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Abstract of the Dissertation

Efficient Metadata Update Techniques for Storage
Systems

by

Maohua Lu

Doctor of Philosophy
in
Computer Science
Stony Brook University
2010

The simple read/write interface exposed by traditional disk /O systems
is inadequate for low-locality update-intensive workloads because it limits
the flexibility of the disk I/O systems in scheduling disk access requests
and results in inefficient use of buffer memory and disk bandwidth. We
proposed a novel disk I/O subsystem architecture called Batching mOdifi-
cations with Sequential Commit (BOSC), which is optimized for workloads
characterized by intensive random updates. BOSC improves the sustained
disk update throughput by effectively aggregating disk update operations
and sequentially committing them to disk.

We demonstrated the benefits of BOSC by adapting it to 3 different stor-
age systems. The first one is a continuous data protection system called
Mariner. Mariner is an iSCSI-based storage system that is designed to
provide comprehensive data protection on commodity hardware while of-
fering the same performance as those without any such protection. With
the help of BOSC in metadata updating, the throughput of Mariner has
less than 10% degradation compared to that without metadata updating.

Flash-based storage is the second storage system we leveraged BOSC.
Because of the physics underlying the flash memory technology and the
coarse address mapping granularity used in the on-board flash translation
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layer (FTL), commodity flash disks exhibit poor random write perfor-
mance. We designed LFSM, a Log-structured Flash Storage Manager,
to eliminate the random write performance problem of commodity flash
disks by employing data logging and BOSC in metadata updating. LFSM
is able to reduce the average write latency of a commodity flash disk by
a factor of more than 6 under standard benchmarks.

As a third example, we applied BOSC to a scalable data de-duplication
system based on the incremental backups. Each input block is de-duplicated
by comparing its fingerprint, a collision-free hash value, with existing fin-
gerprints. A range-based block group, called segment, is the basic unit
to preserve data locality for incremental backups. We propose four novel
techniques to improve the de-duplication throughput with minimal impact
on data de-duplication ratio (DDR). BOSC is employed to eliminate the
performance bottleneck due to committing segment updates to the disk.
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Chapter 1

Introduction

1.1 Motivation

Random update-intensive disk 1/O workloads, such as those resulting from index up-
dates in data deduplication, user-generated content management and OLTP applica-
tions, have been the most challenging workload for storage stack designers for the last
several decades. Mainstream physical storage devices do not perform well under these
workloads and thus require the upper-layer disk I/O subsystem to carefully schedule
incoming disk access requests to mitigate the performance penalty associated with
such workloads. In fact, even emerging flash memory-based solid-state disks perform
poorly in the face of these workloads, sometimes faring ever worse when compared
with magnetic disks. A large body of previous research efforts on disk buffering [1I, 2],
caching [3-5], and scheduling [0}, [7] attest the need of such optimizations. However,
these optimizations are generally ineffective for random update-intensive workloads,
because the working set is too large to fit in available system memory, and the locality
in the input disk access stream is inherently low. This paper describes an update-
aware disk access interface and a novel disk 1/O system exploiting this new interface
that together effectively rise up to this performance challenge.

Traditional disk I/O systems expose a read/write interface for higher-layer sys-
tem software, such as a file system or a DBMS, to access data stored on disks. The
granularity of reads and writes ranges from disk blocks [8, [9] to more sophisticated
constructs such as objects [10, [I1]. Regardless of access granularity, these simple
read /write interfaces are not adequate for random update-intensive workloads for the
following two reasons. First, disk I/O systems tend to minimize the response time for
disk read requests in the hope of reducing their critical path latency. However, for
a disk update request, which typically involves a disk read followed by a disk write,
the leading read request should be serviced like a write, and it is acceptable to delay
such reads in order to optimize the disk access performance. Unfortunately, a simple
read /write interface does not allow the disk I/O system to distinguish between plain

1



reads and reads associated with updates. Second and more importantly, an ideal way
to optimize the performance of a set of updates to a disk block is to aggregate and
apply them to the disk block when it is brought into memory. When updates to a
disk block originate from multiple processes, the simple read/write interface prevents
such aggregation, because the disk I/O system does not know how to apply individ-
ual updates and has no choice but to wake up each issuing process to perform the
associated update.

To overcome the performance problem associated with random update-intensive
workloads, we propose a new disk access interface that allows applications of a disk
I/O system (a) to explicitly declare a disk access request as an update request to a
disk block, in addition to a standard read or write request, and (b) to associate with
a disk update request a call-back function that performs the actual update against
its target disk block. With disk update requests explicitly labeled, the disk I/O
system can batch multiple of them, including the implicit reads contained within,
in the same way as it does with write requests. With access to application-specific
update functions, the disk I/O system can directly apply updates to an in-memory
disk block on behalf of the processes issuing the update requests, greatly increasing
the flexibility in disk request scheduling.

This new disk access interface enables a novel disk I/O system architecture
called BOSC' (Batching mQOdifications with Sequential Commit), which sits between
storage applications, e.g., DBMS process or file system, and hardware storage devices,
and is specifically optimized for update-intensive workloads. In BOSC, incoming
disk update requests targeted at a disk block are queued in the in-memory queue
associated with the disk block; in the background, BOSC sequentially scans the disks
to bring in disk blocks whose queue is not empty. When a disk block is fetched into
memory, BOSC applies all of its pending updates to it in one batch. Compared with
traditional disk I/O systems, BOSC boasts three important performance advantages.
First, BOSC dedicates its buffer memory to queuing incoming requests rather than
buffering target disk blocks and is therefore capable of buffering more requests per
unit of memory, as the size of a disk block’s pending update request queue is typically
much smaller than the size of the disk block itself. For example, assume each record
in a B tree is 24 bytes, then a queue of 20 insert/update requests is about 500
bytes, which is much smaller than a B tree page, which is typically 4 KB or 8 KB.
Second, BOSC brings in needed blocks by sequentially traversing the disks, and thus
significantly reduces the performance cost of fetching each accessed block. This is
made possible by BOSC’s ability to defer processing of reads in update requests and
accumulate update requests that share the same target disk block. Finally, when
a disk block is fetched into memory, BOSC applies all pending updates to it in an
FIFO fashion without involving processes originally issuing these update requests.
This design greatly simplifies the implementation complexity of BOSC and decreases
the memory requirements of disk blocks with pending updates and thus the overall
mMemory pressure.

To test the effectiveness and generality of BOSC, we have ported four different
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database indexes on top of BOSC, including B* tree, R tree, K-D-B tree and Hash
Table, and compared their performance when running on a vanilla disk 1/O sys-
tem that supports the conventional read/write interface, and on BOSC, respectively.
Across all indexes and test workload mixes, the sustained performance improvement
of BOSC over the vanilla disk I/O system is quite impressive, between one to two
orders of magnitude. In addition, through a space-efficient low-latency logging tech-
nique, BOSC is able to achieve this performance improvement while delivering the
same durability guarantee as if each update request is written to disk synchronously.

In the following subsections, we further explore 3 areas where efficient metadata
update is critical, sketch the use of BOSC in all these areas, present our contribu-
tions in these areas, and finally outline the organization of this report. In concrete,
in subsection the Continuous Data Protection (CDP) and two related features
built atop CDP are introduced. In subsection [I.3] T introduce the research challenges
for Solid State Disk (SSD) and how the metadata update performance is enhanced
by employing BOSC. Subsection [I.4] proposes a new technical solution for data de-
duplication in backup storage systems with BOSC in improving the performance of
metadata update. In subsection [I.5] T summarize the contributions of our work in
the area and the outline of this report is presented in the subsection [1.6] .

1.2 Continuous Data Protection (CDP)

As modern enterprises increasingly rely on digital data for continuous and ef-
fective operation, data integrity and availability become the critical requirements for
enterprise storage systems. Replication is a standard technique to improve data in-
tegrity and availability, but typically incurs a performance overhead that is often
unacceptable in practice. We implemented an iSCSI-based storage system called
Manriner, which aims to support comprehensive data protection while reducing the
associated performance overhead to a minimum. More specifically, Mariner uses lo-
cal mirroring to protect data from disk and server failures, and remote replication to
protect data from site failures. In addition, Mariner keeps the before image of every
disk update to protect data from software failures, human errors or malicious attacks.

A Mariner client, for example a file or a DBMS server, interacts with three iSCSI
storage servers: a master storage server, a local mirror storage server and a logging
server. When a Mariner client writes a data block, the write request is sent to these
three servers. The data block is synchronously committed on the logging server, and
then asynchronously committed on the master server and the local mirror server. In
addition, the logging server is responsible for remote replication, which is also done
asynchronously. When a Mariner client reads a data block, the read request is only
sent to the master server, which services the request on its own.

Mariner supports block-level continuous data protection (CDP), which creates
a new version for every disk write request and thus allows roll-back to any point in
time. As more and more data corruption is caused by software bugs, human errors
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and malicious attacks, CDP provides a powerful primitive for system administrators
to correct the corrupted data. Mariner’s logging server is responsible for archiving
the before image of every disk write within a period of time (called the protection
window) so that it can undo the side effects of any disk write in the protection window.

To reduce the performance penalty associated with CDP and data replication,
Mariner modifies the track-based logging ( Trail) technique [12]. Trail was originally
designed to reduce the write latency of locally attached disks and adapts the idea to
the network storage environment where Mariner operates. The original Trail requires
a log disk in addition to a normal disk, which hosts a write-optimized file system.
By ensuring that the log disk’s head is always on a free track, Trail could write the
payload of a disk write request to wherever on the track the disk head happens to
be. Once this write is completed, Trail returns a completion signal so that the high
level software can proceed. Therefore, the latency of a synchronous disk write is
reduced to only the sum of the controller processing time and the data transfer delay.
However, the original Trail design is inadequate for Mariner for two reasons. First,
the disk utilization efficiency of the design is too low to meet CDP’s demanding
log space requirement. Second, the design switches a disk’s head to the next free
track after servicing a request and thus incurs substantial disk switching costs. To
address these problems, Mariner makes four modifications to Trail. First, after the
payload of a logical disk write (W1) is written to a log disk, the payload is kept for
a sufficiently long period of time so that the following write (W2) against the same
data block can be undone T days after W2 is performed. Here T is the length of
the protection window, and the payload of W1 is the before image of W2. Second,
Manriner batches multiple logical disk write requests that arrive within an interval as
much as possible into a physical disk write in order to amortize the fixed overhead
associated with each physical disk write, and allows multiple physical disk writes to
be written to a track until the track’s utilization efficiency exceeds a certain threshold.
Third, Mariner exploits an array of log disks to amplify both the log capacity and the
effective logging throughput in terms of physical 1/O rates. Finally, Mariner uses a
modified version of two-phase commit protocol to propagate the effect of each logical
disk write consistently to all replicas while minimizing the write latency visible to the
software.

In addition to involving more servers, N-way data replication also introduces N
times as much load on the storage client’s CPU, memory and network interface. It is
possible to move this load to the storage area network using special hardware such as
SANTap [I3], which replicates a disk write request coming into a SAN switch across
multiple predefined ports in a way transparent to the storage client. However, this
approach requires special and proprietary hardware support. Mariner uses a software-
only approach called Transparent Reliable link-layer Multicast (TRM) to approximate
the hardware-based in-network replication supported by SANTap. More specifically,
TRM achieves in-network replication by exploiting link-layer tree-based multicast
available in modern commodity Ethernet switches.

In Mariner, to provide flexible and efficient access to logged disk block versions,
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it maintains two index structures: a TL index whose key is (LBN, timestanp) and an
LT index whose key is (timestamp, LBN), where LBN and timestamp are a block
update’s target logical block address and timestamp, respectively. When a host (i.e.
a file server or a DBMS server) emits a block update request, the request is sent to
the corresponding network storage server as well as the block-level CDP server that
protects it. When a block-level CDP server receives a block update request, it logs
the new block version to disk and inserts a new entry into each of these two index
structures. Whenever a disk block version expires, i.e., falls outside the protection
window, the corresponding LT and TL index entries should be removed.

Every block version corresponds to a point in a two-dimensional address space
whose coordinate is the unique combination of its associated timestamp and target
LBN. In general, the TL index is useful when users want to access all LBNs updated
within a time range, whereas the LT index is useful when users want to access the
most recent version of a LBN as of a particular point in time. In Mariner, the
TL index is useful for its incremental file system consistency check mechanism [14]
and for reclaiming LT and TL index entries, both of which need to know the set of
block versions created within a time interval; the LT index is the basis for historical
snapshot access, i.e., given a target LBN and a snapshot time T, the LT index returns
the address of the physical block holding the most up-to-date version of LBN as of
T.

Because these two indexes are too large to fit into memory for very large block-
level CDP servers, they are required to persist on disk. Since timestamps of block
updates are monotonically increasing and timestamps are the most significant part
of the TL index’s key, there is substantial locality in the updates to the TL index.
Therefore, updating the on-disk TL index does not cause much of a performance
problem. However, updates to the LT index do not exhibit such locality, because
the most significant part of its key is the LBN and the target LBNs of temporally
adjacent block updates are not necessarily close to one another. Without any op-
timization, a block update triggers three to four disk I/O operations in Mariner:
logging the update itself (a sequential write), updating the TL index (a mostly se-
quential write) and updating the LT index (a random write possibly preceded by a
read). Because Mariner employs a highly efficient disk logging scheme [14], which can
complete a 4KB logging operation under 0.5 msec, index update becomes Mariner’s
major performance bottleneck.

We employ BOSC that successfully solves the performance problem associated
with index updates in Mariner. The BOSC scheme batches update operations to
a persistent index and asynchronously commits them to disk using mostly sequen-
tial disk I/O. With BOSC, not only is the cost of bringing in each on-disk index
page lowered, but such cost is also amortized over multiple index update operations.
By employing BOSC, Mariner’s index update mechanism achieves the best of both
worlds: strong consistency of synchronous index update and high throughput of se-
quential disk I/0.

Modified Trail, TRM and BOSC work together to enable Mariner to provide
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comprehensive data protection at a performance cost that is almost negligible when
compared with vanilla iSCSI storage servers without any protection. Detailed design
and implementation details will be discussed in chapter [4

The key advantage of block-level CDP is that its data protection service is readily
available to a wide variety of file or DBMS servers from different vendors, because
it applies update logging to a common access interface (i.e. iSCSI) shared by these
servers. For the same reason, the high-level file system or DBMS operations that lead
to individual disk writes are completely opaque to a block-level CDP system. This
lack of knowledge of the high-level context behind each disk write limits the use of
block-level CDPs to point-in-time block-level snapshots, and substantially decreases
the practical appeal of block-level CDP systems.

To overcome the above limitations of existing block-level CDP systems, Mariner
is designed to support file system-consistent point-in-time snapshots and provide users
a file versioning capability similar to versioning file systems. Moreover, Mariner sup-
ports this file versioning capability in a way that is portable across all main-stream
operating systems, including Linux, Solaris, and Windows XP. This paper describes
the design, implementation and evaluation of Mariner’s user-level file versioning sys-
tem, which is expected to bring forth the full value of block-level CDPs to their
users.

In subsection [1.2.1] we sketch the design of incremental File-System CheKer
(iIFSCK), a utility supporting file system-consistent point-in-time snapshots. In sub-
section , we introduce User-level Versioning File System (UVES), a utility to
allow end users to navigate the data versions by leveraging the CDP capability.

1.2.1 Incremental File-System ChecKer (iFSCK)

Conventional data backup systems take a snapshot of the file/storage system period-

ically, so that the file/storage system can be restored to one of these snapshots in case
it is corrupted. However, this approach is limited in terms of recovery point objective
(RPO) and recovery time objective (RTO). That is, it cannot roll the file/storage
system back to arbitrary points in time, and as a result its associated recovery time
cannot be bounded because additional manual repair may be required after a pro-
grammatic roll-back. Continuous data protection (CDP) greatly improves the RTO
and RPO of a data backup solution by keeping the before image of every update
operation against a file/storage system for a period of time. Because CDP enables
every update to be undoable, it supports arbitrary point-in-time roll-back.

A block-level CDP system [14HI8] applies CDP at the disk access interface, i.e.
every disk write operation from an application server (e.g. a file or DBMS server)
to its back-end storage system within a data protection window ! is logged and thus
undoable. A key advantage of block-level CDP is that it can protect the data of
arbitrary application servers without requiring any modifications to them.

!The data protection window is the time period within which every update is undoable, and is
typically on the order of a week or a month.



Although existing block-level CDP systems can roll back the protected storage’s
image to arbitrary points in time in the past, none of them is able to guarantee that
these images are consistent with respect to the metadata of the application servers
whose data they are protecting. That is, when a user of a network file server whose
data is protected by a block-level CDP system takes a point-in-time snapshot, the file
system metadata in the returned snapshot may not be consistent with one another.
As a result, even though block-level CDP supports flexible RTO for disk block-level
images, it does not support flexible RTO for file-level images when the application
server is a file server. This is a serious limitation of existing block-level CDP systems
because it substantially decreases their practical utility and appeal.

Different application servers have different types of metadata, typically trans-
parent to block-level CDP systems. To support arbitrary point-in-time metadata-
consistent snapshots, exploiting application server-specific knowledge is inevitable.
When the application server is a file server, one could apply a standard file system
checker to block-level snapshots returned by a block-level CDP systems and trans-
form them into a file system-consistent state. However, such checkers are too slow
for some legacy file systems. This paper describes the design, implementation and
evaluation of an incremental file system consistency checker called iF'SCK that lever-
ages file system-specific knowledge to convert a point-in-time snapshot into one that
is guaranteed to be consistent with respect to file system metadata.

1.2.2 User-level Versioning File System (UVFS)

The lack of knowledge of the high-level context behind each disk write imposes
two limitations on existing block-level CDP systems, which substantially decreases
their practical appeal. First, when a user of a network file server protected by a
block-level CDP system takes a point-in-time snapshot, the file system metadata in
the returned snapshot may not be consistent with one another. This means that even
though existing block-level CDP systems can support arbitrary point-in-time disk im-
age snapshots within the data protection window, these snapshots are not necessarily
file system-consistent. Second, none of the existing block-level CDP systems provide
the same file versioning functionality as a versioning file system, because they lack
the necessary file system metadata required to map disk blocks to files. As a result,
a block-level CDP system cannot answer such questions as “what is the last version
of /a/b before T”, “how many versions of the file /a/b exist in [T'1,T2]”, etc.

We have developed a user-level file versioning system specifically designed to ad-
dress these two limitations of existing block-level CDP systems. This system consists
of a file versioning subsystem called UVFS (User-level Versioning File System) and
an incremental file system consistency checker called iFSCK[1.2.1] which exploits file
system-specific knowledge to convert a point-in-time disk image snapshot to be file
system-consistent. This paper focuses specifically on the design, implementation and
evaluation of UVFES, which augments a block-level CDP system with a file versioning
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capability that is portable across all main-stream operating systems (Linux, Solaris,

and Windows XP).

1.3 Write Optimization for Solid State Disk (SSD)

The recent commoditization of USB-based flash disks, mainly used in digital cameras,
mobile music/video players and cell phones, has many pundits and technologists
predict that flash memory-based disks will become the mass storage of choice on
mainstream laptop computers in two to three years [19]. In fact, some of the ultra
mobile PCs, such as AsusTek’s Eee PC [20], already use flash disks as the only mass
storage device. Given the much better performance characteristics and enormous
economies of scale behind the flash disk technology, it appears inevitable that flash
disks will replace magnetic disks as the main persistent storage technology, at least
in some classes of computers.

Compared with magnetic disks, flash disks consume less power, take less space,
and are more reliable because they don’t include any mechanical parts. Moreover,
flash disks offer much better latency and throughput in general because they work
just like a RAM chip and do not incur any disk head positioning overhead. However,
existing flash disk technology has two major drawbacks that render it largely a niche
technology at this point. First, flash disk technology is still quite expensive, approxi-
mately $10/GByte, which is at least 20 times as expensive as magnetic disks. Indeed,
at this price point, it is not uncommon that a flash disk costs as much as the computer
it is installed on. Second, flash disk’s performance is better than magnetic disk when
the input workload consists of sequential reads, random reads, or sequential writes.
Under a random write workload, flash disk’s performance is comparable to that of
magnetic disk at best, and in some cases actually worse. We believe the cost issue
will diminish over time as the PC industry shifts its storage technology investment
from magnetic to flash disks. However, flash disk’s random write performance prob-
lem is rooted in the way flash memory cells are modified, and thus cannot be easily
addressed. This paper describes the design and implementation of a log-structured
flash storage manager (LFSM) that effectively solves the random write performance
problem of commodity flash disks.

A flash memory chip is typically organized into a set of erasure units (typically
256 KBytes), each of which is the basic unit of erasure and in turn consists of a set
of 512-byte sectors, which correspond to the basic units of read and write. Multiple
sectors comprise a data block, which can be 4 KB or 8 KB in size. After an erasure
unit is erased, writes to any of its sectors can proceed without triggering an erasure
if their target addresses are disjoint. That is, after a sector is written and before
it can be written the second time, it must be erased first. Because of this peculiar
property of flash memory, random writes to a storage area mapped to an erasure unit
may trigger repeated copying of the storage area to a free erasure unit and erasing
of the original erasure unit holding the storage area, and thus result in significant
performance overhead.



Moreover, flash disks typically come with a flash translation layer (FTL), which is
implemented in firmware, maps logical disk sectors, which are exposed to the software,
to physical disk sectors, and performs various optimizations such as wear leveling,
which equalizes the physical write frequency of erasure units. This logical-to-physical
map will require 64 million entries if it keeps track of individual 512-byte sectors
on a 32-GB flash disk. To reduce this map’s memory requirement, commodity flash
disks increase the mapping granularity, sometimes to the level of an erasure unit. As
a result of this coarser mapping granularity, two temporally separate writes to the
same mapping unit, say an erasure unit, will trigger a copy and erasure operation if
the target address of the second write is not larger than that of the first write, because
a commodity flash disk cannot always tell whether a disk sector in an erasure unit has
already been written previously or not. That is, if the N-th sector of a mapping unit
is written, any attempt to write to any sector whose sector number is less than or
equal to N will require an erasure, even if the target sector itself has not been written
previously. Consequently, coarser mapping granularity further aggravates flash disk’s
random write performance problem.

To address the random write performance problem, LFSM converts all random
writes into sequential writes to a log by introducing an additional level of indirection
above the FTL. Because all commercial flash disks have good sequential write per-
formance, LFSM effectively solves the random write performance problem for these
disks in a uniform way without requiring any modifications to their hardware or FTL
implementations. With this log-structured storage organization, LE'SM needs to over-
come two major challenges. First, LFSM still faces random writes because it needs to
maintain a separate map for the level of indirection or translation it introduces and
updates to this map are random. LFSM minimizes the performance overhead of the
random writes to this map by using a technique called BUSC [21], batching updates
with sequential commit. Second, to minimize the amount of copying whenever LESM
reclaims an erasure unit, it needs to allocate erasure units to logical blocks in such a
way that logical blocks assigned to the same erasure unit have a similar life time and
each erasure unit contains very few live logical blocks at the time when it is reclaimed.

1.4 Data Deduplication atop Block Change Track-
ing

Disk-based near-line storage systems are more and more popular with the in-
creasing capacity and dropping price of the hard drives [22]. Different from online
storage systems, near-line storage systems does not accommodate live data but only
hosts snapshots of the live data, which allows flexible power-efficient management of
the hard drives in the storage systems. In contrast to the off-line storage system, for
example, tapes, near-line storage system can be accessed by the same interface as the
on-line storage system. Applications of near-line storage systems include disk-to-disk
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(D2D) backup [22] and storage archival [23]. For clarity, I denote the near-line storage
system as the secondary storage system, and the online storage system as the primary
storage system in the discussion throughout the paper.

Deduplication is an indispensable component for modern near-line storage sys-
tems for three reasons. First, data deduplication can reduce the space overhead.
Enterprise users of near-line storage systems tend to store the same data over and
over again onto the secondary storage systems. Without deduplication, redudant data
can consume more than 500% of the storage space [24]. Second, data deduplication
can improve the bandwidth efficiency in term of both network bandwidth and the
disk I/O bandwidth. The bandwidth efficiency roots from two sources, 1) less backup
traffic; 2) less replication traffic. In the former case, data duplicates do not need
to be transferred to the secondary storage systems and only the sketch of the data
is sent to the secondary storage systems [25]. In the latter case, replication of the
secondary storage systems requires the bandwidth that is linear to the size of the stor-
age, and data deduplication can greatly reduce the amount of replicated data. Third,
lower number of disks ameliorates the power consumption because more disks need
more power for powering the hard drives and cooling. As the power dominates the
day-to-day expense of running a near-line storage systems [26], it becomes uttermost
important to employ deduplication techniques to save the power.

For secondary storage systems, deduplication techniques at the block abstraction
layer were proposed [27], 28] to deduplicate streams from different clients, where the
full index for deduplication can not fit into memory. The backup clients blindly write
out the whole snapshot images to the secondary storage systems. The secondary stor-
age takes backups from the same client as a stream. The input stream is segmented
into variable-sized chunks, and a hash called fingerprint is computed for each chunk.
The secondary storage deduplicates chunks in the same stream and between different
streams. Because deduplication is done against the whole snapshot image, the de-
duplication ratio can reach up to 20:1 as expected. Furthermore, because chunks are
produced from a contiguous region of blocks within a region, fragmentation in the
snapshot image can have a negative impact on the deduplication quality.

To reap all benefits of the data deduplication, it is inevitable to have a more
intelligent client-side agent rather than the “dummy” client. For example, to avoid
transferring duplicates to the secondary storage system, the client-side agent needs to
segment the snapshot, transfer the fingerprints, figure out which chunks are duplicates
and only transfer those chunks that are not duplicates. In general, pushing more
intelligence to the client side has three benefits: 1) efficient bandwidth usage at the
backup time, 2) reduced burden on the backup storage side because the client can
assume preprocessing responsibility of the end-to-end deduplication computation, and
3) flexible deduplication strategies because the client has the full knowledge of the
backup stream.

We explore new opportunities, challenges and solutions for data deduplication
when the client-side agent has the non-obstructive knowledge of the backup streams.
In concrete, we assume that the intelligent client-side agent has the following three

10



pieces of information regarding the backup stream. First, the client side can track
changed blocks in a snapshot image since last snapshot (incremental change tracking).
Second, the client can correlate changed blocks with the entity (i.e., a file) owning
these blocks. Third, the high-level metadata (i.e., modification time of a file) is
available when needed. The retrieval of these pieces of information is non-obstructive
because all the information above can be retrieved by referring the high-level index
structures [29] 130].

Two challenges arise in combining the client-side intelligence with the current
deduplication techniques. First, because only incremental changes are pushed to the
second storage system, it is not clear what is the exact source of data deduplication,
and furthermore, what is the correct strategy to capture these deduplication sources
effectively. Second, with all high-level information (i.e., files and related metadata),
how to leverage all these information effectively so that we can improve both the
deduplication quality and the deduplication throughput?

Ultimately, a good deduplication scheme should strike a reasonable balance
between the deduplication quality and the deduplication throughput for arbitrary
backup stream, including backup streams consisting of incremental updates. Data
Domain’s data deduplication technique [27] employs the full fingerprint index to
achieve the maximal deduplication quality but does not provide any guarantee on
the deduplication throughput. On the other hand, the sparse indexing scheme [2§]
can sustain a fixed deduplication throughput but the deduplication quality can de-
crease due to the sampling. In particular, if duplicates do not come with large chunks,
a fixed sampling rate would miss some duplicates.

We propose to employ the temporal locality of incremental updates by varying
the sampling rate based on the deduplication history. The hypothesis behind the
proposal is that the incremental updates tend to be duplicates of recently-popular
data from other clients as well as from the same client. If the hypothesis is true,
we can have a higher sampling rate for the fingerprints of popular data, and have a
lower sampling rate for those unpopular data. In particular, if stored data payload is
popular recently, we’d rather have a sampling rate of 1 to achieve the highest degree
of deduplication. In contrast, for unpopular data, the sampling rate can be dropped
to a lower value because anyway there is less duplicate of the unpopular data.

To prevent the deduplication quality loss due to fragmentation of high-level
entities (i.e., files), we propose to use the high-level entity (i.e., the file) as the basic
unit of deduplication. Although file-level deduplication has a long history [31], [32]
in deduplicating a whole file, deduplication of partial files containing only changed
blocks has not yet been fully explored. Similar to the sampling method used in the
sparse indexing scheme, we propose to sample fingerprints from a file, not from a
block-level segment.
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1.5 Contributions

In summary, this technical report and the research work it is based on make the
following research contributions:

1.

For BOSC, we developed a new disk access interface that supports disk update
as a first-class primitive and enables the specification of application-specific
update functions that are invoked by the disk I/O system,

For BOSC, we built a disk I/O system framework that effectively commits
pending update requests in a batched fashion, and drastically improves the
physical disk access efficiency by using only sequential disk 1/O to bring in the
requests’ target disk blocks,

For BOSC, we have complete prototype implementation of the BOSC disk 1/0
system and four database index implementations that are built on top of BOSC,
including B tree, R tree, K-D-B tree, and Hash Table, and a comprehensive
demonstration of the performance advantage of BOSC over conventional disk
[/O systems without compromising data integrity, using both synthetic and
realistic workloads,

For CDP, we developed a modified track-based logging technique that can si-
multaneously achieve low write latency, high write throughput and high disk
space utilization efficiency using only commodity IDE/ATA drives,

For CDP, we modified two-phase commit protocol that exploits low-latency disk
logging to hide the latency of local mirroring and remote replication without
compromising the data integrity,

For Solid State Disk, we developed a novel combination of logging and BUSC
to successfully convert all random writes into sequential writes,

For Solid State Disk, we crafted a fully operational prototype that demonstrates
significant write latency reduction on a commodity solid state disk under real-
istic disk access workloads, and

For deduplication atop of Change Block Tracking, we explored the spatial and
temporal locality of changed blocks in incremental backups by employing a
segment-based variable-frequency sampled finerprint index and segment-based
containers.

1.6 Outline

The rest of the technical report is organized as follows. In chapter [2] we survey

the related work of efficient metadata update techniques, continuous data protection,
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optimization for SSD, and deduplication techniques. Chapter |3| presents the design,
implementation and evaluation of BOSC for stand-alone index structures. Chapter [4]
describes the design, implementation and evaluation of track-based logging, mod-
ified two-phase commit, TRM, and metadata updating using BOSC, respectively.
Chapter [5| detail the design, implementation and evaluation of Log-structured Flash
Storage Manager (LFSM) for solid state disks by combining data logging and meta-
data updating with BOSC. In chapter [6] we present the design and evaluation of a
deduplication scheme atop the change block tracking with BOSC to speed up the
metadata update. Chapter [7] concludes the technical report and discusses the future
work.

13



Chapter 2

Related Work

2.1 Related Work of Efficient Metadata Update

BOSC makes an innovation by combining 4 techniques from various research commu-
nity related to metadata update. These four techniques are as below: (1) Buffering of
individual queries, (2) Low-latency logging of queries to preserve data locality, (3) Se-
quential I/Os to maximize the I/O efficiency, (4) Decoupling of insert/update/delete
queries from the actual commit. These 4 ideas are not new by its own, but the
combination of these 4 techniques provides surprising performance improvement for
random insert/update/delete queries.

In the following 6 subsection, I will discuss related work with technique (1), (2)
and (3) among other related work about efficient metadata update. Because technique
(4) focuses more on the data update rather than metadata update and is detailed in
section I will omit related work in this section. More concretely, subsection
discusses the general-purpose write buffering techniques in details. Subsection [2.1.2]
surveys techniques in index structures and algorithms to leverage the sequential band-
width as in technique (3) and intelligent record buffering and layout techniques to
improve the performance of insert/update/delete queries. Subsection surveys the
principles and variations for efficient logging. Subsection discusses several data
structures and applications in leveraging the logging techniques. Subsection [2.1.5]
surveys techniques used in commercial DBMSs to showcase the potential benefits
of applying BOSC in state-of-art DBMSs. In subsection [2.1.6, I survey techniques
that employ domain-specific knowledge to speedup the query performance, which is
orthogonal to what BOSC can do.

2.1.1 Write Buffering

Dedicated write caching [33-35] hides the write latency by turning synchronous writes
to disks into asynchronous ones. Writes are destaged from the cache to the disks to
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achieve 2 goals, 1) exploring the spatial locality by ordering destaged writes to disks,
and 2) distributing write load evenly to minimize interference with concurrent read
requests. These write caching schemes improve the caching efficiency by examining
3 design dimensions, 1) leveraging the temporal locality by coalescing overwrites to
reduce the number of writes to disks, 2) maintaining reasonable free space in the
cache to accommodate bursts and to avoid synchronous writes, and 3) fulfilling read
requests from the write cache if there is a hit. In particular, the requirement 2) is
critical because too much free space in the cache hurts both the temporal and spatial
locality, while too little free space in the cache hurts the very first purpose of write
caching, that is, latency hiding.

The CLOCK [35] algorithm leverages the temporal locality by approximating
the least recent write (LRW) policy, and is widely used in file systems [36]. However,
the spatial locality is not accounted for in such algorithms.

Theodore explored [37] the combination of the spatial locality with the temporal
locality in write caching for storage systems. The proposed algorithm balances the
spatial locality and the temporal locality by combining the LRW policy [38-40] and
the LST policy [37,[41]. However, these algorithm only work on a single disk and does
not optimize for 1) the interference of read and write requests, and 2) maintaining
the write cache in a smart way.

The Wise Ordering for Writes (WOW) algorithm decouples the destaging order
from the techniques to explore temporal and spatial locality by grouping writes and
ordering these write groups based on the LBA order. A recent bit is associated with
each write group to indicate the temporal locality. Writes of any pages in the write
group set the recent bit. Before destaging a write group, the recent bit is checked, if
the recent bit is 1, the write group is skipped after the recent bit is cleared.

The Spatially and Temporally Optimized Writes (STOW) [33] schemes aims
to maintain reasonable free space of the cache by controlling the destaging rate.
Although the WOW scheme solves the problem of destaging order well, it does not
examine the destaging rate policy to maintain reasonable free space in the cache. In
STOW, writes are categorized into a random queue and a sequential queue with the
write group as the basic queue unit. The sequential queue and the random queue are
examined alternatively to destage write groups, and a hysteresis period is maintained
to avoid frequent alternating between the sequential queue and the random queue. A
modified Linear threshold [41] method is employed to adjust the destage rate. Writes
in proximity of the concurrent reads are opportunistically scheduled.

The BOSC scheme differentiates itself from these write caching algorithms in
two ways. First, BOSC employs efficient disk logging to ensure data durability. In
contrast, these write caching algorithms either assume the existence of the relatively
expensive NVRAM backed up by batteries [33], or do not consider the durability at
all [42]. Second, BOSC buffers records instead of pages, while these algorithms take
the page (e.g., 4 KB or 8 KB) as the basic buffer unit. It is not surprising because
the write caching scheme has no knowledge of the application-level record.

However, these write caching scheme does provide helpful insights in improving
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the BOSC in two ways. First, for workloads of read/write mix, BOSC can improve
the commit efficiency by opportunistically scheduling the commit in a proximity of
the read requests. Second and more important, the linear threshold scheme can be
applied to BOSC to maintain reasonable free space in the cache, and therefore to
improve the overall update efficiency.

2.1.2 Reorganization of Index Structures

In this subsection, I discuss the reorganization of index structures to improve the
random insertion/update performance in the research community. For the sake of
clarity, we formally define 5 types of index queries as below. First, an insert query
inserts a record without querying if there is previously a record with the same key,
which is usually used in streaming applications such as social networking. Second, an
update query first queries the index to figure out if there exists a record with the same
key. If so, the record is updated with the incoming record. If not, the update query
inserts the record to the index. Third, a delete query first queries the index to find
out if a record with the same key exists in the index. If so, the record is deleted. If
not, nothing happens. Fourth, a search query queries the index for a particular key.
If a record with the same key exists in the index, the record is returned. Otherwise,
no record is returned. Fifth, a range search query asks the index for all records within
the input range (low — key, high — key), where low — key and high — key is the lower
bound and upper bound of the key, respectively. Also, in the following discussion, NV
represents the index size, and B as the block size in memory transfer.

Although employed widely for database indexes in industry, BT tree and its
variants suffer from 3 performance problems. First, naive BT tree has poor per-
formance for random insert/update/delete queries. For these three query types of
insert/update/delete, the index is first queried to figure out the exact location of the
record, the record is then inserted, updated and deleted accordingly. Second, param-
eter tuning is critical to achieve good performance. These parameters include but
not limited to the size of blocks, the size of available main memory, and the policy to
reorganizing the index. As noted in [43], parameter tuning becomes more and more
complicated and mandates strong expertise to make it work. Third, traditional B™
tree ages [43] over time and the range search query suffers due to poor locality of
logically neighboring records. For example, for a traditional B index, when a leaf
block A is split, a new block B is grabbed from the free block pool, and block A and
B can be remote from each other, causing the well-know fragmentation problem [44].

The line of research in cache-oblivious (CO) data algorithms [43] 45, 46] solve
the second and third problem associated with traditional BT by leveraging two tech-
niques. The first technique, the van Emde Boas (vEB) layout [47], is a building block
to adapt a structure to be cache oblivious. In concrete, the vEB memory layout
improves the caching efficiency by recursively clustering sub-trees of CO data struc-
tures. For example, for a BT tree containing N nodes with the height of h, the sub-tree
rooted at the root node with a height of h/2 is put together and all other sqrt(N)
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sub-trees are ordered in a sequential fashion. Recursively, each sub-tree is partitioned
into smaller sub-trees. If a sub-tree S can fit into a block B, the whole sub-tree S can
be accessed after the block is read into memory. In contrast, the traditional BT tree
ordered the index tree in the breadth-first order. For example, each key in internal
nodes of BT tree in put in the same block with its sibling keys, not its children. As a
result, when a particular key is fetched in by memory transfer, siblings of the key are
fetched in but not necessarily its children. Its children are very likely to be retrieved
through another memory transfer, leading to excessive memory transfer.

CO data structures avoid the aging problem from the design by leveraging the
packed-memory array (PMA) technique. More concretely, PMA is a ordered data
item array with free space to accommodate updates, insertions and deletions. Each
time the free space is not enough or too much, PMA is extended or shrunk by moving
all data items from old PMA to the new PMA sequentially to amortize the per-
item update cost. Because PMA is an ordered structure, the locality of logically
neighboring leaf blocks is preserved regardless how PMA or the index evolves over
time.

Recent advance in the cache-oblivious research [48] improves the performance
of random insert queries without sacrificing the performance of search queries to
mitigate the first problem of traditional B tree. Incoming random inserted records
are queued in a buffer associated with an internal node which is the root of the subtree
containing the target leaves of the inserted records. When the buffer is full, the whole
buffer are shuttled down to the subtrees recursively until no buffer is full.

The CO stream BT tree [48] leverages two ideas to achieve the high insertion
throughput. The first idea is from the buffer repository tree [49],and the other idea
attributes to recursive CO subtree structures [50]. A BRT tree is a strongly-balanced
tree with each internal node associating with a buffer. Each insertion record is first
queued in the buffer of the internal nodes if the buffer is not full. If the buffer is
full, the records in the buffer are shuttled down to the lower subtrees, which can be
recursive until the buffer of subtrees can hold the records. The intuition of the BRT
tree is that the internal nodes higher in the tree have a looser division of records and
can easily accumulate records for the subtree rooted at the particular internal node.
The amortized cost of shuttling records down to lower subtrees in BRT can therefore
be greatly reduced. The amortized insertion cost of BRT tree is O(logN/B), where
N is the size of the index and B is the size of the block. However, the worst-case cost
of a search query is O(logN) because the buffer associated with each internal node is
flat without leveraging the vEB memory layout.

The CO stream B™ tree improves the amortized cost of a search query from
O(logN) to O(logsN) by converting the flat buffer associated with each internal
node to a self-similar fractal subtree. Because a set of subtrees replace the flat buffer,
a search query involves recursive search into a selected branches in these subtrees.
Because search of branches in subtrees can benefit from the vEB layout, the cost of
a search query can be greatly reduced.

However, the proposed technique proposed in the CO stream B™ tree does not
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optimize for random wupdate and delete queries because these two queries involve
an implicit search query, which has an amortized cost of O(loggN). The search
query exhibits poor performance when the search key is random. Although there
are techniques called lazy-BRT [51] to delay the search query, the worst-case cost
is not bounded. As a matter of fact, in the extreme case, the search can involve
the scanning of the whole index. In contrast, BOSC provides a general framework
to optimize for all random update and delete operations by introducing asynchrony;,
where the update queries and delete queries are queued and logged, and eventually
processed by a background I/O thread.

BOSC can benefit from the research advance in the CO data structures in two
aspects. First, BOSC can leverage PMA to ensure the locality of logically neighboring
blocks. For example, for a BT tree, instead of choosing a new block from the free
block pool each time a split occurs, the PMA can be employed to rebalance the whole
leaf blocks in an amortized fashion. Second, BOSC can be used in tandem with
CO structures for random wupdate and delete queries. For example, BOSC can be
employed to improve the random update and delete queries. But how to integrate the
per-internal-node buffer in CO stream BT tree with the per-block queue in BOSC
needs more work.

Two generalized algorithms have been proposed to improve the performance of
random 4nsert queries in attacking the first problem of traditional B tree. First, the
logarithmic method is employed to adapt the static data structures to their dynamic
counterparts to achieve amortized asymptotic optimal performance for insertions.
Given N elements in the data structure and disk block size B, the logarithmic method
partitions the data structures into logg(NN) subsets D; of exponentially increasing size
S; (S; < Bt +1),i=0,.., logg(N/2). Search queries are issued to all partitioned
subsets and the result is a join of results from the subsets, and the search query
incurs asymptotically w((logg(N))?) disk I/Os. Roughly speaking, insertion queries
are issued to the subset D; which can hold it. When D; is full, all subsets D;(j =0, ...,
i) are moved to the subset D(i+1) in a batch. Because the insertion is usually done
to a memory-resident partition and the moving cost of records is amortized among all
inserted records, the logarithmic method have the asymptotically optimal 1/O cost
for insertions. However, the search has to go through each individual partitions and
the I/O cost for search is not optimal.

Buffer trees [48], 49 52] are the second category of generalized techniques to
improve the performance of random insert queries. The basic idea is to buffer in-
sert operations with certain nodes of the index structure. The buffered insertion
operations are pushed down to the next deeper level once the buffer overflows in the
current level. One important characteristics of the buffer tree technique is that the
intrinsic properties of the underlying index structures are preserved. For example, for
balanced B-tree with buffer tree technique [49], after associating with each internal
node a fixed-sized buffer, the B-tree is still balanced. Between insertion and search
queries, the buffer tree technique favors the insertion queries over the search queries
as the search query has to go through every buffer of nodes along the root-to-leaf
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path. Not surprisingly, the cost of a search query is O(logN)

Brodal and Fagerberg [53] proposed a generalized B-tree, called B¢ tree, to
formally study the trade-off between the search and insertion of the B tree and its
variants. For 0 < e < 1, the amortized insertion I/O cost is Q(loggfij), while the
amortized search 1/O cost is Q(logge.1N). If € = 1, it matches the traditional B-tree,
and if e = 0, it matches a buffered repository tree [49].

BOSC heads for a different direction, in which the performance of search is not
sacrificed while the performance of update/insert is increased significantly by deferring
the commit of update/insert until the corresponding target on-disk node is fetched
into memory, where the fetching of target on-disk nodes are sequentially to leverage
the benefit of sequential disk block transfer. One constrain applies, though, that is,
the internal nodes are assumed to be memory-resident and the only I/O cost is the
I/O cost related with those leaf nodes. From a practical perspective, the assumption
holds because the size of internal nodes are 2-3 magnitudes smaller than the leaf
nodes [54H56]. But regarding the absolute performance of insertions, the CO data
structures can easily beat BOSC because they are not sensitive to the block size and
caching effect, including the L2 cache size and the internal memory size.

2.1.3 Smart Data Placement and Management

In modern computer systems, hard disks are abstracted as a flat one-dimensional
array. Although the abstraction simplifies the interaction between the disks and the
applications (i.e., OS) atop it because only a logical block address (LBN) is used
in read/write, the latency of a write can vary with the internal states of the disks
(i.e., the disk head position, track density,etc.). In this section, I will discuss three
categories of existing techniques to improve the write performance for disks.

Disk scheduling [57] is the first category of optimization techniques to improve
the disk-based write performance. Given a queue of input requests, the disk schedul-
ing algorithms minimize the total amount of write latency for all writes by scheduling
those writes based on their positions. The write latency is comprised of seek time,
rotational time, settle time and data transfer time, where the settle time and data
transfer time are independent of the disk state, or in particularly the disk head posi-
tion. To minimize the sum of seek time and rotational time for a bunch of requests, the
information of disk head position needs to be accurate. As the disk has full knowledge
of the disk state, including the disk geometry and disk head position, disk scheduling
within disk itself such as tagged command queuing [58] is relatively straightforward.
In contrast, disk scheduling out of disks is much more challenging because modern
disks do not expose their disk geometry information and the disk head information to
end users. As a result, the effective disk scheduling algorithms either run on top of a
simulator [59, [60], or were twitted with extreme care [61H64]. Others [42] argue that
disk scheduling with only LBA information can achieve reasonable good performance.
Another branch of research [0}, 65] includes useful background requests into the input
queue to get those background requests done for free. However, the effectiveness of
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disk scheduling heavily relies on the length of the input request queue. If there is
only one request in the queue, there is no benefit of using disk scheduling algorithms.

Instead of minimizing write latency by using disk scheduling algorithms for a
group of write requests, write indirection [I4] 66], 67] aims to minimize the seek time
and rotational latency for a single write request. Write payload is written to the
“nearest” free space indicated by the disk head position and disk geometry. To man-
age the location information associated with each write request, some advocates to
map the write to the location [68, [69], others embrace the idea of using advanced disk
interface [70, [71]. The former involves maintaining a non-trivial amount of remapping
metadata, and the latter needs significant changes to applications interacting with
the disks. The mapping metadata can either be maintained in the file system [72, [73],
or can be maintained at the block-level. The former fits more natural with the func-
tionality of file systems: querying the location metadata and subsequently accessing
the data. However, many legacy file systems (i.e., ext3) [74] do not support such
arbitrary mapping. For these file systems, block-level remapping [68, [75] is a remedy.

Block-level remapping from logical block number to physical block number is not
a panacea yet for three reasons. Firstly, the query of remapping metadata at payload
read time and the updates of remapping metadata can incur significant performance
overhead if not done properly. BOSC can solve the problem with unified logging
ability by logging updates and metadata updates simultaneously. Secondly, garbage
collection [76] is inevitable to defragment the free space as the disk ages, which turns
out to incur non-trivial overhead [77] and implementation complexity. Thirdly, the
applications above the block layer (i.e., file systems, database index) have the full
knowledge of the written payload and it is their responsibility to manipulate the
placement of data payload. The block layer does not have full knowledge to make
a meaningful placement decision. For example, those blocks containing metadata
accessed together should be placed in proximity. A line of research [30, [78] proposed
different ways to feed the block layer with the application-level knowledge.

Although not a perfect solution under all scenarios, the block-level remapping
fits nicely into one niche area, the data logging (i.e., WAL [79], undo/redo logging for
RDBMS [80]). To resolve the performance overhead associated with metadata query
and metadata update, the BOSC scheme can be used as below. Firstly, the logical-
to-physical mapping itself can be logged together with the data payload to mitigate
the overhead due to mapping update. Secondly, the metadata update is committed
to the disks using sequential disk I/O in BOSC. Thirdly, after the logical-to-physical
mapping record is committed, the corresponding log record can be safely discarded.
Eventually, when the data payload is committed to the disk, the payload logging can
also be safely discarded. Therefore, we get rid of the aging problem associated the
block-level remapping scheme. A complete design for a case study is presented in
section [
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2.1.4 Logging and Batching of Individual Records

Logging techniques [8TH83] are widely used for index structures to improve their
update efficiency. The sequentiality nature of logging provides two-fold benefits, (1)
efficient write performance, and (2) even utilization of all disk blocks. However, the
benefits are not gratuitous, a remapping data structure is necessary to remember the
physical location of a write, and disk blocks need to be recycled to be reused as the
system ages [72, [73]. One more complication arises to apply logging techniques to the
index structures, that is, the update of the index structures is significantly smaller
than the on-disk block size. The in-page logging technique [82] mitigates the problem
for NAND flash disks by appending individual updates to the end of an erasure unit
containing the target page of the updates. In concrete, each EU is partitioned into
two areas, the first area holds the page, and the second area holds the logging records.
The page is reconstructed on the fly every time a read is issued to the page by merging
the logging updates with the page. Although the in-page logging technique improves
the update efficiency of index structures, each read involves a read of the data block
and a read of all logging blocks because logging records of that page may scatter in
the logging blocks. What is more, each time the logging blocks are full, every data
page in the EU has to be moved to a new EU even if the data page itself does have
related logging records.

Instead of logging records on the NAND flash disk, the NAND-based B-tree
employs in-memory logging to improve the update efficiency of a traditional B-tree.
The B-tree internal nodes are assumed to be memory-resident. Each leaf node of the
B-tree is associated with a link list of sectors containing the logging updates of the
leaf node, which allows flexibility in choosing which sector to log the updates. Similar
to the in-page logging technique, the logging updates are merged with the leaf node
each time the leaf node is accessed. To improve space utilization, the logging updates
are buffered and lazily written to disk. This “lazy” update technique is also adopted
in [83].

However, none of these techniques provide a full-fledged solution to the metadata
update problem. For example, the durability of the remapping data structures is not
considered in [82], the durability of the index structure is not guaranteed in [81], [83].
In contrast, the BOSC technique provides the durability guarantee through high-
performance metadata logging for all index structures employing BOSC.

2.1.5 Insert/Update Optimizations of State-of-Art DBMSs

In practice, due to the complexity of the database internals, the database vendors
are reluctant to adopt completely-new data structures and new index organization
to achieve high performance. Instead, incremental improvement is more likely to
succeed and in this section I summarize several techniques to improve performance for
existing index structures in commercial database systems, several emerging database
companies using new index structures, and future trends for commercial database
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systems.

Graefe proposed several techniques [55, 84, 85] to improve the insertion and
updating performance of B trees with a focus on the ease of deployment. In [55],
Graefe proposed a novel modification to improve the de-fragmentation and reorgani-
zation performance of Bt tree. A logical pointer called fence instead of a physical
pointer to sibling B* tree leaf nodes was proposed to limit the performance over-
head of migrating B tree leaf nodes. However, this scheme optimizes for inserts and
does not work well for update-in-place operations because the latter need to fetch
target leaf nodes first before modifying them. In [84], Graefe surveyed techniques
to improve updating performance and quantitatively projected that an order of mag-
nitude slow-down for the query performance can be traded for an improvement of
inserting performance by two orders of magnitude. In [85], he proposed to add an
artificial leading column to logically partition a single BT tree to several small BT
trees. Similarly to the buffer tree technique [86], incoming updates are written to the
smallest BT tree that can fit into the main memory. Merging is implemented as a
background operation to take advantage of large sequential writes. However, read
query performance again is sacrificed because multiple BT trees have to be queried
before the final result can be computed. Moreover, such optimization techniques
work well for streaming insertions as for collecting sensor data [86] but does not work
well for update-in-place workloads such as OLTP workload. In contrast, BOSC is
equally effective for insert-only and update-in-place workloads. Moreover, all these
techniques focus only on BT tree and it is not clear if these techniques can be applied
easily to other index data structures (i.e., R-tree), whereas BOSC is effective across
multiple distinct database index structures.

The InnoDB storage engine in MySQL [87] adopts a technique called insert
buffer tree to defer the insert/update until the corresponding B-tree leaf pages are
fetched into cache. Insert/update requests are inserted to the memory-resident insert
buffer with the key of (Index_ID, Key). The buffered insertion/update requests are
committed to the corresponding B-tree leaf pages by a background thread. The
background thread adopts a greedy policy to commit records. That is, each time it
chooses the leaf page with the maximal number of queuing records as the target leaf
page to commit queuing requests to. Our experiences show that the greedy policy does
not consider the sequentiality of the disk access, and therefore is outperformed by the
policy which sequentially fetches leaf pages. Although the insert buffer scheme does
not achieve the optimal possible performance, it can achieve insert/update throughput
up to 15 times larger than that does not use insert buffer. The improvement of the
insert buffer scheme indicates that the BOSC idea can be applied to the commercial
database with a significant performance boost.

TimesTen [88], Datablitz [89] and SolidDB [90] are examples of main-memory
database products on the market. Although these products are optimized for in-
memory access instead of block-based disk access, each database index still has an
on-disk counterpart to preserve the durability of the database index. Recovery logs
(i.e., the undo log and the redo log) are used to speed up the performance. For these
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products, the BOSC scheme can be employed to improve the performance furthermore
by scheduling the disk access more efficiently.

Tokutek Inc. commercializes the CO stream tree [48] as mentioned above by
providing a storage engine called TokuDB [01] to MySQL DBMS. Because TokuDB
allows efficient insert and search queries, the cost of update can be reduced for the
following reason. FEach update consists of (1) lookup of an index and (2) update
to many other indexes. Traditional database DBMSs do not allow many clustered
indexes due to slow insert queries. In contrast, TokuDB allow many clustered
indexes because of its efficient insertion, which can greatly reduce the cost of lookup
and therefore the overall cost of the update query.

Vertica Inc. [92] founded by Stonebraker et al. provides the column-based
database solution optimizing for the warehousing data workload, where the query
throughput is uttermost important. One important optimization technique for such
workload is to use column-based tables instead of row-based tables to avoid the waste-
ful caching of unused columns in the queries [93]. This category of optimization is
orthagonal to BOSC, and BOSC can work together with these optimization tech-
niques to improve the queuing efficiency.

Stonbebrake et al. [94, ©5] also proposed a more radical change to the tradi-
tional RDBMSs. As traditional disk-based RDBMSs entails significant performance
overhead due to disk access (record access, undo logging, redo logging,etc), locking
(two-phase commit locking), latching (concurrent access of latched data structures
shared by multiple threads), and buffer management (access memory from the buffer
pool), Stonebraker et al. proposed H-Store, a memory-resident RDBMS, to remove
most of overhead in traditional disk-based RDBMSs. H-Store operates on a cluster of
machine nodes, and these nodes collaborate to service the database queries. H-Store
ensures data durability by replicating tables across different machine nodes, and does
not persistently commit database changes to disks. Because memory access is faster
than the disk access, H-Store employs the single-threaded model to complete each
transaction one by one, and removes the overhead of locking and latching associated
with multi-threaded model completely.

The assumption of operating a RDBMS in memory without disk backbone as in
H-Store is suspicious for two reasons. Firstly, not all database workload can fit into
main memory. For example, H-Store demonstrates that a collective 100 GB mem-
ory is enough to hold the OLTP workload. But other database workload, i.e., data
mining workload of warehousing, can easily reach hundreds of terabytes. Secondly,
even if the database workload can fit into memory, the inevitable software and hard-
ware faults (bugs, hacks, crash) can easily corrupt the in-memory data structures.
One way to mitigate the corruption problems is to increase the degree of replica.
However, increasing the degree of replica will reduce the effective amount of mem-
ory holding database indexes, which may invalidate the assumption that the whole
database workload can fit into main memory. In contrast, as long as disks are used,
the BOSC scheme can benefit the database workloads without maintaining replicas
in memory.
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2.1.6 Insert and Update Optimizations Exploring Domain
Specific Knowledge

It is well-established that the general-purpose RDBMSs do not perform well for
many applications [94], 96, 97]. These applications include text processing (Google’s
Bigtable, Yahoo's PNUTS), warehousing (OLAP and data mining), scientific com-
putation (i.e., geometry data processing), etc. Instead of using RDBMSs, specialized
algorithms employing domain-specific knowledge were proposed for these applications
to achieve reasonable performance. These specialized algorithms outperforms their
counterpart using general-purpose RDBMSs by a factor of several magnitudes because
the specialized algorithms usually abandon a subset of strict RDBMS properties to
fit the need of their applications. In this section, we explore important common tech-
niques employed in these domains. As the optimization in each domain is usually
case-by-case, we skip some of the implementation details.

The Yuntis [98] search engine efficiently updates a number of metadata when
processing a crawled page by queuing metadata update operations with their target
disk blocks. Metadata disk blocks are brought into memory from disk in the decreas-
ing order of the number of their pending updates, and are kept in memory as long as
possible for maximum reuse. However, in-depth knowledge of the internals of Yun-
tis’s data structures is necessary to convert it from a control-centric approach to a
data-centric approach. In general, it takes a nontrivial amount of effort to reorganize
an arbitrary application to benefit from the technique used in Yuntis. In contrast,
BOSC is designed to be a general disk access mechanism that can be used by a wide
range of applications.

Search engine giants [99, [100] develop text processing systems to suit the re-
quirement of their applications. Key/value pair is the basic unit to access a record
in Google’s Bigtable [09]. Bigtable improves the 1/O efficiency by logging every up-
dates to a redo log. The most recent updates are kept memory-resident, while older
updates are written out as update files. Periodically, both the memory-resident up-
dates and updates in the files are merged with the original file accommodating old
records. Reads are sacrificed to benefit writes because each read has to merge all
related update files and memory-resident updates to form a consistent view to the
applications. Although Bigtable employs the Bloom Filter [I01] technique to reduce
the number of disk access for frequently accessed key /value pairs, for the majority of
the records, applications suffer in getting these records. Fortunately, many applica-
tions using Bigtable is not latency-sensitive application. But it is not clear whether
Bigtable can fit the requirement of latency-sensitive applications.

Yahoo’s PNUTS [100] takes a different perspective in crafting their design: con-
sistently low latency for all requests. PNUTS relies heavily on a pub/sub system
called Yahoo! Message Broker (YMB) to ensure the record durability and reliability.
To achieve low-latency update, an update request is regarded as “committed” after
the request is published to YMB, after which the application initiating the request
can proceed. YMB publishes the update request by logging the request to disks on
multiple servers. Eventually these committed records are propagated to their target
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storage units by YMB. The way the insert/update request is serviced is similar to
that in BOSC, the only difference is that BOSC now only works on local storage,
not in a cluster environment. As presented in PNUTS, in a cluster environment, the
record update is applied to the master copy of the record, while the record query
can be serviced from different replicas, even the local stale replica. However, the
latency to read the latest version of the record instead of the stale local copy is not
well pronounced, which presumably involves merging of YMB’s log records and the
storage unit holding the record replica. Again, for most of their applications, there
is no compelling demand to read the latest version of a record as long as YMB can
propagate the updates to all replicas within a moderate time limit. However, the
absence of the demand to read the latest version may be not a safe assumption for
other applications [99] [T02].

Netapp develops a utility called Spyglass [103] to manage metadata of the large-
scale storage systems. Spyglass uses K-D trees [104] to map multiple attributes to
files these attributes pertain to in a peta-scale distributed storage system consisting of
commodity hardware (i.e., Ethernet, SATA disks, etc). Because file attributes have
strong temporal and spatial locality [105], Spyglass partitions the global metadata
index into hierarchic sub-partitions based on the namespace hierarchy. The parti-
tioning provides two-fold benefits, namely, 1) record updates are confined within a
single partition without triggering massive record movement as in the global meta-
data scheme (i.e., a row-based RDBMS table), 2) record search can be confined in
local partitions with the help of a bloom filter signature. In concrete, each partition
creates a bloom filter signature file for each attribute, which encodes the existence of
files owning the attribute in the particular partition. A query fails to “hit” the bloom
filter in the middle of the namespace hierarchy does not bother to traverse down, and
those partitions in the subtree can be safely pruned from the search.

Spyglass is a big success in showing its effectiveness in Netapp-like environment,
where updates are triggered periodically (i.e., hourly) by the background metadata
crawler. However, for other workloads of different characteristics, Spyglass’s methods
may not play well for two reasons. Firstly, the workload does not exhibit so strong
locality as that in Spyglass. Secondly, even if the workload exhibits strong locality,
it is not easy to model the locality in a hierarchic way. For example. for block-
level deduplication, the block-level does not have knowledge of the files owning these
blocks, and therefore can not leverage the data locality using a hierarchic tree, which
hurts the pruning efficiency of metadata search.

The optimization for data warehousing [93] [106] [107] workload has a different
focus. Instead of optimizing for the updates, these optimizations stress more on the
read queries. For example, the MonetDB [107] reduces the performance overhead of
ad-hoc queries to large dataset by employing various cache-aware techniques. Because
the disk I/Os are all sequential, the performance overhead roots from in-efficient use
of main memory and cache. All optimization techniques center around the efficient
use of main memory and CPU cache. One important optimization technique is to
use column-based tables instead of row-based tables to avoid the wasteful caching
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of unused columns in the queries [93]. As BOSC was proposed to speed up the
insert /update performance, these techniques are orthogonal to the BOSC scheme and
can be used in combination if the importance of the read performance is uttermost.

Scientific computing [97, T08-113] leverages computing-specific knowledge to or-
ganize and manipulate the index structures to intelligently accomplish the computing
task. For example, the Weaver system [97] cultivated in CMU takes the raw data as
input and generates unstructured octal meshes with billions of elements. The pro-
cessing takes four phases, (1) construct phase to build unbalanced linear octree, (2)
balance phase to balance the unbalanced linear octree, (3) extract phase to extract
leaf node and internal nodes of the output octal mesh, (4) transform phase to glue leaf
nodes an internals and to output a result file. The first impressive technique used in
phase 2) is called balance by part (BBP), which partitions the whole linear octree into
equal-sized 3D volume parts. Each part can fit into the memory and these volume
parts are written out sequentially to take advantage of the sequential disk 1/O. The
second technique called two-level bucket sort appears in phase 3) to remove duplicate
internal nodes. The two-level bucket sort technique maps each internal nodes to a
per-region bucket, sorts nodes of each per-region bucket to eliminate duplicates, and
eventually appends the result to the output internal node file. The insightful observa-
tion is that node extraction is an offline task instead of an online one, that is, the final
position of each node is fixed given the input linear octree. The first optimization
technique shares with the BOSC scheme to explore sequential disk bandwidth. The
second optimization technique shares with BOSC to construct a local data structure
to fit into main memory and yet to be written out sequentially.

2.2 Related Work of Asynchrony

To resolve the tension between data consistency and update performance, the idea
of external data synchrony [114] has been proposed to approximate the performance
of asynchronous disk I/O while providing the same consistency guarantee as seen
by an external observer as synchronous disk I/O. Data updates are kept in a buffer
and flushed to disk only when external outputs are generated. BOSC uses a special
low-latency logging technique to reduce the performance cost of synchronous logging.
As a result, BOSC is simpler because it does not need to be coordinated with other
system events that produce externally visible outputs.

2.3 Related Work of CDP

Continuous Data Protection (CDP) backups the data on-the-fly as it is written to the
disk. Therefore, every update is undoable. Traditional data protection system relies
on file system backup, which is performed in a much coarser granularity than CDP.
Using a CDP based solution in network storage could result in an increase in network
and individual server resource load since all the data written to master storage node
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have to be backed up to the local mirror storage nodes at the same time.

Parallax [115] also adopts block-level Copy On Write(COW) semantics to min-
imize data copies between different Virtual Disk Image(VDI)s in large-scale dis-
tributed environments. It focuses on the management of a large number of Virtual
Machine(VM)s and does not consider preserving data over a long term. It employs a
radix tree to provide ready access to one historical image and a group of radix trees
are organized in a separate data structure. In contrast, Mariner uses an External
B-Tree to preserve the full mapping of the logical address plus a timestamp to the
physical address.

The idea of the disk head prediction used in Trail is not new. One example is the
Free block scheduling [0, 116]. The objective of Free block scheduling is to piggy-back
background media transfer with normal workload activity with little-to-no overhead
by utilizing the rotational and seek latency of the requests belonging to the normal
workload. A freeblock scheduler predicts the amount of the rotational latency before
the next foreground media transfer and inserts background media transfer within the
anticipated latency to minimize the impact on the foreground media transfer. The
key point for the feasibility of free block scheduling is that the ordering of requests
for background disk activities is not mandatory for background activities.

In the original Trail architecture [12], there is a normal disk, which holds the
user data, and a log disk, which provides a fast staging buffer for disk writes. Given
a disk write request, Trail first writes its payload to the log disk, and then completes
the write to the normal disk asynchronously. Because Trail ensures that the disk head
is always on an empty track and could accurately estimate the disk heads position in
real time, it can write a piece of data to the log disk where the disk head happens
to be at that instant. Consequently, each write operation incurs very little rotational
latency and zero seek delay.

Fiber Channel (FC) is the predominant storage area networking technology. It
evolved as an alternative data transfer technology to the low performance 10 Mbps
Ethernet technology. With the advent of Gigabit Ethernet, the initial concerns of
bandwidth and latency requirements of SANs no longer remain a core issue. The
ultimate enabler of Ethernet-based SAN is the iSCSI [117] protocol, which defines
semantics for block level SCSII/O over any IP network. iSCSI is the FCP counterpart
on Ethernet networks that maps the SCSI command set to the TCP/IP stack. The
increase in the momentum of iSCSI is evident from its availability through several
major operating system vendors and the availability of iSCSI enabled HBAs from
major hardware vendors. Although it is debatable whether iSCSI/Ethernet will com-
pletely replace Fiber Channel SAN or not, the increasing momentum of Ethernet
based SANs is undeniable.

The memory to memory approach to avoid data copy [118] [119] [120] has been
widely applied. Remote Direct Memory Access(RDMA) is a zero-copy networking
technique, permitting data to be transferred directly from application memory of one
machine to that of another machine without involvement of host CPU processing,
caches and context switches of host Operating Systems. These features are especially
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important in highly parallel networking systems such as clustered computing [121].
Although technically superior to other alternatives, RDMA is not widely advocated
in network storage systems because its most common underlying infrastructure is
InfiniBand [122], a point-to-point switch fabric interconnect technology not widely
used. In contrast, iISCSI operates seamlessly on Ethernet networks, which is the most
widespread LAN technology in use till now.

Payload caching [123] and Network-centric buffer caching [124] share similarity
with RDMA in the sense that they all aim to minimize the data copying. Payload
caching caches payload in Network Interface Card (NIC) and reduces data traffic
through host I/O bus. Network-centric buffer caching keeps a network friendly format
in page/buffer cache to avoid data content copying and transformation overhead.
As TRM aims to minimize traffic load on Ethernet network, these techniques are
orthogonal with TRM. Compared with these techniques, TRM is much more favorable
for applications that requires data replications.

Cisco SANTap [125] is a protocol that sits between the MDS switch and a storage
application appliance. The SANTap service registers as both an initiator (host) and a
target device (storage array) in the Fiber Channel name server. It allows the storage
appliance to get a copy of the I/O exchange between the server and storage without
compromising the primary I/O. The appliance is no longer in the data path. In
addition, SANTap also needs to provide error recovery services to permit recovery in
the event of appliance or port failure. However, special hardware support is required
to use the SANTap approach. Our TRM approach achieves similar functionality on
Ethernet switches and leverages TCP to make sure of reliable data replication.

The Viking project [126] revisits architecture features of Ethernet technology
when Ethernet is applied to network storage and large scale Metropolitan Area Net-
work(MAN). Viking overcomes one efficiency weakness of Ethernet technology by
extending a single spanning tree to multiple spanning trees in forwarding routed data
packets by leveraging on standard Virtual LAN technology. Viking improves the ef-
ficiency of underlying Ethernet-based network by making a better use of underlying
data link capacities and reducing the down time of link failures . In contrast, TRM
targets at minimizing network traffic passing through NICs and therefore gains better
network efficiency.

Link-layer multicast could be implemented by exploiting IGMP snooping [127].
Traditionally, Ethernet switches treated link-layer multicast packets as broadcast
packets. Network performance suffers as unnecessary packets are forwarded through
the network. Fortunately, most modern Ethernet switches, particularly Gigabit
switches, support a feature called IGMP snooping, which was designed to support IP
multicast without using link-layer broadcasting. TRM makes a novel use of IGMP
snooping to implement the link-layer multicast.
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2.4 Related Work of File Versioning

Versioning file systems maintain versions of files at the file system level. File sys-
tems in Plan-9 [128], AFS [129], and WAFL [I30] checkpoint the whole file systems
periodically to support file versioning. For these systems, the temporal resolution
of file versions is the checkpoint interval. Some file systems such as Elephant [131]
and Versionfs [132] supports finer-grained versioning granularity and more flexible
data retention policy. Elephant is a kernel-level versioning file system that creates a
new version only when a file is closed. VersionFS is a versioning file system based
on a stackable file system architecture [I33]. As in Elephant, a new file version is
created only on file close but the versioning policy is flexible. VersionF'S also provides
a friendly interface for users to access old versions and to customize the versioning
policies. VersionF'S still incurs non-negligible performance overhead - about 100%
when measured by the Postmark benchmark. Neither Elephant nor VersionFS can
distinguish between file updates that occur between a file open and file close opera-
tion.

Wayback [134] is a user-level comprehensive versioning file system that creates a
new file version upon every file update. Ext3cow [I135] is a comprehensive versioning
file system that does not require any modification to ext3’s interface of the kernel. It
implements a time — shifting interface in ext3 file system and employs a copy-on-
write scheme to avoid polluting the file system cache. In ext3cow, only versions that
are propagated to disk are retained. Block-level CDP systems take the same approach
because they creates a new block version only when an updated block reaches the
storage server. However, in ext3cow, individual file versions are attached to snapshots
and file versions between consecutive snapshots are invisible to end users.

CVFS [136] is a kernel-level comprehensive versioning file system that is opti-
mized for metadata logging efficiency. Journal-based meta-data is used for Inode/Indirect-
block update and multiversion B-tree [137] is used for directory update.

2.5 Related Work of Consistency Check and En-
surance

Val Henson [I38] proposed a file system-wide dirty bit to indicate whether the file
system is being actively modified when the system crashes. When a file system crashes
with the dirty bit not set, FSCK knows that it does not have to do a full FSCK when
the system reboots. In addition, they proposed a technique called linked writes to
identify a list of dirty Inodes to limit the scope of FSCK to checking only those dirty
Inodes. Linked writes can also be viewed as a form of journaling where the journal
entries are scattered across the disk and linked by the on disk dirty Inode list. It needs
to link the Inode to the on disk dirty Inode list before the actual operation on this
Inode takes place. Similarly, +F'SCK scans updated blocks within a time window to
limit the scope of FSCK. The difference is that {F'SCK leverages file system-specific
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knowledge to identify block updates that modify file system metadata and therefore
works without any file system modification.

Other file systems, for example the ext3 file system under Linux, use a journaling
architecture to give a transaction semantics to file system metadata updates through
redo logging; it is relatively straightforward to identify disk updates that modify file
system metadata because each of them appears in a separate log. In addition, the ext3
file system readily tags disk updates associated with their corresponding file system
update operations. Therefore, its crash recovery code does not need to parse the disk
updates to correlate them with their associated file system update operations.

CIMStore [139] exposes the history of all data written to stable storage for search
or browsing. CIMStore marks the state of the system as being “quiescent” to speed
up the recovery of the state of a storage application (e.g. a file system) and provides
consistent point-in-time information. These “quiescent” points are located either by
understanding high level data structures such as the “unmounted cleanly” flag of
the superblock of a file system, or explicit notification from a client-side application
monitoring storage application activity. This “quiescent” point detection is currently
done manually in CIMStore. In contrast, iF'SCK does not need “quiescent” points
and transparently restore the storage volume to a consistent state.

J. Kent Peacock et al. [140] developed a fast consistency checking technique
for Solaris file system. The fast FSCK provided with Netra NFS keeps track of the
active portions of the file system and limits the scope of the file-system check to only
that “working set.” They need to modify the file system structure to add the state
information and perform logging of certain transactions such as directory update. In
contrast, i{FSCK combines the write log from the CDP node and the file system-
specific knowledge to infer the working set without modifying the file system itself.

2.6 Related Work of Write Optimization of SSD

2.6.1 Flash Translation Layer (FTL)

does not scale well, page-level mapping Two types of flash disk technologies exist [141]
142]. NOR flash disk is designed to replace erasable ROM (EPROM) and provides
random data access in the same way as EPROM. The minimal addressable unit for
NOR flash disk is a byte, the same as EPROM. In contrast, NAND flash disk is
designed for mass storage. NAND provides a block access interface, and the minimal
addressable unit is the same as a commodity hard drive, usually a 512-byte sector. A
page in a NAND flash disk is usually a 2-KB page and can accommodate 4 sectors.
FTL is designed to mitigate the performance problems associated with the hard-
ware limitations of flash disks [143]. First, overwriting an already written flash mem-
ory cell is physically not possible. Instead, FTL reads in the erasure unit containing
the write’s target sector, modifies it, erases the original erasure unit, and writes the
modified version to the newly erased erasure unit. This read-erasure-write cycle in-
curs significant performance overhead because an erasure operation usually takes an
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order of magnitude longer than a write operation. To reduce this performance over-
head, FTL could write the in-memory copy to a separate erased erasure unit before
erasing the original erasure unit. Second, because there is a limitation on the number
of erasure operations that can be applied to an erasure unit [144], FTL employs
wear-leveling techniques to distribute the writes evenly to all the erasure units in a
flash disk so as to maximize its usable lifetime.

Page-based FTL maps a logical page to an appropriate physical page of a NAND
flash disk [143| 145]. Andrew Birrell et al. [143] proposed a page-based mapping
technique in which a logical page is remapped to the tail of the current erasure unit.
A page is reserved at the end of each erasure unit to hold the mapping information
and other metadata. The mapping from a logical page to its corresponding physical
page is stored in volatile memory and every time the flash disk is restarted, the
whole disk has to be scanned to reconstruct this mapping. This design incurs a
long start-up delay when the flash disk is large. In contrast, LFSM maintains the
address mapping information separately from the data log, and only those blocks
whose corresponding mapping updates are still pending at the time of crash need
to be scanned at the system recovery time. Therefore, LFSM is more scalable with
respect to the increasing size of the flash disk. Moreover, commodity flash disks’ FTL
cannot afford page-based mapping because of the scarcity of on-board memory. To
use 4-KB pages as the address mapping granularity on a 64-GB flash disk, it will
require 16*36/8=72 MB, which is too much for most commodity flash disks.

Instead, unit-based FTL [146] maps a logical unit address to a physical unit
address. Each logical page address thus consists of the address of the logical unit
containing it and its offset within the unit. With unit-based FTL, repeated updates
to a single sector in a unit may result in an erasure of the entire unit. The hybrid
mapping scheme [147, [148] allows FTL to remap the offset of a page to a different
offset within the same unit, and thus entails a smaller mapping memory requirement
than page-based F'TL. Units are categorized into log units and data units. Log units
act as a write buffer to accommodate new writes while data units are designed to hold
data with regular unit-based mapping. Log units only account for a small percentage
of a flash disk’s units.

eNVy [149] is a large non-volatile storage system built with Flash memory. Flash
memory in eNVy has the same access interface as that of SDRAM, e.g., flash memory
is accessed through the memory bus rather than the I/O channel such as IDE or
SATA. To mitigate the performance problem associated with random writes, the
target logical page of each write is remapped to a new physical page and the mapping
information is updated accordingly. A battery-backed SRAM is employed to hold the
mapping metadata. When the space in eNVy is used up, a cleaning process similar to
Sprite’s LFS [79)] is triggered to recycle unused pages. In contrast, LFSM works with
commodity flash disks that support block access interface and keeps the metadata
on the same flash disk as the data, and is thus applicable to all PCs equipped with
commodity flash disks, without requiring any expensive battery-backed SRAM.

CloudBurst [150] is a log-structure virtual disk subsystem designed specifically
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around flash disks. Written virtual disk blocks are remapped to the end of a log. Data
payload is fully compressed and a segment containing the metadata header and the
compressed data payload is appended to the end of data log. In comparison, LESM
does not compress all the data payload, instead, but only a part of each write’s payload
to squeeze out space for the metadata header. CloudBurst’s mapping structure is
volatile in memory and is reconstructed from the flash disk at system startup time
through scanning of the whole data log. In contrast, LFSM keeps a persistent mapping
structure and only those blocks whose associated mapping updates are pending at
the time of system crash need to be reconstructed at system startup time.

2.7 Related Work of Data De-duplication

Venti [I51] pioneers the content-addressable storage (CAS) by computing the finger-
print (i.e., SHA1 hash value) of a data block and using the computed fingerprint
instead of a logical block number to address the data block. Data blocks are de-
duplicated because data blocks with the same content have the same fingerprint.
However, Venti does not focus on de-duplicating data blocks, and more efforts are
spent ensuring write-once-read-many property. In concrete, Venti does not address
two performance problems associated with fingerprint-based de-duplication. Firstly,
the access locality is lost because adjacent data blocks have very different fingerprint
values. Secondly, for a large-scale storage system, the fingerprint index can not fit
into main memory and the lookup of the fingerprint index during data de-duplication
can incur extra disk I/Os, which can incur a significant performance overhead |27, 2§].

Based-on whether the de-duplication steps into the critical I/O path, de-duplication
techniques can be categorized into two camps, the inline de-duplication technique and
the out-of-line de-duplication. In inline de-duplication [27], 28], each incoming write is
checked for de-duplication purpose before it arrives at the disk. If previously there is
write payload with the same content, the incoming write does not need to be written
to disk. Otherwise, the new write payload is written to the disk. In contrast, out-of-
line de-duplication techniques do not de-duplicate write payload on the fly. Instead,
each data payload is first written to disk. A background procedure checks the newly
written data payload for the de-duplication purpose.

Kai Li et al. [27] proposed an online de-duplication technique for a disk-to-disk
(D2D) [22] data backup system. Because the fingerprint index can not fit into memory
and resided on the disk, the paper proposed two techniques to minimize the overhead
due to I/O access of the fingerprint index. Namely, the two techniques are (1) a
bloom filter-based [I52] summary vector to avoid unnecessary fingerprint lookup, and
(2) a locality-preserving data placement scheme to leverage the spatial locality of the
input fingerprints.

As the first optimization technique, the auxiliary bloom filter covers all finger-
print values of data blocks and accounts for a non-negligible amount of memory usage.
On one side, a miss in the bloom filter indicates there is no such fingerprint value in
the index structure. On the other hand, a hit in the bloom filter is not decisive in
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determining if the fingerprint value of interest exists in the fingerprint index, and a
search to the index structure is inevitable.

The second optimization technique preserves the locality by loading/evicting
the fingerprints based on a container rather than a continuous range of fingerprint
values because neighboring fingerprints do not reflect the data locality. The container
corresponds to a continuous range of logical blocks from the input backup stream, and
contains all metadata related to the continuous range, including the fingerprints and
physical locations of these blocks. A query miss of one fingerprint in the container
triggers the loading of all fingerprints in the container, predicting other fingerprints
in the container will be queried in subsequent fingerpint queries. In most cases, the
prediction is correct due to data locality in the input backup stream.

The sparse indexing scheme [28] uses a sampling fingerprint index instead of
a whole fingerprint index to further reduce the memory usage of de-duplication in
an online de-duplication system for a D2D data backup system. The insight of the
proposed scheme is that duplicated data blocks tend to be in a consecutive range with
a non-trivial length. A match of sampling fingerprint values in the range indicates the
matching of the whole range with a high probability. Among all matched ranges, a
champion is chosen to de-duplicate against. The sampling ratio can be used to trade-
off the de-duplication quality and the memory usage. In one extreme, if all fingerprint
values in the range are sampled, the is most efficient. In the other extreme, if only
one fingerprint value in the range is sampled, the de-duplication algorithm can err
in choosing the champion range and therefore the de-duplication efficiency drops.
Although the segment match based on sampled fingerprint works well for examined
workload, it is not clear how effective it is for other backup workloads, including
changed blocks within a file or an email, which our de-duplication techniques focus
on.

Many live storage systems [153HI55] opt for the out-of-line de-duplication tech-
niques because the performance overhead associated with online de-duplication is not
acceptable for these systems. In these systems, the de-duplication functionality is
cut out of the critical data write path, and the de-duplication is scheduled in the
background. In particular, the data de-duplication improves the storage efficiency
for distributed file systems [I53HI56] because all hosts in a cluster tend to host sim-
ilar files or operating systems. For data de-duplication in distributed systems, the
performance of metadata lookup and maintenance is not a serious concern because
metadata can be distributed across all participating hosts in a distributed fashion.

HYDRAstor [157] is a content-addressable distributed near-line storage system
with fault tolerance in the design. Backup images are chunked into segments, each
segment is routed to a peer machine based on its fingerprint. Because each peer
machine has the full hash key information for all segments stored on it, the peer
machine can de-duplicate the segment in an online fashion. Different from Venti,
segment is stored continuously on commodity storage devices to preserve data locality
so that both read and writing of segments are 1/O-efficient. HYDR Astor employs the
mark-and-sweep garbage collection technique to reclaim physical blocks. Because

33



typical storage capacity of peer machines in HYDRAstor is in the scale of 10 TB, the
counters of all physical blocks can still fit into memory and the marking process can
be very fast. As the per-peer machine storage capacity grows, the mark-and-sweep
garbage collection is not scalable because the counters of all physical blocks can not
fit into memory anymore and the 1/O becomes the performance bottleneck.

However, HYDRAstor showcases complicated practical consideration in design-
ing a robust garbage collection and de-duplication scheme against failures if the failure
of machines is a norm in a distributed environment. For example, during the garbage
collection, the marking of deleted blocks needs to survive machine failures to prevent
future writes to take the to-be-deleted blocks as a stored duplicate. Their solution for
this problem is to make the system read-only first, marking all to-be-deleted blocks
in one shot, and then make the system read-and-write. For our deduplication system,
we can learn how they deal with each corner cases in fighting against failures.

The Foundation [158] leverages commodity USB external hard drives to archive
digital files in a similar fashion to Venti. Different from Venti but similar to the
Data Domain scheme, a 16 MB segment is stored continuously to preserve locality for
sequential read and fingerprint caching. For each fresh write, up to 3 disk accesses are
encountered: (1) the lookup of fingerprint, (2) appending the data payload to the end
of the data log, and (3)fingerprint updates to the on-disk fingerprint index. Bloom
filter is employed to filter out unnecessary lookup in (1). For (3), in updating the
fingerprint store, similar to BOSC, a buffer is employed to accommodate fingerprint
updates and a single sequential scan is used to commit updates when the buffer is full,
which shows the effectiveness of BOSC in de-duplication. However, the fingerprint
updates are not logged to the disk and their durability is not ensured, which can
cause problem when the fingerprint update buffer is not filled for a long time.

Online de-duplication techniques in backup storage systems (i.e., D2D backup
systems) and out-of-line de-duplication techniques in live storage systems are different
in 4 aspects. Firstly, online de-duplication can save disk space in the first place
because data de-duplication is done on the fly. In contrast, out-of-line de-duplication
first stores duplicates and de-duplicate data in the background. Secondly, online
de-duplication incurs performance overhead on the critical data path, while out-of-
line de-duplication chooses to offload the performance overhead in the background.
Thirdly, online de-duplication in backup storage systems is conducted periodically,
while out-of-line de-duplication techniques need to deal with duplicates produced by
dynamic changes. Fourthly, out-of-line de-duplication techniques employs file as the
basic unit of data de-duplication, while online de-duplication techniques in the backup
storage systems use block streams as the basic unit of data de-duplication.

Although different in many aspects, out-of-line and online de-duplicatio fit well
in their corresponding arenas. For example, because the primary concern of a live
storage system is to provide low-latency access to live data and temporary space
utilization is not the top concern, deferring the data strikes a reasonable balance
between performance overhead and space utilization. Conversely, backup systems
focus more on backup throughput than the latency of individual backup requests,
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and the storage utilization is the first priority. Therefore, online de-duplication is
preferable for backup systems.

Our proposed de-duplication technique differs from that of Data domain paper
and that of sparse indexing paper in three aspects. Firstly, the input of the backup
stream consists of only changed blocks since last backup. Secondly, the spatial locality
is captured based on the file. Thirdly, the sampling rate of fingerprint selection
is varied based on the de-duplication history to capture the temporal locality of
input backup stream. The first difference requires our technique to squeeze out the
duplicates by fully exploring their spatial locality and temporal locality.

In [159], de-duplication is based on files. Each file has a representative finger-
print. Entries in the fingerprint index are distributed to K nodes one by one based
on modular operation, or other distributed hash table functions. The whole con-
tainer corresponding to a fingerprint index entry is distributed to the same node as
the fingerprint index entry. If two fingerprint index entries happen to have the same
container but distributed to two different nodes, the same containers are duplicated
on two nodes. When a file is backed up, only the representative fingerprint is used
to route the file to a node, all other fingerprints of the file are not used for routing
purpose. In contrast, in our proposed technique, all fingerprints of a segment are used
to query the fingerprint index on the corresponding node. More importantly, con-
tainers are also distributed to all K nodes using the hash of fingerprints, eliminating
the duplicate of containers.

In [I59], each file has a whole-file fingerprint, which means that a match of the
whole-file fingerprint indicates that the whole file is a duplicate. In our proposed
de-duplication technique, each segment has a whole-segment fingerprint, which is
more flexible. However, to save RAM space, it is desirable to have the file-level
information, including the file identifier and file offsets, to represent the segment
instead of individual physical block addresses.
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Chapter 3

Batching mOdification and
Sequential Commit (BOSC)

3.1 Update-Aware Disk Access Interface

The conventional disk access interface supports read (target_block_addr,
dest_buf_addr) and write(target_block addr, src_buf_addr), for applications to
read and write disk blocks, respectively. Under this interface, existing disk 1/O sys-
tems optimize the physical disk access efficiency by delaying and/or scheduling disk
write requests, but by servicing read requests as soon as possible in order to decrease
the critical path delay. In addition, after a disk read request is serviced, control is
passed back to the process issuing the request and the additional processing on the
requested block is done in the context of the issuing process.

Logically, an update to a disk block involves a disk read of the target disk block
and a disk write of the same block after the block is brought into memory. If a
disk I/O system could treat each disk update request as an atomic operation, it can
delay and schedule the disk reads associated with disk updates in the same way as
it does with disk writes. However, to atomically service a disk update request, the
disk I/O system must be able to perform the request’s associated update operation
in a way that is independent of the semantics of the application issuing the request.
To allow an application of a disk I/O system to explicitly declare a disk access re-
quest as a disk update request and supply the necessary information for the disk
I/O system to service it atomically, we propose an update-aware disk access primi-
tive specifically for disk updates, modify(target_block_addr, ptr_modification,
ptr_commit_function), which specifies the target disk block to be modified, a pointer
to an application-specific data structure that includes all information related to the
requested modification, and a pointer to an application-specific function that commits
the actual modification to disk. This primitive is sufficiently general to accommodate
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common disk update requests from such storage applications as a database index
manager, including creating a new index entry, updating an existing index entry, and
deleting an existing index entry.

In the proposed disk update primitive, the application-specific part of each disk
update request, i.e., the internal organization of the data structure pointed to by
ptrmodification and the internal logic of the function pointed by ptr_commit_
function, is fully encapsulated. A disk I/O system implementing the proposed in-
terface carries out the requested modification of each disk update request by blindly
invoking the specified function on the specified data structure, without requiring any
knowledge about the data structure and function. In fact, the disk 1/O system does
not even need to differentiate among create, update, or delete operations. As a result,
the update-aware disk access interface gives a disk 1/O system the same flexibility
of scheduling disk update requests as disk write requests, and enables significant
improvement in physical disk access efficiency. Finally, the proposed disk update
primitive seamlessly complements the standard disk read and write primitives, which
are still needed for supporting legacy applications.

3.2 Batching Modifications with Sequential Com-
mit

Figure shows how BOSC implements the update-aware disk access interface.
It applies a space-efficient low-latency disk logging technique to log each disk update
request, queues it in an in-memory queue, commits updates to disk asynchronously
using mostly sequential disk I/O, and recovers from failures efficiently. The following
subsections describe its design in more detail.

3.2.1 Low-Latency Synchronous Logging

Logging an update request to disk synchronously and then performing whatever op-
erations triggered by the update asynchronously is a well-known technique. BOSC
takes the same approach to deliver high sustained disk update throughput and the
same durability guarantee as synchronous disk updates. In BOSC, each log record
for a disk update request contains the following information:

e A copy of the data structure pointed to by
ptrmodification,
e A global sequence number for the current disk update request,

e A back pointerto the disk location of the log record that is temporally immediate
before this record,
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Figure 3.1: BOSC associates with each disk block an in-memory update request queue.
When BOSC receives a disk update request, it logs the request to disk, queues the request
in the update request queue associated with its target disk block, and then performs the
update operation only when the target disk block is brought into memory. BOSC fetches
target disk blocks using sequential disk 1/0.

e A global frontier, which corresponds to the global sequence number for the
youngest disk update request before which all disk update requests have been
committed to disk, and

e A local frontier, which corresponds to the global sequence number for the
youngest disk update request before which all disk update requests to the target

(local) disk block of the current disk update request have been committed to
disk.

Upon receiving a disk update request, BOSC increments the current global se-
quence number and assigns the result to the request, and prepares its log record by
extracting the data structure pointed to by ptr_.modification and copying the global
frontier, the local frontier associated with the specified target disk block, and the disk
location of the last log record. To illustrate how BOSC maintains the system-wide
global frontier and the per-block local frontiers, let’s consider the following update
request sequence: 1(10), 2(15), 3(10), 4(2000), 5(30), 6(10), 7(15), where the num-
bers outside the parentheses are global sequence numbers of disk update requests and
those inside are their target disk block numbers. Suppose a system failure occurs
immediately after Request 7 is logged to disk, and at that point only the effects of
Requests 1, 2, 3, 5 and 6 are committed to disk. So at that instant, the global frontier
is 4, the local frontiers for Blocks 10, 15, 30 and 2000 are 6, 2, 5, and 0, respectively.
BOSC uses the global frontier to determine which log records can be recycled at run
time and to reduce the number of log records that need to be examined at recovery
time. The per-block local frontiers can further cut down the recovery processing load,
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as is explained in Section [3.2.3]

Because the end-to-end throughput of BOSC is bounded by its synchronous disk
logging performance, BOSC extends a low-latency disk logging technique [12] to be
both low-latency and space-efficient, to support aggressive disk request batching, and
to work on a commodity disk array [160]. The key idea in this low-latency logging
technique is to write a disk block to where the disk head happens to be. More
concretely, BOSC maintains a separate disk request queue for each disk in the log
disk array. At any point in time, one of the log disks serves as the active disk. In the
beginning, BOSC randomly chooses one of the log disks as the active disk. Once a
log disk becomes the active disk, it remains as the active disk until the waiting time
of the oldest pending request in its queue exceeds a threshold, Ty, Whenever a
new disk write request arrives, BOSC inserts the request to the active disk’s queue
as long as the waiting time of its oldest pending request is smaller than T,,.; and
there is enough free space in the current track to accommodate the new request;
otherwise BOSC dispatches the request batch currently in the active disk’s queue,
chooses another log disk as the active disk and inserts the new request to its queue.

To select a new active disk for an incoming write request, BOSC computes the
earliest time at which the write request could be written to each log disk, and selects
the one that can write the request to disk at the earliest. When computing a write
request’s write time on a log disk, BOSC takes into account the current position of
the log disk’s head and the possibility of batching the new request with others already
in the disk’s queue. For those log disks that are currently idle, BOSC only needs to
consider the delay due to batching. A key design decision in BOSC is to dispatch a
new write request to a log disk that allows batching of as many disk write requests
into one physical disk write operation as possible, rather than to one with the earliest
write time for that request. However, BOSC uses T4 to limit the size of batching
and to ensure that the experienced latency of each incoming disk write request is
always bounded.

Because of batching, multiple log records could be merged into a physical disk
request when they are written to disk. Also, the actual disk location of each log
record is only known at the last moment, i.e., right when they are written to disk,
and BOSC keeps track of this information accurately to chain log records together

through their back pointers.

To track the log disks’ disk head position, BOSC statically extracts the physical
disk geometry information from every log disk, and constantly keeps track of each log
disk’s disk head position at run time. More concretely, after a physical disk write is
completed, BOSC records the LBA (Logical Block Address) of its last sector, LB Ay,
and its completion timestamp Tj. Assuming the disk head stays in the same track,
when the next write arrives at 77, BOSC estimates the disk head’s current position
CurrentLBA using the following formula:

T, — To) mod RoT'ime
RoTime

CurrentLBA = SPT - ( + LBAy (3.1)

where SPT is the number of sectors in the current track, RoTvme is the disk’s
full rotation time. The final predicted position, DestinationLBA, is Current LBA +
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Lookahead, where Lookahead is an empirical value chosen to account for such delays
as the controller delay and avoid a full rotation delay due to tracking errors. Detailed
design and analysis of low-latency synchronous logging can be found in chapter [4]

3.2.2 Sequential Commit of Aggregated Updates

In addition to log disks, BOSC maintains a set of data disks to store application data
and a set of in-memory disk update request queues, one for each data disk block.
Upon receiving a disk update request, BOSC first checks if the target disk block is
memory-resident; if it is, BOSC performs the update against the block immediately,
otherwise BOSC appends the update request to the per-block disk update request
queue associated with the request’s target disk block and logs the update request to
the log disk array; finally, BOSC returns control to the caller. Because of BOSC’s
low-latency disk logging, the perceived delay of each disk update request is relatively
small, typically smaller than 1 msec.

In the background a separate thread of BOSC constantly reads the data disks
sequentially to fetch into memory those disk blocks whose pending request queue is
non-empty. This thread goes from the beginning to the end of the data disks, and
repeats the cycle. This is referred to as the sequential commit cycle. Every time the
background BOSC thread brings in a disk block, it applies all the pending updates
to the disk block and writes the block back to the disk. To further minimize the
disk access overhead in this read-modify-write loop of commit processing, instead of
processing one disk block at a time, BOSC physically reads and writes disk block
runs, and commits pending updates on a run by run basis.

A disk block run corresponds to a contiguous sequence of disk blocks the per-
centage of which having a non-empty pending request queue is above a threshold
(currently set to 0.5) and whose length is no greater than another threshold (cur-
rently set to 32). The first and last disk block in a run must have a non-empty
pending request queue, and runs are disjoint. As one run is being fetched from a
data disk, the background thread applies pending updates to another run that has
previously been brought into memory, and pushes a third run, whose pending updates
have already been applied, to another data disk. By pipelining the processing of runs,
BOSC is able to eliminate unnecessary disk seek delays and reduce the number of
disk rotations required to commit pending updates to a sequence of disk blocks to 2.

Although the general idea of batching disk 1/O requests to amortize the associ-
ated disk access overhead is well known, there are several differences between BOSC
and similar efforts in the past. First, BOSC exploits the flexibility afforded by the
update-aware disk access interface to schedule disk update requests as if they are disk
write requests. Second, BOSC incorporates a disk geometry-aware low-latency disk
logging technique to deliver the same integrity as synchronous disk updates while
reducing the application-perceived latency and the performance cost associated with
synchronous logging to the minimum. Finally, BOSC uses sequential disk 1/O to
commit pending updates and greatly improves the overall disk update throughput.
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3.2.3 Recovery Processing

After a system crash, BOSC parses the log to discover uncommitted disk update re-
quests, reconstructs the in-memory per-disk-block update request queues that exist
immediately before the crash, and resumes its normal processing. Note that BOSC
chooses not to commit all uncommitted disk update requests to disk. Instead, it
merely aims to reconstruct the in-memory per-block update request queues and re-
lies on BOSC’s normal sequential commit mechanism to write them to disk. More
concretely, BOSC’s recovery procedure consists of the following steps:

1. Searching the log for the log record with the largest global sequence number.

2. Determining the replay window in the log that contains log records related to
the reconstruction of update request queues.

3. Parsing the log records in the replay window to reconstruct the per-block request
queues.

To speed up Step (1), BOSC performs a binary search (rather than a sequential
scan) of the tracks of the log disk array to track down the youngest log record, which
is the last one to be inserted before the crash and thus corresponds to the end of
the replay window. A major problem in this binary search is how to identify log
records on the disks. Each disk log record is self-describing and contains a separate
disk sector for metadata. One of the fields in this metadata disk sector is a one-byte
signature field, which is a unique bit pattern that allows BOSC’s recovery subsystem
to identify each log record on the disks. However, the same signature bit pattern may
also appear in the user data. To solve this problem, BOSC uses OxFF as the signature
bit pattern, copies the first byte of every user data sector in a write request to the
metadata sector, and changes the first byte of every user data sector to 0x00 before
logging them to disk. This design guarantees that the first byte of each sector on the
log disks is either OxFF or 0x00, and those starting with OxFF start a log record.

Finding the beginning of the replay window is trivial because it actually cor-
responds to the global frontier field of the youngest log record, because all updates
associated with log records before the global frontier by definition have already been
committed to disk. In Step (3), the log records in the replay window are traversed
backwards from the end to the beginning. Given a log record, BOSC first assigns the
value in its local frontier field to its target block’s local frontier if the request queue
of its target block is empty; then BOSC inserts the update request in the log record
into its target block’s request queue in the global sequence number order if its global
sequence number is larger than the local frontier. By leveraging the global and local
frontier information in log records, BOSC can avoid inserting a significant portion
of the log records in the replay window into per-block request queues. After BOSC
reconstructs per-block update request queues, it resume normal-mode processing.
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3.2.4 Extensions

A straightforward way for a BOSC application like a database index manager to
query if a record of certain qualification exists in a disk block is to explicitly read
in the block and scan it for the target record. However, if the desired record al-
ready exists in the disk block’s pending update request queue, this approach may
bring the target block into memory unnecessarily. To eliminate this potential inef-
ficiency, BOSC provides a query API that allows an application to query a specific
disk block: query(target_block_addr, ptr_query, ptr_query function), where
target_block_addr is the target disk block’s ID, ptr_query is a pointer to a data
structure containing the query’s parameters, and ptr_query__function is a pointer
to an application-specific call-back function that BOSC invokes to scan the pending
update requests in memory-resident queues and/or the target disk block if BOSC
needs to fetch it into memory. This API allows BOSC to double the in-memory
request queues as a cache for the associated disk blocks.

BOSC treats every disk update request it receives from an application as an
independent I/O transaction, and is able to guarantee their durability across system
failures by synchronous logging and recovery. When a system recovers from a crash,
BOSC’s recovery manager first restores the side effects of all the disk update requests
that BOSC considers are already committed, and then invokes the application’s recov-
ery logic. However, BOSC’s I/O transaction is not equivalent to an application-level
transaction. If a disk update request is contained in an application-level transaction
that the application’s recovery manager thinks should be aborted, the application’s
recovery manager will explicitly undo the update request with a compensating update
request.

Currently, the log used by BOSC’s recovery manager is not exposed to the
applications using BOSC. That is, if a BOSC application such as a database index
manager is built on BOSC, it needs to perform its own write-ahead logging in addition
to BOSC’s synchronous disk logging. This application-level logging step could be
optimized away if BOSC provides a unified logging API [160] that allows high-level
applications to specify their log records associated with high-level updates and register
call-back functions to be invoked at recovery time. With these information, BOSC will
be able to perform a single physical disk logging operation that effectively encompasses
multiple logical logging operations from different software components.

3.3 BOSC-Based B* Tree

We have successfully ported three tree-based database index implementations (B™
tree, R tree and K-D-B tree) from TPIE [I61], [162] and an existing hash table imple-
mentation [163] to the BOSC storage system prototype. TPIE is a software environ-
ment written in C++ that is designed specifically to minimize the disk I/O cost in
the face of very large data sets.

Common steps shared by porting efforts of these database index implementations
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are

e Allocating and de-allocating disk blocks,

e Constructing a data structure that contains all the necessary information re-
quired to modify and to query a target disk block,

e Developing an update commit function that performs a requested modification,
which could be a delete, an insert or an update operation, on a disk block that
is brought into memory, and

e Developing a query function that scans the per-block request queues before
retrieving target disk blocks when servicing a query request.

Of course, the actual data structure layout and internal logic for commit/scan
functions are different for different index implementations. However, in general they
can be easily adapted from their original implementations without significant changes.

We will focus on the BT implementation, and other index structures are similar
to adapt to use BOSC.

To service a modification (write) command, a database index implementation
first determines the disk block holding the target index page, then constructs an
update request record and finally calls BOSC’s update API with the target disk
block’s address, the associated update request record and its commit function as input
arguments. To service a query (read) command, a database index implementation
first determines the disk block holding the target index page, and then it constructs a
query request record and calls BOSC’s query API with the target disk block’s address,
the query request record and its query function as input arguments.

The BOSC-based B* tree assumes all internal tree nodes and a small subset of
leaf nodes are memory-resident. To service a modification query that inserts, deletes,
or updates an index record, the BOSC-based B™ tree first traverses the internal nodes
to identify the leaf node containing the target index record, then constructs a disk
update request record, and finally calls BOSC’s disk update API using the target leaf
node’s disk block address, the associated update request record and the corresponding
commit function as input arguments. Upon receiving such a disk update request,
BOSC logs the request to the log disks first, commits the update to the target leaf
node immediately if it is currently cached in memory, and queues the update request
record in the corresponding in-memory request queue associated with the target leaf
node otherwise.

To ensure atomicity, the BOSC-based B* tree acquires a lock on a leaf node
before modifying it, whereas releases the lock after BOSC logs the associated disk
update request and queues it in the associated request queue. It is safe to release the
lock associated with the target leaf node of a modification query before physically
committing the requested modification to disk, because BOSC guarantees the effects
of a modification query’s associated disk update request be visible to all subsequent
queries that access the same leaf node, even in the presence of power failures.

An implicit assumption underlying the design of BOSC is that each disk update
request modifies only its target disk block. However, this assumption does not always
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hold for the BOSC-based B* tree, because a modification to a tree node, e.g., an
insertion of a new index record, may trigger a restructuring of the tree and thus
modifications to other tree nodes. If a disk update request that triggers additional disk
updates is not processed immediately at the time when it is queued but deferred until
the time when it is committed to disk, a disk block’s in-memory request queue may
grow unbounded, because the triggered restructuring may be recursive. This makes
the update commit processing time of a disk block less predictable, and increases the
response time of read query requests because servicing read query requests requires
scanning of per-block update request queues.

To mitigate the performance overhead due to disk update requests that trigger
additional disk updates, the BOSC-based B tree maintains a count for the number
of index records in each leaf node, and proactively triggers the split of a leaf or internal
node when the number of records in a tree node exceeds a threshold. If the leaf node
to be split does not have any index records on disk, all the node’s index records are
in the associated update request queue and the BOSC-based B* tree performs the
split without incurring any disk accesses. If the leaf node to be split has some index
records on disk, the BOSC-based B* tree defers the split operation until the time
when these records are brought into memory by the background BOSC thread.

Take the case of B tree for example. Its update commit function includes a
component that examines the target disk block’s pending update request queue to
determine whether an update request will trigger a structural change or not, and if so,
enacts the change by generating additional update requests if necessary, for instance,
allocating a new block, modifying another block to point to the new block, copying
some part of the current block to the new block, etc. Note that BT tree’s commit
function does not need to perform any disk 1/O while enacting a structural change
associated with a disk update request, not even fetching the disk update request’s
target disk block This is possible only if additional application-specific metadata
about a disk block is stored with its update request queue, for example, the remaining
free capacity of a disk block in the case of BT tree.

To support structural changes to a database index triggered by a modification
command, the commit function of each update request comprises two components:
the first component modifies the target disk block and is invoked when the target
disk block is brought into memory, and the second component performs synchronous
structural modification triggered by an update request and is invoked at the time
when the request is queued. The second component ensures that all additional update
requests generated by an update request X are reflected to their associated queues
immediately after X is queued. For example, for an insert operation to a B* tree, its
first component updates the index page into which the new record is inserted, and
its second component is responsible for splitting an index page into two when the
number of its pending update requests exceeds the capacity of the index page. For
an insert operation to a hash table, the first component updates the page containing
the target bucket, and the second component re-queues the request if the page that
is supposed to hold the target bucket is already full.
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3.4 Performance Evaluation

3.4.1 Evaluation Methodology
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Figure 3.2: (a): Comparison between the record insertion throughput of a BOSC-based
BT tree implementation and a vanilla BT tree implementation based on the conventional
disk read/write interface under the random insert workload when the total amount of buffer
memory is varied from 256 MB to 1.5 GB. The leaf block size is 64 KB, the record size is
64 B, and the initial index size is 16 GB. The scan size is 64 MB. (b): The same as in (a)
except the workload is the random update workload.

We have built a complete BOSC prototype based on Fedora Core 3 with Linux
2.6.11 as the kernel. This prototype supports the update-aware disk access interface
as well as sequential commit of aggregated disk updates. On top of this BOSC
prototype, we built a BOSC-based BT tree implementation, which is derived from
TPIE.

To evaluate the efficiency of the BOSC-based B tree, we used the following
four synthetic workloads: (1) sequential insert workload, (2) random insert workload,
(3) clustered insert workload, and (4) random update workload. In the sequential
insert workload, records with sequentially increasing key values between 0 and 2°°
are inserted into an initialized index. In the random insert workload, records with
randomly generated key values, which fall between 0 and the pre-defined index size,
are inserted into an initialized index. The clustered insert workload consists of a
group of fixed-sized (32 by default) clusters of record insertions. Within each cluster,
records with sequentially increasing key values are inserted. However, the key of the
start record for each cluster is randomly generated. The random update workload
updates random existing records that are inserted by the random insert workload.

The evaluation testbed for the BOSC prototype is a Dell PowerEdge 600SC
machine with an Intel 2.4GHz CPU, 512KB L2 cache, 4GB memory, a 400MHz front-
side bus, two Gigabit Ethernet interfaces and five 80-GB IBM Deskstar DTLA-307030
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disks with on-disk cache disabled, four of which store the B* tree index records and
one of which is dedicated to low-latency logging. We turned off on-disk caching to
ensure durability of data written to disk.

In practice, the initial BT tree must contain a substantial number of index
records, on the order of tens of gigabytes of data. If we were to measure the through-
put of the BOSC-based B" tree implementation against an initially empty B+ tree,
then the measurement results for initial inserts/updates would be biased as they don’t
include such critical components as lock acquisition and tree traversal. However, it
takes several hours to generate a properly initialized multi-gigabyte B tree, and we
need many different initialized BT trees in the entire performance evaluation study.
So a fast B tree initialization method is needed. The major bottleneck in the B* tree
initialization process is the disk I/Os required to put leaf node data on disk. Because
the actual contents of the leaf nodes are immaterial to our evaluation experiments, we
could completely skip these disk I/Os in the initialization process and focus only on
the creation of internal tree nodes. Therefore, when a BT tree is initialized this way,
only its internal nodes are properly set up and its leaf nodes are only allocated on disk
but not properly initialized. During the experiment, whenever a leaf node is brought
into memory for the first time, its content is filled with proper values at that point.
The values filled are calculated on the fly, because the structure of the initialized B™
tree and the key values in it are pre-determined. This B™ tree initialization method
proves invaluable to our evaluation study, because it saves us hundreds of hours, e.g.,
the time to initialize a 64-Gbyte B™ tree is reduced from 36 hours to 50 seconds.

3.4.2 Overall Performance Improvement

Figure shows the throughputs of a vanilla BT tree implementation on a conven-
tional disk read/write interface and a BOSC-based B™ tree implementation under the
random insert and random update workload. The throughput of the vanilla BT tree
implementation increases only slightly with the buffer memory because the poor lo-
cality in the random insert workload does not offer much room for leaf node caching to
be effective. In contrast, the throughput of the B* tree implementation keeps improv-
ing with the increase in buffer memory size because more pending insertion requests
can be accumulated in each sequential commit cycle. This improvement saturates at
1024 MB because the given buffer memory exceeds the product of the new record
insertion rate and the sequential commit cycle length. When the buffer memory size
is 1024 MB, the sustained throughput of the BOSC-based B™ tree implementation
under the random insert workload reaches around 6410 requests/second, which is 20
times higher than that of the vanilla B tree implementation using the conventional
disk read/write interface (311 records/second). When buffer memory is not the per-
formance bottleneck, the throughput of the BOSC-based BT tree implementation is
mainly bound by the physical disk I/O efficiency in the sequential commit process.
The performance of the BOSC-based BT tree implementation under the ran-
dom update workload is almost the same as that under the random insert, because
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in both workloads the accesses to the index pages are random and consequently
their performance is bottlenecked by disk I/O. Figure [3.2b) shows that the through-
put improvement of the BOSC-based BT tree implementation over the vanilla B*
tree implementation is the same as in Figure (a). These two results conclusively
demonstrates BOSC is as efficient for an update-in-place workload as for an insert-
only workload. In contrast, most previous BT tree optimizations [84) 164, [165] are
only applicable to insert-only workloads.

The two key performance-boosting features of BOSC are low-latency logging and
asynchronous sequential commit using multiple request queues. A simpler alternative
to BOSC’s low-latency logging is logging by appending to the end of a file. A simpler
alternative to asynchronous sequential commit is to queue all update requests in a
single queue and batch-commit the head N requests in the queue according to their
target disk block addresses. To evaluate the performance contribution of each of these
two features, we compare the throughputs of the following four B* tree variants. The
first variant, called One-Queue-Append, appends each incoming update request to the
end of the log file and inserts it into a single FIFO queue. The second variant, called
One-Queue-Trail, uses low-latency logging to log each incoming update request and
inserts it into a single FIFO queue. The third variant, called Multi-Queue-Append,
appends each incoming update request to the end of the log file and inserts it into the
per-block queue associated with its target block. The fourth variant is BOSC, which
uses low-latency logging to log each incoming update request and inserts it into the
per-block queue associated with its target block.

To demonstrate the performance benefits of BOSC under more realistic work-
loads, we collected a trace of access requests to the index engine of the MySQL DBMS
under the TPC-C workload [166], where the number of warehouses is set to 20, 40,
60 and 80. Each trace entry includes the access type (e.g. read, update, delete and
insert) and the key/data information in each request to the index engine. The average
record sizes are 69 bytes, 102 bytes, 112 bytes and 128 bytes for warehouse 20, 40,
60 and 80, respectively. Each trace entry includes the type (e.g. read, update, delete
and insert) and the key/data information of each request issued to the index engine.
For each warehouse number, we ran the TPC-C workload for three hours to generate
an index of the size 16 GB, 32 GB, 48 GB, and 64 GB, respectively, and collected the
corresponding access request trace. For each index access trace collected, we replayed
the first half to create an initial image of the database index, and then replayed the
second half and measured the throughput of the input requests in the second half of
the trace.

Figure compares the throughputs of these four BT tree implementation vari-
ants under four different TPC-C traces. Across all warehouse parameters, as ex-
pected the BOSC-based B* tree implementation tops the four variants with the best
throughput. For example, when the warehouse number is 80, the throughput of the
BOSC-based Bt tree is 6058 requests/second, as compared to 20 requests/second for
the One-Queue-Trail scheme, and 2386 requests/second for the Multi-Queue-Append
scheme. The performance gain of BOSC over the Multi-Queue-Append scheme comes
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Figure 3.3: Throughput comparison among the BOSC-based B tree implementation, the
BT tree implementation with multiple request queues and append-only logging, the BT
tree implementation with one request queue and append-only logging, and the BT tree
implementation with one request queue and low-latency logging under the four index access
traces collected by running the TPC-C workload with different warehouse numbers against
MySQL. The Y axis is in log scale. 3 data disks and 2 logging disks are used. The leaf node
size is 64 KB and the buffer memory is 1 GB.

from low-latency logging, which maximizes logging efficiency and thus the overall up-
date throughput. The fact that the BOSC-based B tree implementation is more than
2.5 times faster than the Multi-Queue-Append variant shows the importance of lower
logging latency. The BOSC-based BY tree implementation is more than 300 times
faster than the One-Queue-Trail variant, which shows the importance of sequential
commit as enabled by multiple request queues is much more than low-latency logging.
There is no noticeable performance difference between the One-Queue-Trail variant
and the One-Queue-Append variant because both are bottlenecked by the excessive
disk access overhead associated with committing pending updates to disk.

Larger warehouse number corresponds to larger database index size and lower
access locality. The fact that the throughput of the BOSC-based BT tree implemen-
tation remains largely independent of the warehouse number suggests that BOSC
enables a BT tree implementation to exhibit good throughput without relying on the
input workload’s locality characteristics. Overall, under the TPC-C workload, the
BOSC-based B* tree implementation is 300 times faster than that of the vanilla BT
tree implementation when there are 80 warehouses, and is 180 times faster when there
are 20 warehouses.

Figure also shows that the throughput of the BOSC-based B* tree imple-
mentation slightly decreases with the number of warehouse numbers, because larger
warehouse number corresponds to larger database index size and thus tends to lower
the average number of pending update requests per disk block when they are com-
mitted. Because the accesses in the TPC-C workload still exhibit some locality, the
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performance impact of larger index size is less dramatic than expected. The vanilla
BT tree implementation, on the other hand, is largely unaffected by the number of
warehouses, because most index access requests require random disk I/Os anyway,
regardless of the index size. Overall, under the TPC-C workload, the BOSC-based
BT tree implementation is 300 times faster than that of the vanilla BT tree imple-
mentation when there are 80 warehouses, and is 180 times faster when there are 20
warehouses.

3.4.3 Sensitivity Study
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Figure 3.4: Record insertion throughput of a BOSC-based B™ tree implementation under
the sequential insertion, clustered insertion, and random insertion workload when the leaf
node size is varied from 16 KB to 1024 KB. The X axis is log-scale. The Y axis is the
number of new records inserted per second. The memory allocated for all per-block request
queues is 1 GB, the record size is 64 B, and the initial index size is 64GB.

The default setting for the B tree experiments whose results are reported in
this section is as follows. The key field of each BT tree index record is 16 bytes
long, and the record size can vary. The total memory available for BOSC’s per-block
request queues is up to 1536MB. The B* tree’s internal nodes are pinned down in
physical memory and require about 200 MB for a 128-GB index with a 16-KB leaf
block size and 64B record size. In the sequential insert workload, the key values of the
newly inserted index records increase from 0 to 2°° sequentially. In the random insert
workload, the key values of the newly inserted index records are uniformly distributed
between 0 and 2¢, where d depends on the index size, the record size and also how
the test BT tree index is initialized.

If the index size is A , the record size is B and the incremental step in initializing
the BT tree index is C, then d = log(C % 0.5 % A/B), where 0.5 is the fill factor of the
initial BT tree index. For example, if the index is 128 GB, the record is 64 B and
C' = 1000, then d is 40.

49



25000

Random Workload ——
Sequential Workload --»--
Clustered Workload(Cluster Length: 32) ««m« -

20000 b

15000 |

10000

5000 -

Throughput (Unit:Records Per Second)

0 ST
0 100 200 300 400 500 600 700 800 900 1000 110C

Record Size (Unit:B)

Figure 3.5: Record insertion throughput of a BOSC-based B" tree implementation under
the sequential insertion, clustered insertion, and random insertion workload when the index
record size is varied from 64 B to 1024 B. The Y axis shows the number of new records
inserted per second. The memory allocated for all per-block request queues is 1 GB, the
leaf block size is 64 KB, and the initial index size is 128 GB.

In the clustered insert workload, key values of the newly inserted index records
within a cluster are increasing consecutively and each cluster starts with a random
key value. The cluster size is fixed at 32 in all experiments if not specified otherwise.
In the random update workload, the key values of the updated index records are
randomly chosen from key values previously inserted by the random insert workload.

In this section, we evaluate the impact of the leaf node size, the index record
size, the index size and the buffer memory size on the performance of the BOSC-based
B™ tree. Four data disks and one log disk are used. Each experiment run starts with
a fixed-sized initial B tree and continues with index record insertions/updates until
the first sequential commit cycle is completed. At that point, we measured the total
number of insertions/updates and the elapsed time.

In evaluating the impact of different parameters on the insert /update rate, there
are 3 factors to consider: (1) the disk I/O efficiency, which reflects how effectively
the I/O thread removes unnecessary disk access overhead, (2) the degree of batching,
which determines how many requests over which each disk I/O operation’s cost is
amortized, and (3) the CPU overhead associated with traversing from the BT tree’s
root to the target leaf node of a given insert/update request, and queuing pending
requests.

The throughputs of the BOSC-based B* tree under the random insertion, se-
quential insertion and clustered insertion workload when the leaf node size varies are
shown in Figure [3.4

In general, the throughput performance of the BOSC-based B tree index under
the sequential insert workload is much higher than that under the random insert
workload for two reasons. First, the average number of pending requests in each
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Figure 3.6: Record insertion throughput of a BOSC-based B" tree implementation under
the sequential insertion, clustered insertion, and random insertion workload when the index
record size increases from 64 B to 1 KB, and the leaf node size also varies proportionally
so that the ratio between the two is fixed. The Y axis shows the number of new records
inserted per second. The memory allocated for all per-block request queues is 1 GB, and
the index size is 128 GB.

queue at the time of commit is higher under the sequential insert workload than
that under the random insert workload. Second, the CPU overhead of processing
insert /update requests is lower under the sequential insert workload than that under
the random insert workload because of fewer L2 cache misses. For the random insert
workload, it takes around 140 micro-seconds to complete an insertion request, whereas
it takes only 67 micro-seconds for the sequential insert workload.

As the size of the test BT tree index’s leaf block is increased, more index records
can be packed into each leaf block, the degree of batching in terms of number of
pending requests per disk block fetched is increased and so is the throughput of the
BOSC-based BT tree index, as shown in Figure [3.4, This effect is more pronounced
under the clustered and sequential insert workload than under the random insert
workload, because there is not much batching in the random insert workload anyway.

Figure shows that, as the size of the test B tree’s index record is increased,
fewer index records can fit within each leaf block, and the degree of batching in
terms of number of pending requests per disk block is decreased. The throughput
degradation for the clustered insert and random insert workload is directly correlated
with the decrease in the degree of batching, but that for the sequential insert workload
is mainly due to additional L2 cache misses during insert request processing.

If both leaf block size and index record size are increased while keeping their
ratio constant, the number of index records per leaf block remains the same, but the
degree of batching in terms of number of pending requests per fixed-sized disk 1/0 is
still decreased, e.g., the effective number of pending requests committed per 100-KB
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disk I/O decreases as the leaf block size is increased from 8KB to 64KB, and so is
the throughput of the BOSC-based B* tree index, as shown in Figure [3.6]
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Figure 3.7: Record insertion/update throughput of a BOSC-based B tree implementation
under the sequential insertion, clustered insertion, random insertion and random update
workload when the initial index size is varied from 16 GB to 128 GB. The Y axis shows
the number of new records inserted/updated per second. The memory allocated for all
per-block request queues is 1 GB, the record size is 64 B, and the leaf block size is 16 KB.

As the total BT tree index size is increased, the average number of pending
requests accumulated in each per-block queue within one sequential commit cycle
becomes smaller, the degree of batching at the time of commit is thus decreased,
and so is the throughput of the BOSC-based B* tree index, as shown in Figure [3.7
The throughput impact of the index size is less obvious under the sequential insert
workload because the degree of batching remains largely constant regardless of the
index size. Figure also shows that the performance of the BOSC-based B* tree
implementation under the random update workload is almost the same as that under
the random insert workload, because in both cases accesses to the index pages are
random and consequently their performance is bottlenecked by disk 1/0.

As the buffer memory for per-block request queues is increased, the number of
pending requests at the time of commit is increased, the degree of batching is in-
creased, and the overall throughput under the random insert and clustered insert
workload are increased, as shown in Figure |[3.8. The performance impact of buffer
memory size is minimal for the sequential insert workload because its degree of batch-
ing is largely unaffected by the buffer memory size.

For the random workload, there is a significant increase in throughput when the
total queue memory is increased from 512MB to 1GB because 10 dominates. But
from 1G to 1.5G, the increase is not linear because the throughput is reaching its
maximum. For the cluster workload, the increase is not linear because the average
queue size does not increase linearly. For the sequential workload, the throughput
does not change much because the memory is not the performance bottleneck.
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Figure 3.8: Record insertion throughput of a BOSC-based BT tree implementation un-
der the sequential insertion, clustered insertion, and random insertion workload when the
BOSC’s buffer memory is varied from 512 MB to 1536 MB. The Y axis shows the number
of new records inserted per second. The record size is 64 B, the leaf block size is 64 KB,
and the initial index size is 128 GB.

3.4.4 Hash Table

We applied the same random insert and update workload used in the evaluation
of B* tree implementations to evaluate two persistent Hash Table implementations:
One is the vanilla implementation based on the conventional disk read /write interface
and the other is built on top of BOSC. Each index record inserted is 16 bytes long,
including a 8-byte key. The hash table used in this experiment occupies a 20-GB
disk partition, and is initialized with a sequential insert workload whose key value
starts with 0 and is increased with an increment of 1,000,000, until 10 Gbytes worth
of records are inserted. Each experiment run consists of insertions of new records into
an empty hash table until 8 Gbytes worth of new records are inserted.

Given a fixed amount of buffer memory, we used the memory to cache the hash
table’s data pages in the case of the vanilla hash table implementation and to hold
per-block request queues in the case of the BOSC-based hash table implementation.
We used the random insert workload and set the physical disk I/O size to 256 KB or
4 KB. Figure (a) shows that the throughput of the vanilla hash table implemen-
tation increases slightly with the buffer memory size because larger buffer memory
size improves the buffer cache hit ratio of disk accesses. In contrast, the throughput
of the BOSC-based hash table implementation with 256-KB disk I/O unit improves
dramatically with the increase in the buffer memory size until 960 MB, at which point
the number of pending insertion requests it can batch per disk I/O unit levels off.
For the BOSC-based hash table implementation with 4 KB disk I/O, its throughput
keeps increasing with the buffer memory size because larger memory size leads to
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Figure 3.9: (a): Comparison between the record insertion throughput of a BOSC-based
Hash Table implementation and a vanilla Hash Table implementation based on the conven-
tional disk read/write interface under the random query workload when the total amount
of buffer memory is varied from 1 MB to 2 GB. Both X and Y axes are log-scale. The
physical disk I/0 sizes used in sequential commit are 256 KB and 4 KB. (b): The same as
in (a) except the input workload consists of record updates rather than record inserts.

better batching efficiency for each physical disk I/O unit. When the buffer memory
size is smaller than 64 MB, the average queue length of the BOSC-based hash ta-
ble implementation is 1 and the performance gain of BOSC originates mainly from
sequential disk I/0O.

When the buffer memory size is 960 MB, the throughput of the BOSC-based
hash table implementation under the random insert workload reaches around 23006
requests/second, which is more than 50 times higher than the vanilla hash table
implementation (445 records/second). Under the random insert workload, when the
disk I/O unit is 256 KB and the buffer memory size is 960 MB, the average amount
of time required to read and write a disk I/O unit is 16.4 msec, and the number of
insertion requests committed per 4-KB page is 6, therefore the update throughput
should be % = 23414 requests/second, which approximately matches the
empirical throughput measurement.

Figure[3.9(b) shows the throughput improvement of the BOSC-based hash table
implementation over the vanilla hash table implementation under the random update
workload is identical to that under the random workload. This once again demon-
strates that BOSC is as effective in improving the performance of update-in-place
workloads as in improving the performance of insert-only workloads.

3.4.5 R Tree and K-D-B Tree

The buffer memory is varied in size and is used to cache an R tree’s leaf pages in the
case of the vanilla R tree implementation and to hold per-block request queues in the
case of the BOSC-based R tree implementation. The physical disk I/O size used in
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Figure 3.10: (a): Comparison between the record insertion throughput of a BOSC-based R
Tree implementation and that of a vanilla R Tree implementation based on the conventional
disk read/write interface under the random workload when the total amount of buffer
memory is varied from 1 MB to 2 GB. Both X and Y axes are log-scale. The physical disk
I/0 size used in sequential commit is 32 KB. (b): The same as in (a) except the index
structure is K-D-B Tree and the disk I/0 size is 128 KB.

sequential commit is 16 KB. The random insert workload, which inserts a series of
squares into an initially empty R tree index, where the X and Y coordinates of their
lower-left vertex and their size are all randomly distributed between 0 and 2°!, is used
in this experiment. Each experiment run starts with an empty R tree and continues
with new index record insertions until the R tree’s size reaches 8 GB. The memory
for holding all of the R tree’s internal nodes is pinned down and is 16 MB in size.

Figure[3.10[a) shows the BOSC-based R tree implementation is more capable of
exploiting the size increase in buffer memory than the vanilla R tree implementation,
and when the buffer memory size is 960 MB, the throughput of the BOSC-based R tree
implementation reaches around 12800 requests/second, which is more than 150 time
higher than that of the vanilla R tree implementation (fewer than 80 records/second).

The set-up for the K-D-B tree experiment is the same as that for the R tree
experiment, except the input workload inserts a series of two-dimensional points,
where both their X and Y coordinate are randomly distributed between 0 and 2°!,
and the physical disk 1/O size used in sequential commit is 128 KB. Similar to R
tree, Figure 3.10(b) shows that the BOSC-based K-D-B tree implementation also
benefits more from the size increase in buffer memory than the vanilla K-D-B tree
implementation, and when the buffer memory size is 960 MB, the throughput of the
BOSC-based K-D-B tree implementation under the random insert workload reaches
around 13000 requests/second, which is more than 250 times higher than the vanilla
K-D-B tree implementation (fewer than 50 records/second).
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3.4.6 Read Query Latency

Although BOSC is designed to optimize the throughput of low-locality update-intensive
workloads, it does not degrade the latency of read accesses to database indexes built
on top it. This is unusual, because many previously proposed BT tree implementa-
tions optimized for the same workload tend to trade better update throughput for
longer read latency.

Index Point Query Range Query
Structure (Unit: msec) (Unit: msec)
With | Without With | Without
BOSC | BOSC BOSC | BOSC
BT Tree 10.20 10.19 15.75 15.76
R Tree - - 17.82 17.79
K-D-B Tree | 10.52 10.50 15.32 15.34
Hash Table | 10.78 10.79 - -

Table 3.1: The average latency of Point and Range queries for the BT tree implementations
with and without BOSC, R tree, K-D-B tree and Hash Table. All four types of index
structures are initiated by varied sequential insert workload as described in corresponding
subsections. Two types of read queries are tested, Find and Range Query. The leaf block
size for all index structures is 4 KB, and the buffer memory is 256 MB. The current R tree
implementation supports only range queries, the current Hash Table implementation does
not support range queries.

Table shows the average latency of Point and Range queries for the BT tree
implementations with and without BOSC. The BT tree is initialized by a sequential
insert workload, and then immediately used to service a set of 100 Point and Range
queries. For point queries, the key values are generated randomly from the underlying
key space. For range queries, the starting key values are generated randomly from
the key space and the maximum range size is fixed at 1,000. There is no statistically
significant difference between the average read query latency of the BOSC-based B™
tree implementation and that of the vanilla Bt tree implementation, even though
the read-path processing in BOSC requires an additional step of searching the target
block’s in-memory request queue. This result demonstrates that the update/insert
performance gain of BOSC does not come at the expense of read performance degra-
dation, which is often the case for other BT tree optimizations [84], [164], [165].

3.4.7 Logging and Recovery Performance

BOSC relies on low-latency logging to provide the same durability guarantee as syn-
chronous disk updates. The average latency of logging a 4-Kbyte block to an IDE disk
array is under 0.5 msec, about an order of magnitude smaller than conventional disk
logging implementations and the fastest ever reported in the literature. In addition,
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Figure 3.11: The total recovery time for a 64-GB B™ index and the number of uncommitted
pending update requests in the replay window as the input update request rate is varied
before the crash.

Locating the | Reconstructing | Number Number
Index Youngest Per-Block of Log of Log
Structure Log Record RQs Records in | Records
(second) (second) Replay Put Into
Window RQs

BT Tree 0.87 32 498370 448504

R Tree 0.9 27 376753 338909

K-D-B Tree 0.91 29 609834 548758
Hash Table 0.86 23 1897640 1364983

Table 3.2: The break-down of the recovery processing time for four database index im-
plementations, and the number of log records that are in the replay window and that are
actually put into per-block Request Queues (RQ).

through aggressive disk request batching, BOSC is able to log more than 50000 per-
insertion-request log records per second, or about 20 us per log record. Finally, even
with such high logging efficiency, BOSC is able to keep the log disks’ space utilization
above 70%.

There are two major steps in BOSC’s recovery procedure: (1) identifying the
youngest log record and (2) reconstructing the in-memory per-block request queues by
analyzing the log records between the youngest log record and its associated global
frontier. Because Step (1) uses a binary search through the logging disk array, it
typically takes between 0.8 to 0.9 seconds to complete.

Table shows the time required by each of these two steps when recovering
four database index implementations. In addition, Table shows the number of log
records in the replay window between the youngest log record and its global frontier,
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and the number of log records that are actually put into the per-block request queues.
The difference between the two is the number of log records in the replay window
that have already been committed before the crash.

The time required by Step (2) depends on the number of uncommitted pending
updates, which in turn depends on the input request rate. To evaluate how the total
recovery time scales with the input rate, we ran a random update workload with
varying input request rates to update records in a 64-GB B™ tree with the following
configuration: 256-MB buffer memory, and 16-byte index record. In each run, we
issued about 64 million update requests, shut down the BT tree machine, restarted
it and measured its recovery time.

Figure shows that the total recovery time of a BOSC-based B* tree imple-
mentation indeed increases with the input request rate, because higher input request
rate populates the per-block request queues faster and accumulates more uncommit-
ted pending updates in the request queues when the system is shut down. These
pending updates need to be scanned and reconstructed in Step (2) of the recovery
process. As expected, increase in the total recovery time is roughly linearly propor-
tional to increase in the number of uncommitted pending updates, as shown in the
right Y axis of Figure |3.11]
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Chapter 4

Continuous Data Protection

(CDP)

4.1 System Architecture

As shown in Figure W.1, a Mariner storage system consists of six types of storage
nodes. A client node, which could be a file or database server, accesses data in a
virtual storage device through the iSCSI protocol. The current data of a virtual
storage device is stored on a master storage node, and replicated on a local mirror
storage node. The virtual storage device’s historical versions are maintained on a
logging node (called Trail node from this point on), which also serves as a control
gateway for remote replication. Data writes are first committed to remote logging
nodes and then propagated to remote storage nodes. Manager node is used for system
configuration, administration, monitoring and failure recovery. A typical Mariner
system contains multiple client nodes, storage nodes, Trail nodes, remote logging
nodes and remote storage nodes, but only one manager node. A Trail node can be
shared by multiple master and mirror nodes.

With CDP, Mariner allows users to roll back a virtual storage device to any
point within the protection window. Users can only read and write the current or
read any historical snapshot of a virtual storage device. To maintain the file system
consistency for a particular point-in-time storage snapshot, Mariner may need to
perform a fsck-like recovery procedure on the snapshot to return a storage view with
consistent file system metadata. This recovery procedure needs to modify a historical
storage snapshot, but the associated disk writes are held in a temporary buffer and
are thrown away when the snapshot is no longer needed.

Read requests for the current data on a virtual storage device are serviced by
its associated storage nodes. Write requests for the current data on a virtual storage
device are serviced by its associated Trail node and storage nodes. More specifically,
a logical disk write request is first sent to the corresponding Trail node, which logs it
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Figure 4.1: A Mariner storage system consists of six types of nodes: client nodes that
issue data access requests, manager nodes for system configuration and administra-
tion, storage nodes that hold local replicas of current data, Trail or logging nodes that
maintain historical data and serve as a gateway for remote replication, and remote
logging/storage nodes that keep a remote copy of current data.

to disk and returns an OK reply to the requesting client. Then the client writes it to
one or multiple storage nodes, depending on the degree of local mirroring supported.
As far as a Mariner client is concerned, a disk write is completed when it receives
an OK reply from the Trail node. Because of track-based logging, Mariner clients
experience very low disk write latency. To reduce the performance penalty associated
with sending a disk write’s payload to multiple nodes, Mariner uses TRM to duplicate
the payload packet in the network.

The Trail node of a virtual storage device services all read and write requests
for that device’s historical data, and batches multiple disk writes to replicate them
to a remote site more efficiently. Because of space constraints, the details of remote
replication are omitted in this technical report.

4.2 Low-Latency Disk Array Logging and Logging-
based Replication

The original Trail design [12] moves the log disk’s head to the next track af-
ter each write operation to ensure that the disk head is always on an empty track.
Therefore, the log records are contiguous on a track-by-track rather than byte-by-
byte basis, hence the name track-based logging. This per-write disk head movement
incurs a track-to-track seek delay for every write operation, and results in low disk
space utilization. The modified Trail design allows multiple physical writes per track
and uses an array of log disks to further mask track-to-track seek delays.

Mariner maintains a disk request queue for each log disk. At any point in time,
one of the log disks serves as the active disk. In the beginning, Mariner randomly
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chooses one of the log disks as the active disk. Once a log disk becomes the active
disk, it remains as the active disk until the waiting time of the oldest pending request
exceeds a threshold, T),,;;. Whenever a new logical disk write request arrives at a Trail
node, Mariner inserts the request to the active disk’s queue as long as the waiting
time of its oldest pending request is smaller than T,,,;; and there is enough free space
in the current track to accommodate the new request; otherwise Mariner dispatches
the request batch in the active disk’s queue, and chooses another log disk as the active
disk and inserts the request to its queue.

To choose a new active disk for an incoming write request, Mariner computes
the time at which the write request could be written to each log disk, and selects the
one that can write the request to disk at the earliest. When computing an incoming
disk write request’s write time on a log disk, Mariner takes into account the current
position of the log disk’s head and the possibility of batching the request with others
already in the disk’s queue. For those log disks that are currently idle, Mariner only
needs to consider the delay due to batching.

A key design decision in Mariner is to encourage batching of multiple logical
disk writes into one physical disk by dispatching a new write request to the active
disk, rather than to the disk with the earliest write time for that request. As we
will show in Section 7, this design choice significantly increases Mariner’s batching
efficiency and thus effective throughput.

For every logical disk write, Mariner creates a log record that contains the write’s
Logical Block Address (LBA), timestamp and payload, and writes it to the log disk
chosen for the request. To facilitate accesses to historical data, Mariner maintains
an index structure to map a disk block’s logical block number and a timestamp to
the physical block number of the corresponding historical version. This index data
structure is maintained by a user-level daemon and organized as a BT tree residing on
a different disk, and contains only the log records of those logical disk writes in the
protection window. Because the log record of each logical disk write is self-contained,
Mariner can reconstruct the index tree by scanning the log disks. Therefore, Mariner
can afford to batch updates to the index tree due to disk writes and perform them
asynchronously.

Trail is currently implemented under the Linux 2.6 kernel as a virtual device
driver between the file system and the physical disk driver, as shown in Figure [£.2] Tt
dispatches logical disk write requests to the per-log-disk request queues, maintains a
disk block buffer cache to facilitate the service of current data accesses, and a B-tree
cache to facilitate the look-up of historical versions of disk blocks.

To implement track-based logging, Mariner statically extracts the physical disk
geometry information from every log disk, and then uses a disk head position esti-
mation algorithm to predict each log disk’s disk head position at run time. More
concretely, after a physical disk write is completed, Mariner records the LBA of its
last sector, LBAg, and its completion timestamp 7Ty. Assuming the disk head stays in
the same track, when the next write arrives at 17, Mariner estimates the disk head’s
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Figure 4.2: The software architecture of Mariner’s Trail node. The Trail module,
which sits between the file system and the physical disk driver, manages a disk block
buffer cache, a B-tree cache, and a set of disk request queues, one for each log disk.
The user-level B-tree daemon maintains the index tree for mapping a disk block’s
LBA and timestamp to its corresponding physical block.
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Figure 4.3: The message sequence used in the modified two-phase commit protocol
when there is no device failure.
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current position CurrentLBA using the following formula:

(Ty —Ty) mod RoTime

tLBA = SPT -
Curren S ToTime

+ LBA, (4.1)

where SPT is the number of sectors in the current track, RoTime is the disk’s full

rotation time. The final predicted position, DestinationLBA, is CurrentLBA +
Lookahead to account for such delay as the controller delay. Lookahead is an em-
pirical value chosen to avoid a full rotation. For the IBM Deskstar DTLA-307030
disk, this value is set to be 22 sectors. The accuracy of the above disk head position
estimation algorithm decreases with the value of T} — Ty. To ensure the algorithm’s
accuracy is always adequate, Mariner issues additional dummy disk reads to guar-
antee that Ty — Ty is always below a threshold, T;4., even when the input load is
low.

To satisty CDP’s log space requirement, Mariner allows multiple physical writes
to go to the same track in order to use the log disks’ space more efficiently. However,
higher log disk space utilization efficiency means longer rotation latency because it is
less likely that when a new write request arrives at a log disk’s queue, the disk’s head
happens to be on a sufficiently large free region that can hold it. To determine when
to switch a log disk’s head to the next free track, Mariner uses the following metric
to gauge the degree of fragmentation of the current track:

Serviced ReqNum

F =
10 - (1 — Utilization)

(4.2)

where Service ReqNum is the number of write requests already written to the current
track and Utilization is the percentage of the current track that is already occupied.
The larger the values of Service ReqNum and Utilization, the more fragmented the
current track. As Mariner can self-describe its data logging, Service ReqNum can be
extracted from the hard drive in case of crashes. After a log disk services a physical
write request, Mariner computes its current track’s fragmentation metric. If the
metric’s value exceeds a pre-defined threshold, Ty,in, and its request queue is empty,
Marinerissues a seek command to move the disk’s head to the next track. To minimize
the delay of the track-to-track seek, the destination LBA of the seek command (which
is a write command for IDE drives because IDE drives only support two operations,
read and write) is set to CurrentLBA + CurrentSPT, where CurrentSPT is SPT
of the current track.

Mariner leverages Trail’s low-latency disk write capability and a modified two-
phase commit protocol to replicate data asynchronously without compromising data
integrity. Figure shows the message sequence used in this modified two-phase
commit protocol. The Mariner client issuing a logical disk write request serves as
the coordinator, and the Trail, master and local mirror nodes are the participants.
The client first sends the write request to the Trail, master and local mirror nodes
of its virtual storage device. Upon receiving this request, the Trail node immediately
commits the request to its log disk and sends an ACK back to the client after it is
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done, but the master and local mirror nodes simply buffer this request, waiting for
further instruction. When the client receives the Trail node’s ACK, it notifies the
master and local mirror nodes to commit the buffered write request, and resumes the
thread that issues the write request by invoking the associated call-back function.
The master (local mirror) node sends back an ACK after completing the write re-
quest to disk. Finally, the client asynchronously informs the Trail node about each
write request’s completion status on the master and local mirror nodes, so that the
Trail node can keep track of their progress. Whenever possible, the messages of this
modified two-phase commit protocol are piggy-backed with normal iSCSI command
packets. In addition, the protocol has built in extensive retry mechanisms to deal
with such failures as packet loss, message corruption, TCP connection time-out and
iSCSI connection time-out.

This modified two-phase commit protocol is different from the standard two-
phase commit protocol because its goal is to commit a write request on as many
participant nodes as possible, rather than to achieve all-or-nothing consistency among
participants. Therefore, the coordinator does not need to collect ACKs from all
participants before committing a write request. Instead, it keeps a record of who
has committed which requests so that after a failed node recovers, the system knows
how to replay which write requests to bring it to synchronization with others. As the
client informs the Trail node about the other two nodes’ write progress, the other two
nodes snoop the network and also each keep a local write progress log about others.
When the Trail node is alive, it is the Trail node’s write progress log that serves as
the ground truth. When the Trail node is dead, it is master node’s write progress log
that serves as the ground truth.

When the master node dies, the local mirror node becomes the master node,
and each write request is sent to the new master node and the Trail node; after the
old master node recovers, it contacts the Trail node, which keeps track of each node’s
write progress, to replay missing write requests, and becomes the local mirror node.
When the local mirror node dies, each write request is sent to the master node and the
Trail node; after the local mirror node recovers, it contacts the Trail node to replay
missing write requests, and continues to be the local mirror node. When the Trail
node dies, CDP and remote replication cease to function, and each write request is
sent to the master and local mirror nodes; after the Trail node recovers, it contacts
the master node for synchronization and continues to act as a logging disk.

4.3 Transparent Reliable Multicast (TRM)

When a Mariner client sends a write request to the Trail, master and local mirror
nodes in the modified two-phase commit protocol, it uses TRM to reliably multicast
the write request and achieve almost the same network efficiency as the no-replication
case.
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Figure 4.4: Data flow of an iSCSI-based TRM system supporting 2-way replication.
An iSCSI protocol parser keeps track of contents in TCP connections corresponding
to the two iSCSI sessions involved in data replication. The first iSCSI copy associated
with each SCSI write request is sent as multicast packets, whereas the headers of the
second copy are merged and sent as a unicast packet. The TRM layer at the receivers
reconstructs each individual TCP stream based on the received unicast and multicast
data.

4.3.1 Multicast Transmission of Common Payloads

Logically, TRM is a software layer residing below the TCP/IP stack that constantly
monitors the contents of outgoing TCP connections to look for common bytes. When
packets from a set of TCP connections share common bytes, TRM sends only one of
them as an Ethernet multicast packet to the destination nodes associated with these
connections. The software architecture of iSCSI-based TRM is shown in Figure [£.4]
There are two key components in TRM: (a) the client side component monitoring
TCP connections for common data payload and constructing multicast packets that
carry these common payload, and (b) the server side component reconstructing the
original TCP streams based on the payloads and headers received.

The client-side TRM component of the current Mariner prototype includes an
iSCSI parser that tracks iSCSI commands in iSCSI-carrying TCP connections. Once
detecting common write payloads among the three iSCSI connections to a virtual
storage device’s Trail, master and local mirror nodes, it asynchronously merges the
three write requests sharing the same payload by sending the earliest-arriving copy of
each iSCSI write request using multicast and the headers of the other two copies as
unicast packets to their corresponding nodes. Asynchronous merging does not require
the three TCP connections involved in data replication to be strictly synchronized.

The server-side TRM component reconstructs the individual TCP streams by
taking the common payloads, which are received as multicast packets, and headers,
which are received as unicast packets, putting them together into original unicast
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Figure 4.5: Because Connection 1 contains both READ and WRITE commands and
Connection 2 contains only WRITE commands, packet-by-packet comparison be-
tween these two connections cannot detect the payloads of WRITE commands.

TCP packets, and passing them up to the TCP/IP stack for further processing.

When there is packet lost, TRM relies on TCP to retransmit the lost packets
and therefore does not require any additional machinery to support reliable transmis-
sion. Retransmitted packets are always transmitted as unicast packets. As a result,
packet retransmission may cause the TCP connections being merged to become de-
synchronized.

4.3.2 Common Payload Detection

A Mariner client sends each iSCSI read request only to the master node, but sends
each iSCSI write request to the Trail, master and local mirror nodes. Therefore,
the TCP connection associated with the master storage node contains more iSCSI
commands than the two TCP connections associated with the local mirror and Trail
node. Because TCP is a stream protocol and does not preserve application-level
packet boundaries, packet-by-packet comparison may not be able to reliably detect
all common payloads among connections, as shown in Figure [4.5, which calls for a
more expensive byte-by-byte comparison approach to detect common payloads.

To reduce the performance overhead associated with common payload detection,
Mariner exploits protocol-specific knowledge. More concretely, the current Mariner
prototype parses the iSCSI commands in each of the three TCP connections and
is able to pinpoint the precise location of the payload portion of each iSCSI write
request. From these locations, the TRM layer can easily detect common payloads
without resorting to expensive byte-by-byte comparison.

4.3.3 Tree-Based Link-Layer Multicast

Mariner uses Ethernet as its storage area network, and leverages Ethernet’s link-
layer multicast to deliver the common payloads of duplicated iSCSI write requests.
Link-layer multicast on Ethernet networks is implemented as a broadcast-and-filter
mechanism. That is, an Ethernet switch treats a link-layer multicast packet as a
broadcast packet, and broadcasts it to all of its ports except the one from which the
packet comes. When a node receives a link-layer multicast packet, it filters out the
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packet and drops it if the packet’s destination MAC address is not registered on the
node’s network interface card (NIC). Although the broadcast-and-filter mechanism is
easy to implement, it imposes a serious load on the switches as each multicast packet
appears in every active link of the layer-2 network in which the packet source resides.

To eliminate the performance problem associated with the broadcast-and-filter
approach to link-layer multicast, Mariner exploits the Virtual LAN (VLAN) tech-
nology [167, [168] available in commodity Ethernet switches, which was originally
designed to divide a layer-2 network into multiple broadcast domains and limit the
scope of broadcast packets. Operationally, each Ethernet packet is tagged with a dis-
tinct VLAN ID, and each switch maintains a separate routing table for each VLAN
going through it. When an Ethernet switch receives a packet, it first identifies the
routing table corresponding to its VLAN ID and routes the packet based on the cor-
responding routing table. A VLAN is identical to a layer-2 network in every aspect,
including owing its spanning tree, i.e., per-VLAN spanning tree (PVST). The multi-
ple spanning tree (MST) [169, I70] protocol allows one to set up multiple spanning
trees on a layer-2 network, each associated with a distinct VLAN.

A standard Ethernet network builds up its spanning tree using a distributed
spanning tree construction algorithm (IEEE 802.1D) [171]. The VLAN protocol al-
lows the network administrator to explicitly specify the spanning tree connecting a
VLAN’s members by configuring the priority of using each physical link in construct-
ing the VLAN. All modern Ethernet switches provide an SNMP interface for this
priority configuration, which makes it possible to programmatically set up and tear
down VLANs and their spanning trees at run time. The number of VLAN groups
that a commodity Ethernet switch supports is between 256 and 1000.

Using PVST, Mariner puts a storage client and the Trail, master and local
mirror nodes of its virtual storage device in a VLAN, and constructs a spanning
tree to connect them. Whenever a client needs to multicast the common payload of
duplicated iSCSI write requests, it sends the payload as a broadcast packet on the
associated VLAN, which reaches the corresponding nodes along the VLAN’s spanning
tree.

4.4 Incremental File System ChecKing (iFSCK)

4.4.1 Snapshot Access

A block-level CDP system typically provides a programming interface to access any
point-in-time disk image snapshot in the data protection window. To provide end
users a file versioning view on top of this interface in a NFS-like environment is chal-
lenging, especially if modifications to the infrastructure must be minimized. This
subsection describes how an end user can access a point-in-time disk image snapshot
under NFS. Similar snapshot access mechanisms can be developed for other network
file access protocols such as CIFS. iF'SCK is independent of snapshot access mecha-
nisms.
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In a typical NFS environment, the end user accesses files from an NFS client,
which uses NFS to communicate with an NFS server whose data is protected by a
block-level CDP system. To access a particular directory of a particular point-in-time
snapshot of her file system, the user specifies the directory’s pathname (P) and the
target timestamp (7") in a request, which is sent to a dedicated daemon in the NFS
server. Upon receiving such a request, the daemon requests the associated block-
level CDP system to create a disk image snapshot at 7" as an iSCSI target, instructs
the NF'S server to bind this iSCSI target to a local iSCSI initiator device, mounts a
local directory on the iSCSI initiator device, and exports this local directory. Finally,
another daemon on the NFS client mounts the target directory P within the NFS
server’s exported directory to a local directory it creates. The client-side daemon
communicates with the server-side daemon through a proprietary control protocol.
The above snapshot access procedure interoperates with the standard NFS/iSCSI
protocol without requiring any modification.

To reduce the set-up time required to access a file system snapshot, at the block-
level CDP system a pool of virtual iSCSI targets is created in advance, and the NFS
server binds them to its local virtual devices. This way, upon receiving a snapshot
access request the server-side daemon can directly allocate one of these virtual devices
on the NF'S server to the requested snapshot.The client-side daemon mounts the target
directory within the chosen virtual device to the user-specified local directory. When
a snapshot is no longer needed, the corresponding virtual devices are returned to the
pool.

4.4.2 Ensuring File System Consistency

Because of file system caching, file system-level updates do not immediately trigger
disk block-level operations. By default in Linux, the pdflush daemon wakes up every
5 seconds and flushes to disk those dirty buffer cache pages that are older than 30
seconds. Therefore, when a user asks for a point-in-time snapshot of a storage volume
at time T, the returned snapshot may not capture all file system-level updates that
take place before T', and more importantly it may not be even file system-consistent.

In addition to user data blocks, a file system also includes a set of metadata
for managing its disk storage space and the relationships and attributes of its files.
When a user application modifies a file system object, the modify operation may trig-
ger multiple updates to the file system’s metadata. In theory, a file system update
operation and the file system metadata updates it triggers should be performed atom-
ically, as if they are batched into a transaction, so that the file system state is always
consistent. However, for performance reasons, existing file systems, for example, the
ext2 file system under Linux, choose not to implement these updates as transactions.
Instead, they resort to periodic buffer flushing to amortize the disk I/O cost of mak-
ing file system metadata persistent. Under such file systems, how to quickly convert
a point-in-time storage volume snapshot into its corresponding file system-consistent
snapshot is a technical challenge for block-level CDP systems.
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Given a disk image snapshot for a timestamp 7', iFSCK is designed to identify
all disk-level updates after T" that correspond to file system-level update operations
before and at 7', and replay them against the snapshot to ensure that all file system-
level updates before T" are completed successfully. The key implementation challenge
of this approach is how to accurately correlate block-level disk updates with their
associated file system-level updates. 1F'SCK solves this problem by assuming that it
knows the disk locations of file system metadata and the internal structures of these
metadata. Given a timestamp T and its corresponding disk snapshot V| «F'SCK
transforms V' into a file system-consistent snapshot by using the following algorithm,
assuming the host file system is an ext2 file system:

File Operation Related Updates
Inode Bitmap update, Inode Table update
(new Inode and its parent Inode),
Creation parent Dentry update, Group Descriptor update
(free Inode count),
Superblock update(free Inode count)
Inode Bitmap update, Inode Table update
(deleted Inode and its parent Inode), Parent Dentry update,
Deletion Block Bitmap update, Group Descriptor update
(free Inode count, free block count),
Superblock update(free Inode count, free block count)

Renaming Inode Table update(parent Inode), parent Dentry update
Inode Table update, Data Bitmap update, Data Block update,
Truncation Group Descriptor update (free block count)
, Superblock update (free block count)
File Write Inode Table update, Data Block update
Inode Table update, Data Bitmap update,
File Append Data Block update, Group Descriptor update

(free block count), Superblock update(free block count)

Table 4.1: File operations and the corresponding related metadata updates.

1. iFSCK scans disk block updates that took place within a time window [T'— LB
, T+ UBJ, where T'— LB is the lower bound of the time window and 7'+ UB
is the upper bound of the time window, and classifies them into the following
types: Block Bitmap updates, Inode Bitmap updates, Inode updates and Data
Block updates. By examining Inode updates in more detail, one can further
sub-divide Data Block updates into User Data Block updates and Directory
Block updates. Each of the file system metadata updates listed above modifies
a distinct range of V’s block address space. From Directory Block updates,

iFSCK identifies all file/directory creation, deletion and renaming operations
within [T'— LB, T + UB|.
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2. 1FSCK extracts from each disk block update individual metadata update op-
erations triggered by file-level update operations. More specifically, for each
updated block, iF'SCK retrieves its previous version, and performs a byte-by-
byte comparison to determine which part of the block and which metadata
entries (e.g. Inodes or bitmap entries) in that block are modified. Therefore,
even if multiple file system-level update operations result in a single block up-
date, 1F'SCK can correctly identify each of them. In addition, ¢{F'SCK can also
identify modifications to indirect blocks, which are no different than normal
data blocks, because whenever iFSCK recognizes an Inode update, it follows
the Inode to track down its indirect, doubly indirect and triply indirect blocks,
and checks if they appear in the list of updated blocks within [T'— LB, T+ U B].

3. iFSCK partitions the metadata update operations within [T'— LB, T + UB] to
groups, each of which corresponds to a file-level update operation, according
to a pre-computed table (shown in Table that lists the set of metadata
update operations for file deletion, file renaming, file truncation, file write, and
file append. For example, when a new file is created, a new Inode is allocated to
the file (Inode Bitmap update), this Inode is properly initialized (Inode Table
update), some data blocks may also be allocated to the file (Block Bitmap
update) and modified (Data Block update), the directory holding this new file
is modified (parent Dentry update), and so is the directory’s Inode (Inode Table
update). 1FSCK detects file truncation operations by examining the file length
field in the Inodes.

4. For every group that has at least one metadata update operation occurring
between T'— LB and T, «F'SCK includes into the redo list all the group’s con-
stituent metadata update operations that appear after 7' to make it complete,
replays the final redo list to the snapshot at T', and eventually produces a file
system-consistent snapshot that is after and closest to T.

In Step (3), we make the assumption that a file system update operation that
logically starts before T" completes all its disk-level updates before T'+ U B. Because
pdfiush wakes up every 5 seconds, we assume the disk updates associated with a file
system update operation span at most 5 seconds. Therefore, for a file system update
operation that occurs exactly at time T, the latest disk update operations associated
with it must occur before T'+ 5, and these disk updates must be flushed to disk before
T + 35. However, because the pdflush’s wake-up timing may be mis-aligned, in the
worst case, they must be flushed before T+ 40. Therefore, in general UB is set to be
Twake—up + T'tiush + Tspan, Where Tyqpe—qyp corresponds to the periodic wake-up interval
of pdfisuh (5 seconds in Linux), T’ys, to the flushing threshold (30 seconds in Linux)
and Tjp,, to the time span of a file system update’s disk-level update operations
(assumed to be 5 seconds). On the other hand, LB has to be large enough so that
for every file system update some of whose disk-level updates occur before T'— LB,
there is at least one of its disk-level updates takes place in [T'— LB, T|. This prevents
the anomaly that even though some disk-level updates associated with a file system

70



Metadata
W0 W1 W2 R3 W4 R5 W6 R7§W8 R9 W10 W11 W12 W13 W14

Updates l
Metadata
Redo List WO W1 W2R3 W4 R5W6R7 W8 W11 W12

T

W1 W4 W11 W12: 1% file-level update operation
W2 W8: 2" file-level update operation
W10 W14: 3" file-level update operation

Figure 4.6: An example showing how iF'SCK extracts a metadata redo list from the
metadata updates within a time period. T is the target timestamp.

update occur before T', iF'SCK mistakes it for one whose first disk-level update occurs
after T'. As in UB, LB is also set to Tyake—up + 1 fiush + Tspan, 1-€. 40 seconds.

Figure |4.0|illustrates how iF'SCK extracts metadata redo list from the metadata
updates within a period. R and W stand for metadata read and metadata write,
respectively. iIFSCK includes file system metadata update operations that are part of
file-level update operations and occur before the target time stamp T, which is right
after R7. In this case, the first and second file-level update operations occur before T
and therefore should be redone, whereas the third file-level update operation occurs
after T and therefore should be undone.

1FFSCK supports three file system consistency levels, each incurring a different
performance overhead. The strongest consistency level guarantees consistency of all
file system metadata, including Block bitmap, Inode bitmap, directory contents, etc.
This consistency level is also known as crash consistency as used in standard file sys-
tem checkers, and is useful in creating a read/write snapshot. The second strongest
consistency level guarantees consistency only for a selected subset of file system meta-
data (e.g. excluding allocation bitmap information) and directory contents. This level
is useful for creating a read-only snapshot. The weakest consistent level provides the
same consistency guarantee as the second strongest level except that its scope is re-
stricted to a particular directory rather than the entire file system. For the weakest
consistency level, 1F'SCK iterates through each directory entry in the target direc-
tory, making sure that the Inode number corresponding to each directory entry refers
to a valid in-use Inode, i.e. the Inode is within a valid range, is allocated and the
Inode link count is not zero, etc. The performance cost of weaker consistency levels
is lower because disk updates associated with certain file system metadata updates
(e.g. Block and Inode bitmap) can be ignored.

Although the above algorithm is designed for ext2 file systems, its underlying
principle can be easily applied to other Unix file systems (e.g. Soloris UFS) that
have similar file system structure to ext2’s. For journaling file systems such as ext3
and NTFS, the journal already explicitly contains the file system metadata updates
and their grouping information, so most of the analyses in (F'SCK are no longer
necessary. For example, ext3’s file system consistency check tool first applies its
metadata journal, and then continues with a ext2-style full file system check if the
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file system’s superblock indicates that further checking is required. We have ported
1F'SCK to ext3 so as to derive the redo list directly from its journal rather than from
scanning disk updates within [7'— LB, T+ U B]. In the case that an ext3 file system’s
journal is corrupted, iFSCK invokes its own incremental checker rather than ext2’s
file system checker.

4.5 User-level Versioning File System (UVFS)

4.5.1 Overview

In UVFS, a file system object is uniquely defined by its pathname, rather than by
its internal representation, such as an Inode. Because of hard links, an Inode can
have multiple pathnames, each of which still corresponds to a unique file system ob-
ject. If a file system object is renamed, it becomes a different file system object. An
incarnation of a pathname corresponds to a file system object with that pathname
from its creation to its deletion (including rename). If a file system object is cre-
ated and deleted multiple times, it has multiple incarnations. Different incarnations
of a file system object can use different Inodes. An incarnation can have multiple
versions, each corresponding to a distinct modification within the incarnation. Log-
ically, versions associated with one incarnation are unrelated to versions associated
with another incarnation with the same pathname. The second column in Table
shows the file incarnation/version modifications associated with different file update
operations.

Given a point-in-time disk snapshot, UVFS leverages the original host file sys-
tem, from which the snapshot is taken, to properly interpret its contents, and makes
only two assumptions about the file system: (1) support for last modify time field and
a system call to access it such as stat in Linux and (2) support for a system call that
accesses the contents of a directory file such as readdir in Linux. Because all main-
stream operating systems, including Linux [172], BSD Unix [I73], Solaris [174], AIX
and Windows XP/Vista, support these two features, and that UVFS is implemented
completely at the user level, UVFS is portable across different operating systems.
However, for ease of exposition, the following description assumes an ext2/ext3 file
system. Because the time resolution of the stat system call on Linux kernel 2.6 is
1 second, the current UVFES prototype cannot distinguish file versions in the same
second.

UVEFS provides users the following file version query operations that are com-
monly supported by existing versioning file systems:

o File/directory snapshot access: accessing a particular snapshot described by a
time point and a pathname.

e Searching for versions associated with an incarnation within a time range: list-
ing all the versions associated with an incarnation with a given file pathname
within a specified time range.
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e Searching for incarnations within a time range: listing all incarnations with a
given file pathname within a specified time range.

o Version search across incarnations within a time range: listing all versions
associated with all incarnations with a given file pathname within a specified
time range.

e Searching for all file/directory versions under a directory within a time range:
listing all versions of files and subdirectories that ever existed under a given
directory within a specified time range.

4.5.2 Version Query Processing Algorithms

When an application on an NF'S client issues a file version query, a UVFS agent on the
client services the query by executing the following algorithms against the NF'S server
and the block-level CDP server. The basic primitives used in the query processing are
(a) set-up/tear-down of snapshot images, (b) traversal of the file systems associated
with snapshots, and (c¢) internal processing in the form of comparison of directory
contents or timestamps.

Versions Associated with an Incarnation

When a new version of a file incarnation is created, the last modify time field of
the incarnation’s Inode must be modified. Therefore, to discover the versions of
an incarnation that exist within a time range, one just needs to identify the time
points at which the incarnation’s last modify time field is modified, and to access the
incarnation’s snapshots at these time points. More concretely, given a pathname P
and a time range [T'1,7T2]|, UVFS first accesses P’s snapshot corresponding to the
time point T2 — ¢ and retrieves that snapshot’s last modify time, say T. If T >
T'1, UVFS repeats the same procedure to locate the version immediately prior to the
version corresponding to T', etc. If T' < T'1, then UVFES has found all the versions of
the incarnation P within [T'1,T2] and the process stops. The parameter § is chosen
in such a way to ensure that whatever modifications to the file system before and at
T2 should already be reflected to the snapshot at time 72 - 4.

Incarnations Associated with a File

A file pathname may refer to multiple incarnations within a time period. Each of
these incarnations corresponds to a pair of creation and deletion of a file system
object with that file pathname. When an incarnation with a particular pathname
is created or deleted, the immediate parent directory containing the file pathname
must be modified, as is its last modify time field. To discover all incarnations of a
given pathname P within a time period [T'1,72], UVFS first extracts the pathname
for P’s immediate parent directory, say @), identifies all versions of Q within [T'1,72],
and compares adjacent versions of () to determine if the difference between them is
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related to the creation or deletion of P. Every time a new instance of P appears in
a new () version, a new incarnation of P is created; every time an existing instance
of P disappears in a new () version, the corresponding incarnation of P is considered
over.

However, identifying all versions of @) within [T'1, T'2] itself is non-trivial, because
it requires identifying all incarnations of @) within [T'1, T'2]; this in turn requires identi-
fying all versions and incarnations of ()’s immediate parent directory within [T'1,72],
all versions and incarnations of the immediate parent directory of ()’s immediate par-
ent directory within [T'1,72], etc. Fortunately, this recursive process eventually stops
because by definition, there is only one incarnation for the root directory of every file
system.

Versions Associated with a File

This operation is simply built upon the above two operations. Given a pathname
P and a time period [T'1,72], UVFS first discovers all incarnations of P within the
specified time range, and then extracts all the versions associated with each of these
incarnations.

All File Versions Under a Directory

To service this type of file versioning queries, UVFS first locates all versions of the
specified directory, then extracts all versions of every pathname that ever appears in
any version of the specified directory, and finally outputs a union of all the file and
subdirectory versions found.

4.5.3 Optimizations

To service a file versioning query, a UVFS agent needs to set up snapshots, traverse
file systems associated with these snapshots, and perform some internal processing
such as timestamp or directory content comparison. Typically the performance cost
of internal processing is negligible. The cost of setting up snapshot consists of two
components: (a) establishing NFS and iSCSI connections and (b) invoking iFSCK to
fix an established disk snapshot. To reduce the cost of (a), UVFS reuses NFS/iSCSI
connections and virtual devices created at the block-level CDP server that are set
up for accesses to subsequent snapshots. To reduce the cost of (b), UVFES takes an
optimistic approach by assuming that most point-in-time disk snapshots are consis-
tent, and invokes iFSCK lazily, specifically only when either readdir or stat returns
with an unexpected error during file system traversal. In addition, when UVFS does
invoke 1FSCK, it applies consistency check only to the path from the root to the
target file or directory, and focuses only on their last modified times and directory
contents while ignoring other types of file system metadata.

To reduce the performance cost associated with file system traversal, UVFS em-
ploys various forms of caching to reuse efforts invested in previous snapshot accesses.
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Figure 4.7: The impact of the inter-request interval on the measured write latency as
seen by the Trail device driver.

UVFS caches the last modify times for files and directories in a snapshot, and reuses
them for subsequent file versioning queries that need to access the same snapshot.
Moreover, to exploit the significant redundancy among the snapshots that are es-
tablished during the service of a file versioning query, UVFS adds a simple caching
mechanism on the CDP server that caches disk blocks which are recently accessed and
associated with previously established snapshots. This disk block caching mechanism
is meant to reduce the disk I/O cost associated with traversal of temporally adjacent
snapshots that overlap with each other significantly.

4.6 Performance Results and Analysis

4.6.1 Evaluation Methodology

We first evaluate each component of Mariner, including Trail, modified two-phase
commit, and TRM, and then the entire system as a whole. We then evaluate the
UVFES and iFSCK tools.

We use synthetic workloads to stress-test each Mariner component and real
traces to evaluate Mariner’'s end-to-end performance. The four traces used in this
study include both file system and database workload:

1. IO Trace

e Lair62b The original Lair62b is an NFS RPC trace collected on an NFS
server by the SOS project of Harvard University [I75]. This trace is con-
verted into a block-level disk access trace through an FFS-like file system
simulator, which models the I-node and data blocks and ignores other
meta-data [I76]. The block size is 4KB and the trace is a one-day long
trace with 12631475 requests, 2816401 of which are writes.
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e OLTP(On-Line Transaction Processing) OLTP trace is a database buffer
cache access trace collected on an IBM DB2 database running IBM’s TPCC
benchmark of 1,000 warehouses [I76]. The trace is featured by a large
amount of random access. The block size is 4KB.

e DSS(Decision Support System) DSS trace is another database buffer cache
access trace collected on an IBM DB2 database running IBM’s TPCH
benchmark [I76]. The trace contains several large sequential scan of a big
table. The block size is 4KB.

e Cello99 Cello99 is a low-level disk I/O trace collected from a HP UNIX
platform. Since the trace is filtered by the file system cache, the spatial
locality is quite poor. The block size is SKB.

e MS-SQL-Large I/O trace MS-SQL-Large trace is a disk I/O trace collected
from a Microsoft SQL database server running the standard TPC-C bench-
mark for two hours. The TPC-C database consists of 256 warehouses and
occupies around 100 GBytes of storage excluding log disks. The trace is
filtered by a 1 GByte SQL server cache. The block size is 4KB and the
trace has 5390743 requests, 866029 of which are write ones.

e MS-SQL-Small I/O trace This trace is collected with the same setup as
the previous trace except that the server cache is 64 MB.

2. File-level Trace

e Postmark Postmark [I77] is a file system benchmark emulating very heavy
small file workload. The benchmark creates a specified number of files,
performs various file system operations and finally deletes those files. For
all runs, we run Postmark with 10,000 files, 1000 subdirectories and 50,000
transactions.

e Lair Trace played by TBBT [I78] trace player. NFS server is the Trail
client side. It is the same trace as Lair62b, the only difference is it is
played at NFS level. It is a one-day trace on Oct 21, 2001 worth of 2GB
data in total.

The testbed used in this study consists of one client node, a Trail node, a master
node and a local mirror node, all of which are connected by a Netgear GS508T 8-port
Gigabit Ethernet switch. The Trail node is a Dell PowerEdge 600SC machine with an
Intel 2.4 GHz CPU, 768 MB memory, a 400 MHz front-side bus, an embedded Gigabit
Ethernet Card, and up to five ATA/IDE hard disks, each of which is a 80-GB IBM
Deskstar DTLA-307030 disk. The master node, the local mirror node and the client
node are PowerEdge SC1425 machines with an Intel 3.8 GHz CPU, 1 GB memory,
a 800 MHz front-side bus and four embedded Gigabit Ethernet Cards. We use UNH
iSCSI implementation (version 1.6.0) [I79] on the iSCSI initiator side and Linux’s
iSCSI Enterprise Target (IET) implementation on the iSCSI target side. Note that
in the fileio mode of the IET implementation, each write request is synchronous
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as a sync-like function is called after each write operation. In terms of performance
metrics, we measure the average write latency and the 1/0 rate of each test run.

In this study, we first evaluate the basic track-based logging technique as this is
the first time this technique is implemented on a commodity IDE/ATA drive. Then
we examine the write latency of a Trail node that uses an array of log disks and
supports multiple writes per track, and impacts of various configuration parameters.
Next, we evaluate the effectiveness of TRM in terms of its savings in network load.
Thirdly, we measure the end-to-end write latency of a logical disk write request under
Mariner, which includes the effects of Trail, two-phase commit and TRM. Finally, we
demonstrate the effectiveness of UVFS and iFSCK , respectively.

4.6.2 Low-Latency Disk Logging

In this section, we evaluate the efficiency of the first IDE/ATA implementation of
Trail. In particular, we quantify the impact of disk idle time on the accuracy of the
disk head position prediction algorithm, and give a detailed break-down of the disk
write latency into controller processing time, rotational latency and data transmission
time.

Accuracy of Disk Head Position Prediction

We issue 20000 4KB disk write requests at a fixed inter-request interval to an ATA /IDE
disk and measure the average end-to-end latency as seen by the Trail device driver.
Figure shows the average end-to-end write latency increases approximately lin-
early with the inter-request interval, because the accuracy of disk head position predic-
tion decreases when the temporal distance between measurement samples increases.
The disk head position prediction algorithm in Section 4 assumes that a disk’s platter
rotates at a constant speed. However, in practice, a disk’s rotation speed fluctuates
dynamically, and the deviation from the constant-rotation-speed model increases over
time because of accumulation.

From Figure [4.7 the minimal latency for a 4KB disk write is around 0.475msec.
This is the lowest disk write latency measurement ever recorded on an IDE/ATA
drive as far as we know.

One way to solve the prediction accuracy problem is to pro-actively issue disk
access commands so as to ensure that the time interval between consecutive mea-
surements used in disk head position prediction is below a threshold, T;4.. Although
a smaller value of T;4. could improve the accuracy of disk head position prediction,
it could also impose too much load on the disks and negatively impact the write
latency of user requests. How to achieve the minimal write latency by striking an
optimal tradeoff between disk head position prediction accuracy and adverse impacts

of additional loads will be discussed in Section [4.6.4].
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Figure 4.8: The impact of the disk write request size on the measured write latency
as seen by the Trail device driver.

Analysis of Disk Write Latency

From the Trail device driver, a disk write’s latency consists of a fixed controller
processing delay 7., repositioning latency 7., the seek time Ty and the data
transmission time T}.4,s. That is,

irlatency = Tc + Tseek + Trepo + T;frans (43)

Tseer is zero in the Trail architecture because the disk head stays on the same track.
Tirans can be calculated based on the request size and the disk’s physical transfer
bandwidth. To measure the fixed controller processing delay T,., we enable the on-
disk write cache to remove the rotational latency and the internal data transmission
time because a write request is completed once its payload reaches on-disk write
cache. We issue a sequence of 4KB requests from the device driver to eliminate all
software queuing delay. The inter-request interval is set to be large enough (e.g. 1
sec) to avoid overflowing the on-disk write cache. The measured average write latency
in this set-up is 0.104msec, which corresponds to 7..

The repositioning latency consists of a rotational latency T oiation and the disk
head settling time T.y., both of which are independent of the request size. To
measure T}qtion, We issue a sequence of fixed-sized write requests, whose target is
set to 20 sectors plus and minus of the predicted disk head position, and compute
the minimum of their write latency. The on-disk write cache is disabled in this
case. In each run, a new request is issued only when the previous request is finished.
Figure shows the minimal measured write latency versus the request size of
the write request sequence. When the request size is zero, the measured latency is
the sum of the controller processing delay and the repositioning latency. Therefore,
Trepo is approximately 0.4msec (Y intercept) - 0.1msec (controller processing delay)
= (.3msec.
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Wait Time Batch Size | Write Latency
Limit (msec) (KB) (msec)
0 12 6.7
0.12 12.7 5.8
0.24 15 3.1
0.36 20 1.9
0.48 22 2.1
0.60 24 2.3
0.72 28 24
1 32 3.0

Table 4.2: Impact of wait time limit on the batching efficiency and average write
latency, where the request size is 4KB and Ty, = 6.

4.6.3 Array of Logging Disks

Mariner’s Trail node uses an array of log disks, rather than a single log disk. This
subsection evaluates the effectiveness of Mariner’s disk request dispatching algorithm
in exploiting request batching to improve the 1/O rate without compromising the
write latency. In this experiment, there are five log disks and each log disk is a
commodity IDE/ATA hard drive connected via an independent ATA/IDE channel
from the Promise Ultral00 TX2 IDE controller. We issue additional disk access
requests to guarantee that the maximal time interval between consecutive accesses
to each disk is at most 50msec. In addition, the maximum waiting time in the disk
request queue is 0.3msec, Tiiren 1S set to 6 to achieve reasonable disk utilization
efficiency. Under this setup, a stand-alone Trail device can deliver 1.8msec write
latency and achieve 70% disk space utilization under an input workload of 12500
writes/sec and 4KB per write request.

Batching of multiple logical writes into a physical write improves Mariner’s
physical write efficiency and thus its effective throughput. Batching is especially
useful in the face of a burst of write requests. However, batching increases the write
latency because it forces those requests that arrive early to wait even when the disk is
idle. To resolve this issue, Mariner sets a limit on a request’s wait time (7y,,;;) when
it batches logical write requests.

Table shows the impact of T,,;; on the log disk array’s write latency. The
workload used in this experiment is a synthetic workload that consists of 4KB write
requests with a fixed inter-request interval, 60usec. When T, is set to zero, there
is not much room for request batching, and the batch size, i.e., the average number
of logical writes per physical write, is small, around 3 or 12KB. Smaller batch size
leads to lower I/O rate for the log disk array, and eventually causes subsequent write
requests to queue up and experience higher latency. On the other hand, when T,
is set to 0.36msec, the resulting batch size is larger, the log disk array’s 1/O rate
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Figure 4.9: Performance impact of the choice of Ty, on the log disks’ disk space
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Figure 4.10: Performance impact of the number of log disks on the log disks’ through-
put and write latency.

improves, and the average write latency actually decreases. This result demonstrates
that it is better to force requests to wait a little bit longer out front in order to im-
prove the batching efficiency and eventually decrease the write latency for everybody.
However, as T4 is increased beyond 0.36msec, the write latency starts to increase

again, because each request is likely to wait longer and each physical write also takes
longer to complete.

4.6.4 Sensitivity Study

In this subsection, we study the performance impact of each configuration parameter
in Mariner’s track-based logging design. There are 4 configuration parameters: (1)
the threshold of the fragmentation metric Tyyien, (2) the disk head recalibration
interval (Tge), (3) the wait time limit for batching (Tie;:) and the number of log
disks in the array. Unless specified otherwise, the following parameter settings are
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Figure 4.12: Impact of the choice of the recalibration frequency or interval on the log
disks” write latency.

used by default: Ty, = b0msec, Towiten = 12, Twair = 0.2msec, and the number of
disks is 5.

We use a synthetic workload to feed into Mariner’s Trail node by varying the
inter-request interval until reaching the maximum throughput of the log disk array.
The synthetic workload contains 20,000 write requests of 4 KBytes and there is no
read request, and the write latency from the device driver is measured. We use six
different inter-request interval values to generate six different input request rates:
0.08msec, 0.1msec, 0.12msec, 0.14msec, 0.16msec and 0.18msec.

Tswiten determines when to switch a disk’s head to the next track and thus plays
an important role in the trade-off between disk write latency and disk space utiliza-
tion efficiency. Every curve in Figure has up to six measurements, which from
left to right correspond to the six inter-request intervals in decreasing order. We stop
decreasing the inter-request interval as soon as the measured latency exceeds 2msec.
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Figure 4.13: The impact of the inter-request interval of the input write request sequence
on the average write latency. Both the iSCSI initiator and target set their queue length to
2048. Tyair is set to 0.36 msec and Tgyicp is set to 2. One vanilla iISCSI connection with
only Trail node is compared with two-phase commit implementation.

For a given Tyyuen, as the input request rate increases (or inter-request interval de-
creases), each physical write batches more logical writes, and the disk utilization
efficiency improves because Equation [£.2] is based on the number of physical writes
and the same number of physical writes can pack more bytes because batching is more
effective. However, improved disk utilization efficiency worsens the average write la-
tency, because each physical write is larger and takes longer to complete. For a given
input request rate, as Ty,icn increases, the disk utilization efficiency improves signifi-
cantly without degrading the average write latency too much. This result empirically
justifies one of the key design decisions in Mariner: allowing multiple physical disk
writes per track.

Each curve in Figure shows the latency and throughput of a given number
of log disks when the inter-request interval decreases from 0.18msec to 0.08msec
from left to right. For a fixed number of log disks, increase in the input request
rate increases both their throughput and latency because batching is more effective
and the size of each physical write is bigger. For a given input request rate, as
the number of log disks increases, the throughput increases linearly and the latency
remains largely unchanged. For example, when the inter-request interval is 0.1msec,
the 1-disk configuration can achieve a throughput of 1000 disk writes operations per
second (OPS) with an average write latency of 1.4msec, and the 2-disk configuration
can can achieve a throughput of 2000 disk writes operations per second (OPS) with
the same average write latency. This linear improvement comes from the fact that
multiple disks can mask the disk head switch delays of individual disks as well as
provide higher aggregate raw transfer bandwidth.

Again each curve in Figure has up to six measurements, which from left
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Figure 4.14: The measured end-to-end latency from a Mariner client under four

different types of workload. The burst size is set to 1000 and inter-burst interval is
set to 1 second.

to right correspond to the six inter-request intervals in decreasing order, and we
stop decreasing the inter-request interval as soon as the measured latency exceeds
2msec. For a given T, as the input request rate increases, the throughput of the
log disks increases because batching is more effective, and the average write latency
grows because each physical write is larger and takes longer to complete. For a given
input request rate, increase in T, improves the batching efficiency, which in turn
increases the throughput and the average write latency of the log disks. From the
results, 0.2msec seems to be a good choice for T, to achieve a reasonable tradeoft
between disk write latency and incurring reasonable write latency overhead.

Figure [4.12shows the performance impact of the recalibration frequency on the
average write latency. Increase in the recalibration frequency improves the accuracy
of disk head position prediction and thus reduces the rotational latency of disk writes.
However, increase in the recalibration frequency also introduces additional load to the
log disks and may actually delay the disk writes requests from users. Therefore, for
a given workload, there is an optimal recalibration frequency that balances these two
performance factors, as shown in Figure [4.12| For a workload consisting of 4 KB
large requests, a recalibration interval of 50msec is the optimal value.

4.6.5 Impact of iISCSI Processing

This subsection evaluates the write throughput and latency of Mariner’s Trail node as
seen from an iSCSI client. The test environment contains one iSCSI connection from
an iSCSI client to an iSCSI target that uses Mariner’s Trail node as the underlying
storage device. We use a synthetic workload that keeps sending write requests of size
4KB at a fixed inter-request interval and for each run, we measure the average write
latency. The queue length of both the iSCSI initiator and the iSCSI target is set to
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Figure 4.15: The measured end-to-end latency from a Mariner client under two real
traces at different speedup factors. Y axis is in log scale. Both iSCSI initiator and
target set their queue length to 2048. T, is set to 0.36msec and T izen is 2.

2048 to accommodate large bursts.

We modify the IET iSCSI implementation in the following ways to improve its
write latency. The first modification is to avoid going through the file-system-related
APIs as used by the fileio mode of the IET implementation. Instead, we call
generic_make_request directly, a standard interface between the block device and
other components of the kernel. The second modification is to simplify the software
architecture. The original IET iSCSI implementation has two categories of threads:
a network thread and a pool of worker threads to issue requests to the underlying
storage entities. These two threads relay data through an iSCSI command queue.
Our implementation eliminates the iSCSI command queue and directly places write
requests into the per-log-disk request queue.

Figure shows how the iSCSI-level write latency varies with the inter-request
interval. The iSCSI-level write latency increases dramatically when the inter-request
interval falls below 0.18msec, because the input load corresponding to the inter-
request interval of 0.18msec hits the capacity of the log disks. The IET iSCSI tar-
get implementation could process an iSCSI command every 0.08msec. The average
batch size is around 8KB, which takes a fixed processing overhead of 0.1msec. The
Trail implementation in the Mariner prototype introduces a small overhead (around
0.07msec), which comes from decision logic that determines which log disk to use,
and post-processing after each physical I/O completion.

Figure |4.13] also shows that the iSCSI-level write latency increases as the inter-
request interval increases from 0.3msec to 0.5msec. This is because a request is
delivered to the disk controller under two scenarios: either the request’s wait time
exceeds Ty,q;¢ when the next request comes in or there is no queued request and a free
log disk is ready to be used. These two conditions conflict with each other: a wait
time exceeding T4 indicates there have been queued requests and future requests
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Figure 4.16: The measured Postmark throughput for directly-attached disk and
Mariner ’s storage architecture, respectively with different read/write ratio. We
create 100,000 files and run 500,000 transactions. Both the iSCSI device and the
locally-attached disk are synchronously mounted to the working directory of Post-
mark.

will get queued. Therefore, a time point exists to reach the worst case: the time just
falls within T),.;; and forces subsequent requests to believe there have been queued
requests and experience the queuing delay in the same way. For T, of 0.36 msec and
5 log disks, this time point happens to be 0.5 msec. After reaching a peak value at
0.5 msec, the write latency drops down as the inter-request interval increases because
input request rate is far below Mariner’s capacity and no request needs to be queued.

4.6.6 Impact of Modified Two-Phase Commit Protocol

In this section, we study the performance impact of the modified two-phase commit
protocol on the write latency. An iSCSI client is connected to a Trail node, a master
node and a local mirror node. The queue length of both the iSCSI initiator and
the iSCSI target is set to 2048 to accommodate large bursts. We use both synthetic
workload and real disk access traces in this experiment. The synthetic workload
consists of multiple request bursts with a sufficiently long time interval between two
consecutive bursts to allow the master and local mirror node to finish the previous
burst. The target block address of each disk write request in the synthetic trace
is borrowed from the Lair62b trace. Both the master node and local mirror node
could complete a burst size of 1000 requests within 100msec when the on-disk cache
is turned on. The burst size in the synthetic workload is set to 1000 and the interval
between two consecutive bursts is 200msec.

Figure [4.14] shows the write latency versus the inter-request interval within a
write burst. Compared the one connection case with that of modified two-phase
commit, it is clear that the modified two-phase commit protocol does not introduce
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Figure 4.17: The measured Postmark transaction rates for directly-attached disk and
Mariner ’s storage architecture with different read/write ratio. For Mariner , both
iSCSI initiator and target set their queue length to 2048. T, is set to 0.36msec and
Towiten 18 2. For directly-attached hard drive, we turn off their on-disk write cache.

any noticeable penalty on the write latency. There are two reasons. First, because of
TRM, the additional payload transfer due to data replication does not incur additional
networking overhead. Second, the latency of a modified two-phase commit transaction
ends when the write to the Trail node is completed, which is exactly the same as the
iSCSI-level write latency reported in the previous subsection. Figure [4.15 shows the
measured write latency under disk access traces played back at different speedup
factors. Because the MS-SQL-Large trace is collected on a server with a large buffer
cache, it contains larger bursts and the average inter-request interval is small.

When the speedup factor is smaller than 1, the write latency increases because
the inter-request interval increases and the additional batching delay of the current
Mariner prototype kicks in and when the requests are sparse, the additional batching
delay disappears. When the speedup factor is large, the write latency also increases
because of the larger input load. For the MS-SQL-Large trace, increase in the speedup
factor eventually exceeds the throughput capacity of the log disks and result in very
long write latency, most of which is queuing delays at the Mariner client and Trail
node.

To illustrate the performance improvement, we setup a vanilla storage server
where writes are only propagated to one storage node consisting of a vanilla hard
drive. The vanilla hard drive has their on-disk cache turned off. Storage client and
server are attached locally. We use MS-SQL-Large and MS-SQL-Small trace to drive
the comparison. Figure shows the performance improvement. For all speedup
factors, our scheme beats the vanilla configuration by at least a factor of 500.

Figure illustrates that both the write and read throughput are improved
by a factor of 5. This is because the throughput of Postmark is sensitive to per-
request latency especially when writes are synchronous. Postmark is a single-threaded
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NFS OP | Avg Elapsed Time | Avg Elapsed Time
for Disk (msec) for Mariner (msec)
setattr 33.3 4.8
write 121 12
create 82.7 9
remove 64.5 7
rename 57.3 9.0
link 83.2 8.9
mkdir 161 134

Table 4.3: Elapsed time improvement for different write-related NFS operations,
where Teier, = 2 and T.4= 0.36 msec. Both direct-attached disk and Mariner
’s iSCSI device are mounted synchronously on the NFS server directory.

benchmark and each synchronous operation will prevent future requests from being
sent out. As a result, a reduction in the per-request elapsed time by N will lead to
a N times increase in the throughput. The average per-write elapsed time is 3 msec
for Mariner client above the file system and 20 msec for directly-attached disks.

Figure shows the transaction rate is also improved by a factor of 5. As
all writes are synchronous, a throughput improvement of 5 indicates a per-request
latency improvement of 5. This is backed by the average per-write latencies of both
directly-attached disks and Mariner ’s storage system. The per-request latency on
directly-attached disk is around 20 msec and the per-request latency on Mariner
's storage system is 3.2 msec when read/write ratio is zero. However, under this
workload, the advantage of request batching can not be shown very clearly as at any
point in time, there is only one outstanding write request and there is no batching.

Table shows the per-request latency improvement for different NF'S oper-
ations by playing the Lair trace with TBBT trace player. TBBT trace player is at
the NFS client side. Playing one-hour trace of the whole day trace(2:00am on Oct
21st, 2001) in full speed takes only 3 seconds for Mariner and 21 seconds for direct-
attached disk. Per-write NFS operation latency improves by a factor of between 6
and 10. This is because there are multiple outstanding requests for batching. The
latency at the iSCSI layer is 2 msec and .

4.6.7 TRM Evaluation

In this experiment, data traffic is injected through the raw iSCSI device in order to
by-pass buffer and file system caching. In addition, the number of outstanding SCSI
commands parameter is set to 64 to ensure the pipeline of iISCSI commands is filled
up during the tests [I80]. We run all tests from the initiator’s memory to the target’s
memory without involving any disk accesses,. so that we can truly stress test the
performance of the storage area network.
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Figure 4.18: Effect of degree of packet aggregation on T'RM throughput improvement
under iSCSI. Each iSCSI write request is duplicated to two other iSCSI devices,
TRM extracts the common payload among the TCP connections underlying these
three iSCSI sessions and sends them as multicast packets. Without TRM, the iSCSI
throughput is 768Mbps. TRM increases the throughput by a factor of 2.68.

During the experiment, an application transfers a file from the client node’s
memory to the three storage nodes’ memory using the iSCSI protocol. Unless stated
otherwise, the default file size used is 400Mbytes. When the connecting switch works
at 100Mbps, the iSCSI write throughput without TRM is 93Mbps, while with TRM,
this throughput increases by a factor of 2.7 to 251Mbps. The theoretical improvement
ratio in this case is 2.72. We calculate the theoretical throughput as total bytes
transfered on wire by client in non-TRM case divided by that in TRM case. When
the connecting switch operates at 1Gbps, the iSCSI write throughput without TRM
is 768Mbps. Because the UNH iSCSI implementation is not able to generate traffic
at a rate higher than 1.08Gbps, we capture an iSCSI request trace beforehand, and
replay it as fast as possible. This replay approach completely bypasses the iSCSI layer
and its overhead, and thus could generate iSCSI traffic at a sufficiently high rate to
stress-test the system.

Figure shows the effect of degree of packet aggregation on TRM throughput
under iSCSI traffic. In this case, TRM transmits iSCSI write requests in the TCP
connection to the Trail node via multicast. It merges into a single packet headers of
multiple iSCSI write requests in the TCP connection to the master storage node, and
performs similar processing for packets in the TCP connection to the mirror storage
node. When each iSCSI write size is 4KByte and every 8 iSCSI writes are aggregated
in the TCP connection to master and local mirror storage node, the iSCSI write
throughput is 768 Mbps without TRM. TRM increases this throughput by a factor
of 2.68 to 2.06GBit/s. The theoretical throughput improvement ratio is 2.73. We
conjecture the gap between these two ratios is partly due to per-packet transmission
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Figure 4.19: Effect of transferred file size on TRM’s throughput. Each iSCSI write’s
size is 8KByte and the degree of packet aggregation is set to 1 iSCSI Write. In each
run, TRM starts transferring the file using the iSCSI protocol after fully warming up
the TCP connections.

overhead, which is not accounted for in the calculation of theoretical throughput
improvement ratio. Thus when increasing the number of iSCSI writes aggregated,
the measured ratio gets close to the theoretical ratio. In addition, the gap is also due
to that ACKs from the storage nodes are not merged.

Figure [4.19 shows the impact of the file size used in the experiment on TRM’s
throughput. When the file size is more than 4MBytes, TRM is able to reduce the
end-to-end elapsed time of transferring a file by a factor of 2.6. When the file size is
256K Byte, the throughput improvement ratio decreases to 2.2. When the file size is
smaller than 40KByte, TRM produces no visible throughput improvement because it
takes at least one RTT to complete a file transfer and the RTT of the testbed network
is around 0.2msec. The file size in this experiment really corresponds to the total size
of a continuous stream of write requests. Because in real world storage clients play
the role of a file or DBMS server, they could easily generate a stream of write requests
at the transfer rate of tens of Mbps when they are fully loaded.

4.6.8 Effectiveness of BOSC

To facilitate historical snapshot access, Mariner supports two indexes to translate a
logical disk block at a particular time point to its physical disk block: One index
(TL index) is based on the time stamps at which new versions of logical disk blocks
are created whereas the other (LT index) is based on the addresses of logical disk
blocks. Insertions into the TL index has higher locality than those into the LT
index, because time stamps are incremented monotonically. As Mariner uses the
same logging technique described in Section [4.2] it is able to log new versions of
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Figure 4.20: Throughput comparison among four versions of a block-level CDP system
under the random insert workload: the baseline configuration without index updating,
index updating using BOSC, index updating using BOSC with append-like logging,
and index updating using TPIE.

updated disk blocks (4KB each) at more than 5000 blocks/sec, the main bottleneck
of Mariner thus lies in the update of the two indexes, particularly the LT index.

To measure Mariner’s end-to-end block logging throughput, we ran a kernel
thread on the CDP server to continuously generate new versions of existing logical
disk blocks, each of which is logged to disk and triggers a new entry to be inserted
into the LT and TL index. The address of each updated logical disk block is randomly
generated and is uniformly distributed in [0, 25!]. In each run, there are totally 20 GB
worth of new block versions logged and 935 MB (20GB x 2%) worth of index records
inserted. The buffer memory for BOSC’s per-page request queuing is set to 64 MB,
and the leaf index page cache for TPIE is also set to 64 MB. We varied the rate at
which this kernel thread generates new block versions and measured the the number
of updated blocks that Mariner is able to process, including logging them to disk and
updating their LT /TL index entries, per second.

The throughput of Mariner when index updating is disabled measures its abil-
ity to log new disk block versions to disk, and thus represents an upper bound on
Manriner's throughput. Figure compares the sustained throughput of Mariner
with and without index updating. The difference between them thus represents the
performance cost associated with index update. As the inter-request interval de-
creases, Mariner’s throughput increases because the input load increases. To bound
the latency of each disk write, we imposed a constraint on the latency of each disk
write request by setting T),.;; to 1.6 msec. With this constraint, Mariner cannot sus-
tain an input load with an inter-request interval lower than 50 psec even when index
update is disabled.
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We experimented with three different ways of updating the LT index in Mariner:
TPIE, BOSC and BOSC with append-like logging. TPIE does not support logging or
sequential commit. BOSC supports both sequential commit and low-latency logging.
BOSC with append-like logging supports sequential commit but uses append-like
logging, which treats each disk in the log disk array as a separate log file and always
writes to the end of each log file rather than where the disk head happens to be.

Compared with the baseline configuration without index updating, the index
update overheads introduced by TPIE, BOSC, and BOSC with append-like logging
are more than 95%, less than 15%, and more than 85%, respectively. In terms of
absolute performance, the end-to-end logging throughput of a BOSC-based Mariner
is more than 45 times better than a TPIE-based Mariner, and more than 6 times
better than an append logging-based Mariner. As the inter-request interval increases,
the input load decreases and the relative performance impact of index updating also
decreases. As a result the throughput gap between the baseline configuration without
index updating and the BOSC configuration with index updating also decreases with
the increase in inter-request interval.

4.6.9 Performance Evaluation of UVFS

In this section, we evaluate the effectiveness and performance of UVFES’s file version
searching capability. From the perspective of an end user, the ability to interactively
navigate through historical versions of files enables her to quickly zoom into file ver-
sions of interest. We use the elapsed time for servicing a file versioning query as the
metric for evaluating UVFS’s performance.

Methodology

The testbed used in this study consists of an NFS client node, an NFS server
node, and a file update logging node based on an experimental block-level CDP
system called Mariner [14], all of which are connected by a Netgear GS508T Gigabit
Ethernet switch. The CDP server is a Dell PowerEdge 600SC machine with an Intel
2.4 GHz CPU, 768 MB memory, a Gigabit Ethernet card, and five IBM Deskstar
ATA/IDE hard disks, four of which are log disks and one of which holds data. Other
testbed nodes are Dell PowerEdge SC1425 servers with an Intel 2.8 GHz CPU, a
Gigabit Ethernet card, and 1024 MB memory. The operating system is Fedora Core
3 with Linux kernel 2.6.11. The test file system used is an ext3 file system unless
specified otherwise. When caching of disk data blocks on the CDP server is turned
on, the amount of memory dedicated to caching is 4 Mbytes. We ran the following
workloads to create historical images on the CDP node, and used the resulting images
to evaluate UVFE'S. All experiment runs were conducted on machines with cold cache.

Synthetic Workload: The synthetic workload starts with a file system with
only an empty root directory. It creates N subdirectories under the root directory,
picks one of the subdirectories, say /a, and creates N subdirectories under it, picks
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one of the subdirectories of /a, say /a/b, and creates N subdirectories under it,
and recursively applies the same set of operations until it creates a directory of a
certain depth (D). At that point, the workload creates N files under one of the
most recently created batch of directories (called the leaf directory, e.g. /a/b/c/d/e
for D = 5), and for each file creates C' incarnations, each of which in turn has K
versions. Then it deletes all files in the leaf directories, all subdirectories in the
leaf directory’s parent directory, all subdirectories in the parent directory of the leaf
directory’s parent directory, and recursively upwards until the file system becomes an
empty root directory again. So an instance of the synthetic workload is characterized
by four parameters: N, D, C' and K.

Lair Trace: The Lair trace is an NFS trace collected from the EECS NFS
server (EECS) of Harvard University over two months [I81]. The EECS trace grows
by 2GB every day. We use the Trace-Based file system Benchmarking Tool [178] to
replay this trace against the NFS server on the testbed.

SPECsfs: SPECsfs is a general-purpose benchmark for NFS servers [182]. Tt
bypasses the NFS client and accesses the NFS server directly. We ran SPECsfs with
1 server process, 1 NFS client and set the operation rate at 100 OPS to age the file
system image.

Three types of file versioning queries are used in this performance study: a
version search query asking for all the versions of all the incarnations associated with a
given pathname, an incarnation search query asking for all the incarnations associated
with a given pathname, and a directory search query asking for all the versions of all
the incarnations associated with all pathnames under a given directory. Each file
versioning query is serviced by a special agent on an NFS client, which accesses
historical snapshots on a block-level CDP server through an NFS server.

Correctness of File Versioning Algorithm

To verify the correctness of UVFES, we ran the Postmark workload and compared
the versions discovered by UVFS with those that were derived from a comprehensive
file-level update trace collected during the run. To collect this trace, we instrumented
the source code of Postmark to record every file-level update operation, including
open, write, close, unlink, mkdir, rmdir, etc. The file system was mounted with the
dirsync and sync flag. During each run, we turned off all file caching, including Post-
mark’s own buffering, to ensure that all file-level updates are propagated immediately
down to the block level.

After a Postmark run with 1,000 files, 1,000 subdirectories and 10,000 transac-
tions, we deduced from the resulting file-level update trace that the run produced
in total 16,637 versions of 5,900 files/directories. Because the temporal resolution of
the file-level update trace is millisecond, we consolidated all updates to the same file
block within the same second into one update, so as to match the temporal resolution
of UVFS. It takes UVFES 305 seconds to complete servicing a directory search query
starting from the root directory, and the result it returns matches exactly with those
derived from the file-level update trace.
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NFS Op | getattr | lookup | readdir | access | readdirplus
Cost 1 D N 1 N

Table 4.4: The cost of each type of NFS operation used in file version searching in
terms of numbers of RPCs required.

Synthetic Workload

We ran the synthetic workload with the dirsync flag turned on to force to disk syn-
chronously every file system metadata update, including Inode bitmap, Inodes, di-
rectory entries, etc. Under this configuration, UVFS never needs to invoke iFSCK
because every snapshot it accesses is always file system-consistent. As a result, the
main performance cost associated with snapshot access comes from NFS and iSCSI
connection set-up.

The performance cost associated with file system traversal mainly comes from the
set of NF'S operations used in the traversal. The performance cost of each NFS opera-
tion in turn is determined by the number of associated remote procedure calls (RPC).
Table lists the number of RPCs required by each type of NF'S operation used in
file version searching under a synthetic workload characterized by (N, D, C, K). The
actual performance overhead of each RPC is dominated by the disk accesses it re-

quires.

Assume the iISCSI/NFS connections required by the service of a file versioning
query are pre-established and therefore their set-ups incur zero cost, the query pro-
cessing cost is dominated by the file system traversal cost, which in turn is determined
by the number of RPCs required. Processing of a wversion search query for a file f
starts with an incarnation search of f to find all incarnations of f, which in turn
triggers a version search of f’s parent directory. This recursive procedure continues
until it reaches the root directory. Therefore, the total number of RPCs required by

a version search query is thus
D—1

VSrpo =Y 2% N (i+2)+C+K*(D+2) (4.4)

=1
Accordingly, the per-version discovery time of a version search query is
VSrpoxAvgRPCTime

CxK :
Similarly, the total number of RPCs required by an incarnation search query is:
D—-1

ISppc =Y 25N #(i+2)+C*(D+2) (4.5)

i=1
Therefore, the per—lncarnatlon dlSCOVGI‘y time of an incarnation search query 1s
ISprpoxAvgRPCTime

c
A directory search of a directory d first finds all versions associated with d. A
readdir is then issued to read all directory entries of each version of d. For each file
f under each version of d, a wversion search is initiated to locate all versions of f.
Therefore, the total number of RPCs required by a directory search query is:
D—-1
DSppc =Y 2xNx(i+2)+N+NxCxKx(D+2) (4.6)

and the per-version discovelfy time of a directory search query is
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Figure 4.21: (a) The average per-version discovery time for a version search query
against a file in the leaf directory when N=10, C=2, K=2, and D varied from 1
to 16. The no optimization curve corresponds to a vanilla UVFS implementation
without any optimization, in which iISCSI/NFS connections are set up on demand.
The theoretical curve is derived from Equation (4.4)) with AvgRPCTime = 16 msec
and connection reuse turned on. The connection reuse curve corresponds to an
implementation with connection reuse optimization, in which iSCSI/NFS connections
are reused and thus pre-established in most cases. The block caching-+connection
reuse curve corresponds to an implementation with both connection reuse and block
caching optimizations, in which disk block caching on the CDP server is enabled.
The Y axis is in log scale. (b) The average per-incarnation discovery time for an
incarnation search query against a file in the leaf directory. Other parameters are
the same as those in (a). (c) The average per-version discovery time for a directory
search query against the leaf directory when N=10, C=2, K=2, and D varied from 0
to 16. Other parameters are the same as those in (a). (d) The average per-version
discovery time for a directory search query against the root directory and the portion
related to detection of incarnation deletion and creation when D=0, C=1, K=2 and
N is varied from 10 to 20,000. No optimization is enabled. The X axis is in log scale.
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DSrpc*AvgRPCTime

Ifl’v t‘jfgfi(SCSI /NFS connections required by the service of a file versioning query are
not pre-established, the number of historical snapshots needed during a file versioning
query plays an important role in the query processing cost. The numbers of snapshots
required in an incarnation search, version search, and directory search are 2 x N x D,
2« Nx D+ CxK,and 2+« N« D+ C % K * N, respectively. As an example, if D = 4,
C =2, K =2 N =10, and the target file is /a/b/c/f1, a version search needs
to examine all 20 versions of / (10 directory creations and 10 directory deletions) to
determine that there is only one incarnation of /a, all 20 versions of /a (10 directory
creations and 10 directory deletions) to determine that there is only one incarnation
of /a/b, all 20 versions of /a/b (10 directory creations and 10 directory deletions) to
determine that there is only one incarnation of /a/b/c, and all 40 versions of /a/b/c
(20 files creations and 20 file deletions) to determine that there are two incarnations
of /a/b/c/f1, from which it then locates the two versions of each incarnation based
on its last modify time. In total, it needs to set up 100 (20 + 20 4 20 + 40) snapshots.

We set N = 10,C = 2, K = 2, and varied the file system tree depth parameter
D from 0 to 16 for the directory search query, or from 1 to 16 for the version search
query and the incarnation search query. Figure|4.21|a) shows the average per-version
discovery time of a wversion search query whose target is a randomly selected file f
in the leaf directory. In each run, four file versions are returned to each wversion
search query. Figure [1.21|(b) shows that the average per-incarnation discovery time
of an incarnation search query whose target is a randomly selected file in the leaf
directory. In each run, two incarnations are returned to each incarnation search query.
Figure M(c) shows the average per-version discovery time of a directory search
query whose target is a randomly selected leaf directory. In each run, 40 file versions
are returned to each directory search query. There are four curves in each figure,
corresponding to the theoretical performance cost when NFS/iSCSI connections are
pre-established, the measured performance cost when NFS/iSCSI connections are
pre-established, the measured performance cost when NFS/iSCSI connections are set
up on demand, and the measured performance cost when NFS/iSCSI connections are
pre-established and disk block caching on the CDP server is turned on.

Regardless of whether optimizations are enabled, the per-version or per-incarnation
discovery time generally increases with the tree depth of the target file, because path-
name lookup cost is a significant component, and NFS decomposes the lookup of a
pathname of length N into N individual lookups, each of which takes roughly the same
amount of time assuming there is no client-side caching. As shown in Figure M(a)
and (b), the average per-version discovery time of a version search is smaller than the
average per-incarnation discovery time of an incarnation search because an incarna-
tion search of a file involves a wversion search of the file’s parent directory. However,
the per-version discovery time of a version search is not necessarily longer or shorter
than the per-incarnation discovery time of an incarnation search against the same
target file system object. For example, if a file /a/b is created at T'1 and deleted at
T2 with no intermediate version, a version search and an incarnation search of /a/b
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Figure 4.22: The average per-version or per-incarnation discovery time and its break-

down into the Stat/Readdir, internal processing and (FSCK components for an in-
carnation search, version search and directory search against file system snapshots
generated by SPECsfs, with the target object’s depth in the file system namespace
varied from 1 to 4.Because no directory with a namespace depth of 4 exists, there is
no measurement for directory search with D = 4.

between T'1 and T2 take the same amount of time. However, if multiple versions of
/a/b are created between T'1 and T2 and the cost of discovering a new version by
invoking stat is larger than that to discover an incarnation, the per-version discov-
ery time of a wversion search is larger than the per-incarnation discovery time of an
incarnation search in this case. On the other hand, if the number of files under /a
is very large (e.g. 8,000), the cost to discover an incarnation is larger than the cost
to discover a new version, and the per-version discovery time of a wversion search is
going to be smaller than the per-incarnation discovery time of an incarnation search

In the calculation of the theoretical curve, we set AvgRPCTime to a constant,
16 msec. However, in practice AvgRPCTime varies with D. Larger D tends to
increase the RPC cost due to less locality in data accesses during RPC processing.
Thereafter, the theoretical curve does not always fit perfectly with the corresponding
empirical results.

Being able to reuse NFS and iSCSI connections makes a big difference on the
response time of the file version search queries, with the impact ranging from two
orders of magnitude to a factor of 2 across all D values. If iISCSI/NFS connections
need to be set up on demand, a large fixed overhead due to iSCSI/NFS connection
set-up is added to the per-version or per-incarnation discovery time. That’s why
the slope of the curve for the no-connection-reuse case tends to be smaller or flatter
than that for the connection-reuse case. Finally, iSCSI connection set-up takes much
longer than NFS connection set-up, and one iSCSI connection set-up can support up
to 255 snapshot accesses. Therefore, whenever servicing a file version search query
needs more than 255 snapshots, an additional iSCSI connection set-up overhead will
show up, for example, between D=10 and D=11 in Figure [£.21]a), between D=12
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Number of Versions Elapsed
Configuration Distinct File Discovered Time
and Directories (Unit: msec)
Ext3+CDP+UVFES 28,693 29,674 849,378
Ext3cow - 60s 28,693 29,456 13,892
Ext3cow - 5s 28,693 29,667 14,415

Table 4.5: Results of finding all file versions of a file system aged by the Lair trace
using Fxt3 + CDP + UV F'S, and using Ext3cow with two snapshot frequencies, 5
and 60 seconds.

and D=13 in Figure [4.21|(b), and between D=7 and D=8 in Figure [4.21]c).

When the CDP server turns on disk block caching, the per-version discovery
time of a file version search query is further reduced by a factor of 2 to 9, beyond
what can be achieved with the network connection reuse optimization when D = 16.
Specifically, this caching drastically cuts down the number of disk accesses associated
with readdir and lookup operations in file version query processing. Accordingly, the
effectiveness of this caching technique increases with D because the relative weight of
file system traversal cost in a file version search query increases with D. In contrast,
the effectiveness of the network connection reuse optimization decreases with D be-
cause the relative weight of network connection set-up cost in a file version search
query decreases with D.

Figure M(d) shows the average per-version discovery time of a directory search
query and the portion of it related to detection of incarnation deletion and creation
with D =0,C' =1, K = 2 and N varied from 10 to 20,000. We modified the synthetic
workload so that consecutive creations or deletions of files occur one immediately after
another. When servicing a directory search query, UVFS needs to set up snapshot
images and compare contents of the adjacent versions of a directory to detect creation
or deletion of a file incarnation inside that directory. Because the current UVFES
implementation organizes each directory’s content as an ordered list of file pathnames,
it takes O(NlogN) pathname comparisons to detect creation and deletion of file
incarnations in a directory, where NV is the number of files in the directory. The lower
curve in figure [£.21](d), which corresponds to the average time required to detect
changes in the directory’s content indeed increases in a logarithmic fashion. When N
is greater than 100, the directory content comparison time is a significant component
and the average per-version discovery time of a directory search query increases with
N. However, when N is less than 100, the directory content comparison time is
negligible and the time needed to set up snapshots dominates, and the average per-
version discovery time decreases when N is increased from 10 to 100 because the
snapshot set-up cost is amortized over a larger number of versions as N increases.

SPECsfs

We use the default setting of the SPECsfs benchmark: 12% write requests with the
rest as read requests. A SPECsfs run creates a directory C'L; for the ith client, and
another directory named wvalidatedir for validation purpose. C'L; has in total N (the
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Figure 4.23: Elapsed time comparison of iFSCK operating under three different con-
sistency levels when the number of disk block updates in the CDP node’s log between
[T — LB, T + UB]| is varied, where T is the user-specified target timestamp and both
LB and UB are set to 40 seconds.

number of runs) testdir; directories, which hold the generated directories and files.
For each test run, the corresponding testdir; contains up to 700 files/subdirectories.
Processing a directory search query against the testdiry directory requires setting up
365 snapshots and only 10 of them need to invoke iFSCK.

We measured the per-version and per-incarnation discovery time for version
search, incarnation search and directory search by issuing these queries against all
files or directories at a particular file system name-space tree depth and computed
the average of them. Figure [4.22| shows the per-version and per-incarnation discovery
times of the three queries and their breakdowns under the SPECsfs benchmark. They
are similar to those under the synthetic workload because SPECsfs creates only a
small number of files or subdirectories and the name space hierarchy it creates is
quite regular.

Comparison with Ext3cow

Ext3cow [135] is a file system that provides its users with file versioning, snapshotting
and a time-shifting interface to navigate through the file versions. In this section,
we compare Ext3cow with a vanilla Ext3 file system coupled with UVFS on top of
a block-level CDP, in terms of the accuracy and performance of file version query
processing. We used the Lair trace to age the test file system and measured the
elapsed time required to locate all file versions under the root directory for each
of the three configurations: Ext3cow on a local file system with the snapshotting
frequency set to 5 seconds, Ext3cow on a local file system with the snapshotting
frequency set to 60 seconds, and Ext3 on a local file system backed by UVFES, an NFS
server and a block-level CDP server, with both NFS/iSCSI connection reuse and disk
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Figure 4.24: Elapsed time comparison between ¢FSCK and vanilla FSCK for an ext2
file system with different snapshot image sizes. When the snapshot image size is
10GB, iF'SCK(level=1) is about three orders of magnitude faster than vanilla FSCK.

block caching turned on. The Lair trace used in this experiment is a one-hour trace
starting from 10am on Oct 21, 2001. For Ext3cow, we use the time-shifting interface
to retrieve all file versions under the root directory, starting from a cold file system.

Table [4.5| shows that Ext3 + CDP + UV F'S finds 0.7% more file versions than
Ext3cow with a 60-second snapshotting frequency, and only 7 more file versions
than Ext3cow with a 5-second snapshotting frequency. This result shows that CDP
plus UVFS indeed can capture some file versions that are missed by periodic snap-
shotting systems such as Ext3cow, although the marginal value of these missed ver-
sions depends on user and application requirements. As for performance overhead,
Ext34+ CDP + UV F'S needs to set up 372 snapshots to find all file versions, and as
a result is 60 times slower than Fxt3cow. This performance difference is attributed
to two factors. First, Ezt3 + CDP + UV FS involves three parties over the net-
work whereas Fxt3cow only requires local processing. Second and more importantly,
Ext3 + CDP + UV FS does not require any modification to the host file system,
whereas Fxt3cow builds file versioning directly into the file system itself.

4.6.10 Performance Evaluation of iFSCK
Evaluation Methodology

In this section, we evaluate the effectiveness and performance of iF'SCK’s incremental
file system check. For iF'SCK, we use the number of blocks in a point-in-time snapshot
that need to be mended to make it file system-consistent as the evaluation metric for
its efficiency. In addition to performance overhead, we also verify the correctness of
1F'SCK by comparing their results with the ground truth.

The testbed used in this study consists of an NFS client node, an NFS server
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Figure 4.25: Number of file system metadata blocks iFSCK modifies to support
different file system consistency levels when the number of disk block updates in the
CDP node’s log between [T'— LB, T + U B| is varied.

node, and a file update logging node based on a block-level CDP implementation
called Mariner, all of which are connected by a Netgear GS508T 8-port Gigabit Eth-
ernet switch. All these nodes are a Dell PowerEdge 600SC machine with an Intel
2.4 GHz CPU, 768 MB memory, a 400 MHz front-side bus, an embedded Gigabit
Ethernet Card, and up to five ATA/IDE hard disks, each of which is a 80-GB IBM
Deskstar DTLA-307030 disk. The operating system is Fedora Core 3 with Linux ker-
nel 2.6.11. The file system is an ext2 file system unless specified otherwise. We run
the following four sets of workloads to create historical images on the CDP node, and
use these images to evaluate iF'SCK. All experiment runs are conducted on machines
with cold cache.

e Synthetic Workload: The same synthetic workload as that is used in subsec-
tion 4.6.9.

e Postmark: Postmark [I77] is a file system benchmark that emulates a heavy
small file workload. The benchmark creates a specified number of files/sub-
directories, performs various file update operations on them and eventually
deletes all of them. The read/write ratio is always set to 1, but the number of
transactions and other parameters are different from run to run.

e Lair trace: The same Lair trace as that is used in subsection 6.9

e SPECsfs: The same SPECsfs workload as that is used in subsection [£.6.9]

Correctness Evaluation of :FSCK

We evaluate the correctness of iF'SCK by comparing the restored result from iF-
SCK(level=1) and from ext3-FSCK for a set of snapshot images with an ext3 file
system. FSCK supports three file system consistency levels, which are useful for
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Figure 4.26: Elapsed time comparison between FSCK and vanilla FSCK for an ext3
file system with different snapshot image size.

different applications. The first level is the strongest, and is designed to support
read-write snapshots that span the entire file system. The second level is slightly
weaker, and is designed to support read-only snapshots that span the entire file sys-
tem. The third level is the weakest, and is designed to support read-only snapshots
for a particular file or directory.

We ran the Postmark workload for 1,426 seconds with the following parameters:
1,000 files, 1,000 subdirectories, 1,000 transactions, and the inter-transaction interval
set to 1 second. For the populated file system, we used UVFS [I83] to discover all
file/directory versions during the run. UVFS set up 650 snapshots in the process, 242
snapshot images are not file system-consistent and need to be “fixed”. We invoked
iFSCK (level = 1) against these 242 snapshot images to restore them to a consistent
state. After that, we ran the vanilla ext3-FSCK against ¢F'SCK’s restored images to
determine if there is any residual inconsistency. None of these restored images require
any additional fixes from ext3-FSCK. Moreover, all the files/directories within those
images could be correctly read. This experiment demonstrates that iFSCK(level=1)
indeed achieves the same file system consistency level as that of standard file system
checkers.

Synthetic Workload Experiment

We evaluate both ext2 and ext3 file systems for the synthetic workload. Figure
shows the elapsed time of i{F'SCK when operating under these three consistency levels
as the number of disk block updates appearing within [I" — LB, T + UB] is varied
from 0 to 2500, where T is the user-specified target timestamp and both LB and UB
are set to 40 seconds. As expected, the stronger the consistency level is, the more
time-consuming the corresponding F'SCK version is.
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Figure 4.27: Elapsed time of iF'SCK when operating at different file system consis-
tency levels for the Postmark, SPECsfs and the Lair trace.

iFSCK(level=3) takes about 150 msec to check a point-in-time snapshot regard-
less of the number of disk block updates within [T'— LB, T + U B], because it only
focuses on a particular directory and the number of disk block updates during the
window that are related to that directory remains virtually independent of the file-
level update rate of the synthetic workload. The synthetic workload always creates
the same number of subdirectories inside a parent directory. On the other hand, the
elapsed time of both iF'SCK(level=1) and iFSCK(level=2) increases proportionally
to the number of block updates within [T'— LB, T + U B] when it is smaller than 300.
As the number of disk block updates grows beyond 300, their elapsed times levels
off, because the same block gets updated multiple times and for each block (FSCK
only needs to examine the latest update before T" and the oldest update after T'. The
performance difference between iFSCK(level=2) and iF'SCK(level=3) originates from
the fact that their scopes of consistency maintenance are different, a directory vs.
the entire file system. On the other hand, the performance difference between iF-
SCK(level=1) and iF'SCK(level=2) is attributed to a difference in the number of file
system metadata checks they perform, e.g. iF'SCK(level=1) checks the consistency of
Inode and Block bitmaps while iFSCK(level=2) does not.

Figure [4.25/shows the number of file system metadata blocks that iFSCK mod-
ifies to support different file system consistency levels as the number of disk block
updates within [T — LB, T + UB| is varied from 0 to 2500, and correlates very well
with Figure This list of metadata block updates correspond to the redo list
described in Section 4.2

Because iF'SCK only needs to focus on a small number of file system metadata
block updates around the snapshot timestamp, the number of disk reads and writes
it incurs is much smaller than a vanilla file system check tool. Figure [4.24] shows
the elapsed time comparison between iF'SCK(level=1) and ext2’s file system checker
for two snapshot image sizes, 2GB and 10GB. The elapsed time of iFSCK(level=1)
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Figure 4.28: Number of file system metadata blocks iF'SCK needs to modify to sup-
port different file system consistency levels for the Postmark, SPECsfs and the Lair
trace.

remains virtually the same when the snapshot image size increases from 2GB to 10GB,
because the number of metadata block updates around the snapshot timestamp is not
affected by the snapshot image size. In contrast, the elapsed time of ext2’s file system
checker grows proportionally with the snapshot image size because it needs to scan
the entire image. When the snapshot image size is 10GB, iF'SCK(level=1) takes only
0.61 second, which is more than 1000 times faster than that of ext2’s file system
checker.

Figure shows the elapsed time comparison between iFSCK(level=1) and
ext3’s file system checker for snapshot images of different sizes. By leveraging the
metadata journal, which is similar in functionality to ¢F'SCK’s redo list, ext3’s file
system checker can complete a file system check transaction using roughly the same
amount of time regardless of the snapshot image size, as is the case of {F'SCK. In
all cases, 1F'SCK still outperforms ext3’s native file system check, because the latter
checks more global metadata than iFSCK, such as total Inode count, total block
count, etc.

Standard Benchmark and Real Workload Experiments

Figure shows the elapsed time of i{FSCK when operating under different file
system consistency levels for the Postmark and SPECsfs benchmarks and the Lair
trace. iFSCK takes less time under the Postmark benchmark than under the SPECsfs
benchmark because Postmark’s disk write pattern is sparser than SPECsfs’s. Unlike
Postmark and SPECsfs, disk writes in the Lair trace are quite bursty in some short
periods and become very sparse for the rest of the trace. Therefore, for snapshots
created in the sparse-write periods, iF'SCK returns almost immediately (less than 10
msec) because there are very few writes (in most cases, it is 0) in [T'— LB, T + UB].
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However, for snapshots created in the bursty write periods, iFSCK(level=1) takes
more than 17 seconds to complete, whereas vanilla FSCK takes more than an hour to
do the same. In this test, i:F'SCK needs to examine 35,000 disk block updates, which
appear in the 80-second interval of [T'— LB, T + U B], and 8878 directories.

Figure [4.28) shows the number of file system metadata blocks iFSCK needs to
modify under these workloads. For most runs, ¢F'SCK needs to modify fewer than 56
blocks to bring a snapshot image to the strongest file system consistency level. The
fact that the numbers of blocks modified under these three workloads are roughly
comparable suggests most of the performance overhead of :F'SCK when running under
the Lair trace comes from the need to extract a small number of file system metadata
updates from a large number of disk block updates in [T'— LB, T + UB].
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Chapter 5

Random Write Optimization for

SSD

5.1 Design

5.1.1 Overview

LFSM is a storage manager that sits between a file system and a flash disk’s native
driver, and can be considered as an auxiliary driver specifically designed to optimize
the random write performance for existing flash disks in a disk-independent way.
A property shared by all commodity flash disks on the market is good sustained
throughput for sequential writes, between 30-60 MB/sec. Accordingly, the key idea
in LFSM is to convert random writes into sequential writes so as to eliminate random
writes from the workload that a flash disk physically faces by construction. To perform
such conversion, LFSM provides a separate logical disk address space to the file system
and other higher-layer software, implements it using multiple logs of erasure units
(EU), and turns every incoming write to the linear address space into a physical
write to the end of one of these logs. Because writes to each log are sequential in
nature, their performance is close to the flash disk’s raw sequential write performance.

To reclaim unused space on the logs, LFSM performs garbage collection in the
background, whose associated performance impact could be substantial if not carefully
managed [79]. The performance cost of reclaiming an erasure unit mainly comes from
copying out the live physical blocks in it and is thus proportional to the number of
such blocks at the time of reclamation. A major design decision in LFSM is its use
of multiple logs rather than one log to minimize the performance overhead associated
with garbage collection. More concretely, LESM estimates the life time of each logical
block, which is the time between two consecutive writes to it, and maps logical blocks
with a different life time range to a different log. Moreover, LFSM manages each
log as a circular FIFO queue to simplify the implementation complexity of garbage
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Figure 5.1: LFSM resides on top of FTL, and issues two sequential write streams to FTL,
one updating the BMT and the other updating the data logs. The dotted line indicates
the corresponding write stream is asynchronous. The unified logging module queries the
BMT to map a logical block into its corresponding physical block, and updates the BMT
whenever a new write is logged.

collection and recovery logic.

Because a logical block is re-assigned to a different physical block every time it is
overwritten, LFSM needs to maintain a block map table (BMT) that associates each
logical block with its current physical block, and changes a logical block’s map entry
whenever it is overwritten. That is, although LFSM converts every logical block
write operation into a sequential physical block write operation, along the way it
requires a random write to update the logical block’s associated BMT entry. Moreover
each random write to the BMT needs to be done synchronously to guarantee the
consistency and integrity of the BMT. As a result, these random synchronous writes
to the BMT becomes a new performance bottleneck. LFSM solves this problem by
first synchronously logging these BMT writes so that they are recoverable, and then
committing them to the BMT asynchronously using sequential writes. This scheme,
known as BOSC, greatly decreases the performance cost associated with BMT writes
because it turns them into asynchronous sequential writes without compromising the
BMT’s integrity and consistency.

5.1.2 Disk Write Logging

A flash disk exposes a linear sequence of disk blocks, e.g., 0-8M blocks for a 32-GB
flash drive with a 4-KB block, which the file system and/or user-level applications
use for allocation and read/write. Given such a flash disk, LFSM reserves a portion
of the address space, about 0.6%, to store metadata (e.g. BMT), and exposes the
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rest to the file system and/or user applications.

As shown in Figure .1 LFSM sits below the file system and above the flash
disk’s native driver. Accordingly, there are three address spaces in this design. The
file system and/or user applications see a linear sequence of logical blocks exposed
by LESM. The native flash disk driver exposes a linear sequence of physical blocks to
LFSM, and the actual flash disk hardware exposes a linear sequence of real blocks to
the native flash disk driver and the on-disk firmware. Many classical optimizations for
flash disks, such as asynchronous pre-erasing, which hides the performance overhead
associated with erasure operations by performing them in the background, and wear
leveling, which ensures that every real block on a flash disk is written approximately
the same number of times during the disk’s life time, are already built into the native
flash disk driver and firmware and thus not the focus of LFSM. These optimizations
require a translation between physical blocks and real blocks so that consecutive
physical blocks are not necessarily mapped to adjacent real blocks.

Although the exact mapping between physical and real blocks is implemented
in the proprietary driver/firmware and is thus unknown, we know all existing flash
disks share one property: their sequential write performance is much better than
their random write performance, sometimes by more than an order of magnitude.
This motivates the entire design of LESM: converting all writes in the input workload
into sequential writes.

Whenever a logical block is written, LEFSM allocates a new physical block from a
data log to hold the new version of the logical block, writes to the allocated physical
block, and updates the logical block’s BMT entry to point to the physical block. With
this approach, every random write from the file system is converted into two writes,
one to the data log, which is sequential by construction, and the other to the BMT,
which is random in general.

Logging BMT updates entails a space overhead problem. Because the minimum
unit for reading and writing a flash disk is a 512-byte sector, each BMT update log
record costs a 512-byte sector even though in actuality it requires no more than 20
bytes. This means the space overhead associated with BMT logging is about 12.5%
(512 bytes for every 4-KB page), which is too high to be acceptable. Given a write
to a logical block B, LFSM solves this problem by compressing the new version of
B to squeeze out a 20-byte area that can be used to hold the log record for the
logical block write’s associated BMT update. This compression step increases the
performance overhead of every logical block write operation, but only slightly as
shown later, because empirically we found that it is possible to squeeze out 20 bytes
by compressing the first 512 bytes of every 4KB page in most cases. If compressing
the first 512 bytes of a 4-KB page cannot produce 20 bytes of spare space, LFSM uses
a 512-byte sector to hold the log record of the associated BMT update log record.
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5.1.3 Ensuring Metadata Consistency

To ensure the consistency and reduce the performance overhead of each BMT write,
LFSM applies a BOSC scheme [21] to synchronously log the effect of each BMT update
and asynchronously commits multiple updates to the BMT in a batched fashion. More
specifically, LFSM organizes the BMT into a set of 4-KB pages and allocates an in-
memory request queue for each BMT page. For each BMT update, LFSM logs its
parameters and inserts it to the request queue associated with the page to which the
update’s target BMT entry belongs. In the background, LFSM fetches from disk each
BMT page whose in-memory request queue is not empty, commits all pending updates
associated with each fetched page, writes the BMT page back to disk, and moves on
to the next BMT page, etc., until it traverses the entire BMT. LFSM repeats the
same cycle constantly. In this process of committing BMT updates to disk, writes to
the BMT are largely sequential.

Because of BMT update logging, even if the system crashes, the BMT updates
that have not been flushed to the on-disk BMT can be correctly reconstructed at
recovery time. Through BOSC’s asynchronous batching, the performance overhead
of the random writes to the BMT is reduced to the minimum, because these updates
are aggregated and completed through asynchronous sequential writes. Using BOSC
to update the BMT means each logical block write operation triggers three write
operations, the first being writing a new version of the logical block to a data log,
the second being logging the associated BMT update, and the third being actually
updating the corresponding on-disk BMT entry. The first two writes are done syn-
chronously and the third write is done in an asynchronously and batched fashion.
LFSM combines the first two logging writes into a single physical write by merging
the log records for a logical block write and its associated BMT update. Therefore,
LFSM performs at most two physical writes for every logical block write operation,
with the average cost of the second write being a fraction of that of a typical physical
write because of the use of BOSC.

BMT update logging ensures that uncommitted BMT updates can be correctly
recovered when the system crashes, and thus makes it possible to commit pending
BMT updates in an efficient manner without compromising the BMT’s integrity.
When a system crashes, LFSM reads into memory the data log to identify the set
of BMT updates that have been logged but have not yet been committed to the
on-disk BMT. To facilitate the identification of not-yet-committed BMT updates,
LFSM includes the following information in the BMT update log record associated
with each logical block write operation: (1) the write’s target logical block number,
(2) the write’s corresponding sequence number, (3) the commit point: the sequence
number of the youngest logical block write operation all BMT updates before which
have already been committed to disk at the time of logging. With these information,
LFSM reconstructs pending BMT updates by first identifying the latest or youngest
BMT log entry, whose sequence number is, say /N1, then obtaining its associated
commit point, whose sequence number is, say N2), and finally reading in all the
BMT update log records between N1 and N2 to insert them into their corresponding
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per-BMT-page request queues.

With the above design, LESM successfully services each logical block write op-
eration with a single synchronous physical write to the data log, and thus greatly
improves the random write performance of commodity flash disks. However, LESM’s
design entails two background activities, which can potentially slow down a flash
disk’s overall performance. First, pending BMT updates need to be committed to
the on-disk BMT in the background. Second, because LFSM treats the entire flash
disk as a log, it needs a background garbage collector to reclaim free blocks and make
them available to LFSM for servicing subsequent logical block write operations.

5.1.4 Garbage Collection

If we see the processing of a WRITE request by LESM, we would understand that we
always log the WRITES sequentially. It is noteworthy to observe that this sequential
nature is with respect to one erasure unit, i.e., WRITES are sequential inside one EU.
Though many of the blocks get overwritten with time, we cannot immediately over-
write them since it would break the sequential write property of LESM. Instead, we
keep logging sequentially using the free blocks and mark the old over-written blocks
as invalid. Thus, with time the number of invalid blocks increases and proportionally
the number of free blocks decreases. Hence, to clean up the invalid blocks and make
them re-usable (free), we do garbage collection (GC). The goal of GC is to maintain
the balance between the invalid and free blocks. GC in LFSM is always done in the
background.

Our garbage collection is EU-based. In other words, we collect valid blocks of
one EU completely and move this EU to free pool and then proceed to do the same
for another EU. We have a threshold (number of free EUs to the total number of
EUs) to trigger the GC. Currently, it is 20%. When this threshold is hit, GC starts
in the background. Due to various reasons like scheduling, heavy IO in main thread,
etc., there might be a case where the background GC might not be able to pump
up the free pool and hence the main thread cannot find any free EU to process its
WRITE. In this scenario, the main thread yields to the background thread (to do the
GC) and waits till it finds at least one free EU in the free pool. This we call critical
garbage collection.

A good GC algorithm should have these features:

1. Minimize the number of valid pages copied. (Utilization)

2. The frequency of garbage collecting an EU should be proportional to the fre-
quency of invalidation of blocks inside this EU (Temperature).

LFSM satisfies the above mentioned criteria in a novel way as explained below.

Utilization

Utilization represents how many valid pages are there in a EU. So, when we want to
garbage collect an EU, we pick the EU which has the least utilization so that we have
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to copy the minimum number of valid pages. After copying all the valid pages in the
EU to new location, we move the old EU to the free pool. The data structure which
is most efficient for this purpose is Min — Heap, which we call LV P_Heap, where the
root has the EU with the least number of valid pages. In log N time, we can insert
and delete a EU from this heap. One important thing here is that we do not want to
GC a EU whose pages are still being over-written (invalidated) currently. Because,
this would result in copying those pages which would immediately get invalidated.
Hence, we implemented something called a HList. Once a EU which is in heap gets
invalidated (a page gets over-written), this EU is moved from heap to HList. It
is kept in HList until HLists length limit is reached. This limit is represented by
HLIST CAPACITY . This would give substantial time for the EU in HList to get
invalidated as much as possible and by the time it gets moved to heap, it would be
relatively inactive with respect to getting invalidated. In other words, we want to
keep waiting a EU in HList to move to Heap until its utilization gets stabilized. Now,
it can be safely garbage collected. Note that, if a EU in HList gets invalidated, it is
moved to the head of the HList and when HList limit is reached, the EU from the
tail of the HList is removed and inserted to Heap.

Temperature

Temperature denotes the frequency of invalidation of the blocks. We assign the
blocks which get frequently over-written as HOT, the ones which are relatively stable
as WARM, and the ones which are almost never over-written as COLD. For example,
DLL files could be termed COLD, while TEMP files are treated as HOT. The idea is
to group the blocks having the same temperature in the same EU. The assumption is
that blocks having the same temperature generally die (invalidated) together. Hence,
it makes sense not to garbage collect those EUs which have cold blocks as frequently
as those EUs having warm blocks. Similarly, the EUs having warm blocks are garbage
collected less number of times when compared to those having hot blocks. This will
avoid the number of EUs that are actually garbage collected and also garbage collect
those EUs which would give us more free blocks. Hence this improves the efficiency
of the process. When a block is written for the first time, by default it goes to a cold
EU. Once it gets over-written, it is moved to warm EU. If its again over-written, it
is moved to hot EU and stays there for any further invalidation. Similarly, if a hot
block survives (remains valid in the EU) a GC once, it is moved to warm EU. If it
survives the 2nd GC, it is moved to cold EU and it stays there after any further GCs.

We keep the information regarding the utilization & temperature of every EU
in its respective structure. Since garbage collection and main thread WRITES run
concurrently, there might be a possibility of conflicts, i.e., both targeting the same
LBN. For example, a GC WRITE finds out that the LBN it’s moving is already in
the Active List. This means that particular EU having this LBN is being invalidated
and hence would be moved to HList and should not be garbage collected. Hence, we
should abort the garbage collection of this EU.

Because the garbage collection is based on both the utilization and temporal
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locality of EUs, we call it Locality-Preserving-Utilization-based Garbage Collection
(LPU-GC). It is noteworthy that when the length limit of HList is 0, LPU-GC is the
greedy garbage collection based purely on the utilization of EUs.

Procedure

As explained earlier, the main goal of GC is to pump up the pool of free EUs. We
would try and garbage collect enough EUs so that effectively we would generate at
least one EU worth of free space. So we try to pick EUs from the heap one after
another until we find out that garbage collecting these EUs would give us one EU
worth free space. If we find that EUs in heap are not enough to satisfy our constraint,
we pick from HList.

The information regarding the LBN of all the blocks in the EU is kept in a sector
called metadata sector. This sector resides in the last block (8 sectors) of the EU.
So, we will read this sector now and get the information of which LBNs are present
and also how many of those are still valid using the EU bitmap. If we find any
conflict with main thread WRITE, we would stop the GC of that EU and proceed
to the next. Next, we will read the entire EU. After having the content of the EU
in memory, we would move the EU to Free List from Heap/HList depending on the
present location of the EU. Next step would be to assign new PBN to these blocks
where they would end up eventually. Then do the actual 1/O to copy valid blocks to
their new destination EUs. Repeat this process for all the EUs in the pickup list.

5.2 Prototype Implementation

To read or write a logical block, the LFSM needs to perform a BMT look-up to
identify the corresponding physical block. Because the BMT is typically too large to
fit into main memory, it is only available from the flash disk. This means that every
logical block read or write may incur an additional read disk access to the BMT. One
way to mitigate this performance overhead is to cache recently used BMT entries. In
some sense, the per-BMT-page request queues holding pending BMT updates serve
as such a cache, because LFSM needs to consult these queues before accessing the
on-disk BMT. However, they are unlike a conventional cache in that they hold only
recently modified rather than all recently accessed BMT entries.

The current LFSM prototype uses only two data logs, the hot log, which holds
logical blocks that are sufficiently frequently written, and the cold log, which holds
everything else. It constantly computes a moving average of each written logical
block’s past update counter, and classifies a written logical block as hot if its average
update counter is above Tipqqae Within a moving window 7', which is empirically
chosen to be an hour in the current prototype. When the system starts up, LFSM
lets these two logs compete for a fixed-sized memory pool, and when the utilization
of the memory pool reaches 95%, the amount of memory occupied by each log at that
instant becomes its allocation.
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LFSM consists of two threads. The first thread is responsible for synchronous
flash disk logging whereas the second thread is responsible for asynchronous BMT
updates and garbage collection. The second thread always yields to the first thread
whenever possible. The asynchronous background thread constantly scans through
the BMT page by page to commit pending BMT updates, and starts reclaiming
erasure units from a data log as soon as the log’s percentage of free blocks falls below
a threshold, T,... Note that a log’s free block percentage is computed with respect
to its total memory allocation. To reclaim erasure units from a data log, LFSM reads
in one or multiple erasure units at the log’s head, copies their live blocks to a free
erasure unit at the log’s tail, frees these erasure units at the head and continues this
until the free block percentage is above T'tyce.

Each BMT update log record is 20 bytes, and contains the following information:
4-byte length field for the size of the associated logical block write operation, 8-byte
logical block number, 4-byte sequence number and 4-byte commit point. The LFSM
prototype tries to compress the first sector of the physical block sequence allocated
to a logical block write operation. If the extra space squeezed out by the compression
step exceeds 20 bytes, it is used to hold the logical block write operation’s BMT
update log entry. Otherwise, an extra 512-byte sector is allocated to hold the BMT
update log entry.

LFSM reads in BMT entries one erasure unit (256 KB) at a time, and commits
pending updates associated with a BMT page to disk only if there are enough of them.
The rationale is that it is better to defer the commit of pending BMT updates as much
as possible in order to maximize the effectiveness of each update commit operation.
The decision of using the erasure unit as the basic disk I/O unit is consistent with
the fact that the flash disk’s FTL needs to read an entire erasure unit even if only a
small portion of it is overwritten.

To access a logical block, LESM needs to perform a BMT look-up to identify the
corresponding physical block. LFSM first consults with the per-BMT-page queues. If
there is a hit, the corresponding BMT entry is returned. Otherwise, the corresponding
512-byte sector in the BMT is read into memory and the corresponding BMT entry
is returned. However, when a 512-byte BMT sector is read into memory, the pending
BMT updates associated with the sector will not be committed to disk. Rather, BMT
updates are always committed to disk using sequential writes in the background.

Every time an erasure unit is reclaimed, the BMT updates corresponding to the
dead physical blocks in the erasure unit can be removed from their per-BMT-page
queues if they have not been committed to disk yet. Because BMT updates are
committed to disk more rapidly than blocks are reclaimed, it is rarely necessary to
remove pending entries from BMT update queues.

In addition to the BMT, LFSM also maintains two in-memory data structures,
one keeping track of the update frequency of each logical block, and the other main-
taining the utilization or the number of live physical blocks in every erasure unit.
Both are updated after every logical block write operation. However, they don’t
need to be disk-resident because after a crash, the per-logical-block update frequency
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can be recomputed from scratch, and the per-EU utilization data structure can be
reconstructed from the BMT.

5.3 Performance Evaluation

In this section, we first demonstrate the effectiveness of LFSM’s random write opti-
mization in reducing the average write latency, and its impact on the average read
latency. Then we employ block-level traces associated with three benchmarks to per-
form a sensitivity study on the impacts of three parameters of LESM: the threshold of
logical block update frequency known as Tipqate, the percentage of free blocks in each
log that triggers a reclamation operation, and caching of BMT. Finally, we examine
the end-to-end performance gain of LFSM under three standard benchmarks.

5.3.1 Methodology

The latency of a logical block write operation under LFSM is affected by the com-
pression step for its first sector, the BMT look-up, its associated physical write to the
chosen log, and the competing background operations of committing pending BMT
updates to disk and free block reclamation.

To assess the contribution of the background BMT updates, we developed a ver-
sion of LFSM that keeps the entire BMT in memory. This version not only completely
removes the background BMT updates, but also does away with the BMT look-up
overhead, which in turn consists of a scanning of a per-BMT-page link-list queue and
an optional access to the on-disk BMT.

To gauge the performance impact of LFSM’s background garbage collection ac-
tivity, we use a bursty workload that consists of a burst of writes, followed by an
idle period, another burst of writes, followed by another idle period, etc. Because
the background thread that performs garbage collection always yields to the main
logging thread, most of the garbage collection activity is expected to occur in the
idle periods. By gradually increasing the length of the idle period, we can gradually
decrease the average write latency and determine the minimal idle period length at
which the average write latency remains unchanged. This minimal idle period length
corresponds to the performance impact of background garbage collection.

The test machine used in the following experiments is a Lenovo Thinkpad T43
with 2.66GHz CPU and 1-GB memory and the SSD disk is Samsung’s 32 GB SATA
SSD. Because Levono T43 only supports a PATA interface, we install a SATA hard
drive connector to convert its native PATA interface to a SATA interface and work
with the SATA SSD disk.

We developed a synthetic workload generator to generate a sequential workload,
where the target block addresses of the disk I/O requests are sequential, and a random
workload, where the target block addresses of the disk I/O requests are random. This
workload generator is implemented as a kernel-level thread that feeds the created disk
I/O requests to the LEFSM driver with an inter-request interval M and the number of
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Random Workload | Sequential Workload
Delay Component (Unit: msec) (Unit: msec)
4 KB 8 KB 4 KB 8 KB
Metadata Lookup 0.2 0.2 0.01 0.02
Data Compression 0.11 0.12 0.11 0.11
Sequential Flash Disk Write | 0.33 0.70 0.26 0.44
Garbage Collection and 0.99 0.91 0.01 0.01
BMT Update Commit
Total Latency 1.63 1.93 0.38 0.58

Table 5.1: Breakdown of the average write latency under a random write workload
and a sequential write workload when the write request size is 4 KB and 8 KB.

outstanding requests below a pre-defined value, K, which is set to 1 if not otherwise
specified.

We also collected a set of block-level disk access traces from the hypervisor of a
machine that runs XEN HVM and the following three applications on one or multi-
ple virtual machines: the TPC-E workload generator running against a PostgreSQL
DBMS instance on Linux of Fedora Core 8, the SPECSfs [182] workload generator
against a Windows CIFS file server, and the LoadGen benchmark [I84] against a
Windows 2003 Exchange Server. As the current LESM prototype is implemented
as a device driver under Linux, we use TPC-E and SPECSfs NFS workload for the
end-to-end performance evaluation.

o TPC-E Trace

TPC-E [185] is a newly-introduced OLTP benchmark that simulates the OLTP
workload of a brokerage firm. DBT-5 [186] is an open-source TPC-E implemen-
tation using PostgreSQL as the backend DBMS. DBT-5 initializes the brokerage
database with 5,000 customers, the scale factor to 500 and the number of initial
trade days to 200, and runs the TPC-E transactions for 1 hour. The collected
TPC-E trace is a largely random workload with very poor data locality. The
average disk read/write size is 8 KB, with 43% of the disk I/O requests being
writes and the rest being reads.

e CIFS Trace
The CIFS benchmark in SPECsfs 2008 is a synthetic workload simulating the
typical load on production-mode Windows file servers. In this workload, there
are 100 concurrent client processes and 1 server, and the number of sustained
CIFS operation ranges from 10 to 100 with 10 as the increment. The average
disk I/O request size for reads and writes in the resulting trace is 4 KB. 25% of
the disk I/O requests are writes and the remaining are reads.

e Exchange Trace
The Exchange trace is collected from a Windows Exchange 2003 server with
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Figure 5.2: Effectiveness of LFSM’s random write performance optimization under a se-
quential write and a random write workload when the disk write request size is varied. The
BMT is stored on disk.

a load generator called LoadGen [I84] developed by Microsoft Corporation.
LoadGen simulates the workload of a medium-sized corporation’s email server.
The load generator runs for 1 hour with 1,000 email accounts and 1 user group.
The average number of sustained tasks in each email is 132. The average disk
I/O request size for reads and writes is 16 KB and 4 KB, respectively. 99% of
the disk I/O requests are write requests and the remaining are read requests.

e TPC-E Workload
The TPC-E benchmark is the same as in TPC-E Trace but runs directly on top
of LFSM device. The scale factor is 100, the number of initial trade days is 200,
and the number of customers are varied in the evaluation.

e NFS Workload
The NFS benchmark in SPECsfs 2008 is similar to CIFS but targets Linux file
servers. The NFS benchmark has 10 concurrent client processes and 1 server,
and the number of sustained NFS operation ranges from 10 to 100 with 10 as
the increment.

5.3.2 Performance Results

To evaluate the effectiveness of LFSM’s random write performance optimization, we
feed the LFSM driver with a sequential write and a random write workload, and
measure the latency of each disk write request. In this experiment, the workload-
generating kernel thread issues a disk write request to LFSM, waits until the preceding
write is completed, then issues the next write, etc. The initial disk image is populated
with 90% utilization so that there are still free erasure units to accommodate incoming
disk write requests. The total size of each synthetic write workload set to 10% of
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the disk capacity so that LESM’s garbage collection mechanism is triggered in the
background. We perform several experiment runs, each corresponding to a different
disk write request size.

Under LESM, the latency of a logical block write operation is affected by (1) a
BMT look-up, which is translated to a flash disk read of a 512-byte sector, (2) a com-
pression step to create space for a BMT update log entry, (3) a sequential flash disk
write, and (4) possibly interference from LFSM’s background disk read /write activity.
Table shows the detailed breakdown of the average write latency under a random
and sequential write workload. The performance cost of the BMT lookup under the
sequential workload is 20 times lower than that under the random workload because
each BMT sector fetched can be used to service multiple BMT look-ups under the
sequential workload but only one BMT look-up under the random workload. The
performance impact of LESM’s background activity, i.e., garbage collection and com-
mit of pending BMT updates, is much higher under the random workload than under
the sequential workload for the following two reasons. First, the random workload
triggers more flash disk read accesses because it requires more on-disk BMT look-
ups. Second, lower locality in the random workload creates more demands for free
erasure units, and thus triggers more intensive garbage collection activities. Finally,
the more intensive competition for the disk I/O channel under the random workload
causes the flash disk write takes more time under the random workload than that
under the sequential workload.

Figure|5.2|shows the I/O rate of the test flash disk with and without LEFSM under
a sequential write and a random write workload. The effectiveness of LFSM’s random
write performance optimization is conclusively demonstrated by the fact that the I/O
rate improvement over the vanilla flash disk is a factor of 6.6 and 5.3 for 4-KB and
8-KB disk write requests, respectively. Under the sequential write workload, the I/O
rate of the test flash disk with LFSM is lower than that of the same flash disk without
LFSM, because of the additional steps of (1), (2) and (4). The I/O rate of LESM
under the sequential workload is higher than that under the random workload because
the average BMT look-up delay is much smaller under the sequential workload.

Figure shows the I/O rates of LFSM with on-disk BMT and LESM with in-
memory BMT running under a sequential write and a random write workload when
the disk write request size is varied. Having BMT completely in memory eliminates
the need to look up the on-disk BMT and committing pending BMT updates to the
disk. As a result, the I/O rate of LFSM with in-memory BMT under the sequential
workload is the same as that under the random workload. The I/O rate of LFSM with
in-memory BMT under the random workload is even better than that of LFSM with
on-disk BMT under the sequential workload because the former eliminates all BMT-
related overheads. The I/O rate of LFSM with on-disk BMT under the sequential
workload is still higher than that under the random workload, again because of the
better disk access locality in BMT look-up under the sequential workload.

LFSM needs to compress the first sector of every data unit when it is written,
and decompress the first sector of every data unit when it is read. The compression
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Figure 5.3: I/O rate comparison between LFSM with on-disk BMT and LFSM with in-
memory BMT under a sequential write and a random write workload when the disk write
request is varied.

Random Workload | Sequential Workload
Read Size (Unit: msec) (Unit: msec)

(Unit: KB) | In-Memory | On-Disk | In-Memory | On-Disk

BMT BMT BMT BMT

0.5 0.243 0.436 0.19 0.21

1 0.243 0.436 0.19 0.21

4 0.243 0.436 0.19 0.21

8 0.32 0.503 0.289 0.295

16 0.48 0.676 0.461 0.47

32 0.68 0.927 0.676 0.68

64 1.132 1.52 1.13 1.13

128 1.812 2.24 1.806 1.813

Table 5.2: The average read latency of LFSM with in-memory BMT and LFSM with
on- disk BMT under a random read and sequential read workload when the disk read
request size is varied.

Distribution of Compression
Workload Region (%)
1 2-5 | 6-8 Others
TPC-E 95.9 | 2 1 1.1
CIFS 95.8 1 1.8 | 0.9 1.5
Exchange | 93.7 | 5.2 | 0.7 0.4

Table 5.3: The distribution of compression region for all three workloads.
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Figure 5.4: The average write latency of LESM under three block-level traces as Tyee is
varied.

and decompression steps typically take about 0.1 msec and 0.01 msec, respectively.
Because LFSM introduces an additional overhead during a read in the form of BMT
look-up and decompression, the average read latency of LFSM with on-disk BMT is
higher than that of a vanilla flash disk without LFSM. This performance difference
becomes even more significant when the disk read request size is less than 4 KB,
because the current LESM prototype uses 4 KB as the minimum data unit for write,
and thus needs to fetch the entire 4-KB block even if a disk read request’s size is
smaller than 4KB.

For TPC-E, CIFS and Exchange workload, Table [5.3| shows the distribution of
the compression region. A compression region is defined as the minimal number of
first several sectors to squeeze out enough space to hold the metadata, or oo if the
payload is not compressible. For all three workloads, more than 93% of the write
payload can squeeze out enough space from the first sector, which shows that partial
compression is applicable for these three typical workloads.

Although the performance of flash disk read is largely unaffected by the locality
in the input workload, the read latency of LEFSM with on-disk BMT is worse under
a random read workload than under a sequential read workload, because locality
affects the BMT look-up delay. When the entire BMT is completely memory-resident,
the difference in read latency under the sequential and random workloads shrinks
substantially. However, even for LEFSM with in-memory BMT, its read latency under
the random workload is still slightly higher than that under the sequential workload,
because of the page-mode operation of flash memories, similar to mainstream DRAM
technologies.

5.3.3 Sensitivity Study

In this section we study the impact of three algorithm parameters in LFSM, the
update frequency threshold for determining if a logical block is hot or cold, T’pdate,
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Figure 5.5: The average write latency of LESM under the three block-level traces as Typdate
is varied.

the threshold percentage of a log’s blocks being free that triggers garbage collection for
both hot and cold logs, T¥,¢., and the total number of pending BMT updates allowed
in per-BMT-page queues, Lgyeue. In these experiments, BMT is stored on disk, and a
kernel-level I/O thread issues both read and write requests in the gathered block-level
traces to LESM one after another. The default values for T',pdate, Tfree and Lgyeqe are
2 updates per hour, 2% and 1000000, respectively.

Figure [5.4] shows the average write latency of LFSM under the three block-level
traces when T}, is varied. Larger Ty, triggers asynchronous garbage collection
more frequently so as to avoid synchronous garbage collection in the presence of a
burst of demands for free blocks. On the other hand, smaller 7%, reduces the amount
of live block copying when reclaiming an erasure unit and thus the garbage collector’s
load on the disk I/O channel, making it less likely to interfere with LESM’s main write
thread. If an input workload is not update-intensive, contention with the background
garbage collector may be less an issue. To determine the optimal T%,.. for each trace,
we first populated most of the disk image and then issued a series of reads and writes
that are guaranteed to trigger the background garbage collector.

The Exchange trace is write-intensive with 99% of its disk access being writes.
Because LFSM experiences a higher write request rate, the average write latency of
LFSM under the Exchange trace is higher than those under the other two traces. As a
result, the optimal T, turns out to be 40%. A similar reasoning holds for the TPC-
E trace. In contrast, because the CIFS trace has a small percentage of its requests
being writes and thus only exerts a less intensive write workload, the drawback of
larger T't,.. never comes into play. Consequently, the average write latency of LESM
keeps decreasing as T’,.. is increased to reclaim erasure units more frequently.

Figure 5.5 shows the average write latency of LFSM under the three block-
level traces as Tpdate is varied. The original idea behind LFSM’s garbage collection
algorithm is to use multiple cyclic FIFO logs, each reclaimed at a different frequency,
to approximate a single log that bases the reclamation order on the per-EU utilization.
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Figure 5.6: The average write latency of LFSM under the TPC-E and Exchange traces
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Figure 5.7: The improvement ratio for both the latency and the throughput under the
SPECsfs NFS workload.

However, it turns out that a logical block’s update frequency history is not a reliable
indicator of whether it is going to be hot in the near future or not because a logical
block could be used to hold parts of files with very different temperature in its life
time. Consequently, the average write latency of LFSM is largely unaffected by
Toupdate for all three block-level traces. This result suggests that more research on how
to accurately determine a logical block’s temperature is needed.

We chose the TPC-E and Exchange traces as input workloads to evaluate the
impact of the parameter Lgyueqe. We grouped disk access requests in this trace into
bursts of 32, introduced a 100-msec interval to ensure the pending BMT updates have
the required disk bandwidth resource to be committed to disk, and measured LESM’s
average write latency while varying Lgyeye. Larger Lgyeue increases LESM’s ability to
absorb bursts of write requests and aggregate more pending updates in each commit
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Figure 5.8: The ratio of physical writes over logical ones with varied HList length limit
for the TPC-E workload. Typgate = 10, and Tree = 20%.

operation, but also increases the average BMT look-up time associated with every
disk read and write under LFSM.

Figure shows that for the transformed TPC-E trace, larger Lgyeqe always
decreases LESM’s average write latency. A closer examination reveals that the reason
behind this is that the write requests in the TPC-E trace exhibit poor locality and as
a result the average number of pending entries in each per-BMT-page queue rarely
exceeds 10 in the whole experiment run. Consequently, increasing Lgyeqe has no
effect on the BMT look-up time but does successfully reduce the amount of disk
I/O resource needed in committing pending BMT updates to disk. However, for
the Exchange trace, the BMT look-up time is indeed slowed down when Lgyeye is
increased from 1 MB to 10 MB, because the average length of per-BMT-page queue
is increased from 50 when Lgyeqe is 1 MB to 150 when Lgyeqe is 10 MB.

Figure [5.8 shows that the ratio of physical writes over logical ones drops when
the length limit of HList increases, demonstrating the effectiveness of LPU-GC. This
is because larger length limit of HList allows more EUs to stabilize in HList and
reduce the overall number of I/Os to copy valid pages in GC. When the length limit
of HList is larger than 512, the ratio of physical writes over logical ones does not
change much. This phenomenon shows that increasing the length limit does not
always yields benefits because for a particular workload, the number of frequently
invalidated pages, Ny, is limited. Ideally, the length limit of HList should be equal
to NF[.

5.3.4 End-to-End Performance Evaluation

To gauge the end-to-end performance benefits of LFSM over vanilla flash disks, we
implemented LFSM as a Linux device driver. We chose the TPC-E benchmark and
the SPECsfs NFS benchmark because they can run under Linux. For the TPC-E
benchmark, we chose the number of customers to vary the input load. For the SPECsfs
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Figure 5.9: The improvement ratio for both the latency and the throughput under the
TPC-E workload.

NF'S benchmark, the target throughput can be set directly. For all experiment runs,
Tupdate = 10, Loyene = 1M B and Tpree = 20%. As a default, the proactive garbage
collection is enabled.

Figure 5.9 shows that the average transaction latency improvement of Trade-
Update transactions in the TPC-E benchmark generally increases with the input load,
because, as the input load is increased, longer disk write latency of vanilla flash disk
increases the lock waiting time and thus aggravates the transaction latency. The
improvement in transaction latency ranges from a factor of 2.7 to a factor of 7.1.
When the number of customers is 2000, LESM completes a physical 4KB write in
0.9 msec on average. In contrast, it takes the vanilla flash disk 11 msec, or more
than 10 times as long, to complete a physical 4KB write. However, as also shown
in Figure 5.9, reduction in transaction latency does not translate into transaction
throughput improvement when the input load is not latency-bound. When the num-
ber of customers in the TPC-E benchmark is no more than 10000, the input load
is not latency-bound. Unfortunately our current testbed does not have enough flash
disk capacity to allow us to perform experiments for when the number of customer is
greater than 10000. Figure[5.7|shows a similar trend of latency improvement for NFS
operations in the SPECsfs NFS benchmark to the transaction latency improvement
in the TPC-E benchmark, and the underlying cause is the same: shorter disk write
latency in LFSM than in vanilla flash disk. For the input load of 150 NF'S operations
per second, the average disk write latency of vanilla flash disk is 6.8 times larger than
that of LESM. Disk reads have little impact on the NFS operation latency, because
the difference in disk read latency between LFSM and vanilla flash disk is within
10%. For the same reason as in the TPC-E benchmark, there is also no apparent
throughput improvement for the NF'S benchmark despite the significant reduction in
average operation latency.

Table suggests that under the truly random write workload, LESM’s back-
ground activities including garbage collection and BMT updates commit, can have
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Figure 5.10: The performance overhead due to proactive garbage collection for the SPECsfs
NFS workload.

a significant impact on the average write latency. To gauge the performance impact
of garbage collection under a more realistic workload, we ran the NFS benchmark
twice, once with garbage collection turned on and the other turned off. Figure |5.10
and Figure show that the percentage differences in NFS operation latency and
in TPC-E transaction latency due to background garbage collection increase with
the input load, because larger input load exerts higher storage consumption pressure,
which requires more frequent garbage collection. The latency impact of background
garbage collection on the NFS operations and TPC-E transactions is no more than
16% and 15%, respectively, which are noticeable but not dominant.

5.3.5 Effectiveness of BOSC

In this subsection, we show the evaluation results of LEFSM with BOSC and other
alternatives using the random write workload. We employ three other alternatives
to compare with BOSC. The first alternative, In-Mem, replaces the on-disk BMT in
BOSC with a memory-resident BMT while the metadata logging and data logging are
the same. The second alternative, LRU-On-Disk, is to employ an on-disk array with
the traditional LRU memory cache. The third alternative, One-Queue, is similar
to BOSC with a global queue instead of per-page queues. The One-Queue-Trail
alternative employs a global queue to hold metadata updates. At the commit time, the
first N queue items are ordered based on their target EU address, and the metadata
commit follows this order. For the 32 GB raw flash capacity, we use 31 GB to log
data payload, the BMT takes 62 MB because each mapping entry in BMT takes 8
bytes, the remaining space is used to hold metadata logging. The buffer memory is
fixed as 512 KB. For BOSC and the One-Queue alternative, the 512-KB memory holds
the metadata queuing items. For the LRU-On-Disk alternative, the 512-KB memory
holds 512-byte sectors containing the metadata updates. The In-Mem alternative
does not use buffer memory as it does not have on-disk counterpart. Instead, the
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Figure 5.11: The performance overhead due to proactive garbage collection for the TPC-E
workload.

In-Mem alternative consumes 62 MB to store the BMT in RAM. For the One-Queue
alternative, the first 1000 metadata updates are ordered to commit metadata updates
to the on-disk BMT.

To measure the latency of LFSM, we use a kernel thread to constantly generate
new 4KB page writes, each of which follows the three-step procedure for writes in
LFSM. The LBN of each new page write is randomly generated and is uniformly
distributed in [1,7750000]. In the run, there are totally 16 GB worth of new page
writes logged and 32 MB (16G B3 ) worth of index records inserted. To demonstrate
the tradeoff between the space overhead and the latency, we varied the metadata log
size across experiments.

Figure [5.12] shows the average end-to-end latency of random writes with varied
metadata log size for BOSC, the In-Mem alternative, the One-Queue alternative and
the LRU-On-Disk alternative. Each bar contain 4 components, the striped component
is the time spent on data logging, the gray component is the time to log metadata,
the white component is the time spent on critical commit, and the black component
is the time delay due to other background house-keeping tasks (e.g., metadata update
and garbage collection).

The In-Mem alternative is not used in practice because BMT is persistently
stored. The In-Mem alternative is only used to show the minimal latency when both
metadata logging and data logging are turned on. For all metadata log sizes, the In-
Mem alternative has the same latency, 1.0 msec. In this 1.0 msec latency, 0.45 msec
latency is spent on the metadata logging as the grayed portion of the bar showed,
and 0.55 msec latency is spent on the data payload logging as the white portion of
the bar showed.

Different from the In-Mem alternative, the latency for BOSC increases as the
metadata log size decreases because the critical commit takes longer for smaller meta-
data log sizes. The dark portion of the bar shows time spent on the critical commit.
When the metadata log size reaches 512 MB, the latency of BOSC reaches 1.05 msec,
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Figure 5.12: The end-to-end latency breakdown of random 4 KB writes with varied meta-
data log size under the In-Mem metadata update alternative, BOSC, the One-Queue meta-
data update alternative, and the LRU-On-Disk metadata update alternative. The queuing
memory is 512 KB, each metadata is worth of 8 bytes, 31 GB out of 32 GB is reserved for
logging data payload from the Flash disk.

which is 5% larger than that of the In-Mem alternative, which indicates that BOSC
can eliminate the performance bottleneck due to metadata updating when the meta-
data log size is 1.6% (512 MB/32 GB) of the overall capacity.

In comparison, the latency for the One-Queue alternative is at least 50% (512
MB metadata log) larger than that of the In-Mem alternative for all metadata sizes
because the One-Queue alternative does not commit metadata updates in the same
EU in one batch and has a larger probability of being blocked by the critical commit.
In particular, when the metadata log size, is 256 MB, the latency for the One-Queue
alternative is 50% larger than that for BOSC.

The latency for the LRU-On-Disk alternative does not change with the metadata
log size because updates to the on-disk BMT is random. On average, 1100 updates
can be cached in the sector-based memory cache. When the cache is full, the oldest
section is evicted from the cache. From the perspective of the on-disk BMT, the
metadata updates are random. As a result, regardless of the metadata log size, the

latency is 10.5 msec, which is the latency for random sector writes for the Samsung
SATA SSD.
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Chapter 6

Scalable and Parallel
Segment-based De-duplication for
Incremental Backups

This chapter is organized as below. Section describes the motivation of
scalable de-duplication based on the incremental backups. In section [6.2] we propose
our scalable and parallel segment-based de-duplication techniques for incremental
backups. Section verifies design decisions based on the analysis of a collected
trace.

6.1 Background and Motivation

As data redundancy grows in storage systems [I87], data de-duplication function-
ality becomes more and more prevailing in storage systems. Depending on whether
the storage system serves live storage requests, data de-duplication can be either a
feature in primary storage systems [I53HI55], also known as online storage systems,
or a feature in secondary storage system, also known as nearline storage systems.
However, de-duplication in these two storage systems have different focuses. For the
primary storage systems, de-duplication focuses more on the data consistency and
performance overhead. In contrast, for the secondary storage systems, de-duplication
focuses more on the de-duplication throughput and de-duplication quality due to the
huge amount of input data for data de-duplication. In this technical report, we focus
on de-duplication for the secondary storage systems because metadata management
in data de-duplication of secondary storage systems plays a critical role in achieving
good de-duplication throughput and quality.

Depending on the de-duplication object types, there exist two categories of data
de-duplication techniques. The first type of data de-duplication takes a file as the
basic object to de-duplicate, also known as file-level de-duplication. The second type
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of data de-duplication takes a logical volume as the basic object to de-duplicate,
also known as block-level de-duplication. The file-level de-duplication can leverage
the file-level information to optimize the de-duplication algorithm [I59]. However,
file-level de-duplication either de-duplicate files directly the file system [I53, [154] or
de-duplicate files at the block level [I59]. In contrast, block-level de-duplication takes
blocks from a logical volume as the de-duplication input without the knowledge of files
and file system. Therefore, block-level de-duplication can be transparent to storage
systems employing the de-duplication functionality, which is critical for the successful
deployment of the de-duplication functionality. The Data Domain de-duplication
appliance [27] is an excellent example of the block-level de-duplication.

De-duplication techniques can be categorized into full backups and incremental
backups based on the characteristics of the de-duplication input. For full backup
systems, at the backup time, on one hand, the backup client prepares the fingerprint
values of all data blocks of the backup snapshot, transmits all fingerprint values,
waits for the backup server to figure out which data blocks are newly created, and
only transmits all newly data payload. On the other hand, the backup server receives
all fingerprint values, compares fingerprint values to the fingerprint index, and finally
returns the new fingerprint values to the backup client. Because all data block finger-
print values are compared in the fingerprint index and most of blocks are not changed
across snapshots, the de-duplication ratio is touted to be up to 100 for these data
de-duplication systems.

Block change tracking (BCT) [188, [189] at the backup client side is the basis
for incremental backups, and it changes the interaction between the backup client
and the backup server in full backup systems [27]. Instead of blindly transmitting
all fingerprint values of all data blocks from the backup client to the backup server,
we can reduce the number of processed fingerprint values and achieve a more realis-
tic de-duplication ratio by transmitting fingerprint values of changed blocks. More
concretely, a de-duplication agent resides at the backup client side to collect changed
blocks during the run time by employing block change tracking (BCT) mechanism.
At the backup time, the agent prepares the fingerprint values of only changed blocks,
and asks the backup server to figure out the new data blocks by checking the finger-
print index. We base our research on the block change tracking at the backup client
for data de-duplication. Design details of block change tracking are in section [6.2.9]

The increase of the fingerprint index size poses a performance challenge for data
de-duplication systems. If the full fingerprint index can not fit into the main memory,
a query of the fingerprint index is very likely to trigger a disk I/O, which is prohibitive
in data de-duplication. There exist two alternatives in mitigating the problem. The
first approach [27], the data-domain approach, employs the locality-preserved caching
to amortize the I/O cost of fetching a fingerprint by loading into the cache fingerprints
of proximal data blocks. The fingerprints of proximal data blocks are organized into a
fingerprint container. The assumption is that if a block is queried for de-duplication,
the neighbouring blocks are very likely to be checked for de-duplication, which is true
for de-duplication based on the full backup. However, the assumption does not hold
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for de-duplication based on the block change tracking because fingerprints of proximal
data blocks may not be used by the input changed blocks. If many proximal data
blocks’ fingerprints are not used in the data de-duplication, the caching efficiency
decreases and the amortized cost of querying a fingerprint index increases. For BCT-
based de-duplication, we propose to use file instead of proximal data blocks as the
basic unit of de-duplication for two reasons. First, the file-based fingerprint container
is resistant to the intra-file fragmentation. That is, a continuous physical block range
may contain blocks for two different files, because changed blocks belong to one file, it
is a waste of caching memory to load fingerprints of all physical blocks in the range.
Second, we can selectively load fingerprints of related file portions into the cache
based on the file-level information. For example, if the input changed blocks of a file
has a fixed length, we can load fingerprints of the corresponding file portion with the
same length into the cache instead of blindly loading the whole file’s fingerprints into
the cache. Regardless of the caching strategy, a de-duplication query can trigger two
disk I/Os, the first one to fetch the fingerprint from the disk, the second one to load
the corresponding fingerprint container into the cache.

The second approach [28], denoted as the sparse-index approach, reduces the 1/O
overhead by sampling the fingerprint index until it fits into main memory so that a
query of the fingerprint index does not involve disk I/Os. Similar to the data-domain
approach, the sparse-index approach relies heavily on the caching efficiency of the
fingerprint containers to amortize the I/O cost in comparing the input fingerprints
with the stored fingerprints. Fingerprints are organized based on the sequence of
physical data blocks, not a file. Each sequence of physical data blocks is sampled with
the same sampling rate regardless the de-duplication history of each sequence. When
the input consists merely changed blocks, those sequence of physical data blocks that
are not source of duplicates will consume too much memory, and potentially reduce
the de-duplication quality. We propose the file-based varying-frequency sampling
method to vary the sampling rate based on the file’s de-duplication history. The
hypothesis is that a file portion or a file is more likely to be the source of duplicate
after it is first detected as a duplicate. For those file portions or files that are not
detected as duplicates over time, we can reduce their sampling rate because they are
not likely to be the source of duplicate.

State-of-Art data de-duplication techniques focus on the full backups, where all
logical blocks of a logical volume are de-duplicated with existing stored blocks even
if only a small portion of all logical blocks have changed since last backup. These
data de-duplication techniques [27, 28] may work with incremental backups, but do
not optimize for incremental backups.

We explore new opportunities, challenges and solutions of data de-duplication for
incremental backups when the primary storage system can incrementally track written
blocks and only backup these written blocks. In concrete, we assume that the primary
storage system can track written blocks in a snapshot image since last snapshot. These
written blocks are referred as incremental changed blocks. At run time, incremental
written blocks are tracked by block change tracking (BCT) mechanism. At backup
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time, these incremental written blocks are taken as input to the de-duplication system.

We propose four novel techniques to improve the de-duplication throughput with
minimal impact on Data De-duplication Ratio (DDR) when incremental changed
blocks are the input:

1. Containers are constructed based on the history of de-duplication instead of pure
logical address proximity. For incremental changes as the input, the semantics
of data locality is more subtle because it is hard to predict what could appear
in the incremental change stream. We propose to put all incremental changes
that share content with each other into the same container to capture the data
locality due to changes by the same set of applications.

2. Sampling rates of segments are differentiated by having a fixed sampling rate for
stable segments and by assigning a variable sampling rate for unstable targets of
de-duplication when fitting fingerprints into RAM. A stable segment is defined
as a segment that does not change over de-duplication history. The intuition
behind the stable segment is that hosts tend to share an unchanged object
larger than a block. By observing the history of data de-duplication, we can
pin-point the stable segment and use 1 fingerprint out of the stable segment to
represent the segment in the fingerprint index. We adopt a LRU policy to vary
the sampling rate of all other “unpopular segments in the sampled fingerprint
index.

3. Per-segment summary structure can be leveraged to avoid unnecessary 1/0s
involved in de-duplication. For those segments with large sizes that rarely
change, it is not necessary to compare individual fingerprints in a segment one
by one, and therefore reduces the disk I/Os to fetch individual fingerprints from
disks.

4. For distributed storage systems, we can distribute the de-duplication function-
ality to multiple participating storage nodes. Fingerprint index and containers
are distributed and split to participating storage nodes based on the consistent
hashing of the fingerprint. Also, the summary structure is also distributed and
split to participating storage nodes based on the consistent hashing of the root
summary.

The resultant full-fledged de-duplication system is denoted as distributed de-
duplication system (D-Dedup). In this technical report, we focus on the design deci-
sions employed in D-Dedup. The full-fledged implementation and evaluation will not
be covered in this technical report.

6.2 Design
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In this section, we first present the high-level data flow for the proposed de-
duplication architecture in subsection[6.2.1] then elaborate on three novel de-duplication
techniques for the standalone version of D-Dedup in subsection[6.2.2][6.2.4], [6.2.3],[6.2.5]
and [6.2.6] In subsection [6.2.7], we propose a scalable garbage collection methods in a
secondary storage system with the de-duplication functionality. In subsection [6.2.8]
we describe ways to distribute de-duplication functionality to multiple slave nodes,
and present the detailed architecture and design of the full-fledged D-Dedup.

6.2.1 Data Flow for De-duplication

Before we delve into the details of de-duplication, figure shows the high-level
data flow in D-Dedup. This figure omits the parallel portion of D-Dedup, which can
be found in subsection [6.2.8

Incremental changes of a backup logical volume are first partitioned as segments,
and related details can be found in subsection [6.2.2] Basically a segment is a group of
blocks that are adjacent with each other. The memory-resident Sampled Fingerprint
Index (SFI) contains pivot (sampled) fingerprints that point to the corresponding
containers that the pivot fingerprints are from. The memory-resident Segment-based
Summary consists of summary fingerprints of segments that are larger than a thresh-
old, Tsymmary- The memory-resident Container Cache Store is a cache of containers
organized in an LRU order. The on-disk container store holds all containers, and the
on-disk fingerprint index holds fingerprints that are evicted from the memory-resident
SFI, but not contains fingerprints that are not sampled in the memory-resident SFI.

Each input segment queries SFI by issuing fingerprint query for each individual
fingerprint in the segment. The query of each individual fingerprint returns with
a (containerID, segmentI D) pair. Query results of fingerprints within the same
segment are analysed to find out if there is only one store segment corresponding to
the input segment. If yes, the input segment queries the In-Memory Segment-based
Summary with (containerI D, segmentI D) to find if the container needs to be fetched
in. Otherwise, containerID is used to query the In-Memory Container Store Cache to
see if the container is cached. If the container is not cached, the container is loaded
from the on-disk container store. At the same time, some containers cached in the
Container Store Cache are evicted from the cache to leave space for the newly fetched
container.

After the container is loaded, each input segment queries the per-container index
to find the offset of a fingerprint routed to this container. The offset can be used to
retrieve physical locations of the block because fingerprints are stored as an array in
the container. By querying the segment index using the offset, we can retrieve the
segment information of that particular fingerprint.

The output of the data flow is physical locations of logical block addresses in the
input segment if there exist duplicates. In concrete, a Change List of the Logical-To-
Physical (L2P-CL) map of the backup logical volume is generated as the output.
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Figure 6.1: Data flow of the standalone data de-duplication.

6.2.2 Segment Identification

Segment is the basic unit in D-Dedup, and is determined by both the current input
and the input history. In concrete, if several blocks are contiguous in incremental
changes, these blocks belong to the same nput segment. The input segment is then
compared with stored segments to form the store segment. When the input segment
and stored segment conflicts with each other, each fingerprint can belong to up to K
segments. If there are more than K segments for a fingerprint, the oldest segment is
removed from the fingerprint.

In D-Dedup, we allow up to K segments for each block. That is, we keep track
of the last K segments that ever associated with a block. We employ a segment index
(SI) to keep track of the mapping between the logical block address range and the
segment in the following discussion. An interval tree can be employed to map offset
intervals to corresponding segments. Because intervals in the interval tree do not
interleave with each other, the interval tree can be a B tree keyed by the start offset
of each interval.

When a new store segment is created, a globally unique segment identifier is
created. Each segment identifier is 64-bit, which means that there can be 264 segments.
Empirically each segment is more than one 4K bytes, the segment identifier range is
large enough to ensure uniqueness.

As the segment evolves over time, it is likely a segment can container disjoint
offset intervals. For example, if 4 leading fingerprints in the input segment (1, 6)
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matches the store segment (8,11), but the remaining 2 fingerprints are new. The
remaining fingerprints are appended to the end of the container. If the original
container size is 16, the remaining 2 fingerprints correspond to the offset interval (16,
17). As a result, the input segment contains two offset pairs, (8, 11) and (16, 17).
To keeps track of the mapping from the identifier to multiple offset intervals, each
identifier maps to a list of offset intervals. The mapping from the segment identifier
to the offset intervals is part of SI.

When the input segment has a length larger than a threshold, Usegment, the input
segment is chopped into multiple sub input segments so that each sub input segment
has a size smaller than or equal to Usegmens. In another word, we enforce an upper
bound on the size of the input segment.

Figure shows an example of how store segments evolve when K = 2. Num-
bers in the rectangle represents fingerprint values. Logical block numbers of the input
segment are marked below the rectangle. Numbers under the store segment represent
the fingerprint offset in the container. As Input-1, there are two input segments, seg-
ment (a) and segment (b). After de-duplication, segment (a) is found to be duplicate
of stored segment (1), but segment (b) is found to span two stored segments (segment
(2) and segment (3) ). The stored segment (1) and input segment (a) are the same so
there is no change to the stored segment. In contrast, fingerprints 0x3f and 0x6d map
to two segments: segment (2) and segment (b), while fingerprints 0x5¢ and 0x86 map
to two other segments: segment (3) and segment (b). Input segment (c) matches fin-
gerprints with offset from 51 to 55, but two remaining fingerprints (0xf7 and 0x8d) do
not match any stored fingerprints. Because only 2 segments per fingerprint is allowed,
segment (2) is removed for fingerprints 0x3f and 0x6d, and segment (3) is removed
from fingerprints Ox5c and 0x86. After the removal, fingerprints with offset from 52
to 55 map to two segments, segment (b) and segment (c¢). Two new fingerprints, 0x{7
and 0x8d, are appended to the container for segment (c). Segment (c) maps to two
offset intervals, 52 to 55, and 58 to 59, respectively.

A stable segment is defined as a store segment that does not get modified after
its creation. For a stable segment, because all fingerprints in it appear all at once,
1 fingerprint is enough to represent the corresponding stable segment. However, in
practice, it is hard to ensure a segment is stable because the segment can change any
time in the future. To avoid confusion, we define a basic sharing unit (BSU) as a
store segment that is referred to by more than Tgsy. The set of BSUs is a superset
of stable segments. In our design, BSU is an approximation of the stable segment.
We will use BSU instead of the stable segment onwards.

6.2.3 Variable-Frequency Sampled Fingerprint Index

In this subsection, we describe segment-based Variable-Frequency Sampled Finger-
print Index(VFSFI). Because fingerprint index cannot fit into RAM, we advocate the
idea of sampling fingerprints to fit the fingerprint index into a fingerprint index cache.
The sampling is based on characteristics of individual segments.
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Figure 6.2: An example of segment identification.

The fingerprint index cache is implemented as a hash table. Each entry in the

fingerprint index cache is keyed by the fingerprint value, and the entry contains one
container 1D, and up to K (e.g., K = 2) segment IDs in the specified container if
multiple segments share the same fingerprint. Note that this K is the same K as
mentioned in subsection [6.2.2]

There are 2 ways in varying the sampling rate of segments:

1. For segments that are BSUs, the first out of all fingerprints in a BSU is sampled
to represent the BSU. Note that the sampling does not hurt the de-duplication
ratio because fingerprints in a BSU always appear in one shot. However, the
de-duplication throughput can be improved due to the saving of the memory
space.

. When the memory is out of RAM space, instead of reducing the sampling rate of
all segments, those segments that are not referenced for a long time reduce their
sampling rates before being evicted when the sampling rate reaches the minimal
value. An LRU list is used for this purpose. In particular, BSU segments have
a virtual sampling rate, which is the same as the sampling rate for a regular
segment. The virtual sampling rate is reduced when BSU reaches the end of
the LRU list.

For the reduction of sampling rates, each store segment is initially assigned an

initial sampling rate. For example, if the initial sampling rate is 1/16 (N = 16 in Step
38), the first fingerprint of each 16 fingerprints is sampled into the global SFI. When
the store segment reaches the tail of SFI's LRU list, the sampling rate is reduced
to 1/32 (half) is there are more than 1 sampled fingerprint for the segment. If the
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Figure 6.3: The structure of the segment-based container.

number of sampled fingerprints for the store segment is larger than 0, the segment is
re-inserted to the LRU list to be at the end of segments of that date. For example,
if initially the LRU list is ((Sy, D2), (S5, D1), (S2, D1), (S1, D1)), where S; is the ith
segment and D; is the jth access date. Note that three segments at the LRU tail has
the same access date. After the sampling rate of S; is reduced to half, the updated
LRU list is ((Sy, D2), (S1, D1)(Ss, D1), (S2, D1)), where S; moves to the head of the
three segments (Ss, S2,S1) with the same access date D;. Otherwise, the segment is
removed from the LRU list.

6.2.4 Segment-based Container

Container is meant to group fingerprints with data locality to amortize the 1/O cost
in loading a container. For incremental backups, data locality is different from that
in full backups. D-Dedup correlated segments based on de-duplication history. Ini-
tially, logical block addresses from different logical volumes comprise a unified pseudo
logical block address by combining logical volume id with the logical block address.
For example, for logical block address 300 in logical volume 1, the pseudo logical
block address is (1, 300). To accommodate future updates for the container, each
container is initially half full. As the de-duplication history data accumulates over
time, segments sharing at least a single fingerprint with a store segment are put in to
the same container as the store segment.

Figure [6.3| shows the content of each container. The per-container fingerprint
index (FI) organizes the fingerprints of the same container into a hash table to enable
the lookup of fingerprint values in the container. The result of a fingerprint lookup
is the fingerprint’s offset in container’s fingerprint array. SI maps in-container offset
intervals of fingerprints to segments, and vice versa. Each fingerprint can associate
with up to K (e.g., K = 2) segments. The intuition is that (1) the latest K segments
are the ones most likely to be the basic sharing unit in the future if there is any
basic sharing, and (2) it is very unlikely that two segments accidentally share a few
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intermittent fingerprints but not a whole segment. Note that this K is the same as
the limit mentioned in subsection [6.2.2]

Each segment can have multiple offset intervals, in theory, the number of offset
intervals can reach as large as the number of fingerprints in the segment (i.e., Usegment )-
However, more than 90% segments have only one offset interval. Figure shows the
distribution of the number of offset intervals of segments extracted from the collected
trace which will be discussed in details in section 6.4

As described above, the relationship of segments in a container can be catego-
rized into two categories: (1) two segments are within the same pseudo logical block
address range; (2) two segments share fingerprints. If we does not store segment in-
formation, fingerprints of these two segments could be placed in the container based
on the LRU order. However, because we have the notion of segments, we need to
distinguish between these two types.

For segments of type (1), each segment is not further processed and is directly
kept in the container. For segments of type (2), segments may need to be split based
on the history because each fingerprint can only have up to K (e.g., K = 2) segments.
If a fingerprint points to more than K segments as a result of the inter-segment
fingerprint sharing, the oldest segment is removed before the new segment is added.

A segment with a larger size than Tmmaery has a summary fingerprint so that
all summary structures can fit into RAM. All per-segment structures are put into the
summary structures. Each entry in the summary structure is keyed by the segment
ID, and its content consists of the summary fingerprint of the corresponding segment.

Each backup logical volume is a de-duplication stream. Each de-duplication
stream has an open container, which accommodates new fingerprints until full. Other
than the per-stream open container, any container can accommodate new fingerprints
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if one segment in the container shares fingerprints with the input segment. For
example, if a input segment segment; consists of three fingerprints (Oxab, Oxdc, 0x12),
and a container ' has the first two fingerprints but not the third one. segment; is
added to C due to the match of the first two fingerprints, and the third fingerprint
0x12 is added to C}.

The container’s size has an upper bound, denoted as U.ontainer- A container splits
when the container size exceeds U.ontainer- A LRU list of segments is maintained
for each container so that the container splits based on the access history. Each
LRU entry represents a segment, and the LRU list is updated when the segment is
referenced for de-duplication.

In summary, a new container is created when (1) the per-stream open container
is full, or (2) when a container needs to be split. When a new container is created,
a 64-bit container identifier is created for the new container. Similar to the segment
identifier, a container identifier is 64-bit to ensure its global uniqueness.

6.2.5 Segment-based Summary

A segment that is larger than a threshold, Tsymmary, has a summary fingerprint. The
summary fingerprint is computed by taking Tsymmary fingerprints as the data content
and computing a fingerprint for the content. The property of the summary fingerprint
is that a change in one of Tyymmary fingerprints can change the summary fingerprint
dramatically. As a result, if the summary fingerprints of two segments agree with each
other, the probability that these two segments are different is diminishingly small. In
another word, if the summary fingerprints match, two segments are identical.

The segment-based summary index can fit into memory with a proper selection
of Tsummary- Each index entry is keyed by the (containerl D, segmentID) pair. The
content is the summary fingerprint, the segment length. As mentioned in subsec-
tion [6.2.1] after querying the fingerprint index cache, a containerID and up to K
segmentIDs are retrieved. The resulting (containerID, segmentI D) pair (s) is used
to query the segment-based summary index to find out the corresponding segment,
and the summary fingerprint of the resulting segment is compared with the sum-
mary fingerprint of the stored segment. To reduce the memory consumption due to
the segment-based summary index, not all physical blocks in the segment are stored
individually. Instead, the physical block ranges are stored to reduce the memory
consumption.

For segments that are hit in the segment-based summary index, the information
of physical blocks comprising the segment is cached. The physical blocks need to
be stored because if the summary fingerprint matches, there is no need to fetch the
container and these physical blocks serve as the target physical blocks for data de-
duplication output.
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Figure 6.5: The algorithm of a standalone de-duplication system.
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6.2.6 Put Them Together for Stand-alone De-duplication

Detailed algorithm of a stand-alone de-duplication can be found in Fig which
combines the segment identification, variable sampling rates and the use of segment
summary structures.

At backup time, there are three pieces of input as shown in Step 00. Namely,
the incremental changed blocks, the fingerprints of incremental changed blocks.

The first piece of input consists of incremental changed blocks. In concrete, the
change list (CL) of the current backup image contains blocks changed in the current
backup image since last backup. The before-image list (BIL) includes the previous
version of the first overwrite in the current backup image for each overwritten block.
BIL is used for garbage collection as described in details in [6.2.7]

Fingerprints of incremental changed block compose the second piece of input. A
fingerprint must have low collision rate because two blocks are regarded as identical
if their fingerprints are the same in data de-duplication systems [27], 2§]. It can be
a cryptographic hash value (e.g., MD5 hash or SHA-family hash), or a hash value
computed using Rabin’s algorithm [190]. For Rabin’s algorithm, the probability of

max (|r],|s|)
w—1

two strings r and s yielding the same w-bit fingerprint does not exceed — =,

where |r| denotes the length of r in bits.

The mapping entries of each block from logical block address to physical block
address of each logical volume in the form of (L;, P;) are the third piece of input.
After de-duplication, if a block (L,, P,) is a duplicate of previous stored block with a
physical block number P, , P, can be safely disposed for garbage collection, and an
updated entry (L,, P,) is inserted into the L2P-CL. The output of the de-duplication
is a collection of L2P-CLs for all logical volumes that are de-duplicated.

Initially (Step 01), adjacent blocks are grouped into the same segment. When the
segment size exceeds a threshold, Usegment, @ new segment is created to accommodate
remaining blocks. These segments are regarded as input segments. In contrast, the
to-be-stored segment is regarded as store segment.

For each input segment, all fingerprints in the input segment are used to query
the global SFI (Step 03). If there is no hit in the global SFI, the input segment is
regarded as having no stored duplicate. A new store segment is created, where the
segment identifier is a globally unique 64-bit value.

The root cause of the miss can vary. It can be that the input segment has
no stored duplicate fingerprint, it can also be that SFI does not choose duplicate
fingerprints in the input segment as pivot fingerprints. The input segment has to
been appended to the per-stream open container. The store segment is the input
segment (Step 07). If the per-stream open container is full, a new per-stream open
container is created to accommodate new fingerprints from the input segment (Step
06). A new container identifier is created for the new container. The store segment
is further processed in step 23.

If there is any hit in SFI (Step 04), the number of containers the pivot fingerprints
point to is checked (Step 08). If there are multiple containers, which means the
input segment spans multiple containers, all containers are loaded into the container
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cache for de-duplication purpose, but updates are only applied to the first container,
including added fingerprints, updated SI and updated per-container LRU list (Step
09). The intuition to store the input segment into one single container is that the
input segment reflects the latest status of data locality among data blocks.

In Step 10, the length of the input segment is checked to find out if a summary
fingerprint needs to be computed. If so, the summary fingerprint is computed, and
the summary fingerprint is is used to query the summary fingerprint index keyed
by the summary fingerprint (Step 11). If the summary fingerprint query has a hit,
the physical address information of the hit segment is retrieved from the summary
segment cache (Step 13). If the physical address information is cached in the summary
segment cache, the physical block information is added to L2P-CL (Step 15). And
the matched segment is updated to SFI’s segment-based LRU list for replacement
purpose (Step 16). At this time, the processing of the input segment is done.

If the summary fingerprint index or the summary segment cache is not hit, the
corresponding containers need to be accessed (Step 17). If the containers are not
cached in the container cache, containers are loaded into the container cache, which
can lead to eviction of old containers in the container cache following the LRU order
(Step 18). When all involved containers are in the cache, if in step 14 there is no hit
in the summary segment cache, the physical address information is extracted from
the cached containers and updated to the summary segment cache (Step 19 & 20).

In Step 21, each fingerprint in the input segment is used to query the per-
container FI to determined if there are any further match except those pivot finger-
prints in SFI. The matched fingerprints may scatter in multiple offset intervals (OI),
denoted as 0ld-OI(s), and all non-matched fingerprints compose a new offset interval,
denoted as new-OI. Old-OI(s) and new-OI are the offset intervals for the store seg-
ment, which is the same as the input segment (Step 22). If the store segment has a
size larger than Tsymmary, the summary segment index is updated with the new store
segment’s summary fingerprint (Step 24). The store segment and its Ols are updated
to the per-container SI as shown in Step 25.

To enforce the limit of segments a fingerprint can have, in Step 26, the algorithm
checks old-OI(s) of the store segment. In Step 27&28, for each OI in 0ld-OI(s), if the
number of segments exceed K, the oldest segment S,;; is removed from the OI, and
Ol is removed from S,;4, respectively. If S,4 is empty after the removal of OI, S,y
is removed from per-container SI. Otherwise, the updated S, is updated to the
per-container SI.

If there is new OI, new fingerprints in new OI are appended to the container, and
mapping entries of those matched fingerprints are inserted to L2P-CL (Step 30). If
the container size in terms of fingerprints exceeds a threshold, U.optainer, the container
splits based on the per-container LRU list (Step 32). In Step 33, the per-container
segment-based LRU list is updated with the store segment. In Step 34, the store
segment is also updated to the LRU list of the global SFI.

From Step 35 to 38, the reference count of the store segment is checked to detect
a BSU and adjust the sampling rate of the store segment accordingly. From Step 39
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and 42, memory space in SFI is spared by reducing the sampling rates of segments
at the tail of SFI's segment-based LRU list if SFT reaches its memory limit.

The adjustment of the sampling rates executes until enough memory is spared to
accommodate sampled fingerprints from the new store segment. Step 42 describes the
way to traverse sampled fingerprints of a segment in the global SFI. Due the memory
size limit, there is no separate global data structure to map a segment to its sampled
fingerprints. Instead, each sampled fingerprint can point to up to K segments in its
content. By traversing from the first sampled fingerprint, which is stored in SFI’s
LRU list, all sampled fingerprints of the same segment can be visited. Note that
a sampled fingerprint A is removed from the global SFI if and only if all segments
containing A do not include A in their sampling set.

After enough space is reserved for sampled fingerprints for store segments, sam-
pled fingerprints of the store segment is inserted to SFI (Step 43). At this pointer,
the processing of the input segment is finished.

During the processing of the input segments, in Step 44, container updates are
committed to disk using BOSC. In Step 45, the L2P-CLs are committed to on-disk
L2P maps using BOSC. Details of updates through BOSC can be found in

6.2.7 Garbage Collection (GC)

In this subsection, we discuss several traditional garbage collection techniques used in
the backup server and proposes a new technique to speed up the garbage collection.
Garbage collection is an indispensable component for backup server because some
data blocks need to be reclaimed based on the backup retention policies. A data block
belonging to expired backup images should be freed if the data block is not shared
by other backup images to accommodate new data payload for the future backup
image. Finding out such data blocks is the core issue of the garbage collection, and
we discuss several approaches below.

Stand-alone Garbage Collection

In the following discussion, each backup image is associated with a logical-to-physical
(L2P) map which maps all logical block numbers to physical block numbers holding
data for that backup image. The garbage collection tracks the information (i.e.,
counter or expiration time ) of each physical block with a physical block array(P-
array).

We denote the newly created backup image as the current backup image, and
the previous backup image as the old backup image in the following discussion. To
continue with the discussion, we use an example configuration of the backup server
to compare different garbage collection techniques as below. There exist 128 32-TB
backup images, 1 PB physical storage scattered over 64 nodes, 32-byte entry for
each logical-to-physical mapping, 100 MB/s sequential bandwidth on each node, 5%
incremental change from backup to backup, 4 logical volumes, and 8-KB block size.
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Each 8-KB block access takes 5 msec on average, and a cached 8-KB block on average
serves 16 access in cache.

The first approach, mark-and-sweep, first scans all per-snapshot L2P mappings,
marks those used physical blocks, and then scans all physical blocks to reclaim those
unmarked blocks. The expensive marking during the scanning of L2P mappings
makes the mark-and-sweep approach infeasible for the backup server. For the example
configuration, one need to scan 128%4 G = 512 G per-snapshot mapping entries to
mark used physical blocks, and to scan 128 GB physical block entries to find out
those unused physical blocks. If each per-snapshot mapping entry is 32 byte and
each physical block entry is 1 bit, it needs to scan in total 20.48 TB of data, and
marks 16 GB physical block entries in a random fashion. The scanning of all L2P
mappings can take less than 0.9 hours if all 64 nodes participate fully in scanning
the L2P mappings striped over all 64 nodes. If the 16 GB physical block entries
reside on the disk, the marking alone can take thousands of hours. We do not assume
the physical block entries can fit into memory because the physical raw storage can
grow arbitrarily larger than 1 PB. Assuming we use storage area network (SAN) with
sustainable sequential throughput of 100 MB/s on each node, it takes at least 0.9
hours to scan all L2P maps.

The counter-based approach employs the per-physical block counter to avoid the
time-consuming L2P scanning in the mark-and-sweep approach. Each time a per-
snapshot L2P mapping entry is created, the reference count (RC) of the corresponding
physical block is incremented. At the time the snapshot is reclaimed, for each physical
block referred by the per-snapshot L2P mapping, the counter is decremented. If the
reference count drops to 0, the block is added to a recycle list (RL) of physical blocks.

Updating time taken at both the backup time and expiration time of the snapshot
is 2% 4% 28 5 L4 0.005s * &; = 44 hours, where 2 means both backup time and
expiration time, 4 means 4 logical volumes, % means the cache efficiency, and 6i4
shows the parallelism due to 64 nodes. 44 hours are prohibitive because 44 hours are
more than a day, which is the interval of daily backup.

At the garbage collection time, blocks in RL are reclaimed. Because RL consists
of physical blocks pertaining to reclaimed backup images, it is much smaller than the
whole physical block space, and takes much less to scan. For example, as the example
configuration shows, the whole physical block list can contain 128 G entries and takes
224 GB disk space (14 bits for counter), it takes 35 seconds to scan the whole physical
block list if the list is striped over 64 nodes. But it takes 2 seconds if 5% of physical
blocks have a zero reference count.

An ET-based approach can further reduce the number of updates at the backup
time by replacing the counter with an expiration time, but the incremental change list
methodology can not be used for expiration-time-based scheme because the expiration
time of overwritten blocks in the old backup image does not change. In concrete, at
the creation time of a backup image, the expiration time of each physical block referred
by the current backup image is updated.

Updating time taken at both the backup time and expiration time of the snapshot
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Figure 6.6: The flowchart of metadata updating for garbage collection at backup
time.

is 4% 28 5 L 4 0.005s * &; = 22 hours, where 4 means 4 logical volumes, = means
the cache efficiency, and & shows the parallelism due to 64 nodes. 22 hours are
prohibitive for daily backup.

At the garbage collection time, all physical block entries are scanned to find
out those expired blocks based on their ETs. Take the example configuration shown
above, if each ET takes 10 bits, it takes 25 seconds to finish the garbage collection.

The counter-based and expiration-time-based approaches both shift the burden
from the garbage collection time to the backup time. The time spent during garbage
collection is greatly reduced, but the overhead at the backup image creation time can
be overwhelmingly large. Take the example configuration, for each 32 TB snapshot
creation, on average 4 G physical blocks mapped by the current backup image are
updated regardless whether the block has changed or not. If each physical block
update takes 5 msec as the physical blocks can scatter over the physical space due
to de-duplication, it can take up to 86.8 hours. Although the BOSC scheme can
aggregate updates and mitigates the update overhead, it is still prohibitive to have
such a large volume of updates at the backup time.

To reduce the volume of updates at the backup time, we propose a brand-new
mixture GC scheme by lazily updating the metadata of physical blocks with both
counter and expiration time information for each physical block. Instead of updating
all physical blocks pointed by a snapshot image, only those physical blocks pointed
to by changed logical blocks are updated.
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At the backup time, there are two lists as the input: CL and BIL as mentioned
in [6.2.1] Physical blocks referred in CL increment their RC, and update ET accord-
ingly. Those physical blocks referred in BIL decrements their RC. All these changed
physical blocks are added to a Garbage Collection related Change List (GC-CL),
which is an incremental list sorted by the physical block number to speed up the

updates to GC-CL.

GC Backup Time Opera- Garbage Collection Elapsed
Alterna- | tions Time Operations Time
tives
Lookup Update Lookup Update
Mark- None None Scanning of | Bit-array up- | 0.9 hour
and- per-backup dates GC
Sweep logical-to-
physical
mapping
Counter- | None RC changes | Scanning of | None 44-hour
Based of  physical | RL backup,
blocks of L2P 2-second
mappings GC
ET- None ET changes | Scanning of | None 22-hour
Based of  physical | ET of all backup,
blocks of L2P | blocks 25-
mappings seconds
GC
Mizture Scanning of | RC and ET | Scanning of | None 18-second
all per-block | changes of | RL backup,
queues  for | overwritten 3-second
all  physical | physical GC
blocks blocks

Table 6.1: Comparison of 4 different GC techniques.

The example configuration is as

below: 128 32-TB backup images, 1 PB physical storage scattered over 64 nodes, 32-byte
entry for each logical-to-physical mapping, 100 MB/s sequential bandwidth on each node,
5% incremental change from backup to backup, 4 logical volumes, 8-KB block size. For
regular cache, a block can be accessed 16 times before eviction.

Physical blocks referred in BIL decrement their RC. If RC drops to zero, the
physical block is moved to the recycle list (RL). At the garbage collection time,
physical blocks in RL are checked for their ET. Those blocks that have expired are
garbage collected.

Because the size of GC-CL is proportional to the size of incremental changes and
incremental changes are smaller compared to the full block set, the proposed garbage
collection mechanism is scalable to daily changes. Furthermore, if GC-CL cannot fit
into RAM on one node, BOSC can be employed to improve the update performance.

The expiration time is updated when a physical block is referenced due to de-
duplication, the expiration time is updated as the latest expiration time between
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Figure 6.7: The algorithm of stand-alone garbage collection.

the stored expiration time and the expiration time of the snapshot containing the
de-duplicated block.

The counter is updated in two cases: (1) When a physical block P is referenced
due to data de-duplication, the counter is incremented for P, and (2) when a physical
block P belongs to BIL of a snapshot, the counter is decremented for P.

RL is an incremental list, it is initialized as NIL because initially there is no
de-duplication among main-storage volumes. This incremental list can be used to
find out data blocks to garbage collect.

The detailed flowchart of the markup for garbage collection is shown in Fig[6.6]
Fig[6.7 shows how garbage collection proceeds based on the RL. Basically, all physical
blocks in RL are checked to recycle those blocks that have expired.

Figure shows an example of how garbage collection works. At the backup
time, CL and BIL of each snapshot are used to update GC-CL: Backup A is an initial
backup and there does not exist L2P mapping yet for all logical block addresses (in
total 12 logical blocks). Only logical block 12 has its corresponding physical block
address, 700. Backup image A has the expiration time of 700. For backup B, logical
block address 1, 2, and 7 are written. CL records the written physical blocks (320,
321, and 440). Note that the expiration time of all three physical blocks is updated
as 600, the expiration time of backup B. For backup C, logical block address 1, 2,
and 9 are written. Note that logical block 9 shares the same physical block (physical
block 321) as the old version of logical block 2. The expiration time of physical block
321 is updated to 750, the expiration time of backup C. For backup D, logical block
address 4, 5, and 9 are overwritten. Note that RC of physical block 321 drops to 0.

At the garbage collection time (after backup image D is created), those entries in
GC-CL with zero RC are extracted to form RL. In this particular example, physical
block 320 and 321 are included in RL. Physical blocks 320 and 321 can be recycled
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Figure 6.8: An example of updating GC-CL and RL.

at time 600 and 750, respectively.

The BOSC scheme can be employed to improve the update throughput for GC-
CL. Using the same example for the Mixture scheme, at backup time, if GC-CL can
not fit into memory, BOSC can be employed to improve the update throughput with
64 * i:16 GB BOSC buffer. Each P-array entry is 3-byte (10 bits for ET, 14 bits for
counter) GC-CL can be 3 x X22=384 GB, block size for BOSC is 512 KB, average

8KB
16GB
queue length 227 =7K BOSC throughput is 64 ¥+ —esy—= 44 M Request /Second.
512K B (%)1\43/5

32T Bx*0.05

Total time taken at the end of the day is 4 x —27— =18 seconds. At GC time,
blocks in RL accounts for around 5% of all physical blocks because each day at most

5% of all physical blocks get overwritten, the sequential scanning of the RL can take

3x1LB 40.05
BEE = 3 seconds.

64x100M B/s

Table shows 4 alternative schemes in garbage collection and compares the
overhead at the backup time and the garbage collection time. For the given example
configuration, it turns out that Mizture scheme has the minimal overhead at the

backup time.

Parallel Garbage Collection

Because a particular hash value resides on one data node and a physical block is
represented by its hash value, the (RC, ET) pair of a particular physical block is
associated with a fingerprint. The physical block is distributed to a particular data
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node based on the consistent hash of the fingerprint.

Fig (a) shows how GC-CL and RL are distributed to participating parallel
nodes based on the consistent hashing of the fingerprint of the physical block.

Figure [6.9(b) shows an example of how to distribute GC-CL in Fig to 4
participating nodes: All physical blocks in GC-CL have their fingerprints computed
(a fingerprint is a hash value of the block content). Each fingerprint is long enough
to have a very low collision rate. For example, the fingerprint can be 20-byte long.
Each fingerprint is then mapped through consistent hashing to 1 of 4 participating
nodes. In this example, Node 1 accommodates physical blocks 440 and 700. Node 2
accommodates physical blocks 320 and 800. Node 3 accommodates physical blocks
321, 501 and 801. Node 4 accommodates physical blocks 450 and 451. Note that
after the distribution, each node can independently garbage collection physical blocks
allocated to it. For example, Node 4 is responsible to garbage collection physical block
450 and 451.

6.2.8 Parallel De-duplication

If a single server does not have enough resource to de-duplicate input data blocks
with good DDR and de-duplication throughput, the task of de-duplication can be
distributed to multiple storage nodes. A distributed secondary storage system with
multiple slave nodes fits the purpose well. For distributed de-duplication, the node
coordinating the de-duplication procedure among multiple storage nodes is denoted
as the master node, and the distributed storage node is denoted as slave node.

In this section, we will discuss (1) how to distribute related data structures from
a master node to multiple slave nodes, and (2) how to accomplish data de-duplication
tasks in a distributed fashion. Distributed data structures include the segment-base
container and its related data structures, the segment-based summary, and garbage
collection related data structures. Garbage collection related data structures will
be described in section [6.2.7, and we will omit the garbage collection related data
structures in this section. Data de-duplication tasks to be distributed include seg-
ment identification, variable fingerprint index management, and distributed container
management.

The design presented in this section aims to de-duplicate backup images in an
out-of-line fashion. In another word, the backup images are first stored in the sec-
ondary storage system without de-duplication. Periodically, the de-duplication func-
tionality is invoked to detect duplicates and garbage collect physical blocks. However,
the design principles can apply equally to inline de-duplication systems without sig-
nificant changes.

Figure [6.10] shows the architecture of the parallel de-duplication. We will show
how the de-duplication procedure works on the master node and the slave node,
respectively.
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Figure 6.9: (a) The flowchart of parallel metadata updating for garbage collection.
(b) An example of distributing RL and GC-CL.

Daemon at the Master Node (M-Daemon)

Container Distributor is responsible to distribute container content to slave nodes.
Fingerprint entries in the container are distributed to related slave nodes using the
same consistent hashing function as that of distributing fingerprints by the Con-
tainer Distributor. These entries of the same container on a particular data node
are organized as a sub-container file. Formally, the container distributor stripes a
conceptual container to sub-containers using the well-known consistent hash so that
sub-container files, per-container FI, per-container SI and the container cache of the
same fingerprint reside on the same data node. The container distributor is also re-
sponsible to distribute the segment summary based on the same consistent hashing
of summary fingerprints.

Note that the Container Distributor does not write the sub-container file directly.
Instead, the Container Distributor gives each sub-container file on data node a well-
known file name so that sub-container files belonging to the same container can be
retrieved together. For example, if a container file has the identifier 0x01234, four sub-
container files are named as 0x01234.ip;, 0x01234.1py, 0x01234.ip3, and 0x01234.ipy,
respectively. When Container Distributor retrieves container 0x01234, it asks each
individual data node for corresponding sub-container files. Each data node in turn
reads the sub-container file 0x01234.2p;, where ip; is the IP address of that particular
data node. The benefit of writing sub-container files on data nodes is that at the
retrieval time, each sub-container file has a local copy and the data node can retrieve
the sub-container file from its local disk instead of from other data nodes through
network. Fingerprint Distributor hashes each individual fingerprint to determine a
destination slave node, S;. In fingerprint distributor, M-Daemon waits for response
from all involved slave nodes. The output is the target physical block pointed by
a logical block address. There can be three possible cases: (1)the fingerprint has
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Figure 6.10: The architecture of parallel data de-duplication.

a hit in SFI on the slave node, and the container is cached in the container cache
or the segment-based summary index is hit. In this case, the response includes the
information of the target physical block, the store segment and related SI. The original
physical block can be disposed. (2) The fingerprint has a hit in SFI, but the container
is not cached in the container cache and the segment-based summary index does not
match. The container is loaded into RAM of the slave node. The entry corresponding
to the queried fingerprint is extracted to get the target physical block by querying the
per-container FI, and store segments are formed and updated to the per-container
SI. (3) The fingerprint does not have a hit in the fingerprint cache. Fingerprint are
appended to the corresponding container, and store segments are formed and updated
to the per-container SI. The original physical block is used as the target physical block.

Replacement Engine determines the replacement policy of containers and the
global SFI. M-Daemon stores the LRU list for SFI and container cache to determine
which fingerprints to evict from parallel SFIs and which container to evict from par-
allel container cache on M-Daemon. The LRU list for SFI is based on segments, not
individual fingerprints. The LRU list for the container cache is based on containers.

Segment Manager has two functionalities: (1) Determining the destination con-
tainer of the input fingerprints on the fly. For each input segment, initially there
is no container corresponding to the input segment If the de-duplication response
indicates that the input segment belongs to a container C, C is the corresponding
container for the input segment. Otherwise, a per-stream new container is created
to accommodate the input segment. A stream is defined as the backup data from an
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Figure 6.11: An example of distributed segment identification.

end user or a backup logical volume. (2) Identifying segments. Segment identification
is the same as the stand-alone case except the following: per-container SI is split so
that fingerprints in an offset interval of the same segment in a sub-container forms a
smaller offset interval, and the method to reconstruct a segment. To deal with split
of per-container SI, each sub-container holds the sub-SI consisting of offset intervals
mapped that slave node.

Because containers are distributed on all participating slave nodes, store segment
information is not stored on a single slave node. Instead, the offset within a segment
is stored on participating nodes. After all offsets and segmentIDs of a segment are
collected from participating slave nodes, the information of stored segment need to
be re-constructed.

Figure shows an example of reconstructing a segment from two participating
nodes. The de-duplication scenario is the same as that in figure [6.2] Segment 1, 2,
and 3 all belong to the same container. The parenthesized pair (n, k) represents
the kth physical block in the nth segment. Segment 1, 2, and 3 are distributed to
two slave nodes evenly in the example. After querying the per-container FI, offsets
and segmentIDs are returned to S-Daemon. On M-Daemon, the matched portions
of segment 1, 2 and 3 are reconstructed and the segment identification algorithm
mentioned in subsection [6.2] can continue.

Mapping Updater updates the mapping metadata (from logical block address to
physical block address) of the volume based on the de-duplication output (L2P-CL).
The mapping updater works with the garbage collectors on parallel slave nodes to
protect the consistency of the L2P from node crashing. Detailed algorithm can be
found in the garbage collector on S-Daemons.
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Figure 6.12: An example of metadata data inconsistency between GC-CL of garbage
collector and L2P of mapping updater.

Daemon on the Slave Node (S-Daemon)

Fingerprint Manager manages the fingerprint cache except the replacement of fin-
gerprints. Replacement of fingerprints is coordinated by the Replacement Engine on
M-Daemon.

Fingerprints are organized as a hash table. Each fingerprint entry has a container
identifier list with up to K entries, the offset of the fingerprint within the container,
and a pointer to fingerprints of the same segment for replacement purpose. With the
pointer, all fingerprints of the same segment are organized as a single linked list. The
head of the linked list is the first sampled fingerprint of the segment.

In Replacement Engine, each LRU list entry for SFI consists of the fingerprint
value of the first sampled fingerprint of the corresponding segment, and the container
identifier. Each LRU list entry for the container cache has the container identifier as
the key.

When fingerprints of a segment are evicted from the SFI, these entries are written
out to disk as a persistent copy of the SFI.

Container Manager manages the container cache except the replacement of con-
tainers. Container Manager has three parts: (1) container cache, containers are
organized as a hash table keyed with the unique container identifier the same as the
container cache mentioned in subsection |6.2.4] (2) container format, it is the same
as the container format mentioned in subsection [6.2.4] (3) container reader, it reads
the sub-container file from underlying file system with the ContainerID + IP as the
file name.

Garbage Collector works as described in [6.2.7) the garbage collector on each
slave node recycles physical blocks assigned to the slave node. The output of the
garbage collection is a incremental list, GC-CL. Because both GC-CL and the L2P
map are written to disk, the consistency of the updates of these two data structures
is critical to the success of garbage collection.

Figure[6.12]shows two examples of inconsistency between GC-CL used by garbage
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collector and the L2P map used by mapping updater. These two data structures have
an in-memory version and an on-disk version. A failure of the data commit to the
disk can lead to data inconsistency. In example (1), the update to L2P map, 9 — 321,
is committed to disk successfully. However, the update to GC-CL, 321 — (1, ET3,0),
fails to be committed to disk. As a result, the physical block 321 will be recycled
after KTy, which can corrupt the in-use physical block 321.

In example (2), the update to GC-CL, 321 — (1, ET},0), is committed to disk
successfully. However, the update to L2P map, 9 — 321, is not committed to disk
due to crash. As a result, physical block 321 in GC-CL has no chance to decrement
its reference count and will not be recycled, which defeat the very purpose of garbage
collection.

The root cause of the metadata inconsistency is that the L2P map and the
GC-CL are not updated atomically. A general solution is to group updates of the
same physical block to the L2P map and the GC-CL in a transaction. However, the
transaction can be expensive because each individual update has to be committed to
disk before the transaction is completed. To reduce the performance overhead due to
transaction, we relax the transaction definition by batching updates to GC-CL and
L2P map and committing updates to disk when the batch exceeds a threshold. When
a batch is committed to disk, a consistency point is reached. If a crash happens during
the commit of the batch, written updates in the batch are rolled back to previous
consistent point, and all pending updates are re-committed to the L2P map and the
GC-CL.

Figure6.13|shows the step-to-step procedure of the batch-based transaction. An
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auxiliary file is created to mark the start of the commit of a batch, and it is assumed
that the creation of the auxiliary file is atomic. Fortunately, the assumption holds
for most distributed file system. In the following discussion, the mapping updater
and the garbage collector communicates through network message, and the network
message can get lost at any time. A time-out mechanism is employed to tell if a
message gets through successfully or not.

In step 1, the mapping updater on the master node asks the garbage collector
on the slave node to write updates of GC-CL to a redo log via a network message.
In step 2, the garbage collector on the slave node writes updates of GC-CL to a redo
log. In step 3, all updates of GC-CL are written successfully to the redo log, and the
garbage collector replies to the mapping updater through a network message. If the
network message does not go through, the mapping updater does nothing. Otherwise,
the mapping updater goes to step 4.

In step 4, the mapping updater first writes the new L2P mapping, and then an
auxiliary file to the distributed file system. The failure of either writes is regarded as
a failure of the update. The mapping updater will find it out later on in step 6. If
both writes succeed, the mapping updater goes to step 5.

In step 5, the mapping updater notifies the garbage collector on the slave node
about the success of the writes of the new L2P mapping file and the auxiliary file
through a network message. If the network message is delivered successfully, the
garbage collector goes to step 7. Otherwise, the garbage collector will later find out
the existence of the auxiliary file in step 6.

In step 6, the garbage collector checks the existence of the auxiliary file to decide
if the garbage collector can merge the redo log with the GC-CL file. If the garbage
collector crashes in step 6, after the garbage collector reboots, the first thing it does
is to check the existence of the auxiliary file. Otherwise, the garbage collector goes
to step 7.

In step 7, the redo log and the GC-CL file are merged by the garbage collector.
Periodically, the old mapping file is replaced by the new mapping file. And the auxil-
iary file can be removed after a period large enough so that the corresponding GC-CL
and redo log have been merged before the removal of the corresponding auxiliary file.

Container Updater is responsible for the writing of sub-container files on the
local data node. To speed up the writing, updates are sequentially written to disk
using BOSC. The buffer memory for BOSC is separately allocated from the container
cache.

Figure [6.14] shows the detailed algorithm of parallel de-duplication. In the algo-
rithm, the LRU lists of SFI and of container store is stored by M-Daemon, all other
data structures are distributed to S-Daemons.

The input of parallel de-duplication is the same as that of standalone one as
shown in Step 00. The way to compose input segments is also the same as shown
in Step 01. In Step 04, each fingerprint in the input segment is distributed to S-
Daemon via the consistent hashing. In Step 05, fingerprint is used to query parallel
SFT on each slave node. If there is no hit in parallel SFI, a bit in the input segment’s
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bitmap of the input segment is reset to indicate that there is no hit for the particular
fingerprint (Step 08).

In the destination container is not cached in the container cache on the slave
node, the sub-container information is inserted to a list Lc.

After all fingerprints in an input segment are checked, the input bitmap is
checked. If all bits are unset, the input segment is a new segment. The segment
is appended to the per-stream open container (Step 09). Similar to the standalone
algorithm, Step 10&11 create a new per-stream open container if the container is full
and set the store segment as the input segment. In Step 12, fingerprints are distributed
to slave nodes by the fingerprint distributor. In Step 13&14, the per-container SI,
per-container FI, and summary fingerprints are distributed to slave nodes through
container distributor.

If there is hit in parallel SFI according to the input bitmap, Step 17&18 computes
the summary fingerprint if the input segment is larger than Tsummary. In Step 19,
the summary fingerprint is distributed to a slave node by the container distributor.
In Step 20, the algorithm checks if there is hit in the summary fingerprint index and
summary segment cache, the physical address information can be retrieved and the
processing of the input segment is finished.

Otherwise, all containers in Lo needs to be loaded for all involved S-Daemons
(Step 22&23). If the result of loading containers evicts a victim container Containery,
M-Daemon notifies all involved S-Daemons to evict subContainer,. In step 26, the
segment identification, updates of per-container SI and FI, updates of summary finger-
print, container split are similar to the standalone algorithm except all data structures
are distributed to all involved slave nodes as mentioned in section [6.2.8

In Step 27, M-Daemon maintains the global LRU segment-based list for the
global SFI. In Step 28, the global SFI is updated and the BSU is identifier the same
as that of the standalone algorithm.

Periodically, container updates and L2P-CLs are committed to disk using BOSC,
the same as those in the standalone algorithm.

6.2.9 Optimizations

In file-level de-duplication system, if a file is modified, the file is added to the change

list. At the incremental backup time, all files in the change list are transferred to the
backup storage system. However, even changes to a small portion of a file makes the
whole file to be backed-up. For example, for a large file of 10 MB in size, a change
of a 4 KB page in the file will put the whole 10 MB file in the file change list, which
causes more than 3 magnitudes of backup volume overhead.

BCT tracks changed blocks instead of changed files to remove the overhead of
transferring the whole file at the backup time. Oracle’s recovery manager (RMAN) [189]
supports block change tracking, where a dedicated change tracking file is used to
record the block changes since last backup operation. In contrast, Fanglu et al [I8§]
proposed a transparent change block tracking mechanism for modern file systems (i.e.,
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ext3) by regarding all written blocks as changed blocks. In this technical report, we
advocates Fanglu’s approach for its simplicity. The BCT can be implemented as a
device driver intercepting all writes to the block device. If we can extract the meta-
data information about the file system above, we can further divide written blocks to
data blocks and metadata blocks. Metadata blocks are those blocks that fall in the
well-known range of file system metadata, including Inode table, Inode map, super
blocks, data block map, free map, etc. All other non-metadata blocks are data blocks,
including the directory blocks.

The BCT technique provides a promising start point to save resources used
in data de-duplication systems, including storage space, network bandwidth, and
power consumption. Our proposed de-duplication techniques employs the BCT as
the corner stone to build the de-duplication capability. On one hand, because only
changed blocks are used to de-duplicate with each other, it is not clear if current
de-duplication techniques [27, 28] can still perform well in terms of de-duplication
quality and de-duplication throughput. On the other hand, because block changes
have strong spatial and temporal locality, it is worthwhile to craft new techniques to
fully explore the spatial and temporal locality exposed by such incremental backup
streams.

To better explore the data locality among changed blocks, it is desirable to have
file-level information because the data locality is specific to the file containing the
blocks, not the block itself. However, it is cumbersome to retrieve file-level information
at the block layer without intrusive changes to the file systems. Metadata inference
engine (MIE) [29, [68] closes the gap between the non-intrusive changes to file systems
and the retrieval of detailed file metadata by snooping block-level traffic.

Instead of associating blocks with the corresponding file Inodes at run time with
inference, we can associate blocks with Inodes in an offline fashion. In concrete, at the
end of each backup, we take a snapshot of the file system metadata. For ext2/ext3,
the debugfs tool can be used to extract the location of Inode table and Inode map.
At the backup time, the current Inode table/map is compared with the previous
Inode table/map byte by byte to detect Inode changes. The backup volume is re-
mounted to ensure the cache is cold. Changed Inodes are examined by a user-level
program to scan blocks belonging to them, which can associate the data blocks with
corresponding Inodes. Note that in examining the Inode, the offset of each block can
also be established.

The offline analyser can enumerate file offsets for all live blocks but not for those
dead blocks which do not belong to any file. Dead blocks can not be accessed by any
file Inode and these changed blocks are attributed to a special “dead” file. For the
purpose of de-duplication, we anticipate the “dead” file is effective in de-duplicating
dead blocks from all backup clients.

With the help of MIE, the de-duplication engine on the backup server side has
more flexibility to de-duplicate the backup streams for two reasons. First, file-level
information is more accurate to capture the data locality in segment identification.
For example, instead of blindly de-duplicating against adjacent contiguous blocks, it
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is more efficient to de-duplicate against blocks of the same file.

6.3 BOSC in De-duplication

Our de-duplication system employs BOSC to improve the update performance in 3
metadata update scenarios. First, at the backup time, in updating the fingerprint
container when new fingerprints are inserted into the container or per-container seg-
ment index is updated, the proposed de-duplication system uses BOSC to commit
these updates. In concrete, updates to fingerprint containers are batched in individual
per-block queues and are committed to the underlying disk in an I/O efficient man-
ner. The updates to the per-file fingerprint container and the corresponding cached
fingerprint container can be combined together as the unified cache of the fingerprint
container. At the commit time, only the updates are committed to the underlying
disk. Note that the fingerprint container cache is organized based on the starting
physical location of the fingerprint container,the fingerprint container cache does not
disrupt the order of per-block update queue scanning in the BOSC scheme.

Second, at the backup time, in the Mizture GC scheme, backup-time updates
to the L2P map employs BOSC to maximize the update performance. Although
updates to the L2P map exhibits strong data locality, BOSC can improve the update
throughput by decoupling the updates from I/O operations.

Third, at the backup time, in updating GC-CL, as the whole GC-CL is likely to
be disk-resident, BOSC can be used to speed up the updates to GC-CL.

At the backup time, a unified logging in BOSC can be shared by these three
BOSC tasks. That is, updating to the file-based fingerprint container, updating to
the per-logical-volume L2P mapping entries, and updating to GC-CL can share the
same logging device used by BOSC. These two types of updates are differentiated by
a field in the logging record indicating which BOSC task the logging record is for.

6.4 Performance Evaluation

In this section, 4 design decisions of the proposed data de-duplication system for in-
cremental backups are examined with a trace collected under a typical enterprise envi-
ronment. The design decisions include (1) segment identification, (2) segment-based
variable frequency fingerprint index, (3) segment-based container, and (4) segment-
based summary. I will first introduce the evaluation methodology, then present results
for all 4 design decisions. Finally, I will present the analytical result for the pro-
posed scalable garbage collection technique and its comparison with other alternative
garbage collection methods.
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File Conjectured | Contribution Ratio
Category Write Method (Unit:%)

VM-Related Files append 35.1
Multimedia Files write 21.6
System Files write 21.9
User Documents write 11.5
Installation Media write 5.1
Log Files append 1.6
Mails write 1.6
Database Files write 1.6

Table 6.2: File types, conjectured update methods, and their percentage in the trace.

6.4.1 Evaluation Methodology

To evaluate various design decisions, it is critical to have real-world traces that keeps
recording incremental changes of logical volumes from multiple users for a long period
of time. For this purpose, we developed a user-level program to track changed files of
individual end users, and deployed the program to 23 regular employees of a research
institution to collect their daily changed files for 10 weeks. We use the trace to
drive the evaluation of our design decisions. We will refer the collected trace as
Workgroup in the subsequent discussion. We understand the collected trace does
not fully represent incremental backups under all environments. However, we do
believe the evaluation based on the Workgroup trace provide valuable insight for
incremental backups.

In this section, we first present the details of collecting the trace, then show
methods in analysing the Workgroup trace, and finally discuss the metrics and
parameters in analysing the trace.

Trace Collection

Ideally, a trace for incremental backups should contain block-level writes to a sec-
ondary storage system in a daily fashion. Unfortunately, we do not have a block-level
backup system to collect the trace. Instead, we used a user-level daemon program to
track the changed files at the end of each day for all participating Windows desktop
machines in the workgroup. We used a user-level program instead of a kernel-level
interceptor of block-level writes for the ease of deployment because end-users are re-
luctant to deploy an “unknown” kernel module in their production desktop machines.

The user-level daemon program tracked daily file changes by comparing the mod-
ification time of the file with its old modification time during a file system traversal.
Initially, each file has no modification time and all blocks of all files are traversed to
compute their 64-byte long MD5 hash values (i.e., the fingerprints). If the modifi-
cation time does not agree with each other, the file is changed and a fingerprint is
computed for each 4K data block in the file. The fingerprints, the new modification
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Figure 6.15: (a) The length distribution of store segments for the 3-week trace. K
is 1, and Usegment = 512. (b) The length distribution of duplicate segments for the
3-week trace. K is 1, and Usegment = 512.

time of the file, and the size of the file are stored in a database file keyed by the file
pathname. Next time when the user-level daemon program traverse the whole file
system, the database file is queried. If the file is a new file or the file modification
time mismatches, the modification time and hash values for all data blocks are added
to the database file. Otherwise, the file is skipped in the current file system traversal.

Changed files do not necessarily translate to block writes for all blocks in the file.
The behaviour of the translation from changed files to written blocks depend on the
write method used to change the file. Unfortunately, we do not have the knowledge
of file change methods for Windows operating systems. Instead, we rely on the file
type to refer their modification behaviour.

Table[6.2| shows the file types, their conjectured write methods, and their ratio of
contribution in the trace. VM-Related files include files that support virtual machines,
e.g., vimdk, vmem and vdi files. Multimedia files include all audio and video files.
System files include files in system directory, including Windows and “Program Files”
directories. User documents include Microsoft office files, pictures, and development
files. Installation media refer to those files that are meant to install programs, e.g.,
iso and msi files. Log files include system log files and application’s log files. Mails
include files that are updated by the Microsoft outlook, including files with the suffix
pst and ost. Database files cover all database files used by either application or the
system.

For those files that append to existing files, we account the newly-appended
blocks into written blocks but discard those unchanged leading portions by comparing
the old file size with the current file size. If the current file size is smaller than
the old file size, the file wraps around, and all blocks in the new file size range
are regarded as written blocks. Otherwise,blocks that fall between the old file size
and the new file size are regarded as written blocks. To make Workgroup more
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Figure 6.16: The cumulative distribution probability of blocks in segments when the
segment length is varied from 1 to 511. The upper curve is for store segments, and
the lower curve is for duplicate blocks. Usegment = 512, K = 1.

representative, we removed VM-related files because these files are not typical in a
production workgroup.

After pre-processing of the trace, the trace is 43.7 GB in size, the file size of all
initial files is 10.8GB. As we focus on the incremental changes, we only analyse those
incremental changes, which is 32.9 GB in size. Because the analysis of the whole
incremental changes takes more than 10 hours, we used a three-week portion of the
trace to drive the analysis. The three week trace is 6.4 GB in size, and it takes less
than 3 hours to finish.

Trace Analysis

To analyse the trace, the analysis program must implement all features of the proposed
de-duplication system, including (1) Segment Identification, (2) VFSFI, (3) Segment-
based Container, and (4) Segment Summary. To identify segments, the store segment
is stored in the container. To speed up the segment query, a segment index keyed by
the segment identifier, and a offset interval index keyed by the fingerprint offset are
implemented as part of the container.

To evaluate the effectiveness of VFSFI, each entry in the global FI has an entry
indicating if the entry is sampled or not. The LRU list of the global VFSFI is
implemented as described in the design for VFSFI. We reduce the sampling rate of
the segment at the end of the LRU list instead of removing the segment directly
as in the basic LRU policy (denoted as Basic-LRU). Our LRU policy, denoted as
Rate-based-LRU, is shown to be more effective than Basic-LRU.

A segment-based container clusters related segments in one container. As a
result, any container can be split due to newly added segments. In contrast, tradi-
tional stream-based container have one open container for one backup stream. We
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Figure 6.17: The ratio of duplicate segments over store segments when K is varied
from 1 to 8. Usegment = O12.

implemented the container split to accommodate potential container splits. Also, a
LRU-based cache is implemented to cache containers recently visited. Because con-
tainers are frequently updated, a separate update buffer is reserved to hold updates
of containers. BOSC is employed in committing updates, and we can calculate the
average queue length for the trace.

A summary fingerprint is computed from the fingerprints of a segment if the
segment length is larger than a threshold, and the summary fingerprint is added to the
summary FI. Next time, when an input segment has a size larger than a threshold, the
summary fingerprint of the input segment is computed, and the summary fingerprint
is used to query the summary FI. If hit, the stored physical block information is
retrieved to finish the de-duplication procedure.

If the analysed trace can not fit into RAM of a single machine, the analysis of
the trace can incur significant /O overhead to read the FI and containers. Also,
the trace analysis cannot sample the trace because the analysis should base on the
characteristics of the whole trace, not sampled trace. To overcome this dilemma, we
employed MemCached [I91] to expedite the trace analysis over a cluster of machines.

Because the container is the basic unit of dealing with segments, the container
is transferred over the network between the MemCached clients and MemCached
servers, which can become the performance bottleneck for single-threaded analysis
program. To improve the throughput, we have developed a multiple-threaded pro-
gram.

The conversion from single-threaded analysis program to multiple-threaded one
is not straightforward. To make threads as parallel as possible, each container has a
lock. When a thread processes an input segment, it first queries the global in-RAM
FI, holds the lock of the destination container, updates the destination container,
releases the lock of the container, and finally updates the global FI if there are new
fingerprints.
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Figure 6.18: (a) The identification of basic sharing unit (BSU) when Tggy is varied
from 1 to 6. The left Y axis shows the false positive (FP) rates of BSU identification.
The right Y axis shows the ratio of blocks in BSU over all duplicate blocks. Usegment
=512, K = 2. (b) The average segment length when the reference count threshold is
varied from 1 to 6. All other parameters are the same as (a).

The machines comprising the MemCacheD cluster are 6 PowerEdge SC1425
machines with up to 4 GB memory, and they are connected by a Netgear 1 Gbps
Ethernet card. When multiple threads proceed with the trace analysis, the average
throughput can reach 12K fingerprints per second when each container contain up to
2K 20-byte fingerprints.

Evaluation Parameters and Metrics

There are 9 parameters in the analysis program as mentioned above. The first pa-
rameter, Usegment, 1s the upper bound of the segment length. Segments larger than
Usegment are divided so that the divided segments are smaller than Usegment. The
second parameter, K, is the upper bound of segments a fingerprint can be part of.
The third parameter, Tggy, is the threshold of the reference count, above which
the segment is regarded as basic sharing unit (BSU). The fourth parameter is the
amount of memory to hold SFI. If the specified amount is exceeded, the global LRU
list is queried to find out victim segments to release memory from. S;,;;, the fifth
parameter, is the initial sampling rate for each store segments. The sixth parameter,
Scontainer, 18 the container cache size. If the container cache is full, a victim container
is evicted from the container cache based on a LRU list of cached containers. The
seventh parameter, )gosc, is the amount of queue buffer to hold pending updates
to containers. The eighth parameter, Tsymmary, i the lower bound of segments that
should compute a summary fingerprint. The 9th parameter, U.ontainer, 1S the upper
bound of the container size.

In verifying various design decisions, we mainly used three metrics to gauge the
effectiveness of each design decision. The first metric is the memory used to store
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Figure 6.19: The data de-duplication ratio when Tggy is varied. For the VFSFI
scheme, Usegment=4096. K =2, and the sampled fingerprint index is 1/128 of the
whole fingerprint index. The initial sampling rate is 1/16.

the sampled fingerprint index. In concrete, we derived the ratio of the sampled FI
over the whole FI as the metric to gauge the memory saving. The second metric is
the data de-duplication ratio (DDR), which is the ratio between the input data size
over the stored data size. The third metric is the I/O cost to read containers, which
is emulated by counting the number of I/Os to load containers from RAM. Other
metrics are used to compare our approaches with other existing approaches, which
can be found in the detailed evaluation.

6.4.2 Segment-based De-duplication

Segment is the core idea of our proposal that separates our de-duplication approach
from previous approaches in the field of de-duplication for incremental backups. This
section shows the distribution of the length of segments, and studies the sensitivity
of the segment identification with the value of K.

Length Histogram of Store Segments for Incremental Backup

Figure[6.15/shows that the distribution of store segments and duplicate segments with
regard to the length of the segment is bimodal. For input segments, segments smaller
than 64 is 80% of all segments, and segments equal to the maximal segment length
is 15.4% of all segments. For duplicate segments, segments smaller than 64 is 81.5%
of all segments, and segments equal to the maximal segment length is 14.4% of all
segments.

Further investigation of the trace shows that segments with the maximal segment
length roots from multimedia files. Because multimedia files account for a large
portion of the trace (21.6% of all blocks in the trace), it is not surprising that there
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exists a significant amount of segments with maximal segment length.

Figure [6.16] shows the cumulative distribution function of blocks with regard to
the segment length when segments with the maximal segment length (i.e., 512) are
excluded for both store segments and duplicate blocks. For duplicate blocks, blocks
in segments larger than 119 account for 50% of all duplicate blocks. The existence of
duplicate segments with size larger than a trivial value (i.e., 1) provides a solid basis
for our segment-based de-duplication.

Sensitivity Study of Segment History

Figure |6.17 shows that the ratio of duplicate segments increases when K increases
from 1 to 8. The sole benefit of keeping up to K segments for a single fingerprint is
to improve the chance of finding duplicate segments. Surprisingly, increasing K does
not improve the ratio of duplicate segments over store segments significantly. The
root cause is that there do not exist many shared fingerprints among segments. In
the following experiment, we choose K = 2 to have a moderate ratio of duplicate
segments.

6.4.3 Variable-Frequency Sampled Fingerprint Index
Basic Sharing Unit

Figure [6.18] (a) shows that the FP rate of BSU identification drops when Tpgy in-
creases from 1 to 6. In particular, when Tggy is larger than 2, the FP rate of BSU
identification is under 1.4%. The trend of the FP rate of BSU identification shows
that we can use Tggy to identify a BSU with less than 1.4% FP rate when Tggy > 2

The right Y axis of figure [6.18] (a) shows the ratio of duplicate blocks in BSU
over all duplicate blocks decreases when Tggy increases from 1 to 6. To balance the
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Figure 6.21: (a) The segment miss ratio when the initial sampling rate is varied from
1/16 to 1/2 for three schemes. The basic LRU scheme removes the whole segment
from SFI when the segment reaches the end of the LRU list. The rate-based LRU
scheme reduces the sampling rate to half when the segment reaches the end of the
LRU list. The no LRU scheme does not remove segments from SFI. The SFI memory
is 1/8 of the total memory. Usegment = 512, K = 2, and Tpsy = 2. (b) The data
de-duplication ratio when the initial sampling rate is varied from 1/16 to 1/2. All
parameters are the same as in (a).

FP rate and the ratio of duplicate blocks, we recommend to choose Tggsy = 2 for all
subsequent experiments.

One may hypothesis that larger segments are more likely to be duplicated, and
therefore the average segment length can increase with the increase of Tgsy. However,
figure (b) shows that there is no strong correlation between the segment length
and the reference count of these segments. Therefore, a smaller Tggy can also result in
great savings of memory in SFI because the average segment length does not change
much with varied Tzgy.

Figure [6.19] shows that DDR reaches its maximum when Tpsy = 2. For Txsy
= 1, as shown in figure (a), the FP rate is high so that many segments miss
the opportunity of de-duplication due to the "1 out of N” sampling policy for those
non-stable segments. When Tggy is larger than 2, the percentage of BSU segments
drops from 60% to less than 10% of all store segments. The drop in the number of
BSU segments leads to more SFI memory consumption and results in smaller DDR
for the same amount of SFI memory. When Tggy continues to increase from 3, DDR
drops slightly because the percentage of BSU segments drops slightly from 10% when
Tpsy increases from 3 onwards.

LRU-based eviction policies

Figure [6.20] shows that duplicate blocks have strong temporal locality, the probability
that a duplicate block and its immediate preceding instance are less than or equal to

164



2.8 T T T
VFFI-4096-Max-Segment —+—
o6 L VFFI-2048-Max-Segment ----x--- |
. VFFI-1024-Max-Segment - *ooe
VFFI-512-Max-Segment &
o24r Fixed-Sampling-Rate --=-
T
T2
c
K<) .
E 2 T o
s -
[a] e - a -
)
[a] e
s 16/ T g
©
a

1 . . . . .
1/512 1/256 1/128 1/64 1/32 116 1/8
Percentage of Sampled Fl over Whole FI

Figure 6.22: The data de-duplication ratio when the memory for sampled fingerprint
index is varied. The scheme with fixed sampling rate is compared with the VFSFI
scheme. For the VFSFI scheme, Usegment Is varied from 512 to 4096. Tgsy = 2, K
=2. The initial sampling rate is 1/16.

9 days apart is more than 99%.. This strong temporal duplicate locality is the corner
stone of our proposed LRU-based replacement policy for SFI.

Figure [6.21| compares the Basic-LRU scheme with our Rate-based-LRU scheme
by varying the initial sampling rate. Initially, all segments have the same initial
sampling rate. When SFI is out of memory, the segment at the end of a segment-
based LRU list is chosen as the victim. For the Basic-LRU scheme, all fingerprints
in the victim segment is evicted from SFI. For the Rate-based-LRU scheme, the
victim segment reduces its sampling rate to half until the victim segment is eventually
removed when there is one sampled fingerprint for the victim segment. The no-LRU
scheme does not remove segments at all, and it provides an upper bound on either
the de-duplication ratio or the segment miss ratio.

Figure [6.2]] (a) shows that the segment miss ratio for the no-LRU scheme de-
creases when the initial sampling rate increases because more and more fingerprints
are sampled into SFI and these sampled fingerprints are not evicted from SFI. In con-
trast, the segment miss ratio for both the Basic-LRU and Rate-based-LRU schemes
increase when the initial sampling rate increases. This is because the initial sampled
fingerprints are evicted from SFI, and the the larger the initial sampling rate, the
larger the probability of fingerprints evicted from SFI, and the larger the segment
miss ratio.

However, figure m (a) shows that the segment miss ratio of the Basic-LRU
scheme is larger than that of the Rate-based-LRU scheme for all examined initial
sampling rates. This is not surprising because the Rate-based-LRU does not remove
the whole segment from SFI when the segment is chosen to be the victim segment.
As a result, with the same amount of memory for SFI, the Rate-based-LRU scheme
can cover more segments than the Basic-LRU scheme.
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Figure 6.23: The number of 1/Os to load containers when the container cache varies
its size from 1/1024 to 1/64. Usegment = 512, K = 2, and Tpsy = 2. The initial
sampling rate is 1/16, and the percentage of SFI over whole FI is 1/128.

Figure [6.21] (b) shows the data de-duplication ratio (DDR) when the initial
sampling rate is varied. For the no-LRU scheme, the DDR drops slightly from 2.13
to 2.12 when the initial sampling rate changes from 1 to 1/16. For both the Basic-LRU
scheme and the Rate-based-LRU scheme, the DDR drops because more fingerprints
are evicted from SFI for larger initial sampling rates. The Rate-based-LRU scheme
out-performs the Basic-LRU scheme because SFI can cover more fingerprints with
the same amount of memory.

Effectiveness of VFSFI

Without VFSFI, traditional SFI employs a Fized-Sampling-Rate scheme for all de-
duplicated streams. In the Fized-Sampling-Rate scheme, after de-duplication of each
input stream, the newly-added fingerprints are sampled into SFI with a fixed rate.
When the maximal amount of SFT is reached, the oldest fingerprint is removed from
SFI. In this section, we compare VFSFI with the Fized-Sampling-Rate scheme by
evaluating their DDR.

Figure shows that VFSFI outperforms the Fized-Sampling-Rate scheme in
terms of DDR regardless the amount of SFI memory because VFSFI makes more effi-
cient use of SFI memory with two methods: (1) 1 sampled fingerprint for BSU, and (2)
Rate-based-LRU policy for the eviction of sampled fingerprints. The DDR increases
for all three configurations when the amount of SFI memory increases because more
segments can be covered in SFI. The DDR improves when Ti,gpent increases from 512
to 4096 for the following reason. Larger Tsegmen: can lead to larger average segment
length for BSU, and more memory can be saved in composing SFI. As a result, more
segments can be covered in SFI and the DDR can improve with an increased Tsegment-
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Figure 6.24: The percentage of container splits when the container size is varied from
2K to 256K fingerprints in size. Usegment = 912, K = 2, and Tpsy = 2.

6.4.4 Segment to Container Association
Segment-clustered Container Versus. Stream-based Container

In this section, we evaluate our segment-based container with stream-based contain-
ers. For our segment-based container, segments sharing fingerprints are put into the
same container, and new segment is added to a per-stream container. In contrast, for
traditional stream-based containers, any new fingerprint is added to the per-stream
container. Intuitively, our segment-based container can save 1/Os to read containers
because an input segment can be retrieved from one container, while multiple con-
tainers need to be read into RAM if the segment dispersed over multiple containers.

Figure [6.23] shows that the number of container reads increases when the size of
the container cache increases because larger container cache has larger container hit
ratio.

Figure [6.23| shows that our segment-based container outperforms the traditional
stream-based container scheme because the segment-based container preserves the
data locality for segments in a better fashion. In particular, the saving of container
I/O reads can be as high as 39% when the container cache is 1/512 of whole FI.

Overhead of Container Split

The segment-based container has the advantage of reducing the 1/O cost of loading
containers from disks, however, the benefit comes with a cost. That is, any container
can be split when the container size exceeds a threshold. In contrast, for the tra-
ditional stream-based container, fingerprints keep being appended to the end of the
per-stream open container and there is no split of existing containers.

Figure demonstrates that the ratio of container splits over all containers
drops rapidly when the container size increases because larger container size can
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Figure 6.25: The savings in container readings when the size threshold of segment
to compute summary fingerprints is varied from 64 to 4096 fingerprints. U.ontainer =
8192, Usegment = 4096, K = 2, and Tsy = 2, the container cache size is 1/1024 of all
memory. Note that all memory is computed as the memory of all fingerprints.

accommodate more segments. In particular, when the container contains 128K fin-
gerprints, the ratio of split containers is 1.3%. The split ratio is higher than expected.

One optimization to reduce the overhead of container split is to pre-split a con-
tainer when the container’s size would be exceeded if new segment is added. To
achieve this optimization, each container should have an in-memory data field to
indicate its current size.

6.4.5 Segment-based Summary

A segment-based summary can be employed to avoid the disk I/Os to load a con-
tainer from disks if the segment summary matches with a stored segment summary.
However, for de-duplication purpose, if the segment summary hits, the corresponding
physical location information should be returned. If the physical location information
can not fit into RAM, the loading of the physical location information itself is a disk
I/O, which can defeat the very first purpose of using segment-based summary. To
minimize the memory overhead due to storing physical locations, one can use the
file-level information to store the collection information of stored physical locations.
For example, for 1000 physical locations in a file, instead of storing 1000 individual
physical locations, one can store only the file identifier and offsets of these physical
blocks in the file, and rely on the file system to retrieve the physical block information
if these blocks are read in the future.

In this section, we evaluate the hit ratio of the segment summary and related
memory overhead to store physical location information.
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Figure 6.26: The memory overhead of storing duplicate block information when the
size threshold of segment to compute summary fingerprints is varied from 64 to 4096
fingerprints. Usegment = 4096, K = 2, and Tsy = 2, the container cache size is 1,/1024
of all memory. The SFI is 1/128 of the whole FI in size.

Savings on Container Readings

Figure shows that the ratio of saved container readings decreases as Tsummary
increases because larger Ty mmary has a smaller hit ratio of segment summary fin-
gerprints. For all Ty mmary, the savings on the number of container readings is less
than 6%, which does not translate to a significant improvement of the de-duplication
throughput.

Memory Overhead

Figure shows the memory overhead of storing physical location information when
Tsummary is varied. Larger Tsymmary leads to smaller memory overhead. However, if
individual physical locations are stored, the memory overhead is above 200% of the
SFT size for all Tsymmary values. In contrast, if file-level information is available, the
memory overhead drops below 1% of the SFI size.

6.4.6 BOSC to Update Containers

Because all containers have the potential to be updated, it is necessary to employ
BOSC technique to improve the efficiency of committing updates. Updates to con-
tainers include added fingerprints, updated per-container fingerprint index, updated
per-container segment index, and updated per-container offset interval index. We
count all updates in bytes in the trace analysis program.

Figure shows the average queue length is above 80 KB for all buffer queue
size, which indicates that BOSC can greatly improve the update efficiency. Generally
speaking, larger queue buffer leads to larger average queue length, however, because
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Figure 6.27: The average queue length of each container when the queue memory is
varied from 1/4096 to 1/8 of all memory. Usegment = 4096, Ucontainer = 8192, K = 2,
and TBSU = 2.

the update is not purely random, the average queue length does not consistently
increase with the queue buffer size. In concrete, when the queue buffer size changes
from 1/16 to 1/8 of all fingerprints, the queue size drops from 122 KB to 102 KB.

6.4.7 Conclusion of Design Decisions

From the analysis of collected trace, we can safely draw the following conclusions
regarding the design decisions:

1.

The idea of taking the segment as the basic de-duplication unit is successful
because (1) the average segment length is non-trivially large (i.e., 119 for the
analysed trace), (2) blocks in the basic sharing unit accounts for most of dupli-
cate blocks.

K, the maximal number of segments a particular fingerprint can participate in,
does not have great impact on the de-duplication procedure.

. Tgsu, the threshold of the reference count to identify a basic sharing unit, does

not need to be large. Tzsy = 2 can produce good de-duplication results.

The Rate-based-LRU scheme is better than the Basic-LRU scheme in evicting
fingerprints in SFI.

. VFSFI with BSU and the Rate-based-LRU scheme can have very good DDR

even when the SFI is 1/256 of whole FI.

. Segment-based containers can save I/Os in reading containers compared to

stream-based containers.
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7. Segment summary can save 5% of container readings.

8. For segment summary, if the physical location information is not stored per-file,
the memory overhead is significant.

9. BOSC can be employed to improve the container update throughput.
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Chapter 7

Conclusion and Future Work

In this chapter we first summarize the BOSC scheme. Then we highlight the appli-
cations of the BOSC scheme in three different storage systems. Finally we outline
to-do tasks and future research directions.

7.1 Summary of BOSC

Modern database management systems suffer serious performance degradation when
the input workload is update-intensive and has low access locality. Such workloads are
not uncommon. For example, the back-end databases in typical Internet E-commerce
services are routinely bombarded with workloads with intensive update requests (e.g.
order processing) and random access (e.g. a large number of users). As of now,
no commercial database management systems can effectively handle such workloads
without resorting to special hardware such as battery-backed DRAM. This technical
report describes a simple but effective solution to this problem, which consists of two
key ideas: (1) an update-aware disk 1/O interface that allows a storage application to
explicitly issue disk update requests in addition to conventional disk read and write
requests, and to specify an update function that the disk 1/O system can invoke
on behalf of the application when the target disk blocks are brought into memory,
and (2) a highly efficient batched processing strategy for completing pending update
requests that not only effectively amortizes the cost of each disk I/O over multiple
update requests but also reduces the cost of each disk I/O to the minimum through
sequential commit. We have successfully built a disk 1/O system called BOSC that
embodies these two ideas, and empirically demonstrated its efficiency by showing
that the update request throughput of BOSC-based database index implementations
is more than 50 times faster than the same database index implementations built on
top of the conventional disk access interface. In addition, BOSC is able to deliver this
performance improvement while providing the same durability guarantee as servicing
update requests synchronously.
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7.2 Summary of Applications of the BOSC Scheme

1. Continuous Data Protection

Modern enterprise storage systems are increasingly geared towards the no-
tion of comprehensive data protection, which aims to protect data from hard-
ware/software failures, human errors, malicious attacks and environmental dis-
asters. To achieve comprehensive data protection, existing storage systems or
products tend to glue together a variety of data protection mechanisms that
were developed separately in an ad hoc way. The result is that comprehensive
data protection comes with excessive performance overhead. The goal of the
Mariner project is to develop efficient implementation techniques that could
reduce the performance penalty associated with comprehensive data protection
to a negligible level. Along the way, we recognize that replication and logging
are the two fundamental building blocks for comprehensive data protection, and
organize Mariner’s system architecture around these two primitives to minimize
the associated performance overhead.

For a five-disk configuration, Mariner is able to deliver 1.8msec write latency
and achieve 70% log disk space utilization under an input workload of 12500
writes/sec and 4KB per write request. With this performance result, we believe
we have proved our thesis that it is possible to support comprehensive data
protection without incurring significant performance overhead.

2. UVFS for Continuous Data Protection

Commercial block-level CDP products [15, [16] 18] have emerged as a critical
building block in the set of data backup tools used in modern enterprises, and
have the potential to replace most of existing periodic data backup systems
because of its flexible RTO and RPO and its ability to simplify storage ad-
ministration. However, existing block-level CDP systems have two weaknesses.
First, the point-in-time snapshots they create are not necessarily file system-
consistent, or more generally do not guarantee any metadata consistency for the
file servers whose data they protect. Second, they don’t provide a high-level ver-
sioning view of the block versions they maintain that is more user-friendly and
easier to use. Specifically, they do not provide the kind of file versioning view
that a versioning file system can support. Both problems are related to the fact
that block-level CDP systems are designed to be transparent to the application
servers interacting with the storage that CDP systems monitor and protect.
As a result, existing block-level CDP systems are limited to data backup and
cannot be used as an extension of the on-line filing system.

This technical report describes the design, implementation and evaluation of
UVFS, which reconstructs a file versioning view similar to that provided by a
versioning file system based on block versions maintained by block-level CDP
systems, and for the first time demonstrates that it is possible to use a block-
level CDP system as an on-line extension of the main filing system. Because
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UVFS relies only on the last modify time field of files/directories, it is portable
across all main-stream operating systems, including Linux, Solaris, Windows
XP and Windows Vista. To discover file versions or incarnations, point-in-time
snapshots need to be “fixed” so that they are file system-consistent. UVFS
incorporates an incremental file system checker called ¢F'SCK for this purpose.
Although the design of iF'SCK is targeted at legacy file systems such as ext2, it
can also effectively leverage any metadata journal if the underlying file system
is a journaling file system, such as ext3 or NTFS. Overall the performance costs
of UVFS and iFSCK are pretty modest. It takes less than 3 seconds to discover
a new version for a file that is 16 levels below the root, and on average 50 ms
to find a old file version for a file that is 3 levels below the root.

. iFSCK for Continuous Data Protection

Existing block-level CDP systems have one limitation: the point-in-time snap-
shots they create are not necessarily file system-consistent, or more generally do
not guarantee any metadata consistency for the file servers whose data they pro-
tect. As a result, existing block-level CDP systems are limited to data backup
and cannot be used as an extension of the on-line filing system.

This technical report describes the design, implementation and evaluation of
1F'SCK, an incremental file system checker to efficiently turn point-in-time snap-
shots to be file system consistent. Although the design of iFSCK is targeted at
legacy file systems such as ext2, it can also effectively leverage any metadata
journal if the underlying file system is a journaling file system, such as ext3 or
NTFS. Overall the performance costs of iFSCK is pretty modest. It takes less
than 1 second to turn a 10GB point-in-time block-level snapshot into file-system
consistent.

. Write Optimization for SSD

LFSM is designed to solve the random write performance problem of Solid State
Disks (SSD). It achieves this goal by successfully combining efficient logging and
sequential writes. For a given logical write operation, LFSM first determines
whether the logical block is hot or cold according to its past write pattern,
allocates the tail physical block of the hot or cold log accordingly, compresses
the logical block’s new content to squeeze out space to hold a BMT update log
entry, combines the BMT update log entry and the compressed logical block
content and writes the result to the chosen log. LFSM’s BMT is in a fixed
location and therefore can be easily located. However, the random updates to
the BMT are converted to sequential writes through a BOSC scheme, which
aggregates pending updates to the BMT and asynchronously commits them to
the BMT on a page by page basis. The erasure units in the hot and cold logs are
used in a cyclic FIFO fashion. When reclaiming erasure units, LESM strikes a
delicate balance between minimizing the overhead of copying live blocks in each
reclaimed erasure unit and ensuring enough free blocks are available to meet
the demands. Combining these techniques into a software layer between the file
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system and the flash disk’s native driver, LFSM is able to reduce the average
write latency for a 4-KB logical block from 7.8 msec to 1.6 msec, approximately
a factor of 5 reduction. About 50% of the average write latency is due to the
background garbage collection overhead.

Although the design of LFSM does not make any assumption about the under-
lying flash disk except that it has good sequential write performance, we have
not tested the current LESM prototype on a variety of commodity flash disks to
claim that LFSM’s performance benefits are indeed universal and independent
of the internal implementation details of the flash disks. We plan to perform a
comprehensive test of this sort to identify potential conflicts between LESM and
the Flash Translation Layer (FTL) and commercial flash disks. We also plan to
implement LFSM directly in the FTL as a part of the firmware or native device
driver. The main challenge of this port is to reduce the memory requirement
of LFSM’s in-memory data structures so that they can fit within the physical
memory available on flash disks.

7.3 Conclusion of De-duplication for Incremental

Backups

From the analysis of collected trace, we can safely draw the following conclusions
regarding the design decisions:

1.

The idea of taking the segment as the basic de-duplication unit is successful
because (1) the average segment length is non-trivially large (i.e., 119 for the
analyzed trace), (2) blocks in the basic sharing unit accounts for most of dupli-
cate blocks.

K, the maximal number of segments a particular fingerprint can participate in,
does not have great impact on the de-duplication procedure.

. Tgsu, the threshold of the reference count to identify a basic sharing unit, does

not need to be large. Tgsy = 2 can produce good de-duplication results.

The Rate-based-LRU scheme is better than the Basic-LRU scheme in evicting
fingerprints in SFI.

. VFSFI with BSU and the Rate-based-LRU scheme can have very good DDR

even when the SFI is 1/256 of whole FI.

Segment-based containers can save 1/Os in reading containers compared to
stream-based containers.

Segment summary can save 5% of container readings.
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8. For segment summary, if the physical location information is not stored per-file,
the memory overhead is significant.

9. BOSC can be employed to improve the container update throughput.

7.4 Future Research Directions

More research areas can be explored to apply the BOSC scheme. One area is to apply
the BOSC scheme to the layer between the CPU L2 cache and the main memory.
One research challenge is that the current OS does not have direct control of the data
placement in the CPU cache. More work needs to be done to port the BOSC scheme
between the CPU L2 cache and the memory layer.

BOSC can be extended to operate on a cluster of machines instead of a local
machine. Similar to PNUTS and Bigtable, BOSC can provide read/write services
for key/value pairs on top of a cluster of machines. There are 3 research challenges
in adapting BOSC to a cluster of machines. First, the software layer to position
BOSC is not straightforward in a cluster environment. For a local disk, the block
level is a natural place to manipulate the commit order of pending updates for BOSC.
However, for a cluster connected by network, it is not clear where to manipulate the
commit order of pending updates. Second, for a cluster of machines, each machine
can independently commit their records and the way to distribute records to these
clustered machines needs much more careful consideration. Third, durability of pend-
ing updates can be guaranteed either in a centralized fashion or a distributed fashion.
For the centralized approach, all updates of all clustered machines are pushed to a
single logging machine, which suffers from the single point of failures and performance
bottleneck. For the distributed approach, each cluster machine logged its own up-
dates. More research effort is required to study the trade-off among the performance,
reliability and the ease of deployment in ensuring durability by the BOSC scheme
atop a cluster of machines.
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