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Abstract of the Dissertation

Low-Contrast Lesion Detection in Tomosynthetic Breast
Imaging

by

Lili Zhou

Doctor of Philosophy

in

Electrical & Computer Engineering

Stony Brook University

2007

Conventional 2D mammography is currently the most effective ap-

proach to detecting early stage breast cancer. Tomosynthetic breast imag-

ing is a potentially more valuable 3D technique for breast cancer detection.

This technique acquires a limited number of noisy 2D projection images

over a limited angular range and then mathematically reconstructs a 3D

breast. In breast imaging, the contrast between cancerous lesions and

background features is fairly small; furthermore, the presence of lesions is

masked by normal anatomical structures. The low contrast, anatomical

masking and effects of radiation noise all combine to make lesion detection

a difficult task.

In this simulation study, we investigate the efficacy of three tomosyn-

thetic reconstruction algorithms simple backprojection, algebraic, and sta-

tistical in the context of an especially difficult lesion detection task. This
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is the detection of a very low-contrast mass embedded in a very dense

fibro-glandular tissue background a clinically useful task for which to-

mosynthesis may be well suited. The project uses anatomically realistic

3D breast phantoms whose normal anatomic variability limits lesion con-

spicuity. In order to capture anatomical object variability, we generate an

ensemble of 3D breast phantoms by using stochastic algorithms, each of

which results in random instances of various breast structures. Power-law

structural noise is added to simulate small-scale object variability. The

irregular mass is simulated by a 3D random walk algorithm. Low-dose

data are acquired using an isocentric geometry and simulated Poisson ra-

diation noise is added. The data are then reconstructed via the three

types of methods. Reconstructed slices through the center of the lesion

are presented to human observers in a two-alternative-forced-choice test to

measure lesion detectability by computing the area under the ROC curve.

We conclude that backprojection algorithms perform significantly more

poorly compared to the other two types of reconstruction methods.
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Chapter 1

Introduction

Breast cancer is the second most common type of cancer in women and the

second leading cause of cancer-related deaths among women [1]. One in eight women

in the United States will develop breast cancer during her lifetime [2]. Approximately

200,000 women in the United States are diagnosed with breast cancer each year, and

the disease causes about 40,000 deaths annually [2]. X-ray mammography is currently

the most effective method of detecting early stage breast cancer, and has played an

important role in reducing the breast cancer rate. It has been shown that the use of

screening mammography has reduced mortality from breast cancer by 20%-40% [3, 4].

Conventional mammography is a two-dimensional (2D) breast imaging method

relying on a pair of 2D x-ray images of the breast, which are obtained from two different

directions: top-to-bottom and side-to-side. The breast is pulled away from the body,

and compressed between two plastic plates. In regular screen film mammography,

two x-ray views for each breast are recorded on film. It is suggested that screen-film

mammography is and will continue to be a valuable tool for detection and diagnosis

of breast cancer [5]. However, screen-film mammography has some limitations on dis-

playing the finest features due to inadequate contrast, therefore resulting in a limited

sensitivity for the detection of breast cancer with dense breast [6]. Film does not have

a linear sensitivity to photon-flux [7], there is a narrow range over which it can detect

small difference in contrast. Also film requires processing time and storage space. An-
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other limitation is the effect of structural noise due to film granularity, degrading the

visibility of micro-calcifications and other fine breast structures [5]. These limitations

can be effectively overcome with a digital mammography system.

In digital mammography these two views of images (from top to bottom and

from side to side) are recorded on a high-resolution digital detector whose size is

about the same as a film-screen cassette (18cm×24cm or 24cm×30cm). With digital

mammography, a electronic x-ray detector is used to record the breast image and to

convert the image into a digital picture. After the digital mammogram is stored on a

computer, it can be processed and displayed on a soft copy or hard copy device. One

advantage of digital mammography is that its digital form allows the radiologist to

alter the range and contrast of the image while viewing. Also, digital mammograms

lend themselves to processing by Computer Aided Detection (CAD) systems that act

to assist the radiologist in making diagnosis. The studies by Pisano et al. [6] suggested

that the overall diagnostic accuracy of digital and film mammography for breast cancer

was similar, but digital mammography is more accurate in a subpopulation of women

with dense breasts. The improved performance in a digital mammography system is

mainly associated with the x-ray detector and the display device. Therefore, despite

the convenience of digital images obtained with digital mammography, and despite

the superior performance of a digital detector, its clinical diagnostic efficacy is only a

slight improvement on that obtained with conventional screen-film systems.

Mammographic features characteristic of breast cancer are masses, particularly

ones with irregular margins [8], clusters of micro-calcifications, and architectural dis-

tortions of breast structures. In conventional 2D mammography using either screen-

film or digital detectors, the cancer lesions present in one plane of the three-dimensional

(3D) breast are sometimes difficult to visualize because of confounding anatomical

structures in planes of above and below the one of interest. A major limitation in
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conventional mammographic technique is that superimposed normal breast tissues

generate a “structure noise” that obscures the breast cancer, especially in a dense

breast, increasing the false-negative rate. Even without other sources of radiation

or instrumentation noise, a cancer can be hidden by the anatomical background. It

is this structure noise — also termed anatomical variability— that accounts for the

only slight advantage of digital mammography over screen-film in spite of the superior

detector performance of digital mammography. It has been shown that 30% of breast

cancer may be missed by conventional (digital and screen-film) mammography [9]. On

the other hand, the overlapped tissue structures may look like a cancerous tumor on a

mammogram, and can be mistaken for abnormalities, causing false-positive callbacks

for further diagnosis or even biopsy. In 2004, National Cancer Institute [10] reported

that up to 12% normal breasts were mistakenly read as having breast cancer.

Three-dimensional mammographic imaging can make it possible to search through

the interior of the breast plane-by-plane with minimal overlapping from the other tis-

sues. One form of 3D mammographic imaging, digital breast tomosynthesis, is a new

method that can reduce the tissue-overlap effect and retrieve depth information. This

technique takes x-ray projection images of the breast at a limited number of views

over a limited angular range. The final step in the tomosynthesis procedure is mathe-

matically reconstructing the set of 2-D projection data to produce a 3D image of the

breast, and hence showing the tissue structure in three dimensions. This dissertation

focuses on reconstruction techniques and low-contrast lesion detection in digital breast

tomosynthesis.

With the background information presented so far, we shall now state more pre-

cisely the central goal of the dissertation. Breast imaging, especially for detection of

masses, is unique in radiography due to the very small amount of subject contrast

in the breast [11]. In mammography, contrast is derived from the local differences
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in composition and attenuation of breast tissues. The contrast between the mass

and the background structure is fairly small, which presents a big challenge in lesion

detection. Given the small contrast, a lesion can be mashed by anatomical variabil-

ity. In order to capture anatomical variability, we generate an ensemble of realistic

3D breast phantoms, each of which comprises random instances of various breast

structure components including adipose, fibrous connective tissue, ductal structures,

pectoralis muscles and Cooper’s ligaments. Low-contrast irregular masses are embed-

ded in very dense fibro-glandular tissue background. In such a phantom, power-law

structural noise is added as small scale object variability. With these phantoms, the

2D projection images are acquired using an isocentric tomosynthetic geometry at 11

views over 50o as illustrated in Figure 8.1 (c), and noise is added to simulate radiation

noise and detection noise. Several tomosynthetic methods are used to reconstruct

3D breast estimates. To investigate the efficacy of those reconstruction algorithms, a

two-alternative-forced-choice (2AFC) test is adopted to measure lesion detectability

by calculating the area under the ROC curve.

One limitation of our work is that we do not consider micro-calcifications. Some

breast cancers are associated with micro-calcifications. Micro-calcifications are small

(0.1mm-1mm) deposits of calcium that have a very high contrast relative to the sur-

rounding normal or abnormal tissues. They can be present as either a very tiny

single spot or a cluster of several spots. Three-dimensional breast imaging might help

in some cases in better viewing of calcification clusters. Another form of 3D mam-

mography is cone-beam mammographic computed tomography (CT). Here, special

equipment is needed to view the breast from an unlimited 3600 view as shown in

Figure 2.10. Tomosynthesis produces limited angle reconstructions that are probably

of lower quality than a cone-beam mammographic CT image, but construction of a

breast tomosynthesis system requires only a small hardware modification of a conven-
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tional mammographic system, while a mammographic CT system represents a major

development project. Therefore, there is tremendous interest in breast tomosynthesis.

In summary, our objective is to create a realistic 3D breast phantom and use it

to study the efficacy of different tomosynthetic reconstruction methods in the task of

low-contrast lesion detection by a human observer.

This dissertation is organized as follows. Chapter 2 provides an overview of

background information including breast anatomy, x-ray medical imaging physics,

conventional mammography and 3D imaging mammography. A qualitative description

of breast tomosynthesis is given. Chapter 3 addresses the problems and strategies in

optimizing breast tomosynthesis systems. A mathematical imaging model is presented

in chapter 4, which is used in subsequent chapters. In Chapter 5, I shall review

various reconstruction methods used in transmission tomography. The construction

of a realistic 3D breast phantom is described in Chapter 6. Chapter 7 provides some

background on some topics related to task-based image quality assessment. Using

3D breast phantoms, we show how the projection data are acquired, and discuss

three tomosynthetic methods used in our project, followed by the discussion of our

experiment results in a low-contrast lesion detection task in Chapter 8. In Chapter 9,

we discuss the future work and directions, and summarize our contributions.
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Chapter 2

Background Information

In this chapter, I shall provide an overview of the general information about

breast anatomy, X-ray imaging physics, conventional 2D mammography and 3D breast

imaging.

2.1 Breast Anatomy: Normal and Abnormal

2.1.1 Breast Normal Composition

Many researchers, including us, build physical or digital “phantoms” to simulate

the breast and use these phantoms in various imaging studies. A basic understanding

of breast anatomy will help us in designing a digital breast phantom that we use in

experiments described in subsequent chapters. The breast is attached to the chest

wall. The skin of the breast is usually 0.5 to 2 mm in thickness [12]. The fascia

layers lie beneath the skin. Blood vessels and lymphatics penetrate the fascial layers,

running through the muscle and the other breast tissue. The pectoralis muscle is thick

at the axilla, has a convex anterior border, spreads like a fan across the chest wall, and

extends to the level of the nipple [13]. The pectoralis muscle permits breast traction

when the breast is positioned and compressed.

In general, the breast is a grouping of glandular, fatty, and fibrous connective

tissues positioned over the pectoral muscles of the chest wall and attached to the chest
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wall by fibrous tissue called Cooper’s ligaments [12]. A layer of fatty tissue surrounds

the breast glands and extends throughout the breast. The fibrous connective tissues

of the breast house the lobules (milk producing) and the ducts (milk passages). There

are 8-20 major ducts that originate from the nipple [12]. Each of these ducts dilates

into narrower and shorter branches until they form the terminal duct and its lobule

(1-2mm) called the terminal duct lobule unit (TDLU), leading to a tree-like structure.

Adipose (fatty) and glandular tissues are the two predominant tissue types in the

breast (Many researchers use a simple breast phantom composed of 50% adipose tissue

(fat) /50% glandular tissue in their simulation models). The diameter of the major

ducts varies between 2 and 4.5 mm [14], and the total length of the duct (the distance

from the nipple to the TDLU) varies between 2 and 4.5 cm [15]. Cooper’s ligaments

are band-like connective tissues supporting the breast. The fat (subcutaneous adipose

tissue) that covers the lobes gives the breast its size and shape. Each breast contains 15

to 20 lobes. Each lobe is composed of many lobules, at the end of which are tiny bulb-

like glands[13]. Ducts connect the lobes, lobules, and glands. The ductal structure is

an important component of the breast anatomy since practically most breast cancers

originate in the ductal or lobular epithelium, with very few arising in the connective

or adipose tissue [12]. Breast ducts also contribute significantly to the parenchymal

pattern, the background texture (anatomical variability) seen in the mammogram. In

chapter 6, we generate anatomically realistic 3D medium-sized breast phantoms, each

of which comprises random instances of various breast structure components including

adipose (fatty) tissue, fibrous connective tissue, ductal structures, pectoralis muscles

and Cooper’s ligaments.

2.1.2 Breast Abnormalities

Breast abnormalities can be divided into two major types: tumor masses and mi-

crocalcifications [16]. Tumor masses are groupings of abnormal cells with low-contrast

7



Round                  Oval                 Lobulated           Irregular         
Figure 2.1: Mass shapes.

Circumscribed     Obscured       Micro-lobulated       Ill-defined           Spiculated
Figure 2.2: A mass can have one of five margins.

(relative to normal tissue) x-ray transmission attenuation, while microcalcifications

are mineral deposits (calcium) with high attenuation. Both types can be differenti-

ated as being malignant or benign. Microcalcifications have very high density and

usually have a diameter range 0.1mm-1mm [12]. They can be present as either a tiny

single spot or a cluster. Five or more calcifications, each with a diameter ≤ 0.5 mm,

isolated in a cubic centimeter volume, have high probability of malignancy. Malignant

calcifications are more irregular in shape, size and distribution [17].

Tumor masses vary in shape, size and density. The study by Kopans [12] sug-

gested that ≥ 50% benign tumor masses are ≤ 1cm in diameter. The American

College of Radiology [18] classifies the mass shapes as round, oval, lobulated, irregular

as shown in Figure 2.1. A mass can have one of five “margins” (small-scale boundary

structure): circumscribed, microlobulated, obscured, ill-defined and spiculated, as il-

lustrated in Figure 2.2. The more irregular in shape, the more possible in malignancy.

The probability of malignancy is high in lesions with ill-defined margins [13]. A lesion

that is round, oval, lobulated with sharply defined borders has a very high likelihood

of being benign.

In chapter 6, we will describe the construction of 3D breast phantom in detail
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based on the breast anatomy. Irregular tumor masses will be simulated as the breast

abnormality in our project.

2.2 X-ray Production, Interaction and Detection

We now give an introduction to the medical physics of mammographic imaging.

The whole process of x-ray production, interaction and detection can be described as

an imaging chain. In this imaging chain, we’ll emphasize some important factors.

2.2.1 X-ray Production

The imaging chain starts with x-ray production. The most common x-ray source

is the standard rotating anode x-ray tube, as illustrated in Figure 2.3 [19]. The x-

Rotor

Vacuum
Envelope

Anode

Cathode

Filament

Electron Being Accelerated

X-rays

High VoltageHigh Voltage

Fliter

Figure 2.3: X-ray tube. See text for detailed explanations.

rays are produced from accelerated electrons in vacuum by applying a high voltage

between the anode and the cathode. The applied potential is expressed in units kV

(kilovolts). The peak kilo-voltage, kVp, is the maximum kV potential value applied
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across the x-ray tube during the exposure [11]. A typical kVp for mammography

is in a range 25-30 kVp, depending on the thickness of the breast. Tomosynthesis

requires at least 2-3 kVp higher than that used in conventional mammography [20].

The electrons are emitted from a filament in the cathode. Emission occurs when the

filament is heated by passing a current through it. When the filament is hot enough,

some electrons obtain a thermal energy enough to overcome the binding energy. After

being accelerated into the anode, most of the electrons’ energy is converted into heating

of the anode, but a small part is converted to x-rays. The energies of x-ray photons

are expressed in electron volts (eV). The most common anode used for mammography

are molybdenum, rhodium and tungsten.

Focal Spot

It is ideal to design the focal spot so that x-rays emanate from an approximate

point source because any increase in source size will result in blurring of the final

image. To avoid this blurring, the electrons must be focused to strike a small spot of

the anode. However, there is a limit to the size of this focal spot because the anode

material will melt if too much power is deposited into too small an area. This limit

is improved by the use of a rotating beveled anode, where the anode target material

is rotated about a central axis and new (cooler) anode material is constantly being

rotated into place at the focal spot [19]. There is a compromise between the need to

have a small spot size and the need to prevent the anode from melting. Incorporating

a small anode beveled angle (7o−15o) [11] allows the use of a large actual focal spot—

actually a radial “stripe” along the anode, thus heat is dissipated over a large surface.

The beam emerges at a shallow angle with respect to the anode, and so solid angle

effects make the focal spot a very small point-like source. The effective focal spot size

for x-ray tubes used in mammography is 0.15mm or 0.45mm [21].
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X-Ray Spectrum

The emitted x-ray beam is characterized by its energy spectrum. The x-ray

production is tuned to produce a spectrum that will result in good contrast in the 2D

projection image. Below we describe contributing factors to this spectrum.

• Bremsstrahlung Radiation

Part of the emitted spectrum is due to the fact that the deceleration of high-

speed electrons upon hitting the anode results in emission of electromagnetic

radiation, called bremsstrahlung radiation, when the electrons interact with

the nuclei of the anode. The bremsstrahlung spectrum is broad spectrum of low-

energy radiation. The photons emitted due to bremsstrahlung radiation are

generated with energies lower than the kVp.

• Characteristic X-rays

Another component of the x-ray spectrum is due to characteristic radiation.

The production of characteristic x-rays begins when the accelerated electrons

interact with atomic electrons in the anode, ejecting them from their electronic

shells. Then, outer shell electrons fill in the empty shell, emitting characteristic

x-rays at a few discrete energies. Since the energy of these characteristic x-rays

depends on the material of the anode, we can choose specific materials to produce

x-rays with desired energies. The most common anodes used for screen/film

mammography are molybdenum, rhodium and tungsten. These also are used

in breast tomosynthesis. The characteristic x-rays emitted by a molybdenum

target are mostly at 17.4 keV energy with a smaller portion from 19.7 keV

[12]. Those generated by rhodium target are mostly at 20.2 keV with a smaller

portion at 22.8 keV. Those by tungsten are mostly at 59 keV with other very

low energy peaks. The characteristic radiation of molybdenum and rhodium are
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particularly valuable for breast imaging because their low-energy x-ray photons

help enhance the low contrast between breast tissue and breast lesion.

X-Ray Filtration

The composition of the x-ray anode determines the x-ray spectrum. The spec-

trum can be further refined by using filters which allow photons of specific energies

to pass through and block those unwanted with relatively high efficiency. The filter is

made of sheets of metal, attached to the tube but not in the vacuum. If the appropri-

ate filter is chosen, the x-ray spectrum can be narrowed down to a pretty small range

to take advantage of better contrast from the low-energy photons. The filter material

can be varied to match the anode material that has been selected. The filter material

can, in fact, be the same as the anode material.

Composite Spectrum

The composite spectrum obtained from a typical mammography x-ray tube is

shown in Figure 2.4. This spectrum is produced at 28 kVp with and without filtration.

As one can see, the molybdenum anode spectrum is composed of bremsstrahlung and

characteristic radiation. The filtered spectrum, using 25 µm rhodium (Rh) at 28 kVp,

shows a distribution with no x-rays below about 5 keV, and a dramatic decrease of

x-rays at below 17 keV and above 20 keV. The filtration eliminates the majority of

low-and high-energy x-rays.

2.2.2 X-Ray Interaction with Matter

The next step along the imaging chain is the x-ray interaction with matter. When

the produced x-ray beam passes through matter (i.e. the breast in mammography),

it gets attenuated as photons are gradually removed from it. This attenuation takes

place by two main processes: photoelectric absorption and Compton scattering [22].
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Figure 2.4: Energy spectrum of the X-rays emitted from a diagnostic mammography x-ray tube at 28 kVp. The

anode is molybdenum. The peaks are due to characteristic radiation and the background is due to bremsstrahlung

radiation. Adding 25 µm of a rhodium filter reduces much of the low-energy component of the x-ray spectrum, but

also significantly attenuates x-rays in the unfiltered spectrum above 20 keV.

Photoelectric absorption is due to the interaction of an x-ray photon with a tightly

bound inner electron in an atom. The result is that the x-ray photon imparts all of its

energy to the inner electron, which uses some of this required energy to overcome the

binding energy within its shell, the rest appearing as the kinetic energy of the freed

electron [11]. Thus in photoelectric absorption, the x-ray photon is completely lost.

On the other hand, Compton scattering is due to the interaction of the x-ray photon

with either a free electron, or one that is only loosely bound in one of the outer shells

of an atom [8]. As a result of this interaction, the x-ray photon is deflected onto a

new path from its original direction with some loss of energy.

Subsequent detection of scattered x-ray photons clouds the image, reducing con-

trast and sharpness. In mammography the scattered photons degrade the visualization
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of breast lesions. Barnes and Berzovich [23] found that the ratio of the scatter radia-

tion to the primary beam might be 0.86 in a breast 6 cm thick.

Photoelectric absorption is the dominant attenuation mechanism in most x-ray

interaction at mammographic energies. That is, more photons are absorbed than

Compton scattered. The photoelectric absorption process can be used to amplify

differences in attenuation between soft tissues, thereby improving image contrast.

This differential absorption is exploited to improve image contrast by the selection of

x-ray tube target material and filters in mammography [8].

These two main interactions discussed above combine to produce attenuation

of the incident x-ray photon beam as it passes through matter. Attenuation is the

removal of x-ray photons from the x-ray beam by either absorption or scattering events.

Let us consider what happens when a beam of N0 photons passes through a slab of

thickness L. The unit of L in (2.3) is cm. Let’s assume that a beam of n x-ray photons

passes through a thin slab of matter with thickness dl with a probability of interaction

µ (see Figure 2.5). Denote the decrease of photons from the beam by dn, Then,

dl

µ

n

N0

N

L

Figure 2.5: An X-ray beam with N0 photons passes through a slab of matter with thickness L and linear attenuation

coefficient µ.

dn = µn dl. (2.1)
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Taking integral on both sides, we get:

−
∫ N

N0

dn

n
= µ

∫ L

0
dl. (2.2)

where we put minus sign on the left side since dn is a decrease. Also since µ is constant,

it can be brought outside the integral on the right side. Solving 2.2 gives rise to the

Lambert-Beers Law:

N = N0e
−µL. (2.3)

The symbol µ is called the linear attenuation coefficient and its unit is cm−1. The

value of µ gives the probability that an x-ray photon will be attenuated per centimeter

of object [11] through absorption or scattering.

In this simple example, µ was independent on position. Attenuation coefficients

µ depend on both energy ε and position r, so that µ = µ(ε, r). In the diagnostic energy

range, the linear attenuation coefficient decreases with increasing energy [11]. The goal

of 3D reconstruction is to estimate an entity proportional to the object attenuation.

In Chapter 4, we will generalize the simple Beer’s law 2.3 to account for energy and

position effects. A 2D mammogram is due to line integrals of µ through the breast as

we shall see later.

2.2.3 X-Ray Detection

After the x-ray beam passes through the object, the surviving x-ray photons will

be recorded. Our imaging chain now moves to x-ray detection. X-ray detection can

be classified as direct or indirect [11]. The direct detection system transfers x-rays

directly to electrical charge without intermediate state. Amorphous selenium (a-Se)

has been usually used as the direct x-ray detector material. The indirect detection

system transfers x-rays to visible light photons and then finally to electrical charge.

A scintillator(such as cesium iodide (CsI))-based x-ray detector is used in an indirect

detection system. In the indirect detection mechnism, x-rays interact with a phosphor,
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causing it to emit light. The visible-light photons then propagate by optical diffusion to

a photo-detector, such as a film emulsion or a silicon photo-diode. The photo-detector

then records the pattern of visible light discharged by the phosphor as an image. In

this process, x-rays are transfered to light photons and then to electrical charge. Since

this dissertation is focused on breast tomosynthesis which requires digital detectors,

we shall consider digital x-ray detectors, especially a flat-panel CsI indirect detector.

Such a detection process chain can be described by a cascaded linear model [24] with

the assumption of a stationary system. We will give the details of this cascaded model

and noise effects caused by each stage in Section 3.6.

2.3 Conventional Mammography

The basic imaging chain has been described qualitatively. Here we show its use

in conventional mammography. It is worth describing conventional mammography

since tomosysthetic units are hardware modifications of conventional mammographic

units. Conventional mammography can be classified as screen-film mammography and

digital mammography. We discuss these two types of conventional mammography.

The common mammography unit is composed of an x-ray tube and an image

recorder mounted on the opposite sides of a gantry (see Figure 2.6) . The system

geometry is unusual since only on half of the field of the x-ray tube is used as illustrated

in Figure 2.7 . As we can see, a compression paddle is attached to the mammography

unit in order to hold and compress the breast. The thickness of the compressed breast

is approximately 5 cm. Breast compression is an important step during mammography

and used in order to [25]:

• Flatten the breast so there is less tissue overlap for better visualization of

anatomy and potential abnormalities.

16



Figure 2.6: GE digital mammography equipment. The x-ray tube is housed in the box at the top. A gel phantom

sits atop the detector (dark panel at bottom).

• Lessen overlapping normal shadows, which can appear as suspicious regions on

the image receptor.

• Allow the use of a lower x-ray dose since a thinner amount of breast tissue is

being imaged.

• Immobilize the breast to eliminate image blurring caused by motion.

• Reduce x-ray scatter which also degrades the image quality.

• Lower dynamic range requirements on the detector by creating a uniform thick-

ness.

Typically, two views [25] of images are taken from each breast in conventional
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Figure 2.7: Geometric arrangement of system components in mammography. Geometry is not in relative scale.

mammography, namely from above (cranial-caudal view, CC) (from top to bottom)

and from an oblique or angled view (mediolateral-oblique, MLO) (from side to side).

The images are recorded on screen-film or digital detectors. The detected signal rep-

resents the summation of breast tissue attenuation along the transmission path.

2.3.1 Screen-Film Mammography

In screen-film mammography, the transmitted x-rays are recorded on a screen-

film cassette under the breast after x-rays from a point source irradiate the breast. As

the low-dose x-rays pass through the breast, they are attenuated to varying degrees

by different tissues. The result is that fat appears as the black regions, others such

as glandular tissue, tumor masses and micro-calcifications appears as varied levels of

white regions on screen-film mammogram due to different attenuations at different

breast tissue structures. Screen-film mammography is and will continue to be a valu-

able tool for detection and diagnosis of breast cancer given the following advantages

[5]:

• The technology is relatively inexpensive and well established.
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Figure 2.8: Solid arrows indicate the positioning of CC view. Dotted arrows indicate MLO view. The x-ray tube

is positioned above the breast.

• The image receptor is capable of achieving very high limiting spatial resolution

(at least 20 line-pairs/mm).

• Images are conveniently displayed using view-box technology.

• Film performs an inherent logarithmic compression of dynamic range onto the

available optical densities of the film.

However, screen-film mammography has some limitations on displaying the finest

features due to inadequate contrast, therefore resulting in a limited sensitivity for the

detection of breast cancer with dense breast [6]. Film does not have a linear sensitivity

to photon flux [7], there is a narrow range over which it can detect small difference

in contrast. Also film requires processing time and storage space. Another limitation

is the effect of structural noise due to film granularity, degrading the visibility of

micro-calcifications and other fine breast structures [5]. More importantly, film-screen

systems are not usable for tomosynthesis since tomosynthesis requires that several

images must be acquired and read out in digital form within a very short time period,
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which is not possible with film-screen systems. These limitations can be effectively

overcome with a digital mammography system.

2.3.2 Digital Mammography

Digital mammography is similar to conventional screen-film mammography. Dig-

ital mammography uses essentially the same mammography system as conventional

mammography, but the system (see Figure 2.9) includes a digital detector and a

 X-ray  
 Source

Breast

Electronic
Detector and
Digitizer

Computer

Display
Device

Figure 2.9: Schematic representation of a digital mammography system.

computer instead of the film cassette (Figure 2.6). With digital mammography a elec-

tronic x-ray detector is used to record the breast image and to convert the image into

a digital picture. After the digital mammogram is stored on a computer, it can be

processed and displayed on a soft copy or hard copy device [25]. Digital mammog-

raphy can provide the following benefits over conventional screen-film mammography

[26]:

• Improved contrast between dense and non-dense breast tissue.
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• Faster image acquisition (less than a minute). Conventional screen-film mam-

mography requires several minutes to develop the film.

• Easier image storage.

• Physician interaction with contrast and range of breast image display for more

accurate detection of breast cancer.

• Ability to correct under or over exposure of films without having to redo mam-

mograms.

• Transmittal of images over phone lines or a network for remote consultation with

other physicians.

Digital mammography is starting to be important in clinical practice, but is still

undergoing development. Studies by Pisano et al. [6] suggested that the overall diag-

nostic accuracy of digital and film mammography for breast cancer was similar, but

digital mammography is more accurate in women with dense breasts. The improved

performance in a digital mammography system is mainly associated with the x-ray de-

tector and the display device. High resolution display monitors and hardcopy devices

meet the demanding requirements of displaying digital mammography images. Cur-

rent large-area flat-panel detectors can accommodate small and average-size breasts

with an 18cm × 24cm detector and a 24cm x 30cm detector for larger breasts, and

achieve a spatial resolution of 50 µm per pixel. [27]. While full-field digital mam-

mography may lack the spatial resolution of film, it can provide improved contrast

resolution if using tomosynthesis, which may make abnormalities easier to see. Digi-

tal mammography can also act as the platform for digital breast tomosynthesis, but

involves the application of computational procedures to the digitized images.
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2.4 3D Breast Imaging-CT Breast Imaging and Tomosynthe-

sis Mammography

Conventional mammography techniques, using either screen-film or digital de-

tectors, are limited by the fact that the 3D breast is projected onto a 2D image, in

which the overlap of normal tissue structure can be mistaken for abnormalities. This

problem is well known clinically, and results in breast cancers that may be missed on

screening mammograms. If one could remove the overlapping tissue from the image,

better diagnostic accuracy may be obtained. This problem can be solved by a 3D

breast imaging system, which is able to reduce the structure overlap and provide 3D

visualization of breast tissue. Two types of 3D breast imaging methods have been

investigated: cone-beam computed tomography (CT) and breast tomosynthesis. We

shall introduce both, but our focus will on the latter in the remainder of the disserta-

tion.

2.4.1 Cone-Beam CT Breast Imaging

The dedicated breast CT scanner (General Electric CT/M) was first introduced

in 1978 [28]. However, little progress was made due to limitations of image quality

and concerns of radiation dose and cost effectiveness [24]. With the advent of digital

detectors, a number of research groups have begun to investigate the feasibility of

cone-beam CT breast imaging using CsI based full field flat-panel detectors [29, 30,

31, 32, 33, 34]. The cone-beam CT breast imaging system is a major development

project requiring new patient protocols.

A typical cone-beam CT breast imaging system [35, 33] is illustrated in Figure

2.10. In this system, the patient lies prone on a table with an opening cut through

which the breast drops down. A cylindrical breast holder is used to stabilize the

breast. The x-ray tube and the flat-panel detector are placed underneath the table,
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Figure 2.10: Cone beam breast CT system: the patient lies on the table with the breast hung through an opening

into a cylindrical breast holder. The x-ray tube and detector are mounted on a rotating gantry and rotate around the

breast during the scan. Only the patient’s breast is shown inside the cylindrical breast holder.

and are rotated 360o around the pendant breast. With such design, only the breast

tissue is exposed to the x-ray radiation during each scan, and only the lower half of

the cone-beam is needed to fully irradiate the breast to obtain the projection image.

The acquired complete set of projection images are used to reconstruct the 3D breast.

The mean glandular dose to the uncompressed breast is required to be same as that

used for a two-view conventional mammography study. Therefore, the exposure per

projection view is very low in CT breast imaging. The electronic noise of the flat-panel

detector has more impact on image quality in CT breast imaging than in conventional

mammography [36]. Since the pendant breast in CT imaging is uncompressed, it is

expected that the higher kVp settings are required [37].

Glick et al. [38] investigated the optimal kVp settings of a tungsten anode for CT

imaging of the uncompressed breast for a lesion detection task, given that an average
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glandular dose is approximately equivalent to that of two-view planar mammography

study. It was observed that the optimal kVp settings for the tungsten anode ranged

over 30-50 kVp. This kVp setting is higher than that in tomosynthesis. The pendant-

geometry breast CT system studied by Boone et al. [35, 33] showed good image quality

with phantom studies as well as with patient images. Their studies demonstrated

that a flat-panel cone-beam CT technique can detect relatively small tumors with

a glandular dose less than or equal to that of conventional mammography. Ning et

al. [39] compared conventional mammography and a prototype flat-panel CT breast

imaging system using a compressed and an uncompressed physical breast phantoms

with an acrylic “tumor”. It was suggested that CT breast imaging increased tumor

visualization compared to conventional mammography.

The prototype cone-beam CT breast systems are still under development and

testing, and have not become clinically used yet. The improved lesion detectability

provided by CT breast imaging system, compared to that of conventional mammog-

raphy system, has driven the interest of many research groups in developing such

systems.

2.4.2 Breast Tomosynthesis

Breast tomosynthesis is another type of 3D breast imaging. The hardware can

be easily adapted from a conventional mammography system. There are two types of

breast tomosythesis geometries available: complete isocentric illustrated in Figure 2.11

(a) and partial isocentric seen in Figure 2.11 (b). In a complete isocentric geometry,

the x-ray tube and the detector are rotated over a limited angular range around a fixed

central point while the compressed breast is stationary during a tomosynthesis scan.

The partial isocentric system requires that the compressed breast and the detector

remain stationary while the x-ray tube is rotated in an arc above the breast. With

both geometries, the x-ray tube is pulsed to acquire different projection images at
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Figure 2.11: Tomosynthesis geometries (a) Complete isocentric motion in which both the X-ray tube and the

detector rotate about a fixed central point. (b) Partial isocentric motion in which the detector is stationary and the

X-ray tube rotates about some rotation point.

desired angles. The total radiation dose to the patient at Nangle views is equal to that

used for the two projection views of a conventional mammography. Thus, only 1/Nangle

of the conventional mammography dose is used at each tomosynthetic view. A typical

number of angular views is 11-20. Since conventional screening mammography already

uses a low dose, the dose for each tomosynthetic view is extremely low, yielding noisy

data.

Reconstruction in the breast tomosynthetic procedure is the final step. From a set

of projection images, a 3D x-ray attenuation distribution of the breast is computed in

which the high resolution is retained in the two dimensions lying in the transverse plane

(parallel to the plane of the compression paddle) as seen in Figure 2.12, while lower

resolution is retained in the third dimension. (Note that we will describe isocentric

tomosynthetic geometry in much more detail in Chapter 8. See for example, Figure

8.1) This reconstructed 3D object can be decomposed into a set of transverse slices.

Each slice contains an image contribution due maily to the breast object in that slice,

but also contains “out-of-focus” contributions from nearby slices.
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Reconstructed Slices

Compression Device

Detector

Figure 2.12: The reconstructed tomosynthesis slices are parallel to the detector image plane.

A simple form of the reconstruction step can be understood as generating a set

of slice images from the summation of a set of shifted projection images acquired at

different angles [40]. The structures in transverse plane at different heights above the

detector undergo different degrees of position displacement as the tube moves, thus

they are projected onto the detector at positions depending on the relative heights of

the structures of the object as illustrated in Figure 2.13. In this example, the triangle

and the ellipse overlay each other when the projection image is shot at 0o; while at

±15o the object’s shadows are shifted relative to each other in the image plane. In the

isocentric geometry assumed in Figure 2.13, the ellipse will always fall on the same spot

on the detector while the image of the triangle shifts with position for this particular

case. Thus, if we take the images of Figure 2.13 and simply add them, the ellipse will

be reinforced and the triangle blurred. This is seen in Figure 2.14 (a). On the other

hand, we can in the computer appropriately shift each digital image as seen in Figure

2.14 (b). With the shift the triangle is now enhanced (“in focus”) and the ellipse

smeared out. Different shifts lead to focusing on different planes. While this simple

“shift-and-add” process illustrates the basic idea of tomosynthesis, shift-and-add can
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Figure 2.13: Tomosynthesis imaging. The triangle and the ellipse at different heights are seperated differently in

the image plane when acquired at different angles (−15o, 0o, +15o)

be replaced by more sophisticated algorithms that yield better focusing.

Recently, Gong et al. [24] conducted a computer simulation study comparing

lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-

beam CT breast imaging. Their results indicated that for the same dose, a 5 mm lesion

embedded in a structured breast phantom was detected by the two 3D breast imaging

systems, breast tomosynthesis and cone-beam CT, with statistically higher confidence

than with planar digital mammography, while the difference in lesion detection be-

tween breast tomosynthesis and cone-beam CT was not statistically significant.

Breast tomosynthesis offers better in-plane spatial resolution but worse contrast

resolution than cone-beam CT.A number of commercial vendors (GE, Siemens, Hologic

Co.) are currently testing breast tomosynthesis prototypes to get Food and Drug

Administration (FDA) approval.
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(a) (b)

Figure 2.14: The acquired projection images are appropriately shifted and added to bring either triangle or ellipse

into focus, structures outside the focal plane are spread across the image and blurred.
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Chapter 3

The Optimization of Breast Tomosynthesis Systems

Although breast tomosynthesis only requires minor hardware modification of a

conventional screening digital mammography system by incorporating motion of an

x-ray tube gantry and pulsing of the x-ray exposure, optimizing imaging performance

of the whole tomosynthesis imaging chain poses a tremendous challenge. For breast

imaging, lesion detection would seem to be the most meaningful form of image quality.

In that case, the ultimate goal of system performance optimization is to obtain optimal

detectability.

We shall go through the entire imaging chain and address the problems in each

stage. The problem has been attacked piecemeal i.e. many separate studies have

been done to investigate one or two factors in the imaging chain, and the problem is

too large to be addressed in one study. We shall start at the generation of the x-ray

source, interaction with the body, detection, the reconstruction stage and end with

image quality evaluation. The goal of this chapter is to qualitatively review each stage

of the imaging system with an emphasis on

• What parameter at that stage can be selected and tuned to optimize image

quality in breast tomosynthesis? What parameter cannot be adjusted but nev-

ertheless must be accurately simulated?

• Why might the adjustment of this parameter affect image quality?
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• Who has done previous work in the above?

Given the context of the massive optimization problem, we then describe what part

of the problem we will be addressing.

As a digression, we point out that conventional mammography has its own imag-

ing chain and its own optimization problem. However, for breast tomosynthesis, op-

timization could differ from that for conventional mammography because in conven-

tional mammography, the observer looks at projection images and tries to detect

abnormalities, while in tomosynthesis one uses many projection images to compute a

3D reconstruction which is then viewed and then one tries to detect a lesion in one of

the slices.

3.1 Factors in X-ray Generation

The principle of x-ray production was given in Section 2.2.1. In this section, we

shall discuss some factors involved in x-ray generation, which affects the image quality.

3.1.1 kVp Setting

The choice of kVp is an important operational factor affecting the final image

quality in breast tomosynthesis. Recall that the kVp setting, together with target

material and filtration, determines the energy spectrum of the x-ray beam. Higher

kVp shifts the spectrum to higher energies. In general, the kVp setting depends on

the density and thickness of the breast, and target/filter materials. For a given breast

and target/filter combination, the kVp cannot be too low or too high. If the x-rays are

too low in energy, they will be absorbed by the breast, contributing the dose but not

increasing the contrast because they never reach the detector. If too high, they will

pass through the breast without absorption, hence reduce the contrast. It is observed

that thicker and denser (i.e. 100% glandular) breasts tend to require higher kVp
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settings to reach maximal SNR. Since reduced breast compression is used in breast

tomosynthesis, the x-ray kVp need to be raised in order to penetrate the thicker breast.

So determining an optimal x-ray kVp is necessary.

Zhao et al. [20] presented a theoretical study of the choice of kVp using a-Se

flat-panel digital detector. The detectability of a 200 µm microcalcification within

the breast was calculated as a function of x-ray spectra in terms of kVp. Their

results showed that for tomosynthesis with 11 projection views, the optimal kVp is

at least 2-3 kVp higher than the optimum for screening mammography. Glick et al.

[41] investigated the effect of the kVp setting using an indirect CsI based detector.

The imaging task was defined as the detection of a isotropic lesion embedded in a

compressed breast model of varying thickness and composition. The ideal observer

SNR was used as a figure of merit under the assumption that the imaging system is

linear and shift-invariant. Because kVp settings can affect detector noise (which in

turn affects detectability), the purpose of this study was to investigate the impact of

electronic noise on image quality by varying kVp settings. It was observed that the

kVp setting that produced maximum SNR was consistent with the results in [20].

3.1.2 X-Ray Tube Target/Filter

Similar to kVp setting, target/filter combinations determine the energy spec-

trum and also can affect the image quality. Because less compression is used in breast

tomosynthesis, the thickness of imaged breasts can vary, compared to the constant

breast thickness (constrained by paddles) in conventional mammography. However,

as pointed out earlier, even if breast thickness is not issue, optimization criteria for

tomosynthesis differ from that for conventional mammography. Therefore, an exam-

ination of different target/filter combination is required. In a breast tomosynthesis

system, there are four target-filter combinations: Mo-Mo, Mo-Rh, Rh-Rh and W-Rh.

The right choice of target-filter combination can provide the optimal image quality.
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Glick et al. [41] studied three different x-ray tubes (Mo-Mo,Mo-Rh and W-Rh) using

two breast thickness (4 cm and 6 cm). The results suggested that W-Rh provided

better performance for tomosynthesis system using indirect CsI detector systems than

the other two target/filter combinations (Mo-Mo and Mo-Rh). Zhao et al. [20] also

investigated these three combinations for a direct a-Se detector system. Their results

showed that W-Rh was the optimal target-filter combination for all breast thickness

(2-8 cm). Wu et al. [42] explored three target-filter combinations (Mo-Mo, Mo-Rh,

Rh-Rh) for a-Se detector. Contrast-to-noise ratio was measured from projections ac-

quired with three target-filter combinations. The results showed that Mo-Mo gave the

best quality for small breast thickness (2cm) while Rh-Rh is more effective for large

breast thickness (≥ 4cm).

3.1.3 Focal Spot Size

The image in each detector is blurred by a scaled version of the focal spot point

spread function (PSF). As in conventional mammography, x-ray tube design requires

as small a focal spot as possible. So though focal spot size affects the detected data,

there seems to be no reason to optimize the focal spot size - one must just make it as

small as possible.

3.1.4 Poisson Noise

The imaging chain introduces noise and here we describe one source of noise.

In the x-ray production, x-ray emission like any electromagnetic radiation follows

a Poisson distribution. That is, the number of photons emitted into 4π s.r. per

unit time by the source follows a Poisson distribution. This noise is also known as

quantum noise. Even after limited solid angle effects due to finite detector size, and

even after attenuation, the number of x-ray photons entering a detector is still Poisson

distributed. The mathematical derivation will be presented in Chapter 4. Note that

32



quantum noise is inherent in the x-ray radiation, and is distinct from “structural noise”

or “anatomical noise” discussed later. Poisson noise cannot be eliminated, but must

be simulated as accurately as possible.

3.2 Geometric Effects

There are two imaging geometries available in current breast tomosynthesis sys-

tems: complete isocentric and partial isocentric as illustrated in Figure 2.11. We shall

discuss some effects involved in both geometries below.

3.2.1 Acquisition Angle

Typically, the angular range used in breast tomosynthesis is ±15o to ±25o with

a limited number of views (typically 11 to 20). The limited angular range results

in incomplete sampling in the Z direction, hence generates reconstruction artifacts.

Therefore, tomosynthesis reconstruction usually uses larger voxel dimensions in the

Z direction compared to the in-plane resolution. As discussed in Section 2.4.2, the

total radiation dose to the patient at Nangle views is equal to that used for the two

projection views of a conventional mammography. Thus, only 1/Nangle of the conven-

tional mammography dose is used at each tomosynthetic view. The dose at each view

is inversely proportional to the number of acquisition angles. Taking Nangle low-dose

images results in decreased SNR in each image compared to taking a single image with

the same total exposure [43].

In breast tomosynthesis, the x-ray tube/the detector have to be operated much

faster than in screening mammography so that projection images can be acquired

in a reasonable time (less than 10 seconds) without significant patient motion or

discomfort. More views require more acquisition time, causing patient motion and

artifacts in reconstructed images. Given that, the reasonable number of projection
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views is considered to be 11 to 20. The angular schedule, i.e. the set of angles actually

used, can affect image quality. Given a fixed number of angles, e.g. 20, is it better

to make them equispaced over a wide range, equispaced over a narrower range? Is

it better to cluster more angles near 0o or to cluster more near the extreme ±θmax

angles? More angular samples at high θ result in better resolution in the Z direction

but poorer resolution in the XY plane. More samples near 0o results in better XY

images but poorer Z resolution. The impact on lesion detectability is indirect, but the

effect may be important. Optimizing this tradeoff is essential in breast tomosynthesis.

Chen et al. [44] explored different acquisition techniques where projection images

were acquired with the following parameters: 13, 25, 49 projection views over ±12.5o

and ±25o of angular ranges. The total exposures were same with different parameter

settings. The results showed that the acquisition setting with 49 views over ±25o pro-

vided the best performance in terms of the noise power spectrum of the reconstructed

plane. Wu et al. [43] investigated different acquisition protocols - limited but uniform

angular sampling, uniform wide angle sampling, nonuniform wide angle sampling and

uniform full sampling over 360o. The experiments were conducted on a breast phantom

containing one simulated mass sphere and simulated microcalcifications. The results

showed that limited angle sampling results in good resolution of detail in the XY

plane, but poor resolution in Z; A uniform full sampling protocol provided the best Z

resolution, but poor resolution in XY plane. The non-uniform wide angle sampling

is a compromise that yields moderate resolution in the Z direction while maintaining

good image quality in the XY plane.

3.2.2 Tube Movement Modes

The x-ray tube can move in a continuous or step-and-shoot motion. In a step-

and-shoot motion, the x-ray gantry must completely stop at each angular position

before turning on x-rays in order to avoid blur caused by tube motion. The step-
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and-shoot mode is challenging in mechanical design and can easily cause mechanical

instability if scan time is short. For a practical breast tomosynthesis system, the set

of projection images should be acquired in less than 10 s in order to avoid image blur

from patient motion. If step-and-shoot is employed, a complete stop is required at each

view, hence requiring much longer time. In that mode, patient motion is unavoidable

and it causes artifacts in reconstructed images. Step-and-shoot poses a challenge in

mechanical design, though it leads to better data if the patient does not move.

Currently, continuous tube motion with pulsed x-ray shots is more widely em-

ployed for practical use. The continuous tube motion causes focal spot movement

during exposure, therefore introducing focal spot blur into the system. (This focal

spot blur is to be distinguished from the blur caused by focal spot size discussed in

Section 3.1.3.) A study in [45] quantified the blurring effects on the acquired data.

These are dependent on the details of the geometry. The focal spot blur can not be

removed. It is still under investigation how to reduce the effect of focal spot blur

in breast tomosynthesis, perhaps by post processing. It would appear that if the

breast could be immobilized for long period and mechanical problems associated with

stop-and-shoot be solved, then step-and-shoot would be preferred.

3.3 Structural Noise in the Breast

Structural noise is often referred to as “anatomical variation” or “object vari-

ability” or “object clutter”. It is an important influence on image quality. Normal

anatomical structure including all normal breast components as discussed in Section

2.1, contribute to a loss of lesion detection accuracy by masking the lesion. Bochud et

al. [46] conducted a study for conventional mammography to demonstrate the impor-

tance of variations in background anatomy. The results suggested that the anatomical

structural noise is a dominating effect on the detection of a large signal (like a mass).
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Hence, reducing the system noise by increasing the dose will not improve task per-

formance. Burgess et al. [47] have shown that for conventional mammograms both

quantum noise and normal mammographic background structural noise impeded vi-

sualization and reduce lesion detectability. It has been suggested that the degrading

effect of normal mammographic structure on detection of lesions greater than 1mm

diameter can be 30 to 60 times that of the quantum noise [46, 47]. Even if there is

no other noise mechanism, the structural noise leads to the loss of lesion detection

accuracy.

Structural noise is a given important source of noise that affects image quality.

Since it is part of the breast anatomy, one can not adjust it, that is, one can not

optimize it. Therefore, it is very important to accurately simulate this source of

noise. Few research groups have done this. We have devoted considerable efforts to

simulation of structural noise in a 3D breast phantom described in Chapter 6.

3.4 Scatter Effects

We first consider scatter in conventional mammography. As discussed in Sections

2.2.1 and 2.2.2, low x-ray energies (25 – 40 kVp) are used for breast imaging. At these

energies, the probability of absorption via photoelectric interaction within the breast

is significant. However, the probability of Compton scattering of x-rays within the

breast is still quite high. Even though a breast is relatively small compared to most of

the body, it is still the source of significant scattered radiation that reduces contrast.

Around 33% to 50% of the total radiation photons would have experienced a scattering

interaction within the breast [21]; i.e. the scatter-to-primary ratio (SPR) would be

0.5 to 1.0. It was estimated that the SPR is about 0.5 for a 5 cm 50% adipose 50%

glandular breast at 31 kVp [48]. In addition to contrast reduction, the recording

of scattered radiation uses up part of the dynamic range of the detector and adds
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statistical noise to the image. This must be considered because in mammography we

are attempting to see many low contrast structures where any reduction in contrast

can be detrimental.

The SPR in conventional mammographic applications has been studied by several

investigators [23, 49, 50, 51, 52]. Boone et al. [48] reported a comprehensive analysis of

scattering properties covering a wide range of mammographically related parameters

and investigated the magnitude and the effects of scatter on image quality intensively.

The most effective way to reduce scatter in 2D conventional mammography is

using an anti-scatter grid. A grid is essentially a collimator placed atop the detector.

The vanes are angled to point to the x-ray focal source. Since unscattered photons

follow straight paths from focal spot to collimator, most pass through the grid. Scat-

tered photons deviate from this straight line path and get absorbed by the collimator.

A grid can attenuate primary radiation as well as scatter.

For most tomosynthetic geometries, grids are difficult to implement. For a fixed-

detector/rotating-tube design for breast tomosynthesis, the detector and the breast

stay stationary while the x-ray tube rotates around an axis during image acquisition.

The total rotation angle ranges from 30o to 50o. It would be very difficult to design

an anti-scatter grid for this geometry because most primary x-ray photons would be

blocked by the standard grid orientation when the projection angle is large [24]. For

an isocentric geometry, grids are not used in this imaging system to avoid grid line

artifacts and high patient dose [53]. Since the exposure time for each projection in

tomosynthesis is very short, it is difficult to avoid grid lines if a grid is used [53]. Zhao

et al. [20] showed that the use of a grid is not beneficial for tomosynthesis acquisition

because the grid will reduce the number of photons reaching the detector and then

worsen the problem of electronic noise.

Instead of blocking scattered photons with a grid, one might attempt to allow
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scattered photons to hit the detector, then try a digital scatter correction (SC) tech-

nique. The basic SC idea is as follows: First, obtain an initial estimate µ̂. Then, use

this µ̂ to simulate, using a Monte Carlo packages, the flight of photons through the

breast. From the Monte Carlo result, obtain an estimate of scatter and subtract it

from the detector reading. The scatter corrected images can then be used to obtain

an improved reconstruction.

Recently, Liu et al. [53] developed a breast specific scatter-correction method in

breast tomosynthesis so that the attenuation coefficients reconstructed from projec-

tions will be more accurate. A phantom simulating a 5cm breast with uniform 70%

adipose and 30% glandular tissue in the background was used in their study. Multiple

masses, specks, fibers and line pairs are embedded in this phantom. The 3D breast

was initially reconstructed from 15 projection images acquired from a GE prototype

tomosynthesis system without SC. The voxelized digital breast model was entered into

a Monte Carlo package simulating the prototype tomosynthesis system. One billion

simulated photons were generated from the x-ray source for each projection and im-

ages of scattered photons were obtained. A primary-only projection image was then

produced by subtracting the scatter image from the corresponding original projection

image which contains contributions from both primary and scatter photons. The scat-

ter free projection images were then used to reconstruct the 3D breast using the same

algorithm. Compared with the uncorrected 3D image, the x-ray attenuation coeffi-

cients represented by the scatter corrected 3D image were closer to those derived from

the measurement data. The Monte Carlo method is a mature and reliable technique

for simulating radiation transport. However, it is not practical to use this technique in

clinics due to the high computing power required. It took about 14 hours to generate,

using Monte Carlo package, one projection image in the above study.

Gong et al. [24] simulated scatter radiation in breast tomosynthesis in the follow-
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ing procedure. First, Monte Carlo simulation is performed to track x-ray transport

through a uniformly dense breast model. For each breast phantom, a scatter-to-

primary map was computed for each projection view. The scatter component of each

projection image was then estimated by multiplying the SPR image by the primary

x-ray incidence. Both scatter and primary components were then added. This method

is similar to the one by Liu et al.. This method is also very time-consuming.

For scatter, optimization of image quality is controlled by SC methods. One

might compare various SC methods to the case of no SC and see how it affects lesion

detection. Because SC methods are based on Monte Carlo simulations, they are to

date too computationally intense to be practical. There are no studies to date on the

effects of SC on lesion detection in breast tomosynthesis.

3.5 Breast Compression in Tomosynthesis

In conventional mammography, breasts are highly compressed in order to reduce

tissue overlap as discussed in Section 2.3. However, high compression pressure is not

necessary for breast tomosynthetic imaging. Using the least possible compression for

tomosynthesis could enhance separation of densities into distinct imaging slices, thus

improving lesion detectability. Enough breast compression is needed to pull tissues

out of the chest wall and to keep motion at a minimum [54]. Therefore, there is the

possibility of less painful compression using tomosynthesis. The discomfort of full

compression in conventional mammography discourage some women from undergoing

the exam. On the other hand, if the breast compression is reduced, the x-ray energies

need to increase in order that x-rays more efficiently penetrate the dense breasts as

discussed in Section 3.1.1. We will discuss breast compression in more detail in Chapter

6.

The degree of breast compression (e.g. distance between paddle plates) affects

39



kVp setting, scatter events and the choice of target/filter combination. The use of

less compression in breast tomosynthesis increases slice visibility, but tends to make

motion more difficult to control. In addition, less compression increases effective breast

thickness and interacts with kVp, while the dose must be kept constant. In this sense,

the degree of compression (as measured for example by compression force on a paddle)

is a variable that can be adjusted to optimize lesion detection. No specific studies for

tomosynthesis have been done to date.

3.6 Detector Effects

In conventional mammography and in breast tomosynthesis, the effects of the

large area flat-panel detector can play an important role in image quality. To aid the

discussion of detector effects, we qualitatively summarize the behavior of one type of

detector, a CsI based amorphous silicon flat-panel detector. The description below is

based on work in [24].

The detector behavior is modeled as a linear cascade. At the entrance to the de-

tector plane, the x-ray field is spatially varying and corrupted by Poisson noise. The

x-ray photons first hit a CsI scintillator where a certain fraction of the photons are

lost and the rest converted to optical photons. The absorption of lost photons can be

modeled as a binomial process, and since a Poisson-binomial cascade is still Poisson,

the x-ray quanta still surviving in the scintillator can be described by a Poisson dis-

tribution. Each remaining photon gets converted to numerous optical photons, with

the conversion adequately described by a conversion gain factor. Since the Poisson

variables are multiplied by a gain factor, they are no longer truly Poisson (variance

no longer equals mean.). The optical photons are then passed to an amorphous sil-

icon layer, again with a gain factor due to optical coupling efficiency. One electron

is produced for every absorbed photon. So at this stage, the number of electrons are
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represented by a scaled Poisson distribution. However, within the CsI scintillator,

the photons spread, so that one x-ray /photon conversion results in a blob of optical

photons at the interface of CsI and silicon. This spreading can be described as a

convolution with a spread kernel. The electrons are now described as a scaled Poisson

convolved with a PSF. The electrons are integrated over small pixel areas, and additive

Gaussian readout noise is added to the signal. Since various gain factors are energy

dependent, the effects of the above cascade must be summed in a weighted fashion

over the x-ray spectrum. The result is a complex transformation of the entering x-ray

photon field, described cleanly as a Poisson density, to a complex detector signal that

is difficult to characterize analytically.

The above description was for a CsI based amorphous silicon detector, but an-

other detector used in tomosynthesis, the a:Se direct detector, has a different physics.

It is extensively described in [55].

The literature on detector performance is vast and beyond the scope of the

present discussion. But two points are worth making: (1) Detector performance is

always described in input-output metrics such as detective quantum efficiency (DQE)

[56], not lesion detectability. (2) Detector performance is adjustable by altering bias

voltages and fabrication dimensions. Thus, the detector stage is an important one and

the user has some ability to control performance.

As we discuss at the end of this chapter, we will consider an idealized detector

that simply counts x-ray photons and does not involve a complex conversion cascade.

3.7 Reconstruction Parameters

Image reconstruction is an inverse problem, and is an operation that acts on

observed data y and transforms them to the reconstructed image µ̂. Many image

reconstruction algorithms leave a number of free parameters for the user to set for
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a particular problem of interest. These parameters include initial estimates (IC), it-

eration stopping criteria (ISC), regularization parameter β, and apodization filters.

It is often that these free parameters are themselves the subject of interest. Initial

estimates are used in iterative reconstruction methods in order to speed up the con-

vergence. Iteration stopping criteria, regularization weights and apodization filters are

used to control the noise-resolution tradeoff in µ̂. For example, for iterative methods,

if the reconstruction stops at early iteration, it will result in low-contrast but less

noisy estimates; if stopped later, the reconstructed image will be very noisy. There is

a compromise between contrast and noise for these three parameters. We will describe

these parameters in detail in Chapter 5.

Let O be the reconstruction operator. If ζ is the free parameter vector, for

example, ζ = (β, IC, ISC), then the reconstruction estimate µ̂ = O(y; ζ). In the

real world, data y are always corrupted by noise, e.g. Poisson noise. The noise is

propagated through reconstruction operator O and affects the reconstructed image.

The covariance matrix Kµ̂ of the reconstructed image is an important statistical

property, which affects lesion detectability. Since ζ is under user control, it is easily

adjusted to optimize lesion detectability.

3.8 Image Quality Evaluation

We will discuss this topic extensively in Chapter 7, but examine its role in the

imaging chain here. Before image assessment, a task must be specified. In our study,

we consider the detection task where the presence or absence of a signal (i.e. lesion)

is of interest. One needs to evaluate the image quality. Given a task, an observer is

required to perform the task. The observer might be human (i.e. radiologist) or a

mathematical model observer. Having specified the task and the observer, a scalar

figure of merit is needed to summarize the observer performance, for instance, in
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order to compare different reconstruction algorithms or optimize the parameters of a

reconstruction algorithm.

This is a step in the image quality evaluation chain. But here, accurate simulation

rather than optimization is required. If we use a numerical observer, then it must be

designed to emulate human performance as well as possible. For any observer, the

task itself must be as realistic as possible. Since many studies will be dealing with

digital evaluation of detection, the step here is to get a realistic human emulating

task. The task we use is detection of a lesion in a cluttered background. This could be

made more realistic, for instance, by not specifying the lesion location or its XY plane

and requiring the human or numerical observer to perform a search step. Thus, in

summary, this stage requires accurate simulation (of the observer and/or task) rather

than optimization.

3.9 Summary

As a summary, a flow diagram for the imaging chain is given in Figure 3.1, which

serves as a road map for this chapter. In this flow chart, each box is a stage in the

imaging chain. Each box contains parameters that can affect image quality. The

parameter may be tunable, or it may not be. In Figure 3.1, the sign ∗ following the

parameter indicates that parameter affects image quality and can be optimized and

tuned; # indicates that parameter can not be optimized, but must be simulated as

accurately as possible; $ denotes aspects that we will address.

The subset of the problem that we address in the rest of this dissertation includes

• Since structural noise is so important, we simulate it for signal (lesion) and

object (breast).

• Since Poisson noise is unavoidable, we simulate it.
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• We optimize reconstruction algorithm and parameters since this is an important

contribution to image quality.

• For detection, we use a task of moderate complexity — signal-known-statistically,

location-known-exactly, background-known-statistically, and human observer.

Humans are the ultimate detectors since model observers only emulate them.

We choose the above subset of the vast tomosynthesis optimization problem for

the following reasons. Poisson noise in the radiation source is fundamental and cannot

be removed, and structural noise in the breast anatomy is similarly fundamental.

On the other hand, improvements in detector technology can, in principle, end up

eventually in a pure photon counter, thus, alleviating any detector effects. Hence

we leave the big problem of detector optimization to others. One must reconstruct

the breast, and the choice of reconstruction parameters is again unavoidable. So

in summary, we have addressed fundamental limiting factors while ignoring other

important aspects that are in principle, not fundamental. Perhaps the aspect of most

interest is the role of anatomical noise (object clutter) in limiting lesion detectability.
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X-ray Generation
     kVp setting           *
     target/filter           *
    Poisson noise         # $
       

Acquisition
  angular schedule     *
     tube movement       *

Anatomy
     structural noise      # $ 
     scatter                     *
     compression           *

Detector 
      Noise sources 
     in detector              *

Reconstruction 
     algorithm               * $
     parameters            * $

Detection Model
      task                     # $
      observer              # $

Figure 3.1: A diagram of the imaging chain. Parameters are listed at each stage. ∗ indicates that the parameter

can be optimized; # indicates that the parameter cannot be optimized, but must be simulated as accurately as possible;

$ denotes aspects that we will address.
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Chapter 4

Mathematical Image Formation

From Chapter 2, we know that breast tomosynthesis is one type of transmission

tomography. X-rays emanate from the x-ray tube, which is positioned on one side

of the patient’s body, then pass through the patient and are detected on the other

side of the patient by the digital detector. A measurement at a specific location

on the detector is determined by x-ray attenuation characteristics of the patient’s

anatomy along a straight line through the patient between the x-ray source and the

corresponding location on the detector. The x-ray tube emits a relatively uniform

x-ray distribution toward the patient. After the relatively spatially uniform x-rays

interact with the patient, the altered x-ray distribution (unabsorbed x-ray photons)

is recorded on a digital detector.

There are various geometries used in transmission tomography. If the x-ray tube

rotates around the object over a full angular range (360o or 180o), one obtain a CT

geometry as illustrated in Figure 4.1(a). If the x-ray tube rotates over the limited

range of angles (e.g. ±25o), one have a tomosynthesis geometry shown in Figure

4.1(b). In fact, CT, digital tomosynthesis and planar imaging are special cases in

transmission tomography. In the most general case, the x-ray source and detector can

move through arbitrary orbits. In many situations, the number of photons one can

measure in a transmission scan is limited because of low dose, hence the low-count

transmission data are very noisy. In modeling image formation, we must take this
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(a) (b)

Object

X-rays

Figure 4.1: (a) a general CT geometry. (b) tomosynthesis geometry. In both geometries, the darker dash line

denotes the trajectory in which the tube moves around the object. The arrows are rays from the source (X-ray tube)

and the rays are detected by a suitable detector.

stochastic aspect into account.

4.1 Object and Projection Representations and Ideal Imag-

ing Model

4.1.1 Image Formation for a General Imaging Geometry

We shall start with the general transmission scanning geometry. Since the point

source and small detector element are connected by a narrow x-ray beam or “ray”,

we can use the symbol i (i = 1, . . . , N) to index the ray, i.e. the source-detector pair.

Note that one physical detector element can be associated with many rays if readings

are taken in temporal sequence. For example, a stationary detector with 104 elements

irradiated in turn by an x-ray source through 8 angles will result in N = 8× 104 rays.

Now consider the general geometry illustrated in Figure 4.2, where we show
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bi

the ith ray

µ

y
i

ei

ri

ith detector element

= number of photons recorded

Li

Voxel j

aij =
chord length

Scattered ray

X-ray Source

Figure 4.2: A beam of x-ray is shown propagating through a cross-section of the object. The detector is composed

of many small pixel elements. One unscattered and one scattered rays are shown.

an object being illuminated by one unscattered x-ray and one scattered ray. For

simplicity, we use a two dimensional object in Figure 4.2 to help understand the image

formation. If we confine our attention to the cross-sectional plane drawn in the figure,

we may consider µ to be a function of two space coordinates, x and y, and denoted

it by µ(x, y) or µ(r), where r = (x, y). For the 3D case, r = (x, y, z). As discussed

in Chapter 2, the units of µ are cm−1. Let bi denote the number of incident x-ray

photons in the ith ray entering the object. Let yi be the number of photons exiting

through the ith ray and detected by a small detector element. Figure 4.2 is idealized

in several ways. The x-ray source is not a point source, but has finite dimensions due

to the finite focal spot. The detector is small but is not a point - it subtends a small

solid angle as seen from the source. The object voxels have finite width. As a result,

the number of x-ray photons that pass through a given voxel and hit a given detector
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is the result of a complex geometrical calculation. Nevertheless, this simple depiction

in Figure 4.2 will suffice. Suppose that the x-ray source is monoenergetic, the width

of the ray is sufficiently small, and only one ray hits one detector element (pixel)(no

scatter events), ideally one can derive the following relationship between the numbers

bi and yi based on the Lambert-Beers law (2.3) for the ith ray:

yi = bi exp
(

−
∫

Li

µ(r) dl
)

, i = 1, . . . , N. (4.1)

where Li is the line between the source and detector for the ith ray and where the

integration is made along the ith ray shown in this figure. We represent the measure-

ment vector as the vector y = {yi; i = 1, . . . , N}. Equation 4.1 will be later modified

in several ways, but shows the basic relation of data yi and unknown µ(r). In practice,

the scatter effect must be taken into account. We shall mathematically explore the

scatter event in the following section.

4.1.2 Object and Projection Representations

The quantity of interest in transmission tomography (i.e. breast tomosynthesis)

is the linear attenuation coefficient µ(r), which is a continuous function of three-space

coordinates on a object. We can represent µ(r) with a finite parameterization. For

simplicity, the continuous function µ(r) is viewed on a digital display with a finite

number of pixels, {µj}j=1,...,M , by integrating over the jth pixel area,

µj =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
µ(r)ξj(r) dr. (4.2)

where M is the number of voxels in the object, and ξj(r) is the basis function. There

are many possible choices for the basis function. The conventional basis is just the

“voxel” (3D) basis. Rect functions are used for voxel bases. The voxel basis ξj(r) is 1

inside the jth voxel, and is 0 otherwise. The voxel basis function is given by

ξj(r) = rect

(

x − xj

4wx

)

rect

(

y − yj

4wy

)

rect

(

z − zj

4wz

)

. (4.3)

49



where

rect(x) =















1 |x| ≤ 1
2

0 |x| > 1
2

(4.4)

In Equation 4.3, (xj, yj, zj) is the center coordinates of the jth voxel and 4wx,4wy,

4wz are the voxel widths in x,, y, z directions, respectively. The voxel could be cubic

or rectanguloid.

Thus, the 3D continuous function µ(r) is transformed to 1D digital vector, we

can represent this object vector as µ = {µj; j = 1, . . . ,M}, where µj is the average

value of µ(r) in the voxel j. In practice, the digitized object is displayed as a 3D

digital matrix. A 3D discrete matrix can be represented as a vector by row-by-row

and plane by plane scanning the matrix and then linking one row after another and

one plane after another [57]. This is called lexicographic ordering.

Using the basis functions, µ(r) is approximated as follows:

µ(r) ≈
M
∑

j=1

µjξj(r). (4.5)

Plugging (4.5) into the line integral in (4.1), we get the following equation:

∫

Li

µ(r) dl ≈
∫

Li

M
∑

j=1

µjξj(r) dl =
M
∑

j=1

µj

∫

Li

ξj(r) dl =
M
∑

j=1

aijµj, (4.6)

where

aij ≡
∫

Li

ξj(r) dl

is the line integral along the ith ray through the jth basis function. The units of

aij are the length unit cm. In practice, aij can be simply understood as the chord

length of the ith ray passing through the jth pixel. In Section 8.3, we shall describe

calculation of aij using a ray-tracing method. One can represent {aij} by the N ×M

matrix A whose ith row and jth column element is aij. For a breast tomosynthesis

system with a 2000 × 1000 × 50 breast and projection data acquired over 11 angles

using a 1800 × 2400 (18cm × 24cm) detector, the size of the system matrix in single-

precision format is 19008000 GB (2000×1000×50×1800×2400×11×4 bytes). The
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system matrix A is huge and it is impossible to directly use the system matrix during

reconstruction. It must instead be computed on the fly.

With the system matrix, the ideal model in Equation 4.1 becomes the discrete

one:

yi = bi exp(−[Aµ]i). (4.7)

where

[Aµ]i =
M
∑

j=1

aijµj (4.8)

The system matrix A depends only on the system geometry. Any system geom-

etry can be described by A. Equation (4.8) can account for any transmission imaging

system. Note that the imaging model Equation (4.7) is nonlinear in µ. The imaging

model Equation (4.7) is ideal since it does not take into account any noise (i.e. data

noise and electronic noise) or polyenergetic x-ray source effects, described below.

4.2 Statistical Forward Imaging Model

Building up a mathematical model of the physical imaging system - a forward

model - is an important step in addressing the inverse problem of reconstruction. In

this section, we intend to extend the simple imaging model Equation 4.7 to include the

Poisson radiation noise and polyenergetic effects of the x-ray source, and also scatter

events. A fourth component of the model is the noise associated with the detector. It

is difficult to model the myriad detector effects, but we will present a simple model of

additive electronic detector noise. For proper image reconstruction, one must incor-

porate these facts into the transmission imaging model for the measurements instead

of simply using the ideal discrete model (4.7). These mathematical models presented

in this section are then used in subsequent sections and chapters as a basis for the

development of reconstruction algorithms and performance evaluation techniques.
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Object

ei

ri

yi

Detector

bi

Figure 4.3: Pseudo-physical interpretation of the transmision data.

As mentioned in Chapter 2 we know that the x-ray source emits a random number

of photons whose count distribution is Poisson. Hence bi is a random variable, and

the number of detected photons yi is therefore also random. There often exist some

additional counts recorded, primarily caused by Compton scattering, which also is

Poisson [58]. A common way to model scatter events is using an additive term denoted

by ri even though the scatter effects can be reflected in the system matrix A, which

will make A more complicated and non-sparse.

Given the stochastic model, we shall redefine the terms used below: bi denotes a

Poisson random variable representing the number of photons emitted by the x-ray tube

along the ith ray during the exposure time, yi the random variable representing the

number of photons recorded for the ith ray, ri the Poisson random variable representing

the number of photons from scatter events for the ith ray as seen in Figure 4.2, and

ei the random number of photons along the ith ray just before it hits the ith detector

element. Therefore, one observes the following relationship as illustrated Figure 4.3:

yi = ei + ri (4.9)

We shall prove that both ei and yi follow a Poisson distribution. Suppose that

the x-ray source emits bi photons along the ith ray passing through an object toward

a specified pixel on the detector. A radiative point source emanates a Poisson number
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of photons/second into 4π s.r.. The number bi emitted into a limited angle is still

Poisson by virtue of the Bernoulli-Poisson property. Therefore, bi is a Poisson random

variable with mean b̄i:

Pr[bi = n] =
1

n!
e−b̄i b̄n

i .

Each of the bi transmitted photons may either pass unaffected (“survive” passage)

to the detector or may interact with the object (get attenuated) with the probability

p. These are Bernoulli trials since the photons interact independently. From Beers’

law (2.3) we know that the probability p of surviving passage using the discrete line

integral expression is given by

p = exp(−[Aµ]i)

The number of photons ei that pass unaffected through the object is also a random

variable, then

Pr[ei = m|bi = n] =









n

m









pm(1 − p)n−m,m = 0, . . . , n.

Using total probability:

Pr[ei = m] =
∑

n

P [ei = m|bi = n]P [bi = n]

=
∞
∑

n=m

(
n

m
)pm(1 − p)n−m 1

n!
e−b̄i b̄n

i

=
1

m!
e−b̄ip(b̄ip)m

=
1

m!
e−b̄i exp(−[Aµ]i)

(

b̄i exp ( − [Aµ]i)
)m

, m = 1, 2, . . . .

Therefore, the distribution of photons that survive passage is also Poisson with mean

E[ei] = b̄i exp(−[Aµ]i).

Since ei and ri are independent Poisson random variables with the mean numbers

b̄i exp(−[Aµ]i) and r̄i, respectively, yi is Poisson [59] with the mean number ȳi =
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b̄i exp (− [Aµ]i)+ r̄i. Thus, our forward model for general transmission measurements

is:

yi ∼ Poisson{ȳi(µ)}. (4.10)

where the mean of the ith measurement is given by

ȳi(µ) = b̄i exp ( − [Aµ]i) + r̄i (4.11)

In general, this model can be used in any transmission geometry by changing A to

reflect the geometry. In many papers, the r̄i’s are ignored. In our simulation, we shall

assume that the r̄i’s are zero.

In medical centers, the b̄i’s are determined by periodic “blank scans”: trans-

mission scans with nothing but air (the attenuation coefficient of air is zero) in the

scanner portal [60]. Since no patient is present, these scans can experience very long

duration (typically a couple of hours, run automatically in the middle of the night).

Thus the estimated b̄i’s obtained from such a long scan have much less variability

than the transmission measurements yi’s. Therefore, we ignore the variability in these

estimated b̄i’s, and use the symbol bi as a known non-random parameter instead of b̄i.

Therefore, combining Equations 4.10 and 4.11 result in

yi ∼ Poisson {bi exp(−[Aµ]i) + r̄i} (4.12)

Equation (4.12) includes the effects of photon noise and scatter effects, but it does

not model polyenergetic effects and electronic detector noise (readout noise and dark

noise). We shall incorporate these factors into our statistical forward model later.

The discussion above assume a monoenergetic x-ray source. In practice, the

blank scan x-ray intensity bi and the attenuation coefficient µ are energy-dependent,

thus the detected x-ray photon yi are energy dependent. We rewrite Equation 4.12:

yi(ε) ∼ Poisson {bi(ε) exp(−[Aµ(ε)]i) + r̄i} (4.13)
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where ε is x-ray energy, and the mean of yi(ε) is given as

ȳi

(

µ(ε)
)

= b̄i(ε) exp
(

− [Aµ(ε)]i

)

+ r̄i (4.14)

To model image blur attributed to the focal spot, a Gaussian function, with

standard deviation modeling the focal spot size, can be then convolved with ȳi given

in Equation 4.14 [24].

The total of all detected x-ray photon for each pixel i can be obtained by inte-

grating over all energies:

yi =
∫

yi(ε)dε

=
∫

Poisson {bi(ε) exp(−[Aµ(ε)]i) + r̄i} dε (4.15)

Interchanging the operations
∫

and Poisson does not alter the result, therefore, one

can rewrite Equation 4.15 as:

yi = Poisson
{∫

bi(ε) exp(−[Aµ(ε)]i)dε + r̄i

}

(4.16)

In Chapter 3, we discussed the complex effects of detector noise. Models for

this noise depend on the type of detector used, but any such model is extremely

complex. Instead of likelihood models for detectors, most researchers have used linear

system models and unrealistic stationary assumptions in modeling detector effects.

For reasons outlined in Chapters 3 and 9, we ignore detector effects in our modeling.

In our project discussed in Chapter 8, we shall use monoenergentic x-ray source

and ignore electronic noise and the background events (r̄i). Thus, Equation 4.12 is

simplified to

yi ∼ Poisson {bi exp(−[Aµ]i)} (4.17)

55



Chapter 5

Image Reconstruction in Transmission Imaging

As we point out in earlier chapter, the goal of transmission tomography, including

tomosynthesis breast imaging, is to obtain an estimate of the 3D attenuation coeffi-

cients µ of the imaged object (patient). Given the measured noisy projection data y,

a reconstruction step is needed to compute this estimate.

There are many reconstruction methods available, and they can be classified

into two categories: deterministic and statistical. The image model includes Poisson

photon noise, electronic noise (detector noise), scatter and a polyenergetic x-ray source.

Different reconstruction methods handle these differently.

The deterministic reconstruction methods ignore Poisson photon noise and de-

tector noise since they do not use a noise model. Various deterministic methods are

available. They can be divided into two categories: analytical and linear algebraic.

Analytical methods such as the filtered backprojection (FBP) algorithm try to invert

the imaging operator in the continuous domain based on simplified imaging models.

Linear algebraic methods such as the algebraic reconstruction technique (ART) and si-

multaneous algebraic reconstruction technique (SART) can incorporate sophisticated

imaging models via the A matrix. In tomosynthetic mammography, the necessities

of a short-scan and low-dose result in noisy projection data due to a low number

of collected counts. Poisson noise is a concern, therefore the reconstruction problem

naturally becomes a statistical problem. The statistical reconstruction methods in-
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corporate the Poisson noise into its model (4.10) and can also incorporate detector

noise. Statistical methods (methods using a noise model) of image reconstruction

often outperform deterministic algorithms in terms of image quality [61]. The ma-

jor impediment to their implementation transmission tomographic systems has been

their heavy computational burden. We shall discuss the mathematical formulations

for some popular image reconstruction algorithms in the two categories of determinis-

tic and statistical algorithms and emphasize their applications and problems in breast

tomosysnthesis.

5.1 Deterministic Reconstruction Methods

Deterministic approaches to transmission tomography begins with estimating the

line integrals from the ideal model Equation 4.1 and then applies algorithms to the

collection of line-integral estimates:

li =
∫

Li

µ(r) dl i = 1, . . . , N.

where li denotes the line integral of attenuation coefficients of the voxels along the ith

ray path. One obtains the estimate gi of li by log-transform as follows:

gi = log

(

bi

yi − r̄i

)

(5.1)

Note that yi’s are noisy measurement data. Inspection of Equation 4.1 reveals that

the gi in Equation 5.1 are identical to li if there is no noise present. Since Poisson

photon noise is ignored in deterministic methods, ideally we have

gi = li (5.2)

One then reconstructs estimates µ̂ from {gi} using some deterministic algorithm.

For the discrete case with Equation (4.6) and Equation (4.8), we rewrite Equation

(5.2):

gi = [Aµ]i =
M
∑

j=1

aijµj, i = 1, . . . , N, j = 1, . . . ,M. (5.3)
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Since (5.3) is a series of linear equations, Equation (5.3) can be represented as

Aµ = g (5.4)

where g is a line integral vector with N elements. This linear system model is the

basis for deterministic methods. The reconstruction is a inverse problem and its goal

is to solve this linear system, where A and g are known and µ is unknown. In

tomosynthesis, Equation (5.4) is Atomoµ = g. In CT geometry, Equation (5.4) is

ACT µ = g. When the angle difference 4θ between the adjacent angular positions of

X-ray source is infinitely small, ACT µ becomes the line-integral in continuous space.

One can use generalized FBP (Filtered Backprojection) methods to reconstruct the

attenuation coefficients µ perfectly [57] for certain system geometries.

5.1.1 Backprojection methods

Simple backprojection (BP) is a special case of deterministic methods. The BP

method is attractive because it is easy to implement and its result can be used as initial

values for more sophisticated iterative methods to achieve efficient reconstruction. In

tomosynthesis, the BP method is essentially equivalent to a “shift-and-add” algorithm

[40]. The shift-and-add algorithm is valid only when the motion of the x-ray source

is parallel to the detector (e.g., a linear motion at a fixed height above the detector)

[62]. A BP algorithm accurately incorporates the imaging geometry no matter how the

x-ray tube is moved. Backprojection is performed by smearing a set of 2D projection

images uniformly back into the 3D breast space along the incident x-ray paths. In

this operation, the estimated attenuation coefficient of the voxel is proportional to

the weighted summation of all the values of detector pixels whose rays intersect this

voxel. The attenuation coefficient updates of voxels can be performed in parallel and

are given by:

µ̂j =

∑N
i=1 aijgi
∑N

i=1 aij

(5.5)
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The denominator in Equation 5.5 is a normalization factor, and is itself a backpro-

jection operated on a unit image. Note that BP can be accomplished during data

acquisition by simply backprojecting data from each angle as it is obtained. The BP

algorithm has its problems, but it is fast. Other researchers [63] have variations of

Equation 5.5 with different normalizations.

Tuned aperture computed tomography (TACT) - backprojection [64, 65] has been

developed to address some of practical issues in tomosynthesis imaging, and has been

applied to breast tomosynthesis imaging [66]. TACT involves an interesting back-

projection step. TACT backprojection is similar to shift-and-add except that TACT

uses knowledge derived from the projections themselves to establish the geometric

relationships required for reconstruction. The projection geometry used in TACT is

not required to be fixed (or even specified) before reconstruction. In other words,

TACT can be used with an arbitrary geometry. In TACT, a set of reference points

are used to determine the precise orientation of the imaging geometry and projection

images prior to the shift-and-add process. The alignment of images is based on the

reference points. The projection of a reference point is used as an anchor and each

projection image is shifted proportionally toward the reference point by an amount

determined by the desired relative section position [66]. Shifted projections are added,

yielding a composite tomographic image with structures in the reconstruction plane

in sharp focus and structures outside the reconstruction plane blurred. This process

can be adjusted to bring any arbitrary plane into focus and all other planes blurred

by an amount proportional to their distance from the focal plane. While we have dis-

cussed TACT in a BP context, other researchers [67, 66] have used it within iterative

reconstruction formulations.

Recently, a nonlinear backprojection (NBP) for emission tomography [68] was

proposed, which consists of nonlinear operations on the sinogram, followed by back-
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projection. NBP is composed of a training phase and an application phase. The

projection data is modeled by a mixture model. The goal of the training phase is to

infer parameters of the mixture model of the data and to optimize a set of sinogram

filters. One can design the filters by minimizing the mean square error between the

training images and the images reconstructed by backprojecting the nonlinearly fil-

tered sinogram samples. After this training phase, the inferred parameters and filters

are used to reconstruct the images from sinograms. This method does not need to spec-

ify a statistical model for the forward process and for the images to be reconstructed.

NBP shows promising results relative to both filtered backprojection and maximum a

posteriori methods. However, training of the filters is still computationally expensive.

5.1.2 Matrix Inversion Techniques

Equation 5.4 is expressed in a matrix form. The goal of reconstruction is to solve

this equation. The natural way to solve such a equation is to use matrix inversion

techniques. There are some variants in this category such as algebraic reconstruction

techniques (ART) [69] and matrix inversion tomosynthesis (MITS) [70]. We shall

discuss these methods in detail, but not offer any mathematical derivations since

these are beyond the scope of the discussion. Please see the appropriate citations for

derivations.

Algebraic Reconstruction Technique (ART)

As an example of deterministic reconstruction methods, algebraic methods with

the system model (5.4) are often used. In algebraic reconstruction techniques, the

tomographic inverse problem is to solve the large-scale system of linear equations of

Equation 5.4. To explain computational steps involved in these methods, we first write
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Equation 5.4 in an expanded form:

a11µ1 + a12µ2 + · · · + a1MµM = g1

a21µ1 + a22µ2 + · · · + a2MµM = g2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aN1µ1 + aN2µ2 + · · · + aNMµM = gN

(5.6)

Under ideal conditions, such simultaneous equations could be solved exactly by matrix

inversion. However, such a direct matrix inversion approach is not feasible due to the

following facts [22]:

• The numbers of M and N are prohibitively large.

• A unique solution will not exist if the equations are under-determined (N < M).

• No solution may exist when N > M , and {gi} are corrupted by noise.

In such circumstance, iterative methods are applied to solve these equations without

matrix inversion. To implement such a method, one can first make the initial guess

at the solution. This initial guess, denoted by µ̂
(0)
1 , µ̂

(0)
2 , · · · , µ̂(0)

M , is represented by the

vector µ̂(0) in the M -dimensional space. In most cases, one can simply set all the

initial µ̂j’s to be zero. This initial guess is projected on the hyperplane represented

by the first equation in (5.6) giving µ̂(1). Then µ̂(1) is projected on the hyperplane

represented by the second equation in (5.6) to yield µ̂(2) and so on. When µ̂(i−1) is

projected on the hyperplane represented by the ith equation in (5.6) to yield µ̂(i), the

process can be mathematically described by

µ̂(i) = µ̂(i−1) − µ̂(i−1) · ai − gi

ai · ai

ai (5.7)

where ai = [ai1, ai2, · · · , aiM ] and ai · ai is the dot product of ai with itself.

In applications requiring a large number of views (large N) and large-sized (large

M) reconstructions, the difficulty with using Equation 5.6 can be in the calculation,
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storage, and fast retrieval of wij. To get around the implementation difficulties, several

algebraic approaches have been suggested, many of which are approximations to (5.7).

To discuss some of the more implementable approximations, one can rewrite Equation

5.7 in a different form [69]:

µ̂
(i)
j = µ̂

(i−1)
j +

gi − qi
∑M

k=1 a2
ik

aij (5.8)

where

qi = µ̂(i−1) · ai =
M
∑

k=1

µ̂
(i−1)
k aik (5.9)

These equations say that when the (i − 1)th solution is projected onto the ith hy-

perplane (the ith equation in Equation 5.6), the new value of the jth parameter is

obtained by correcting its current value µ̂
(i−1)
j by 4µ

(i)
j , where

4µ
(i)
j = µ̂

(i)
j − µ̂

(i−1)
j =

gi − qi
∑M

k=1 a2
ik

aij. (5.10)

While gi is the measured line-integral along the ith ray, qi can be understood to be

the computed line-integral for the same ray based on the (i − 1)th solution. The

correction 4µj to the jth voxel is obtained by first calculating the difference between

the measured line-integral and the computed line-integral, normalizing this difference

by
∑M

k=1 a2
ik, and then assigning this value to all voxels in the ith ray, each assignment

being weighted by the corresponding aij [71]. Combining Equations 5.8, 5.9, 5.10

yields:

µ̂
(i)
j = µ̂

(i−1)
j +

gi −
∑M

j=1 µ̂
(i−1)
j aij

∑M
j=1 a2

ij

aij (5.11)

The linear attenuation coefficients are updated at each projection view, therefore

ART converges fast to a least squares solution which can be very noisy for severely ill-

posed inverse problem such as limited-angle tomosynthetic reconstruction [63]. There

are some variations on its computer implementation. ART has been modified to other

methods such as simultaneous algebraic reconstruction technique (SART) [69] and

simultaneous iterative reconstruction technique (SIRT) [69]. In SART, the correction
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terms are simultaneously applied for all the rays in one projection, and the linear

attenuation coefficient of each voxel is updated after all rays passing through this

voxel at one projection view are processed; while in SIRT, all projection rays are

calculated and applied to a correction factor, and the update is performed after all

rays in all projection views are processed. SIRT converges slowly because its update

is averaged over all projection rays and the reconstruction could be overly smoothed.

We shall describe the SART method in detail.

As mentioned above, for SART, the value update of each voxel is performed

after all rays at one projection view are processed. The number of updates in one

full iteration is equal to the number of projection views K, and also is called as the

number of subiterations. Let µ̂n,k
j denote the estimated linear attenuation coefficient

of the jth voxel at the end of the k subiteration of the nth iteration. The initial and

final update values at one iteration are assigned as follows:

µ̂n,1
j = µ̂n−1

j , µ̂n
j = µ̂n,K

j (5.12)

where µ̂n
j is the estimate at the end of the nth iteration, which is equal to the estimate

after all K projection views are processed. Let Gk
j denote the set of the measured line

integrals passing through the jth voxel at the kth projection angle. The update of the

linear attenuation coefficient at the jth voxel is defined as follows:

µ̂n,k+1
j = µ̂n,k

j + λ

∑

gi∈Gk

(

aij

gi−
∑M

j=1
aij µ̂n,k

j
∑M

j=1
aij

)

∑

gi∈Gk
aij

(5.13)

where λ is a relaxation factor ranged over (0, 1]. The relaxation factor is used to reduce

the noise during reconstruction. In some cases, this parameter is chosen as a function

of the iteration number. That is, λ decreases as the number of iterations increases.

In general, the SART procedure implementation can be summarized as follows:

1. Take an initial guess µ0.
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2. Compute the estimated line integrals gn,k at kth angle and nth iteration.

3. Subtract the estimated line integrals gn,k from g.

4. Perform backprojection of correction terms at kth angle and update µn,k values.

5. Repeat from step 2 with next view until all K views are completed, and update

µn values.

6. Repeat from step 2 with next new iteration or stop with final breast estimate.

The choice of the initial guess is very important. This is a general problem for

iterative reconstruction methods. A good choice of initial condition can speed up the

convergence. An initial condition chosen to the final solution will speed up conver-

gence. In some cases, a simple BP reconstruction serves as a good initial condition.

Another problem associated with iterative reconstruction approaches is the choice of

a stopping point. An appropriate stopping point determines the image quality of re-

construction. Earlier termination results in a low-contrast reconstruction, while more

iterations yields more noisy estimates. Given this compromise, the “optimal” number

of iterations is often predetermined based on visual comparison and image quality

analysis. Because iterations are terminated before convergence, the iterative methods

do not exactly invert Equation 5.4.

Matrix Inversion Tomosynthesis (MITS)

Matrix inversion tomosynthesis technique [40] is mainly used in tomosynthetic

imaging such as breast tomosynthesis. In MITS, linear algebra is applied to solve for

the relative blurring in each plane. Given that the geometry of the imaging system

is known, the amount of blurring f at each plane can be calculated when every other

plane is tomosynthesized. The reconstructed image ti by the shift-and-add method
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can be represented as the convolution of the structures si in the ith plane and the

blurring function fij from the structures in plane j:

s1 ⊗ f11 + s2 ⊗ f12 + · · · + sn ⊗ f1n = t1

s1 ⊗ f21 + s2 ⊗ f22 + · · · + sn ⊗ f2n = t1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sn ⊗ fn1 + s2 ⊗ fn2 + · · · + sn ⊗ fnn = t1

(5.14)

The convolutional formalism in Equation 5.14 is limited to those acquisition geome-

tries, such as a linear tube motion, where the blur function is space invariant. If the

Fourier transform is taken, the above equations can be expressed as:
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(5.15)

One can rewrite Equation 5.15 in matrix form: F.S = T , where S is the matrix

of Fourier transform of the structures and F is the matrix of Fourier transform of

the blurring functions. Therefore, the structures s can be obtained by taking inverse

Fourier transform over F−1T . The MITS is a good technique to deal with the mid and

high spatial frequency components of the image, while the low frequency noise tends

to be present in the resulting reconstructions [40]. Other methods have developed to

reduce low-frequency noise.

5.1.3 Filtered Backprojection (FBP) Methods

In the simple BP method as discussed above, one takes the line integral at each

pixel in the projection and smears it back along the path of the incident ray. If this

process is performed for each pixel in a projection and for all projection views, one

can obtain a simple backprojected estimate of the object. Consider a 2D object with
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parallel-beam projections. If we had a delta function object, the backprojected re-

construction appear as a “spoke pattern” and its Fourier transform falls off linearly

as the radial spatial frequency increases. Filtering the 2D “spoke pattern” image by

a 2D ramp filter will restore the backprojection to the true object. By the central

slice theorem [22], one could equivalently do this filtering in the projection domain.

Filtering the projection image by multiplying its Fourier transform by a ramp func-

tion (proportional to radial spatial frequency) and then backprojecting them, one can

reconstruct the point, and by linearity, an entire object. This process is referred to

as filtered backprojection (FBP). The 2D FBP algorithm for complete parallel-beam

angular sampling is well known and described in many textbooks [22, 69] and we will

not give the mathematical description here.

The 2D FBP methods for parallel and fan-beam projections are frequently used

in transmission and emission CT [72], in which a large number of projection images

acquired over 360o/180o are used to reconstruct cross-sectional images. With a large

number of projections, the information in the object is well sampled and the corre-

sponding spatial frequency domain is well sampled, so the object can be restored by

combing the information from all projections. In 2D FBP methods, the Fourier cen-

tral slice theorem [22] is a fundamental key. With a parallel-beam approximation, the

Fourier transform of a projection yields a plane through the 2D Fourier space of the

object along the direction perpendicular to the x-ray beam [22]. As the x-ray source

and the detector are rotated around the object, a set of data is swept out in 2D Fourier

space. The central slice theorem holds for a projection at any angle. For limited angle

acquisitions, the theorem tells us which parts of Fourier space are not being sampled.

FBP methods also exist for 3D data, and these can be applied to the tomosynthe-

sis problems. As in 2D, 3D FBP reconstructions obey a form of central slice theorem.

In tomosynthetic reconstruction, only a limited angular range is swept during acqui-
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sition, not all of the volume of 3D Fourier space is sampled. The main limitation

for tomosynthesis is the incomplete angular sampling of the object. The cone-beam

geometry is used in breast tomosynthesis. The relation between the cone-beam pro-

jections and the Radon transform was presented by Smith [73], and the solution to

the general cone-beam reconstruction also was provided. For 3D cone-beam breast

tomosynthesis, the Feldkamp method [74], an approximation of the cone-beam FBP

algorithm, was explored by Wu et al. [62] but their reconstruction results were very

noisy, along with artifacts. The result of the Feldkamp algorithm indicates that the

low-frequency contrast restoration should be considered. A prototype digital tomosyn-

thesis mammography system using a modified FBP method was reported in [45], but

no details were given.

In our study, we do not choose the FBP algorithm since FBP is handicapped

by limited-angle problem in breast tomosynthesis where the object spatial frequency

domain is far from completely sampled. The image quality of the reconstruction

strongly depends on the filter design, and other researchers continue to investigate

analytical FBP methods for limited-angle problems.

So far we have discussed some commonly used deterministic methods. They have

several deficiencies. First, these reconstruction approaches do not take the Poisson

nature of noise statistics into account. Second, Equation (5.1) produces the biased

line-integral estimates due to the nonlinearity of the logarithm. Specifically, it over-

estimates the line-integral on the average: E[gi] ≥ li [75, 76]. Therefore, the log-

transform is unsuitable for low-count transmission scans. In addition, the FBP method

is not suited to nonstandard transmission imaging geometries, such as truncated fan-

beam or cone-beam scans [77, 78, 79, 80, 81, 82]. To eliminate these problems, one

can use statistical methods. These methods use the observed “raw” measurements

yi’s rather than log-transformed data gi’s. We shall discuss some statistical methods
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in the following section.

5.2 Statistical Reconstruction Methods

5.2.1 Maximum Likelihood Reconstruction

As discussed in Section 4.2, the Poisson noise distribution is modeled in Equation

4.12. Since the Poisson nature of x-ray generation implies that the various projections

are independent, the measurement joint probability function given µ is:

P [y|µ] =
N
∏

i=1

P [yi|µ] =
N
∏

i=1

e−ȳi ȳyi

i

yi!
(5.16)

where the mean of the ith measurement is given by (4.11):

ȳi(µ) = bi exp(−[Aµ]i) + r̄i

Equation 5.16 is a likelihood. A likelihood P (b|a) is a measure of the likelihood that

the presence of a causes the observed b to occur. For reasons made obviously below,

usually, it is its logarithm that people work with, which is referred to as log likeli-

hood. The log-likelihood function for the independent projection data in transmission

tomography is

log P [y|µ] =
N
∑

i=1

yi log ȳi − ȳi − log(yi!)

=
N
∑

i=1

yi log(bi exp(−[Aµ]i) + r̄i) − (bi exp(−[Aµ]i) + r̄i) − log(yi!)

Ignoring constant terms independent of µ, then one can rewrite the log-likelihood as:

L(µ) =
N
∑

i=1

yi log(bi exp(−[Aµ]i) + r̄i) − (bi exp(−[Aµ]i) + r̄i) (5.17)

The maximum likelihood (ML) is a classical estimation approach. One seeks to find a

statistical estimate of the attenuation map µ which most likely agrees with the given
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acquired projection data. Therefore, the ML estimate µ̂ is defined as follows:

µ̂ = arg max
µ≥0

P [y|µ]

= arg max
µ≥0

L(µ)

= arg max
µ≥0

N
∑

i=1

yi log(bi exp(−[Aµ]i) + r̄i) − (bi exp(−[Aµ]i) + r̄i) (5.18)

The second equality is true because the logarithm is a monotonic function. The ML

method seeks the nonnegative parameter vector µ (the object) that maximizes the

probability of having observed the particular measurements that were recorded [60].

The ML principle applied to transmission tomography was first proposed by Rockmore

and Macovski [83] in 1977. Lange and Carson proposed the first practical algorithm

— a transmission EM algorithm [84] in 1984.

ML-EM Algorithms

The expectation maximization (ML-EM) algorithm is one iterative technique

for optimizing the maximum-likelihood estimate. The EM algorithm is a general

method for obtaining ML estimates and has been applied specifically to medical image

reconstruction in transmission and emission [85] imaging. We first discuss an EM

algorithm for transmission proposed in [84]. We shall refer to this EM algorithm as

the Lange-Carson EM [84].

This EM method incorporates the observed incomplete data y into a complete

data space. The complete data is composed of the number of photons entering and

leaving each voxel along each x-ray. With this complete data, it is easier to find a ML

solution. Let Uij and Vij denote the numbers of photons entering and leaving each

voxel j along each projection ray i. Briefly speaking, EM is an iterative procedure

that proceeds in two steps at each iteration: an expectation step (E-step) and a

maximization step (M-step). In the E-step, one computes the expectations of the
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complete data given the incomplete data y and the current estimate µn, denoted

by Mij = E(Uij|yi,µ
n) and Nij = E(Vij|yi,µ

n), where E denotes expectation. The

complete data log-likelihood function Q0(µ|µn) for the Lange-Carson EM is given by

Q0(µ|µn) =
∑

i

∑

j

[−Nijaijµj + (Mij − Nij)ln(1 − e−aijµj)] (5.19)

where

Mij = yi + bi exp



−
∑

k∈Sij

aikµ
n
k



− bi exp (−[Aµ]i) (5.20)

Nij = yi + bi exp



−
∑

k∈Sij∪{j}

aikµ
n
k



− bi exp (−[Aµ]i) (5.21)

where Sij is the set of voxels between the x-ray source and the voxel j along the

ray i. In the M-step, the log-likelihood function Q0(µ|µn) is maximized with respect

to µ assuming the expected complete data from the E step are correct. Taking the

partial derivative of Q0(µ|µn) with respect to µj, setting it to zero and then solving

the equation for µj yields the final form for the Lange-Carson EM algorithm [84]:

µn+1
j =

∑

i(Mij − Nij)
1
2

∑

i(Mij + Nij)aij

(5.22)

Thus Equations 5.20, 5.21 and 5.22 constitute an EM algorithm for transmission

tomography.

The transmission ML-EM algorithm has its virtues: (1) It automatically in-

cludes the positivity constraint on all parameters. (2) It has been proved to globally

convergent [86]. However, the ML-EM has drawbacks that limit its use in routine

practical applications. One is the low speed of convergence and the expensive com-

putational load due to the large number of exponentiations required in each iteration.

Researchers have proposed some strategies to accelerate the convergence [87, 88, 89].

Another drawback is that it generates noisy images at high iteration. Particularly,

when the counts are low, the signal-to-noise ratio is low for the Poisson distributed

data, and the ML reconstruction is extremely noisy since the ML estimate is ill posed.
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To overcome this problem, the commonly used solutions are stopping rules, post-

smoothing and regularizers. The method incorporating a regularizer (or a prior) is

a powerful extension of the ML reconstruction method. It is termed a Bayesian re-

construction method, and one type of Bayesian estimate is a maximum a posteriori

(MAP) estimate, because it maximize the posterior in Bayesian theory. EM solutions

exist for the MAP problem. We shall discuss MAP in next section.

An improvement on the original transmission Lange-Carson ML-EM algorithm

is convex ML-EM algorithm [90]. It requires r̄i = 0, otherwise the likelihood is not

convex and the algorithm does not work. The convex ML-EM still is guaranteed to

monotonically increase L(µ) each iteration. Assuming that r̄i = 0 and dropping the

constant term independent of µ, the likelihood L(µ) in Equation 5.17 can be rewritten

in the following form:

L(µ) =
N
∑

i=1

fi([Aµ]i) (5.23)

where

fi(l) = yi log(bie
−l + r̄i) − (bie

−l + r̄i) (5.24)

is a strictly concave function.

By using convexity tricks applied to f as proposed in [91, 92], one obtains

L(µ) =
N
∑

i=1

fi(
M
∑

j=1

aijµ
n
j

[Aµn]i

µj

µn
j

[Aµn]i)

≥
N
∑

i=1

M
∑

j=1

aijµ
n
j

[Aµn]i
fi(

µj

µn
j

[Aµn]i)

≡ Q(µ|µn) (5.25)

When µ = µn, the inequality above becomes an equality, namely, L(µn) = Q(µn|µn).

The difference L(µ) − Q(µ|µn) has its minimal point at µ = µn, thus,

L(µn+1) − Q(µn+1|µn) ≥ L(µn) − Q(µn|µn) (5.26)

Now µn+1 is chosen to maximize Q(µ|µn), thus,

Q(µn+1|µn) ≥ Q(µn|µn) (5.27)
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With inequalities 5.26 and 5.27, L(µn+1) satisfies

L(µn+1) = L(µn+1) − Q(µn+1|µn) + Q(µn+1|µn)

≥ L(µn) − Q(µn|µn) + Q(µn|µn)

= L(µn) (5.28)

Therefore, L(µ) is monotonically increased at each iteration.

To maximize Q(µ|µn), one sets its partial derivative to zero:

∂

∂µj

Q(µ|µn) = −
N
∑

i=1

aijf
′

i (
µj

µn
j

[Aµn]i)

= −
N
∑

i=1

aij[−bie
−

µj

µn
j

[Aµn]i
+ yi]

= 0 (5.29)

Equation 5.29 can not be solved directly. One can apply Newton’s method to this

equation. The second-order partial derivative of Q(µ|µn) is given by

∂2

∂µ2
j

Q(µ|µn)|µ=µn = −
N
∑

i=1

aij

µn
j

[Aµn]if
′′

i (
µn

j

µn
j

[Aµn]i)

= −
N
∑

i=1

aij

µn
j

[Aµn]ibie
−[Aµn]i

and its first-order partial derivative at µ = µn is given by

∂

∂µj

Q(µ|µn)|µ=µn =
∂

∂µj

L(µn) (5.30)

Therefore, one step of Newton’s method yields the approximate solution [90]:

µn+1
j = µn

j + µn
j

∑N
i=1 aij

(

1 − yi

bie
−[Aµn]i

)

bie
−[Aµn]i

∑N
i=1 aij[Aµn]ibie−[Aµn]i

(5.31)

The summation over rays in the numerator represents a backprojection of the

difference image between the current projection estimate and the observed projection,

normalized by the backprojected volume in the denominator. We note that each

iteration requires one forward projection (to compute [Aµn]i) and two backprojections
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(two summations over i in the numerator and denominator), and provides parallel

voxel updates. The non-negativity constraint is easy to impose in each iteration.

Compared to the Lange-Carson ML-EM method which requires a large amount of

exponentiations, this convex EM algorithm requires less computation per iteration.

We will adopt the convex ML-EM method in our project.

5.2.2 Maximum a posteriori (MAP) Reconstruction

In the maximum a posteriori (MAP) estimation approach we choose µ̂ to maxi-

mize the posterior PDF P (µ|y):

µ̂ = arg max
µ≥0

P (µ|y) (5.32)

By Bayes rule:

P (µ|y) =
P (y|µ)P (µ)

P (y)
(5.33)

or, equivalently,

log P (µ|y) = log P (y|µ) + log P (µ) − log P (y) (5.34)

where P (µ) is the prior in MAP. Ignoring the term independent of µ, one can redefine

the objective function to be maximized as:

Φ(µ) = log P (y|µ) + log P (µ) (5.35)

≡ L(µ) − βR(µ) (5.36)

where L(µ) was defined earlier in Equation 5.17 and R(µ) is a “penalty” function,

discussed below, that tends to smooth the reconstruction. The parameter β ≥ 0 is a

scalar that controls the tradeoff between spatial resolution and noise. Larger values

of β result in less noisy or smoother reconstructed images at the expense of reduced

spatial resolution. Equation 5.36 is referred to as a penalized-likelihood objective
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function. Thus, the MAP estimator is given as:

µ̂ = arg max
µ≥0

L(µ) − βR(µ) (5.37)

A typical penalty function is given below [93]:

R(µ) =
1

2

M
∑

j=1

∑

k∈Nj

wjkv(µj − µk) (5.38)

where Nj is a local neighborhood of the jth voxel, and wjk = wkj ≥ 0. Typically, wjk

is inversely proportional to the distance between the centers of voxel j and voxel k.

The potential function v is symmetric, twice differentiable and strictly convex. There

are many possible choices for the potential function v satisfying these conditions. One

simple form is v(t) = 1
2
t2 [94]. This choice tends to smooth local noise fluctuations

, but deters the formation of discontinuities. More sophisticated revisions of v can

promote the formation of discontinuities, sometimes desired, but Equation 5.38 leads

to more tractable analysis.

There are various techniques to optimize the penalized-likelihood objective func-

tion Φ(µ). The paraboloidal surrogates algorithm [88] is one example. Such methods

easily enforce the non-negativity constraint, improve the convergence rate relative

to less recent methods and ensure monotonicity even for the non-concave objective

function that arises due to background events r̄i. We shall discuss the paraboloidal

surrogates algorithms in detail below.

Paraboloidal Surrogate Algorithm

Since the objective function Φ is difficult to maximize, at each iteration we can

use the optimization transfer idea proposed by De Pierro [91, 92]. This solves many

of the problems such as speed and imposition of a positivity constraint that gradient

ascent algorithms have. The basic idea is to replace, at each iteration, Φ with a

“surrogate” function φ that is easier to maximize. We summarize as follows. Let µn be
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the attenuation map estimate at the nth iteration. One would like to find a surrogate

function φ(µ; µn) that is easier to maximize than Φ(µ). This approach transforms the

optimization problem into a simpler problem at each iteration as illustrated in Fig.

5.1 . If one chooses the surrogates appropriately, the sequence of estimates should

eventually converge to a maximizer [95].

0

0.2

0.4

0.6

0.8

1

1.2
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µn µn+1 

Φ(µ) 

φ(µ;µn) 

Figure 5.1: One-dimensional illustration of the optimization transfer principle. Instead of maximizing Φ(µ), we

maximize the surrogate function φ(µ; µn) at the nth iteration to obtain µn+1. Then a new surrogate φ(µ; µn+1) is

constructed to find µn+2 and so on.

The following monotonicity condition on the surrogate function is sufficient to

ensure that the iterates {µn} monotonically increase Φ:

Φ(µ) − Φ(µn) ≥ φ(µ; µn) − φ(µn; µn), ∀µ ≥ 0 (5.39)

The surrogate functions are restricted to be differentiable. Any differentiable surrogate

function that satisfies the following conditions will satisfy (5.39).
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1.

φ(µn; µn) = Φ(µn) (5.40)

2.

∂

∂µj

φ(µ; µn)
∣

∣

∣µ=µn =
∂

∂µj

Φ(µ)
∣

∣

∣µ=µn , j = 1, . . . ,M (5.41)

3.

φ(µ; µn) ≤ Φ(µ), ∀µ ≥ 0 (5.42)

Fig. 5.1 illustrates a surrogate function that “touch” Φ at the current estimate (con-

dition 1), is tangent to the original objective at the current estimate (condition 2) and

lies below it for all feasible values of the parameters (condition 3).

One way to derive φ(µ; µn) is to separately construct simpler surrogates for

the likelihood part L(µ) and the penalty part R(µ). This leads to a simultaneous

update algorithm called separable paraboloidal surrogates (SPS) algorithm [88] in

which all pixels can be updated in parallel. Parallel update algorithms in transmission

tomography are more computationally efficient per iteration than sequential update

algorithm in which all pixels are updated in sequence, however they tend to converge

slowly, but there are ways to speed them up. We shall discuss this below.

The log-likelihood function (5.23) is the sum of functions fi defined in Equation

5.24 and depends on the parameter µ only through [Aµ]i. A 1-D surrogate function

for each of the 1-D fi functions is chosen in terms of li = [Aµ]i. The overall sum

of these individual 1D functions will be an appropriate surrogate for the likelihood

part L(µ) of the objective Φ(µ). For convenience, let lni = [Aµn]i denote the ith line

integral of the attenuation coefficient estimate at the nth iteration. One can choose

the following quadratic function for the surrogate functions hi:

hi(l; l
n
i ) = fi(l

n
i ) + ḟi(l

n
i )(l − lni ) − 1

2
ci(l

n
i )(l − lni )2 (5.43)

76



−1 0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

l

Parabola Surrogate Function
Log−Likelihood

f
i
(l) 

h
i
(l;l

i
n) 

l
i
n 

Figure 5.2: 1D parabola surrogate function hi(l; l
n
i ) for log-likelihood fi(l).

where ci(l
n
i ) ≥ 0 is the curvature of the parabola hi and ḟ denotes first derivative of

f . Fig. 5.2 shows a parabola surrogate function hi(l; l
n
i ) for fi(l). This construction

ensures that hi(l
n
i ; lni ) = fi(l

n
i ) and ḣi(l

n
i ; lni ) = ḟi(l

n
i ), which satisfy conditions 1 and

2. To ensure monotonicity, one must choose the curvatures to satisfy the following

inequality at each iteration:

fi(l) ≥ hi(l; l
n
i ), ∀l ≥ 0 (5.44)

The optimum curvature that provides the fastest convergence rate while preserving

monotonicity [96] is given below:

ci(l
n
i ) =















[

−2
fi(0)−fi(l

n
i )+ḟi(l

n
i )lni

(ln
i
)2

]

+
, lni ≥ 0

[

f̈i(0)
]

+
, lni = 0

(5.45)

where [x]+ is x if x > 0 and zero otherwise. Erdogan and Fessler [94] show that the

parabola that :

1. tangent to fi at the current line integral lni , and
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2. intersects fi at l = 0,

is guaranteed to lie below fi, ∀l > 0. This claim is true only when the curvature ci(l
n
i )

is nonnegative. If the curvature obtained is negative, then ci(l
n
i ) is set to zero. When

ci(l
n
i ) = 0, the hi function is the line which is tangent to the fi curve at the current

line integral value lni . The curvature in (5.45) is shown to yield the fastest convergence

rate while still guaranteeing monotonicity [88]. The non-negativity constraint plays

an important role. If non-negativity is not enforced, the line integrals at an iteration

may go negative and the curvature (5.45) will not guarantee monotonicity anymore.

With all of these considerations, the parabolas hi(l; l
n
i ) are summed up to obtain

an overall paraboloidal surrogate function for the log-likelihood L(µ) as below:

H1(µ; µn) ≡
N
∑

i=1

hi([Aµ]i; l
n
i ) ≤ L(µ), ∀µ ≥ 0 (5.46)

However, (5.46) is nonseparable in terms of the parameter µj, and can not yield

a simultaneous update algorithm. For implementations in which the system matrix is

not precomputed (e.g. software that uses projector/backprojector subroutines which

compute the aij on the fly), algorithms that update all the parameters simultaneously

are preferable. A simultaneous update algorithm can be obtained from the above

paraboloidal surrogate by finding yet another separable surrogate function that lies

below it for all possible feasible parameter values µ. The additive separability of the

surrogate enables decoupling of the optimization problem for each parameter, so each

parameter µj can be updated independently from the others. To obtain this separa-

ble function, Lange [90] applied De Pierro’s convexity tricks [91, 92] to transmission

tomography to get a separable function that is tangent to the log-likelihood and lies

below it everywhere when it is concave. The line integral [Aµ]i is rewritten as:

[Aµ]i =
M
∑

j=1

aijµj =
M
∑

j=1

θij

{

aij

θij

(µj − µn
j ) + [Aµn]i

}

(5.47)
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where
M
∑

j=1

θij = 1,∀i and θij ≥ 0 (5.48)

Since the second-order derivative ḧi(l; l
n
i ) = −ci(l

n
i ) ≤ 0 for all l, hi is concave and the

surrogate function H1(µ; µn) is also concave. One can apply the concavity of hi:

hi([Aµ]i; l
n
i ) ≥

M
∑

j=1

θijhi(
aij

θij

(µj − µn
j ) + [Aµn]i; l

n
i ) (5.49)

The left hand side and right hand side of (5.49) have the same function value and

gradient at the current iterate µ = µn. One possible choice for θij is given in [97]:

θij =
aij

γi

, γi =
M
∑

k=1

aik

where γi is the forward projection of an image with all ones. Using the inequality (5.49)

with these θij’s, a separable surrogate function for H1(µ; µn) is formed as follows:

H2(µ; µn) =
N
∑

i=1

M
∑

j=1

aij

γi

hi(γi(µj − µn
j ) + [Aµn]i; l

n
i )

≤
N
∑

i=1

hi([Aµ]i; l
n
i )

= H1(µ; µn) ≤ L(µ), ∀µ ≥ 0 (5.50)

Since the function H2(µ; µn) is separable in j and quadratic, it is easily maximized.

The exact maximization is reduced to maximization of M 1D parabolas each of which

depend on µj only. The curvature of the surrogate H2(µ; µn) is

− ∂2

∂µ2
j

H2(µ; µn)
∣

∣

∣µ=µn =
N
∑

i=1

aijγici(l
n
i ) (5.51)

The Penalty Part

The above section derived the surrogate function for the log-likelihood L(µ). A

separable surrogate for the penalty function R(µ) is needed to form a simultaneous

update for the penalized-likelihood objective function Φ(µ).
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Assume that the convex potential function v(t) = t2/2 in (5.38). By using the

convexity of v, one can obtain the surrogate for v(t) as follows [92, 90]:

v(µj − µk) = v
[

1

2
(2µj − µn

j − µn
k) +

1

2
(−2µk + µn

j + µn
k)
]

≤ 1

2
v(2µj − µn

j − µn
k) +

1

2
v(−2µk + µn

j + µn
k)

≡ v̂jk(µ; µn) (5.52)

Using this inequality, a separable surrogate function for the penalty R(µ) is formed

as follows:

R1(µ; µn) =
1

2

M
∑

j=1

∑

k∈Nj

wjkv̂jk(µ; µn)

≥ 1

2

M
∑

j=1

∑

k∈Nj

wjkv(µj − µk)

= R(µ), ∀µ ≥ 0 (5.53)

The surrogate R1 satisfies Conditions 1 and 2:

R1(µ
n; µn) = R(µn; µn)

∂

∂µj

R1(µ; µn)
∣

∣

∣µ=µn =
∂

∂µj

R(µ)
∣

∣

∣µ=µn , j = 1, . . . ,M

When v(t) = t2/2 is used as the potential function, the curvature of the surrogate R1

at the current iterate µn is twice that of the original penalty R given below:

∂2

∂µ2
j

R1(µ; µn)
∣

∣

∣µ=µn = 2
∂2

∂µ2
j

R(µ)
∣

∣

∣µ=µn

= 2
∑

k∈Nj

wjk, j = 1, . . . ,M

Separable Paraboloidal Surrogate Algorithm

Given the surrogate functions for the log-likelihood and the penalty part, com-

bining H2 in (5.50) and R1 in (5.53) yields the overall separable surrogate function for

Φ

φ(µ; µn) = H2(µ; µn) − βR1(µ; µn) (5.54)
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Since H2(µ; µn) ≤ L(µ) in (5.50), R1(µ; µn) ≥ R(µ) in (5.53) and β ≥ 0, φ(µ; µn) ≤

L(µ)) − βR(µ) = Φ(µ), ∀µ ≥ 0, which satisfies Condition 3. At the current iterate

µn, φ(µ; µn) has the following properties:

φ(µn; µn) = Φ(µn), ∇φ(µn; µn) = ∇Φ(µn)

Hence, Conditions 1 and 2 are satisfied.

In [96], it is shown that increasing the surrogate function φ(µ; µn) also in-

creases the original objective function Φ(µ). If a value µn+1 can be found such that

φ(µn+1; µn) ≥ φ(µn; µn), then by (5.39) one obtains

Φ(µn+1) − Φ(µn) ≥ φ(µn+1; µn) − φ(µn; µn) ≥ 0

=⇒ Φ(µn+1) ≥ Φ(µn)

Hence, this algorithm is intrinsically monotonic.

With the surrogate function φ(µ; µn), the optimization problem at each iteration

becomes

µn+1 = arg max
µ≥0

φ(µ; µn)

= arg max
µ≥0

[H2(µ; µn) − βR1(µ; µn)]

= arg max
µ≥0

M
∑

j=1







N
∑

i=1

aij

γi

hi(γi(µj − µn
j ) + [Aµn]i; l

n
i ) +

1

2

∑

k∈Nj

wjkv̂jk(µ; µn)







Since φ(µ; µn) is separable in terms of µj, the update for each parameter depends

on the parameter itself and the current estimate µn only. And since φ(µ; µn) is

quadratic in each parameter µj, it is easily maximized by zeroing the first partial

derivative of φ(µ; µn) with respect to µj given below

∂

∂µj

φ(µ; µn) =
N
∑

i=1

aij ḟi(l
n
i ) − dn

j (µj − µn
j ) − β

∑

k∈Nj

wjk(2µj − µn
j − µn

k) = 0 (5.55)

where

dn
j =

N
∑

i=1

aijγici(l
n
i )
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and

ḟi(l) =
[

1 − yi

bie−l + r̄i

]

bie
−l

Solving this equation finally yields the following update for the separable paraboloidal

surrogates algorithm (SPS):

µn+1
j =



µn
j +

∑N
i=1 aij ḟi(l

n
i ) − β

∑

k∈Nj
wjk(µ

n
j − µn

k)

dn
j + 2β

∑

k∈Nj
wjk





+

(5.56)

where [x]+ is x if x > 0 and zero otherwise. The non-negativity of the parameter µj is

enforced because the attenuation coefficients of matter are always nonnegative. The

denominator term 2β
∑

k∈Nj
wjk in (5.56) is the second-order derivative of R1(µ; µn)

with respect to µj, and can be precomputed before iteration since it is a constant.

This algorithm is highly parallel.

Equation 5.56 has the advantages (1) Easy to compute. (2) Preserving positivity.

(3) Parallel update., and is superior to a direct method, such as a positivity constrained

gradient algorithm, applied to Φ(µ). However, SPS converges slowly due to separable

surrogates. This can be overcome by the application of ordered subsets. We discuss

the ordered subsets technique below .

5.2.3 Ordered Subset (OS) Acceleration

The ordered-subset principle can be applied to any algorithm which requires a

sum over projection view indices. Due to the assumed statistical independence of

tomographic data, such sums arise in statistical tomographic reconstruction problems

including ML or MAP. The sum over all projection views are replaced by sums over

subsets of the data and an ordered subsets version of the algorithm is formed. In

ordered subsets methods projection data are partitioned into a set of subsets and each

subset is processed in sequence. Hudson and Larkin [98] reported that the best method

to group the subsets is to choose the projections corresponding to angles with maximal

angular distance from previously used angles at each step. This means that the subsets
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Figure 5.3: the partition of the subsets. Angles 1,4,7,10 are in the first subset. 2,5,8,11 in the second subset.

3,6,9,12 in the third subset.

are chosen to be as orthogonal as possible to previously used subsets. Figure 5.3 shows

a total of 12 projections views which are partitioned into 3 subsets. The projection

views represented with the same pattern belongs to the same subset. For example,

The projection data in views 1, 4, 7, 10 comprise the first subset. Radically different

forms of subsets can be used. In PET, for example, a subset can be defined as the

sequential accumulation of a specified number of events. But here, we stick with the

angular interpretation since it is natural for tomosynthesis.

This technique has been efficiently used in algorithms that update the estimates

simultaneously at each iteration. The ordered subsets principle has been applied to

transmission ML algorithms. Manglos et al. [80] investigated the application of the

ordered subsets idea in the transmission EM method for the ML problem. The ordered

subset EM (OSEM) algorithm produces visually appealing images fairly quickly and
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hence has become very popular. Kamphuis and Beekman [99] applied the ordered

subsets principle to Lange and Fessler’s convex EM algorithm to accelerate ML trans-

mission reconstruction. Ordered subsets techniques have also been extensively used

in emission tomography, but we do not discuss that here.

Erdogan and Fessler [88] applied the ordered subset idea to the SPS algorithm

described earlier. The ordered subsets accelerates the initial speed of the original SPS

algorithm in terms of increasing the objective function. However, ordered subsets

- SPS (OS-SPS) is not guaranteed to be monotonic and does not converge to the

true optimum. In fact, this property is true for all direct OS techniques applied

in transmission and emission reconstruction algorithms. Very recent modifications, to

ensure convergence, are mentioned below. It is desirable for any algorithm to converge

to the optimal point of the objective function. Recently, Ahn and Fessler [89] proposed

a convergent OS type method called transmission incremental optimization transfer

(TRIOT) that accelerate convergence speeds and ensure global convergence. It is

parallelizable. The non-negativity constraint is enforced. Their results show that

convergent TRIOT is faster in increasing the penalized likelihood objective than OS-

SPS algorithm. We note that our own group has proposed a convergent ordered-subset

algorithm, COSEM, for ML and MAP emission tomography [100].

In breast tomosynthesis, only 11-15 projection views are used at a limited an-

gular range. Although OS methods are quite flexible, there is much work to be done

in designing one that is good for tomosynthetic breast imaging. It is an open ques-

tion whether whether OS type algorithms can achieve significant speedups without

performance degradation for the breast tomosynthesis system.

So far we have discussed reconstruction algorithms (deterministic and statisti-

cal) used in transmission tomography and emphasized some applications in breast
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tomosynthesis. In our experiment we will use three algorithms: simple BP, SART and

convex ML-EM.
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Chapter 6

Construction of the 3D Breast Phantom

From Section 2.1, we have some basic understanding about breast anatomy.

The breast is inherently a low-contrast organ and highly variable in density and size,

and presents tremendous challenges for breast imaging [101]. In order to evaluate

reconstruction algorithms for tomosynthesis breast imaging, we need to generate a

3D realistic breast phantom with complex and variable breast structures, that are

consistent with the parenchymal pattern in a 2D mammogram. Much work has been

done on the simulation of 2D mammogram texture with different statistical methods

[102, 103, 104] and on the simulation of 2D high-contrast micro-calcifications [105,

106, 107]. Although they are realistic looking 2D images, such models do not reflect

the 3D anatomical properties of the breast, nor can they produce projection images

of one breast from different views [108].

Recently, Bakic et al. [108] proposed a 3D breast phantom containing two ellip-

soidal regions of large scale tissue elements: predominantly adipose tissue and predom-

inantly fibro-glandular tissue. The internal tissue structures of these regions, namely

the adipose compartments and the breast ductal network, are approximated by real-

istically distributed medium phantom elements: spherical shells, blobs and simulated

ductal trees. A statistical model of ductal trees generation was proposed. A crescent-

shape fibro-glandular region was formed along with a sharp and regular margin in the

resulting synthetic mammogram. This breast phantom has a number of nice prop-
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erties: however, it is questionable whether simulated tumors embedded within the

regular shapes (i.e., spheres and shells) of the phantom can accurately model the task

of detecting tumors embedded within breast tissue with irregular texture [24]. The

borders between the adipose tissue region and fibro-glandular tissue region in the pro-

jection images appeared as a clear, geometrically regular separation degrading the

subjective perception of reality.

Bliznakova et al. [109] presented a methodology for 3D breast modeling. The

simulated breast includes some major tissue features. Their model consists of overall

breast shape, adipose tissue, duct system, Cooper’s ligaments, abnormalities, pec-

toralis muscle, and mammographic background. Their model included random gener-

ation of variable structures.

The complicated structure of breast tissue make it very difficult to accurately

model the 3D breast. Below we describe the mathematical generation of our own

medium-sized phantoms in detail. Many of related parameters, which we will use for

breast simulation, are approximations justified by Dr. Fisher, who is an experienced

mammographer in the Breast Cancer Center, Stony Brook University Medical Center.

6.1 Generation of Breast Volume and Nipple

We use 360 × 230 × 400 voxel array with 0.4 mm cubic voxels as the 3D breast

space. Therefore, the physical size of our breast phantoms is 14.4cm × 9.6cm × 16cm

as shown in Figure 6.1. This size is consistent with an actual medium breast size. It is

somewhat coarser than the 3D reconstructed resolution obtainable from modern high-

resolution digital detectors, but it can be improved. High-resolution breast phantoms

take longer to create and reconstruct. For now, we are restricted to low-resolution

breast phantoms.

In what follows, we will give mathematical formulas and functions for generating

87



Y

Z

X

16 cm

9.6 cm

14.4 cm

Figure 6.1: External breast shape modeling.

various anatomical structures. It is to be understood that all units will be in voxel

edge lengths (0.4mm).

The breast shape characterizes the breast volume. The breast volume comprises

a rotated half-ellipsoid combined with a half-hyperboloid [109]. Our implementation

starts with defining the Cartesian coordinate system as shown in Figure 6.1: the

direction from the left breast to the right breast indicates the positive X-axis; the

direction from the chest wall to the nipple indicates the positive Y -axis; the direction

from the lower breast to the upper breast indicates the positive Z-axis.

The voxels in the rotated half-ellipsoid around the x-axis satisfy the following

inequality:

(x − xec)
2

x2
es

+
[(y − yec) cos θ(z − zec) sin θ]2

y2
es

+
[(y − yec) sin θ(z − zec) cos θ]2

z2
es

≤ 1, y ≥ yec (6.1)

where (xec, yec, zec) is the center of the half-ellipsoid. We choose semi-axes xes =

170, yes = 200, zes = 170 to fill the 3D breast space. The rotation angle of the ellipsoid
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θ = π/6. The voxels in the half-hyperboloid satisfy the following inequality:

(x − xhc)
2

x2
hs

+
(y − yhc)

2

y2
hs

− (z − zhc)
2

z2
hs

≤ 1, y ≥ yhc and z ≥ zlower (6.2)

where (xhc, yhc, zhc) is the center of the half-hyperboloid. We set semi-axes xhs =

81, yhs = 81, zhs = 89. The quantity zlower is carefully chosen to make half-ellipsoid

volume and half-hyperboloid volume join each other seamlessly (i.e. a continuous

surface). Finally, a half-spherical nipple with semi-axis 9 is attached to the breast

shape along the positive y-axis. The breast volume is enveloped between the breast

surface and the chest wall. We also incorporate a skin layer of thickness 7.5 mm that

sheaths the breast except for a tapered region about the nipple. Figure 6.2 sort of

shows this tapered region around the breast margin. All internal structures (except

major ducts and Cooper’s ligaments) are bounded by the chest wall and this skin

layer. Figure 6.2 shows slice images of the breast volume from the CC and ML views.

6.2 Generation of Fibrous Connective Tissue

In Section 2.1.1, we addressed the basic anatomical characteristics of the fibrous

tissue. This information can be used as our platform in modeling the fibrous connective

tissue. We know that fibrous connective tissue is dispersed within the breast, and

supports the ductal, glandular and fat tissues of the breast. In our simulation model,

the fibers are represented by a set of linear segments oriented approximately toward

the nipple, randomly placed inside the breast volume. We choose the number of fibers

to follow a Poisson distribution with mean 1200. This number, as well as many of

the parameters we will describe for breast simulation, are approximations justified by

Dr. Fisher, who is an experienced mammographer in Breast Cancer Center, Stony

Brook University Medical Center. This number 1200 is determined by evaluating the

number of fibers per unit volume. The generation of one fiber is described: For a given

fiber, the starting point of the fiber (xfs, yfs, zfs) is uniformly chosen within the breast
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volume. The connection between this starting point and the center of the nipple gives

rise to the initial direction of this fiber indicated by colatitude angle θ0 and azimuth

angle φ0. The final colatitude angle θ1 and azimuth angle φ1 vary randomly but

uniformly within ±5o around the initial direction θ0 and φ0, respectively. Given the

starting point and final direction of the fiber, we can draw the segment with thickness

1 and the length uniformly sampled in the range [40, 55]. Figure 6.2 (a) and (d) show

two views of slice images with fibers only.

6.3 Generation of Cooper’s Ligaments

As discussed in Section 2.1.1, Cooper’s ligaments are the supportive fibrous struc-

ture of the breast. They incompletely sheath the peripherally located lobules of the

breast, extending outward and attaching to the skin [110]. We simulate Cooper’s liga-

ments with linear segments attaching to the skin. The surface area of the breast shape

is around 350 cm2. We estimate two Cooper’s ligaments per cm2, so about 700 are

needed for our breast model. The number of Cooper’s ligaments Nc follows a Poisson

distribution with mean 700. This number, 700, is justified by Dr. Fisher. We start

with the construction of one Cooper’s ligament: A reference point (refX, refY, refZ)

is picked near the chest wall, and used for all Cooper’s ligaments. A starting point of

the Cooper’s ligament (xcs, ycs, zcs) is uniformly sampled on the breast surface. The

connection between (xcs, ycs, zcs) and (refX, refY, refZ) defines the initial growth

direction of this Cooper’s ligament. With the starting point and the growth direction,

we plot the segment with the thickness uniformly sampled in the range [1, 3] and the

length sampled in the range [20, 30]. These ranges are consistant with anatomical

knowledge. A total of Nc Cooper’s ligaments are constructed, and lie beneath the

skin. We note that in the report by Bliznakova et al. [109], Cooper’s ligaments were

simulated by ellipsoidal shells placed within the breast volume, but no algorithm was
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Figure 6.2: (a) and (d) Slice images of one phantom with fibers only at CC view and ML view, respectively. (b)

and (e) Slice images of one phantom with ductal tree only at CC view and ML view, respectively. (c) and (f) Slice

images of the breast phantom including all anatomically variable and fixed components through a slice containing the

nipple at CC view and ML view, respectively. Note that there is no lesion shown in those slices. Also note that (a)

(b) (d) (e) are plotted at a common grey scale, and (c) and (f) at a different common grey scale.
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given.

6.4 Generation of Ductal Structure

A ductal structure of the breast has a tree-like pattern. Various investigators re-

port that 8 to 20 major ducts originate in the nipple, extending back into the breast in

a branching network of smaller and narrower segmental ducts culminating in the termi-

nal ducts and the ending lobules [12]. We choose 11 major ducts to make parenchyma

relatively dense in our breast phantom. Taylor et al. [111] presented an algorithm

that simulated the growth of duct systems based on dichotomous branching and self-

similarity theory. They used the topological branching pattern of a perfectly balanced

binary tree (each duct branches uniformally into two identical new segments ) for tree

simulation, resulting in a very regular image texture. Bakic et al. [112] proposed a

method to simulate the breast ductal network based on branching morphology by ram-

ification matrices andbinary trees. We follow the duct growth algorithm as described

by Bliznakova et al. [109] albeit with different parameters.

In this method, each of the 11 major ducts of fixed length (6.5) and radius (2.5),

but random orientation, originates at the nipple. The major duct branches into a

random number of lactiferous ducts, each with a fixed length (h0 = 17) and radius

(r0 = 2.0). The number of major duct branches is uniformly distributed in [2, 9]. The

random orientations of the ducts are given by:

φn = φn−1 + rand ∗ 360 (6.3)

θn =
θn−1

2
+ θn−1 ∗ rand (6.4)

where “rand” is a random number chosen from a uniform distribution on the interval

[0.0, 1.0], and (φn, θn) are the child azimuth angle and the child colatitude angle

relative to the parents (φn−1, θn−1) in a 3D coordinate system. The length and radius

of the ducts decrease as the branch level increases. The parameters of the child branch
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are calculated with respect to ones of its parent branch. Each child branch is simulated

by a cylinder with radius rn and length hn given as:

hn =
hn−1

2
(1 + rand) (6.5)

rn = hn
r0

h0

(6.6)

The process of branching into further lactiferous ducts repeats recursively. The re-

cursion terminates when the ducts reach the skin boundary (7.5 mm beneath the

skin) or the maximal branch level. Each duct ends with spherical lobules with radius

uniformly sampled in the range [1.0, 2.5]. The structure of a tree is controlled by

branching variations—the direction of a major duct, the number and directions of

child branch ducts, the length and radius of a child branch duct, and the dimension of

a terminal spherical lobule. Even with the same initial parameters, we can generate

various patterns of duct trees because of the randomness involved with branch growth.

Figure 6.2 (b) and (e) shows two slices of one ductal structure with 11 major ducts.

6.5 Generation of Pectoralis Muscle

We can observe the rounded appearance of the pectoralis muscle from cranio-

caudal (CC) view mammograms, and the triangular shape from mediolateral oblique

(MLO) view mammograms. It is reasonable that the pectoralis muscle is simulated

by a cone shape given by

(x−xmus)
2/x2

a+(y−yec)
2/y2

a <= (z1−z)2/(z2−z1)
2, y ≥ yec, z ≥ z1 and z ≤ z2 (6.7)

where (xmus, yec, z1) is the center of the cone, yec = 24 is defines as the same as in

Section 6.1:, z2 is the upper limite in z direction, xa is the semi-axis in x direction,

and ya is the semi-axis in y direction. We set xmus = 180, z1 = 250, z2 = 395 and

xa = ya = 50. The pectoralis muscle itself is highly variable based on body habits and

muscle mass and is sensitive to variation in positioning. The presented appearance of
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our (fixed) pectoralis is within commonly observed pectoralis morphology. A portion

of the pectoralis muscle is seen near the upper chest wall in Figugre 6.2 (f). The 3D

cone cuts into Figure 6.1 although not shown in Figure 6.1

6.6 Generation of Masses

Modeling realistic lesions and structured breast tissue is an important factor

in considering studies in breast imaging. Previous work in the literature have used

spherical or cylindrical lesions in a uniform background. Modeling the lesion with a

regular shape may artifically make lesion detection easier. As described in Section

2.1.2, the shapes of masses are divided into round with circumscribed margin, oval

with microlobulated margin, lobulated with obscured margin, and irregular with in-

distinct or spiculated margin. The more irregular a lesion in shape, the more likely the

malignancy. The x-ray attenuation and size of the masses is variable. Burgess et al.

[113] used a 3D random walk algorithm to simulate micro-calcifications. Bliznakova

et al. [109] used a 3D random walk algorithm to simulate abnormalities (masses and

micro-calcifications).
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Figure 6.3: The slices through the center of different lesion instances generated with the same parameters.

Here, we describe our own implementation of a 3D random walk algorithm to

simulate fixed-location irregular masses with size 7-8 mm. The input parameters

include the dimension of the 3D lesion space (64 × 64 × 64), the center of the lesion

(32, 32, 32) within the lesion space, the number of steps in one walk (20), and the
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Figure 6.4: Transverse slices through the simulated lesion in Figure 6.3 (a).

95



number of walks (10000). The step number of one walk mainly controls the size of

the lesion. The number of walks controls the irregularity of the lesion. The less the

number of walks, the more irregular the lesion. To obtain the irregular shape of a

mass, we use “logical” random walks: If one voxel is visited, the value of this voxel is

set to 1 no matter whether it was visited before or not; otherwise 0. The center voxel

of the mass is the starting point for all walks, and its value is always 1. In the 3D

space, the current visited voxel has 26 neighbors (six of them are 1 unit away from the

center of this voxel, twelve
√

2 units away from the center and eight
√

3 units away

from the center). Without counting the eight furthest neighbors, the next visited voxel

can be randomly picked from the nearest 18 neighbors of the current visited voxel with

equal probability. The purpose of cutting 8 corner voxels is to obtain a more spherical

lesion with irregular boundary. With the same parameters, we can generate different

instances of lesions as illustrated in Figure 6.3. Figure 6.4 shows the transverse slices

through the simulated lesion in Figure 6.3 (a).

6.7 Generation of Structural Background Noise

Even without other sources of radiation or instrumentation noise, a lesion can be

hidden by the anatomical background. We use 3D power-law noise as a model of this

background variability. Spectral analysis of mammograms by Burgess [114] demon-

strated that mammograms have an approximately isotropic 2D power-law spectrum

of the form:

F (ρ) = A2/ρβ (6.8)

where ρ is the 2D radial spatial frequency, and the parameter A controls the noise

amplitude. and β controls the spectrum slope in the range [2, 4], and its mean value

for mammograms was reported to be 3 [114, 47]. We used β = 3. The value A = 85.0

corresponding to the most realistic projection mammogram (as chosen by our mam-
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mographer) is the one used. We carefully choose it via visual inspection of projection

images by Dr. Fisher. By the central slice theorem [22], the power spectrum of pro-

jection at a specific angle is equivalent to the power spectrum along a radial line at

the same angle. Hence, if the power spectrum of a 2D projection image is radially

symmetric and power-law distributed, then the 3D power spectrum of the object will

also be radially symmetric with a characteristic radius determined by the 2D power

spectral radius and is also power-law distributed. We can use Eq. 6.8 in 3D object

space, where ρ is a 3D radial coordinate in Fourier space.

In general, the 3D power-law background noise is generated by filtering 3D white

noise with a power-law kernel. The whole process involves four stages:

1. Generate 720×460×800 white Gaussian noise n by a Gaussian random number

generator. To avoid the “wrap around” effect of the Fourier transform, we

construct a 720 × 460 × 800 noise instead of 360 × 230 × 400 [47].

2. Take the 3D FFT of white noise n.

3. Filter the result with a low-pass filter of the form A/(1 + ρβ/2). We put 1 in the

denominator to prevent the Fourier transform of the filter from going to infinity

as the spatial frequency approaches zero.

4. Take the inverse 3D FFT and pick the central 360 × 230 × 400 region.

The procedure above can be easily done in Matlab. Figure 6.5 (b) shows a slice image

realization of power law noise.

6.8 Construction of Final Breast Phantom

After construction of random instances of connective fibers, ductal structure,

Cooper’s ligaments and masses, and a fixed pectoralis muscle, the final step is to

assign X-ray attenuation coefficients at 30 keV to them as follows: µ̄fiber = µ̄ligament =
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µ̄duct = 0.037/mm; µ̄muscle = 0.038/mm and µ̄mass = 0.04045/mm. The lesion is placed

within the dense ductal structures and its location is fixed. The purpose of this lesion

placement is to make lesion detection task difficult as well as realistic. After filling

the breast volume with these components described above, the remaining unfilled

voxels comprise adipose (fat) tissue. These voxels are assigned µ̄fat = 0.025/mm. The

contrast C = (µ̄mass − µ̄duct) /µ̄duct ≈ 9.32% is very low. To complete the phantom, we

add an instance of power law noise within the breast volume. Figure 6.5 (a) displays

one instance of the phantom before the addition of power law noise, Figure 6.5 (b)

one instance of power law noise, and Figures 6.5 (c) the final (slice) phantom in which

both are added. Figure 6.2 (c) and (f) also display slice images of one final phantom

realization at two views.
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Figure 6.5: (a) A slice image of one phantom with a lesion before power law noise addition. (b) A slice image of

one power law noise realization. (c) A slice image of the final phantom with the lesion. Arrow indicates lesion. (a)

and (c) are at a common grey scale and (b) is scaled over the full dynamic range.

We note that our simulation model does not include the other anatomical compo-

nents such as the blood vessels, nerves and lymphatics. Since our task is low-contrast
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lesion detection, we do not take into account high-contrast microcalcifications in our

model.

We also note that our isocentric simulation geometry does not include breast

compression. If we examine the reasons for possibly improved lesion conspicuity in

conventional mammography following compression, we find that some of these advan-

tages may be moot for tomosynthesis. In conventional mammography, compression

may enhance lesion conspicuity, but in principle, using the least possible compression

for tomosynthesis could enhance separation of densities into distinct imaging slices,

thus improving detectability. Conventional mammography immobilizes the breast

with paddles, but for tomosynthesis there may be techniques that can immobilize the

breast without the full compression of mammography. We note that the discomfort of

full compression in mammography dissuades some women from undergoing the exam.

The smaller force of compression afforded by tomosynthesis results in less pain and

discomfort for women. Techniques include the application of a damping paddle along

the free (lateral) surfaces of the breast, or improved coupling agents between the pad-

dle and the breast skin. Paddles in conventional mammography create uniformly thick

tissue and help reduce the exposure range in film-screen mammography, but given the

wide latitude and linear response of digital receptors, this benefit from compression is

unnecessary. Compression, along with grids, reduce scatter in conventional mammog-

raphy. The additional scatter associated with uncompressed (or lightly compressed)

and gridless tomosynthetic geometries, or of isocentric geometries, may lead to some

image quality degradation, but the advantage of tomosynthesis may more than over-

come this degradation. We note that Wu et al. [43] have advocated less compression

for tomosynthesis than for conventional mammography. Smith [54] suggested that it

is adequate to use enough breast compression to pull tissues out of the chest wall and

keep motion at a mininum.
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We nevertheless note that, especially for conventional mammographic simulation,

that several efforts to mathematically model breast compression have been proposed.

The compression model used in [108] is based on tissue elasticity properties and a

deformation model, which takes advantage of the regular shapes of simulated spherical

shells and blobs. It is not clear to the reader how then to go back to a breast shape

after deformation. Samani et al. [115] presented a biomechanial compression model

of the breast deformation using a finite element formulation. Emphasis is given to the

modeling of breast tissue deformation which takes place in breast imaging procedures.

Their mechanical method using a finite element formulation is very time-consuming.
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Chapter 7

The Evaluation of Image Quality for A Lesion Detection Task

In our project presented in Chapter 8, we explored three tomosynthetic recon-

struction algorithms—BP which we referred to as method A, SART referred to as

method B and EM referred to as method C. How can we determine which method

produces the best images? What do we mean by “best”? These are the problems of

the objective measurement of image quality.

To answer these questions, we have to specify two things: the task and the ob-

server [116]. One oft-considered clinically important task is the detection of a signal

(i.e. a lesion) in a noisy background. In our case, the task is to observe the noisy

reconstructed images and decide whether or not a lesion (tumor) is present. The most

rigorous test would involve a large set of real tomosynthetic mammographic reconstruc-

tions (reconstructed by methods A, B, C) presented to real mammographers. It would

be known a priori (from a followup biopsy for example) whether each mammogram

contained a tumor, and the test could be conducted by having each mammographer

read the A, B, C mammogram sets and decide if they detect a tumor. (The mam-

mographer would not be told of the true state - lesion present or absent - of the data

set.) Such a test is realistic, but the labor in obtaining such dataset is fantastic, so

we resort to simulated images.

Our task is a simple binary decision task [117]. In mammography the most

interesting task is to detect the abnormality (the evidence of a tumor in the breast).
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The determination of whether a lesion or tumor is present in an image is a signal-

detection task [117]. The observer is the entity that will make use of the images to

perform the task. In the binary decision task, the observer determines which of two

states the image belongs to. Usually the observer is the mammographer or a medically

untrained graduate student. Alternatively, the observer could be a computer program,

such as a commercially available CAD (computer aided detection) package in use in

breast centers.

The detection task involves detecting a signal in a background. We consider dif-

ferent classes of signals and backgrounds. We shall discuss several often-investigated

detection tasks — signal known exactly/background known exactly (SKE/BKE), sig-

nal known statistically/background known statistically (SKS/BKS), SKE/BKS and

SKS/BKE. In SKE tasks, the signal is assumed to be a known deterministic entity,

i.e., all parameters characterizing the signal location, size, shape, amplitude, etc. are

assumed to be known to the observer. The signal function is completely specified

and the only uncertainty is whether or not it is present. The SKE detection tasks

are convenient to analyze because their simplicity sometimes allows for analytical

computation of figures of merit. Such tasks also serve as a good starting point for

investigating more complex signal-detection tasks that incorporate signal uncertainty.

In BKE tasks, one may assume the underlying object (the attenuation coefficients)

or background is known to the observer and fixed. There is thus no object variabil-

ity or object randomness. In SKE/BKE task, an error in detection could be due to

the effects of radiation Poisson noise or other image artifacts. However, such sim-

plified tasks are not clinically realistic. One needs to introduce randomness in both

signal and background (i.e. SKS/BKS). The stochastic background variation is also

termed “clutter”, “object variability” or “background variability”. It is essential that

the background variability be as realistic as possible. One can achieve background
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variation by statistically defined background such as i.i.d noise and complex lumpy

background [118]. Those statistically defined backgrounds are easy to treat analyti-

cally, however, it may not be sufficiently realistic for some applications. Sometimes

a signal is not known exactly but can be described by a function with a number of

unknown parameters. Typical parameters characterizing randomness in the signal are

amplitude, size, shape, contrast and location. When the signal location is unknown,

the more realistic task extends to a detection plus localization.

In this study, we actually have a SKS/BKS task with signal location known since

a randomly generated lesion is embedded in a complex randomly generated background

clutter. The observer is human, in this case, members of several medical imaging labs

at Stony Brook University.

7.1 Figures of Merit

7.1.1 The ROC Curve

We shall restrict our discussion to the binary decision case, in which the im-

age belongs to two hypotheses: H0 (signal absent) and H1 (signal present). We first

consider a very general case with an abstract observer. Let g denote an image that

may or may not contain a signal (i.e. a lesion or a tumor). An observer interprets

the images to distinguish “positive” (signal present) images from “negative” (signal

absent) images and determines a scalar decision variable (test statistic) which is then

compared to a threshold to classify the image into H0 or H1. Since the test statistic

is related [119] to the data through a discriminant function T (g) = t , and it is a

random variable, sometimes denoted as t(g). Roughly speaking t(g) is a measure of

confidence that the signal is present. The probability density function on t(g) de-

pends on the hypothesis. Let p(t|H0) and p(t|H1) denote probability density functions

conditioned on the underlying hypothesis H0 and H1, respectively, and P (t|H0) and
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P (t|H1) denote cumulative functions conditioned on the underlying hypothesis H0 and

H1, respectively. The overlap of the density functions p(t|H0) and p(t|H1) is shown in

Figure 7.1. Image quality is determined by the degree of separation/overlap of these

two density function [117].
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Figure 7.1: The decision making diagram. As indicated in the legend, the shaded areas under the curves represent

the false positive and true positive decision probabilities for the threshold shown.

Once the test statistic t is determined for a given image, the observer compares

it to a threshold τ and decides signal present if t > τ , otherwise signal absent. There

are four possible decision outcomes for a given threshold τ [119]:

• True positive (TP): H1 is true; observer decides that H1 is true. In other words,

an actually-positive image will be diagnosed correctly as “positive”.

• False positive (FP): H0 is true; observer decides that H1 is true. In other words,
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an actually-negative image will be diagnosed falsely as “positive”.

• True negative (TN): H0 is true; observer decides that H0 is true, which means

that an actually-negative image will be diagnosed correctly as “negative”.

• False negative (FN): H1 is true: observer decides that H0 is true, which means

that an actually-positive image will be diagnosed falsely as “negative”.

We notice that the observer correctly determines the underlying hypothesis in two of

decision outcomes (TP and TN), and also makes two types of errors (FP and FN).

The probability of a true positive decision is called as true positive fraction (TPF),

which is also known as the sensitivity of the imaging system [120]. The probability of

deciding signal present when the signal is not is called as false positive fraction (FPF).

The system’s specificity, also called true negative fraction (TNF) is the probability of

deciding the absence of a signal when it is absent. The false negative fraction (FNF)

is the probability of deciding the absence of a signal when it is present. Let N be the

number of decisions made by an observer, and NTP be the number of true positive

decisions made by the observer. Similar notations apply to NFP , NTN and NFN .

Since a decision made by the observer always falls in one of four decision outcomes,

N = NTP +NFP +NTN +NFN . Four probability functions are mathematically defined

as [119]:

TPF = 〈 NTP

NTP + NFN

〉 = lim
N→∞

Number of true positive decisions

Number of actually positive cases
(7.1)

TNF = 〈 NTN

NTN + NFP

〉 = lim
N→∞

Number of true negative decisions

Number of actually negative cases
(7.2)

FPF = 〈 NFP

NTN + NFP

〉 = 1 − TNF (7.3)

FNF = 〈 NFN

NTP + NFN

〉 = 1 − TPF (7.4)

These four fractions range from zero to one. As seen in Figure 7.1, these four fractions
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are the areas under the corresponding PDFs on t for a given threshold τ :

TPF (τ) = Pr(t ≥ τ |H1) =
∫ ∞

τ
p(t|H1)dt = 1 − P (τ |H1) (7.5)

FPF (τ) = Pr(t ≥ τ |H0) =
∫ ∞

τ
p(t|H0)dt = 1 − P (τ |H0) (7.6)

FNF (τ) = 1 − TPF =
∫ τ

−∞
p(t|H1)dt = P (τ |H1) (7.7)

TNF (τ) = 1 − FPF =
∫ τ

−∞
p(t|H0)dt = P (τ |H0) (7.8)
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Figure 7.2: An ROC curve.

As we can see, TPF and FPF depend on the threshold value τ . The decision

made by the observer is based upon the threshold value. For example, if an observer

wants to be cautious (conservative), he/she might designate a suspicious region as

“cancer” even though they think it unlikely to actually be “cancer”. If they were less

cautious, the same image might lead to “no cancer” decision. Changing the threshold

value changes both an imaging system’s sensitivity and the system’s specificity, and

results in a different set of decision fractions. When varying the decision threshold

τ , we obtain a curve of TPF versus FPF which is known as a receiver operating

characteristic (ROC) curve [120]. Figure 7.2 displays a typical ROC curve. Three

operating points are shown in Figure 7.2. Point P1 corresponds to use of a strict
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threshold so that the observer make very few true positive decisions and very few

false positive ones. Point P2 indicates the use of a moderate threshold level. Point

P3 corresponds to use of a conservative threshold where an observer makes many true

positive response as well as false positive decisions.

7.1.2 The Area Under the ROC Curve (AUC)
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Figure 7.3: A graphy showing three ROC curves.

The the area under the ROC curve (AUC) is a commonly used figure of merit to

measure detection performance, which is independent of any decision threshold since

the AUC is the average TPF over all FPF [119] and integrated over all operating

points. Below we will show how to compute AUC without computing the ROC curve

itself. Figure 7.3 shows three ROC curves obtained from three different tests (e.g.

these could be reconstruction algorithms A, B and C in our study). Curve A and

curve B with the same area cross over each other at point P . In this case, one would

conclude that tests A and B provide overall equal detectability of the lesion, but they

are not identical. In order to determine the optimal test system from A and B, one

needs to know the clinical requirements of the test system [120]. For example, if the
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system needs a high sensitivity, then the user would pick test B. Thus the ROC curve

provides more information than the AUC, but the AUC is an acceptable figure of

merit for initial studies where optimal thresholds are possibly unknown.

The AUC can be mathematically related to the distributions of the test statistic

under the signal-present and signal-absent hypotheses in two different ways as shown

below:

AUC =
∫ 1

0
TPFd(FPF )

=
∫ −∞

∞
[1 − P (t|H1)] (−p(t|H0)dt)

= 1 −
∫ ∞

−∞
P (t|H1)p(t|H0)dt (7.9)

AUC =
∫ 1

0
(1 − FPF )d(TPF )

=
∫ −∞

∞
P (t|H0) (−p(t|H1)dt)

=
∫ ∞

−∞
P (t|H0)p(t|H1)dt (7.10)

7.1.3 Signal-To-Noise Ratio (SNR) and Detectability dA

The separability of two classes in the binary detection problem is determined by

the degree of overlap of the density functions of the test statistic [119] (see the overlap

of two lumps of the density functions in Figure 7.1). It is this overlap that controls the

detectability of the signal. The AUC is one metric of this overlap. Another available

FOM for detection tasks is the observer signal-to-noise ratio (SNR) related to t:

SNR =
〈t|H1〉 − 〈t|H0〉

√

1
2
var(t|H1) + 1

2
var(t|H0)

(7.11)

where 〈t|H1〉 and 〈t|H0〉 are means of t under hypotheses H1 and H0, var(t|H1) and

var(t|H0) are variances of t under hypotheses H1 and H0. The SNR is one way to gauge

the separability of two lumps of the probability density functions (refer to Figure 7.1).

From Equation 7.11, we can see that SNR is proportional to the difference between

their means and is inversely proportional to their variance, that is, the bigger the
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difference between their means and the smaller their variance is , the more separable

the two lumps are. If they are highly separable, then the likelihood of a correct

decision increases. Notice that SNR only requires the information of the first and

second moments of t|H1 and t|H0, thus is less representative but easier to quantify

than the AUC.

When t|H0 and t|H1 are normally distributed, the SNR is found to have a mono-

tonic relationship with AUC [119]

AUC =
1

2
+

1

2
erf
(

SNR

2

)

(7.12)

where the error function erf(z) is defined by

erf =
2√
π

∫ z

0
exp(−x2)dx (7.13)

There are potential advantages in using the AUC as an FOM rather than the

SNR when the test statistic does not follow a Gaussian distribution under one or

two hypotheses. This is because the SNR only considers the first- and second- order

statistics of the test statistic, whereas the AUC incorporates higher-order statistics as

well [121].

Another figure of merit for signal detection is the detectability dA. This FOM is

defined simply as a nonlinear transformation of the AUC. It is found written in three

different ways in the literature [119]

dA = 2erf−1(2AUC − 1) = 2erfc−1 (2(1 − AUC)) =
√

2Φ−1(AUC) (7.14)

where erf−1 and erfc−1 are the inverses of the error function defined in Equation

7.13 and the complementary error function, respectively. The function Φ−1 is the

inverse of the standard cumulative normal distribution. The detectability provides a

relationship between the AUC and the observer SNR. If the observer response has a

Gaussian distribution under each hypothesis, then dA = SNR [119].
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7.2 Two-Alternative-Forced-Choice (2AFC) Methods

The ROC curve provides a complete description of observer performance and

can be applied to any two-state classification task (i.e. signal present or absent). In

situations where the full ROC is not required, a two-alternative forced-choice (2AFC)

technique provides an alternative approach to evaluate the performance of human

observers on a detection task by measuring the AUC.

In a 2AFC test, an observer is presented with two images simultaneously, and

one is drawn from the group with signal present and another is drawn from the group

with signal absent. The observer is required to choose which image contains the signal

present. The probability of a correct decision, referred to PC , ranges from 0 to 1

and measures the performance of the observer-system combination on the detection

task. The observer does not need to adopt any threshold; Instead he/she just compare

images with each other.

We shall show the expected PC in this 2AFC test equals the expected AUC

(PC = AUC) in a conventional ROC experiment [119] below. From Equations 7.5 and

7.6, one can rewrite Equation 7.9

AUC =
∫ −∞

∞
(−p(t|H0)dt) TPF (t)

=
∫ ∞

−∞
p(t|H0)dt

∫ ∞

t
p(τ |H1)dτ (7.15)

By using the step function to rewrite Equation 7.15, one can obtain another form for

AUC:

AUC =
∫ ∞

−∞
dt
∫ ∞

−∞
p(t|H0)p(τ |H1)step(τ − t)dτ (7.16)

The AUC derived above requires knowing the densities p(t|H0) and p(t|H1). Since

the test statistic t is a random variable through its dependence on the M -dimensional

data g, the density functions p(t|H0) and p(t|H1) can be expressed as:

p(t|H0) =
∫

∞
p(t|g)p(g|H0) =

∫

∞
δ(t − T (g))p(g|H0)d

Mg (7.17)
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p(t|H1) =
∫

∞
p(t|g)p(g|H1) =

∫

∞
δ(t − T (g))p(g|H1)d

Mg (7.18)

Substituting Equations 7.17 and 7.18 into Equation 7.16, one has

AUC =
∫ ∞

−∞
dt
∫ ∞

−∞
dτ
∫

∞
δ(t − T (g))p(g|H0)d

Mg

=
∫

∞
δ(τ − T (g+))p(g+|H1)step(τ − t)dMg+

=
∫

∞
dMg

∫

∞
p(g|H0)p(g+|H1)step(T (g+) − T (g))dMg+ (7.19)

In the 2AFC method, the data g and g+ are drawn from p(g|H0) and p(g+|H1),

respectively. The observer’s task is to choose image from H1. To make a decision,

the observer computes two test statistics T (g) and T (g+) and the data vector that

results in higher value is then decided to be signal present. This decision is correct if

T (g+) > T (g). Thus, the probability of a correct decision is

Pc = p(T (g+) > T (g)) =
∫

∞
dMg

∫

∞
p(g|H0)p(g+|H1)step(T (g+) − T (g))dMg+

(7.20)

which is equal to AUC in Equation 7.19.

There is another way to proof that the AUC and PC are mathematically identical.

Using Equation 7.8, one can rewrite Equation 7.10 as

AUC =
∫ ∞

−∞
P (t|H0)p(t|H1)dt

=
∫ ∞

−∞
p(t|H1)dt

∫ t

−∞
p(τ |H0)dτ (7.21)

In a 2AFC trial, the observer is presented with two images and asked to identify

which image contains the signal. This decision process is modeled by assuming that

the observer forms a response to each image and then choose the image with the

largest response. Let t+ be a random variable drawn from p(t|H1) and let t− be an

independent random variable drawn from p(t|H0). Then the probability of a correct

decision is defined as

PC = p(t+ > t−) (7.22)
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We can see that PC is simply the probability that a random sample drawn from p(t|H1)

will be greater than an independent sample drawn from p(t|H0). The equivalence

between Equations 7.21 and 7.22 is not obvious. We shall derive that. The probability

that t+ > t− for a fixed value of t+ = t is given by

p(t+ > t−|t+ = t) =
∫ t

−∞
p(τ |H0)dτ (7.23)

Using the equation above, the PC can be derived as [122]

PC = p(t+ > t−)

=
∫ ∞

−∞
p(t+ = t)p(t+ > t−|t+ = t)dt

=
∫ ∞

−∞
p(t|H1)

∫ t

−∞
p(τ |H0)dτ

= AUC (7.24)

In a 2AFC experiment, PC is commonly estimated with the percentage of cor-

rection decisions. The estimate of AUC is typically obtained by computing the area

under an estimated ROC curve, while PC is estimated from 2AFC experiments with

no reference to an ROC curve. Therefore, if only the total area under the ROC curve is

of interest, the AUC can be measured directly by the 2AFC test. We have conducted

such tests for nuclear medicine imaging systems [123], and we shall adopt the same

methodology here to compare three tomosynthetic algorithms in a low-contrast lesion

detection task. The 2AFC testing procedure is described in detail in Section 8.4.1.

7.3 Alternative Figures of Merit

For breast tomosynthesis, besides AUC and SNR, there are other FOMs used by

researchers—contrast-to-noise ratio (CNR) and artifact spread function (ASF). The

CNR measures the detectability of a feature in a reconstruction plane as well as AUC,

while the ASF is the FOM for evaluation between in-focus plane and off-focus plane.
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7.3.1 Contrast-To-Noise Ratio (CNR)

The contrast-to-noise ratio is a quantity used for comparing low-contrast de-

tectability, also called the signal difference-to-noise ratio [62] and is defined by

CNR =
µ̄feature − µ̄BG

σBG

(7.25)

where µ̄feature and µ̄BG are the average pixel intensities measured in the mass and and

its background area of the tomosynthetic reconstruction slice, respectively, and σBG

is the standard deviation of the pixel intensity in the background area. The average

pixel intensity of a mass µ̄feature can be calculated in a small region of interest (i.e.

35 × 35-pixel region) which is enclosed within the relatively uniform central area of

the mass [63]. To estimate the background noise µ̄BG and σBG, the same size region of

interest (i.e. 35× 35-pixel region) is chosen from the same slice as the the mass under

consideration, which is far from the mass and the boundaries of the imaged volume.

7.3.2 Artifact Spread Function (ASF)

In tomosynthetic reconstruction, the Z resolution is much lower than the in-plane

resolution which is determined from the detector resolution due to the limited angular

range in image acquisition. Artifacts exists in the reconstruction as a result of the

limited Z resolution. Ghosting artifacts from a real feature located in an image plane

are usually observed in other image planes, with an appearance similar to that of the

real feature. The artifacts are spread to other adjacent planes, and stronger in image

planes that are closer to the plane in which the real feature is located. The artifact

spread function (ASF)is used to evaluate image blur in the Z direction (perpendicular

to the XY detector plane) of reconstructions and the artifact effects of features in the

adjacent off-focus planes, which is defined as the ratio of contrasts [62]

ASF(z) =
µ̄AF (z) − µ̄BG(z)

µ̄feature(z0) − µ̄BG(z0)
(7.26)
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where z0 is the slice location of the in-focus plane of the feature, z is the location of an

off-focus plane,µ̄feature(z0) and µ̄BG(z0) are the average pixel intensities of the feature

and the image background in the in-focus plane, respectively, µ̄AF (z) and µ̄BG(z)

are the average pixel intensities of the artifact and the image background in the off-

focus plane, respectively. The values of µ̄feature(z0) and µ̄BG(z0) can be measured in

two small regions with the same size located in the center of the mass and in the

background of the in-focus plane respectively; µ̄AF (z) and µ̄BG(z) can be measured in

two small regions at the same off-focus slice plane.

A similar ASF was used to evaluate the artifacts along Z direction in a breast

tomosynthesis study [63], and defined as the ratio of the CNRs between the off-focus

plane and the in-focus (feature) plane:

ASF(z) =
CNR(z)

CNR(z0)
(7.27)

The CNR is used to define the ASF since the noise levels are expected to be different

on the reconstructed images at different depths and the detectability of a feature is

dependent more on the CNR than on the contrast.

Finally, we mention another commonly used figure of merit, DQE (detective

quantum efficiency). This FOM does not apply to signal detection, but is instead used

to measure the physical performance of a detector. Therefore, we do not consider it

in this work.
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Chapter 8

Experimental Results

Given the 3D breast phantom described in Chapter 6, we can investigate various

problems. Ours is to evaluate the performance of three reconstruction methods in

a low-contrast lesion detection task. Before doing that, we first need to collect 2D

projection data and then reconstruct them to a 3D breast estimate. The following is

our project.

8.1 Data Acquisition in Breast Tomosynthesis

For our study, we generate 100 signal-present phantom realizations and 100

signal-absent phantom realizations. Each realization has variability in power-law noise,

connective fibers, ductal trees and lesions (for signal-present phantoms). To reduce

computation time, we use 50 ductal patterns distributed amongst the 200 breast re-

alizations. A specific realization of a ductal pattern may or may not obscure a (fixed

location) lesion. We select these 50 ductal patterns so that they all obscure the lesion

(when a lesion was present) in the breast phantom. We recommend variable patterns

of ductal trees in all experimental phantoms. Ductal tree realizations are constructed

by the stochastic branching process. For each realization, we need to decide whether

this realization is good or not (i.e. is sufficiently obscuring) for our purposes in terms

of the fixed lesion location in the dense area of the breast. The reject rate is around

50%. The density of the area surrounding the lesion is a dominant factor for the
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lesion detection task. The more dense the lesion surrounding area, the more difficult

the lesion detection. One instance of Cooper’s ligaments is used in all 200 phantoms

since it does not affect lesion detectability that much.

In this experiment, an isocentric half cone-beam geometry is used to collect 11

low-dose projection images over a limited angular range from −25o to +25o at 5o

equal increments, as shown in Figure 8.1. Figure 8.1 defines our X−Y −Z coordinate

system. Figure 8.1 (c) shows the front view (drawn to scale) of the isocentric geometry

in X-Z plane. The x-ray tube and the detector (666x400 pixels, 0.3 mm pixel size)

are rotated in an arc about a common axis while the breast phantom is stationary.

The distance between the X-ray source and the center of rotation is 110 cm, and the

distance between the center of rotation and the detector 20 cm. The center of rotation

lies within the breast.

This isocentric geometry can be used if some method of stabilizing breast motion,

such as a cup arrangement could be used. An easier arrangement to construct is

to lightly compress the breast with a conventional paddle and use a conventional

mammographic hardware while the tube is allowed to rotate. The isocentric geometry

is easier to simulate though we are able to simulate any geometrical arrangement. The

detection experiments results are not expected to change much with these variations

in geometry.

As discussed in Section 4.2, the number of photons yi recorded on the ith detector

pixel is an independent Poisson random variable distributed as Equation 4.17:

yi ∼ Poisson
(

bi e
−[Aµ]i

)

, i = 1, . . . , N

where the blank scan bi is the photon number recorded on the ith detector element

with the breast phantom absent. Though bi should vary with i, we set bi = 30125 for

all rays. This number was chosen so that the Poisson noise per one of our detector

bins is consistent with the dose requirement for acquisition (i.e. the total dose over
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all views equals the dose for a conventional mammography study.) This number was

obtained from data provided by Jun Zhou also working on mammography at Stony

Brook University. Let µ denote the vector whose element µj is the unknown linear

attenuation coefficient (in mm−1) at the jth voxel (j = 1, . . . ,M), where M is the

number of voxels (M=360x230x400). Figure 8.2 shows noisy ML and CC projection

images of two breast phantom realizations. Scatter events and electronic noise effects

for a flat-panel detector were not simulated in this study.

8.2 Reconstruction Algorithms

In our simulation study, we investigate the efficacy of three different tomographic

reconstruction methods, convex ML-EM, SART and Backprojection (BP), in the con-

text of an especially difficult mammographic detection task. The task is the detection

of a low-contrast mass embedded in very dense fibro-glandular tissue — a clinically

useful task for which tomosynthesis may be well suited. The choice of algorithms

is motivated as follows: BP is simple to implement and fast. SART is an example

of a deterministic linear inversion technique, and the convex ML-EM is a statistical

reconstruction technique that models one component of the maximum likelihood, the

Poisson noise. We chose convex ML-EM instead of MAP and OS type of algorithms

because MAP and OS were developed concurrently with our own project. In our study,

we wanted to use one basic example of BP, one basic linear algebraic algorithm, and

one basic statistical algorithm.

As discussed in Section 2.4.2, in tomosynthetic digital mammography, we are

interested in reconstructed slices with high resolution in the XY plane and with lower

resolution along the Z direction, since projection data is over a limited angle. This

can be done by acquiring projection data from 0.4 mm cubic phantom voxels and

reconstructing the breast estimates onto rectanguloid voxels of longer length along
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the Z direction. Hence, each layer of the reconstructed breast is a “thick” slice. The

length in the Z direction of the rectanguloid voxel is variable according to the required

resolution. Here we use 3.2 mm, equivalent to a rectanguloid of relative dimension

1×1×8. The reconstructed breast size is thus 360×230×50 (This for reconstruction,

M = 360 × 230 × 50).

Deterministic methods require computing the logarithm of the measured projec-

tion data to obtain the line integral estimate prior to estimating the tomosynthetic

slice images. Statistical methods use the measured projection data rather than their

logarithm, based on the Poisson measurement statistics.

8.2.1 Simple Backprojection Method

The tomosynthetic BP method is attractive because of its simplicity and speed of

implementation. As discussed in Section 5.1.1 for certain acquisition geometries, it is

essentially equivalent to a “shift-and-add” algorithm [40]. Backprojection is performed

by smearing a set of 2D projection images uniformly back into the 3D breast space

along the incident x-ray paths. In this operation, the estimated attenuation coefficient

of the voxel is proportional to the weighted summation of all the values of detector

pixels whose rays intersect this voxel. The attenuation coefficient updates of voxels

are parallel as given by Equation 5.5: The BP algorithm leads to low contrast blurred

slice images due to artifacts caused by out-of-plane features. Figure 8.3 (b) shows one

BP reconstruction with lesion present.

8.2.2 SART Algorithm

SART is one type of iterative algebraic reconstruction method operated on a set

of measured line integrals. The breast estimate is generated by iteratively performing

projections of intermediate estimates and correction backprojections. SART is well

suited for the tomosynthesis cone-beam geometry with a few projection views. The
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goal of the SART method is to seek solutions µ to the following linear system of

equations using an iterative technique: The attenuation coefficient updates of voxels

are given in Equation 5.13:

µn,k+1
j = µn,k

j + λ

∑

gi∈Gk

(

aij

gi−
∑M

j=1
aijµn,k

j
∑M

j=1
aij

)

∑

gi∈Gk
aij

One iteration requires traversing all projection views (K = 11). The denominator term

∑

gi∈Gk
aij in the above equation is a backprojection operation. The term

∑M
j=1 aij is the

forward projection of the unit volume. Both terms are one-time computations, and can

be precomputed and stored. Therefore, the update needs only one forward projection

∑M
j=1 aijµ

n,k
j in the numerator and one backprojection — the summation over gi (the

numerator term). We note that the attenuation coefficient update of voxels is parallel

for a given subiteration. Typically, the iterations are terminated before convergence

to control noise growth. Figure 8.3 (c) shows one SART reconstruction with lesion

present.

8.2.3 ML-EM Algorithm

As discussed in Section 5.1, deterministic methods do not take into account the

statistical nature of noisy data. Accurate statistical modeling may lead to improved

detection performance in high-noise reconstructions. In this study we employ the con-

vex ML-EM algorithm proposed by Lange and Fessler [90] rather than the basic EM

algorithm in[84] because the basic EM converges very slowly and requires a large num-

ber of exponential computations as discussed in Section 5.2.1. This ML-EM method

has been applied to breast tomosynthesis reconstruction by Wu et al [43].

Using the convex ML-EM method, the update of the voxel attenuation coefficient

at each iteration is given by Equation 5.31:

µn+1
j = µn

j

∑N
i=1 aij

[

b e−[Aµn]i (1 + [Aµn]i) − yi

]

∑N
i=1 aij[Aµn]ib e−[Aµn]i
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The numerator of the second term is proportional to the attenuation estimate µn
j ,

therefore the update is multiplicative. To avoid a zero estimate, one needs to choose

non-zero initial condition. The summation over rays in the numerator is a backpro-

jection of the difference between the current projection estimate b e−[Aµn]i and the

observed projection yi. This difference term is backprojected into the voxel, then

weighted by a backprojection factor in the denominator.

The optimal number of iterations for two iterative algorithms—SART and ML-

EM is determined by series of 2AFC tests with small sample sizes (60 pairs). See

Section 7.2 for more theoretical detail. The involved test procedure will be presented

in next section. We perform reconstructions at varying numbers of iterations and

conducted 2AFC tests with 4 human observers to choose the iteration number that

maximized the percentage of correctness. For EM, this is 20 iterations; for SART, it

is 5. Note that for iterative SART and ML-EM, we take the initial estimate equal to a

constant object. Once we have chosen the stopping criteria, we use the reconstruction

results from these three algorithms to conduct 2AFC tests in Section 8.4.

8.3 Implementation of Reconstruction

In tomosynthetic mammography, we are most interested in reconstructed object

with high resolution in the XY 2D plane and lower resolution in the Z direction

because there are a limited number of projection views. Less information about fea-

ture detail in the Z direction is needed. For implementation, we propose using the

anisotropic (rectanguloid) voxel whose length in the Z dimension is much longer than

in the X and Y dimensions and whose XY planes are square. Hence, each layer of the

reconstructed object is a “thick” slice. The length in the Z direction of the rectanguloid

voxel is variable according to the required resolution. We use 0.4mm×0.4mm×3.2mm
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voxels.

Typically, The reconstruction process involves projector/backprojector subrou-

tines. Recall that the projector is basically the line integral of attenuation coefficient

distributions as given in Equation 5.3:

gi = [Aµ]i =
M
∑

j=1

aijµj, i = 1, . . . , N, j = 1, . . . ,M.

where µj is the attenuation coefficient at voxel j and aij is the intersecting chord

length of the ray i through the voxel j. The key is how to calculate the chord length

aij. Now, we describe our implementation based on the modified Siddon’s ray-tracing

method [124] by Han [125]. Figure 8.4 illustrates the isocentric cone-beam geometry

at 0o, which is used in our calculation. The 3D coordinate system has its origin at

the center of rotation (COR), though the X and Y axes are displayed in a displaced

manner for clarity. The source (x0, y0, z0) and the detector are rotated around the

the COR synchronously. The source and detector rotate synchronously about the

fixed breast. The rotation angle θ is shown in Figure 8.4. The angular movement is

perpendicular to the plane of the figure.

The user need to define the following input parameters: the breast size (ObNox,

ObNoy, ObNox) in the X, Y , Z directions in terms of the number of voxels, the

physical voxel sizes (V sizex, V sizey, V sizez) with units if mm, the detector size

(BinNox, BinNoy) in the X, Y directions in terms of the number of pixels, the

physical pixel sizes (Bsizex, Bsizey) with units if mm, the number of angles, the

starting angle (i.e. −25o), the ending angle (i.e. +25o), the distance SourceR between

the source (x0, y0, z0) and the COR with unit mm, the distance DetectorR between the

COR and the detector with unit mm, the physical position of the breast (xb0, yb0, zb0)

with units mm and the physical position of the detector (xd0, yd0). The COR is the

origin (0, 0, 0) of this coordinate system in Figure 8.4. Note that the physical voxel

size in the Z direction V sizez can be different from V sizex or V sizey, thus resulting
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in rectanguloid voxels. The physical positions (xb0, yb0, zb0) and (xd0, yd0) are relative

to the COR.

Before performing any calculation, we need to make sure that the detector width

with given pixel size and given number of pixels can capture all information of the

3D breast with given voxel size and given number of voxels, that is, no rays passing

through the breast can fall off the detector. This can be done by using a “placer”

visualization software developed by Fang Xu, a research assistant in Computer Sci-

ence Department, SUNY at Stony Brook. Figure 8.6 illustrates the display of the

placer. The placer software allows one to specify a bounding volume for the breast,

an acquistion geometry and detector size. It then checks that all projection views at

all angles do not “fall off” the detector.

The source position (x0, y0, z0) varies with the acquisition view θ, given by:

x0 = SourceR ∗ sin θ

z0 = SourceR ∗ cos θ (8.1)

Note that y0 = 0 does not vary with the angle θ. For a given angle θ, the position

(x1, y1, z1) of the detector bin indexed by (binx, biny) is calculated as:

x1 = (xd0 + (binx + 0.5) ∗ Bsizex) ∗ cos θ − DetectorR ∗ sin θ

y1 = yd0 + (biny + 0.5) ∗ Bsizey

z1 = −(xd0 + (binx + 0.5) ∗ Bsizex) ∗ sin θ − DetectorR ∗ cos θ (8.2)

where the bin index binx = 1, · · · , BinNox and biny = 1, · · · , BinNoy. The projection

ray i is given by the line connecting the x-ray source (x0, y0, z0) denoted by P0 and

the detector bin (x1, y1, z1) denoted by P1.

Then we can follow the modified Siddon’s ray-tracing method to compute the

indices of the voxels that the given ray i passes through and to calculate the chord

lengths intersected voxels along the ray. The indices of intersecting voxels and their

122



corresponding chord lengths are stored in user-defined structure variable raytbl, which

is defined as follows:

struct raytbl3D{

short ∗ x; / ∗ voxel index in x direction ∗ /

short ∗ y; / ∗ voxel index in y direction ∗ /

short ∗ z; / ∗ voxel index in z direction ∗ /

float ∗ length; / ∗ corresponding chord length ∗ /

short size; / ∗ the number of voxels along a given ray i ∗ /

} raytbl

For simplicity, a 2D geometry in Figure 8.5 is used to illustrate the intersections of

chords with voxel boundaries inside the breast volume. In this ray-tracing algorithm,

a ray from the source P0 to a specific detector pixel P1 is represented as:

x(λ) = x0 +
λ

L
(x1 − x0) (8.3)

y(λ) = y0 +
λ

L
(y1 − y0) (8.4)

x(λ) = z0 +
λ

L
(z1 − z0) (8.5)

where λ is the distance from the source P0 or the starting point of the ray, and L is

given by:

L =
√

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2 (8.6)

The parameter λ is computed at each intersection of the ray with each set of parallel

planes and and then merged in the tracing process. Then the intersecting length can

be computed as

l(m) = λ(m) − λ(m − 1) (8.7)

where λ(m) is the distance from P0 to the current intersecting voxel, and λ(m− 1) is

the distance from P0 to the previous neighboring intersecting voxel. The chord length
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of the current intersecting voxel l(m) is stored as the mth element in the array length

of structure variable raytbl. The indices of the current intersecting voxel is computed

as

vx(m) =















vx(m − 1) + 1, if x0 < x1

vx(m − 1) − 1, if x0 > x1

(8.8)

vy(m) =















vy(m − 1) + 1, if y0 < y1

vy(m − 1) − 1, if y0 > y1

(8.9)

vz(m) =















vz(m − 1) + 1, if z0 < z1

vz(m − 1) − 1, if z0 > z1

(8.10)

The indices of the current intersecting voxel, vx(m), vy(m), vz(m), are stored as the

mth element in arrays x, y, z of variable raytbl, respectively. In Figure 8.5, a given ray

i passes through seven voxels, rn, n = 1, · · · , 7 are corresponding chord lengths. Once

aij in Eq. 8.3 are known, we can use these values to perform forward projection gi on

the fly. A similar approach is applied to the backprojector subroutine. The tomosyn-

thetic reconstruction routines are iterative operations of projector/backprojector. Re-

call that all iterative reconstruction algorithms require forward projections and back-

projections at each iteration from Chapter 5. The operations both Aµ for forward

projection and ATy for backprojection involve the system matrix A, that is, need

its elements aij’s, which can be obtained by running this described ray-trace routine

above.

We have described in some detail the projection/backprojection software for an

isocentric geometry. The software is quite easily adapted to a variety of geometries

including a stationary detector geometry favored in some tomosynthesis systems. (We

have experimented with such geometries but results are not presented here.)

When the 3D breast object or its reconstruction needs to be viewed, we use a

“slicer” tool developed by Fang Xu in the Stony Brook Computer Science Department
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to display the dense 3D object one slice at a time. The slicer is able to simultaneously

display slices from two objects (i.e. the breast and its reconstruction), both at the

same orientation. The slicer has capabilities to control contrast, zoom, rotation and

other parameters. Figure 8.7 illustrates one example of the slicer display.

8.4 2AFC Test in Low-Contrast Lesion Detection Task

8.4.1 Testing Procedure

Recall that our goal is to estimate AUC via the 2AFC method are described in

Chapter 7. And recall from earlier section that 100 pairs (signal present and signal

absent) of 3D breast estimates are reconstructed through three methods—BP, SART

and EM, respectively. The 2D slice images of interest (the center of the lesion) is

extracted from each of 100 pairs of reconstructions as our 100-image test set for each

algorithm. Thus the total number of images is 600. For each reconstruction method,

we used a 25-image training set to familiarize human observers with the image set’s

characteristics. Each observer underwent a total of 3 sessions, each for each algorithm.

The sequence of three algorithms for each observer is variable. For example, observer

1 may choose algorithm A as his/her first test session, algorithm B as the second,

algorithm C as the third, while observer 2 may choose algorithm B as his/her first

test session, algorithm C as the second, algorithm A as the third. The observer

took a significant rest after each session. This strategy, along with the choice of the

number of training and test images, avoided observer fatigue. The sets corresponding

to different reconstruction methods were presented in different pairs and different

orders to different observers so as to avoid learning effects. There were a total of

Nobs = 5 observers, all graduate students and postdocs from our lab (excluding the

author) or other labs.

To implement the 2AFC, we used the software modified by a member of our
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group, Jorge Oldan, and the source of the software is from the “Test2AFC” MATLAB

scripts provided by the University of Arizona’s Center for Gamma-Ray Imaging (an

NIH resource). Our modification of this software package can be found at

www.mil.sunysb.edu/publications.html

For each reconstruction method, the 2AFC tests were conducted as follows. As seen in

each row of Figure 8.8, each person was presented with three black and white 360×230

images on a standard CRT monitor. The central panel always displayed the signal

in order to help the human observer localize the signal locations in the test images.

The left and right panels display two noisy reconstructions on the sides. One panel

contained a noisy reconstruction with the lesion absent, the other a noisy reconstruc-

tion with the lesion present. The panel with the lesion was randomly determined via

a randomization function that consulted the system clock to be either on the right or

the left side. The size of all three pictures as measured together on the monitor was

20.32 cm wide by 10.0 cm high. Each individual picture is rectangular, measuring 6.43

cm wide by 10.0 cm high.

The observer had to choose with a right or left mouse-button click which side

they thought the picture (with lesion) was on. The observer has as much time as they

needed to observe the images, and was free to move their head position and viewing

distance as they saw fit. The average viewing distance was about 38 cm and we

noted that actual viewing distances did not dramatically differ from this average. The

correctness of their answer was immediately reported (i.e. ”correct” or ”incorrect”),

as was their total percent correct (PC) when they finished the experiment. Room

lights were turned off and the blinds are used to block the light from outside through

the window.
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8.4.2 Results Discussion

After the test results from 2AFC expriments were obtained for all five observers,

we calculated the averaged PC over five human observers for each algorithm, P̄C , given

as follows:

P̄C =
1

Nobs

Nobs
∑

r=1

PC,r (8.11)

where Nobs = 5 is the number of observers. Let r index the observer, so that PC,r is the

percent correct (as measured by 2AFC) of the rth observer (Recall that PC = AUC

as was shown in Section 7.2). We also calculated error bars for PC , σPC
, using the

standard error of the mean-squared percent correct:

σPC
=





1

Nobs(Nobs − 1)

Nobs
∑

r=1

(PC,r − P̄C)2





1
2

(8.12)

where σPC
is the standard error associated with inter-observer variability. With 100

Algorithm P̄c σPc

ML-EM 0.888 0.0114

SART 0.828 0.0102

BP 0.661 0.013

Table 8.1: Human observer results for EM, SART and BP

2AFC trials per algorithm, the error in PC is determined far more by inter-observer

variability than intro-observer variability. That is, with 100 Bernoulli trials in the

2AFC test, the sample error for one observer is small compared to the inter-observer

variability.

The numbers of iterations for both ML-EM and SART methods were experimen-

tally determined in this study. In order to obtain the optimal number of iterations, we

run additional 2AFC tests with small sample sizes (60 pairs). The reconstructions are
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performed at varying numbers of iterations and 2AFC experiments are conducted with

4 observers. We choose the iteration number that maximizes P̄C as our optimal num-

ber of iterations. For ML-EM, this optimal number is 20 iteration for this particular

task; for SART, it is 5. In fact, the SART method even with one iteration can provide

tomosynthesized images with much detail structures. The SART method converged

faster than the ML-EM method. From this point of view, the SART method is more

effective than the ML-EM method in reconstruction time. A possible reason for the

faster SART convergence is this: the linear attenuation coefficients are updated at

each projection view in the SART method; while for the ML-EM method, the update

is performed after all projection views are processed.

Table 8.1 summarizes performance results of three algorithms. It is seen from the

preliminary results that for this difficult low-contrast lesion detection task, the itera-

tive methods ML-EM and SART perform better than simple BP in terms of percent

correctness. As seen in Figure 8.8, The BP method resulted in low-contrast features

and vey smooth reconstruction images. In the BP images, it is very difficult to observe

low-contrast masses. The SART and ML-EM methods provided the better conspicuity

of low-contrast tissues by enhancing contrast and edge sharpness, and separated the

overlapping tissue structure very well. However, both SART and ML-EM iterate from

the constant initial condition and amplify the noise. One can see that both SART

and ML-EM reconstructions were much noiser than BP reconstruction. For the ex-

periments we conducted, the statistical method (ML-EM) has a slight advantage in

performance relative to the deterministic one.
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Figure 8.1: (a) side view of tomosynthesis breast imaging geometry. (b) 3D perspective view showing acquisition

at only 2 of the 11 angles. (c) front view of the geometry. The detector is rotated around the central axis synchronously

with the detector. The drawing in (c) is scaled to the dimensions used in the simulation.
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Figure 8.2: (a) and (c) noisy projection images of two breast phantoms at ML views corresponding to 90o (not

used in our simulations). (b) and (d) noisy projection images of two breast phantoms at 25o, which are used for

reconstructions. The small figures display magnified regions of their corresponding left-hand images, delineated by the

black squares in the left-hand, and show complex structures in the projection images.
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Figure 8.3: (a) Averaged slice image over eight consecutive slices of the original phantom with lesion present.

(b), (c) and (d) reconstructed slice images with lesion present from one set of projection data by BP, SART, and EM,

respectively. Arrows indicate lesion positions. Note that the averaged phantom and reconstructions have a 3.2 mm

slice thickness, whereas the original phantom slice is 0.4 mm thick.
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Figure 8.6: the placer display.
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Figure 8.7: (a) the slicer display of ML view in a breast object (b) the slicer display of CC view in a breast object.
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Figure 8.8: 2AFC displays. Each row shows a typical 2AFC display. The lesion instance is shown in the central

panel to help the human observer. The crosshairs localize the potential lesion locations. The left and right panels

display two noisy reconstructions. The observer chooses which reconstruction (left or right) contains a lesion. All slices

are in the CC orientation. (a) (b) (c) for BP. (d) (e) (f) for SART. (g) (h) (i) for EM.
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Chapter 9

Future Work

9.1 Improvements in the Breast Phantom

One contribution of this dissertation is to simulate a realistic 3D breast phantom

with various anatomical components. However, our phantom is still crude and needs

more refinements. The blood vessels, nerves and lymphatic vessels are parts of the

breast anatomy; they also represent a disturbance in detecting the lesion and become

a form of anatomical noise. We shall take into account the blood vessels, nerves

and lymphatic vessels in the future. Modeling such anatomical components can be

done via a method similar to that used in modeling the fibrous connective tissue as

discussed in Section 6.2. To simulate them, the random size, length, and thickness of

each component have to be specified via some simulation procedure.

In this dissertation, we only considered low-contrast lesion detection task. How-

ever, a high-contrast microcalcification is another type of abnormality. As discussed in

Section 2.1.2, microcalcifications appear as either a tiny single spot or a cluster. It is

trivial to simulate a single spot. We can adopt the method described in [109] to model

a cluster of microcalcifications defined by the location in the breast, the size and the

number of microcalcifications. The location of the cluster is randomly chosen to lie

within the region of the ductal system. The user needs to specify the radius of the

cluster and the mean number of microcalcifications. The number of microcalcifications
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follows Poisson distribution. Each microcalcification is defined by its size and location

in the cluster. The location of each microcalcification is uniformly sampled inside the

cluster. The microcalcification could be formed as an ellipsoid with semi-axes that are

uniformly sampled in a user-defined range.

Our simulated breast phantom lacks compression. As discussed in Section 3.5,

mild compression is needed to keep the breast stabilized in breast tomosynthesis.

Modeling breast compression is necessary to make our project more realistic, and a

possible branch in our future work. One possible way to simulate deformation can be

based on elasticity properties of various breast components. However, even a crude

deformation model is very difficult to form, and involves lots of efforts for mechanical

deformation modeling.

Low resolution (0.4mm cubic voxels) is another limitation of our current phan-

tom. Generating high resolution (0.1mm cubic voxels) is a project for future work.

Because real detector resolution is quite good and conventional mammograms have

a good resolution (50 µm), we’d like the XY resolution of a tomosynthetic slice to

approach that of a real mammogram, and so we need correspondingly small voxels

in the phantom. Using smaller voxels leads to severe computational complexity for

reconstruction in the projection and backprojection steps since these steps are O(N 3),

where N is the number of voxels. Such problems are addressable in part by partition-

ing the problem onto a high-speed cluster. (We currently have a 16-node cluster that

could be used for this.) Another speedup for projection/backprojection is to use GPU

hardware [126, 127].

9.2 Other Improvements

Our goal had been to explore the limitations of detectability due to the fundamen-

tal restrictions of Poisson and anatomical noise. Other contributions to detectability
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loss, such as electronic noise, were not considered. Though it would be quite a bit of

work, it would be interesting to see what portion of detectability loss is due to Poisson

and anatomical noise, and what portion is due to other sources including detector

effects, moving focal spot, scatter, patient motion, and x-ray source characteristics.

This tells us how much improvement to expect in the difficult problem of optimizing

these other sources.

Our task of detection of a mass in an XY plane that intersects the mass center

is very simple. A more realistic test, whether using human observers or numerical

observers, is to force the observer to locate the lesion within the 3D reconstruction.

Our group has done extensive research into numerical observer implementations that

emulate the search and detection task [128, 129, 130].
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