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Abstract of the Dissertation 

Supercomputer Network Design and Analysis 

by 

Reid Powell 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

 

Stony Brook University 

2010 

 As supercomputers have reached nearly 300,000 cores with 2 petaflops 

in Linpack performance in June 2010, energy consumption and temperature 

control are posing a developmental bottleneck.  We retrospectively and 

comparatively examine all of the available data contained in the Green500 list 

that launched in November 2007, and the Top500 list, and propose a novel 

representation and analysis of the data, highlighting major evolutionary trends. 

 With these new insights, we introduce a new technique for generating 

more efficient networks by systematically interlacing bypass rings to torus 

networks (iBT networks). The resulting network can improve the original torus 

network by reducing the network diameter, node-to-node distances, and by 

increasing the bisection width without increasing wiring and other engineering 

complexity. We present and analyze the statement that a 3D iBT network 

proposed by our technique outperforms 4D torus networks of the same node 
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degree. We found that interlacing rings of sizes 6 and 12 to all three dimensions 

of a torus network with meshes 30×30×36 generates the best network of all 

possible networks, including 4D torus and hypercube of approximately 32,000 

nodes. This demonstrates that strategically interlacing bypass rings into a 3D 

torus network enhances the torus network more effectively than adding a fourth 

dimension, although we may generalize the claim. We also present a node-to-

node distance formula for the iBT networks.
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Chapter 1:  Introduction 

1.1 Latest Developments in Supercomputer Design 

 Although interconnection networks have been studied for decades, for 

example those used in telephone networks, computer telecommunications 

networks, and backplane buses, sources like the Top500 [3] illustrate the rapid 

evolution of the interconnection systems that are developed by the high 

performance computing community.  In [4], a lack of standards and high demand 

for performance and reliability is cited as creating a diverse microprocessor 

system interconnection network landscape.  Now, more than ever, is there a 

need for accurate and efficient methodologies for the evaluation and 

comparison of such networks. 

1.2 Contributions 

 This work makes two major contributions.  First, it provides analysis of 

supercomputer performance data over the past 18 years, highlighting major 

evolutionary trends. 

 Second, along with the insights gained by such an analysis of the high 

performance computing landscape, we introduce a new technique for 

generating more efficient networks by systematically interlacing bypass rings to 

torus networks (iBT networks).  A 3D iBT network proposed by our technique 

outperforms 4D torus networks of the same node degree, as well as many other 

popular networks. 

1.2.1 Evolutionary Performance Analysis of Supercomputers 

 We examine the current and historic high performance computing 

landscapes from four major perspectives.  The first is a performance and 

efficiency analysis for the current Top500 systems, summarizing many features 

of the list in a concise way.  The second considers this data over the past three 

years, partitioning the set of systems by major features.  Next, an evolutionary 

analysis is performed, where the efficiencies of sets of systems over several six-
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month periods are summarized by moving system averages.  Finally, 

phylogenetic analyses of major system manufacturers are performed. 

1.2.2 Development of a Novel Network 

 Inspired by the simplicity and efficiency of the popular torus 

interconnection network [3, 5-10], we interlace a series of bypass rings to a base 

torus network to create the iBT network, achieving the low and narrowly 

distributed internode distances of nearly-spherical networks [11-14] and the low 

average internode distances of hypercube networks [15-17], while maintaining 

the simplicity and low node-degree of torus networks.  Previous efforts have 

proposed similar bypass structures [18-22]; however these lacked feasibility due 

to prohibitively long communication links. 

 We justify the performance of the iBT network by comparing it with the 

performance of the networks listed above, as well as with other popular 

structures like the de Bruijn network [23], cube-connected cycles (CCC) [24], the 

hybrid fat tree [25], and scalable Barrel Shifter network [26].  Finally, we present 

an application-specific method to compare these networks 

1.3 Dissertation Structure 

 The dissertation is organized as follows.  In the following sections, we 

summarize the contributions of this dissertation to the field of supercomputer 

network design and analysis.  Then, an analysis of recent architectural trends in 

high-performance supercomputing is presented.  In Chapter 2, the problems of 

network design and analysis are stated and defined.  The proposed networks are 

described in detail, followed by a detailed definition of the topological analysis 

tools used to compare the newly designed networks with current architectures.  

In Chapter 3, the results of the topological analysis are presented for all 

networks considered.  In addition, application specific analysis data is presented.  

Next, in Chapter 4, the implications of the results presented are discussed and 

conclusions are drawn.  Lastly, in Chapter 5, areas of future research are 

enumerated and described, from immediately feasible experiments to larger-

scale future efforts.  
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Chapter 2:  Evolutionary Performance Analysis of 

Supercomputers 
 The biannual Top500 list of the highest performing supercomputers has 

chronicled, and even fostered, the development of recent supercomputing 

platforms.  Coupled with the Green500 list that launched in November 2007, the 

Top500 list has enabled analysis of multiple aspects of supercomputer design. In 

this chapter, a comparative and retrospective study, we examine all of the 

available data contained in these two lists and propose a novel representation 

and analysis of the data, highlighting several major evolutionary trends. 

 While there have been many efforts to develop a comprehensive tool set 

to evaluate and analyze supercomputing platforms, none has achieved the 

popularity that the Linpack benchmark and the Top500 list have.  Since 1993, [3] 

has released a biannual list of the fastest 500 supercomputers that have run the 

Linpack benchmark [3]. Intended as a means to facilitate comparison between 

the world's most powerful supercomputers, it also consequently fostered a 

sense of competition between leading vendors, driving performance 

improvements. 

 As supercomputers have reached nearly 300,000 cores1 with 2 petaflops2 

in Linpack performance in June 2010 [3, 27], energy consumption and 

temperature control are posing a developmental bottleneck; thus, power 

efficiency has garnered considerable concern in the supercomputing platform 

design process.  It is noted in [28] that in 2001, the infrastructure and energy 

cost of a 1U server has exceeded its purchase cost.  Since then, clusters like 

Green Destiny [29] have attempted to explore “power-aware” supercomputer 

designs.  Inspired by the Top500, in an effort to bring power efficiency to the 

forefront of supercomputer design, the Green500 [30] has been released as 

listing of the world’s most powerful supercomputers, fostering competition in 

the realm of power reduction. 
                                                      
1
 JUGENE, a Blue Gene/P Solution at Forschungszentrum Juelich (FZJ) with 294912 cores. 

2
 Jaguar, a Cray XT5-HE achieving 1.759 petaflops. 
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 Together, the Top500 and Green500 provide a rich set of data for looking 

into the evolution of the supercomputing landscape.  Previous efforts such as 

[31-34] have noted patterns within the first 15 years of the Top500 list. 

Motivation, background, and preliminary findings for the Green500 list appear in 

[28-30, 35-39]. 

 This Chapter, providing a novel presentation of the Top500 and Green500 

data and identifying developmental trends in supercomputer design, is organized 

as follows. In Section 2.1, we detail our techniques for analyzing the evolution of 

the top supercomputers. Correlating performance representations and analysis 

are presented in Section 2.2; trends are highlighted and discussed here, as well.   

Finally, in Section 2.3 we discuss the implications of this new perspective with 

respect to future developments. 

2.1 Evaluation Metrics of Supercomputers 

 Evaluating supercomputers is a daunting task, given the many aspects of 

the computers that are selectively important to individual users.  We employ the 

most popular evaluation tools such as the Top500 and Green500 while 

developing our own plots. 

2.1.1 Top500 

 June 2010 marks the 35th release of the Top500 list of supercomputers. 

The Top500 ranks the 500 submissions with the highest      value, a measure 

of maximum performance a computer (in         ) achieved when running 

the HPL benchmark [3]. In addition, for each submission the following responses 

are measured: the sites at which computers reside, computer name, year 

introduced, vendor, number of cores,       for the peak performance, and 

power consumption in some cases. Another metric of interest, Linpack 

Efficiency, is determined by the ratio 
    

     
.  In summary, the web site has 

provided a rich set of data to further analyze and categorize supercomputers. 
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2.1.2 Green500 

 The Green500 list [30] creators claim to provide “rankings of the most 

energy-efficient supercomputers in the world. [They] raise awareness about 

power consumption, promote alternative total cost of ownership performance 

metrics, and ensure that supercomputers only simulate climate change and not 

create it.” Between its inception in 2007 and the June release of 2009, the 

Green500 list was a reordering of the Top500 list in order of decreasing power 

efficiency measured as the maximal Mflops per Watt, a metric proposed in [40]. 

Power consumption of a system is measured by a digital power meter plugged 

into the system's power strip, and readings are sent to a profiling computer once 

every 20 μs (at a rate of 50 kHz).  Newer versions of the Green500 list such as the 

Little, Open, and HPCC iterations listing different subsets of supercomputers can 

be found at www.green500.org [30].  For the purposes of this study, we are 

concerned with the power efficiency of the supercomputers appearing on the 

Top500 list. 

2.2 Evolution Analysis of Supercomputers 

 In Sections 2.2.1, cross referencing the power efficiency data with the 

Linpack efficiency data, we examine supercomputers in a two-dimensional 

scatter plot: Power efficiency versus Linpack efficiency.  Naturally, we can derive 

rich information from this representation.  More desirable systems are those 

with both highest power efficiency and highest Linpack efficiency.  The other 

three possibilities are also obvious: low power efficiency and high Linpack 

efficiency, high power efficiency and low Linpack efficiency, and low efficiencies 

in both dimensions.  Supercomputers appear in the scatter plot grouped 

according to the following factors: manufacturer, parallel architecture, network 

interconnect, and processor family. 

 In Sections 2.2.2—2.2.5, with such a partitioning of the Top 500, we first 

present the Linpack and power efficiencies of the Top 500 supercomputers over 

the last six iterations of the Top500 and Green500 lists.  The set of 

supercomputers from each list is partitioned into subsets based on the 

characteristics listed in Section above.  Along with coloring elements from 

http://www.green500.org/
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different subsets, each subset is enclosed by its convex hull to facilitate 

comparison between subsets. Finally, the median values for Linpack efficiency 

and power efficiency are denoted by dash-dot lines on the respective axes. 

 In each case, we not only perform “static” analysis for these categories, 

but we also highlight the developmental trends of these categories. 

 The system averages for each list release are surrounded by a 

corresponding ellipse, which summarizes the spread of the subset of 

supercomputers.  The principal radii of an ellipse represent the standard 

deviations of a subset along their respective axes. 

 Figure 2.2 summarizes the latest (June 2010) state of supercomputer 

efficiency, highlighting the best-performing ones. 

 Figure 2.3—Figure 2.10 present four pairs of plots.  The first plot in each 

pair is the efficiency scatter plot of the Top 500 supercomputers, partitioned 

based on particular design characteristics; the second is the evolution of the 

subsets' centers of mass. 

2.2.1 Scatter Plot of Efficiencies 

 Figure 2.2 presents the supercomputers appearing on the June 2010 

Top500 list.  The horizontal axis is Linpack efficiency, while the vertical axis is 

power efficiency (as listed on [30]); the center of each disc indicates efficiencies 

while the radius is proportional to the Linpack performance of the corresponding 

supercomputer as it appears on [3].  Each label is of the form “Computer Name: 

     ,” where   and   are the Top500 and Green500 ranks of the corresponding 

supercomputer, respectively.  Labeled supercomputers are those with ranking 

pairs in the set                  .  These systems are listed in Table 1; in 

other words, computers listed here must be in the top 10 of the Top500 list, or in 

the top 10 of the Green500 list, or both.  Each disc's color corresponds to one of 

the network types listed in the legend. The viewable area in the figure is a box 

with lower left and upper right corners corresponding to the minimal and 
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maximal Linpack and power efficiencies, respectively.  Rays from the bottom-left 

corner of this box divide the plot at     and    . 

 Concentric arcs highlight several features of the data.  Centered at the 

minimal efficiencies' values, these arcs indicate the distribution of the Top500 

supercomputers' efficiencies by displaying selected percentiles of the order 

statistics                    , where    represents the square of the 

“distance” of system   from the minimal efficiency value, i.e. 

     
        

  
 
 

  
        

  
 
 

   

in which    and    are the respective ranges of the Top500 supercomputers' 

Linpack and power efficiencies, respectively.  Of the first 200 systems ordered by 

  , (below the 40th percentile), 198 are clusters from either IBM or Hewlett-

Packard.  The popularity of these clusters causes a significant amount of disc-

overlap in Figure 2.2 with identical systems having identical efficiency values; 

whereas the greater diversity and therefore less disc-overlap of more efficient 

supercomputers makes the number of these machines appear greater in 

comparison. 

 Considering the bottom half of the Top500 with respect to   , all but nine 

of the 250 systems employ Gigabit Ethernet; this means that a single system in 

the top half, a Dell PowerEdge Cluster, uses Gigabit Ethernet.  This feature 

appears clearly in Figure 2.2, as the 40% arc nearly partitions the Top500 into 

Gigabit Ethernet systems and non-Gigabit Ethernet systems. 

 Interesting things to note include China’s performance share increase 

between 2008 and 2010, from 3% to 13%.  Additionally, the United States fell 

from 65% to 51% over the same time period. 
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Figure 2.1. Scatter plot of the Top500 supercomputers as of November 2010. 
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Figure 2.2. Scatter plot of the Top500 supercomputers as of June 2010.  
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Table 1. A summary of the top ten of Top500 and Green500 supercomputers as of June 2010.  

System 
Top 

Rank 
Green 
Rank 

Power 
Eff. 

Linpack 
Eff. 

Jaguar, Cray XT5-HE 1 56 0.755 253.07 
Nebulae, Dawning TC3600 Blade 2 4 0.426 492.64 
Roadrunner, BladeCenter QS22/LS21 3 7 0.757 444.25 
Kraken XT5, Cray XT5-HE 4 64 0.808 235.77 
JUGENE, Blue Gene/P Solution 5 19 0.823 363.98 
Pleiades, SGI Altix ICE 8200EX/8400EX 6 57 0.794 249.58 
Tianhe-1, NUDT TH-1 Cluster 7 11 0.467 379.24 
BlueGene/L, eServer Blue Gene Solution 8 112 0.802 205.27 
Intrepid, Blue Gene/P Solution 9 19 0.823 363.98 
Red Sky, Sun Blade x6275 10 269 0.872 99.80 
QPACE SFB TR Cluster (3x) 131 1 0.799 773.38 
Cerrillos, BladeCenter QS22/LS21 Cluster 35 5 0.782 458.33 
BladeCenter QS22/LS21 Cluster 88 5 0.782 458.33 
Mole-8.5 Cluster 19 8 0.182 431.88 
iDataPlex 331 9 0.876 418.47 
iDataPlex 381 10 0.876 397.56 

2.2.2 Network Families 

 Figure 2.3 and Figure 2.4 refer to list releases between November 2007 

and June 2010.  During this time, systems appearing with Ethernet networks 

used Gigabit Ethernet exclusively; therefore, when analyzing these lists, 

“Ethernet” refers to “Gigabit Ethernet.” 

 In Figure 2.3, we present a scatter plot of the Top500 supercomputers 

grouped according to network types for six listings.  The vertical axis is power 

efficiency (        ) over the range        ; the horizontal axis is Linpack 

efficiency 
    

     
 over the range      .  Each point represents a supercomputer; its 

color indicates the network type shown in the legend.  The two dashed lines in 

each frame indicate the medians of the two efficiencies. 
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Figure 2.3. Scatter plot of the Top500 supercomputers grouped according to network type for six listings. 

Platforms built with Ethernet networks reside, for the most part, in the 

lower left quadrant, with a maximum power efficiency of 150.45          in 

November 2007 to 228.78 in June 2010.  As of this date, no Ethernet 

supercomputers have achieved top 10% Linpack efficiency performance.  The 

only Ethernet platforms exceeding the 90th percentile in power efficiency are 

two BladeCenter HS21 Clusters using Xeon quad core processors at 2.33 GHz in 

November of 2007.  As of November 2010, there is only one system in the top 50 

using an Ethernet interconnect. 
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In November 2007, no supercomputer was in the top 10% for both power 

and Linpack efficiencies.  Since the release of the Green500 list, the only 

networks of supercomputers achieving top 10% performance in both dimensions 

were proprietary networks (those of BlueGene/P), Infiniband networks, and two 

Atipa Candor Clusters using a Myrinet 10G-MX network, the only Myrinet 

supercomputers to exceed the 90th percentile in any category. 

As of June 2010, systems with proprietary networks such as BlueGene/P 

and several Cray XT systems, as well as Infiniband networks are the leaders with 

respect to power efficiency. 

From the November 2007 release of the Top500 to the June 2010 

release, supercomputers within the Myrinet network family gradually leave the 

list. Indeed, among the four types of networks, proprietary ones perform the 

best, followed by Infiniband, and then by Ethernet.  The costs precisely reverse 

the performance order. 

Figure 2.4 summarizes the efficiency evolution for various network types.  

The vertical axis is power efficiency (        ) over the range        ; the 

horizontal axis is Linpack efficiency 
    

     
 over the range      .  Each ellipse 

summarizes the efficiencies for all supercomputers with the given architecture 

type during a particular six month period. The center of each ellipse indicates 

average efficiencies while the radii of an ellipse show the standard deviations of 

the efficiencies. 



13 
 

 

Figure 2.4. Efficiency evolution for various network types. 

2.2.3 Processor Families 

 The major processor families represented on the Top500 list are AMD's 

x86 64, Intel's EM64T and IA-64, and Power; systems built with these, as well as 

those using other processor families, are plotted in Figure 2.5.  The vertical axis is 

power efficiency (        ) over the range        ; the horizontal axis is 

Linpack efficiency 
    

     
 over the range      .  Each point represents a 

supercomputer; its color indicates the network type shown in the legend.  The 

two dashed lines in each frame indicate the medians of the two efficiencies. 
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Figure 2.5. Timeline of scatter plots of the Top500 supercomputers grouped according to processor 
family, for six listings. 

Figure 2.6 shows the evolution of the efficiencies for the various 

processor families. The “Others” frame shows varied distributions over the dates 

considered. In addition to the relatively small size of the set, elements of 

“Others” occupied two extremes. In June 2009, only three systems used 

processors not from the four major families. The GRAPE-DR Cluster also had the 

minimal Linpack efficiency value (0.26) for that date, yet ranked fifth overall on 

the Green500 List in power efficiency (428.91         ). The remaining two 

systems, Earth Simulator—an NEC Vector system, and a Fujitsu Cluster, ranked 

22 and 28 on the June 2009 Top500 list, having Linpack efficiencies over 0.91; 

however, they performed at 51.00 and 66.85         , respectively, on the 

Green500 list. In the latest (June 2010) release, the GRAPE cluster no longer 
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appears, leaving the subset “Others” in the upper-half of the Linpack efficiency 

and the lower-half of the power efficiency distributions. 

 

Figure 2.6. Efficiency evolution for various processor family types 

Of the 42 entries using AMD x86 processors, nearly half are Cray XT MPP 

supercomputers, one of which is the number one Jaguar. Thirteen others are in 

the top 100. The 23 non-Cray supercomputers using AMD x86 chips are all 

clusters with a similar, though less skewed, Linpack performance distribution.  

The power efficiency of the AMD-based supercomputers shows consistent 

increase over the last five releases. 
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 Among the largest competitors (PowerPC, Intel EM64T and IA-64, AMD 

x86 64), Intel's EM64T is dominant with nearly 80% system share in November 

2009. 

2.2.4 Architectures 

 In Figure 2.7, we present a scatter plot of the Top500 supercomputers 

grouped according to architecture type for six listings.  The vertical axis is power 

efficiency (        ) over the range        ; the horizontal axis is Linpack 

efficiency 
    

     
 over the range      .  Each point represents a supercomputer; its 

color indicates the network type shown in the legend.  The two dashed lines in 

each frame indicate the medians of the two efficiencies. 
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Figure 2.7. Timeline of scatter plots of Top500 partitioned by architecture. 

Figure 2.7 highlights several features. The hull of the Cluster set is 

expanding in power efficiency. Although clusters appear to have mid-range 

Linpack efficiency, new cluster entrants into the Top500 list are now the most 

power efficient systems on the list. 

On the other hand, within the set of clusters, the subset of HP 3000BL 

Clusters displays the following evolutionary feature. If we examine the system-

center of HP Clusters, as time passes, supercomputers that are no longer 

powerful enough to make the Top500 disappear; however, these 
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supercomputers are the more efficient ones. While it is reasonable to expect a 

certain overhead associated with supercomputer scale, the set of MPP systems 

does not display such characteristics. Moreover, supercomputers like 

BlueGene/L and P show near-constant efficiencies, regardless of scale, a clear 

indication of strong scaling. 

Figure 2.8 summarizes the efficiency evolution for various parallel 

architecture types.  The vertical axis is power efficiency (        ) over the 

range        ; the horizontal axis is Linpack efficiency 
    

     
 over the range      .  

Each ellipse summarizes the efficiencies for all supercomputers with the given 

architecture type during a particular six month period. The center of each ellipse 

indicates average efficiencies while the radii of an ellipse show the standard 

deviations of the efficiencies. 

 

Figure 2.8. Efficiency evolution for various parallel architecture types. 

2.2.5 Vendors 

 In Figure 2.9, we present a scatter plot of the Top500 supercomputers 

grouped according to vendor type for six listings.  The vertical axis is power 

efficiency (        ) over the range        ; the horizontal axis is Linpack 
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efficiency 
    

     
 over the range      .  Each point represents a supercomputer; its 

color indicates the network type shown in the legend.  The two dashed lines in 

each frame indicate the medians of the two efficiencies. 

 

Figure 2.9. Timeline of scatter plots of the Top500 supercomputers grouped according to manufacturer, 
for six listings. 

Figure 2.10 summarizes the efficiency evolution for various vendors.  The 

vertical axis is power efficiency (        ) over the range        ; the 

horizontal axis is Linpack efficiency 
    

     
 over the range      .  Each ellipse 

summarizes the efficiencies for all supercomputers with the given architecture 
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type during a particular six month period. The center of each ellipse indicates 

average efficiencies while the radii of an ellipse show the standard deviations of 

the efficiencies. 

 

Figure 2.10. Evolution of efficiencies for Vendors. 

In the June 2010 release of the Top500 list, IBM appears with 196 entries.  

Figure 2.10 shows consistent improvements in efficiencies for IBM systems over 

the last to list releases. Although Cray shows little change in system averages of 

power and Linpack efficiencies between November 2008 and November 2009, it 

shows the greatest increase of any vendor in power efficiency with the latest 

release. On the other hand, Cray has shown decreases in Linpack efficiency for 

each release since the November 2007. 
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 Vendors that are not a part of the six most frequently appearing are 

summarized in the lower-right panel entitled “Others.”  Companies such as 

Fujitsu, Hitachi, NEC, as well as self-made platforms are part of the 41 entries 

represented here. Of these entries, 34 use Infiniband Networks. This group 

shows a slight and increasing improvement in Linpack efficiency, as well as a 

consistent improvement in power efficiency. 

2.2.6 Further Analysis for IBM Systems 

 Since June 2004, IBM supercomputers have consistently made up about 

40% of the Top 500 systems, appearing with a variety of architectures, system 

models, processors, and networks. Figure 2.11 summarizes the evolution of 

IBM's supercomputers making the Top500 list. Each band represents a subset of 

systems sharing characteristics. The height of each band represents aggregated 

performance share, 
     

       
.  The width of each band shows the length of time a 

particular type of system appeared on the Top500 list. Supercomputers are 

categorized in the following manner. Systems are first partitioned by 

architecture (SMP, MPP, Cluster), then by system type (BlueGene, BladeCenter, 

etc.), then, in some cases by processor type (POWER3…6, Pentium, Itanium).  

Finally, systems are divided by network type, as shown in the legend; here, we 

differentiate between systems using varieties of Ethernet networks. 
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Figure 2.11. IBM Phylogeny. 



23 
 

In Figure 2.12 and Figure 2.13, we analyze specifically the evolution of 

IBM systems. 

 

Figure 2.12. Timeline of scatter plots for IBM system types. 

 

Figure 2.13. Efficiency evolution for IBM system types. 
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2.2.7 Further Analysis for Cray Systems 

 Figure 2.14 shows the introduction of the Top500 list coinciding with a 

decline in appearances by Cray SMP platforms and a gradual transition to MPP.  

Few Cray clusters appear on the list; namely, one Opteron Cluster with Myrinet 

interconnection and several XD1 platforms using RapidArray interconnection. 

 

Figure 2.14. Cray Phylogeny. 

2.2.8 Further Analysis for Hewlett-Packard Systems 

HP Supercomputer 3000BL: a Case Study of Ethernet vs. Infiniband 

When examining only Hewlett-Packard's 3000BL Cluster family, we are 

afforded an interesting comparison of Ethernet and Infiniband networks.  In 

Figure 2.15, we plot the evolution of all HP Cluster Platform 3000BL 

supercomputers.  Each of the six dated frames is a scatter plot of the platforms' 

efficiencies for that particular list release.  Within each of these frames, the red 



25 
 

and blue sets represent platforms built with Ethernet and Infiniband, 

respectively.  In the bottom right panel, we summarize the evolution of these 

network types within the HP clusters.  The left and right progressions correspond 

to Ethernet and Infiniband, respectively. 

 

Figure 2.15. Hewlett-Packard Cluster Platform 3000BL, with two network types.   

Except for one cluster appearing in November 2007, each Infiniband 

cluster has a higher Linpack efficiency than each Ethernet cluster. 

Figure 2.16 summarizes the evolution of the HP 3000 BL cluster 

supercomputer-types with the Ethernet progression on the left and Infiniband 

on the right.  Additionally, each colored point represents the system average of a 

particular set of the corresponding date and is surrounded by an ellipse with 

radii equal to the standard deviations of that set in the respective dimension. 
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Figure 2.16. Evolution of efficiencies for Hewlett-Packard Cluster Platforms 3000BL. 

2.2.9 Further Analysis for Japanese Systems 

 Figure 2.17 shows the taxonomic time line of Japanese vendors Fujitsu, 

Hitachi, and NEC.  Several of these companies have collaborated with other HPC 

and traditionally non-HPC companies to build platforms appearing on the 

Top500; Figure 2.17 represents the individual efforts of these vendors. 

 Fujitsu systems appear on the first Top500 list with single processor 

computers. By list two, a transition to MPP begins.  Between November 1993 

and November 2001, Fujitsu's performance share is dominated by their VPP 

family of systems, until another transition to SMP, constellation, and cluster 

architectures occurs. 

 Hitachi platforms begin with a trajectory similar to that of Fujitsu, starting 

in November 1993 with single processor vector systems and making a transition 

to MPP systems with crossbar interconnect. 

 NEC follows this progression as well with the notable exception of several 

platforms with constellation architecture.  Additionally, the then immediate 

impact of NEC's Earth simulator is highlighted in Figure 2.17. 
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Figure 2.17. Japanese Vendor Phylogeny. 
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2.3 Summary Statements 

 We have presented and analyzed the correlations of the Linpack and 

power efficiencies of the past six listings of 500 supercomputers each. We group 

such supercomputers according to their architectures and original design 

manufacturers and analyze conveniently the time evolutions. Our analysis has 

for the first time revealed, in many cases reaffirmed, the comparative properties 

of such supercomputers. First, the Ethernet connected systems are low in both 

power (80         ) and Linpack (52%) efficiencies and they have made 

negligible improvements over the six-listing period while the proprietary 

networked systems are the best in both efficiencies (220          and 83%, 

respectively.) Myrinet and Infiniband are the middle-level performers. Second,  

Cray and IBM are leaders of power and Linpack efficiencies and both made 

significant progress in power efficiency over the six-listing period. HP performs 

the poorest with low power efficiency of below 80          and low Linpack 

efficiency (70%). Third, PowerPC processors perform the best with high 

efficiencies in both while Intel IA-64 has the lowest power efficiency (and decent 

Linpack efficiency). In summary, a system with proprietary network, PowerPC, 

designed by IBM is the most optimal. A representative ideal system is the IBM 

BlueGene family.  
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Chapter 3:  Development of a Novel Network 
 Advanced networking architectures [3, 5, 7-8, 10] have enabled 

supercomputers such as RoadRunner [41] to break the petaflop barrier.  Such 

progress has stimulated the parallel computing community to invent more 

scalable interconnection networks to accommodate the ever-increasing 

demands on performance and functionality by incorporating millions of powerful 

processor cores. A scalable interconnection network, of fixed node degree, must 

satisfy most of the performance requirements: small diameter, large bisection 

width, topological simplicity, symmetry, design modularity, engineering 

feasibility, as well as expandability.  For example, a 3D torus network (such as 

that in IBM’s Blue Gene and Cray’s T3E [5, 7-8, 10]) with up to 20,000 nodes and 

several smaller-scale hypercube network supercomputers [3, 15-16, 42], satisfy 

several of these requirements. However, network diameters grow according to  

      for a torus, and         for a hypercube, where   is the network size.  

Growth rates for many derivatives of these networks [15-16, 24, 42-44] are 

similarly rapid.  This defect of rapidly growing diameters greatly limits the 

expandability of these networks.  Mesh networks of fixed dimension provide an 

alternative, having relatively low node degree and low engineering complexity; 

however they possess the disadvantages of large network diameter and small 

overall bandwidth.  Other efforts to increase bandwidth without increasing 

network diameters include that of the hybrid fat-tree [25], a low-cost, low-

degree network with irregular node degree.  This network is susceptible to 

disconnection through faulty links and message contention toward roots.  Other 

proposals have also been introduced, such as the incomplete torus and its 

derivatives [45] that reduce node degree at the expense of losing symmetry and 

topological simplicity. Honeycomb mesh and torus networks [46] received 

considerable early attention that faded quickly due to implementation obstacles, 

among other difficulties.  Hexagonal networks introduced in [12] also boast a 

small diameter but carry a burden of a high node degree.  Modifications of the 

traditional torus including the PEC [20], SRT [19], TESH [47], and RDT [22] 

networks all build upon the simplicity of mesh and torus networks, achieving 



30 
 

improved network properties with unfavorable expandability and network cost.  

However, these variants demonstrated that interlacing rings of various lengths to 

a torus network is a profitable practice for improving network performance 

without adding significant engineering complexity. 

 Motivated by this, we propose the iBT network. The iBT network is 

constructed by interlacing bypass rings evenly into a torus network.  We 

preserve the simplicity of a grid-like layout and improve the performance of the 

network with two bypass links per node.  Our model allows for generalization of 

the bypass construction of the base torus to arbitrary dimensions for much 

larger and scalable networks, rather than being exclusively two-dimensional as in 

[19-20, 22].  This new network achieves a low network diameter, high bisection 

width, short node-to-node distances, and low engineering complexity in terms of 

network cost.  Furthermore, the iBT network has a significantly lower node 

degree and network cost than those of a hypercube network with a similar 

number of nodes.  To ensure network symmetry and modularity, we interlace 

rings into the torus network according to a consistent pattern.  To analyze the 

topological properties for achieving an optimal network, we present the node-

to-node hop distance distributions. 

 The chapter is organized as follows: We first define the iBT 

interconnection model and its generation scheme in Section 3.1.1.  In Sections 

3.1.2 and 3.1.3, we describe the evaluation criteria for networks and the 

performance comparisons with torus and hypercube networks, respectively.  A 

formula for a node-to-node shortest distance is discussed in Section 3.2 and 

comparisons with other popular networks are given in Section 3.2.2. 

3.1 iBT Interconnection Network 

 The iBT network, generated by interlacing bypass rings into a torus 

network, is an  -dimensional composite network that contains an  -dimensional 

torus network and additional bypass rings.  Here, we provide the formal 

definition of the iBT network, present several topological properties of the 

network, enumerate the evaluation criteria used to compare networks.  
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Furthermore, we demonstrate the construction of a 3D iBT from a base 3D torus 

and search for an optimal 3D iBT configuration.  As an example, we show the 

detailed procedure to generate an optimal iBT network with approximately 

32,400 nodes and compare it to a 4D torus network of 32,768 nodes with an 

identical node degree of eight and to a hypercube with            nodes. 

3.1.1 Definition 

 An                              network outgrows from an 

 -dimensional torus network            by interlacing   -hop bypass rings 

(       ) recursively into any   of the   dimensions (   ).  The   

dimensions with bypass rings are referred to as the bypass dimensions and the 

remaining     dimensions without bypass rings are referred to as plain 

dimensions. The terms                 are referred to as a bypass scheme 

for generating the iBT network.  This interconnection model results in a node 

degree of     , where    is from the base torus connections and the 

additional 2 from the bypass connections.  To determine the two bypass 

connections for a node               , where                , 

       , we introduce three terms: a node bypass dimension      

          and a node bypass length                  , which can be 

expressed as 

          

 

   

            

         

where 

   
    

 
           

 
             

Thus, a node’s bypass species                  indicates that two     -hop 

bypass links have been added to the given node   in each direction along the 

dimension     .  For example,                            indicates 

the interlacing of 4-hop and 16-hop bypass rings in the first two dimensions, i.e., 
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  -plane, of the 3D torus            .  A node           has a bypass 

dimension       , a bypass length          , and thus, its bypass species 

is       , implying that   has two 16-hop bypass links in each direction along 

dimension  , i.e., the first dimension.  Here, we summarize constraints that exist 

on the iBT network.  Consider the network                      

             . 

1.     ,            . 

2.              
 

 
        

Constraints 1 and 2 prevent edges of different bypass rings from being 

redundant torus links or a single edge. 

3. Each node will exist on exactly one bypass ring. 

These first three constraints imply that every node will have degree of 

    , where   is the number of dimensions of the network.     links 

appear from the   dimensions in the positive and negative directions 

along with two bypass links in each direction. 

4. Bypass rings are evenly interlaced.  In other words, the bypass sequence 

appears as defined above.   

a) This implies that the length of the bypass sequence must be a 

multiple of   , the number of bypass dimensions and bypass 

lengths, respectively.  Consider a node   of species      

            in a network with   bypass dimensions and   bypass 

lengths.  To maintain even interlacing, every other species must 

appear exactly once in every direction before a different node 

with species             appears again.  

b) Furthermore, the length of the bypass sequence is   .  In order to 

ensure nodes of differing species are not adjacent (connected by 

bypass links), bypass lengths must be a multiple of the bypass 

sequence length,   . 

c) Equivalently, since the bypass sequence is fixed, the nearest node 

in any direction with the same species will be    hops away. 
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d) Finally, the size of the network in each bypass dimension must be 

a multiple of   . 

 

Figure 3.1. Bypass scheme for                   . 
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Figure 3.2. Internode distance distribution for                                     
                                    . 

 

Figure 3.3. Bypass scheme for                      . 

0
%

2
5

%
5

0
%

0 1 2 3 4 5 6 7 8

iBT : 

Avg. = 4.25

Std. = 2.33

Mesh(4x8): 

Avg. = 3.00

Std. = 1.41

0
%

2
5

%
5

0
%

0 1 2 3 4 5 6 7 8

iBT : 

Avg. = 2.88

Std. = 1.32

Mesh(4x8):  

Avg. = 3.00

Std. = 1.41

0%
2

5
%

5
0

%

0 1 2 3 4 5 6 7 8

iBT : 

Avg. = 2.94

Std. = 1.32

Mesh(4x8): 

Avg. = 3.00

Std. = 1.41

0%
2

5
%

5
0

%
0 1 2 3 4 5 6 7 8

iBT : 

Avg. = 4.47

Std. = 2.35

Mesh(4x8): 

Avg. = 3.00

Std. = 1.41



35 
 

 

 

Figure 3.4. Internode distance distribution for                      , as labeled above. 

In Figure 3.1—Figure 3.4, we show the hop distance distribution and 

bypass configurations for a family of 1D iBT networks written as          

     generated from a 1D torus network with 32 nodes. A 1D torus network 

      is itself a ring.  This 1D scheme is easy to follow and generalize for 

illustration at higher dimensions.  The average node-to-node distance and 

standard deviation within a 32-node 2D torus network        is        and 

      , respectively.  As shown in Figure 3.1—Figure 3.4, the node-to-node 

distances of the resulting iBT networks are statistically smaller than those of 

      , for example,       ,       , for                   and 

      ,       , for                    . 
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Figure 3.5. 2D                    with highlighted links. 

In Figure 3.5, we draw all of the links for the 2D iBT network       

            .  In Figure 3.6, we illustrate the bypass scheme for the 3D iBT 

network                           .  In this figure, we only draw 

selected bypass links along the three easily visible faces to identify the nodes 

that are connected by the appropriate bypass links.  Other links are omitted for 

the purpose of clarity. 
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Figure 3.6. Selected links in the bypass scheme of                           . 

3.1.2 Evaluation Criteria 

 To evaluate a network model, we consider its diameter, average node-to-

node hop distance, bisection width, and more importantly, the node-to-node 

hop distance distribution [48-49].  The network diameter, defined as the longest 

node-to-node hop distance, indicates the worst-case communication latency, 

while the average distance, defined as the average of the node-to-node hop 

distances, represents the expected communication latencies over the network.  

These two measures provide some information about the network while the hop 

distance distribution provides a richer representation of the network properties 

including maximum, average, and standard deviation of node-to-node distances.  

Additionally, we consider the bisection width to measure the aggregate network 
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capacity and the network cost, defined as a product of diameter and node 

degree, for network comparison [50]. 

3.1.3 Search for Optimal iBT Networks 

 To evaluate the iBT network, it is necessary to identify which network 

configurations are feasible.  First, we will enumerate certain constraints that 

exist for the iBT network. 

Exhaustive Search of Feasible Networks 

As an example, we begin by enumerating all networks with   processors, 

where                .  For now,           .  With the range of 

network sizes fixed, the number of bypass dimensions is fixed at  , meaning the 

number of plain dimensions is equal to    .  Commonly, for networks based 

on rectilinear architectures, network sizes are of the form   ; on the other hand, 

since the size of an iBT network in each bypass dimension must be a multiple of 

  , its network size is not necessarily of the form   .  For this reason, we 

expand the search to a range of sizes. 

For the     dimensional case, with node-degree       , even 

interlacing of bypass rings, constraints 1, 2, and 3, and    , the largest number 

of bypass lengths is    .  Furthermore,                            

is the only class of feasible networks in this case.  Further still,          is 

the only network that will support these parameters and satisfy the upper bound 

of constraint 2. 

Searching Networks up to     nodes 

To get an idea of how these iBT networks perform as network size 

increases, we have explored the space of networks up to size     [51] and plot 

the average internode distance versus network size in Figure 3.7. 
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Figure 3.7. Detailed plot of iBT performance for networks up to 1,000,000 nodes [51]. 

3.2 Performance Analysis 

 In the following sections, we build the necessary methods to compare the 

selected networks.  We choose to use popular metrics like network diameter and 

bisection width.  Additionally, for a more detailed comparison, we also compare 

the internode distance distributions, highlighting the average internode distance, 

as well as the standard deviation of these distributions. 

3.2.1 Distance Formulas, Network Diameters and Internode Distance 

Distributions 

 For all pairs of nodes in a graph, the ones with a shortest path of maximal 

length determine the diameter of a network.  This metric proves to be useful in 

the comparison of network performance since it accurately characterizes the 

latency incurred in sending message across the network.  For example, it can be 

used to calculate a lower bound in the time required for collective 

communications such as an all-to-all. 
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 For the purposes of this study, we calculate the internode distance 

distributions in several ways.  Where possible, we use the appropriate internode 

distance formula.  For iBT networks, we derive such a formula.  For some 

networks, like the RDT, we employ the Floyd-Warshall algorithm.  Internode 

distance distribution is essential in the characterization of latency incurred 

during average case message passing. 

 For optimal routing, we always need to search for a path with the 

shortest internode distance [5, 8, 12].  As with many networks, there are many 

possible paths between a source node and destination node for iBT networks.  It 

is much less obvious to recognize such paths for the iBT networks than for the 

torus network. This appears to be one of the few disadvantages of the iBT 

network. To overcome this, we have derived a closed-form internode distance 

formula for iBT networks with the bypass scheme               . Other more 

complex cases can also be derived. 

iBT Terminology 

In                              networks, the number of 

hops in a shortest path between a node-pair can be partitioned into two parts, 

         and         .  The part          consists of those edges along the 

first   bypass dimensions;          contains only edges along the remaining 

    plain dimensions.  Since the plain dimensions have no bypass 

connections, the procedure for calculating           is identical to that of a 

traditional torus network.  Thus, we concentrate on calculating          by 

assuming that    .  Considering this, we abbreviate the iBT networks with a 

uniform-length bypass connection in the first two or three dimensions as 

                      and                         , 

respectively. 

In the                       network, consider two points 

          
  and           

 , where             and            .  

The         function is a standard sign function, while        is the signum 

function, defined as: 
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and 

        
       
      
      

  

respectively. 

If   is a vector, the same operation applies to each of its components.  

For example, suppose         , then 

        
      

      
   

     
   

   
   

Let        be a two-point function defined as 

        
      
            

  

Now, consider an iBT derivative network in which each node is on bypass 

rings of each length and dimension.  We will discuss a distance formula for this 

network and relate it to the distance formula for standard iBT networks.  Let the 

vector          
 

 be referred to as the fundamental torus distance.  The 

magnitude of each element    represents the number of hops along dimension   

in the           direction on a non-bypass shortest path from    to   .  For 

example,      indicates that the message traverses      basis torus links in the 

positive or negative  -dimension, making the fundamental torus distance similar 

to the distance formula of a traditional torus.  The definition of    is written as 
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in which         .  We similarly define and express   .  In iBT networks, the 

set of links on a shortest path from    to    can be partitioned into two subsets: 

bypass rings and residual torus links.  The set of edges forming the bypass ring 

subset contributes to the bypass distance          
 

, a vector in which the 

magnitude of each component    is the number of bypass hops in dimension   in 

the           direction on a shortest path from    to   .  For example,      

indicates that a message from    to    traverses      hops of bypass rings in the 

positive or negative  -dimension.  Thus,    is written as 

         
  
 
                  

  
 
         

in which          rounds   to the nearest integer and         returns the 

fractional part of  . 

As stated previously, in addition to the bypass distance, a shortest path 

from    to    also has a residual torus link component. The residual torus 

distance is referred to as a vector             
 

 in which the magnitude of each 

component     is the number of torus hops in dimension   in the            

direction on a shortest path from    to   .  For example,       indicates that 

the message routes       hops of torus links in the positive or negative dimension 

 . Thus, 

          
   
   

   
       

       
   

In addition to the distance vectors, we also refer to the bypass species,      , of 

the node   .  It is a vector defined as 

                          

where “1” in       indicates the dimension in which the node adds bypass 

connections.  For example,                 means    adds bypass rings to 

the second dimension, i.e., dimension  . 
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The relationship among coordinates of       and    is 

                                    

The stated definitions in                       can all be 

extended to                         . 

                      

We will now relate the previous analysis to standard iBT networks.  In 

                      in which               , the distance 

between    and    is given by 

                                

where 

            
          

               
            

  

in which        
 ,            

  and                    
 . The 

notation              means that if         or if    ,     , we 

have             . 

In this equation, the terms      and       represent the bypass and torus 

hops a message needs to traverse under the assumption that a single node is on 

bypass rings across each of the bypass dimensions.  The “penalty 

term,”           ,  accounts for the interlacing of bypass rings, where a given 

node has bypass rings in exactly one bypass dimension.  For example,     

indicates no residual torus links are required, implying that            ; 

meanwhile,     implies that a message has to traverse bypass rings in two 

dimensions.  In this case, whichever bypass species a message emanates from, 

an additional torus hop is required to reach a node of a different species to 

traverse bypass hops in that bypass dimension.  Then, a second torus hop is 

required to return to a node of the original bypass species.  Thus, a valid shortest 
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path in this case will always require a positive number of torus hops, meaning 

            .  The set of       terms together account for all 

source/destination bypass species cases. 

                         

In                          in which               , 

the distance between    and    is given by 

                                 

where 

            

 
 

 
               

                    

                    
            

  

3.2.2 Comparisons with Other Networks 

 In this section, we compare the topological properties of 3D iBT networks 

with several other networks having a number of nodes closest to that of a 4D 

torus network with exactly 32,768 nodes [3]. 

Hypercube 

For the purposes of this dissertation, we will consider the hypercube in 

the following way.  Let          be a graph model of an  -dimensional 

hypercube consisting of a set of vertices  , and a set of edges  .  When 

visualizing this graph, let each vertex of   have a unique permutation of the 

coordinates 

  
 
 
   

 
 
   

 
 
    

 
 
    

For convenience, we will express a permutation of the above coordinates 

corresponding to a vertex as an  -digit binary sequence. 

In Figure 3.8 we show the cases                 which correspond to a 

single vertex (a point, or the singleton graph   ), an edge with two vertices as 
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endpoints (a line segment, or the path graph   ), a circuit of length four (  , or a 

square graph), a cube, and a tesseract graph, respectively.  [52-54] 

 

Figure 3.8. Visualization of the first 5 cases of hypercube graphs. 

Hypercube Average Internode Distance 

Consider the hypercube graph         .  Since the set of vertices 

contains every  -digit (leading zeros allowed) binary sequence, the total number 

of vertices is   .  An edge of the graph connects two vertices if and only if the 

corresponding  -digit binary sequences are different by exactly one digit.  For 

convenience, we say that two vertices are adjacent if and only if their Hamming 

distance is equal to 1, where the Hamming distance between two strings is the 

number of character places that are not equal.  Since each vertex in the graph is 

an  -digit binary sequence, each vertex has exactly   neighbors.  From [55], 

    
         

   

 
  

and the number of edges in the hypercube graph    is given by 

    
   

 
  

To find the average internode distance for a hypercube    with      

processors, we consider, without loss of generality, the processor    

            The average distance   , where the distance between two processors 

represents the length of a shortest path between corresponding vertices, from   

to all other vertices can be expressed with 
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where    is the number of vertices with corresponding processor address a 

Hamming distance   from               .  In other words,    is the number of 

binary sequences with exactly   1’s, and is therefore the binomial coefficient 

 
 
 
 .  So, 

   
   

 
 
  

   

    
 

     

    
  

The previous equation follows from the fact that 

  
 
 
   

 

   

         

and, when    , that 

 

  
          

 
 
 

 

   

        

which is further discussed in [55]. 

Now that an expression for the average internode distance    has been 

derived, the additional comparative metric that we require an expression for is 

the variance of internode distance   .  Consider a set of data  , which 

represents distances for all pairs of processors, for which we wish to calculate 

the variance.  Since our data set represents the entire population, we calculate 

the variance using the expression 

   
          

   

 
  

where   is the number of pairs (data points) and    is the mean of the set  .  In 

this case, since   is the set of distances between each (unordered) pair of 

processors, we have that    
 
 
 . 

For the term          
   , we use the expression for    determined 

above.  The set of distances   is composed of integers from the range 

         ; we are left with determining the number of pairs a distance   apart.  
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The number of pairs 1 hop apart is equal to the number of edges     
   

 
.  

However, in general, we restate the problem of determining the number of pairs 

with a distance of   hops as the number of pairs of  -digit binary sequences 

whose Hamming distances are  .  Since there are a total of    such sequences, 

without loss of generality, we consider the  -digit binary sequence   

       .  There are  
 
 
  sequences a Hamming distance of   away from  .  

Since    
 
 
  will count all pairs twice, there are      

 
 
  pairs of processors are 

a distance of   hops from each other.  Therefore, 

   
      

 
 
         

   

 
 
 
 

  

   
      

 
 
    

     

     
 

 
   

 
  

 
 

  

   
 

 

                    

              
  

This last statement is verified by [56]. 

In the following figure, the log nature of    is clear. 
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Figure 3.9. Average internode distance of Hypercubes. 

 

Figure 3.10. Comparison of iBT network and 4D Torus via average internode distance vs. network size.  A 
detailed depiction of the iBT data points appears in Figure 3.7. 
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 Cube Connected Cycles 

Cube-connected cycles are inspired by the hypercube.  An  th-order 

cube-connected cycle is generated by replacing each vertex in a  -dimensional 

hypercube by a cycle of length   [24, 54, 57].  One disadvantage of hypercube 

networks is that the degree of a node grows as   grows.  Although cube-

connected cycles share many properties with hypercubes, one difference is that 

for    , each vertex in a cube-connected cycle has degree three. 

Definition 

The set of vertices is given in terms of the vertices of a hypercube in the 

following way. 

                    

 

Figure 3.11. Cube-connected cycles of order 3, arraged geometrically on the vertices of a truncated cube. 

Consider two vertices           and          , where   is the vertex within 

the base hypercube and   is the location within the cycle replacing hypercube 

vertex  .  Vertices   and   are adjacent if any of the following are true: 
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1.        and the address of    and    differ only in the  th bit, 

2.           and      , 

3.         and      . 

Number of Vertices and Edges 

A hypercube of dimension   has    vertices. Since each vertex in the 

hypercube is replaced by a cycle of length  , there are            vertices in 

the cube-connected cycle graph of dimension  .  From above, each vertex has a 

degree of three, meaning that the total number of edges is 

       
    

 
  

Diameter 

Think of each vertex                                    as 

one possible reading of the binary odometer below which has a slider (with 

wrapping boundaries) that can be used to highlight a single bit and change its 

parity. 

 

Figure 3.12. Cube-connected cycles adjacencies. 

The slider has two legal “moves:” 

1. Flip the currently highlighted bit (this is analogous to traversing an edge 

of type 1 from above) 

2. Slide one digit left or right (this corresponds to traversing an edge of type 

2 or 3, respectively) 
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So, the distance between nodes     and    in a CCC is equal to the number of 

slider moves from an odometer reading of     with the   th digit highlighted to a 

reading of     with the   th digit highlighted. 

For    , without loss of generality, suppose the slider starts at position 0.  

Further suppose that every digit needs to be changed.  This contributes   bit 

switches and     slides, at best.  Now, from any given point on the odometer 

(which is really a ring because of boundary behavior), the final worst-case 

requirement is to force the slide as far from its current position as possible, 

which is about halfway around the ring, or  
 

 
    positions away. Therefore, the 

distance from any given node to a farthest node is 

       
 

 
        

 

 
     

de Bruijn Graph 

The de Bruijn graph [58-59] traditionally represents graphically the 

overlaps between sequences of symbols.  Given an alphabet of   symbols, 

           , an  -dimensional de Bruijn graph,        , contains 

       vertices, each one representing one of all possible length-  sequences 

of symbols from the given alphabet.  Thus, 

                                        

Two vertices,   and  , are connected by the directed edge                   in an  -

dimensional de Bruijn graph if and only if the sequence corresponding to vertex 

  can be expressed by removing the first symbol of the sequence corresponding 

to vertex   and appending any symbol to the end.  As a result, each vertex has 

indegree   and outdegree  . 

Scalable Barrel Shifter 

The Scalable Barrel Shifter network (SBS-net) is discussed in [26].  It is a 

network with      nodes. Nodes   and   are adjacent (connected by an 

undirected edge) if and only if               , where            .  

This implies that the degree of each node is     .  The diameter is 
 

 
     . 
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Comparison results 

We will analyze three iBT networks: 

1. 3D iBT network with bypass rings in two dimensions           

32; =2; 

2.                 ; 

3.                  , a 3D iBT network with bypass rings in all 

three dimensions. 

 For each iBT network, we evaluate them with bypass rings of the same 

length or a mix of two different lengths.  For comparison, we also analyze two 

other networks with a similar number of nodes: a 4D torus network         

      and the 15D hypercube       .  Since the node numbers of various 

network configurations are usually non-contiguous integers, it is unlikely one can 

find two configurations with exactly the same number of nodes.  We compare 

two that are as close as possible: the 32,768-node               and 

       with the 32,400-node                  . 

 Through exhaustive numerical search, we found the optimal iBT network 

of approximately 32,000 nodes to be                           .  We 

further compare this with other networks and graphs in Table 2 and Figure 3.18.  

All networks listed in the table except for the 3D torus, hypercube, the CCC 

network [24] and the scalable Barrel Shifter [26] have a node degree of 8.  As 

shown in Figure 3.18, these networks are grouped into three categories by their 

sizes.  Of all 32,000-node networks of degree 8, the iBT network has the shortest 

average distance. 

 Our analysis starts from numerical experiments.  Figure 3.13—Figure 3.17 

illustrate the numerical results for the 3D          and          networks, 

compared with 4D torus and hypercube.  Table 2 presents such network 

topological properties as internode distance distribution, network diameter, and 

bisection width. These experiments show, as expected, the dependence of the 

network properties on the bypass scheme; network properties behave relatively 
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poorly at bypass extremes: too short or too long.  Starting from a torus 

network            , we study the following cases: 

1. For                         , we bypass in two 

dimensions with uniform bypass length to generate a new network, 

                         with                .  We found 

the resulting networks have relatively poor network properties for 

extreme bypassing lengths such as          , but have better properties 

with mid-ranged bypass lengths such as     .  As a result,        

                 is the optimal iBT network with uniform bypass 

length in Figure 3.14.  For                   (same as above), 

we bypass in two dimensions with a mixture of two bypass lengths to 

generate a network,                            , with       

           .  With all possible combinations, the bypassing parameter 

         generates the optimal iBT network with two bypass lengths in 

Figure 3.15.  We also found that                            

excels over                         in Table 2. 

2. For                        , we bypass in two of the 

longest dimensions, generating a new network,               

            .  Under the same bypass scheme              , we 

found                  always outperforms           

        in Figure 3.13 and                           is the 

best of all possibilities, where     in Table 2. 

3. For                                , we consider 

bypassing in all three dimensions to generate the network           

       .  As shown in Figure 3.16—Figure 3.17,                

           with             demonstrated similar behavior to that of 

                          .  We also found           

                 is the best among all of the iBT networks, better 

than 4D torus and similar to 15D hypercube in Figure 3.17 and Table 2. 
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4. As summarized in Table 2, we found that most networks have the same 

network diameter but different average distances and various standard 

deviations; a network with a larger network diameter may have a smaller 

average distance such as                          with 

         . 

From these experiments, we make the following claims: 

1. For the iBT networks with uniform bypass length, extreme bypass length 

achieves poorer network performance than mid-range bypass lengths. 

2. An appropriate mixture of bypass lengths is favored in the interlacing 

arrangement for iBT networks over uniform bypass length. 

3. For iBT networks with plain dimensions, a plain dimension size should be 

shrunk to scale to bypass dimensions for optimized performance. 

4. The most efficient bypass scheme for a 3D iBT network is without plain 

dimensions.  It is shown that, among all the possibilities of a system with 

approximately 32,000 nodes,                            is the 

best network.  It performs much better than the simple 4D torus 

              with 32,768 nodes and it performs similarly to the 

15D hypercube       with 32,768 nodes and degree 15. Its network cost 

of value 96 is much smaller than the 4D torus’ 224 and the hypercube’s 

225. 

5. The internode distance distribution is efficient and precise in its depiction 

of topological details for the comparison of networks. 
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Figure 3.13. Internode distance distributions for 3D         . 
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Figure 3.14. Average internode distances and standard deviations for 3D          with uniform bypass 

length,               and        networks. 
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Figure 3.15. Average internode distances and standard deviations for 3D          with two bypass 

lengths,               and        networks. 
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Figure 3.16. Internode distance distributions for 3D         ,               and        

networks. 
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Figure 3.17. Average internode distances and standard deviations for 3D         ,            

   and        networks. 
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Figure 3.18. Average internode distance comparisons for several networks.  
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Table 2. Topological properties of iBT, Torus, and Hypercube interconnection models. 

iBT models 
Node 

Degree 

Hop Dist. (hop) Network 
Diam. 
(hop) 

Bisection 
Width (link) 

Network 
Cost Bypass Scheme Average 

Std. 
Dev. 

32,32,32 

2 

2 

8 

16.7344 5.6961 33 

2048 

264 

4 13.8593 4.9855 26 208 

6 13.3730 4.8800 26 208 

8 13.8984 4.9872 26 208 

16 16.9414 5.6963 32 256 

2 

4,8 13.1035 4.8235 24 192 

4,16 13.3257 4.8199 24 192 

8,16 13.6416 4.9104 26 208 

64,64,8 

2 

2 18.7422 6.6664 37 2048 296 

4 11.8672 3.5835 22 3072 176 

8 9.9023 2.6172 18 6120 144 

16 11.9434 3.5945 22 8192 176 

32 18.9697 6.6687 36 8192 288 

2 

4,8 9.2908 2.3277 16 4096 128 

4,16 8.5679 1.9477 14 6144 112 

4,32 9.5942 2.2946 16 6144 128 

8,16 8.7402 2.1133 16 7168 128 

8,32 8.9987 2.0954 16 7168 128 

16,32 11.5198 3.4786 22 8192 176 

30,30,36 
3 

3 10.3464 2.8542 19 3600 152 

6 8.2800 1.9675 15 5400 120 

9 8.8034 2.2895 16 7200 128 

12 8.8827 2.3044 15 9000 120 

15 11.3114 3.3441 21 7560 168 

3 6,12 7.5152 1.5288 12 7200 96 

3D Torus (32x32x32) [5, 7-8, 10] 6 24.0000 8.0312 48 2048 288 
4D Torus (16x16x16x8) 8 14.0000 4.2426 28 4096 224 

15D Hypercube 15 7.5000 1.9365 15 16384 225 

PEC (256x128) (32,768 nodes) [20]  8 8.9068 1.8342 15 1920 120 

2D SRT (128x128) (16,384 nodes) [19] 8 7.8904 1.6543 13 1664 104 
2D SRT (256x256) (65,536 nodes) [19] 8 10.0529 1.9974 16 3840 128 

RDT(2,4,1)/α(128x128) (16,384nodes)[22] 8 6.6113 1.2340 10 5632 80 

RDT(2,4,1)/α(256x256) (65,536nodes)[22] 8 7.8076 1.4521 12 23552 96 

CCC 11-11 (22,528 nodes) [24] 3 15.2685 2.8432 25 1024 75 
CCC 12-12 (49,152 nodes) [24] 3 16.9020 2.9487 28 2048 84 

Scalable Barrel Shifter (32,768 nodes)[26] 29 5.1111 1.1000 8 49150 232 

de Bruijn Graph DG(4,7)(16,384nodes)[23] 8 6.0287 0.9025 7 32768 56 
de Bruijn Graph DG(4,8)(65,536nodes)[23] 8 7.0145 0.9134 8 131072 64 

Hybrid Fat Tree (32,768 nodes) [25]  [2,29] 9.3334 1.6922 15 3 60 
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3.3 Application-Specific Analysis of Other Networks 

 In the following sections, we present an application specific comparison 

of other networks.  This is done by abstracting the network as a supply matrix 

and choosing an appropriate application load with which to compare networks. 

3.3.1 Supply-Demand Matrices 

 Supercomputer systems are modeled as a graph        , where the 

set of vertices,  , represents the set of compute nodes.  Two vertices,   and  , 

are connected by an edge in   if and only if the corresponding nodes are 

connected by communication links in the interconnection network. 

 In the following sections, we describe supercomputer networks and their 

corresponding graphs.  From these graphs, we define the supply matrix to be the 

all-pairs distance matrix, where entry     represents the distance between nodes 

  and   in the communication network, and the length of a shortest path 

between corresponding vertices   and  . 

 -ary  -cubes 

Communication networks of this type are found in torus systems like 

IBM’s BlueGene and QCDOC.  Figure 3.19 and Table 3 summarize the structure of 

IBM’s BlueGene while Figure 3.20 and Table 4 give examples of the truncated 

torus of the QCDOC network. 
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Figure 3.19. A visualization of a representative partition of BlueGene’s 3D torus network. 

Table 3. Representative partitions of BG/L. 

Nodes X Y Z 

32 4 4 2 
64 8 4 2 

128 8 4 4 
256 8 4 8 

512 8 8 8 
1024 8 8 16 
2048 16 8 16 
4096 32 8 16 
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Figure 3.20. A 2D representation of a 64 node (2x2x2x2x2x2) QCDOC partition, this network is also a 2-ary 
6-cube. 

Table 4. Representative partitions of QCDOC. 

P X Y Z K M N 

64 2 2 2 2 2 2 
512 2 2 2 4 4 4 

1024 2 2 2 4 4 8 
2048 2 2 2 4 4 16 
4096 2 2 2 8 8 8 

To calculate the distance between two vertices in this type of graph, let 

the address of   be             and the address of   be            .  

Additionally, let the non-torus distance along dimension   between   and   be 
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        .  The distance between   and   is then 

                 

         

  

where   is the number of nodes along dimension  .  The average internode 

distance is then 

      
  

         

 

 

  

                   

                  

   

3D Hexagonal Networks 

The 3D hexagonal networks discussed in [12] use the following distance 

and average distance formulas. 
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Lie Algebraic Networks 

 

Figure 3.21. The Lie Classical Algebras.  These artive partitions of BG/Lor constructing larger networks. 

Generating Coordinates for Networks based on       

The following pseudo code outlines a process which will yield 3 

dimensional coordinates for nodes in networks based on the       structure. 
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Pseudocode 1. This procedure generates 3 dimensional coordinates for nodes of networks built from the 
Sp(6) structure.  [13] 

 

Pseudocode 2. The WeightVectors function of the GenerateVectors() procedure [13] 

Once the vectors corresponding to the node coordinates are generated, 

the vertices of a graph model are created in the following manner.  Let 
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be the function that maps the set of vectors onto integers to be used as vertex 

addresses.  Vertices are then added by the following loop. 

 

Pseudocode 3. This function generates the set of vertices V of the graph model. 

Finally, the set of edges is constructed by creating adjacency according to 

the       root structure. 

 

Pseudocode 4. This function defines the set of edges E for the graph model. 

In the following figure, the graph model is visualized to give an idea about 

its structure. 
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Figure 3.22. Visualization of the network built with Sp(6) structure. 

 The supply matrix for this structure is calculated by the Floyd-Warshall 

algorithm [60]. 
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Figure 3.23. Supply Matrix for BG/L, 1024 nodes. 
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Figure 3.24. Supply matrix for QCDOC, 64 nodes. 
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Figure 3.25. Supply matrix for 3D Hex, t=7, N=923. 

 Figure 3.23 through Figure 3.25 display representative supply matrices 

for the machines compared. 

 Applications are also represented as graph structures. Demand matrices 

are the all pairs distance matrices associated with these graphs, structures in 

which entry       corresponds to the total number of communication units sent 

from the processor corresponding to vertex   to the processor corresponding to 

vertex  .  Here, communication units are bytes of data.  Below, in the following 

figures, we present indicator matrices of the demand matrices corresponding to 

applications used to compare networks.  A zero entry in the demand matrix 

corresponds to a white pixel in the image, whereas a non-zero entry generates a 

blue pixel. 
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Figure 3.26. Indicator matrix of the demand matrix for BCSPWR90. 
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Figure 3.27. Indicator matrix for the demand matrix of BCSSTK130. 

 The demand matrices used in this study are from the Harwell-Boeing 

repository.  They include: 

1. YOUNG4C: Acoustic Scattering, highlighting bypass ring-like 

communication pattern 

2. BCSPWR: Power network patterns with nearest neighbor and long 

distance communication 

3. BSSTRUC: BCS Structural Engineering Matrices (eigenvalue matrices) 

4. PSMIGR_3: Inter-county migration US inter-county migration 1965-1970; 

doubly stochastic; heaviest diagonals [±1, ±5] 
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3.3.2 Task Mapping Models 

 Within the task mapping model, the mapping vector,  , is a vector of 

length  , where entry    contains the label to which the task   is mapped.  For 

example, in a rank order mapping (ROMap), 

                    

The objective function cost of a particular mapping   is given by 

              

       

  

3.3.3 Mapping Heuristics 

 Here, we summarize the heuristics used to compare networks. 

Simulated Annealing 

Below, in Pseudocode 5, we present the simulated annealing algorithm 

used to calculate the objective function value of mappings. 

 

Pseudocode 5. Simulated Annealing algorithm. 
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Let the energy of the  th mapping be   .  Additionally,      

               is the supply matrix corresponding to the  th mapping.  Then, 

              
   

         
   

         
   

         
   

     

 

       
     

         
     

         
     

         
     

     

 

      
   

    

         

      
     

     

         

 

Furthermore, let                   .  Then,  

              
     

         
     

         
     

         
     

     

 

      
     

    

         

 

          

 

Figure 3.28. Venn diagram representing SA-Neighbor(s). 

Genetic Algorithm 

When mapping a set of   tasks to   processing elements, we are 

searching the population of    permutations of the set of tasks for a mapping 
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permutation of minimal energy.  The following pseudocode summarizes the 

genetic algorithm used here. 

 

Figure 3.29. Genetic algorithm pseudocode. 

Crossover Operation 

Given individuals (mappings)    and   , generate two new individuals   
  

and   
  where 

  
              

 
 
 
 
        

3.3.4 Quality of the Mapping Models 

YOUNG4C 

Machine Dimension Num Procs ROMap SA Best % Impr. 

so(7) 5 1051 0.8738722 0.4063812 53% 

BG/L 8x8x16 1024 1 0.5722651 43% 

QCDOC 2x2x2x4x4x8 1024 0.7062634 0.4993198 29% 

su(4) 7 923 0.9030274 0.4631428 49% 

 

  



78 
 

BSSTRUC190 

so(7) 5 1051 1 0.3342379 67% 

BG/L 8x8x16 1024 0.769664 0.4890352 36% 

QCDOC 2x2x2x4x4x8 1024 0.7839221 0.4029215 49% 

su(4) 7 923 0.9734667 0.3876898 60% 

662BUS 

Machine Dimension Num Procs ROMap SA Best % Impr. 

so(7) 5 1051 0.8231054 0.2742948 67% 

BG/L 8x8x16 1024 0.8289054 0.3795863 54% 

QCDOC 2x2x2x4x4x8 1024 0.7865638 0.3213236 59% 

su(4) 7 923 1 0.3038898 70% 

BCSSTK130 

so(7) 7 2703 0.8969505 0.4154848 54% 

BG/L 16x8x16 2048 1 0.6110536 39% 

QCDOC 2x2x2x4x4x16 2048 0.7970662 0.4960131 38% 

su(4) 9 2057 0.9370016 0.4291801 54% 
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BCSSTH150 

Machine Dimension Num Procs ROMap SA Best % Impr. 

so(7) 7 2703 0.6230841 0.3343774 46% 

BG/L 32x8x16 4096 0.8999733 0.5423386 40% 

BG/L 32x16x8 4096 1     

BG/L 16x8x32 4096 0.606313     

QCDOC 2x2x2x8x8x8 4096 0.5329424 0.3624994 32% 

PSMIGR 

so(7) 7 2703 0.6715247 0.5400175 20% 

BG/L 32x8x16 4096 1 0.9269351 7% 

BG/L 32x16x8 4096 0.9970267     

BG/L 16x8x32 4096 0.8043478     

QCDOC 2x2x2x8x8x8 4096 0.514379 0.4991226 3% 

3.4 Summary Remarks 

In all cases, ROMap had a lower energy value than the random sample.  

Sparse application matrices gave greater improvement over dense 

communication patterns.  Finally, dimension priority ordering on BG/L has a 

drastic effect on objective function value.  Figure 3.30 depicts the effect that a 

15% run-time improvement will have on cost of computation for a standard 

queue job on Brookhaven National Labs’ BlueGene machine. 
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Figure 3.30. Financial Impact of task mapping. 

 Figure 3.30 depicts the savings given a 15% improvement in run-time 

versus the number of processors, given commercial use of BG/L at Brookhaven 

National Labs.  For a 48-hour allocation of 100,000 nodes, nearly $50,000 is 

saved.  As supercomputers move into exa-scale, efficient use of resources will 

save orders of magnitude more. 



81 
 

Chapter 4:  Conclusions 
Novel analysis of the vast amounts of data, such as the analyses presented 

here, would benefit a wide variety of groups: system integrators (e.g. Cray, HP, 

IBM) that assemble the system out of existing components.  Their customers and 

the OEM vendors can influence them in deciding what components to use.  This 

work, in turn, may influence their customers as they see a comparative analysis. 

System manufacturers, like IBM, that build system from proprietary 

components would also benefit greatly from this work.  The systems they create 

are targeted for specific markets and power efficiency is one of many 

constraints.   This analysis highlights, among other features, that PowerPC with 

optimal networks can be energy-efficient.  Other Off-the-Shelf “super” computer 

makers produce rather energy-draining platforms due to the convenience of off-

the-shelf components. 

Finally, users of supercomputing platforms will benefit greatly from this 

research.  It quickly and concisely distills the most important features of the 

current supercomputing landscape. 
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Chapter 5:  Future 
 The work presented here has many promising avenues of future 

research.  With the recent release of several new versions of the Green500 list, it 

is clear that the Top500 list and the Green500 list are growing in popularity, and 

fostering a large community of individuals from diverse computing backgrounds.  

Development of a website that will display these analyses, allowing users to 

customize views, is underway using the prefuse flare visualization toolkit for Java 

(http://flare.prefuse.org) with the aim of integration with the Top500 website. 

 Currently, the analysis is relevant to many from the parallel computing 

community.  However, additional analysis, such as partitioning of the Top500 

supercomputers according to network media, like copper and fiber optic cable, 

would offer an alternate and more specific perspective on the performance and 

efficiency of supercomputer networks. 

 With respect to the iBT network, generalization of the iBT distance 

formula to higher dimensional networks will facilitate collective communication 

algorithms implementation of the iBT architecture.  Ultimately, this work would 

result in the construction of an iBT system. 

Finally, in the area of network comparison and evaluation, a higher 

degree of accuracy and efficiency will be pursued by improving solution 

methods.  Namely, by increasing neighborhood radius and parallelizing the 

simulated annealing algorithm.  Additionally, network models that account for 

features such as path diversity and application/network models that consider 

network contention are obvious but vast next steps. 

http://flare.prefuse.org/
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