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Abstract of the Dissertation 

 

Statistical Modeling for Multiplex RNAi Screen Data Analysis 

 

by 

 

Jianping Zhang 

 

Doctor of Philosophy 

 

in 

 

Applied Mathematics and Statistics 

 

(Statistics) 

 

Stony Brook University 

 

2010 

 

Multiplex RNAi screen is an emerging tool for functional genomics. Most analysis 

methods presently available for Multiplex RNAi screen are based on single hairpin data. 

These approaches have serious limitations. They do not account for the redundancies in 

genome-scale libraries. Thus it is difficult to detect genes with modest but consistent effect. 

In addition, contradictory conclusions might be reached based on enriched and depleted 

hairpins for the same gene. Therefore, we propose the RNAi Set Enrichment Analysis 

(RSEA) framework based on the gene set enrichment analysis framework that will take 

multiple hairpins into consideration in accessing the gene effect on drug response. The 

gene set enrichment analysis has been widely used in gene expression microarray study to 

test whether a certain biological pathway is activated under some treatment. However this 

method is rarely used in RNAi screen studies. With the RSEA method, we evaluate and 

compare the performance of different RNAi level statistics, RNAi set statistics and 

significance assessment choices. Besides these, to model the silencing efficiency and off 

target effect of RNAi knockdown, we propose Structural Equation Modeling (SEM) with 

latent variables for RNAi screen data analysis. SEM is intuitive for biological researchers 

with its path diagrams. In addition, the latent SEM contains the repeated measures ANOVA, 

both the univariate and the multivariate approaches, as special cases. Our simulation 

studies revealed that the latent SEM has comparable statistical power to RSEA method 

when the hairpin off target effect is modest. While the adoption of the SEM to existing 

experimental data is hampered by the modest sample size, we are able to verify the RSEA 

method by applying them towards real data generated from our experiments. The result 

shows that RSEA can successfully identify positive genes whose effects have been 

validated by the follow-up confirmatory experiments. 
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Chapter 1 . Introduction 

Cancer is a genetic disease characterized by multiple mutations in the cancer genome, changes 

in genome copy number and alterations in patterns of epigenetic modification [1]. These multiple 

alterations are necessary for the development and maintenance of the tumor phenotype and there is 

redundancy in the pathways of proteins that are deregulated. For most epithelial tumors, it is 

unlikely that inhibiting one target will be sufficient to inhibit the proliferation of the tumor cell and 

ultimately kill the tumor cell. Understanding the combination of targets that need to be inhibited is 

critical for the successful development of novel targeting agents. 

The multiplex RNAi screen is an emerging tool for functional genomics [2, 3]. It offers an 

approach to rapidly screen multiple proteins to identify rational targets to inhibit in combination 

with the novel targeting agents. 

Most presently available analysis methods for large-scale RNAi screen rely on ranking screen 

data and are based on single RNAi activity or significance value [4-6]. These analyses focus on the 

identification of highly active RNAis and ignore much of the remainder. These analyses have the 

following major limitations: 

1. After correcting for multiple hypotheses testing, no individual RNAi may meet the 

threshold for statistical significance, because the relevant biological differences are modest 

relative to the noise inherent to the microarray technology [7]. 

2. Statistically significant RNAis with positive and negative activity may both be obtained for 

the same gene. This will render biological interpretations difficult. 

3. These strategies do not exploit redundancies in genome-scale libraries, which typically 

contain 2~4 RNAis per gene. Thus, it is difficult to systematically identify genes for which 

multiple RNAis are moderately but consistently active across a screen, which do not fall within an 

upper threshold [8]. 

Facing these challenges, Konig et al. developed a statistical score that models the probability 

of a gene „hit‟ based on the collective activities of multiple RNAis per gene [8]. In their redundant 

siRNA activity (RSA) analysis, all RNAis are initially ranked according to their signals. Then, the 

rank distribution of all RNAis targeting the same gene is examined and a P-value is assigned. Thus, 

P-value indicates the statistical significance of all RNAis targeting a single gene being unusually 

distributed toward the top ranking slots, calculated based on an iterative hypergeometric 

distribution formula. This method is an improvement over methods based on single RNAi activity. 

However, they didn‟t thoroughly investigate its performance or efficiency. Luo et al. proposed 

RSecond, in multiplex RNAi screen, the sample size is usually small (3~4 samples in each class in 

our case) and the RNAi redundancy is also small (3 RNAis on average per gene for our case), the 

statistical power for this method is relatively low compared to other methods, which is shown in 

our simulation study. Luo et al. proposed RNAi gene enrichment ranking (RIGER) method to 
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analyze their RNAi screen data [9]. RIGER is actually an adaptation from Gene Set Enrichment 

Analysis method [7] which is widely applied in gene expression microarray studies. Again, they 

didn‟t thoroughly investigate the performance and efficiency of their method. 

In this thesis, we propose a general RNAi Set Enrichment Analysis framework based on the 

traditional gene set enrichment analysis methods applied in gene expression data. RNAi Set 

Enrichment Analysis uses RNAi level statistic to access individual RNAi activity. It then uses 

RNAi set statistic to access the gene effect by combining the activity of all the RNAis targeting this 

gene. Finally, it uses sample permutation or RNAi resampling to access the statistical significance 

of each gene. For RNAi level statistic, we have multiple choices, such as student‟s t statistic, 

regularized t statistic and the SAM („significance analysis of microarray‟) t statistic. For RNAi set 

statistic, we also have multiple choices, such as Wilcoxon rank statistic, max-mean statistic, mean 

and Kolmogorov-Smirnov statistic. In our study, we investigate the performance of different 

statistic choices for different sample sizes and numbers of RNAis targeting the same gene based on 

simulated data 

In addition to RSEA, we apply Structural Equation Modeling (SEM) to analyze multiplex 

RNAi screen data. SEM takes RNAi silence efficiency and off target effect into consideration and 

is intuitive to biological researchers. We propose three different models based on SEM by different 

assumption on the covariance structure. Based on the simulated data, we evaluate and compare the 

performances of the three models. 

Besides the simulation studies, we apply RSEA on our multiplex RNAi screen real data. 

RSEA analysis results show that gene RARA is PLKi drug resistant in four out of five cell lines. 

And the validation experiments confirm that silencing RAR confers PLKi resistance and RARA 

activation confers PLKi sensitivity in H460 cancer cell line. 

The remaining of this document is divided as follows: Chapter 2 introduces the purpose and 

design of multiplex RNAi screen. Chapter 3 summarizes presently available methods for RNAi 

screen data analysis. Chapter 4 presents the details of pre-processing of RNAi screen data. Chapter 

5 proposes the general framework of RNAi Set Enrichment Analysis. Chapter 6 applies the 

Structural Equation Modeling for RNAi Screen. Chapter 7 presents the simulation study result for 

RNAi Set Enrichment Analysis and SEM. Chapter 8 is about the application of RNAi Set 

Enrichment Analysis on our multiplex RNAi screen data and the validation experiment results. 

Chapter 9 discusses choices between RSEA and SEM, and the future work. 
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Chapter 2 . Multiplex RNAi Screen Experiment 

Scholl et al. gave a very good introduction on the application of RNAi screen [10], we 

summarize their introduction in the paragraph below. 

The identification of genes that are causally implicated in human cancer has resulted in novel, 

pathogenesis-oriented treatment strategies [11]. However, many known oncogenes, are 

challenging therapeutic targets. For example, researchers have discovered RAS gene family 

members are mutated in approximately 30% of human tumors and cancer cells are dependent on 

mutant RAS for their viability and proliferation for a long time, however, efforts in developing 

drugs to inhibit oncogenic RAS proteins have been largely unsuccessful [12, 13]. One important 

reason for this challenge is that cancer cells may also develop secondary dependencies on genes 

that are not oncogenes. Perturbation of these genes may result in oncogene-specific “synthetic 

lethal” interactions that could provide new therapeutic opportunities [14, 15]. Synthetic lethality 

occurs when alteration of a gene results in cell death only in the presence of another nonlethal 

genetic alteration, such as a cancer-associated mutation [10]. Synthetic lethal interactions were 

first described in model organisms [16, 17], but recent studies indicate that it can be extended to 

mammalian cells [18, 19]. One way to identify such synthetic lethal genes in human cancer is to 

systematically determine the functional consequences of gene suppression in cancer cell lines 

using RNA interference (RNAi) technology [20-22]. For example, In 2006, Ngo et al. identified 

CARD11 as a regulator of constitutive NFKB signaling in the activated B cell-like DLBCL 

subtype through RNAi screen [23]. Similarly, functional genetic screens have identified genes 

whose suppression sensitizes cancer cell lines [24, 25] or untransformed cells engineered to 

ectopically express a specific oncogene [26] to the effects of defined environmental conditions, 

such as the presence of a therapeutic agent. 

In our study, we use multiplex RNAi screen to identify synthetic lethal genetic interactions. 

One of the projects is to identify the genes which are able to enhance or weaken the treatment 

effect of Polo-like kinase 1 inhibitor (PLKi) drug for non-small cell lung cancer, in collaboration 

with GlaxoSmithKline plc. In this thesis, we focus on the data analysis of the PLKi RNAi screen 

project. The experiment procedure and design are present below. 

2.1 Experiment Procedure 

The Multiplex RNAi screen experiment procedure is illustrated in Figure 2.1. 
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Figure 2.1 Illustration of the Multiplex RNAi screen experimental procedure 

Step1 - Infection and Selection: An RNAi library is used to infect the target genetically 

identical human cancer cells derived from a specific cell line (5 different cell lines are tested 

separately in our experiments). An RNAi library contains around 4500 RNAis, each with around 

1500 copies. Each individual cell receives a single copy of RNAi which silences down its target 

gene. One average, each gene has 3 RNAis targeting different positions. Uninfected cells are 

removed via a puromycin selection marker. After RNAi infection, cells are cultured for several 

days. 

Step2 - Drug Treatment: After step 2, cells are mock / low dose drug / high dose drug treated. 

Upon completion of treatment, the cells are allowed to recover for a period of 7 days. The mock 

treatment doesn‟t contain any drug and is used as negative control. 

Step3 - Hybridization: Genomic DNA is extracted from the human cancer cells, labeled with 

Cy3 dye and hybridized to microarray chips.  

2.2 Experimental Design 

Figure 2.2 illustrates the experiment design from another perspective. Cancer cells genetically 

identical are divided into 3 groups (DMSO: Mock treatment group; LOW: low dose drug treatment 

group; HIGH: high dose drug treatment group), 3 replicate plates for each group. In the PLKi 

RNAi screen project, we actually have an additional group NONE, which is used for background 

estimation. In the NONE group, similar to the DMSO group, there is no drug treatment. The 

difference between NONE and DMSO is that: in NONE group, the RNAis haven‟t taken effect yet 

in the cancer cells infected with the RNAi library, which means these RNAi haven‟t silenced down 

their target gene expression yet.  

In the drug treatment step, the low dose drug kills 20% of the total cells in each of the 3 plates, 

while the high dose drug kills 80% of the total cells in each of the 3 plates. 
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Figure 2.2 RNAi screen experimental design 

In the PLKi multiplex RNAi screen experiment, we screened five different cell lines: A549, 

H522, H322, J42-L83 and H460. Each cell line has 4 groups (NONE, DMSO, LOW and HIGH, 

see descriptions above). For cell lines A549, H522, H322 and J42-L83, there are three technical 

replicate plates in each group. For cell line H460, there are four technical replicates for each group. 

These cell lines have different drug sensitivity. All five cell lines are responsive to PLK inhibitor 

during the regular 3 day treatment. However, upon washing away the drug to allow the cells to 

recover for a 3-day period, the difference begins to show: H460, J42-L83 and A549 cells are able 

to grow back and hence drug resistant. H522 and H322 in contrast, are unable to grow back and 

hence drug sensitive. Overall, the five cell lines do not differ much in resistance or sensitivity to 

PLK inhibitor. So far for all the five cell lines tested, there is no cell line that is completely 

un-responsive to the PLK inhibitor. 

In the data analysis, we mainly focus on the comparison between the DMSO and HIGH 

groups. 
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Chapter 3 . Existing Data Analysis Methods 

Currently, most of the data analysis for RNAi screen is based on single RNAi analysis, which 

treats the each individual RNAi separately, rather than considering the redundancy in the RNAi 

library design. To take multiple RNAis into consideration when evaluating the gene effect on drug 

resistance, Konig et al. [8] proposes the Redundant siRNA Activity (RSA) method. The RSA 

method analyzes the collective behavior of all siRNAs targeting a gene. Konig et al. demonstrate 

that RSA outperforms single RNAi analysis in the identification of confirmable activities, even 

though it‟s limited by false positive activities. Luo et al. developed RNAi gene enrichment ranking 

(RIGER) method to analyze their RNAi screen data [9]. In their RNAi library design, each human 

gene has 5 independent shRNAs. They used RIGER to rank genes based on these multiple 

shRNAs. Actually their RIGER is an adaption from the Gene Set Enrichment Analysis (GSEA) 

method utilized in gene expression study [7]. They added Second Best Rank and Weighted Sum as 

options for the RNAi level statistic, besides the Kolmogorov-Smirnov statistic used in GSEA. The 

details about these methods are presented below. 

3.1  Single RNAi Analysis 

Zhang et al. gave a very good review for the single hairpin analysis [27]. We summarize their 

review in this paragraph. For single RNAi analysis, there are two major types of approaches: one is 

the use of analytic metrics to assess and rank the size of RNAi effects and the other is the use of 

hypothesis testing to control false positive and false negative rates [27]. In the first approach, fold 

change, mean difference, percent activity, percent viability, percent inhibition and strictly 

standardized mean difference have already been proposed and explored [28-32]. In the second 

approach, the most popular methods are the use of z-score or t-test for testing the null hypothesis 

that no difference exists between the means, i.e. mean±kSD or median±kMAD (median absolute 

deviation) [33-39]. These methods usually control for the false positive and false negative rates 

based on a single test. Given that a large number of RNAis are tested in an assay, the false positive 

rate will be inflated. One issue for these methods is the adjustment of error rates in multiple 

hypothesis testing [40]. The other issue is whether to perform plate-wise or experiment-wise 

analysis. The plate-wise analysis can adjust for different systematic errors within each plate. 

However, it may produce misleading results if a cluster of active siRNAs is located within a single 

plate. An experiment-wise analysis is not affected by the distribution of active siRNAs between 

plates; however, it cannot adjust for systematic errors within each plate [27]. Finally, all the above 

methods of hit selection utilize information from only a negative reference. It remains unresolved 

whether a negative control or the majority of sample wells should be used as the negative reference 

to capture information on the variability [41]. 

3.2  Redundant siRNA Activity (RSA) Analysis 

In redundant siRNA activity analysis [8], all RNAis in an assay are initially ranked according 

to their signals. Then, the rank distribution of all RNAis targeting the same gene is examined and a 

P-value is assigned. Thus, P-value indicates the statistical significance of all wells targeting a 
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single gene being unusually distributed toward the top ranking slots, calculated based on an 

iterative hypergeometric distribution formula. Subsequently, all RNAis are ranked first based on 

this score, then by their individual activities. Therefore, RNAis clustered toward the top ranks are 

labeled as active, and the remaining ones are considered negative. The algorithm of RSA is 

illustrated in Figure 3.1. 

 
Figure 3.1 Illustration of RSA algorithm [8] 

In Figure 3.1, forty RNAis are ranked according to their activities (potent on top) and colored 

according to their target gene identities. The top eight hits by both RSA and Cutoff algorithms are 

highlighted, with five common hits marked as "O", RSA-only hits as "↑" and Cutoff-only hits as 

"↓". RNAis identified as outliers by RSA are marked as "X". After that, interactive RSA P-value is 

calculated as illustrated by Gene C (3 RNAis) and Gene D (4 RNAis). For a given gene, 

accumulative hypergeometric P-values are calculated for each RNAi, the curve dips at each RNAi 

targeting the gene itself (big filled circle). The global minimum is then identified (indicated by 

arrow) and separate RNAis into two groups: hits and outliers. One and three least potent RNAis 

are identified as outliers for Gene C and D, respectively. Gene C achieves a global minimum of 

0.01, much lower than the 0.2 for Gene D, therefore, the activity distribution of Gene C is much 

less likely to occur by chance, and therefore the gene is more likely to be confirmed. 

3.3  RNAi gene enrichment ranking (RIGER) 

RIGER ranks shRNAs according to their differential effects between two classes of samples, 

and then identifies the genes targeted by the shRNAs at the top of the list. In this way, RIGER 

identifies genes essential to the difference between the classes. There are three options for to 

summarize the shRNAs activities targeting the same gene [9]. 

3.3.1 Second Best Rank 
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A method based on ranking genes by the rank of the second best scoring hairpin for that 

gene.  This is currently the preferred method for RNAi screen analysis in the RNAi Platform. 

3.3.2 Kolmogorov-Smirnov 

The empirical distribution function 𝐹𝑛 for n iid observation 𝑋𝑖 is defined as: 

𝐹𝑛(𝑥) =
1

𝑛
∑ 𝐼𝑋𝑖≤𝑥
𝑛
𝑖=1               (3.1) 

Where 𝐼𝑋𝑖≤𝑥 is the indicator function, equal to 1 if 𝑋𝑖 ≤ 𝑥 and equal to 0 otherwise. The 

Kolmogorov-Smirnov statistic for a given cumulative distribution function 𝐹(𝑥) is 

𝐷𝑛 = sup𝑥|𝐹𝑛(𝑥) − 𝐹(𝑥)|            (3.2) 

Where sup x is the supremum of the set of distances. By the Glivenko-Cantelli theorem [42, 

43], if the sample comes from distribution F(x), then 𝐷𝑛  converges to 0 almost surely. 

Kolmogorov strengthened this result, by effectively providing the rate of this convergence. The 

Donsker [44] provides yet a stronger result. 

3.3.3 Weighted Sum 

This method is a modification of the Second Best Rank in that it takes the combined sum of 

the first and second best ranks for hairpins for a given gene 

(http://www.broadinstitute.org/cancer/software/GENE-E/).  The best ranking hairpin is given a 

weight of 0.25 and the second best ranking hairpin is given a weight of 0.75.  The sum of these 

weighted ranks is used to compute a new score, and genes are ranked by this new score. 

Regardless of which method to use, users can use either Signal to Noise or Log Fold 

Change to generate a single hairpin level score from the set of replicates for each hairpin in the 

RNAi screen.  The T-Test option is still experimental and has not been fully tested. Figure 3.2 

shows the navigator window for RIGER. 

 
Figure 3.2 RIGER navigator window 

 

http://www.broadinstitute.org/cancer/software/GENE-E/
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3.4  Existing Gene Set Enrichment Analysis Methods 

Our RNAi Set Enrichment Analysis framework is based on the gene set enrichment analysis 

framework. In this section, we briefly review various existing gene set enrichment analysis 

methods. 

In gene expression microarray study, gene set enrichment analysis has been widely applied. 

Focusing on sets of genes rather than on individual genes has several benefits. From a statistical 

point of view the analysis of groups instead of individual genes is advantageous as this typically 

increases power and reduces the dimensionality of the underlying statistical problem [45]. From 

the biological perspective gene set enrichment analysis allows one to ask and answer questions 

that are of direct interest to the understanding of the functional mechanism in a cell. Such as “is the 

pathway more active than other pathways”? These questions directly relate to various null models 

for gene sets. 

A number of statistical procedures to test gene set enrichment have been proposed in the last 

few years. 

Overrepresentation analysis methods were proposed at beginning. Draghici et al. developed 

Onto-Express (OE) tool to translate the lists of differentially regulated genes into functional 

profiles characterizing the impact of the condition studied [46]. OE constructs functional profiles 

(using Gene Ontology terms) for the following categories: biochemical function, biological 

process, cellular role, cellular component, molecular function, and chromosome location. 

Statistical significance values are calculated for each category. And many different tools very 

similar to OE or with minor variation can be found in the published studies [47-50]. 

However, a drawback to overrepresentation analysis methods is that they rely on the initial 

gene list in a fundamental way and are sensitive to the choice of both significance criteria and 

error-control procedure. To address that, average of single gene statistics have been proposed and 

applied [51-55]. These studies take the average of correlations, p values or other statistics of the 

genes within each gene set as the get set score. The significance of the gene set score is then 

accessed through gene resampling or sample lab permutation. 

Rather than taking the average of single gene statistics, Subramanian et al. proposed the 

well-known Gene Set Enrichment Analysis (GSEA) [7, 56]. GSEA tests whether the ranks of the 

genes in certain gene set differ from a uniform distribution, using a weighted 

Kolmogorov-Smirnov test. Barry et al. proposed significance analysis of function and expression 

(SAFE) method. SAFE is very similar to GSEA, except that it adds Wilcoxon rank sum [57] as an 

option to evaluate the how much the ranks of the genes in certain gene set differ from a uniform 

distribution. Zahn et al. developed a variant of GSEA [58]. The original GSEA paradigm was 

intended for datasets with two categories of sample. Zahn et al. replaced the two-sample test 

statistic in GSEA with an estimated regression slope for age by fitting regression models to 

continuously varying independent and dependent variables. They also replaced the 

Kolmogorov-Smirnov statistic with a van der Waerden statistic to reserve the type of dependence 

that the van der Waerden statistic captures. Finally, they replaced the permutation strategy with a 

bootstrap in order to better handle covariates. Efron and Tibshirani [59] proposed Gene Set 

Analysis (GSA) method. 2007).This method has been adopted by the Significance Analysis of 
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Microarray (SAM) platform (http://www-stat.stanford.edu/~tibs/SAM/). It uses the max-mean 

statistic to summarize gene-sets, which is the mean of the positive or the negative part of gene 

scores in the gene set, whichever is larger in absolute value. The genes are re-standardized before 

the permutation. Based on simulation study, they claim that the resulting test statistic is more 

powerful than the weighted Kolmogorov-Smirnov statistic used in GSEA. The GSA has been 

extended to account for a versatile array of data including multi-class, survival, and quantitative 

outcomes [59]. Keller et al. [60] developed a dynamic programming algorithm for calculating 

exact significance values of un-weighted GSEA. This algorithm is declared to be able to avoid 

typical problems of nonparametric permutation tests, as varying findings in different runs caused 

by the random sampling procedure. 

Compared to the non-parametric Kolmogorov-Smirnov test GSEA uses, Kim et al. proposed a 

modified gene set enrichment analysis strategy PAGE (parametric analysis of gene set enrichment) 

based on a parametric statistical analysis model. PAGE employs fold change between 

experimental groups or other parametric data to calculate Z scores of predefined gene sets and use 

normal distribution to infer statistical significance of gene sets. They declared that PAGE improves 

analysis of minimally changed gene expression profiles and is statistically more sensitive and 

required much less computational effort than GSEA. Dinu et al. claim that GSEA has important 

limitations as a gene-set analysis approach for microarray experiments for identifying biological 

pathways associated with a binary phenotype [61]. They propose SAM-GS. SAM-GS calculate the 

statistic 𝑑𝑖 =
𝑋1(𝑖)−𝑋2(𝑖)

𝑆(𝑖)+𝑆0
 for an individual gene analysis, which is first proposed by Tusher et al. 

[62]. Then the gene set statistic is defined as ∑ di
2|S|

i=1 . The gene set significance assessment 

procedure is the same as GSEA. 

To address the inefficiency of permutation method adopted by GSEA when few microarrays 

enter the permutation, and the concerns that the null hypothesis in GSEA permutation refers to the 

complete absence of differential expression rather than to the absence of enrichment, Newton et al. 

proposed the random-set method for measuring enrichment [63]. Random-set method adopts 

category-level statistic like in GSEA, but calibrates them in the same way that Fisher‟s exact test 

calibrates the intersection of a functional category and a selected list [63]. It calibrates them 

conditionally on results of the differential expression analysis by considering values of the 

category level statistic that would be achieved by a random set of genes. 

Different from the above testing structures, Goeman et al. proposed a global test [64]. They 

use generalized linear models [65] to analyze the dependency of a biological phenotype Y on a 

measured gene expression X. The testing problem is interpreted in the framework of a random 

effect model. A score test procedure proposed in [66] is used to derive the test statistic and its 

asymptotic distribution. Mansmann et al. proposed ANCOVA global test [67]. It is equivalent to 

Goeman‟s global test in a setting of independent genes. In the situations of correlated genes, 

simulation studies show ANCOVA has better performance compared to Goeman‟s test, especially 

in cases where the asymptotic distribution cannot be used. 

Besides these methods introduced above, there are a lot of other methods proposed [61, 68-74]. 

For a thorough review on these methods, please refer to [75-80]. 
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Chapter 4 . Data Preprocessing and Quality Check 

Our RNAi screen experiment is done with Agilent microarray products. After microarray 

hybridization, we obtain text files containing the raw probe intensity data. Before we can run the 

RNAi Set Enrichment Analysis or Structural Equation Modeling analysis which will be discussed 

in Chapter 5 and 6, we must preprocess the raw data. Originally we did dual color microarray 

hybridization for RNAi screen, and later we switched to single color hybridization because we 

found that single color hybridization can save time and cost while having the same or even higher 

level of signal to noise ratio. These two types have very little difference regarding to the data 

preprocessing and following data analysis. In this chapter, unless declared, we present the details 

of data preprocessing and quality check based on raw data from dual color microarray 

hybridization. 

4.1  Preprocessing of the Microarray Raw Data 

We have the raw Agilent two-color microarray data for five different cell lines: A549, H522, 

H460, H322 and J42-L83. For each cell line, Bacterial plasmid DNA is used as common reference 

and samples come from four different treatment groups: None (48 hours after RNAi infection), 

mock treatment (MOCK), low dose drug treatment (LOW) and high dose drug treatment (HIGH). 

Each group has 3 or 4 biological replicates. In the two-color assay, test DNA sample is labeled with 

cy3, reference DNA sample is labeled with cy5. We analyze the data for the 5 cell lines separately. 

Once we obtain the probe intensity files from Agilent's Feature Extraction software, we 

extract the column “gMeanSignal” as test channel signal, and column “rMeanSignal” as reference 

channel signal. 

The microarray chip is designed for the RNAi library targeting eight sets of cancer genes: 

HS_Cancer, HS_Kinase, C600, Cellcycle, phosphotase_new, PI3K_cancer, Hemann_BC and 

roma_cancer. In our experiment, we only infect the cancer cells with RNAis in these three sets: 

HS_Cancer, HS_Kinase and Cellcycle. So from the raw data, we remove probes in the following 

sets: C600, phosphotase_new, PI3K_cancer and Hemann_BC. As probes in set roma_cancer have 

relatively low cross hybridization compared to the other four unused libraries, they are used as 

negative probes for background estimation. 

On the microarray, there are two types of probes: barcode probes (60 mers) and half hairpin 

probes (21 mers). The structure of RNAi looks like a hairpin. It has two strings (sense string and 

anti-sense string) and a loop connecting them (see Figure 4.1). In our experiment, we used the 

RNAi library design from Dr. Gregory Hannon‟s lab. In their design, besides the hairpin structure, 

each RNAi is attached to a barcode sequence as unique identification. The barcode probe binds to 

the barcode sequence and the half hairpin probe binds to the sense or anti-sense string. Our 

analysis indicates that their hybridization performances are different to some extent (data now 

shown here). So for each sample, we divide the data into barcode probe set and half hairpin probe 

set, and then process them separately during the background filter and normalization steps. 



12 

 

 
Figure 4.1 RNAi structure 

 
Figure 4.2 Data analysis illustration 

Figure 4.2 illustrates the data analysis steps starting from the raw microarray intensity data. 

The raw microarray data is on the feature level. However, we are interested in which gene can 

enhance or weaken the drug effect. So our data analysis has to process from the feature level to 

gene level. Step1 to step3 are called as preprocessing steps. In the following, the details of the three 

preprocessing steps will be present. 

4.1.1 Processing on Feature level 

(1) Local Normalization 

First we apply spatial correction to remove spatial effects resulting from uneven washing, 

evaporation edge effect and so on. The spatial correction uses a window of 300 probes, which is 

illustrated in Figure 4.3. Within each window, the intensity of the inside probes is scaled to make 

sure the median probe intensity in the window is equal to the median on the whole chip. 

 
Figure 4.3 Spatial correction illustration 

(2) Background Filter 
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At the time point of 48 hours after RNAi infection, when each RNAi has been integrated into 

the cancer cell but the target gene expression hasn‟t been silenced down thus the RNAi should 

have little effect on the cell proliferation, we believe each probe should have strong enough signal 

if its representative RNAi infection is successful and its hybridization works well. So we apply 

background filter to remove probes with very low intensity which we believe are badly designed 

probes. 

The background filter works as follows. First, for each probe set, we calculate the median 

intensity of background probes in each channel for each sample in the NONE group. These 

medians are taken to be estimations of the background. Next, we remove probes from the dataset 

whose intensity is less than 1.5 times of background in red or green channel in more than half of 

the samples in the NONE group. 

Figure 4.4 and Figure 4.5 show the intensity histogram plots of barcodes and half hairpin 

probes accordingly. The barcode probes are well separated from the background, while the half 

hairpin probes severely overlap with background. In our experiment, the background filter pass 

percentage for barcode probes is around 81%, compared to 35% for half hairpin probes. The 

reason might be due to the hybridization temperature setting which favors barcode probes. Once 

we lower the hybridization temperature from 65F to 52F, the background pass percentage of half 

hairpin probes increases to around 45%, while the percentage of barcode probes decreases to 

around 60%. 

        
Figure 4.4 Probe intensity histrogram  
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Figure 4.5 Probe intensity histrogram 

(3) Normalization 

As explained above, we first did dual color microarray hybridization and later switched to 

single color. The normalization is different between these two. For dual color microarray 

experiment, to adjust for the imbalance between the red and green dyes, which may arise from 

labeling or scanning. Figure 4.6 shows the probe intensity histograms of the two channels prior to 

lowess normalization. Clearly, there exists some difference between these two channels regarding 

to probe intensity distribution, whereas, the probe intensities in the two channels should follow 

almost the same distribution in theory. That‟s because we assume only a small percent of probes 

will exhibit different expression while the majority remains unchanged. 

 
Figure 4.6 Probe intensity histogram 

So for each microarray, we apply global loess normalization to remove the imbalance between 

the red and green channels [81]. This is done with R package limma (version 2.8.1) [82], using the 

function “normalizeWithinArrays”. The parameter “method” in that function is chosen as "loess". 

After normalization, we obtain a log (base 2) ratio between green channel and red channel for each 

probe. 
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Figure 4.7 shows the MA plot before (left) and after (right) lowess normalization. Here A is 

the mean intensity of the two channels, and M represents the ratio of the intensity between the two 

channels. It can be seen that, after lowess normalization, the intensity distribution is balanced 

between red and green channels. 

      
Figure 4.7 MA plot before and after lowess normalization 

For single color hybridization microarray, we apply quantile normalization rather than lowess. 

First, the probe intensity is transferred into log2 scale. Then we perform quantile normalization. 

Quantile normalization is a technique for making two distributions identical in statistical 

properties [83]. To quantile-normalize two distribution of the same length, sort the two 

distributions separately. Then for both distributions, the highest entry takes the mean of the highest 

values, the second highest value becomes the mean of the second highest values, and so on. 

Quantile normalization is frequently used in microarray data analysis. 

After quantile normalization, we median center the probe intensity to zero for each replicate 

sample. Figure 4.8 shows the probe intensity boxplot before (left) and after (right) quantile 

normalization. It can be seen that after quantile normalization, the probe intensity distribution is 

the same for all arrays. The only difference among these arrays is the rank. A probe might have 

different rank in different arrays in terms of the intensity value. For instance, a probe might rank 

top in the first array but rank bottom in the second array. Again, the assumption behind quantile 

normalization is that the probe intensity distribution remains unchanged on the whole even though 

some probes may be differently expressed across the arrays. 
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Figure 4.8 Quantile Normalization 

 

4.1.2 From feature to probe level 

In the microarray chip design, some probes may be printed in multiple spots (we call 

“features”) on the chip to achieve a more reliable measurement. For these probes, we take the 

mean of the duplicate features log2 ratios as the probe log2 ratio. 

4.1.3 From probe level to RNAi level 

As mentioned above, most RNAis have both barcode probe and half hairpin probe printed on 

the chip. To collapse the data from the probe level into RNAi level, one choice is to take the mean 

of the probe ratios as the RNAi ratio. But as the two types of probes are different in probe length 

and nucleotide sequence, they might have different measurement errors and qualities. If we take 

the average, the good probe might be compromised by the relatively “bad” probe. So our choice is 

to use the probe with higher quality to represent the RNAi. The RNAi ratio is assigned as the ratio 

of the higher quality probe. To determine which probe has higher quality, we define an index SNR 

(signal to noise ratio) as: 

SNR=
between group variability

within group variability
=

∑ 𝑛𝑖(𝑋𝑖∙−𝑋)
2𝐾

𝑖=1
𝐾−1

∑ ∑ (𝑋𝑖𝑗−𝑋𝑖∙)
2𝑛𝑖

𝑗=1
𝐾
𝑖=1

𝑁−𝐾

                 

  (4.1) 

Where 𝑋𝑖∙  denotes the sample mean in the 𝑖𝑡ℎ  group indicator, 𝑛𝑖  is the number of 

observations in the 𝑖𝑡ℎ group, 𝑋 denotes the overall mean of the data, 𝑋𝑖𝑗 is the 𝑗𝑡ℎ observation 

in the 𝑖𝑡ℎ group out of K groups and N is the overall sample size. 

Here the SNR is actually identical to the one-way ANOVA F-test statistic. We assume that the 

larger the SNR, the higher quality the probe has. 

After the above steps, we obtain a 4500 by 9 matrix, each row represents a shRNA, and each 

column represents a replicate of NONE, MOCK, LOW or HIGH group. We use principal 

component analysis (PCA) to check the quality of the microarrays. Figure 4.9 show a PCA plot 
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example for one of our experiments. Black circles represent NONE group, red represents mock 

treatment group, green represents low dose drug treatment group and blue represents high dose 

drug treatment group. In this figure, the two drug treatment groups are well separated from the 

drug free groups in the direction of either the first principal component or the second principal 

component. This indicates that most of the variance comes from drug treatment, rather than the 

difference among technical replicates. 

 
Figure 4.9 PCA plot example 

 

4.2  Data Interpretation 

In this section, we link the measurement data to the underlying biological property. Also, we 

will reveal how to estimate the RNAi drug sensitivity based on the data we have. To simplify the 

problem, we assume the data comes from the single color microarray, though the solution is the 

same for dual color microarray.  

Let 𝑀𝑖𝑘  represent the measurement (proportional to cell number) of RNAi 𝑖 in replicate 

sample 𝑘 from the mock treatment group. The model can be written as:  

log2𝑀𝑖𝑘 = log2 𝛽𝑖 + 𝜀𝑖𝑘               (4.2) 

where 𝑖 = 1,… , 𝑛, 𝑛 is the number of RNAis in the library. In our experiment, 𝑛 ≈4500, 

𝑘 = 1,… ,𝑚 , where 𝑚  is the number of replicate samples in each group, 𝛽𝑖  is a number 

proportional to the number of copies of RNAi 𝑖 after infection and selection, and 𝜀𝑖𝑘 is an error 

term added to represent the errors introduced from the experimental procedures. We assume the 

error term follows normal distribution 𝑁(0, 𝜎2). 

For the high dose drug treatment group, let 𝐻𝑖𝑘  represent measurement of RNAi 𝑖  in 

replicate sample 𝑘 from the high dose drug treatment group. It can be written as:  

log2 𝐻𝑖𝑘 = log2 (0.8𝛽𝑖 × 2
𝑓𝑖

1

0.8
) + 𝜀𝑖𝑘 = log2𝛽𝑖 + 𝑓𝑖 + 𝛿𝑖𝑘        (4.3) 
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Where 𝑓𝑖 is the gene silencing effect of RNAi 𝑖 on drug response. 𝑓𝑖 > 0 means RNAi 𝑖 is 

drug resistant and prevents the drug to kill cancer cells in high dose drug condition, and 𝑓𝑖 < 0 

means RNAi 𝑖 is drug sensitive and help the drug to kill cancer cells in high dose drug condition. 

We can note that a normalization factor 1/0.8 is introduced in the above equation to balance the 

overall intensity of each sample and simplify the analysis afterwards. 𝛿𝑖𝑘~𝑁(0, 𝜎
2) 

As we focus on the comparison between HIGH and DMSO in this thesis, we don‟t present the 

model for low dose treatment group here. However, it‟s very similar to the high dose drug 

treatment.  

By comparing high drug treatment group with mock treatment group, we can estimate the 

drug sensitivity 𝑓𝑖. 

4.3  Cluster Analysis 

Each RNAi is designed to silence down its target gene. However, different RNAis have 

different silencing efficiency even they might target the same gene. For example, one RNAi might 

reduce the Ras gene expression by 90% while another might reduce only 40%. In addition, almost 

every RNAi has off target effect, silencing down some non-specific genes besides its target gene 

[84]. Due to the silencing efficiency and off target effect problems, different RNAis targeting the 

same gene may show totally different drug responses. For example, for two RNAis designed to 

target the same gene, one might be tested as drug sensitive while the other as drug sensitive. This 

will muddle the real drug sensitivity of the target gene. Facing this challenge, we tried the cluster 

analysis to classify RNAis targeting the same gene. If for one gene, most of its RNAis fall into one 

specific cluster, then we will have more confidence to use this cluster to represents that gene. 

4.3.1 Cluster method 

Considering the five cell lines screened in our experiment have different drug sensitivity, we 

clustered RNAis in those cell lines separately. Before running the cluster analysis, we average the 

measurement of replicate samples in each group to remove the influence of batch effect on 

clustering. The cluster method we chose is K-Means clustering where K is set to 27. The Euclidean 

distance is chosen as distance measurement. Theoretically, there are 13 unique patterns when we 

only have three groups or conditions (see Figure 4.11). The reason why we choose K>13 is that we 

do not wish to miss any important pattern. After obtaining the 27 clusters, we assign each cluster 

into its corresponding pattern. For example, Figure 4.10 shows a cluster in cell line J42-L83. The 

left shows all RNAis measurement data in that cluster. And the right shows the averaged 

measurement in three experimental conditions. Based on this figure, this cluster clearly belongs to 

pattern #9. RNAis in this pattern are neutral in low dose drug condition, but resistant in high dose 

drug condition. 

http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Euclidean_distance
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Figure 4.10 A cluster in J42-L83 

 

4.3.2 Cluster Analysis Result Summary 

Figure 4.11 shows the summary of the K-Means for 5 different cell lines. Obviously, patterns 

#10~13 can be neglected because of the very low representation, as expected. Pattern #7 is the 

most frequent pattern. This is also what we have expected -- that most RNAis would be neutral to 

the drug. 

 
Figure 4.11 Pattern percentage profile in 5 cell lines 
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Chapter 5 . RNAi Set Enrichment Analysis 

Gene set enrichment methods have been used successfully for gene expression microarray 

data. However, very few of them have been used for the analysis of large scale RNAi screens. 

Similar to the common modular framework for gene set enrichment analysis methods depicted in 

Ackermann‟s paper [45], we propose the general framework for RNAi Set Enrichment Analysis as 

Fig5.1. The scheme consists of two distinct ways to analyze RNAi screen data: Structural Equation 

Modeling (SEM) and RNAi set enrichment analysis. The details of the three SEM models will be 

discussed in next chapter. In this chapter, we focus on the RNAi Set Enrichment Analysis (RSEA). 

RSEA consists of three modules: the calculation of an RNAi level statistic, the computation of an 

RNAi set statistic and the significance assessment of the RNAi set statistic. In gene expression 

data analysis, multiple options have been proposed for each module. For our RNAi screen, we are 

going to evaluate and compare the statistical performance of these options in each module. First, 

we are going to give a brief introduction of these modules and the different options within each 

module. 

 
Figure 5.1 General framework for RNAi screen data analysis 

 

5.1 RNAi Level Statistic 

Similar to gene expression microarray study, in RNAi screen, we need some statistic to rank 

RNAis according to their activity. In the last few years, various statistics have been suggested, 

which may be classified as follows [85]: 

(1) Simple methods: such as fold change and classical student‟s t statistic. 

(2) The SAM („significance analysis of microarrays‟) t statistic [86]. 

http://www.biomedcentral.com/1471-2105/10/47/figure/F1
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(3) (Penalized) likelihood methods. Please refer to [87-89] for q thorough review. 

(4) Hierarchical Bayes methods, e.g.: [90-93] and “moderated t”[94-96]. 

For an introductory review of other approaches mentioned above, please see refer to Cui and 

Churchill [97] and Smyth [94]. 

Current good practice in gene expression case-control analysis favors the empirical or full 

Bayesian approaches over other competing methods [85]. The reason is that Bayesian methods 

naturally allow for information sharing across genes, which is essential when the number of 

sample is as small in typical genomic experiments. Specifically, the estimation of gene-specific 

variances profits substantially from pooling information across genes. On the other hand, Bayesian 

methods can become computationally quite expensive, and more importantly, typically rely on a 

host of very detailed assumptions concerning the underlying data and parameter generating 

models [85]. 

In our RNAi screen data analysis, we evaluated three options: the classical student‟s t statistic, 

SAM t statistic [86] and regularized t statistic [91]. A brief introduction of these statistics is given 

below: 

5.1.1 Student’s t statistic 

In our experiment, we usually compare two classes: control and drug treatment. And we 

assume equal variance between these two classes. So we use unequal sample – equal variance t 

statistic in our RNAi screen: 

𝑡 =
𝑋̅1−𝑋̅2

𝑆𝑋1𝑋2
.√

1

𝑛1
+

1

𝑛2

               (5.1) 

Where  

  𝑋1𝑋2 =
√
(𝑛1−1)𝑆𝑋1

2 +(𝑛2−1)𝑆𝑋2
2

𝑛1+𝑛2−2
            (5.2) 

 𝑋1
2  is the estimated variance for group 1 and  𝑋2

2  is the estimated variance for group. 𝑛1 is 

the sample size for group 1 and 𝑛2 is the sample size for group 2. 

5.1.2 SAM t statistic 

Compared to classical t statistic, SAM t statistic adds a constant  0 to stabilize the estimation 

for standard deviation [62]: 

 𝑑 =
𝑋̅1−𝑋̅2

𝑆+𝑆0
                (5.3) 

where  =  𝑋1𝑋2 . √
1

𝑛1
+

1

𝑛2
 ,  0 is chosen as to minimize the coefficient of variation. For 

simplicity, in most case,  0 is chosen as the 90th percentile of S of all RNAis. 

5.1.3 Regularized t statistic 
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Baldi et al. developed a general Bayesian statistical framework for array data [91]. Here we 

adapt their method as follows: 

We model the corresponding measurements of each RNAi in each situation (treatment or 

control) with a normal distribution 𝑁(𝑥; 𝜇, 𝜎2). For each RNAi and each condition, we have a two 

parameter model 𝑤 = ( 𝜇, 𝜎2). Assuming that the observations are independent, the likelihood of 

the data 𝐷 is given by: 

 (𝐷|𝜇, 𝜎2) ≈∏𝑁(𝑥𝑖;  𝜇, 𝜎
2)

𝑛

𝑖=1

 

=  (𝜎2)−𝑛 2 −∑ (𝑥𝑖− )
2 2 2𝑖  

=  (𝜎2)−𝑛 2 −(𝑛( − )2+(𝑛−1)𝑆2) 2 2             (5.4) 

Here C denotes the normalizing constant of the distribution, 𝑛 is the sample size and 𝑚 = 𝑥. 

All the information about the sample that is relevant for the likelihood is summarized in the 

sufficient statistics 𝑛, 𝑚, and  2. 

A full Bayesian treatment requires introducing a prior distribution  (𝜇, 𝜎2). Several kinds of 

priors for the mean and variance of a normal distribution have been studied in the literature, 

including the non-informative improper prior and the conjugate prior [98, 99],. For our RNAi 

screen data, we choose the conjugate prior because of its convenient form. The form of the 

likelihood in Equation (5.4) shows that the conjugate prior density must also have the 

form  (𝜇|𝜎2) (𝜎2), where the marginal  (𝜎2) is scaled inverse gamma and the conditional 

distribution  (𝜇|𝜎2) is normal. This leads to a hierarchical model with a vector of four hyper 

parameters for the prior 𝛼 = (𝜇0, 𝜆0, 𝜐0, 𝜎0
2) with the densities:  

 (𝜇|𝜎2) = 𝑁(𝜇; 𝜇0,
 2

 0
)                (5.5) 

And  (𝜎2) = 𝐼(𝜎2;  𝜐0, 𝜎0
2) .              (5.6) 

The expectation of the prior is finite if and only if 𝜐0> 2. 

The prior  (𝜇, 𝜎2) =  (𝜇, 𝜎2|𝛼)is given by: 

 𝜎−1(𝜎2)−(
 0
2
+1) 𝑥𝑝 *−

 0

2 2
𝜎0
2 −

 0

2 2
(𝜇0 − 𝜇)2+.             (5.7) 

The hyper parameters 𝜇0 and 𝜎2 𝜆0 can be interpreted as the location and scale of 𝜇, and 

the hyper parameters 𝜐0 and 𝜎0
2 as the degrees of freedom and scale of 𝜎2. Applying Bayes 

theorem, the posterior has the same functional form as the prior 

 (𝜇, 𝜎2|𝐷, 𝛼) = 𝑁(𝜇;  𝜇𝑛, 𝜎
2 𝜆𝑛)𝐼(𝜎

2;  𝜐𝑛,   𝜎𝑛
2)          (5.8) 

With 

𝜇𝑛 =
 0

 0+𝑛
𝜇0 +

𝑛

 0+𝑛
𝑚               (5.9) 
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𝜆𝑛 = 𝜆0 + 𝑛                   (5.10) 

𝜐𝑛 = 𝜐0 + 𝑛                (5.11) 

𝜐𝑛𝜎𝑛
2 = 𝜐0𝜎0

2 + (𝑛 − 1)𝑠2 +
 0𝑛

 0+𝑛
(𝑚 − 𝜇0)

2         (5.12) 

While it is possible to use a prior mean 𝜇0 for gene expression data, in many situations it is 

sufficient to set 𝜇0 = 𝑚 . It can readily be shown that the conditional posterior distribution 

 (𝜇|𝜎2, 𝐷, 𝛼) of the mean is normal 𝑁(𝜇𝑛, 𝜎
2 𝜆𝑛), the marginal posterior P(μ|D, α) of the mean 

is Student‟s 𝑡(𝜐𝑛, 𝜇𝑛, 𝜎𝑛
2 𝜆𝑛), and the marginal posterior  (𝜎2|𝐷, 𝛼) of the variance is scaled 

inverse gamma 𝐼(𝜐𝑛, 𝜎𝑛
2). 

The posterior distribution  (𝜇, 𝜎2|𝐷, 𝛼) is the fundamental object of Bayesian analysis and 

contains the relevant information about all possible values of μ and 𝜎2 . However, in the 

regularized t statistic in our RSEA framework, we take the mean of the posterior (MP) estimate as 

the single point estimate. By integration, the MP estimate is given by 

𝜇 = 𝜇𝑛 and 𝜎
2 =

 𝑛

 𝑛−2
𝜎𝑛
2             (5.13) 

provided 𝜐𝑛 > 2. If we take 𝜇0 = 𝑚, we then get the following MP estimate: 

𝜇 = 𝑚 and 𝜎2 =
 𝑛 𝑛

2

 𝑛−2
=

 0 0
2+(𝑛−1) 2

 0+𝑛−2
           (5.14) 

provided 𝜐0 + 𝑛 > 2. Based on the estimation in Equation (5.14), the regularized t statistic can be 

written as: 

𝑡 =
𝑋̅1−𝑋̅2

𝑆𝑋1𝑋2
.√

1

𝑛1
+

1

𝑛2

                 (5.15) 

Where  

 𝑋1𝑋2 =
√
(𝑛1−1) 𝑋1

2 +(𝑛2−1) 𝑋2
2

𝑛1+𝑛2−2
            (5.16) 

𝜎𝑋1 = √
 0 0

2+(𝑛1−1)𝑆𝑋1
2

 0+𝑛1−2
                  (5.17) 

𝜎𝑋2 = √
 0 0

2+(𝑛2−1)𝑆𝑋2
2

 0+𝑛2−2
                (5.18) 

In fact, the regularized t statistic is a modification of the two sample equal variance student‟s t 

statistic, with the sample standard deviation replaced by Bayes MP estimate.  

5.2 RNAi Set Statistic 

A further step in an enrichment analysis is the computation of the RNAi set statistic. In gene 

set enrichment analysis, a lot of options have been proposed, such as [45]: 
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• the sum, mean or the median of the single RNAi statistics, 

• the Kolmogorov-Smirnov statistic [7], 

• the max-mean statistic [100], and 

• the Wilcoxon rank sum test statistic. 

The question of which statistic is optimal is subject to ongoing discussion. Efron and 

Tibshirani show that their max-mean statistic is more powerful than Kolmogorov-Smirnov test 

[100]. Jiang and Gentleman emphasized the problem of robustness against outliers and advocate 

summaries such as the median or the sign test statistic [54]. In our study, we chose and evaluated 

three kinds of RNAi set statistics: the mean of the single RNAi statistics, the max-mean statistic 

and the Kolmogorov-Smirnov statistic. These statistics are introduced below. 

5.2.1 The mean of the single RNAi statistics:  

It is the arithmetic mean value of the RNAi statistics of all the RNAis in the gene set. 

5.2.2 Kolmogorov-Smirnov statistic 

We take the data analysis procedure in GSEA as an example to describe the 

Kolmogorov-Smirnov statistic [7]. Suppose the genome wide expression profiles from samples 

belong to two classes, labeled 1 or 2. Genes are ranked based on the correlation between their 

expression and the class distinction by using any suitable metric (see Figure 5.2). 

Given a defined set of genes S, the goal of GSEA is to determine whether the members of S are 

randomly distributed throughout L, the ranked list of genes according to their differential 

expression between the classes, or primarily found at the top or the bottom. GSEA expects that sets 

related to the phenotypic distinction will tend to show the latter distribution. There are three key 

steps to the GSEA method [7]: 

Step 1: Calculation of an Enrichment Score. First calculate an enrichment score (ES) that 

reflects the degree to which a set S is overrepresented at the extremes (top or bottom) of the entire 

ranked list L. The score is calculated by walking down the list L, increasing a running-sum statistic 

when we encounter a gene in S and decreasing it when we encounter genes not in S. The 

magnitude of the increment depends on the correlation of the gene with the phenotype. The 

enrichment score is the maximum deviation from zero encountered in the random walk; it 

corresponds to a weighted Kolmogorov–Smirnov-like statistic [101] (see Figure 5.2). 

Step 2: Estimation of Significance Level of ES. We estimate the statistical significance 

(nominal P value) of the ES by using an empirical phenotype-based permutation test procedure 

that preserves the complex correlation structure of the gene expression data. Specifically, we 

permute the phenotype labels and re-compute the ES of the gene set for the permuted data, which 

generates a null distribution for the ES. The empirical, nominal P value of the observed ES is then 

calculated relative to this null distribution. Importantly, the permutation of class labels preserves 

gene-gene correlations and, thus, provides a biologically more reasonable assessment of 

significance than would be obtained by permuting genes. 
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Step 3: Adjustment for Multiple Hypothesis Testing. When an entire database of gene sets is 

evaluated, we adjust the estimated significance level to account for multiple hypothesis testing. We 

first normalize the ES for each gene set to account for the size of the set, yielding a normalized 

enrichment score (NES). We then control the proportion of false positives by calculating the false 

discovery rate (FDR) [102, 103] corresponding to each NES. The FDR is the estimated probability 

that a set with a given NES represents a false positive finding; it is computed by comparing the 

tails of the observed and null distributions for the NES. 

 
Figure 5.2 A GSEA overview illustrating the method [7] 

 

5.2.3 Max-mean statistic 

Max-mean statistic is implemented in GSA as below [100]: 

1. Compute a summary statistic 𝑧𝑖  for each gene, such as the two sample t-statistic for 

two-class data. Let zS be the vector of 𝑧𝑖 values for genes in a gene-set S. 

2. For each gene-set S, choose a summary statistic  = 𝑠(𝑧): choices include the average of 

𝑧𝑖  or |𝑧𝑖| for genes in S, the max-mean statistic defined as   𝑎𝑥 = 𝑚𝑎𝑥 , 𝑆
(+)
,  𝑆

(−)
-, where 

 𝑆
(+)
(𝑧) = 𝑚𝑎𝑥*𝑧, 0+ and  𝑆

(−)
(𝑧) = −𝑚𝑖𝑛*𝑧, 0+.  

3. Standardize S by its randomization mean and standard deviation as  ′ = ( −𝑚 𝑎𝑛 ) 𝜎 . 

4. Compute permutations of the outcome values (e.g. the class labels in the two-class case) and 

re-compute  ′ on each permuted dataset, yielding permutation values  ′∗1,  ′∗2, … ,  ′∗𝐵, where B 

is the total number of permutations. 

We use these permutation values to estimate P-values for each gene-set score  ′, and false 

discovery rates applied to these P-values for the collection of gene-set scores. 

5.3 Significance Assessment 

The last step of RSEA is the assessment of significance of the observed RNAi set statistic. The 

calculation of the P-value can be done in two different ways: 
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5.3.1 RNAi resampling:  

A large number of random RNAi sets of the same size as the set under investigation is drawn 

from all the RNAis and the RNAi set statistic is recomputed for every random set. The P-value is 

calculated as the fraction of resampled RNAi set statistics that exceed (or fall below) the observed 

value. 

5.3.2 Sample label permutation:  

The phenotypes of the subjects are permuted a large number of times and the RNAi level and 

RNAi set statistics are recomputed. The P-value is the fraction of permutation gene set statistics 

that exceed (or fall below) the observed value. 

RNAi resampling implicitly assumes independent RNAis in the group, a prerequisite that is 

unlikely to hold, because they are designed to target the same gene. However, for sample label 

permutation, when the sample size is small, there might be not enough unique permutations to 

approximate the null distribution. So the choice of RNAi resampling or sample label permutation 

really depends on the experiment design. In this thesis, we evaluate these two options regarding to 

the statistical performance for different sample size and different redundancy in the RNAi library 

design. The evaluation results are presented in chapter 7. 
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Chapter 6 . Structural Equation Modeling 

Structural Equation Modeling (SEM) can be applied to test and estimate causal relations using 

a combination of statistical data and qualitative causal assumptions. The definition of SEM was 

articulated by the geneticist Sewall Wright [104] and the cognitive scientist Herbert Simon [105], 

and formally defined by Judea Pearl using a calculus of counterfactuals [106]. 

SEM allows both confirmatory and exploratory modeling. SEM has the ability to construct 

latent variables: variables which are not measured directly, but are estimated in the model from 

measured variables. This allows the modeler to explicitly capture the unreliability of measurement 

in the model, which in theory allows the structural relations between latent variables to be 

accurately estimated. Factor analysis, path analysis and regression all represent special cases of 

SEM. 

6.1  SEM Model 

We propose the latent variable SEM for RNAi screen data analysis as in Figure 6.1. 

 
Figure 6.1 Network diagram for SEM 

The above diagram can be represented by Equation (6.1): 

{
 
 

 
 
𝑌1 = 𝜇1 + 𝜆1𝐹 + 𝜀1
𝑌2 = 𝜇2 + 𝜆2𝐹 + 𝜀2

⋮
𝑌𝑘 = 𝜇𝑘 + 𝜆𝑘𝐹 + 𝜀𝑘
𝐹 = 𝛽𝑋 + 𝛿             

                               (6.1)                                                                                              

Where: 
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 𝑌1~𝑌𝑘: measurements of RNAi 1~k. 

 𝜇1~𝜇𝑘: constants related to the initial number of copies of RNAi 1~k. 

𝜆1~𝜆𝑘: coefficient of RNAi 1~k. This coefficient combines the RNAi silencing efficiency and 

RNAi off target effect into one single parameter. 

 𝜀1~𝜀𝑘: measurement errors of RNAi 1~k. 

 𝐹: overall effect variable. 

 𝛽: drug sensitivity of the gene. 

 𝑋: class label. 0 represents control group and 1 represents drug treatment group. 

 𝛿: drug sensitivity variation across samples. 

By setting different constraints on the RNAi coefficient and measurement error terms, 

Equation (6.1) can be turned into three models: 

(1) Model A: 

𝜆1 = 1. 

(2) Model B: 

𝜆1 = 𝜆2 = ⋯𝜆𝑘 = 1.  

This model is equivalent to multivariate analysis approach for repeated measures ANOVA. 

Theoretical proof is provided by Professor Wei Zhu in the following section. 

(3) Model C: 

𝜆1 = 𝜆2 = ⋯𝜆𝑘 = 1 𝑎𝑛𝑑  𝜎𝜀𝑖
2 = 𝜎𝜀

2, (𝑖 = 1,⋯ ,𝑚).  

This model is equivalent to the univariate analysis approach for repeated measures ANOVA. 

Refer to the following section for theoretical proof by Wu and Zhu [107] 

6.2  RM ANOVA is a Special Case of Latent Variable SEM 
This section is based on the theoretical development from our own laboratory (Wu and Zhu, 2010). 

 

6.2.1 Latent variables in SM 

Considering the situation by modeling one latent variable with measured variables as: 

𝑦 = Λ𝑦𝜂 + 𝜀, i.e. 
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[

𝑦1
𝑦2
…
𝑦 

] = [

𝜆1
𝜆2
…
𝜆 

] ∙ 𝜂 + [

𝜀1
𝜀2
…
𝜀 

]                (6.2) 

where 𝑦 = (𝑦1, 𝑦2, ⋯ , 𝑦 )
′ stands for m repeated measures or indicators for the latent 

variable η.  Λ𝑦 = (𝜆1, 𝜆2, ⋯ , 𝜆 )
′ is the path coefficient matrix of indicators, and 𝜀 is the error 

matrix of indicators. For the model, we have the assumptions that 𝜀~𝑁 (0, Θ𝜀), 𝑉𝑎𝑟(𝜂) = 𝜎𝜂
2, 

 𝑜𝑣(𝜀𝑖, 𝜂𝑗) = 0, where i, j = 1, 2, …, m (Figure 6.2). 

 
Figure 6.2 One latent variable with m measurements 

Thus, the covariance matrix of y is 

 𝑦𝑦 =  (𝑦𝑦′) =  *(Λ𝑦𝜂 + 𝜀)(Λ𝑦𝜂 + 𝜀)
′
+  

= Λ𝑦 (𝜂𝜂
′)Λ𝑦

′ + Θ𝜀    

= Λ𝑦𝜎𝜂
2Λ𝑦

′ + Θ𝜀              

 = 𝜎𝜂
2

[
 
 
 
𝜆1
2 𝜆1𝜆2 ⋯ 𝜆1𝜆 

𝜆1𝜆1 𝜆2
2 ⋯ ⋯

⋯ ⋯ ⋯ ⋯
𝜆 𝜆1 𝜆 𝜆2 ⋯ 𝜆 

2 ]
 
 
 
+

[
 
 
 
 
𝜎𝜀1
2 ⋯

𝜎𝜀2
2 ⋯

⋯ ⋯ ⋯ ⋯
⋯ 𝜎𝜀 

2
]
 
 
 
 

 

=

[
 
 
 
 
𝜎𝜂
2𝜆1

2 + 𝜎𝜀1
2 𝜎𝜂

2𝜆1𝜆2 ⋯ 𝜎𝜂
2𝜆1𝜆 

𝜎𝜂
2𝜆1𝜆1 𝜎𝜂

2𝜆2
2 + 𝜎𝜀2

2 ⋯ ⋯
⋯ ⋯ ⋯ ⋯

𝜎𝜂
2𝜆 𝜆1 𝜎𝜂

2𝜆 𝜆2 ⋯ 𝜎𝜂
2𝜆 

2 + 𝜎𝜀 
2
]
 
 
 
 

           (6.3) 

 

6.2.2 Repeated measures ANOVA 

The univariate repeated measures ANOVA model is: 

𝑌𝑖𝑗 = 𝜇𝑗 +  𝑖 + 𝜀𝑖𝑗,               (6.4) 

where 𝜇𝑗 is the (fixed) effect of treatment j,  𝑖 is the (random) effect of subject i, 𝜀𝑖𝑗 is the 

random error independent of i S . With normality assumptions, we have 
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Si N(0,~
iid σs

2)  and εij N(0,~
iid σε

2) . Let Yi = (Yi1, Yi2, ⋯ , Yim)
′ , we have Yi Nm(μ,~

iid  ) , 

i = 1,⋯ , n, where 

𝜇 = (𝜇1, 𝜇2, ⋯ , 𝜇 )
′ and 

 =

[
 
 
 
𝜎 
2 + 𝜎𝜀

2 𝜎 
2 ⋯ 𝜎 

2

𝜎 
2 𝜎 

2 + 𝜎𝜀
2 ⋯ 𝜎 

2

⋮ ⋮  ⋮
𝜎 
2 𝜎 

2 ⋯ 𝜎 
2 + 𝜎𝜀

2]
 
 
 
          (6.5) 

This particular structure of the variance covariance matrix is called “compound symmetry”. 

This compound symmetry matrix form in repeated measures ANOVA can be obtained for 

latent variable SEM by having constraints of equal path coefficients and equal error variance in (*), 

i.e. 𝜆𝑖 = 1, 𝜎𝜀𝑖
2 = 𝜎𝜀

2, (𝑖 = 1,⋯ ,𝑚). 

The covariance structure is reduced to the compound symmetry form as below. 

 =

[
 
 
 
 
𝜎𝜂
2 + 𝜎𝜀

2 𝜎𝜂
2 ⋯ 𝜎𝜂

2

𝜎𝜂
2 𝜎𝜂

2 + 𝜎𝜀
2 ⋯ 𝜎𝜂

2

⋮ ⋮  ⋮
𝜎𝜂
2 𝜎𝜂

2 ⋯ 𝜎𝜂
2 + 𝜎𝜀

2
]
 
 
 
 

          (6.6) 

Alternatively for repeated measures ANOVA, we can use the multivariate approach where no 

structure, other than the usual symmetry and non-negative definite properties, is imposed on the 

variance covariance matrix   in 𝑌𝑖 𝑁 (𝜇,~
𝑖𝑖𝑑  ), 𝑖 = 1,⋯ , 𝑛. Thus the multivariate approach has 

no requirement on equal error variance, which is equivalent to latent variable SEM when only 

restriction of equal path coefficients is applied, that is, 

𝜆𝑖 = 1, (𝑖 = 1,⋯ ,𝑚).                (6.7) 

The corresponding covariance matrix is: 

 =

[
 
 
 
 
𝜎𝜂
2 + 𝜎𝜀1

2 𝜎𝜂
2 ⋯ 𝜎𝜂

2

𝜎𝜂
2 𝜎𝜂

2 + 𝜎𝜀2
2 ⋯ 𝜎𝜂

2

⋮ ⋮  ⋮
𝜎𝜂
2 𝜎𝜂

2 ⋯ 𝜎𝜂
2 + 𝜎𝜀 

2
]
 
 
 
 

            (6.8) 

In summary, we have shown from the covariance structure that the repeated measures ANOVA 

in the univariate analysis approach, is a special case of latent variable SEM when the error 

variances are equal and the path coefficients are all set to 1. In addition, the repeated measure 

ANOVA in the multivariate analysis approach is also a special case of latent variable SEM when 

all the indicator path coefficients are set to be one. 
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Chapter 7 . Simulation Study 

As described in previous chapters, we propose RSEA and SEM for RNAi screen data analysis. 

Before we adapt them in biological study, their statistical performances have to be evaluated first. 

As there are very little published RNAi screen data, in this chapter, we access the specificity and 

sensitivity performance of RSEA and SEM on simulated data. 

To make sure the simulated data is as close as to the real RNAi screen data, we develop a 

model for the data simulation. This model takes most characters of the RNAi screen experiment 

into consideration.  

7.1  Data Simulation Model 

Fig.2 illustrates the model used to generate data. We consider the situation of two classes: 

control class and treatment class. For the control group, we assume the RNAis follow 𝑁(0, 𝜎0
2) 

distribution. 𝜎0
2  denotes the variance of measurement error. For treatment groups, the RNAi 

might work (with probability p) or might not work (with probability 1-p).  

In the treatment group, if the RNAi works, then its total effect on the drug response will be the 

silencing efficiency times the gene sensitivity plus off target effect. So the RNAi follows 

distribution 𝑁(𝜆𝛽 + 𝛿, 𝜎0
2). 𝜆 denotes silencing efficiency, which is assumed to follow uniform 

distribution U(0,1). 𝛽 denotes the gene sensitivity or effect on drug response of cancer cells.  

If the RNAi doesn‟t work in the treatment, then we treat it as in the control group. It follows 

the same distribution as control group: 𝑁(0, 𝜎0
2) 

 
Figure 7.1 Illustration for data simulation 

More details about the data simulation are described as follows. Let 𝑋𝑖𝑗  denotes the 

measurement value of RNAi 𝑖 in replicate 𝑗 of control group. Based on Figure 7.1, 𝑋𝑖𝑗 can be 

written as: 

𝑋𝑖𝑗 = 𝜀𝑖𝑗 ,         𝜀𝑖𝑗~𝑁(0, 𝜎0
2)                         (7.1) 

where 𝜎0
2  denotes the variance of measurement error. Unless declared explicitly, we set 

𝜎0
2 = 1 in all following simulation studies in this chapter. 
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Let 𝑌𝑖𝑗 denotes the measurement value of RNAi 𝑖 in replicate 𝑗 of drug treatment group. 

Based on Figure 7.1, 𝑌𝑖𝑗 can be written as: 

𝑌𝑖𝑗 = 𝐼𝑖(𝜆𝑖𝛽 + 𝛿𝑖) + 𝜀𝑖𝑗                          (7.2) 

Where 𝐼𝑖 denotes RNAi working index, following Bernoulli distribution with 𝑝 = 𝑝0. Unless 

declared explicitly, we set 𝑝0 = 0.8 in all following simulation studies in this chapter. 𝜆𝑖 denotes 

RNAi silencing efficiency, following uniform distribution U(0,1). 𝛽𝑖 denotes the gene sensitivity 

or effect on drug response of cancer cells. Unless declared explicitly, we set 𝛽𝑖 = 3  in all 

simulation studies in this chapter. 

𝛿𝑖  denotes the RNAi off target effect, following normal distribution 𝑁(0, 𝜎𝑂𝑇𝐸
2 ) . 𝜎𝑂𝑇𝐸 

denotes the standard deviation of off target effect. Unless declared explicitly, we set 𝜎𝑂𝑇𝐸 = 0.2 

in all following simulation studies in this chapter. 

7.2  RSEA Simulation study 

In this section, we evaluated the performances of different statistic options in RSEA regarding 

to their power and type I error rate performances when drug treatment group is compared to 

control group. For the power study, the significance level is chosen as 5% in all simulation studies 

in this chapter. 

7.2.1 RNAi Level Statistic Comparison 

For RNAi level statistic, we implemented three options: student‟s t, regularized t and SAM t. 

We compared their power and type I error rate curves in different situations based on simulated 

data. The situations tested include the four combinations of varying library redundancy or sample 

size, and mean or max-mean as RNAi set statistic. The comparison results are present below. 

(1) RNAi redundancy as independent variable 

We fist compare the performance of the three RNAi level statistics under different RNAi 

redundancy (number of RNAis targeting each gene). The parameters used for this comparison are 

listed in Table 7.1. In each simulation run, we simulated RNAis targeting 2000 genes in total. 25% 

of these genes are drug resistant, 25% are drug sensitive and the left 50% are neutral. To obtain 

more accurate estimate, we run the simulation five times and estimate the power and type I error 

rate estimation as the average of the 5 runs. In all simulation results in this chapter, “power” 

actually refers to the percentage of genes detected as significant with 5% as the p value cutoff 

when each gene is assigned with a certain amount of effect on drug response. The “type I error rate” 

actually refers to the percentage of genes detected as significant with 5% as the p value cutoff 

when each gene has no effect on drug response. 
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Table 7.1 Parameters used for data generation. 

Parameter Description Value 

SimulationRun number of simulation runs 5 

RNAi level statistic - Bayes t 

RNAi set statistic - Mean 

Significance assessment - permutation 

Perm/Resample Num number of permutation or resampling times 1000 

SensitiveGenePct percentage of drug sensitive genes 25% 

ResistantGenePct percentage of drug resistant genes 25% 

Sample size number of replicates in each group 10 

TotalGeneNum total number of genes in each simulation run 2000 

The power simulation results are listed in Table 7.2 and plotted in Figure 7.2. They indicate 

that SAM t has the highest power than the others even though the power difference between SAM 

and regularized t is small (around 1%). 

Table 7.2 Statistical power comparison among RNAi level statistics 

RNAi redundancy Regularized t SAM t student‟s t 

2 77.1% 78.1% 74.8% 

3 86.6% 88.1% 85.1% 

4 91.8% 93.4% 91.4% 

5 95.5% 95.9% 95.1% 

6 97.6% 98.2% 97.3% 

7 99.0% 98.9% 98.3% 

 
Figure 7.2 Comparison among RNAi level statistics 

The type I error rate simulation results are listed in Table 7.3 and plotted in Figure 7.3. They 

indicate that SAM t has the highest type I error rate than the others (around 4~6% higher). The 

performances for regularized and student‟s t are close (the difference is around 2%). 
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Table 7.3 Type I error rate comparison among RNAi level statistics 

RNAi redundancy Regularized t SAM t student‟s t 

2 8.2% 12.1% 6.7% 

3 8.2% 12.4% 6.4% 

4 8.9% 11.3% 7.0% 

5 8.1% 12.1% 6.8% 

6 7.7% 11.6% 7.1% 

7 8.9% 11.3% 7.7% 

 
Figure 7.3 Type I error rate comparison 

These results suggest regularized t might the best choice as RNAi level statistic if we take both 

sensitivity and specificity into consideration for the simulated data with “mean” chosen as RNAi 

set statistic. Below, we continue to investigate their performance when “max-mean” is chosen as 

RNAi set statistic. 

Then we compare the RNAi level statistics when the RNAi set statistic is chosen as max-mean. 

The simulation settings are the same as above except that RNAi set statistics is chosen as 

max-mean. 

The power simulation results are listed in Table 7.4 and plotted in Figure 7.4. They indicate 

that SAM t has the highest power than the others even though the power difference between SAM 

and regularized t is small (around 1%). 

Table 7.4 Statistical power comparison among RNAi level statistics 

RNAi redundancy Regularized t SAM t student‟s t 

2 78.0% 80.8% 76.9% 

3 89.0% 90.2% 87.8% 

4 94.4% 95.3% 93.3% 

5 96.8% 97.6% 96.3% 

6 98.6% 99.0% 98.0% 

7 99.3% 99.4% 99.2% 
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Figure 7.4 Comparison among RNAi level statistics 

The type I error rate simulation results are listed in Table 7.5 and plotted in Figure 7.5. They 

indicate that SAM t has the highest type I error rate than the others (around 4~10% higher). The 

performances for regularized and student‟s t are close (the difference is around 1~3%). 

Table 7.5 Type I error rate comparison among RNAi level statistics 

RNAi redundancy Regularized t SAM t student‟s t 

2 8.4% 12.6% 7.6% 

3 9.5% 14.2% 7.8% 

4 9.9% 14.4% 7.7% 

5 10.4% 16.2% 7.6% 

6 9.8% 16.6% 7.8% 

7 11.4% 18.6% 7.8% 

  
Figure 7.5 Comparison among RNAi level statistics 

So these results suggest the same conclusion: regularized t might be the best choice as RNAi 

level statistic if we take both sensitivity and specificity into consideration. Below, we continue to 

investigate their performance when “max-mean” is chosen as RNAi set statistic. 

(2) Sample size as independent variable 

We then compare the performance of the three RNAi level statistics under different sample 
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size. The parameters used for this comparison are listed in Table 7.6. Note that different from the 

last section, we use RNAi resampling as the significance assessment method here because the 

sample size could be as small as 3. In each simulation run, we simulated RNAis targeting 2000 

genes in total. 10% of these genes are drug resistant, 10% are drug sensitive and the left 80% are 

neutral. To obtain more accurate estimate, we run the simulation five times and estimate the power 

and type I error rate estimation as the average of the 5 runs. 

Table 7.6 Parameters used for data generation 

SimulationRun 5 

RNAi set statistic mean 

significance assessment RNAi resampling 

Perm/Resample Num 5000 

SensitiveGenePct 10% 

ResistantGenePct 10% 

TotalGeneNum 2000 

RNAi redundency 4 

The power simulation results are listed in Table 7.7 and plotted in Figure 7.6. They indicate 

that regularized t has the highest power than the others and student‟s t has the lowest power, with 

the difference as big as 13% for certain sample size. 

Table 7.7 Statistical power comparison among RNAi level statistics 

Sample Size Regularized t SAM t student‟s t 

3 57.5% 54.8% 44.4% 

4 62.6% 59.2% 54.7% 

5 63.6% 63.1% 59.8% 

6 66.1% 66.4% 65.6% 

7 67.2% 67.1% 64.3% 

8 69.5% 69.5% 67.4% 

9 70.3% 70.8% 69.1% 

 
Figure 7.6 Comparison among RNAi level statistic options  

The type I error rate simulation results are listed in Table 7.8 and plotted in Figure 7.7. They 
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indicate that regularized t has the lowest type I error rate even the magnitude is small (less than 2%) 

for all three methods. 

Table 7.8 Type I error rate comparison among RNAi level statistics 

Sample Size Regularized t SAM t student‟s t 

3 0.938% 0.913% 1.638% 

4 0.463% 0.775% 1.050% 

5 0.400% 0.363% 0.500% 

6 0.163% 0.125% 0.300% 

7 0.150% 0.113% 0.175% 

8 0.025% 0.100% 0.125% 

9 0.013% 0.050% 0.125% 

 
Figure 7.7 Comparison among RNAi level statistic options  

In summary, all the above comparisons among the three RNAi level statistics suggest 

regularized t might be the best choice as RNAi level statistic if we take both sensitivity and 

specificity into consideration. Below, we continue to compare performances of the RNAi set 

statistics. 

7.2.3 RNAi Set Statistic Comparison 

For RNAi set statistic, we have three options: mean, max-mean and Kolmogorov –Smirnov 

statistics. We implemented the first two with Matlab. The third one is implemented in GSEA 

software package [7]. In this section, we compared their power and type I error rate curves for 

different RNAi redundancy for the first two. The performance of Kolmogorov –Smirnov statistics 

will be investigated in next section. In this simulation study, the RNAi level statistic is chosen as 

regularized t statistic, which is indicated to have best performance compared to the other two 

RNAi level statistics. Sample permutation is utilized in the significance assessment procedure and 

the number of replicates in each group is 10. 

The power simulation results are listed in Table 7.9 and plotted in Figure 7.8. They indicate 

that max-mean has a little higher power than the mean, the difference ranging from 0.3% to 2.6%. 
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Table 7.9 Statistical power comparison between RNAi set statistics 

RNAi redundancy mean max-mean 

2 77.1% 78.0% 

3 86.6% 89.0% 

4 91.8% 94.4% 

5 95.5% 96.8% 

6 97.6% 98.6% 

7 99.0% 99.3% 

 
Figure 7.8 Comparison among RNAi set statistic options  

The type I error rate simulation results are listed in Table 7.10 and plotted in Figure 7.9. They 

indicate that max-mean has a little higher type I error rate than mean, with the difference ranging 

from 0.2% to 2.5%. 

Table 7.10 Type I error rate comparison between RNAi set statistics 

RNAi redundancy mean max-mean 

2 8.2% 8.4% 

3 8.2% 9.5% 

4 8.9% 9.9% 

5 8.1% 10.4% 

6 7.7% 9.8% 

7 8.9% 11.4% 
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Figure 7.9 Comparison among RNAi set statistic options 

In RNAi screen, many times the control of false negative rate is more important than the false 

positive rate because false positive candidates can be removed in following validation experiments. 

So based on the above comparison results, max-mean might be a choice compared to mean as 

RNAi set statistic if we take both sensitivity and specificity into consideration. Below, we are 

going to compare the performances of regularized t - maxmean combination to GSEA method. The 

reason why we don‟t compare max-mean Kolmogorov–Smirnov directly is that it‟s hard to 

integrate regularized t statistic into GSEA software package for us.  

7.2.4 Regularized t & Max-mean vs GSEA 

We compared their power and type I error rate curves based on simulated data. The 

comparison results are present below. 

(1) Sample Permutation 

First, we compare them based on sample permutation. The number of permutation times is 

1000 for both.  

The power simulation results are listed in Table 7.11 and plotted in Figure 7.10. They indicate 

that regularized t - Maxmean combination has much higher power than GSEA. 

Table 7.11 Statistical power comparison between GSEA and RSEA 

RNAi redundancy Regularized t - maxmean GSEA 

2 78.0% 40.9% 

3 89.0% 56.6% 

4 94.4% 70.6% 

5 96.8% 81.8% 

6 98.6% 85.0% 

7 99.3% 90.5% 
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Figure 7.10 GSEA vs. regularized t & max-mean 

The type I error rate simulation results are listed in Table 7.12 and plotted in Figure 7.11. They 

indicate that GSEA has lower type I error rate than the other. The type I error rate for GSEA is 

around 2.5% while for the other one, it‟s around 10%. 

Table 7.12 Type I error rate comparison between GSEA and RSEA 

RNAi redundancy Regularized t & Max-mean GSEA 

2 8.4% 1.4% 

3 9.5% 2.0% 

4 9.9% 2.2% 

5 10.4% 2.1% 

6 9.8% 2.0% 

7 11.4% 2.4% 

 
Figure 7.11 GSEA vs. regularized t & maxmean 

As mentioned before, the control of false negative rate is more important than the false 

positive rate in RNAi screen at most times. So based on the above comparison results, regularized 

t - maxmean combination might be a better choice compared to GSEA. Below, we continue to 

compare their performances based on RNAi resampling. 

(2) RNAi Resampling 
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To achieve a better approximation of the null distribution, the number of resampling times for 

regularized t – maxmean is set as 5000 in the simulation study. For GSEA, we choose 1000 times 

of resampling in consideration of the time cost (GSEA R package is much slower than our Matlab 

implemented regularized t – maxmean). We choose the default parameter setting for GSEA in their 

software package. The parameter settings for regularized t & max-mean are listed in Table 7.13: 

Table 7.13 Parameter setting for regularized t – maxmean combination 

SimulationRun 10 

RNAi level statistic Bayes t 

RNAi set statistic Max-mean 

Perm/Resample Num 5000 

SensitiveGenePct 0.1 

ResistantGenePct 0.1 

Sample size 10 

TotalGeneNum 4000 

The power simulation results are listed in Table 7.14 and plotted in Figure 7.12. They indicate 

that regularized t - Maxmean combination has much higher power than GSEA. 

Table 7.14 Statistical power comparison between GSEA and RSEA 

RNAi redundancy Regularized t & Max-mean GSEA 

2 40.2% 38.2% 

3 56.9% 46.8% 

4 69.3% 61.3% 

5 78.7% 73.8% 

6 84.1% 81.0% 

7 89.4% 84.8% 

 
Figure 7.12 GSEA vs. regularized t & max-mean 

The type I error rate simulation results are listed in Table 7.15 and plotted in Figure 7.13. They 

indicate that both have very lower type I error (less than 1%). 
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Table 7.15 Type I error rate comparison between GSEA and RSEA 

RNAi redundancy Regularized t & Max-mean GSEA 

2 0.009% 0.650% 

3 0.003% 0.725% 

4 0.000% 0.857% 

5 0.000% 0.708% 

6 0.000% 0.750% 

7 0.006% 0.438% 

 
Figure 7.13 GSEA vs. regularized t & max-mean 

So based on the above comparisons utilizing sample permutation or RNAi resampling, 

regularized t - maxmean combination might be a better choice compared to GSEA. Below, we are 

going to evaluate the performances of different Significance Assessment Methods. 

7.2.5 Significance Assessment Methods Comparison 

We studied the performance of resampling and permutation under different RNAi redundancy 

and sample size.  

(1) RNAi redundancy as independent variable: 

We first present the result under different RNAi redundancy. Parameters used to generate the 

data are listed in Table 7.16: 

Table 7.16 Parameters used for data simulation 

 Permutation RNAi resampling 

SimulationRun 5 10 

RNAi level statistic Bayes t Bayes t 

RNAi set statistic Max-mean Max-mean 

Perm/Resample Num 1000 5000 

SensitiveGenePct 25% 10% 

ResistantGenePct 25% 10% 

Sample size 10 10 

TotalGeneNum 2000 4000 
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The power simulation results are listed in Table 7.17 and plotted in Figure 7.14. They indicate 

that permutation has much higher power than resampling, especially when the RNAi redundancy 

is low. 

Table 7.17 Power comparison between resampling and permutation 

RNAi redundancy resampling permutation 

2 40.2% 78.0% 

3 56.9% 89.0% 

4 69.3% 94.4% 

5 78.7% 96.8% 

6 84.1% 98.6% 

7 89.4% 99.3% 

 
Figure 7.14 Comparison between resampling and permutation 

The type I error rate simulation results are listed in Table 7.18 and plotted in Figure 7.15. They 

reveal that resampling has lower type I error rate than permutation. The type I error rate for 

resampling is almost 0 while for the other one, it‟s around 10%. 

Table 7.18 Type I error rate comparison between resampling and permutation 

RNAi redundancy resampling permutation 

2 0.9% 8.4% 

3 0.3% 9.5% 

4 0.0% 9.9% 

5 0.0% 10.4% 

6 0.0% 9.7% 

7 0.6% 11.4% 
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Figure 7.15 Comparison between resampling and permutation 

(2) Sample size as independent variable: 

We then present the result under different sample size. Parameters used to generate the data are 

listed in Table 7.19: 

Table 7.19 Power comparison between resampling and permutation 

 RNAi resampling Sample permutation 

SimulationRun 5 2 

RNAi level statistic Bayes t Bayes t 

RNAi set statistic Max-mean Max-mean 

Perm/Resample Num 5000 1000 

SensitiveGenePct 10% 25% 

ResistantGenePct 10% 25% 

TotalGeneNum 4000 1000 

RNAi redundency 4 4 

The power simulation results are listed in Table 7.20 and plotted in Figure 7.16. They indicate 

that permutation has much higher power than resampling for most cases, except when sample size 

=3. In that case, the power almost reduces to 0. This result matches our expectation. When sample 

size=3, there are only 20 unique permutations can be generated by the permutation method. So it‟s 

rare to have P-value less than 5%. 

Table 7.20 Power comparison between resampling and permutation 

Sample Size resampling permutation 

3 54.3% 0.6% 

4 59.9% 77.0% 

5 63.5% 86.3% 

6 64.9% 89.4% 

7 63.3% 89.9% 

8 65.5% 92.4% 

9 68.9% 92.7% 

10 69.3% 94.4% 
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Figure 7.16 Comparison between resampling and permutation 

The type I error rate simulation results are listed in Table 7.21 and plotted in Figure 7.17. They 

reveal that resampling has lower type I error rate than permutation. The type I error rate for 

resampling is almost 0, while for the other, it‟s still around 10%. 

Table 7.21 Type I error rate comparison between resampling and permutation 

Sample Size resampling permutation 

3 0.45% 0.10% 

4 0.28% 8.30% 

5 0.19% 8.20% 

6 0.09% 9.60% 

7 0.05% 8.20% 

8 0.01% 10.70% 

9 0.00% 9.80% 

10 0.00% 9.90% 

 
Figure 7.17 Comparison between resampling and permutation 

So based on the above comparison studies, for RNAi screen data analysis, permutation might 

be a better choice compared to resampling, especially when sample size is larger than 6 (there are 

more than 1000 unique permutations when sample size is larger than 6). When sample size is small, 

resampling might a better choice especially for the extreme case when sample size equal to 2 or 3. 
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7.3 SEM Simulation Result 

We compare the power and type I error of the three models based on simulated data. In each 

simulation, the total number of genes is 1000. 

7.3.1 Powers Comparison (RNAi Redundancy) 

The result is shown in Figure 7.18. The RNAi redundancy ranges from 2 to 7. From that figure, 

we can see RMANOVA have slightly higher statistical power than SEM and significantly higher 

power than MANOVA. The regular latent SEM is believed to match the RNAi screen mechanism 

more closely. However in Figure 7.18 its power is lower than uni-variate approach for repeated 

measures ANOVA. The explanation might be that regular latent SEM has too many parameters to 

estimate, which results in the frequent LEVMAR Optimization failure in TCALIS procedure of 

SAS software. When we increase the RNAi off target effect, the power comparison between 

regular latent SEM and uni-variate approach for repeated measures ANOVA is shown in Figure 

7.19. In this simulation, gene effect is set as 0.8, variance of measurement error is set as 0.16, and 

variance of off target effect is set as 0.25. Figure 7.19 reveals that for large off target effect, regular 

latent SEM has higher power than uni-variate approach for repeated measures ANOVA. This 

matches our expectation. Regular latent SEM allows different coefficient for the RNAis targeting 

the same gene, compared to the equal coefficient assumption in uni-variate approach for repeated 

measures ANOVA. Thus it should has higher power to detect the gene effect signal behind the off 

target effect signal. 

 
Figure 7.18 Statistical power varies with RNAi redundancy 
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Figure 7.19 Power comparison under large off target effect 

 

7.3.2 Power Comparison (Sample Size) 

The experiment has two groups, treatment group and control group. In the simulation study, 

we let the two groups have equal sample size n. We investigate the influence of sample size n on 

statistical power in the SEM model. The result is shown in Figure 7.20. In our simulation study, the 

sample size in each group ranges from 5 to 30. As we can see from the plot, the statistical power of 

all the three models increases with sample size. However, when sample size is fixed, RMANOVA 

and SEM have significantly higher power than MANOVA. And for SEM and RMANOVA, the 

statistical power increases relatively fast from 79% to 89% when the sample size increases from 5 

to 10. After that, the power stabilizes even if the sample size continues to increase. For MANOVA, 

the statistical power continues to grow with the increase of sample size. 

 
 

Figure 7.20 Statistical power varies with sample size 

 

7.3.3 Type I Error Rate Comparison (RNAi Redundancy) 

I also compared the different performance of the three models on type I error rate. First, I 

varied the RNAi redundancy with other parameters fixed. Figure 7.21 shows the result. We can see 

that RMANOVA has lowest type I error rate compared to the other two models. SEM has the 

highest type I error rate in most cases except when RNAi number = 2. And we can see that for 
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MANOVA, the RNAi number has significant effect on type I error rate. MANOVA‟s type I error 

rate increases from 6% to 24% as the RNAi number increases from 2 to 4. But after that, the error 

rate goes all the way down to16% as the RNAi number continues to increase to 7. Compared to 

MANOVA, the type I error rate changes slightly as  the RNAi redundancy increase, for both SEM 

and RMANOVA models. 

 
Figure 7.21 Type I error rate varies with RNAi redundancy 

 

7.3.4 Type I Error Rate Comparison (Sample Size) 

We also studied the sample size influence on type I error rate. Figure 7.22 shows the result for 

all three models when RNAi number is fixed at 2. We can see that SEM has the lowest type I error 

rate and MANOVA has the highest one. As sample size increase, the type I error rate decreases for 

SEM and RMANOVA. However, there is oscillation for RMANOVA.  

 
Figure 7.22 Type I error rate varies with sample size 

 

7.4  RSEA - SEM Comparison 

We have done the comparisons within RSEA and with SEM. Here we are going to compare 

RSEA directly to SEM. Again, we compared their performances under different RNAi redundancy 

and sample size separately.  

7.4.1 RNAi Redundancy as Independent Variable 
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First we compared their performances under different RNAi redundancy. The parameter 

setting for SEM is described in Table 7.22 . And for RSEA, it‟s listed in Table 7.23.  

Table 7.22 Paremeter setting for SEM 

model UniVariateRMANOVA 

genenum 1000 

repnum 10 

 

Table 7.23 Parameter setting for RSEA 

SimulationRun 5 

RNAi level statistic Bayes t 

RNAi set statistic Max-mean 

significance assessment permutation 

Perm/Resample Num 1000 

SensitiveGenePct 25% 

ResistantGenePct 25% 

Sample size 10 

TotalGeneNum 2000 

The power simulation results are listed in Table 7.24 and plotted in Figure 7.23. They indicate 

that SEM and RSEA have very similar power for most cases. For RNAi redundancy =4, there 

seems to be a perturbation on the curve. This perturbation might come from the estimation 

variation considering the SEM simulation, the power is calculated on only 1000 genes. 

Table 7.24 Power comparison between Univariate RMANOVA and RSEA 

RNAi redundancy Univariate RMANOVA RSEA 

2 76.9% 78.0% 

3 85.5% 89.0% 

4 93.4% 94.4% 

5 96.2% 96.8% 

6 97.9% 98.6% 

7 98.7% 99.3% 

 
Figure 7.23 Univariate RMANOVA vs. RSEA 

The type I error rate simulation results are listed in Table 7.25 and plotted in Figure 7.24. They 
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reveal that RSEA and SEM have very similar type I error rate performances. The type I error of 

RSEA goes up slowly as RNAi redundancy increases. While for SEM, this rate remains constant 

with small oscillation. 

Table 7.25 Comparison between Univariate RMANOVA and RSEA 

RNAi redundancy Univariate RMANOVA RSEA 

2 8.2% 8.4% 

3 9.7% 9.5% 

4 9.0% 9.9% 

5 10.5% 10.4% 

6 8.9% 9.8% 

7 9.5% 11.4% 

 
Figure 7.24 Univariate RMANOVA vs. RSEA 

 

7.4.2 Sample Size as Independent Variable 

Then we compared their performances under different sample size. The parameter setting for 

SEM is described in Table 7.26. And for RSEA, it‟s listed in  

 

 

 

 

 

Table 7.27.  

Table 7.26 Parameters used for SEM  

Model UNIRMANOVA 

Genenum 1000 

Hpnum 3 

Workhpct 0.8 
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Effect 3 

Exptsigma 1 

offtgsigma 0.2 

 

 

 

 

 

 

Table 7.27 Parameters used for RSEA 

SimulationRun 2 

RNAi level statistic Bayes t 

RNAi set statistic Max-mean 

significance assessment permutation 

Perm/Resample Num 1000 

SensitiveGenePct 25% 

ResistantGenePct 25% 

TotalGeneNum 1000 

RNAi redundency 3 

The power simulation results are listed in Table 7.28 and plotted in Figure 7.25. They indicate 

that RSEA has a little bit higher power than SEM for most cases (around 2%). 

Table 7.28 Power comparison 

Sample Size Univariate RMANOVA RSEA 

5 77.2% 79.4% 

10 85.5% 89.0% 

15 91.1% 90.9% 

20 91.9% 93.2% 

25 92.2% 94.7% 

30 93.8% 95.7% 

 
Figure 7.25 Univariate RMANOVA vs. RSEA 
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The type I error rate simulation results are listed in Table 7.29 and plotted in Figure 7.26. They 

reveal that the type I error of SEM is somehow lower than RSEA at mast cases. And the type I error 

of SEM is more stable compared to RSEA. From Figure 7.26, it‟s indicated that the type I error of 

RSEA goes up gradually as sample size increase. While for SEM, the curve remains flat. 

 

 

Table 7.29 Type I error rate comparison 

Sample Size Univariate RMANOVA RSEA 

5 11.6% 9.9% 

10 9.7% 9.5% 

15 10.6% 11.8% 

20 10.2% 11.0% 

25 11.3% 12.1% 

30 9.6% 14.1% 

 
Figure 7.26 Univariate RMANOVA vs. RSEA 

In summary, SEM and RSEA have very similar and comparable statistical performance. The 

RSEA might have a little bit higher power in some cases while the type I error rate of SEM is more 

controllable, without increase with sample size or RNAi redundancy. 
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Chapter 8 . Case Study 

In the previous chapter, we investigate the performance of RSEA and SEM based on simulated 

data. In this chapter, we will apply the RSEA in the data analysis of PLKi RNAi screen 

accomplished in our lab. Important results of data analysis will be presented and discussed, 

including the preprocessing part. 

8.1  Preprocessing 

After we get the raw microarray data from Agilent feature extraction software, the first step 

we did is to generate boxplots to check the quality of each array. 

8.1.1 Boxplot 

Figure 8.1 to Figure 8.5 show the boxplots for all 5 cell lines. The left represents the barcode 

probes and the right represents half hairpin probes. The green color represents the cy3 channels 

and the red represents the cy5 channels. Based on these graphs, there seem to be one outlier in 

H460. After careful check with the outlier, we decided to keep but will pay special attention to it in 

the following analysis.  

                     
Figure 8.1 Intensity boxplot for A549 
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Figure 8.2 H322 intensity boxplot  

              
Figure 8.3 H460 intensity boxplot 

              
Figure 8.4 H522 intensity boxplot   
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Figure 8.5 J42-L83 intensity boxplot 

 

8.1.2 PCA 

After preprocessing as described in chapter 4, we checked the PCA plots of these cell lines 

(shown in Figure 8.6 to Figure 8.8). In these plots, black and green circles represents arrays from 

NONE and DMSO groups accordingly, and green and blue circles represents arrays from LOW 

and HIGH groups accordingly. In these plots, the drug treatment groups are partially or well 

separated from control groups, which indicates that drug treatment is an important source of 

variation in these experiments.  

                   
Figure 8.6 A549 (left) and H322 (right) 
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Figure 8.7 H460 (left) and H522 (right) 

 
Figure 8.8 J42-L83 PCA plot 

 

8.2  GSA analysis 

Previously, we used Tibshirani‟s Gene Set Analysis [100] to analyze all the five cell lines. The 

default GSA parameters are used when running the R software package “GSA”. Number of 

permutation times is set as 1000. Based on the analysis, gene RARA (“retinoic acid receptor alpha”) 

is the only one significantly enriched in four out of all five cell lines at 5% significance level. The 

test detail is as follows: 

Table 8.1 GSA test result for RARA in all five cell lines 

CellLine P value Total 

RNAi Num 

Depleted 

RNAi Num 

Enriched 

RNAi Num 

Fold 

Change 

A549 0 4 1 3 1.5 

H322 10.2% 4 1 3 1.6 

H460 0 3 0 3 4.8 

H522 0 3 1 2 1.6 

J42-L83 0 4 1 3 1.6 
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In the RNAi library, gene “RARA” has four RNAis each targeting different positions of this 

gene, which are listed in Table 8.2. The details such as the sequence design of these RNAis can be 

found at http://cancan.cshl.edu/cgi-bin/Codex/Codex.cgi. 

There is one issue needs to be clarified regarding to Table 8.1. In the column “Total RNAi 

Num”, the values changes between 3 and 4, rather than being constant. This is due to the 

background filter. For example, in cell line H460, RNAi “V2HS_239390” is removed from the 

GSA analysis by the background filter due to low probe intensity.   

Table 8.2 Four RNAis targeting RARA. 

V2HS_131541 V2HS_131536 V2HS_239486 V2HS_239390 

 

8.3  RSEA analysis 

Besides the GSA, we use the general RSEA framework to test the significance of gene RARA. 

Based on the same data, we get the result as shown in Table 8.3. 

Table 8.3 RSEA result for RARA in all five cell lines. 

Cell Line P-value based on 

sample permutation 

P-value based on  

RNAi resampling 

A549 6.6% 5.1% 

H322 11.3% 4.6% 

H522 9.1% 28.7% 

J42 9.5% 10% 

H460 2.5% 2.8% 

In RSEA, the RNAi level statistic is chosen as “Regularized t test”, and the RNAi set statistic 

is chosen as “Max-mean” statistic. For significance assessment, we tried both sample permutation 

and RNAi resampling, and the p values are reported in the second and third columns separately. As 

we can see, the p values in Table 8.3 are much higher than those in Table 8.1. However, 

considering the small sample size (four cell lines has only three replicates in each condition and the 

other has four replicates), p values in Table 8.3 seems to be more trustable. And if we choose 10% 

significance level, RARA will still be significantly enriched in four out of all five cell lines, which 

means RARA might be a drug resistant gene. 

8.4  Validation 

To verify our finding, Nancy Liu, a former postdoc in our lab who did most if not all of the 

experiments in the PLKi RNAi screen project, did the validation experiments.  

8.4.1 Silencing RARA Confers PLKi Resistance 

First validation experiment is to test the hypothesis that silencing RARA confers PLKi 

resistance. H460 cancer cells are devided into three groups: mock treatment, low dose drug 

treatment and high dose drug treatment. For each group, we have three replicate plates, and we use 

RNAi C11 to silence down RARA gene expression in one plate, and then use another RNAi G6 to 
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silence down RARA in the second plate. The third plate is left alone without RNAi silencing. Then 

for each plate, we measure the percent of variable cells relative to control plate (without drug 

treatment or shRNA silencing). The measurement result is illustrated in Figure 8.9. The left shows 

the Effect of RARA RNAis on PLKi resistance and the right shows the western blot analysis. 

       
Figure 8.9 Silencing RARA confers PLKi resistance 

From Figure 8.9(a), we can see that in both low and high dose drug treatment groups, the 

number of viable cells in the RNAi C11 silenced plates increases compared to the plate without 

RNAi silencing. And Figure 8.9(b) western blot confirms that RARA gene expression is 

significantly reduced by RNAi C11. 

8.4.2 RARA Activation Confers PLKi Sensitivity 

The second validation experiment is to test the hypothesis that RARA activation confers PLKi 

sensitivity. Retinoic acid receptor (RAR) belongs to a gene superfamily of hormone nuclear 

receptors that act as ligand-dependent transcriptional factors [108]. In our validation experiment, 

we use three different agents to activate RARA expression separately: All-trans retinoic acid 

(ATRA) which is a ligand of RAR and exerts its biologic effect by binding to RAR, 9-cis retinoic 

acid (9-cis-RA)which binds only to retinoid X receptor, and Am80 which is RAR alpha-specific 

agonist. The experiment result is shown in Figure 8.10~Figure 8.12. 

 
Figure 8.10 Combination treatment of ATRA+PLKi in H460 

In Figure 8.10, H460 cells were treated with ATRA, PLKi, or a combination of ATRA and 

PLKi. N = untreated. D = DMSO. A = ATRA (1µM). P1 = PLKi (20nM). P2 = PLKi (30nM). P3 = 

PLKi (100nM). P4 = PLKi (300nM). 
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Figure 8.11 Combination treatment of 9-cis-RA +PLKi in H460 

In Figure 8.11, H460 cells were treated with 9-cis-RA, PLKi, or a combination of 9-cis-RA 

and PLKi. N = untreated. D = DMSO. A = 9-cis-RA (1µM). P1 = PLKi (20nM). P2 = PLKi 

(30nM). P3 = PLKi (100nM). P4 = PLKi (300nM). 

 
Figure 8.12 Combination treatment of Am80 + PLKi in H460 

In Figure 8.12, H460 cells were treated with ATRA, PLKi, or a combination of Am80 and 

PLKi. N = untreated. D = DMSO. A = Am80 (1µM). P1 = PLKi (20nM). P2 = PLKi (30nM). P3 = 

PLKi (100nM). P4 = PLKi (300nM). 

We can clearly see that all three agents sensitize H460 cells to PLKi. This result gives us more 

confidence that RARA activation confers PLKi sensitivity.  
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Chapter 9 . Discussion and Conclusion 

In this thesis, we propose RNAi Set Enrichment Analysis method and Structural Equation 

Modeling to take multiple RNAis into consideration to access the gene effect on drug response.  

RSEA has multiple modules. And each module has multiple statistic choices. Based on 

simulation studies, we tested which statistic choice has the best performance in terms of statistical 

power and type I error rate. The results indicate that the combination of regularized t static as 

RNAi level statistic, max-mean as RNAi level, and permutation as significance assessment 

method might achieve the best performance in most cases. However, if the sample size is small, 

resampling, instead of permutation, might be the better choice especially for the extreme case 

when sample size equal to 2 or 3. 

For SEM, our simulation studies reveal that Uni-variate analysis approach for repeated 

measures ANOVA might be the better choice for small target effect. However, for large off target 

effect, regular latent SEM has higher statistical power than univariate approach for repeated 

measures ANOVA 

Compared to RSEA, SEM has very similar statistical performance in our simulations. The 

RSEA might have a little bit higher power in some cases while the type I error rate of SEM is more 

stable, without increase with sample size or RNAi redundancy. 

To verify our models, we apply them with real data from our experiments. The result shows 

that the drug resistant candidate gene RARA identified by our models is highly likely to be a true 

positive based on the validation experiments. 

Of course, most of our current simulation results are based on the small off target effect and 

hairpin independence structure assumption. In the future, simulations under different assumptions 

should be done. For example, we can vary the standard deviation of measurement error, standard 

deviation of the off target effect, hairpin working probability and hairpin correlation structure. 

Under these situations, the performance of the RSEA and SEM models might be different from 

current results. 

In addition, the validity and usefulness of our models still need to be tested with more real 

biological data. In the future, we hope more and more RNAi screen data will be published and can 

be publically accessed.
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