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Abstract of the Dissertation 
 

Structural Equation Modeling with Time Series Data 
 
 

By 
 

Tianyi Zhang 
 

Doctor of Philosophy 
 

in 
 

Applied Mathematics and Statistics 
 

Stony Brook University 
 

2010 
 

 
Structural Equation Modeling (SEM), also commonly referred to as path analysis in 

the absence of latent variables, is a powerful multivariate analysis approach to explore 
and to confirm causal relationships. It imposes a structure on the covariance matrix and 
the imposed structure is subsequently validated by the data. In recent years, SEM has 
been extended to analyze autoregressive moving average (ARMA) time series data 
assuming time-constant path coefficients. The mechanism of ARMA-based SEM makes it 
the ideal procedure for the analysis of directional brain functional pathways based on the 
multi-subject, multivariate time series data generated through the functional magnetic 
resonance imaging (fMRI) studies. However the time-constant path coefficient 
assumption is unrealistic and overly restrictive. In this work, based on converting the 
overall SEM to the sectional SEM approach for vector ARMA(p, q) time series, we 
extend the ARMA-based SEM to allow time-varying coefficients (TVC). The statistical 
inference framework based on the maximum likelihood method is derived and the 
advantage of the novel TVC SEM approach is demonstrated through simulation studies. 
In addition, we also applied the new method to examine the brain visual-attention 
pathway based on an fMRI experiment conducted at the Brookhaven National Laboratory. 
Other than brain functional pathways studies, the TVC SEM method can be readily 
applied to analyze other longitudinal data such as the financial time series. 
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Chapter 1. Introduction 
 
 
 

Structural Equation Modeling (SEM) is a powerful multivariate analysis approach to 
confirm causal relationships. It is also commonly referred to as path analysis, especially 
when no latent variable is present. It imposes a structure on the covariance matrix and the 
imposed structure is subsequently validated by the data. In recent years, SEM tools have 
been employed to analyze autoregressive moving average (ARMA) time series data. The 
mechanism of ARMA-based SEM makes it the ideal procedure for the analysis of 
directional brain functional pathways based on longitudinal brain image data from the 
functional magnetic resonance imaging (fMRI) experiments.  

 
Our research group (Kim, 2004; Kim et al., 2007; Zhang, 2007) have developed a 

unified SEM framework combining the contemporaneous brain functional pathways 
(instantaneous directed relations among brain regions) and the longitudinal brain 
functional pathways (between the same brain region and among different brain regions at 
adjacent time periods) represented by a vector autoregressive time series process of order 
p, VAR(p). In this thesis, we aim to extend our unified SEM paradigm in two directions: 
(1) enabling time varying (path) coefficient (TVC) for the contemporaneous pathways 
because intuitively, the relations among different brain regions could/should evolve as the 
subject’s learning of a certain task (visual attention or mathematical computation) evolves 
while lying inside the fMRI scanner; (2) extend the longitudinal models from Vector 
AR(p) to the more versatile Vector ARMA(p,q) processes.  In the process, we also 
discuss several other relevant issues including the analysis of a single versus multiple 
(-subject) time series data, the different approaches to the analysis of multiple (-subject) 
time series data, and partial correlation network analysis (PCNA) for data-driven pathway 
discovery – to complement the structural equation modeling (SEM) which is a hypothesis 
driven confirmatory data analysis approach.  
 
 

1.1 Structural Equation Modeling 
 

Structural equation modeling (SEM) is a statistical technique for testing and 
estimating causal relationships using a combination of statistical data and qualitative 
causal assumptions. It is a versatile multivariate statistical method including many 
common statistical procedures such as multivariate regression and confirmatory factor 
analysis etc. as special cases.  
 

Early work of SEM can be traced to the geneticist Sewall Wright around 1921 under 
the name of “path analysis”. Wright’s accomplishments include pioneering the estimation 
of supply and demand equations with a treatment of identification and developing 
estimations for covariances of variables {Goldberger, 1972 #328}.  In the 1970s, 
Jöreskog (1973), Keesling (1972), and Wiley (1973) combined factor analysis with 
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econometric simultaneous equation models, and thus greatly enriched and improved the 
methodology of SEM (Bollen, 1989; Bollen, 1993; Jöreskog, 1996; Loehlin, 2004). This 
tool is now available in several commercial software packages including LISREL, EQS, 
AMOS, and SAS (Bentler, 1995; Bentler, 2002; Jöreskog, 1996) 
 

SEM is also suitable for models with latent variables (Bock and Bargmann, 1966; 
Bollen, 1989) – a scenario that cannot be easily handled by many traditional multivariate 
statistical techniques. In this thesis, however, we will focus on SEM with only observed 
variables (Bentler, 1983; Browne, 1982; Browne, 1984), and make it part of our future 
work to further extend the novel TVC SEM methods developed here to time series data 
with latent variables. 
 
 

1.2 ARMA-Based SEM 
 

The use of Structural Equation Modeling for autoregressive (AR), moving average 
(MA) and autoregressive-moving average (ARMA) data has been studied and discussed 
increasingly in the past ten years albeit the majority of the work concerns only with the 
longitudinal pathways, and not the joint longitudinal and contemporaneous pathways 
(Kim et al., 2007; Zhang 2007).  
 

There are two ways in which SEM has been used to fit ARMA models, depending on 
whether we have only a single time series or multiple time series data from say, N 
independent subjects. A, what we call, “overall” SEM approach, has been developed for 
the multiple time series data where the number of samples, N, is much larger than the 
total number of time points, T. Du Toit and Browne (2007) presented the most 
comprehensive model specifications and the corresponding parameter estimations and 
statistical inference with an example analyzing the South African school children tests 
data. Other relevant early work includes Jöreskog (1971) and du Toit and Browne(2001).  
 

The second approach was introduced to analyze ARMA data via SEM when there is 
only one time series, which is the standard problem in time series modeling. A, what we 
refer to as the “sectional” SEM approach, has been developed with its properties in 
parameter estimation and statistical inference thoroughly studied in both theory and 
simulation for the univariate problems during the past decade (Hamaker et al, 2002; 
Molenaar, 1999; Nesselroade et al., 2002; vanBuuren, 1997). 

 
In this work, we introduce several principles for translating the overall SEM to the 

sectional SEM approach for ARMA (p, q) time series. Simulation studies demonstrated 
the advantage of the sectional SEM approach in terms of better computational 
efficiencies and convergence properties. Furthermore, we extend the SEM analysis of 
longitudinal and contemporaneous pathways to allow time-varying contemporaneous 
path coefficients (TVC). We also discuss the transformation from the TVC model to a 
time constant (path) coefficient (TCC) model, as subsequently, the transformation from 
an over TVC SEM model to a sectional TVC SEM, and then to a sectional TCC SEM 
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model. The novel TVC SEM model is subsequently applied to analyze a brain 
visual-attention pathway model based on an fMRI experiment conducted at the 
Brookhaven National Laboratory.  
 
 

1.3 SEM in fMRI Data Analysis 
 

The ultimate goal of brain functional connectivity studies is to propose, test, modify, 
and compare certain directional brain pathways. In the early 1990s McIntosh introduced 
SEM to neuroimaging to analyze effective brain connectivity based on data from positron 
emission tomography (PET), which is not longitudinal (Mcintosh and Gonzalezlima, 
1991; McIntosh, 1994; Mcintosh et al., 1994). Subsequently SEM has quickly gaine 
dground in this field (Bullmore et al., 1996; Buchel and Friston, 1997; Jennings et al., 
1998; Buchel et al., 1999; Fletcher et al., 1999; Bullmore et al., 2000; Honey et al., 2002; 
Grafton, 2004) especially with the advent of the less invasive, less expensive, and less 
restrictive functional magnetic resonance imaging (fMRI) modalities.  

 
Nowadays the fMRI experiments are routinely conducted, usually with a group of 

subjects, to generate relevant data for brain functional pathway analysis (Gusnard and 
Raichle, 2001; Kim et al., 2000; Kwong et al., 1992; Malonek and Grinvald, 1996; 
Raichle and Mintun, 2006). During a typical functional fMRI experiment, each subject’s 
functional activity in the brain is measured continuously at the rate of many images per 
second, over the course of several minutes to half an hour. The original brain imaging 
data measured at the voxel level are usually transformed to the brain regions of interest 
(ROIs) level for better noise control and more meaningful interpretations. Thus, one 
obtains a multivariate (multiple ROIs) time series per subject from the fMRI experiment 
(Bandettini et al., 1993; Bonvento et al., 2000; Rogowska and Wolf, 1992).  
 

Conventional SEM procedure assumes independent observations and thus can not be 
applied directly to analyze auto correlated time series data. In the recent years, our group 
had successfully developed a unified SEM approach for analyzing multivariate time 
series data by combining longitudinal pathways represented by a multivariate 
autoregressive (MAR) model, and contemporaneous pathways represented by a 
conventional SEM (Kim, 2004; Kim et al., 2007; Zhang, 2007). A draw-back of our 
approach was that we had assumed time-constant path coefficients (TCC) for the 
contemporaneous pathways. In this work, we aim to extend our unified SEM approach to 
include time-varying path coefficients (TVC).  
 
 
 

The rest of this dissertation is organized as follows. A general review of Structural 
Equation Modeling will be given in Chapter 2, including the matrix form notations, point 
estimates and statistical inference. Chapter 3 will review different approaches to analyze 
ARMA-based SEM. Chapter 4 will define, more rigorously, the “overall” and the 
“sectional” SEM and propose the rules of rewriting the overall SEM into the much 
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simpler sectional form. ARMA-based SEM with time-varying coefficients will be studied 
in Chapter 5. The TVC SEM will be applied to re-analyze the fMRI pathway, with results 
from different modeling approaches compared in Chapter 6. We also introduce there, an 
exploratory data analysis tool, partial correlation network analysis (PCNA), to refine and 
to correct the initial hypothesis of brain connections (based on field knowledge). The last 
chapter will conclude our findings and discuss possible future works. 
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Chapter 2 Structural Equation Modeling 
 
 
 

The parameters θ to be estimated in structural equation modeling are connection 
strengths (or path coefficients), the variances and covariances of exogenous (independent) 
variables, and the variances and covariances of disturbance terms. The path coefficients are 
standardized partial regression coefficients, which representing the response of the 
endogenous (dependent) variables to a standard unit change in an exogenous variable, 
while the other variables in the model are held constant. The primary interests in SEM 
analysis lie in the estimation and test of the related path coefficients.  
 

The variables of the structural model are mathematically defined in terms of a set of 
simultaneous regression equations. Maximum likelihood estimation (MLE) is by far the 
most common method for estimation. We will explain the estimation procedures in 
Section 2.2.  

 
There are several common SEM software, including LISREL (Jöreskog, 1996), SAS 

CALIS and TCALIS procedures, EQS (Bentler, 2002), AMOS (Arbuckle, 1995), and Mx 
(Neale et al, 1999). Our group is in the process of compiling a joint partial correlation 
network analysis (PCNA) and SEM visual-analytic tool, entitled “BrainMiner” in 
collaboration with researchers at the Brookhaven National Laboratory, SBU Computer 
Science Department and the National Institute on Drug Abuse (NIDA). This software 
package will include the novel development in PCNA and SEM we have made over the 
past 10 years. Besides pathway analysis based on brain functional images, we have also 
started to explore biological pathway analysis based on molecular data in a systems 
biological study framework.   
 
 

2.1 Model Description and Notations 
 
In the structural equation models, we assume there are m endogenous (dependent) 

variables, denoted by a vector y, and n exogenous (independent) variables, denoted by a 
vector x. If we ignore the measurement errors (it is the common situation in practice), the 
model can be written as 

 
y y x ζ= Β +Γ +                             (2.1) 

 
Here Β is an m×m matrix of coefficients for endogenous variables, while Γ is an m×n 
coefficient matrix for exogenous variables. The vector ζ is the independent error terms. In 
addition, we denote Ф as the covariance matrix of x, and Ψ as the covariance matrix of ζ. 
These terms are summarized in Table 2.1. 
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Table 2.1 Notations and Definitions in Structural Equation Modeling 
Symbol Dimension Definition 

y m×1 endogenous variables 
x n×1 exogenous variables 
ζ m×1 errors 
Β m×m coefficient matrix for endogenous variables 
Γ m×n coefficient matrix for exogenous variables 
Ф n×n covariance matrix of x 
Ψ m×m covariance matrix of ζ 

 
The model assumptions are further summarized as follows: 
(1) The error terms have mean 0. (x and y are also centered in most cases, so we 

have E(x)=E(y)=E(ζ)=0.) 
(2) ζ is uncorrelated to x. 
(3) I-Β is nonsingular. 
(4) The free parameter matrices to be estimated are Β, Γ, Ф and Ψ. 
 
 

2.2 Point Estimation and Statistical Inference of Model 
Parameters  
 

Let θ={θi} be the set of free parameters to be estimated in Β, Γ, Ф and Ψ. Further, 
let Σ(θ) be the covariance matrix of the observed variables y and x written as a function 
of the free model parameters θ. Σ(θ) is assembled in three pieces: (1) the covariance 
matrix of y, (2) the covariance matrix of x and y, and (3) the covariance matrix of x:  

 
( ) ( )

( ) cov
( ) ( )

yy yx

xy xx

y
x

θ θ
θ

θ θ
Σ Σ⎛ ⎞⎛ ⎞

Σ = = ⎜ ⎟⎜ ⎟ Σ Σ⎝ ⎠ ⎝ ⎠
                             (2.2) 

 
Notice Equation (2.1) can be rewritten as  
 

1(y x ζ−= Ι − Β) (Γ + )                                      (2.3) 
 
Hence, 
 

1 1

1 1'

1 1'

1 1'

( ) ( ')

[( ( ']
[( ' ' ( ]

( ( ') ( ' ( ' ( ' (
( ( ' )(

yy E yy

E x x
E x x'

E xx' E x E x' E

θ

ζ ζ

ζ ζ

ζ ζ ζζ

− −

− −

− −

− −

Σ =

= Ι −Β) (Γ + )( Ι −Β) (Γ + ))

= Ι −Β) (Γ + )( Γ + ) Ι −Β)

= Ι −Β) (Γ Γ + Γ )+ Γ ) + )) Ι −Β)

= Ι −Β) ΓΦΓ +Ψ Ι −Β)

        (2.4) 
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in which we make use of ( ' (E x E x'ζ ζ) = ) = 0 . 
 
Similarly, we can derive 
 

1

1

1

( ) ( ')

[( ']
[( ' ' ]

(

yx E yx

E x x
E xx x

θ

ζ

ζ

−

−

−

Σ =

= Ι −Β) (Γ + )

= Ι −Β) (Γ + )

= Ι −Β) ΓΦ

                                (2.5) 

 
( ) ( ')xx E xxθΣ = = Φ                                          (2.6) 

 
Based on Equations (2.4), (2.5) and (2.6), the implied covariance matrix of y and x is  

1 1' 1

1'

( ( ' )( (
( )

'(
θ

− − −

−

⎛ ⎞Ι − Β) ΓΦΓ + Ψ Ι − Β) Ι − Β) ΓΦ
Σ = ⎜ ⎟

ΦΓ Ι − Β) Φ⎝ ⎠                           (2.7) 
  

We should find an estimated Σ “close” to the sample covariance matrix S. The fitting 
function F(S, Σ(θ)) is defined to quantify the discrepancy between S and Σ(θ). The 
measurements of the discrepancy usually satisfy the following properties: 

 
(i) F(S, Σ(θ))≥0;  
(ii) F(S, Σ(θ))=0, if and only if S=Σ(θ); 
(iii) F(S, Σ(θ)) is a continuous function in S and Σ(θ). 
 
Apparently, different F(S, Σ(θ)) mean different estimation approaches. However, if 

the conditions listed above are satisfied, fitting functions will lead to consistent 
estimators of θ (Browne, 1984). Generally speaking, three fitting functions are widely 
used: they are maximum likelihood (ML), unweighted least squares (ULS), and 
generalized least squares (GLS) functions. 

 
The most widely used fitting function for general structural equation models is the 

maximum likelihood (ML) function. Suppose the vector z, concatenating the vectors y 
and x, with dimension (m+n) ×1, follows the multivariate normal distribution, and we 
have N independent observations on z. The derivation of the likelihood function is 
illustrated as follows.  

 
z~MN(0, Σ), so its probability density function (pdf) is  
 

1
12 2 1( | ) (2 ) | | exp '

2

m n

f z z zπ
+

− − −⎡ ⎤⎛ ⎞Σ = Σ − Σ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
                      (2.8) 

 
Let z1, z2,…, zN be the N observations. 
 
The likelihood function is built as  
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1

12 2

1

( )
12 2

1

1( ) (2 ) | ( ) | exp ' ( )
2

1(2 ) | ( ) | exp ' ( )
2

m nN

i

N m n N N

i

L z z

z z

θ π θ θ

π θ θ

+
− − −

=

+
− − −

=

⎧ ⎫⎡ ⎤⎛ ⎞= Σ − Σ⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭
⎡ ⎤⎛ ⎞⎛ ⎞= Σ − Σ⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎣ ⎦

∏

∑
                 (2.9) 

 
After taking log of both sides of Equation (2.9), we have 
 

1

1

1

1

1

1

*

( ) 1log ( ) log(2 ) log | ( ) | ' ( )
2 2 2
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⎡ ⎤Σ+
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+
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∑

i
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θ

θ θ

−

−

⎡ ⎤⎣ ⎦

⎡ ⎤= − Σ + Σ⎣ ⎦i

       (2.10) 

Here * 1NS S
N
−

= , where S is the sample covariance matrix of z, as mentioned before, and 

in a large sample, we have *S S≈ . 
 
We can rewrite Equation (2.10) after removing the constant term, which will not 

affect the estimation. We also use S instead of S*: 
 

{ }1log ( ) log | ( ) | ( )
2
NL tr Sθ θ θ−⎡ ⎤= − Σ + Σ⎣ ⎦                             (2.11) 

 
Comparing to the discrepancy rules described earlier, the fitting function based on 

the likelihood function can be set up as: 
 

1( ) log | ( ) | ( ) log | | ( )MLF F tr S S m nθ θ θ−⎡ ⎤= = Σ + Σ − − +⎣ ⎦                 (2.12) 
 
It is equivalent to minimize F(θ) and to achieve the maximum likelihood. A 

necessary condition for minimizing of F(θ) is to choose the estimates θ̂  in that the 
partial derivatives of F(θ) with respect to each of îθ  are zero. That is,  

 
( ) 0,   =1 to the dimension of .

i

F iθ θ
θ

∂
=

∂
                              (2.13) 
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Based on the normality assumption, one can then explicitly test the significance of 
each path coefficient (i.e., whether the path coefficient equals to zero) using the 
likelihood ratio test. Numerical methods for these procedures are described in (Bollen, 
1989) and adopted almost universally by LISREL, EQS and SAS. In the case of 
non-normal distributions, one can always resort to the bootstrap resampling methods and 
other nonparametric procedures such as permutation tests etc. (Bollen, 1989; Bentler and 
Wu, 2002; Kim et al., 2007; Zhang, 2007). Similarly, the likelihood ratio test and its large 
sample chi-square approximation can be used to test the goodness-of-fit, and to compare 
nested models.  
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Chapter 3. ARMA-based SEM 
 
 
 

The use of Structural Equation Modeling for autoregressive (AR), moving average 
(MA) and autoregressive-moving average data has been increasingly studied and 
discussed in the past ten years. There are advantages of using SEM for ARMA time series 
data: SEM has varies of powerful software support; and it is also straightforward in SEM 
to extend the ARMA model into multivariate case with both testable longitudinal and 
contemporaneous pathways (Kim et al., 2007; Zhang 2007). 
 

There are two ways in which SEM has been used to fit ARMA models, based on 
different input time series data. The first application is used when the time steps T is 
small while the number of observations on each series is large. An “overall” SEM is used 
in this case. Du Toit and Browne (2007) showed the model specifications and parameter 
estimations with an example analyzing the South African school children test data. 
 

The second application of SEM was introduced to analyze ARMA data when there is 
only one observation on each series, which is the standard problem in time series 
modeling. A “sectional” SEM approach was developed and the properties of the estimates 
thoroughly studied in both theory and data simulation (vanBuuren, 1997; Molenaar, 1999; 
Hamaker et al, 2002). This method is also applicable if there are N observations, but N is 
too small to have a positive definite sample covariance matrix. 
 

It is noticeable that different researchers used the term “fitting ARMA data by SEM” 
to represent different meanings in previews work as stated above. Although both of the 
two approaches employ SEM tools for ARMA series, the essential ideas differ as 
Hamaker and colleagues (Hamaker et al, 2003) have pointed out. The terminology 
“overall” and “sectional” SEM are coined in this thesis to stress such difference, as it 
directly relates to the requirement on the input data and the process of the pathway 
modeling. In addition, it is also shown that the transformation from the overall SEM to 
the sectional SEM can be done following several principles. 
 
 

3.1 Basics of ARMA  
 

Autoregressive moving average (ARMA) models, also referred to as the Box-Jenkins 
models after the iterative Box-Jenkins estimation method, are a general class of time 
series data (Box and Jenkins, 1976). The model consists of two parts, an autoregressive 
(AR) part representing the influence of the previous observations to the future ones, and a 
moving average (MA) part representing independent ‘shocks’ to the times series. The 
model is often denoted as the ARMA(p, q) model where p is the order of the 
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autoregressive part and q is the order of the moving average part (as defined below). 
 

The notation AR(p) refers to an autoregressive model of order p written as: 

1

p

t i t i t
i

X c Xϕ ε−
=

= + +∑                                           (3.1) 

where  are the parameters of the model, c is a constant and  is white noise. 
The constant term is usually omitted for simplicity since data can be centered to make c = 
0. Some constraints are necessary on the values of the parameters of this model in order 
that the model remains stationary. 
  

The term MA(q) refers to the moving average model of order q: 

1

p

t t i t i
i

X μ ε η ε −
=

= + +∑                                            (3.2) 

where η1, ..., ηq are the parameters of the model, μ is the expectation of Xt (often assumed 
to equal 0 as c in the AR(p) model), and the , ,... are again, white noise error terms. 
 

ARMA(p, q), refers to the model with p autoregressive terms and q moving average 
terms, can thus be written as: 

1 1

p p

t t i t i j t j
i j

X c Xε ϕ η ε− −
= =

= + + +∑ ∑                                 (3.3) 

Using the backward shift operator B, which is defined by s
t t sB X X −= , the 

ARMA(p,q) model can be rewritten as  
 

( ) ( )t tB X c Bϕ η ε− =                            (3.4) 
 
where 2

1 2( ) 1 p
pB B B Bϕ ϕ ϕ ϕ= − − − −"  and 2

1 2( ) 1 q
qB B B Bη η η η= + + + +" . 

 
Finding appropriate values of p and q in the ARMA(p, q) model can be facilitated by 

plotting the partial autocorrelation functions for an estimate of p, and likewise using 
the autocorrelation functions for an estimate of q. Further information can be gleaned by 
considering the same functions for the residuals of a model fitted with an initial selection 
of p and q (Box and Jenkins, 1976; Mills, 1990; Pandit and Wu, 1983). 
 

After choosing p and q, ARMA models in general can be fitted by different methods, 
such as least squares, maximum likelihood function, etc. For a pure AR model 
the Yule-Walker equations may be used to provide a fit. It is generally considered a good 
practice to find the smallest values of p and q that provide an acceptable fit to the data. In 
this dissertation, although the theoretical results are derived for general ARMA(p,q) 
models, the analyses on real data focus on ARMA model with small p and q values, as 
indicated by our previous work (Kim et al., 2007; Zhang, 2007). 
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3.2 ARMA-based Overall SEM 
 

As described in Chapter 2, structural equation modeling, as the name itself implies, is 
developed based on a system of equations. On the other hand, ARMA time series is 
modeled by linear equations, too. It is straightforward to apply SEM approach to ARMA 
series if it is a stationary series. 
 

For the univariate case (Van Buuren 1997), we illustrate the modeling by a simple 
AR(p) time series. Let 0 1 2( , , ,..., )TX X X X  be the time series to be analyzed. Then pX  
is the p-th lagged variable of 0X . 
 

The linear equations can be expressed in the matrix form as the following: 
 

0 1 2 01

1 1 2 12

1 2

0 0
0 0
0 0
0 0

p

p

T p p T pT

X X
X X

X X

ϕ ϕ ϕ ε
ϕ ϕ ϕ ε

ϕ ϕ ϕ ε− −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

" "
" %

# % % % " % ##
" "

              (3.5) 

 
The variance-covariance matrix can be easily established, i.e. for the variables 

involved in the first row, 1 2 0( , ,..., , )pX X X ε , the variance-covariance matrix is  
 

0 1 1

1 2 2

1 2 0
2

0
0

0
0 0 0

p

p

p p

τ τ τ
τ τ τ

τ τ τ
σ

−

−

− −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟Φ =
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

"
"

# # % # #
"
"

                    (3.6) 

 
in which iτ  is the i-th order autocovariance in AR(p), and 2σ  is the variance of error 

0ε . Notice iτ  are not free parameters but determined by the coefficients in Equation 
(3.5). Therefore, the SEM estimation process can be used as we described in Chapter 2. 
Figure 3.1 shows the path diagram for an AR(2) time series. One can analyze this model 
in the usual SEM approach with N independent observations if the sample size N is big 
enough. This is what we referred to as, the overall SEM approach.  
 



 13

 
Figure 3.1 Path diagram for a univariate overall SEM for AR(2) time series 

 
For a general multivariate ARMA(p, q) case, the notations are more complicated as 

discussed below. Let Yt be an infinite multivariate ARMA(p, q) Gaussian time series: 
 

1 1
,   0, 1, 2,...

p q

t i t i t j t j
i j

Y AY B t− −
= =

= + + = ± ±∑ ∑u u                  (3.7) 

Notice it is a k×1 vector variant and ut are noise vectors mutually independently normal 
distributed as ~ ( , )N 0tu Ψ . Negative t values mean the status before time 0. Denote s = 
max(p, q). There are ks×1 observations before time 0, called the “initial state” vector x1. 
Let 1 1cov( , ')x xΘ = . 
 

Besides, suppose that there are nT available observations on the time series, denote 
the following nT×nT matrices: 
 

1

1

1

1

0 0 0 0
0

0 0
0 0

0 0
0 0

k

k

k
A

p

k

p k

I
A I

A I
T

A A
I

A A I

−

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−

= ⎜ ⎟
− −⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟− −⎝ ⎠

"
% % #

# %
# %
% % %

"

                     (3.8) 

 

X(t)

X(t-1) 

1ϕ  

ε(t) 

X(t-2) 

ε(t-2) 

ε(t-1) 

……

X(1) X(3) X(5)

X(2) X(4)

ε(4) ε(2) 

1ϕ  1ϕ  1ϕ  1ϕ  1ϕ  
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2ϕ  
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1

1

1

1

0 0 0 0
0

0 0
0 0

0 0
0 0

k

k

k
B

q

k

q k

I
B I

B I
T

B B
I

B B I

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

"
% % #

# %
# %
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"

               (3.9) 

 
We also denote the following knT×ks matrix  

  

|

0 0
0 0
0 0

,  if 6,  3.
0 0 0
0 0 0
0 0 0

T

k

k

k
n s T

I
I

I
I n s

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= = =⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

           (3.10) 

 
Then, the covariance structure of y is given by (du Toit and Browne, 2007) 

1 ' ' 1
| |cov( , ') ( ( ) ) '

T T TA n s n s B n B Ay y T I I T I T T− −
− −Σ = = Θ + ⊗Ψ           

(3.11) 
 

Comparing to Equation (2.5): 
1 1'( ) ( ( ' )(yy θ
− −Σ = Ι −Β) ΓΦΓ +Ψ Ι −Β) , the 

SEM tools can be directly applied to VARMA data based on this 1-1 mapping (Table 3.1). 
 
 

Table 3.1 Relationship between SEM and VARMA parameters  
(du Toit and Browne 2007) 

SEM VARMA
Ι −Β AT−  

Γ  BT  

Φ  TnI ⊗Ψ

Ψ  
0

0 0
Θ⎡ ⎤
⎢ ⎥
⎣ ⎦

 
 

3.3 ARMA-Based Sectional SEM 
 

The limitation of the overall SEM is obvious: it requires a sample of independent 
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observations at each time point (the sample size requirement depends on the number of 
variables and parameters). However, in many cases, we only observe one series over time. 
This is also the typical data format for time series analysis. Therefore, another technique, 
which we refer to as the “sectional SEM” in this dissertation, was developed in parallel.  
 

We discuss the univariate case first. From Equation (3.5), we will notice that the 
same equation repeats T-p+1 times with only increased subscripts. Hence, (3.5) can be 
rewritten as: 
 

1
,   0,1,...,

t p

t i i
i t

X X t T pϕ
+

= +

= = −∑                                    (3.12) 

 
Figure 3.2 shows the path diagram for the equation with p=1 and 2 (3.12). In other 

words, we have T-p+1 “observations” for this pathway model instead of a single time 
series. Similarly, for pure MA(q) or mixed ARMA(p, q) models, the “sectional” SEM can 
be constructed (See Figure 3.3).  
 

In sectional SEM, the artificial observations: 

 1 1 2 1 1 1( , ,..., ), ( , ,..., ),..., ( , ,..., )t t t p t t t p p pX X X X X X X X X− − − − − − +  are not independent and the 
covariance matrix, which is formed of the autocorrelations, usually cannot be assumed to 
follow Wishart Distribution. However, theoretical and simulation results support the use 
of SEM for the “sectional” model. (Van Buuren 1997, Molenaar 1999, Hamaker et al., 
2002). Van Buuren (1997) reported that the estimates are approximately unbiased and as 
efficient as those of specialized recursive maximum likelihood estimators for pure AR 
and mixed ARMA models, but biased and less efficient for pure MA models. Molenaar 
(1999) fixed the problem of MA models by explicit implementation of exact invertibility. 
Furthermore, the nature of sectional SEM output was discussed in Hamaker et al. (2002), 
in which the authors concluded that estimates of ARMA parameters obtained with SEM 
software are identical to those obtained by univariate stochastic model preliminary 
estimation (USPE) and are not true maximum likelihood estimators (MLE). For pure AR 
models, the estimates from SEM software have the same asymptotic properties as MLE, 
and the log-likelihood ratio is reliable. However, the behavior is not good for pure MA 
model and varies for mixed ARMA model. 
 

It is not difficult to expand the modeling process above to the multivariate case. Van 
Buuren (1997) applied this method to a binary time series example. However, it is a 
danger to include redundant arrows during the modeling, which will lead to wrong results. 
Van Buuren (1997) has already pointed out this danger in a univarite AR(2) case, but in 
the multivariate case, the situation is more complicated. Figure 3.4 shows an example of 
redundant pathways in ARMA (1,1) model. In all of the figures in this dissertation, 
arrows in different colors represent different links: black for contemporaneous relations, 
blue for AR effects and green for MA effects. The rules of constructing a sectional SEM 
correctly from an overall SEM are part of this thesis’s achievement, which will be 
introduced in Chapter 4. 
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Figure 3.2 Path diagram for a univariate sectional SEM for the AR(1) time series (left) 
and the AR(2) time series (right). 
 

 
Figure 3.3 Path diagram for a univariate sectional SEM for the MA (1) time series (left) 
and the ARMA(1,1) time series (right).  
 

 
Figure 3.4 Path diagram for a bivariate sectional SEM for MARMA (1, 0) time series. 
(The red arrow denotes a redundant link.) 

X(t) Y(t) 

X(t-1) Y(t-1)

β 

a b 
c 

ε(t) ζ(t) 

β 

X(t)

ε(t) 

X(t-1) 

1ϕ  

ε(t-1) 

X(t)

ε(t) 

ε(t-1) 

X(t)

ε(t) 

X(t-1) 

1ϕ  

X(t-2) 

2ϕ

X(t)ε(t) 

X(t-1)

1ϕ  



 17

 
 

3.4 Discussion and Limitation 
 

As stated above, the overall SEM requires multiple observations: generally speaking, 
the sample size N should be much larger than the time step T (N >> T). On the other hand, 
sectional SEM, which was applied for ARMA parameters estimation at the beginning, has 
been developed mainly for a single time series (N = 1 and T > 50). Besides, Hamaker et al 
(2003) also introduced a software, Mx, for directly estimating the model parameters 
through likelihood function for cases with 1 ≤ N < T. In this dissertation, we will apply 
the sectional SEM to multiple subject time series (N > 1) with three different approaches: 
1) summarize then analyze; 2) analyze then summarize; 3) simultaneous analysis (Zhang 
2007). We compare these different approaches by simulation in Chapter 4. 
 

There is still room for discussions on the statistical inference for sectional SEM. As 
we stated before, the autocorrelation matrix usually does not follow the Wishart 
distribution. The hypothesis test and goodness of fit statistic we introduced in Chapter 2 
may fail, especially for MA process (Hammaker et al., 2002; du Toit and Browne 2007). 
In practice, for fMRI study using the traditional experimental setting where the stimulus 
was applied in a predictable fashion, we found that the AR(1) model is usually sufficient 
for the inherent longitudinal effects and does not make the model too complicated 
meanwhile. Hence, we can still use the 2χ  value as the measurement of goodness-of-fit 
since the asymptotic property has been proven for pure AR models. However, for the 
increasingly popular new fMRI experimental paradigm with random shocks (i.e. the 
stimulus was applied at random in an un-predictable fashion), the MA component will 
become indispensible. We thus make it part of our future work to further develop the 
statistical inference for the general sectional SEM with ARMA(p,q) time series data.    
 

Situations of different “initial status” before time 0 were also discussed in du Toit 
and Browne’s paper (2007). They proposed three conditions concerning the initial state 
covariance matrix, Θ.  
 

(1) Θ-free: No equality constraints on Θ, which means a change in process prior to 
the first observation is permitted; 

(2) Θ=0: Θ is fixed at 0, which means the process starts with the first 
observation; 

(3) Θ(.):  Θ is estimated to keep the series stationary, which means the process 
started in the distant past with no change at the first observation. 
 

Simulation study does not show big difference among these three conditions. In the 
fMRI visual attention study analyzed in Chapter 6, we will ignore the change before first 
observation and set no equality constraints on Θ. 
 

Although several studies have been done on ARMA-based SEM, the majority use 
only time constant coefficients including our previous works (Kim et al., 2007; Zhang 
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2007). Two papers discussed the time varying path coefficient problems explicitly. 
Browne and du Toit (1991) adopted a time related exponential function for a structured 
latent learning curve – their time varying coefficients were applied exclusively to the 
longitudinal pathways, and not the contemporaneous pathways. The same team (du Toit 
and Browne 2007) later discussed the importance of having more general time varying 
coefficients –however, without proposing any explicit method.  

 
In this thesis, we develop explicit modeling and analysis approaches for SEM with 

time varying contemporaneous path coefficients in Chapter 5. In Chapter 6, using a 
moving-window approach, we demonstrated that time varying coefficients do exist for 
the fMRI visual attention study. The TVC component was estimated and the TVC SEM 
model analyzed. However, first, we derive the guidelines for transforming an 
ARMA-based overall SEM to a sectional SEM based on a TCC SEM model in the 
ensuing Chapter 4. 
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Chapter 4. Transform ARMA-Based Overall 
SEM to Sectional SEM 
 
 
 

Traditional SEM requires independent observations to guarantee a valid inference in 
general cases. ARMA-based overall SEM approach is a traditional SEM approach where 
the independent observations refer to the set of independent subjects where each subject 
has his/her own time series. Thus one marked disadvantage of the overall SEM is it 
requires big sample size, which is related to the number of variables and time steps. On 
the other hand, if the sample size is big enough, the overall SEM for multivariate analysis 
is usually intensely time consuming. For small sample size cases (i.e. 1 ≤ N < T), 
Hamaker et al (2003) introduced the software Mx for Maximum Likelihood Estimation.  

 
In contrast, the ARMA-based sectional SEM can deal with a single time series with 

auto-correlated observations. The trick is that we first transform the longitudinal 
correlations into an SEM model, and subsequently combine this “longitudinal SEM 
pathways” with the contemporaneous SEM pathways into a unified SEM pathway 
diagram (as discussed in Kim et al., 2007 for AR-based sectional SEM). The single, 
auto-correlated time series data, after re-arrangement, can thus be plugged in as 
‘independent observations” where their independence is implied by the unified SEM 
model, in a traditional SEM software package. In this work, following the same approach, 
we transform the single- or multiple- time series ARMA-based overall SEM into ARMA 
based sectional SEM models. Guidelines for the transformation are provided. 

 
Lastly, under the sectional-SEM framework, for multiple- time series data (N > 1), 

we discuss and compare three approaches for their analysis: (1) summarize then analyze; 
(2) analyze and summarize; (3) simultaneous analysis (Zhang, 2007). This and the above 
development are intended for TCC SEM only. Similar discussions are carried out in the 
later chapters for the more general TVC SEM. 
 

4.1 Notations and Definitions 
 

Let 1 2( ) ( ( ), ( ),..., ( ))mX t X t X t X t=  be the vector of m variables we are interested in. Our 
purpose is to confirm or explore a structural equation model involving these variables. 

Here, each variable ( ) ( 1,2,..., )iX t i m=  is a time series, representing observations at 

different time points. Generally speaking, : ( ) ( 1,2,..., )tX X t t T= =  are auto-correlated, 
and are not independent observations.  
 

We define the overall SEM as SEM based on the entire dataset, treating each time 
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point as a variable, or a node in the path diagram. In Figure 4.1, Model 1 is an example of 
an overall SEM when we have only two AR(1) variables. 
 

We define the p-sectional SEM as the SEM approach in which: 
 

(1) The time series data and paths in the overall SEM are split into T-p sections;  
(2) Only ( ), ( 1),..., ( )X t X t X t p− −  are included in the structural equations in the 

(t-p)-th section;  
(3) The path coefficients are time related or remain the same across all sections. 

 
An example of a sectional SEM with two variables (Model 2) is also shown in Figure 

1, in which p = 1. In a conventional definition of multivariate AR(p) (also referred to as 
the vector autoregressive or VAR) time series, there is no arrow from X(t) to Y(t) (e.g. 
(Brockwell and Davis, 1996; Hamilton, 1995). However, models containing 
contemporaneous links are more reasonable in practice and hence it is widely used in 
ARMA-based SEM (Van Buuren 1997, du Toit and Browne 2007). Besides, notice that 
there does not exist an arrow from X(t-1) to Y(t-1) in Model 2. A warning message was 
also given in Van Buuren (1997) that the redundant path included in sectional SEM 
would lead to wrong result. How to eliminate the redundant arrows is a key to rewrite an 
overall SEM to a sectional SEM. The proposed approach is introduced next. 
 

In analyzing the visual attention pathway based on the same fMRI data as 
re-analyzed in this thesis, Kim et al (2007) and Zhang (2007) adopted a vector 
auto-regressive (VAR) model. Using a novel unified SEM approach, they assumed that 
only data with one lag between were involved based on an VARMA(1,0) model, so it is 
what we refer to as, a 1-sectional SEM (Figure 4.2.2). Figure 4.2.3 shows the overall 
SEM based on the same pathway assumptions. 

 
The definition of the sectional SEM can be directly expanded to ARMA(p, q). Let s = 

max(p, q). The s-sectional SEM is defined as: 
 
(1) The time series data and paths in the overall SEM are split into T-p sections;  
(2) Only ( ), ( 1),..., ( )X t X t X t p− −  are included in the structural equations in the 

(t-p)-th section;  
(3) The path coefficients are time related or remain the same across all sections. 
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Figure 4.1 Examples of path diagrams for overall- (left) and sectional- (right) SEM with 
two AR(1) variables. 
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Figure 4.2 The path diagram in Figure 4.2.1 is the initial model of contemporaneous 
visual-attention pathways related to six brain regions. The path diagram in Figure 4.2.2 is 
the 1-sectional SEM (previously referred to as the unified SEM combining the 
contemporaneous and longitudinal pathways) based on VARMA(1,0) assumption (See 
Kim et al. 2007 and Zhang 2007). The path diagram in Figure 4.2.3 is the overall SEM 
based on the entire dataset. 
  
 

4.2 Rewriting ARMA-Based Overall SEM to Sectional SEM 
 

For the single time series (N = 1), SEM based on the overall path model yields no 
estimates. Sectional SEM needs to be adopted in this case. However, an assumption 
behind the p-sectional SEM approach is: we treat  

1 1 2 1 1 1( , ,..., ), ( , ,..., ),..., ( , ,..., )t t t p t t t p p pX X X X X X X X X− − − − − − +   
as a series of “independent observations”. We will show that the single time series overall 
SEM and the sectional SEM will have the same equations if we construct the 
corresponding sectional SEM correctly. We have the same (or equivalent) equations 
based on the path diagrams of the overall and the sectional SEM, which subsequently 
leads to the same point estimates and statistical inference.  
 

Proposition 1. The overall SEM and the p-Sectional SEM have the same parameter 
estimates if the following requirements are satisfied. 

a) Each variable is an AR(p) time series;  

Figure 4.2.3 
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b) In the overall SEM, there is no path between variables having a time gap larger 
than p; in the p-sectional SEM, all variables at time t are endogenous, while all variables 
at other time points are exogenous; 

c) The error terms are mutually independent. 
 

Proof: 
 

A. Univariate case: 
 
If there is only one variable, it is just an AR(p) time series for the overall SEM. 

Assume the coefficients for AR(p) model are 1 2( , ,... )pa a a . Then we have the following 
equations: 

1

1

1

( ) ( ) ( ),

( 1) ( 1 ) ( 1),

( 1) ( 1 ) ( 1)

p

i
i

p

i
i

p

i
i

X T X T i T

X T X T i T

X p X p i p

ϕ ε

ϕ ε

ϕ ε

=

=

=

= − +

− = − − + −

+ = + − + +

∑

∑

∑

i

i

#

i

                             (4.1) 

Since the error terms are independent, the likelihood function is: 

1

( ) ( ( ))
t T

t p

L f tθ ε
=

= +

= ∏
               (4.2) 

For the sectional SEM, we have its path diagram as shown below (Figure 4.3). 
 

 
Figure 4.3 Univariate sectional model for AR(p) time series data. 

 
Hence, the equations can be constructed: 

1
( ) ( ) ( )

p

i
i

X t X t i tϕ ε
=

= − +∑ i , where t=p+1, p+2,…T-1, T.                (4.3) 

We treat the data as T-p “independent” observations, thus Equations (4.1) and (4.3) 
are entirely the same. The MLE of path coefficients are the same as those for the AR(p) 
coefficients. Our results are in agreement with van Buuren (1997) who has shown the 

X(t)

ε(t) 
X(t-1)

1ϕ  

X(t-1)

X(t-p)

... 

2ϕ

pϕ
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equivalency of SEM approach and ARMA(p, q) time series analysis for the univariate 
case. 
 

B. Bivariate case: 
 
Here we show the proof for the two variable case with VAR(1) data (Model 1 and 

Model 2 in Figure 4.1). The proof can be readily extended to the VAR(p) case. 
 

Both the overall and the sectional SEM can be written in the following equations: 
( ) ( 1) ( ),  2,3,....,
( ) ( 1) ( 1) ( ) ( ),  2,3,....,

X t a X t t i T
Y t b Y t c X t X t t t T

ε
λ ς

= − + =
= − + − + + =

i
i i i                   (4.4) 

The likelihood functions are the same assuming independent error terms. 
 

C. Multivariate case: 
 
Proposition 1 can be similarly proved in a general multivariable case. Both the 

overall and sectional SEM can be written in linear equations: 
1 1 1 1

2 2 2 2

1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ,  1, 2,....,

( ) ( ) ( ) ( )

p

i

m m m m

X t X t X t i t
X t X t X t i t

i t p p T

X t X t X t i t

ε
ε

ε
=

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= Β + Γ + = + +
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑i i
# # # #

    (4.5) 
where Β and Γ(i) are coefficient matrix. The likelihood functions are the same assuming 
independent error terms. 
 

Similarly, for a ARMA(p, q) series, let s=max(p, q). The Proposition 1 could be 
expanded as follows: 
 

Proposition 2: The overall SEM and the s-Sectional SEM have the same parameter 
estimates if the following requirements are satisfied. 

a) Each variable is an ARMA(p, q) time series;  
b) In the overall SEM, there is no path between variables having a time gap larger 

than p and no error term having a time gap larger than q; in the s-sectional SEM, all 
variables at time t are endogenous, while all variables at other time points are exogenous; 

c) The error terms are mutually independent. 
 

The proof is similar to the AR(p) case. 
 

A. Univariate case: 
 
If there is only one variable, it is just an ARMA(p, q) time series for the overall SEM. 

Assume the coefficients for ARMA(p, q) model are 1 2( , ,... )pϕ ϕ ϕ , 1 2( , ,... )qη η η then we 
have the following equations: 
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1 1

1 1

1 1

( ) ( ) ( ) ( ),

( 1) ( 1 ) ( 1 ) ( 1),

( 1) ( 1 ) ( 1 ) ( 1)

p q
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i j

p q

i j
i j

p q

i j
i j
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ϕ η ε ε

ϕ η ε ε

η ε ε
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= =
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+ = + − + + − + +

∑ ∑

∑ ∑

∑ ∑

i

i

#

i

             (4.6) 

Since the error terms are independent, the likelihood function is: 

1

( ) ( ( ))
t T

t p

L f tθ ε
=

= +

= ∏
               (4.7) 

For the sectional SEM, we have its path diagram as shown below (Figure 4.4). 
 

 
Figure 4.4 Univariate sectional model for ARMA(p, q) time series data. 

 
Hence, the equations can be constructed: 

1 1
( ) ( ) ( ) ( )

p q

i j
i j

X t X t i t j tϕ η ε ε
= =

= − + − +∑ ∑i , where t=s+1, s+2,…T-1, T.    (4.8) 

 
We treat the data as T-s “independent” observations, thus Equations (4.6) and (4.8) 

are entirely the same. The MLE of path coefficients are the same as those for the 
ARMA(p, q) coefficients. Our results are again in agreement with van Buuren (1997) 
who has shown the equivalency of SEM approach and ARMA(p, q) time series analysis 
for the univariate case. 
 

B. Multivariate case: 
 
Similarly, both the overall and sectional SEM for vector ARMA (p, q) series can be 

written in linear equations: 

X(t)

ε(t) 
X(t-1)

1ϕ  

X(t-1)

X(t-p)

... 
2ϕ

pϕ

ε(t-1) 

ε(t-2) ... 

ε(t-q) 
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1 1 1 1

2 2 2 2

1 1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ,  1, 2,....,

( ) ( ) ( ) ( )

p q

i j

m m m m

X t X t X t i t
X t X t X t i t

i j t s s T

X t X t X t i t

ε
ε

ε
= =

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= Β + Γ + Η = + +
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ ∑i i
# # # #

(4.9) 

where Β, Γ(i) and H(j) are coefficient matrix. Assuming the error terms are independent 
and the VARMA (p, q) series are invertible, the likelihood functions will be the same.  
 

As we have proven above, the overall and the sectional SEM yield the same 
equations for a single time series (N = 1). The sectional SEM also leads to much simpler 
path diagram. In addition, now that we can assume “independent” observations in the 
sectional SEM approach, nonparametric procedures such as the bootstrapping resampling 
method can be readily applied.  
 
 

4.3 Sectional SEM with Multiple Observations 
 
 Since the sectional SEM approach can analyze a single time series data, naturally, it 
can also be readily applied to multiple time series data. Previously, our group has 
developed three strategies (Zhang 2007) for applying the sectional SEM to time series 
data with multiple subjects: (1) summarize and then analyze; (2) analyze and then 
summarize; (3) simultaneous analysis. The details are described as the following. 

 
With Approach 1, summarize then analyze, the mean time series across all subject is 

used, leading to N = 1 again. The sectional SEM is then used to fit the average time series 
data, and the estimates and standard deviation are reported. This is the most 
straightforward and easiest approach to apply the sectional SEM towards multiple-subject 
time series data. It is also the most time efficient. However, any secondary analysis such 
as group comparisons or the analysis of other covariate (age, gender etc.) effects can only 
be done via bootstrap resampling or other indirect analysis approaches, as direct 
statistical inference is intangible. 
 

With Approach 2, as was adopted by Kim et al. (2007), the sectional SEM is run for 
each time series (i.e. each subject) and the resulting path coefficients reported. Taking 
these path coefficients as input data (dependent variables), one could easily analyze 
covariate effects (age, gender, treatment groups etc.) through a general linear model 
approach. This will enable us to compare the pathway connection between different 
groups as well as examine potential influence of continuous covariates such as age, years 
of education, etc.   
 

The third approach is the “simultaneous analysis” where the entire multi-subject, 
multivariate time series data are analyzed simultaneously. Zhang (2007) proposed several 
methods to analyze data simultaneously with subject-level covariates like gender, age, etc. 
In this dissertation, since we will not focus on covariate effects, the simplest 
simultaneous analysis method is adopted for Approach 3. All samples are concatenated, 
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so N*(T-1) samples in total are used in the sectional SEM at the same time. This 
concatenation scheme is a common practice in neuroscience (Penny and Holmes, 2004; 
Mechelli et al., 2002). 
 
Each of these three approaches has its pros and cons. There is no universal winner in all 
although Approach 1 appears to be less informative than the other two in its dramatic 
dimension reduction although averaging will increase its robustness and bootstrap 
resampling can enable secondary analysis. Approach 3 often requires heavy model 
assumption before the simultaneous analysis can begin and thus is restrictive in that 
aspect – however, it does have more power thanks to its larger sample size. Approach 2 is 
informative and less restrictive, albeit it may suffer from the lack of power and robustness. 
A simulation study is conducted to compare these three approaches numerically for 
different sample size and time series size combination with rules of thumb provides, as 
introduced in the following section.    
 
 

4.4 Simulation Study 
 

Model 2 in Figure 4.1 is used in our simulation. The bivariate autoregressive series 
X(t) and Y(t) are generated from the formulas below. 
 

(1) 10 (1)
(1) 5 (1)
( ) ( 1) ( ),  2,3,....,
( ) ( 1) ( 1) ( ) ( ),  2,3,....,

X
Y
X t a X t t i T
Y t b Y t c X t X t t t T

ε
ς

ε
λ ς

= +
= +
= − + =
= − + − + + =

i
i i i

     (4.10) 

 
We set a=0.6, b=0.4, c=0.2, λ=0.5, ε(t) and ζ(t) are random numbers following N(0,1). 

We generate the dataset with T=100 time steps and N=1000 observations. N is set large 
enough, so the overall SEM could also be used for comparison purposes. SAS Proc Calis 
was used to estimate the parameters. 
 

The entire simulation process contains four groups: (A) large T with large N; (B) 
small T with large N; (C) large T with small N; (D) small T with small N. We use T=100 
for large T groups and T=50 for small T groups, N=1000 for large sample size groups and 
N=10 for small sample size groups. 
 

In each group, 6 methods are used if applicable: (1) the overall SEM (T=50 or 100, 
N=10 or 1000); (2) sectional SEM model with Approach 1 (N=1, which is the mean of 10 
or 1000 original samples), denoted as A.1; (3) sectional model with Approach 1 and 
bootstrapping (T=50 or 100, N=1, B=1000), denoted as Approach 1a or A.1a; (4) 
sectional model with Approach 1 and another scheme of bootstrapping to enlarge the 
sample size in each run from resampling: that means if T=50, we will enrich it to T=100 
by resampling (T=100, N=1, B=1000), denoted as Approach 1b or A.1b; (5) sectional 
model with Approach 2 (T=50 or 100, N=10 or 1000), denoted as A.2; (6) sectional 
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model with Approach 3 (T=50 or 100, N=10 or 1000, so the concatenated sample size is 
(T-1)*N), denoted as A.3. 
 

For Group(A), large T and large N, the outputs are shown in Table 4.1. All of the five 
models above yielded unbiased estimates compared to the true values. In addition, we can 
see bootstrapping will not improve the output significantly for the given data set (std 
increase in the third column compared to the second column) since the dataset itself is big 
enough. The sectional SEM with Approach 3 generated the smallest standard errors as 
expected (large power), however the model fit turns out poor (p-value<0.1) (due to heavy 
model assumption). Across three approaches for the sectional SEM, Approach 1 appears 
best for this simulation. This coincides with our suspicion of no clear and overall winner 
among the three approaches.  
 
Table 4.1 Comparison of point estimates and standard deviation for Group(A) simulation. 

 
Parameter Point estimate (std) 

 Overall 
SEM 

Sectional 
SEM A.1 

Sectional 
SEM A.1a 

Sectional 
SEM A.2 

Sectional 
SEM A.3 

λ 0.4969 
(0.0051) 

0.5205 
(0.0995) 

0.5204 
(0.1075) 

0.4970 
(0.1008) 

0.4961 
(0.0032) 

a 0.5998 
(0.0041) 

0.5962 
(0.0027) 

0.5954 
(0.0083) 

0.5828 
(0.0581) 

0.5986 
(0.0018) 

b 0.3947 
(0.0041) 

0.4017 
(0.0056) 

0.3963 
(0.0186) 

0.3822 
(0.0744) 

0.4005 
(0.0023) 

c 0.2050 
(0.0041) 

0.1885 
(0.0596) 

0.1948 
(0.0695) 

0.2183 
(0.1019) 

0.2038 
(0.0032) 

 
For Gourp (B), small T and large N, we use a truncated dataset with T=50. The six 

models above are applied, with the results shown in Table 4.2. We denote the biased 
estimates with yellow background and the insignificant ones with pink. We can see the 
sectional SEM with Approach 1 gives worse estimates, especially for path coefficients (λ 
and c) across variable (from X to Y). We can see the estimates of λ and c are biased, and c 
is even not significant for some methods. Bootrapping (A.1a) makes no improvement 
again. The other scheme of bootstrapping (A.1b) improves the output a little, but the 
estimates of λ and c are still biased. The sectional SEM with Approach 3 yielded the best 
estimates this time. 
 
Table 4.2 Comparison of point estimates and standard deviation for Group(B) simulation. 

 
Parameter Point estimate (std) 

 Overall 
SEM 

Sectional 
SEM A.1 

Sectional 
SEM A.1a

Sectional 
SEM A.1b

Sectional 
SEM A.2 

Sectional 
SEM A.3 

λ 0.4925 
(0.0058) 

0.6182 
(0.1593) 

0.6170 
(0.1596) 

0.6263 
(0.1071) 

0.4937 
(0.1429) 

0.4944 
(0.0045) 

a 0.5999 
(0.0047) 

0.5969 
(0.0026) 

0.5971 
(0.0043) 

0.5970 
(0.0018) 

0.5772 
(0.0684) 

0.5985 
(0.0021) 

b 0.3934 
(0.0048) 

0.4003 
(0.0058) 

0.3889 
(0.0251) 

0.3975 
(0.0086) 

0.3647 
(0.0981) 

0.3976 
(0.0031) 
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c 0.2044 
(0.0070) 

0.1307 
(0.0899) 

0.1479 
(0.1047) 

0.1300 
(0.0077) 

0.2329 
(0.1316) 

0.2064 
(0.0042) 

 
For Group (C), large T and small N, we use a dataset with T=100 but N=10. The 

overall model is not available this time, and the results of the sectional SEM are shown in 
Table 4.3. The estimates from the sectional SEM with Approach 1 are a little farther from 
the true values comparing to the results in Table 4.1, but still good. Bootstrapping (A.1a) 
does not improve the output. Approach 2 yielded similar results to Approach 1, while 
Approach 3 provided the best estimates. 
 
Table 4.3 Comparison of point estimates and standard deviation for Group(C) simulation. 

 
Parameter Point estimate (std) 

 Sectional SEM 
A.1 

Sectional SEM 
A.1a 

Sectional SEM 
A.2 

Sectional SEM 
A.3 

λ 0.5439 
(0.0989) 

0.5427 
(0.1055) 

0.5362 
(0.0960) 

0.5375 
(0.0301) 

a 0.6264 
(0.0256) 

0.6322 
(0.0274) 

0.6035 
(0.0594) 

0.6329 
(0.0286) 

b 0.3678 
(0.0493) 

0.3749 
(0.0494) 

0.3654 
(0.0742) 

0.3898 
(0.0231) 

c 0.2062 
(0.0800) 

0.1913 
(0.0901) 

0.2321 
(0.1044) 

0.2113 
(0.0332) 

 
For Group (D), small T and small N, we use a dataset with T=50 and N=10. The 

overall SEM is not applicable again and the sectional SEM with Approach 1 generated 
several insignificant estimates. Bootstrapping (A.1a) improves a little but leads to biased 
estimates. Bootstrapping (A.1b) performed better than the above two, but the estimate for 
c is still not close to the true value. Approach 2 also yielded insignificant estimate, and 
Approach 3 has the best output again.  
 
Table 4.4 Comparison of point estimates and standard deviation for Group(D) simulation. 

 
Parameter Point estimate (std) 

 Sectional 
SEM A.1 

Sectional 
SEM A.1a 

Sectional 
SEM A.1b 

Sectional 
SEM A.2 

Sectional 
SEM A.3 

λ 0.5320 
(0.3209) 

0.5300 
(0.1431) 

0.4802 
(0.0879) 

0.4896 
(0.1317) 

0.5011 
(0.0409) 

a 0.6385 
(0.0277) 

0.6394 
(0.0086) 

0.6144 
(0.0133) 

0.5783 
(0.0727) 

0.6198 
(0.0229) 

b 0.3357 
(0.0607) 

0.3363 
(0.0146) 

0.3715 
(0.0248) 

0.3637 
(0.0971) 

0.3929 
(0.0299) 

c 0.2309 
(0.2109) 

0.2320 
(0.0894) 

0.2652 
(0.0622) 

0.2478 
(0.1303) 

0.2315 
(0.0419) 

 
Based on the simulation studies on Group (A) to (D), we summarize the model 

performance in Table 4.5. The one with shadow in each column is the best choice(s) in 
that case. We can conclude that for data with large T, the sectional SEM with Approach 1 
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is good enough. Approach 3 performs best across all the models (if N=1, it is equivalent 
to Approach 1). Bootstrapping can improve the output. Especially for data with small T, 
the scheme to enlarged T from resampling is useful. 
 

Table 4.5 Summary of different SEM approaches for different datasets 

Model Large T, 
Large N 

Small T, 
Large N 

Large T, 
Small N 

Small T, 
Small N 

the overall SEM 

unbiased 
estimates, 

but very time 
consuming 

unbiased 
estimates, but 

not time 
efficient 

not 
applicable 

not 
applicable 

Approach 1: 
summarize 

then analyze 

unbiased 
estimates, 

small std and 
good model 

fit 

biased 
estimates 

unbiased 
estimates, 

small std and 
good model 

fit 

big std and 
insignificant 

estimates 

Approach 1a: 
bootstrapping 

no 
improvement

slight 
improvements

no 
improvement 

biased 
estimates 

Approach 1b: 
enlarged T 

not 
necessary 

improve the 
estimates 

not 
necessary 

improve the 
estimates 

Approach 2: 
analyze then 
summarize 

unbiased 
estimates, 
bigger std 

than 
Approach 1 

unbiased 
estimates, std 

are big 

unbiased 
estimates, 
std are big 

unbiased 
estimates, 
std are big 

the 
sectional 

SEM 

Approach 3: 
simultaneous 

analysis 

unbiased 
estimates, 

small std but 
poor fit for 
the entire 

model  

unbiased 
estimates, 

smallest std 
and  good 
model fit 

unbiased 
estimates, 

smallest std 
and  good 
model fit 

unbiased 
estimates, 

smallest std 
and  good 
model fit 

 



 31

 

Chapter 5. ARMA-based SEM with Time 
Varying Coefficients 
 
 
 

Most of the previous work on SEM analysis of time series data, both theoretical and 
applied, assumes time constant (path) coefficients (TCC). However, it is quite 
commonplace in practice that the causal relationships will change/evolve with time. A 
straightforward example is the stock market. The relationship between prices of two 
companies in the same sector may vary with time: negatively correlated sometimes due to 
competition (e.g. Google Inc. versus Baidu Inc in March 2010), while positively 
correlated some other times because they are in the same sector and thus share the same 
fate (e.g. banks in the financial sector during the economic crisis from 2008 till now). In 
the fMRI time series study, it is highly plausible that the path coefficients of the 
underlying brain functional pathways may change with time as the human brain adapts to 
the stimuli. 
 

The only work involving time varying coefficients (TVC) to-date has dealt 
exclusively with the longitudinal pathways and not the contemporaneous pathways 
(Browne and du Toit, 1991; du Toit and Browne, 2007). No work has been done so far 
extending the sectional ARMA-based SEM analysis to include time-varying 
contemporaneous path coefficients. It is our intention to fill this void through this thesis 
work. 
 
 

5.1 Model Description 
 

Recall the bivariate sectional AR(1) model (Model 2) described in Chapter 4 and also 
shown in Figure 5.1 (left). Notice the longitudinal parameters a, b, c are related to the 
first order vector autoregressive assumption, so only the contemporaneous path 
coefficient is set as time-varying (See path diagram in Figure 5.1, right). Here ( )tλ  is 
assumed to be a function of time, i.e., ( )t tλ α β= + . Generally speaking, since most 
functions can be approximated by the polynomials via the Taylor series expansion, we 
will focus on ( ) k

k
k

t tλ β=∑  in this dissertation. 

Similarly, for a general ARMA(p,q) time series, the sectional SEM could be 
constructed with constant longitudinal parameters and time-varying contemporaneous 
parameters. Examples of TVC sectional SEM for VMA(1) and VARMA (1,1) series are 
shown in Figure 5.2 and Figure 5.3. 
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Figure 5.1 Path diagram for a bivariate TCC SEM for VAR(1) time series (left), and path 
diagram for a bivariate TVC SEM for VAR(1) time series (right). 

 

 
Figure 5.2. Path diagram for a bivariate TVC SEM for VMA(1) time series 

 

 
Figure 5.3. Path diagram for a bivariate TVC SEM for VARMA(1,1) time series 
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5.2 Point Estimation and Statistical Inference 
 

We will start with the easiest case, in which the time series is VAR(1) and 
( )t tλ α β= +  as shown in Figure 5.1. Assume the error terms for each variable are 

identically and normally distributed. That is 2 2
t~ (0, ),  iid; ~ (0, ),  iid.t N Nε ςε σ ς σ , 

where 2
εσ  and 2

ςσ are also unknown parameters. 
 

From the path diagram, the SEM equations are: 
( ) ( 1) ( ),  2,3,....,
( ) ( 1) ( 1) ( ) ( ) ( ),  2,3,....,

X t a X t t i T
Y t b Y t c X t t X t t t T

ε
α β ς

= − + =
= − + − + + + =

i
i i i

             (5.1) 

 
The likelihood function can be constructed as follows: 

2 2( ) ( , ) ( , , , , )L L a L b cε ςθ σ α β σ= i                  (5.2) 
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−
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−
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To maximize ( )L θ , we just need to minimize S1 and S2. 
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These are least square problems. Let j k2 2
1 1 1
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To minimize S2 following the same approach, we will obtain 
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, where TΘ Θ  is assumed non-singular.        (5.8) 

 
Hence, we have derived the MLE’s of the path coefficients. The results can be 

readily expanded to vector AR(p) data in p-sectional SEM through the same approach, 
because only linear equation systems are involved. 
 

For VMA(1) series, suppose X(t) and Y(t) are already centered, then we have the 
following equations: 
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The likelihood function could be established based on inveritibility assumption and 

solved with numerical methods. 
 

Similarly, combining Equations (5.1), (5.9) and (5.10), the equation system for 
VARMA(1,1) is: 
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As all of the relationship are linear, it is easy to expand the approach above to 

general VARMA(p,q) case with polynomial TVC ( ) k
k

k
t tλ β=∑ . 

 
Based on the property of MLE, the asymptotic variance of the estimated parameter 

can be calculated: 
n

2
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θ θ

θ
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θ =

=
∂
∂

, and n( )1/ 2
ˆ ˆ( ) ( )SE Varθ θ=                    (5.13) 

Thus, the 100(1-α)% Wald confidence interval (CI) can be constructed as:  

1 / 2
ˆ ˆ( )z SEαθ θ−± . 

 
 

5.3 Comparison between TCC and TVC SEM 
 

Comparing the MLE of the TVC model (Model 3) to the time constant coefficient 
model (Model 2), the only difference one will find is that a column , ( 2,..., )ttX t T=  is 
added up to the matrix Θ . For polynomial time-varying coefficients, we only need to 
add more columns 2 3, , ...( 2,..., )t tt X t X t T=  to the matrix Θ . If we introduce an 
artificial variable t tZ tX= and construct Model 4 as illustrated in Figure 5.4, we will 
have exactly the same results. This equivalency transforms sectional SEM with TVC into 
sectional SEM with TCC. Based on Proposition 1, we thus obtain the equivalency to the 
overall SEM with TCC. This helps us to employ the current software for sectional TCC 
SEM for the TVC SEM and thus readily obtain the data analysis output. 
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Figure 5.4 The equivalence of Model 3 and Model 4. 

 

 
Figure 5.5 TVC SEM with artificial exogenous variable added for VMA(1) series. 

 

 
Figure 5.6 TVC SEM with artificial exogenous variable added for VARMA(1,1) series. 
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For VAMRA(p, q), the conclusion above can be adapted directly. We can also insert a 

new exogenous variable t*Xt to the path diagram and make all coefficients time-constant 
(See Figure 5.5 and Figure 5.6). Furthermore, for polynomial TVC ( ) k

k
k

t tλ β=∑ , k new 

exogenous variables 2, , ... K
t t ttX tX tX could be inserted with arrows heading to Y(t).  

 
As introduced in Chapter 2, the chi-square statistics is the commonly used goodness 

of fit index to evaluate an SEM result. However, there is also criticism of it: first, it is 
highly related to sample size; second, the Wishart distribution assumption on covariance 
matrix usually fails for real data analysis. 

 
In the TVC model, a covariance matrix on (Xt, Xt-1, t*Xt) hardly satisfies the Wishart 

distribution assumption. Hence, the goodness of fit based on chi-square statistics are 
usually not reliable. Other than chi-square statistics, Kenny (2010) introduced more than 
ten goodness measures such as Normed Fit Index (NFI), Root Mean Square Error of 
Approximation (RMSEA), Akaike Information of Criterion (AIC), etc. However, all of 
these fit indices, except the Root Mean Square Residual (RMR) or Standardized Root 
Mean Square Residual (SRMR), are calculated based on the chi-square value. The RMR 
and SRMR are distribution free, but they are less informative at the same time. The 
model with smaller RMR or SRMR is better, but we have no idea how much better. 
 

To test which model is better, TVC or TCC, the chi-square difference test (Bollen 
1989, 1993) could only be used for a sketchy understanding. As we can see, TVC brings 
new parameters into the model, so decreases the degrees of freedom. Thus, if the 
difference of chi-square value with the difference of df indicates a small p-value, then we 
will reject the TCC model but use TVC model instead. However, the use of the chi-square 
difference test should be very careful: first, the TCC model should include also the 
artificial variable but with constraint on β=0. Second, as we mentioned before, the 
chi-square values are usually not meaningful since the Wishart distribution fails for TVC 
model. Hence, in our comparison all through this dissertation, although chi-square values 
and RMR are compared for certain cases, we focus on comparing the point estimates. 
. 
 

5.4 Simulation Study for the TVC Model 
 

Model 3 in Figure 5.1 is used in our simulation. The bivariate autoregressive series 
X(t) and Y(t) are generated from the formulas below. 
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We set different values for a, b, c and λ(t).  ε(t) and ζ(t) are random numbers 
following N(0,1). We generate the datasets with T=100 time steps and N=1 observations, 
since we will focus on the sectional SEM. 
 

The comparison between TCC and TVC models for different parameter settings are 
shown below: 
 

Group (A): Suppose the contemporaneous path coefficient is linear with time t. That 
is: a=0.6, b=0.4, c=0.2, λ(t)= α+βt =0.3+0.05t. The estimates in TCC and TVC models 
are shown in Table 5.2. The RMR for TCC model is 56.68, for TVC model is 14.74, 
which indicates an improvement for using TVC SEM. 
 

Table 5.2 Comparison of TCC and TVC SEM with Group (A) simulation dataset. 
TCC SEM TVC SEM 

Parameter True 
Value Point 

Estimate Std p-value Point 
Estimate Std p-value

α 0.3 2.8905 0.2008 p<0.01 0.1586 0.1085 p=0.147
β 0.05 0 N/A N/A 0.0492 0.0017 p<0.01
a 0.6 0.5686 0.0847 p<0.01 0.5686 0.0847 p<0.01
b 0.4 0.5851 0.0633 p<0.01 0.4081 0.0364 p<0.01
c 0.2 -0.4369 0.3003 p=0.149 0.1866 0.1722 p=0.281

 
Group (B): Suppose the contemporaneous path coefficient is linear of time t with a 

random noise. That is: a=0.6, b=0.4, c=0.2, λ(t)=α+βt+τ(t)=0.3+0.05t+τ(t), where τ(t) 
follows N(0, 0.012). The estimates in TCC and TVC models are shown in Table 5.3. The 
RMR for TCC model is 49.59, for TVC model is 13.41, which also supports the use of 
TVC SEM. 
 

Table 5.3 Comparison of TCC and TVC SEM with Group (B) simulation dataset. 
TCC SEM TVC SEM 

Parameter True 
Value Point 

Estimate Std p-value Point 
Estimate Std p-value

α 0.3 2.8260 0.1898 p<0.01 0.3117 0.1077 p<0.01
β 0.05 0 N/A N/A 0.0508 0.0019 p<0.01
a 0.6 0.5876 0.0532 p<0.01 0.5876 0.0532 p<0.01
b 0.4 0.6851 0.0426 p<0.01 0.4222 0.0265 p<0.01
c 0.2 -1.1359 0.1746 p<0.01 0.1540 0.0991 p=0.123

 
Group (C): Suppose the contemporaneous path coefficient is a non-linear function of 

time t (e.g. a log function of t) with a random noise. In practice, the researcher may not 
know the real structure of the TVC function, but a polynomial function could be used for 
approximation for most common functions. In this case, we still use λ(t)= α+βt to show 
the TVC exists. That is: a=0.6, b=0.4, c=0.2, λ(t)=ln(t)/10+τ(t), where τ(t) follows N(0, 
0.01). The estimates in TCC and TVC models are shown in Table 5.4. The RMR for TCC 
model is 14.94, for TVC model is 13.20, which shows no big difference between TCC 
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and TVC approaches. 
 

 
Table 5.4 Comparison of TCC and TVC SEM with Group (C) simulation dataset. 

TCC SEM TVC SEM 
Parameter True 

Value Point 
Estimate Std p-value Point 

Estimate Std p-value

α N/A 0.4323 0.1073 p<0.01 0.0723 0.1044 p=0.490
β N/A 0 N/A N/A 0.0072 0.0017 p<0.01
a 0.6 0.5897 0.0819 p<0.01 0.5897 0.0819 p<0.01
b 0.4 0.3334 0.0896 p<0.01 0.2996 0.0872 p<0.01
c 0.2 0.1808 0.1207 p=0.137 0.2347 0.1253 p=0.064

 
Group (D): Suppose the contemporaneous path coefficient is a stationary AR(1) time 

series itself. That is: a=0.6, b=0.4, c=0.2, λ(t)=0.9*λ(t-1)+τ(t), where λ(1)=0.3, τ(t) 
follows N(0, 0.01). The estimates in TCC and TVC models are shown in Table 5.5. The 
RMR for TCC model is 13.83, for TVC model is 13.72, which also shows no big 
difference between TCC and TVC approaches. 
 

Table 5.5 Comparison of TCC and TVC SEM with Group (D) simulation dataset. 
TCC SEM TVC SEM 

Parameter True 
Value Point 

Estimate Std p-value Point 
Estimate Std p-value

α N/A -0.0761 0.0898 p=0.399 0.0229 0.0895 p=0.799
β N/A 0 N/A N/A -0.0022 0.0016 p=0.175
a 0.6 0.5883 0.0817 p<0.01 0.5883 0.0817 p<0.01
b 0.4 0.2854 0.0923 p<0.01 0.2867 0.0926 p<0.01
c 0.2 0.2279 0.0902 p=0.013 0.2297 0.0997 p=0.023

 
Some conclusions can be readily drawn upon these four groups of simulation studies. 

In Group (A) and Group (B), the TVC models yielded better estimates, closer to the true 
values. For Group (C), although TVC parameter β is tested to be significant, the estimates 
are not improved, which will remind the researchers to look into the parameter structure 
and use TVC functions other than a simple linear function. This is further discussed in 
Chapter 7 where we proposed the nonlinear TVC SEM framework. For Group (D), the 
coefficients are not varying significantly with time t, so the TCC and TVC yielded similar 
output. The lesson of the last group is that one should explore potential structure and 
relationships among the contemporaneous paths along the time series first before 
deciding upon a suitable starting model. The moving window approach we proposed in 
Chapter 7 will help researchers in this critical task.  
 
 Since we have no prior distribution assumption on variables in the TVC model, the 
regular power analysis based on Wishart distributed covariance matrix is not valid. A 
numeric approach is proposed instead as the following: first, we get the estimates from 
the original data; second, P samples are generate based on the estimates; third, test the 
coefficient on each new sample and denote Ps as the significant ones through the P 
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samples. Then we have  
 
Power = (reject H0 | Ha holds) = Ps / P.              (5.15) 

 
The power analysis has been conducted for Group (B) data as an example. We test 

the time varying coefficient β through the approach described above (Figure 5.7). We can 
see 30 samples can already give a power around 0.8 for a bivariate TVC model. 

 

 
Figure 5.7 Power analysis on TVC model with simulation data Group (B). 
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Chapter 6. Application to fMRI Data 
 
 
 

6.1 Experimental Design and Data Preprocess 
 

Twenty-eight volunteers (14 females and 14 males) who had no psychiatric or 
neurological history participated in this visual attention study with a “three-ball tracking” 
task (Figure 6.1) (Lange, 1999) conducted on a 4 T Varian MR System at the 
Brookhaven National Laboratory (BNL). This study was approved by the Medical 
Research Center at BNL and all subjects provided verbal and written consent.  

 
Figure 6.1. A schematic diagram of the visual stimulus used in (a) active tracking and (b) 
passive viewing trials. Each trial began with a text cue indicating the type of trial. This 
was followed by a period of static balls (1.5 s), in which the target balls were highlighted 
with orange squares on active trials. These highlights then disappeared and the balls 
moved in random directions on the screen without overlapping. After 7.75 s, the balls 
stopped moving and were highlighted for 1s only on active tracking trials, and subjects 
indicated (using a response button) whether the highlighted balls were among the balls 
that they had been tracking. Following this response, and after a delay of 0.5 s, the correct 
balls were re-highlighted for 1 s to provide feedback to the subjects on the correctness of 
their response.  
 

Preprocessing of fMRI time series were performed in SPM99 (Statistical Parametric 
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Mapping software, http://www.fil.ion.ucl.ac.uk/spm) and involved motion correction, 
spatial normalization to the Talairach frame, and spatial smoothing (Kim et al., 2007). 
 

The following six regions were identified, based on the consideration of the prior 
literature and the fact that they had strong activation during the ball-tracking task: 
cerebellum (CEREB), posterior parietal cortex (PPC, BA 40), anterior parietal cortex 
(APC, BA 7), thalamus (THAL), supplementary motor area (SMA, BA 8), and lateral 
prefrontal cortex (LPFC BA 6, 9, 46) (Buchel and Friston, 1997; Chang et al., 2004; 
Friston and Buchel, 2000). 
 

The segments of each regional time series corresponding to presentation of the 
activation conditions were then extracted (Honey et al., 2002). To do this, we allowed a 
mean hemodynamic delay of 6 sec, i.e., two TR periods, at the beginning of each onset 
condition. Therefore, the segments of signal corresponding to the presentation of each of 
the three activation conditions without the first two time points (6 sec.) which were 
truncated by correction for hemodynamic delay were concatenated, resulting in T=54 
time points for each subject in each region. 
 
 

6.2 Sectional SEM with Time Constant Coefficients 
 

The initial path model is defined with six regions of interest (ROIs) and seven 
anatomically possible directional paths for the left brain hemisphere. The posterior 
parietal cortex (PPC) serves as the starting region of visual attention processing in the 
path model, and information flows via the anterior parietal cortex (APC) to the lateral 
prefrontal cortex (LPFC). An attentional feedback loop starts at the supplementary motor 
area (SMA), with input from the LPFC, and extends through the thalamus (THAL), back 
to the PPC. The THAL acts a subcortical relay station, and receives additional input from 
the cerebellum (CEREB) (Figure 4.2.1). Our model is restricted to the left hemisphere to 
simplify the brain network.  
 

The path model of our study incorporates the conventional contemporaneous 
relations as well as the longitudinal relations. According to the previous research of Kim 
et al. (2007), the longitudinal relations were depicted by the first-order multivariate or 
vector autoregressive process (VAR(1)). Although the order of VAR for each ROI 
obtained from the partial autocorrelation function (PACF) analysis was not always 1, due 
to estimability constraints (Honey et al., 2002), the VAR of order 1 for all ROIs was 
chosen, which produced thirteen possible longitudinal directional paths for the left brain 
hemisphere. The path diagram of the unified longitudinal and contemporaneous path 
model is described in Figure 4.2.2. Equation (6.1) is the matrix form of the unified SEM 
with its contemporaneous and longitudinal components.  
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       (6.1) 

 
Zhang (2007) has further explored three different approaches for analyzing this 

multiple subject time series data as in (1) summarize and then analyze, (2) analyze and 
then summarize, and (3) simultaneous analysis. (Please see Chapter 4 for details). In this 
dissertation, we repeat these three approaches for analyzing multi-subject time series data 
with time constant coefficients in order to compare between the TCC SEM utilized by 
Kim et al. (2007) and Zhang (2007), and the newly developed TVC SEM. Table 6.1-6.3 
show the results of Approach 1, 2 and 3 using SAS CALIS respectively. 
 
Table 6.1 Estimates of the TCC sectional SEM using the subject-average fMRI data 
(Approach 1). Significant paths are in bold (two sided p-value based on t-test <0.05). 

Longitudinal path parameters Contemporaneous path parameters 
Path 

parameters Est. (S. E.) t-value (p-value) Path 
parameters Est. (S. E.) t-value (p-value) 

11γ  0.780 (0.091) 8.592 (<0.001) 21λ  -0.041 (0.233) -0.177 (0.860) 

21γ  -0.337 (0.256) -1.321 (0.193) 25λ  0.364 (0.201) 1.805 (0.077) 

22γ  0.531 (0.111) 4.808 (<0.001) 26λ  0.283 (0.169) 1.676 (0.100) 

25γ  -0.001 (0.205) -0.004 (0.997) 32λ  -0.282(0.060) -4.688 (<0.001) 

26γ  -0.002 (0.184) -0.012 (0.990) 43λ  -0.140 (0.126) -1.112 (0.271) 

32γ  0.252 (0.065) 3.907 (<0.001) 54λ  0.171 (0.180) 0.949 (0.347) 

33γ  0.395 (0.105) 3.749 (<0.001) 65λ  0.376 (0.155) 2.417 (0.019) 

43γ  0.245 (0.111) 2.215 (0.031)    

44γ  0.566 (0.111) 5.118 (<0.001)    

54γ  -0.284 (0.178) -1.595 (0.117)    

55γ  0.582 (0.113) 5.158 (<0.001)    

65γ  0.281 (0.160) -1.752 (0.086)    

66γ  0.590 (0.107) 5.514 (<0.001)    
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Table 6.2 Average estimates of the TCC sectional SEM using the fMRI data of 28 
subjects (Approach 2). Significant paths are in bold (two sided p-value based on t-test 
<0.05). 

Longitudinal path parameters Contemporaneous path parameters 
Path 

parameters Est. (S. E.) t-value (p-value) Path 
parameters Est. (S. E.) t-value (p-value) 

11γ  0.612 (0.107) 5.720 (<0.001) 21λ  -0.047 (0.223) -0.211 (0.834) 

21γ  -0.005 (0.234) -0.021 (0.983) 25λ  0.101 (0.191) 0.529 (0.601) 

22γ  0.591 (0.103) 5,738 (<0.001) 26λ  0.029 (0.192) 0.151 (0.881) 

25γ  -0.121 (0.199) -0.608 (0.548) 32λ  -0.033(0.081) -0.407 (0.687) 

26γ  -0.027 (0.202) -0.134 (0.894) 43λ  -0.005(0.115) -0.043 (0.966) 

32γ  0.035 (0.081) 0.432 (0.669) 54λ  0.091 (0.211) 0.431 (0.669) 

33γ  0.595 (0.108) 5.509 (<0.001) 65λ  0.228 (0.140) 1.629 (0.113) 

43γ  0.031 (0.116) 0.267 (0.791)    

44γ  0.593 (0.110) 5.391 (<0.001)    

54γ  -0.124 (0.216) -0.574 (0.570)    

55γ  0.615 (0.105) 5.857 (<0.001)    

65γ  -0.166 (0.144) -1.153 (0.258)    

66γ  0.578 (0.111) 5.207 (<0.001)    

 
Table 6.3 Estimates of the TCC sectional SEM using the concatenated fMRI data of 28 
subjects (Approach 3). Significant paths are in bold (two sided p-value based on t-test 
<0.05). 

Longitudinal path parameters Contemporaneous path parameters 
Path 

parameters Est. (S. E.) t-value (p-value) Path 
parameters Est. (S. E.) t-value (p-value) 

11γ  0.609 (0.020) 29.985 (<0.001) 21λ  0.073 (0.041) 1.781 (0.071) 

21γ  -0.041 (0.041) -0.992 (0.329) 25λ  0.086 (0.038) 2.287 (0.029) 

22γ  0.630 (0.020) 31.287 (<0.001) 26λ  0.050 (0.039) 1.293 (0.206) 

25γ  -0.075 (0.038) -1.976 (0.057) 32λ  -0.040(0.016) -2.528 (0.017) 

26γ  -0.027 (0.039) -0.689 (0.496) 43λ  0.040(0.020) 1.979 (0.057) 

32γ  0.025 (0.016) 1.573 (0.126) 54λ  0.112 (0.039) 2.882 (0.007) 

33γ  0.618 (0.020) 30.371 (<0.001) 65λ  0.209 (0.025) 8.486 (<0.001) 

43γ  0.006 (0.021) 0.303 (0.764)    

44γ  0.613 (0.020) 29.661 (<0.001)    

54γ  -0.133(0.039) -3.448 (0.002)    

55γ  0.643 (0.020) 32.394 (<0.001)    

65γ  -0.180(0.025) -7.247 (<0.001)    

66γ  0.580 (0.021) 27.354 (<0.001)    
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6.3 Sectional SEM with Time Varying Coefficients 
 

TVC SEM was also applied to the same dataset. As a first attempt, we only set the 
contemporaneous path parameters to be time-varying linearly (λ(t)= α+βt) as described in 
Section 3. Hence, we have updated SEM equations as below: 
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(6.2) 
 

Introducing artificial variables as described in Section 3, we transformed this TVC 
SEM model to a sectional TCC SEM model and used the SAS CALIS procedure to yield 
the output. The estimated parameters are listed in Table 6.4. The significant paths are 
shown in Figure 6.1.5. Approach 2 and 3 are not available for the TVC model because the 
sample covariance matrix is singular after introducing the artificial variable t*Xt.  
 

From Table 6.4, we can see no time-varying path is found (because no parameter β is 
significant). Compared with fixed coefficient model, only 9 paths are significant in TVC 
model: the path APC(t-1) LPFC(t) is no longer significant. Besides, the parameters 
estimated in TCC and TVC models are different (but not changing too much). 
 
Table 6.4 Estimates of the TVC sectional SEM using the subject-average fMRI data 
(Approach 1). Significant paths are in bold (two sided p-value based on t-test <0.05). 

Longitudinal path parameters Contemporaneous path parameters 
Path 

parameters Est. (S. E.) t-value (p-values) Path 
parameters Est. (S. E.) t-value (p-value) 

11γ  0.780 (0.091) 8.592 (<0.001) 21α  0.022 (0.230) 0.098 (0.922) 

21γ  -0.392 (0.412) -0.951 (0.346) 21β  0.002 (0.012) 0.191(0.849) 

22γ  0.494 (0.120) 4.133 (<0.001) 25α  0.324 (0. 199) 1.630 (0.109) 

25γ  -0.327 (0.396) -0.826 (0.413) 25β  0.023 (0.012) 1.096 (0.278) 

26γ  -0.190 (0.290) -0.656 (0.515) 26α  0.293 (0.167) 1.755 (0.085) 

32γ  0.329 (0.086) 3.840 (<0.001) 26β  -0.008 (0.009) -0.926 (0.359) 
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33γ  0.393 (0.104) 3.779 (<0.001) 32α  -0.279(0.060) -4.658 (<0.001) 

43γ  0.213 (0.161) 1.328 (0.190) 32β  -0.003 (0.002) -1.279 (0.207) 

44γ  0.560 (0.113) 4.964 (<0.001) 43α  -0.144 (0.126) -1.144 (0.258) 

54γ  -0.428 (0.337) -1.271 (0.209) 43β  0.002 (0.005) 0.294 (0.770) 

55γ  0.577 (0.113) 5.108 (<0.001) 54α  0.181 (0.179) 1.010 (0.317) 

65γ  -0.312 (0.265) -1.174 (0.246) 54β  0.005 (0.010) 0.483 (0.631) 

66γ  0.589 (0.107) 5.502 (<0.001) 65α  0.375 (0.155) 2.414 (0.019) 

   65β  0.001 (0.007) 0.150 (0.881) 

 
 

6.4 Bootstrap Resampling and Model Comparisons 
 

As we discussed in Chapter 4, we have two bootstrapping schemes (A.1a and A.1b). 
Here we conduct these two types of bootstrapping for TCC and TVC SEM models 
respectively. The output results are shown in Table 6.5-6.8. 
 
Table 6.5 Estimates of the TCC sectional SEM using the subject-average fMRI data with 
bootstrapping (Approach 1a, B=200). Significant paths are in bold (two sided p-value 
based on t-test <0.05). 

Longitudinal path parameters Contemporaneous path parameters 
Path 

parameters Est. (S. E.) t-value (p-value) Path 
parameters Est. (S. E.) t-value (p-value) 

11γ  0.621 (0.099) 6.272 (<0.001) 21λ  -0.049 (0.162) -0.302 (0.765) 

21γ  0.471 (0.175) 2.691 (0.011) 25λ  0.030 (0.211) 0.142 (0.888) 

22γ  0.469 (0.091) 5.153 (<0.001) 26λ  0.542 (0.238) 2.277 (0.030) 

25γ  -0.035 (0.213) -0.164 (0.871) 32λ  -0.232(0.060) -3.867 (<0.001) 

26γ  -0.755(0.226) -3.340 (0.0.002) 43λ  0.130(0.067) 1.940 (0.062) 

32γ  0.093 (0.062) 1.500 (0.144) 54λ  -0.096 (0.173) -0.555(0.583) 

33γ  0.531 (0.099) 5.509 (<0.001) 65λ  0.178 (0.102) 1.745 (0.091) 

43γ  0.002 (0.073) 0.267 (0.791)    

44γ  0.573 (0.097) 5.364 (<0.001)    

54γ  -0.084 (0.173) -0.486 (0.630)    

55γ  0.644 (0.078) 8.256 (<0.001)    

65γ  -0.357(0.095) -3.757 (<0.001)    

66γ  0.438 (0.092) 4.761 (<0.001)    

 
Table 6.6 Estimates of the TCC sectional SEM using the subject-average fMRI data with 
bootstrapping (Approach 1b, B=200, T=100). Significant paths are in bold (two sided 
p-value based on t-test <0.05). 

Longitudinal path parameters Contemporaneous path parameters 
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Path 
parameters Est. (S. E.) t-value (p-value) Path 

parameters Est. (S. E.) t-value (p-value) 

11γ  0.613 (0.081) 7.568 (<0.001) 21λ  -0.016 (0.141) -0.113 (0.911) 

21γ  0.452 (0.148) 3.054 (0.983) 25λ  0.044 (0.181) 0.243 (0.810) 

22γ  0.471 (0.079) 5.963 (<0.001) 26λ  0.565 (0.205) 2.756 (0.010) 

25γ  -0.042 (0.183) -0.230 (0.820) 32λ  -0.218(0.050) -4.360(<0.001) 

26γ  -0.776(0.192) -4.042 (<0.001) 43λ  0.132 (0.059) -2.237(0.033) 

32γ  0.095 (0.052) 1.827 (0.077) 54λ  -0.080 (0.147) -0.544 (0.590) 

33γ  0.549 (0.083) 6.614 (<0.001) 65λ  0.177 (0.086) 2.058 (0.048) 

43γ  0.009 (0.064) 0.141 (0.889)    

44γ  0.566 (0.083) 6.699 (<0.001)    

54γ  -0.085 (0.148) -0.574 (0.570)    

55γ  0.641 (0.067) 9.567 (<0.001)    

65γ  -0.360(0.081) -4.444(<0.001)    

66γ  0.437 (0.078) 5.603 (<0.001)    

 
Table 6.7 Estimates of the TVC sectional SEM using the subject-average fMRI data with 
bootstrapping (Approach 1a, B=200). Significant paths are in bold (two sided p-value 
based on t-test <0.05). 

Longitudinal path parameters Contemporaneous path parameters 
Path 

parameters Est. (S. E.) t-value (p-values) Path 
parameters Est. (S. E.) t-value (p-value) 

11γ  0.780 (0.092) 8.478 (<0.001) 21α  0.045 (0.208) 0.216 (0.830) 

21γ  -0.430 (0.392) -1.097 (0.277) 21β  0.002 (0.012) 0.167(0.868) 

22γ  0.488 (0.113) 4.319 (<0.001) 25α  0.328 (0. 184) 1.783 (0.080) 

25γ  -0.271 (0.379) -0.715 (0.477) 25β  0.011 (0.011) 1.000 (0.321) 

26γ  0.168(0.289) 0.581 (0.563) 26α  0.266 (0.154) 1.727 (0.089) 

32γ  0.329 (0.086) 3.825 (<0.001) 26β  -0.007 (0.009) -0.778 (0.440) 

33γ  0.413 (0.104) 3.971 (<0.001) 32α  -0.286(0.058) -4.931 (<0.001) 

43γ  0.228 (0.162) 1.407 (0.165) 32β  -0.002 (0.002) -1.000 (0.321) 

44γ  0.570 (0.111) 5.135(<0.001) 43α  -0.181 (0.125) -1.448 (0.153) 

54γ  -0.445 (0.336) -1.324 (0.191) 43β  0.002 (0.005) 0.400 (0.691) 

55γ  0.576 (0.113) 5.097 (<0.001) 54α  0.170 (0.175) 0.971 (0.335) 

65γ  -0.268 (0.270) -0.993 (0.355) 54β  0.006 (0.010) 0.600 (0.551) 

66γ  0.598 (0.109) 5.486 (<0.001) 65α  0.370 (0.157) 2.357 (0.022) 

   65β  0.000 (0.007) 0.000 (1.000) 

 
Table 6.8 Estimates of the TVC sectional SEM using the subject-average fMRI data with 
bootstrapping (Approach 1b, B=200， T=100). Significant paths are in bold (two sided 
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p-value based on t-test <0.05). 
Longitudinal path parameters Contemporaneous path parameters 

Path 
parameters Est. (S. E.) t-value (p-values) Path 

parameters Est. (S. E.) t-value (p-value) 

11γ  0.793 (0.065) 12.200(<0.001) 21α  0.055 (0.162) 0.340 (0.735) 

21γ  -0.421 (0.299) -1.408 (0.164) 21β  0.003 (0.009) 0.333 (0.740) 

22γ  0.503 (0.086) 5.849 (<0.001) 25α  0.334 (0. 141) 2.369 (0.021) 

25γ  -0.317 (0.286) -1.108 (0.272) 25β  0.012 (0.009) 1.500 (0.139) 

26γ  0.173 (0.216) 0.801 (0.426) 26α  0.254 (0.121) 2.099 (0.040) 

32γ  0.329 (0.061) 5.393 (<0.001) 26β  -0.008 (0.007) -1.143 (0.258) 

33γ  0.427 (0.074) 5.770 (<0.001) 32α  -0.267(0.042) -6.357(<0.001) 

43γ  0.251 (0.120) 2.092 (0.041) 32β  -0.003 (0.002) -1.500 (0.139) 

44γ  0.577 (0.082) 7.037 (<0.001) 43α  -0.180 (0.095) -1.895 (0.063) 

54γ  -0.432 (0.245) -1.763 (0.083) 43β  0.001 (0.004) 0.250 (0.803) 

55γ  0.572 (0.081) 7.062 (<0.001) 54α  0.177 (0.127) 1.394 (0.168) 

65γ  -0.320 (0.190) -1.684 (0.097) 54β  0.005 (0.007) 0.714 (0.478) 

66γ  0.590 (0.077) 7.662 (<0.001) 65α  0.373 (0.111) 3.360 (0.001) 

   65β  0.001 (0.005) 0.020 (0.842) 

 
 

A full comparison of different models with different approaches is shown in Figure 
6.2. We can see TVC models, generally speaking, return fewer significant arrows than 
TCC models. No time-varying coefficient is found, but it is high possible that they exist 
due to the poor fit of the entire model. Although there are several significant paths, the 
poor goodness of fit implies the original assumption of brain connections is not good. 
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Figure 6.2. Significant paths (p-values < 0.05) in the fMRI confirmatory models. Figure 
6.2.1-6.2.5 illustrated the output results assuming only time-constant coefficients through 
different approaches, while Figure 6.2.6-6.2.8 shows the TVC model output.  
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Chapter 7 Current and Future Work 
 
 
 

Our primary goal in this thesis is to expand the current SEM for time series analysis 
to include the more realistic time varying coefficients (TVC). Our strategy consists of 
two steps: first, we rewrite the ARMA-based overall SEM to the sectional SEM for time 
constant path coefficients (TCC) (i.e., Overall-TCC SEM  Sectional-TCC SEM); 
subsequently, we transform the sectional SEM with TVC into the sectional SEM with 
TCC by introducing artificial variables (i.e., Sectional-TVC SEM  Sectional-TCC 
SEM). Based on these two steps, we can thus use existing SEM software based on 
independent observations to analyze TVC SEM based on vector ARMA(p, q) time series 
data. The above strategy is applicable to both single- and multiple-subject time series 
data. 
 

For multiple-subject time series data, we further compared the following six different 
analysis approaches for both TCC and TVC SEM models and provided guidelines on the 
adoption of these methods: 
 

(1) Overall SEM (only available for N > T, where N and T are the total number of 
subjects and time points respectively); 

(2) Sectional SEM using Approach 1 -- summarize then analyze; 
(3) Sectional SEM with Approach 1a -- summarize then analyze with the usual 

bootstrapping method; 
(4) Sectional SEM with Approach 1b -- summarize then analyze with enlarged T 

form bootstrap resampling; 
(5) Sectional SEM with Approach 2 -- analyze then summarize; 
(6) Sectional SEM with Approach 3 -- simultaneous analysis with concatenated 

dataset. 
 

Simulation studies demonstrated that the traditional TCC SEM would yield 
significantly biased estimators when the underlying time series data contain 
contemporaneous pathways with time varying path coefficients. The TVC SEM we had 
initially established was based on the Taylor series expansion in that a regular function 
can usually be represented by a polynomial in time (t). However, we discovered, through 
the simulation study, that it is perhaps more efficient to directly estimate a non-linear 
function in t such as the log or the square root of t, rather than approximate it using a 
truncated polynomial. Subsequently, we have extended our TVC model to include 
non-linear TVC function as shown in the following section. In addition, we have 
developed a moving window approach towards the estimation of the TVC structure as is 
also shown in the following section.  
 
 



 52

7.1 SEM with Non-linear TVC Functions 
 

Our framework can be extended to scenarios of TVC of non-linear functions in t such 
as 1/2( )t tλ α β= +  and ( ) log( )t tλ α β= + . To detect which function to use for better 
model fit, a “moving window” technique is introduced in this section. Based on this 
straightforward visualization tool, one can directly estimate the underlying λ(t) structure. 
 
 We start with a simulated dataset. A bivariate AR(1) series (T=80) is generated 
following Equation (5.14), in which a=0.6, b=0.4, c=0.2, λ(t)=ln(t)/5+τ(t), where τ(t) 
follows N(0, 0.012). A series of sample windows are generated for the sectional TCC SEM. 
To guarantee a positive definite sample covariance matrix, each window has 30 time points, 
and thus we have 50 windows in total: T2-T31, T3-T32, …, T51-T80. The estimates of 
these windows are plotted in Figure 7.1. One can see the estimated λ(t) curve increases and 
becomes flat at the end, which indicates that a log-like function would be better than a 
simple linear function in t. The comparison of TVC model estimates is shown in Table 7.1. 

 
Figure 7.1 Estimates of λ: 50 windows from T2-T80 of simulated data on the path X(t)  
Y(t) based on a VAR(1) time series data.  
 

Table 7.1 Comparison of TCC and different TVC functions using the simulated data. 
TCC SEM 

( )tλ = α 
TVC SEM 
( )t tλ α β= +  

TVC SEM 
( ) log( )t tλ α β= +

Parameter 
True Value 

( )tλ =  
log( )tα β+  Est. 

(std) p-value Est. 
(std) p-value Est. 

(std) p-value

α 0 0.6503 
(0.1947) p<0.01 0.5500 

(0.1943) p<0.01 -0.0142 
(0.1861) p=0.939

β 0.2 0 
(N/A) N/A 0.0039 

(0.0055) p=0.487 0.2083 
(0.0505) p<0.01

a 0.6 0.6096 
(0.0070) p<0.01 0.6096 

(0.0070) p<0.01 0.6096 
(0.0070) p<0.01

b 0.4 0.5154 
(0.0355) p<0.01 0.5154 

(0.0355) p<0.01 0.3771 
(0.0514) p<0.01

c 0.2 -0.1606
(0.1212) p=0.192 -0.1606

(0.1212) p=0.192 0.2173 
(0.1159) p=0.069

 
 A real data example is also studied based the fMRI time series visual attention 
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data introduced in Chapter 6. For simplicity, we focus on the pathway between two brain 
regions only. That is, the pathway from the thalamus (THAL) to the posterior parietal 
cortex (PPC). To explore the structure of this path coefficient along time, we used the 
“moving window” method again with a total of 18 windows from T2 to T48. The resulting 
estimated λ(t) curve decreases in time as shown in Figure 7.2. We compared the fit of two 
potential λ(t) functions as the following: ( )t tλ α β= + and 1/2( )t tλ α β= + . As shown in 
Table 7.2, the non-linear TVC function fits better (p < 0.01) than the linear TVC function (p 
= 0.084).  
 
Figure 7.2 Estimates of λ: 18 windows from T2-T48 of the fMRI visual attention data 
introduced in Chapter 6, on the path THAL PPC. 

 
 

Table 7.2 Comparison of TCC SEM and different TVC SEM functions with the fMRI data. 
TVC SEM 

T2-T48 
( )t tλ α β= +  

TVC SEM 
T2-T48 

1/2( )t tλ α β= +  Parameter 
Est. 
(std) p-value Est. 

(std) p-value 

α -0.2931 
(0.0617) p<0.01 -0.0806 

(0.0619) p=0.199 

β -0.0057 
(0.0032) p=0.084 -0.0438 

(0.0116) p<0.01 

a 0.5801 
(0.1214) p<0.01 0.5801 

(0.1214) p<0.01 

b 0.3786 
(0.1072) p<0.01 0.3916 

(0.1081) p<0.01 

c 0.3830 
(0.0964) p<0.01 0.2448 

(0.0720) p<0.01 

 
Both the simulation and the real data example have demonstrated the effectiveness of 

the “moving window” method for a quick estimation of the underlying TVC structure. Of 
course, more work has to be done to determine the optimal window length through power 
and sample size estimations and more simulation studies. 
 

A fundamental draw-back of the SEM approach is that it is a confirmatory analysis 
tool that depends heavily on the initial hypothesized pathway drawn upon existing field 
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knowledge. When little is known about the underlying pathway, it is often difficult for the 
domain expert to arrive at a meaningful and/or realistic starting model. The salvation may 
lie in modern exploratory data analysis methods, such as the partial correlation network 
analysis (PCNA) (Peng et al., 2009). The PCNA is a complimentary approach to SEM for 
it requires no prior knowledge on the underlying pathway, but instead, entirely 
data-driven. With the increasing availability of time series gene expression data as well as 
fMRI time series data, the extension of partial correlation network analysis to time series 
data would greatly enhance our ability to uncover the underlying contemporaneous and 
longitudinal pathways. We have started working in this direction as shown in the next 
section.  

 

7.2 Exploratory Pathway Analysis  
 
 

Partial correlation analysis is very powerful tool in exploring possible association 
between variables. It was discovered and studied in the early 20th century by Pearson, 
Fisher and others (Fisher, 1924; Goodman and Kruskal, 1979; Isserlis, 1914; Pearson, 
1915). Partial correlation is the correlation between two variables while controlling for a 
third or additional variables. It has been adopted in causal analysis through graphic 
models (Edwards, 2000; Whittaker, 1990). Researchers would compare the controlled 
correlation with the original correlation: if there is no difference, the inference is that the 
control variables have no effect; on the other hand, if the partial correlation approaches 0, 
it indicates that the original correlation is spurious. Hence, partial correlation can 
potentially reveal the true relationship between variables excluding the confounding 
effects from other variables.  
 

A network among all of the variables of interest could then be established based on 
pairwise partial correlations. If there is a non-zero partial correlation between two 
variables, an edge is used to link them. For the partial correlation network analysis, 
traditional methods for estimation require the sample size (n) is larger than the number of 
variables (p) (e. g. Whittaker, 1990; Edward, 2000).  

 
In recent study, methods have been introduced to estimate partial correlation with 

p>n, even p>>n, based on utilization of the sparse property of partial correlation matrix. 
Meinshausen and Buhlmann (2006) introduced a variable-by-variable approach for 
neighborhood selection via the lasso regression (Tibshirani, 1996). Yuan and Lin (2007) 
proposed a penalized maximum likelihood approach which performs model selection and 
estimation simultaneously and ensures the positive definiteness of the estimated 
concentration matrix. Friedman et al. (2008) proposed an efficient algorithm to 
implement this method, such that it can be applied to problems with high dimensions. 
Schafer and Strimmer (2005) proposed a shrinkage covariance estimation procedure to 
overcome the ill-conditioned problem of sample covariance matrix when p > n. Li and 
Gui (2006) introduced a threshold gradient descent regularization procedure. Bickel and 
Levina (2008) proposed to regularize the covariance matrix by hard thresholding for 
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families of covariance matrices satisfying suitable sparsity assumptions. Peng et al (2009)  
developed a new algorithm based on the joint sparse regression model (JSRM). The 
simulation study shows an improvement in performance for p>>n data, and efficiency in 
identifying network hubs. Applications of PCNA to gene microarray data have yielded 
many meaningful “hub genes” (Barabasi and Oltvai, 2004). Figure 7.3 shows an example 
of partial correlation network in microarray study for certain neuron cells (unpublished 
work of our group). Besides genetics, the existence of hubs is also a well known 
phenomenon in many other large networks, such as the internet, citation networks, and 
protein interaction networks (Newman, 2003).  

 

 
 
Figure 7.3 A PCNA gene network example. The data set is the genetic expressions for the 
perkinje (PKJ) cell, a class of GABAergic neurons located in the cerebellar cortex. Each 
dot denotes a gene. The blue ones have significantly more partial correlation edges and 
are thus identified as “hub genes”. 
 

In the fMRI study below, we adopted the joint sparse regression modeling approach, 
which is implemented with an R package (Peng et al, 2009). We use the subject-average 
fMRI data to establish the PCNA for the six ROIs, which is shown in Figure 7.4.1. Notice 
the partial correlation itself does not indicate the direction of the linkage between 
variables. We decide the arrow directions if there is a clear causality referring to the 
original hypothesis (e. g. APC  LPFC), and keep the two-head arrows for the rest edges 
(e. g. THAL  APC). The hypothesis for the sectional SEM is then built in Figure 
7.4.2, in which the longitudinal pathways are added based on the PCNA output. The 
equations for the TCC SEM are shown in (7.1). Table 7.3 shows the results of the new 
TCC model with Approach 1 (summarize then analyze). 
 

Hub Gene Network 
Blue: Hub genes; 
Green: others. 
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       (7.1) 

 

 
Figure 7.4 The new pathway hypothesis using PCNA with the subject-average fMRI data 
without longitudinal paths (left) and with longitudinal paths (right). 
 
 
Table 7.3 Estimates of the TCC sectional SEM with the new hypothesis based on PCNA 
output (see Figure 6.3.2) using the subject-average fMRI data (Approach 1). Significant 
paths are in bold (two sided p-value based on t-test <0.05). 
 

Longitudinal path parameters Contemporaneous path parameters 
Path 

parameters Est. (S. E.) t-value (p-value) Path 
parameters Est. (S. E.) t-value (p-value) 

11γ  0.780 (0.091) 8.592 (<0.001) 24λ  -2.786 (1.730) -1.611 (0.118) 

LPFC

APC 

THAL 

PPC 

CEREB

t-1 t 

t-1 t 

t-1 t 

t-1 t 

t-1 t 

t-1 t Figure 7.4.2 
SEM hypothesis 
based on PCNA

SMA 

LPFC 

Figure 7.4.1 
PCNA for T=1:54 

THAL 

APC 

SMA 

CEREB

PPC 
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22γ  0.220 (0.322) 0.683 (0.500) 41λ  -0.287 (0.122) -2.354 (0.026) 

24γ  2.069 (1.193) 1.733 (0.094) 42λ  0.555 (0.117) 4.752 (<0.001) 

33γ  0.383 (0.114) 3.357 (0.002) 43λ  0.437 (0.127) 3.424 (0.002) 

41γ  -0.128 (0.136) -0.942 (0.354) 46λ  -0.068 (0.096) -0.709 (0.484) 

42γ  -0.439 (0.089) -4.927 (<0.001) 54λ  0.201 (0.174) 1.155 (0.258) 

43γ  0.234 (0.122) 1.918 (0.065) 61λ  0.423 (0.182) 2.331 (0.027) 

44γ  0.236 (0.139) 1.698 (0.100) 64λ  0.497 (0.203) 2.444 (0.021) 

46γ  0.267 (0.104) 2.562 (0.016)    

54γ  -0.300(0.175) -1.717 (0.097)    

55γ  0.584 (0.113) 5.161 (<0.001)    

61γ  -0.329 (0.201) -1.640 (0.011)    

64γ  -0.577 (0.208) -2.766 (0.010)    

66γ  0.515 (0.113) 4.558 (<0.001)    

 
As we have stated above, PCNA is an exploratory tool to detect the variable relations. 

We also used the JSRM technique to generate the networks of the six ROIs within 
different time period. We divided the entire dataset into three subsets along the time steps 
(T=1:18, 19:36 and 37:54) and the partial correlation networks in different time periods 
are shown in Figure 7.5, which obviously indicate that the pathways vary with time. 
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Figure 7.5.2 
PCNA for T=19:36
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PCNA for T=1:18 
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The equations for the TVC SEM are shown in (7.2). Table 7.4 tabulates the results of 
the new TVC model with Approach 1. The confirmed TCC and TVC models are 
displayed in Figure 7.6. We found there are significant time-varying coefficients 
( 42 46 61β β β， ， ) in the TVC SEM at the significance level of 0.05. 
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  (7.2) 
 
Table 7.5 Estimates of the TVC sectional SEM with the new hypothesis based on PCNA 
output (see Figure 7.3.2) using the subject-average fMRI data (Approach 1). Significant 
paths are in bold (two sided p-value based on t-test <0.05). 
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Figure 7.5.3 
PCNA for T=37:54 
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Different pathways at 
different time periods. 
The subject-average 
fMRI data is used with 
the JSRM method (R 
space package). 
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Longitudinal path parameters Contemporaneous path parameters 
Path 

parameters Est. (S. E.) t-value (p-values) Path 
parameters Est. (S. E.) t-value (p-value) 

11γ  0.780 (0.091) 8.592 (<0.001) 24α  -0.824 (0.582) -1.416 (0.163) 

22γ  0.440 (0.162) 2.725 (0.009) 24β  -0.018 (0.020) -0.915 (0.364) 

24γ  1.350 (0.778) 1.736 (0.089) 41α  -0.265 (0. 089) -2.987 (0.004) 

33γ  0.383 (0.114) 3.357 (0.001) 41β  -0.006 (0.005) -1.152 (0.255) 

41γ  -0.105 (0.183) -0.576 (0.567) 42α  0.326 (0.061) 5.348 (<0.001) 

42γ  -0.118 (0.101) -1.172 (0.247) 42β  -0.007 (0.003) -2.385 (0.021) 

43γ  0.125 (0.135) 0.926 (0.359) 43α  0.225 (0.083) 2.723 (0.009) 

44γ  0.270 (0.106) 2.538 (0.014) 43β  0.003 (0.005) 0.551 (0.584) 

46γ  -0.168 (0.132) -1.270 (0.210) 46α  0.012 (0.080) 0.148 (0.883) 

54γ  -0.448 (0.340) -1.319 (0.193) 46β  0.015 (0.004) 3.384 (0.001) 

55γ  0.579 (0.114) 5.090 (<0.001) 54α  0.209 (0.170) 1.229 (0.225) 

61γ  -0.972 (0.265) -3.676 (<0.001) 54β  0.005 (0.010) 0.498 (0.621) 

64γ  -0.274 (0.358) -0.766 (0.447) 61α  0.465 (0.168) 2.761 (0.008) 

66γ  0.450 (0.104) 4.324 (<0.001) 61β  0.18 (0.006) 3.064 (0.003) 

   64α  0.261 (0.205) 1.271 (0.209) 

   64β  -0.011 (0.010) -1.104 (0.275) 

 

 
Figure 7.6 The confirmed pathways in TCC SEM (left) and TVC SEM (right). The 
hypotheses are updated with the PCNA output. The significance level is 0.05 
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