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Abstract of the Dissertation 

Mixture Modeling of Next Generation Sequencing and its Applications to Genotyping and 

Estimating Genotype Frequencies 

by 

Jayon Lihm 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

(Concentration – Statistics) 

Stony Brook University 

2013 

 

Estimating the probability that an individual has a base pair nucleodite different from the 

reference nucleotide is important in next generation sequencing (NGS) research. I present a 

method for modeling the frequency of single nucleotide polymorphism variants in the exome 

capturing sequence data of an individual. A mixture distribution was used to model the 

proportion of alternative alleles at a specified base pair position assuming a biallelic single 

nucleotide polymorphism model. I measured the proportion of alternative alleles for positions in 

chromosome 1 exome sequencing data fro two trios taken from the Pilot 3 data in the 1000 

Genomes Project. The measurements were based on the counts of reference and alternative 

alleles calculated by the SAMtools genetic software. The mixture model studied here had two 

point distributions and five continuous distributions. I applied the expectation-maximization 

algorithm to obtain the maximum likelihood estimates of the mixture model parameters for each 
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individual. The fitted mixture model well described the properties of the distribution of the 

alternative allele proportions. The estimates of mixing proportions were used to estimate the 

genotype frequencies in the data. Each individual had different estimates of model parameters, 

but the estimates of genotype fractions of the six individuals were similar. The estimated 

fractions of the members from each trio were similar to each other. I next combined two 

approaches of clustering and mixture modeling to genotype the exomic base pair positions of an 

individual using next generation sequencing data. The alternative allele proportion at a position 

was used to measure the Bayesian posterior probability of single nucleotide polymorphism at a 

position. I developed software package named “SNVclust” to generate alternative allele 

proportions and genotypes of an individual. This software was used to make a call set of single 

nucleotide polymorphism positions and genotypes for each of three members of a trio from the 

1000 Genomes Project. The results from this software were compared with the released single 

nucleotide polymorphisms in the 1000 Genomes Project and results from two other programs. 

Then I found that minimal average coverage greater than 43 should be to use SNVclust for whole 

exome sequencing data.   
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Chapter 1 Introduction 

1.1 Research Background 

Many types of variants exist in the genome, ranging from single nucleotide variation to structural 

variants including insertions and deletions, copy number variations, inversions and 

translocations. The single nucleotide polymorphism (SNP) is one of the most abundant [1] and 

widely studied genomic variation. A SNP is a single nucleotide change in the DNA sequence of 

an individual compared to those of other individuals. Recent improvements in next-generation 

sequencing (NGS) technologies have enabled more reliable identifications of such genomic 

variations. 

NGS is a parallelized sequencing process producing many millions of short sequences of 

nucleotides called reads. Each read consists of four nucleotides, A, T, C or G. Dealing with so 

many reads is one of major tasks in NGS data analysis. There are two major approaches to 

analyzing data from NGS, resequencing and de novo assembly [2]. In de novo assembly, reads 

are assembled to construct the genome sequence based on overlapping parts of reads. In the 

resequencing approach, each read is mapped and aligned to the known reference genome. Due to 

the limited length of reads, the resequencing approach has been used in the majority of NGS 

research. Considerable bioinformatics software has been developed for resequencing to detect 

genomic variants. There are software programs developed for mapping to the reference genome 

such as MAQ (Mapping and Assembly with Quality) [3], BWA (Burrows-Wheeler Aligner) [4], 

SOAP (Short Oligonucleotide Analysis Package) [5], and Bowtie [6]. Software such as 

SAMtools (Sequence Alignment/Map Tools) [7], VarScan [8], and GATK (Genomic Analysis 
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ToolKit) [9] are used to detect SNP or other variants such as copy number variations,  short 

insertions, or deletions. 

 

1.2 Bayesian Formulation for Genotyping 

The Bayesian formulation is a useful statistical method for genotyping and discovering SNP 

positions [10]. Many variant calling algorithms take a Bayesian approach to calculating genotype 

likelihoods with different settings of prior and posterior probabilities. Let G be a genotype and D 

be the data obtained. Then the posterior probability is defined to be  

 

Many existing software programs combine information from sequencing to estimate the 

prior and posterior probabilities. GATK [9, 11] calculates genotype likelihoods with the base 

quality scores expressed in the Phred scale [12, 13]. The Phred scaled quality score, q, is 

logarithmically related to base-calling error probability e as 𝑞 = −10 log!" 𝑒. The p(D|G) in 

Equation 1.1 is calculated as 

 

where A is one of the alleles in a genotype,  b is the base observed at the position, and e is the 

reversed base quality score from the Phred scale. The SOAPsnp [14] uses different information 

to construct the prior probability. The program uses the ratio of transition versus transversion 
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introduction

1.1 research background
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aa

p(G|D) =
p(G)p(D|G)

p(D)
(1.1)
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⇤
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p(b|G) (1.2)
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=
1

2
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(TiTv)1 to calculate genotype likelihoods. Using the dbSNP database, the prior probability of 

seeing a specific allele with given reference is calculated in advance by the Ti/Tv ratio. 

 Some software programs only consider three genotypes from the two most evident alleles 

out of four nucleotides rather than considering all ten possible genotypes. For example, the MAQ 

program [3] uses the two most frequent alleles at a position. It assumes that the prior probability 

p(G) is the known proportion of genotypes. The probability of having heterozygotes at a position 

is set to be 0.001 for new SNP sites and 0.2 for known SNP sites. The SNVMix program [15] 

also assumes three genotypes. It models the genotype likelihoods using a binomial mixture. Out 

of total n reads covering a position, the probability of having “a” non-reference alleles is 

assumed to follow a binomial distribution as below: 

 

where 𝜇! (k=1,2,3) is expected to be 0 for homozygous reference genotype (k=1), 0.5 for 

heterozygous genotype (k=2) and 1 for homozygous alternative genotype (k=3). 
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The raw reads are mapped to the human genome reference sequence. The information from the 

mapped reads is contained in a Binary Alignment Map (BAM) file format. A BAM file includes 

information about a sequence read such as start position, end position, mapping quality score and 

base quality score. SAMtools generates a Pileup file from the BAM file sorted by genomic 

positions [Table 1.1]. For each position, SAMtools summarizes the number of reads covering the 

position (depth), its reference allele, a set of nucleotides sequenced there, and a set of base scores 

represented in ASCII code [Table 1.2] corresponding to each nucleotide. The number of times 

that each of nucleotides appeared in the pileup file at the position is counted. The sequence 

column in the pileup file used “.” and “,” if a sequenced base matches with the reference 

sequence, and one of “A(or a)”, “C(or c)”, “T (or t)”, or “G (or g)” if a sequenced base is 

different from the reference sequence. The letter “N (or n)” appears when the sequenced base is 

too ambiguous to be specified. The signs “+” and “-” are for when insertions and deletions 

occurred, respectively. Also “*” sign is marked for a base-pair deletion. Each of the letters and 

the signs were counted. For example, the first row (Chormosome 1 Position 861,207) shows that 

three reads covered the position. All three reads contained the reference allele at the position 

(three dots), and each of them has base score letter “D”, “D”, and “5”, respectively. Table 1.2 

shows that ASCII code “D” corresponds to a decimal number 68 and ASCII code “5” 

corresponds to a decimal number 53. Base quality score is a corresponding decimal number 

minus 33. Thus, the three base score quality scores at this position are 35, 35, and 20 for each 

read. 

Then the proportion of the alternative alleles (AAP) at a position is defined as  

𝑡ℎ𝑒  𝑐𝑜𝑢𝑛𝑡  𝑜𝑓  𝑡ℎ𝑒  𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒  𝑎𝑙𝑙𝑒𝑙𝑒
𝑡ℎ𝑒  𝑠𝑢𝑚  𝑜𝑓  𝑡ℎ𝑒  𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  𝑎𝑙𝑙𝑒𝑙𝑒  𝑎𝑛𝑑  𝑡ℎ𝑒  𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒  𝑎𝑙𝑙𝑒𝑙𝑒. 
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The alternative allele is determined as the one having the greatest count among A, G, T, or C. 

When there are multiple alternative alleles with the same greatest count, one of them is used for 

calculating AAP at the position. Table 1.3 shows a part of the allele counts in the table. The table 

consists of sixteen columns; chromosome, position, reference allele at the position, depth at the 

position, the counts of reference allele, counts of A, C, T, G, a base-pair deletion (DEL), 

insertion (PLUS) and deletion (MINUS), adjusted depth (AD), the count of minor allele 

(MACOUNT), and possible minor allele (MA). The AAP can be calculated as !"#$%&'
!"

 from this 

table. 

 

Table 1.1. An Example of a Pileup File 

 

 

 

 

 

Table 1.2 ASCII Code to Decimal Number Table 

CHROM POS REF DEPTH Nucleotides Base Quality Score
1 861207 C 3 ^].^].^]. DD5
1 861208 G 8 ...^].^].^].^].^]. BA@DA4B5
1 861209 T 8 ........ FFEDBBBD
1 861210 C 8 ........ KKJJEHFI
1 861211 C 13 ........^].^].^].^].^]. LLGKGIHK'55D=
1 861212 A 14 .............^]. IIHGCDGHFFDFC?
1 861213 C 15 ..............^]. KKJJGIHJGDHIFCD
1 861214 G 22 ...............^].^].^].^].^].^].^>, FFFFCEBEDDDE@5A4DDB55.
1 861215 A 26 .....................,^].^].^].^]. IIIIADBIHHHHAEGFBECEE.DD55
1 861216 G 30 .....................t....^]C^].^].^]. NNNNGJJNMMMNJ7MKLLHKK,JJDJ$/AB
1 865518 T 38 ,.............,...c.,...,.c..........^]. GEEF>DGDIJGJJJC:IE#J?<MM3F*MMILLLKKLBD
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Note: The source for the table is the web site, http://www.asciichart.com. 

 

Table 1.3. An Example of Counting Alternative Alleles 

 

 

 

 

Dec ASCII Dec ASCII Dec ASCII Dec ASCII Dec ASCII Dec ASCII
33 ! 48 0 64 @ 80 P 96 ` 112 p
34 " 49 1 65 A 81 Q 97 a 113 q
35 # 50 2 66 B 82 R 98 b 114 r
36 $ 51 3 67 C 83 S 99 c 115 s
37 % 52 4 68 D 84 T 100 d 116 t
38 & 53 5 69 E 85 U 101 e 117 u
39 ' 54 6 70 F 86 V 102 f 118 v
40 ( 55 7 71 G 87 W 103 g 119 w
41 ) 56 8 72 H 88 X 104 h 120 x
42 * 57 9 73 I 89 Y 105 i 121 y
43 + 58 : 74 J 90 Z 106 j 122 z
44 , 59 ; 75 K 91 [ 107 k 123 {
45 - 60 < 76 L 92 \ 108 l 124 |
46 . 61 = 77 M 93 ] 109 m 125 }
47 / 62 > 78 N 94 ^ 110 n 126 ~

63 ? 79 O 95 _ 111 o

CHROM POS REF DEPTH REFCOUNT A C T G DEL N PLUS MINUS AD MACOUNT MA
1 861216 G 30 28 0 1 1 0 0 0 0 0 29 1 CT
1 861225 G 65 64 1 0 0 0 0 0 0 0 65 1 A
1 861226 G 68 67 0 1 0 0 0 0 0 0 68 1 C
1 861227 G 70 69 0 0 1 0 0 0 0 0 70 1 T
1 861228 G 70 69 0 1 0 0 0 0 0 0 70 1 C
1 861230 A 77 76 0 0 0 1 0 0 0 0 77 1 G
1 861234 G 93 91 0 1 0 0 0 1 0 0 92 1 C
1 861250 C 140 139 1 0 0 0 0 0 0 0 140 1 A
1 861256 G 157 155 0 2 0 0 0 0 0 0 157 2 C
1 865518 T 38 36 0 2 0 0 0 0 0 0 38 2 C



	
  

7 
	
  

Three genotypes are present in data describing a specified biallelic position: homozygous for the 

reference allele (genotype 0 for Ref/Ref, called g0 here), heterozygous with reference allele and 

alternative allele (genotype 1 for Ref/Alt, g1), and homozygous for the alternative allele 

(genotype 2 for Alt/Alt, g2). Under the biallelic model, the alternative allele is set as the one with 

the greatest count other than the reference allele. The proportion of the count of the alternative 

allele at this biallelic position is expected to be 0, 0.5, and 1, respectively for each genotype. 

After allowing for sequencing errors, the measured AAPs should have a probability distribution 

with modes near 0, 0.5, and 1. 

 

1.4 Research Objectives 

I propose to use the proportion of the alternative allele for describing data at a position. This 

measure was used in Morin et al. [16] for SNP detection if the following three conditions were 

met: the denominator is greater than or equal to 6; there are at least 2 non-reference allele reads; 

and the fraction of the non-reference allele reads is greater than or equal to 33%. This approach, 

however, cannot assign a probability to each genotype. In chapter 2, I use mixture distributions 

of the alternative allele proportions from one individual based on exponential and reversed 

exponential distributions. Initially I start with four components and increase the number of 

components to seven including two point mass distributions. The Expectation-Maximization 

(EM) algorithm is used to find the maximum likelihood estimates (MLE) of parameters of each 

component distribution. Chromosome 1 data (in BAM file) of a CEU trio and a YRI trio from the 

1000 Genomes Project Phase 3 is used for modeling. Data information is in Table 1.4. This data 
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is exome capturing data. Then I apply my fitted model to estimate each genotype fraction in each 

individual. 

Table 1.4 Description of the Two Trios  

 

 

Second, I propose a SNP calling and genotyping algorithm based on the results of the 

mixture model. Many of existing algorithms model the prior and the posterior probability based 

on heuristic information such as base quality score and mapping quality score. Here my objective 

in chapter 3 is to calculate genotype likelihood using the mixture distribution of the AAP data in 

a computationally efficient way. Initially I use clustering algorithm CLARA (Clustering Large 

Applications) [17] to group the AAP data into three components. The clustering method CLARA 

is based on the clustering algorithm PAM (Partitioning Around Medoids) [17], which is a 

realization of k-medoids algorithm [18], but is designed to deal with large amount of data. The 

CLARA algorithm uses subsets of the data set, and each subset is partitioned into a given 

number of clusters using the PAM algorithm. Each observation is assigned to the cluster 

containing the nearest medoid. Medoids are representative objects of a data set or a cluster with a 

data set whose average dissimilarity to all the objects in the cluster is minimal. Medoids are 

similar in concept to means or centroids, but medoids are always members of the data set 

(http://en.wikipedia.org/wiki/Medoid). The software for CLARA is implemented in the R 

ID
CEU-mother NA12892
CEU-father NA12891
CEU-child NA12878
YRI-mother NA19238
YRI-father NA19239
YRI-child NA19240
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package “cluster” [19]. The CLARA algorithm [19] is applied in a partitioned way suitable for 

this data set. After the clustering, the measured AAP data excluding 0 and 1 is transformed into 

the logit scale and modeled by a mixture of normal distributions. A major application of my 

algorithm is to model the AAP values from the whole exome sequencing. I applied the algorithm 

to the whole exome capturing of the YRI trio generated in [20] and compared its results with 

those from GATK and SAMtools. 
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Chapter 2 Mixture Modeling 

2.1 Statistical Models 

2.1.1 Model 1: Four Components Mixture 

The measured proportions from a set of reads at a biallelic SNP should have a probability 

distribution with modes near 0, 0.5, and 1 after allowing for sequencing errors. Figure 2.1 is the 

histogram of AAP values over the entire chromosome 1 for six individuals. The left panel is the 

histogram of measured AAP values and the right panel is the histogram of the AAPs greater than 

0.1, with red line drawn at 0.5. It shows that the AAP values near 0.5 are not symmetric. I 

observed that the frequency of the measured AAP values near 0 decreased approximately at an 

exponential rate. Thus my initial model is to use a mixture of four distributions: an exponential 

distribution for g0 AAP values (Equation 2.2 for component 0), a “reversed exponential” started 

at 0.5 for g1 AAP values to the left of 0.5 (Equation 2.3 for component 1l), an exponential 

started at 0.5 for g1 AAP values from the right side of 0.5 (Equation 2.4 for component 1r), and 

a reversed exponential started at 1 for g2 AAP values (Equation 2.5 component 2). Note that two 

separate distributions are used for g1 AAP values. 

 Let 𝑥! represent a single measured value of AAP, 𝑖 = 1,… ,𝑛. The probability density 

function (pdf) of 𝑥! is given by 
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2.1 Model description

f

model1(xi|✓model1) =
X

j2J
model1

⇡

j

f

j

(x

i

). (2.1)

f0(xi) =

C0
1
µ0
e

� x

i

µ0
, 0  x

i

 1

(2.2)

f1l(xi) =

C1l
1
µ1l

e

� (0.5�x

i

)
µ1l

, 0  x

i

 0.5

(2.3)

f1r(xi) =

C1r
1

µ1r
e

� (x
i

�0.5)
µ1r

, 0.5 < x

i

 1

(2.4)

f2(xi) =

C2
1
µ2
e

� (1�x

i

)
µ2

, 0  x

i

 1

(2.5)

C0 =
1

1�e

� 1
µ0

, C1l =
1

1�e

� 0.5
µ1l

,

C1r =
1

e

� 0.5
µ1r �e

� 1
µ1r

, and C2 =
1

1�e

� 1
µ2

.

f

model2(xi|✓) =
X

j2J
⇡

j

f

j

(x

i

) (2.6)

2



	
  

11 
	
  

Here 𝐽!"#$%! = 0, 1𝑙, 1𝑟, 2  and the vector of parameters 

𝜽!"#$%! = (𝜇!, 𝜇!! , 𝜇!! , 𝜇!,𝜋!,𝜋!! ,𝜋!! ,𝜋!). The mixing proportions 𝜋! are 0 < 𝜋! < 1 and 

𝜋!! = 1 for 𝑗 ∈ 𝐽!"#$%!. The pdf of each component is given  hbbelow: 

 

where 𝜇! is a positive real number in each distribution and 𝐶! is a scaling constant such that 
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Figure 2.1. Histograms of AAP Values for Six Individuals 
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Figure 2.1 (continued)
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Figure 2.1 (continued)
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2.1.2 Model 2: Five Components Mixture 

The right panel in Figure 2.1 shows that there were more AAP values between 0.1 and 0.25 than 

would be expected from a single exponential distribution. For this reason, I added an extra 

component of an exponential distribution started at 0. The initial four components model is 

extended to five components model. Now 𝐽!"#$%! = 01, 02, 1𝑙, 1𝑟, 2  and the pdf of xi is given 

by 

 

where the vector 𝜽!"#$%! = 𝜇!", 𝜇!", 𝜇!! , 𝜇!! , 𝜇!,𝜋!",𝜋!",𝜋!! ,𝜋!! ,𝜋!  and 𝜋! are 0 < 𝜋! < 1 

and 𝜋!! = 1 for 𝑗 ∈ 𝐽!!"#$!. Components 01 and 02 are for AAP values from the g0 genotype, 

components 1l and 1r are for AAP values from g1, and component 2 is for AAP values from g2 

genotype. The pdf of each component is 

 

where 𝜇! is a positive real number in each distribution, 𝜇!"  is set to be greater than 𝜇!", and 𝐶! is 

a scaling constant such that 
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The parameter 𝜇!" is set to be greater than 𝜇!". 

 

2.1.3 Model 3: Seven Components Mixture 

Table 2.1 shows the proportion of positions having the AAP values in each interval and the 

cumulative proportion. Each row describes an individual. The upper row for an individual is the 

percentage of the AAP values of chromosome 1 in the interval given, and the lower row is the 

cumulative percentage of the AAP values in the interval given. On average, 582,036 positions 

are included in the analysis and more than 99.8% of positions have AAP values less than or 

equal to 0.25. Table 2.1 shows that the proportion of AAP values at 0 and 1 is very high across 

six individuals ranging from 32.30% to 71.35%. Point distributions at zero and one (i.e., 𝐼{!} and 

𝐼{!}) were added in a mixed continuous-discrete manner [21] as the frequencies of the values far 

exceeded the number expected from exponential random variables. The pdf of xi is 
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0 < 𝛼,𝛽 < 1 and 0 < 𝛼 + 𝛽 < 1. The vector of parameters 𝜽!"#$%! is given by 𝜽!"#$%! =

(𝛼,𝛽, 𝜇!", 𝜇!", 𝜇!! , 𝜇!! , 𝜇!,𝜋!",𝜋!",𝜋!! ,𝜋!! ,𝜋!). Each of fj is given in the same formula as in 

Equations 2.7, 2.8, 2.9, 2.10, and 2.11. 

 

Table 2.1. Distribution of the AAP values from six individuals 

 

 

2.2 Methods 

2.2.1 Maximum Likelihood Estimation 

The EM algorithm [22] is used to obtain MLEs of the parameters. A common practice described 

in [23] is to use a complete data setting by introducing the latent variables 𝑧!":  

 

where 𝑗   ∈ 𝐽. 

Sample # of positions [0] (0, 0.005] (0.005, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 1) [1]
57.1434% 18.5143% 24.2563% 0.0361% 0.0164% 0.0130% 0.0205%
57.1434% 75.6577% 99.9140% 99.9501% 99.9665% 99.9795% 100.0000%
52.7267% 5.8871% 41.3008% 0.0389% 0.0186% 0.0150% 0.0130%
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 Let 𝜽 = 𝜇! ,𝜋! , 𝑗 ∈ 𝐽. For Models 1 and 2, the likelihood function is  

 

and its log-likelihood function is 

 

where J=Jmodel1 for Model 1 and J=Jmodel2 for model 2. For Model 1, the first derivative of 𝑙(𝜽|𝒙) 

with respect to 𝜇! is 

 

where 𝑠 = argmax!!!!.! 𝑥!. By solving the system of equations above [Equations 2.15 to 2.18], 

the MLEs for Model 1 are 
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Similarly for Model 2, the MLEs for 𝜇! are  

 

The signs of the second derivatives show that the estimated 𝜇! given in in Equations 2.19 to 2.27 

maximize the log-likelihood given in [Equation 2.14] (See Appendix).  
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Let 𝛼 = 𝜙𝛾 and 𝛽 = 𝜙(1− 𝛾), 0 < 𝜙, 𝛾 < 1 as in [21]. Then the likelihood function can be 

rewritten as 

 

The log-likelihood then is 
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𝜙 and 𝛾, respectively are 

L(↵,�,✓|x) = L1(↵,�|x)L2(✓|x)

where L1(↵,�|x) =

n

Y

i=1

↵

I{0}(xi

)
�

I{1}(xi

)
(1� ↵� �)

1�I{0,1}(xi

)

L2(✓|x) =

n

Y

i=1

Y

j2J
{⇡

j

f

j

(x

i

|✓)}zij . (2.28)

L(↵,�,✓|x) = L(�, �,✓|x) = L1a(�|x)L1b(�|x)L2(✓|x)

where L1a(�|x) =

n

Y

i=1

�

I{0,1}(xi

)
(1� �)

1�I{0,1}(xi

)

L1b(�|x) =

n

Y

i=1

�

I{0}(xi

)
(1� �)

I{1}(xi

)

L2(✓|x) =

n

Y

i=1

Y

j2J
{⇡

j

f

j

(x

i

|✓)}zij (2.29)

l(�, �,✓|x) = l1a(� |x) + l1b(� |x) + l2(✓|x)

where l1a(�|x) = N0 log �+N1 log �+ (n�N0 �N1) log(1� �)

l1b(�|x) = N0 log � +N1 log(1� �)

l2(✓|x) =

n

X

i=1

X

j2J
z

ij

{log ⇡
j

+ log f

j

(x

i

|✓)} (2.30)

@l1a

@�

=

N0 +N1

�

� n�N0 �N1

1� �

(2.31)

@l1b

@�

=

N0

�

� N1

1� �

(2.32)

5

L(↵,�,✓|x) = L1(↵,�|x)L2(✓|x)

where L1(↵,�|x) =

n

Y

i=1

↵

I{0}(xi

)
�

I{1}(xi

)
(1� ↵� �)

1�I{0,1}(xi

)

L2(✓|x) =

n

Y

i=1

Y

j2J
{⇡

j

f

j

(x

i

|✓)}zij . (2.28)

L(↵,�,✓|x) = L(�, �,✓|x) = L1a(�|x)L1b(�|x)L2(✓|x)

where L1a(�|x) =

n

Y

i=1

�

I{0,1}(xi

)
(1� �)

1�I{0,1}(xi

)

L1b(�|x) =

n

Y

i=1

�

I{0}(xi

)
(1� �)

I{1}(xi

)

L2(✓|x) =

n

Y

i=1

Y

j2J
{⇡

j

f

j

(x

i

|✓)}zij . (2.29)

l(�, �,✓|x) = l1a(� |x) + l1b(� |x) + l2(✓|x)

where l1a(�|x) = N0 log �+N1 log �+ (n�N0 �N1) log(1� �)

l1b(�|x) = N0 log � +N1 log(1� �)

l2(✓|x) =

n

X

i=1

X

j2J
z

ij

{log ⇡
j

+ log f

j

(x

i

|✓)} (2.30)

@l1a

@�

=

N0 +N1

�

� n�N0 �N1

1� �

(2.31)

@l1b

@�

=

N0

�

� N1

1� �

(2.32)

5

L(↵,�,✓|x) = L1(↵,�|x)L2(✓|x)

where L1(↵,�|x) =

n

Y

i=1

↵

I{0}(xi

)
�

I{1}(xi

)
(1� ↵� �)

1�I{0,1}(xi

)

L2(✓|x) =

n

Y

i=1

Y

j2J
{⇡

j

f

j

(x

i

|✓)}zij (2.28)

L(↵,�,✓|x) = L(�, �,✓|x) = L1a(�|x)L1b(�|x)L2(✓|x)

where L1a(�|x) =

n

Y

i=1

�

I{0,1}(xi

)
(1� �)

1�I{0,1}(xi

)

L1b(�|x) =

n

Y

i=1

�

I{0}(xi

)
(1� �)

I{1}(xi

)

L2(✓|x) =

n

Y

i=1

Y

j2J
{⇡

j

f

j

(x

i

|✓)}zij (2.29)

l(�, �,✓|x) = l1a(� |x) + l1b(� |x) + l2(✓|x)

where l1a(�|x) = N0 log �+N1 log �+ (n�N0 �N1) log(1� �)

l1b(�|x) = N0 log � +N1 log(1� �)

l2(✓|x) =

n

X

i=1

X

j2J
z

ij

{log ⇡
j

+ log f

j

(x

i

|✓)} (2.30)

5



	
  

21 
	
  

 

By solving the normal equations generated by Equations 2.31 and 2.32, the MLEs are 

 

Equations 2.33 and 2.34 can be rewritten as 

 

The estimate of parameters 𝜽 has the same formula as in Equations 2.23 to 2.27. 
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𝑧!!!
! = runif 𝑛 − 𝑠, 0, 1− 𝑧!!

! , 𝑧!!
(!)=   𝑧!!!

! , 𝑧!!!
!  

and 𝑧!!
(!) = 1− 𝑧!!

! − 𝑧!!
!  

B. Calculate initial mixing proportion 𝜋!’s for 𝑗 ∈ 𝐽!"#$%!; 

𝜋!
(!) =

𝑧!"
(!)!

!!!

𝑛  

C. M-step at k-th iteration:  

𝜇!
(!) = !!!!!

!
!!!

!!!!
!!!

, 𝜇!!
(!) = !!!!(!.!!!!)

!
!!!

!!!!!
!!!

, 

𝜇!!
(!) = !!!!(!!!!.!)!

!!!!!
!!!!!

!!!!!
, and 𝜇!

(!) = !!!(!!!!)
!
!!!

!!!!
!!!

. 

D. E-step:  

𝜋!
(!) =

𝑧!"!
!!!

𝑛 − 𝑠   and 𝑧!"
(!) =

𝜋!𝑓!(𝑥!)
𝜋!𝑓!(𝑥!)!∈!

 

E. Calculate the log-likelihood  𝑙(𝜽|𝒙) in Equation 2.14 . Go to step C and repeat until 

 𝑙 𝜽 𝒙 (!!!) − 𝑙 𝜽 𝒙 ! < 𝜏, for some 𝜏 > 0. 

The “runif” [24] is an R-package program to generate random uniform numbers. 

 

2.2.3 Partitioned Expectation-Maximization Algorithm for Models 2 and 3 

The EM algorithm searches for a global maximum for the MLEs over the entire data. For long-

tailed data, however, it is possible that the tail might not be captured well with the EM algorithm 

[25]. Riska et al [26] propose a method for using EM algorithm to estimate the parameters in the 

mixture of two or more exponential distributions. They partition the data by the coefficient of 

variation (CV) so that each partition has CV greater than a certain threshold (e.g., 1.5). Then they 
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fit the mixture of exponential distributions separately for each partition. I modify their approach 

for the AAP data to estimate parameters in Model 2 and Model 3.   

The AAP values for most positions are distributed around 0 [Table 2.1]: more than 99% 

of the AAP values are less than 0.25 for each of the six individuals. My goal is to partition the 

data at the point where the mixture distribution starts to appear. I use the R software package 

“fitdistr” [27] to fit the AAP values to a single exponential distribution. The fitted parameter is 

named 𝜇!. Figure 2.2 shows that the measured AAP values depart from the x=y line to the right 

of 5𝜇!. The x-axis is the random number generated from the estimated 𝜇! and the y-axis is the 

measured AAP value. The left panels use all AAP values and the right panels use the AAP 

values in (0, 1). The blue line is drawn at 5𝜇!. It indicates that there are more AAP values than 

expected from a single exponential to the right of 5𝜇!. Thus I partitioned the AAP values into 

two sets at 5𝜇!. 

The left partition contains the AAP values less than 5𝜇! and contains more than 95% of 

the data for Model 1 and more than 98% of the data for Model 2 for all six individuals [Table 

2.2]. I used the mean 𝜇! for the data to the left of 5𝜇!, i.e., 𝜇!" = 𝜇!. The right mixture 

component for g0 is used for the AAP values greater than or equal to 5𝜇!. Here I assume 𝜇! is 

small enough so that 5𝜇! < 0.5. This algorithm is applied to Model 2 and Model 3 that use two 

continuous components to describe g0 genotype. 
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Table 2.2 The Estimated Values of 𝝁𝟎 and the Fraction of Each Partition 

 

Figure 2.2 Q-Q Plots of the Measured AAP Values versus an Exponential Distribution 

 

 

µ0 % of AAP < 5µ0 
in [0, 1]

µ0 % of AAP < 5µ0 
in (0, 1)

NA12878 (CEU-child) 0.0048 95.63% 0.0108 98.55%
NA12891 (CEU-father) 0.0069 98.50% 0.0143 99.44%
NA12892 (CEU-mother) 0.0109 98.97% 0.0160 99.56%
NA19238 (YRI-mother) 0.0038 95.51% 0.0108 99.08%
NA19239 (YRI-father) 0.0051 96.75% 0.0097 98.32%
NA19240 (YRI-child) 0.0057 97.32% 0.0125 98.85%

Model 2 Model 3
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Figure 2.2 (Continued) 
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Figure 2.2 (Continued) 

 

The detailed partitioned EM algorithm for Model 2 is as below: 

A. Calculate 𝜇! using the entire data and let 𝑘 = argmax!!!!!!!! 𝑥!.  

B. Initialize 𝑧!", 𝑖 = 𝑘 + 1,… ,𝑛;  

𝑧!"
! = runif 𝑛 − 𝑘, 0, 1  

  𝑧!!
! = runif 𝑠 − 𝑘, 0, 1− 𝑧!"

! , 𝑧!!!
! = runif 𝑛 − 𝑠 + 𝑘, 0, 1− 𝑧!"

! ,   

𝑧!!
(!)=   𝑧!!!

! , 𝑧!!!
! , and  𝑧!!

(!) = 1− 𝑧!!"
! − 𝑧!!

(!)  

where 𝑠 = arg max!!!!!!.! 𝑥! 

C. Calculate initial mixing proportion 𝜋′!’s; 

𝜋′!
(!) =

𝑧!"
(!)!

!!!!!

𝑛 − 𝑘  

D. M-step at k-th iteration:  

𝜇!"
(!) =

𝑧!!"𝑥!!
!!!!!

𝑧!!"!
!!!!!
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 𝜇!!
(!) = !!!!(!.!!!!)!

!!!!!
!!!!!

!!!!!
,  𝜇!!

(!) = !!!!(!!!!.!)!
!!!!!

!!!!!
!!!!!

, 

and 𝜇!
(!) = !!!(!!!!)!

!!!!!
!!!!

!!!!!
 

E. E-step:  

𝜋′!
(!) =

𝑧!"!
!!!!!

𝑛 − 𝑘   and 𝑧!"
(!) =

𝜋!𝑓!(𝑥!)
𝜋!𝑓!(𝑦!)!∈!

 

F. Calculate the log-likelihood in Equation 2.14. 

G. Go to step C and repeat until 

 𝑙 𝜽 𝒚
(!!!)

− 𝑙 𝜽 𝒚
!

< 𝜏, for some 𝜏 > 0. 

H. Estimate the mean and mixing proportion of component 01 as 

𝜇!" =
!!

!
!!!
!

 and 𝜋!" =
!
!
. 

I. Rescale the mixing proportions 𝜋!′ to the entire data size as 

𝜋! = 1− 𝜋!" 𝜋!′. 

 

The partitioned EM algorithm for Model 3 follows similar steps except that 𝜇! is calculated 

using the AAP values in (0, 1) in step A and 𝑛! = 𝑛 − 𝑁! − 𝑁! is used instead of n through the 

algorithm. 
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2.3 Results 

2.3.1 Parameter Estimates for Model 1 

Each individual had somewhat different distributions of the measured AAP values. Table 2.3 

shows the estimates of the parameters in Model 1 [Equation 2.1]. The estimated 𝜇! varies from 

0.0010 to 0.0104. The mixing proportion of component 0 (𝜋!) has the largest values among four 

components and ranges from 87.84% to 99.86%. The individual NA12892 has the largest 𝜇! and 

𝜋!, and NA19238 has the smallest 𝜇! and 𝜋!. The order of 𝜇! matches with the order of 𝜋! 

among six individuals. The mean parameter of component 1l (𝜇!!) ranges from 0.2652 to 0.4798. 

These are much larger than those of component 1r (𝜇!!), ranging from 0.0335 to 0.1120. The 

mixing proportion of component 1l (𝜋!!) is much larger than that of component 1r (𝜋!!). The 

mean parameter 𝜇! has slightly larger values than 𝜇!, with values between 0.0031 to 0.1261.  

 

Table 2.3 Estimated Parameter Values and the Log-Likelihood for Model 1 

 

 

 

sample loglike µ0 µ1l µ1r µ2 π0 π1l π1r π2
NA12892 (CEU-mother) 2,073,690 0.0104 0.2652 0.0692 0.0174 99.8579% 0.1000% 0.0119% 0.0303%
NA12891 (CEU-father) 2,004,106 0.0061 0.3754 0.0684 0.0146 99.6429% 0.3102% 0.0196% 0.0274%
NA12878 (CEU-child) 2,811,123 0.0035 0.4484 0.1120 0.0036 98.1380% 1.8120% 0.0197% 0.0302%
NA19238 (YRI-mother) 2,442,051 0.0010 0.4798 0.0335 0.1261 87.8363% 12.1002% 0.0151% 0.0484%
NA19239 (YRI-father) 2,923,421 0.0038 0.4319 0.0914 0.0031 98.6594% 1.2802% 0.0288% 0.0316%
NA19240 (YRI-child) 2,663,106 0.0046 0.4122 0.0884 0.0042 99.2564% 0.6809% 0.0282% 0.0345%
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Figure 2.3 shows the Q-Q plot of a random number generated from the fitted Model 1 versus the 

measured AAP value. The x-axis is the random number generated from Model 1, and the y-axis 

is the measured AAP value. The red line is drawn at the x=y line. For the six individuals, the 

AAP values are under-represented between 0.02 and 0.5. That is, a single exponential 

distribution estimated fewer AAP values between 0.1 and 0.25 that actually occurred. The AAP 

values between 0.7 and 0.98 are slightly over-represented. 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
  

30 
	
  

Figure 2.3 Q-Q plot of Model 1 vs. the AAP Values 
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2.3.2 Parameter Estimates for Model 2  

Table 2.4 shows the estimated parameters for Model 2 [Equation 2.6]. The estimated mean 

parameter of component 01 ranges from 0.0038 to 0.0109. The estimated means of component 

02, which is introduced to describe the heavy tail and thus defined to be larger than 𝜇!", are from 

0.0288 to 0.0787. The ratio of 𝜇!" to 𝜇!" is 7.34 for NA12878, 7.91 for NA12891, 7.20 for 

NA12892, 7.49 for NA19238, 7.62 for NA19239, and 7.20 for NA19240. Although each 

individual has somewhat different 𝜇!" and 𝜇!" values, the ratios are similar.  The estimated mean 

parameter of component 1l is slightly smaller than that of component 1r. This might be because 

component 1l uses the truncated AAP values from 5𝜇! to 0.5 while component 1r uses the AAP 

values from 0.5 to 1.0. The mixing proportion of component 1l is slightly larger than that of 

component 1r by 0.01% to 0.02%. The estimated value of 𝜇! is smaller than the mean parameters 

of component 1l and 1r. The mixing proportion of component 2 is approximately the same for all 

six individuals. 

 

Table 2.4 Estimated Parameter Values and the Log-Likelihood for Model 2 

 

 

sample loglike µ01 µ02 µ1l µ1r µ2 π01 π02 π1l π1r π2
NA12892 (CEU-mother) 2,062,115.42 0.0109 0.0787 0.0522 0.0709 0.0170 98.9715% 0.9691% 0.0189% 0.0103% 0.0302%
NA12891 (CEU-father) 1,995,567.96 0.0069 0.0545 0.0626 0.0704 0.0142 98.5043% 1.4189% 0.0297% 0.0199% 0.0272%
NA12878 (CEU-child) 2,799,813.67 0.0048 0.0354 0.0724 0.1037 0.0039 95.6259% 4.2907% 0.0333% 0.0195% 0.0306%
NA19238 (YRI-mother) 2,407,630.68 0.0038 0.0288 0.0924 0.1123 0.0016 95.5068% 4.3841% 0.0465% 0.0301% 0.0325%
NA19239 (YRI-father) 2,901,749.07 0.0051 0.0390 0.0713 0.0917 0.0031 96.7508% 3.1348% 0.0534% 0.0293% 0.0316%
NA19240 (YRI-child) 2,642,878.45 0.0057 0.0411 0.0573 0.0862 0.0043 97.3153% 2.5786% 0.0431% 0.0283% 0.0346%
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The log-likelihood of Model 2 achieves around 99% of the log-likelihood values in Model 1. 

Figure 2.4 is the Q-Q plot of random numbers generated from Model 2 vs. actual AAP values. 

The x-axis is the random number generated from Model 2 and the y-axis is the measured AAP 

value. The red line is drawn at the x=y line. The Q-Q plots shows that the points of random 

numbers generated from Model 2 versus the measured AAP values are closer to the x=y line. 

Most of the points around the AAP value 0.5 are on the x=y line, but the points between 0.01 and 

0.3 are under-represented while the points between 0.3 and 0.5 are over-represented. The points 

around 0.75 are still over-represented in Model 1. 
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Figure 2.4 Q-Q Plot of Model 2 vs. the AAP Values 
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2.3.3 Parameter Estimates for Model 3 

The estimated parameters of Model 3 [Equation 2.12] are in Table 2.5. The mixing proportions 

𝜋! are scaled as 

𝑠𝑐𝑎𝑙𝑒𝑑  𝜋! = 1− 𝛼 − 𝛽 𝜋!   . 

 

Table 2.5 Estimated Parameter Values for Model 3 

 

 

The proportions of zero values (𝛼) vary from 32% to 71%, and the proportions of one values 

range from 0.010% to 0.026%. The scaled proportion of component 01 (𝜋!") varied from 28.5% 

to 67.5%. The scaled proportion of component 02 (𝜋!") is much smaller than the component 01 

with values between 0.09% and 0.42%. Among mean parameters, 𝜇!"has the smallest value of 

all component mean parameters, and 𝜇!" has ratio  !!"
!!"

 ranging between 7.9 to 11.1. The 

proportion of component 1l is greater than that of component 1r for each of the six participants 

(𝜋!!> 𝜋!!). Both 𝜇!! and 𝜇!! has estimated values between 0.035 and 0.075. The differences 

between the left and right sets of parameters may reflect the asymmetry of the distribution 

describing g1. The mean parameter (𝜇!) for the component has values between 0.011 and 0.028. 

The estimates of 𝜇! and 𝜇! are smaller than the estimates of the other means documenting that 

sample µ01 µ02 µ1l µ1r µ2 α β π01 π02 π1l π1r π2
NA12892 (CEU mother) 0.01600 0.14697 0.05100 0.03584 0.02607 32.2913% 0.0103% 99.7323% 0.2066% 0.0223% 0.0095% 0.0292%
NA12891 (CEU father) 0.01429 0.15627 0.04935 0.05276 0.02776 52.7267% 0.0130% 99.6560% 0.2417% 0.0419% 0.0303% 0.0301%
NA12878 (CEU child) 0.01079 0.08519 0.04984 0.05266 0.02365 57.1434% 0.0205% 99.0976% 0.7805% 0.0558% 0.0368% 0.0293%
NA19238 (YRI mother) 0.01252 0.13859 0.06705 0.05706 0.01861 71.3276% 0.0260% 99.4567% 0.3162% 0.1101% 0.0823% 0.0347%
NA19239 (YRI father) 0.00975 0.08148 0.05666 0.07553 0.01172 49.4758% 0.0193% 99.0048% 0.8291% 0.0859% 0.0534% 0.0268%
NA19240 (YRI child) 0.01076 0.08722 0.04724 0.05874 0.01867 48.7109% 0.0198% 99.3237% 0.5235% 0.0711% 0.0494% 0.0324%
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the measured AAP values from g0 and g2 positions are less variable than the AAP values from 

g1 positions. 

 The log-likelihood for Model 3 is not given here, because the probability mass function is 

used at 0 and 1. Since this is always smaller than 1, the log-likelihood is always negative.  The 

Q-Q plots of random numbers generated from Model 3 versus the measured AAP values are in 

figure 2.5. The red line is drawn at the x=y line and the blue line is drawn at 𝑥 = 5𝜇!. Compared 

to Model 1 [Figure 2.3] and Model 2 [Figure 2.4], the points are closer to the x=y line and the 

size of departure from the x=y line is smaller. For individuals NA12878, NA19239, and 

NA19240, the AAP values near 0.2 are underestimated and the AAP values between 0.2 and 0.5 

are overestimated. For individuals NA12891, NA12892, and NA19238, the AAP values between 

0.35 and 0.5 are over estimated. The AAP values around 0.75 are slightly overestimated for all 

individuals except NA12892.  

 

 

 

 

 

 

 

 



	
  

36 
	
  

Figure 2.5 Q-Q Plot of Model 3 vs. the AAP Values 
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2.4 Conclusion and Discussion 

Out of three models, Model 3 describes the distribution of AAP values best. The Q-Q plot of 

Model 3 in Figure 2.5 shows that the points of random numbers from the fitted mixture model 

versus the measured AAP values are on or near the x=y line for most of the values, confirming 

the adequacy of the fit, except for the points between 0.7 and 0.8. The departure of these points 

from the line might be explained by other genomic variations such as copy number variations. 

The fitted distribution adequately described the frequencies of the data for most of the values 

[Figure 2.6]. In Figure 2.6, the left panel is the histogram of the entire AAP values and the right 

panel is the AAP values greater than 0.1. The blue line is the fitted frequency from Model 3. The 

fitted curve showed the pattern of steep slope of g0. The distribution of values greater than 0.1 

was well characterized by the four components, 02, 1l, 1r, and 2. However, there were some 

regions that were under or over estimated. The observed frequencies around 0.5 somewhat 

exceeded the values from the fitted distribution, and the observed frequencies near 0 and 1 were 

slightly overestimated. This model predicted more measured AAP values between 0.1 and 0.2 

than occurred for this individual. 

 

 

 

 

 

 



	
  

38 
	
  

Figure 2.6 The Fitted Distribution of Model 3 
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Figure 2.6 (Continued) 
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2.5 Applications 

I estimate the fraction of each genotype using the estimated parameters in Model 3 and report 

them Table 2.6. The total estimated fraction of g0 (named p0) is (𝛼 + 𝑠𝑐𝑎𝑙𝑒𝑑  𝜋!" +

𝑠𝑐𝑎𝑙𝑒𝑑  𝜋!"). The estimate is more than 99.90% for all six individuals. While 𝑝! is essentially 

constant, the component parameters have substantial variation. The estimated fraction for g1 

(named p1) is (𝑠𝑐𝑎𝑙𝑒𝑑  𝜋!! + 𝑠𝑐𝑎𝑙𝑒𝑑  𝜋!!). The estimated value ranged from 0.022% to 0.070%. 

The estimated fraction for g2 (named p2) is (𝛽 + 𝑠𝑐𝑎𝑙𝑒𝑑  𝜋!). The values ranged from 0.027% to 

0.036%, which are smaller than the fractions for g1 for five of the six individuals.  

 

Table 2.6 Estimated Fraction of Each Genotype from Model 3 

 

 

Figure 2.7 shows the plot of p0 versus p1 for the two trios studied here. We found each trio to be 

clustered. The individuals in the YRI trio had a smaller fraction of g0 genotypes and greater 

fraction of g1 genotypes than those in the CEU trio, suggesting that there is variability of 

similarity to the reference genome between members of the trios. In both trios, the child had 

smaller p0 and higher p1 than the parents.  

sample p0 p1 p2
NA12892 (CEU-mother) 99.9484% 0.0216% 0.0301%
NA12891(CEU-father) 99.9387% 0.0341% 0.0272%
NA12878 (CEU-child) 99.9273% 0.0397% 0.0330%
NA19238 (YRI-mother) 99.9089% 0.0551% 0.0360%
NA19239 (YRI-father) 99.8968% 0.0703% 0.0328%
NA19240 (YRI-child) 99.9018% 0.0618% 0.0364%
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Figure 2.7 Plot of p0 versus p1 for Two Trios 

 

 

I use the estimated p0, p1, and p2 of parents to calculate the expected fractions of each genotype 

in a child of each trio. I name the child fractions q0, q1, and q2, and estimate them using the 

Binomal distribution. That is, 𝑥 + 𝑦 ! = 𝑥! + 2𝑥𝑦 + 𝑦!. The resulting fractions are: 

𝑞0 = 𝑝!!𝑝!! +
1
2 𝑝!!𝑝!! + 𝑝!!𝑝!! +

1
4𝑝!!𝑝!! 
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𝑞1 =
1
2 𝑝!!𝑝!! + 𝑝!!𝑝!! + (𝑝!!𝑝!! + 𝑝!!𝑝!!)+

1
2𝑝!!𝑝!! +

1
2 (𝑝!!𝑝!! + 𝑝!!𝑝!!) 

𝑞2 =
1
4𝑝!!𝑝!! +

1
2 𝑝!!𝑝!! + 𝑝!!𝑝!! + 𝑝!!𝑝!!. 

The fraction 𝑝!" is the fraction of genotype gk (𝑘 = 0,1,𝑎𝑛𝑑  2) in the mother and 𝑝!" is the 

fraction in the father of each trio. As shown in Table 2.8, the fitted reference homozygote 

fraction (𝑝!) of a child is approximately equal to the binomial estimate (𝑞!). The fitted g1 

fraction (𝑝!) of a child is about half of the binomial estimate (𝑞!) for both children. The fitted 

fraction of alternative homozygotes (𝑝!) of a child is greater than the binomial estimate (𝑞!) for 

both children. The differences between the observed and the expected fractions of g0, g1, and g2 

may be due to Mendelian inconsistency in the trios. The effects of Mendelian inconsistency 

should be analyzed in the future studies.  

 

Table 2.7. Observed and Estimated Genotype Fraction of Children 

 

 

	
  

 

 

 

sample p0 p1 p2 q0 q1 q2
CEU child NA12878 99.92729% 0.03967% 0.03304% 99.91491% 0.08507% 0.00002%
YRI child NA19240 99.90180% 0.06176% 0.03644% 99.86854% 0.13141% 0.00004%
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Chapter 3 Single Nucleotide Polymorphism Calling and 

Genotyping via Mixture Modeling and Clustering 

3.1 Data Description 

I study the paired-end sequencing reads of the whole exome sequencing (also known as targeted 

exome sequencing) of three samples from a YRI trio sequenced in Parla et al. [20].  The selected 

YRI trio is one of the trios studied in the 1000 Genomes Project and is the YRI trio studied in 

Chapter 2. I use reads captured by NimbleGen SeqCap EZ Exome Library SR [13]. The data 

consists of three captures for NA19238 (the mother) and NA19240 (the child) and one capture 

for NA19239 (the father). The sequencing targeted the whole exome of 33,881,597 positions in 

chromosomes 1 to 22. 

The sequence reads are processed through the GATK (The Genomic Analysis Toolkit) 

pipeline [9]. The raw reads from each capture, which are in FASTQ file format, are mapped to 

the human reference genome (HG19) with BWA (Burrow-Wheeler Alignment) [4] and are 

formatted in a SAM (Sequence Alignment/Map) file format. Thus NA19238 and NA19240 have 

three SAM files each, and NA19239 has one SAM file. The SAM files of an individual are 

merged into a single SAM file by PICARD [12]. Then each SAM file is sorted by SAMtools [28] 

and re-formatted into BAM (Binary Alignment/Map) file format. The PCR (Polymerase Chain 

Reaction) duplicates are removed by PICARD. Base pair quality recalibration and local 

realignment are applied to the resulting BAM files using GATK as in [9].  

Some of the reads in the BAM files are filtered out before making a pileup file. First, the 

mapped reads overlapping with the target region are selected. Then reads having mapping quality 
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score less than 30 are excluded. Lastly, mapped reads that include insertions or deletions are not 

included in the modeling. The number of filtered reads is summarized in Table 3.1. About 5% of 

the reads are filtered out. Final BAM files are made with the reads from the last column in Table 

3.1. 

 

Table 3.1 Number of Reads Before and After Filtering 

 

Note: “MAPQ” stands for Mapping Quality of a read. “Indel” reads are mapped reads containing 

insertions and/or deletions. 

 

The filtered BAM files are put into the data processing pipeline described in section 1.3 

to produce pileup files. Because some of the reads include out-of-target positions, only the 

positions in the target region are extracted from the pileup files. The count table of each allele is 

made from the in-target pileup files described in Section 1.3. The allele count table is separated 

depending on whether the alternative allele count is equal to zero or greater than zero. The AAPs 

are only measured when the count of the alternative allele is greater than zero. 

The average coverage of a target region (i.e., exomic region) is defined as 

𝑑!!
!!!

𝑛  

Individuals
Average 
Coverage # of Mapped Reads

# of Mapped Reads in 
Target Regions

After Excluding Reads with 
MAPQ<30

After Excluding Reads with 
MAPQ<30 & Indel Reads

NA19238 (YRI-mother) 251 209,310,307         143,168,295 (100%) 136,674,117 (95.46%) 136,178,282 (95.11%)
NA19239 (YRI-father) 87 66,198,431          48,113,846 (100%) 45,945,070 (95.49%) 45,776,295 (95.14%)
NA19240 (YRI-child) 221 189,850,073         126,594,931 (100%) 120,450,271 (95.14%) 119,993,854 (94.79%)
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where n is the number of positions in the target region and di is the number of reads covered at 

the i-th position. The calculated average coverage of the target regions are 251x, 87x, and 221x 

for NA19238, NA19239, and NA19240, respectively. Due to different numbers of captures, the 

coverages of NA19238 and NA19240 are about three times the coverage of NA19239. Positions 

with depth less than 9 are excluded from the analysis, and genotypes are not assigned for these 

positions. The information about these low depth positions is exported separately. The set of 

positions covered 9 or more times are called “d9” positions here. Table 3.2 shows the number of 

positions in the pileup file and the number of d9 positions in target regions. Regardless of the 

average coverage, 97.01%, 94.58%, and 96.96% of the target positions are covered 9 or more 

times and those included in the analysis. 

 

Table 3.2 Number of Positions in Pileup Files 

 

Note that the number of target positions is 33,881,597. 

 

3.2 Methods 

In this chapter, I use cluster analysis on the AAP values for initial grouping and fit the mixture of 

three normal distributions to the AAP values expressed in the logit scale, log !
!!!

, 0 < 𝑥 < 1. 

The measured AAP values of the positions with denominator greater than 30 (named “d30" 

Individuals # of pileup positions # of d9 positions in-target
NA19238 52,730,500           32,869,503                  
NA19239 51,847,965           32,045,518                  
NA19240 52,724,163           32,850,931                  
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positions) are used to calculate the estimates of the parameters in the model. The AAP values 

equal to 0 and 1 are set to be g0 genotype and g2 genotype, respectively, and not included in the 

analysis. Cluster analysis is then performed for the initial grouping of d30 positions after 

excluding positions with AAP values 0 or 1. Parameters of each component are estimated in each 

cluster. Subsequently, the Bayesian posterior probability is calculated for d9 positions using the 

parameters estimated from d30 positions. The number of positions for analysis is summarized in 

Table 3.3. The left column is the number of positions covered 30 or more times having AAP 

values in the open interval (0, 1) and the right column is the number of positions covered 9 or 

more times having AAP values in (0, 1). The numbers of d9 and d30 positions vary depending 

on the average coverage. The percentage of d30 positions is more than 99% for NA19238 and 

NA19240. For NA19239, the number of d30 positions is 94.48% of the number of d9 positions. 

 

Table 3.3 Number of Positions Included in the Analysis 

 

Note: The average coverage of each sample is 251x, 87x, and 221x, respectively. 

 

3.2.1 CLARA Clustering 

Under the diploid assumption, the measured AAP values from d30 positions are initially 

clustered into three components using CLARA (Clustering Large Applications) [17], that 

Samples Number of d30 positions Number of d9 positions
NA19238 (YRI-mother) 10,407,572                10,485,726               
NA19239 (YRI-father) 2,872,582                  3,040,116                 
NA19240 (YRI-child) 7,352,000                  7,426,086                
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represent the g0, g1, and g2 genotypes. From the clustering results, initial boundaries of 

measured AAP values for each genotype are determined. The boundary separating genotype g0 

and g1 for sample k is called the lower boundary (Lk), and the boundary separating genotype g1 

and g2 is called the upper boundary (Uk). 

When the entire set of measured AAP values was put into CLARA, the classification was 

skewed to positions from g0 due to the large proportion of g0 genotypes [Table 3.4]. For 

NA19238 and NA19240, the lower boundary was less than 0.01 and the upper boundary was 

0.01 and 0.08, respectively. 

 

Table 3.4 Results of using CLARA to the Entire Set of AAP values 

 

 

3.2.2 Partitioned CLARA Clustering 

The result in section 3.2.1 was different from the expectation that the AAP values from g1 

positions were distributed around 0.5 and the AAP values from g2 positions were around 1. Scott 

and Symons [29] showed that based on their likelihood ratio criteria, when the separation 

between two clusters was not large or when there was only one underlying cluster, there is a 

tendency to cluster into two evenly split groups. Thus when two clusters had equal proportions, 

the clustering performed best. Garcia-Escudero et al. [30] also indicated that the k-means 

Samples L U
NA19238 0.0049 0.0143
NA19239 0.2853 0.7759
NA19240 0.0072 0.0811
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algorithm, which is close to the k-medoids algorithm, was optimal for clustering groups of 

roughly equal size. Wu and Yang [31] reported that a cluster with a greater number of 

observations may be split incorrectly when there was a great difference in the number of 

observations in each cluster. To determine clusters with less bias against the g0 genotype, I use 

subsets of AAP values, S1 and S2, for clustering: 

𝑆! = 𝑥   𝑐!! < 𝑥 < 0.5}, 𝑆! = 𝑥 𝑐!! < 𝑥 < 1  

where x represents an AAP value and c1k is a positive real number between 0 and 0.5 and c2k is a 

positive real number between 0.5 and 1. The AAP values in S1 are clustered into two components 

to get Lk separating g0 and g1 genotypes. Those in S2 are clustered into two components to get 

Uk separating g1 and g2 genotypes. The constant c1k may vary for each individual and is 

determined by the following procedure: 

A. Initially let 𝑆!! = 𝑥 𝑐!!! < 𝑥 < 0.5 ,where 𝑐!!! = 0.15 

B. Cluster 𝑆!! into two groups using CLARA and calculate an initial value for Lk (𝑙!!). 

C. Define 𝑇!(𝑐!!! , 𝑙!!) = {𝑥|𝑐!!! < 𝑥 ≤ 𝑙!!} and 𝑇!(𝑙!!) = {𝑥|𝑙!! < 𝑥 < 0.5}. Calculate the 

number of elements: 𝑛! = 𝑛 𝑇!  and 𝑛! = 𝑛 𝑇! . 

D. If 𝑛! ≠ 𝑛!, change 𝑐!!!  to 𝑐!!!  such that 𝑛 𝑇! 𝑐!!! , 𝑙!! − 𝑛 𝑇! 𝑙!!  is minimized. 

Otherwise, let 𝑐!!! = 𝑐!!! . 

 

Once 𝑐!!!  is calculated, 𝑆! = 𝑥 𝑐!!! < 𝑥 < 0.5  is clustered into two groups for the final value of 

the lower boundary, 𝑙! for the k-th sample. The procedure for determining the upper boundary, 

Uk, is similar to that for Lk. That is, 
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A. Initially let 𝑆!! = 𝑥 𝑐!!! < 𝑥 < 1 ,where 𝑐!!! = 0.5 

B. Cluster 𝑆!! into two groups using CLARA and calculate initial Uk, 𝑢!!. 

C. Define 𝑇!(𝑐!!! ,𝑢!!) = {𝑥|𝑐!!! < 𝑥 ≤ 𝑢!!} and 𝑇!(𝑢!!) = {𝑥|𝑢!! < 𝑥 < 1}. Calculate the 

number of elements: 𝑛! = 𝑛 𝑇!  and 𝑛! = 𝑛 𝑇! . 

D. If 𝑛! ≠ 𝑛!, change 𝑐!!!  to 𝑐!!!  such that 𝑛 𝑇! 𝑐!!! ,𝑢!! − 𝑛 𝑇! 𝑢!!  is minimized. 

Otherwise, let 𝑐!!! = 𝑐!!! . 

 

Similarly, 𝑆! = 𝑥 𝑐!!! < 𝑥 < 1   is clustered into two groups for the final value of Uk. The 

positions having measured AAP values between 0 and Lk are initially assigned to g0. Those 

having AAP values between Lk and Uk are assigned to g1. Those having AAP values between Uk 

and 1 are assigned to g2. Figure 3.1 shows the histogram of the measured AAP values and the 

boundaries. The red lines are the lower boundary, and the blue lines are the upper boundary. The 

solid lines are the final values of the boundaries, and the dashed lines are the initial values. The 

final value of Lk is lower than the initial lower boundary (𝑙!!), and the final value of Uk is greater 

than the initial upper boundary (𝑢!!) for each of the three subjects. The final values of Lk and Uk 

are summarized in Table 3.5. The lower boundary for the three samples ranges from 0.29 to 0.30, 

and the upper boundary from 0.78 to 0.82. The boundary values vary less than the boundary 

values obtained in section 3.2.1 across samples. 
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Table 3.5 Final Values of Boundaries 

 

 

 

Figure 3.1 Histograms of Measured AAP values with Boundaries 

 

 

Samples L U
NA19238 0.3018 0.7813
NA19239 0.2921 0.8270
NA19240 0.2906 0.7913
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3.2.3 Genotype Likelihood Calculation with Normal Mixture Modeling 

The measured AAP values of d30 positions are clustered into three components as  

𝐶! = 𝑥 0 < 𝑥 ≤ 𝐿!},𝐶! = {𝑥 𝐿! < 𝑥 ≤ 𝑈! ,𝐶! = 𝑥 𝑈! < 𝑥 < 1 . 

Component C0 represents the g0 genotype, C1 for the g1 genotype, and C2 for the g2 genotype. 

The AAP values from each component are expressed in logit scale. Let 𝑦!" = logit(𝑥!!), 𝑖 =

1,… ,𝑛 for the k-th sample. The histogram of each component in logit scale is in Figure 3.2. The 

left panel is the histogram of C0, the center panel is the histogram of C1, and the right panel is 

the histogram of C2. 
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Figure 3.2 Histograms of Each Component of the Logit of AAP Values  
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I assume that each component of 𝑦! follows approximately a normal distribution. In fact, each 

component is unimodal. I calculate the maximum difference between empirical cdf (cumulative 

distribution function) and normal cdf of each component in Table 3.6. The magnitude of 

difference varies for each component and sample. The C0 cluster shows a relatively smaller 

difference between empirical and fitted cdf (i.e., within 0.05), while the C2 cluster shows a larger 

difference (i.e., up to 0.10).  

 

Table 3.6 Difference Between Empirical and Normal cdfs 

 

 

The pdf of 𝑦! is given as 

 

where 𝜽! = (𝜇!! , 𝜇!! , 𝜇!! ,𝜎!! ,𝜎!! ,𝜎!! ,𝑝!! ,𝑝!!) and 𝑔!(𝑦!"|𝜇!" ,𝜎!") is the pdf of normal 

distribution of the j-th component with mean 𝜇!" and standard deviation 𝜎!". The parameter 

𝑝! , 𝑗 = 0,1,2 is a mixing proportion such that 𝑝!!
!!! = 1 and 0 < 𝑝!,𝑝! < 1. The parameters 

are estimated in each cluster, and each mixing proportion is calculated as the proportion of each 

component. The estimated parameters are summarized in Table 3.7. 

NA19238 NA19239 NA19240
C0 0.048 0.024 0.044
C1 0.065 0.029 0.066
C2 0.106 0.059 0.098
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Table 3.7. The Parameter Estimates of Each Component 

 

 

The estimates of the parameters vary somewhat across the individuals, but show similar patterns. 

The estimated means of C0 and C2, 𝜇! and 𝜇!, are nearly symmetric around 0, ranging from -5.37 

to -4.60 for 𝜇! and from 4.36 to 5.31 for 𝜇!. The estimated mean of C1 (𝜇!) is slightly smaller 

than 0; zero in logit scale is equivalent to 0.5 in the measured AAP values. The sizes of the 

estimated standard deviations are different among three components, but the ordering of the 

magnitudes of 𝜎! is the same: 𝜎! > 𝜎! > 𝜎!. 

 The genotype likelihood for the k-th sample is calculated using the estimated Bayesian 

posterior probability: 

 

where 𝜽! = (𝜇!! , 𝜇!! , 𝜇!! ,𝜎!! ,𝜎!! ,𝜎!! ,𝑝!! ,𝑝!!). 

Sample µ0 σ0 p0 µ1 σ1 p1 µ2 σ2 p2
NA19238 -5.4566 0.7168 99.8042% -0.0720 0.2256 0.1804% 5.3149 0.9138 0.0154%
NA19239 -4.5974 0.6713 99.4170% -0.0757 0.2872 0.5656% 4.3607 0.7706 0.0173%
NA19240 -5.3668 0.7471 99.7256% -0.0718 0.2443 0.2578% 5.1801 0.9609 0.0166%
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3.2.4 Single Nucleotide Polymorphism Calling and Genotype Assignment 

I assign a genotype to each position based on the clustering and genotype likelihoods in the 

previous sections. The probability of being a SNP (PSNP) at the i-th position is the sum of the 

Bayesian posterior probabilities for g1 and g2, i.e., 𝑙!! 𝑦! + 𝑙!!(𝑦!). The Bayesian posterior 

probability of having the g0 genotype is called PREF here. For convenience, I omit the position 

notation, i. A SNP is called at the i-th position of the k-th sample if the AAP value at the position 

is greater than Lk and PREF is less than 0.5. The g0 genotype is assigned for positions with AAP 

values less than or equal to Lk and PREF≥ 0.5. There are positions that have AAP values greater 

than Lk but with PREF greater than or equal to 0.5. Also some positions have AAP values that 

are greater than Lk, but PREF is less than 0.5. For these positions, genotypes are not assigned and 

separately grouped into “ambiguous g0 or g1 (AMB01)”.  

 For positions of sample k that have AAP values that are greater than Lk and PSNP is 

greater than PREF, either genotype g1 or g2 are assigned by the following rules:  

A. If 𝐿! < 𝑥!" ≤ 𝑈! and 𝑙!! 𝑦!" ≥ 𝑙!!(𝑦!𝑘), then the genotype at the i-th position is g1.  

B. If 𝑥!" > 𝑈! and 𝑙!! 𝑦!" > 𝑙!!(𝑦!"), then the genotype at the i-th position is assigned g2. 

 

There are some positions that have the measured AAP values greater than the upper boundary 

(Uk) but the Bayesian posterior probability of being g2 is smaller than that of being g1. Some 

positions have Bayesian posterior probability of being g2 is greater than that of being g1, but the 

measured AAP value is smaller than Uk. These positions are grouped separately and marked 

“ambiguous g1 or g2 (AMB12). A genotype is not called at such a position, but clearly the 

position is not genotype g0. 
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 Based on the diploid assumption, I assume that there are two alleles, the reference allele 

(ri) and the allele with the greatest alternative count (ai). This assumption is based on the position 

that alternative alleles other than ai are often the result of sequencing errors and that the counts of 

alternative alleles other than ai are negligible. For some positions, however, the counts of other 

alternative alleles than ai are not negligible. Among SNP positions, I grouped these positions as 

possible multiple allele positions (“PM”) when the allele with the third greatest count is greater 

than a third of the depth. For example, suppose that there is a position having depth 50 and the 

reference allele is A. If the reference allele appeared 10 times, allele C appeared 20 times, and 

allele T appeared 20 times, this position would be marked PM.  

 

3.3 Results 

Using the clustering analysis and mixture modeling, I categorized all the d9 positions into six 

groups; Genotypes g0, g1, and g2, AMB01 (i.e., ambiguous g0 or g1), AMB12 (i.e., ambiguous 

g1 or g2), and PM (i.e., possible multiallelelic). The steps from pileup generation to assigning 

genotypes are packaged and named “SNVclust”. The results of SNVclust are summarized in 

Table 3.8. The number of g0 positions is the sum of the number of positions having alternative 

allele count equal to zero and the number of positions assigned to be g0 from section 3.2.4. 

Similarly, the number of g2 positions is the sum of the number of positions having alternative 

allele proportion equal to one and the number of positions assigned to be g2 from section 3.2.4. 

The sum of the numbers assigned to the six categories (g0, g1, g2, AMB01, AMB12, and PM) is 

the number of d9 positions. The SNP positions include g1, g2 AMB12, and PM positions. I 

called 29,690 SNP positions for NA19238, 29,173 SNP positions for NA19239, and 30,034 SNP 
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positions for NA19240. That is 0.09% of d9 positions for the three individuals, cumulatively. 

The proportion of SNPs here is close to the known SNP frequency that a SNP occurs in every 

1,000 base pairs of DNA sequence; i.e., 0.1% [14, 32]. The number of g1 positions is about two 

times the number of g2 positions. Similar results were found in chapter 2 (See Table 2.6 for 

members of YRI trio), where the genotype fraction of g1 was about twice the fraction of 

genotype g2. Although the total number of d9 positions of NA19239 is somewhat smaller than 

for the other two individuals, NA19239 has more ambiguous positions than the others for both 

AMB01 and AMB12, possibly because higher coverage may reduce the number of ambiguous 

positions. 

 

Table 3.8. The Summary of SNP Calling and Genotyping 

 

Note that the number of target positions is 33,881,597 

 

Samples NA19238 NA19239 NA19240
Average Coverage 251x 87x 221x
Number of Positions Not in D9 1,012,138   1,836,123   1,030,710   
Number of D9 Positions 32,869,459 32,045,474 32,850,887 
Genotype g0 32,838,473 32,014,732 32,819,689 
Genotype g1 19,595       19,348       19,902       
Genotype g2 10,065       9,789         10,099       
Ambiguous g0 or g1 1,296         1,569         1,164         
Ambiguous g1 or g2 14             25            23            
Possible Multiple Alleles 16             11             10            
Number of SNP calls 29,690       29,173       30,034       
Proportion of SNP calls from D9 Positions 0.09% 0.09% 0.09%
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 Table 3.9 shows the ranges of the measured AAP values in g0, g1, g2, AMB01, and 

AMB12 categories. Overall the measured AAP values from g0 positions range from 0 to 0.23. 

The AAP values from g1 positions are roughly from 0.30 to 0.76 (0.79 for NA19239). The AAP 

values from g2 positions are from 0.78 (0.83 for NA19239) to 1. Sample NA19239 has wider 

range of the AAP values from g1 positions and shorter range of the AAP values from g2 

positions than the other two samples. Positions having AAP values roughly from a quarter to one 

third are assigned to the category of ambiguous genotype g0 or g1. Measured AAP values 

roughly from three quarters to four fifths for NA19238 and NA19240 and from four fifths to five 

sixths for NA19239 are grouped into the category of ambiguous genotype g1 or g2. 

 

Table 3.9 Ranges of AAP values in Each Category 

 

 

In order to compare the results from SNVclust to results from GATK and SAMtools, I generated 

SNP calls and genotypes for the same three individuals using these procedures. The SNP 

positions from each of three methods were extracted and then compared with the released SNP 

calls from 1000 Genomes Project (1KG) pilot 2 [33]. The 1000 Genomes Project calls used in 

this section were from deep whole genome sequencing (WGS) of the YRI trio with 21.8x, 26.4x, 

and 34.7x coverage, respectively, for NA19238, NA19239, and NA19240. 

min max min max min max
Genotype g0 0.0000 0.2313 0.0000 0.2237 0.0000 0.2308
Ambiguous g0 or g1 0.2315 0.3017 0.2238 0.2920 0.2310 0.2906
Genotype g1 0.3019 0.7561 0.2921 0.7917 0.2907 0.7619
Ambiguous g1 or g2 0.7595 0.7798 0.7939 0.8235 0.7647 0.7895
Genotype g2 0.7828 1.0000 0.8333 1.0000 0.7931 1.0000

NA19238 (Mother) NA19239 (Father) NA19240 (Child)
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The comparisons are summarized in Table 3.10. The number of SNP calls from SNVclust 

was greater than the numbers from GATK and SAMtools. The number of SNP calls from 

SNVclust was between 1,671 and 2,492 more than the calls from GATK. SNVclust made 8,577 

to 10,578 more SNP calls than SAMtools. There were 24,831 SNP positions, 26,462 SNP 

positions, and 26,883 SNP positions reported in the 1,000 genomes project pilot 2 study. 

SNVclust found 97.60% of the 1KG calls on average. That is, the sum of the three individuals’ 

numbers of overlapping positions with 1KG calls (the third row of Table 3.10) divided by the 

sum of total numbers of 1KG calls (the first row of Table 3.10). GATK found 95.91% of the 

1KG calls on average, and SAMtools 59.15% on average. The fractions of the overlaps with 

1KG calls for each individual are written in the parenthesis. The SNVclust found a greater 

fraction of 1KG SNP positions than other two methods. 

There were SNP positions found by SNVclust that were not included in 1KG call sets. 

Among these positions, on average 63.4% of them were found by either GATK or SAMtools or 

both. Similarly, I calculated the average percentage of SNP positions from GATK or SAMtools 

that were not in 1KG calls but found in the other two methods: 96.59% of SNP positions from 

GATK not in 1KG calls were found by either SNVclust or SAMtools or both. 53.25% of SNP 

positions from SAMtools not in 1KG calls were found by either SNVclust or GATK or both. 

These differences may be due to different sequencing strategies (i.e., WGS or WES), different 

sequencing times, or the different sequencing technologies. The fraction of positions that only 

SNVclust called a SNP was 5.18% out of total SNP positions called from SNVclust on average. 

Similarly, the fraction of positions that only GATK called a SNP is 0.30% on average. The 

fraction that only SAMtools called a SNP was 10.43% on average. These positions might be 

possible false discoveries. 
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Table 3.10 Comparison of SNP Calls from SNVclust with Other Methods 

 

Note: 1KG stands for 1000 Genomes Project. 

 

3.4 Analysis of Coverage and Variant Detection 

Even though the overall depth for NA19239 was substantially lower than for the other two, the 

number of calls for NA19239 was only 2.3% less than the average number of calls for the other 

two, possibly because the coverage of NA19239 may be high enough for genotyping with the 

SNVclust algorithm. In order to find the minimal coverage for SNVclust, I randomly selected a 

range of number of reads in NA19240 (YRI-child) to generate different average coverages (See 

Table 3.10). Then the SNVclust described in section 3.2.2-3.2.4 was applied for SNP calling. 

NA19238 NA19239 NA19240
Total 1KG calls 24,831              26,462              26,883              
SNVclust SNP calls 29,690              29,173              30,034              

Overlap with 1KG calls 24,448 (98.46%) 25,429 (96.10%) 26,420 (98.28%)
Not in 1KG calls 5,242                3,744                3,614                
    Overlap with One of Other Methods 3,781                2,165                2,045                
    SNVclust only 1,461                1,579                1,569                

GATK SNP calls 27,272              27,502              27,542              
Overlap with 1KG calls 23,839 (96.00%) 25,385 (95.93%) 25,752 (95.79%)
Not in 1KG calls 3,433                2,117                1,790                
    Overlap with One of Other Methods 3,359                2,013                1,718                
    GATK only 74                   104                  72                   

SAMtools SNP calls 19,498              20,596              19,456              
Overlap with 1KG calls 14,379 (57.91%) 16,301 (61.60%) 15,574 (57.93%)
Not in 1KG calls 5,119                4,295                3,882                
    Overlap with One of Other Methods 3,096                2,104                1,882                
    SAMtools only 2,023                2,191                2,000                
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 The total number of reads in NA19240 was 195,317,068, and the average coverage for 

this individual was 221x. I randomly selected the reads so as to obtain 5x to 220x of average 

coverage in increments of 5x. That is,  

𝑇𝑜𝑡𝑎𝑙  𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑅𝑒𝑎𝑑𝑠
221   ×  𝑇𝑎𝑟𝑔𝑒𝑡  𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒. 

Since some of the reads were not mapped to chromosome 1 to 22, the target coverage was not 

exactly achieved, but the obtained average coverage was close to the target coverage. With the 

selected reads, I generated BAM files and Pileup files for the alternative allele counts, and the 

algorithm was applied. The output SNP calls were then compared with 1KG calls and the 

overlapping rate was calculated. 

 Table 3.11 shows the number of calls from BAM files of each coverage generated from 

SNVclust and its number of overlapping SNP positions with 1KG calls. As the average coverage 

increased, the number of d9 positions increased, and thus the number of calls of SNVclust 

increased. Also the number of calls that overlaps with 1KG calls increased as the average 

coverage grew. Figure 3.3 is the plot of the percentage of the number of calls overlapped with 

1KG calls versus the average coverage. The blue horizontal line is drawn at 90% and the blue 

vertical line is drawn at its corresponding coverage. At 43x, SNVclust found 90% of 1KG SNP 

positions, where the total number of 1KG calls of NA19240 was 26,883. It suggests that 

approximately 43x coverage is needed to achieve 90% sensitivity.  
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Table 3.11 Analysis of Coverage 

 

Target 
Coverage

Actual 
Average 

Coverage

Number of 
SNP calls

Number of Overlaps 
with 1KG calls

Number of D9 
Positions

5 5.28 3,676       3,435                  6,025,363        
10 10.51 13,722      12,340                15,720,940       
15 16.92 19,089      17,409                22,442,925       
20 20.78 22,089      19,818                24,882,537       
25 25.95 24,021      21,382                26,882,008       
30 30.91 25,571      22,660                28,276,498       
35 38.70 26,153      23,531                29,544,940       
40 40.95 26,991      23,945                29,846,426       
45 45.64 27,513      24,401                30,392,458       
50 54.56 27,776      24,863                30,989,819       
55 55.55 28,093      24,847                31,007,266       
60 60.01 28,390      25,151                31,300,533       
65 69.88 28,371      25,382                31,615,166       
70 69.70 28,647      25,362                31,603,964       
75 72.00 28,711      25,507                31,734,637       
80 85.27 28,859      25,740                31,973,661       
85 84.38 28,956      25,679                31,962,318       
90 91.04 28,961      25,811                 32,120,955       
95 100.52 29,004      25,884                32,201,911       

100 99.51 29,350      25,918                32,202,562       
105 107.21 29,312      26,020                32,325,866       
110 115.35 29,236      26,011                 32,366,860       
115 114.28 29,510      26,049                32,366,405       
120 123.02 29,365      26,116                 32,463,868       
125 129.77 29,540      26,159                32,486,127       
130 128.55 29,712      26,143                32,493,289       
135 138.30 29,591      26,213                32,565,341       
140 143.81 29,542      26,204                32,568,126       
145 142.45 29,814      26,229                32,579,127       
150 153.45 29,643      26,271                32,639,207       
155 158.27 29,624      26,267                32,641,643       
160 157.97 29,756      26,267                32,653,687       
165 168.53 29,723      26,308                32,696,897       
170 173.34 29,695      26,308                32,701,809       
175 174.21 29,735      26,308                32,719,405       
180 183.20 29,828      26,357                32,749,876       
185 187.92 29,755      26,344                32,759,557       
190 190.07 29,902      26,357                32,770,516       
195 197.50 29,933      26,381                32,790,542       
200 202.16 29,874      26,373                32,801,042       
205 205.42 29,966      26,394                32,813,875       
210 211.38 29,913      26,387                32,828,757       
215 215.92 30,031      26,412                32,838,637       
220 220.34 29,923      26,408                32,848,586       
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Figure 3.3 Number of Overlaps with 1KG calls vs. Average Coverage 
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3.5 Conclusion and Discussion 

In this chapter, I combined two approaches of clustering and mixture modeling to genotype an 

individual with NGS data. The AAP value at a position was used for measuring the signal of 

SNP at a position. After determining the lower and upper boundaries via CLARA clustering, I 

calculated the Bayesian posterior probability and used it as the genotype likelihood. Based on 

clustering results and genotype likelihoods, I made a call set of SNP positions and genotyped 

each d9 position. Then I compared my call set with three external sources, and estimated that the 

average coverage should be at least 43x for WES data using random read selection.  

All parameters needed for the analysis were derived directly from the data of each 

individual rather than from external information, which should minimize sample-specific biases. 

For example, among the three individuals analyzed in this chapter, one individual had 

significantly lower coverage than others. Using internally estimated parameters, SNVclust could 

successfully genotype the individual with quality roughly comparable to the other members of 

the trio measured with higher coverage. Importantly, it suggests that batch effects can be 

successfully removed by calculating the ratio of AAP as a means of normalization indicating the 

possibility of application of SNVclust to NGS data collected at different times with different 

technologies.  

SNVclust provides information about positions with ambiguous genotypes as well as all 

of three genotypes. Goldstein et al. [34] described the need of information on reference positions 

as implemented in gVCF (genome Variant Call Format) file instead of using VCF file 

(https://sites.google.com/site/gvcftools/). SNVclust includes AAP value and the Bayesian 

posterior probabilities of having each of g0, g1, and g2 genotypes at each position in the outputs.  
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A limitation expected in SNVclust is that it is not suitable for data of mixed cell 

populations such as one from a tumor because it is unlikely that the mixture distribution of AAP 

values would be as clearly shown as one from homogenous cell populations. The basic 

assumption of the SNVclust is that the logit of AAP values in each cluster follows a normal 

distribution. This assumption needs to be assessed before applying the algorithm. 

Finally, this method is scalable for large-scale genomic studies as it does not require large 

memory and computes quickly, especially through parallel processing in high performance 

cluster computers (HPCC) or cloud computing environment. 
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Chapter 4 Summary and Future Studies 

4.1 Summary 

I used the alternative allele proportion measured at each position for modeling. First, I modeled 

the measured AAP values on chromosome 1 of six individuals from 1000 Genomes Project with 

seven components, five continuous distributions with two point distributions. This final model 

well described the patterns of AAP distribution. The estimated parameters in the final model 

were used for estimating genotype fractions. Second, I developed software package, SNVclust, 

for calling SNP positions and genotyping. Cluster analysis and mixture modeling were applied 

together to assign Bayesian posterior probability at each position. The calls from SNVclust found 

more SNP positions from 1000 Genomes Project positions than GATK and SAMtools.  

4.2 Mendelian Inconsistency 

Positions that do not follow Mendelian inheritance are of interest in studies of diseases such as 

autism. Specially de novo mutations, those that the parents do not have but that are in an affected 

child, are of great interest [35, 36]. As discussed in Chapter 2, genotype fractions of a child were 

different than the fractions expected from the genotype fractions of the parents under a binomial 

model. The fraction of g2 genotypes was more than expected from the parents. By applying the 

algorithm in Chapter 2 to larger number of unaffected trios, I would like to study how much 

Mendelian inconsistency can occur in normal families. 
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4.3 Extension to Chromosomes X and Y 

The distributions and the algorithms described in chapter 2 and 3 are based on the diploid 

assumption. For females, it can be easily extended to chromosome X. However, male DNA has 

one copy of chromosome X and one copy of chromosome Y. A different number of mixture 

distributions may need to be applied for modeling AAP values from these chromosomes.  

 

4.4 Ambiguous Genotypes 

There were considerable numbers of positions having the AAP values around 0.25 and 0.75 in 

the histograms shown in chapter 2 and 3. The meanings of these positions need to be studied. If 

those positions are coming from sequencing or alignment errors, modeling such errors separately 

might increase the accuracy of genotyping in NGS data. Such positions might also come from 

the effect of other types of genomic variation such as copy number variations. 

 

4.5 Whole Genome Sequencing Application 

In Chapter 2 and 3, I assumed a continuous distribution of AAP values, based on the assumption 

that the denominators of AAP values are large enough to make the assumption of a continuous 

distribution of AAP values satisfactory. In WGS data, however, the coverage might not be as 

high as WES and also may not vary as widely as in WES. Thus different distributions may need 

to be studied when the coverage is not high.   
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Appendices 

A. Checking the Second Derivative Conditions for Maximum for Model 1 
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B. Workflow Chart of SNVclust Pipeline 

Figure B.1 Workflow Chart of SNVclust 
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ALT: the alternative allele 

Lk: Lower boundary of the k-th sample 

Uk: Upper boundary of the k-th sample 

PREF: Bayesian posterior probability of having g0 genotype at a position 

PHET: Bayesian posterior probability of having g1 genotype at a position 

PHOM: Bayesian posterior probability of having g2 genotype at a position 

PSNP: Bayesian posterior probability of having g1 or g2 genotype at a position. That is the sum 

of PHET+PHOM 

SNV: Single Nucleotide Variants 

 

 

 

 

 

 

 

 

 

 


