

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

High-Order Surface Reconstruction and its
Applications to Surface Integrals and

Surface Remeshing

A Dissertation Presented

by

Navamita Ray

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

December 2013

Stony Brook University

The Graduate School

Navamita Ray

We, the dissertation committee for the above candidate for the
Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation.

Xiangmin (Jim) Jiao – Dissertation Advisor
Associate Professor, Department of Applied Mathematics and Statistics

James Glimm – Chairperson of Defense
Distinguished Professor, Department of Applied Mathematics and Statistics

Xiaolin Li
Professor, Department of Applied Mathematics and Statistics

Timothy Tautges
Computational Scientist, Math and Computer Science Division

Argonne National Labratory

This dissertation is accepted by the Graduate School.

Charles Taber
Dean of the Graduate School

ii

Abstract of the Dissertation

High-Order Surface Reconstruction and its
Applications to Surface Integrals and Surface

Remeshing

by

Navamita Ray

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2013

High-order surface reconstruction is a numerical technique to obtain
high-order approximations of both geometry and its differential quan-
tities such as normals, curvatures, etc., over a discrete surface mesh. Its
computational framework is based on local polynomial fittings using a
weighted least squares approach. In this dissertation, we complete the
scope of this framework to compute high-order approximations of sur-
face integrals and demonstrate the application of the complete frame-
work to various mesh-based numerical computations for high-order nu-
merical methods. The computational framework relies on an efficient
underlying mesh data structure for various traversal queries. For this
purpose, an array-based mesh data structure was developed to repre-
sent the mesh for efficient mesh query and modification operations. Our
methods are mainly developed for applications with high-order meth-
ods in mind.

Surface integration is a fundamental operation in many scientific and

iii

engineering applications. The standard methods for numerical compu-
tation are generally limited to second-order of accuracy due to lower-
order approximations to geometry and integrand. This limitation is
overcome by extending the computational framework for high-order
surface reconstruction to a function defined over the surface and cou-
pling it with high-order quadrature rules. We theoretically analyze the
accuracy of our method and prove that it can achieve high-order of
accuracy and verify it with numerical experiments as well. A widely
used operation by many applications is the modification of the surface
mesh by vertex redistribution, edge flipping, refinement or coarsening,
such that the resulting mesh improves certain properties such as mesh
quality, error distribution, etc. It is vital to preserve the geometric ac-
curacy of the mesh as it undergoes the modification operations. Our
computational framework provides an efficient high-order point pro-
jection strategy that can be easily coupled with various mesh quality
improving techniques. We develop remeshing strategies coupling ex-
isting mesh quality improving techniques with high-order surface re-
construction, to produce high-quality and high-order accurate surface
meshes. The developed algorithms are made robust to allow untan-
gling mildly folded triangles and also take into account the approxi-
mation issues related to high-order approximations in under-resolved
regions. All of our algorithms are based on an array-based half-facet
mesh data structure called AHF, for efficient mesh query and modifi-
cation operations. It was developed for 2D/3D non-manifold meshes
with mixed-dimensional submeshes for increased applicability.

We present the theoretical framework of our methods, show experimen-
tal comparisons against other methods, and demonstrate their utiliza-
tion to geometric PDE’s, high-order finite elements, biomedical image-
based surface meshes, and complex interface meshes in fluid simula-
tions.

iv

Acknowledgements
First and foremost, I would like to thank my advisor Prof. Xiangmin Jiao for his
valuable guidance and support throughout my study. It has been a great pleasure
and valuable experience to work with him. I have learned a lot from his rigorous
and scientific way of understanding and solving a problem, as well as gain from his
vast experience in coding and scientific writing. I express my gratitude for all his
help. I also thank the Department of Applied Mathematics and Statistics and my
advisor for the financial support provided during my graduate study.
I would like to thank collaborators Prof. James Glimm of Stony Brook University,
Dr. Daniel Einstein of Pacific National Laboratory and Dr. Timothy Tautges of
Argonne National Laboratory for providing the oppurtunity to work on interesting
problems, guidance as well as financial support.
I would like to thank past and current members of our research group for all their
friendship, help and encouragement. In particular, Rebecca Conley, Xinglin Zhao,
Cao Lu, Hong Xu, Tristan Delaney, Dr. Bryan Clark, Dr. Duo Wang, Dr. Vladimir
Dyedov and Dr. Ying Chen. I would also like to thank Dr. Duo Wang, Dr. Bryan
Clark, Dr. Vladimir Dyedov and Tristan Delanay for allowing me to use some of
their experimental results in this disseration. It was a great pleasure to work with
Yijie Zhou and Hyunkyun Lim.
I thank my brother Tathagata Ray for his love and support. Finally, I dedicate my
dissertation to the memory of my dear parents.

v

Contents

Contents vi

List of Figures ix

List of Tables xiii

1 Introduction 1
1.1 Overview . 1
1.2 Organization . 3

2 High-Order Surface Reconstruction 5
2.1 Local Polynomial Fittings . 5

2.1.1 Local Polynomial Fitting at a Point 5
2.1.2 Robust Solution of Least Squares Fits 8

2.2 Surface Reconstruction: WALF and CMF 10
2.2.1 Weighted Averaging of Local Fittings (WALF) 10
2.2.2 Continuous Moving Frames (CMF) 12
2.2.3 Comparison of WALF and CMF 13

3 Mesh Data Structures 15
3.1 Background . 16
3.2 Related Work . 17
3.3 AHF: An Array-Based Half-Facet Datastructure 20

3.3.1 Unification of Half-Edges and Half-Faces into Half-Facets . 20
3.3.2 Generalization to Non-manifold Meshes 22
3.3.3 Generalization to Mixed-Dimensional Meshes 23

3.4 Construction and Query of AHF 23

vi

3.4.1 Construction of AHF . 23
3.4.2 Algorithms for Adjacency Queries 26

3.5 Implementations . 27
3.6 Experimental Comparisons . 30

3.6.1 Cost in Construction of Data Structure 30
3.6.2 Storage Costs . 31
3.6.3 Computational Costs of Adjacency Queries 32

3.7 Mesh Modification Operations . 33

4 High-Order Surface Integration 37
4.1 Related Work . 38
4.2 Background . 39

4.2.1 Integration of Continuous Functions over Smooth Surfaces . 39
4.2.2 Numerical Integration over surfaces 41

4.3 High-Order Numerical Integration 42
4.3.1 High-Order Piecewise Smooth Geometry 44
4.3.2 High-Order Piecewise Smooth Function 46
4.3.3 Overall Algorithm . 47

4.4 Theoretical Convergence . 49
4.4.1 Accuracy of Weighted Averaging of Fittings 49
4.4.2 Accuracy of Jacobian . 52
4.4.3 Accuracy of Integration 54

4.5 Numerical Experiments . 56
4.5.1 Convergence of High-order Integrations 56
4.5.2 Performance Results . 60

5 High-Order Surface Remeshing 62
5.1 Related Work . 63
5.2 High-Order Surface Smoothing and Untangling 65

5.2.1 Mesh Smoothing Algorithms 66
5.2.2 High-Order Point Projection 69
5.2.3 Safeguards and Limiters 71
5.2.4 Mesh Optimization and Untangling by Edge Flipping 72

5.3 High-Order Surface Mesh Adaptation 74
5.4 Numerical Experiments . 76

vii

5.4.1 Effectiveness of Mesh Smoothing and Untangling 76
5.4.2 Effectiveness of Mesh Untangling 78
5.4.3 Effectiveness of Mesh Optimization 79
5.4.4 Numerical Accuracy with Mesh Optimization 80
5.4.5 Accuracy Comparison of Mesh Adaptation 82

6 Applications 84
6.1 Computation of Van der Waals Force 84
6.2 Smoothing Biomedical Geometries from Medical Image Data . . . 86
6.3 Improving High-Order Finite Elements 88
6.4 Geometric PDEs . 88

7 Conclusions and Future Work 92

Bibliography 94

viii

List of Figures

2.1 Stencil for point selection . 9
2.2 2-D illustration of weighted averaging of local fitting. The black

(dashed) curve indicates the exact curve. The blue (darker, solid)
and green (lighter, solid) curves indicate the fittings at vertices x1
and x2, respectively. q is the WALF approximation of point p and
is computed as a weighted average of the points q1 and q2 on the
blue and green curves, respectively. 11

3.1 CGNS numbering conventions for 2-D and 3-D elements. Under-
scored numbers correspond to local edge IDs, and circled ones cor-
respond to local face IDs. 21

3.2 Example of a non-manifold mesh, along with its element connectiv-
ity, sibling half-edges, and mapping from each vertex to an incident
half-edge. 22

3.3 Typical AHF for mixed-dimensional meshes is composed half-vertex
(black, for explicit edges only), half-edge (blue, for explicit faces
only), and half-face (red) data structures. 24

3.4 An example of upward incidence query. This shows all the incident
triangles on a given explicit edge (blue). 28

3.5 Example adjacency queries for non-manifold meshes. Left panel
shows neighbor edges (red) of a given blue edge. Right panel shows
the neighbor faces of a given blue triangle. 28

3.6 The meshes used for comparison. 31
3.7 Average times (in seconds and logarithmic scale) to perform queries

in 1-D (a, b), 2-D (c, d) and 3-D (e, f). 34

ix

3.8 Standard edge-flipping operations on a tetrahedral mesh. The 2-
3 and 3-2 flips (A) increase or decrease the number of tetrahedra,
respectively. In a manifold mesh, the 4-4 flip (B) can be applied
in the interior. The 2-2 flip (C) is defined only on the boundary
surface, or a tetrahedral mesh with prismatic boundary layers [15]. . 35

3.9 An example tetrahedral mesh of a heart model optimized using
mesh flipping and smoothing implemented using AHF. The his-
tograms show the quality measures in terms of orthogonality, skew-
ness and uniformity of the mesh before (gray) and after (black) op-
timization, where smaller values correspond to better qualities. . . . 36

4.1 Flowchart of our algorithm for high-order surface integration where
w, ϕ and g denote the weight, integrand and Jacobian of the surface
at a quadrature point. In case of vector functions, ϕ = ϕϕϕ ··· n̂nn. 48

4.2 Illustration of notation used in proofs. Point q0 is a point inside
a linear triangle 4v1v2v3. The reconstructed points corresponding
to local fittings at vertices vi are denoted by green points qi. The
intersection of the first order normals mi with the exact surface is
denoted by ri. 50

4.3 Coarsest high-quality (left) and poor-quality (right) test meshes for
torus used in our numerical experiments. 57

4.4 Relative errors and average convergence rates of surface area of a
torus under mesh refinement for high-quality (left) and low-quality
(right) meshes. 57

4.5 Relative errors and average convergence rates of computed volume
of a torus under mesh refinement for high-quality (left) and low-
quality (right) meshes. 58

4.6 Relative errors and average convergence rates for integration of a
test scalar function (left) and a test vector-valued function (right)
on the torus. 59

4.7 Comparison of convergence rates of computed surface area of the
torus using high-order reconstructions of (left) only the function vs.
(right) both the geometry and function. 59

4.8 Convergence rates of computed surface area of a spherical har-
monic of degree 6 (right). The domain of integration is shown on
the left. 60

4.9 Convergence rates of computed volume of a slotted sphere (right).
The domain of integration is shown on the left. 61

5.1 A mildly folded triangle . 66

x

5.2 Major steps of the smoothing algorithm. 67
5.3 Illustration of the discrete mapping between an ideal triangle and

an actual triangle via a parametric triangle as well as the naming
convention followed for triangles. 68

5.4 Illustration of edge flipping. 72
5.5 Overview of key steps in mesh optimization and untangling with

high-order surface reconstruction. 73
5.6 Illustrations of edge splitting and edge contraction. 74
5.7 The sub-figures (a), (c) and (d) show the initial mesh, closeup of the

region inside the rectangle before and after smoothing, respectively.
The smoothing algorithm is applied for 30 iterations. Sub-figure (b)
shows the distribution of angles of the redistributed surface mesh. . 77

5.8 The left figure is a droplet in the initial surface mesh. The middle
figure shows the configuration after applying 1 iteration of smooth-
ing using CMF without using the geometric limiter. The right figure
shows the result of smoothing when geometric limiter is used. . . . 78

5.9 Distribution of points where the order of fitting was reduced after
using the geometrical limiter. 79

5.10 Example of untangling and optimization of a poor-quality surface
mesh. The initial mesh had 47 folded triangles (a few are high-
lighted in (a)) and a wide range of angles. After optimization, the
mesh had excellent mesh quality, accurate curvatures, and no folding. 80

5.11 An example of remeshing a spherical harmonic surface to produce
a high-quality mesh while preserving geometric accuracy. Images
are color coded by mean curvatures. The initial mesh (left) has very
high-valence vertices (as highlighted in the inlet, at the poles of the
spherical coordinate system) and a minimum angle of 3.2 degrees.
The optimized mesh (right) has a minimum angle of 29.9 degrees,
with accurate surface normals and curvatures. 81

5.12 Errors and orders of convergence of normals and curvatures after
mesh optimization for an ellipsoid. 82

6.1 Analytical and numerical results for sphere-sphere interaction force
calculation. Left: Van der Waals force at different separation dis-
tances. Right: relative errors of numerical results at different sepa-
ration distances. 85

xi

6.2 The top-left figure shows a surface plot of the initial mesh. The
bottom-left and bottom-right figures show the closeup of the portion
inside the rectangle before and after 30 iterations of mesh smooth-
ing. The closeup of the portion inside the red rectangle demon-
strates the improved quality and smoothness of surface mesh after
smoothing. The top-right shows the distribution of the angles of the
triangulated surface mesh. 87

6.3 Isoparametric (quadratic) element shape quality for a spherical har-
monic surface (a,c) before and (b,d) after application of the mesh
smoothing algorithm. Colors indicate the quality measure of each
isoparametric element. Near-singular or folded elements are repre-
sented in black while near-ideal elements are colored white. 90

6.4 Evolution of an initial mesh (left) of an ellipsoid under mean cur-
vature flow. The center and the right images show the top of the
surface meshes after 0.14 seconds of evolution without and with
mesh adaption, respectively. 91

xii

List of Tables

3.1 Times taken to construct data structures by standalone AHF and
MOAB_AHF. 30

3.2 Storage requirements in kilobytes of AHF, MOAB, and OpenVol-
umeMesh for three largest meshes in Table 3.1. 32

4.1 Numerical integration formulas for triangles. 43
4.2 Runtime in seconds for computation of volume of triangulated torus. 61

5.1 L∞ errors and orders of convergence of mean curvature and Gaus-
sian curvature on a torus after mesh adaption using surface recon-
structed based on WALF and other alternatives. 83

xiii

Chapter 1

Introduction

1.1 Overview

Surface meshes are widely used in various scientific and engineering problems such
as computer graphics, image analysis, physical and biological simulations. They
not only represent computational grids for various discretization methods, but are
also numerical objects in themselves. The accuracy of numerical methods espe-
cially high-order methods, is highly dependent on the geometrical accuracy of the
mesh as well as on that of differential or integral quantities defined over it. The sit-
uation is further complicated if the surface mesh does not have an underlying CAD
model representation or is evolving, in which case it is extremely difficult to main-
tain a CAD representation. As a result one generally has access to a discrete mesh
for numerical computations. We consider the problem of computing high-order
approximations over discrete surface meshes and their use in various mesh-based
computations.
In [31], a weighted least squares based local polynomial fitting approach was pro-
posed to compute high-order accurate1 approximations to both geometry and dif-
ferential quantities such as normals, curvatures, etc. Since the local polynomial
fittings at nodes of the surface mesh do not result in a continuous geometrical sup-
port for the mesh, two methods were proposed in [29, 51] to obtain such continuous
support for the geometry. This numerical technique is known as high-order surface
reconstruction over discrete meshes. So far the proposed methods were used to
compute high-order approximations to the geometry and differential quantities. In
this dissertation, we complete the scope of this framework to compute high-order

1By high-order accuracy, we mean that the errors converge at a rate of third or higher order
with respect to some measure of edge lengths under mesh refinement. Note that high-order accuracy
does not imply high degree of continuity, and conversely high degree of continuity does not imply
high-order accuracy either.

1

approximation of surface integrals and demonstrate the application of the complete
framework to various mesh-based numerical computations for high-order numerical
methods.
The motivation is the fundamental importance of surface integration in many sci-
entific and engineering applications. It is widely used by numerical methods such
as finite element, boundary integral, meshless methods, etc., and forms the basis
of geometric primitives such as surface area and volume, etc. As an analytic an-
tiderivative is rarely available in practice, it is mostly computed numerically using
approximations to both geometry and the integrand along with quadrature rules.
The standard methods are generally limited to second-order of accuracy due to
lower-order approximations to geometry and integrand. However, for many nu-
merical methods, especially high-order methods, it is important to compute the
integrals to high-order of accuracy. This limitation can be overcome by extending
the computational framework for high-order surface reconstruction to do the same
for a function defined over the surface and couple it with high-order quadrature
rules. We theoretically analyze the accuracy of the method, prove that it can indeed
achieve high-order of accuracy and verify it with numerical experiments. This com-
pletes the scope of the underlying framework based on local polynomial fittings to
compute high-order approximations over a discrete surface to the geometry, its dif-
ferential quantities, functions defined over it and surface integration with provable
accuracy.
We next focus on a mesh-based operation known as surface remeshing that is widely
used by many applications. It modifies the surface mesh by vertex redistribution,
edge flipping, refinement or coarsening such that the resulting mesh improves cer-
tain properties such as mesh quality, error distribution, etc. Apart from the improve-
ment in the targeted property, it is also vital to preserve the geometrical accuracy of
the mesh after these operations have taken place, especially for high-order numeri-
cal methods. The problem is particularly challenging if no CAD model is available
for the underlying geometry, and is even more so if the surface meshes contain
some inverted elements. We investigate this problem of optimizing, adapting, and
untangling a surface triangulation with high-order accuracy. We develop remeshing
strategies that couple various mesh quality improving techniques with high-order
surface reconstruction producing high-quality triangular meshes, while untangling
mildly folded triangles and preserving the geometry to high-order accuracy.
We observe that high-order point projection works well for sufficiently resolved
meshes. However, for under-resolved regions, such as those representing highly
curved regions, it might become problematic and result in artifical spikes. This
makes it important to introduce safeguards called limiters to properly reduce to a
lower-order point projection in such problematic regions. We demonstrate the ef-
fectiveness of our methods by experimental comparisons against other methods, as

2

well as show its utilization to geometric PDE’s, high-order finite elements, biomedi-
cal image-based surface meshes, and complex interface meshes in fluid simulations.
Any meshing algorithm or mesh-based numerical method relies on its mesh data
structures to perform a range of operations such as traversal, query and modifica-
tion. Thus the underlying data structure strongly influences the overall performance
and storage requirement of the algorithm. For our algorithms, we developed an
array-based half-facet mesh data structure, denoted as AHF, which can perform ef-
ficient mesh query and modification operations. To increase its applicability, AHF
was developed to support 2D/3D non-manifold meshes with mixed-dimensional
submeshes. We present some comparisons of the memory requirements and com-
putational costs, and also demonstrate its effectiveness with a few sample applica-
tions.
There are four main contributions of this work. First, we extend the concept of
high-order surface reconstruction to do the same for a function defined on the sur-
face. This allows us to compute high-order approximations of surface integrals over
discrete surface. Second, we integrate various mesh operations with high-order sur-
face reconstruction to preserve geometrical accuracy, and develop algorithms for
mesh smoothing, optimization, and adaptation. We improve the robustness of high-
order reconstructions to allow remeshing of under-resolved meshes by introducing
geometric limiters and untangling mildly folded triangles. Third, we develop a gen-
eral, efficient and simple mesh data structure that is used as the underlying mesh
representation for all of our algorithms. Finally, we apply our methods to a variety
of applications with complex meshes, including those from biomedical images and
interface meshes in fluid simulations.

1.2 Organization

The dissertation is organized as follows. In chapter 2, we describe briefly the main
concepts and results of high-order surface reconstruction [29, 31, 51]. These con-
cepts will be generalized and coupled with various mesh-based operations in later
chapters.
In chapter 3, we develop a compact, efficient and general array-based mesh data
structure AHF that forms the underlying mesh representation for our algorithms.
We present some comparisons of the memory requirements and computational costs,
and also demonstrate its effectiveness with a few sample applications [16].
In chapter 4, we solve the problem of computing high-order accurate numerical
integration of a function over a discrete surface. This involves generalizing the
concept of high-order surface reconstruction to that of high-order function recon-
struction and coupling them together with high-degree quadrature rules. We present

3

theoretical analysis of the accuracy of our method as well as experimental results
of up to sixth order accuracy [44].
In chapter 5, we investigate the problem of optimizing, adapting, and untangling
a surface triangulation with high-order accuracy in a robust manner, so that the re-
sulting mesh has sufficient accuracy for high-order numerical methods [12, 43]. We
present the theoretical framework of our methods as well as experimental compar-
isons against other methods.
In chapter 6, we demonstrate the utilization of high-order surface remeshing to
a number of applications such as solving geometric PDE’s, high-order finite ele-
ments, biomedical image-based surface meshes and complex interface meshes in
fluid simulations.

4

Chapter 2

High-Order Surface Reconstruction

We begin with a brief description of the concepts involved in high-order surface
reconstruction over a discrete mesh. We first describe the local polynomial fitting
using a weighted least squares approach. The main assumption of the local poly-
nomial fittings using a weighted least squares approach is that the input discrete
mesh is representative of 2-manifold regular surface. Using the powerful Taylor
series expansion to approximate the neighborhood of a point on the surface to high-
order not only allows better geometrical approximation but also computation of
high-order and convergent differential quantities. We also discuss neighborhood
selection and weights for linear systems as well as robust solution of the linear sys-
tem. Finally, we describe two methods to obtain C0 continuous geometric support
for the discrete mesh namely, Weighted Averaging of Local Fittings (WALF) surface
and continuous moving frame (CMF) surface. This section is mainly based on the
work done in [29, 31, 51].

2.1 Local Polynomial Fittings

2.1.1 Local Polynomial Fitting at a Point

Taylor series expansion is perhaps the most powerful tool in numerical analysis that
is widely used for numerical approximations. They form the basic computational
unit for local polynomial fittings. We assume that the given discrete mesh is repre-
sentative of a manifold and regular surface. Therefore, a small neighborhood of a
point on the surface can be approximated using a bivariate polynomial which can
be obtained by fitting a Taylor series truncated to some order. It is important to
note that such polynomial fittings only require a local parametrization around the
point, instead of a global parametrization of the surface mesh. Each point has its

5

own parametrization. This localization can better capture the local geometry infor-
mation and enforces no restriction on the global properties of the surface as global
parametrization does, simplifying the problems both theoretically and computation-
ally.
The neighborhood a point P under a local parameterization with parameters u and
v, where P corresponds to u = 0 and v = 0 can be approximated or interpolated
by fitting a truncated Taylor polynomial. The polynomial fitting may be defined
over the global xyz coordinate system or a local uvw coordinate system. In the for-
mer, the neighborhood of the surface is defined by the coordinate function f(u,v) =
[x(u,v),y(u,v),z(u,v)]. In the latter, assuming the uv-plane is approximately par-
allel with the tangent plane of the surface at P, each point in the neighborhood of
the point can be transformed into a point [u,v, f (u,v)] (by a simple translation and
rotation), where f is known as the local height function.
Let u denote [u,v]T and f (u) denote a smooth bivariate function, which may be
the local height function under orthogonal projection, or the x, y, or z component
of the coordinate function for a parametric surface. Let c jk be a shorthand for

∂ j+k

∂u j∂vk f (0). Given a positive integer d, if f (u) has d + 1 continuous derivatives, it
can be approximated to (d +1)th order accuracy about the origin u0 = [0,0]T by

f (u) =
d

∑
p=0

j+k=p

∑
j,k≥0

c jk
u jvk

j!k!︸ ︷︷ ︸
Taylor polynomial

+
j+k=d+1

∑
j,k≥0

∂ j+k

∂u j∂vk f (ũ, ṽ)
ũ jṽk

j!k!︸ ︷︷ ︸
remainder

, (2.1.1)

where 0 ≤ ũ ≤ u and 0 ≤ ṽ ≤ v. We emphasize that this equality assumes that f is
continuously differentiable up to d +1, which is generally known as the regularity
assumption. The derivatives of the Taylor polynomial are the same as f at u0 up
to degree d, and hence the problem of estimating the derivatives reduces to the
estimation of the coefficients c jk of the Taylor polynomial. Thus, given a set of data
points, say [ui,vi, fi]

T for i= 1, . . . ,m−1, sampled from a neighborhood near a point
u0 = [u0,v0, f0]

T plugging in each given point into (2.1.1) gives us an approximate
equation

d

∑
p=0

j+k=p

∑
j,k≥0

c jk
u j

i vk
i

j!k!
≈ fi, (2.1.2)

which has n = (d + 1)(d + 2)/2 unknowns (i.e., c jk for 0 ≤ j + k ≤ d, j ≥ 0 and
k ≥ 0), resulting in an m× n rectangular linear system. We refer to d as the de-
gree of fitting. Note that one could enforce the fit to pass through the point u0
by setting c00 = 0 and removing the equation corresponding to u0, reducing to an
(m−1)× (n−1) rectangular linear system, this may be beneficial if the points are

6

known to interpolate a smooth surface. The above method for estimating the Taylor
polynomial is known as polynomial fitting or local polynomial fitting as the fitting
is obtained for a local neighborhood around point u0.
Let us denote the rectangular linear system obtained from (2.1.2) as

Vc≈ f, (2.1.3)

where c is an n-vector composed of c jk, and V is a generalized Vandermonde matrix.
For a local height function, f is an m-vector composed of fi; for a parametric surface,
f is an m× 3 matrix, of which each column corresponds to a component of the
coordinate function. This idea is generalized to obtain fittings for functions defined
on the surface. We discuss more about it in section 4.3.2.
By solving this equation we get the coefficient vector c. Together with the coordi-
nate values of vertex P and the two tangent vectors, we have the full information of
the approximated local surface geometry. Numerically, (2.1.3) can be solved using
the framework of weighted linear least squares [23, p. 265], i.e., to minimize a
weighted norm (or semi-norm),

min
c
‖Vc− f‖W = min

c
‖W(Vc− f)‖2, (2.1.4)

where W is a weighting matrix. Typically, W is an m×m diagonal matrix, whose
ith diagonal entry ωi assigns a priority to the ith point [ui,vi]

T by scaling the ith row
of V. This formulation is equivalent to the linear least squares problem

Ṽc≈ b, where Ṽ = WV and b = Wf. (2.1.5)

In general, Ṽ is m×n and m≥ n. However, this linear system may be rank deficient
(i.e., the column vectors of Ṽ may not be linearly independent) or ill-conditioned
(i.e., the singular values of Ṽ may have very different scales) due to a variety of rea-
sons, including poorly scaling, insufficient number of points, or degenerate arrange-
ments of points [38]. The scaling of Ṽ can be improved substantially by introducing
a scaling matrix S changing the problem to

min
d
‖Ad−b‖2, where A = ṼS and d = S−1c. (2.1.6)

Here S is typically a diagonal matrix. Let ṽi denote the ith column of Ṽ. The
ith diagonal entry of S is typically chosen to be either ‖ṽi‖∞ [10, 53] or ‖ṽi‖2
[31], where the latter approximately minimizes the condition number of ṼS [23, p.
265]. However, the problem may still be ill-conditioned after rescaling, and we will
address this issue in the next section.

7

2.1.2 Robust Solution of Least Squares Fits

The weighted least squares problem described in the previous section is applicable
to any scenario where a set of points approximates a surface. For us, we have a
piecewise linear triangulation of the surface as the input and thus the local fittings
are generally constructed at vertices of the mesh. We assume the vertices of the
mesh accurately sample the surface and the faces of the mesh correctly specify the
topology of the surface.
Before we discuss the solution of the linear system, we note that the weighting
matrix W assigns priorities to different rows of the linear system corresponding to
different points that are being fit. Thus W has no effect on the solution if V is a
non-singular square matrix, but different W would lead to different solutions for
rectangular matrices. Let m̂i denote a first-order approximation to the unit normal
at the ith vertex (e.g., obtained by averaging face normals). In general, for the ith
row corresponding to the ith point xi, it is desirable to assign its weight wi to some
larger value if xi is close to the origin of the local coordinate system x0, or a smaller
value (or even zero) if xi is far away from x0 or its normal m̂i is too wide an angle
from the normal m̂0 at x0. In particular, we choose the weight at the ith vertex as

wi =
γ
+
i

(‖ui‖2/h+ ε)
d/2 , (2.1.7)

where γ
+
i ≡max(0,m̂T

i m̂0), h≡∑
m
i=1 ‖ui‖2/m, and ε ≈ 0.01. The factor γ

+
i serves

as a safeguard against drastically changing normals for coarse meshes or non-
smooth areas. The denominator

(
‖ui‖2/h+ ε

)d/2 prevents the weights from be-
coming too large at points that are too close to u0 and makes the weights approxi-
mately equal to wi ≈

(
‖ui‖2/h

)−d/2.
Because W allows the flexibility to under-weigh (and even filter out) undesirable
points, we use a simple procedure to select points based on mesh connectivity when
constructing the linear system. In particular, we use a k−ring neighborhood with
half-ring increments:

• The 1-ring neighbor faces of a vertex v are the faces incident on v, and the
1-ring neighbor vertices are the vertices of these faces.

• The 1.5-ring neighbor faces are the faces that share an edge with a 1-ring
neighbor face, and the 1.5-ring neighbor vertices are the vertices of these
faces.

• For an integer k ≥ 1, the (k+ 1)-ring neighborhood of a vertex is the union
of the 1-ring neighbors of its k-ring neighbor vertices, and the (k+1.5)-ring

8

1.5 ring

2.5 ring

1 ring

2 ring

Figure 2.1: Stencil for point selection

neighborhood is the union of the 1.5-ring neighbors of the k-ring neighbor
vertices.

Figure 2.1 illustrates the definitions up to 2.5 rings. In general for dth degree fitting,
we use the (d + 1)/2-ring for accurate input or (d/2+ 1)-ring for relatively noisy
input.
Unlike W, the scaling matrix S does not change the exact solution of c. However, S
can significantly improve the conditioning of the linear system and in turn improve
the accuracy in the presence of rounding errors. Note that the scaling matrix S can-
not improve the condition number of V if the ill-conditioning is caused by the lack
of points or some unfortunate selection of points, which is a well-known issue [38].
It can be alleviated by including additional points in the fitting if possible. How-
ever, if the number of points is fixed, solving this ill-conditioned system is similar
to solving an under-constrained linear system. Although there exist general tech-
niques for solving ill-conditioned least squares problems, such as SVD, an effective
solution should take advantage of the special properties of the problem at hand.
Instead of using the truncated SVD to solve this linear system, we use a variant of
the reduced QR factorization to address the problem. Let the reduced QR factoriza-
tion of WVS be

WVS = QR, (2.1.8)

where Q is m×n with orthonormal column vectors and R is a n×n upper-triangular
matrix. The condition number of WVS is the same as that of R, which can be esti-
mated accurately and efficiently using a variant of back substitution. If the condition
number of R is too large (e.g., ≥ 106), we then reduce the degree of the fitting by
removing the last few columns that correspond to the highest derivatives. Let Q̃ and

9

R̃ denote the reduced matrices. The final solution of x is given by

x = TR̃−1Q̃T Sb, (2.1.9)

where R̃−1 denotes a back substitution step. Compared to the solution based on
SVD, this procedure is more accurate asymptotically as it gives highest priority to
the lower-order coefficients of the polynomial while maintaining good scaling of
the matrix, and at the same time it is more efficient than SVD. If the degree of
fitting is reduced due to either an ill-conditioned R̃ or insufficient number of points
in the stencil, a cure could be increasing the size of the stencil so that the system
is more stable. The weighted local least squares polynomial fitting provides us the
theoretical foundation for high-order reconstruction of surfaces, established by the
following proposition [31]:

Proposition 1. Given a set of points [ui,vi, f̃i] that interpolate a smooth height func-
tion f or approximate f with an error of O(hd+1), assume the point distribution
and the weighting matrix are independent of the mesh resolution, and the condition
number of the linear system is bounded by some constant. The degree-d weighted
least squares fitting approximates c jk to O(hd− j−k+1).

2.2 Surface Reconstruction: WALF and CMF

The local polynomial fitting method described in Section 2.1.1 is computed locally
at each vertex of the mesh. Since there is no coordination among the local fittings
at different vertices, the method does not reconstruct a global continuous surface.
In this section we describe two methods that reconstructs a global C0 continuous
surface from the local polynomial fittings. The first method blends the local fittings
of all vertices of an element by a weighted averaging with the linear finite element
basis functions as weights. This method is referred to as Weighted Averaging of
Local Fittings (WALF). The second method enforces continuity of local coordinate
frames and weights for local fittings. This method is referred as Continuous Moving
Frame (CMF).

2.2.1 Weighted Averaging of Local Fittings (WALF)

The key idea is that the polynomial at each vertex gives a high-order approximation
to the surface over the stencil of the vertex. Therefore, any weighted average of
these polynomials associated with the vertices of a triangle would also give a high-
order approximation. However, the matter is complicated by the fact that different
local coordinate frames are used at different vertices, so a change of coordinates

10

p

x2x1
q1

n1 n1

p

x2x1
q2

n2n2

p

x2x1
q1 q2

n1 n1 n2n2

q

Figure 2.2: 2-D illustration of weighted averaging of local fitting. The black
(dashed) curve indicates the exact curve. The blue (darker, solid) and green (lighter,
solid) curves indicate the fittings at vertices x1 and x2, respectively. q is the WALF
approximation of point p and is computed as a weighted average of the points q1
and q2 on the blue and green curves, respectively.

is necessary. Our approach to obtain a piecewise smooth geometry is to blend the
local fittings to obtain WALF (Weighted Average of Least-squares Fittings) Surface.
Continuity of the surface is achieved by using weights that are continuous over the
mesh. One such choice is the linear shape functions (or barycentric coordinates)
of the vertices over each triangle. Consider a triangle composed of vertices xi,
i = 1,2,3, and any point p in the triangle. For each vertex xi, we obtain a point qi
for p from the local fitting in the local uvw coordinate frame at xi, by projecting p
onto the uv-plane. Let Ni, i= 1,2,3 denote the linear shape functions (or barycentric
coordinates) of p within the triangle, with Ni ∈ [0,1] and ∑

3
i=1 Ni = 1. We define

q(u) =
3

∑
i=1

Niqi(u) (2.2.1)

as the approximation to point p. Figure 2.2 shows a 2-D illustration of this ap-
proach, where Ni are the barycentric coordinates of point p within the edge x1x2.
WALF constructs a C0 continuous surface, as can be shown using the properties
of finite-element basis functions. The shape function of the vertex in all elements
forms a C0 continuous basis function (i.e., the linear pyramid function for surfaces
or the hat function for curves). Let φi denote the basis function associated with the
ith vertex of the mesh, and it is zero almost everywhere except within the triangles
incident on the ith vertex. Therefore, q can be considered as a weighted average of

11

the polynomials at all the vertices,

q(u) =
n

∑
i=1

φi(u)qi(u), (2.2.2)

and then it is obvious that q is C∞ within each triangle and C0 over the whole
mesh. In WALF, the local fittings at the three vertices of a triangle are in general
in different coordinate systems, and this discrepancy of coordinate systems leads to
additional error terms.

Proposition 2. Given a mesh whose vertices approximate a smooth surface Γ with
an error of O(hd+1), the distance between each point on the WALF reconstructed
surface and its closest point on Γ is O(hd+1 +h6).

The proof of above proposition can be found at [28]. It gives an upper bound of
the error, and shows that the error term is high order. The O(h6) term is due to
the discrepancy of local coordinate systems at different vertices. However, in most
applications we expect d < 6, so the total error would be dominated by the degree
of polynomials used in the least squares fitting.

2.2.2 Continuous Moving Frames (CMF)

WALF is a simple and intuitive method, but its order of accuracy has a theoretical
limit. We now present a method that can overcome this limitation by using local
coordinate frames that move continuously from point to point. We refer to such
a scheme as continuous moving frame (CMF). The basic idea is to use the finite-
element basis functions to construct continuous moving frames and weights for
local fittings. In particular, assume each vertex has an approximate normal direction
at input. Consider a triangle x1x2x3 and any point p in the triangle. Let n̂i denote
the unit vertex normal at the ith vertex. We compute a normal at p as

n̂ =
3

∑
i=1

Nin̂i

/∥∥∥∥∥ 3

∑
i=1

Nin̂i

∥∥∥∥∥ . (2.2.3)

Given n̂, we construct a local uvw coordinate system along axes ŝ, t̂, and n̂, where ŝ
and t̂ form an orthonormal basis of the tangent plane. Within this local coordinate
frame, we formulate the weighted least squares as

‖WVX−WF‖2, (2.2.4)

where V again is the generalized Vandermonde matrix, W is the weight matrix and
F is either the local height function or coordinate functions.

12

In practice, the Vandermonde matrix for a point p should involve a small stencil
in the neighborhood of the triangle. We use the union of the stencils of the three
vertices of the triangle. Conceptually, it is helpful to consider the Vandermonde
matrix involving all the points of the mesh, but the weight matrix W assigns a zero
weight for each point that is not in the stencil. For the reconstructed surface to
be smooth, it is important that W is continuous as the point p moves within the
geometric support of the mesh. In addition, it is also important that W is invariant
of rotation of tangent plane (i.e., be independent of the choice of ŝ and t̂).
We define the weight as follows: For p within the triangle x1x2x3, we first define a
weight for each vertex (for example the jth vertex) in the mesh that is in the stencil
of vertex xi as

wi j = Ni
(
n̂T

i n̂ j
)+

/

(√
‖x j−p‖2 + ε

)d/2

, (2.2.5)

and set wi j = 0 otherwise, where ε is a small number, and

(
n̂T

i n̂ j
)+

=

{
n̂T

i n̂ j if n̂T
i n̂ j ≥ η

0 otherwise (2.2.6)

for some small η ≥ 0. Then for the weighting matrix W, weight for vertex j is then
∑

3
i=1 wi j. Note that the introduction of ε in (2.2.5) is to prevent division by very

small numbers when p is very close to a vertex. In practice, we set ε to be 0.01
times the average distance from p to the points in the stencil.
Similar to WALF, CMF constructs a C0 continuous surface, because W, V, and F
are all C0 continuous, as long as the resulting linear system is well-conditioned. The
accuracy of CMF follows that for weighted least squares approximation in [31], and
the following proposition reports the accuracy of CMF.

Proposition 3. Given a mesh whose vertices approximate a smooth surface Γ with
an error of O(hd+1), the shortest distance from each point on the CMF recon-
structed surface to Γ is O(hd+1).

2.2.3 Comparison of WALF and CMF

WALF and CMF both can be used for high-order surface reconstruction, and they
deliver similar accuracies. However, they may be preferable under different situ-
ations for efficiency and/or stability considerations. In terms of efficiency, WALF
and CMF are comparable when approximating a single point because they both con-
struct and solve a weighted least squares problem. However, there is an important
difference between the two methods: CMF does not actually reconstruct the whole
surface, so whenever we need a point on the surface, a least squares problem has

13

to be solved. For WALF, however, once the local polynomials at the mesh vertices
have been obtained, we have all the information needed to reconstruct the whole
surface. Therefore, the coordinates and differential quantities at any point on the
surface can be calculated by polynomial evaluation and weighted averaging. This
distinction allows WALF to reuse the polynomial fittings at vertices, and hence it
can have smaller amortized cost. Therefore, WALF is more efficient for a global,
uniform refinement of a mesh, as the local fittings at the vertices can be reused
repeatedly, whereas CMF is more efficient for local adaptations.
High degree Taylor polynomials in general are accurate near the origin of the lo-
cal coordinate system. However, higher degree polynomials also tend to be more
oscillatory than lower degree polynomials. Such oscillations may be particularly
problematic for WALF, for which we evaluate the polynomial in a neighborhood of
the origin (i.e., within the faces incident on a vertex) instead of at the origin (i.e., the
vertex) of the local coordinate system at a vertex. In terms of stability, CMF tends
to perform better near the boundary or sharp singularities, whereas WALF may not
have sufficient number of points in the stencil. However, both WALF and CMF
may introduce large variations if the mesh is under-resolved at regions with high
curvatures, especially when cubic or higher-order polynomials are used. In such
cases, it is necessary to introduce additional safeguards to downgrade the degree of
polynomial.

Comparison with Other Methods Besides WALF and CMF, some other meth-
ods have been developed for high-order reconstructions and been used in the mesh-
ing community. One method that is worth noting is that proposed by Walton [50]
and adopted by Frey for surface meshing [18]. One property of Walton’s method
is that it achieves C1 (or G1) continuity for the reconstructed mesh. However, there
does not seem to be any analysis of the accuracy of Walton’s method in the litera-
ture.

14

Chapter 3

Mesh Data Structures

We next present the mesh data structures on which all algorithms developed in this
dissertation depend. Mesh data structures are the foundation of meshing algorithms
(such as mesh generation and modification) and mesh-based numerical methods
(such as finite element and finite volume methods). The underlying data structure
strongly influences the overall performance of the algorithms or simulations since
it is used to perform all the mesh-based combinatorial operations. As a result, they
have been widely investigated since the inception of mesh generation and compu-
tational geometry [1, 2, 20, 34, 35, 36, 45, 48].
Mesh-data structures are highly application specific resulting in tailor made data
structures satisfying varying levels of mesh representation, adjacencies and other
requirements. The increasing complexities and the ever-changing demands of the
application codes often pose new requirements on mesh data structures. Examples
of such new demanding applications include coupled multiphysics simulations and
multi-component systems, which may pose diverse requirements within each code
as well as requirements on interoperability across different codes. In light of these
new challenges of meshing applications, we summarize a few requirements that
should be satisfied by a mesh data structure:

1. Generality: Support mixed-dimensional, non-manifold (oriented or non-oriented)
meshes in 1-D, 2-D, and 3-D, and be easily generalizable to higher dimen-
sions.

2. Efficiency: Support all local adjacency queries in constant time, assuming the
valence of each mesh entity is bounded by a small constant.

3. Simplicity: Be simple and intuitive, and be easy to implement.

4. Extensibility: Allow extensibility for performance and parallelization.

15

5. Interoperability: Facilitate interoperability with application codes, such as
simulation codes, multigrid solvers, etc.

6. Compactness of memory footprint: Require minimal storage in addition to
element connectivity.

In this chapter, we develop a mesh data structure that meets all the above require-
ments. We refer to our data structure as the Array-based Half-Facet data structure,
or AHF. The AHF unifies the array-based half-edge and half-face data structures
for surface and volume meshes [1], and further generalizes them to support mixed-
dimensional and non-manifold meshes by introducing the concept of sibling half-
facets.
Our data structure is easy to implement and is efficient in both memory and com-
putational cost. In addition, some of its fields can be created dynamically for fine-
grain operations and be removed afterwards. It can be used to perform efficient
mesh queries and modification. As an array-based data structure, AHF facilitates
better interoperability across different application codes, different programming
languages (such as MATLAB, C, C++, FORTRAN, etc.), and different hardware
platforms. We implement AHF on top of MOAB[48] which further improves its
interoperability through the iMesh interface (http://www.itaps.org/). In addi-
tion, our data structure is unique in its comprehensive implementation in MATLAB,
which allows rapid prototyping and deployment of meshing algorithms and other
mesh-based numerical methods in a productive fashion. The AHF is used as the
underlying mesh data structure for all algorithms described in this dissertation.

3.1 Background

We develop data structures for representing discrete geometric and topological ob-
jects in 1-D, 2-D, or 3-D, arising from numerical computations in engineering and
scientific applications. These objects correspond to curves, surfaces, and volumes,
respectively, typically embedded in two- or three-dimensional Euclidean spaces.
Topologically, a d-dimensional object is a manifold with boundary if every point
in it has a neighborhood homeomorphic to either a d-dimensional ball or half-ball,
where the points whose neighborhood is homeomorphic to a half-ball are boundary
(or border) points. In practice, it is quite common to have topological objects that
are non-manifold, especially for curves and surfaces. These non-manifolds are typ-
ically composed of a union of a finite number of manifolds with boundaries, and
sometimes embedded in a higher-dimensional manifold structure. In 3-D space, a
surface is oriented if it is possible to make a consistent choice of surface normal
vector at every point; otherwise it is non-oriented.

16

http://www.itaps.org/

In our setting, a mesh is a simplicial complex representing discretely a geometric
or topological object. We say a mesh is 1-D, 2-D, or 3-D if the object that it repre-
sents is topologically 1-D, 2-D, or 3-D, respectively. We say a mesh is a manifold
or non-manifold if its geometric realization is a manifold or non-manifold, respec-
tively. A mesh is composed of 0-D, 1-D, 2-D, and 3-D entities, which we refer to as
vertices, edges, faces, and cells, respectively. Typically, a face is either a triangle or
quadrilateral, and a cell is a tetrahedron, prism, pyramid, or hexahedron, especially
for finite element methods, although general polygons and polyhedra are also often
used in finite volume meshes. For now our focus is on finite-element meshes.
In a d-dimensional mesh, we refer to the d-dimensional entities as elements, and
refer to the (d− 1)-dimensional sub-entities as its facets. More specifically, the
facets of a cell are its faces, the facets of a face are its edges, and a facet of an
edge are its vertices. Each facet has an orientation with respect to the containing
element. For example, each edge of a triangle has a direction, and all the edges
form an oriented loop. Thus it makes sense to call the facets as half-facets. Each
facet may have multiple incident elements, especially for non-manifold entities. We
refer to all such half-facets as sibling half-facets. A half-facet without any sibling
is a border half-facet, and we refer to any vertex incident on a border half-facet
as a border vertex. A mesh is said to be conformal if the pairwise intersection of
any two entities is either another entity or is empty. We consider only conformal
meshes, which may be manifold or non-manifold. In the case of surface meshes,
the mesh may be oriented or non-oriented.
In some engineering applications, especially in coupled or multi-component sys-
tems, the domain of interest may be composed of a union of topologically 1-D,
2-D, and 3-D objects, such as a mixture of cables, thin-shells, and solids. We refer
to such a domain and its mesh as mixed-dimensional. These meshes are sometimes
referred to as mixed or hybrid meshes, which we avoid here since they may also
refer to meshes with mixed-types of elements of the same dimension. We refer to a
subset of the mesh corresponding to a 1-D, 2-D, and 3-D object in the domain as a
sub-mesh. It is common, although not required, for the sub-meshes to share some
mesh entities, especially shared vertices. Our goal is to design data structures for
consistent representations for mixed-dimensional meshes with shared entities.

3.2 Related Work

Mesh data structures have been studied for a long time due to their importance
in mesh-based applications. There are a number of mesh representations such
as entity-based, boundary representations, corner table, radial-edge, winged, half-
edge/face, incidence graphs, etc. These representations support a range of proper-

17

ties such as topological relations (manifold, non-manifold), different entities types
(triangles, tetrahedrons, polygonal meshes), depending on the what needs to be
supported, information that is stored and what can be queried using it by the appli-
cation. A complete review is beyond the scope of this work. We mention a few data
structures that are relevant in our context.
The half-edge data structure, a.k.a. the doubly-connected edge list (DCEL), is a
popular data structure for 2-D and surface meshes (see e.g. [14]), especially ori-
ented, manifold, polygonal surface meshes with or without boundary. The DCEL
uses edges as the core object. The edge within each face is called a directed edge
or half-edge. In an oriented manifold surface mesh, suppose the edges within each
face can be ordered in counter-clockwise direction with respect to outward normal
(or upward normal for 2-D meshes). Each edge has two incident faces, and the
two half-edges have opposite orientations and hence are said to be opposite or twin
of each other. An edge on the boundary does not have a twin half-edge. There
are various implementations of DCEL. A typical implementation, such as that in
CGAL [34, 17],OpenMesh [5] and Surface_Mesh [47], stores the mappings from
each half-edge to its opposite half-edge, its previous and next half-edge within its
face, its vertices, its incident face, as well as the mapping from each vertex and
each face to an incident half-edge. More compact representations, such as [1], can
be obtained by storing only the mapping between opposite half-edge, optionally the
mapping from each vertex to an incident half-edge, along with the element con-
nectivity. The above implementations do not support non-manifold or non-oriented
meshes.
A generalization of the concept of DCEL to volume meshes is the so-called the
half-face data structure [1, 36]. Within each cell, suppose the edges of each face
are oriented in counter-clockwise order with respect to the outward normal of the
cell. We refer to the oriented faces as half-faces. For typical meshes in engineering
applications, each face in the interior of a volume mesh has two corresponding half-
faces with opposite orientations, which are said to be opposite or twin of each other.
The data structure in [1] was designed for 3-manifold with boundary composed of
the standard elements. Although this is the typical case in applications, a volume
mesh may also be non-manifold. For example, this can happen if the domain con-
tains two objects that intersect at a single vertex or along an edge. For generality,
we consider volume meshes that may be manifold or non-manifold, and allow them
to be oriented or non-oriented. OpenVolumeMesh [36] was developed for gen-
eral polytopal meshes, which may be non-manifold. However, the data structure
in OpenVolumeMesh is quite complicated, because unlike the edges in a cell, the
faces within a cell do not have a natural topological order.
In [6], a compact representation of simplicial meshes in two and three dimen-
sions was proposed. The representations are based on storing the link for a set

18

of (d− 2)−simplices. In 2D, this representation is similar to the half-edge data
structure. The main difference is that there is no storage of direct cross-connections
between half-edges representing the same edge that are present in a purely half-
edge representation. In 3D, it becomes an edge-based representation using a cycle
of vertex labels for compact representation. This representation only supports sim-
plicial, pseudomanifold and orientable meshes. In [8], a generalized indexed data
structure with adjacency (IA∗data structure) is proposed for non-manifold, non-
regular simplicial meshes in arbitrary dimensions. This data structure is a general-
ization of a similar adjacency-based IA data structure [40], which is applicable for
manifold meshes. The non-regularity feature supports representation of dangling
edges and triangles in the mesh. This data structure encodes all the top simplices
along with a set of boundary, a partial set of co-boundary (incident) and adjacency
(same-dimension neighbor) relations. Though it achieves compactness in memory
storage by storing only a partial set of adjacency relations, it cannot support mixed-
dimensional meshes due to its inherent design.
Though mesh data structures are very application specific, there are certain require-
ments that can be assumed to be common to all applications. A few such require-
ments are the ability to represent a mesh, query the topology and geometry of the
mesh, modify it as well as assign and operate on mesh based data. Over the past
few years, people have been working on abstracting these ideas to develop mesh
frameworks that can be accessed through a well defined interface such that the ap-
plication codes are more maintable and extensible. There are a number of mesh
frameworks such as FMDB [45], MOAB [48], MSTK [20], GRUMMP [24], etc.
These frameworks differ in terms of underlying mesh representations as well as
specific implementations such as array-based or pointer-based representations.

Pointer-based Versus Array-based Implementations

A mesh data structure may be implemented using either pointers or arrays. The
pointer-based implementations are more common, since they are relatively easy to
manipulate. For example, the DCEL implementation in CGAL is pointer-based.
Other examples, which are not based on half-edges or half-faces, include FMDB
[45], MSTK [20], libMesh [35], etc. In such an implementation, the entities are
represented as “objects” explicitly, and pointers (or handles) are used to refer to
these explicit objects.
In contrast, in an array-based implementation, we do not represent the entities in the
mesh as objects. Instead, an attribute of all the entities of the same type is stored
in one or a few arrays, and the attributes for a single entity may be distributed in
different arrays. An entity may be referenced through an ID or “handle”, which can
be mapped easily to array indices. The half-edge and half-face data structures in

19

[1], MOAB [48], and OpenVolumeMesh [36] are array-based.
We choose to use array-based, pointer-free implementations for a number of rea-
sons. First, in an array-based implementation, we can treat intermediate dimen-
sional entities (such as half-facets) as implicit entities, and reference them with-
out forming explicit objects. This can lead to significant savings in storage, es-
pecially on computers with 64-bit pointers. Second, using arrays can also lead
to faster memory access and hence better efficiency. In addition, array-based im-
plementations also offer better interoperability across application codes, different
programming languages, and different hardware platforms (such as between GPUs
and CPUs).

3.3 AHF: An Array-Based Half-Facet Datastructure

The basic half-edge and half-face data structures described in the previous section
are simple and are restricted to oriented, manifold meshes (with or without bound-
ary) in 2-D and 3-D, respectively. However they can be unified and generalized
in order to support mixed-dimensional meshes, which may be non-manifold and/or
non-oriented. In this section, we develop the concept of half-facet to unify different
dimensions and extend the idea of an opposite half-facet to sibling half-facets to
treat non-manifold situations.

3.3.1 Unification of Half-Edges and Half-Faces into Half-Facets

We unify the concept of half-edge and half-face data structures in order to make
it dimension independent. The key abstractions for a d-dimensional mesh in this
unified data structure are:

1. vertices: 0-dimensional entities (a.k.a. nodes);

2. elements: d-dimensional entities (faces and cells in 2-D and 3-D, respec-
tively);

3. half-facets: (d−1)-dimensional sub-entities of a d-dimensional entity (half-
edges and half-faces of a 2-D and 3-D element).

We do not require explicit representation of intermediate dimensional entities be-
tween 1 and d − 1. This is made possible by the fact that every element has a
standard numbering convention for its vertices and its facets. As a result, we can
treat the half-facet as an implicit entity, and refer to a half-facet using the element
ID and its local ID within the element. We refer to this data model as the half-facet

20

1 2

3

1

2

3

4

1

3

2

4

1

2

3

3

1

2

3

4

1

2 4

1

2

3

4

1 2

4

5

3

5

1 2

3

4

5

1 2

3

4 5

6

1

2

3

4

6

1

23

4

5

67

8

5

Figure 3.1: CGNS numbering conventions for 2-D and 3-D elements. Underscored
numbers correspond to local edge IDs, and circled ones correspond to local face
IDs.

data structure. For standard elements, we follow the convention of the CGNS (CFD
General Notation System) [41, 49], as illustrated in Fig. 3.1.
The above unified model is not limited to d = 2 and 3. In fact, it can be applied
to any d, as long as the numbering convention is predefined for the vertices and
the facets. In particular, for d = 1, we refer to this representation for curves as the
half-vertex data structure, which is a specialization of the half-facet data structure
to curves. For d ≥ 2, it provides a compact representation, since the intermediate
dimensional entities are not stored but referenced implicitly instead. In addition,
this idea can also be used for meshes with high-order elements (such as six-node
triangles or 10-node tetrahedra), where the mid-edge, mid-face or mid-cell nodes
do not affect the definition and identification of the half-facets.
We store the data structure similar to that in [1]. The element connectivity is stored
in arrays in a manner similar to a typical finite element code. The mappings between
sibling half-facets are stored in a 2-D array or in separate arrays, one per unique
element type. Let |E| and f denote the number of elements and the maximum
number of facets in an element, respectively. We denote each half-facet by a two
tuple 〈eid, l f id〉, where eid denotes the element ID, which starts from 1, and l f id
denotes the local facet ID, which starts from 0. For typical meshes, the two tuple
can be encoded into a single 32-bit unsigned integer, by using first d bits to storing
the local facet ID of a d-dimensional element, and using the remaining bits to store
the element ID. This allows up to about 500 million elements for volume meshes.
For very large meshes, we assign a 32-bit unsigned integer to the element ID and
an unsigned 8-bit integer to the local ID, and store them in separate arrays. This
allows up to 4 billion elements with minimal extra storage overhead. Depending on
whether the half-facet IDs are encoded in a single integer or in two integers, we can
store the mappings in either a single array or two arrays, respectively, where each
array is of size |E|× f . In addition, the vertex to half-facet mapping is stored in a
single 1-D array. For most meshes, we need to store only one incident half-facet.
Some complications may arise for non-manifold vertices, which we address next.

21

1

2

4

3

5

6

1

4

2

3

element connectivity
element vertices

1 1 2 3
2 2 4 3
3 2 5 3
4 2 3 6

sibling half-edges
element sibhes

1 nil 〈2,2〉 nil
2 nil nil 〈3,2〉
3 nil nil 〈4,0〉
4 〈1,1〉 nil nil

vertex to half-edges
vertices v2he

1 〈1,0〉
2 〈3,0〉
3 〈4,1〉
4 〈2,1〉
5 〈3,1〉
6 〈4,2〉

Figure 3.2: Example of a non-manifold mesh, along with its element connectivity,
sibling half-edges, and mapping from each vertex to an incident half-edge.

3.3.2 Generalization to Non-manifold Meshes

In a non-manifold mesh, there can be more than two elements abutting the same
facet, unlike a manifold mesh where there can be only up to two. We still refer to
an oriented facet within an element as a half-facet, but it no longer has a “twin” or
“opposite” half-facet in general. We refer to the half-facets corresponding to the
same facet as sibling half-facets. The orientations of two sibling half-facets are not
required to be opposite to each other, and therefore this generalization also allows
representing non-oriented meshes, such as the Möbius strip.
An important issue is the storage for mapping between the sibling half-facets. In-
stead of doubly-connected linked list for twin half-facets, we use a cyclic linked
list, which allows us to preserve the storage structure and also to traverse all the
elements incident on a half-facet. Figure 3.2 shows an example of a non-manifold
edge (edge joining vertex 2 and 3) present in the given triangulated mesh, as well
as the element connectivity, sibling half-edge map and vertex to half-edge maps.
Note that we do not necessarily need to sort the half-facets in any particular or-
der. In fact, an ordering may not be well-defined in some cases. However, the data
structure does not exclude the user from ordering the half-facets.
In a d-dimensional non-manifold mesh, when d > 1, there may exist a vertex whose
neighborhood is not a d-dimensional ball or half-ball, but instead the union of two
or more d-dimensional ball or half-balls that intersect at an entity of lower than

22

(d− 1) dimension (such as at a vertex in a surface mesh, or at a vertex or edge in
a volume mesh). We refer to such a vertex as a non-manifold vertex. Some minor
modification to the data structure is necessary in this setting. In particular, at a non-
manifold vertex, we need to store a 1-to-n mapping instead of a 1-to-1 mapping to
its incident half-facets. Note that this also covers the case where there exists an edge
in a volume mesh whose neighborhood is the union of two or more d-dimensional
ball or half-balls that intersect only at the vertex.

3.3.3 Generalization to Mixed-Dimensional Meshes

The concept of sibling half-facets unifies the half-vertex, half-edge, and half-face
data structures for 1-D, 2-D, and 3-D meshes, which may be manifold or non-
manifold with boundary. In a mixed-dimensional mesh, the sub-meshes of different
dimensions can share entities. In particular, it is most common for the meshes to
share vertices. However, these entities may have different representations.
This unification allows an easy extension to support mixed-dimensional meshes,
which may be composed of sub-meshes of 1-D, 2-D, and 3-D. Figure 3.3 shows a
diagram of a typical half-facet data structure, where the half-vertices and half-edges
are only required for explicit edges and faces in the mesh, respectively. We refer to
this data structure for mixed-dimensional meshes as Array-based Half-Facet data
structure, or AHF. This data structure is very simple and modular, as the individual
sub-meshes of different dimensions are self-contained, and they can be maintained
separately. They also allow us to traverse between multiple dimensions efficiently.
The interactions of the different dimensions are all performed through the shared
vertices.

3.4 Construction and Query of AHF

We next describe some detailed algorithms for the construction of AHF, as well as
some queries.

3.4.1 Construction of AHF

In the half-facet data structure, there are two components: sibhfs (sibling half-facets
) and v2hf (vertex to half-facet). The former is central to AHF, as nearly all adja-
cency queries require it. These sibling half-facets should map to each other and
form a cycle. The latter array, v2hf, is optional for many operations, it can be
created only when needed. In general, we construct the AHF in two steps, which
construct these two mappings, respectively. In a mixed-dimensional mesh, the AHF

23

Cells Exp-Faces

Exp-Edges Vertices

faces

v2hf

edges

cells

v2hv

v2he

sibhf sibhe

sibhv

Figure 3.3: Typical AHF for mixed-dimensional meshes is composed half-vertex
(black, for explicit edges only), half-edge (blue, for explicit faces only), and half-
face (red) data structures.

for the submesh of each dimension is constructed independent of each other. In the
following, we describe the two steps in a manner independently of the dimension
of the mesh.

Identification of Sibling Half-Facets

During the first step, we determine the sibling half-facets and construct a cyclic
mapping between them. The key components of this step are two intermediate
mappings:

v2hfs: a mapping from each vertex to its incident half-facets in which the vertex
has largest ID;

v2adj: a mapping from each vertex to its adjacent vertices in each of the above
incident half-facets.

Algorithm 1 outlines the procedure for the first stage, which is applicable to half-
facets in arbitrary dimensions, and it is particularly efficient in 1 to 3 dimensions.

The computational cost of Algorithm 1 is linear, assuming that the number of facets
incident on a vertex is bounded by a small constant, say c. To analyze the storage
requirement, let |H| denote the number of half-facets in the mesh. The output re-
quires approximately |H| integers. The algorithm requires two intermediate maps
v2hf and v2adj, which require c|H| integers total. This intermediate storage re-
quirement can be further reduced by equally distributing the vertices into b buckets

24

Algorithm 1 Determination of sibling half-facets.
Input: elems: element connectivity
Output: sibhfs: cyclic mappings of sibling half-facets

1: for each elements e in elems do
2: for each facet f in e do
3: v← vertex with largest ID within f ;
4: us← set of adjacent vertices of v in f ;
5: Append f into v2hfs(v), and append us into v2adj(v, f);
6: end for
7: end for
8: for each elements e in elems do
9: for each facet f in e do

10: if sibhfs(f) is not set then
11: v← vertex with largest ID within f , and us = v2ad j(v,f);
12: Find half-facets in v2hfs(v) s.t. v2adj(v,·)=us;
13: Form a cyclic mapping for these half-facets in sibhfs;
14: end if
15: end for
16: end for

and process each bucket in a separate pass, which then would require only |H|/b
integers.

Construction of Incident Half-Facet of Vertex

During the second step, we construct a mapping from each vertex to an incident
half-facet. This is done by utilizing the sibling half-facets obtained from the first
step, as outlined in Algorithm 2.
When determining the incident half-facets, we give higher-priorities to border half-
facets, so that from its output v2hf, we can determine whether a vertex v is a border
vertex by simply checking whether v2hf(v) is a border half-facet. In addition, a mi-
nor variant of Algorithm 2 can be used to construct a bitmap of vertices to determine
all the vertices which are border vertices without forming v2hf. These functions can
be useful, for example when extracting the boundary of a mesh or when imposing
boundary conditions in numerical computations. The computational cost of Algo-
rithm 2 is also linear in the number of vertices plus the number of half-facets. It
does not require any intermediate storage. In addition, the AHF can be used to
extract the internal boundaries between different materials in a mesh.

25

Algorithm 2 Construction of mapping from vertex to an incident half-facet.
Input: elems: element connectivity

sibhfs: cyclic mappings of sibling half-facets
Output: v2hf: vertex to an incident half-facet

1: for each elements e in elems do
2: for each vertex v of e do
3: if v2hf(v)==0 then
4: v2hf(v)← a facet incident on v in e
5: end if
6: end for

{Give border facets higher priorities}
7: for each facet f in e do
8: if sibhfs(e, f)==0 then
9: for each vertex of f do

10: Set v2hf(v) to 〈e, f 〉;
11: end for
12: end if
13: end for
14: end for

3.4.2 Algorithms for Adjacency Queries

In this section, we discuss the algorithms for adjacency queries. We mainly focus
on the following two classes of queries:

1. Upward incidence query: Given an explicit d-dimensional entity, obtain the
(d+1)-dimensional entities incident on it.

2. Neighborhood/Same dimension query: Given an explicit d-dimensional en-
tity, obtain neighbor d-dimensional entities that share a (d−1)-dimensional
sub-entity with it.

We consider these operations for mixed-dimensional meshes with 1-D, 2-D, and
3-D explicit entities, which results in six operations total:

1a. for each vertex, obtain incident edges;

1b. for each edge, obtain incident faces;

1c. for each face, obtain incident cells;

2a. for each edge, obtain vertex-connected neighbor edges;

26

2b. for each face, obtain edge-connected neighbor faces;

2c. for each cell, obtain face-connected neighbor cells;

We describe the procedures in a dimension-independent fashion. The first class
of operations are across the sub-meshes of different dimensions. The algorithm
proceeds in two steps:

1. Half-facet identification: Given an explicit d-dimensional entity, find a cor-
responding half-facet h in the (d + 1)-dimensional sub-mesh through the
shared vertices;

2. Obtain sibling half-facets: Find the sibling half-facets of this half-facet h,
and decode the half-facet IDs to obtain all the adjacent (d + 1)-dimensional
entities.

The first step involves a local one-ring search of a vertex of the facet whereas the
second step is simply gathering all the sibling half-facets that are already stored in
the map sibhfs. In terms of computational cost, the first step takes time propor-
tional to the number of incident entities of a vertex, and the second step takes time
proportional to the size of the output. Both steps in general require constant time.
In the second class of operations, given a d-dimensional entity, we simply need to
loop through its (d-1)-dimensional facets, for each of its facets obtain the sibling
half-facets. Then by decoding the ID of the sibling half-facets, we obtain the neigh-
bor d-dimensional entities. The algorithm takes time proportional to the output size,
which is a constant.
Figures 3.4 and 3.5 shows examples of these operations. Figure 3.4 shows all the
incident triangles of a given non-manifold edge (blue). In figure 3.5, the left panel
shows the set of neighbor edges (in red) of a given (blue) edge and the right panel
shows the neighborhood faces (in red) of a given (blue) triangle.

3.5 Implementations

Implementation in MATLAB

Since our data structure is array-based and pointer-free, we can implement it con-
veniently in MATLAB. The MATLAB provides a user-friendly programming envi-
ronment, so that our MATLAB implementation allows rapid prototyping and test-
ing of sophisticated meshing algorithms and mesh-based numerical methods. In
our MATLAB implementation, we support two ways to store the half-facet:

27

Figure 3.4: An example of upward incidence query. This shows all the incident
triangles on a given explicit edge (blue).

Figure 3.5: Example adjacency queries for non-manifold meshes. Left panel shows
neighbor edges (red) of a given blue edge. Right panel shows the neighbor faces of
a given blue triangle.

28

1. Encode into an integer: We encode the two-tuple ID in a single integer, where
d bits are reserved the local facet ID for a d-dimensional mesh.

2. Use MATLAB struct: We store the element ID and local facet ID into a 32-bit
integer array and an 8-bit integer array, respectively, and they pack these two
arrays into a single MATLAB struct.

For a mixed dimensional mesh, the complete mesh is packed into a single struct
composed of the arrays of different dimensions. Both of our implementations are
compatible with MATLAB Coder, which allows generation of efficient and portable
ANSI C code from our MATLAB implementation. The generated C code can be
used as stand-alone libraries, or be compiled into MEX functions and be called in
MATLAB or GNU Octave.

Integration of AHF into MOAB

The Mesh Oriented datABase (MOAB [48]) is a mesh framework designed to sup-
port a range of mesh related operations, such as memory efficient mesh represen-
tation, mesh querying and representation of application specific data. The internal
storage of MOAB is array-based and supports querying of adjacent entities by target
dimension. MOAB is designed to take advantage of temporal and spatial locality
offered by large collections of entities.
The non-vertex entity-to-entity adjacencies are created and stored only upon appli-
cation request. Since most of the applications do require some kind of auxiliary
entity adjacency information, MOAB may require significant storage in such situa-
tions . This imposes extra storage requirements on the application. The AHF comes
handy precisely in such situations. It adds the flexibility of intermediate entity ad-
jacency querying without explicitly storing them. In addition, MOAB does not
support implicit entities, and does not store the neighboring information of entities
of the same dimension. Therefore, it is desirable to incorporate AHF into MOAB.
We refer to this implementation as MOAB_AHF, which can be created dynamically
for some queries and be deallocated afterwards.
There are some important differences between a standalone AHF implementation
and MOAB_AHF. In terms of storage, MOAB uses “tags” to store application spe-
cific data defined on mesh entities or entity sets. In MOAB_AHF, we store sibhfs
and v2hf as tags, instead of standalone arrays. In addition, since MOAB references
elements and other entities through handles, we store the sibhfs as two tags: one for
the handles to the elements, and the other for local facet IDs. Another difference is
that MOAB uses a different numbering convention of the local facet IDs than that
of CGNS. To be self-consistent, we use the MOAB’s own numbering convention
in MOAB_AHF. Finally, in MOAB_AHF, we construct the sibhfs without forming

29

Table 3.1: Times taken to construct data structures by standalone AHF and
MOAB_AHF.

mesh #verts #edges #tris #tets AHF MOAB_AHF

1 345 121 378 1357 0.002231 0.00969
2 447 137 678 1503 0.002376 0.01433
3 1443 225 1824 6794 0.008991 0.04659
4 1724 2081 3688 8177 0.01218 0.05989
5 2151 282 2556 9746 0.0126219 0.06112
6 119960 27215 42476 711014 0.935569 4.31953

the v2hfs and v2adj in Algorithm 1, and instead using MOAB’s built-in function
“get_adjacency” to identify the elements adjacent to an entity.

3.6 Experimental Comparisons

We now present some experimental studies of AHF, MOAB and MOAB_AHF in
terms of storage requirements and computational cost.

3.6.1 Cost in Construction of Data Structure

We first compare the computational times in constructing the data structures. For
AHF, we used the C code generated from our MATLAB implementation with MAT-
LAB Coder 2.4 released with MATLAB R2013a. We compiled AHF, MOAB, and
MOAB_AHF using gcc 4.4.3 with optimization enabled. All the tests were per-
formed on a Linux computer with a 3.16GHz Intel Core 2 Duo processor and 4GB
of RAM.
We use a set of six meshes (shown in figure 3.6), which are all mixed-dimensional
tetrahedral meshes, containing explicit triangles and edges, courtesy of CST Com-
puter Simulation Technology AG.
Table 3.1 shows the sizes of these meshes as well as the run times taken by the
standalone AHF and MOAB_AHF for constructing the mesh data structure. The
overall cost is approximately linear in the number of vertices for both AHF and
MOAB_AHF. However, our current implementation of MOAB_AHF takes about
6–7 times longer than AHF, because Algorithm 1 builds the intermediate arrays for
v2hes and v2adjs, which are more efficient than using MOAB’s built-in function
“get_adjacency” to identify sibling half-facets. The cost of constructing MOAB_AHF
can be optimized by using Algorithm 1.

30

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

(d) Mesh 4 (e) Mesh 5 (f) Mesh 6

Figure 3.6: The meshes used for comparison.

3.6.2 Storage Costs

We compare the storage requirements of AHF and MOAB. Let C, Fexp, Eexp and
V represent the set of cells, explicit faces, explicit edges and vertices of the given
mesh, and let | · | denote the number of items in a set. AHF stores three maps, which
require the following number of entities:

element connectivity: nc = 2
∣∣Eexp

∣∣+ v f
∣∣Fexp

∣∣+ vc |C|

sibling half-facet map: ns = 2
∣∣Eexp

∣∣+ s f
∣∣Fexp

∣∣+ fc |C|

vertex to half-facet map: nv = 3 |V |

where v f , vc , s f and fc are the numbers of vertices per face, vertices per cell, edges
(sides) per face, and faces per cell, respectively.
Note that for the half-facet ID 〈eid, l f id〉, we can encode it in a 32-bit integer or
store eid and lfid in a 32-bit and a 8-bit integer, respectively. The storage required
by the former in bytes is

SAHF1 = 4(nc +ns +nv) = 16
∣∣Eexp

∣∣+4(v f + s f)
∣∣Fexp

∣∣+4(vc + fc)|C|+12|V |,
(3.6.1)

31

Table 3.2: Storage requirements in kilobytes of AHF, MOAB, and OpenVol-
umeMesh for three largest meshes in Table 3.1.

mesh
AHF

MOAB MOAB_AHF OpenVolumeMesh
integer struct

4 435.094 486.955 1039.31 897.78 897.176
5 444.496 496.907 1041.69 904.60 1055.26
6 27857.3 31163.7 64514.35 56889.90 71074.8

whereas the latter requires

SAHF2 = 4nc +5ns +5nv, (3.6.2)

which is about 12% larger than SAHF1. If the element connectivity is required, the
extra storage required by AHF is only about 60% of these.
The storage requirement of MOAB is higher than AHF, as it stores both the connec-
tivity and upward adjacencies. The upward adjacencies are created and stored the
first time a query requiring the adjacency is performed. MOAB_AHF may reduce
the storage requirement.
To put this into perspective, we also compare its storage against OpenVolumeMesh
[36]. In OpenVolumeMesh, all the top-down and bottom-up incidence relations are
stored explicitly using integer handles. Let E and F denote the set of all edges and
faces (including the implicit edges and faces) of the given mesh. The number of
required handles to encode top-down and bottom-up incidences are

nOVM = fc |C|+(v f +2) |F |+(s f +2) |E|+ se |V | , (3.6.3)

where v f , vc , sc and fc are the average numbers of vertices per face, vertices per
cell, edges (sides) per cells, and faces per cell, respectively. Assuming each integer
handle is 32-bit, then the storage will be about SOVM = 4nOVM.
Table 3.2 shows the storage requirements for the last three meshes in Table 3.1. As
it can be seen from the table, AHF requires about half the amount storage required
by OpenVolumeMesh and MOAB. MOAB_AHF has reduced the storage of MOAB
slightly, but further reduction is still possible.

3.6.3 Computational Costs of Adjacency Queries

In this subsection, we report the times for the six queries described in Section 3.4.2.
We report the performance results of AHF, MOAB, and MOAB_AHF. We omit
OpenVolumeMesh, as it could not load the mixed-dimensional meshes. These

32

queries are performed over explicit entities, and they return explicit entities only.
Figure 3.7 shows the average time taken to perform the incident and neighborhood
queries for 1-D, 2-D, and 3-D entities, respectively. The average time is measured
by the total elapsed time of the algorithm for all the entities divided by the number
of the entities. The results confirm that all the mesh query operations take ap-
proximately constant time, regardless of mesh sizes. Both AHF and MOAB_AHF
improve the performance of MOAB, and AHF outperforms MOAB by an order of
magnitude. The computation costs of MOAB_AHF are comparable to MOAB’s
own adjacency functionalities for upward incident queries, whereas same dimen-
sional neighborhood queries are at least an order of magnitude better. This is rea-
sonable since MOAB computes the adjacencies by performing boolean operations
on vertex-entity adjacencies. This result indicates that the AHF data structure can
significantly improve the MOAB data model for adjacency queries. Further code
optimization of MOAB_AHF can lead to even better performance.

3.7 Mesh Modification Operations

Mesh-modification can be implemented relatively easily in AHF. For mixed dimen-
sional meshes, the AHF is particularly attractive, because the adaptivity for different
dimensions can be done nearly independently, and they only need to be synchro-
nized at the shared vertices. This leads to very modular adaptivity strategies.
Within each dimension, the AHF can be modified either locally or globally. The
local modification is performed through the mesh-modification primitives, such
as edge flipping, edge splitting, and edge collapse, especially for triangular and
tetrahedral meshes. As an example, Figure 3.8 illustrates the standard flipping op-
erations for tetrahedra between a current n-complex of elements and a resulting
m-complex, where the complex is the neighborhood of elements considered. We
consider the standard operations, where the n−m combinations are 3-2, 2-3, 4-4
and 2-2. For the 4-4 and 2-2 flipping operations, both the numbers of vertices and
of elements remain the same, and therefore the operation involves only updating the
elems (element connectivity), sibhfs (sibling half-faces), and v2hf (vertex-to-half-
face) mappings locally within the complex. For 3-2 flipping, and similarly for edge
collapse, the number of elements decreases. This may result in a hole in the arrays
elems and sibhfs. We fill the hole by swapping the element with the highest ID into
the hole and updating the half-facets in sibhfs and v2hf, so that the element IDs
remain consecutive. For 2-3 flipping, and similarly for edge splitting, the number
of elements increases. This may require reallocating and copying the arrays. To
avoid excessive memory copying, we expand the array by a small percentage (e.g.
by 20%) each reallocation, so that the amortized cost for the local modifications is

33

1 2 3 4 5 6
10

−8

10
−7

10
−6

Meshes

A
v
er

ag
e

q
u
er

y
 t

im
es

MOAB
MOAB_AHF
AHF

(a) Vertex to incident edges

1 2 3 4 5 6
10

−8

10
−7

10
−6

10
−5

Meshes

A
v
er

ag
e

q
u
er

y
 t

im
es

(b) Edge to neighbor edges

1 2 3 4 5 6
10

−8

10
−7

10
−6

10
−5

Meshes

A
v
er

ag
e

q
u
er

y
 t

im
es

MOAB
MOAB_AHF
AHF

(c) Edge to incident faces

1 2 3 4 5 6
10

−8

10
−7

10
−6

10
−5

Meshes

A
v
er

ag
e

q
u
er

y
 t

im
es

(d) Face to neighbor faces

1 2 3 4 5 6
10

−7

10
−6

10
−5

Meshes

A
v
er

ag
e

q
u
er

y
 t

im
es

MOAB
MOAB_AHF
AHF

(e) Face to incident cells

1 2 3 4 5 6
10

−8

10
−7

10
−6

10
−5

Meshes

A
v
er

ag
e

q
u
er

y
 t

im
es

(f) Cell to neighbor cells

Figure 3.7: Average times (in seconds and logarithmic scale) to perform queries in
1-D (a, b), 2-D (c, d) and 3-D (e, f).

34

2-3 �ip

3-2 �ip

4-4 �ip

4-4 �ip

2-2 �ip

A B

C

Figure 3.8: Standard edge-flipping operations on a tetrahedral mesh. The 2-3 and 3-
2 flips (A) increase or decrease the number of tetrahedra, respectively. In a manifold
mesh, the 4-4 flip (B) can be applied in the interior. The 2-2 flip (C) is defined only
on the boundary surface, or a tetrahedral mesh with prismatic boundary layers [15].

constant, assuming the number of flipping and splitting operations are proportional
to the size of the mesh.
As an example, Figure 3.9 shows a tetrahedral mesh for a heart model, which was
first generated by using TetGen [46], followed by applying flipping and smoothing
implemented using AHF. The figure also shows the quality measures in terms of
the orthogonality, skewness and uniformity [33], which are important measures for
finite volume methods.

35

0

50000

100000

150000

200000

250000

300000

350000

0_10

10_20

20_30

30_40

40_50

50_60

60_70

70_80

80_90

N
um

be
r o

f f
ac

es

0

50000

100000

150000

200000

250000

300000

350000

0.0_0.1

0.1_0.2

0.2_0.3

0.3_0.4

0.4_0.5

0.5_0.6

0.6_0.7

0.7_0.8

0.8_0.9

0.9_1.0

1.0_1.5

0

50000

100000

150000

200000

250000

300000

350000

400000

0.45_0.5

0.40_0.4

0.35_0.4

0.30_0.3

0.25_0.3

0.20_0.2

0.15_0.2

0.10_0.1

0.05_0.1

0.0_0.05

Orthogonality

Skewness

Uniformity

Before mesh modi!cation

After mesh modi!cation

Figure 3.9: An example tetrahedral mesh of a heart model optimized using mesh
flipping and smoothing implemented using AHF. The histograms show the quality
measures in terms of orthogonality, skewness and uniformity of the mesh before
(gray) and after (black) optimization, where smaller values correspond to better
qualities.

36

Chapter 4

High-Order Surface Integration

Surface integration is a fundamental operation for many scientific and engineering
problems. It is a core procedure for a variety of numerical methods such as the
boundary integral method, finite element method, surface finite elements, integral
transforms, finite volume method etc. For example, in the boundary integral method
the solution is obtained by solving an integral equation, which in turn is solved by
forming a linear system using collocation methods. The entries in the linear system
are surface integrals. In geometric processing, computing the surface area and solid
volume are fundamental primitives, both of which require surface integration. In
computational fluid dynamics, the computation of the flux across a curved inter-
face between different materials requires surface integrals. Surface finite element
method, which is a special case of the finite element method for solving partial dif-
ferential equations on surfaces, also requires surface integrals. The application of
surface integration is also found in fluid-structure interactions, where the integral
of the pressure over the structure is the force applied by the fluid to the structure.
Surface integrals also appear in surface, interface and colloidal sciences as well
as in the semiconductor industry and for pharmaceutical manufacturing. They are
helpful in understanding various processes such as adhesion and fracture processes
as well as in the manipulation of nanoscale objects.
For these applications, the standard method for surface integration is to integrate
over the individual triangles. Most of the methods have difficulty approximating
the derivatives of the geometry that appear in the integral with sufficient accuracy.
Because of this, numerical integration involves replacing and sometimes totally
ignoring these derivatives with simpler approximations. This limits its accuracy to
second-order as piecewise linear approximations to the geometry and the function
are used during the approximation process. Subsequent reduction of the relative
error is obtained by performing either global or adaptive mesh refinement until the
error becomes less than a set tolerance. A natural but yet fundamental question is

37

whether we can achieve high-order accuracy given a piecewise linear approximation
to the surface. In this chapter, we address this question and prove that it is possible
to compute the numerical integration of a function over a surface mesh to high-order
of accuracy.
Numerical integration might appear to be an easy problem, as integration in general
is a smoothing process and tends to be more stable than differentiation. Although
low-order integration schemes are easy, high-order integration schemes are as dif-
ficult as high-order differentiation schemes, if not more so. For these problems,
numerical integration over discrete surfaces is more than just quadrature (or cuba-
ture) rules. The reason is that accurate numerical integration requires high-order
approximations (or reconstructions) of the geometry as well as that of the function.
Therefore, high-order numerical integration over surfaces is not straightforward.
In this chapter, we propose a novel method for accurate surface integration over dis-
crete surfaces. Our techniques can deliver higher convergence rates, both in theory
and in practice, than one would expect from the given piecewise linear approxima-
tions. Our method has three key components: a stabilized least-squares fitting to
obtain higher order approximation of the geometry and the integrand, a blending
procedure based on linear finite-element shape functions, and high-degree numer-
ical quadrature rules. The first two components are based on the computational
framework to reconstruct a surface to high-order of accuracy by the WALF method
(section 2.2.1) and its extension to reconstruct a function over a surface. Our result-
ing algorithm is relatively simple and efficient.

4.1 Related Work

We review a few approaches that are generally used to get high-order approxima-
tion of surface integrals. In finite element methods, high-order approximations are
achieved by using high-order isoparametric elements [56]. Unfortunately, in prob-
lems such as fluid simulations involving moving interfaces, high-order elements are
rarely used due to difficulties in the generation and adaptation of high-order finite
element meshes. Meshless methods, such as moving least squares, offer another set
of alternatives for constructing high-order approximations, but accurate numerical
integration over such surfaces is subtle [3], and meshless methods are in general
expensive in terms of computational cost.
In [11], Chien presented a method for high-order surface integration using a high-
order interpolated function and geometry. He approximates the function and the
surface based on high order piecewise interpolants using Lagrange polynomials.
The points chosen for high-order interpolation are based on a uniform subdivision
of individual triangles. His method requires the function values to be available at

38

any point on the surface, and it becomes inapplicable when only a discrete set of
values of the function is given. Also, Lagrange polynomial interpolation tends to
be unstable for high degree polynomials.
In [22], another approach is presented to compute surface integrals, especially en-
countered in boundary element methods. It is based on the assumption that the input
surface is given implicitly which allows defining a retraction from a neighborhood
of a triangulated surface approximation to the exact surface to obtain a better ap-
proximation of the exact surface. However, the accuracy of geometry obtained is in
a way lost by using a simplified trapezoidal rule resulting in a second-order accu-
rate method. A subdivision of the triangulation by an adaptive refinement is used
to minimize the error locally below a given tolerance. This approach is effective
especially when the integrand contains a singularity.

4.2 Background

We first begin with a brief review of concepts for smooth surfaces in differential
calculus and differential geometry, which will serve as the foundation of our method
for discrete surfaces.

4.2.1 Integration of Continuous Functions over Smooth Surfaces

Let a parametrization of a smooth surface Γ be given as Γ = x(ξ) : U⊂ R2→ R3,
with coordinates ξ ∈ R2, x ∈ R3 and Jacobian J = ∂x/∂ξ , where

ξ ≡
[

ξ

η

]
, x≡

 x
y
z

 , J≡


∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

∂ z
∂ξ

∂ z
∂η

 . (4.2.1)

Let g denote
√

det(JT J), which is analogous to the absolute value of the Jacobian
determinant if the surface were in the xy-plane. The surface integral of a scalar
function ϕ : Γ→ R is

ˆ
Γ

ϕ da≡
ˆ

U
ϕ(ξ)g(ξ)dξ dη . (4.2.2)

In the following discussion, we will omit the function arguments ξ for conciseness.
The simplest application of (4.2.2) is the surface area A =

´
Γ

da, where ϕ = 1.

39

Similarly, given a vector-valued function ϕ : Γ→ R3, the surface integral of ϕ is
ˆ

Γ

ϕ ·da≡
ˆ

Γ

ϕ · n̂da =

ˆ
U

ϕ · n̂gdξ dη , (4.2.3)

where n̂ denotes the unit surface normal. Let jk denote the kth column of J for
k = 1,2. Assume j1, j2, and n̂ form a right-hand system, and let n ≡ gn̂ = j1× j2,
which we refer to as the Jacobian-weighted normal. The surface integral of ϕ can
be written as ˆ

Γ

ϕ ·da =

ˆ
U

ϕ · (j1× j2)dξ dη . (4.2.4)

The simplest application of (4.2.4) is the volume V =
´

Γ
x · da/3 for a closed sur-

face Γ, where ϕ = x/3. Generally, a global parameterization of the whole surface
is computationally difficult. To overcome this difficulty, the surface may be decom-
posed into non-overlapping regions. Let Γ be decomposed into non-overlapping
regions σi whose union is Γ, i.e., Γ =

⋃
σi. The previous formulas then become

ˆ
Γ

ϕda = ∑
i

ˆ
σi

ϕgdξ dη (4.2.5)

and ˆ
Γ

ϕ ·da = ∑
i

ˆ
σi

ϕ · (j1× j2)dξ dη , (4.2.6)

where the integral over σi can be computed using local parameterizations of σi.
Our computations for triangulated surfaces will approximate these formulas based
on local parameterizations.
From (4.2.2) and (4.2.4), it is clear that the surface integral of a scalar or vector-
valued function requires the Jacobian of the surface. The computation of the Ja-
cobian is significantly simplified if we transform the surface from the global xyz
coordinate system onto a local uvw coordinate system. Assume both xyz and uvw
coordinate frames are orthonormal right-hand systems. Let the origin of the local
frame be at x0. Let t̂1 and t̂2 be unit vectors in the xyz coordinate system along the
positive directions of the u- and v-axes, respectively, and m̂= t̂1× t̂2 be the unit vec-

tor along the positive w direction. Let T=

 t1

∣∣∣∣∣∣ t2

 denote the matrix consisting

of the unit vectors in the tangent plane, and Q the rotation matrix

 t̂1

∣∣∣∣∣∣ t̂2

∣∣∣∣∣∣ m̂

.

40

Any point x on Γ is then transformed to a point

 u
v

f (u,v)

≡QT (x−x0). We re-

fer to f (u,v) as the height function in the uvw coordinate frame. In general, f is
not a one-to-one mapping over the whole surface, but if the uv plane is not too far
from the tangent plane at a point x ∈ Γ close to x0, f would be one-to-one in the
neighborhood of x.
Let p(u,v) = [u,v, f (u,v)]T denote the points on the surface Γ in the uvw coordinate
frame. Let ∇ f ≡ [fu, fv]

T denote the gradient of f with respect to u ≡ (u,v). The
Jacobian of p with respect to u is then

J =

 pu

∣∣∣∣∣∣ pv

=

 1 0
0 1
fu fv

 . (4.2.7)

The vectors pu and pv form a basis of the tangent space of the surface at p, but
they may not be orthogonal to each other. Then, g =

√
1+ f 2

u + f 2
v . The Jacobian-

weighted normal and unit normal in the xyz coordinate system are then

n = Q

 − fu
− fv

1

= m̂− fut̂1− fvt̂2 and n̂ =
n
g
. (4.2.8)

These formulas are exact for smooth surfaces. In the next section, we will present
their high-order approximations and their use in surface integration for triangulated
surfaces.

4.2.2 Numerical Integration over surfaces

In practice, an analytic anti-derivate is rarely available for the integral. As a result,
we need to numerically approximate the integral. Integration in the continuum is
defined as a limiting process. This fact allows us to approximate integrands by sim-
pler functional forms such as polynomials and subsequently integrate these approx-
imate functions over the domain to obtain a numerical value of the integral. That is,
numerical integration requires the use of quadrature rules, which are based on poly-
nomial interpolations and approximate an integral as a weighted sum of function
values at some quadrature points. In general, a degree-d quadrature rule is exact for
degree-d polynomial, and is accurate for integrands that are continuously differen-
tiable to dth derivatives. In mathematics, the generalization of quadrature rules to
two or higher dimensions is called cubature rules, but it is also often referred to as
high-dimensional quadrature rules. We use the term quadrature rules as the dis-

41

tinction between numerical integrations in one-dimension and higher-dimensions is
immaterial algorithmically.
As a numerical problem, integration is in general well-conditioned because of its
smoothing effect. Let the integration of ϕ : Γ⊆ Rd → R be given by

Iϕ =

ˆ
Γ

ϕ(x)dx. (4.2.9)

The error in Iϕ is bounded by the inequality

‖Iϕ̃− Iϕ‖ ≤ Kϕ‖ϕ̃−ϕ‖∞, (4.2.10)

where ϕ̃ denotes an approximation of ϕ , and Kϕ = area(Γ) is the condition number
of Iϕ with respect to changes in ϕ . Therefore, integrating an approximated function
does not change the result drastically. The condition number of a quadrature rule is
the sum of the absolute value of its weights. If all the weights are positive, then the
condition number of the quadrature rule is equal to that of Iϕ . However, numerical
integration also has an inherent uncertainty due to an infinite number of choices for
ϕ̃ that approximate ϕ . The distance between ϕ̃ and ϕ could be arbitrary, so the
error in the numerical integration may be arbitrarily large for an improper choice of
ϕ̃ .
In one dimension it suffices to define quadrature rules on a “standard” interval, as
any other interval could be transformed to this standard interval. However, this
is not the case for two or higher dimensions, since an arbitrary shape may not be
mapped into a “standard” shape. For example, an annulus cannot be mapped into
a triangle. Therefore, high-dimensional quadrature rules are defined over some
primitive shapes, such as triangles or rectangles. In [39], a survey of quadrature
rules over triangles can be found. These quadrature rules are then applied to a
tessellation of the domain. Since we assume the domain of integration is given by
a triangulated surface, we utilize quadrature rules (4.1) for triangles.

4.3 High-Order Numerical Integration

The main limitation of standard methods is the use of low-order approximations
to both the geometry and the integrand, especially computation of convergent and
accurate derivatives of the geometry. This limitation can be overcome by using
high-order approximations to both the geometry (i.e, its differential quantities) and
the integrand along with high-order quadrature rules. High-order surface recon-
struction using the weighted averaging of local fittings as described in section 2.2.1
can be used to approximate the geometry and its derivatives. We extend its compu-

42

Table 4.1: Numerical integration formulas for triangles.

Order Figure Error #points Coordinates Weights

Quadratic O(h3) 3

1/6, 1/6

2/3, 1/6

1/6, 2/3

1/3

1/3

1/3

Cubic O(h4) 4

1/3, 1/3

0.6, 0.2

0.2, 0.6

0.2, 0.2

-27/48

25/48

25/48

25/48

Quartic O(h5) 6

α1, α1

α1, β1

β1, α1

α2, β2

β2, α2

β2, β2

0.1099517436553

0.1099517436553

0.1099517436553

0.223381589678

0.223381589678

0.223381589678

with α1 = 0.0915762135098 β1 = 0.8168475729805

α2 = 0.1081030181681 β2 = 0.4459484909160

Quintic O(h6) 7

1/3, 1/3

α1, α1

α1, β1

β1, α1

α2, β2

β2, α2

β2, β2

9/25

0.125939180544827

0.125939180544827

0.125939180544827

0.132394152788506

0.132394152788506

0.132394152788506

with α1 = 0.101286507323456 β1 = 0.797426985353087

α2 = 0.05971587178977 β2 = 0.470142064105115

43

tational framework to reconstruct a function defined over the surface to high-order
of accuracy by using similar concepts. Finally, we compute the first order differ-
ential quantities (normals and Jacobians) as well as the integrand at the quadrature
points from the reconstructed surface and integrand, which are then used by the
quadrature rules.

4.3.1 High-Order Piecewise Smooth Geometry

We use WALF (Weighted Average of Least-squares Fittings) Surface (section 2.2.1)
to obtain a piecewise smooth geometrical approximation of the input geometry.
To perform integration, we need to compute the differential quantities such as the
Jacobian and surface normal at the quadrature points. We now derive the analytical
expression of the exact Jacobian or surface normal of the WALF surface.
Assume the polynomial fitting is constructed at each vertex using a local orthonor-
mal uvw coordinate frame, where the uv plane is nearly tangential to the surface,
and the w coordinate is orthogonal to the uv plane. Let ξ and η denote the natural
coordinate of a triangle σ , and let Ni denote the shape function (or the barycentric
coordinate) with respect to the ith vertex of σ , given by

N1 = 1−ξ −η

N2 = ξ

N3 = η .

From the polynomial fitting at each vertex of σ , we first compute a high-order
approximation for an arbitrary point q ∈ σ with natural coordinates ξ = (ξ ,η)
within the triangle in the corresponding local uvw coordinate system at the vertex.
This is performed by interpolating the uv coordinates at q from the those at the
vertices and then evaluating the Taylor polynomial. The resulting point is then
transformed into the global xyz coordinate system. For each point q ∈ σ , let pi(ξ)
denote the reconstructed point associated with the ith vertex for i = 1,2,3. Then the
blended WALF surface within the triangle is defined by

p(ξ) =
3

∑
i=1

Ni(ξ)pi(ξ). (4.3.1)

For conciseness, we will drop out the parameters (ξ ,η) in the notation. It is clear
that the WALF surface is infinitely differentiable within each triangle. In addition,
it is C0 continuous across the boundaries of triangles due to the continuity of the
shape functions.

44

Let Qi denote the rotation matrix

 t̂1i

∣∣∣∣∣∣ t̂2i

∣∣∣∣∣∣ m̂i

 for the ith vertex, where m̂i

denotes the first order approximation to the unit normal at the ith vertex, and let Ti
denote the matrix composed of the first two columns of Qi. Let x1, x2, x3 denote
the vertices of the triangle in the xyz coordinate system, and J = [x2− x1 | x3−
x1] be the Jacobian of the linear triangle with respect to ξ . Let pi(ξ) denote the
reconstructed point in the xyz coordinate system by the polynomial associated with
the ith vertex. The Jacobian of the WALF-reconstructed triangle with respect to
ξ = (ξ ,η), denoted by ∇ξ p, is then

∇ξ p(ξ) = ∇ξ

3

∑
i=1

(Ni(ξ)pi(ξ))

=
3

∑
i=1

((
∇ξ Ni(ξ)

)
pi(ξ)

)
+

3

∑
i=1

(
Ni(ξ)∇ξ pi(ξ)

)
.

Noting that

3

∑
i=1

((
∇ξ Ni(ξ)

)
pi(ξ)

)
=

 p2(ξ)−p1(ξ)

∣∣∣∣∣∣ p3(ξ)−p1(ξ)

 . (4.3.2)

Then, ∇ξ u =

[
∂u
∂ξ

∂u
∂η

∂v
∂ξ

∂v
∂η

]
= TT

i J f , and

∇ξ pi(ξ) = ∇u (Qipi(u)+xi)
(
∇ξ u

)
=

Qi

 1 0
0 1

∂ fi
∂u

∂ fi
∂v

TT
i J f

= (Ti + m̂i∇u fi(u))TT
i J f ,

where u is also functions of ξ . Therefore,

3

∑
i=1

Ni(ξ)∇ξ pi(ξ) =
3

∑
i=1

(
Ni(ξ)(Ti + m̂i∇u fi(u(ξ)))TT

i J f
)
. (4.3.3)

45

The Jacobian of the WALF-reconstructed triangle with respect to ξ = (ξ ,η), is then

∇ξ p =
3

∑
i=1

(
Ni (Ti + m̂i∇u fi)TT

i J
)
+

 p2−p1

∣∣∣∣∣∣ p3−p1

 . (4.3.4)

The normal of the blended surface can be obtained by taking the cross product of
the two column vectors of ∇ξ p.

4.3.2 High-Order Piecewise Smooth Function

When evaluating the functions at the quadrature points for numerical integration,
if an analytical formula is available for the function, one can simply evaluate the
analytical formula. However, in most cases the function values are available only
at the vertices of the triangulated surface. We note that using a similar approach
as WALF, one can reconstruct a smooth function ϕ or ϕϕϕ defined over the surface.
For a vector-valued function ϕϕϕ , if it does not have specific physical or geometric
meaning, its individual components can be approximated independently of each
other.
For a function defined at each vertex of the triangulated surface, a high-order ap-
proximation at any point inside a triangle can be obtained using local polynomial
fitting at its vertices as is done for the height function. For a function ϕ smooth
over the surface, we can consider it as a function of the parameters u = (u,v). We
expand ϕ into a Taylor (or Maclaurin) series about u0 = (0,0) similar to equation
(2.1.1) as

ϕ(u) =
d

∑
p=0

j+k=p

∑
j,k≥0

c jk
u jvk

j!k!
+O(‖u‖d+1). (4.3.5)

Given a set of points in the stencil of u0 with known values for ϕ , we get

d

∑
p=0

j+k=p

∑
j,k≥0

c jk
u j

i vk
i

j!k!
≈ ϕ(ui,vi). (4.3.6)

Clearly, the only difference between high-order reconstruction of the height func-
tion f and the integrand ϕ is the right hand side of the resulting linear system. The
system of equation given by (4.3.6) can be solved in the same manner as for the
height function. In the case of a vector function, we perform high order reconstruc-
tion for each component independently.
Similar to surface reconstruction, we blend these local fittings using the shape func-
tion to reconstruct a piecewise continuous support of the function. Let ϕ̃i(ξ) denote

46

the function reconstructed from the polynomial at the ith vertex. The blended func-
tion within the triangle is then

ϕ̃(ξ) =
3

∑
i=1

Ni(ξ)ϕ̃i(ξ). (4.3.7)

When the function is a vector function, different components are blended indepen-
dently. In the next section, we will analyze the accuracy of these reconstructions
and also show that both high-order geometry and high-order function reconstruc-
tions are necessary for high-order accuracy of numerical integration.

4.3.3 Overall Algorithm

After obtaining the high-order reconstructions of the surface and the integrand, the
remainder of our algorithm is to apply numerical quadrature over each triangle. The
general form of the quadrature over a triangle σ applied to scalar surface integrals
is ˆ

σ

ϕ da =

ˆ
σ

ϕ(ξ)g(ξ)dξ dη =
1
2 ∑

k
wkϕ(ξk,ηk)g(ξk,ηk), (4.3.8)

where (ξk,ηk) are the natural coordinates of the quadrature points within the trian-
gle, and wk is the associated weights of the quadrature points. For a comprehensive
list of quadrature rules, readers are referred to [13]. The overall flow of our algo-
rithm is shown in Figure 4.1.
The above method has many advantages. First of all, it is easy to implement, ef-
ficient and robust. Second, it does not suffer from oscillations due to high order
polynomial interpolation. The least squares formulation mitigates any such oscil-
lation that might have been present due to high order polynomial interpolation.
Another advantage of the method is that it is largely independent of mesh quality in
the sense that it does not depend on the angles or Jacobian or other general quality
attributes of a mesh. As a result we can still get high order for very poor quality
meshes (Subsection 4.5.1). There are only two requirements imposed on the input
mesh. First, the vertices approximate the exact surface up to machine precision.
Second, there is a sufficient number of points in the stencils. The connectivity of
the mesh is used extensively to form the stencils at each vertex about which the
local polynomial fitting is to take place.

47

More triangles

Start Triangulated Surface Triangle Vertex

Obtain ring neighborhood

Compute the local coordinates (u,v) for each
point in the ring neighborhood

Construct linear systems to approximate coefficients
of Taylor series expansion of
a) Height function, b) Integrand

Weighted Least Squares Solution

More vertices ?

Blend local fittings using weighted averaging

At each quadrature point, compute
a) Height function, b) Integrand

High order approximations to
a) Normal, b) Jacobian, c) Integrand

Stop

More triangles ? Update partial sum of integral

Figure 4.1: Flowchart of our algorithm for high-order surface integration where w,
ϕ and g denote the weight, integrand and Jacobian of the surface at a quadrature
point. In case of vector functions, ϕ = ϕϕϕ ··· n̂nn.

48

4.4 Theoretical Convergence

In this section, we analyze the order of accuracy of our method. The results are
given in terms of a local measure of the mesh resolution such as the average edge
length h in the triangulation. The main result of theoretical analysis is given by the
following theorem and corollary:

Theorem 4. Let Γ be a smooth surface and ϕ be a scalar function defined over
Γ. Let S denote the triangulation of Γ, and S̃ and ϕ̃ be the surface and function
reconstructed from values at vertices on S using weighted average of local fittings
of degree d, respectively. Then

∣∣´
Γ

ϕ da−
´

S̃ ϕ̃ da
∣∣= O(hd +h5).

As a corollary of Theorem 4, we also obtain the following estimation of the errors
in surface integrals of vector-valued functions.

Corollary 5. Let Γ be a smooth surface and ϕ : Γ→R3 be a vector-valued function
defined over Γ. Let S denote the triangulation of Γ, and S̃ and ϕ̃ : S̃→ R3 be the
reconstructed surface and the reconstructed function using weighted average of
local fittings of degree d, respectively. Then

∣∣´
Γ

ϕ ·da−
´

S̃ ϕ̃ ·da
∣∣= O(hd +h5).

When quadrature rules are used for the integrals numerically, in general it suffices to
use degree-d quadrature rules over the triangles to preserve the accuracy. The proof
of Theorem 4 is somewhat involved, as it involves the analysis of the accuracies
of the WALF-reconstructed surface, its approximate normal and Jacobian, and the
reconstructed function. We will analyze these individual terms in the following
sections and then use the results to prove the accuracy of the integration. Note that
the barrier of O(h5) in the theorem above is somewhat pessimistic, due to technical
difficulties in the analysis of the approximation to the Jacobian in Section 4.4.2.
In numerical experiments, we observe up to eighth-order convergence rate in our
numerical experiments as shown in Section 4.5.

4.4.1 Accuracy of Weighted Averaging of Fittings

Let Γ denote a smooth surface and S be a triangulation of Γ. Suppose the triangula-
tion S is composed of triangles σi, i.e., S = ∪K

i=1σi, where K is the number of trian-
gles. Let σ̃i denote the high-order reconstruction of σi by WALF, then Γ̃ = ∑

K
i=1 σ̃i.

For each point q0 ∈ σi in S, let vi be the ith vertex of σi, and let mi denote a
first-order approximation to the unit normal at vi used in constructing the local
uvw coordinate frame at vi. Let qi denote the reconstructed point for q0 based on
local fittings at the vertices vi. Let q be the reconstructed point of q0 on Γ̃, i.e.,
q = ∑

3
i=1 Niqi. Let ri denote the intersection of lines q0qi with the exact surface

49

m1

m2 m3

v3

v2

v1

q

r3

r 2

r 1

q3
q2

q1

0

Figure 4.2: Illustration of notation used in proofs. Point q0 is a point inside a
linear triangle4v1v2v3. The reconstructed points corresponding to local fittings at
vertices vi are denoted by green points qi. The intersection of the first order normals
mi with the exact surface is denoted by ri.

Γ; see Figure 4.2 for an illustration of these points. We first have the following
lemma regarding the distances between ri and r j, which impose a lower bound for
the minimum error that can be obtained by the weighted averaging scheme.

Lemma 6. Assume that the local coordinate systems are aligned with approximate
surface normals that are at least first-order accurate. The distance between points
‖ri− r j‖= O(h3), i, j = 1,2,3.

This lemma was a side product in the analysis of the order of accuracy of WALF
surface in [29]. For completeness, we give a separate proof as follows.

Proof. It suffices to prove for only ‖r1− r2‖. Let θi denote the angle at ri in the
triangle q0r1r2. We have

‖r1− r2‖= |cosθ1 ‖r1−q0‖+ cosθ2 ‖r2−q0‖|
≤ (|cosθ1|+ |cosθ2|)max

i=1,2
{‖ri−q0‖} .

Note that |cosθ1|= O(h), because r1r2 is at least a first-order approximation to the
tangent direction at r1, and m1 is by assumption a first-order approximation to the

50

normal direction at v1 and in turn also at r1. Similarly, |cosθ2| = O(h). Further-
more, ‖ri− q0‖ = O(h2), because q0 is a linear approximation to ri in the local
coordinate frame aligned with mi. Therefore, ‖r1−r2‖ ≤O(h)O(h2) = O(h3).

For error analysis, we need to define a mapping from Γ̃ to Γ. Let r be the projection
of q onto Γ along the direction ∑

3
j=1 N jm j, and let Π denote the mapping from Γ̃

onto Γ, i.e., r = Π(q). Assume the triangulation S is a dense enough triangulation
of Γ, so that the projection from Γ̃ to Γ is one-to-one and onto. Let γi denote the
range of this projection from points in σi. Therefore, the triangulation S defines
local parameterizations for both Γ and Γ̃ within each triangle. With this mapping,
we obtain the following theorems regarding the reconstructed surface and function.

Theorem 7. Given a mesh whose vertices approximate a smooth surface Γ with
an error of at most O(hd+1), for each point q on the WALF surface obtained from
degree-d fittings, ‖q−Π(q)‖= O(hd+1 +h6).

Proof. Let r = Π(q). We have

‖q− r‖=

∥∥∥∥∥ 3

∑
i=1

Niqi− r

∥∥∥∥∥
=

∥∥∥∥∥ 3

∑
i=1

Niqi−
3

∑
i=1

Niri +
3

∑
i=1

Niri− r

∥∥∥∥∥
≤

(
3

∑
i=1

Ni ‖qi− ri‖
)
+

∥∥∥∥∥r−
3

∑
i=1

Niri

∥∥∥∥∥ .
Because qi is a local fitting with dth degree polynomial at the local coordinate
frame at the ith vertex of σ , ‖qi− ri‖ = O(hd+1). For the second term, note that
∑

3
i=1 Niri is a linear approximation to r over triangle r1r2r3 of length O(h3), and

hence
∥∥r−∑

3
i=1 Niri

∥∥= O(h6). Overall, ‖q− r‖= O(hd+1 +h6).

In the following, we generalize this result to functions reconstructed by weighted
averaging of least-squares fitting (WALF). We introduce some additional notation
here. Let ϕ : Γ→ R be a scalar function defined on a smooth surface Γ and let
ϕ̃ : Γ̃→R denote the WALF reconstructed scalar function over Γ̃. More specifically,
ϕ̃ is defined as follows. Let ϕ̄i(x) : S→ R denote the local fitting of a point x on
S at the ith vertex of a triangle σ containing x. Let ξ = (ξ ,η) denote the local
parameters (i.e., the natural coordinates) of the points within σ and x̃ denote the
reconstructed point on Γ̃. Then,

ϕ̃(x̃(ξ)) =
3

∑
i=1

Ni(ξ)ϕ̄i(x(ξ)), (4.4.1)

51

where Ni denotes the linear finite-element shape function associated with the ith
point. Using this notation, we have the following theorem.

Theorem 8. Given a mesh whose vertices approximate a smooth surface Γ with an
error of at most O(hd+1), let r be the projection of the point x̃ on the reconstructed
WALF surface with degree-d fittings onto the exact surface Γ. Then for the degree-d
WALF reconstructed function ϕ̃(x̃), |ϕ̃(x̃)−ϕ(r)|= O(hd+1 +h6).

The proof for Theorem 8 shares some similarities with that for Theorem 7, but it is
slightly more complicated because the additional function ϕ . We give the proof as
follows.

Proof. Note that ξ parameterizes x̃(ξ) within a triangle σ . Then

|ϕ̃(x̃(ξ))−ϕ(r)|=

∣∣∣∣∣ 3

∑
i=1

Niϕ̄i(x(ξ))−ϕ(r)

∣∣∣∣∣
=

∣∣∣∣∣ 3

∑
i=1

Niϕ̄i(x(ξ))−
3

∑
i=1

Niϕ(ri)+
3

∑
i=1

Niϕ(ri)−ϕ(r)

∣∣∣∣∣
≤

(
3

∑
i=1

Ni |ϕ̄i(x(ξ))−ϕ(ri)|
)
+

∣∣∣∣∣ϕ(r)− 3

∑
i=1

Niϕ(ri)

∣∣∣∣∣ .
Because ϕ̄i is a local fitting with dth degree polynomial at the local coordinate frame
at the ith vertex of σ , |ϕ̄i(x(ξ))−ϕ(ri)|= O(hd+1). For the second term, note that
∑

3
i=1 Niϕ(ri) is a linear approximation to ϕ(r) over triangle r1r2r3 of length O(h3),

and hence
∣∣ϕ(r)−∑

3
i=1 Niϕ(ri)

∣∣= O(h6).

4.4.2 Accuracy of Jacobian

The mapping Π from Γ̃ to Γ allows us to obtain the reference solution for the Ja-
cobian as well as for the normals. For triangle σ̃i ∈ Γ̃, let J̃i denote the Jacobian
matrix for the mapping from natural coordinates ξ of σi, i.e., J̃i(q(ξ)) =

[
∂q
∂ξ

∣∣∣ ∂q
∂η

]
.

Similarly, for triangle γi ∈ Γ, let Ji denote the Jacobian matrix for the mapping from
ξ to γi, i.e., Ji(r(ξ)) =

[
∂r
∂ξ

∣∣∣ ∂r
∂η

]
. In numerical integration, these Jacobian matrices

are used to compute the surface area as well as the surface normal. We first prove
the following lemma regarding the Jacobian matrices.

Lemma 9. Let ai j denote an entry of matrix J̃i(q(ξ))−Ji(r(ξ)). Then

|ai j|= O(hd+1 +h6). (4.4.2)

52

Proof. Note that

J̃i(q(ξ))−Ji(r(ξ)) =
[

∂ (q− r)
∂ξ

∣∣∣∣ ∂ (q− r)
∂η

]
. (4.4.3)

Due to Theorem 8, ‖q− r‖ = O(hd+1 + h6). The parameters ξ and η are al-
ways between 0 and 1 independent of h, therefore ‖∂ (q− r)/∂ξ‖= O(hd+1 +h6).
Similarly ‖∂ (q− r)/∂η‖ = O(hd+1 + h6). Hence for each entry ai j in J̃i − Ji,
|ai j|= O(hd+1 +h6).

Let g̃i =
√

det(J̃T
i J̃i) and gi =

√
det(JT

i Ji). Let ñ(q) denote the unit normal to

Γ̃ at point q, obtained by normalizing ∂q
∂ξ
× ∂q

∂η
, and similarly let n(r) denote the

unit normal to Γ at r, obtained by normalizing ∂r
∂ξ
× ∂r

∂η
. We consider g̃i as an

approximation gi, and ñ(q) as an approximation to n(r). Because these quantities
are obtained from simple arithmetic operations from J̃i and Ji, respectively, a direct
consequence of Lemma 9 is the following theorem.

Theorem 10. |g̃i−gi|= O(hd+2 +h7) and ‖ñ(q)−n(r)‖= O(hd +h5).

Proof. From Lemma 9 |ai j| = O(hd+1 + h6) , we get
∣∣∣∂qi

∂ξ
− ∂ ri

∂ξ

∣∣∣ = O(hd+1 + h6)

and
∣∣∣∂qi

∂η
− ∂ ri

∂η

∣∣∣ = O(hd+1 + h6) where q = (q1,q2,q3) and r = (r1,r2,r3). Now,

g̃i =
√

det(J̃T
i J̃i) =

∥∥∥ ∂q
∂ξ
× ∂q

∂η

∥∥∥ and gi =
√

det(JT
i Ji) =

∥∥∥ ∂r
∂ξ
× ∂r

∂η

∥∥∥. We note that

each term of ∂r
∂ξ
× ∂r

∂η
is of the form ∂ rk

∂ξ

∂ r j
∂η
− ∂ r j

∂ξ

∂ rk
∂η

for appropriate indices j and k.

We also note that
∥∥∥∂qi

∂ξ

∥∥∥ = O(h) as it should be at least a first order approximation
of a tangent direction at q. Therefore,∥∥∥∥ ∂r

∂ξ
× ∂r

∂η
− ∂q

∂ξ
× ∂q

∂η

∥∥∥∥ ≈ O(hd+2 +h7) (4.4.4)∥∥∥∥ ∂r
∂ξ
× ∂r

∂η

∥∥∥∥ ≈ ∥∥∥∥∂q
∂ξ
× ∂q

∂η

∥∥∥∥+O(hd+2 +h7),

53

i.e, |g̃i−gi|= O(hd+2 +h7). Similarly,

‖ñ(q)−n(r)‖ =

∥∥∥∥ 1
g̃i

(
∂q
∂ξ
× ∂q

∂η

)
− 1

gi

(
∂r
∂ξ
× ∂r

∂η

)∥∥∥∥
=

∥∥∥∥gi− g̃i

gig̃i

(
∂q
∂ξ
× ∂q

∂η

)
+

1
gi

(
∂q
∂ξ
× ∂q

∂η
− ∂r

∂ξ
× ∂r

∂η

)∥∥∥∥
≤

∣∣∣∣gi− g̃i

gig̃i

∣∣∣∣∥∥∥∥(∂q
∂ξ
× ∂q

∂η

)∥∥∥∥+ 1
gi

∥∥∥∥∂q
∂ξ
× ∂q

∂η
− ∂r

∂ξ
× ∂r

∂η

∥∥∥∥
=

1
|gi|

(
|g̃i−gi|+O(hd+2 +h7)

)
= O(hd +h5),

where the last equality is because |gi|= O(h2).

Note that this result gives an upper bound of the errors in the approximation to the
surface areas and the normal, and in turn they can bound the errors of the numerical
integration. However, this approximation largely depends on our definition of the
mapping Π from Γ̃ and Γ. There may be an “optimal” mapping for which the
error may be bounded by O(h6) instead of O(h5). However, we are content with
this result because O(h5) is a small enough error bound for almost all practical
purposes.

4.4.3 Accuracy of Integration

Using the above results, we can now prove our main theorem about the accuracy of
integration, i.e., Theorem 4.

Proof. Suppose the triangulation S is composed of triangles σi, i.e., S = ∪K
i=1σi,

where K is the number of triangles. Let σ̃i denote the high-order reconstruction of
σi by WALF, then S̃ = ∑

K
i=1 σ̃i, and

ˆ

S̃

ϕ̃ da =
K

∑
i=1

ˆ

σ̃i

ϕ̃ da. (4.4.5)

Using the parameterization in subsection 4.4.2, we have Γ = ∑
K
i=1 γi, and

ˆ

Γ

ϕ da =
K

∑
i=1

ˆ

γi

ϕ da. (4.4.6)

54

Then
ˆ

Γ

ϕ da =
K

∑
i=1

ˆ

σi

ϕ(ξ)gi(ξ)dξ dη ,

ˆ

S̃

ϕ̃ da =
K

∑
i=1

ˆ

σi

ϕ̃(ξ)g̃i(ξ)dξ dη .

For conciseness, we omit the parameters ξ in the following. Therefore,∣∣∣∣∣∣∣
ˆ

Γ

ϕ da−
ˆ

S̃

ϕ̃ da

∣∣∣∣∣∣∣=
∣∣∣∣∣∣

K

∑
i=1

ˆ

σ

(ϕgi− ϕ̃ g̃i) dξ dη

∣∣∣∣∣∣
≤

K

∑
i=1

∣∣∣∣∣∣
ˆ

σ

((ϕ− ϕ̃)gi + ϕ̃ (gi− g̃i)) dξ dη

∣∣∣∣∣∣
≤

K

∑
i=1

ˆ
σ

|(ϕ− ϕ̃)gi| dξ dη +

ˆ

σ

|ϕ̃ (gi− g̃i)| dξ dη


≤ |ϕ− ϕ̃|max

K

∑
i=1

ˆ

σ

gi dξ dη

︸ ︷︷ ︸
1

+ |ϕ̃|max

K

∑
i=1

ˆ

σ

|gi− g̃i| dξ dη

︸ ︷︷ ︸
2

The first term is the condition number of the problem with a perturbation to the
integrand and is bounded by O(hd+1 +h6) times the surface area. The error of the
integral depends on the accuracy of the last integral in the second term. Before we
determine its accuracy, we note that the number of triangles in the surface mesh
is inversely proportional to average area of triangle i.e, K = O(1/h2). Using this
result along with Lemma 9, |g̃i−gi|= O(hd+2 +h7), we get

K

∑
i=1

ˆ

σ

|(gi− g̃i)| dξ dη =
K

∑
i=1

ˆ

σ

O(hd+2 +h7)dξ dη

= O(hd +h5)

Hence,
∣∣´

Γ
ϕ da−

´
S̃ ϕ̃ da

∣∣= O(hd +h5).

Given Theorem 4, then Corollary 5 follows naturally, because the surface integrals´
Γ

ϕ ·da can be reduced to the scalar integral of ϕ · n̂, and from Theorem 10, ϕ · n̂

55

can be approximated to O(hd +h5), just as the scalar function ϕ in Theorem 4.

4.5 Numerical Experiments

We now present the numerical results with our methods, focusing on assessing the
accuracy and convergence. We also demonstrate the usefulness of our method with
an application and report the performance.

4.5.1 Convergence of High-order Integrations

The main objectives of our experiments are to verify the high-order convergence
predicted by our theoretical analysis, and to assess the effects of high-order re-
constructions of the geometry and function. For these purposes, it suffices to use
simple smooth geometries. We used a torus (with inner radius 0.7 and outer ra-
dius 1.3) as the test geometry, and generated a set of high-quality meshes using the
mesh generator Gambit from ANSYS Inc. Note that by construction our method
has little requirement on mesh quality. To demonstrate this, we also generated an-
other set of poor-quality meshes using marching cubes. Some example meshes are
shown in Figure 4.3. For studying mesh convergence, we generated five meshes of
different resolutions for each set of our test meshes, and numbered these meshes
from the coarsest (mesh 1) to the finest (mesh 5). The average edge lengths are
approximately halved between adjacent mesh resolutions. We use the finest meshes
to compute the reference solutions when exact solutions are unknown, and use the
other four meshes to estimate convergence. We estimate the error for each mesh as

relative error =
‖ numerical solution− reference solution ‖

‖ reference solution ‖
, (4.5.1)

and compute the average convergence rate as

convergence rate =
1
3

log2

(
error of mesh 1
error of mesh 4

)
. (4.5.2)

To avoid poor convergence due to inaccurate inputs, in all cases we project the
vertices onto the exact surface, so all the vertices are accurate to machine precision
of double-precision floating point numbers.

56

Figure 4.3: Coarsest high-quality (left) and poor-quality (right) test meshes for torus
used in our numerical experiments.

0 1 2 3
10

−10

10
−8

10
−6

10
−4

10
−2

Levels of refinement

L
o

g
 o

f
re

la
ti
v
e

 e
rr

o
r

3.7

4.8
5.3

7.2

Deg1
Deg2
Deg3
Deg4
Deg5
Deg6

1.6

0 1 2 3
10

−10

10
−8

10
−6

10
−4

10
−2

Levels of refinement

L
o

g
 o

f
re

la
ti
v
e

 e
rr

o
r

2.9
3.5

5.6
5.1

6.8

Deg1
Deg2
Deg3
Deg4
Deg5
Deg6

1.8

Figure 4.4: Relative errors and average convergence rates of surface area of a torus
under mesh refinement for high-quality (left) and low-quality (right) meshes.

Surface Integral of Scalar and Vector Functions

We first investigate the integration of a scalar function. A simple example is the
computation of surface area, for which the integrand is ϕ = 1. In this case, we need
to reconstruct only the geometry. For torus, the exact surface area can be computed
analytically, so we use the exact answer as the reference solution.
Figure 4.4 plots the relative errors of the computed surface areas for the torus using
polynomial fittings of degrees between 1 and 6 under mesh refinement. The average
convergence rates are shown on the right end of the curves in the plot. It can be seen
that the order of convergence is at least as high as that predicted by the theory. The
even-degree polynomials exhibited higher convergence rates than predicted, proba-
bly because of statistical error cancellation due to some symmetry of the geometry
and the mesh.
For integrating vector-valued functions, the simplest example is the computation of
the volume bounded by a closed surface. By the divergence theorem, the volume is

57

0 1 2 3
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Levels of refinement

L
o

g
 o

f
re

la
ti
v
e
 e

rr
o

r

3.7

4.8
5.3

7.1

Deg1
Deg2
Deg3
Deg4
Deg5
Deg6

3.2

0 1 2 3
10

−10

10
−8

10
−6

10
−4

10
−2

Levels of refinement

L
o

g
 o

f
re

la
ti
v
e
 e

rr
o

r

3.4
3.9

5.4
5.7

7.6

Deg1
Deg2
Deg3
Deg4
Deg5
Deg6

1.7

Figure 4.5: Relative errors and average convergence rates of computed volume of a
torus under mesh refinement for high-quality (left) and low-quality (right) meshes.

equal to one third of the surface integral of the position vector of the surface, i.e.,

V =

ˆ
Γ

ϕ ·da =

ˆ
Γ

ϕ · n̂da, (4.5.3)

where ϕ = x/3 and n̂ is the outward unit normal to the surface Γ. For simple
geometries such as a torus, the exact volumes are available analytically and hence
we use them as reference solutions in our test. Figure 4.5 shows the relative errors
of the computed volume of the torus using polynomial fittings of degrees between
1 and 6 under mesh refinement. The average convergence rates are shown on the
right of the plots, which again confirm our theoretical results.
For generality, we also test integrating a scalar test function ϕ(x,y,z)= sin(x+yz)+
exy and a vector-valued test function ϕ(x,y,z) = (xcos(y), ey, z+ ez) on the torus.
Since the exact integrals are unavailable, we use the results for the finest meshes as
reference solutions. The errors for this case are shown in Figure 4.6. These results
are qualitatively similar to those of surface areas, and the convergence rates again
confirm the theoretical results.

Necessity of High-Order Reconstructions of Surface

In the previous subsection we showed that our method can deliver high-order con-
vergence rates. It is important to note that the high-order reconstructions of both
the surface and the function are necessary in assuring high convergence rates. To
demonstrate this, Figure 4.7 (left) shows the computed surface area of the torus
using high-order reconstruction of the function but using piecewise linear geom-
etry defined by the linear triangles of the meshes, and Figure 4.7 (right), which
is the same as Figure 4.4 (left), shows the corresponding results using high-order

58

0 1 2 3
10

−10

10
−8

10
−6

10
−4

10
−2

Levels of refinement

L
o

g
 o

f
re

la
ti
v
e

 e
rr

o
r

3.7

4.8
5.4

7.2

Deg1
Deg2
Deg3
Deg4
Deg5
Deg6

1.5

0 1 2 3
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Levels of refinement

L
o

g
 o

f
re

la
ti
v
e

 e
rr

o
r

2.1

3.6

4.3

5.3

6.8

Deg1
Deg2
Deg3
Deg4
Deg5
Deg6

1.0

Figure 4.6: Relative errors and average convergence rates for integration of a test
scalar function (left) and a test vector-valued function (right) on the torus.

0 1 2 3
10

−4

10
−3

10
−2

10
−1

Levels of refinement

L
o

g
 o

f
re

la
ti
v
e
 e

rr
o

r

Deg1
Deg2
Deg3
Deg4
Deg5
Deg6

2

0 1 2 3
10

−10

10
−8

10
−6

10
−4

10
−2

Levels of refinement

L
o

g
 o

f
re

la
ti
v
e

 e
rr

o
r

3.7

4.8
5.3

7.2

Deg1
Deg2
Deg3
Deg4
Deg5
Deg6

1.6

Figure 4.7: Comparison of convergence rates of computed surface area of the torus
using high-order reconstructions of (left) only the function vs. (right) both the ge-
ometry and function.

reconstructions of both the geometry and the function. Using only high-order re-
construction of the geometry but not the function would lead to a result similar to
that in Figure 4.7 (left). From this comparison, it is evident that both the geometry
and the function need to be reconstructed to high-order accuracy in order to achieve
high-order surface integration.

Complicated Geometries

We show some examples of our method applied to more complicated geometries as
well as meshes with sharp features. For testing a complicated smooth domain of in-
tegration, we used a spherical surface harmonic of degree 6 and order 1 (Figure 4.8).

59

0 1 2
10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Levels of refinement

L
o

g
 o

f
R

e
la

ti
v
e

 e
rr

o
r

3.7

4.9

6.2

Deg1
Deg2
Deg3
Deg4
Deg5
Deg6

2.3

Figure 4.8: Convergence rates of computed surface area of a spherical harmonic of
degree 6 (right). The domain of integration is shown on the left.

The convergence of errors under mesh refinement for computing the surface area
is shown in Figure 4.8 (right). It can be seen that high order of convergence is
achieved as predicted.
To demonstrate the applicability of our method to meshes with sharp features, we
apply our algorithm to a slotted sphere (Figure 4.9). The presence of sharp features
in the input geometry requires some preprocessing of the mesh. In particular, we
first identify all the sharp ridges and corners of the input geometry using a simple
algorithm. Thereafter, we virtually split the mesh by duplicating the vertices along
ridges, and then apply our algorithm to this new mesh. The new connectivity en-
sures that stencils for points on the ridge edges are one sided. Figure 4.9 shows the
convergence results for computing the volume of the slotted sphere. We observe
that for fittings of degree 4, 5 and 6, the order of convergence is about 4. This is due
to the reduction of degree of fittings for points on the sharp features, which have
insufficient number points in their stencils to achieve higher order. As a result, the
overall degree of the algorithm is reduced.

4.5.2 Performance Results

We present some performance results for our algorithms. We implemented our al-
gorithm in MATLAB and then converted the code into C using MATLAB Coder.
We performed the tests on a Linux machine with a 3.16GHz Intel Core 2 Duo pro-
cessor and 4GB of RAM. Tables 4.2 shows the execution times for the computations
of the volume of the torus, using polynomials of degrees between 1 and 6. It can
be seen that the runtimes scale linearly with the size of the meshes. In addition,

60

0 1 2 3
10

10

10

10

10

10

10

Levels of refinement

L
o

g
 o

f
R

e
la

ti
v
e

 e
rr

o
r

4.1

4.3

Deg1
Deg2
Deg3
Deg4
Deg5
Deg6

1.9

-1

-2

-3

-4

-5

-6

-7

Figure 4.9: Convergence rates of computed volume of a slotted sphere (right). The
domain of integration is shown on the left.

Table 4.2: Runtime in seconds for computation of volume of triangulated torus.

mesh #vertices degree 1 2 3 4 5 6
1 544 0.0927 0.172 0.34 0.785 1.45 2.44
2 1,896 0.322 0.612 1.26 2.73 5.57 11.2
3 7,528 1.27 2.35 4.87 11.0 21.0 44.3
4 31,392 5.34 9.84 20.18 47.2 89.1 168.4

the higher the degree of the polynomials, the more expensive the algorithms are.
Compared to integration with linear triangles, it is expected that polynomial fittings
would be much more expensive, because the stencil for the fitting is large and least
squares problems need to be solved. The computational complexity of solving the
linear system is dominated by that of finding the reduced QR factorization. For our
current implementation, polynomial fittings are two to three orders of magnitude
more expensive than using linear triangles, but its runtime can be improved with
further performance optimization.

61

Chapter 5

High-Order Surface Remeshing

Surface meshing and remeshing are widely used mesh-based operations in geom-
etry processing, mesh generation, and numerical solutions of partial differential
equations with complex geometry. In the past, researchers have mostly focused on
generating piecewise linear (or bilinear) meshes (such as [18]), which have only up
to second-order accuracy. In recent years, high-order surface meshing and remesh-
ing (using piecewise quadratic or higher-degree elements or polynomial patches)
have become increasingly important. The fundamental reason behind this trend is
simple: high-order numerical methods require the same or higher order accuracy for
the geometry to achieve the desired accuracy. With only piecewise linear approxi-
mations, the discretizations of differential quantities (such as normals or curvatures)
or the solutions of the differential equations may only achieve low-order accuracy,
and sometimes may not converge at all. The problem is even more demanding in
the problems with evolving geometry, where the surface mesh must be adapted, and
sometimes needs to be untangled to remove mildly (or nearly) folded triangles.
We investigate the problem of smoothing, optimizing and adapting a surface mesh
with high-order accurate nodal positions, so that the new mesh can preserve the
order of accuracy of numerical methods, such as high-order finite element methods
and generalized finite difference methods. The focus is to improve the accuracy,
stability and robustness of mesh-based geometry processing and numerical com-
putations. We couple various mesh quality improving techniques with high-order
surface reconstruction to develop remeshing strategies that produce high-quality
triangular meshes, while untangling mildly folded triangles and preserving the ge-
ometry to high-order accuracy. We further improve the robustness of our algorithms
for high-order point projections in under-resolved regions by introducing geometric
limiters to reduce the projection to lower order. We present the theoretical frame-
work of our methods, show experimental comparisons against other methods, and
demonstrate its utilization to geometric PDE’s, high-order finite elements, biomedi-

62

cal image-based surface meshes, and complex interface meshes in fluid simulations.
Our methods can achieve high order of accuracy for sufficiently resolved regions of
the geometry. For high-order surface reconstruction we use either WALF or CMF
(2.2). The error for point positions using WALF and CMF are bounded by O(hd +
h6) and O(hd) respectively, where h is average edge length and d is the degree of
fitting. Though WALF limits the accuracy to O(h6) for degree of fittings d > 6 ,
in practice degrees of fitting greater than 6 are rarely used. The introduction of a
geometric limiter allows us to systematically use a lower-order point positioning
for under-resolved regions where high-order fittings tend to be problematic. As a
result, it improves the robustness of our algorithms. We use smooth geometries
without any sharp features to test our algorithms, though the method can easily be
modified to treat sharp features, by the null space checking at a vertex to restrict
movement of points on sharp features to ridges or to restrict movement entirely.

5.1 Related Work

We start by reviewing some background for high-order surface remeshing. We first
motivate the problem by giving a brief overview of two types of numerical methods
over unstructured meshes: finite element methods and generalized finite difference
methods.

High-Order Finite Element Methods

The most well-known numerical methods on unstructured meshes are probably fi-
nite element methods. When using isoparametric elements [25], these methods
use quadratic or cubic interpolation within each element for both representing the
geometry and approximating the solutions. Additional nodes are required within
each element to construct these interpolations. For example in two dimensions, a
quadratic interpolation over a triangle requires six points and a cubic interpolation
requires ten points. Higher than cubic interpolation is possible but is rarely used in
practice.
Generally speaking, a quadratic interpolation can approximate a function up to
third-order accuracy, and a cubic interpolation can approximate a function up to
fourth-order accuracy. However, this order of accuracy may not be attainable if any
part of the algorithm is low order, including the geometry. In particular, if linear el-
ements are used for approximating the surface, or if the nodal coordinates are only
second-order (or third-order) accurate, then the overall numerical method will be
limited to at most second-order (or third-order) accuracy, defeating the purpose of
using quadratic (or cubic) elements. For this reason, the order of accuracy of any

63

optimization strategy must be at least the same or higher than that of the numerical
methods to be used.
In [29], we described a refinement scheme to generate quadratic or cubic surface
meshes for high-order finite element methods from a given surface mesh with piece-
wise linear elements but high-order accurate nodal positions. Here we use our meth-
ods to improve the quality of a high-order finite element mesh (subsection6.3).

Generalized Finite Difference Methods

Besides finite-element methods, another class of high-order method is the general-
ized finite difference methods, which have been gaining popularity in recent years.
Unlike the finite element methods, the generalized finite difference methods are
based on weighted least-squares approximations rather than interpolation, so they
have more flexibility in defining the stencils for numerical differentiation and in
constructing local patches for numerical integration, which are the core computa-
tions in most numerical discretizations of differential equations.
The generalized finite difference schemes are often used in meshless methods [4,
42]. However, they also apply to unstructured meshes, where the mesh connectivity
can be used as an aid for efficient construction of the stencils for computing least
squares approximations. For example, the work done by Jiao and co-authors in [31,
52] for computing normals and curvatures of triangulated surfaces to high-order
accuracy is essentially a generalized finite difference scheme. Given a surface mesh,
they construct the stencils of a center vertex as its k-ring and k.5-ring neighborhood,
where k = 1,2,3, . . . Let us define the 0-ring of a vertex as the vertex itself. Then,
the k-ring vertices are those share an edge with a vertex in the (k− 1)-ring, and
the k.5-ring vertices are those share a face with two vertices in the k-ring. The
definition of half-rings for triangular meshes was introduced in [31]. Our definition
here is simpler than the original definition in [31] and is same as that in [29], and
as a result it is better suited for quadrilateral meshes. Typically, it is advisory to
use the (d +1)/2-ring for noise-free surfaces or (d/2+1)-ring for noisy surfaces,
so that the number of points in the stencil is about 1.5 to two times the number of
coefficients for least-squares fittings. These stencils are based on mesh connectivity
alone. In addition, each point has an associated weight in the stencil in the weighted
least-squares formulation, which can be used to reduce the influence of points that
are far away from the center vertex or to filter out vertices that are on the opposite
side of a sharp feature. Compared to meshless methods, this approach allows much
more efficient construction of stencils and also avoids the issues of short circuiting
of stencils. We refer readers to [31, 52] for further details of the stencils.
We emphasize that the generalized finite difference methods use the mesh connec-
tivity for only defining the topology of the surface and for constructing the stencils

64

for least squares approximations. This is a major departure from the finite-element
methods, which use the elements of the mesh to define the interpolation of the ge-
ometry. We focus on remeshing for generalized finite difference methods. Our
method produces high-quality, high-order accurate surface meshes, so they can be
refined using high-order surface reconstruction to obtain valid, high-order surface
meshes for high-order finite element methods.

5.2 High-Order Surface Smoothing and Untangling

Vertex redistribution a.k.a mesh smoothing is widely used to improve the quality
of the mesh while preserving accuracy of nodal positions so that it can be used in
numerical computations. We begin with a global mesh smoothing algorithm which
combines variational mesh optimization [30] and weighted Laplacian smoothing
with high-order surface reconstruction.
The variational mesh optimization technique improves the quality of a mesh by
minimizing the difference between an ideal and an actual element via minimization
of energy functions based on conformal and isometric mapping. In general, we
apply variational smoothing of the mesh for most iterations except when there is
a significant number of folded triangles in the current mesh or it has regions with
very sharp angles in which case weighted Laplacian smoothing is performed. This
is because the energy function for variational optimization becomes infinite at a
degenerate element, which forms a barrier to prevent inverted elements from being
untangled. However, it is not uncommon for the input mesh to be mildly or nearly
folded. Therefore for robustness, we must be able to handle mildly folded meshes.
We consider a triangle to be inverted (i.e, folded) if its normal direction is more than
90 degrees off from its neighborhood. The folding is considered “mild” if the area
of folded triangle is small compared to the area of its one-ring neighborhood. By
untangling (or unfolding) we mean resolving these folded triangles so that there are
no folded triangles in the resulting mesh. An example of a folded triangle is shown
in 5.1. We resolve mesh folding by using a weighted Laplacian smoothing (5.2.1)
because it tends to move a vertex to a weighted average of its one-ring neighbor-
hood, so repeatedly applying the procedure tends to avoid mesh folding and can
even unfold a mesh. For clarity, we emphasize that our untangling process attempts
to resolve folded triangles of a smooth surface in a local fashion. It does not attempt
to resolve global self-intersections of a surface.
In order to preserve the accuracy of the nodal positions, we couple these mesh
quality improving techniques with high-order surface reconstruction for high-order
point projection. High-order point projection works well for sufficiently resolved
meshes. However, for under-resolved regions, such as those representing highly

65

Figure 5.1: A mildly folded triangle

curved regions, it might tend to be problematic and result in artifical spikes. As
a result, we further improve the robustness of our algorithms for under-resolved
regions by introducing a geometric limiter based on an a posterior error indicator
to reduce to lower order by using a point-wise volume-conserving smoothing ap-
proach [37]. The introduction of a geometric limiter allows us to systematically use
a lower-order point positioning for under-resolved regions where high-order fittings
tend to be problematic. Figure 5.2 shows the overall flow of the smoothing algo-
rithm. The displacements of the vertices after the smoothing step are first scaled to
lie within the projection of the one ring neighborhood with further asynchronous
scaling to prevent the introduction of additional folded triangles due to concurrent
motion of the vertices. Finally, these scaled displacements are projected to a surface
reconstructed locally using either WALF or CMF, subject to a geometric constraint.
We next discuss each of these steps in more detail.

5.2.1 Mesh Smoothing Algorithms

Variational Mesh Optimization by Vertex Movement

We use the variational mesh optimization proposed in [30] to improve mesh qual-
ity. The main idea of the variation optimization is to minimize the total energy of
the mesh by defining energy functions based on discrete conformal and isometric
mappings from an ideal reference triangle to an actual triangle. For simplicity, we
consider only isotropic triangular surface meshes whose angles are optimized with
respect to an equilateral triangle as illustrated in figure 5.3a.
Given a triangle τ ≡ x1x2x3 in R3, let θi denote the angle at the ith vertex of the
ideal triangle, li denote the opposite edge of the ith vertex of the actual triangle, and

66

Triangulated

Surface Mesh
Minimum angle < tol_angle

or #folded_tris > tol_folded
Weighted Laplacian

Smoothing

Variational Mesh Optimization

Scaling within 1-ring

Asynchronous scaling

Project displacements onto WALF or CMF surface

Check displacements and reduction of order

Reached final

 no. of iterations ?

Stop

Yes

No

Yes

No

Figure 5.2: Major steps of the smoothing algorithm.

67

conceptual map

ideal triangle actual triangle

F2 F1
-1

u1 u2

u3

x0

x1

x2

parametric triangle

F1 F2

helper

(0,0) (1,0)

(0,1)

(a) Discrete mapping between ideal and ac-
tual triangle

(b) Naming convention for triangles

Figure 5.3: Illustration of the discrete mapping between an ideal triangle and an
actual triangle via a parametric triangle as well as the naming convention followed
for triangles.

A denote twice the area of triangle. The energy for this triangle is

Eθ (τ) =
ω

A

3

∑
i=1
‖li‖2, (5.2.1)

where ω = 1/
√

3. To improve the quality of a mesh M, we minimize the total
energy ∑τ∈M Eθ (τ). We achieve this using an iterative procedure similar to the
block-Jacobi solver for Newton’s method. In particular, we compute the gradient
and Hessian of Eθ over all the triangles, and obtain the gradient and Hessian at
each vertex by adding their corresponding values at its incident triangles. After
obtaining the gradient and Hessian, one could apply one step of Newton’s method to
determine a displacement dv for the vertex, i.e., by solving

(
∇2

xv
Eθ

)
dv =−∇xvEθ .

To preserve the geometry, we must constrain the displacement to be nearly tangen-
tial to the surface. We compute the tangent vectors using an eigenvalue analysis as
described in [26]. Specifically, given a vertex, let n̂ j and ω j denote the face normal
and face area of its jth incident face, respectively. Let

N = ∑
j

ω jn̂ jn̂T
j , (5.2.2)

which is symmetric and positive semi-definite. Let

N =
3

∑
i=1

λiêiêT
i , (5.2.3)

68

where the λi are the eigenvalues (and also the singular values) with λ1 ≥ λ2 ≥ λ3 ≥
0, and the êi are the corresponding eigenvectors (and also the singular vectors) of N.
Assuming there are no acute sharp features, the eigenvalues provide an indication
of singularity at the vertex: If the surface is smooth at v, then λ2� λ1 and λ3� λ1;
at a ridge vertex with two distinct normal directions, λ3� λ2; at a sharp corner, all
three eigenvalues have similar sizes. Therefore, the null space of N (more precisely,
its numerical null space spanned by the eigenvectors corresponding to relatively
small eigenvalues) gives the local tangent at the vertex. We consider the eigenvalue
λi to be small if λi ≤ ελ1 for some small ε (such as 0.003 as suggested in [26]).
For a vertex on a smooth surface, let t̂1 and t̂2 denote two orthonormal tangent
vectors at v, and let T = [t̂1 | t̂2]. Instead of solving for dv in R3, we reformulate the
problem to solve for dv = Tu, where u ∈ R2. The gradient and Hessian of Eθ with
respect to u are then ∇uEθ = TT ∇xvEθ and ∇2

uEθ = TT (∇2
xv

Eθ

)
T, respectively.

Therefore, Newton’s equation for minimizing Eθ with respect to u becomes(
TT (

∇
2
xv

Eθ

)
T
)

u =−TT
∇xvEθ , (5.2.4)

and therefore
dv =−T

(
TT (

∇
2
xv

Eθ

)
T
)−1 TT

∇xvEθ . (5.2.5)

The eigenvalue analysis allows us to treat sharp features if necessary by replacing
T in (5.2.5) by the unit tangent vector to the ridge curve for a point on a ridge curve
or by fixing a vertex if it is a corner. However, we do not treat sharp features during
any of the smoothing algorithms though they can be easily integrated.

Weighted Laplacian Smoothing

In weighted Laplacian smoothing, we move each vertex toward a weighted average
of the centroids of its incident triangles, where the weight for each centroid is equal
to distance from the vertex to the centroid. This is equivalent to a weighted averag-
ing of neighboring vertices, where the weight for each vertex is equal to one third of
the sum of the distances from the vertex to the centroids of adjacent triangles. We
constrain the displacements for each vertex onto the tangent space by computing
tangent vectors using an eigenvalue analysis as described in [26].

5.2.2 High-Order Point Projection

In both variational mesh optimization and weighted-Laplacian smoothing, the ver-
tices are moved within the tangent space, which are in general only second-order
accurate. To achieve high-order accuracy, we must project the points onto a high-
order surface reconstruction. We reconstruct the high-order surface using either

69

Weighted Averaging of Local Fittings (WALF) or Continuous moving frames (CMF)
scheme as described in section 2.2. In order to properly project the displacements,
we first scale them with respect to their one-ring neighborhood such that a unique
triangle can be computed over which the high-order surface can be reconstructed.
Since, this scaling does not take into account the concurrent movement of vertices,
we further rescale them to prevent mesh folding.

Displacement Scaling

Importantly, the higher-order surface is reconstructed locally over an appropriate
triangle. To identify that triangle, a search is performed over the local neighborhood
of the vertex until a triangle is found that contains the point v+d inside one of its
offsets, where v and d represent any vertex and its displacement, respectively. An
offset of a triangle with vertices (v1, v2, v3) is the triangle

(v1 +βn1, v2 +βn2, v3 +βn3) (5.2.6)

where ni is the normal at the vertex vi. To avoid introducing any folded triangles
as well as to reduce computation, it is preferable that the search be limited to the
one-ring neighborhood of the vertex. To ensure the existence of such a triangle in
its one-ring neighborhood for proper projection, we scale the displacement such
that its projection lies within the one-ring neighborhood of the vertex. Clearly, the
scaling is performed with respect to the old configuration of the mesh.
The scaling is performed in two steps. Firstly, an optimal triangle is found within
the one-ring of the vertex such that the point p = v+d lies in the plane of one of its
offsets. There is no ambiguity in choosing such a triangle if point p lies inside the
offset of one of the triangles in one-ring neighborhood. In case it doesn’t lie inside
any offset of all triangles in the one-ring neighborhood, we choose an appropriate
triangle based on distance. That is, we compute the distance of p to the bound-
aries of offsets and choose that triangle whose offset is nearest to p. Secondly, the
displacement is scaled repeatedly by a constant factor α until the rescaled displace-
ment lies in the interior of another offset of the optimal triangle.
However, this scaling doesn’t prevent mesh folding due to concurrent movement
of vertices. To avoid such folding, an asynchronous step-size control is used. We
determine a relaxation factor αv for each vertex and then add αvdv to the vertex.
For detailed description of asynchronous step-size control, see [30].

70

5.2.3 Safeguards and Limiters

While higher-degree polynomials may deliver better accuracy for sufficiently re-
solved meshes, they may cause large variations and even spikes in the reconstructed
surfaces. This may be due to a combination of the facts that higher-degree polyno-
mials are more oscillatory and tend to be more sensitive to perturbations.
To achieve robustness, our method utilizes a number of safeguards and geometric
limiters. First, our method checks the condition number of the linear system for
the polynomial fitting. Since we use a variant of reduced QR factorization to solve
the linear system, we can approximate the condition number with relative ease. If
the condition number is too large (e.g., ≥ 106 with double-precision floating-point
arithmetic), we then correct it by either decreasing the degree of the polynomial or
increasing the number of points in the stencil. This a priori checking helps to cap-
ture cases where the stencil does not have enough points or has a poor geometrical
configuration locally.
Second, we check the distance from the reconstructed point to the original surface.
If the distance is too large compared to the average edge length in the neighbor-
hood, we reject the high-order reconstruction and resort to a low-order fitting. This
a posteriori checking allows us to capture cases where the large errors may be due
to under-resolved meshes at high-curvature regions, which tend to be beyond the
asymptotic regime of the high-degree polynomials. These safeguards are some-
times referred to as limiters, and their implementations may depend on the specific
situations. We next describe a geometric limiter for remeshing, especially for cases
where quadratic fittings are used.

Geometric Limiter

The input surface mesh may be under-resolved in some regions and hence is be-
yond the asymptotic regime for high-degree fittings. In these cases, high-degree
(and sometimes even quadratic) polynomials may lead to large errors. We identify
such problematic regions by defining an error indicator. Specifically, for each vertex
we compute the average edge length of all the incident edges and compare the high-
order displacement against it. Let dhisur f and eavg denote the high-order displace-
ment and the average edge length of incident edges, respectively. If dhisur f > γeavg,
where γ is a user-specified parameter, then we reduce the order locally by comput-
ing a new displacement using a point-based, volume-conserving smoothing algo-
rithm [37]. In particular, we move a vertex x to x+dx, where where dx = dxs+hn̂.
The first part of the displacement, dxs is obtained from a general smoothing scheme
such as Laplacian smoothing. The second part, hn̂ corrects the volume changed by
the first part. The normal n̂ is the normalized sum of normals of all triangles inci-

71

Figure 5.4: Illustration of edge flipping.

dent on v and h =−dxs · n̂ . More details of the algorithm can be found in [37].

5.2.4 Mesh Optimization and Untangling by Edge Flipping

The smoothing algorithm described above does not change the connectivity of the
mesh. The energy (5.2.1) in variational optimization is convex with respect to the
position of each vertex [30], and in practice the energy decreases close to the min-
imum quite rapidly. However, this minimum can be further reduced if the mesh
connectivity is allowed to change. We modify the mesh connectivity using edge
flipping, as illustrated in Fig. 5.4. In general, an edge flipping should be performed
only if it preserves the topology of the surface (in particular, the new edge must not
have already existed in the mesh). In addition, we use the following two criteria:

Energy-Reduction Edge Flipping: Flip an edge if it would decrease the sum of
the energy of its incident triangles.

Valence-Improvement Edge Flipping: Flip an edge if after flipping the difference
between the maximum and minimum valences1 among the vertices of the two
triangles is smaller than that before flipping.

The first strategy is a local strategy, and it is easy to understand. Its goal is simply to
reduce the energy for each edge flipping, and therefore the total energy would never
increase. The second strategy is non-local, and it may be counter-intuitive, because
such a flipping may in fact increase the energy. Its motivation is the following:
For a vertex in a mesh for a smooth surface, if it has a too high (> 7) or too low
(< 5) valence, all its incident triangles are far from equilateral. Therefore, our
strategy is to decrease the gap between the maximum and minimum valences, so
that the energy in the whole neighborhood may be reduced. In our experience,
repeatedly performing valence-improvement edge flipping tend to produce a mesh
without high or low valences, and in turn allows much better mesh quality.

1The valence of a vertex is the number of its incident edges, which is equal to the number of
incident triangles for a closed surface mesh.

72

Figure 5.5: Overview of key steps in mesh optimization and untangling with high-
order surface reconstruction.

For each flipping strategy, we repeatedly perform the flipping until no further im-
provement is possible. Because valence-improvement edge flipping may not di-
rectly improve mesh quality, we perform it before the variational mesh optimization,
and perform energy-reduction edge flipping after variational mesh optimization.
Similar to variational optimization, when coupling the weighted Laplacian smooth-
ing with edge flipping, we also use two heuristics for edge flipping. The first is
valence improvement edge flipping, as we described above. The second criterion
is flipping based on the reducing angles equivalent to Delaunay edge flipping con-
dition in 2-D. Furthermore, this operation also tends to flip an edge of a folded
triangle. We perform angle-reduction edge flipping after mesh smoothing. Similar
to variational optimization, we perform valence improvement edge flipping before
mesh smoothing, and perform angle-reduction edge flipping after mesh smoothing.
In addition, the vertices are projected onto high-order surface reconstruction after
mesh smoothing, to preserve the high-order accuracy. Note that during the algo-
rithm, we do not need to check explicitly whether individual triangles are folded.
When simply repeated operations, the mesh becomes far from folding (namely,
with 5 degrees). Figure 5.5 shows an algorithm combining mesh optimization and
untangling with high-order surface reconstruction.

73

(a) Edge splitting (b) Edge contraction

Figure 5.6: Illustrations of edge splitting and edge contraction.

5.3 High-Order Surface Mesh Adaptation

The method we described in the previous section have one major limitation. That is,
it does not change the number of vertices in the mesh. However, it may be necessary
to change the number of vertices for an evolving geometry. We further extend our
techniques to accommodate mesh adaptation (refinement and coarsening) and cou-
ple the mesh modification operations with high-order point projection. We perform
mesh adaptation primarily using two operations: edge splitting and edge contrac-
tion. To avoid thrashing, we must consider the two operations together to ensure
consistency. We use a quality driven adaptivity [27] to obtain optimal aspect ratios
of the triangulation.

Edge Splitting and Edge Contraction

First, let us consider edge splitting, which is the easier of the two. Given two
adjacent triangular elements, edge splitting inserts a new vertex on their shared
edge, as illustrated in Fig. 5.6(a). Similar to the approach in [27], we consider two
criteria to determine whether an edge requires splitting:

Absolute Longness: The edge is the longest among its incident triangles and is
longer than a provided threshold L.

Relative Longness: The edge is longer than a desired edge length l (< L), one of
its opposite angles is close to π (greater than provided θl), and the shortest
edge among its incident triangles is no shorter than a provided threshold s
(< l).

The process of edge splitting abides by these criteria to help optimize element qual-
ity and consistency in size. The process of edge splitting occurs in decreasing order
of edge lengths throughout the mesh.

74

For mesh coarsening, we perform edge contraction, which removes a vertex, as
illustrated in Fig. 5.6(b). As in [27], we consider the following four criteria to
determine whether an edge should be contracted:

Absolute small angle: the opposite angle in an incident triangle of the edge in
question is smaller than a threshold θs, and the triangle’s longest edge is
shorter than a desired edge length l.

Relative shortness: The edge in question is shorter than a fraction r of the longest
edge of its incident triangles.

Absolute small triangle: The edge in question is the shortest in its incident tri-
angles and the longest edge of its incident triangles is shorter than a given
threshold S.

Relative small triangle: The longest edge in its incident triangles is shorter than a
fraction R of the longest edge in the mesh and also shorter than the desired
edge length l.

The process of edge contraction abides by these criteria to help optimize element
quality and consistency in size. The process of edge contraction occurs in increasing
order of edge lengths throughout the mesh. While the first two criteria help to
remove poor shaped triangles, the latter two criteria help to remove triangles that
are too small, preserving the overall mesh quality as it evolves. When contracting
an edge, its two incident vertices merge at a new location. To prevent mesh folding,
we reject any contractions that would lead to topological changes or an inversion of
normals on any triangle. Contracting the shortest edges first helps to avoid the need
for such rejections. These parameters and criteria abide by Jiao et al. [27].

Preserving High-Order Accuracy

Just as mesh optimization, the mesh adaptation operations need to preserve the
accuracy of the geometry. For edge splitting we first insert a new point onto an edge,
and then we project the point onto a high-order reconstruction based on WALF or
CMF. For edge contraction, we first replace the two vertices by a new point on the
edge and then we project the point onto a high-order reconstruction. For high-order
point projection either WALF or CMF based surface reconstruction can be used.

75

5.4 Numerical Experiments

5.4.1 Effectiveness of Mesh Smoothing and Untangling

We demonstrate the improvement in mesh quality of an input surface mesh using
our smoothing algorithm. To show the robustness of our method, we choose a sur-
face which is a part of the solution of a two phase fluid-mixing simulation using
the front-tracking method. The simulation was done using the front-tracking code
FronTier and was performed in parallel on 64 processors. However, mesh improve-
ment was performed on a single processor. The surface is very complicated and
has a wide range of geometrical structures including regions of poor configuration.
The total number of points and triangles of the mesh are 18,642 and 38,072, respec-
tively. Figure 5.7 shows the initial mesh, a closeup of the region in the rectangle
before and after smoothing using quadratic fitting. It also shows the comparison
of angle distribution of the initial mesh with the redistributed mesh after every 5
iterations. The smoothing algorithm improves the overall quality of the mesh sig-
nificantly. However, the algorithm introduces a small amount of triangles with very
small angles (between 0 and 10) which didn’t exist in the input mesh. This hap-
pens due to the application of weighted Laplacian smoothing algorithm for the first
few iterations since the input mesh contains a significant number of folded triangles
(about 2%) in the input mesh. Weighted Laplacian smoothing is not a good mesh
quality improving algorithm and as a result introduces triangles with very small an-
gles. Later isometric smoothing is not able to recover all the bad quality triangles.
This also explains the decrease in mesh quality of the tube-like structure near the
lower left of Fig. 5.7(c) and (d).
In Fig. 5.8, the droplet inside the rectangle is represented by a very coarse mesh.
The Vandermonde matrices constructed at its vertices have very high condition
numbers, approximately to the order of 106. The middle subfigure shows the droplet
after one iteration of smoothing using CMF without using the geometric limiter de-
scribed in 5.2.3. Clearly, the high-degree polynomial fitting introduces artificial
spikes. These kind of situations are resolved by reducing the degree with the ap-
plication of geometrical limiters. This can be seen in the right subfigure, which is
the result after one iteration of smoothing using the geometric limiter. The effect of
geometrical limiters can also be seen in the tube-like structure near the lower left
of Fig. 5.7(c) and (d) and is an under-resolved region. The geometrical limiters are
robust enough to allow the degree of fitting to be reduced properly and not intro-
duce spikes. However, the volume is not conserved as the algorithm doesn’t ensure
global volume conservation.
The number of points where the reduction of order takes place is a very small per-
centage of the total number of points in the mesh. In fact, the number of such points

76

(a) The initial mesh

0 10 20 30 40 50 60 70 80 90 100110120130140150160170180
0

0.5

1

1.5

2

2.5
x 10

4

Angles in degrees

T
o
ta

l
an

g
le

 d
is

tr
ib

u
ti

o
n
 o

f
th

e
tr

ia
n
g
u
la

te
d
 s

u
rf

ac
e

m
es

h

Initial mesh

After 5 iterations

After 10 iterations

After 15 iterations

After 20 iterations

After 25 iterations

After 30 iterations

(b) Histogram of angle-distribution

(c) Before smoothing (d) After smoothing

Figure 5.7: The sub-figures (a), (c) and (d) show the initial mesh, closeup of the
region inside the rectangle before and after smoothing, respectively. The smoothing
algorithm is applied for 30 iterations. Sub-figure (b) shows the distribution of angles
of the redistributed surface mesh.

77

Figure 5.8: The left figure is a droplet in the initial surface mesh. The middle figure
shows the configuration after applying 1 iteration of smoothing using CMF without
using the geometric limiter. The right figure shows the result of smoothing when
geometric limiter is used.

is reduced significantly with each iteration. For example, for the current mesh, the
number of points whose degree is reduced during the first iteration is 195 points (
about 1% of the total number of points), whereas for the tenth iteration that number
was reduced to 74 points (about 0.4%). The distribution of such points in the mesh
are illustrated in figure 5.9.

5.4.2 Effectiveness of Mesh Untangling

One strength of our proposed methodology is the ability to untangle mildly folded
triangles. In the context of high-order mesh generation, we observe that occasion-
ally, even the small perturbation of projecting vertices onto the high-order surface
reconstruction can cause a few very poor-quality triangles (which may be present
in the initial mesh) to fold. To demonstrate the effectiveness of mesh untangling,
we construct a much more severe case: we start with a very poor-quality triangular
mesh for an ellipsoid mesh generated using marching cubes, randomly perturb the
vertices by up to the length of the background grid, and then project the perturbed
points back onto the ellipsoid.
The initial mesh had 47 folded triangles, a few of which were high-lighted in the
left image in Fig. 5.10. The combination of poor mesh quality, anisotropy of the
geometry, and folded triangles makes the problem difficult to handle by ad hoc tech-
niques. After only three iterations, our method untangled the mesh and produced a
mesh with minimum angles of 18 degrees. After a few more iterations, the mesh
converged to a high-quality triangulation with a minimum angle of 37.6 degrees
and a maximum angle of 98.1 degrees, as shown in the right image in Fig. 5.10. In
addition, the surface normal and curvatures of the resulting mesh are still accurate.

78

Figure 5.9: Distribution of points where the order of fitting was reduced after using
the geometrical limiter.

5.4.3 Effectiveness of Mesh Optimization

To demonstrate the effectiveness of our optimization technique, Fig. 5.11 shows a
relatively simple example, where the mesh has 1562 vertices and 3120 triangles,
both before and after mesh optimization. The initial mesh was generated from
subdividing the quadrilaterals in a 40× 40 logically rectangular grid in the θφ -
domain of spherical coordinate system, which result in high-valence vertices at the
poles. Before optimization, the minimum and maximum angles were 3.2 and 140.6
degrees, respectively. After repeatedly performing variational mesh optimization
and edge flipping, the minimum and maximum angles were 29.9 and 109.1 degrees,
respectively. We used quadratic fittings in the remeshing, so that the resulting points
are third-order accurate. When the normal and curvature computation algorithms in
[31] are used, the normal and curvature would be second- and first-order accurate,
respectively. Because of the high mesh quality and high accuracy, the resulting
mesh can be used for third-order generalized finite difference methods, and also
can be subdivided to generate quadratic elements for third-order finite elements
methods without producing any negative Jacobians. For even higher-order methods,
we can simply replace the quadratic fitting by cubic or higher order fittings in our
point-projection procedure.
In Fig. 5.11, the mesh was optimized by the combination of these flipping strate-
gies with variational mesh optimization, to eliminate valence-40 vertices and obtain
a mesh with valences between 5 and 7. Our procedure not only improves the mesh
quality (in this case, eliminating the high-valence vertices and improving the min-

79

(a) Initial mesh with folded triangles.

0 10 20 30 40 50 60 70 80 90 100110120130140150160170180
0

500

1000

1500

2000

2500

Angles in degrees

T
o
ta

l
an

g
le

 d
is

tr
ib

u
ti

o
n
 o

f
th

e
tr

ia
n
g
u
la

te
d
 s

u
rf

ac
e

m
es

h

(c) Angles of initial mesh.

(b) Untangled and optimized mesh.

0 10 20 30 40 50 60 70 80 90 100110120130140150160170180
0

1000

2000

3000

4000

5000

6000

7000

Angles in degrees

T
o
ta

l
an

g
le

 d
is

tr
ib

u
ti

o
n
 o

f
th

e
tr

ia
n
g
u
la

te
d
 s

u
rf

ac
e

m
es

h

(d) Angles of optimized mesh.

Figure 5.10: Example of untangling and optimization of a poor-quality surface
mesh. The initial mesh had 47 folded triangles (a few are highlighted in (a)) and
a wide range of angles. After optimization, the mesh had excellent mesh quality,
accurate curvatures, and no folding.

imum angle from 3.2 degrees to 29.9 degrees), but also preserves the geometry to
third-order accuracy, so that both surface normals and curvatures can converge after
remeshing.

5.4.4 Numerical Accuracy with Mesh Optimization

We now report the orders of convergence for computing differential quantities (nor-
mal and mean curvature) of an optimized mesh. We use a torus (with inner radius
0.7 and outer radius 1.3) and an ellipsoid (with semi-axes 1, 2, and 3) as test ge-
ometries since they can be represented analytically making it possible to compute
the error with respect to exact value. For each geometry, we first generated a set of
poor-quality meshes using marching cubes. These meshes were then optimized us-
ing our variational optimization, smoothing and edge flipping techniques. Finally,

80

(a) Initial mesh with high-valence
vertices.

(b) Optimized mesh with high accuracy.

Figure 5.11: An example of remeshing a spherical harmonic surface to produce a
high-quality mesh while preserving geometric accuracy. Images are color coded by
mean curvatures. The initial mesh (left) has very high-valence vertices (as high-
lighted in the inlet, at the poles of the spherical coordinate system) and a minimum
angle of 3.2 degrees. The optimized mesh (right) has a minimum angle of 29.9
degrees, with accurate surface normals and curvatures.

the differential quantities were computed at each vertex of the optimized meshes.
For the mesh convergence study, we generated four meshes for each set of our test
meshes, and numbered these meshes from the coarsest (mesh 1) to the finest (mesh
4). The average edge lengths are approximately halved between adjacent mesh res-
olutions. Let v be the total number of vertices. Let ñi and n̂i denote the computed
and exact unit normal at the ith vertex, and k̃i and ki denote the curvatures at the ith
vertex, respectively. We estimate the L∞ errors in normals and (mean or Gaussian)
curvatures as

error in normal = max
i
‖ñi− n̂i‖ ,

error in curvature = max
i
|k̃i− ki|,

(5.4.1)

and compute the average convergence rate as

average convergence rate =
1
3

log2

(
error of mesh 1
error of mesh 4

)
. (5.4.2)

In Fig. 5.12, the horizontal axis corresponds to the level of mesh refinement, and
the vertical axis corresponds to the L∞ errors in logarithmic scale. In the legends,
the “degree” indicates the degree of polynomial fittings used for point projection
during mesh optimization. We show the average convergence rates along the right

81

of the plots for each curve.

0 1 2 3
10

−5

10
−4

10
−3

10
−2

10
−1

1.6

Levels of refinement

2.8

3.4

Deg2

Deg3

Deg4

(a) L∞ errors in normals.

0 1 2 3
10

−4

10
−3

10
−2

10
−1

10
0

1.2

Levels of refinement

1.4

3.1Deg2

Deg3

Deg4

(b) L∞ errors in mean curvatures.

Figure 5.12: Errors and orders of convergence of normals and curvatures after mesh
optimization for an ellipsoid.

Theoretically, the order of convergence of normal and mean curvature (which are
first and second order differential quantities) should be d and d− 1, respectively
for WALF reconstructed surface mesh using degree d polynomial fittings. Fig. 5.12
shows that the optimized meshes preserved the accuracy of the points and as a result
achieved the theoretical orders of convergence for the differential quantities.

5.4.5 Accuracy Comparison of Mesh Adaptation

For mesh adaptation, a common approach is to keep the original mesh during mesh
smoothing/adaptation, and project new vertices onto the faceted, piecewise linear
geometries (see e.g., [21]). Such an approach has only second order accuracy. An-
other approach taken by Frey [18] was to construct a G1 continuous surface using
Walton’s method [50], but our experiments have shown that Walton’s method is at
most second order accurate despite its G1 continuity. We compare between different
point projection methods for mesh adaptation, namely,
1. Linear : Points are projected onto the linear triangle,
2. Walton’s method : Points are projects onto a G1 quartic patch [50], and
3. WALF : Points are projected onto WALF reconstructed surfaces with degrees 2,
3, and 4.
We use torus as a test geometry and compute the mean and Gaussian curvatures
of the adapted mesh using the mentioned point projection methods. Tables 5.1
compares the L∞ errors of mean curvatures and Gaussian curvatures for the adapted

82

Table 5.1: L∞ errors and orders of convergence of mean curvature and Gaussian cur-
vature on a torus after mesh adaption using surface reconstructed based on WALF
and other alternatives.

Method # of vertices
mean curvature Gaussian curvature

Mesh 1 Mesh 2 Mesh 3 Mesh 1 Mesh 2 Mesh 3

Linear
L∞ error 0.6 0.35 0.83 2.29 1.64 3.09
Order n/a 0.77 -1.2 n/a 0.48 -0.91

Walton’s
L∞ error 0.6 0.29 0.21 2.27 1.40 0.96
Order n/a 1 0.44 n/a 0.7 0.55

WALF deg 2
L∞ error 0.6 0.27 0.11 2.29 1.36 0.52
Order n/a 1.1 1.3 n/a 0.74 1.4

WALF deg 3
L∞ error 0.54 0.20 0.066 1.73 0.86 0.30
Order n/a 1.4 1.6 n/a 1 1.5

WALF deg 4
L∞ error 0.45 0.085 0.0074 1.24 0.28 0.03
Order n/a 2.4 3.5 n/a 2.2 3.3

mesh of a torus. It is evident that the mean curvatures did not converge in L∞ error
for linear reconstruction, and barely converged for Walton’s method, whereas it
converged to high order for WALF. The numbers of vertices of the three meshes are
544, 1896, and 7528, respectively.

83

Chapter 6

Applications

In this chapter, we show applications of our framework to various applications such
as computing Van der Waals Force, image-based surfaces, high-order finite element
methods and solving geometric PDE’s.

6.1 Computation of Van der Waals Force

We begin with an application of surface integrals to compute Van der Waals inter-
action forces between two microscopic bodies. The computation of Van der Waals
force is of fundamental importance for understanding sintering, adhesion and frac-
ture processes. We demonstrate the usefulness of our method (section 4.5.1) in
improving the accuracy of the computed force. The Van der Waals force between
two bodies of arbitrary geometry is equal to

F =Cρ1ρ2

ˆ
V2

ˆ
V1

∇
1
s6 dV1 dV2 (6.1.1)

where, ρi is the atomic density of body i for i= 1,2, C is the London–Van der Waals
constant, and s is the distance between two atoms/molecules. In [55], a vector field
G was defined such that ∇ ·G =C/s6, allowing reduction of the volume integral in
Eq. (6.1.1) to a surface integral

F = ρ1ρ2

ˆ
S2

ˆ
S1

(G · n̂1) · n̂2 dS1 dS2, (6.1.2)

where S1 and S2 are the surfaces of bodies 1 and 2, and n̂1 and n̂2 are the unit
outward normal to S1 and S2, respectively. Specifically, G = 1

3C (s1− s2)/‖s1−
s1‖6, where s1 ∈ S1 and s2 ∈ S2.

84

0 0.5 1 1.5

x 10
−7

10
−14

10
−12

10
−10

Closest separation d (nm)

V
a

n
 d

e
r

W
a

a
ls

 f
o

rc
e
 (

N
)

Deg1
Deg2

Deg3
Deg4
Deg5

Deg6
Exact−Sol

2 0 0.5 1 1.5
x 10

−7

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Closest separation d (nm)

R
e

la
ti
v
e
 e

rr
o

r

Deg1
Deg2
Deg3
Deg4
Deg5
Deg6

2

Figure 6.1: Analytical and numerical results for sphere-sphere interaction force
calculation. Left: Van der Waals force at different separation distances. Right:
relative errors of numerical results at different separation distances.

We assume that S1 and S2 are given by triangulations. Let S1 =
⋃n1

i=1 σi and S2 =⋃n2
j=1 τ j, where n1 and n2 are the numbers of triangles in S1 and S2, respectively.

Therefore, (6.1.2) can be rewritten as

F =
n1

∑
i=1

n2

∑
j=1

ρ1ρ2

ˆ
τ j

ˆ
σi

(G · n̂1) · n̂2 dS1 dS2, (6.1.3)

i.e., the summation of double integrals over all pairs of triangles in S1 and S2. We
use our algorithm to compute the double integrals using high-order reconstructions
of the surface and the surface normals. Similar to [55], we show the results for
the interaction force between two spherical bodies with radius R1 = 100nm and
R2 = 100nm, and ρ1 = ρ2 = 8.49×1028/m3 and C = 4.5639×10−78Jm6.
We calculate the Van der Waals force for 20 different separations, which are non-
uniformly distributed from 5nm to 200nm. Figure 6.1 (left) shows the computed
Van der Waals force for polynomial fittings of degrees from 1 to 6, along with the
exact solutions. Figure 6.1 (right) shows the relative errors for different degrees.
From these results, it is evident that the computed forces are more accurate with
higher-degree fittings, and high-order reconstructions can significantly improve the
accuracy compared with piecewise linear approximations.

85

6.2 Smoothing Biomedical Geometries from Medical
Image Data

In this section, we apply our method to surface meshes of complex biomedical
geometries extracted from medical images. As an example, we focus on a lung
mesh to be used in numerical simulations of respiration, particle deposition and
volatile gas metabolism. Surface meshes extracted from images tend to have stair-
stepped features, as marching cubes places edges on the faces of image voxels. This
jaggedness makes it unsuitable for the development of a volume mesh to be used in
numerical simulations. Thus a smoothing algorithm which improves the quality of
the mesh while maintaining the geometrical accuracy is highly desirable.
We use an extracted surface mesh of a rat lung image as an example. All animal
work was done in accordance with a protocol approved by the Institutional Animal
Care and Use Committee (IACUC) of Pacific Northwest National Laboratory. To
acquire an image at total lung capacity (TLC), the rat (a male Sprague-Dawley rat
approximately weighing 320 g) was euthanized by CO2 asphyxiation, then orally
intubated with a 14-gauge catheter tube. The lungs was inflated to∼25 cmH2O and
held at that pressure with a constant supply of air regulated by a water column. The
lung was imaged with micro-CT (GE eXplore CT120) using the following settings:
90 kVp, 40 mA, 16-ms exposure time, 900 projections over 360 degrees gantry
rotation, and 2x2 binning. The gantry rotates at a rate of ∼0.019 rad/s, so total
imaging time was about 5.5 min; animal positioning and scanner set-up required
an additional ∼3 min. The image was reconstructed to 50 µm isotropic resolution.
The airways of the TLC image were then semi-automatically segmented using in-
tensity threshold-based approaches described in [9] in conjunction with interactive
segmentation using Digital Data Viewer (DDV) (http://cgc-code.org/). A 3D
median filter was applied to the segmented TLC airway data to improve surface
boundary continuity. The surface mesh was then extracted using marching cubes.
Figure 6.2 shows a surface plot of the initial mesh along with a close up of a branch
(inside the rectangle) before and after 30 iterations of smoothing. As can be seen
in Figure 6.2, the the stair-step features of the mesh are clearly attenuated, though
not eliminated, and the triangle quality is significantly improved. We are currently
investigating a method wherein the stencil size is locally adapted to the features of
the geometry in an effort to achieve a smooth result without sacrificing geometric
accuracy.

86

http://cgc-code.org/

(a) Initial mesh

0 10 20 30 40 50 60 70 80 90 100110120130140150160170180
0

0.5

1

1.5

2

2.5
x 10

5

Angles in degrees

T
o
ta

l
an

g
le

 d
is

tr
ib

u
ti

o
n
 o

f
th

e
tr

ia
n
g
u
la

te
d
 s

u
rf

ac
e

m
es

h

Initial mesh

After 5 iterations

After 10 iterations

After 15 iterations

After 20 iterations

After 25 iterations

After 30 iterations

(b) Histogram of angle distribution

(c) Before smoothing (d) After smoothing

Figure 6.2: The top-left figure shows a surface plot of the initial mesh. The bottom-
left and bottom-right figures show the closeup of the portion inside the rectangle
before and after 30 iterations of mesh smoothing. The closeup of the portion in-
side the red rectangle demonstrates the improved quality and smoothness of surface
mesh after smoothing. The top-right shows the distribution of the angles of the
triangulated surface mesh.

87

6.3 Improving High-Order Finite Elements

We apply our method to improving the quality of a given high-order (generally
quadratic or cubic) isoparametric finite element mesh using the methods described
in Sections 2.2 and 5.2. It is well known that the quality of a solution from the
finite element method is highly dependent on the quality of the mesh. In general,
any approximation of spatial derivatives of the physical domain requires a well
defined diffeomorphism, which maps the reference element to a physical element.
Poor-quality elements, especially high-order isoparametric elements, may violate
this requirement, thereby compromising the efficiency of a numerical solver and
the accuracy of the generated solution.
Our mesh-improvement algorithm works as follows: given a preliminary isopara-
metric surface mesh with possibly tangled elements, we first restrict the high-order
elements down to the underlying linear elements, whose nodes are the corner ver-
tices for each high-order element. We then optimize the linear mesh using the mesh
smoothing algorithms described in section 5.2 for a total of 50 iterations. The ele-
ments of the resulting linear mesh are then enriched with the additional new nodes
along the edges and interior of the element, by projecting these nodes onto a high-
order reconstruction of the surface using WALF as described in [29].
Figure 6.3 demonstrates this mesh-improvement procedure with a torus mesh, which
was initially obtained from marching cubes. The mesh contained 17,064 vertices
and 3,792 quadratic 6-node triangles both before and after smoothing. To measure
the mesh quality of isoparametric elements, we adopt the shape quality measure
as defined in [19], which measures the deviation of an element from an equilateral
planar triangle. However, in contrast to [19], we do not refer to an existing CAD
model, but compute directly on the discrete geometry and identify inverted elements
by computing approximate outward normals. Figure 6.3(c) and (d) show the shape
quality measures of the mesh before and after improvement. It is clear that the el-
ement quality was greatly improved. Our high-order reconstruction techniques can
potentially be coupled other techniques (such as those in [19, 32]) for optimizing
isoparametric elements directly, which would move vertices tangentially along the
surface. However, such a complicated method was not necessary in our experi-
ments, since our mesh improvement delivered sufficiently good linear elements to
ensure high-quality isoparametric elements.

6.4 Geometric PDEs

We finally describe a usage of our techniques in the numerical solutions of geomet-
ric partial differential equations. Such problems appear in various applications, such

88

as surface smoothing in computer-aided design [54] and the modeling of moving
surfaces of materials [7]. As an example, we consider the solution of the mean-
curvature flow over triangulated surfaces. The continuum formulations of these
problems are as follows. Given a moving surface Γ, the coordinates x of points on
Γ are functions of time t as well as some surface parametrization u = (u,v), which
can be local instead of global parametrizations. Assume the surface is differen-
tiable.
The mean-curvature flow is a second-order nonlinear PDE modeling the motion of
the surface driven by the mean curvature, given by

∂x
∂ t

= Mn̂, (6.4.1)

where M denotes the mean curvature and n̂ denotes the unit normal vector. The
vector n̂ involves first-order partial derivatives of x with respect to the parame-
ters u, whereas M involves second-order partial derivatives of x with respect to u.
We discretize the problem in space using the generalized finite difference scheme,
and discretize the equation in time using a semi-implicit scheme by evaluating the
second-order terms over the new time step and evaluating the first-order terms over
the current time step. As the surface evolves, the mesh may need to be adapted
in order to maintain good spacing between the points. Utilizing adaptivity during
evolution can help maintain mesh quality and ultimately increase the stability when
trying to further evolve the mesh. Fig. 6.4 shows a comparison with and without
mesh adaption for the evolution of an ellipsoid with semi-axes 1.5, 2, and 8. With-
out mesh improvement, the points become overly crowded at the top of the ellipsoid,
which can severely undermine the time step requirement for the PDE solver. We
optimize and adapt the mesh using our technique, so that the mesh quality and the
order of accuracy are achieved simultaneously.

89

(a) Poor Quality Initial Mesh (b) Improved Quality Optimized Mesh

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

Shape Quality Measure

E
le

m
e

n
t

C
o

u
n

t

(c) Initial element shape quality measures

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

Shape Quality Measure

E
le

m
e

n
t

C
o

u
n

t

(d) Improved element shape quality measures

Figure 6.3: Isoparametric (quadratic) element shape quality for a spherical har-
monic surface (a,c) before and (b,d) after application of the mesh smoothing algo-
rithm. Colors indicate the quality measure of each isoparametric element. Near-
singular or folded elements are represented in black while near-ideal elements are
colored white.

90

Figure 6.4: Evolution of an initial mesh (left) of an ellipsoid under mean curvature
flow. The center and the right images show the top of the surface meshes after 0.14
seconds of evolution without and with mesh adaption, respectively.

91

Chapter 7

Conclusions and Future Work

In this dissertation, we have considered the problem of high-order approximations
over discrete surfaces and their use in various mesh-based computations as well
as in a few applications. We extended the underlying computational framework of
high-order surface reconstruction to a function defined on the surface. This allowed
us to compute high-order approximation of surface integrals over discrete meshes.
We analyzed the problem theoretically along with numerical verification. We also
integrated various mesh-based operations with high-order surface reconstruction to
preserve geometrical accuracy, and develop algorithms for mesh smoothing, opti-
mization, and adaptation. We improved the robustness of high-order reconstruc-
tions to allow remeshing of under-resolved meshes by introducing geometric lim-
iters and untangling mildly folded triangles. All of our algorithms were developed
on top a general, efficient and simple mesh data structure which was developed
for general meshes with support for non-manifold features and mixed-dimensional
entities. Finally, we show application of our methods to a variety of applications,
specifically to Van der Waals force computation, geometric PDEs, high-order finite
elements, complex meshes in fluid-mixing simultations and image-based biomedi-
cal surface meshes.
Our framework have a number of advantages. First of all, a least-squares based
approach over interpolation allows greater flexibility and stability without any loss
of accuracy. Secondly, it is based on local parameterization. Therefore, we do not
require the input surface mesh to be globally parameterizable. Thirdly, it is inde-
pendent of a CAD model representation. Thus it can be used in engineering ap-
plications such as complex fluid-mixing simulations or image-based surface mesh
analysis where there is no CAD representation available. Finally, the basic formu-
lation of the framework makes it largely independent of the mesh quality. That is, it
does not depend on mesh quality measures such as angles, Jacobian, etc. except for
degenerate arrangement of points. Because of this property, we can get high-order

92

even for poor-quality meshes.
This work presents a number of lines for future work. First of all, the least-squares
based framework for local polynomial fittings is based on the regularity assumption
of the function to be approximated. An immediate question is how to bring together
singularities and discontinuities as well as approximation issues associated with
under-resolved regions of the mesh into the framework. For example, we have
not considered singularities in the computation of surface integrals, which are very
important for some numerical methods such as boundary integral methods. These
are challenging problems and need to be studied more rigorously both theoretically
and numerically.
Secondly, the current computational framework for high-order reconstruction com-
putes a C0 continuous support over the mesh. However, many applications do re-
quire high-order of smoothness of a variety of purposes. Though we observe from
our numerical experiments that the increased level of smoothness does not neces-
sarily result in accurate or even converging differential quantities, more theoretical
and numerical studies should be done to draw some conclusions. Finally, our al-
gorithms could be integrated with other numerical methods such as finite element
methods, embedded boundary methods and conservative front tracking for moving
interfaces, and be applied to applications such as fluid dynamics and fluid-structure
interactions.

93

Bibliography

[1] T. Alumbaugh and X. Jiao. Compact array-based mesh data structures. In
Proceedings of 14th International Meshing Roundtable, pages 485–504, 2005.

[2] M. W. Beall and M. S. Shephard. A general topology-based mesh data struc-
ture. Int. J. Numer. Meth. Engrg., 40:1573–1596, 1997.

[3] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Meshless
methods: An overview and recent developments. Comput. Methods Appl.
Mech. Engrg., 139:3–47, 1996.

[4] J. J. Benito, F. Ureña, and L. Gavete. Solving parabolic and hyperbolic equa-
tions by the generalized finite difference method. Journal of Computational
and Applied Mathematics, 209(2):208–233, 2007.

[5] B. S. Bischoff, M. Botsch, S. Steinberg, S. Bischoff, L. Kobbelt, and
R. Aachen. OpenMesh – a generic and efficient polygon mesh data structure.
In In OpenSG Symposium, 2002.

[6] D. K. Blandford, G. E. Blelloch, D. E. Cardoze, and C. Kadow. Compact rep-
resentations of simplicial meshes in two and three dimensions. In Proceedings
of 12th International Meshing Roundtable, pages 135–146, 2003.

[7] J. W. Cahn and J. E. Taylor. Surface motion by surface diffusion. Acta Metal-
lurgica et Materialia, 42(4):1045–1063, 1994.

[8] D. Canino, L. D. Floriani, and K. Weiss. An adjacency-based representa-
tion for non-manifold simplicial shapes in arbitrary dimensions. Computer &
Graphics Proc. of SMI Conf., 35:747–753, 2011.

[9] J. P. Carson, D. R. Einstein, K. R. Minard, M. V. Fanucchi, C. D. Wallis,
and R. A. Corley. High-resolution lung airway cast segmentation with proper
topology suitable for computational fluid dynamic simulations. Comp. Med.
Imag. Graph., 34(7):572–578, 2010.

94

[10] F. Cazals and M. Pouget. Estimating differential quantities using polynomial
fitting of osculating jets. Comput. Aid. Geom. Des., 22(2):121–146, 2005.

[11] D. Chien. Numerical evaluation of surface integrals in three dimensions.
Mathematics of Comp, 64:727–743, 1993.

[12] B. Clark, N. Ray, and X. Jiao. Surface mesh optimization, adaption, and
untangling with high-order accuracy. In Proceedings of 21st International
Meshing Roundtable, San Jose, CA, 2012.

[13] R. Cools. An encyclopaedia of cubature formulas. Journal
of Complexity, 19:445–453, 2003. Online database available at
http://www.cs.kuleuven.ac.be/∼nines/research/ecf/ecf.html.

[14] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational
Geometry: Algorithms and Applications. Springer, 3rd edition, 2008.

[15] V. Dyedov, D. R. Einstein, X. Jiao, A. P. Kuprat, J. P. Carson, and F. del
Pin. Variational generation of prismatic boundary-layer meshes for biomedi-
cal computing. International Journal for Numerical Methods in Engineering,
79:907–945, 2009.

[16] V. Dyedov, N. Ray, D. Einstein, X. Jiao, and T. Tautges. AHF: Array-based
half-facet data structure for mixed-dimensional and non-manifold meshes. In
Proceedings of 22nd International Meshing Roundtable, Orlando, FL, Octo-
ber 2013.

[17] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. On the
design of CGAL, a computational geometry algorithms library. Softw. – Pract.
Exp., 30:1167–1202, 2000. Special Issue on Discrete Algorithm Engineering.

[18] P. J. Frey. About surface remeshing. In Proceedings of 9th International
Meshing Roundtable, pages 123–136, 2000.

[19] A. Gargallo-Peiró, X. Roca, J. Peraire, and J. Sarrate. Defining quality mea-
sures for mesh optimization on parameterized cad surfaces. In In Proceedings
of the 21st International Meshing Roundtable, pages 85–102, 2012.

[20] R. V. Garimella. MSTK – a flexible infrastructure library for developing mesh
based applications. In Proceedings of 13th International Meshing Roundtable,
pages 213–220, 2004.

[21] R. V. Garimella, M. J. Shashkov, and P. M. Knupp. Triangular and quadrilat-
eral surface mesh quality optimization using local parametrization. Comput.
Meth. Appl. Mech. Engrg., 193:913–928, 2004.

95

[22] K. Georg. Approximation of integrals for boundary element methods. SIAM
J. Sci. Stat. Comput, 12:443–453, 1991.

[23] G. H. Golub and C. F. Van Loan. Matrix Computation. Johns Hopkins, 3rd
edition, 1996.

[24] C. Gooch. Grummp version 0.5.0 users guide.

[25] B. M. Irons and S. Ahmad. Techniques of Finite Elements. Ellis Horwood
Ltd, Chichester, UK, 1980.

[26] X. Jiao. Face offsetting: A unified approach for explicit moving interfaces. J.
Comput. Phys., 220:612–625, 2007.

[27] X. Jiao, A. Colombi, X. Ni, and J. Hart. Anisotropic mesh adaptation for
evolving triangulated surfaces. Engrg. Comput., 26:363–376, 2010.

[28] X. Jiao and D. Wang. Reconstructing High-Order Surfaces for Meshing. In
S. Shontz, editor, Proceedings of the 19th International Meshing Roundtable,
pages 143–160. Springer Berlin Heidelberg, 2010.

[29] X. Jiao and D. Wang. Reconstructing high-order surfaces for meshing. Engi-
neering with Computers, 28:361–373, 2012.

[30] X. Jiao, D. Wang, and H. Zha. Simple and effective variational optimization
of surface and volume triangulations. Engineering with Computers, 27:81–94,
2011.

[31] X. Jiao and H. Zha. Consistent computation of first- and second-order dif-
ferential quantities for surface meshes. In ACM Solid and Physical Modeling
Symposium, 2008.

[32] A. Johnen, J.-F. Remacle, and C. Geuzaine. Geometric validity of curvilinear
finite elements. Journal of Computational Physics, 233:359–372, 2013.

[33] F. Juretic and A. D. Gossman. Error analysis of the finite volume method with
respect to mesh type. Numerical Heat Transfer, Part B, 57:414–439, 2010.

[34] L. Kettner. Using generic programming for designing a data structure for
polyhedral surfaces. Comput. Geom. Theo. Appl., 13:65–90, 1999.

[35] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey. libMesh: A c++
library for parallel adaptive mesh refinement/coarsening simulations. Engi-
neering with Computers, 22:237–254, 2006.

96

[36] M. Kremer, D. Bommes, and L. Kobbelt. OpenVolumeMesh – a versatile
index based data structure for 3D polytopal complexes. Proceedings of 21st
International Meshing Roundtable, pages 531–548, 2012.

[37] A. Kuprat, A. Khamayseh, D. George, and L. Larkey. Volume conserving
smoothing for piecewise linear curves, surfaces, and triple lines. J. Comput.
Phys., 172:99–118, 2001.

[38] P. Lancaster and K. Salkauskas. Curve and Surface Fitting: An Introduction.
Academic Press, 1986.

[39] J. N. Lyness and R. Cools. A survey of numerical cubature over triangles. In
Proc. of Symposia in Applied Mathematics, volume 48, pages 127–150, 1994.

[40] A. Paoluzzi, F. Bernardini, C. Cattani, and V. Ferrucci. Dimension-
independent modeling with simplicial complexes. ACM Trans. Graph.,
12(1):56–102, Jan. 1993.

[41] D. Poirier, S. R. Allmaras, D. R. McCarthy, M. F. Smith, and F. Y. Enomoto.
The CGNS system, 1998. AIAA Paper 98-3007.

[42] F. U. Prieto, J. J. B. Munoz, and L. G. Corvinos. Application of the generalized
finite difference method to solve the advection-diffusion equation. Journal of
Computational and Applied Mathematics, 235(7):1849 – 1855, 2011.

[43] N. Ray, T. Delaney, D. Einstein, and X. Jiao. Surface remeshing with robust
high-order reconstruction. In Engineering with Computers, In press.

[44] N. Ray, D. Wang, X. Jiao, and J. Glimm. High-order numerical integration
over discrete surfaces. SIAM Journal on Numerical Analysis, 50:3061–3083,
2012.

[45] E. S. Seol. FMDB: Flexible Distributed Mesh Database For Parallel Auto-
mated Adaptive Analysis. PhD thesis, Rensselaer Polytechnic Institute, 2005.

[46] H. Si. TetGen, a quality tetrahedral mesh generator and three-dimensional
Delaunay triangulator v1.4, 2006.

[47] D. Sieger and M. Botsch. Design, implementation and evaluation of the sur-
face mesh data structure. In In Proceedings of the 20th International Meshing
Roundtable, 2011.

[48] T. Tautges, R. Meyers, and K. Merkley. MOAB: A mesh-oriented database.
Technical report, Sandia National Laboratories, 2004.

97

[49] The CGNS Steering Sub-committee. The CFD General Notation System Stan-
dard Interface Data Structures. AIAA, 2002.

[50] D. Walton. A triangular g1 patch from boundary curves. Comput. Aid. Des.,
28(2):113–123, 1996.

[51] D. Wang. Numerical differential geometry and its applications. 2011.

[52] D. Wang, B. L. Clark, and X. Jiao. An analysis and comparison of
parameterization-based computation of differential quantities for discrete sur-
faces. Comput. Aid. Geom. Des., 26:510–527, 2009.

[53] G. Xu. Consistent approximation of some geometric differential operators.
Technical report, Institute of Computational Mathematics, Chinese Academy
of Sciences, 2007. Research Report No. ICM-07-02.

[54] G. Xu and Q. Zhang. A general framework for surface modeling using ge-
ometric partial differential equations. Computer Aided Geometric Design,
25(3):21, 2008.

[55] P. Yang and X. Qian. A general accurate procedure for calculating molecular
interaction force. Journal of Colloid and Interface Science, 337:594–605,
2009.

[56] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu. The Finite Element Method:
Its Basis & Fundamentals. Elsevier, 6th edition, 2005.

98

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Overview
	1.2 Organization

	2 High-Order Surface Reconstruction
	2.1 Local Polynomial Fittings
	2.1.1 Local Polynomial Fitting at a Point
	2.1.2 Robust Solution of Least Squares Fits

	2.2 Surface Reconstruction: WALF and CMF
	2.2.1 Weighted Averaging of Local Fittings (WALF)
	2.2.2 Continuous Moving Frames (CMF)
	2.2.3 Comparison of WALF and CMF

	3 Mesh Data Structures
	3.1 Background
	3.2 Related Work
	3.3 AHF: An Array-Based Half-Facet Datastructure
	3.3.1 Unification of Half-Edges and Half-Faces into Half-Facets
	3.3.2 Generalization to Non-manifold Meshes
	3.3.3 Generalization to Mixed-Dimensional Meshes

	3.4 Construction and Query of AHF
	3.4.1 Construction of AHF
	3.4.2 Algorithms for Adjacency Queries

	3.5 Implementations
	3.6 Experimental Comparisons
	3.6.1 Cost in Construction of Data Structure
	3.6.2 Storage Costs
	3.6.3 Computational Costs of Adjacency Queries

	3.7 Mesh Modification Operations

	4 High-Order Surface Integration
	4.1 Related Work
	4.2 Background
	4.2.1 Integration of Continuous Functions over Smooth Surfaces
	4.2.2 Numerical Integration over surfaces

	4.3 High-Order Numerical Integration
	4.3.1 High-Order Piecewise Smooth Geometry
	4.3.2 High-Order Piecewise Smooth Function
	4.3.3 Overall Algorithm

	4.4 Theoretical Convergence
	4.4.1 Accuracy of Weighted Averaging of Fittings
	4.4.2 Accuracy of Jacobian
	4.4.3 Accuracy of Integration

	4.5 Numerical Experiments
	4.5.1 Convergence of High-order Integrations
	4.5.2 Performance Results

	5 High-Order Surface Remeshing
	5.1 Related Work
	5.2 High-Order Surface Smoothing and Untangling
	5.2.1 Mesh Smoothing Algorithms
	5.2.2 High-Order Point Projection
	5.2.3 Safeguards and Limiters
	5.2.4 Mesh Optimization and Untangling by Edge Flipping

	5.3 High-Order Surface Mesh Adaptation
	5.4 Numerical Experiments
	5.4.1 Effectiveness of Mesh Smoothing and Untangling
	5.4.2 Effectiveness of Mesh Untangling
	5.4.3 Effectiveness of Mesh Optimization
	5.4.4 Numerical Accuracy with Mesh Optimization
	5.4.5 Accuracy Comparison of Mesh Adaptation

	6 Applications
	6.1 Computation of Van der Waals Force
	6.2 Smoothing Biomedical Geometries from Medical Image Data
	6.3 Improving High-Order Finite Elements
	6.4 Geometric PDEs

	7 Conclusions and Future Work
	Bibliography

