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Abstract of the Dissertation 

 

 

Structural Equation Modeling for Mixed Designs 
 

 

by  
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Doctor of Philosophy 

 

in  

 

Applied Mathematics and Statistics 

 

Stony Brook University 

 

2010 

 

 

A mixed-design study, also called a split-plot design, intends to evaluate the differences 

among multiple independent groups and multiple treatment conditions simultaneously, 

with repeated measurements of the same participants. Structural equation modeling 

(SEM), also referred to as path analysis, is a statistical technique used by researchers in 

many fields to verify or disprove hypothesized causal links among a predefined system of 

variables. The existing SEM methods for detecting differences in path strength among 

multiple datasets can accommodate comparisons of independent groups or repeated 

measures (e.g. with and without stimulus), but not both. Thus SEM is unable to perform a 

direct analysis of a mixed-design study. To fill this void, we have developed a cohesive 

two-level parametric modeling approach using the maximum likelihood method (MLE 

SEM) for detecting differences in pathways caused by multiple factors, both between and 

within groups, such as group membership or treatment condition. The method is 

illustrated through a brain functional pathway analysis. Further, developments of the 

mixed-design methodology for Latent Variable SEM and Partial Least Squares SEM 

(PLS SEM) are included, and guidelines for power and sample size are provided.  
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Chapter 1: Introduction 

 

 

 

 

 

Path analysis is a method for verifying or disproving causalities between variables 

in a path diagram (nodes joined by directed lines). The strengths of the paths and the 

covariance structure of the variables present are the parameters to be estimated in the 

model. It was developed by Sewall Wright beginning in 1918 [1]. Later, Blalock first 

attempted to apply this concept to studies in the social sciences [2], and Duncan furthered 

this effort in the 1960’s and 70’s [3]. It was Dr. Karl Gustav Jöreskog 

(http://en.wikipedia.org/wiki/Karl_Gustav_Jöreskog) who eventually formalized 

structural modeling (SEM) into the common LISREL (LInear Structural RELations) 

representation (and software) we use today for understanding structural equation 

modeling (a more general type of path analysis including latent variables) [4]. Jöreskog’s 

LISREL model features matrix computation for estimation of parameters.  

 Today, structural equation modeling has found many applications. It is popular in 

the social sciences and economics [5-8], as well as in brain functional pathway analysis 

[9-16] and genetic pathway analysis [17-23]. There are also many customized software 

procedures to facilitate such analysis. SAS, professional statistical software designed for 

many different types of statistical analyses, includes the CALIS procedure, which can 

estimate SEMs. LISREL (www.ssicentral.com/lisrel) is SEM software (bearing the same 

name as the creators’ matrix model representation) created by Jöreskog and Sörbom 

which can estimate single- and multi-group SEMs with many traditional estimation 

options. It includes a path diagram capability that SAS does not. This makes the LISREL 

software a popular choice for behavioral and social scientists. Software similar to 

LISREL is EQS (www.mvsoft.com), developed by Dr. Peter M. Bentler. It, too, can 

estimate single- and multi-group SEMs, and has a path diagramming feature which will 

create the model for the user. In addition, EQS can model mean structures and estimate 

multi-level models. AMOS (www.spss.com/amos) and MPLUS (www.statmodel.com) 

are also prominent SEM packages. All of these packages yield similar results for a single 

path analysis model.  

 However, despite its rapid growth in the past thirty years, SEM methodology and 

software packages still have quite a few gaps to be filled. A foremost deficiency is the 

lack of a SEM procedure for the analysis of mixed designs, which we have confirmed 

with senior statistical technical support at both LISREL and EQS via ongoing electronic 

conversations. Mixed designs are traditionally referred to as split-plot designs, first used 

in agricultural studies. They are used to study the influence of several factors on the 

response variable. These factors could include group membership or treatment 

conditions, for example. In its original form, researchers would split an agricultural plot 

into several smaller plots and assign each a value of one of the factors. The sub-plots 

would then be divided to accommodate all values of a second factor, and so on. 

Experimental treatments (factors) are randomly assigned to each plot and sub-plots so 

that all combinations of all factors are represented. As the focus of statistics shifted from 

agricultural studies to biomedical studies in the past decades, the mixed design (or the 
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split-plot design) represents a study where we have multiple independent groups of 

subjects and each subject has been measured repeatedly (either longitudinally or under 

different treatments). These experimental designs are sometimes referred to as panel 

designs when the repeated measures are made longitudinally, and one is interested in 

studying the longitudinal effect of the measurements.   

We have been collaborating with Dr. Nora D. Volkow, Director of the National 

Institute on Drug Abuse, in her study of the brain functional pathway and particularly the 

reward network in the brain. We are interested in detecting the differences in path 

strength for cocaine abusers and normal subjects, when each subject is evaluated under 

the influence of placebo and a cocaine-like substance called methylphenidate. Locating 

the differences in the network (due to drug addiction history and/or due to receiving the 

drug) could help determine a method for successfully inhibiting the reward network, and 

thus effectively stopping the reward in the brain of the drug-abuser. This study relies 

heavily on our ability to detect differences in strength of pathways between factors in a 

mixed design study. We are glad to report that we have successfully developed the 

necessary theoretical framework and implemented the corresponding algorithm in 

MATLAB. We discuss its development of SEM for Mixed Designs (MD-SEM) and 

illustrate with the analysis of the afore-mentioned brain functional pathway study. We 

report the results of our power and sample size analysis of MD-SEM and discuss Partial 

Least Squares (PLS) SEM as an alternative to the traditional maximum likelihood (MLE) 

SEM methodology when the sample size of a particular study is small.  
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Chapter 2: Structural Equation Modeling (SEM) Introduction and 

Literature Review 
 

 

 

 

  

 While structural equation model (SEM) is a popular covariance analysis technique 

in many fields, it is rarely covered in undergraduate and graduate statistics curriculum. 

Therefore, a brief introduction to the methodology is provided here along with a thorough 

literature review on the current capabilities of SEM and its lacking of a methodology and 

software platform for the analysis of mixed designs. This void is filled as part of the work 

of this dissertation. Our methodology is presented in Chapter 3.  

 

2.1 An Introduction to SEM Diagrams, Models, and Estimation  

 

2.1.1 A Simple Example 

 Consider the following simple example. A researcher is interested in studying the 

variables that may lead to an increased risk for developing an eating disorder. The 

variables under consideration as causal influences in the model are: age of first menstrual 

period (AM), body image score (BI), self concept score (SC), drive for thinness (DT), 

and risk for developing an eating disorder (RD). The researcher proposes that the relation 

between the variables in the study is as shown in the diagram below. The diagram is the 

same for each group.  

 
Figure 2.1. Hypothesized path diagram indicating collaborator’s suggested relationships 

among variables influencing development of eating disorders in women; these factors 

include age of first menstrual period (AM), body image score (BI), self concept score 

(SC), drive for thinness (DT), and risk for developing an eating disorder (RD).  
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 Looking at the diagram, note the coloring of the variables, represented in 

rectangles. Each of the blue boxes is an endogenous variable, because it has arrows 

coming into the box, illustrating causes present in the model. The variable colored in pink 

is an exogenous variable because its causes are not considered in the current model. For 

each endogenous variable, we can create a regression equation, incorporating each 

variable that influences the variable being considered. The system of equations for this 

model is shown below.  

1 2 1

3 4 2

5 6 3

7 4

BI AM SC

SC AM BI

DT BI SC

RD DT

β β ζ

β β ζ

β β ζ

β ζ

= + +

= + +

= + +

= +

 

 

In each equation, there is one random response variable, a coefficient preceding each 

random influence on the response that is present in the model, and a random error term. 

This system of regression-style equations represents a structural equation model. 

 We can write this system in matrix form. We will list our endogenous variables in 

vector  

BI

SC
Y

DT

RD

 
 
 =
 
 
 

, 

 

our exogenous variables in vector ( )X AM= , and errors in vector 

 

1

2

3

4

ζ

ζ
ζ

ζ

ζ

 
 
 
 
  
 

= . 

 

We can create two matrices of regression coefficients, or path coefficients, as they are 

called in an SEM. Β will represent the paths from endogenous variables to endogenous 

variables, where (1,2)B represents the coefficient of the path from 2Y  to 1Y  (a parameter 

if a path exits, 0 if no path exists). Γ will represent the paths from exogenous variables to 

endogenous variables, where (2,1)Γ represents the coefficient of the path from 1X  to 2Y . 

Then the model for this system can be described by Y XY ζΒ + Γ += , where 

 

2

4

5 6

7

0 0 0

0 0 0

0 0

0 0 0

β

β

β β

β

 
 
 
 
 
 

Β =  and  

1

3

0

0

β

β

 
 
 Γ =
 
 
 

. 
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 To estimate the parameters of this model and determine the significance of 

individual paths, we use the maximum likelihood estimation method, which requires the 

assumption that all variables present in the model have a multivariate normal distribution. 

Additionally, we assume that all variables are continuous, and that the sample size of the 

study is large—several times the number of parameters we will be estimating, for best 

results. Finally, we assume that the model is well-defined—that the researcher providing 

the model has included all significant variables and excluded all insignificant variables. 

Details on estimation of the general SEM model are formally discussed in the following 

section.  

 

2.1.2 Models in Matrix Form   

 Kenneth A. Bollen’s text gives an excellent introduction theoretical introduction 

to SEM, [1]. The standard path analysis model (SEM with measured variables only) is: 

 

Y Y X ζ= Β + Γ + . 

 

Y is a vector of the endogenous variables studied, and X a vector of the exogenous 

variables studied. (Note: An endogenous—or dependent—variable in the model is one 

with arrows coming in, i.e. influences of this variable are present in the model. An 

exogenous—or independent—variable in the model is one with no arrows coming in, i.e. 

influences of this variable are not present in the current model.) Both Y and X have been 

centered about their means. Β is a matrix containing path coefficients where the entry 

,i j
Β is the coefficient of the path from endogenous node j to endogenous node i. Γ is a 

matrix containing coefficients of paths from exogenous variables to endogenous 

variables. ,i j
Γ  is the coefficient of the path from exogenous node j to endogenous node i. 

ζ  is a vector containing the error variables in the equations for the path diagram.  

The null hypothesis we work with in SEM is always ( )θΣ = Σ . The question we 

answer is: “does the model predict a covariance matrix for the data that is equal to the 

population covariance matrix?” Σ  is the population covariance matrix of the observed 

variables and ( )θΣ  is the covariance matrix written as a function of the free model 

parameters (the vectorθ ). We can break ( )θΣ into a block matrix as follows. 

 

( ) ( )
( )

( ) ( )

yy yx

xy xx

θ θ
θ

θ θ

Σ Σ 
Σ =  Σ Σ 

 

 

We will consider each block individually. We can solve for Y explicitly since 

Y Y X ζ= Β + Γ + :  

1

( )

( ) ( )

Y Y X

I Y X

Y I X

ζ

ζ

ζ−

− Β = Γ +

− Β = Γ +

= − Β Γ +
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Then 

( ) ( , ) [( )( ) '] [( )( ' ')]

[ ' ' ' '] ( ')

yy Cov Y Y E Y EY Y EY E Y EY Y EY

E YY EY Y YEY EYEY E YY

θΣ = = − − = − −

= − ⋅ − + =
 

 

where E represents the expected value of a random variable. Therefore,  

 

1 1 1 1

1 1

1 1

( ) ( ')

[( ) ( )(( ) ( )) ] [( ) ( )( ' )( ) ]

( ) ( ( ' ) ( ) ( ' ) ( ))( )

( ) ( )( )

yy
E YY

E I X I X E I X X I

I E XX E X E X E I

I I

θ

ζ ζ ζ ζ

ζ ζ ζζ

− − − −

− −

− −

Σ =

′′ ′ ′= − Β Γ + − Β Γ + = − Β Γ + Γ + − Β

′′ ′ ′ ′= − Β Γ Γ + Γ + Γ + − Β

′′= − Β ΓΦΓ + Ψ − Β

 

Note that Ф is the covariance matrix of x and Ψ is the covariance matrix of ζ. 

 

Similarly, ( ) ( , ) ( ')
xx

Cov X X E XXθΣ = = = Φ by definition. 

Therefore,  

 

( ( , ) [( )( ) '] [( )( ' ')]

( ' ' ' ') '

)
xy

Cov X Y E X EX Y EY E X EX Y EY

E XY Y EX XEY EXEY EXY

θ = = − − = − −

= − − + =

Σ
 

1 1

1 1

( ) ( ') ( (( ) ( )) ) ( ( ' ')( ) )

[ ( ' ) ( )]( ) ( )

xy E XY E X I X E X X I

E XX E X I I B

θ ζ ζ

ζ

− −

− −

′′ ′Σ = = − Β Γ + = Γ + − Β

′ ′′ ′ ′= Γ + − Β = ΦΓ −
 

  
1 1

1 1 1

) ) '] ' ']

' '] 0)

( ( ') [( ) ( ( ) [

( ) [ ( ) ( ( )

yx X X XX X

EXX E EX

E YX E I B I B E

I B I B I B

θ ζ ζ

ζ

− −

− − −

Σ Γ + = Γ +

= Γ + =

= = − −

− − −ΓΦ + = ΓΦ
 

 

Now we can assemble Σ(θ) as follows: 

 















Φ
′

Β−Γ′Φ

ΓΦΒ−
′

Β−Ψ+Γ′ΓΦΒ−
=









ΣΣ

ΣΣ
=Σ

−

−−−

1

111

)(

)())(()(

)()(

)()(
)(

I

III

xxxy

yxyy

θθ

θθ
θ  

 

Now that we have ( )θΣ , we can estimate θ . We have the equation ( )θΣ = Σ , so 

we set elements of Σ equal to the corresponding elements in our ( )θΣ matrix. Since we do 

not know the actual values of Σ ’s entries, we do not know the population covariances. 

However, we may approximate them with the sample covariance matrix, S. 

In estimatingθ  (a vector of our free variables—the path coefficients and equation 

errors), we must choose values ofθ  such that the difference between S and ( )θΣ  is 

minimized. We find estimates of the parameters by maximizing the likelihood function of 

the multivariate normally distributed random variables in Y and X. 
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2.1.3 Likelihood Function 

We will derive all likelihood functions from the direction of assuming the 

variables have a multivariate normal distribution. Assume Y and X are vectors of 

multivariate normally distributed variables. Let 
Y

Z
X

 
=  
 

. Z has length p+q (p is the 

number of endogenous variables and q is the number of exogenous variables in the 

model). Center Z so that all variables have mean 0. Then because Z is a vector of 

multivariate normal variables, the distribution of the variables in Z is  

 

( )
1
22 11

2
) (2 ')( ; exp

p q

f z z zπ
+− − −Σ = Σ Σ−  

 

since 0µ = for each variable in z. (The above is simply the PDF of the multivariate 

normal distribution.) 

For N independent observations of the vector Z, the joint density function is 

 

1 2 1 2) ( ; ) ( ; ) ( ;( , ,..., );
NN

f z ff z z z z f zΣ = Σ Σ ⋅⋅⋅ Σ  

 

and therefore, the likelihood function is 

 

22
( ) 1

2

1

1

( exp ') (2 ) ( ) ( )
NN

N
p q

i

i i
L zzθ π θ θ

−− + −

=

 
−Σ = 


Σ


∑ . 

 

(Once θ is observed, ( )θΣ = Σ in the distribution function.) 

 

Therefore, 

11
2 2 2

1

) ( ) log 2 lolog ( g ( ' () )
N

N N
i i

i

p q z zL θ π θ θ−

=

= − + − Σ − Σ∑ . 

 

We can simplify log )(L θ by dropping the constant term 
2

( ) log 2N p q π− + , since 

maximizing log )(L θ will yield the same result as maximizing the same function without 

the constant term. Additionally, we can opt to remove a factor of 1
2

− from the entire 

function, and minimize, rather than maximize the resulting function 

 

1

1log '( ) ( )
N

i i

i

N z zθ θ−

=

Σ Σ+∑ . 

 

We can further simplify the fitting function as follows: 

 

1 1

1 1log ' lo( ) ( ) ( ) ( )g 'i

N N

i i

i i iN z N tr zz zθ θ θ θ− −

= =

 + = + Σ Σ Σ Σ∑ ∑  
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1

1 1

1 1log ' l( ) ( o) ( )')g (
N N

N

i

i i

i

i iN tr z N N tr z zzθ θ θ θ− −

= =

   + = +   Σ Σ Σ Σ∑ ∑  

 

We can drop the constant factor of N from each term.  

1 11 1

1 1

l ( ) ( ) (og ' log ') ( )
N N

N N

i i

i i i iN N tr z tr z zzθ θ θ θ
=

− −

=

Σ Σ Σ Σ   + ⇒ +   ∑ ∑  

Finally, 

[ ]

[ ]

1 1

1 1

1

1 1

1 1

1

1

1 1

1 1

1

1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

log ' log '

log ' log '

log ' log

N N

N N

i

i i i i

i i i i

i i

i

N N

N N

i i

N

N N

i

tr z tr z

tr z tr z

tr z t

z z

z z

z Nr

θ θ θ θ

θ θ θ θ

θ θ θ θ

= =

=

−

− −

=

− −

−

=

 
 + = +   

 

   
   = + = +      

   

 
= + = + 



Σ Σ Σ Σ

Σ Σ Σ Σ

Σ Σ Σ Σ


∑ ∑

∑ ∑

∑
1 1

*

( ) ( ) * ( ) *log l g ( )o

S

S Str trθ θ θ θ− −

  

   = + = + Σ ΣΣ Σ 

 

 

(because ( )( )1

1

* 'i i

N

N

i

S X x X x
=

= − −∑  is the definition of the sample covariance matrix 

used here, and our variables are centered).  

 

We add on two constants, which have no effect on minimizing the function, 

log ( )S p q− − + , so that the fit function equals 0 when ( )S θ= Σ , indicating a perfect fit. 

Additionally, since 
1

*
N

S S
N

−
= , where S is the traditionally defined covariance matrix, 

and for large samples the two will be approximately the same, it is traditional to 

substitute S for S*.  

So the resulting fit function is the traditional ML fit function for SEM,  

 
1( ) ( )log log ( )

ML
F tr S S p qθ θ−Σ Σ = + − − +  , 

 

where S is the sample covariance matrix and p and q are the number of endogenous and 

exogenous variables, respectively. Minimizing the above function will yield the 

appropriate estimates ofθ . See the special section on calculating standard errors at the 

end of the document for more information about calculating errors for use in statistical 

analysis of parameter estimates.  

 

2.1.4 Standard Error of Parameters 

 In order to estimate the standard errors of the parameters we have estimated using 

the fitting function described in the previous section, we must use the information we 

have about the MLE of θ . The maximum likelihood estimator, �θ , of parameter vector θ , 

is distributed as  
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1
2 log ( )

, E
L

N
θ

θ
θ θ

−
  ∂ 

−  ′∂ ∂ 

 
 

    

. 

 

Standard errors (square root of variances of parameter estimates) of the estimates found 

in the previous section must be calculated via the asymptotic covariance matrix (inverse 

of Fisher Information Matrix), with respect to the method through which the parameter 

estimates are obtained.  

By definition [1], the asymptotic covariance matrix of the ML estimator of 

arbitrary θ  is 

�( )
1

2 log ( )L
ACOV E

θ
θ

θ θ

−

∂

′

   
= −  
 ∂ ∂  

. 

 

This calculation depends, of course, on the expected Fisher Information Matrix, and the 

required partial derivatives of log )(L θ . However, we are calculating the parameter 

estimates via 
ML

F , and our calculation of their respective errors should reflect this 

change. Therefore, we must determine the relationship between log )(L θ and
ML

F , and let 

the asymptotic covariance matrix reflect this difference.  

 As calculated above, 1( ) ( )log log ( )
ML

F tr S S p qθ θ−Σ Σ = + − − +  , and 

11
2 2 2

1

) ( ) log 2 lolog ( g ( ' () )
N

N N
i i

i

p q z zL θ π θ θ−

=

= − + − Σ − Σ∑ . We must determine the 

relation between 
2 log ( )L θ

θ θ

∂

′∂ ∂
− and 

2

ML
F

θ θ

∂

′∂ ∂
 to determine how the calculation of the 

asymptotic covariance matrix must change.  

In manipulating log )(L θ into 
ML

F , we remove a constant term, multiply by -2, 

manipulate one term into an equal term, multiply by 1
N

, then add a constant term. The 

effects on the equality of derivative are only the multiplying factors. So we can say  

 
11

2
1 1

22 2 2log ( 2 log () ) log ( )

2

NML
LF L N L

E E E E
N

θ θ θ

θ θ θ θ θ θ θ θ

−
−− − −

                   
− = − = =

∂∂ ∂ ∂

′
             

             ′ ′ ′    ∂ ∂ ∂ ∂ ∂ ∂ ∂  ∂

 

Therefore, 

( )
11

22 log (ˆ 2)
ML

FL
ACOV E E

N

θ
θ

θ θ θ θ

−−
        

= − =     
     

∂∂

′ ′∂ ∂ ∂ ∂    
. 

 

The standard errors of the parameter estimates are the square roots of the 

respective diagonal elements of the asymptotic covariance matrix.  
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2.1.5 Overall Model Chi-Square Goodness-of-Fit Test 

 As mentioned above, the goal of SEM is to test the hypothesis ( )θΣ = Σ . The chi-

square test is a simultaneous test that all residuals in ( ) 0θΣ − Σ = . The chi-square test is 

for overidentified models only (those where the number of distinct entries in the sample 

covariance matrix of observed variables exceeds the number of free parameters to be 

estimated). The test shows that 1
2

2

( )( 1)
( 1)

ML p q p q t
N F χ

+ + + −
− ∼ , where p and q are the number 

of endogenous and exogenous variables, respectively, and t is the number of free 

parameters to be estimated. The test is derived via the likelihood ratio test method. 

The likelihood ratio test statistic, by definition, is  

 

{ }
{ }

0sup ( | ) :
( )

sup ( | ) :

L x
x

L x

θ θ

θ θ

∈Θ
Λ =

∈Θ
. 

 

Under 0H , we have MLEs for all parameters and the fixed parameter values as well, that 

make up ( )θ̂Σ . Then  

( )( )1

0

1
log lo ˆ ˆg

2

N
L tr S

−−
= − +Σ Σ  

 

is the numerator for the likelihood ratio test (the log of the numerator of the test statistic). 

 

To form the denominator of the test statistic, we must choose an alterative 

hypothesis, 1H , for which the value of the corresponding log-likelihood function is at its 

maximum. The least restrictive 1H  possible is that Σ is any positive definite matrix 

(because at the very least, the matrix must have a positive determinant for the fitting 

function to take on a valid value). If Σ̂ is set to S , the sample covariance matrix, then 

1log L is at its maximum value. Then, ignoring the irrelevant constants, the likelihood 

function for 1H , 1log L , is  

( )( ) ( )1

11 1
log log log

2 2

N N
L S tr S S S p q

−− −
= − + = − + + , 

 

the log of the denominator of the test statistic. (We have selected 1H to represent a 

standard of perfect fit to compare 0H  to.) 

The natural log of the likelihood ratio, when multiplied by -2, is distributed as chi-

square variate when 0H  is true and (N-1) is large. In this case, 
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( )( ) ( )

( )( )

0
0 1

1

1

1

2log 2log 2log

1 1
2 log 2 log

2 2

( 1) log log (

ˆ ˆ

ˆ ˆ )

L
L L

L

N N
tr S p q

N tr S p q

S

S

−

−

 
− = − + 

 

− −
= + − + +

=

Σ

− Σ+ − − +

Σ

Σ

 

 

The final line here represents (N-1) multiplied by our fitting function for the ML method, 

ML
F . Compare this statistic to the upper 100(1 )α−  percentile value of the chi-square 

distribution to determine whether to accept or reject the null hypothesis. A rejected null 

hypothesis indicates that ( )θΣ = Σ does not hold, and that the model poorly represents, or 

fits, the data. 

 

2.1.6 Results for the Eating Disorder Example 

 Path coefficients, corresponding standard errors, and p-values for the eating 

disorder model shown in Figure 2.1 are displayed in Table 2.1. The results are also 

displayed in Figure 2.2. These results show that there is a significant network of variables 

that can lead to greater risk for development of an eating disorder among young women, 

but that the self concept variable has little influence.  

 Confidence intervals for the parameters can be calculated and hypothesis tests can 

be performed using the path parameters and corresponding standard errors, because the 

path coefficients of SEM have an asymptotically normal distribution [1]. A confidence 

interval for 
i

β  is 

( ) ( )/2 /2
ˆ ˆ ˆ ˆ

i i i i i
z se z seα αβ β β β β− < −< . 

 

 
1β  2β  3β  4β  5β  6β  7β  

path est. -1.9912 -.0525 -.1232 -.1040 .3341 -.2699 .8292 

std. error 1.0376 1.0060 .3722 .0845 .1511 .5396 .0550 

p-value .0550 .9584 .7071 .2184 .0347 .6170 .0000 

 

Table 2.1. Estimated path coefficients, standard errors, and corresponding p-values for 

the hypothesized path diagram shown in Figure 2.1 are displayed. P-values are two-sided. 
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Figure 2.2. Results of the analysis of variables influencing development of eating 

disorders in women; these factors include age of first menstrual period (AM), body image 

score (BI), self concept score (SC), drive for thinness (DT), and risk for developing an 

eating disorder (RD). Dashed lines indicate insignificant influences, blue arrows 

represent a significantly negative relationship between the variable originating the 

influence and the variable receiving it, and red arrows represent a significantly positive 

relationship between the variables.  

 

 SEM is a very powerful tool for researchers investigating single-group and other 

types of models. For example, if we are interested in evaluating the difference between 

two groups of females (e.g. adolescent versus adult women) and how their SEM path 

coefficients may differ based on their difference in age, we could perform a multiple-

group comparison available in most SEM software. This technique requires that we have 

independent groups, which of course, adolescent and adult women are. We could also 

evaluate the differences in the model for a single group of women whose body image, 

self concept, drive for thinness, and risk for developing a disorder are measured at two or 

more times (repeated measures). This type of model is also currently available in most 

SEM software. However, if we have a mixed design study, with multiple independent 

groups (say males and females) and repeated measures (say each group is measured at 

two time points, as adolescents and adults), there is currently no methodology or software 

to directly estimate the impact of group membership and treatment conditions on path 

coefficients. Mixed design studies are common in many fields, but there is no existing 

SEM procedure for this type of analysis. The dire need of an SEM procedure for mixed 

design studies is further evidenced by its increasing application in brain functional 

pathways studies where the mixed design is prevalent, as shown in the next section.  
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2.2 The Brain Functional Pathway Study 

 

The mechanism of structural equation modeling makes it ideal for the analysis of 

directional brain functional pathways, and often brain imaging studies are conducted in a 

mixed design, as shown in the following study led by Dr. Nora D. Volkow, the Director 

of the National Institute on Drug Abuse, and conducted at the Brookhaven National 

Laboratory. The data are measurements of nine regions in the brain, related to the reward 

network: amygdala (AMYG), orbitofrontal cortex (OFC), anterior cingulate gyrus 

(ACG), ventral striatum (VS), thalamus (THAL), insula (INS), striatum putamen (PUT), 

cerebellum (CER), and motor frontal cortex (MFC). The experimental methods and 

extraction of data from PET scans are described in detail in [24]. There are two groups 

(normal subjects and drug abusers) and two possible treatments (placebo or 

methylphenidate) given to each patient. We have four data sets containing measurements 

of activity in each brain region, that is, one for each combination of group and treatment. 

All subjects from all groups are measured under both of the treatment conditions. 

The data are taken from 25 cocaine abusers and 16 normal subjects, each under 

two conditions. The condition is the treatment administered. Patients receive placebo and 

methylphenidate (a cocaine-like substance known as Ritalin), one at a time. The 

conditions are randomly assigned, not given at specific time intervals, so this study can 

be classified as a repeated measures design. All subjects under our consideration are 

expecting to receive placebo, so there is no confounding expectation effect.  

Dr. Volkow has proposed, based on her field knowledge, the following path 

diagram for a single group under a single condition, which can be estimated by any of the 

available SEM software, such as SAS PROC CALIS, LISREL, and EQS (see sample 

code in Appendix). However, as mentioned before, there is no cohesive method for 

evaluating differences in path strengths due to group membership and drug treatment 

simultaneously. 

 

 
 

Figure 2.3. Hypothesized path diagram for our study of the reward network. The present 

variables are: ventral striatum (VS), striatum putamen (PUT), cerebellum (CER), and 

motor frontal cortex (MFC). Directed arrows indicate influence of one region on another 

in a direct cause and effect relationship.  

 

2.2.1 Multivariate Normality Assumption 

The maximum likelihood estimation method of SEM requires that all variables 

share a multivariate normal distribution. Distribution-free methods exist for estimating 

SEMs with non-normal data; however, we want to derive our model in the most 
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commonly used SEM framework, so we have evaluated the data to test for a multivariate 

normal distribution. We have used the R function mvnorm.etest, which is part of the 

optional energy package for the R software. Using this function to test the validity of our 

multivariate normal assumption for our data, we have determined that the variables in 

each of our independent datasets have multivariate normal distributions.   

 

2.2.2 The Focus of this Study 

 To demonstrate the methodology we develop, we will analyze the effect of group 

membership and drug received on the strength of connectivity between regions of the 

brain. However, this methodology is designed to accommodate any number of 

dichotomous factors. Note that the hypothesized pathway shown in Figure 2.3 is 

recursive; it does not contain any feedback loops. Models containing feedback loops can 

be unstable and unidentified, so for the purposes of this dissertation, we focus strictly on 

recursive models.  

 

2.3 Literature Review: Existing Methodology for Comparing Groups and Repeated 

Measures in SEM  

 

The existing methods for analysis of multiple-group models are indirect and 

insufficient for models with small sample size, less-than-excellent fit, and/or repeated 

measures. Of course many statistical methods have been developed to analyze repeated 

measures data, panel data, and longitudinal data. Regrettably, no SEM models have been 

developed for mixed designs, evaluating differences in multiple groups and repeated 

measures, probably due to the different natures of research in social science and 

econometrics versus biomedical sciences, where the mixed design is quite prevalent. In 

addition to our extensive literature review, which follows, we have carried on 

correspondence with the senior statisticians from both LISREL and EQS software 

technical support, who have indicated that a proper analysis of mixed-design SEMs is not 

currently possible. It is very clear that no model has been developed that can evaluate 

multiple datasets (independent and otherwise) and test the significance of changes in path 

parameters due to both group effects and condition effects. 

 

2.3.1 Multiple Group Comparison: Current Approaches and Limitations 

We can look at this problem as one of interaction; we are interested in the 

interaction between group membership and strength of association between variables in 

an SEM. We are not interested in the effect of group membership on the dependent 

variable. Much work has been done on studying interaction effects in SEMs, but no 

solution is as easily understood and implemented as our own. Models are currently 

available to handle multiple groups or multiple occasions, but not both in a meaningful 

way (and notably, in a way that can be developed into a SEM that includes latent 

variables) [25]. Each existing model can be estimated in the current SEM software [26-

28].  

 

2.3.1.1 Goodness-of-Fit Method 

The standard method for comparing the SEM of multiple independent groups is to 

constrain corresponding parameters to be equal [1]. The suggested method for 
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comparison is first determining whether models of the same form (same structure of 

parameter matrices) have good fit for each group of data, via a global chi-square fit 

statistic, pooled proportionally from individual model chi-squares [27]. If the overall 

model fit is good, we can continue by constraining first the matrices containing path 

coefficients and variance matrices to be equal, one step at a time. As the p-value drops 

below our significance level, we can declare that the newly added constraints cause a 

poor fit, and the models vary. In addition to noting a decreasing or stationary global fit 

chi-square index, we can also calculate a difference chi-square fit index to determine if 

the fit of the model is significantly changed [29]. Unfortunately, this method requires that 

groups being compared are independent. There is currently no methodology for directly 

comparing path coefficients and variances of two groups of data that are dependent (i.e. 

two sets of measurements taken from the same set of subjects). Another limitation of the 

above method is cohesiveness; it is a comparison of two separate models, rather than one 

unified model with differences represented within. 

The standard method for comparing the SEM of multiple groups is to constrain 

corresponding parameters to be equal [1]. The nested goodness-of-fit method first 

involves determining whether models of the same form (same structure of parameter 

matrices) have good fit for each group of data, via the chi-square statistic. A statistically 

significant chi-square test indicates poor model fit. If the model fit is good, we can 

continue by constraining first the matrices containing path coefficients, then the variance 

matrices, to be equal one step at a time. If each model has continually good fit, then the 

models are invariant. If there is poor fit to the model at any level of constraint, then the 

models vary. The important thing to consider here is how much the models vary. If the 

path coefficients can be constrained equal, then the models obviously share some 

similarities. It is important to note that the variables must be measured in the same units 

if we are to truly consider models invariant. It does not make sense to compare relations 

over groups with data that has not been standardized into equivalent units. 

At each state of constraining the models, a global chi-square variable is pooled 

proportionally from individual model chi-squares to determine overall fit of the models 

[27]. As the p-value drops below our significance level, we can declare that the newly 

added constraints cause a poor fit. It is important to note that our available degrees of 

freedom increase by a factor of the number of groups we are comparing; however, we are 

estimating more parameters in the same model, so the degrees of freedom are decreased 

accordingly. Obviously, when we constrain some parameters to be equal, we are 

estimating fewer parameters, so the degrees of freedom increase in cases of constrained 

parameters.  

In addition to noting a decreasing or stationary global fit chi-square index, we can 

also calculate a difference chi-square fit index to determine if the fit of the model is 

significantly changed [29]. As discussed above, it is important to note the fit of 

unconstrained groups together in the same model. When parameters are constrained, 

again the output includes a global chi-square fit measure. According to Jaccard and Wan, 

we can take the difference of model chi-squares (before constraint and after) and their 

corresponding degrees of freedom to obtain the difference chi-square fit index. If the 

difference chi-square is statistically significant, then there is a significant difference in fit 

between the models—adding the given constraints has significantly decreased the model 

goodness-of-fit. Both LISREL [27, 29], and EQS [26], are capable of performing the 
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current goodness-of-fit tests in comparing the path coefficients of two groups. As of 

version 9.1.3, SAS Proc Calis does not have this functionality.  

Unfortunately, the goodness-of-fit method requires that groups being compared 

are independent. Again, this makes this method inappropriate for our data set. There is 

currently no methodology for directly comparing path coefficients and variances of two 

groups of data that are dependent (i.e. two sets of measurements taken from the same set 

of subjects). Currently, in multiple group analysis, the groups must be independent. Our 

data describes two independent groups, but each group is measured under multiple 

conditions. In using the above methods, we have treated the groups as independent (when 

necessary), which of course can yield misleading results. Another limitation of the above 

methods is the cohesiveness. Each is a comparison of two separate models. While the 

goodness-of-fit method does incorporate the two models into consideration together, they 

are still two separate entities, not one unified model with differences represented within. 

The existing method for analysis of multiple-group models is indirect and insufficient for 

models with small sample size and/or less-than-excellent fit.  

 

2.3.1.2 Incorporating Interaction Effects into SEMs 

We can also look at this problem as one of interaction; we are interested in the 

interaction between group membership and the strength of association between variables 

in an SEM. Much work has been done on studying interaction effects on SEMs (Kenny 

and Judd in 1984, and most recently, Coenders et. al. [30]), but no solution is as easily 

understood and implemented as our own. Kenny and Judd proposed a method for 

incorporating interactions when the interacting variables are continuous [31]. Their 

method accounts for non-normality of the interaction term in the model by using the GLS 

estimation methodology rather than the ML method. GLS is appropriate for departures 

from normality that are not subject to excessive skewness or kurtosis. Therefore, if a 

binary covariate (like group membership) is included in an interaction term, GLS would 

be inappropriate. This method is also inappropriate for analyzing datasets that are not 

independent. If one or more of the interacting variables is discrete, then the multi-sample 

goodness-of-fit method can be applied for determining if path coefficients vary across 

groups [32], as discussed above, for independent groups only. Clearly, like the existing 

methods for comparing multiple samples, the existing methods for studying interactions 

effects in SEMs to not meet the needs of our analysis.  

  

2.3.2 Analysis of Repeated Measures Data: Current Approaches and Limitations 

One model for evaluating the relationship between a group of longitudinal 

repeated measures is called the Two-Wave Model by the LISREL User Guide [27], 

though it can be extended to include multiple time points [25]. Using this model, 

researchers can evaluate the relationships among multiple representations of a single 

variable measured at different time points. However, this model is not appropriate for 

models of unordered repeated measures, as in the case of evaluating multiple treatment 

conditions given to the same group of subjects, as there is no clear causal pathway that 

can be instituted. Also, in this representation, it is easy model a single variable at multiple 

time points, but the model is quickly complicated when we add more than one variable. 

In the case of our brain network model, we are interested in understanding how the 

relationships in the existing SEM pathway are changed from a normal subject’s pathway 
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if the subject is a cocaine abuser or is currently receiving a cocaine-like substance. We 

are already evaluating the structural relationships among many variables; we simply want 

to add the capability of analyzing differences among groups and unordered repeated 

measures.  

There are two more general directions for development of SEM in this field: 

latent growth modeling and multilevel SEM. Latent growth modeling was developed to 

model the change over time in repeated measures data as a function of a latent intercept 

and slope (plus polynomial terms as necessary) that are made up of an average value and 

the variability of the individual trajectories about that average [33]. The most basic latent 

growth models are traditional two-level regression models estimated using SEM 

framework because the models are easily drawn as SEM-style path diagrams. Influences 

on the latent intercept and slope and influences that vary with time can be added to the 

model. Multiple group analysis is possible in latent growth modeling through the 

traditional SEM goodness-of-fit comparison method, or by incorporating dummy group 

indicators. LGMs can include several response variables at once and/or several repeated 

measures at once (the most general model being the Auto-Regressive Latent Trajectory 

Model [34, 35]). 

 

2.3.2.1 Latent Growth Modeling 

Latent growth modeling (also called latent curve modeling or latent curve 

analysis) was developed to model the change over time in repeated measures data as a 

function of a latent intercept and slope (plus quadratic, cubic, etc. terms as necessary) that 

are made up of an average value and the variability of the individual trajectories about 

that average. Its formal introduction to the literature came from Meredith and Tisak in 

1990 [33]. Though the topic of modeling trajectories based on an entire group of 

observations had been studied before, and by many, since the 1800s, Meredith and Tisak 

put it into its current form and presented it in the framework of structural equation 

modeling.  

The most basic latent growth models are traditional two-level regression models. 

We use SEM to estimate the parameters because the models are most easily drawn as 

SEM-style path diagrams. The parameters are estimated through an SEM-style 

optimization procedure, by assimilating the latent and measured variables into the SEM 

framework. SEM is the most cohesive way to solve for these parameters because we can 

solve for all parameters simultaneously, rather than in the case-by-case method, where we 

solve for parameters one at a time, each affecting the next parameter. The question is 

whether we can apply the method of latent growth modeling to an existing SEM to 

incorporate repeated measures.  

We model the trajectories of the repeated measures for one response variable with 

a latent intercept and slope variable, which affects all repeated measures. In more 

complicated models, we can add exogenous predictors to the model, influencing the 

latent intercept and slope, or add influences that also vary in time. Additionally, multiple 

group analysis is possible in latent growth modeling through incorporating dummy group 

indicators or the traditional SEM goodness-of-fit comparison method.  

The simplest model of LGM is the unconditional model [34]. In this case, we take 

any number of repeated measures and model their trajectory with a latent slope and 

intercept. The repeated measures are for i subjects at t time points (repeated measures). 
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On level 1, we model the response variables as functions of the slope and intercept, plus 

error. On level 2 of the model, we allow the intercepts to vary across subjects. The model 

is shown below. 
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For this model, there are only T measured variables (the repeated measures). So we have 

T means and 1
2

( 1)T T +  unique entries in the variance-covariance matrix of the available 

data. Therefore, we have 1
2

( 3)T T +  known pieces of information. In order to have an 

identified model, we must have more knowns than unknowns. The unknown parameters 

include NT errors in the equations, T values for tλ , K means, where K is the number of 

latent variables present in the model (K=2 for a linear model), and 1
2

( 1)K K +  unique 

elements of the variance-covariance matrix for the K factors. This is far too many 

parameters to be estimated, so traditionally, we allow the errors in the equations to vary 

only with time, and remain constant for across individuals at different time points. 

Additionally, we fix 1t tλ = −  constant. Then we have 1
2

( 3)T K K+ +  unknown 

parameters to estimate. We can see for a linear model, that we must have at least 3T =  

waves of data available in order to have an identified model.  

In estimating the model, we must find the mean and covariance structures to be 

estimated. We know that  

y η

η ζ

Λ +=

= Λ
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as stated in the model description. Then we can find ( ) ( )E y ηµ θ µ= = Λ  and 

[ ]( ) ( ( ))( ( )) 'E y E y y E yθ ′Σ = − − = ΛΨΛ + Θ
ε
 using the matrix form of y. We can 

estimate the parameters by maximizing the multivariate normal likelihood function, or 

minimizing the fit function—a manipulated version of the likelihood function—as is 

traditional for SEM, shown below. 
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Standard errors for the estimates can be calculated using the asymptotic 

covariance matrix, which is the expected value of the Fisher Information matrix, shown 

below. 
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The unconditional model is the simplest LGM, but they can get very complicated 

from here. The conditional model incorporates exogenous measured variables as 

influences of the latent intercept and slope. These are included in the level 2 equations of 

the model, not affecting the level 1 equation. 
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The model shown above includes two measured covariates that do not vary with time. 

This model is estimated similarly, but here we have more known pieces of information, 

including the means and covariances associated with the independent variables. The 

( )µ θ and ( )θΣ are different in that  
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where Γ holds the coefficients for the paths between the exogenous x variables and the 

latent slope and intercept. The likelihood function stays the same, assuming there are no 

missing values. 

There are two methods for incorporating group membership and its effect on the 

trajectory into a latent growth model. One method is the standard multiple-group 

comparison method for SEM, the goodness-of-fit comparison method. We restrict 

parameters to be equal, one level at a time, and determine how the fit of the model 

changes as we further constrain the models. If the model fit becomes poor, then we have 

restricted it too far, and the newly restricted parameters cannot be considered equal.  

In the second method, we add dummy group indicator variables to the level 2 

equations, shown below.  
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The dummy variables are assigned values of 0 and 1, according to the group membership 

of individual i. Bollen indicates this change to the model can be treated as a typical 

conditional model, treating the dummy variables as exogenous predictors. We can add 

traditional exogenous predictors to the model, and their interactions with the dummy 

variables as well, resulting in the following multiple group, multiple indicator model.  
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Assume that the vector x contains exogenous measured predictors and any interactions 

between those predictors and the dummy variables D. Then we can estimate this as a 

conditional model, according to the literature. However, it is relevant to point out that 

while the likelihood function is developed under the assumption of multivariate 

normality, a dichotomous dummy variable does not satisfy this assumption.  

The above framework applies only to LGMs for one response variable. There are 

many types of multivariate LGMs: 

 

• Unconditional LGM with time-varying predictor variables—more than one 

repeated measure variable, but not modeling the growth of the time-varying 

predictors (still only one response variable); 

• Conditional LGM with time-varying predictors—time invariant and time variant 

predictors added to the model; 

• Modeling more than one response variable—considering more than one repeated 

measure, modeling the trajectories of multiple response variables; 

• Adding time-invariant predictors to the previous model—conditional multivariate 

LGM; 

• The Auto-Regressive Latent Trajectory Model—models more than one repeated 

measure, including unidirectional arrows from one measure to the next for the 

repeated measures (i.e. time t-1 has direct effect on time t). Time 1 is considered 

independent from the latent intercept and slope, but can be influenced by any 

present predictor variables. Developed by Curran and Bollen [34, 35]. 

 

A further development of LGM is that we can model the trajectory of latent repeated 

measures over time. For example, consider three measurements of “intelligence” at 

different time points. We must have multiple indicators of the latent construct 

intelligence at each time point. In the simplest case, we have the same indicators of the 

construct at each time point. These models can be estimated in the current SEM software, 

and in particular, EQS has this capability and a user-friendly interface [26]. It is 

important to note that, when modeling the mean structure in EQS, which is not always 

considered in an SEM, EQS employs an additional constant variable, regressing all 

predictors and the latent factors on the constant to estimate their means.  

Latent growth modeling has many features and capabilities; however, this type of 

model will not work for analyzing our data. LGM generally focuses on one response 

variable and its repeated measures. Because we already have a system modeled using 

SEM, we have three response variables and one predictor. LGM typically models the 

trajectory of change over time, or ordered repeated measures. Our repeated measures do 

not have an inherent order, they are simply different treatments administered to the 

individual in a random order; therefore, modeling the change in the variables over time 
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does not make sense for our data. Other issues include the complexity of incorporating 

three response variables into the same model. Additionally, LGM does not incorporate a 

direct influence from one response variable to another. LGMs model all available 

relationships, not specifically chosen relations between variables, according to a SEM 

hypothesis, in which we are interested. LGM is the application of a simple repeated 

measures model in SEM, not an additional methodology for existing SEMs with repeated 

measures. While LGMs do have many of the features we are looking for, like multiple 

group analysis and modeling change between repeated measures, it is clear that, 

inherently, LGM is not the appropriate analysis method for our data.  

 

2.3.2.2 Multilevel Modeling and Multilevel SEM 

Multilevel modeling is a method for analyzing hierarchical data. Hierarchical data 

is data nested in levels; for example, observations taken from students nested within 

classrooms nested within schools. In each level, the subjects’ measurements are typically 

correlated due to having the same teacher in each classroom, or the same art classes 

within the schools. Another example would be measurements taken from a number of 

children, nested within families. The measurements of children who are siblings are 

correlated by their similar genetics.  

In its most basic form, a two-level regression model is as follows [36]. 
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The equation for Y represents the lowest level, individual response variable. The 

equations for the coefficients represent relations with group-level variables, like teacher 

or mother, for example. An individual’s regression coefficients are allowed to vary from 

the average coefficient value, as in latent growth modeling.  

Multilevel SEM is generally used to classify within-group and between-group 

variation for hierarchical, or nested, data structures [36]. The technique of multilevel 

SEM comes directly from the method developed by Cronbach and Webb [37] for 

multilevel factor models. Each subject’s measurements are partitioned into group means 

and within-group variations [26]. The covariance matrix is then partitioned into a 

between-group covariance matrix and a within-group covariance matrix by calculating 

the covariance matrices of the partitioned measures. First, the measurements Y are 

partitioned into group means and within-group variations, shown below. 
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The covariance matrix is partitioned similarly. 

 

T B WΣ = Σ + Σ  
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The same SEM model is fitted simultaneously to model both covariance matrices. 

For the simplest case (balanced groups) Muthen [38] showed that  
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is the MLE of 
W B

cΣ + Σ , where c is the common group size.  

SEMs are fit simultaneously to model both covariance matrices; using the results, 

as well as intraclass correlations of the factors in the SEM, we can tell if the proposed 

covariance structure is significant at each level of the model [26]. For example, if we are 

studying quantitative skills and self esteem at both the individual and school level, then 

based on the significance of the variances of the latent factors representing those 

variables, we can tell if variance is significant between schools, only between individuals, 

or at both levels, and how those variables are correlated. This method can be extended to 

any number of levels [39], though the model will become increasingly complicated. 

While multilevel SEM has many valuable features, this method is not appropriate 

for analysis of our data. Though we could nest our repeated measures within an 

individual and nest those individuals within their groups (cocaine abusers or normal 

subjects), to construct a traditional three-level hierarchical data set [36, 40, 41], 

multilevel SEM requires a large sample size on each level since each cluster on each 

level is considered a single observation. If a researcher is interested in studying less than 

fifty clusters at the group level, then multilevel SEM cannot be applied. In fact, 

multilevel SEM requires huge sample sizes, especially if the groups are unbalanced [26]. 

Ideally, a researcher must have hundreds of clusters in the top of the hierarchical model 

(i.e. hundreds of groups) to use the ML estimation method, which is the most common 

and easiest to use [26, 39]. We have only two groups to compare in our example data, 

each with repeated measures. Additionally, it is not intuitive to determine the meaning of 

paths between measured variables that are significant at each level. We would not be 

pinpointing the difference in path strengths between levels and groups; we could only 

evaluate the variance between those repeated measures, between individuals, and 

between groups. In the model we have developed, we can directly determine whether 

group and drug affect each individual path, and by how much. Multilevel SEM is also 

difficult to implement and interpret, where our novel method (derived in Chapter 3) is 

very easy to use for both statisticians and researchers in the behavioral sciences who use 

SEM.  
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2.3.3 SEM Software Packages and their Limitations  

 LISREL, EQS, and SAS (PROC CALIS) can estimate a standard SEM if the 

model is identified. Each has the typical features such as multiple estimation methods. 

LISREL and EQS will each build the model from a path diagram drawn by the user. SAS 

allows several model description methods, but does not allow drawing of a path diagram. 

Currently, LISREL and EQS are both capable of multiple-group comparisons, but require 

that the groups are independent (no repeated measures) and make use of the goodness-of-

fit method for comparison (constraining increasingly many model parameters equal and 

comparing model fits). AMOS, too, can estimate both single and multiple-group models, 

using the goodness-of-fit approach for multiple-group analyses [42]. As of version 9.1.3, 

SAS is not capable of multiple-group SEM but a new procedure, PROC TCALIS in 

version 9.2, will have this capability. I assume that this method will simply be a replicate 

of the goodness-of-fit methods already being used by LISREL and EQS.  

 All SEM software that can estimate a single-group SEM can estimate the 

coefficients in a linear growth model, as it is simply a traditional SEM representation for 

modeling repeated measures data. Multilevel modeling, particularly multilevel SEM is 

possible in LISREL [43, 44] and EQS [26]. 
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Chapter 3: SEM for Mixed Designs   
 

 

 

 

 

 This chapter contains the novel development of SEM for mixed design analysis. 

First, we will introduce our theoretical development through several simpler models that 

will converge eventually to a general SEM for Mixed Designs (MD-SEM). We then 

discuss its numerical implementation through MATLAB. Finally, we apply the newly 

developed model to analyze the brain functional pathway study introduced in Chapter 2.  

 

3.1 SEM with Multiple Groups  

 

3.1.1 Case 1: Two Independent Groups with a Single Equation 

Consider the case of two groups, each with the same model of a single equation as 

shown in Figure 3.1(a). Specifically, observations of group 1 contain variables 1 1,X Y  and 

the model contains measurement error 1ζ , as shown in Figure 3.1(b). For the first group, 

the SEM parameters are:  

1 1 1 1 1 1 1[0], [ ], [ ], [ ]γ φ ψΒ = Γ = Φ = Ψ = . 

 

Observations of group 2 contain variables 2 2,X Y  and the model contains measurement 

error 2ζ , as shown in Figure 3.1(c). For the second group, the SEM parameters are:  

 

2 2 2 2 2 2 2[0], [ ], [ ], [ ]γ φ ψΒ = Γ = Φ = Ψ = . 

 

(a)

 

(b)

 

(c)

 
 

Figure 3.1. Illustrations of a single-equation SEM: (a) the model shared by both groups, 

(b) the model specific to group 1, (c) the model specific to group 2. 

 

In order to create one SEM for these two groups, we will append the X’s, Y’s, and 

ζ ’s each into one vector.   
1 1 1
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. Now we can use our 

traditional equation for SEM: Y Y X ζ= Β + Γ + .  

To unify these two groups, we will need single , , ,Β Γ Ψ Φ  matrices, rather than 

one for each model. With our unified X, Y, and ζ vectors, we can create these as follows: 
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Β  is a block diagonal matrix, relating variables in Y1 to itself (one-equation case) and 

variables in Y2 to itself (one-equation case), where the first block is the Β  matrix from 

the first group, if the model were run individually, and the second block is the Β matrix 

from the second group, if the model were run individually. (This is just as the Σ matrix is 

made a block matrix in the standard, single-group model.) The off-diagonal blocks are 0 

because there are no path relations between Y1 and Y2. Similarly,  
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. 

 

However, the above would not produce a result any different from that of running 

each group as an independent SEM model. We would still get path coefficients and have 

to compare them by another method. In order to compare them within the model, the path 

coefficients should reflect a change from one group’s coefficient to the next. Figure 

3.2(a) illustrates how we incorporate the group factor into a model.  
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(a)  

(b)  

 

Figure 3.2. (a) An illustration of our two-level parametric modeling approach for MD-

SEM analysis. Here we focus on a single equation (left: path diagram, right: equation) 

with covariate group asserting its effect on the path from node X to node Y.  

(b) An illustration of our two-level parametric modeling approach for MD-SEM analysis 

with group as a covariate and as an independent variable. Here we focus on a single 

equation (left: path diagram, right: equation) with covariate group asserting its effect on 

the path from node X to node Y, and independent variable group asserting its effect on 

node Y.  

 

We represent the change not as a traditional multi-level model with error 

incorporated in the second level, but as a reparametrization of the path coefficient to 

incorporate a change to the coefficient due to group membership. Additionally, we are 

not adding a new variable to a regression-style equation and adding its interaction, we are 

only adding the interaction. We do not add an individual group term to the model because 

this would add a new node to the model. The meaning of the new node would be “does 

the group membership have an effect on the present variable?” For the brain functional 

pathway study, we are not interested in whether group membership affects the activity 

level in a particular node, except in relation to the other nodes (i.e. does group 

membership strengthen or weaken the signal from node A to node B). The information 

we are interested in would be confounded by the presence of something we are not 

interested in and do not know how to interpret. It is equivalent to adding extra variables 

to a regression when we are really interested not in how that variable affects the 

dependent variable, but how it affects the regression coefficients.  

While we are not currently interested in adding group membership to the model as 

an influence on the response variables (as shown in Figure 3.2(b)), it is certainly possible 

to incorporate this effect within our new maximum likelihood framework. In Figure 
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3.2(b), group appears as a variable pointing to other variables, not only as a covariate 

pointing to paths. The equation for this model appears on the right hand side of Figure 

3.2(b); group appears as a variable, and would thereby need to be included in the 

likelihood function of the model. However, for two independent groups (0 and 1), we 

create a likelihood function for each group and take their product to form the likelihood 

function for the model. For Group 0, the *Groupθ  term would disappear, and the 

likelihood for group 0 would not contain an extra variable. For Group 1, θ  would appear 

as an intercept in the equation. While it is traditional in SEM to center all variables about 

zero to eliminate the mean structure, general SEM theory does allow for modeling the 

mean structure of the variables [26, 27, 34], so we could easily incorporate this intercept 

into the likelihood for group 1. This addition implies that our new model can handle 

categorical nodes, as long as they appear only as independent variables and not as 

dependent variables (no arrows coming in to the categorical variable). Otherwise, we 

could not easily incorporate this capability by treating θ  as an intercept.  

Because we are currently interested in the effect of each covariate on the paths in 

the model exclusively, and not on each variable in the model, we will reparametrize each 

path coefficient as is illustrated in Figure 3.2(a). Incorporating the reparametrization 

shown in the Figure 3.2(a) into our Β and Γ matrices is natural, shown below.  
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Thus, from our two-level modeling approach, the two groups do share certain common 

parameters and thus we must analyze them through the joint likelihood function as shown 

below.  

We will continue to model the Φ  and Ψ matrices independently, but unified, as 

shown below. 
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Φ  is the covariance matrix of the X’s, and we can break this into a block matrix. 

1 1, )(Co Xv X has its own name, 1Φ . ( ) ( )1 2 2 1, , 0Cov X X Cov X X= =  because the X 

variables from the two groups are independent. Ψ is similar, as the errors in equations 

from different groups are independent.  

Now we can derive the Σ matrix of the two-group model. The model has not 

changed, only the parameter matrices. From the model, we have 1 )( ) (I XY ζ−Β Γ += − . 

Then  

( ) ( )
( )

( ) ( )

yx

xy

y

x

y

x

θ θ
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θ θ

Σ Σ
Σ =

Σ Σ

 
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As before, we can derive each block of this matrix separately. 
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This matrix is appropriate because there should be no relation between Y2 and Y1, so we 

would expect the off-diagonal blocks to be 0.  
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There is a problem with the above two equations for the covariance matrix of Y 

and X; we must consider this matrix, too, as a block matrix.  
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Also, we must have 1 2 2 1( , ) ( , ) 0CCov Y X ov Y X= = since we want independent groups. 

Then we can derive 1 1 2 2, ), ( ,( )XCov Co Y XY v as we would in a single-group model with 

just those variables—so we would use just the corresponding , ,Β Γ Φ matrices. It already 

happens that the off-diagonal elements are 0 for this matrix, so this issue resolved within 

the ,Β Γ matrices.  

Finally, 
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for a two-group, single-equation model. However, even though the two groups are 

independent, we do not constrain ( ) ( ) 0xy yxθ θΣ = Σ =  because it is true that Y1 and X1 

maybe be correlated, and Y2 and X2 may be correlated. 

 

3.1.2 Likelihood Function for Case 1 

We have two independent groups in a single model. For the purposes of the 

maximum likelihood estimation technique, we will construct a likelihood function for 

each independent group. Each group has its own , ,Β Γ Σ matrices, but they contain shared 

parameters, uniting this model. We can create the two independent likelihood functions 

and multiply them together. First, we will calculate the likelihood for one arbitrary group 

of the two.  

We know that ( )
1
22 11

2
) (2 ')( ; exp

p q

f z z zπ
+− − −Σ = Σ Σ− is the PDF for one group’s 

vector of endogenous and exogenous variables, Z. Z is centered about mean 0. We take N 

observations of Z, from N different subjects from our chosen group, and the resulting 

joint PDF of Z is 1 2 1 2) ( ; ) ( ; ) ( ;( , ,..., ); NN f z ff z z z z f zΣ = Σ Σ ⋅⋅⋅ Σ . Then  
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We have two groups, so we will denote corresponding ( )θΣ matrices, z vectors, 

and sample sizes with appropriate subscripts in the full likelihood function. 

Because these groups are independent, we can multiply their individual likelihood 

functions to construct the full likelihood for this multi-group model. Therefore,  
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is the full likelihood function for the multi-group model. 

We can simplify this likelihood for easier numerical implementation by first 

taking the log of the function, shown below. 
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Now, as before, we can remove constant terms, and a factor of 1
2

− from the log-

likelihood to further simplify numerical implementation of the function. The resulting 

function is shown below.  

 
1 2

1 1 2 2

1

1 1

1 1 1 2 2

1

2( ) ( ) ( )log ' lo ' ( )gi i i

N

i i

i

N

N z zz N zθ θ θ θ−

=

−

=

+ + Σ+Σ Σ Σ∑ ∑  

 

The resulting function is an extension of the fit function used in Case 1, derived 

above. It is the simplified log-likelihood functions of the individual groups added 

together. We can further simplify the above equation to resemble the sum of two 

traditional MLF fit functions. 
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Here again, 1* N
N

S S−= , and for large samples, we can simply replace S* with S. Adding 

the constant terms, our fit function for this case is 
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3.1.3 Standard Error of Parameters for Case 1 

 As in the case of a single-group SEM model, in order to estimate the standard 

errors of the parameters we have estimated, we must use the information we have about 

the MLE of θ .  

We know the maximum likelihood (ML) estimator, �θ , of parameter vector θ , is 

distributed as  
1

2 log ( )
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Then the asymptotic covariance matrix of the ML estimator of arbitrary θ  is 
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As before, we must determine the relationship between log )(L θ and MLF , and let the 

asymptotic covariance matrix reflect this difference.  

 As calculated above,  
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We must determine the relation between 
2 log ( )L θ

θ θ

∂
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− and 

2
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θ θ

∂
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 to determine how the 

calculation of the asymptotic covariance matrix must change. 

In manipulating log )(L θ into MLF , we remove a constant term, multiply by -2, 

manipulate one term into an equal term, then add a constant term. The effects on the 

equality of derivative are only the multiplying factor of -2. So we can say  
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So the standard errors of the parameter estimates are the square roots of the 

respective diagonal elements of the matrix above.  

    

3.2 SEM with Repeated Measures 

 The data we want to model include two groups of subjects measured under 

several different treatments. Obviously, measurements taken of the same variables from 

the same subjects, regardless of treatment, will be correlated, so groups of measurements 

taken from the same subjects cannot be treated as independent measurements. 

Unfortunately, the terms repeated measures and longitudinal data seem to be used 

interchangeably in the literature; however, they are not equal. Repeated measures are 

measurements taken from the same subject under different conditions (multiple 

treatments, for example) or at different time points, the same variables measured each 

time. Longitudinal data are measurements taken from the same subject at different time 

points, the same variables measured each time. Longitudinal data represent repeated 

measurements, but repeated measurements are not strictly longitudinal. Many studies 

have focused on regression and SEM for longitudinal data [34, 45, 46] but there is not as 

much information about repeated measures as we define them.  

There are two choices available for incorporating repeated measures into any 

regression-style model. Our initial thought was to incorporate correlations between the 

independent variables present in the two datasets representing measurements from the 

same group. Then since each y is written in relation to those x variables, of course those 

correlations would be present for each variable. However, a more traditional 

representation is to show correlation between these repeated measures by correlating the 

errors in the regression equations [29, 47-52]. It is common to implement a general linear 

model with correlated errors for longitudinal data or repeated measures data [53]. We will 

apply this traditional treatment of repeated measures data in regression to the regression-

style equations that compose an SEM; we will represent errors in the equations as 

correlated in corresponding regression equations. We will not represent correlations 

between different equations for different treatment conditions since we consider errors in 

the equations independent from one another in the single-group case. We will also 

represent correlations among the independent variables.  

 

3.2.1 Case 2: One Group in Two Conditions with a Single Equation 

Consider the two-group model above, but now we have two sets of measurements 

from each person in a single group of subjects. Correlation of those measurements should 

be represented in our model. Traditionally, to represent repeated measures in a statistical 

model, we correlate the error terms in the model. Therefore, we will correlate the errors 

in the equations in our SEM model. Additionally, we will allow for free correlation of the 

independent variables, X, for measurements taken from the same group of subjects.  A 

path diagram incorporating this correlation is shown in Figure 3.3. The curved line shows 

a correlation between the two ζ variables. This represents the scenario when we have one 

group observed on two conditions. 
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Figure 3.3. Illustration of a single-group model where each subject is measured under two 

conditions (repeated measures). Measurement error of Y is modeled for each condition, 

1 2,ζ ζ , and those errors must be correlated for each subject (indicated by the curved line). 

 

The path parameters will remain the same. Adding correlation among variables 

does not add unidirectional paths, so 
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As usual, the Φ  matrix represents the covariance matrix of the exogenous variables, X. 

For a single-datatset SEM, this matrix is modeled freely by the researcher. We will 

construct the Φ  matrix as follows.  
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We will also modify the Ψ matrix, which represents the covariance matrix of the vector 

ζ , the errors in the equations. We will add terms to represent correlation between the 

errors in the single equation modeled for two treatment conditions on the same group of 

subjects. For this case, the Ψ matrix will not be diagonal, but of course it is still 

symmetric: 
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So 2ψ  will be the estimated parameter representing the correlation between repeated 

measures in the system.  

Because the model stays the same, Y XY ζΒ + Γ += , these are the only places 

where a change could occur, so the possible correlations of X’s and Y’s should now exist 

in the ( )θΣ matrix, derived below. As before,  
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There is no change to the derivations of each block in the ( )θΣ matrix, so we can use the 

formulas from the previous derivation. 
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Therefore,  
2
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)
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(
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γ φ ψ γ φ γ γ ψ γ φ γ φ

θ θ γ φ γ γ ψ γ γ φ ψ φ γ γ γ γ φ
θ

θ θ γ φ φ γ γ φ φ

γ φ γ γ φ φ φ

+ + +
 Σ Σ  + + + + + Σ = =   Σ Σ +   

+

+

 
 

All variables should now have some calculable correlation.  

 

3.2.2 Likelihood Function for Case 2 

When we append our X, Y, and ζ vectors in our multi-group model, we are 

effectively constructing one single model for all variables, including the interaction of 

these variables with group membership or other dichotomous indicator variables. 

Therefore, we are assuming that the variables (from all included groups) are all 

multivariate normally distributed. For the two-condition model described above, we 

append our vectors as shown below. 

 

1 1 1

2 2 2

, ,
Y X

Y X
Y X

ζ
ζ

ζ

     
= =     
     

=  

 

Because in our case, these variables represent the same group of subjects’ 

measurements taken under different conditions, they are of course correlated, but they 

also have the same sample size. We already know that these variables have covariance 

matrix derived above.  

Therefore, consider
Y

Z
X

 
=  
 

, where variables in Z are centered with means about 0. 

Then Z has PDF 

( )
1
22 1 1

2
) (2 ) '( ; exp '

p q

f z zzπ
+

−−−
Σ = Σ Σ− , 

 

and likelihood function created from N observations 

 

22
( ) 1

2

1

1

( exp ') (2 ) ( ) ( )
NN

N
p q

i

i iL zzθ π θ θ
−− + −

=

 
−Σ = 


Σ


∑ . 

 

The difference between this and the independent group case is that here, we are 

considering two groups at the same time, so Z contains two groups of variables. In the 

previous multi-group case, we can consider the likelihoods independently because the 

groups are uncorrelated and the ( )θΣ matrices do not contain inter-group correlations. 

Here, however, the ( )θΣ do contain inter-group correlations, so these variables must be 

considered in the same likelihood function.  

We simplify the likelihood as before, by taking its logarithm, dropping a constant 

term, and removing a factor of 1
2

− : 

 



 36

1
2 2 2

1

1
2 2

1

1

1

1

1

log ( ( ) log log '

log

) 2 ( ) ( )

( ) ( )

( ) ( )

'

log '

N

N N

i

N

N

i i

i i

i i

i

N

i

L p q z

z

z

z

N

z

z

θ π θ θ

θ θ

θ θ

−

=

=

−

=

−

= − Σ Σ

Σ Σ

− + −

⇒ − −

Σ⇒ +Σ

∑

∑

∑

 

 

As for the single-group MLE SEM, this fit function simplifies to  

 
1( ) ( )log log ( )

ML
F Str S p qθ θ−Σ Σ = + − − +  . 

 

Z contains both groups’ variables. ( )θΣ is the matrix derived for this situation in the 

previous section, also shown above. Note, however, that the sample size, N is equal only 

to the number of observations in one of the “groups”, since this really represents the 

number of subjects measured, since the sample is the same for both groups. 

 

3.2.3 Standard Error of Parameters for Case 2 

As usual, standard errors (square root of variances of parameter estimates) of the 

estimates found in the previous section must be calculated via the asymptotic covariance 

matrix (inverse of Fisher Information Matrix). For case 2, the fitting function is exactly 

the same as in the case of a single-group MLE SEM, so the standard errors are calculated 

in the same way. 

( )
11

22 log (ˆ 2)
ML

FL
ACOV E E

N

θ
θ

θ θ θ θ

−−
        

= − =     
     

∂∂

′ ′∂ ∂ ∂ ∂    
 

 

The standard errors of the parameter estimates are the square roots of the 

respective diagonal elements of the matrix above.  

     

3.3 SEM for Mixed Designs: Multiple Groups with Repeated Measures 

 

3.3.1 Case 3: Mixed Design—Multiple Groups with Repeated Measures 

Now consider the case of two groups, each under two conditions, while the two 

groups are independent from one another.  
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Figure 3.4. Hypothesized path diagram for the Brain Functional Pathway Study, adapted 

to describe the mixed design with two independent groups of subjects measured under 

two conditions. We model the repeated measures by modeling correlation of errors 

terms,ζ , in the equations, as shown above. (Top: Group 0, normal subjects, measured 

under two conditions; Bottom: Group 1, cocaine abusers, measured under two 

conditions.) 

 

As depicted in Figure 3.4, let Group 0 be measured under two conditions (and as a 

result, all variables of condition 0 are correlated with those of condition 1), and let Group 

1 be measured under the same conditions. Group 0 is independent of Group 1. Again, the 

model here is Y XY ζΒ + Γ += , and we will append the X, Y, and ζ matrices as shown 

below, where 00 and 01 represent Group 0 under two conditions and 10 and 11 represent 

Group 1 under the same two conditions. 

 

00 1

01 01 2

10 10 3

11 11 4

00

, ,

Y X

Y X
Y X

Y Y

Y Y

ζ

ζ
ζ

ζ

ζ

 
 
 =

   
   
   = =
   


 
 
 

  
   

 

 

Adding these correlations does not add any path parameters, so the Β  and 

Γ matrices are block diagonal matrices. We will allow for free correlation of the 

exogenous variables, X, for measurements taken on the same group of subjects. 

Therefore, the Φ  matrix is constructed of blocks, as shown below. 
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00 00 00 01 00 00 11

01 00 01 01 01 10 01 11

10 00 10 01 10 10 10 11

11 00 11 01

10

11 10 11 11

x x x x x x x x

x x x x x x x x

x x x x x x x x

x x x x x x x x

Σ Σ Σ Σ 
 
Σ Σ Σ Σ 

Φ =  Σ Σ Σ Σ
 
 Σ Σ Σ Σ 

 

 

The diagonal entries of the preceding matrix are the symmetric Φ  matrices from the 

corresponding datasets. Because groups 0 and 1 are independent, 
00 10 01 00

0x x x xΣ Σ= = , 

00 11 11 00
0x x x xΣ Σ= = , 

01 10 10 01
0x x x xΣ Σ= = , and 

01 11 11 01
0x x x xΣ Σ= = . We will assign a correlation 

matrix for 
00 01 12x xΣ = Φ  and 

10 11 34x xΣ = Φ .  

 

12

34

34 11

00 12

01

10

0 0

0 0

0 0

0

'

'0

Φ Φ 
 Φ Φ Φ =
 Φ Φ
 

Φ Φ 

 

 

Note that the correlation matrices are not equal if they represent two different sets of data. 

 

[ ]12 1qΦ =  [ ]34 2qΦ =  

 

We will also estimate the entries of the remaining Φ  matrices, but they are 

traditional covariance matrices of parameters.  

We will also incorporate the correlated pairs into the Ψ matrix. The Ψ matrix is 

constructed of blocks, as shown below. 

 

00 00 00 01 00 10 00 11

01 00 01 01 01 10 01 11

10 00 10 01 10 10 10 11

11 00 11 01 11 10 11 11

ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ

Σ Σ Σ Σ 
 
Σ Σ Σ Σ 

Ψ =  Σ Σ Σ Σ
 
 Σ Σ Σ Σ 

 

 

As in the previous case, where all groups were independent, 
00 00 00ζ ζΣ = Ψ , 

01 01 01ζ ζΣ = Ψ , 

10 10 10ζ ζΣ = Ψ , and 
11 11 11ζ ζΣ = Ψ . Because groups 0 and 1 are independent, 

00 10 01 00
0ζ ζ ζ ζΣ Σ= = , 

00 11 11 00
0ζ ζ ζ ζΣ Σ= = , 

01 10 10 01
0ζ ζ ζ ζΣ Σ= = , and 

01 11 11 01
0ζ ζ ζ ζΣ Σ= = . 

We can assign a correlation matrix for 
00 01 12ζ ζΣ = Ψ and 

10 11 34ζ ζΣ = Ψ .  
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12

34

34 11

00 12

01

10

0 0

0 0

0 0

0

'

'0

Ψ Ψ 
 Ψ Ψ Ψ =
 Ψ Ψ
 

Ψ Ψ 

 

 

Note that correlation matrices are not equal if they represent two different sets of 

variables.  

Because an individual’s measurements for brain region A will be correlated under 

different treatments, we will model the following parameters: 

 

1

12 2

3

0 0

0 0

0 0

p

p

p

 
Ψ =  
  

      

4

34 5

6

0 0

0 0

0 0

p

p

p

 
Ψ = 
 
  

. 

 

We will also estimate elements of 00 01 10 11, , ,Ψ Ψ Ψ Ψ  as in the previous case, but they are 

traditionally symmetric covariance matrices. For our data, they are diagonal. 

Now that we have defined , , ,Β Γ Φ Ψ , we can substitute them into the model, 

Y XY ζΒ + Γ += . As usual, we are interested in the statistical hypothesis ( )θΣ = Σ , so 

we must find ( )θΣ . As in previous cases,  

 

1 1 1

1

( ) ( ) ( ) ( )( ) ( )
( )

( ) ( ) ( )

yx

xy xx

yy I I I

I

θ θ
θ

θ θ

′

′

− − −

−

 Σ Σ ′  − Β ΓΦΓ + Ψ − Β − Β ΓΦ
Σ = =   Σ Σ ′ ΦΓ − Β Φ   

. 

 

3.3.2 Likelihood Function for Case 3 

In this case, we have two groups of subjects; each subject is measured under two 

conditions. Because we have two sets of measurements for the same group of subjects, 

these measurements will be correlated. Therefore, we cannot split up the likelihood 

function by considering four different distribution functions. The correlated 

measurements should share a distribution function. We will consider the two groups 

independently, but their two sets of measurements must be considered together. 

Therefore, we can create two separate likelihood functions, one for each group (including 

its repeated measures), and multiply them together. 

Consider group 0. As in Case 3, we have one group, measured under two 

treatment conditions. We can list the two data sets, which refer to the same subjects, as in 

previous cases: 

00 00 00

0 0 0

01 01 01

, ,
Y X

Y X
Y X

ζ
ζ

ζ

   
= =   
   

 
=  
 

. 
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Let 
0

0

0

Y
Z

X

 
=  
 

. Z is distributed multivariate normal. We must consider 

, , ,Β Γ Φ Ψ for a model consisting of these two groups only, in order to derive µ and Σ for 

this MVN distribution. As for two independent groups,  

 

00

0

01

0

0

Β
Β =

Β

 
 
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00

0

01

0

0

Γ
Γ =

Γ

 
 
 

 

 

since correlations between variables do not add paths to these matrices. Additionally,  

 

00 12

0

12 01'

Φ 
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

Φ
Φ =

Φ Φ
 

00 12

0

12 01'

Ψ 
 


Ψ
Ψ =
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. 

 

Therefore, we can say 

 

0 0 0 0

0 0 0 0

1 1 1

0 0 0 0 0 0 0 0 0

0
1

0 0 0 0

( ) ( ) ( ) ( )( ) ( )
( )

( ) ( ) )'(
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I

θ θ
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−

 Σ Σ  − Β Γ Φ Γ + Ψ − Β − Β Γ Φ
Σ = =   

Σ Σ  Φ Γ − Β Φ    
. 

 

Now that we have stated the mean and covariance matrix of the distribution, we 

can write the likelihood function. Because all variables in Z are distributed as 

multivariate normal, they have the following distribution. 

 

( )
1
22 1

0 0 0 2 0 0
1

0( ; exp ') (2 )
p q

f z z zπ
+ −− −Σ = Σ Σ−  

 

When 0N  observations of each variable is taken, we can construct the likelihood as 

follows. 
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∑
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Now we must consider Group 1. As for Group 0, we must construct 1 1 1 1 1, , , ,Z Β Γ Φ Ψ . Let  

 

10

1 11

1

1 10

11

Y

Y
Z

X X

X

Y

 
 

   = =    
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Then  

10 34 10 3410 10

1 1 1 1

34 11 34 1111 11

0 0
, , ,

' '0 0

Φ Φ Ψ ΨΒ Γ
Β Γ = Φ Ψ

Φ Φ

      
= = =      
    Ψ ΨΓ Β   

. 

 

Now in order to construct the likelihood function for group 1, we must first write the 

mean and covariance matrices for the variables in 1Z , which are distributed as 

multivariate normal.  

 

1 1 1 1

1 1 1 1

1 1 1

1 1 1 1 1 1 1 1 1

1
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Now we can write the distribution function for 1Z as 
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1
22 1

1 1 1 12 11
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p q

f z z zπ
+ −− −Σ = Σ Σ− . 

 

When 1N  observations of each variable is taken, we can construct the likelihood as 

follows. 
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Now that we have the likelihood functions for each of the two independent 

groups, 0 and 1, we can write the full likelihood for our two-group model as a product of 

the two likelihoods, shown below. 

 
0( ) 00

22

1( ) 11
22
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0 2
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11
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∑
 

 

We will maximize this likelihood function to get the appropriate estimates for the 

variables inθ . To simplify the optimization, we can maximize the log-likelihood instead, 

and drop the constant terms in the function. 
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As in previous cases, we can remove the constant factor of 1
2

− and minimize the resulting 

function rather than maximize it. 
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In order to assimilate our fit function to the style of the traditional fitting function, we 

manipulate the summing terms, as follows. 
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where * *

0 1,S S reflect 1* N
N

S S−= , and S can be substituted for S* for large N. They are the 

sample covariance matrices for groups 0 and 1, respectively. 

Adding the traditional constant terms, our final fitting function for the mixed 

model is 
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Σ
. 

 

Minimizing MLF will yield appropriate maximum likelihood estimates for the 

parameters in the mixed model.   

 

3.3.3 Standard Error of Parameters for Case 3 

As usual, standard errors (square root of variances of parameter estimates) of the 

estimates found in the previous section must be calculated via the asymptotic covariance 

matrix (inverse of Fisher Information Matrix). In order to estimate the standard errors of 
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the parameters we have estimated, we must use the information we have about the MLE 

of θ .  

We know the maximum likelihood estimator, �θ , of parameter vector θ , is 

distributed as  
1

2 log ( )
, E

L
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−
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. 

 

Then the asymptotic covariance matrix of the ML estimator of arbitrary θ  is 
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As before, we must determine the relationship between log )(L θ and MLF , and let the 

asymptotic covariance matrix reflect this difference.   
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We must determine the relation between 
2 log ( )L θ

θ θ

∂

′∂ ∂
− and 

2

MLF

θ θ

∂

′∂ ∂
 to determine how the 

calculation of the asymptotic covariance matrix must change. 

In manipulating log )(L θ into MLF , we remove a constant term, multiply by -2, 

manipulate one term into an equal term, then add a constant term. The effects on the 

equality of derivative are only the multiplying factor or -2. So we can say  
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and therefore,  
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The standard errors of the parameter estimates are the square roots of the 

respective diagonal elements of the matrix above.  
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3.3.4 Overall Model Chi-Square Goodness-of-Fit Test for Case 3 

 A chi-square goodness-of-fit test for this model can be derived in similar fashion 

to that of the original SEM model described in Chapter 2.  

First, note that our fitting function for this model is  
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Without considering the constant terms that do not affect the choice of θ ,  
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For our alternative hypothesis, consider the most general situation, where 0Σ̂  and 1Σ̂ are 

any positive definite matrices. Then 
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The function above is maximized when 0 0
ˆ SΣ = and 1 1

ˆ SΣ = . Substituting these values 

into the function above,  
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Therefore,  
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is distributed asymptotically as 2χ with { }1
1
20

( )( 1)
G

i i i i ip q p q t
−

=
+ + + −∑  where G 

represents the total number of independent groups present in the study, and i ip q+  

represents the total number of variables measured for group i (over all datasets for group 

i). This function is our fitting function, so we can say that the value of our fitting function 

can be tested via the chi-square distribution. Compare this statistic to the upper 

100(1 )α−  percentile value of the chi-square distribution to determine whether to accept 

or reject the null hypothesis. A rejected null hypothesis indicates that ( )θΣ = Σ does not 

hold, and that the model poorly fits the data. 

 

3.4 General Formulation of the Methodology 

 This section contains the development of SEM for mixed design analysis via a 

two-level parametric modeling approach. For simplicity of notation, we will introduce the 

theoretical development through a mixed effect model in a 2
k
-factorial design. We then 

discuss its numerical implementation through MATLAB. Finally, we apply the new 

method to analyze brain glucose metabolic images to assess functional pathways 

involved in drug reward using data from a PET study that compared the brain responses 

to a stimulant drug (methylphenidate) between addicted and non addicted subjects.  

 MD-SEM is ideal for a 2
k
-factorial design. A single-group SEM has the following 

format:  

 

2 21 1 2 1 1 2i i qi ii i iq pi py x x x y y yγ γ γ β β β ζ= + + + + + + + +� � , 

 

or,  X YY ζΓ + Β += , 

 

where q is the number of exogenous variables, i ranges from 1 to p, the number of 

endogenous variables, and ζ represents the included error term. Please assume for the 

purposes of this paper that all variables, X and Y, have been centered about their means. 

Also, note that we use the LISREL matrix notation for presentation of our SEM. 

The goal of MD-SEM is to determine the influence of one or more dichotomous 

factors (group membership, treatment, condition, etc.), on the strength of the path 

coefficients. In order to be able to compare the path coefficients within this single model, 

the path coefficients should reflect a change from one factor’s coefficient to the next. 

Figure 3.2(a) illustrates how we incorporate a single group factor into a model. 

 As shown in Figure 3.2(a), we represent the change as a reparametrization of the 

path coefficient to incorporate a change to the coefficient due to group membership. As 

mentioned in the preceding sections, we are not adding a new variable to a regression-

style equation and adding its interaction, we are only adding the interaction. Currently, 

we are not interested in whether group membership affects the activity level in a 
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particular node, except in relation to the other nodes (i.e. does group membership 

strengthen or weaken the signal from node X to node Y).  

Incorporating the reparametrization shown in Figure 3.2(a) into our model is 

natural. For each coefficient, γ  and β , we have 

 

1 2
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uv uv uv u kv k
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= + +

= + +

�

�
, 

 

where iF  is the i
th 

dichotomous factor in this mixed design. 

Then the simplified model is  
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for i =1 through p. 

Many of the ,ij kγ  and ,ij kβ will be set to zero by the researcher, as not all of the X 

and Y variables are present in each equation describing the model. Then the remaining 

coefficients will be compared to zero by statistical tests. As each factor variable, F, will 

take a value of 0 or 1, the overall model, given the factor values for each dataset, will be a 

structural equation model. The coefficients of each variable in the SEM will vary among 

datasets, where some models include additive changes due to the influence of specific 

factors, as shown in the diagram of our model.  

Now we must construct the model matrices that describe this system. First, we 

create a vector of X variables and a vector of Y variables, appending the X variables from 

each dataset into one vector, and the Y variables from each dataset into another. We will 

have 2k datasets, each with q X variables and p Y variables, each with a number of 

observations. Then we have  

1 1 1
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 Then we can construct the Β and Γ matrices naturally, as block matrices, shown 

below.  
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, 

 

where 1Β  represents the matrix of relations between the endogenous variables in dataset 

1 (identified by specific values of 1 kF F� ), and so on. The off-diagonal entries will be 0, 
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because there are no variables from other datasets related to those variables in dataset 1, 

for example. Then, similarly,  
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1

2

1

1

2

0 0

0 0

0 0

k

k k

X X
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 Though the block matrices appear to be distinct matrices for each dataset, they are 

not. The matrix of coefficients for a particular dataset is generated by setting specific 

values for each factor, so some coefficients from the general model will be present in 

more than one dataset, though each dataset has a distinct combination of those 

coefficients. Thus, from our two-level modeling approach, the datasets do share certain 

common parameters and thus we must analyze them through the joint likelihood function 

derived in the following sections.  

The Φ  and Ψ matrices of this unified two-level model are constructed similarly. 

Some of the factors under consideration indicate that we are considering independent 

groups of subjects. However, we will also need to consider measurements taken from the 

same group of subjects, like the same group measured under two or more conditions. 

Obviously, measurements taken of the same variables from the same subjects, regardless 

of treatment, will be correlated, and must be modeled as repeated measures appropriately.  

A traditional representation is to show correlation between repeated measures by 

correlating the errors in the regression equations [29, 47-51]. It is common to implement 

a general linear model with correlated errors for longitudinal data or repeated measures 

data [53]. We will apply this traditional treatment of repeated measures data in regression 

to the regression-style equations that compose an SEM; we will represent errors in the 

equations as correlated in corresponding regression equations. We will not represent 

correlations between different equations for different treatment conditions since we 

consider errors in the equations independent from one another in the single-group case. 

Additionally, we will allow for free correlation of the exogenous variables, X, for 

measurements taken on the same group of subjects, as it is traditional to model X with 

free variation in the single-group case. These changes are implemented in the Φ  and Ψ  

matrices of a SEM.   

As usual, the Φ  matrix represents the covariance matrix of the exogenous 

variables, X. For a single-dataset SEM, this matrix is modeled freely by the researcher. 

We will construct the Φ matrix as follows.  
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where iΦ  represents the Φ matrix for the i
th

 dataset. ,i jΦ  represents the covariance 

matrix of the i
th

 and j
th

 datasets. If datasets i and j contain observations from independents 

groups of subjects, then , 0i jΦ = . However, if the variables from the i
th

 and j
th

 datasets 

are measured for the same group of subjects under different conditions or treatments, then 

the parameters of the ,i jΦ matrix should be modeled freely. 

 The Ψ matrix is constructed similarly to Φ , where we must consider the 

independence of the variables before assigning values to zero or creating parameters to be 

estimated. The Ψ  matrix is traditionally the covariance matrix of the errors in the 

equations of the SEM. We will construct the Ψ matrix as follows.  
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where iΨ  represents the Ψ matrix for the i
th

 dataset (which traditionally is a diagonal 

matrix, as the errors in the equations are considered to be independent in many cases). 

,i jΨ  represents the covariance matrix of the i
th

 and j
th

 datasets, a diagonal matrix relating 

the errors in corresponding equations of the two datasets. If datasets i and j contain 

observations from independent groups of subjects, then , 0i jΨ = . Otherwise, the diagonal 

entries of ,i jΨ  should be estimated as parameters in the model, and the off-diagonal 

entries should be set to zero before estimation.  

 

3.5 Implementation of MD-SEM 

 

 Because this model is new, there is no software available that can estimate 

parameters for our MD-SEM. Therefore, we have implemented our estimation procedure 

in MATLAB. 

 

3.5.1 Estimating the Parameters 

 For the brain functional pathway study, we are interested in Case 3, so we have 

implemented only this case, but all are easy simplifications of Case 3. A clear benefit of 

the models discussed is the increase in sample size. When we combine the datasets for 

estimation of the Case 3 model, we are estimating a model with 82 observations of each 

variable, rather than 16 or 25 in the single-group case. Generally, sample size should be 

large when estimating an SEM for best results, best taking advantage of the asymptotic 

properties associated with estimation of standard errors. In a single-group estimation, our 

data defies this requirement, but with for the Case 3 model, we come much closer to the 

“large” sample size we need. 

 To implement the model, we first create a vector containing all parameters to be 

estimated. We also center each data variable about its mean and list the variables as 
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discussed in two matrices—one representing group 0 and the other representing group 1 

(normal subjects and cocaine abusers, respectively). In a function file, we define 

, , ,Β Γ Φ Ψ from the vector of parameters, each set to an appropriate starting value [1] and 

construct ( )θΣ  for each group. Once we have the model-implied covariance matrices, 

( )θΣ , and the centered data, we can calculate the value of the manipulated log likelihood 

function derived above, called the fitting function, MLF . 

 In a MATLAB script file, the vector of parameters is originated and starting 

values are estimated and set. There are some values that are new to SEM, like the path 

parameters of additive change, for which there are no estimation methods to use, so we 

set those values to 0 to begin. The fitting function, contained in its own function file and 

passed only the current value of the vector of parameters, is minimized by the MATLAB 

function fminunc, part of MATLAB’s optimization toolbox. This function outputs the 

vector of parameter values that minimizes the function specified in the function call. The 

goodness-of-fit of the model is tested at this point, with a significance level of .05. 

  

3.5.2 Estimating the Standard Errors 

Once the parameters are estimated, the standard errors can be estimated. As we 

have seen in previous sections discussing approximate standard errors, we must calculate 

the matrix of second partial derivatives of the fitting function with respect to the 

calculated parameters. However, with so many parameters and such a complex function, 

we must do this numerically.  

The standard errors are found inside the asymptotic covariance matrix, as the 

square roots of the diagonal entries. The expected Fisher Information matrix, can be 

calculated using the following formula as a matrix of second derivatives called the 

Hessian matrix of the function.  

 

({[ ( ) ( )] [ ( ) ( )]}

{[ ( ) ( ) ( )]}) / (2)] [ ( )

ij i i j j i i j j

i i j j i i j j i j

H f x h e h e f x h e f x h e f x

f x h h f x h f xe e e f x h e hh

= + + − + − + −

+ − − − − −− −



 [54] 

 

where ( )f x is MLF , ie  is the i
th

 elementary vector, and ih is the step size in the i
th

 

direction. The step size in the direction of parameter i  is proportional to parameter i ; it is 

a small number h (we use the fourth root of Matlab’s smallest recognized number, eps , 

as suggested in Gill’s text on numerical optimization [55]) multiplied by the i
th

 parameter 

estimate to scale it properly. (These details are specified in [54] as standard procedure for 

a numerical optimization and error calculation.)  

The implementation was tested by estimating single-group models for all 8 data 

sets involved in the PET study, and the results were the same as the results of SAS, 

LISREL, and EQS.  

      

3.6 Results for the Brain Functional Pathway Study 

 

In the case of the Brain Functional Pathway Study conducted by Dr. Nora 

Volkow, we have two groups, each studied under two conditions. We consider treatments 

placebo and methylphenidate for both groups of subjects (cocaine abusers and normal 
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subjects). All subjects are expecting to receive placebo. Clearly, this is a situation like 

Case 4, the mixed design, described in the preceding section. We implemented the model 

estimation as described above.  

First, look at the following illustrative portrayal in Figure 3.5 of the model to be 

estimated. As shown in Figure 3.4, we want to estimate the SEM we have considered for 

each group and treatment individually. However, we also have group effects and 

treatment effects pointing to each individual path, representing the change in path 

strength due to the group (G) and treatment (D) factors in this experiment.  

 
Figure 3.5. Hypothesized path diagram for MD-SEM. Each path is potentially influenced 

by group membership (drug abuse history) and the drug each subject receives. Each path 

and factor is estimated and tested for significance.  

 

 Using the original MATLAB script discussed in the preceding section, we 

obtained the following results for the estimation of the hypothesized model shown in 

Figure 3.5. The results are tabulated in Table 3.1 and illustrated in Figure 3.6. In order to 

reference the results in the table, recall the equations relating to the hypothesized path 

diagram shown in Figure 3.5 are 
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Highlighted paths are significant at the .05α =  significance level (one-sided). Red paths 

and factors indicate a positive relationship between the corresponding brain regions, 

while blue paths and factors indicate a negative relationship. Those factors (G or D) that 

are not present are insignificant and have been removed to simplify the diagram.  
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1β  2β  3β  4β  5β  6β  7β  8β  

path .8100 -.3525 -.0519 .5875 -.2777 .1039 .1156 .4845 

error .1001 .1125 .057 .1006 .105 .0423 .1421 .1834 

p-value .0000 .0017 .3630 .0000 .0082 .0140 .4162 .0082 

 

 
9β  10β  11β  12β  13β  14β  15β  

path .0130 .3703 .1123 .2009 .7699 -.2858 -.1401 

error .1138 .1594 .2052 .1719 .2097 .3086 .2622 

p-value .9093 .0202 .5840 .2426 .0002 .3544 .5930 

 

Table 3.1. Estimated path coefficients, standard errors, and corresponding p-values for 

the hypothesized path diagram shown in Figure 3.5 are displayed. P-values are two-sided. 

 

 
Figure 3.6. Results of the Brain Functional Pathway Study as estimated by our algorithm 

implemented in MATLAB. Paths determined to be insignificant are shown as dotted 

arrows. Arrows and factors highlighted are significant after a two-sided z-test with 

.05α = . Red paths and factors indicate a positive influence while blue factors and paths 

indicate a negative influence.  

 

Figure 3.6 clearly shows that for some paths, the group membership and drug 

treatment of subjects does affect the strength of connectivity between the brain regions 

under study. 
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Chapter 4: Power and Sample Size Analysis of MD-SEM 
 

 

 

 
 

 In Chapter 3, we derived a goodness-of-fit test for the null hypothesis 

0 : ( )H θΣ = Σ . This test evaluates whether the sample data covariance matrix (a 

representation of the population under study) and the model-implied covariance matrix 

are significantly different. If the null hypothesis is rejected, there is a poor fit, and the 

relationships in the model do not represent those in the population. The goodness-of-fit 

statistic derived in Chapter 3 for the mixed design model follows a chi-square distribution 

as the sample size (N = number of observations in each dataset) approaches infinity. The 

degrees of freedom are equal to the number of distinct elements in the covariance 

matrices of all independent groups under study minus the number of free parameters in 

the model. 

 Before we can use our new model and the corresponding goodness-of-fit statistic, 

we must first evaluate the robustness of this test against small sample sizes, since we 

have a total of 82 observations from 41 subjects. We must know how large the sample 

size must be in order to have reliable chi-square test statistics (does that test statistic 

follow a chi-square distribution if our sample is small? if we cannot answer this question, 

then we cannot evaluate power).  

 We have developed and implemented a simulation to determine the robustness of 

the mixed design goodness-of-fit test against small sample sizes. Our simulation is 

motivated by the original simulation performed by Boomsma [56] to answer the same 

questions of robustness about the original, single-group SEM framework. From 

Boomsma’s work comes the recommendation of 100-200 observations as a minimal 

sample size requirement for single-group SEMs. Our simulation will be conducted in 

MATLAB. We evaluate the robustness of the chi-square test based on the brain activity 

model we have been analyzing (including factors of G and D on each path). Once we 

know which sample sizes are appropriate for generating significance tests of parameters, 

then we can evaluate the power of those tests.  
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Figure 4.1. Hypothesized relationship among variables for study in the Robustness 

Simulation. We will specify parameter values for all path coefficients, factor coefficients, 

and variance parameters and study a very specific model, as in the original work by 

Boomsma [56].  

 

4.1 Robustness of SEM Hypothesis Tests Against Small Sample Size 

 

 In order to determine whether our model and tests are robust for varying sample 

sizes, we follow the methods of Boomsma [56], who first performed this analysis on the 

single-group SEM methodology in 1983. The overall goodness-of-fit test derived in 

Chapter 3 can be manipulated to test the significance of individual parameters in the 

model as well. The test statistic follows a chi-square distribution when the null hypothesis 

is true as the sample size becomes large (“how large is large enough?”). 

 To perform the robustness analysis, we specify a model for which the null 

hypothesis is true and then determine whether the resulting test statistic follows a chi-

square distribution for varying sample sizes. In repeated trials, it is expected that the 

distribution of this statistic will converge to a chi-square distribution as we increase the 

sample size, so we will vary the sample size (N = 25, 50, 100, 200, 400, 800) and inspect 

the results.  

 

4.1.1 Forcing the Null Hypothesis to be True 

 To begin, as is prescribed by Boomsma [56], we completely specify a model by 

setting explicit values for all parameters (paths, factors, and variances). For our 

simulation, we use the model shown in Figure 4.1, and we specify the parameter values to 

equal those estimated from our original dataset. As Boomsma points out, it is difficult to 

generalize the results because we must specify a particular model completely. This study 

analyzes only the example of our model of interest.   

  After specifying parameters, we construct the model-implied covariance 

matrices, 0 ( )θΣ  and 1( )θΣ , as discussed in Chapter 3. We will use these model-implied 

covariance matrices as population covariance matrices, thereby forcing the null 

hypothesis ( )θΣ = Σ  to be true. 
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4.1.2 Generating Sample Data  

 Given the covariance matrix ( )θΣ , which we will use as the population 

covariance matrix, we will generate multivariate normal data with sample covariance 

matrix approximately equal to ( )θΣ . The generated data serve as input samples for use in 

repetitions of the algorithm.  

 To generate sample data, we apply the Cholesky decomposition to ( )θΣ  to find 

matrix M such that ( ) MMθ ′Σ = . Next, generate a vector of observations of length N 

times the number of columns in ( )θΣ  from the standard normal distribution. Form the 

vector of observations into a N-by-#variables matrix, Z. As N increases, the covariance of 

this matrix is the identity matrix. Therefore,  

 

cov( ) cov( ) ' ' )' (MZ M Z M MIM MM θ= = = = Σ ; 

 

letting X MZ=  yields the multivariate normal sample data we require, X.  

 

4.1.3 Model Estimation 

 For each set of sample data, we calculate the sample covariance matrix and run 

the MD-SEM algorithm to estimate model parameters. This should return estimates 

similar to those specified in the original model definition, but will probably show some 

variation due to the minimization technique for the fitting function. The difference 

between the input sample data and the model-implied covariance matrix is reflected in 

the chi-square test statistic by definition. We record the value of this statistic for each 

repetition of the algorithm at each sample size.  

 

4.2 Results of the Robustness Simulation 

 

 For each repetition of the algorithm discussed in section 4.1, at each sample size, 

the chi-square test statistic is recorded (which is equal to the minimum value of the fitting 

function). The moments of this sample distribution are calculated and compared to those 

of the chi-square distribution the test statistic is expected to follow under the null 

hypothesis. For each sample size, we evaluate the mean and median of the sample 

distribution for each sample size. Most importantly, we determine the percentage of trials 

in which the null hypothesis is rejected at the traditional 5% significance level. If the test 

statistic truly follows a chi-square distribution under the null hypothesis, then about 5% 

of the time, our test statistic should result in a rejected null hypothesis, just by chance. If 

the proportion of rejections strays from 5%, then the test statistic does not appear to 

follow a chi-square distribution for the corresponding sample size. We performed this 

simulation for a varying number of repetitions (reps = 100, 300, 500), as in Boomsma’s 

original simulation. The results are displayed in Table 4.1. 
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100 reps 2

33χ  N=25 N=50 N=100 N=200 N=400 N=800 

mean 33 67.00 54.25 56.46 91.87 71.74 33.09 

median 32.34 48.29 37.03 34.36 34.08 31.41 31.36 

% reject 0H  .05 .55 .25 .17 .14 .08 .07 

 

300 reps 2

33χ  N=25 N=50 N=100 N=200 N=400 N=800 

mean 33 63.08 73.08 73.94 76.25 84.80 55.87 

median 32.34 47.03 40.34 36.14 34.06 32.56 31.96 

% reject 0H  .05 .49 .32 .20 .12 .09 .06 

 

500 reps 2

33χ  N=25 N=50 N=100 N=200 N=400 N=800 

mean 33 65.65 64.50 64.49 66.82 61.76 46.62 

median 32.34 47.46 38.99 35.11 33.53 32.39 32.72 

% reject 0H  .05 .50 .31 .18 .11 .08 .06 

 

Table 4.1. Results of the robustness analysis of the chi-square goodness-of-fit test for 

MD-SEM. Each table represents a differing number of repetitions of the algorithm. The 

sample size varies in each table. Mean and median for the distribution of fit statistic 

values are calculated, and the percentage of tests for which the null hypothesis is rejected 

is recorded. The second column of Table 4.1 shows the theoretical values of the chi-

square distribution with thirty-three degrees of freedom (our model has 72 distinct 

covariance matrix entries and 39 parameters, leaving 33 degrees of freedom).  

 

 The percentage of test statistics for which the null hypothesis is rejected is 

somewhat inflated, even for large sample sizes. This could be because there are some 

non-convergent and ill-conditioned solutions in each set of repetitions of the algorithm. 

Those ill-conditioned solutions often produce extremely large function values, which of 

course will cause the null hypothesis to be rejected, but they also skew the average to be 

much higher than the median. Therefore, further study could be done on the issue of 

robustness in MD-SEM, focusing on removing ill-conditioned solutions to the models. 

Such solutions are difficult to identify as they are being generated, and are therefore 

difficult to remove from consideration. 

 Because the test statistic does not appear to converge to a chi-square distribution 

for sample sizes less than 400, we propose that MD-SEM as developed in Chapter 3 is 

suitable for sample sizes of 400 and larger. This means that for each group of subjects 

being compared, and for each condition evaluated, there must be 400 or more 

observations in order to have reliable significance tests for strength of parameters and fit 

of the model. However, we do acknowledge the need for further investigation of this 

issue for a more accurate prescription of required sample size. 

 

4.3 Power Analysis of SEM and MD-SEM 
 

 Now that we have determined whether the chi-square test statistic is robust for 

small sample sizes, we can evaluate the power of statistical tests of significance for 
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individual parameters in the model. First, we must review the theoretical calculation of 

power for SEM and discuss the corresponding calculations for MD-SEM. 

 

4.3.1 Power of Single-Group SEM 

 For single-group MLE SEM, we are interested in the power of the statistical test 

of a single parameter in the system of equations, 0 0: iH θ = . The likelihood ratio test 

statistic follows an approximate central chi-square distribution under 0H  [1]. In 1985, 

Satorra and Saris [57] determined that when 0H  is tested, but 1H  is true, the test statistic 

follows a non-central chi-square distribution, and proposed a method for estimating the 

value of the non-centrality parameter. The degrees of freedom for both distributions is 1 

because we are interested in testing the significance of single path, however, in general, it 

is the difference in the number of free parameters between 0H  and 1H . The estimation of 

the non-centrality parameter can be based on any of three methods: the Wald test statistic, 

the Likelihood Ratio test statistic, or the Lagrangian Multiplier test statistic. The 

estimates are asymptotically equal; however, Saris, Satorra, and Sörbom [58] determined 

that the LR method is most accurate for power calculations in small sample sizes [1]. We 

will use this method in our analysis. Satorra and Saris [57] developed the likelihood ratio 

method, and also simplified the original framework to eliminate the need for using the 

asymptotic covariance matrix, which can be difficult to calculate in many instances. Their 

method, which is the current standard, is discussed below. 

 If we want to test a particular parameter, we may use 0 1: 0, : 0i iH Hθ θ= ≠ . Then 

in 0H  we have assigned a particular value of iθ . Therefore, we have one less parameter 

in the model. Let 2

0χ  be the fit statistic for the model under 0H  and 2

1χ  be the fit statistic 

for the model under 1H  (all parameters free). Then 2 2 2

0 1D χ χ= −  follows a chi-square 

distribution with degrees of freedom equal to the difference of the degrees of freedom for 

the two hypotheses. This test determines whether the fit changes if this particular 

parameter is set to 0, and therefore tests whether that value should be assigned to 0 or 

some value not equal to 0.  

 This method is appropriate for the maximum likelihood estimation method, but 

should only be used when the sample size is large and 0H  is true [27]. In the case of 

testing a single hypothesis, if we run the model under 1H , we can use the t-statistic 

(parameter value / standard error) as a test statistic for a two-sided z-test, or we can run 

the model under 0H  and use the modification index for iθ  as a chi-square test statistic 

with one degree of freedom. For large samples, the modification index, 2
t , and 2D  are 

equal. However, this may not be true for small samples [27].  

 In order to evaluate the power of the 2D  test (which is equivalent to the single-

parameter significance z-test in large samples), the following procedure can be used [27]. 

1. Specify the model completely under 1H —give all parameters a numerical 

assigned value. (These are the values estimated when the model is free—we must 

say that our initial study is our “pilot study” and we are calculating the power of 

future studies at varying sample sizes because retroactive power analysis is not 

suggested.) 



 57

2. Compute the covariance matrix ( )θΣ  for the parameters specified in step 1. 

3. Evaluate the structural equation model of 0H  (parameters set to values from step 

1 except for iθ  which will be set to 0), using the ( )θΣ constructed in step 2 as the 

input covariance matrix. The chi-square fit statistic for this model is the non-

centrality parameter λ . 

4. Use the non-central chi-square distribution with non-centrality parameter λ and 

degrees of freedom equal to the difference in degrees of freedom between 0H  

and 1H . Determine the probability of obtaining a value of the non-central chi-

square distribution with lambda and df=1 that is larger than the 1 α−  percentile 

of the central chi-square distribution.  

Generally in practice, we calculate the probability of a value of the non-central 

distribution that is smaller than the 1 α−  percentile in the central chi-square distribution 

using the CDF of the non-central distribution. One minus this probability is the power of 

the test [59].  

 

 

4.3.2 Power of MD-SEM 

 The power of a MD-SEM test of significance works in much the same way as the 

calculation of power for a single-group SEM test because we have derived a chi-square 

goodness-of-fit test for the mixed design that is entirely analogous to that of the single-

group methodology.   

 This time, we are interested in the test of whether a path and all covariates on that 

path are significant (i.e. we want to understand the model’s power to detect an eliminated 

relationship). As in the single-group case, our likelihood ratio test statistic follows a 

central chi-square distribution when the null hypothesis 0 : 0H θ = is true and a non-

central chi-square distribution when it is false. The degrees of freedom for this chi-square 

test are equal to the difference in degrees of freedom between the numerator and 

denominator of the likelihood ratio. In our example model, we will consider the case of a 

single parameter (path or factor) and also a path and two covariates on the path 

simultaneously tested for significance. In the latter case, we will set the path parameter 

and the two covariate influences equal to zero, making the degrees of freedom for this 

likelihood ratio test equal to 3. In the case of a single parameter significance test, we have 

one degree of freedom, and only that parameter is set equal to 0 in the null hypothesis. As 

in the previous case, we will use the likelihood ratio method for determining the non-

centrality parameter of the distribution of the test statistic under the alternative 

hypothesis. 

 As before, assume the completely specified alternative model, and calculate the 

model-implied covariance matrix. We then evaluate the model in the null hypothesis 

using the model-implied covariance calculated from the alternative model as our input 

covariate matrix. The chi-square fit statistic for this second model is the non-centrality 

parameter, λ , of the non-central chi-square distribution we use to determine power. The 

power is equal to 
2 2

3 3,1) (0 )( ( )P αχ λ χ −> , [27]. 
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It is important to note that the goodness-of-fit test statistic for the mixed design is equal 

to the minimized value of the fit function. In the single-group case, it must be multiplied 

by the sample size, but for the mixed design it is not. 

 

4.3.3 Power Simulation: MD-SEM 

 We will use the brain functional pathway study to evaluate the power of MD-

SEM via simulation. As in the previous section on the robustness study, we are 

evaluating power for a single model; it is therefore limited in its applicability, and could 

benefit from further investigation. We use the Monte Carlo simulation technique of 

Muthén and Muthén [60]. Our model of interest for the power analysis simulation is the 

same model discussed in previous chapters, and is shown in Figure 4.1. Because the goal 

of estimating power is to determine the probability of rejecting the null hypothesis when 

it is false, we must keep in mind that parameters with small effect sizes (those that will 

likely be deemed insignificant in statistical tests) will have small power for any sample 

size, since the corresponding null hypothesis, 0 0: iH β = , is likely true. Highly significant 

parameters will be detected with increasing power as sample size grows. In all cases, we 

will empirically evaluate the probability of a correct significance test (correct decision to 

reject the null hypothesis 0 0: iH β = ) for varying sample sizes.  

 Because significance tests for single parameters are based on the chi-square 

goodness-of-fit tests used in SEM, we begin by assuming the null hypothesis ( )θΣ = Σ  is 

true, as we need to perform the power analysis using a model that fits the data well. To 

begin the power analysis, we must completely specify a model with good fit (all paths, 

factors, and variance parameters), [27]. We specify the parameter values to equal those 

estimated from our original dataset from the brain functional pathway study. After 

specifying parameters, we construct the model-implied covariance matrices, 0 ( )θΣ  and 

1( )θΣ . Given the covariance matrices 0 ( )θΣ  and 1( )θΣ , which we will use as the 

population covariance matrices, we will generate multivariate normal data with sample 

covariance matrices approximately equal to 0 ( )θΣ  and 1( )θΣ , as in the robustness 

simulation (see Section 4.1.2 for details). The generated data serve as input samples for 

use in repetitions of the algorithm. For each set of sample data, we calculate the sample 

covariance matrix and run the MD-SEM algorithm to estimate model parameters. This 

should return estimates similar to those specified in the original model definition, but will 

probably show some variation due to the variation in simulated samples. 

 We evaluate the power of two types of hypothesis tests—one for significance of a 

single path and one for significance of a single factor. The chi-square goodness-of-fit test 

for the overall model can be manipulated to evaluate tests of significance of single 

parameters in the model [27], and we are most interested in evaluating the power of these 

tests (as these are the tests that determine which effects are significant).  

 We analyze 200 simulated samples and determine what percentage of the time the 

model has good fit and the paths and factors we are testing are deemed significant by the 

standard t-test of individual parameters (equivalent to a chi-square goodness-of-fit 

difference test, as introduced in Section 4.3.1). We will look at the empirical distribution 

of acceptance and rejection of the null hypothesis 0 : 0iH β =  and determine how many 

times out of 200 that each path and factor was detected as significant at the .01α =  and 
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.05α =  significance levels. The results of the simulation are recorded in Table 4.2. Note 

that we are truly interested in those paths and parameters that are significant in the 

original model, as the power is the probability of rightly rejecting the null hypothesis. 

Recall that the model is:  
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.01α =  Param. Estimate p  N=25 N=50 N=100 N=200 N=400 N=800 

Path 
1β  .813 .000 .535 .705 .815 .875 .915 .925 

Factor  
2β  -.355 .002 .455 .705 .815 .875 .915 .925 

Factor  
3β  -.053 .363 .070 .100 .290 .535 .870 .925 

Path 
4β  .587 .000 .535 .705 .815 .875 .915 .925 

Factor  
5β  -.275 .008 .450 .700 .815 .875 .915 .925 

Factor  
6β  .103 .014 .270 .585 .815 .875 .915 .925 

Path  
7β  .109 .416 .040 .080 .245 .575 .880 .925 

Factor  
8β  .489 .008 .390 .690 .815 .875 .915 .925 

Factor  
9β  .016 .909 .020 .005 .030 .025 .020 .045 

Path  
10β  .365 .020 .335 .670 .810 .875 .915 .925 

Factor  
11β  .118 .584 .005 .020 .065 .185 .400 .700 

Factor  
12β  .206 .243 .065 .210 .395 .750 .915 .925 

Path  
13β  .777 .000 .520 .705 .815 .875 .915 .925 

Factor  
14β  -.295 .354 .055 .075 .235 .590 .860 .925 

Factor  
15β  -.145 .593 .045 .055 .100 .255 .505 .800 

 

.05α =  Param. Estimate p  N=25 N=50 N=100 N=200 N=400 N=800 

Path 
1β  .812 .000 .525 .650 .785 .925 .935 .945 

Factor  
2β  -.353 .002 .500 .650 .785 .925 .935 .945 

Factor  
3β  -.053 .363 .090 .195 .380 .785 .935 .945 

Path 
4β  .588 .000 .525 .650 .785 .925 .935 .945 

Factor  
5β  -.277 .008 .480 .645 .785 .925 .935 .945 

Factor  
6β  .103 .014 .375 .615 .785 .925 .935 .945 

Path  
7β  .114 .416 .140 .180 .485 .815 .910 .945 

Factor  
8β  .483 .008 .420 .645 .785 .925 .935 .945 

Factor  
9β  .016 .909 .030 .035 .030 .070 .080 .090 

Path  
10β  .365 .020 .415 .645 .785 .925 .935 .945 

Factor  
11β  .113 .584 .045 .085 .200 .345 .650 .885 

Factor  
12β  .209 .243 .175 .245 .600 .905 .935 .945 

Path  
13β  .777 .000 .510 .650 .785 .925 .935 .945 

Factor  
14β  -.287 .354 .105 .175 .400 .760 .915 .945 

Factor  
15β  -.151 .593 .100 .100 .235 .505 .735 .920 

 

Table 4.2. Results of the Power Analysis Simulation for .01α =  and .05α = . Each 

power calculation is performed 200 times and the resulting average effect size and 
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probability of rejecting 0 : 0iH β =  for each test is displayed in the table. The p-value 

refers to the p-value of this parameter in the original model (estimated in Chapter 3, with 

results shown in Table 3.1 and Figure 3.6).  

 

 Table 4.2 shows that the tests of 0 : 0iH β = are quite powerful for significant 

paths and factors for large sample sizes, and not powerful for small sample sizes. 

Significant paths and factors are identified by their p-values from the estimation of the 

original brain functional pathway data in Chapter 3 (on which this simulation is based). 

Those p-values are highlighted in Table 4.2 in red (results of the original analysis are 

shown in Table 3.1 and Figure 3.6). Setting the significance level .01α =  decreases the 

power slightly from calculations with .05α = , as expected, since decreasing the 

significance level increases the probability of Type II error, which decreases power. Also 

as expected, parameters with larger effects are easier to detect, and therefore have higher 

power for small sample sizes. For the small sample sizes N=25 and N=50, the power of 

detecting all effects is unacceptably small, supporting the conclusions from the 

robustness analysis, which indicated that small sample sizes are not appropriate for use 

with MD-SEM.  
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Chapter 5: Latent Variable SEM and the Mixed Design 
  

 

 

 

 

 One of the variables in the dataset generated during the Brain Functional Pathway 

Study (see Chapter 2), the Ventral Striatum (VS), is difficult to measure because it 

represents a very small brain region. We have two measurements for the VS, one 

containing the average of a larger number of voxels for each subject, and the other 

containing the average of a smaller subset of those voxels. The ventral striatum is a very 

tiny region and it is difficult to locate on the Talairach atlas of the brain for each subject, 

as this tiny region could be in a slightly different location for each subject. We want to 

incorporate the VS into the model, of course, because it is an influential element in the 

path diagram.  

 The path analysis method introduced in Chapter 2 and modified in Chapter 3 is a 

subset of the more general structural equation model. Path analysis is the subset of 

models that involve strictly measured variables. SEM was developed to estimate relations 

between latent constructs, and between the latent variables and their measured indicators. 

A latent variable is a variable that cannot be measured directly, but has indicators that 

provide information about the impact of the unmeasured variable. For example, we may 

want to measure the influence of intelligence on social class, but neither of these 

variables can be observed directly. Therefore, we need indicators of each, like number of 

years in school and IQ test scores for intelligence, and income for social class. Then SEM 

would allow us to model the relationship between the latent variables, assuming their 

measured indicators provide enough information about the variables of interest. This 

example is illustrated below.  

 
Figure 5.1. Illustration of SEM with latent variables. Latent variables—those which 

cannot be measured directly—are shown in yellow ovals. Observed (measured) variables 

are shown in blue rectangles. School years and IQ are measured indicators of the latent 

variable intelligence, and income is a measured indicator of the latent variable social 

class. The focus of this SEM would be on studying the influence of intelligence on social 

class. Note: Latent variables are commonly depicted as ovals and measured variables are 

depicted as rectangles. 

 

 Because we want to include VS in our model as a latent variable, it is a natural 

next step to extend SEM for latent variables to include the mixed design methodology, as 

we have done for SEM without latent variables.  
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5.1 Existing Model and Estimation 

 

 We are familiar with the traditional path analysis model of SEM, which relates 

only exogenous measured variables to endogenous measured variables, y y x ζ= Β + Γ + . 

The general SEM, which incorporates latent variables, is shown below [1].  

  

y

x

y

x

η η ξ ζ

η

ξ δ

= Β + Γ +

= Λ +

= Λ +

ε  

 

where η is a vector of endogenous (dependent) latent variables, ξ is a vector of 

exogenous (independent) latent variables, and x and y are vectors of independent and 

dependent measured variables, respectively. This model allows for relationships (paths) 

to be modeled between endogenous latent variables and their indicators, y, between 

exogenous latent variables and their indicators, x, and between exogenous and 

endogenous latent variables. The first equation represents any arrows that may go from 

endogenous latent variables to other endogenous latent variables and from exogenous 

latent variables to endogenous latent variables. The second equation represents any 

arrows going from the endogenous latent variables to their measured indicators, y. The 

third equation represents any arrows going from the exogenous latent variables to their 

measured indicators, x. All equations can be viewed as regression equations in matrix 

form.  

 Using this more general model, we can estimate four types of relationships. One 

path of each type is marked in Figure 5.2.  

1. Exogenous latent variables to their measured indicators  

2. Exogenous latent variables to endogenous latent variables 

3. Endogenous latent variables to their measured indicators 

4. Endogenous latent variables to endogenous latent variables 
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Figure 5.2. Hypothesized path diagram for SEM model with three latent variables—one 

exogenous and two endogenous, shown in yellow—and seven observed variables, serving 

as indicators of the latent variables. Path 1 is an example of a path from an exogenous 

latent variable to its measured indicator; path 2 is an example of a path from an 

exogenous latent variable to an endogenous latent variable; path 3 is an example of a path 

from an endogenous latent variable to its measured indicator; path 4 is an example of a 

path from an endogenous latent variable to an endogenous latent variable.  

 

 There are several assumptions for the model described above. We generally 

assume ζ is the disturbance vector with expected value 0 and it is uncorrelated with ξ . 

Additionally, ε and δ represent the errors in the measurement equations, they have 

expected value 0, and are uncorrelated with ,ξ ζ , and each other. As in the path analysis 

model, we are interested in studying the null hypothesis ( )θΣ = Σ , or similarly asking the 

question, “Is the model-implied covariance matrix sufficiently close to the population 

covariance matrix of the data?” We must begin by defining some important notation. Let 

Φ be the covariance matrix of ξ , let Ψ be the covariance matrix of ζ , let Θ
ε
be the 

covariance matrix of ε , and let δΘ be the covariance matrix of δ . Also, , ,ζ δ ε are 

pairwise independent and independent of x and y. 

We can set values in ,Β Γ , and the Λ  matrices according to the hypothesized path 

diagram. The other matrices, representing covariance matrices of the variables, can be 

specified, to represent correlation among the errors in the equations and/or the 

independent latent variables. As we determine which parameters will be estimated, we 

must keep in mind the issue of identification. Necessary, but not sufficient, is the rule that 

we can estimate up to 1
2

( 1) 1k k + −  parameters, because we have 1
2

( 1)k k + unique entries 

in the sample covariance matrix of the measured variables (k is the total number of 

measured variables), and we must have at least one degree of freedom left with which to 

make inferences. All recursive models are identified.  

As in the case of path analysis, in order to derive the model-implied covariance 

matrix, we write will write our measured variables as  
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where y and x have been centered about their respective means. The model-implied 

covariance matrix is shown and derived below. 
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From the model,  
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We can derive the model-implied covariance matrix as follows. 
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 Now that we have derived the model-implied covariance matrix, we need a 

method for evaluating how close this matrix is to the population covariance matrix—for 

testing 0 : ( )H θΣ = Σ . We will choose parameter estimates by the maximum likelihood 

method, assuming our measured variables are distributed multivariate normal. Since we 

are able to incorporate only the measured variables in our distribution, the log-likelihood 

function and fitting function, MLF are the same as in the case of traditional path analysis, 

as we still only have observed values of the measured variables, 

 
1log (( ) ) log ( )MLF tr S S p qθ θ− = + − − + Σ Σ . 

 

The standard errors can also be estimated as in the case of traditional path analysis with 

only measured variables (see Chapter 2), by calculating the asymptotic covariance 

matrix.  

 

5.2 Our Interests in Latent Variable SEM 

 

 Until now, we have been working with traditional path analysis models—SEM 

with no latent variables. However, we have one variable in particular, the Ventral 

Striatum (VS), that we believe is not accurately measured because it is such a small 

region of the brain, representing only a small number of pixels in the image of the 

Talairach atlas of the brain. We would like to represent this variable as a latent variable 

(or hidden variable [61]) with a measured indicator, and of course some measurement 

error, as shown below.  

 In order to best estimate a model with latent variables, each latent variable should 

have at least two measured indicators. One reason for this is to increase the degrees of 

freedom when estimating such a complex model, but another reason is because one of the 

indicators must always have a path coefficient of 1 (to set a scale for the latent variable). 

Luckily, for the Brain Functional Pathway Study, there are two measurements of ventral 

striatum; one measurement incorporates a larger number of pixels in the brain image than 

the other measurement, as it is currently unclear which pixels represent the ventral 

striatum because this region is very small. 
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Figure 5.3. Representation of VS as a latent variable (shown in the yellow oval). We 

include the two measurements of the VS variable as indicators of the latent VS, and we 

include error in measurement.  

 

We want to first represent the Ventral Striatum as a latent variable, and then 

extend MD-SEM to include latent variables, particularly for situations like ours, where 

some variables may not be measured accurately. Figure 5.4(b) shows the path diagram 

we would like to estimate, with VS as a latent variable with two measured indicators (one 

of them is the VS variable in our path analysis with no latent variables). For comparison, 

Figure 5.4(a) shows the original path diagram for this study, with no latent variables.  

 

(a)

 

(b)

 
 

Figure 5.4. (a) Hypothesized path diagram for the Brain Functional Pathway Study with 

no latent variables; (b) Hypothesized path diagram for the Brain Functional Pathway 

Study with VS included as a latent variable. The two measurements of VS (rectangular 

VS1 and VS2) are included as indicators of the latent VS (yellow oval VS). Latent VS 

interacts with the other brain regions as the measured VS did in our previous 

consideration of this model with no latent variables.  

 

There are some fundamental issues with our desire to incorporate latent VS into 

our current path diagram. As mentioned above and illustrated in Figure 5.2, we can only 

model four types of paths in the current SEM model: exogenous latent variables to their 

measured indicators, endogenous latent variables to their measured indicators, and 

relationships between latent variables of all types. However, as depicted in Figure 5.4, 

when VS is represented as a latent variable, we will want relationships present in the 

model between measured variables, and from measured variables to latent variables. 

While there are methods for incorporating paths from exogenous measured variables to 

latent variables [1, 62, 63] no method exists for modeling relationships between measured 
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variables in the general SEM with latent variables framework. We want to incorporate all 

necessary paths into our model and extend the model to mixed designs in order to 

estimate the latent VS model.  

 

5.3 Modifications to the Existing Single-Group Methodology 

 

 Over the years, many extensions have been made to the original Latent Variable 

SEM model to allow for more general applications, where measured variables can 

influence one another and can also influence the latent variables [1]. Figure 5.4 shows our 

model of interest, with ventral striatum represented as a latent variable (in the oval), with 

a measured indicator (our measured VS variable, in the rectangle). Here, we have only 

one latent variable with many influences.  

 

5.3.1 MIMIC Models 

 MIMIC models are general latent variable SEMs with the following structure [1]:  

 

yy

x

η η ξ ζ

η

ξ

= Β + Γ +

= Λ +

=

ε  

 

If there are no exogenous latent variables in the model, then the influence of exogenous 

measured variables on the endogenous latent variable(s) can be modeled. Let x be a 

vector of measured variables who causes lie outside of the model (exogenous measured 

variables). Then the model reduces to the following equations: 

 

y

x

y

η η ζ

η

= Β + Γ +

= Λ + ε
 

 

All parts of the model remain the same except for Φ , which now represents the 

covariance structure of the exogenous measured variables x, rather than the exogenous 

latent variables which are no longer present (this is now similar to the case of no latent 

variables). The model-implied covariance matrix ( )θΣ  can be derived as a simpler case 

of the traditional latent variable SEM model. 

 The current MIMIC model accounts for modeling the latent variables with 

measured influences in the model (which is not allowed in the standard SEM framework). 

We want to extend the MIMIC model to allow for relationships between measured 

endogenous variables (y), and relationships from these measured endogenous variables to 

endogenous latent variables. Therefore, we must further draw on further generalizations 

of latent variable SEM. 

 

5.3.2 More Extensions 

 In 1979, Graff proposed an alternative representation for latent variable SEM, [1]. 

(Others, too, have proposed alternative representations—McDonald [64, 65], McArdle 

and McDonald [66], and Bentler and Weeks [67].) Graff proposed the following model: 
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. 

 

Note that the representation of this model is shown in relation to general Latent Variable 

SEM.  

 Now that we have a more general representation, Bollen’s text [1] notes that we 

can change the zero entries in the +Β matrix to allow for more paths to be present—paths 

between any of the variables in η + . Bollen warns, however, that having more paths 

available comes more opportunities for identification problems, so this license for 

including paths comes with a responsibility to keep the number of parameters reasonable.  

 

5.3.3 Our Modification to the Existing Latent Variable Structural Equation Model 

 Following Graff’s precedent that models can allow for all types of relationships 

between elements of , , ,y x η ξ , we have developed the following model that suits the 

needs of our example. Our model does not utilize Graff’s notation, only his notion of 

including any necessary paths.  

 First, we must redefine how we think of our measured variables x and y: 

 

( )
1

, ,
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PUT
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VS x y MFC
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CER

ξ

 
   
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 

=


 

 

 As shown in Figure 5.4, our model must incorporate paths from 

, ,x y y yξ ξ→ → → . To the current SEM framework for latent variables, we will add 

matrices to represent the remaining two types of paths we must incorporate, as shown 

here: 

y

x

y y

x

η ξ

ξ δ

η η ξ ζ

= Λ + Μ + Κ +

= Λ +

= Β + Γ +

ε

  

 

Note that this model can be generalized further, as noted by Graff; however, the model 

shown above satisfies our needs for the current model. Our model is an extension using 

Graff’s model written in the traditional SEM format. Note that if the two added matrices 

M and K are set equal to 0, we have the standard SEM framework.  
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 For our model of interest, shown in Figure 5.4, 0, 0, 0yΛ = Β = Γ =  because we 

have no endogenous latent variables. Therefore, our extended model shown above 

reduces to 

x

y y

x

ξ

ξ δ

= Μ + Κ +

= Λ +

ε



 

 

However, we will derive the method for the general case where 0Β ≠  for simplicity in 

generalizing to future models.  

 Before we can derive the model-implied covariance structure, we provide some 

typical some definitions: 

1. 
y

z
x

 
=  
 

, where all variables in y and x have been centered about their means. 

2. ( ')E ξξ = Φ  

3. )( 'E ζζ = Ψ  

4. '( )E = Θ
ε

εε  

5. '( )E δδδ = Θ  

6. After some manipulation, 1 1 1( ) ( )( ) )( ()yy II Iξ ζ ξ− − −− Μ Λ Β Γ + + − Μ Κ− += ε . 

7. Consider all SEM assumptions: , , ,ξ ζ δ ε are pairwise independent. 

 

We can derive the implied covariance matrix of the parameters as Bollen [1] does.  
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1 1 1( ) ( ') ( ) ( ) )' ( 'yx y x xE yx I I Iθ − − −Σ = = − Μ Λ − Β ΓΦΛ Μ ΚΦΛ+ −  

 
1 1 1'( ) ( ') '( ) ' '( ''( ) )xy x x yE xy I IIθ − − −Σ = = Λ ΦΚ − Μ Λ Β Λ −ΦΓ − Μ+  

 

( ) 'xx x xδθΣ += Θ Λ ΦΛ  

 

Specifically, for our model (Figure 5.4) where 0, 0, 0, 0yΛ = Β = Γ = Ψ =  because we 

have no endogenous latent variables,  
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The likelihood function will stay the same because we are still referencing the nine 

measured variables that we assume are MVN, 

 
1log (( ) ) log ( )MLF tr S S p qθ θ− = + − − + Σ Σ . 

 

As always, we would minimize this function to solve for all of our path coefficients and 

variance parameters in θ . Standard errors and goodness-of-fit tests proceed in the 

standard way.  

 

5.3.4 A Single-Group Example Using the Modified Framework 

 The hypothesized model shown in Figure 5.4 is implemented and estimated in 

MATLAB. As mentioned earlier, one of the measured indicators of a latent variable must 

have relationship 1 to the latent variable (the path coefficient is set equal to 1 and not 

estimated) in order to set a scale for the latent variable. The results of this analysis are 

illustrated in Figure 5.5 and estimated values for path parameters, standard errors, and p-

values are displayed in Table 5.1. All p-values and significance tests are two-sided. Tests 

are performed with significance level .05. The hypothesized model associated with 

Figure 5.4 is 
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Figure 5.5. Results of the Brain Functional Pathway Study for a single dataset (normal 

subjects under the influence of placebo) with VS included as a latent variable. Dotted 

paths represent insignificant relationships; red paths indicate significant positive 

relationships. The path denoted with a 1 indicates that VS1 is used to set the scale for the 

latent variable VS (ventral striatum). All tests are performed at a two-sided significance 

level of .05. 
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1β  2β  3β  4β  5β  6β  

path coeff .7133 .2784 .1858 .2336 .8250 .9348 

std. error .1274 .1777 .1746 .1601 .2155 .0819 

p-value .0000 .1171 .2873 .1446 .0001 .0000 

  

Table 5.1. Results of the Brain Functional Pathway Study for a single dataset (normal 

subjects under the influence of placebo) with VS included as a latent variable. P-values 

are two-sided. 

 

 In the next section, we will derive Latent Variable MD-SEM, as we did for SEM 

without latent variables in Chapter 3. We will focus strictly on the modified model 

derived in Section 5.3.3 (of which traditional single-group SEM is a special case where 

0, 0Μ = Κ = ), deriving the mixed design framework for this model only. (It should be 

noted that any model in Graff’s framework may be extended to the mixed design.) 

 

5.4 Latent Variable SEM for Mixed Designs 

  

 MD-SEM was developed under the assumption that no latent variables are 

included; however, traditionally, a structural equation model allows for inclusion of latent 

variables. In a general structural equation model, researchers can study the relationships 

between many latent variables, each having measured indicators. A latent variable is 

variable that cannot be measured, but has measurable indicators. For example, 

intelligence may be an important variable to include in a SEM studied by a behavioral 

scientist. Intelligence cannot be measured directly, but the result of an IQ test may be 

used as a measured indicator of intelligence. Latent variables are also a good way to 

represent variables that contain measurement error. Each poorly measured variable can be 

represented as a latent variable with measured indicators.  

 

 
Figure 5.6. Hypothesized path diagram for the Mixed Design Brain Functional Pathway 

Study with VS included as a latent variable. The two measurements of VS (rectangular 

VS1 and VS2) are included as indicators of the latent VS (oval VS). Latent VS interacts 

with the other brain regions as the measured VS did in our previous consideration of this 

diagram with only measured variables. Group membership (G) and drug treatment (D) 

effects are evaluated as influences on path strength. 
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 As discussed in previous sections, before our development of MD-SEM, there 

was a serious deficiency in the ability to apply SEM to studies with multiple groups 

and/or repeated measures. It is natural for us to extend our path analysis methods to 

structural equation models capable of incorporating latent variables. 

 

5.4.1 Extending Our Modification to the Mixed Design 

 Now that we have developed a model appropriate for representing our model of 

interest using Latent Variable SEM, we can derive Latent Variable MD-SEM. We want 

to estimate models based on multiple datasets. These datasets could be independent, or 

they could be dependent in some way (i.e. observations taken from the same group of 

subjects under different conditions). The purpose of estimating such models is to 

determine whether variables like group membership and treatment condition affect the 

strength of paths between variables.  

 

As discussed above, our model is:  

x

y y

x

ξ

ξ δ

= Μ + Κ +

= Λ +

ε



 

 

The parameter matrices include: xΛ  (relates xξ → ), Μ  (relates y y→ ), Κ (relates 

yξ → ), ( , ')E ξ ξΦ = , ( ')EΘ =
ε

εε , and ( ')Eδ δδΘ = .  

 For each path, we will reparametrize the path coefficient to incorporate the mixed 

design’s covariate influences, as shown in Figure 5.6. For example, consider the path 

from PUT to MFC  (PUT � MFC). The equation for this path alone, before the 

reparametrization would be: 

PM C UTF β= + ε  

 

We reparametrize the path coefficient to add contributions to the path from the effect of 

group membership (G=0,1—representing membership in a group of normal subjects or 

cocaine abusers, respectively) and the condition a subject is measured under, such as the 

drug effect (D=0,1—representing those not receiving the drug or receiving the drug, 

respectively). Then: 

 

0 1 2 0 1 2) * *( G D PM UT PUT G PUT D PUTFC β β β β β β+ + + += + += ε ε . 

 

Then for normal subjects who did not receive the drug, the path is:  

 

0MFC PUTβ= + ε  

 

And for those subjects who are cocaine abusers and did not receive the drug, the path is: 

 

0 1( )P TC UMF β β+= + ε  
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Notice that the paths above are still written in the same format as paths from the single-

group SEM for latent variables. The variables are still in a multivariate normal 

distribution; only the parameters have changed. We reparametrize all paths in the 

diagram. 

 As in the case of SEM without latent variables, we will expand the parameter 

matrices to incorporate more datasets. Beginning with the M matrix, each matrix 

becomes a block matrix, where each block represents its respective matrix in a single-

group model. So 00Μ  represents the M matrix from the dataset 00 (group=0, drug=0: 

normal subject under condition of not receiving the drug). The off-diagonal entries in this 

matrix are zero, as we do not need paths between variables in different datasets. Because 

of the reparametrization, some parameters are shared, if the datasets share similar 

characteristics (i.e. same values of G or D). Therefore, the entries in these matrices are 

not unique; elements of 00Μ  appear inside all of the other blocks, while entries of 01Μ  

appear in 11Μ , as do entries of 10Μ . The M matrix for the mixed design model is shown 

below, and the , xΚ Λ matrices are constructed similarly. 
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 The , , δΦ Θ Θ
ε

matrices are slightly more complicated, it is in these matrices that 

we correlate the repeated measures of the model (those datasets containing measurements 

taken from the same subjects). In the path parameter matrices ( , , xΜ Κ Λ ), off-diagonal 

entries are zero, but in the variance parameter matrices ( , , δΦ Θ Θ
ε

), they may not be.  

 Shown below are the variance parameter matrices. As is mentioned above, group 

0 is a group of normal subjects and group 1 is a group of cocaine abusers. Therefore, 

datasets 00 and 01 are correlated (both have group value of 0) and so are datasets 10 and 

11 (both have group value of 1). So in the variance parameter matrices, we introduce off-

diagonal block matrices that represent correlations between these datasets, as shown 

below.  
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By convention, the Φ matrices will be modeled as full matrices (all entries are 

parameters), and the , δΘ Θ
ε

matrices (representing the errors in the equations) will be 

modeled as diagonal matrices (only diagonal entries are parameters, all others set to 

zero), as in the case of MD-SEM without latent variables. 
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 Then for our example, we will have 5 paths (since there is only one indicator of 

the latent variable, its path coefficient must be 1), with each having three parameters 

(path and two factors, G and D), totaling 15 path and factor parameters (within the 

, ,xΛ Μ Κ matrices). We also have 1-by-1 Φ matrices because we have only one 

exogenous latent variable. Those on the diagonal are symmetric, while those off-diagonal 

are not, but are duplicated by transpose. So we have 6 Φ variance parameters. We have 

3-by-3 Θ
ε
matrices, and all are diagonal. We have four on the diagonal and two unique 

off-diagonal matrices. Therefore, we have 18 Θ
ε
variance parameters. We have 1-by-1 

δΘ matrices, so we have 6 δΘ parameters. Therefore, we have a total of 48 parameters to 

be estimated. (Note: We have 2 independent groups, each with 8 measured variables. So 

we have ( ) ( )( )1
2

2 8 9 72=  unique degrees of freedom to work with in our model. 

Therefore, this model passes at least one test of identification.) 

 

5.4.2 Maximum Likelihood Estimation and Standard Error Calculation 

 The likelihood function for Latent Variable MD-SEM is the same as that for the 

MD-SEM without latent variables, because the likelihood depends only on measured 

variables.  

 The interest of SEM is to determine how well the model fits the data, or test the 

hypothesis ( )θΣ = Σ . Therefore, we must construct ( )θΣ  in order to estimate the path 

coefficients. For simplicity, we will construct one likelihood function for each 

independent group considered in the mixed design. These likelihood functions are 

constructed under the assumption that the variables for each independent group are 

distributed multivariate normal, as is required for the ML estimation method in most 

SEM software. In a mixed design, we may be considering many conditions or treatments 

on one group, having 2k observations of each variable measured on the same subjects. In 

the opposing extreme, we could be considering 2k independent groups, each measured 

under the same single condition. We will construct one likelihood function for each 

independent group, considering all datasets for each group in that single likelihood 

function.   

 We must begin by constructing the model-implied covariance matrix, ( )θΣ , for 

each group. Separate the datasets into G groups (one for each independent group of 

subjects), listing the variables in X and Y vectors and creating corresponding parameter 

matrices for each group. Construct the model-implied covariance matrix (in the 

traditional way) for each of the G groups, as described in Section 2.1. For example, for 

Group 0,  
1 1
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−

 − Μ Κ Φ Κ + Θ − Μ − Μ Κ Φ Λ
Σ =  

Λ Φ Κ − Μ Θ Λ Φ Λ + 

ε  

 

(the simplified covariance matrix derived in the previous section, setting 

0, 0, 0, 0yΛ = Β = Γ = Ψ =  for all groups)and likewise for 1 1( ), , ( )Gθ θ−Σ Σ� . 

 Now construct the independent likelihood for each group of MVN variables, and 

multiply them together to form the likelihood estimation function for the MD-SEM, 

shown below.  
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 As is traditional, we manipulate this likelihood function by taking its log, 

dropping constant terms, and removing negative coefficients to create a function we must 

minimize to find the parameter estimates. Additionally, in accordance with the single-

group fitting function, we simplify the summing terms and add constant terms to force 

the fitting function to equal zero when ( )S θ= Σ . Our final fitting function for a two-

group SEM is shown below. 
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−

−

 = + − − 

 

Σ Σ

+ + − −

+

Σ Σ +

, 

 

where G is the number of independent groups considered in the mixed design, and p+q is 

the number of variables measured for each group (summing the number of variables over 

all conditions).  

 In order to evaluate the statistical significance of the parameters, we must 

estimate a standard error for each path coefficient. As in traditional single-group SEM, 

standard errors of the parameter estimates can be calculated via the asymptotic 

covariance matrix (the inverse of Fisher Information Matrix).  
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5.4.3 Evaluation of fit 

 Finally, to evaluate the fit of this model, we must extend the current method for 

calculating a chi-square fit statistic. A chi-square goodness-of-fit test for this model can 

be derived in similar fashion to that for traditional SEM. It is straightforward to show that 

our fitting function, 
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follows a chi-square distribution with 1
2

( )( 1)G p q p q t+ + + −  degrees of freedom, where 

p+q represents the total number of variables, X and Y, in each independent group, and G 

is the number of independent groups. We can test the hypothesis ( )θΣ = Σ  using this fit 

function as the statistic. A significant result indicates that the model poorly fits the data.  

 



 77

5.4.4 Implementation of Latent Variable MD-SEM 

 Just as with MD-SEM without latent variables, there is no software available that 

can estimate parameters for our MD-SEM because it is a new method. We have 

implemented the estimation procedure in MATLAB. To implement the model, we first 

create a vector containing all parameters to be estimated. We also center each data 

variable about its mean. In a function file, we define , , , , ,x δΛ Μ Κ Φ Θ Θ
ε

 from the 

vector of parameters, each set to an appropriate starting value (Bollen 1989) and 

construct ( )θΣ  for each independent group. Once we have the model-implied covariance 

matrices, ( )θΣ , and the centered data, we can calculate the value of the log likelihood 

function derived above, called the fitting function, MLF . 

 In a MATLAB script file, the vector of parameters is originated and starting 

values are estimated and set. There are some values that are new to SEM, like the path 

parameters of additive change, for which there are no estimation methods to use, so we 

initiate those values to 0. The fitting function, contained in its own function file and 

passed only the current value of the vector of parameters, is minimized by the MATLAB 

function fminunc, part of MATLAB’s optimization toolbox. This function outputs the 

vector of parameter values that minimizes the function specified in the function call. 

Once the parameters are estimated, the standard errors can be estimated. The expected 

Fisher Information matrix can be calculated using the following formula as a matrix of 

second derivatives, the Hessian matrix of the function.  

 

({[ ( ) ( )] [ ( ) ( )]}

{[ ( ) ( ) ( )]}) / (2)] [ ( )

ij i i j j i i j j

i i j j i i j j i j

H f x h e h e f x h e f x h e f x

f x h h f x h f xe e e f x h e hh

= + + − + − + −

+ − − − − −− −



, 

 

where ( )f x is MLF , ie  is the i
th

 elementary vector, and ih is the step size in the i
th

 

direction [54]. The step size in the direction of parameter i  is proportional to parameter 

i ; it is a small number h (we use the fourth root of MATLAB’s smallest recognized 

number, eps , as suggested by Gill [55]) multiplied by the i
th

 parameter estimate to scale 

it properly.  

 

5.4.5 An Example Using MD-SEM with Latent Variables 

 The hypothesized model shown in Figure 5.6 is implemented and estimated in 

MATLAB. As before, one of the measured indicators of a latent variable must have 

relationship 1 to the latent variable (the path coefficient is set equal to 1 and not 

estimated) in order to set a scale for the latent variable. Factors are included along the 

paths from latent VS to its measured indicators because the estimation of VS in relation 

to its indicators may change for each dataset. The results of this analysis are illustrated in 

Figure 5.7 and estimated values for path parameters, standard errors, and p-values are 

displayed in Table 5.2. All p-values and significance tests are two-sided. Tests are 

performed with significance level .05. The model associated with Figure 5.6 is 
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Figure 5.7. Results of the Brain Functional Pathway Study for the mixed design (normal 

subjects and cocaine abusers measured under the influence of both placebo and 

methylphenidate) with VS included as a latent variable. Dotted paths represent non-

significant relationships; red paths indicate statistically significant positive relationships. 

Non-significant factors have been eliminated from the diagram for simplicity. The red 

drug factor along the path from CER to PUT indicates that this relationship becomes 

significant for those under the influence of methylphenidate. The path denoted with a 1 

indicates that VS1 is used to set the scale for the latent variable VS (ventral striatum). All 

tests are performed at a two-sided significance level of .05. 
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1β  2β  3β  4β  5β  6β  7β  

path .8190 -.2051 -.0588 .3945 -.0578 .1388 .0855 

std. error .1324 .2351 .3004 .1282 .1739 .2036 .1439 

p-value .0000 .3829 .8450 .0021 .7395 .4955 .5525 

 

 
8β  9β  10β  11β  12β  13β  14β  

path -.0682 .1999 .6572 -.0286 .1957 .3977 -.1404 

std. error .1489 .0974 .1950 .2409 .1751 .2474 .3536 

p-value .6467 .0400 .0007 .9055 .2637 .1080 .6913 

 

 
15β  16β  17β  18β  19β  20β  

path -.1741 1.0124 -.1556 .0103 -.1431 .0507 

std. error .2656 .0718 .2261 .4006 .2294 .4107 

p-value .5122 .0000 .4912 .9796 .5326 .9018 

 

Table 5.2. Results of the Brain Functional Pathway Study for the mixed design (normal 

subjects and cocaine abusers measured under the influence of both placebo and 

methylphenidate) with VS included as a latent variable. P-values are two-sided. 
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Chapter 6: Partial Least Squares SEM and the Mixed Design 

 

 

 

 

 

 In Chapter 3, we developed MD-SEM, based on the maximum likelihood 

methodology (MLE MD-SEM). However, in Chapter 4, we determined that MLE MD-

SEM is not appropriate for analyzing data with small sample sizes. As a result, this novel 

method is not appropriate for analyzing the data from the brain functional pathway study. 

However, there does exist an alternative technique for analyzing SEMs called Partial 

Least Squares (PLS) SEM.  

 Rather than focusing on the covariance structure as in the covariance-based 

method for estimating SEMs discussed in the preceding chapters of this document, PLS 

SEM is an observation-based method for estimating such models, as in a traditional 

regression analysis [68]. PLS SEM is estimated to predict dependent variables, as in 

regression, rather than to explain covariances of measured variables as in covariance-

based SEM [69]. There are two parts to all structural equation models: the structural 

model—which relates the latent variables in the model—and the measurement model—

which relates the latent variables to their measured indicators. When there are only 

measured variables in the model, the measurement model is no longer necessary, and the 

structural model relates the measured variables [1]. One benefit of PLS SEM is its 

distribution-free qualities. “As a least squares method PLS requires no assumption 

regarding the independence of the observations and the distribution. Beyond the 

specification that the conditional expectation is linear, PLS is distribution free.” [70] 

 

6.1 Partial Least Squares SEM (PLS SEM) 

 

 PLS SEM is a technique for estimating the numerical measurements of the latent 

variables in the model from their related measured variables. The algorithm takes each 

“block” of measured variables (each block corresponds to one latent variable), and 

returns n “observations” of the latent variable, which are simply a weighted linear 

combination of the measured variables in that block. Part two of the algorithm takes those 

measured variables and estimates the relationships between them as prescribed by the 

model. This second stage is a noniterative analysis of each individual equation in the 

structural model via ordinary least squares regressions. [71] Wold’s original PLS SEM 

creates estimates of the latent variables by composing a weighted sum of the related 

observed variables in the model, then it applies traditional regression to each individual 

equation in the system to estimate the path coefficients. PLS regression is used when 

there is strong multicollinearity among the composite estimates of the latent variables in 

the structural model [72]. Since we currently have no latent variables in our model, our 

use of PLS SEM involves only the individual regression analyses. OLS is typically used, 

but PLS regressions are recommended if there is multicollinearity among the X variables. 

This method works only on recursive models. If the SEM is nonrecursive, the fixed-point 

estimation procedure [73, 74] must be employed.  
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6.1.1 Latent Variables in PLS SEM 

 As we know from Chapter 5, latent variables (LVs) are unmeasured variables that 

are present in a model. For example, intelligence is a variable that cannot be measured, 

but we can use IQ score or GPA to give us some indication of a person’s intelligence. 

Intelligence is a latent variable, and IQ score and GPA are values we may use as 

indicators (we measure these and include them in the model). The integral part of PLS 

SEM is estimating “observations” of the latent variables from their respective measured 

indicators. In MLE SEM, we are focused on the covariance structure of the variables in 

the model, and we used measured variables to understand the covariance structure among 

latent variables. PLS focuses on prediction, and creates estimated values for observations 

of each latent variable. This iterative procedure for estimating the latent variables is the 

first stage of the PLS SEM algorithm, and it is the heart of the method. Outlined below is 

the most common method for estimating the “observed” values of the latent variables, as 

suggested in [71].  

 Consider the following example, taken from [71]; the model is shown in the 

diagram below.  

 

 
Figure 6.1. Hypothesized path diagram for a latent variable SEM (illustrating the 

technique of PLS SEM). Variables shaded in yellow are latent variables; variables shaded 

in blue are the corresponding measured indicators. PLS SEM uses a weighted 

combination of each latent variable’s indicators to create “observations” of each latent 

variable, then OLS regression is used to estimate the relationships among the “measured” 

latent variables.   

 

 As in MLE SEM, we can construct the following system of equations relating the 

present latent variables (the structural model). 

 

51 525 50 1 2 5

6 60 63 3 64 4 65 5 6

e

e

ξ β β ξ β ξ

ξ β β ξ β ξ β ξ

= + + +

= + + + +
 

 

And the measurement model (shown for the first block only): 
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For each latent variable, jξ  (representing both endogenous and exogenous latent 

variables), an estimate jL  is created as a weighted sum of its indicators: 

 

j jh jh j jh jh

h h

L w x f v x= =∑ ∑ , 

 

where jhw  are the weights of the indicator variables, h represents the total number of 

indicators of the latent variable estimated, and f is a scalar that gives the estimate jL  

unit variance. To estimate the individual weights, v, a tool called the sign-weighted sum 

is created for each L, representing the other latent variables it is joined with in the model 

(by an arrow in either direction).  

 

j jk k

k

SwS L= ±∑ where ( , ))(jk j ksign co r L Lr± =  

For this example,  

3 36 6

46 6

51 1 52 2 56 6

1 15 5

2 25 5

4

5

6 63 3 64 4 65 5

SwS L

SwS L

SwS L

SwS L

SwS L L L

SwS L L L

= ±

= ±

= ±

= ±

= ± ± ±

= ± ± ±

 

 

For endogenous LVs (those with latent predictors present in the model, like variables 5 

and 6 in this example), we create simple OLS regressions of each indicator on the 

corresponding sign-weighted sum. For the example, they are shown below. 

 

51 51 51 1 52 2 56 6 51

52 52 51 1 52 2 56 6 52

53 53 51 1 52 2 56 6 53

61 61 63 3 64 4 65 5 61

62 62 63 3 64 4 65 5 62

63 63 63 3 64 4 65 5 63

( )

( )

( )

( )

( )

( )

x v L L L d

x v L L L d

x v L L L d

x v L L L d

x v L L L d

x v L L L d

= ± ± ± +

= ± ± ± +

= ± ± ± +

= ± ± ± +

= ± ± ± +

= ± ± ± +

 

 

For each exogenous LV (independent latent variables, as variables 1, 2, 3, and 4 in this 

example), we create multiple OLS regressions of the corresponding sign-weighted sum 

onto the indicators of the latent variable, as shown below. 
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15 5 11 11 12 12 13 13 1

25 5 21 21 22 22 23 23 2

36 6 31 31 32 32 33 33 3

46 6 41 41 42 42 43 43 4

L v x v x v x d

L v x v x v x d

L v x v x v x d

L v x v x v x d

± = + + +

± = + + +

± = + + +

± = + + +

 

 

Once these tools are constructed, the estimation process begins. First, starting values are 

assigned to the weights. These starting values are arbitrary (can be 0s and 1s). Next, the 

researcher must resolve the sign ambiguities remaining in the above equations. It should 

be clear what the correlation of two indicators should be (for example, IQ and GPA 

should be positively correlated).  

 Using the original equation,  

j j jh jh

h

L f v x= ∑ , 

 

and the assigned starting values, estimate each jL . Using these estimates of jL , the 

weights can be estimated using the set of ten equations involving both jL  and the weights 

v, shown above for this example. Repeating these last two steps until each weight has 

converged to within a reasonable tolerance yields estimates of jL .  

 

6.1.2 The Regression Step 

 Once we have estimated each jL , the estimated “observations” can be used in the 

straightforward second stage of regression analyses for each individual latent variable 

equation to estimate the path coefficients. Standard errors for the path coefficients must 

be found using bootstrapping, as PLS SEM is a nonparametric technique with no 

distributional requirements. If the variables do meet distributional requirements, 

traditional standard error calculation can be used (the latent observations must be 

normally distributed to use traditional methods). The third stage of the algorithm 

estimates the location parameters for the structural and measurement models outlined 

above (estimating 50β  and 011p , for example). However, these values can be estimated 

directly in the second stage using a vector of 1 included in the list of independent 

variables for the regression step.  

 

6.1.3 Benefits of PLS SEM 

 PLS SEM has far less rigid sample size requirements than covariance-based SEM 

(200 or more is considered appropriate). Sample sizes for PLS SEM without latent 

variables are simply those of the individual regression analyses performed for each 

equation in the system. The traditional regression rule of thumb for sample size is ten 

observations for each observed variable in the model. However, when sample size is 

small, statistical power is compromised; the more observations that are available, the 

better, in the case of OLS or PLS regression. [68] The derivation of the covariance-based 

ML SEM methodology requires the assumption that all observations are independent [1]. 

Unlike ML, PLS SEM does not require that observations be independent [68].  
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 Unlike covariance-based SEM, PLS SEM can be used as exploratory in addition 

to confirmatory study. Also, in covariance-based SEM, it is often necessary to include 

three or more indicators for each latent variable in the model to ensure model 

identification. Another benefit of PLS SEM is that it is possible to incorporate formative 

indicators of the latent variables more easily (in covariance-based SEM, the existing 

framework would have to be modified). These are measured variables that affect the 

latent variable, rather than being affected by the latent variable. [68] 

 

6.2 PLS SEM for a Single-Group Model 

 

 For a single group with no latent variables, we can skip the latent variable 

estimation step and proceed directly to the second (and third) stages where we estimate 

path parameters and their standard errors by applying OLS regressions to each individual 

equation in our system of interest. If the response variables are normally distributed, we 

can apply the standard OLS technique for estimating both path parameters and standard 

errors, which is outlined below. An example follows. 

 

6.2.1 Path Coefficients and Standard Errors 

 In this section, the derivation of the traditional path coefficients, standard errors, 

and significance tests for OLS regression are shown. For a single-group model, treat each 

individual equation in the system as a single regression equation. Then the model is  

 

y eX β= +  

 

where E(e)=0 and Cov(e)= 2
Iσ . y is nx1, X is nx(r+1), β  is (r+1)x1, and e is nx1 [75]. 

To find the MLE of β  and 2σ , the standard procedure is used. Assume the error in the 

equation is normally distributed, 2~ (0, )e N Iσ . Then  
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Take the log likelihood and simplify: 
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In order to minimize with respect to β , minimize ) (( )y y XX β β′− − ; the maximum 

likelihood estimator of β  is 1( ) 'ˆ 'X X X yβ −= . We must also minimize with respect to 
2σ  in order to determine the MLE of 2σ .  
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Setting this equal to 0 and solving for 2σ , the MLE of 2σ is  

 

2 ) (
ˆ

( )y X y X

n

β β
σ

′ −−
= . 

 

Once we have the estimates β̂ , it is possible to calculate the predicted values of y 

generated by the model: 

ˆ ˆy X β=  

 

We can also calculate the error in prediction: 

 

ˆ ˆ ˆe y y y X β= − = −  

 

 In order to calculate the standard errors of our coefficients β̂ , we must identify the 

estimated covariance matrix of these estimates. We can show that: 
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Therefore, we must identify an estimator of 2σ . Generally, we use the unbiased estimator 

rather than the MLE, which is biased. 

  
1ˆ ( ')( )X Xe I X eX −− ′=  

 

Using this information, calculate the expected value of ˆ ˆ'e e : 

 
2ˆ ˆ( ' ) ( 1)E e e n rσ= − −  

 

 Therefore, we can estimate 2σ using 
ˆ ˆ'

1

e e

n r− −
, and estimate 1ˆ ˆ'

( ) ( ' )
1

ˆ e e
Cov X X

n r
β −=

− −
. 

 

Standard errors of the path coefficient estimates b are determined by taking the square 

root of the corresponding diagonal entries in the above covariance matrix of β̂ . In order 

to make inferences on the significance of the estimated coefficients β̂ , we must 

determine the sampling distribution of β̂ .  
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 It is possible to write β̂  as a linear combination of the error terms (shown above), 

e, for which we have set the distribution to be 2~ (0, )e N Iσ . Therefore, using the linear 

combination for β̂ , we can say 2 1( '( )ˆ ~ , )XN Xβ β σ − . Additionally, it can be shown 

that 2 2

1
ˆ ~ n rnσ χ − − . We know  

 

2 ˆ ˆ
ˆ

'

1

e e

n r
σ =

− −
, 

 

and 1ˆ ( ( ' ) ')e I X X X X e−= − , so the residuals can be written as a linear combination of 

the error term in the model. Because we assume that the error term in the model is 

normally distributed with mean 0, 2

1
ˆ ˆ' ~ n re e χ − − , or 2 2

1
ˆ ~ n rnσ χ − − .   

 Now that we have identified the sampling distribution of β̂ , we can perform 

significance tests on those parameters. Let 0 1 2 ... 0: q q rH β β β+ += = = = , or 0 (2): 0H β =  

for some subset of coefficients, where (2) 1[ ,..., ] 'q rβ β β+= . Partition the matrices Z and 

β as follows: 
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1 2
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 
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and under 0H , 1 (1)y X eβ= + . In general,  

 
2 /2 2( ) (2 exp, ) )( ( )( ) / 2n nL y y XXβ σ π σ β β σ− −= − − ′ − , 

 

which is maximized by  

 
1 2, (ˆ ˆ ˆˆ( ' ) ) ( ) /X X y Xy X nXyβ σ β β− = − ′= − , 

  

as shown above. At its maximal value,  

 
2 /2 /2( ) (2 ˆ, ) n n nL eβ σ π σ− − −= . 

 

Now, considering the null hypothesis, 0 (2): 0H β = , the likelihood is maximized by  

 
1 2

(1) 1 1 1 1 1 (1) (1)
ˆ ( ˆ' ' , ( ) '( ) /ˆˆ)X X X y y X y X nβ σ β β−= = − − , 

 

resulting in  
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Constructing the likelihood ratio of 
0 1

/H HL Lλ = , we have  
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Rejecting 0H  for small values of λ  is the same as rejecting 0H  for large values of  
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 and we can perform tests of 0 (2): 0H β = based on this quantity and the F distribution. 

Because the 2 1ˆ ˆ~ ' ) , )( (N X Xβ β σ − , we can also perform significance tests of 0 0: iH β =  

using the estimates and their standard errors to perform a t-test with n-r-1 degrees of 

freedom. 

 

6.2.2 Single-Group Example with No Latent Variables 

 As an example of PLS SEM, we use a single dataset from the Brain Functional 

Pathway Study (normal subjects measured under placebo condition). The corresponding 

model is 

 

1 3 1

4 5 2

2 3

put vs cer

mfc put cer

cer vs

β β

β β

β

= + +

= + +

= +

ε

ε

ε

 

 

and the hypothesized path diagram for the single-group case is shown in Figure 6.2.  
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Figure 6.2. Hypothesized path diagram for a single-group analysis using PLS SEM. The 

diagram represents relationships between ventral striatum (VS), cerebellum (CER), 

striatum putamen (PUT), and motor frontal cortex (MFC).  

  

The results of the single-group PLS analysis are shown in Figure 6.3 and the path 

estimates, standard errors, and p-values are displayed in Table 6.1.  

 

 
Figure 6.3. Results of single-group analysis using PLS SEM (the results are the same for 

MLE SEM). Dotted paths represent insignificant effects, red paths represent significant 

positive relationships between variables. The significance level of these tests is .05 (two-

sided).   

 

 
1β  2β  3β  4β  5β  

path coeff .8530 .4880 .0077 .2762 .8921 

std. error .1169 .1241 .1736 .1696 .2278 

p-value .0000 .0015 .9653 .1274 .0018 

 

Table 6.1. Display of results of PLS SEM single-group analysis using the Brain 

Functional Pathway data (from normal subjects under the influence of placebo). 

 

For the reference of the reader, the results illustrated in Figure 6.3 also represent the 

results of the single-group analysis using the single-group MLE SEM framework. The 

numerical results of this analysis are displayed in Table 6.2.  
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1β  2β  3β  4β  5β  

path coeff .8530 .4880 .0077 .2762 .8921 

std. error .1088 .1199 .1615 .1579 .2121 

p-value .0000 .0000 .9620 .0803 .0000 

 

Table 6.2. Display of results of single-group MLE SEM analysis using the Brain 

Functional Pathway data (from normal subjects under the influence of placebo).  

 

The reader may notice that the path coefficients are the same for both cases, but the errors 

for the PLS technique are slightly larger than those generated by the MLE SEM 

technique (and therefore, the p-values of MLE SEM technique are slightly smaller). This 

will be discussed further in Chapter 7.  

 

6.3 PLS SEM for Mixed Designs  

 The method of Kenny and Judd [31] has been adapted for PLS path modeling 

[76]. Here, however, any type of covariate can be included, discrete or continuous, 

because there are no distributional assumptions for the independent variables in PLS (as 

it takes the form of individual regression equations). PLS requires no distributional 

assumptions, as the OLS coefficients are not calculated based on the distribution of the 

response variables, so observations are not required to be independent (could be taken 

from the same group of subjects). However, the estimation of standard errors is very 

conservative (bootstrapping) because of the distribution-free quality of the method. An 

additional issue is the lack of a parameter in the model that represents the correlation of 

measurements taken from the same subject. Our methodology allows us to account for 

these correlations and test their significance less conservatively because we make 

distributional assumptions, allowing use of the linear mixed model for evaluating the 

significance of the path coefficients.  

 

6.3.1 The Case of No Latent Variables in the System 

 Because there is no requirement for independence of observations, and there are 

no requirements on the distribution of the variables present in PLS SEMs [68, 70], we 

can incorporate the mixed design directly into the model. As in the ML methodology for 

MD-SEM, we incorporate influence of factors such as groups or repeated measures by 

reparametrizing the path coefficient. For example, the equation  

 

vut sp β= + ε  

becomes  

0 1 2 0 1 2( ) **D vpu s Dt G sG vs vvsα α α α α α+ = + + += + + ε ε  

 

where G represents the influence of group membership on the path from VS to PUT, and 

D represents the respective influence of the treatment administered (placebo or drug). 

Then 0α is the original path coefficient, 1α represents the contribution from group 

membership, and 2α represents the contribution from treatment. G*VS and D*VS join 

VS in the model as variables in the dataset under study. This means datasets representing 

all values of G and D are present in one dataset. The distributional issues and the issues 
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of non-independent observations within the same dataset that would cause problems for 

MLE SEM do not occur in PLS SEM. However, we must be sure to use a regression 

technique that allows for dependent observations. Then, the model can be estimated 

directly, as in the case of a single group under a single treatment. Of course, to use PLS 

SEM in its standard form, the model must be recursive. The recursive model we will 

evaluate as an example is shown in Figure 6.4. 

 

         
Figure 6.4. Hypothesized path diagram for mixed-design PLS SEM analysis. This is the 

same model we have evaluated using our mixed-design MLE SEM methodology.  

 

The corresponding equations for a single-group model (Figure 6.2) are: 
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Incorporating the mixed design for estimating the effects of group membership and 

treatment drug on each path updates the model to:  
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or,  
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This model can be estimated via PLS SEM in a series of independent regressions (OLS, 

PLS, any appropriate technique). We will use a linear mixed model to model each 

equation because there are repeated measures on the same subject.  
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6.3.2 Implementation of PLS MD-SEM using a Linear Mixed Model  

 We are interested in a model that will incorporate fixed effects (independent 

variables, group and treatment effects), but also allow for correlation in the errors of 

observations taken on the same subject. A linear mixed model [77, 78] can incorporate 

each of these needs, but is even more general than we require. Our mixed model will 

contain no random effects, but will have an error covariance matrix that differs from that 

of an OLS regression. A linear mixed model is effectively a regression for repeated 

measures data. The model is  

, ~ (0, )e ey NX β + Σ= , 

 

where covariance matrix Σ allows for correlations among observations taken from the 

same individual. In this model, y is continuous and normally distributed, and X is the 

matrix containing the fixed effect influences on y [28].  

 

We will let  
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where ρ  represents the correlation between measurements taken on the same subject 

(assumed constant among subjects) . The density function for e is 
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Then the log-likelihood function is 
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Minimizing the function in braces with respect to β  and the parameters of 

Σ simultaneously will identify the maximum likelihood estimators of both, yielding 

estimates for the regression coefficients. Standard errors can be derived using the 

asymptotic distribution of the maximum likelihood estimates θ̂ . 
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where F is the minimized function derived above. Therefore, 12H −  is the asymptotic 

covariance matrix of the parameters. Standard errors for these estimates can be found by 

calculating the second derivative matrix (Hessian) of the objective function. The square 

roots of the diagonal entries are the standard errors for corresponding parameters. Tests 

of significance of the regression coefficients can be performed using the estimates, 

standard errors, and the assumption of asymptotic normality.  

 In MLE MD-SEM, we center all data by a grand mean before beginning the 

analysis, so we perform the same centering technique on the data before analyzing the 

data using PLS SEM. PLS SEM (with no latent variables) is implemented as a linear 

mixed model, as discussed above. Recall that we have 16 normal subjects and 25 cocaine 

abusers, each measured under two conditions. Then the total number of observations used 

in the linear mixed model is 82. The results of the analysis of the hypothesized path 

diagram shown in Figure 6.4 are illustrated in Figure 6.5 and tabulated in Table 6.3. The 

model for this analysis is: 
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The results are similar to those shown in Figure 3.6, except that the drug effect present in 

Figure 3.6 along the path from VS to CER is not present here.   

 

 
Figure 6.5. Results of PLS MD-SEM applied to the Brain Functional Pathway data 

(hypothesized model in Figure 6.4). Paths determined to be non-significant are shown as 

dotted arrows. Arrows and factors highlighted are significant after a two-sided z-test with 

.05α = . Red paths and factors indicate a positive influence while blue factors and paths 

indicate a negative influence.  
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1β  2β  3β  4β  5β  6β  7β  8β  

path .7937 -.2413 -.0570 .7203 -.353 .1078 .0753 .2661 

error .0952 .1074 .0665 .1063 .1162 .0837 .1178 .1367 

p-value .0000 .0311 .3977 .0000 .0043 .2053 .5270 .0596 

 

 
9β  10β  11β  12β  13β  14β  15β  

path .1321 .3934 -.0022 .2092 .7624 -.0106 -.2825 

error .1134 .1613 .1944 .1707 .2118 .2501 .2421 

p-value .2520 .0199 .9911 .2284 .0010 .9664 .2512 

 

Table 6.3. Results of PLS MD-SEM applied to the Brain Functional Pathway data 

(hypothesized model in Figure 6.4). Estimated path and factor coefficients are displayed, 

with corresponding standard error and p-value are shown.  

 

6.3.3 The Case of Latent Variables Present in the System 

 If there are latent variables present in the model, the standard PLS estimation 

method can be employed for estimating the latent variables within each dataset. Once 

these observations are estimated, these variables can be incorporated into the linear 

mixed model for estimation as any other measured variable, including interactions of 

group and treatment with the estimate.  

 

6.4 Power Analysis of the PLS Method 

 

6.4.1 Power of PLS SEM 

 In a PLS SEM analysis for a single group (or for multiple independent groups), 

the results are the compiled results of individual OLS regression analysis of each 

equation in the system. Therefore, a test of statistical significance such as 0 0: iH θ =  is 

the test of a single coefficient in a single OLS regression equation. 

 In OLS regression, t-tests determine whether a particular coefficient is significant 

(significantly different from zero), and F-tests determine whether the proportion of 

variance in the dependent variable explained by the corresponding independent variable 

is significantly different from zero [79]. These tests are equivalent. Power is evaluated 

through analysis of the F-test. Consider a test of the contribution of a single variable to 

the variance in the dependent variable. When the null hypothesis is true (variance 

explained by jX  is 0), the test statistic follows the F distribution, with numerator degrees 

of freedom 1u =  and denominator degrees of freedom 1v N p= − − , where N is the 

sample size, and p is the total number of predictors being considered in this model. When 

the alternative hypothesis is true, the test statistic follows a non-central F distribution, 

with the same degrees of freedom as above, and non-centrality parameter given by 
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In the above definition, R  is the multiple correlation coefficient for the model including 

all independent variables, and ( )jR − is the multiple correlation coefficient for the model 

including all independent variables except the variable we are testing [80].  

 The multiple correlation coefficient R of a particular model can be described as 

the correlation of the values of the dependent variable predicted by the model and the 

actual measured values of the dependent variable, ˆ( , )Corr y y , and its square can be 

calculated using the following formula [81]. 
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Once the non-centrality parameter is determined, the power can be calculated. Power is 

defined as the probability of rejecting the null hypothesis given that it is false.  
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In other words, find the probability of getting a value for the test statistic generated from 

the non-central F distribution that is large enough to reject the null hypothesis when the 

critical region comes from the central F distribution, assuming a significance level of α . 

Generally, we calculate power using the CDF of the non-central F distribution. 

 

1, 1, 1, 1,01 ( ( ))N p N pPower P F Fλ α− − − −= − <  

 

6.4.2 Power of PLS MD-SEM 

 In a PLS SEM analysis with multiple conditions (or a complete mixed design), we 

are looking at the compiled results of individual analysis of each equation in the system 

using a linear mixed model. Therefore, a test of statistical significance such as 0 0: iH θ =  

is the test of a single coefficient in a single linear mixed model regression equation. The 

standard method for evaluating the power of a test of this sort involves the non-central F 

distribution.  

 As in the case of OLS regression, the non-centrality parameter is calculated based 

on the F test statistic (which is inherently based on the variance structure and the amount 

of variation in y accounted for by x). In the case of the linear mixed model, the procedure 

for calculating power is the same as in the case of significance tests of a single parameter 

in OLS regression, except for the calculation of the non-centrality parameters. This time, 

we can use the formula 

uFλ =  

 

where u is the numerator degrees of freedom, and F is the test statistic for the F-test on 

the parameter of interest. Of course, the test statistic is based on the variance structure of 

the errors, where the covariance of repeated measures is incorporated [77, 82, 83].  
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 Once the non-centrality parameter is calculated, the power follows in a traditional 

way. Based on α , calculate the upper critical value in the central F distribution based on 

the appropriate numerator (u) and denominator (v) degrees of freedom (estimated using 

the Satterthwaite calculation). Then power can be calculated as above,   

 

, , , ,01 ( ))( u v u vPower P F Fλ α= − < , [83]. 

 

6.4.3 Power of PLS SEM for the Brain Functional Pathway Study 

 If we are to analyze the power of the analysis of the Brain Functional Pathway 

Study without simulating data, we must consider this to be a pilot study, as calculating 

power retroactively is never suggested unless the current study is an investigative pilot 

study. Using the method discussed in Section 6.4.2, we have conducted a power analysis 

of PLS SEM for the particular model discussed in Section 6.3.2 with hypothesis shown in 

Figure 6.4 with results shown in Figure 6.5 and Table 6.3.  

 As discussed in the previous section, tests on path parameters and factor 

parameters are F-tests. Unlike in Chapter 4, we will not be simulating data, but 

calculating the power of the test 0 : 0iH β =  using the original data, and the significance 

level fixed at .05α = . The results of this calculation for single paths and single factors 

are shown in Table 6.4. The most powerful tests represent the most significant 

coefficients, of course (with the largest relative effect size). Because these results 

correspond to the model shown below evaluated using PLS SEM, each equation is 

evaluated individually using a linear mixed model. The power of some tests is incredibly 

small, which is due to the very small effect size for the corresponding parameter 

(indicating that the parameter was not significant, and therefore, cannot be tested for 

power—the probability of being classified as significant when it is truly significant). 

Recall that the total number of observations for this model is 82.  
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Effect Parameter Effect 

Size 

p-value of 

0 : 0iH β =   

Power of Testing  

0 : 0iH β =  

Path 
1β  .793 .000 .999 

Factor 
2β  -.241 .031 .592 

Factor 
3β  -.057 .398 .133 

Path 
4β  .720 .000 .999 

Factor 
5β  -.353 .004 .876 

Factor 
6β  .108 .205 .255 

Path 
7β  .075 .527 .095 

Factor 
8β  .266 .060 .479 

Factor 
9β  .132 .252 .205 

Path 
10β  .393 .020 .728 

Factor 
11β  -.002 .991 .050 

Factor 
12β  .209 .228 .232 

Path 
13β  .762 .001 .966 

Factor 
14β  -.011 .966 .050 

Factor 
15β  -.283 .251 .216 

 

Table 6.4. Results of power calculation for Mixed Design PLS SEM. The power of tests 

for significance of single paths and single factors are computed. The significance level is 

fixed at .05α = . 
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Chapter 7: Comparison of PLS and MLE SEM  
 

 

 

 

 

 In order to explore the relationship between regression-based PLS SEM and 

covariance-based MLE SEM, we compare these two approaches through several 

important scenarios. First, we algebraically evaluate a series of four single-group models 

containing no latent variables to determine their similarities in the estimated path 

parameters and the corresponding standard errors.  

 

7.1 Algebraic Comparison: PLS and MLE SEM (various single-group models) 

 

 The models we consider for the algebraic comparison of MLE and PLS SEM are 

shown in Table 7.1. They are all simple variations of one- and two-equation systems. 

Model 1 is a straightforward simple linear regression; Model 2 is a multiple linear 

regression; Model 3 represents a multivariate linear regression. Model 4 represents a 

model that is typical in SEM (some response variables also act as an influence on another 

response), but because PLS SEM estimates each equation separately, it can also be 

considered two simple linear regressions. We will algebraically solve for the coefficients 

b using both MLE and PLS SEM and compare the results. 
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1 

 

 

Y bX e= +  

 

 

2 

 

 

 

1 1 2 2b X eY b X+ +=  

 

 

3 

 

 

 

1 1 1 2 2 1

2 3 1 4 2 2

Y

Y

b X b X e

b X b X e

= + +

= + +
 

 

4 

 

1 1 1

2 2 1 2

Y

Y

b X e

b Y e

= +

= +
 

 

Table 7.1. Illustrations of the four simple linear models we will solve algebraically to 

compare MLE SEM and PLS SEM for single-group models. Model 1 is a simple linear 

regression; Model 2 is a multiple linear regression; Model 3 is a multivariate linear 

regression. Model 4 is a typical SEM model containing a response variable that also 

appears on the right-hand side of an equation as an independent variable. This can be 

evaluated via PLS SEM because the two equations are evaluated as two individual 

regressions.  

 

7.1.1 Model 1 

 Model 1 is a simple linear regression: Y bX e= +  (illustrated in Table 7.1).  

 

7.1.1.1 MLE SEM Framework 
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In MLE SEM, we minimize the fitting function 1lo ( ) )g (MLF tr Sθ θ−Σ + Σ =    with 
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or ( ) , ( ) , ( , )Var Y t Var X v Cov X Y u= = = . 

In order to minimize, take derivatives with respect to each parameter, set equal to 0, and 

solve the system: 
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Solve the system to find 
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= = = − , or  

 
2( , ) ( , )

( ), , ( )
( ) ( )

Cov X Y Cov X Y
p Var X b s Var Y

Var X Var X
= = = − . 

 

Calculating the standard error of parameter b is of particular interest to us, so we must 

calculate the entries of the asymptotic covariance matrix. 
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Calculating the second derivatives,  
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The standard error of b (used to test the hypothesis 0 : 0H b = ) will be 11
ˆ)(ACOV θ . 

Using Mathematica to find the analytic inverse of this matrix,  
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This formula for ˆ( )se b  contains elements of S (our data covariance matrix) but also the 

parameters s and b. Substituting our formulas for those parameters,  
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Hypothesis tests of SEM parameters are performed under the assumption of asymptotic 

normality. Therefore, the 100(1 )%α−  confidence interval for b is given by: 

 
2

/2 2( 1)

u tv u
z

v n v
α

−
±

−
 

 

If 0 is contained in this interval, then the path parameter represented by b is not 

significant.  

 

 

7.1.1.2 PLS SEM Framework 

 Using PLS to solve this problem, we estimate the parameters of a simple linear 

regression.  

 

Y bX e= +  

1 1
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To find the estimators, take the derivative of S with respect to b and set equal to 0. 
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First, as in MLE SEM, center all variables, so  

1

2

1

( 1) ( , )

( 1) ( )

n

i

i

n

i

i

i

X Y
n Cov X Y u

b
n Var X v

X

=

=

−
= = =

−

∑

∑
 

assuming that we are using the same input covariance matrix where 
t u

S
u v

 
=  
 

. 

 

Now evaluate the standard error of parameter b and the corresponding hypothesis test to 

determine whether b is significant. In OLS regression, 2 1ˆˆ( ) ( ' )Cov b X Xσ −= , where 
2 ˆ ˆ' / ( 1)ˆ e e n rσ = − − . Here, we have 1 independent variable (r=1). Then  
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Also,  

1 1 1
( ' )

( 1) var( ) ( 1)
X X

n x n v

− = =
− −

 

Therefore,  
2

2 )
1 1 2ˆcov( ) ( 2
2 ( 1) ( 2)

n t bu b
b t bu b

n n v n v

v
v

− − +
= − + =

− − −
. 

 

Substituting the parameter value of 
u

b
v

=  in order to calculate ˆ( )se b  in terms of elements 

of S only,  
2

2
ˆcov( )

( 2)

tv u
b

n v

−
=

−
. 

Then the standard error of b̂ is 

 
2

2
ˆ( )

( 2)

tv u
se b

n v

−
=

−
. 
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To test the significance of regression coefficients b, we use an F-test or t-test. We can 

calculate the 100(1 )%α−  confidence interval for b using: 

 
2

/2, 2 2( 2)
n

u tv u
t

v n v
α −

−
±

−
. 

 

7.1.1.3 Conclusions for Model 1 

 For this model, the estimated path coefficient, b, has exactly the same value for 

PLS and MLE SEM. The two-sided confidence intervals for b (and therefore, two-sided 

hypothesis tests of significance) are slightly different. The standard errors differ slightly, 

and the distribution of the calculations differ very slightly. The calculation of standard 

error for OLS regression will result in a slightly larger error, yielding a larger confidence 

interval (more conservative) for small sample sizes, and the use of the t-distribution with 

more weight in the tails also gives a more conservative confidence interval when there is 

a small sample size.  

 

7.1.2 Model 2 

 Model 2 is a multiple linear regression: 1 1 2 2b X eY b X+ +=  (illustrated in Table 

7.1). 

 

7.1.2.1 MLE SEM Framework 
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The input data, the covariance matrix of ( )1 2 'Y X X , S, has arbitrary entries: 

t u v

S u w z

v z h

 
 =  
  

, or 

1 2 1 2 1 2( ) , ( ) , ( ) , ( , ) , ( , ) , ( , )Var Y t Var X w Var X h Cov X Y u Co Y v Cov X Xv X z= = == = = . 

For this more complicated model, have identified the estimated parameter values by 

minimizing the fit function in Mathematica. The calculated values are: 

 
2

1 2 1 2 32 2 2 2 2
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, , ,, ,

)(

vz uh vw uz vw uz h u vz uh
w pb b p h s t

z wh z wh z
z p
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− + − + − −
= =

+ +
 

 

7.1.2.2 PLS SEM Framework 

 This time, the model is 1 1 2 2b eY X b X+ += , a standard multiple linear regression. 
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Solving this system as we did in the simpler case above, we find that  

 

1 22 2
,

uh zv wv uz
b b

wh z wh z

− −
= =

− −
. 

 

Here again, the standard errors (and thereby, our significance tests) will be different, but 

the parameter estimates are the same, even when we have two independent variables 

(which forces extra parameters for modeling their covariances matrix in the MLE SEM 

method).  

 

7.1.3 Model 3 

 Model 3 is a multivariate linear regression, but is considered in PLS SEM to be 

two individual multiple regressions (which will yield the same estimates [84]). Model 3 is 

illustrated in Table 7.1.  

  

1 1 1 2 2 1

2 3 1 4 2 2

Y
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b X b X e

b X b X e
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7.1.3.1 MLE SEM Framework 
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Note that our input data, the covariance matrix of ( )1 2 1 2 'Y Y X X , S, has arbitrary 

entries  

t u v w

u g j z
S

v j r s

w z s h

 
 
 =
 
 
 

, 

 

or 1 1 1( ) , ( ),Var Y t Co X Yv v= = , for example. 

 

Minimizing the fit function in Mathematica, the resulting formulas for parameter 

estimates are: 
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1 2 3 42 2 2 2
, , ,

hv sw sv rw hj sz rz sj
b b b b

hr s hr s hr s hr s

− − + − −
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7.1.3.2 PLS SEM Framework 

 For PLS SEM, we would have two equations: 

 

1 1 1 2 2 1

2 13 4 2 2

Y e

Y

b X b X

b X b X e
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+
 

 

These equations would have the same coefficient estimates and standard errors if we 

evaluate them simultaneously (multivariate regression) or individually (multiple 

regression) [75, 84]. Using a multiple OLS regression on each individual equation, we 

can use our derivation from Model 2 above to calculate the appropriate values for the 

path coefficients. Based on the assignments of covariances to variable names shown in 

the MLE SEM framework,  
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the coefficients have exactly the same estimates using OLS calculations as in the SEM 

calculations shown above. 
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PLS SEM and MLE SEM give the same estimates for the path coefficients (of course the 

standard errors will be different, and therefore, the significance tests may have differing 

results), even when there are two equations with multiple independent variables. 

 

7.1.4 Model 4 

 The goal of Model 4 is to investigate whether the estimated path coefficients 

differ when we have some response variables appearing on the right hand side of other 

equations in the system (when 0Β ≠  in MLE SEM). Model 4 (illustrated in Table 7.1) 

represents a typical SEM with some response variables appearing again on the right-hand 

side of another equation. This is estimated by PLS SEM as two individual simple linear 

regressions. The model is shown here: 
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Y
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7.1.4.1 MLE SEM Framework 
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Note that our input data, the covariance matrix of ( )21 2 'Y Y X , S, has arbitrary entries:  

 

t u v

S u w z

v z h

 
 =  
  

, or 

 

1 12 2 1 2( ) , ( ) , ( ) , ( ,, ) , ( , )) , (Var Y t Var Y w Var X h Cov Y Y u X v Cov YCov Y X z= = == == . 

 

Calculating the model-implied covariance matrix and fit function in Mathematica, as well 

as solving the system of derivatives, the parameter estimates are as follows: 
2 2

1 2 1 2, , , ,
v u v u

b b p h q w
t

t q
h t h

= = = = −= −  

 

7.1.4.2 PLS SEM framework 

 For this model, we cannot use multivariate regression because the regressors are 

not consistent between the two equations. However, we can estimate each individually, as 

is traditional in PLS SEM. Using our previous derivation of the path coefficients for 

simple linear regression, we can calculate the following coefficients using our previous 

statement that 

 

1 12 2 1 2( ) , ( ) , ( ) , ( ,, ) , ( , )) , (Var Y t Var Y w Var X h Cov Y Y u X v Cov YCov Y X z= = == == . 

 

1 2,
v u

b b
h t

= =  

 

Here again, even when 0Β ≠  (response variables appear on the right-hand side of some 

equations), we have the same path coefficients in PLS and MLE SEM. 

 

7.2 Single-Group Model Conclusions 

 

 For varying single-group models containing only measured variables, PLS SEM 

and MLE SEM yield the same parameter estimates and similar standard errors (errors in 

PLS SEM are slightly larger). For a numerical example, see Tables 6.1 and 6.2, which 

show the parameter estimates for a single-group PLS SEM and the corresponding 

estimates from single-group MLE SEM. The parameter estimates are the same, and the 

errors are slightly different, with the PLS SEM errors being larger, creating larger 

confidence intervals and p-values. For this particular example, the significance tests for 



 106

the path parameters yield the same results, illustrated in Figure 6.3 and displayed in 

Tables 6.1 and 6.2.  

 The reason for this similarity between the PLS and MLE methods is the inclusion 

of measurement error in Y but not in X in both models. While MLE SEM is based on the 

assumption that all variables X and Y come from a multivariate normal distribution, 

errors are incorporated in the study of each equation but not in the X variables. A 

covariance matrix is modeled for the X variables, but no measurement error is allowed. 

This means that the X variables in SEM are, in fact, fixed during the analysis; this 

assumption is shared by OLS regression (and therefore, PLS SEM). Because PLS and 

MLE SEM yield the same results, our choice of method in this case matters very little 

when latent variables are not present in the model. This is good news for researchers 

working with small sample sizes, since PLS SEM is better suited for those cases. 

 While the PLS and MLE SEM yield the same results in the case of single-group 

models containing no latent variables, this is where the similarity among the methods 

ends. MLE SEM is an incredibly powerful modeling tool that is intended for 

incorporating latent variables into models. Its flexibility makes it an attractive choice. 

Researchers can use MLE SEM to implement and estimate error-in-variable (EIV) 

models [85-87], which incorporate measurement error in both X and Y variables. 

Researchers achieve measurement error in X by creating a latent variable X and allowing 

the measured variable X to be its indicator. This creates an error term that is not present 

in models where X is fixed.  

 Consider, for example, a single equation model, where we want to understand the 

impact of a single variable X on a single variable Y. This regression model can be 

represented via MLE SEM in four ways, as displayed in Table 7.2. Model 1 is the OLS 

regression model, where Y is measured and modeled with error, but X is fixed. Model 2 

is a functional approach to EIV regression, and Model 3 is a structural approach to EIV 

regression.  In both EIV models, both X and Y are treated as random, each with its own 

measurement error. Model 4 is the traditional MLE SEM representation of regression 

where both X and Y have measurement error, with modeling error ζ incorporated (ζ is 

traditional in SEM, but is not included in EIV models).  
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1 

 

y xβ ε= +  

 

 

2 

 

y

x ξ δ

βξ ε

+

= +

=
 

 

 

3 

 

 

y

x ξ δ

η ε

η βξ

=

= +

+

=

 

 

 

4 

 

y

x ξ δ

η ε

η βξ ζ

+

= +

= +

=

 

 

Table 7.2. (1) OLS regression model, (2) EIV regression model—functional approach, 

(3) EIV regression model—structural approach, (4) MLE SEM representation of 

regression where both X and Y have measurement error.  

 

 We have estimated each of the models displayed in Table 7.2 using SAS PROC 

CALIS [88], EQS [26, 39, 62] (both estimate MLE SEMs) and SmartPLS [89], a program 

designed to analyze PLS SEMs using Wold’s original methodology [71, 74, 90] for 

recursive models. We chose to assign X the values of VS from the brain functional 

pathways study, and Y the values of PUT from the same study. The results of these 

analyses are displayed in Table 7.3. Numerical values for each model are (1) the estimate 

of β , (2) the estimated standard error of the estimator β̂ , and (3) the test statistic for the 

test of significance 0 : 0H β = . In all cases, estimates of β  indicate a significant 

relationship between X and Y.  
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 Model MLE SEM PLS SEM 

 

1 

 

y xβ ε= +  

.8567 .8567 

.0750 .0750 

11.4167 11.4167 

 

2 y

x ξ δ

βξ ε

+

= +

=
 

.9017 cannot 

distinguish from 

Model 1 
.1371 

6.575 

 

3 y

x ξ δ

η ε

η βξ

=

= +

+

=

 

.9022 cannot 

distinguish from 

Model 1 
.1371 

6.5821 

 

4 y

x ξ δ

η ε

η βξ ζ

+

= +

= +

=

 

.8587 cannot 

distinguish from 

Model 1 
.1568 

5.4747 

 

Table 7.3. Numerical estimates of four representations of the influence of variable X (VS 

from the brain functional pathway study) on variable Y (PUT) for a single-group 

regression model. Model 1 is an OLS regression, Model 2 is a functional EIV model, 

Model 3 is a structural EIV model, and Model 4 is a MLE SEM representation of 

regression where both X and Y have measurement error. Estimates were obtained using 

SAS PROC CALIS, EQS, and SmartPLS, a software for estimating PLS SEMs. The first 

value in each case is the estimated value of β , the second value is the standard error of 

the estimate, and the third value is the test statistic of the test of significance 0 : 0H β = .  

 

 Several things are clear after reviewing Table 7.3. First, in MLE SEM programs, 

Models 2 and 3 yield very similar results. This is because in both cases, X and Y have 

measurement error, and there is no modeling error. Incorporating the modeling error 

appearing in Model 4, ζ , causes a change in the estimate of β . Also, it is clear that PLS 

SEM does not share MLE SEM’s incredible flexibility for representing many different 

types of models. An interesting note about MLE SEM is that when we constrain δ ε=  in 

Models 2 and 3, we get the same results as a traditional orthogonal regression analysis of 

the influence of X on Y. This is expected, as orthogonal regression incorporates 

measurement error in both X and Y, but requires that the variances of the measurement 

errors be equal [91, 92]. (This further indicates the flexibility of MLE SEM and its 

software for representing and estimating all models of interest.) 

 When we consider latent variable representations, PLS SEM and MLE SEM cease 

to yield the same parameter estimates for all models. The reason for this is fundamental 

to the different techniques. As discussed in Chapter 6, PLS SEM is a model focused on 

prediction, while MLE SEM is focused on analysis of covariance structures. One of the 

major differences between the two methods lies in the way latent variables are treated. In 

the first stage of PLS SEM, latent variables are “estimated” by creating a weighted 

average of their corresponding measured indicator variables. Once “observed” values are 

estimated for the latent variables, the relationships among those variables are estimated 

through an appropriate regression technique. Therefore, in PLS SEM, if a latent variable 

has only one indicator, as in Models 2, 3, and 4, the weighted average of measured 
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indicators is exactly equal to the single indicator’s observed values. Then in stage 2, the 

measured variable’s observations are present in the OLS regression. Therefore, if we are 

using PLS SEM, Models 1, 2, 3, and 4 all yield the same estimate of β . In MLE SEM, 

latent variables are not estimated, only their covariance structure is estimated, so this 

method is much more flexible in estimating models with random independent variables 

and nuances in representation. Clearly, the similarities in the parameter estimates of the 

two methods end when more complicated models are considered.  
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Chapter 8: A Method for Generating Hypotheses and Discussion 
  

 

 

 

  

 Whether a researcher plans to use MLE or PLS SEM for single-group studies or 

mixed designs, a hypothesized network of variable relationships is always required. SEM 

is a confirmatory technique, always confirming or invalidating a comparison between the 

hypothesized model and sample data. However, researchers often have a difficult time 

creating these hypotheses from existing literature that may be conflicting or unclear. 

There is a clear need for exploratory methods for hypothesizing these path diagrams for 

use in the confirmatory SEM analysis of a system. In 2007, Marrelec et. al. published a 

work praising the use of Partial Correlation Network Analysis (PCNA) in conjunction 

with SEM [93]. The group suggests PCNA may be a good exploratory method for 

choosing paths when a hypothesized diagram is not readily available from the researcher. 

They suggest using PCNA to detect the underlying network from the data alone, and then 

allow the researcher to add direction to those arrows according to their knowledge of the 

field of interest. We have developed an exploratory technique for creating hypotheses for 

MD-SEM from data alone, which we present in the following section. It represents a 

great source of future work related to the methods developed in this dissertation. Finally, 

we present our future research direction and conclusions.  

 

8.1 Mixed Design Partial Correlation Network Analysis (MD-PCNA) 

 

8.1.1 Introduction to Partial Correlation Network Analysis 

Partial correlation network analysis (PCNA) is a statistical technique useful for 

determining whether undirected relations are present between two variables. What makes 

partial correlation unique from a standard correlation coefficient is its ability to control 

for intervening variables that may be present. Consider variables X, Y, and Z. There may 

be high correlation between all pairs here. However, if the partial correlation of X and Y 

is zero (controlling for Z), this means the relationship between X and Y vanishes when 

we are controlling for the influence of Z, or that while there may be a strong relationship 

between X and Y, it is mediated by Z, and no direct relation is necessary. Therefore, 

much like SEM, PCNA can help researchers understand relations between variables 

present in the system under study. Unlike SEM, however, PCNA can handle only 

undirected relations or links. If we are considering a path diagram, for example, with 

directed links drawn, then we can eliminate some of those links based on partial 

correlation study, but we cannot draw a path diagram with unidirectional arrows from 

data only using partial correlation network analysis [2].  

 Consider the partial correlation of X and Y, controlling for Z. The most intuitive 

way to consider partial correlation is to consider two regressions—X on Z and Y on Z—

then determine how the residuals of the two equations are correlated. If they are not 

correlated, then any correlation between X and Y is due to their individual correlations 

with Z, and not a direct relationship between X and Y. If their residuals are correlated, 
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then X and Y do have a direct relationship, even after controlling for the influence of Z 

[94].  

A first-order partial correlation coefficient is calculated when controlling for only 

one other variable. A second-order partial correlation coefficient is calculated when 

controlling for two other variables. The general formula for partial correlation is  
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0 0 0 0
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where Z is a list of the variables we will be controlling for and this formula holds for any 

0Z Z∈ . This is a recursive formula, for which one variable is removed at each step of the 

calculation. For an n-th order partial correlation calculation, three recursive calculations 

take place on the (n-1)-th level, and so on, until the calculation is simply the correlation 

coefficient of the two variables, without controlling for any other variables. Therefore, 

the calculation of a partial correlation coefficient can be exponentially expensive in time 

and number of operations performed [95].  

 Statistical inferences on the partial correlation coefficients are possible through 

Fisher’s transformation [96] 

1
2

1
log

1
z

ρ
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 +
=  
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which follows a  

1
2

1 1
log ,

1 3
N

N

ρ

ρ

  +
  

− −  
  

 

distribution, where ρ is the partial correlation coefficient and N is the number of 

observations under study [97]. According to the resulting z-scores, we can determine 

whether the observations for two variables are significantly correlated ( 0 : 0H ρ = ) at the 

.05α =  significance level, controlling for indirect correlation through other variables.  

 

8.1.2 Our Interests in PCNA 

 Marrelec’s partial correlation technique could be used to discover the paths shown 

in Figure 8.1, for example, that could be tested using standard structural equation 

modeling techniques.  
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Figure 8.1. Hypothesized partial correlation network between regions of interest in the 

Brain Functional Pathway Study. 

 

We are most interested in generating diagrams that could be tested using our 

novel MD-SEM methodology, and in order to do this, we need to be able to determine 

whether covariate effects are present for particular links. We could generate a diagram 

containing any or all of the links and factor influences shown in Figure 8.2.  

 

 
Figure 8.2. Hypothesized partial correlation network with group and drug influences 

present for MD-PCNA, as we have studied for MD-SEM. 

 

8.1.3 The MD-PCNA Bootstrap 

 We have developed a data-driven method of detecting linkages between variables, 

and also covariate influences on those linkages. It is a statistical technique involving 

bootstrapping to estimate the partial correlation of two variables and the contribution to 

the partial correlation from the group membership of a subject. Because we develop a 

“population” of coefficients and group contributions using the bootstrapping technique, 

we can then evaluate the significance of both the partial correlation and the group 

contribution. A significant partial correlation indicates that the variables have a strong 

relationship, and a significant group effect indicates that group membership changes the 

structure of relations among variables in the set. 

 Given n variables, find the influence of group membership on partial correlation 

between two of the regions, i  and j . For each pair of variables iY  and jY , we will 

calculate one thousand (or more if desired) estimates of the partial correlation between 

these two variables using bootstrapping. The algorithm begins by resampling—sample 

with replacement from the original data to create a “dataset” of the original size. For each 
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of these “datasets” we perform the analysis described below. The result is one thousand 

“estimates” of partial correlation. For these sorted estimates, we can use the percentile 

method to determine whether the partial correlation of variables iY  and jY  is significant 

(i.e. if zero is contained in a reasonable confidence interval, then the link, or factor 

influence on the link, is not significant).  

 Within each repetition of the bootstrapping algorithm, we begin regressing each 

of the two regions on the remaining regions:  
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Then calculate the corresponding residuals: 

 

ˆ

ˆ

i i i

j j j

R Y Y

R Y Y

= −

= −
 

 

These residuals are calculated for each group’s variables separately; we do not combine 

the data for different groups until we are calculating the values of the likelihood function.  

 

As in the case of traditional partial correlation, once the residuals have been calculated, 

the partial correlation is calculated through a correlation measure: 

 

( , )k i jr orr R Rc=  

 

The idea behind our two-level model is that we reparametrize kr , the traditional 

representation of partial correlation. Let 
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v

k u u

u

r Fbb
=

= +∑  

 

where iF  represents the influence of any covariate on the correlation.  

 In efforts to generate a path diagram for use in SEM from the data, we will 

perform this correlation analysis, and then incorporate directionality of linkages 

according to the influence of the collaborator. We will determine whether each of the 

coefficients is significant in order to determine whether the path and factors are 

significant, respectively. It is important to note that before we begin the procedure, we 

have centered our variables, so a constant is not necessary in our regressions.  

 We perform the significance tests 00 : 0H b =  to determine whether the linkage 

between the variables of interest is significant, and 0 : 0uH b =  (for 1..u v= ) to determine 

whether the covariate factor influences on the linkage are significant. After determining 

the significance of each coefficient via the percentile method, we will know which paths 
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and factors to include in the path diagram for use with MD-SEM. This analysis must be 

performed on all variables, pairwise. This requires ( 1) / 2n n −  individual (and 

independent) repetitions of the methodology described above. 

 

8.1.4 Example 

 We are interested in determining the covariate PCNA structure for the network of 

variables shown in Figure 8.2, where we are studying two groups of subjects (normal 

subjects and cocaine abusers), each measured under two conditions (receive placebo and 

receive methylphenidate). We are interested in determining where linkages exist among 

these four variables, and where group membership (G) and drug treatment received (D) 

significantly affect the strength of those linkages.  

 To begin, we will resample the original subjects 1000 times for each independent 

group of subjects. However, within a group of subjects, we use the same resample for all 

conditions. Then, from each resample of n subjects, we calculate the residual variables 

for our partial correlation analysis. Therefore, we have 1000 estimates for each of kr  for 

each dataset. When we have those estimates, we reparametrize the partial correlation 

estimates as follows, to determine the contribution to the partial correlation from the 

factors group membership and drug received:  

 

kr a bG cD= + +  

 

• For dataset 00 (G=0, D=0), r a= . 

• For dataset 01 (G=0, D=1), r a c= + . 

• For dataset 10 (G=1, D=0), r a b= + . 

• For dataset 11 (G=1, D=1), r a b c= + + . 

Now in order to determine the significance of each coefficient, a, b, and c, we will create 

estimators of these parameters. Of course, for a, we can use those 1000 estimates from 

dataset 00 and the percentile method to determine the significance of the linkage between 

two regions. For c, we will create an estimator using the paired data from datasets 01 and 

00. If we subtract the 1000 estimates pairwise, then we can have 1000 estimates of the 

value of c. Similarly, we can use datasets 11 and 10. Combining these estimates, we can 

use the percentile method on our 2000 estimates of the value of c to determine its 

significance. For b, we can take the difference of estimates from 11 and 01, and similarly 

10 and 00, though the data is not pairwise. Then again, we will have 2000 estimates of 

the value of b and can use the percentile method to determine its significance.  

 This analysis is performed for each pair of variables in the system. For four 

variables, we have 4*3 / 2 6=  repetitions of the bootstrapping procedure (each of which 

contains 1000 repetitions of the calculation of partial correlation). Results of this analysis 

are displayed in Figure 8.3.  
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Figure 8.3. Results after analyzing the partial correlation network with group and drug 

influences present for mixed design PCNA. From this diagram, and the influence of our 

collaborator (to assign direction to each linkage discovered here), we could fix a data-

driven hypothesis for a MD-SEM analysis.  

 

8.1.5 A Second Example: Crohn’s Disease 

 Through the last several months, in addition to our work on the Brain Functional 

Pathway Study, we have also collaborated with Dr. Ellen Li as she researches which 

genes and corresponding single nucleotide polymorphisms (SNPs—DNA sequence 

variations) are markers for Crohn’s disease (CD) sub-phenotypes: L1 (ileal ± cecum), L2 

(colonic only), L3 (ileal + colon, beyond cecum). She has started with a large number of 

SNPs and is interested in reducing this to a handful of largely significant SNPs in 

identifying patients with Crohn’s disease.  

 We are given 29 SNP variables, for 622 subjects, each holding a value of 0, 1, 2, 

indicating the number of risk alleles in the gene for having the specified SNP. We have 

performed the MD-PCNA technique on this data with two goals: (1) identify any “hub” 

SNPs in the network, i.e. SNPs that occur (have high correlation) simultaneously with 

lots of other SNPs associated with Crohn’s disease and may thereby be markers of the 

disease; (2) generate a potential path diagram for analysis with MD-SEM.  

 For this analysis, we have three groups of subjects, each with some type of 

Inflammatory Bowel Disease (IBD)—testing positive in the ileum, having colitis, or both. 

In an effort to identify markers for ileal CD versus non-ileal CD, we will let subjects who 

have tested positive in the ileum or in both ileum and having colitis as a single group 

(L1+L3), and those who have colitis as another, independent group (L2). Therefore, we 

can evaluate the partial correlations among the SNP variables with the covariate factor of 

interest in the mixed design being whether the person has tested positive for affected 

tissue in the ileum or not.  

 Subjects with colitis belong to group 0 (baseline: L2) and subjects who have 

tested positive in the ileum belong to group 1 (L1+L3). Therefore, our second-level 

model (after generating bootstrapped partial correlations is: 

 

r a bX= +  

 

where a represents the baseline relationship and b represents the influence on that 

relationship from having Crohn’s disease (X being the Crohn’s disease factor, taking on 
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values 0 and 1). Among 29 SNPs and a smoking indicator (0 is nonsmoker, 1 is past 

smoker, 2 is current smoker), we have detected the network of relationships displayed in 

Figure 8.4. In the figure, blue links represent the baseline effect; this SNP relationship is 

present in those with colitis. Green links represent the presence of this SNP relationship 

only when the X factor is present (only for those with disease in the ileum—Crohn’s 

patients). Red links represent relationships that are present in the baseline group and are 

significantly affected by Crohn’s disease.  

 

 

 
Figure 8.4. Results of MD-PCNA applied to Dr. Ellen Li’s investigation of SNPs present 

in Crohn’s disease patients and their simultaneous occurrence at the significance level of 

.05α = . Each gray circle represents a SNP or the smoking indicator (0 is nonsmoker, 1 is 

past smoker, 2 is current smoker). Legends for the path colors are as follows; Blue: the 

path is only significant for L2, Green: the path is only significant for L1+L3, Red: the 

path is significant for both L2 and (L1+L3)—furthermore, the connection strengths are 

significantly different.  

 

 Clearly, there are many significant relationships present in this model. One reason 

for this is the significance level of .05α = that is not corrected for multiple tests (using 

the Bonferroni correction, for example). The reason we have not made the correction is 

because this is an exploratory method for identifying potential relationships. Also, if we 

use the Bonferroni correction, we divide .05 by the number of comparisons made, so the 

required significance level is .05/(30*29/2), which is so small that only four links appear 

in the results (shown in Figure 8.5). As shown in Figure 8.5, when we use the Bonferroni 

correction, there is a much smaller network of relationships apparent. We also notice that 
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the paths shown in Figure 8.5 were red in Figure 8.4 but are now blue, indicating that we 

detected a difference between L2 and (L1+L3) when we did not use the multiple test 

correction, but we now detect only the baseline effect L2. We believe MD-PCNA is an 

exciting direction for future study, beginning most importantly with a power analysis. 

 

 
Figure 8.5. Results of MD-PCNA applied to Dr. Ellen Li’s investigation of SNPs present 

in Crohn’s disease patients and their simultaneous occurrence at the significance level of 

.05α = , corrected for multiple tests using the Bonferroni correction (divide the p-value 

by the number of comparisons, 30*29/2. Legends for the path colors are as follows; Blue: 

the path is only significant for L2, Green: the path is only significant for L1+L3, Red: the 

path is significant for both L2 and (L1+L3)—furthermore, the connection strengths are 

significantly different.  

 

8.1.6 Applications of Parallel Computing 

 The overall goal of running our intended algorithm is to detect relationships 

between variables in our dataset while controlling for mediating variables also present in 

the dataset. Given a large number of variables, ( 1) / 2n n −  repetitions of the 

bootstrapping methodology, each requiring one thousand or more iterations, can become 

a huge computational issue. In a specific example of an application of this methodology, 

among 216 Single-Nucleotide Polymorphisms (SNPs), we are interested in whether pairs 

of them are correlated. A SNP is a genetic mutation that occurs in some humans and can 

change their cellular function, impacting their overall bodily function and, potentially, 

health. If we can find significant partial correlation between two or more SNP variables, 

we may be able to determine which SNPs occur together, and which individual SNPs are 

highly related to many other SNPs at once.   

 The algorithm is embarrassingly parallel, and was implemented in C++. We 

evaluated a single dataset containing measurements of 216 variables: 908 normal-subject 

observations and 1114 case-subject observations. We examine the relationships of the 

216 variables pairwise (excluding consideration of a variable with itself), but the results 

of one comparison do not depend on any other comparison. However, the data must be 

passed to all processors, as calculation of partial correlation between two variables does 

depend on the remaining variables in the set (all of the remaining data). Pairwise 

comparisons of the variables yield 216*215 / 2 23220=  completely independent 

comparisons. Each single comparison takes about 5 minutes on a single-processor 

computer. The complete algorithm would require 1935 hours or 81 days to complete 

using a single-processor computer ( 23220*5 116100=  minutes). Using 54 processors, 

we trimmed the run-time to less than 1.5 days. Clearly, parallel computing can be an asset 

to users of this methodology when dealing with even medium-sized datasets.  
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8.2 Conclusion and Discussion  
 

 SEM for Mixed Designs (MD-SEM) is a comprehensive technique for evaluating 

the effects of factor covariates on specific pathways in a hypothesized path diagram. It is 

the first cohesive and easy-to-use methodology of its kind. For this methodology, we 

developed the estimation techniques (in maximum likelihood framework), derived the 

overall goodness-of-fit measure, and developed software to estimate the parameters, test 

their significance, and test the fit of the overall model. In addition to the model 

development, we performed necessary power and sample size analysis for this new 

method, determining that MD-SEM should not be used for samples with a small number 

of observations. Because the power analysis is based on a single model, more 

investigation can be done in this area.  

 For models in which the sample size is too small for MLE MD-SEM, we have 

discussed another technique based on the existing PLS SEM that is more suitable for 

analyzing small datasets. While PLS SEM could already analyze repeated measurements 

and multiple independent groups, we have proposed a method for estimation (using a 

linear mixed model) that will provide less conservative measurements of standard error 

for each parameter, when the response variables are normally distributed. With MLE 

SEM and PLS MD-SEM, studies of all sample sizes can be used to identify variable 

relationships that differ between and within groups.  

 Additionally, we have developed the methodology to include latent variables, as 

is common in SEM. Because of this development, any mixed design study can be 

analyzed using SEM, and as a result, researchers can pinpoint exactly which relationships 

in their models differ among independent groups of subjects, among repeated 

measurements, or both, due to the influences of these factor covariates.  

 Finally, we have introduced a nonparametric exploratory methodology for 

generating hypotheses for MD-SEM, called Mixed Design Partial Correlation Network 

Analysis (MD-PCNA). This technique uses bootstrapping to identify which variables 

have a significant partial correlation, and which links between variables may be affected 

by the factor influences we evaluate in MD-SEM. Once these linkages and factor 

influences are detected, researchers can use their field knowledge to add direction to 

these relationships and use the result as a hypothesized path diagram for MD-SEM. The 

benefit of this technique is the data-driven exploration of the relationships between 

variables, rather than being confined to using only field knowledge to generate 

hypotheses. This work is an exciting direction for future work, beginning with a thorough 

analysis of the power of the MD-PCNA.  

 In addition to the future directions we have in MD-PCNA, MD-SEM can be 

further developed to allow for analysis of more models—those containing categorical 

independent and dependent variables [98-103] and those with non-normal data.  One way 

this could be handled is to extend the methodology to allow for more estimation 

techniques (aside from MLE, we could use generalized and weighted least squares [1], 

and the asymptotically distribution free methods [104]). Additionally, it would be very 

exciting to develop the method to allow for continuous covariates, as opposed to the 

strictly binary covariates we have incorporated. MD-SEM introduces an entire family of 

new models that, when completely developed, can analyze differences in path strength in 

any mixed design study.  
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