K(k)

t−1, and saved all the V I
(k)
i,t−1 and V IZ

(k)
i,t−1 for i ∈ K(k)

t−1. At stage t,

V I
(k)
i,t and V IZ

(k)
i,t for i ∈ K(k)

t−1 can be calculated by (2.9.1). V I
(k)
t,t = V (k)−1 + xtx′t

σ2 , and

V IZ
(k)
t,t = V (k)−1z(k) + xtyt

σ2 . They are used to calculate f
(k)
i,t , f

(k)
t,t by

f
(k)
i,t = |V (k)

it |1/2 exp{1

2
zit(k)′(V

(k)
it )−1z

(k)
it }

= |V I(k)it |−1/2 exp{1

2
V IZ

(k)
i,t
′(V I

(k)
it )−1V IZ

(k)
i,t },

and therefore ξ
(k)∗
i,t are calculated for all i ∈ {t} ∪ K(k)

t−1. A small weight is dropped by the

BCMIX rule and the remaining index set K(k)
t , ξ

(k)
i,t , V I

(k)
i,t and V IZ

(k)
i,t are saved.
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Step 2 Calculating the BCMIX backward filter (2.7.4) in a recursive manner starting

with t = T . If we know V I
(k)
i−1,j and V IZ

(k)
i−1,j, and want to calculate V I

(k)
i,j and V IZ

(k)
i,j by

the recursive formulas

V I
(k)
i,j = V I

(k)
i−1,j +

xix
′
i

σ2
, V IZ

(k)
i,j = V IZ

(k)
i−1,j +

xiyi
σ2

.

Using these updating formulas, we can recursively calculate V I
(k)
t+1,j and V IZ

(k)
t+1,j for j ∈ K̃(k)

t+1

and conduct Step 3 in the above BCMIX algorithm.

Step 3 Calculating the BCMIX smoothing mixture weight α̃
(k)
ijt and the smoothing

estimate β̂t|T . We can evaluate V I
(k)
i,j and V IZ

(k)
i,j for i ∈ K(k)

t , j ∈ K̃(k)
t+1 by

V I
(k)
i,j = V (k)−1 +

∑j
l=i xlx

′
l

σ2

= (V (k)−1 +

∑t
l=i xlx

′
l

σ2
) + (V (k)−1 +

∑j
l=t+1 xlx

′
l

σ2
)− V (k)−1

= V I
(k)
i,t + V I

(k)
t+1,j − V (k)−1,

V IZ
(k)
i,j = V (k)−1z(k) +

∑j
l=i xlyl
σ2

= (V (k)−1z(k) +

∑t
l=i xlyl
σ2

) + (V (k)−1z(k) +

∑j
l=t+1 xlyl

σ2
)− V (k)−1z(k)

= V IZ
(k)
i,t + V IZ

(k)
t+1,j − V (k)−1z(k).

(2.9.2)

The smoothing estimate of βt can be calculated as β̂t|T defined in (2.7.6). Furthermore,

the inference on regimes can be conducted using (2.5.1) by substituting αijt by α̃ijt calculated

in Step 3.
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Chapter 3

Numerical Studies

In this chapter, we first compare the performances of the Bayes and BCMIX estimates,

through Monte Carlo simulations. The BCMIX approximation is shown to be statistically

and computationally efficient. We then examine the relationship between the BCMIX per-

formance and simulation settings. The choice of hyperparameters is also discussed. The last

section applies a stochastic regime switching autoregressive model to analyze “Total Finan-

cial Assets - Assets - Balance Sheet of Nonfarm Nonfinancial Corporate Business (TFAAB-

SNNCB)” data and “All Employees: Total nonfarm (PAYEMS)” data which has been used

to demonstrate the motivation of this study in Section 1.3.

3.1 Simulation Results

There are three criteria by which we assess the performance of the estimation of pa-

rameter βt: the sum of squared errors, the Kullback-Leibler divergence and the L2 errors

between the true and estimated parameters. In our model, if a time series of T observations

is generated, with a series of β̂t estimated, the SSE is defined by

SSE =
1

T

T∑
t=1

(yt − ŷt)2 =
T∑
t=1

(yt − x′tβ̂t)2,
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which measures the discrepancy between the observed and explained dependent variables.

The Kullback-Leibler divergence is calculated by

KL(βt, β̂t) =
(x′t(β̂t − βt))2

σ2
,

which measures the discrepancy between models with βt and β̂t. We use κ, the average of

KL over the whole sample period, defined by

κ :=
1

T

T∑
t=1

KL(βt, β̂t)

as our measure. When σ2 is 1, the main difference between SSE and κ for our model is sum

of the residuals. Simply rewriting right hand side of the SSE yields that

SSE =
1

T

T∑
t=1

(yt − x′tβ̂t)2 =
1

T

T∑
t=1

(x′tβt + εt − x′tβ̂t)2

=
1

T

T∑
t=1

(x′t(β̂t − βt))2 +
1

T

T∑
t=1

(εt)
2 +

2

T

T∑
t=1

x′t(β̂t − βt)εt

= κ+
1

T

T∑
t=1

ε2t +
2

T

T∑
t=1

x′t(β̂t − βt)εt.

(3.1.1)

The third term should be small with an expectation of zero. The main difference comes from

the second term, 1
T

∑T
t=1 ε

2
t . From this comparison, κ should be a more appropriate criterion

since it measures the divergence between the true and estimated parameters. That is, SSE

also includes 1
T

∑T
t=1 ε

2
t , which does not depend on the estimating accuracy. The L2 error is

defined by

L2 =
1

T

T∑
t=1

||βt − β̂t||2,

which measures the errors between the true and estimated parameters.

We also need to evaluate the performance of the smoothed probability r̂
(k)
t|T as discussed in
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Section 2.5. We use this probability to provide assessment of the hidden state st belonging

to regime k. However, this is not a logical variable only taking a value of 1 or 0, but a

probability theoretically close to 1 or 0. When there is a transition from some regime to

another one, the probability might show some fuzziness. An intuitive and simple way to

make the inference on st is to compare the smoothed probability r̂
(k)
t|T with 0.5. If for any

1 ≤ k ≤ K, r̂
(k)
t|T > 0.5, we identity st = k. More specifically, to evaluate the performance of

this procedure, we define an identification ratio as

IR :=

∑T
t=1

∑K
k=1 1

(r̂
(k)
t|T>0.5)∩(st=k)

T
,

where 1 denotes an indicator function, and T is the length of the sequence. If the true regime

is k, and a probability reasonably close to 1, r̂
(k)
t|T > 0.5, is obtained from the procedure, then

(r̂
(k)
t|T > 0.5) ∩ (st = k) is true, and the indicator function returns 1 for stage t.

3.1.1 Comparison between Bayes and BCMIX Estimates

As mentioned in Section 2.7, the Bayes method is accurate but computationally inef-

ficient since the number of weights increases with t, resulting in rapidly increasing compu-

tational complexity and memory requirement in estimating βt as t keeps increasing. The

BCMIX approximation is much faster and does not need to save so many variables. This

section is to compare the performances of the Bayes method described in Section 2.4 and

the BCMIX approximation described in Section 2.7.

The section considers a simple stochastic regime switching autoregressive model, whose

observation process is written as

yt = βtyt−1 + εt,

in which εt ∼ N(0, σ2). There are two regimes, K = 2, and the values of the parameter βt de-
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pend on the hidden state st. The hyperparameters consist of (z(1), V (1)), (z(2), V (2)), P and

σ2. In all the examples shown in this section, data are generated according to hyperparam-

eter values: (z(1), V (1)) = (0.5, 0.16), (z(2), V (2)) = (−0.5, 0.16), P =

 0.999 0.001

0.001 0.999

,

and σ2 = 1. Furthermore, given st, βt is a realization from a truncated Normal(z(st), V (st))

distribution such that |βt| < 1 to make the series stationary. We generate N = 500 series,

each of length T = 1000, and consider st changing over time in four scenarios:

Scenario 1. There is only one transition from regime 1 to regime 2. st = 1 for 1 ≤ t ≤

300; st = 2 for 301 ≤ t ≤ 1000.

Scenario 2. There is only one transition from regime 1 to regime 2. st = 1 for 1 ≤ t ≤

500; st = 2 for 501 ≤ t ≤ 1000.

Scenario 3. There are two transitions between regime 1 and regime 2. st = 1 for

1 ≤ t ≤ 350; st = 2 for 351 ≤ t ≤ 700; st = 1 for 701 ≤ t ≤ 1000.

Scenario 4. There are three transitions between regime 1 and regime 2. st = 1 for

1 ≤ t ≤ 200; st = 2 for 201 ≤ t ≤ 500; st = 1 for 501 ≤ t ≤ 600; st = 2 for 601 ≤ t ≤ 1000.

In each scenario, we assume the true hyperparameters are given, and compute both the

BCMIX and Bayes estimates. As mentioned in Section 2.7, the performance of the BCMIX

procedure depends on the specification of M and m. This dependence is examined here,

choosing M = 2m and M =10, 20, 30 and 40. Furthermore, to access the performance of

both methods, we consider a simple benchmark in which the hidden state is known so that the

Bayes estimates of βt between two transitions are given by the standard Bayesian formulas for

normal populations (Section 2.7 of Box and Tiao (1973)). This is called a “fictitious Bayes”

estimate. Tables 3.1, 3.2 and 3.3 compare fictitious Bayes estimate (fBayes), Bayes estimate

(Bayes), and the BCMIX estimate (BCMIX) in terms of the SSE, κ and L2 respectively.

The first three columns in Table 3.1 show that both the Bayes and BCMIX(10,5) es-
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Table 3.1: Performance of Sum of squared errors (SSE) for fBayes, Bayes and BCMIX
estimates. Standard errors are given in parentheses below the estimates.

BCMIX
Scenarios fBayes Bayes (10,5) (20,10) (30,15) (40,20)

Scenario 1 0.998 0.995 0.995 0.996 0.996 0.996
(2.05E-03) (2.06E-03) (2.06E-03) (2.06E-03) (2.06E-03) (2.06E-03)

Scenario 2 0.998 0.995 0.996 0.996 0.996 0.996
(2.05E-03) (2.06E-03) (2.06E-03) (2.06E-03) (2.06E-03) (2.06E-03)

Scenario 3 0.997 0.993 0.993 0.993 0.993 0.993
(2.05E-03) (2.04E-03) (2.04E-03) (2.04E-03) (2.04E-03) (2.04E-03)

Scenario 4 0.996 0.990 0.990 0.990 0.990 0.990
(2.06E-03) (2.05E-03) (2.05E-03) (2.05E-03) (2.05E-03) (2.05E-03)

timates show smaller SSE than the fictitious Bayes estimate. As discussed in Section 3.1,

SSE is not an appropriate criterion for evaluating the performance of different estimation

procedures. But this comparison illustrates the effectiveness of both Bayes and BCMIX

estimates. Furthermore, the relative difference between BCMIX(10,5) estimate and Bayes

estimate in SSE is less than 0.05%. But the Bayes estimate takes far more time to compute.

The last four columns in Table 3.1 show that the average SSE over 500 sequences changes

with respect to the different values of M and m. As mentioned in Section 2.7, the approxi-

mation should improve as M and m become larger since more filters are kept at each stage.

However, based on Table 3.1, we cannot see the trend clearly although in each scenario all

the BCMIX estimates have similar SSE. This observation shows two things. First, SSE is

not an accurate measure. Second, the BCMIX procedure is very robust for this model. The

estimation results do not change dramatically when M and m are getting larger.

Table 3.2 shows the comparison in terms of Kullback-Leibler divergence, which is a

more accurate measure of the difference between the true and estimated parameters. As

the benchmark, the fictitious Bayes estimate gives significantly better result than the other
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Table 3.2: Performance of Kullback-Leibler divergence (103κ) for fBayes, Bayes and BCMIX
estimates. Standard errors are given in parentheses below the estimates.

BCMIX
Scenarios fBayes Bayes (10,5) (20,10) (30,15) (40,20)

Scenario 1 2.019 3.963 3.945 3.934 3.935 3.932
(9.13E-02) (1.40E-01) (1.39E-01) (1.41E-01) (1.41E-01) (1.41E-01)

Scenario 2 2.031 4.053 4.045 4.025 4.021 4.023
(9.29E-02) (1.60E-01) (1.60E-01) (1.61E-01) (1.61E-01) (1.61E-01)

Scenario 3 3.025 6.580 6.860 6.610 6.571 6.568
(1.07E-01) (1.89E-01) (2.00E-01) (1.90E-01) (1.89E-01) (1.90E-01)

Scenario 4 3.925 9.985 10.780 10.292 10.151 10.096
(1.25E-01) (2.80E-01) (3.30E-01) (3.10E-01) (3.02E-01) (2.98E-01)

two estimates. Comparing the first three columns, we can see that when there are 2 or 3

transitions, the BCMIX(10,5) estimate is less accurate than Bayes estimate with a relative

difference in κ of less than 7%. Comparing Bayes estimate and BCMIX(20,10) estimate,

the relative difference in κ is less than 3% in all scenarios. The last four columns in Table

3.2 show that κ becomes smaller when the values of M and m become larger. The most

significant improvement of BCMIX occurs when M changes from 10 to 20.

Table 3.3 shows the comparison in terms of the L2 errors between the estimated and

true parameters. As the benchmark, the fictitious Bayes estimate gives significantly better

result than the other two estimates. Comparing the first three columns, we can see that in

three scenarios the BCMIX(10,5) estimate is slightly less accurate than Bayes estimate with

a relative difference in L2 of less than 4%. Comparing Bayes estimate and BCMIX(20,10)

estimate, the relative difference in L2 is less than 1% in all scenarios. The results of Table 3.3

and Table 3.2 verify that BCMIX estimate is comparable to the Bayes estimate in statistical

efficiency but has much lower computational complexity. Moreover, the last four columns in

Table 3.3 show that L2 becomes smaller when the values of M and m become larger. The
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Table 3.3: Performance of L2 errors (103L2) for fBayes, Bayes and BCMIX estimates. Stan-
dard errors are given in parentheses below the estimates.

BCMIX
Scenarios fBayes Bayes (10,5) (20,10) (30,15) (40,20)

Scenario 1 1.023 1.778 1.777 1.770 1.770 1.770
(2.62E-02) (3.19E-02) (3.20E-02) (3.21E-02) (3.21E-02) (3.20E-02)

Scenario 2 1.018 1.766 1.770 1.758 1.757 1.758
(2.63E-02) (3.36E-02) (3.37E-02) (3.37E-02) (3.36E-02) (3.36E-02)

Scenario 3 1.307 2.389 2.438 2.395 2.388 2.387
(2.69E-02) (3.27E-02) (3.43E-02) (3.29E-02) (3.27E-02) (3.27E-02)

Scenario 4 1.538 3.022 3.121 3.054 3.037 3.031
(2.74E-02) (3.97E-02) (4.36E-02) (4.19E-02) (4.12E-02) (4.09E-02)

most significant improvement of BCMIX occurs when M changes from 10 to 20. Based on

the observations of Table 3.2 and Table 3.3,the combination of M = 20 and m = 10 is the

best choice for the BCMIX procedure in our simulation studies.

Table 3.4 compares the Bayes and the BCMIX estimates in terms of identification ratio

(IR). The first two columns show that both the Bayes and BCMIX methods give an average

IR of larger than 97%, with slight absolute differences of less than 0.7%. This further justifies

the effectiveness of the BCMIX procedure. The last four columns in Table 3.4 show that

ratios increase when the values of M and m become larger, but become stable at some point.

For example, in Scenario 1, BCMIX(10,5) gives an IR of 97%, BCMIX(20,10) improves the IR

to 97.3%. After that, increasing M and m does not change IR anymore and the IR stabilizes

at 97.2%. Again, in most cases the most significant improvement of BCMIX occurs when M

changes from 10 to 20. In the next section, we will conduct more simulation studies using

a more complex model with more scenarios, more sequences (N is larger) and longer series

(T is larger). The Bayes method will be computationally prohibitive. We will only use the

BCMIX procedure with M = 20 and m = 10 to estimate the smoothing parameter and make
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Table 3.4: Performance of Identification Ratio (IR) for Bayes and BCMIX estimates. Stan-
dard errors are given in parentheses below the estimates.

BCMIX
Scenarios Bayes (10,5) (20,10) (30,15) (40,20)

Scenario 1 0.973 0.970 0.973 0.972 0.972
(6.51E-03) (6.78E-03) (6.54E-03) (6.64E-03) (6.64E-03)

Scenario 2 0.971 0.973 0.972 0.972 0.973
(6.59E-03) (6.52E-03) (6.60E-03) (6.62E-03) (6.57E-03)

Scenario 3 0.974 0.975 0.977 0.975 0.975
(5.36E-03) (5.27E-03) (5.25E-03) (5.35E-03) (5.34E-03)

Scenario 4 0.972 0.966 0.970 0.971 0.974
(3.76E-03) (4.73E-03) (4.53E-03) (4.14E-03) (3.94E-03)

inference on regimes.

Let us take a second look at Tables 3.1, 3.2, 3.3 and 3.4 to compare the results of

different scenarios. Scenarios 1 and 2 both experience one transition, but at different times.

The transition from regime 1 to regime 2 occurs at t = 300 , about one third of the series,

for Scenario 1, but at t = 500, right in the middle of the series, for Scenario 2. Both Bayes

and BCMIX estimates work slightly better in Scenario 1 in terms of SSE, L2, κ and IR. In

Scenario 1, although the numbers of observations from different regimes are not symmetric,

the methods provide efficient estimates. The estimating errors become larger in Scenarios 3

and 4 when there are more transitions and the distances between two successive transitions

become smaller. As shown in Table 3.3, both values of L2 and the associated standard errors

become larger when there are more transitions. In Scenario 3, 103L2 of fictitious Bayes

estimate is only 1.307, while those of Bayes and BCMIX(20,10) estimates are 2.389 and

2.395. More significant differences are shown in Table 3.2. In Scenario 4, 103κ of fictitious

Bayes estimate is only 3.925, while those of Bayes and BCMIX(20,10) estimates are 9.985

and 10.292. However, as shown in Table 3.4, the methods can identify the correct hidden
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state and regime more efficiently when there are more transitions. The associated standard

errors become smaller in the last two scenarios. So the Bayes and BCMIX procedures are

robust and efficient to make inference on regimes.

To visualize the simulation results, here we show some figures. Figure 3.1 shows a

randomly selected simulation path yt in each scenario. From the figure we find some changing

patterns in each series. For example, in the second plot (Scenario 2), the first half of the

series shows more fluctuations in magnitude, while the second half is closer to zero, indicating

a change in the pattern (regression coefficient) around t = 500. The first plot also shows a

change in pattern, but before t = 500. In Scenario 4, since there are more transitions, we

can see the changes in the series, but cannot tell the number and locations of the transitions

by observing the series. Figure 3.2 shows the true βt and estimated β̂t|T of the corresponding

series. Before we analyze the estimates, let us observe the true parameters in different

regimes to have a better understanding of the model. In the last plot (Scenario 4), there are

two regimes and three transitions from regime 1 to 2, then back to regime 1, and then to

regime 2 again. However, values of βt within each regime are not the same. For regime 1,

βt = 0.92 before the first transition, and βt = 0.60 between the second and third transitions.

For regime 2, βt = −0.39 between the first and second transitions, and βt = −0.17 after

the third transition. This is the new feature of our model as specified in assumption (A3).

Different from the classic regime switching model in which βt is a constant within each

regime, in our model βt is a random variable following some distribution within each regime.

Now let us look at the estimation results. In all plots, we cannot tell the difference between

Bayes estimate (dotted line) and BCMIX estimate (dashed line). In the first two scenarios

(top two plots), the estimated parameters are very close to the true βt. In the last two

scenarios (bottom two plots) there are significant deviations between βt and β̂t|T .

Figure 3.3 shows the true and estimated P (st = 1) of each series. Specifically, if the
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Figure 3.1: A selected series yt in Scenarios 1 (top-left), 2 (top-right), 3 (bottom-left) and 4
(bottom-right).

−10

−5

0

5

−10

−8

−6

−4

−2

0

2

4

6

8

10

  0 200 400 600 800 1000
−10

−8

−6

−4

−2

0

2

4

6

8

10

  0 200 400 600 800 1000
−10

−5

0

5

57



Figure 3.2: Bayes estimates (dotted line), BCMIX estimates (dashed line) of β̂t|T and true
βt (solid line) of the selected series in Scenarios 1 (top-left), 2 (top-right), 3 (bottom-left)
and 4 (bottom-right)
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Figure 3.3: Bayes estimates (dotted line), BCMIX estimates (dashed line) of r̂
(1)
t|T and true

P (st = 1) (solid line) of the selected series in Scenarios 1 (top-left), 2 (top-right), 3 (bot-
tom-left) and 4 (bottom-right)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  0 200 400 600 800 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  0 200 400 600 800 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

59



true regime is 1, the true probability of P (st = 1) = 1; if the true regime is 2, the true

probability of P (st = 1) = 0. There are two regimes in our simulation setup, hence

P (st = 2) = 1 − P (st = 1) for 1 ≤ t ≤ T . So we only show the probability of regime

1. Slight differences between the estimated probabilities in Bayesian procedure (dotted line)

and BCMIX procedure (dashed line) can be observed. When there are enough observations

between two consecutive transitions, as in the first three plots (Scenarios 1, 2 and 3), both

procedures capture the transitions very quickly. But when there are more frequent transi-

tions, as in the last plot, the estimated probabilities show some fuzziness around transitions.

That is why we use P (st = 1) > 0.5 to make inference on the unknown regime.

3.1.2 Simulation Settings

In this section, we will examine the effects of different simulation settings on the es-

timates. As mentioned in the last section, we will only use the BCMIX procedure in this

section for large scale simulation studies. In this section we consider a stochastic regime

switching autoregressive model

yt = αt + βtyt−1 + εt, (3.1.2)

in which εt ∼ N(0, σ2). There are two states, K = 2, and the parameter (αt, βt)
′ is two-

dimensional. z(1) = (0.2,−0.3)′, z(2) = (0.5,−0.5)′, V (1) = V (2) =

 0.16 0

0 0.16

. Given

st, βt is a realization from a truncated Normal distribution such that |βt| < 1 to make the

series stationary. The transition matrix is P =

 1− p p

q 1− q

, which has the following

settings:

Scenario 1. (p, q) = (0.001, 0.001).
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Scenario 2. (p, q) = (0.002, 0.001).

Scenario 3. (p, q) = (0.002, 0.002).

Scenario 4. (p, q) = (0.004, 0.001).

Scenario 5. (p, q) = (0.004, 0.002).

Scenario 6. (p, q) = (0.008, 0.004).

Scenario 7. (p, q) = (0.008, 0.008).

Scenario 8. (p, q) = (0.016, 0.008).

Scenario 9. (p, q) = (0.016, 0.016).

σ2 = 1, N = 500, and T takes the values of 3000, 4000, 5000, 6000, 7000 and 8000 for

each scenario. In each scenario, we assume that the true hyperparameters are unknown.

The hyperparameters are estimated by the EM algorithm described in Section 2.8 until

convergence. Then the estimates are computed. The BCMIX procedure with M = 20 and

m = 10 is used to estimate the smoothing parameters and give inference on the regime.

Tables 3.5, 3.6 and 3.7 compare the estimates in different scenarios in terms of the SSE, κ

and L2 respectively.

Let us look at Tables 3.5, 3.6 and 3.7 column by column. In each column, the sample size

T is fixed, but p and q are changing. Therefore the transition matrix P =

 1− p p

q 1− q


is different for each row. From top to bottom p and q become larger, so more transitions

should be expected. Presumably the errors are getting larger when the coefficients are more

volatile and experience more transitions. Table 3.6 shows a similar trend: the larger are p and

q, the larger are κ. For example, when T = 8000, p = 0.008, and q = 0.008, 103κ is 13.367.

The quantity 103κ decreases to 11.037 when p remains at 0.008 and q changes to 0.004,

and decreases to 7.264 when q and q change to 0.004 and 0.002 respectively. The quantity

increases to 17.267 when both p and q become 0.016. Table 3.7 illustrates the same trend:
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Table 3.5: Performance of Sum of squared errors (SSE) for BCMIX estimates. Standard
errors are given in parentheses.

Scenarios T = 3000 T = 4000 T = 5000 T = 6000 T = 7000 T = 8000

p = 0.001 0.995 0.995 0.995 0.995 0.995 0.995
q = 0.001 (1.17E-03) (1.03E-03) (9.56E-04) (8.70E-04) (7.78E-04) (7.31E-04)
p = 0.002 0.994 0.994 0.994 0.994 0.994 0.994
q = 0.001 (1.17E-03) (1.02E-03) (9.55E-04) (8.65E-04) (7.72E-04) (7.27E-04)
p = 0.002 0.993 0.993 0.992 0.993 0.993 0.993
q = 0.002 (1.17E-03) (1.03E-03) (9.48E-04) (8.66E-04) (7.68E-04) (7.24E-04)
p = 0.004 0.994 0.994 0.993 0.993 0.994 0.994
q = 0.001 (1.17E-03) (1.02E-03) (9.52E-04) (8.65E-04) (7.77E-04) (7.29E-04)
p = 0.004 0.992 0.991 0.991 0.991 0.991 0.991
q = 0.002 (1.17E-03) (1.03E-03) (9.48E-04) (8.63E-04) (7.70E-04) (7.27E-04)
p = 0.008 0.988 0.988 0.988 0.987 0.988 0.988
q = 0.004 (1.17E-03) (1.02E-03) (9.56E-04) (8.74E-04) (7.75E-04) (7.36E-04)
p = 0.008 0.986 0.986 0.985 0.985 0.985 0.985
q = 0.008 (1.17E-03) (1.01E-03) (9.48E-04) (8.67E-04) (7.73E-04) (7.30E-04)
p = 0.016 0.984 0.984 0.984 0.983 0.984 0.984
q = 0.008 (1.16E-03) (1.02E-03) (9.56E-04) (8.66E-04) (7.72E-04) (7.26E-04)
p = 0.016 0.982 0.982 0.981 0.981 0.982 0.982
q = 0.016 (1.16E-03) (1.02E-03) (9.45E-04) (8.68E-04) (7.63E-04) (7.25E-04)
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the larger p and q become, the larger L2 and standard errors are obtained. For example,

when T = 3000, p = 0.004, and q = 0.002, 103L2 is 1.671. The quantity 103L2 decreases to

1.401 when p remains at 0.004 and q changes to 0.001, and decreases to 1.493 when q remains

at 0.002 and p changes to 0.002. The quantity increases to 2.088 when p and q become 0.008

and 0.004 respectively. However, Table 3.5 shows an opposite trend: the larger are p and

q, the smaller are SSE. In (3.1.1) it is shown that SSE equals κ plus two other terms. The

second term is the sum of squared residuals, which should not change with p and q. The

third term is small, but might affect SSE. One possible explanation is that in our simulation

studies, the coefficients are assumed to follow two distinct Normal distributions with means

of (0.2,−0.3)′ and (0.5,−0.5)′. So when there are more transitions, the coefficients change

signs more frequently, and the autoregressive model should show mean-reverting tendency.

Thus the magnitudes of x′tβtεt and x′tβ̂tεt in our simulation study should be smaller. Thus

the third term is smaller when there are more transitions. This explains the opposite trend.

From Tables 3.5, 3.6 and 3.7, we can observe the effects of sample size on the per-

formance. Table 3.5 shows that SSE is almost constant when T increases, with decreasing

standard errors. As shown in Table 3.6, κ has a tendency of becoming smaller with T . When

T changes from 3000 to 4000, there is a significant decrease in κ. After that, the decreasing

trend is not clear. Table 3.7 shows that L2 decreases when T increases, with decreasing

standard errors. The quantity κ is the average Kullback-Leibler divergence which measures

the difference between the model with true parameter x′tβt and the model with estimated

parameter x′tβ̂t|T . The quantity L2 is the average difference between the true parameter

βt and the estimate β̂t|T . When p and q are fixed, the errors tend to become smaller with

the sample size. When the sample size is large enough, the measured divergence κ becomes

stable.

Table 3.8 summarizes the identification ratio (IR) in each scenario. Most ratios are
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Table 3.6: Performance of average Kullback-Leibler divergence (103κ) for BCMIX estimates.
Standard errors are given in parentheses.

Scenarios T = 3000 T = 4000 T = 5000 T = 6000 T = 7000 T = 8000

p = 0.001 3.873 3.709 3.509 3.539 3.438 3.536
q = 0.001 (1.33E-01) (1.04E-01) (8.06E-02) (8.63E-02) (7.48E-02) (7.36E-02)
p = 0.002 4.837 4.563 4.473 4.474 4.414 4.408
q = 0.001 (1.48E-01) (1.09E-01) (9.56E-02) (9.60E-02) (8.29E-02) (8.28E-02)
p = 0.002 6.197 6.107 6.011 5.901 5.816 5.899
q = 0.002 (1.58E-01) (1.22E-01) (1.13E-01) (1.01E-01) (9.20E-02) (8.79E-02)
p = 0.004 5.605 5.228 5.307 5.086 5.105 5.074
q = 0.001 (1.51E-01) (1.30E-01) (1.14E-01) (1.00E-01) (9.17E-02) (8.68E-02)
p = 0.004 7.660 7.290 7.421 7.245 7.106 7.264
q = 0.002 (1.67E-01) (1.37E-01) (1.26E-01) (1.12E-01) (1.03E-01) (9.65E-02)
p = 0.008 11.462 10.888 11.130 11.120 10.974 11.037
q = 0.004 (1.86E-01) (1.62E-01) (1.35E-01) (1.34E-01) (1.16E-01) (1.14E-01)
p = 0.008 13.918 13.409 13.353 13.462 13.356 13.367
q = 0.008 (1.94E-01) (1.68E-01) (1.38E-01) (1.28E-01) (1.22E-01) (1.18E-01)
p = 0.016 15.371 15.244 15.083 15.239 14.991 15.088
q = 0.008 (2.04E-01) (1.76E-01) (1.49E-01) (1.47E-01) (1.26E-01) (1.18E-01)
p = 0.016 17.750 17.361 17.414 17.331 17.313 17.267
q = 0.016 (2.12E-01) (1.73E-01) (1.60E-01) (1.44E-01) (1.38E-01) (1.20E-01)
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Table 3.7: Performance of L2 errors (103L2) for BCMIX estimates. Standard errors are given
in parentheses.

Scenarios T = 3000 T = 4000 T = 5000 T = 6000 T = 7000 T = 8000

p = 0.001 1.135 0.983 0.874 0.801 0.739 0.700
q = 0.001 (2.12E-02) (1.61E-02) (1.11E-02) (1.07E-02) (8.94E-03) (7.89E-03)
p = 0.002 1.284 1.111 0.991 0.918 0.841 0.786
q = 0.001 (2.18E-02) (1.51E-02) (1.22E-02) (1.09E-02) (8.86E-03) (7.65E-03)
p = 0.002 1.493 1.302 1.167 1.067 0.975 0.918
q = 0.002 (2.08E-02) (1.42E-02) (1.12E-02) (1.01E-02) (8.10E-03) (7.15E-03)
p = 0.004 1.401 1.196 1.073 0.980 0.905 0.842
q = 0.001 (2.09E-02) (1.67E-02) (1.28E-02) (1.04E-02) (9.09E-03) (7.88E-03)
p = 0.004 1.671 1.430 1.298 1.183 1.081 1.022
q = 0.002 (1.95E-02) (1.42E-02) (1.12E-02) (9.98E-03) (8.17E-03) (7.06E-03)
p = 0.008 2.088 1.780 1.597 1.477 1.348 1.268
q = 0.004 (1.86E-02) (1.39E-02) (1.02E-02) (9.26E-03) (7.76E-03) (6.51E-03)
p = 0.008 2.341 1.983 1.774 1.627 1.498 1.403
q = 0.008 (1.79E-02) (1.25E-02) (1.03E-02) (8.30E-03) (7.52E-03) (6.45E-03)
p = 0.016 2.475 2.118 1.877 1.730 1.585 1.484
q = 0.008 (1.79E-02) (1.30E-02) (9.87E-03) (8.91E-03) (6.84E-03) (6.14E-03)
p = 0.016 2.635 2.259 2.023 1.846 1.699 1.593
q = 0.016 (1.62E-02) (1.20E-02) (9.61E-03) (8.13E-03) (7.23E-03) (6.06E-03)
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greater than 98%, showing that the procedure is very effective in identifying the transitions:

when there are transitions, there is more information about different regimes, and the prob-

ability of correct identification is improved. There is a roughly positive correlation between

IR and (p, q): when T is 3000 and p and q increase, there are more transitions and a slightly

higher probability of correct identification. For example, p = 0.004, and q = 0.002, IR is

98.4%. The IR is smaller, which becomes 97%, when p remains at 0.004 with q changing to

0.001. The IR is larger, which is 98.8%, when both p and q become larger, both changing to

0.008. But when q remains at 0.002 with p changing to 0.002, IR remains at 98.4%. When T

is larger, the ratios become stable at some values close to 99%. For example, when T = 6000,

IR is 98.2% when p = 0.004, and q = 0.001. When p remains at 0.004 with q changing to

0.002, the ratio is 99%. From then on, no matter how much p and q increase, the ratio is

between 98.8% and 99%. Observing the ratios in each row, we can see that the ratios tend

to increase with T until close to 99%. The associated standard errors become smaller when

T increases.

As in the last section, we will show some figures of a randomly selected simulation path

in each scenario to visualize the simulation results. Figure 3.4 shows the series yt in each

scenario with T = 3000. Different from the series shown in Figure 3.1 in Section 3.1.1, the

series in Figure 3.4 are longer with more frequent transitions between two regimes. In each

scenario, the series is not evolving evenly over time, indicating changing in the autoregressive

coefficient. For example, in the second plot (Scenario 2), we can find a decrease in the

magnitude of yt around t = 1000 and a short period right after t = 2500. Furthermore,

we find see more fluctuations in magnitude in each series when p and q become larger.

Figures 3.5 and 3.6 compare the true αt and βt with α̂t|T and β̂t|T of the same series in each

scenario. From Figure 3.5 it is clear that when p and q become larger, the series experiences

more frequent transitions. For example, in the first plot with p = 0.001 and q = 0.001,
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Table 3.8: Performance of identification ratio (IR) for BCMIX estimates. Standard errors
are given in parentheses.

Scenarios T = 3000 T = 4000 T = 5000 T = 6000 T = 7000 T = 8000

p = 0.001 0.958 0.975 0.983 0.983 0.981 0.988
q = 0.001 (8.21E-03) (6.05E-03) (4.11E-03) (4.31E-03) (4.43E-03) (3.09E-03)
p = 0.002 0.969 0.982 0.988 0.985 0.989 0.990
q = 0.001 (6.90E-03) (4.71E-03) (3.25E-03) (3.88E-03) (3.05E-03) (2.26E-03)
p = 0.002 0.984 0.989 0.991 0.991 0.992 0.992
q = 0.002 (4.33E-03) (2.53E-03) (1.89E-03) (1.84E-03) (1.49E-03) (1.62E-03)
p = 0.004 0.970 0.984 0.988 0.982 0.988 0.992
q = 0.001 (6.77E-03) (4.64E-03) (3.39E-03) (4.52E-03) (3.06E-03) (1.82E-03)
p = 0.004 0.984 0.990 0.992 0.990 0.992 0.993
q = 0.002 (4.07E-03) (1.80E-03) (1.51E-03) (2.24E-03) (1.49E-03) (9.13E-04)
p = 0.008 0.984 0.991 0.992 0.990 0.991 0.992
q = 0.004 (3.26E-03) (1.13E-03) (8.88E-04) (1.09E-03) (7.30E-04) (5.22E-04)
p = 0.008 0.988 0.990 0.991 0.990 0.990 0.991
q = 0.008 (1.71E-03) (7.25E-04) (7.96E-04) (6.26E-04) (5.59E-04) (3.19E-04)
p = 0.016 0.987 0.989 0.989 0.989 0.989 0.991
q = 0.008 (1.40E-03) (8.99E-04) (8.92E-04) (7.46E-04) (6.83E-04) (2.52E-04)
p = 0.016 0.987 0.988 0.988 0.988 0.988 0.989
q = 0.016 (8.53E-04) (6.77E-04) (5.87E-04) (4.53E-04) (4.70E-04) (2.62E-04)
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Figure 3.4: A selected series yt in Scenarios 1-9 (from left to right and top to bottom).
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Figure 3.5: BCMIX estimates α̂t|T (dashed line) and true αt (solid line) of the selected series
in Scenarios 1-9 (from left to right and top to bottom).

−1

−0.5

0

0.5

−1

−0.5

0

0.5

−1

−0.5

0

0.5

−1

−0.5

0

0.5

−1

−0.5

0

0.5

−1

−0.5

0

0.5

  0 1000 2000 3000
−1

−0.5

0

0.5

  0 1000 2000 3000
−1

−0.5

0

0.5

  0 1000 2000 3000
−1

−0.5

0

0.5

69



there are 4 transitions in total, while in the last plot with p = 0.016 and q = 0.016, there

are 15 transitions. In each plot there are two regimes, but the values of αt within each

regime are not constant. For example, in the last plot, the true αt within regime 1 follow a

Normal distribution with mean 0.2 and variance 0.16, and take realized values of 0.25, -0.08,

0.29, 0.36, 0.06, 0.35, 0.01 and 0.20 over time, while the true αt within regime 2 follow a

Normal distribution with mean -0.3 and variance 0.16, and take values of -0.46, -0.61, -0.70,

-0.21, -0.74, -0.54, -0.60, -0.80. In each plot, the estimated parameter is close to the true

βt with some errors becoming more significant when there are more transitions. Looking

at the ninth transition in the middle plot on the bottom, you will find that the estimating

procedure identifies the transition too early and gives an estimate deviate from the true value

for a while. However, the next transition is identified correctly and the deviation becomes

less visible. Figure 3.6 shows β̂t|T and βt of the same series in each scenario. The results are

similar to the those in Figure 3.5.

Figure 3.7 shows the true and estimated P (st = 1) of the same series in each scenario.

To clearly show the fuzziness around each transition, I use points to denote the estimated

probabilities. It is clear that when there is a transition, it takes a while to recognize it.

So the probability of P (st = 1) does not jump directly from 1 to 0 or 0 to 1. Instead it

adjusts step by step and takes some values in between. These “middle” points may affect the

identification ratio. Moreover, there are more middle points when there are more frequent

transitions, although the IR is higher.

We also try the filtering estimate β̂t|t given in (2.2.8) and the forecast β̂t+1|t given in

(2.6.2). We pick a series in Scenario 1 (p = 0.001, q = 0.001) with T = 3000. The series yt is

shown in Figure 3.8. The middle plot shows the fitted values ŷt calculated using the filtering

estimates α̂t|t and β̂t|t. The bottom plot shows the forecasts of yt+1 at each stage t, which are

calculated using the forecasts α̂t+1|t and β̂t+1|t. We can easily identify one transition right
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Figure 3.6: BCMIX estimates β̂t|T (dashed line) and true βt (solid line) of the selected series
in Scenarios 1-9 (from left to right and top to bottom).
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Figure 3.7: BCMIX estimates r̂
(1)
t|T (dashed line) and true P (st = 1) (solid line) of the selected

series in Scenarios 1-9 (from left to right and top to bottom).
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after t = 1000 as the magnitude of yt decreases. Both fitted values and forecasts capture the

transitions. Three series in the figure are very similar.

Figure 3.9 compares the filtering estimates α̂t|t and β̂t|t with the corresponding true

values. Compared with the smoothing estimates shown in Figure 3.5 and Figure 3.6, the

filtering estimates have more errors and fluctuations, especially at the beginning of the series

and around each transition. The filtering estimate β̂t|t = E(βt|Ft). At the beginning of

the series, Ft contains very little information, while the smoothing estimate benefits a lot

from the information between time t and T . Thus the filtering estimate is much worse.

Before each transition, E(βt|Ft) does not contain any information about the forthcoming

regime. So the adjustment after the transition might be slow and gradual as more and more

information about the new regime comes to Ft). Sometimes there is an over adjustment, as

shown around the second transition in both α̂t|t and β̂t|t. Overall, the jump of the filtering

estimate around each transition is not as sharp as the smoothing estimate.

Figure 3.10 compares the filtering estimate ξ
(1)
t , which is the estimated probability that

P (st = 1|Ft), to the true values. Similar to the estimates in Figure 3.9, this filtering

estimates show more fluctuations than the smoothing estimates shown in Figure 3.7. But

two transitions in the series are identified very accurately.

Figure 3.11 compares the forecasts α̂t+1|t and β̂t+1|t with the corresponding true values.

Comparing the formula to calculate β̂t|t given in (2.2.8) and β̂t+1|t given in (2.6.2), you will

notice that they are very similar to each other if the probability of staying in the current

regime is much larger than that of switching to another regime. That explains the similarity

of Figure 3.9 and Figure 3.11. Although there are errors in the values of the forecasts, the

forecast jumps right after the true transition. So using the forecasting algorithm shown in

Section 2.6, we can detect the transitions very quickly.
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Figure 3.8: Top panel: A selected series yt in Scenario 1. Middle panel: Fitted values ŷt
using the filtering estimates β̂t|t. Bottom panel: Forecasts of yt+1 using the forecast β̂t+1|t.
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Figure 3.9: Top panel: filtering estimates α̂t|t (dashed line) and true αt (solid line) of the

selected series. Bottom panel: filtering estimates β̂t|t (dashed line) and true βt (solid line) of
the selected series.
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Figure 3.10: filtering estimates (dashed line) and true values of P (st|Ft) .
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Figure 3.11: Top panel: Forecasts α̂t+1|t (dashed line) and true αt+1 (solid line) of the selected

series. Bottom panel: Forecasts β̂t+1|t (dashed line) and true βt+1 (solid line) of the selected
series.
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3.1.3 Choice of Hyperparameters

In this section, I will present some results to discuss the effects of hyperparameters on

the estimation results. More specifically, we will discuss the choice of z(k) and V (k). In

the first two simulation studies, we assume two regimes with distinctable hyperparameters.

For example, in the first simulation study, we assume the means of βt in regime 1 and 2 are

z(1) = 0.5 and z(2) = −0.5, respectively. The values are far from each other considering

the constraint that |βt| < 1. That is why we see the clear transitions in Figure 3.2. We

will further investigate the case when the regimes are very close to each other. We adopt

the same hyperparameters as in the first simulation study shown in Section 3.1.1, where

εt ∼ N(0, σ2). There are two regimes, K = 2, and the values of the parameter βt depend on

the hidden state st. The hyperparameters are V (1) = V (2) = 0.16, P =

 0.999 0.001

0.001 0.999

,

and σ2 = 1, sample size T = 1000. We keep z(1) = 0.5, but change z(2) to 0.4. We use

the setting of Scenario 4, where there are three transitions between regime 1 and regime 2.

st = 1 for 1 ≤ t ≤ 200; st = 2 for 201 ≤ t ≤ 500; st = 1 for 501 ≤ t ≤ 600; st = 2 for

601 ≤ t ≤ 1000.

We try to use initial values of hyperparameters which are very close to the true hyperpa-

rameters and give an example shown in Figure 3.12. The EM algorithm is used to estimate

the hyperparameters. The first plot shows a series yt which is generated using the above

setting. The middle plot compares the estimates β̂t|T with the true values of βt. The last

plot compares the estimated probability of regime 1 with the true value. We cannot see

clear patterns in the original series. Although z(1) and z(2) are far from each other, the

variance V (1) = V (2) = 0.16 are large enough. So the realized βt still show transitions with

significant size. The estimates β̂t|T show small errors in the first half of the sample period.

Around the close transitions at t = 500 and 600, the errors are more significant. As shown
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in the third plot, the regimes cannot be distinguished clearly as the estimated probabilities

are 0.8 or 0.2 in the first half of the sample period, and get even worth during the frequent

transitions. This is due to the close distance between z(1) and z(2).

We further try a case using the above setting to generate a series but starting the esti-

mation with initial values of hyperparameters which are far from the true hyperparameters.

More specifically, we specify z(1) = 0.2, z(2) = 0.6, V (1) = V (2) = 0.2 as the initial values

of the EM algorithm. The estimation results are shown in Figure 3.13. Compared with the

second plot in Figure 3.12, the estimates do not work well around the frequent transitions at

t = 500 and 600. This is more clearly shown in the third plot. The estimated probabilities

of P (st) = 1 are changing gradually over time. It seems that the EM algorithm cannot

converge to the true values of the hyperparameters when the initials are too far away. The

algorithm is confused about the regimes and cannot separate them efficiently. The algorithm

identifies the first transition successfully, and ignores the second transition which is too close

to the third transition. After that, the information between t = 500 and 600 is realized and

the estimated probabilities change from 0.4 to almost 1 to identify the change. However, the

correct regime is 2.

We further try a case using the above setting:z(1) = 0.4, z(2) = 0.5, V (1) = V (2) = 0.01.

In this case, the variation of βt within each regime is smaller compared with the first case. We

still use initial values of hyperparameters which are very close to the true hyperparameters

and use the EM algorithm to estimate the hyperparameters. The example is shown in Figure

3.14. The magnitude of the series as shown in the first plot is much smaller than the one in

Figure 3.12. By observing the second plot, we cannot tell how many regimes in the series

as the values are not separate enough between regimes. Compared with the second plot in

Figure 3.12, the estimates do not work efficiently to identify the first transition, and around

the frequent transitions at t = 500 and 600 the estimated values are fluctuating. From the
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Figure 3.12: Top panel: A selected series yt. Middle panel: BCMIX estimates β̂t|T (dashed
line) and true βt (solid line) of the selected series. Bottom panel: BCMIX estimated proba-
bility of P (st) = 1 (dashed line) and true values (solid line).
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Figure 3.13: Top panel: A selected series yt. Middle panel: BCMIX estimates β̂t|T (dashed
line) and true βt (solid line) of the selected series. Bottom panel: BCMIX estimated proba-
bility of P (st) = 1 (dashed line) and true values (solid line).
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third plot, we can see that actually the algorithm only identifies one transition with the

probabilities changing gradually from almost 1 to 0.1. So when the difference between two

regimes is too small, the algorithm cannot identify the difference at all.

In the last example, we follow the exact setting of Scenario 4 in Section 3.1.1 to generate

the series, and use initial values which are far away from the true values for the EM algorithm.

We want to see when the regimes are separate enough whether we need “accurate” initial

values to conduct the algorithm correctly. In this case, we specify z(1) = 0.2, z(2) = −0.8,

V (1) = V (2) = 0.1. The result in shown in Figure 3.15. We can see that although as in case

2, our information about the hyperparameters is highly inaccurate, the estimation results

are very close to the true values. There are only small errors around the close transitions at

t = 500 and 600.

Based on the results of the cases shown here, the algorithm works well in two cases. When

the distance between regimes is not too small, even if the information of the hyperparameters

is not accurate, the EM algorithm is efficient and the estimation results are good. When the

means z(k) are close, as long as the variance is large enough and there is enough variation

inside each regime, the regimes can be distinguished correctly. Furthermore, when the initial

values of the hyperparameters are close to the true values, the algorithm works efficiently

even if the regimes do not spread out enough. So in a real data analysis, some historical

information and experience are very important for identifying the priors.

3.2 Real Data Analysis

In this section, we will apply the stochastic regime switching autoregressive model (3.1.2)

yt = αt + βtyt−1 + εt,
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Figure 3.14: Top panel: A selected series yt. Middle panel: BCMIX estimates β̂t|T (dashed
line) and true βt (solid line) of the selected series. Bottom panel: BCMIX estimated proba-
bility of P (st) = 1 (dashed line) and true values (solid line).
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Figure 3.15: Top panel: A selected series yt. Middle panel: BCMIX estimates β̂t|T (dashed
line) and true βt (solid line) of the selected series. Bottom panel: BCMIX estimated proba-
bility of P (st) = 1 (dashed line) and true values (solid line).
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to analyze some real econometric time series.

3.2.1 Total Financial Assets - Assets - Balance Sheet of Nonfarm

Nonfinancial Corporate Business

The first series we use is “Total Financial Assets - Assets - Balance Sheet of Non-

farm Nonfinancial Corporate Business (TFAABSNNCB)” available from the website of Fed-

eral Reserve Bank of St. Louis at http://research.stlouisfed.org/fred2/series/

TFAABSNNCB?rid=52. This data comes from the Z.1 Flow of Funds release of the Board

of Governors of the Federal Reserve System.

The nonfarm nonfinancial corporate business sector includes all private domestic corpo-

rations with the exception of corporate farms and financial institutions. We use the quarterly

data (in billions of dollars) from the fourth quarter of 1951 to the first quarter of 2011. Fig-

ure 3.16 shows the original series. It is clear that the series shows an increasing trend over

time and is therefore not stationary.

Instead of using the original series y′t, we use the continuously compounded rate of change

which is calculated as yt = 100 · ln y′t
y′t−1

. The series is shown in Figure 3.17. The p-value is

less than 0.01 in the augmented Dickey-Fuller test with the null hypothesis that the series

is non-stationary. Hence this series is stationary.

We use K = 2 regimes. Model (3.1.2) is fitted to the adjusted series. The estimated

hyperparameters by the EM algorithm are: ẑ(1) = (2.61, 0.14)′, ẑ(2) = (1.19, 0.08)′, V̂ (1) = 0.12 0.03

0.03 0.12

, V̂ (2) =

 0.13 0.04

0.04 0.08

 and σ̂2 = 1.182. The estimated transition matrix

is P̂ =

 0.59 0.41

0.34 0.66

. The smoothing estimates of α̂t|T and β̂t|T are shown in Figure 3.18.

The estimated probability of staying in regime 1, P (st = 1), is also shown in the figure. The

85

http://research.stlouisfed.org/fred2/series/TFAABSNNCB?rid=52
http://research.stlouisfed.org/fred2/series/TFAABSNNCB?rid=52


Figure 3.16: TFAABSNNCB series: In billions of dollars.
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Figure 3.17: TFAABSNNCB series: Continuously compounded rate of change.
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Table 3.9: Summary of α̂t|T and β̂t|T in periods between pairs of transitions.

Subperiods Estimates of Coefficients

Regime Starting Ending α̂t|T β̂t|T

Period 1 2 Q2 1952 Q3 1971 1.42 0.16
Period 2 1 Q4 1971 Q2 1981 3.37 -0.05
Period 3 2 Q3 1981 Q3 1998 1.50 0.22
Period 4 1 Q4 1998 Q4 2000 3.18 0.22
Period 5 2 Q1 2001 Q1 2011 0.90 0.18

NOTE: The first NBER recession list here started from December 1969, before the beginning
of our sample period which was January 1970.

figure shows four transitions between two regimes, occurring in the third quarter of 1971, the

second quarter of 1981, the third quarter of 1998 and the fourth quarter of 2000. Because of

the fuzziness, the jumps are gradual over a period. For example, the probabilities of staying

in regime 1 during the four quarters in 1971 are 0.23, 0.47, 0.66 and 0.72, respectively. The

estimates α̂t|T and β̂t|T for all the subperiods between two consecutive transitions are shown

in Table 3.9. Consistent with our intuition, the estimated parameters within each regime

are not the same. For example, the hidden regime is 1 for the period between the first and

second transitions, with an α̂t|T of about 3.37. The regime is also 1 for the period between

the third and fourth transitions, with α̂t|T of about 3.18. The hidden regime is 2 for the

period before the first transition, with an estimate β̂t|T of about 0.16. The regime is also 2

for the period between the second and third transitions, with an estimate β̂t|T of about 0.22.

The results justify the assumption of our model.

The fitted values ŷt and the errors between yt and ŷt are shown in Figure 3.19. The

switching trend can be found in the fitted series. The errors are distributed evenly around

zero without any pattern.
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Figure 3.18: Top panel: Smoothed probability r̂
(1)
t|T of TFAABSNNCB series. Middle panel:

BCMIX estimates α̂t|T of TFAABSNNCB series. Bottom panel: BCMIX estimates β̂t|T of
TFAABSNNCB series.
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Figure 3.19: Top panel: Fitted series ŷt of TFAABSNNCB series. Bottom panel: Error
series yt − ŷt of TFAABSNNCB series.
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3.2.2 All Employees: Total Nonfarm

In Section 1.3, we use the “All Employees: Total nonfarm (PAYEMS)” data to illus-

trate the motivation of this dissertation study. The estimated probability of P (st = 1) is

shown in Figure 1.3. In this section, we will use K = 2 regimes, and fit model (3.1.2) to the

same series to compare our results with the one in Section 1.3, and to see if the transitions

between regimes match the recession history. The estimated hyperparameters by the EM

algorithm are: ẑ(1) = (187.27, 0.15)′, ẑ(2) = (−64.34, 0.24)′, V̂ (1) =

 2811.69 0.53

0.53 0.06

,

V̂ (2) =

 1249.40 −9.10

−9.10 0.22

 and σ̂2 = 66.732. The estimated transition matrix is P̂ =

 0.87 0.123

0.35 0.65

. Figure 3.20 shows the smoothing estimates α̂t|T and β̂t|T , and the prob-

ability of staying in regime 1, P (st = 1). Different from the first example, this case shows

much more transitions between two regimes. The estimated P (st = 1) do not fit the results

shown in 1.3. There are periods in which P (st = 1) is close to zero and the identified regime

is 2. More interestingly, there are 7 subperiods identified as in regime 2, each of which is

at least partially overlapped by an NBER recession. So we can think of regime 1 as “good”

period, and regime 2 as “bad” period. The α̂t|T in the second plot of Figure 3.20 further

prove this finding: The values α̂t|T in regime 2 are negative and much lower than those in

regime 1, indicating that the bad employment situation will become worse during a reces-

sion. The values of β̂t|T in the third plot show high and positive autocorrelations in regime

2, indicating that the bad employment situation will last for a while during a recession.

Moreover, the estimates α̂t|T and β̂t|T are different within each regime. The estimates α̂t|T

and β̂t|T for the periods identified as regime 2 are shown in Table 3.10. For example, during

the period which is identified as regime 2 and overlapped by the third NBER recession (July

91



Figure 3.20: Top panel: Smoothed probability r̂
(1)
t|T of PAYEMS series. Middle panel: BCMIX

estimates α̂t|T of PAYEMS series. Bottom panel: BCMIX estimates β̂t|T of PAYEMS series.
NBER recessions are shown as shaded areas.
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Figure 3.21: Top panel: Fitted series ŷt of PAYEMS series. Bottom panel: Error series
yt − ŷt of PAYEMS series.
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Table 3.10: Summary of the estimated parameters in periods identified as in regime 2 and
the corresponding NBER recessions.

NBER Recessions “Regime 2” Periods Estimates of Coefficients

Subperiods Starting Ending Starting Ending α̂t|T (×102) β̂t|T

Period 1 Dec 1969 Nov 1970 Jan 1970 Nov 1970 -0.69 0.08
Period 2 Nov 1973 Mar 1975 Jun 1974 Apr 1975 -0.81 0.65
Period 3 Jan 1980 Jul 1980 Apr 1980 Jul 1980 -1.07 0.58
Period 4 Jul 1981 Nov 1982 Aug 1981 Dec 1982 -0.94 0.35
Period 5 Jul 1990 Mar 1991 Jun 1990 Feb 1992 -0.56 0.44
Period 6 Mar 2001 Nov 2001 Jan 2001 Aug 2003 -0.54 0.37
Period 7 Dec 2007 Jun 2009 Jul 2007 Apr 2009 -0.68 0.90

NOTE: The first NBER recession list here started from December 1969, before the beginning
of our sample period which was January 1970.

1981 to November 1982), α̂t|T and β̂t|T are -93.82 and 0.35, respectively. During the period

which is also identified as regime 2 and overlapped by the sixth NBER recession (March

2001 to November 2001), α̂t|T and β̂t|T are -54.10 and 0.37, respectively. The results further

document the effectiveness of our method.

The estimates α̂t|T and β̂t|T within regime 1 are not as stable as the estimates within

regime 2. For example, during the period between the fifth and sixth recessions, the regime

is identified as 1 since P (st) = 1 is greater than 0.5. But the estimates α̂t|T and β̂t|T fluctuate

a lot as several step functions. In Table 3.11, we list all the values of those step functions

within regime 1. Some unstable periods, for example, the period right after the fifth recession

and the one after the seventh recession, are not included.

Compare the results with the one shown in Figure 1.3, in which most subperiods are

identified as regime 1, fewer transitions are recognized and most of the transitions are not

coincident with the NBER recessions, our results are more convincing and consistent with

the empirical experience that employment situation varies directly and simultaneously with

the business cycle. Furthermore, consistent with our model assumptions, the behaviors of
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Table 3.11: Summary of the estimated parameters in periods identified as in regime 1.

“Regime 1” Periods Estimates of Coefficients
Subperiods Starting Ending αt (×102) βt

Period 1 Dec 1970 May 1974 1.80 0.07
Period 2 May 1975 Mar 1979 2.04 0.30
Period 3 May 1979 Mar 1980 1.39 0.07
Period 4 Aug 1980 Jul 1981 1.56 -0.04
Period 5 Jan 1983 Jul 1983 1.91 0.37
Period 6 Oct 1983 May 1990 2.00 0.13
Period 7 Sept 1993 Dec 1995 1.60 0.28
Period 8 Feb 1996 May 2000 2.85 -0.12
Period 9 Sept 2003 Jun 2007 1.43 0.14

employment figures during different recessions are different. In this sense, our model provides

a framework to obtain more information from the economic time series than the classic regime

switching model. The fitted values ŷt and the errors between yt and ŷt are shown in Figure

3.21. The errors are distributed evenly around zero without any pattern.

We further calculate the filtering estimates β̂t|t and forecasts β̂t+1|t of the parameters

which are important for the ongoing estimation and prediction. Figure 3.22 shows the

filtering estimates. Comparing the figure with Figure 3.20, we can see more fluctuations in

the estimated probability of P (st) = 1. But most “regime 2” periods are captured accurately.

The filtering estimates of parameters do not look like step functions as in Figure 3.20. The

spikes are more significant. Moreover, the jumps in the values are gradual around transitions.

So the transitions are not very clear. But overall the transitions are realized quickly.

Figure 3.23 shows the forecasts α̂t+1|t and β̂t+1|t. Compared with the filtering estimates

shown in Figure 3.22, the predicted values are more unstable, especially the β̂t+1|t. Since

there are too many fluctuations in β̂t+1|t, we cannot identify the transitions efficiently. The

intercept terms, α̂t+1|t, show a much better shape. A “regime 2” period can be identified
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Figure 3.22: Top panel: Filtering probability r̂
(1)
t|t of PAYEMS series. Middle panel: Filtering

estimates α̂t|t of PAYEMS series. Bottom panel: Filtering estimates β̂t|t of PAYEMS series.
NBER recessions are shown as shaded areas.
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when a local minimum is reached.

Figure 3.24 compares the predicted values of yt+1 with the true values. Since the pre-

dicted parameters are volatile, the predicted values of yt+1 show a lot of fluctuations. But

the forecasts capture the feature that the decreases in the series are overlapped by NBER

recessions.

97



Figure 3.23: Top panel: Forecasts α̂t+1|t of PAYEMS series. Bottom panel: Forecasts β̂t+1|t
of PAYEMS series. NBER recessions are shown as shaded areas.
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Figure 3.24: PAYEMS: Predicted yt+1 and the true values. NBER recessions are shown as
shaded areas.
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Chapter 4

Conclusions

For the analysis of econometric time series, we proposed a class of stochastic regime

switching models and an associated inference framework that has attractive statistical and

computational properties. The stochastic regime switching model in Chapter 2 assumes that

yt = x′tβt + εt, in which εt are independent normal random variables with mean zero and

variance σ2, and βt is an unknown step function whose prior distribution depends on a finite

state hidden Markov chain st. After the hidden state shifts from one regime to another

regime, the model parameters jump to another set of values, which are generated by regime-

dependent prior distributions and hence are not necessarily same as those within the same

regime during the past.

A forward filtering procedure shows the posterior distribution of the parameter as a

mixture distribution with explicit weights which can be calculated recursively. Furthermore,

based on the reversibility of the hidden Markov chain, a backward filtering procedure can

be conducted in a similar way. Based on Bayes’ theorem, both the smoothing estimate of

parameter and probability of regimes can be calculated explicitly to save a time-consuming

numerical filtering procedure. The hyperparameters in the model can be estimated by the

Expectation-Maximum (EM) algorithm. Furthermore, a Bounded Complexity Mixture Ap-
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proximation (BCMIX) is shown to have much lower computational complexity yet compara-

ble to the Bayes estimates in statistical efficiency. Simulation studies evaluate the Bayes and

BCMIX estimates in terms of the sum of squared errors (SSE), the Kullback-Leibler diver-

gence (κ) and L2 errors. Moreover, the accuracy of identifying the transitions is evaluated

by an Identification Ratio (IR). Applying this model to the historical data of “all employees:

Total Nonfarm” shows that the fluctuations of the AR parameter can be recovered via our

model. They are closely related to the recession history identified by NBER.

An important benefit of our Bayesian model is that we can derive analytical filtering and

smoothing formulas for the posterior distributions of model parameters and make inference

on regimes. The BCMIX estimate has much lower computational complexity yet comparable

to the Bayes estimate in statistical efficiency.
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