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Abstract of the Dissertation 

The Power of Detecting a Mixture in the Treatment Groups through Analysis of Dose 

Response Data 

by 

Xiawei Tu 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

Stony Brook University 

2011 

In many clinical experiments, some subjects are unaffected by the treatment. This so-

called non-response phenomenon has attracted the attention of many researchers in recent years. 

This dissertation focuses on detecting the association between the dose level and the observed 

values in the case where there is a mixture in treatment groups. That is, there is a linear relation 

between dose and response in a fraction of the observations and the shift in mean increases as the 

dose level increases.  

 

We investigate the Likelihood Ratio Test (LRT) in the context of normal mixture models. 

We do this based on critical values for the LRT obtained through simulation. We customize the 
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general Expected-Maximization (EM) Algorithm to our situation in order to obtain Maximum 

Likelihood Estimates (MLE) of the parameter values under the alternative. We note that as we 

expected MLE of the parameters are close to the true parameter values and the mean square error 

decreases as the sample size increases.    

 

For the power study we also conduct LRT, Spearman’s correlation test, and Simple linear 

regression test on each simulated sample. The power of three tests is compared and the 

McNemar’s test is conducted to test the difference between tests. Overall, the power of the LRT 

is greater than Spearman’s test and Simple linear regression test, although the three tests are not 

powerful with small shifted proportion and small shifted mean. We conclude that the LRT is 

very powerful in those cases where the mixing proportion is greater than 0.5 and there is a linear 

dose response relationship with slope greater than or equal to 0.3 standard deviation units. At the 

same time, the Simple linear regression test works almost as well as the LRT in those cases 

where the power is greater than 0.5.  
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Chapter 1 

Introduction and Literature Review 

1.1 Introduction 

 In many clinical experiments, some subjects are unaffected by the treatment. This so-

called non-response phenomenon has attracted the attention of many researchers in recent years. 

A mixture model has traditionally been proposed to describe the distribution of responses in 

treatment groups for such experiments. The distributions in the affected subjects are represented 

by the same distribution as the unaffected subjects, but with shifts in the means.  

Several investigators have considered various special cases of group comparison in the 

presence of mixtures in treatment groups. In particular, Good (1979) [1] considered the situation 

where one is comparing a treatment group to a control group and one has a mixture in the 

treatment group only. The mixture consists of a fraction of subjects with the same distribution as 

the controls and the remaining fraction with the same distribution but a shift in the mean. The 

hypotheses Good considered were: 
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Here  (where  is the proportion of responders),  (where  is the shifted mean of 

responders), and  and  denote the cumulative density function (c.d.f.) for the control 

and treatment groups respectively. Good assumed that  is normally distributed. Thus under 

the alternative hypothesis  is a mixture of two normal distributions. Under the alternative 

hypothesis, the difference between the average observed in treated and control groups will lead 

to unbiased estimates of the difference between the treatment mean and the control mean. Good 

proposed a randomization test statistic for this alternative and suggested that the Wilcoxon Rank 

Sum test is not effective for this situation. The test statistic  proposed by Good took the 

mixture into account and was defined as follows: 

 

                          

 

Here  (   is the proportion of the difference in sample means in the test statistic), ,  

( , ) denote the mean, and the size of the control (treatment) sample respectively, and  

denotes the sum of squares of deviations from the mean of the treatment group. Good suggested 

that one calculate  as a compromise when there is no advance information either of 

underlying distributions or the expected proportion of responders in the treatment group. 

This dissertation is the extension of Good’s work considering the situation where there is 

a dose-response phenomenon in the treatment groups. The Likelihood Ratio Test is conducted to 

detect the relation between dose-level variable and the observed value in each group. The 
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purpose of this study is to compare the power of the Likelihood Ratio Test (LRT), Spearman’s 

Correlation Test, and the Simple Linear Regression Test. The power will be assessed and 

compared in several different scenarios by mixing proportion, shifted mean, sample size of 

observed mixture populations. 

A comprehensive literature review of the topic is presented in the following section. It 

includes the methods that have been used to solve the mixture problem and the outline of the 

problem in this dissertation. Chapter 2 explores the Likelihood Ratio Test and the EM algorithm 

that is used for finding MLEs for dose-response mixture models. Simulation results are presented 

with parameter estimates. We investigate the null distribution of the LRT statistics in Chapter 3. 

The power study is discussed in Chapter 4. In addition, we compare the power of the three tests 

for each simulated sample. Finally, Chapter 5 contains the conclusions and proposed future 

studies. 
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1.2 Literature Review 

1.2.1 Normal Mixture Model 

Based on the mixture model from Good’s paper, several researchers investigated many 

methods to test whether the means of the control and the treatment group are equal in the 

presence of non-responders in the treatment group. Boos and Brownie (1986) [2] explored this 

method and claimed that Good’s test appeared to be effective,  but also noted that Wilcoxon 

Rank Sum test and the ordinary two sample t-test are almost as powerful as Good’s method. 

Moreover, the latter are much easier to use and also easier to interpret. Boos and Brownie also 

noted that when the proportion of responders, , is 0.6 or more, the Wilcoxon test will generally 

be a good choice for detecting a treatment effect.  

 Johnson et al. (1987) [3] obtained rank tests that are locally most powerful with respect to 

changes in the mixing proportion based on Good’s hypothesis. They considered two special 

cases for the test, a mixture of normal distributions and a mixture of uniform distributions. The 

empirical power studies and asymptotic efficiencies were constructed and compared with 

Wilcoxon and normal scores tests. 

Conover et al. (1988) [4] proposed two two-parameter models for testing the hypothesis 

of no treatment effect against the alternative that a subset of the treated patients will show an 

improvement. The Lehmann alternatives [5] are used in both models to keep the range of 

measurements the same for treated and control patients. They developed the locally most 

powerful rank tests for each model and each parameter. 
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Lo et al. (2002) [6] considered a modification of Good’s model and proposed that a two-

sample permutation test be applied to the likelihood ratio statistic. They compared the working 

memory scores of relatives of schizophrenia patients to normal controls. The alternative was that 

the distribution of the scores in relatives of schizophrenia patients was a mixture of an 

exponential and a normal distribution whereas the distribution of the scores in the normal 

controls was a single exponential distribution with the same parameter value as that of relatives. 

The null hypothesis was that the distribution of the working memory scores was an exponential 

distribution with equal means in the two groups. They proposed a likelihood ratio test, calculated 

the critical value of the likelihood ratio test statistic and the p-values. Lo et al. also did a modest 

power study of the likelihood ratio test for a mixture of normal distributions in treatment groups 

and a single normal distribution in the control group, as well as for a mixture of exponential 

distributions in treatment groups and a single exponential distribution in the control group. 

Although they did the power study for small sample sizes ( ), they obtained good 

power for a mixing proportion of 0.5 for normal mixture distributions in treatment groups as well 

as for a mixing proportion of 0.5 and 0.7 for exponential mixture distributions in treatment 

groups but not for mixing proportion of 0.9 in both situations. Additionally they did not compare 

the power of the likelihood ratio test to other test statistics. 

 McMahon et al. (2005) [7] proposed more powerful two-sample tests for the differences 

in repeated measures of adverse effects in psychiatric trials. They use Kendall’s  [8] as a 

summary measure of within-participant trends in adverse events, in conjunction with a weighted 

modification of a rank test proposed by Conover and Salsburg. A power study was conducted to 

compare the proposed analysis for repeated measures Analysis of Variance (ANOVA) using 

mixed models and the alternate tests for treatment differences in  trend scores. 
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1.2.2 Dose-response Model 

Based on the mixture model used in the non-response phenomenon, researchers 

considered dose-response models in which the proportion of non-responders changes at different 

dose amounts in different treatment groups. The dose-response relationship, or exposure-

response relationship, describes the change in effect on an organism caused by differing levels of 

exposure, or doses, to a stressor after a certain exposure time. This may apply to individuals or to 

populations. Studying dose-response, and developing dose-response models with mixture in the 

treatment groups, is central to determining the relationship between response proportion and 

levels of dosages for drugs or other relationships among substances to which humans or other 

organisms are exposed. These conclusions are often the basis for public policy.  

Boos and Brownie (1991) [9] investigated a model combining a logistic regression on 

dose for the probability that an animal will ―respond‖ to treatment with a linear regression on 

dose for the mean of the responders. They described the maximum likelihood estimation by 

Expectation and Maximization algorithm (EM algorithm) and used likelihood ratio tests to 

distinguish between the full model and meaningful reduced-parameter versions. 

Razzaghi and Kodell (2000) [10] investigated a mixture dose-response model on 

additional risk in laboratory animals, defined as the excess risk over the background risk due to 

an added dose. They derived an upper confidence limit on additional risk using the asymptotic 

distribution of the likelihood ratio statistic. The EM algorithm was used to find the maximum 

likelihood estimates of model parameters and was extended to derive the estimates when the 

model is subject to a specified level of added risk.  

http://en.wikipedia.org/wiki/Organism
http://en.wikipedia.org/wiki/Dose_(biochemistry)
http://en.wikipedia.org/wiki/Stressor
http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Drug
http://en.wikipedia.org/wiki/Humans
http://en.wikipedia.org/wiki/Organism
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Luo et al. (2004) [11] developed three score tests for hypothesis testing in a dose-response 

framework and showed that increased power is possible by using a mixture model where both 

the logarithm of the response rate and the response mean are linear functions of the dose level. 

They used permutation tests to control the type I error. The power properties of the tests showed 

that the proposed score tests have good performance. 

Many applied papers are based on the mixture model with a proportion of non-responders 

in treatment group. Levin and Bowman (1986) [12] focused on the relationship between 

behavioral effects of chronic exposure to low concentrations of halothane and the development 

in rats. Rice (1990) [13] explored the relationship between behavioral impairment on spatial 

discrimination reversal task and the periods of development of monkeys. Cox et al. (1993) [14] 

proposed the dose-response model to determine the selectivity of lead-induced changes in 

learning and to explore the nature of the underlying error patterns contributing to any learning 

deficits.  
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1.2.3  The Expectation-Maximization Algorithm 

The Expectation-Maximization (EM) iterative algorithm is a broadly applicable statistical 

technique for maximizing complex likelihoods and handling the incomplete data problem. At 

each iteration step of the algorithm, two steps are performed: (i) the E-Step, consisting of 

projecting an appropriate function containing the augmented data on the space of the original, 

incomplete data, and (ii) the M-Step, consisting of maximizing the function. The name EM 

algorithm was coined by Dempster, Laird, and Rubin in their fundamental paper [15]. This paper 

presents the EM algorithm as an effective way to compute the maximum-likelihood estimates 

when the observations can be viewed as incomplete data.  

The use of the EM algorithm for parameter estimation is stated as follows. Suppose we 

want to estimate the weights or proportions of a fixed number of fully known distributions. The 

EM approach introduces unobserved indicators with the goal of simplifying the likelihood. The 

weights are estimated by the maximum-likelihood method. Assume that a sample 

comes from the mixture 

 

 

 

where the weights  are unknown and constitute a -dimensional vector 

 with ; the class-densities  are fully specified. 
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Even in this simplest case when the only parameters are the weights, , the log-likelihood 

assumes a quite complicated form, 

 

 

 

The derivatives with respect to  lead to a system of equations that is not solvable in a 

closed form.  However, that is where the EM algorithm comes in. Upon applying the EM 

algorithm, we first augment the data  by an ―unobservable‖ matrix with n 

rows and k columns having entries . The values  are 

indicators, defined as 

 

             

for j=1, 2, …, k and i=1, 2, …, n. The unobservable matrix  describes where the 
th

 observation 

 comes from. Note that each row of  contains only one value equal to  and  values 

equal to . With the augmented data, ,  the complete likelihood takes quite a simple 

form, 

                                                   (1.7) 
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The complete log-likelihood is 

 

 

 

where  is independent of . 

Next we assume that the 
th

 iteration of weights is  is already obtained. The 
th

 E-

Step is, 

 

 

 

where  is the posterior probability of the th observation coming from the th mixture-

component, , in the iterative step . 
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Since the  is linear in the ’s,  is simply . 

The subsequent M-Step is simple:   is maximized by, 

 

 

 

In many applications, the component for individual observations is unknown or missing, 

and thus the mixture models can be interpreted as describing an incomplete data situation. 

Several applications are provided, including examples of grouped, truncated data, finite mixture 

models, variance component estimation, and factor analysis. 

 Aitkin et al.  (1980) [16] applied the EM algorithm to normal mixtures for outliers, in 

both single-sample and regression problems. The study considers the two component mixture 

model with unequal means and variances as well as regression models. The EM algorithm is very 

simply programmed, converges rapidly on the three examples considered, and can provide the 

ML estimates of the parameters, including the proportion of each component in the mixture, the 

asymptotic covariance matrix, and the maximized log-likelihood function.  

S. N. Rai et al. (1993) [17] proposed an improved EM algorithm for situations in which 

the maximization of the "complete data" likelihood function does not have a closed-form 

solution. Self-consistency of the modified EM algorithm was established. Application to 

carcinogenicity experiments was illustrated in the paper, and the results of a simulation study 
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comparing the original and modified versions indicate that use of the proposed modification can 

lead to significant computational savings. 

R. C. Jansen et al. (1993) [18] embedded the finite mixture model within the general 

framework of generalized linear models (GLMs). Implementation of the proposed EM algorithm 

was readily done in statistical packages with facilities for GLMs. In this paper, a practical 

example was presented where a generalized linear finite mixture model of ten Weibull 

distributions was adopted. The example was concerned with the flow cytometric measurement of 

the DNA content of spermatids in a mutant mouse, which shows non-disjunction of specific 

chromosomes during meiosis. 

 

 

1.2.4 The Likelihood Ratio Test 

The likelihood-ratio test (LRT) is a statistical test for comparing a more complex model to 

a simpler model. If so, the additional parameters of the more complex model are often used in 

subsequent analyses. The LRT is only valid if used to compare hierarchically-nested models. 

That is, the more complex model must differ from the simple model only by the addition of one 

or more parameters. Adding additional parameters will always result in a higher likelihood score. 

However, there comes a point when adding additional parameters is no longer justified in terms 

of significant improvement in fit of a model to a particular data set. The LRT provides one 

objective criterion for selecting among possible models. 
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E. V. Nordheim et la (1984) [19] examined the unusual performance of likelihood 

methods for genetic linkage models with unknown phase. The likelihood ratio test for 

homogeneity of linkage among several groups is often too conservative. The magnitudes of the 

differences between nominal and real probability levels of the LRT test were computed for 

various combinations of number of groups and sample sizes. An example from forest genetics 

was discussed at the end of this paper. 

J. T. Kent (1982) [20] constructed the distribution of the likelihood ratio statistic when the 

data do not come from the parametric model, but when the 'nearest' member of the parametric 

family still satisfies the null hypothesis. In this paper, the likelihood ratio statistic no longer 

follows an asymptotic chi-squared distribution, and an alternative statistic based on the union- 

intersection approach was proposed. 

M. V. Matz and R. Nielsen (2005) [21] described a likelihood ratio test that can be used to 

test if a sampled sequence is a member of an a priori specified species. Investigation of the 

performance of the test was conducted by using coalescence simulations, as well as using the real 

data from butterflies and frogs representing two kinds of challenge for DNA barcoding: 

extremely low and extremely high levels of sequence variability. 

McLachlan, G. J (2000) [27] explored that the asymptotic distribution of LRT statistics is 

the combination of chi-square distribution with the degree of freedom 1 and chi-square 

distribution with the degree of freedom 2 under regularity conditions that do not hold for the 

normal mixture model. Based on this research, the asymptotic distribution of the LRT statistics 

for the normal mixture case can be treated as the combination of two chi-square distributions 

instead of one single chi-square distribution.  
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 Based on the asymptotic distribution of LRT statistics in the mixture case, investigators 

use simulation to obtain the empirical null distribution for power studies. Bootstrap and 

permutation test are the most common method for the power study based on the null distribution. 

Hall (1987) [28] described a method for constructing likelihood-based confidence regions for a 

vector parameter, using the bootstrap and nonparametric density estimation. By permutation test, 

Lo (2000) [29] et al. reported simulation studies of two cases where they tested a single normal 

versus a two-component normal mixture and a two-component normal mixture versus a three-

component normal mixture. 
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1.2.5  The Classic Statistical Tests 

 

 Single Variable Linear Regression 

 

Single variable linear regression fits a straight line through the set of points in such a way 

that minimizes the sum of squared residuals of the model (that is, vertical distances between the 

points of the data set and the fitted line).  

             In the presence of mixture with dose-response model, a simple method for testing the 

null hypothesis of no dose (or treatment) effect is based on linear regression, that is, regressing 

the response on the dose level and using the t statistics to test if the slope equals  0. In the linear 

regression process, the relation between the mean response function and dose level variable in a 

simple linear fashion is linked as follows:  

 

 

 

The model regards each observation as a random departure from the central value , 

say, , where , , . In the model, the 

regression parameters,  and , represent the Y-intercept and slope, respectively, of the straight-

line response.  is the parameter of interest. If , then the mean response does not vary in a 
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linear fashion and no linear trend with  exists. In this sense, the model is used for simple trend 

analysis, by testing .  

The least-squares estimation is a popular method to obtain the estimator of parameters. 

The closed forms are: 

 

              

 

where  and  are the sample means of dose level and 

response variable. Also, the estimated standard error of the slope estimator is: 

 

 

 

where  is the root mean square error : 
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To conduct a trend under this simple linear model, the t-statistics is calculated, 

. The null reference distribution of t-statistics is .The  is rejected 

in favor of a increasing trend, , if  exceeds the upper-  critical point . 

 

Spearman’s rank correlation 

  

Spearman’s rank correlation is also used when one is interested in an order association 

between two measurement variables. The purpose is to test whether the two measurement 

variables covary, or whether as one variable increases the other variable tends to increase or 

decrease. Spearman’s rank correlation is the non-parametric alternative to correlation — it 

assesses how well an arbitrary monotonic function could describe the relationship between two 

variables, without making any other assumptions about the particular nature of the relationship 

between the variables. Spearman’s rank correlation is also used when one or both of the variables 

consist of ranks. The raw values are converted to ranks, and the differences, di, between the 

ranks of each observation on the two variables are calculated. The steps for calculating 

Spearman’s correlation coefficient are as follows: 

(1) Rank the original values in each group in ascending order, respectively. 

(2) Calculate the difference between the ranks of corresponding values  and . 

http://udel.edu/~mcdonald/statregression.html
http://en.wikipedia.org/wiki/Monotonic
http://en.wikipedia.org/wiki/Variable_%28mathematics%29
http://en.wikipedia.org/wiki/Variable_%28mathematics%29
http://udel.edu/~mcdonald/statvartypes.html#ranked
http://en.wikipedia.org/wiki/Raw_score
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(3) If there are no tied ranks, then  is given by: 

 

 

 

where is the difference between the ranks of corresponding values  and 

, and  is the number of values in each data set (same for both sets). If tied ranks exist, the 

classic Pearson's correlation coefficient between ranks has to be used instead of the above 

formula: 

 

 

 

For large samples, the test statistic   approximately follows a   distribution 

with  degrees of freedom under the null hypothesis. Thus a t test might be used to test the 

null hypothesis of no correlation between the ranks of two variables. 

http://en.wikipedia.org/wiki/Correlation_coefficient
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1.3 Summary of the Dissertation 

 

 In this thesis, we consider the situation where we test the relation between qualitative 

explanatory variable X which represents the dose level and continuous dependent variable Y 

which represents the observed values in each group. Our purpose is to compare the power of 

Likelihood Ratio Test with Single Variable Linear Regression Test and Spearman’s Correlation 

Test with the presence of normal mixture in the treatment groups. Our model is a mixture model 

like that proposed by Good (1979) but modified to allow a dose-dependent effect in a subset of 

responders. We customize the EM algorithm to our specific situation and generate the empirical 

null distribution for power study. After the power comparison, we find out that the LRT is 

powerful than other two tests, especially for large samples with large slope and shifted 

proportion. 
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Chapter 2 The Problem and Methods 

2.1 The problem and the study design 

2.1.1  The problem 

Assume that  are independent and identically distributed (I.I.D.) as the control 

group, and that  are I.I.D. as treatment groups with distribution function  

 . We try to test the hypothesis.   

 

 

                                                                                                                                    (2.1) 

where: 

(1)  ( ) is the proportion of responders given ; 

(2)  is the mean for non-responders; 

(3)  is a scale parameter assumed common to the distributions for responders and non-

responders; 

(4)  is a given dose. 

(5)  is the standard normal distribution. 
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Figure 2.1 --- An example of the null hypothesis and the alternative hypothesis with the presence 

of mixture in the treatment groups. 
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We are interested in fitting the normal mixture model to generate data and the main 

purposes of the research are following: 

(1) To investigate the power of Likelihood Ratio Test on detecting the relation between X 

and Y upon estimating all the parameters in the normal mixture model. 

(2) To compare the power of Likelihood Ratio Test, Spearman’s Rank Correlation Test, 

and Simple Linear Regression Test on each simulated sample and to determine the 

most powerful test. 

 

2.1.2  The design 

In our study design, we assume that there is one control group which is a single standard 

normal distribution and there are three treatment groups where the difference in dose between 

treatment groups equals to the dose in the first treatment group. Thus, we consider the dose 

values X as 0, 1, 2, and 3. We consider the case where we have an equal number of individuals in 

each group, i.e.  

Thus, the distribution for each group under the alternative hypothesis can be summarized 

as follows:   
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In the simulation study, we generate samples under null hypothesis and under alternative 

hypothesis as stated above.  

 

2.1.3  The Simulation 

The simulation techniques provide empirical estimation of the sampling distribution of the 

parameters of interest that could not be achieved from a single study and enable the estimation of 

accuracy measures, such as the bias in the estimates of interest, as the truth is known. Hence, in 

our study, we simulate one data set as the control group and three data sets as treatment groups 

with different parameters. The data is generated as following: 

(1)  For the control group of size n  (X=0) we generate all observations following a standard 

normal distribution using Box-Muller Transformation (1958) [30]. 

(2) For three treatment groups (with X=1, 2 or 3), each also of size n,, we generate an 

indicator which follows a standard normal distribution for each observed value. If the 

indicator is less than π, then the observed value is generated following a standard normal 

distribution, otherwise, it is generated following a normal distribution with a shifted 

mean , . 
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Simulation studies usually examine the properties of one or more statistical methods in 

several scenarios defined by values of various factors such as sample size and proportion of 

censoring. These factors are generally examined in a fully factorial arrangement. The number of 

scenarios to be investigated and the methods for evaluation must be determined and justifications 

for these choices provided in the protocol. The scenarios investigated should aim to reflect the 

most common circumstances and if possible cover the range of plausible parameter values. In 

our situation the parameter settings considered under the alterative hypothesis are  

 

 

 

 

The parameter settings that we consider under the null hypothesis is , , , 

 The sample sizes that we consider are . 

 

 

2.2 The Likelihood Ratio Test (LRT) 

 
 

In the scenario of mixture model, the LRT test can be described as follows. Under the null 

hypothesis, the likelihood for an observation from the control group  is , which 

follows the distribution of . The likelihood for an observation from the treatment group 
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 is . Therefore, the likelihood for all 

observations under the null hypothesis is  

 

   

 

The likelihood for all observations under the alternative hypothesis is  

 

 

 

We calculate , where  is the likelihood-ratio test of the null hypothesis 

— that the control and the treatment groups have the same single distribution — versus the 

alternative hypothesis — that there is a dose-response mixture distribution in the treatment 

groups.  
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2.3 Maximum Likelihood Estimation 

2.3.1 The Expectation Maximization (EM) Algorithm 

 

The EM Algorithm is widely used for the computation of the maximum likelihood 

estimates. The EM algorithm produces a sequence of monotonically increasing values with many 

desirable properties, such as the simplicity and generality of the associated theory. The detailed 

description of the convergence properties of the EM algorithm is given by Wu [22]. In many 

applications, the population component for individual observations is missing; hence the mixture 

models can be interpreted as solving the problem for an incomplete data situation.  

Suppose that an observable  is represented as n observations , 

which is the incomplete data collected from a k-component normal mixture. Let  

 be the hypothetical complete data, where 

 is an unobserved indicator vector whose components are all zero except for one 

equal to unity indicating the subpopulation from which the jth observation arises. Suppose 

further that there is a function linking the complete the data with the incomplete 

data  such that . Since the parameters cannot be obtained through the 

maximization of the complete data likelihood function, the MLEs are obtained by maximizing 

the expectation of the incomplete data log likelihood function by manipulating the relationship 

between the complete data likelihood and incomplete data likelihood.  
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Suppose that the likelihood function of  and 

are  

 

 

 

and  

 

 

respectively, where  is the unknown parameters and  equals 1 if the jth 

observation arises from component m and 0 otherwise. The conditional likelihood function of v 

given y is given by  

 

 

and the conditional expectation of the incomplete data log likelihood function, , is 

 

for fixed value , where  , =  (log (  ,  ) , ). 
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  By applying Jensen’s inequality to the convex function, it can be shown that the change in 

H(.) is negative, which indicates that , and the equality holds if the 

. Thus the maximizing  is equivalent to maximizing . 

The EM algorithm proceeds iteratively in two steps, the expectation (E) step and the 

maximization (M) step. Based on initial values for the parameters, the conditional expectation of 

the complete-data log likelihood function is calculated by giving the observed data. Suppose that 

 is calculated at the tth iteration, then the approximation,  , at the next iteration is 

obtained after the E step,  calculation of , and an M step, determination of  through 

the maximization of  . The E step is completed simply by replacing  by its conditional 

expectation given by  by using the current fit  for . 

Deriving the term of equation with respect to , , , and  and rearranging the likelihood 

equations in the M step, we can get the likelihood equations. For the case in this thesis, 

likelihood equations and parameter estimates are given in detail in the following section. 
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2.3.2 The MLE based on the EM Algorithm 

 The estimation of the parameter  can be viewed as a missing data problem 

since the subpopulation from which individual observations are taken is not known. Suppose that 

 are independent and identically distributed (I.I.D.) as control group and that 

 are I.I.D. as treatment groups. Then , 

, can be complete data, where  is 

the observed quantitative measure and  if  is from the second component distribution 

in 
th

 treatment group; otherwise . Based on the likelihood of observations, the complete 

log likelihood is: 

 

                                                                                                                      (2.9) 

 

The E-step and M-step of the algorithm correspond to calculating updated estimates 

= ( ) given current values = ( ) by choosing  as the 
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value of  that maximizes . Here  is  with 

 replaced by the conditional expectation: 

 

   

 

 is the conditional expectation obtained at the 
th

 iteration. The maximum likelihood 

estimate of parameters are calculated as following, 

 

First to estimate , let   , then: 

 

 

 

Hence                
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Next to estimate  and , let   , then: 

 

 

 

Also, let   , then: 

 

 

 

Substituting   by  into (2.22), we obtain: 
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Substituting   by (2.24) into (2.23), we obtain 

 

 

                                                                                                                            (2.16) 

 

Finally to estimate of , let   . 

 

   

                                                                                                                                        (2.17) 

 

or equivalently  

 

                                                                                                                           (2.18) 
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2.3.3 Selection of Starting Values for the EM algorithm and Calculation 

of the Likelihood  

 

It is very common that the likelihood functions of mixture models have multiple roots. A 

wide range of random starting points should be used to search for all possible local maxima 

while implementing the EM algorithm. If the number of starting points is not sufficient, the final 

MLE might be trapped in the local maximum. On the other hand, it is computationally expensive 

to use lots of starting points. Fowlkes [23] suggested the use of the point of an inflection in a Q-

Q (Quantile-Quantile) plot of the Quantile of a two-component normal mixture versus the 

Quantile of a single normal as a starting value for the mixing proportion. Thode et al. [24] 

suggested using 1/4, ¾, 1/n and (n-1)/n as starting values for the mixing proportions. A set of 

good initial values for the unknown parameter vector is important to the calculation of the global 

maximum.  

 

 

For the null hypothesized model, we first select the initial values for the unknown 

parameter  (Lo. [6]), and then calculate the Maximum Likelihood Estimates and 

the observed global maximum log likelihood using the EM algorithm, The algorithm to calculate 

Maximum Likelihood Estimates and the global maximum log likelihood is as follows: 
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(1) Generate a random value  from a uniform distribution on the interval (0,1), 

and assign it as the initial value of the mixing proportion for the null hypothesis 

model, . Let  be a 

sorted four-group random sample with sample size of each group of n. Given the 

value of , the two components in each group has different number of 

observations, namely, , and , . Hence, the 

initial estimates based on the random generated proportion are computed as 

follows 

 

 

 

 

 

 

 

 

 

(2) Then, 150 random values of the mixing proportions are generated from a 

uniform distribution on the interval (0, 1), and the values of the other parameters 
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are computed corresponding to each of these mixing proportions using the EM 

algorithm. The log likelihood of each of these 150 random starting points is 

calculated. We try to find the maximum of the 150 log likelihood results. 

(3) When the maximum of the first two steps is found, the corresponding solution 

of the likelihood equations are the Maximum Likelihood Estimates of the 

parameters. 

The completed procedure is presented in the following figure. It shows how the Maximum 

Likelihood Estimates are calculated using the EM algorithm. Based on the log likelihood 

obtained under the null and alternative models, the power of the LRT can be measured by 

comparing the observed value to the critical value. The null distribution and the power study are 

investigated in the following chapters. 
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Figure 2.2 Flow chart of the computation of the Maximum Likelihood Estimates for a random 

sample. 
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Table 2.1 The difference between maximum LRT statistics for selected numbers of Random 

Starting Points (RSPs) under the null and the alternative hypothesis for normal mixture models. 

 

Sample 

Size 

Number 

of RSPs 

Under 

H0 

Under H1 

Average  

under H1 
π=0.3 π=0.5 π=0.8 

β=0.5 β=1 β=0.5 β=1 β=0.5 β=1 

N=60 1 0 0 0 0 0 0 0 0 

 10 0.072680 0.01083 0.017211 0.109727 0.283031 0.002180 0.122301 0.090881 

 40 0.045160 0.004588 0.019367 0.00632 0.000401 0.002809 0.001317 0.005800 

 60 0 0 0 0 0.065545 0 0.006088 0.011938 

 80 0 0.00097 0.005662 5.28E-07 0 0.000661 0 0.001216 

 100 0 0.000102 0 0.00775 0.007369 1.17E-07 8.52E-09 0.00253 

 150 0.001309 0 0.002730 0 0 0.003673 0 0.001067 

 200 0.004238 0 0 0.00539 0.000314 0 0.000377 0.001015 

N=120 1 0 0 0 0 0 0 0 0 

 10 0.011504 0.053480 0.001431 0.001697 0.126705 1.31E-06 0.119730 0.050507 

 40 0.00041 3.11E-05 0.013189 0.00035 0.007008 0.001498 0.045345 0.011238 

 60 0 0 0.022129 4.31E-07 0 0 5.79E-09 0.003688 

 80 0 0 0 0.00173 0 0 0 0.000289 

 100 0 0 9.76E-06 4.69E-07 0 0.000108 0 1.99E-05 

 150 0.002757 7.98E-05 0 0.00196 0 0.000364 1.13E-07 0.000401 

 200 0 0.00023 0 0 0 8.304E-08 0.011418 0.001941 

N=200 1 0 0 0 0 0 0 0 0 

 10 0.002268 0.024714 0.270548 0.033095 0.386515 0.017788 4.58E-06 0.12111 

 40 0.001358 0.002657 0.367722 0.025684 0.088161 2.64E-05 0.026992 0.08520 

 60 9.65E-08 0.000183 0.29624 0.01450 0 0 4.06E-08 0.051822 

 80 0 0 0.005594 0 0 0.00584 0.000655 0.002015 

 100 0 0 0.062874 0 0 0 0 0.010479 

 150 1.28E-09 0.000100 0.074427 0 0.070332 0.002245 0.004466 0.025262 

 200 2.5E-06 8.14E-05 0 0 0 0.011235 0 0.001886 
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In our research, in order to find the appropriate number of random starting points to be 

used, we calculate different LRT statistics using different number of starting points. We calculate 

the average differences of LRT statistics when more random starting points are used for each 

sample size. When these differences become smaller and smaller, it means that the LRT statistics 

converges. Then the number of starting point is sufficient for our situation to find the global 

maximum of LRT statistics and its MLEs. From the table above, we can see that there is a big 

difference between using one random starting point and using multiple random starting points.    

Under the null hypothesis, the LRT statistics is quite stable and converge to the maximum when 

using 150 random starting points. Thus 150 random starting points are used to generate the LRT 

distribution under the null hypothesis. For the alternative hypothesis, the average differences are 

quite small between using 80 random starting points and 60 starting points. As more random 

starting points are used, the larger LRT statistics that we can obtain. However, the average 

differences of using more than 80 random starting points are not very significant. For the 

complexity of computation, 80 random starting points are used to generate the LRT distribution 

under the alternative hypothesis. Since the EM algorithm is customized to calculate the MLE for 

the mixture normal models, it is easier to use EM algorithm to calculate the estimates when there 

is a normal mixture in the distributions. Under the null hypothesis, most of the samples are single 

normal distribution, so it is relatively difficult for the EM algorithm to calculate the estimates. 

Thus more random starting points are used to calculate MLE under the null hypothesis than 

alternative hypothesis.  
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2.3.4 Simulated Results of MLE for Normal Mixture Model  

 

The EM algorithm stated above is customized to fit the normal mixture model in the 

research. In order to verify the EM algorithm, we calculate the MLE for 1000 samples with 

different sample size and different parameters. Under the alternative hypothesis, 80 random 

starting points are used. The MLE, standard error of MLE, and the bias of MLE are shown in the 

table below. Three sample sizes  are considered. Since we have four groups 

for each sample, the total number of observations are  respectively. For 

each sample size, we consider three different shifted proportion, . Two 

possible shifted means are used, namely . So there are eighteen scenarios for the 

combination of different parameters and different sample sizes. Table 2.2 shows the simulated 

mean MLEs with the standard error (in parentheses) under the normal mixture population based 

on 1,000 samples in each case. 150 random starting points are used to obtain the MLEs in this 

table. 
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Table2.2 Mean and standard error of the MLEs under the alternative hypothesis for different 

sample sizes (1000 random samples are used for each estimate). 

 

 Mean MLEs (SE) 

        

n=60 0 1 

0.3 

0.5 
-0.015 

(0.05) 

0.941 

(0.05) 

0.308 

(0.05) 

0.593 

(0.08) 

1 
-0.017 

(0.05) 

0.974 

(0.06) 

0.318 

(0.03) 

1.021 

(0.06) 

0.5 

0.5 
0.029 

(0.05) 

0.936 

(0.05) 

0.401 

(0.05) 

0.622 

(0.06) 

1 
0.010 

(0.05) 

0.962 

(0.05) 

0.48 

(0.02) 

1.027 

(0.03) 

0.8 

0.5 
0.09 

(0.05) 

0.907 

(0.05) 

0.574 

(0.05) 

0.597 

(0.04) 

1 
0.069 

(0.05) 

0.985 

(0.05) 

0.737 

(0.03) 

1.007 

(0.03) 

n=120 0 1 

0.3 

0.5 
0.005 

(0.03) 

0.985 

(0.04) 

0.300 

(0.04) 

0.581 

(0.006) 

1 
-0.015 

(0.03) 

0.978 

(0.04) 

0.314 

(0.02) 

1.009 

(0.04) 

0.5 

0.5 
0.025 

(0.04) 

0.954 

(0.04) 

0.420 

(0.04) 

0.587 

(0.04) 

1 
0.006 

(0.03) 

0.966 

(0.03) 

0.480 

(0.02) 

1.028 

(0.02) 

0.8 

0.5 
0.065 

(0.04) 

0.914 

(0.03) 

0.622 

(0.04) 

0.576 

(0.04) 

1 
0.050 

(0.04) 

0.977 

(0.04) 

0.743 

(0.02) 

1.010 

(0.02) 

n=200 0 1 

0.3 

0.5 
0.002 

(0.02) 

0.981 

(0.03) 

0.284 

(0.03) 

0.570 

(0.05) 

1 
0.008 

(0.02) 

0.976 

(0.03) 

0.307 

(0.01) 

1.008 

(0.02) 

0.5 

0.5 
0.02 

(0.03) 

0.960 

(0.03) 

0.424 

(0.03) 

0.570 

(0.03) 

1 
0.012 

(0.02) 

0.998 

(0.03) 

0.483 

(0.01) 

1.016 

(0.02) 

0.8 

0.5 
0.037 

(0.03) 

0.979 

(0.03) 

0.762 

(0.01) 

1.008 

(0.01) 

1 
0.057 

(0.01) 

0.937 

(0.01) 

0.651 

(0.02) 

0.558 

(0.01) 
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The table above shows the MLEs under the different combinations of parameters. In each 

scenario, we calculate the MLE of each sample and record the average of the 1000 samples. The 

standard error is calculated at the same time in order to show the variance of the MLEs. We can 

see that the average MLEs are quit close to the true value which means that the customized EM 

algorithm for normal mixture model works well and the number of random starting points is 

sufficient. 

 

For the estimation of mean of non-responders , we can see that the estimates are all quite 

close to zero which is the true value of the parameter of each case. However, when the shifted 

proportion is large, the estimates are always bigger than those with small shifted proportion. So 

the estimate is biased when it comes to large shifted proportion. For the estimation of the 

common variance , the estimates are always very close with the true value of the parameter 

which is one. Under different scenarios as it shown in the table above, the estimates of   are 

stable and variant within the small range. For the estimation of shifted proportion , the 

estimates are more precise with the larger proportion. Since the larger shifted proportion makes 

the mixture part of the distribution more obvious, the EM algorithm is better for the calculation 

of the shifted proportion. For the estimate of the slope , there are two true values are considered, 

namely 0.5 and 1. The estimates of the slope are more precise when the true value of the 

parameter is larger. Overall, the estimate of the parameter value 1 is better than those of the 

parameter value 0.5. The reason is that the larger slope makes the mixture part more obvious 

which is the same reason that why the estimate of larger shifted proportion is more accurate. 
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Overall, the MLE estimates are quite close to the true parameter value with relatively small 

standard errors 
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Chapter 3  

The Null Distribution of the Likelihood Ratio 

Test Statistics 

 

 

3.1 Introduction 

 

In the chapter, we explore the null distribution for the LRT statistics and try to find the 

asymptotic null distribution and its fitted distribution. In section 3.2, we show the empirical 

distribution by simulating the null model with different sample sizes. We compare the empirical 

distribution with chi-square with 1 degree of freedom and a chi-square distribution with 2 degree 

of freedom. In section 3.3, we fit the null distribution as the combination of a proportion of zero 

LRT statistics and another proportion of chi-square distributed LRTs. The method suggested by 

Wilson and Hilferty [22] is used to transform non-zero LRTs into a standard normal distribution, 

thus it is much easier to find the cumulative density function of the LRT statistics. Finally, the 

type I error rate is calculated with different sample sizes to assess the validity of the proposed 

fitted distribution.  
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3.2 Empirical  Null Distribution of LRT Statistics 

The empirical null distribution of the LRT statistics was obtained through simulation. We 

compared the theoretical asymptotic distribution with the empirical null distribution found from 

the simulation. The 90
th

, 95
th

, and 99
th

 percentile of the empirical null distribution of the LRT 

statistics and corresponding chi-square values with same confidence intervals are computed. 

 

We simulate samples with three different sample size which is showed in the table 

following. Each null distribution is based on 10,000 simulated samples from the null distribution. 

The mean and variance of the distribution is calculated, and the selected percentiles of LRT 

statistics are reported. 

 

Table 3.1 Summary of empirical null distribution of LRT statistics under the null hypothesis of 

normal mixture models. (10,000 samples for each sample size) 

 
Sample 

size 
Mean variance 

Percentile of LRT 

90
th

 95
th

 99
th

 

Empirical 

Null 

n=60 0.7698 1.9797 2.4172 3.6420 6.5375 

n=120 0.8376 2.1383 2.6021 3.8550 6.7275 

n=200 0.8524 2.2066 2.6059 3.8185 6.8715 

  1 2 2.7060 3.8410 6.6350 

  2 4 4.6050 5.9910 9.2100 

 

Note 1. The number of observations per x values 4/nnx   for each sample size n. Groups 

have values of . 
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From the table above, we can see that the mean of the LRT statistics becomes larger as the 

sample size becomes larger. The variance also becomes bigger with large sample size, however, 

the trend is not quite obvious. The table shows selected percentiles of LRT statistics as well as 

the corresponding chi-square statistics. We can see that, for the 90
th

 percentile statistics, the 

critical values are all less than the chi-square with degree of freedom of one. For the 95
th

 

percentile statistics, the critical values are less than the chi-square with degree of freedom of one 

except that the statistics for sample size of 120 is a little larger than the corresponding chi-square 

statistics. For the 99
th

 percentile statistics, the critical value of sample size of 120 and 200 are 

between chi-square with degree of freedom of one and the chi-square statistics with degree of 

freedom of two. However, they are a lot less than the chi-square statistics with degree of freedom 

of two. For the summary of the table, we can see that the asymptotic distribution of  

2

2

2

1 5.05.0    suggested by the work of McLachlan, G. J. (2000) does not hold here since most 

of the LRT percentiles are less than the corresponding chi-square statistics with degree of 

freedom of one.  

 

 

 

3.3 Fitted Null Distribution of the LRT Statistics  

 

In this section, we attempt to fit the empirical null distribution into combination of chi-

square distribution for each sample size. We transform the empirical null distribution so as to 

consider the proposition that the asymptotic distribution is a mixture of chi square with 0 degrees 
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of freedom and chi square with some positive number of degrees of freedom. We consider the 

proposition then that the null distribution of the LRT for a given value of n is of the 

form 2 2

0 (1 ) vp p  
. 

Then, upon applying the result of Wilson and Hilerfy (1931), the 

distribution of the cube root of the statistic would be a mixture of a fraction of zero with a 

proportion of p and an approximately normal distribution. We then estimate the corresponding 

 mixture distribution 2 2

0 (1 ) vp p    by first conditioning on whether the value of the statistic 

is zero or not as follows: 

(1)We estimate the p with the observed fraction of values equal to 0.0; 

 (2) Conditional on the statistic having a non-zero value (note that the probability that a   

distribution has the value of 0 is zero), we estimate the mean, M by  , where  is the average of 

the non-zero LRT statistics;  and 

 (3) we estimate the standard deviation, with s, the sample estimate based on the non zero 

values. The fitted estimate of the cumulative probability is calculated as    

 

 

 

 

 

where  is the cumulative distribution function of an  variable. 
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Equivalently the P-value associate with an observed LRT statistics can be approximated 

by  

 

 

 

Similarly the critical value for an  level test is calculated as   

 

 

Table 3.2 shows the selected critical values based on the fitted distribution. 

Table 3.2 Summary of empirical null distribution of LRT statistics under the null hypothesis and 

the corresponding fitted distribution.  

 
Sample 

size 
Mean variance 

Percentile of LRT 
Prob(0’s) 

Cube root of 

non-zeroes 

90
th

 95
th

 99
th

 mean SE 

Empirical 

Null 

n=60 0.7698 1.9797 2.4172 3.642 6.5375 0.3634 0.8811 0.4373 

n=120 0.8376 2.1383 2.6021 3.855 6.7275 0.3151 0.8782 0.4414 

n=200 0.8524 2.2066 2.6059 3.8185 6.8715 0.3131 0.8852 0.4414 

Fitted 

Distribution 

n=60   2.3059 3.3751 6.0523    

n=120   2.4264 3.5148 6.2452    

n=200   2.4652 3.5636 6.3100    
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The 90
th

 percentile, 95
th

 percentile, and 99
th

 percentile critical values are calculated, 

respectively, based on the fitted distribution and are showed in the table compared with the 

empirical critical value. From the table above, we can see that the critical values of the fitted 

distribution become larger as the sample size increase, which is the same trend of the empirical 

distribution. There are certain differences between the critical values of the fitted distribution and 

those of empirical values. We would expect that the critical values of a good fitted distribution 

would be closer to the empirical values as the sample size increase. However, in the table above, 

the differences between the critical values of the fitted distribution and those of empirical 

distribution do not change as the sample size increases. The differences remain around 0.5 for all 

sample sizes of 99
th

 percentile level. The differences remain around 0.2 for all sample sizes for 

the  95
th

 percentile and 90
th

 percentile. Thus, we conclude that the fitted distribution does not fit 

the empirical distribution well. We explore the type I error for the empirical distribution and the 

fitted distribution in the followings. The normality test for the cube root of non-zero LRT 

statistics is also provided to verify our conclusion, which is showed in Table 3.3. 
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Table 3.3 Summary of Type I error for empirical and fitted distribution with different critical 

values. 1000 sample under the null distribution for each sample size are used.  

Sample 

Size 
 

90
th

 percentile 

critical value 

95
th

 percentile 

critical value 

99
th

 percentile 

critical value 

n=60 

Empirical 

Distribution 
0.097 0.047 0.008 

Fitted 

Distribution 
0.104 0.055 0.011 

n=120 

Empirical 

Distribution 
0.089 0.043 0.007 

Fitted 

Distribution 
0.101 0.056 0.009 

n=200 

Empirical 

Distribution 
0.102 0.057 0.005 

Fitted 

Distribution 
0.109 0.062 0.008 

 

We random generate 1000 samples under the null hypothesis in order to calculate the type 

I error for the empirical null distribution and the fitted null distribution, respectively. From the 

table above, we can see that the type I error which is calculated based on the empirical 

distribution is relatively smaller than that calculated based on the fitted distribution. At the same 

time, the table shows that the type I error of the fitted distribution are close to the significance 

level of the critical value, which shows that the fitted distribution works well. On the other hand, 

most of the type I error calculated based on the empirical distribution are smaller than the 

significance level of the critical value, which shows that the empirical null distribution based on 

10,000 random samples works fairly well.  

We conduct normality check on the cube root of the LRT statistics. We apply the 

Kolmogorov-Smirnov normality test to each sample size and construct the QQ plot for each case, 

which is showed in Figure 3.1. It looks like the fitted null works well even though it departs 

significantly from normality. The problem is that it is specific to this design (i.e. with equal 

number of observations at each dose and an equal number of untreated patients). 
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Figure 3.1 QQ plot for normality check of the non-zero LRTs. (n=60, 120, and 200) 
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Table 3.4 – Kolmogorov-Smirnov(K-S) normality test for different sample sizes (n=60, 120, and 

200)  

Sample Size D statistics P-value 

n=60 0.0395 < 2.2e-16 

n=120 0.0452 < 2.2e-16 

n=200 0.0363 < 2.2e-16 

 

 

From the table above, we can see that, for each sample size, the p-values of the K-S test 

are extremely small. Thus, we reject the null hypothesis to conclude that the cube roots of the 

non-zero LRT statistics are not normally distributed. The fitted distribution obtained above is 

calculated by transforming the cube root of the non-zero LRT statistics into normally distributed 

variables. Although the cube roots of the LRT statistics are not normally distributed, the 

approximation fits the empirical distribution well.  
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Chapter 4  

 

Power Study of the Likelihood Ratio Test in the 

Presence of Mixtures in the Treatment Groups 

 

4.1 Single Variable Linear Regression 

 

In this chapter, we conduct a power comparison of three methods which are LRT, 

Spearman’s correlation, and single variable linear regression for each sample that we generate. 

We also derive the approximate variance for single variable linear regression which is used when 

calculating the approximate power of single variable linear regression. 

 

In this research, we consider the situation where mean response has a linear relationship 

with dose in a fraction rather than all of the observations in the treatment groups. That is, shift in 

mean from the control value is dose related.  Thus there is an overall linear increase in mean 

response with each dose, however the increase depends on two parameters (1) the mixing 

proportion or the proportion of responders in each treatment group and (2) the slope or the 

increase in mean response per unit increase in dose.  Additionally, because of the mixture, the 

variance of the observations in each treatment group increases as the dose level increases as well. 
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One of the most important assumptions of linear regression analysis is that the residual variance 

is a constant. For this reason, we derive the variance in each treatment group and develop the 

expressions for the approximate power for the linear regression test.  

Assume that Y is the dependent variable which is the observed value in each group. X is the 

dependent variable which is the dose level for each group. For the control group, x=0, and for the 

treatment group, x=1,2,3, respectively. Thus, the variance of the dependent variable based on the 

dose level X is  

 

 

 

Furthermore we can easily show that . Here E(Y|X) denotes  the expected value 

of the independent variable based on the dose level. Thus, the main point of derivation is to 

derive an expression for the . We divide the observations in one group into two parts, 

the shifted proportion and the un-shifted proportion, for calculation, respectively. Thus, 
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where  denotes the value the response given a subject is in the group having the same mean as 

the control group e, and  denotes the values of the response given a subject is in the group with 

the shifted mean. 

 

The calculation of  is simple in our case, since  

 

+  

 

For the calculation of , we transform the  into . Thus, 
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Based on the derivation above, we obtain that  

 

 

 

Substituting the quantity of equations above into equation (4.1), we obtain the variance of 

the observed values Y in each group with dose level of X 

 

 

 

Also if we redefine , we have  

 

 

 

Based on the equation (4.7), we obtain the conditional variance of Y each group by 

substituting the corresponding X.   
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Table 4.1 Variance of the observed value Y of each group with corresponding dose level X. 

 Dose Level (X) Variance of Y 

Control Group X=0  

Treatment Group 1 X=1 
 

Treatment Group 2 X=2  

Treatment Group 3 X=3  

 

For the approximate power calculation for the linear regression, we use the average of the 

variances of the four groups, which obtained from the table above, as the common variance of 

observed value Y conditioning on the dose level X. Thus, in the case where X=0,1,2 and 3 with 

equal frequency , the approximate within group variance is  

 

 

 

 

Thus, the properties of single variable linear regression customized to the mixture model 

are  
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In this research, we consider four groups with same number of observations, thus, we 

have the common sample size n. The possible values of X are 0, 1, 2, 3. So the denominator of 

the equation (4.10) can be simplified. By substituting the common variance at the same time, we 

have  

 

 

Based on the linear regression, we have  

 

 

 

where  and  are the expected value slope and the variance of the slope of linear 

regression, respectively. 

Thus, the approximate power of linear regression can be calculated as    
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which is probability that we reject the null hypothesis that there is a linear relationship between 

the observed values Y and the dose level X. Here,  represents the two-sided critical value of 

the standard normal distribution given the significant level of . 

 

4.2 Result of Power comparison  

 

In this research, we evaluate the performance of the Likelihood Ratio Test (LRT) by 

comparing its power with Spearman’s Correlation Test, and Simple Linear Regression Test. The 

power of the LRT is based on using the critical values obtained from the simulated distribution 

under the null hypothesis given in the Chapter 3. For the power of Simple Linear Regression, we 

calculate the observed power and the approximate power (based on the results of the previous 

section, respectively.   

For the data simulation, we consider the group sizes of 15, 30, and 50, which means the 

corresponding total sample sizes considered are 60, 120, and 200. The parameters that we 

consider are listed as follows: 
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For each combination of parameter values and sample size, we generate 1,000 random samples 

under the alternative hypothesis and calculate the rate of rejection as the power of the test. The 

tables below shows the power of the three tests calculated from each sample under different 

significance levels. 

 

Our interest lies in determining whether the LRT has essentially the same power 

distribution as Spearman’s Correlation Test and the Simple Linear Regression Test. Since we 

execute the three tests for each simulated sample, the power comparison between the LRT and 

the Spearman’s Correlation, as well as the comparison between LRT and Simple Linear 

Regression Test, are matched pair design. Thus, we apply the McNemar’s Test to compare the 

power. 

McNemar's  test assesses the significance of the difference between two correlated 

proportions, such as might be found in the case where the two proportions are based on the same 

sample of subjects or on matched-pair samples. In our study, the correlated proportions are the 

proportion of rejections for a given sample size and set of parameter values. We conduct 

McNemar’s test on LRT and Spearman’s correlation test, and LRT and Simple linear regression 

test, respectively. 
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Table 4.2 Power comparison of LRT, Spearman’s test, and Simple Linear Regression with 

significance level of 0.1. 

   LRT 
Spearman's 

Test 

 Linear 

Regression 

(Observed 

power) 

Linear regression 

(Approximate 

Power) 

Difference 

(Observed Power 

and Approximate 

Power) 

n=60 

0.1 

0.1 0.133 0.114 0.116 0.060 0.056 

0.3 0.143 0.11** 0.112* 0.082 0.030 

0.2 0.3 0.205 0.139** 0.137** 0.128 0.009 

0.5 0.5 0.7287 0.579** 0.607** 0.624 0.017 

n=120 

0.1 

0.1 0.117 0.101 0.114 0.064 0.050 

0.3 0.189 0.12** 0.121** 0.100 0.021 

0.2 0.3 0.277 0.166** 0.182** 0.177 0.005 

0.5 0.5 0.9199 0.852** 0.867** 0.870 0.003 

n=200 

0.1 

0.1 0.119 0.103 0.117 0.068 0.049 

0.3 0.19 0.129** 0.13** 0.120 0.010 

0.2 0.3 0.36 0.251** 0.268** 0.236 0.032 

0.5 0.5 0.979 0.957** 0.972 0.974 0.002 

Note: Significantly different in power compared to LRT using McNemar’s Test (* 0.05; ** 0.01) 

          Approximate power of linear regression is calculated using the expressions in section 4.3.3. 
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Table 4.3 Power comparison of LRT, Spearman’s test, and Simple Linear Regression with 

significance level of 0.05. 

   LRT 
Spearman's 

Test 

 Linear 

Regression 

(Observed 

Power) 

linear regression 

(Approximate Power) 

Difference 

(Observed Power 

and Approximate 

Power) 

n=60 

0.1 

0.1 0.056 0.048 0.056 0.030 0.026 

0.3 0.075 0.046** 0.057 0.044 0.013 

0.2 0.3 0.118 0.08** 0.084** 0.073 0.011 

0.5 0.5 0.6306 0.451** 0.476** 0.500 0.024 

n=120 

0.1 

0.1 0.055 0.052 0.056 0.033 0.023 

0.3 0.094 0.051** 0.057** 0.055 0.002 

0.2 0.3 0.175 0.100** 0.109** 0.107 0.002 

0.5 0.5 0.867 0.773** 0.801** 0.792 0.009 

n=200 

0.1 

0.1 0.057 0.056 0.057 0.036 0.021 

0.3 0.118 0.077** 0.083* 0.068 0.015 

0.2 0.3 0.249 0.157** 0.169** 0.151 0.018 

0.5 0.5 0.951 0.925** 0.938 0.948 0.010 

Note: Significantly different in power compared to LRT using McNemar’s Test (* 0.05; ** 0.01); 

          Approximate power of linear regression is calculated using the expressions in section 4.3.3. 
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Table 4.4 Power comparison of LRT, Spearman’s test, and Simple Linear Regression with 

significance level o f 0.01. 

   LRT 
Spearman's 

Test 

Linear 

Regression 

(Observed 

Power) 

linear regression 

(Approximate 

Power) 

Difference 

(Observed Power 

and Approximate 

Power) 

n=60 

0.1 

0.1 0.013 0.007 0.008 0.006 0.002 

0.3 0.019 0.013 0.013 0.010 0.003 

0.2 0.3 0.044 0.019** 0.02** 0.019 0.001 

0.5 0.5 0.3654 0.209** 0.24** 0.269 0.025 

n=120 

0.1 

0.1 0.011 0.008 0.011 0.006 0.005 

0.3 0.02 0.011 0.01* 0.013 0.003 

0.2 0.3 0.061 0.027** 0.03** 0.032 0.002 

0.5 0.5 0.767 0.465** 0.582** 0.578 0.004 

n=200 

0.1 

0.1 0.01 0.013 0.013 0.008 0.005 

0.3 0.029 0.017* 0.02 0.018 0.002 

0.2 0.3 0.089 0.047** 0.045** 0.049 0.004 

0.5 0.5 0.881 0.782** 0.837** 0.842 0.005 

Note: Significantly different in power compared to LRT using McNemar’s Test (* 0.05; ** 0.01); 

          Approximate power of linear regression is calculated using the expressions in section 4.3.3. 
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From the tables of power with different significance levels, we can see that the power of 

the LRT is greater than those of Simple Linear Regression and those of Spearman’s Correlation 

Test. The power of the LRT is very low with the small shifted proportion and the small shifted 

mean are both small, since it is very difficult to detect the shifted part of the observation. 

However, the LRT turns out to be very powerful with larger parameter values (i.e. large mixing 

proportion or large value of slope) with each significance level. At the same time, the power of 

the LRT increases as the sample size becomes larger and larger. With the group size of 50, the 

power of LRT is 0.951 with the significance level of 0.05. Thus, we expect that the power will be 

higher with greater parameter values or with bigger sample size.  

From the McNemar’s test result above, we can see that the Spearman’s correlation test 

and the linear regression test are significantly different from the LRT test wherever there is a 

large shift in mean and in mixing proportion. For the small parameter settings, the three tests do 

not work that well, since the power is low. However, for the larger parameter settings, the power 

of LRT is significantly higher than Spearman’s correlation test and linear regression test which 

we can see from the McNemar’s test result. The following figures show the trend of the power of 

the three tests with different parameter settings at different significance levels.  
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Figure 4.1 Power comparison at significance level of 0.1. (4 sets of parameter setting. 1000 

samples are used for power calculation.) 
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Figure 4.2 Power comparison at significance level of 0.05. (4 sets of parameter setting. 1000 

samples are used for power calculation.) 
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Figure 4.3 Power comparison at significance level of 0.01. (4 sets of parameter setting. 1000 

samples are used for power calculation.) 
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4.3 Mean Square Error (MSE) Calculation. 

For the LRT and Single variable linear regression test, we obtain the estimate of the 

parameters and compare them in the following table. 

 

Table 4.5 MSE of the parameters from LRT and Single variable linear regression. 

      

Observed  

)ˆ(BVar  

Approximate  

)ˆ(BVar  

 

)ˆ(BBias  

Observed  

)ˆ(BMSE  

Approximate  

)ˆ(BMSE  

n=60 0.1 0.1 0.3279 0.1089 0.3397 0.0142 0.0134 0.09 0.0223 0.0215 

 0.1 0.3 0.2798 0.0527 0.2825 0.0140 0.0137 0.27 0.0869 0.0866 

 0.2 0.3 0.2144 0.0611 0.2181 0.0134 0.0140 0.24 0.0710 0.0716 

 0.5 0.5 0.0500 0.0121 0.0501 0.0166 0.0163 0.25 0.0791 0.0788 

n=120 0.1 0.1 0.2445 0.0591 0.2480 0.0068 0.0067 0.09 0.0149 0.0148 

 0.1 0.3 0.2362 0.0287 0.2370 0.0069 0.0069 0.27 0.0798 0.0798 

 0.2 0.3 0.1620 0.0325 0.1630 0.0070 0.0070 0.24 0.0646 0.0646 

 0.5 0.5 0.0306 0.0071 0.0307 0.0087 0.0081 0.25 0.0712 0.0706 

n=200 0.1 0.1 0.2290 0.0923 0.3075 0.0043 0.0040 0.09 0.0124 0.0121 

 0.1 0.3 0.1815 0.0321 0.1825 0.0042 0.0041 0.27 0.0771 0.0770 

 0.2 0.3 0.1560 0.0445 0.1579 0.0043 0.0042 0.24 0.0619 0.0618 

 0.5 0.5 0.0169 0.0006 0.0169 0.0050 0.0048 0.25 0.0675 0.0673 

Note: ̂  is the estimate slope in the LRT;  B̂  is the estimate of the slope in the single linear 

regression test.  *)( BE .    is the proportion of responders in the mixture model. 
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We see on comparing the precision of LRT and the single variable linear regression that, 

in particular, the variance of the MLE of  is greater than that of single variable linear regression. 

This is the case except for those situations where either  or  is large, i.e.  or . 

However, the MLE of the LRT has minimum MSE in several cases with large  or large . As 

expected, the MSE of LRT decreases as the sample size become larger. We can see from the 

table that the approximate variance of single variable linear regression is quite close with the 

observed one. Thus, the approximate calculation of single variable linear regression can be a 

fairly accurate estimate.  
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Chapter 5  

 

Discussion and Conclusions 

 

In this study, three methods are considered to test for an ordered association between dose 

and response in the case where there is a mixture normal distribution in the treatment groups. 

These are the Likelihood ratio test, Spearman’s correlation test, and the single variable linear 

regression test.  We consider the case where we have four equal size groups of which one is the 

control group and the other three are treatment groups with the dosage increase equaling the dose 

of the first treatment group. The null hypothesis of the test is that there is no relation between the 

dose level and mean response in the treatment groups. The alternative hypothesis of the test is 

that there in a fraction of the treatment groups there linear relationship between the shifted means 

and the dose level. For each parameter setting, the power of the three tests is calculated and the 

McNemar’s test is conducted to test if the rejection rates of the methods are the same.  

 

For the Likelihood ratio test, we customized the EM algorithm to our case in order to find 

the MLE of the parameters values under the alternative.  In developing the EM algorithm, we 

calculated the MLE for each sample using different numbers of random starting points. Finally, 

150 and 80 random starting points are used to find the global MLEs for samples obtained under 

the null hypothesis and alternative hypothesis, respectively. The mean of the MLE and the mean 
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square error is calculated in chapter 2.  These results show that the estimates calculated using the 

customized EM are close to the true parameters.  

 

In order to calculate the power of the LRT, we investigate the distribution of the statistics 

under the null hypothesis. For each sample size, 10000 random samples are generated. It was 

observed that the distribution did not fit the proposed asymptotic null distribution of chi square 

with 2 df.   Although the square root of non-zero LRT statistics do not follow a standard normal 

distribution, the attempts to fit the data to a mixture of chi square with 0 degrees of freedom and 

chi square with non-integer degrees of freedom work well.  

 

We use the empirical null distribution for our power study. One thousand simulated 

samples are generated for each parameter setting under the alternative hypothesis. Overall, based 

on McNemar tests, the performance of the LRT is significantly better than Spearman’s 

correlation test and the single variable linear regression test (t test of a slope equal to 0.0). With 

the large sample sizes, the Single variable linear regression test is less powerful but not much. At 

the same time, we derive the expression of approximate power of the single variable linear 

regression. The approximate power is quite close with the observed power of the single variable 

linear regression. Thus, if the sample size is large enough, we recommend that one calculated the 

approximate power of the single variable linear regression test serving as an estimate of the 

power of observed single variable linear regression. It also can be considered as an estimate of 

the power of LRT which is slight underestimate. In the treatment group, the power of the LRT 
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increases as the sample size increase. The sample with greater shifted proportion and greater 

shifted mean has a greater power when the LRT is conducted.  

 

However, there are several limitations of this research, some of which could be seen as 

interesting directions for future research. The first one is that we consider only a sampling design 

where we have an equal number of observations for   values of the predictor fixed at X=0, 1, 2, 3. 

This would be the case in some dose response studies.  There are several possible alternative 

designs which could result in a different null distribution as well as different power values for the 

same total sample size.  Examples are designs where there are only 3 groups, unequal spacing 

between doses, or unequal group sizes.  Or we could have an observational study where the 

predictor variable X, is a random variable. This would be the case perhaps in a study where 

disease susceptibility is a function of some quantitative variable, time since onset say, in a subset 

of the population and unrelated to this factor in the remainder of the population. In practice one 

would probably use either a permutation test or the bootstrap LRT in order to determine whether 

one accepts or rejects the null hypothesis.  We are assuming that our use of critical values 

obtained through simulation corresponds to the results one would obtain with the bootstrap. We 

have no way of knowing whether the permutation test would result in similar power.  A study 

comparing the power of these two approaches (bootstrap and permutation test) would be of 

interest.   For the consideration of parameter settings, we can explore the test on larger sample 

with greater  and . For example,  and . In the real world, the proportion of 

responders might vary from different dose levels. Thus, it will be an interesting and realistic 

design where the proportion of responders is expressed as a variable of dose levels. 



72 
 

The alternative hypothesis in this research can be considered as the special case of 

switching regression which is proposed by Quandt and Ramsey (1978) [31]. Thus, it would be an 

interesting future work to conduct the hypothesis test in terms of switching regression. The null 

hypothesis and the alternative hypothesis test for the special case of the switching regression can 

be expressed as follows. 
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