

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Structure Breaks in PCA with Applications in Finance

A Dissertation presented

by

Yuzhou Song

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Applied Mathematics and Statistics

(Statistics)

Stony Brook University

May 2014

Stony Brook University

The Graduate School

Yuzhou Song

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation

Haipeng Xing - Dissertation Advisor
Associate Professor, Applied Mathematics and Statistics

Wei Zhu - Chairperson of Defense
Deputy Chair, Professor, Applied Mathematics and Statistics

Song Wu
Assistant Professor, Applied Mathematics and Statistics

Jinfeng Xu
Assistant Professor, Division of Biostatistics, Population Health,

School of Medicine, New York University

This dissertation is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

ii

Abstract of the Dissertation

Structure Breaks in PCA with Applications in Finance

by

Yuzhou Song

Doctor of Philosophy

in

Applied Mathematics and Statistics

(Statistics)

Stony Brook University

2014

Change-point stands for the times of discontinuities in a time series that can be

induced from changes in distribution. Change-points widely exist in the time series data

in the real world, such as the field of climate and finance. A bunch of models have been

developed for change-point detection, however, not many of them focus on the covariance

matrix. In this dissertation research, the goal is to find a model to detect change-points of

covariance matrix. The difficulties originally come from the dimensionality. In multiple

dimensional space, covariance matrix acts as the same role as that of variance in one

dimensional space. However, situation gets more complicated as dimension getting higher.

Much more noise exists in multiple dimensional space than that in one dimensional space.

We expect the model is capable to filter the noise as much as possible, in the meanwhile, it

reserves enough information for parameter change. Besides, we have to search a good tool

to measure the change of a matrix, which is not as simple as that in one dimensional space.

In this dissertation, motivated by the spirit of principal component analysis (PCA), we

propose the eigen-structure to measure the change of matrix. PCA will be briefly reviewed

in the first chapter. The model used for detecting change-point is proposed by Lai and

iii

Xing (2011). The model is a Bayesian model relies on an assumption of exponential family

resulting in a closed form for the final estimated parameter. We also present the derivation

of explicit formulas for a special case: the data is normally distributed, for both one and

multiple dimensional cases. The explicit formulas contributes to the simplicity of the

Bayes model. For the purpose of improving calculation speed, BCMIX, an approximated

algorithm, as well as several algorithms for eigen-decomposition are introduced in the

beginning of the simulation part. The results of simulation will be shown afterward. At

last, the model is applied to several real data sets with satisfactory results obtained.

iv

To my dear parents and grandma, with all my love

v

Table of Contents

Abstract iii

Table of Contents vi

List of Figures viii

List of Tables x

Acknowledgements xi

1 Introduction 1
1.1 Motivation . 1
1.2 Literature Review . 6

1.2.1 Multiple Change Points . 6
1.2.2 Principal Component Analysis . 9

2 PCA with Multiple Change-Points 14
2.1 A Bayesian Model for Multiple Change Points Detection 18

2.1.1 Forward Filter . 20
2.1.2 Backward Filter . 22
2.1.3 Explicit Expressions for E(θt|Xn) 24
2.1.4 Estimation of Hyperparameters 27

2.2 The Explicit Formulas for Normal Distributed Observations 29
2.2.1 One Dimensional Case . 29
2.2.2 Multi-Dimensional Case . 31

2.3 PCA to Estimated Variance-Covariance Matrix 33

3 Simulation Studies 35
3.1 BCMIX Approximation . 36
3.2 Programming in C language . 37

3.2.1 Householder Transformation . 38
3.2.2 Numerical Eigen-Decomposition 39

vi

3.2.3 Difficulties . 46
3.3 Implementation . 48
3.4 Measurement and Results . 63

4 Case Studies 74
4.1 Swap Rate . 74
4.2 Treasury Constant Maturity Rate . 76
4.3 S&P 500 Stocks . 82

5 Conclusions 91

Bibliography 94

Appendix 98

vii

List of Figures

1.1 Example: Sample with Mean Shifted . 2
1.2 Example: Sample with Variance Shifted 2
1.3 Swap Rate: Snapshot of Original Data 4
1.4 Swap Rate: Snapshot of Differenced Data 4
1.5 Swap Rate: Eigenvalues of Sample Covariance Matrix of Each Subset . . 6
1.6 Swap Rate: The First Eigenvector of Sample Covariance Matrix of Each

Subset . 7
1.7 Geometrical Illustration of PCA . 12

3.1 Illustration of the Property of Strictly Interlace 42
3.2 Illustration of Logarithm Function . 46
3.3 Simulation: Eigenvalues for 1 Fixed Change-Point Simulated in 5 Dimen-

sional Space . 66
3.4 Simulation: Eigenvalues for 2 Fixed Change-Points Simulated in 5 Dimen-

sional Space . 67
3.5 Simulation: Eigenvalues for 3 Fixed Change-Points Simulated in 5 Dimen-

sional Space . 67
3.6 Simulation: Eigenvalues for 1 Fixed Change-Point Simulated in 8 Dimen-

sional Space . 68
3.7 Simulation: Eigenvalues for 2 Fixed Change-Points Simulated in 8 Dimen-

sional Space . 68
3.8 Simulation: Eigenvalues for 3 Fixed Change-Points Simulated in 8 Dimen-

sional Space . 69
3.9 Simulation: Eigenvalues for Random Change-Points Simulated with Prob-

ability 0.001 in 5 Dimensional Space . 70
3.10 Simulation: Eigenvalues for Random Change-Points Simulated with Prob-

ability 0.005 in 5 Dimensional Space . 70
3.11 Simulation: Eigenvalues for Random Change-Points Simulated with Prob-

ability 0.01 in 5 Dimensional Space . 71
3.12 Simulation: Eigenvalues for Random Change-Points Simulated with Prob-

ability 0.001 in 8 Dimensional Space . 71
3.13 Simulation: Eigenvalues for Random Change-Points Simulated with Prob-

ability 0.005 in 8 Dimensional Space . 72
3.14 Simulation: Eigenvalues for Random Change-Points Simulated with Prob-

ability 0.01 in 8 Dimensional Space . 72

viii

4.1 Swap Rate: Change of Swap Rate of Each Maturity 75
4.2 Swap Rate: The First Four Eigenvalues of Estimated Covariance Matrices 77
4.3 Swap Rate: The Last Four Eigenvalues of Estimated Covariance Matrices 77
4.4 Swap Rate: 1st Eigenvector of Estimated Covariance Matrices 78
4.5 Treasury Constant Maturity Rate: Monthly Data 79
4.6 Treasury Constant Maturity Rate: Weekly Data 79
4.7 Treasury Constant Maturity Rate: Eigenvalue 1∼4 of Estimated Covari-

ance Matrices for Monthly Data . 80
4.8 Treasury Constant Maturity Rate: Eigenvalue 5∼8 of Estimated Covari-

ance Matrices for Monthly Data . 80
4.9 Treasury Constant Maturity Rate: Eigenvalue 9∼11 of Estimated Covari-

ance Matrices for Monthly Data . 81
4.10 Treasury Constant Maturity Rate: 1st Eigenvector of Monthly Data . . . 82
4.11 Treasury Constant Maturity Rate: Eigenvalue 1∼4 of Estimated Covari-

ance Matrices for Weekly Data . 83
4.12 Treasury Constant Maturity Rate: Eigenvalue 5∼8 of Estimated Covari-

ance Matrices for Weekly Data . 83
4.13 Treasury Constant Maturity Rate: Eigenvalue 9∼11 of Estimated Covari-

ance Matrices for Weekly Data . 84
4.14 Treasury Constant Maturity Rate: 1st Eigenvector of Weekly Data . . . 85
4.15 S&P500: Snapshot of Ticker “A” from Yahoo!Finance 86
4.16 S&P500: Snapshot of Differenced Data 86
4.17 S&P500: Eigenvalue 1∼4 of Estimated Covariance Matrices 88
4.18 S&P500: Eigenvalue 7∼10 of Estimated Covariance Matrices 88
4.19 S&P500: Eigenvalue 14∼17 of Estimated Covariance Matrices 89
4.20 S&P500: First Eigenvector of Estimated Covariance Matrices 90

ix

List of Tables

3.1 Results of Simulation (Change-Point Fixed) 65
3.2 Results of Simulation (Change-Point Randomly Simulated) 69
3.3 Number and Location of Change-Point (Change-Point Randomly Simulated) 73

x

Acknowledgements

I would like to thank my advisor, Professor Haipeng Xing, for a very interesting topic

suggested, for a professional way of doing research provided and for generous support on my

life.

I would like to thank Professor Wei Zhu and Professor Song Wu, for their encouragements

during my hardest time, for being my defense committee members and for great suggestions on

my dissertation and research.

I would also like to thank all my friends, for their consistent help.

xi

Chapter 1

Introduction

1.1 Motivation

In the field of finance, a very common phenomenon, is that time series data undergoes

some sudden ”jumps”, which implies change of distribution. Specifically, for a series

of time-ordered observations at some time points, the distribution of the observations

changes. This change might be a change of type, such as from a Normal distribution to

a Student t distribution. Another kind of change which we are more interested in, is the

change of parameters while the type of distribution remaining the same.

Figures 1.1 and 1.2 are two simple examples for parameter changes. In figure 1.1, the

observations from time 1 to 40 are simulated from a Normal distribution with mean 1 and

variance 0.2. From time 41 to 80, the observations are drawn from a Normal distribution

with mean 2 and variance 0.2. Obviously, at time 41, the mean of the distribution of

observations undergoes a “jump” from 1 to 2. This change is well reflected from the

sample in the figure. In figure 1.2, the observations from time 1 to 40 are simulated from

a Normal distribution with mean 0 and variance 1, while the last 40 observations are

drawn from Normal distribution with mean 0 and variance 3. It’s also easy to find that

the variation of sample changes significantly at time point 41. The change point simply

1

refers to the time point that parameter undergoes changes. In these two examples, the

change point is time 41.

Figure 1.1: A Time Ordered Data with Mean Shifted

Figure 1.2: A Time Ordered Data with Variance Shifted

In these two examples, observations are in one dimensional space. However, in

practice, the encountered observations are in the form of vectors coming from multiple

dimensional space. The situation becomes quite different and complicated in multiple

dimensional space. Taking the Normal distribution as an example, from one dimensional

space to multiple dimensional space, the mean becomes a vector and the variance becomes

2

a covariance matrix. The first thing comes into our consideration is, how to measure the

change of a vector or a matrix? It’s not as simple as that of one dimensional space, in

which the change can be measured by the absolute value of difference of two scalars.

In this dissertation, we concern about the change of covariance matrix, thus, at the

very beginning, we need to figure out a proper tool to deal with the matrix in order

to capture the change. In fact, motivated by principal component analysis (PCA), we

propose the eigen-structure to measure the change of covariance matrix.

Invented by Karl Pearson in 1901, principal component analysis (PCA) has been

one of the most famous statistical tool for dimensional reduction. Geometrically, PCA

achieves dimensional reduction by conducting a rotation of axes. The new axes are in the

same directions as those eigenvector of sample covariance matrix. The directions of top

a few eigenvalues accounts most variation of the original data. Thus, we can project the

data into the lower dimensional space constructed by the top few eigenvectors. In this

situation, the dimension has been reduced while most variation (information) has been

reserved.

Mathematically, PCA is equivalent to eigen-decomposition of sample covariance ma-

trix, which implies that the eigen-structure of a matrix reveals the inner structure of a

matrix.

Motivated by the spirit of PCA, it might be a proper way to perform a eigen-

decomposition to the estimated covariance matrices. The eige-structure, including the

eigenvalues and eigenvectors, describes the inner nature of covariance matrix by a series

of orthogonal directions. The advantage is, it’s possible for us to view the amount of

variation (the eigenvalues) one by one from one dimensional spaces. In other words, an

m dimensional covariance matrix represents the variation in the m dimensional space. We

use m eigenvalues (eigenvectors) to measure it separately. Thus, any change of eigenvalues

(eigenvectors) will imply the structure break of the covariance matrix.

3

Before reviewing the details of PCA, we would like to provide a simple example

which implies potential existence of change-points in covariance matrix. The data is the

U.S Treasury-LIBOR swap rates data. Each observation is an eight dimensional vector,

with swap rate for different maturities (1 year, 2 years, 3 years, 4 years, 5 years, 7 years,

10 years and 30 years). Figure 1.3 is a snapshot of the original data. Since the case

we care about is assumed with known mean zero, we difference the data in in advance:

subtract the tth day’s swap rate by the (t + 1)th day’s swap rate. Thus, the differenced

data actually reflects the daily change of swap rate. We call this data set the daily change

of swap rate. Figure 1.4 is a snapshot of the differenced data.

Figure 1.3: Snapshot of Original Swap Rate Data

Figure 1.4: Snapshot of Differenced Swap Rate Data

Our motivation is, if all observations come from the same distribution (with mean

4

zero and the same covariance matrix), so will be any subset of the original data set.

Therefore, if we choose a sequential subsets of the original data set and if any of their

sample covariance matrices significantly differs from others, it implies that the observa-

tions might come from distributions with different covariance matrices. In other words,

if we assume that all observations come from the same distribution (with mean zero and

same covariance matrix), we expect the sample covariance matrices of those subsets are

statistically the same.

A sequential subsets are chosen in this way. Let k = 30 denote the size of each

subset. The first subset contains the observations from day 1 to day 30. The ith subset

contains the observations from day i to day 30 + i − 1. There are n = 1256 days in the

original data set, thus, finally we have 1227 subsets in a sequence. PCA is applied to each

subset. The first eigenvalue and eigenvector are mostly concerned because they capture

the most variance of the covariance matrix of each subset. If no significant change exists

in the first eigenvalue or first eigenvector, it might imply that no change-point exists for

the covariance matrix. Note that, it’s also necessary to check other eigenvalues besides

the first one since the change of other eigenvalues might also suggest a structure break.

Figures 1.5 shows the eight eigenvalues of the sample covariance matirx of the 1227

subsets. The first eigenvalue jumps up and down. It seems that the mean starts to go a

little upward from time point 400. The figure 1.6 shows the corresponding eigenvector,

which illustrates several “jumps” as well. As it’s not very easy to figure out a clear change

from the plots of first eigenvalue and eigenvector, we keep checking other eigenvalues. For

the 2nd eigenvalue, a downward jump occurs close to the time point 400. The average

value before time 400 is obviously higher than the average value after time 400. The plots

of the 3rd and 5th eigenvalues suggest a great possibility of the existence of change-point.

For the 3rd eigenvalue, a big change occurs around the time 500. The same thing occurs

around time 300 for the 5th eigenvalue. For the rest plots of eigenvalues, the changes

are not as clear as that of eigenvalue 3 and 5, but they doesn’t keep stable as expected.

Generally speaking, all eigenvalues don’t keep stable along the time. The instability

5

Figure 1.5: Eigenvalues of Sample Covariance Matrix of Each Subset

of eigenvalues (eigenvectors) of the sample covariance matrices of these subsets implies

structure breaks in the covariance matrix of the true distribution.

1.2 Literature Review

In this section, we are going to briefly review the works on multiple change points in the

literature and the mathematical description of principal component analysis.

1.2.1 Multiple Change Points

Parameter instability is a common phenomenon in time-series data. The time points

at which parameters change are change-points. In previous section, figures 1.1 and 1.2

6

Figure 1.6: The First Eigenvector of Sample Covariance Matrix of Each Subset

are two simple examples illustrating samples from mean shift and variance shift in one

dimensional case respectively.

The multiple change-points problem are considered here based on independent ob-

servations x1, ..., xn such that xi is a vector in m dimensional space. Instead of real time

series, the sample is actually time-ordered observations, which means any two observa-

tions at different times are independent of each other. Its probability density function

(pdf) is denoted as fθi , in which the θi are unknown parameters that undergo some sud-

den “jumps”. In the literature, works firstly has been done on assuming that at most

one change-point exists. Like other traditional statistical inference, both frequentist and

Bayesian methods are proposed. The frequentist approach can be considered as starting

from Page’s work in 1955, Quandt’s work in 1958 and 1960, and Hinkley’s work in 1970.

In the meanwhile, a few Bayesian approaches can been found from Shiryaev’s work in

7

1963, Carlin, Gelfand, and Smith’s work in 1992. In their studies, they provide a hier-

archical Bayesian model equipped with MCMC (Monte Carlo Markov Chain) sampling

methods.

Right after the studies of single change-point problem, it’s intuitive to extend the

problem to multiple change-points problem which is more general. In the study of multiple

change-points, the frequentist approach can be found in Bai’s work in 1997, Bai and

Perron’s work in 1998, and Qu and Perron’s work in 2007. They study the multiple

change-points detection problem within a few regression models. In their study, the

number of change-points is assumed bigger or equal to 2 and the regression coefficients are

estimated by traditional least squares method with dynamic programming. However, the

disadvantage of their method is the relatively high computational complexity. Vostrikova

and Olshen suggest another method which is much more convenient, especially when

the number of change-point is big. In order to choose a proper value of the number of

change-point, the model selection criterion is used. In the study of Yao (1988), the famous

Schwarzs Bayesian Information Criterion (BIC) is selected as the criterion for model

selection. However, in the year of 2004 and 2006, Siegmund, Zhang and Siegmund found

that for multiple change-points problems, the likelihood doesn’t satisfy the regularity

conditions which are required for deriving BIC. They have provided modifications to the

criterion BIC in order to tackle this problem.

On the other hand, in the year of 1964, Cheronff and Zacks firstly apply the Bayesian

approach to deal with multiple change-points problems. In their work, they consider the

case of mean shift in Normal distribution. A few decades later, their work is extended

to Gaussian auto-regressive models assuming potential changes in the level and error

variance by McCulloch and Tsay in 1993. Almost at the same time, a product partition

model is suggested by Barry and Hartigan. About two years later, the reversible jump

MCMC (Markov chain Monte Carlo) method is introduced by Green. Besides, there are

bunch of other Bayesian models, but they all rely on the assumption that the parameter

8

has a conjugate prior distribution. Moreover, the inference depends on numerical sam-

pling method, such as Gibbs sampler. However, the drawback of all MCMC sampling

methods is the unsatisfactory computational time.

The method used in this dissertation is proposed by Lai and Xing (2011), which is

a Bayesian model for multiple change-points detection in an exponential family. This

model has several advantages. The most attractive one might be that it has very good

statistical and computational properties. In contrast with those Bayesian models which

require MCMC for inference, explicit formulas for the estimates are available from our

Bayesian model. The forward filter and backward filter are used to obtain the posterior

densities of the parameters at each time given observations from time 1 ∼ t and (t+1) ∼ n

respectively. By combining these two, the final Bayesian estimate for the parameter at

time t is a weighted average of posterior means. The weight can be calculated depending

on the weights obtained from forward and backward filter. The explicit formulas will

reduce the computational complexity significantly. The model is also equipped with

an approximated algorithm called bounded complexity mixture (BCMIX) approximation.

BCMIX bounds the amount of elements involving in the calculation so that it can speed

up the original algorithm. The detail of this Bayesian model will be discussed in next

chapter and BCMIX will be introduced at the beginning of simulation part.

1.2.2 Principal Component Analysis

Principal component analysis (PCA) is a well known statistical method used for dimen-

sional reduction in multi-dimensional space. It transforms a group of observations with

correlated features into a group of values of linearly uncorrelated features. These new fea-

tures (variables) are referred as the principal components. Usually, we use less principal

components (the new variables) than the number of original variables because principal

9

components are capable to account most variance of the data. Thus, principal compo-

nent analysis achieves dimensional reduction and in the meanwhile it has reserved most

information (variance) of the data in original space.

PCA has a close relationship with the eigenvalues and eigenvectors of a matrix. Let’s

first briefly review the definition of eigenvalue and eigenvector. We denote Q as a m×m

matrix. We call λ the eigenvalue of matrix Q if there exists a non-zero vector v in m

dimensional space such that Qv = λv. Then the vector v is called the eigenvector of Q

corresponding to the eigenvalue λ.

Qv = λv can be rewritten as (Q− λ)v = 0. Since a is a non-zero vector, this implies

that λ is a solution to the equation det(Q− λI) = 0, where det denotes the determinant

of a matrix. It’s easy to find that det(Q−λI) is a polynomial of degree m depending only

on λ, thus, there must be m eigenvalues (in the field of complex number), while some of

them can equal to each other. If Q is symmetric, then all its eigenvalues are real numbers

and can be ordered as λ1 ≥ ... ≥ λm. What’s more, we have the followings:

det(V) = λ1...λm, tr(V) = λ1 + ...+ λm (1.1)

The tr means the trace of a matrix. If v is an eigenvector of Q corresponding to the

eigenvalue λ, then according to the definition of eigenvector, for any non-zero scalar c, cv

is also an eigenvector of Q. Besides, with left-multiplying vT to both sides of λa = Qv

we will have

λ = vTQv/||v||2 (1.2)

The main idea of principal component analysis is the following. We want to find a

vector v with unit length ||v|| = 1 such that the linear combination vTx has the largest

variance over all such linear combinations. In order to maximize vTQv(= V ar(vTx)) over

v subject to ||v|| = 1, by introducing the Lagrange multiplier λ, this is equivalent to solve

10

the followings
∂

∂vi
vTQv + λ(1− vTv) = 0, i = 1, ...,m (1.3)

The m equations in (1.3) can be rewritten as the linear equation system Qv = λv. For

v 6= 0, this might imply that λ is an eigenvalue of matrix Q and v is the corresponding

eigenvector, and with the relationship λ = vTQv according to (1.2). Note that the

denominator in (1.2) equals 1 since v is restricted as a unit vector.

Let λ1 = maxv:||v||=1v
TQv and v1 be the corresponding eigenvector with unit length.

Next we consider the linear combination vTx that maximizes the V ar(vTx) = vTQv

subject to two restrictions: vT1 v = 0 and ||v|| = 1. Again, by introducing the Lagrange

multiplier λ and η, it’s equivalent to solve the following equations

∂

∂vi
vTQv + λ(1− vTv) + ηvT1 v = 0, i = 1, ...,m (1.4)

Similarly, the solution of the Lagrange multiplier λ is the second eigenvalue of matrix

Q with corresponding unit eigenvector v2. By continuing this process inductively, we can

have all the eigenvalues λ1 > λ2... > λm of the covariance matrix Q by solving the

following optimization problem

λk+1 = maxv:||v||=1,vTj v=0,16j6kv
TQv (1.5)

The vk+1 on the right hand side of (1.5) is the eigenvector corresponding to the

(k + 1)th eigenvalue λk+1.

PCA can also be interpreted geometrically. We provide a simple example here to

illustrate it. Suppose we have a sample with n observations and each observation is a two

dimensional vector. Thus, each observation is a point in the two dimensional space. See

figure 1.7.

11

Figure 1.7: Geometrical Illustration of PCA

The two axes y1 and y2 are the original variables. z1 and z2 are in the same direction of

the first and second eigenvector respectively. We can see from figure 1.7 that observations

varies mostly in the direction of z1. The variance equals to the first eigenvalue and it

accounts the most variance of the total variance. z2 is in the direction of the second

eigenvector which is orthogonal to z1. The variation of the data in the direction of z2 is

much less than that of z1. From this figure, PCA can be explained as axes rotation as

well: we rotate the old axes (y1, y2) to the new axes (z1, z2). The variance of the data

is decomposed (mapped) into the two orthogonal directions of the new axes. If the top

k (k < p, in this case, k = 1 and p = 2) directions account the most variance from the

original p dimensional space, it’s reasonable to map the data into a lower dimensional

space without losing much information. Thus, dimensional reduction has been achieved.

Note that, in practice, we maximize vT Q̂v instead of maximizing vTQv, where the

true covariance matrix Q is replaced by sample covariance matrix Q̂, since the true

covariance matrix Q is unknown. Therefore, the eigenvalues and eigenvectors all belong to

sample covariance matrix. In fact, besides the sample covariance matrix, any estimation

12

for true covariance matrix can be plugged in. The corresponding eigen-structure belongs

to the estimated covariance matrix. In this dissertation, we calculate the eigenvalues

(eigenvectors) of the estimated covariance matrix at each time from the Bayes model.

With the powerful tool, PCA, we are able to decompose the variance from multiple

dimensional space into several one dimensional space, in which the variation is visible

and easy to be measured. Now, the last but the most important thing points to the basic

problem in statistical field: estimate the parameter. However, our problem here is more

than traditional estimation since we have to estimate parameters at each time. Actually

it is a dynamical estimation. In next chapter, we are going to introduce the Bayes model

which will tackle this problem.

13

Chapter 2

PCA with Multiple Change-Points

The model used to detect change-point is a Bayesian model. The final estimation of the

parameter is a weighted average of a series of posterior means. The core of the model

is how to calculate the weight. The model gives an closed form for the final estimation.

However, for different cases of distribution, the formulas is different. Since our model

relies on the Bayesian estimation, before introducing the details of the Bayesian model

for change-point detection, we firstly give a brief review of Bayesian Inference.

The main idea of Bayesian inference is updating the prior distribution by the current

data (information) in hand. In the view of frequentist, the unknown parameter, which we

are interested in, is a fixed but unknown value. The disadvantage of frequentist approach

is, it’s likely to underestimate the variance of the predicted distribution. However, in

the view of Bayesian statistician, the unknown parameter is also a variable which has

a probability distribution. The distribution is known based on our prior knowledge on

the parameter and so it is called the prior distribution. The prior distribution accounts

uncertainty of unknown parameter and overcomes the drawbacks of traditional inference

from frequentists.

Suppose x is an observation in the form of vector in m dimensional space and x is

assumed from the distribution with parameter θ, i.e., x ∼ f(x|θ). θ can be a scalar, a

14

vector or even a matrix. We denote the prior distribution of θ as π(θ|η), where η can

be a vector and assumed known based on our prior knowledge. Let X be the set of n

observations in the sample, i.e., x1, x2, ..., xn. Bayesian method use the sample to update

the prior distribution and obtain the posterior distribution. Firstly, we can calculate the

marginal distribution of X:

f(X|η) =

∫
θ

f(X|θ)π(θ|η)dθ,

Then, based on the Bayesian rule, the posterior distribution can be obtained:

π(θ|X, η) =
f(X, θ|η)

f(X|η)
=
f(X|θ)π(θ|η)

f(X|η)
.

The Bayesian inference is based on the posterior distribution π(θ|X, η). The esti-

mator is called Bayes estimator. In decision theory, the Bayes estimator minimizes the

posterior expected value of a loss function (i.e., the posterior expected loss). Let θ̂ = θ̂(x)

be an estimator of θ, and let L(θ, θ̂) be a loss function, such as squared error loss which

might be the most popular one. The Bayes risk of θ̂ is defined as E{L(θ, θ̂)}, where

the expectation is taken over the probability distribution of θ. Thus, the risk function

actually is a function depending on the estimator θ̂. An estimator θ̂ is referred as a Bayes

estimator if it minimizes the Bayes risk. Equivalently, for each x, if the estimator mini-

mizes the expectation of posterior loss E{L(θ, θ̂|x)}, it minimizes the Bayes risk. Thus

it is a Bayes estimator as well.

The risk function we used here is the mean square error (MSE) which might be the

most common one in the literature. The MSE is defined by

MSE(θ̂(x)) = E[(θ̂(x)− θ)2],

15

where the expectation is taken over the posterior distribution of θ given x. It’s easy to

proof that the posterior mean will minimize the MSE:

MSE(θ̂(x)) = E[(θ̂(x)− θ)2]

= E[(θ̂(x)− E(θ|x) + E(θ|x)− θ)2]

= E[(θ̂(x)− E(θ|x))2] + E[(E(θ|x)− θ)2] + 2E[(θ̂(x)− E(θ|x))(E(θ|x)− θ)]

Firstly let’s look at the third part above, since both θ̂ and E(θ|x) are functions of x, so

is θ̂ − E(θ|x). Therefore, they are all constants under the expectation taken over the

posterior distribution π(θ|x). Thus,

E[(θ̂(x)− E(θ|x))(E(θ|x)− θ)] = (θ̂(x)− E(θ|x))E[E(θ|x)− θ]

= (θ̂(x)− E(θ|x))(E(θ|x)− E(θ|x))

= 0

Then, the MSE can be reduced into

MSE(θ̂(x)) = E[(θ̂(x)− E(θ|x))2] + E[(E(θ|x)− θ)2].

since the term E[(E(θ|x)−θ)2] is free of θ̂(x), to minimize MSE is equivalent to minimize

the non-negative part E[(θ̂(x) − E(θ|x))2]. Therefore, it’s obvious that the minimizer is

θ̂(x) = E(θ|x).

In practice, usually it’s difficult to calculate the posterior mean of the posterior distri-

bution directly. In other words, we can’t do it analytically. Some posterior distributions

even don’t have closed form. In this case, sampling methods must be applied in order

to get the posterior mean (or other statistical summaries). Markov Chain Monte Carlo

(MCMC) provides a bunch of sampling methods (Metropolis–Hastings sampling, Gibbs

sampling, etc.), which makes it’s possible to get summaries numerically.

However, compare to the analytic form of posterior mean, the drawback of sampling

16

is the relatively high computational complexity. For MCMC method, it takes a large

number of steps to get into the stable status (converge to the desired distribution). In

our change-point detection model, the final estimation for a parameter at one time point

is a weighted average of a series of posterior mean. The cost of calculating the weights

is already a big burden. If we still have to calculate each posterior mean numerically by

sampling methods, the total computational complexity will be unacceptable.

The assumption of distribution for observations is an exponential family, which will

result in a closed form of posterior mean. Then, we have closed form of the final estimation

and don’t have to use sampling method to calculate posterior mean. If a distribution

belongs to exponential family, its probability density function generally can be written

as:

f(x|θ) = u(x)v(θ)exp(η(θ)S(x)).

Exponential family has bunch of good properties. In Bayesian inference, if the data is

observed from an exponential family, there often exists a conjugate prior that also belongs

to exponential family, and it’s easy to proof that the posterior distribution belongs to

exponential family as well. Suppose the sample X = {x1, x2, ..., xn} is from exponential

family. We rewrite the density function of one observation parameterized with its natural

parameter η = η(θ):

f(x|η) = u(x)v(η)exp(ηS(x)),

Then, the joint density (likelihood) of the sample X = (x1, x2, ..., xn) can be written as

f(X|η) = (
n∏
i=1

(u(xi))v(η)nexp(η
n∑
i=1

S(xi)).

Then, suppose the conjugate prior distribution is an exponential with density

π(η|α, β) = w(α, β)v(η)βexp(ηα).

The parameter β stands for the effective number of observations that the prior distribution

17

contributes, while the parameter α can be regarded as the total amount that observations

contribute to the sufficient statistic. w(α, β) is a normalization constant which guarantees

the given function is a probability function (integration over domain equals 1). The

posterior density is

f(η|X, α, β) ∝ f(X|η)π(η|α, β)

= (
n∏
i=1

u(xi))v(η)nexp(η
n∑
i=1

S(xi))w(α, β)v(η)βexp(ηα)

∝ v(η)β+nexp(η(α +
n∑
i=1

S(xi))),

from which we can find that

f(η|X, α, β) = π(η|α +
n∑
i=1

S(xi), β + n)

which indicates that the posterior has the same form as the prior. The fantastic property

of exponential family contributes to the closed form of Bayesian estimation from our

change-point model.

2.1 A Bayesian Model for Multiple Change Points Detection

The main method used here to detect multiple change-points is a Bayesian model proposed

by Lai and Xing (2011). We assume that the observations come from an exponential

family of probability density function:

fθ(x) = exp{θ′x− ϕ(θ)} (2.1)

18

Note that we have dropped the normalizing constant in the density function above. We

denote the prior function of parameter θ as:

π(θ; a0, µ0) = c(a0, µ0)exp{a0µ
′

0θ − a0ϕ(θ)}, (2.2)

a0 and µ0 are the parameters for the prior distribution and assumed known. c(a0, µ0) is

a normalizing constant.

According to the conclusion of Diaconis and Ylvisaker, we are able to get the posterior

density of θ given the observations x1, ..., xn

π(θ; a0 + n,
a0µ0 +

∑n
i=1 xi

a0 + n
); (2.3)

Therefore, (2.2) is a conjugate prior density. Besides, it’s obvious that

∫
Θ

fθ(x)π(θ; a, µ)dθ =
c(a, µ)

c(a+ 1,
aµ+ x

a+ 1
)

(2.4)

Now, we assume that the parameter vector θt may undergo some ”jumps”, instead

of a constant along the time. For t > 1, we introduce the indicator variable

It :=


1, if θt 6= θt−1;

0, if θt = θt−1.

(2.5)

which is independently distributed with P (It = 1) = p. Thus, it’s a Bernoulli distribution

and the parameter p is assumed known. If the parameter change occurs at time t (i.e.,

It = 1), the changed parameter θt is assumed to be sampled from its prior distribution

π(θ|a0, µ0). Then we are able to obtain the explicit formulas of E(θt|Xt) and E(θt|Xn),

where Xt denotes (x1, ..., xt). The property of exponential family contributes a lot in

the explicit formulas of E(θt|Xt) and E(θt|Xn). We also use Xi,j to denote (xi, ..., xj) for

1 ≤ i ≤ j ≤ n.

19

2.1.1 Forward Filter

We firstly define the most recent change-time Ct up to t as Ct = max{s ≤ t : Is = 1}. It

plays an important role in the derivation of the explicit formulas of final estimation. By

the conditional probability decomposition, we have

f(θt|Xt) =
t∑
i=1

P (Ct = i|Xt)f(θt|Xt, Ct = i) (2.6)

Let pit = P (Ct = i|Xt) and note that {Xt} ∩ {Ct = i} = {Xi,t}. This is because when

given the most recent change up to time t occurs at time i, the information before time

i is useless. Then we have

f(θt|Xt) =
t∑
i=1

pitf(θt|Xi,t, Ct = i) (2.7)

By the conclusion from (2.3), we can rewrite the posterior density as

f(θt|Xi,t, Ct = i) = π(θt; a0 + t− i+ 1, X i,t) (2.8)

where X i,t = (a0µ0 +
∑t

k=i xk)/(a0 + t− i+ 1) for t > i and it is the posterior mean. We

can find that the a0 is updated by sample size t− i+ 1 and the prior mean µ0 is updated

by the posterior mean. Combining (2.7) and (2.8) yields

f(θt|Xt) =
t∑
i=1

pitπ(θt; a0 + t− i+ 1, X i,t) (2.9)

For the purpose of calculating pit, we provide the following recursive formulas. We

have
∑t

i=1 pit = 1 and

pit ∝ p∗it :=


pf(xt|It = 1), if i = t,

(1− p)pi,t−1f(xt|Xi,t−1, Ct = i) if i ≤ t− 1.

(2.10)

20

where

f(xt|Xi,t−1, Ct = i) =

∫
fθt(xt)f(θt|Xi,t−1, Ct = i)dθt

=
c(a0 + t− i,X i,t−1)

c(a0 + t− i+ 1, X i,t)

=
πi,t−1

πi,t
.

The p∗it actually is the likelihood (given that the latest change occur at time i, for i ≤ t)

of xt which can be decomposed by conditioning on whether the latest change occurring

at time t. Thus, pit (the probability that latest change occurs at time i for 1 ≤ i ≤ t) is

proportional to p∗it. Then (2.10) can be simplified as

p∗it =


pπ0,0
πt,t

if i = t,

(1− p)pi,t−1
πi,t−1

πi,t
if i ≤ t− 1.

(2.11)

where π0,0 = c(a0, µ0) and πi,j = c(a0 + j − i+ 1, X i,j).

We call the recursive formulas “forward filter” because we only use the information

before time t. Particularly, pit(1 ≤ i ≤ t ≤ n) can be calculated recursively as the

following:

Starting from t = 1, p∗11 can be initialized as

p∗11 =
π0,0

π1,1

Since pit is proportion to p∗it, p11 can be obtained by normalizing p∗11

p11 = p∗11/p
∗
11 = 1

Then, for t = 2,

p∗12 = (1− p)p11
π1,1

π1,2

, p∗22 = p
π0,0

π2,2

21

Again, p12 and p22 can be calculated by normalization

p12 =
p∗12

p∗12 + p∗22

, p22 =
p∗22

p∗12 + p∗22

For t = 3,

p∗13 = (1− p)p12
π1,2

π1,3

, p∗23 = (1− p)p12
π2,2

π2,3

, p∗33 = p
π0,0

π3,3

p13 =
p∗13

p∗13 + p∗23 + p∗33

, p23 =
p∗23

p∗13 + p∗23 + p∗33

, p33 =
p∗33

p∗13 + p∗23 + p∗33

... ...

For t = k:

p∗ik = (1− p)pi,k−1
πi,k−1

πi,k
(i < k), p∗kk = p

π0,0

πk,k

pik =
p∗ik∑k
i=1 p

∗
ik

(i ≤ k).

With the initialized value for p∗it at t = 1, we recursively calculated pit all the way down

from t = 1 to t = n.

2.1.2 Backward Filter

The backward filter is very similar with the forward filter, obtained only by reversing

time. We can define the indicator variable Ĩt denoting if the change occurs from time t to

time t + 1 . Also we define C̃t = min{s > t : Ĩs = 1} as the closest change in the future

of t. Then the posterior density given sample {xt+1, ..., xn} can be expressed as

f(θt|Xt+1,n) = pπ(θt; a0, µ0) + (1− p)
n∑

j=t+1

qj,t+1π(θt; a0 + j − t,X t+1,j). (2.12)

22

Since qjt is proportion to the likelihood q∗jt, we can also provide the following recursive

formulas:
∑n

j=t qjt = 1 and

q∗j,t =


pπ0,0
πt,t

if j = t,

(1− p)qj,t+1
πt+1,j

πt,j
if j > t.

(2.13)

We call this ”backward filter” because we only use the information in the future of

time t. Particularly, qj,t can be calculated recursively as shown in the following:

Starting from t = n:

q∗n,n =
π0,0

πn,n

qn,n = 1

For t = n− 1:

q∗n−1,n = (1− p)qn,n
πn,n
πn−1,n

, q∗n−1,n−1 = p
π0,0

πn−1,n−1

qn−1,n =
q∗n−1,n

q∗n−1,n + q∗n−1,n−1

, qn−1,n−1 =
q∗n−1,n−1

q∗n−1,n + q∗n−1,n−1

For t = n− 2:

q∗n−2,n = (1−p)qn−1,n
πn−1,n

πn−2,n

, q∗n−2,n−1 = (1−p)qn−1,n−1
πn−1,n−1

πn−2,n−1

, q∗n−2,n−2 = p
π0,0

πn−2,n−2

qn−2,n =
q∗n−2,n

q∗n−2,n + q∗n−2,n−1 + q∗n−2,n−2

qn−2,n−1 =
q∗n−2,n−1

q∗n−2,n + q∗n−2,n−1 + q∗n−2,n−2

qn−2,n−2 =
q∗n−2,n−2

q∗n−2,n + q∗n−2,n−1 + q∗n−2,n−2

23

... ...

For t = n− k:

q∗n−k,j = (1− p)qn−k+1,j
πn−k+1,j

πn−k,j
(j > n− k), q∗n−k,n−k = p

π0,0

πn−k,n−k

qn−k,j =
q∗n−k,j∑n

j=n−k q
∗
n−k,j

2.1.3 Explicit Expressions for E(θt|Xn)

From ”forward filter” and ”backward filter” we obtain the posterior density of θt|Xt and

θt|Xt+1,n. The posterior density of θt|Xn can be derived by using Bayes’s theorem combing

these two. By Bayes’s theorem,

f(θt|Xn) =
f(θt,Xn)

f(Xn)

=
1

f(Xn)
f(θt,Xt,Xt+1,n)

=
1

f(Xn)
f(Xt,Xt+1,n|θt)π(θt; a0, µ0)

=
1

f(Xn)
f(Xt|θt)f(Xt+1,n|θt)π(θt; a0, µ0)

=
1

f(Xn)

f(θt|Xt)
π(θt; a0, µ0)

f(θt|Xt+1,n)

π(θt; a0, µ0)
π(θt; a0, µ0)

=
1

f(Xn)

f(θt|Xt)f(θt|Xt+1,n)

π(θt; a0, µ0)

Note that f(Xn) is the marginal density which is free of θt, thus we have

f(θt|Xn) ∝ f(θt|Xt)f(θt|Xt+1,n)

π(θ; a0, µ0)
(2.14)

24

In order to write out (2.14), we firstly simplify an expression by:

π(θ; a0 + t− i+ 1, X i,t)
π(θ; a0 + j − t,X t+1,j)

π(θ; a0, µ0)

=
c(a0 + t− i+ 1, X i,t)c(a0 + j − t,X t+1,j)

c(a0, µ0)

∗ exp{(a0 + t− i+ 1)(X i,tθ − ϕ(θ))}exp{(a0 + j − t)(X t+1,jθ − ϕ(θ))}
exp{a0µ0θ − a0ϕ(θ)}

=
πi,tπt+1,j

π0,0

exp{[(a0 + t− i+ 1)X i,t + (a0 + j − t)X t+1,j − a0µ0]θ − (j − i+ 1)ϕ(θ)}

Note that

(a0 + t− i+ 1)X i,t + (a0 + j − t)X t+1,j − a0µ0

= a0µ0 +
∑t

k=i
xk + a0µ0 +

∑j

k=t+1
xk − a0µ0

= a0µ0 +
∑j

k=i
xk

= (a0 + j − i+ 1)X i,j

=
1

πi,j
π(a0 + j − i+ 1, X i,j)

Thus we have

π(θ; a0 + t− i+ 1, X i,t)
π(θ; a0 + j − t,X t+1,j)

π(θ; a0, µ0)
=
πi,tπt+1,j

π00πi,j
π(a0 + j − i+ 1, X i,j) (2.15)

25

Combine (2.12) with (2.9) and plug in the (2.15), the (2.14) can be written as

f(θt|Xn) ∝ f(θt|Xt)f(θt|Xt+1,n)

π(θ; a0, µ0)

=

t∑
i=1

pitπ(θt; a0 + t− i+ 1, X i,t)

π(θt; a0, µ0)

∗ [pπ(θt; a0, µ0) + (1− p)
n∑

j=t+1

qj,t+1π(θt; a0 + j − t,X t+1,j)]

=
t∑
i=1

ppitπ(θt; a0 + t− i+ 1, X i,t)

+

(1− p)[
t∑
i=1

pitπ(θt; a0 + t− i+ 1, X i,t)][
n∑

j=t+1

qj,t+1π(θt; a0 + j − t,X t+1,j)]

π(θt; a0, µ0)

=
t∑
i=1

ppitπ(θt; a0 + t− i+ 1, X i,t)

+
∑

1≤i≤t<j≤n

(1− p)pitqj,t+1
πitπt+1,j

πijπ00

π(a0 + j − i+ 1, X i,j)

Note that the first part above can be regarded as i ≤ t = j, thus the posterior density

at time t can be obtained from (2.14)

f(θt|Xn) =
∑

1≤i≤t≤j≤n

wijtπ(θt; a0 + j − i+ 1, X i,j) (2.16)

where wijt = w∗ijt/Pt, Pt = p+
∑

1≤i≤t≤j≤nw
∗
ijt, and

w∗ijt =


ppit if i ≤ t = j,

(1− p)pitqj,t+1
πitπt+1,j

πijπ00
if i ≤ t < j.

(2.17)

From (2.17), it follows that

P (It+1 = 1|Xn) =
p

Pt
, E(θt|Xn) =

∑
1≤i≤t≤j≤n

wijtX i,j (2.18)

26

2.1.4 Estimation of Hyperparameters

Notice that in order to calculate the estimated parameters, we need to know the hyper-

parameters p, a0 and µ0 which are assumed known previously. However, we still have to

estimate them in practice. The method used here is the Maximum Likelihood Estimation

(MLE), which can be simply described as the following.

Suppose the observations x1, x2, x3, ..., xn are i.i.d (independent and identically dis-

tributed) from a certain known distribution with unknown parameters θ. Its density

function can be written as f(·|θ). Both xi and θ can be vectors. Since all observations

are independent with each other, the joint density function can be written as

f(x1, x2, ..., xn|θ) = f(x1|θ)f(x2|θ)...f(xn|θ)

Since x1, x2, x3, ..., xn are observations and are fixed, the only variable in the joint density

function is the parameter θ. In other words, it can be regarded as a function depending

on parameter θ:

L(θ|x1, x2, ..., xn) = f(x1, x2, ..., xn|θ) =
n∏
i=1

f(xi|θ)

In practice it is often more convenient to work with the logarithm of the likelihood function

which known as the log-likelihood:

l = lnL(θ|x1, x2, ..., xn) =
n∑
i=1

lnf(xi|θ)

The maximum likelihood estimation (MLE) is:

θ̂mle = argmax{l(θ|x1, x2, ..., xn)}

which can be explained as, we believe our observations are drawn from the one which

gives highest probability among all distribution family members.

27

In the paper of Lai and Xing (2011), they propose a way to estimate the hyperpa-

rameters which is described as the following.

The likelihood function hyperparameter θ = θ(p, a0, µ0) can be written as

fθ(x1, ..., xn) = f(x1)f(x2, ..., xn|x1)

= f(x1)f(x2|x1)f(x3, ..., xn|x1, x2)

=
n∏
t=1

f(xt|Xt−1)

Note that the likelihood f(xt|Xt) can be decomposed into
t∑
i=1

p∗it. Since p∗it stands for the

marginal density (likelihood) of xt given the latest change occurs at time i. If we sum the

i over 1 ≤ i ≤ t, it equals to the marginal density f(xt|Xt). Thus, the likelihood function

finally can be written as

L(θ|Xn) =
n∏
t=1

f(xt|Xt−1) =
n∏
t=1

(
t∑
i=1

p∗it) (2.19)

p∗it is a function of p, a0, and µ0 shown in 2.11. The µ0 is suggested to be estimated by the

sample mean µ̂ = n−1
∑n

t=1 xt. However, since what we care about here is the covariance

matrix, intuitively, we use sample covariance matrix, S = (n−1)−1
∑n

t=1(xt− x̄)(xt− x̄)T ,

to estimate µ̂ instead of sample mean. As we have assumed a Normal distribution with

known mean zero, the sample covariance matrix should be expressed in the form of

S = n−1
∑n

t=1 xtx
T
t . a0 is recommended to be set as 1, which can be interpreted as: for

the prior knowledge on the parameter θ we have, it’s equivalent to the information from

one additional observation. Substituting these two estimated values into 2.19, we just

need to maximize the log-likelihood function l(p) =
∑n

t=1 log(
∑t

i=1 p
∗
it) only depending

on p. It is suggested to maximize the log-likelihood function by grid search which is in

the form of {2k/n : k0 ≤ k ≤ k1}, where k0 < 0 < k1 are integers.

28

2.2 The Explicit Formulas for Normal Distributed Observations

In this section, the explicit formulas for Normal distributed observations will be derived,

both for one dimensional case and multi-dimensional case. The formulas from multi-

dimensional case will be used in case studies chapter 4.

2.2.1 One Dimensional Case

Suppose x1, ..., xm ∼ N(0, σ2), where σ2 are unknown. The density function is:

fσ2(x) =
1√

2πσ2
exp{− x2

2σ2
}

Let τ = (2σ2)−1, τ ∼ Gamma(g, λ). The parameter g and λ are assumed known. Then

the density function above can be written as

fτ (x) =
1√
π
exp{−τx2 − 1

2
log

1

τ
}

Let θ = −τ , then the density function becomes

fθ(x) =
1√
π
exp{θx2 − 1

2
log(−1

θ
)} (2.20)

Since τ ∼ Gamma(g, λ),that is

π(τ) =
1

Γ(g)λg
τ g−1e−

τ
λ

therefore, the prior density of θ can be easily derived as

π(θ) = π(τ(θ))|τ ′(θ)|

=
1

Γ(g)λg
(−θ)g−1e

θ
λ

=
1

Γ(g)λg
exp{1

λ
θ − 2(g − 1)

1

2
log(−1

θ
)}

(2.21)

29

If we let φ(θ) = 1
2
log(−1

θ
), a0 = 2(g − 1), µ0 = 1

2λ(g−1)
, and c(a0, µ0) = 1

Γ(g)λg
, then (2.20)

and (2.21) can be expressed as:

fθ(x) =
1√
π
exp{θx2 − φ(θ)} (2.22)

π(θ; a0, µ0) = c(a0, µ0)exp{a0µ0θ − a0φ(θ)} (2.23)

Now, we verify the property stated in (2.3). Since τ = (2σ2)−1 ∼ Gamma(g, λ),

it is simple to find that σ2 ∼ Inverse − Gamma(g, 1
2λ

). Therefore, by the property of

conjugate family, the posterior density of σ2 given observations x1, ..., xm is:

σ2|x1, ..., xm ∼ Inverse−Gamma(g +
m

2
,

1
λ

+
∑m

i=1 x
2
i

2
)

Thus,

τ |x1, ..., xm ∼ Gamma(g +
m

2
,

1
1
λ

+
∑m

i=1 x
2
i

)

Since the posterior distribution is still a gamma distribution, again, we can easily

write the posterior density of θ in forms of (2.23) by

π(θ|x1, ..., xm) = π(θ|a∗0, µ∗0)

where

a∗0 = 2(g +
m

2
+ 1) = 2(g − 1) +m = a0 +m

µ∗0 =
1

2(g +m/2− 1) 1
1
λ

+
∑m
i=1 x

2
i

=
1
λ

+
∑m

i=1 x
2
i

2(g − 1) +m
=
a0µ0 +

∑m
i=1 x

2
i

a0 +m

The property stated in (2.3) holds. Note that, instead of sample mean, the sample

variance is used as updated information. This is intuitive because we are interested in

posterior mean of variance instead of posterior mean of mean.

30

The important formulas that participate in the calculation hereby can be written as:

π0,0 = c(a0, µ0) =
1

Γ(g)
(
1

λ
)g (2.24)

πi,j = c(aij, µij) =
1

Γ(gij)
(

1

λij
)gij (2.25)

X ij =
1

2λij(gij − 1)
(2.26)

where gij = g + j−i+1
2

and λij = (1
λ

+
∑j

k=i x
2
k)
−1.

2.2.2 Multi-Dimensional Case

Now, we consider a general case in m dimensional space. Suppose x̃1, ..., x̃n ∼ N(0̃,Σ),

where x̃1, ..., x̃n are m dimensional vectors. The density function can be written as

fΣ(x̃) =
1

(2π)
m
2 |Σ| 12

exp{−1

2
x̃TΣ−1x̃}

= (2π)
m
2 exp{x̃T (−Σ−1

2
)x̃− 1

2
log(|Σ|)}

Let θ = −Σ−1

2
and φ(θ) = 1

2
log(|Σ|) = 1

2
log(| − θ−1

2
|). Then, the density function of x̃ can

be rewritten as

fθ(x̃) = (2π)−
m
2 exp{x̃T θx̃− φ(θ)}

We assume the prior distribution of Σ is Inverse Wishart Distribution: Σ ∼ IWm(Ψ, n0).

Thus, Σ−1 has a Wishart distribution: Σ−1 ∼ Wm(Ψ−1, n0) with density function:

π(Σ−1) =
1

2
n0m
2 |Ψ−1|

n0
2 Γm(n0

2
)
|Σ−1|

n0−m−1
2 exp{−1

2
tr((Ψ−1)−1Σ−1)}

=
|Ψ|

n0
2

2
n0m
2 Γm(n0

2
)
|Σ|−

n0−m−1
2 exp{−1

2
tr(ΨΣ−1)}

=
|Ψ|

n0
2

2
n0m
2 Γm(n0

2
)
exp{tr

[
Ψ(−Σ−1

2
)

]
− n0 −m− 1

2
log|Σ|}

31

Since θ = −Σ−1

2
(Σ−1(θ) = −2θ), the density function of θ is:

π(θ) = π(Σ−1(θ))|(Σ−1(θ))
′|

=
|Ψ|

n0
2

2
n0m
2 Γm(n0

2
)
| − 2θ|

n0−m−1
2 exp{tr(Ψθ)}| − 2|

=
|Ψ|

n0
2

2
n0m
2
−1Γm(n0

2
)
exp{tr(Ψθ)− (n0 −m− 1)φ(θ)}

Let c(a0, µ0) = |Ψ|
n0
2

2
n0m
2 −1Γm(

n0
2

)
, a0 = n0−m− 1, a0µ0 = Ψ, and µ0 = Ψ

n0−m−1
. π(θ) can

be expressed as

π(θ; a0, µ0) = c(a0, µ0)exp{tr(a0µ0θ)− a0φ(θ)}

To verify the property stated in (2.3), by the conclusion of conjugate family, the

posterior distribution of Σ given observations x̃1, ..., x̃n is:

Σ|x̃1, ..., x̃n ∼ IWm(Ψ∗, n∗0)

where Ψ∗ = Ψ +
∑n

i=1 x̃
T
i x̃i and n∗0 = n0 + n. Then, the posterior density of θ is:

π(θ; a∗0, µ
∗
0) = c(a∗0, µ

∗
0)exp{tr(a∗0µ∗0θ)− a∗0φ(θ)}

where

a∗0 = n∗0 −m− 1 = n0 + n−m− 1 = a0 + n

µ∗0 =
Ψ∗

a∗0
=

Ψ +
∑n

i=1 x̃
T
i x̃i

a0 + n
=
a0µ0 +

∑n
i=1 x̃

T
i x̃i

a0 + n

Thus, the property holds. Then, we can write those important formulas participating in

the calculation:

π0,0 = c(a0, µ0) =
|Ψ|

n0
2

2
n0m
2
−1Γm(n0

2
)

(2.27)

πi,j = c(aij, µij) =
|Ψij|

n0(ij)
2

2
n0(ij)m

2
−1Γm(

n0(ij)

2
)

(2.28)

32

X ij =
a0µ0 +

∑j
k=i x̃

T
k x̃k

a0 + (j − i+ 1)
=

Ψij

n0(ij) −m− 1
(2.29)

where Ψij = Ψ +
∑j

k=i x̃
T
k x̃k and n0(ij) = n0 + (j − i+ 1).

2.3 PCA to Estimated Variance-Covariance Matrix

In one dimensional case, the estimated parameter at each time is just a number. It’s easy

for us to check the change-point by simply plotting the estimated value of parameters.

However, we are focusing on covariance matrix in multi-dimensional space, and it is

impossible to plot the estimated covariance matrix at each time directly. In order to find

out the change of a series of matrices, we firstly need to find a way to measure the change

of matrix. Motivated by the spirit of PCA, we hereby perform the eigen-decomposition

to the estimated covariance matrices. Similarly as the variance in one dimensional space,

covariance matrix describes the variation of a random vector in multiple space. PCA

makes it possible for us to decomposed the variation into several orthogonal directions so

that we can check the variation in each direction.

As demonstrated before, the final estimated covariance matrix is a weighted average

of a series of matrices (the posterior means). An intuitive wondering is, if the eigenvalues

and eigenvectors are still the weighted average (with the same weights wijt) of eigenvalues

and eigenvectors of the covariance matrices of the posterior means X ij. If so, the numer-

ical calculation can be simplified by only storing eigenvalues and eigenvectors (usually

for top a few). In this way, we are able to avoid storing the whole matrices involved in

the calculation, which will save much memory space of a computer. The limit of memory

space is a big issue for the calculation when the dimension is high.

Unfortunately, in general, it is not true. The following is a simple example. Let

A1 =

0.18233835 0.03813438

0.03813438 0.11766165


33

A2 =

 0.4680357 −0.1974292

−0.1974292 0.5319643


w1 = 0.4, w2 = 0.6

A = w1A1 + w2A2

The eigenvalues of A are 0.4633924 and 0.2566076. However, the weighted average of

eigenvalues of A1 and A2 are 0.5 and 0.22. It is also easy to verify that the eigenvectors

of A are not the weighted average of eigenvectors of A1 and A2 either.

However, under a certain condition, the eigenvalues/eigenvectors are the weighted

average of the eigenvalues/eigenvectors of each segment. Next, we provide an impor-

tant observation with which a sufficient condition can be proofed. Under this sufficient

condition, the previous statement is true.

An Important Observation. Given a finite set of m × m matrix, say A1, A2, ..., An

such that each Ai is diagonalizable, and they commute with each other, i.e. AiAj = AjAi,

∀i, j. Then ∃P invertible, and P−1AiP = D, where D is a diagonal matrix.

A Sufficient Condition. Suppose A1, ..., An are m ×m matrices. They are all diago-

nalizable and commute with each other. Let A =
∑n

i=1 wiAi, where
∑n

i=1wi = 1. Let λk

and λik denote the eigenvalue of A and Ai respectively, and let ṽk and ṽik denote the unit

eigenvector with same sign of A and Ai respectively, for k = 1, 2, ...,m, and i = 1, 2, ..., n.

Then we have:

λk =
∑n

i=1
wiλ

i
k, ṽk =

∑n

i=1
wiṽ

i
k

The proofs are given in appendix. In fact, the condition given here is too strict. In

practice, we can seldom find a series of matrices within which any two can commute with

each other. Thus, we still have to store all posterior means (covariance matrices), which

makes the computation more difficult.

34

Chapter 3

Simulation Studies

In order to test the performance of our Bayesian model on detecting change-points in

covariance matrix, simulation studies are necessary. The problem is how to shorten

the computational time. For one simulation study, the model has to been run at least

hundreds of times which will result in an unacceptable computational time. Two major

issues should be considered.

Firstly, the Bayes filter uses recursive formulas to calculate the weights pit and qj,t.

We can see that the number of weight wijt in final estimation is increasing with the

sample size n. In fact, the maximum number of weights equals n2/2 resulting in un-

bounded memory requirements as well as computational complexity. Secondly, though

the traditional programming software “R” provides bunch of packages which make statis-

tical computation very convenient, the computational speed is not satisfactory. BCMIX

approximation and programming in C language focus on solving these two problems re-

spectively. In the first two sections, the BCMIX approximation and several algorithms

for eigen-decomposition will be introduced. The results from simulation studies will be

presented in the last section.

35

3.1 BCMIX Approximation

To bound the computational complexity and memory requirements in estimating the pa-

rameter at each time, Lai and Xing (2011) has proposed an approximated approach called

bounded complexity mixture approximation which can be described as the following.

The idea is, we select G(p) components in total which has g(p) most recent weights

pj,n (with n −m(p) < j ≤ n and g(p) < G(p)). For example, at stage t − 1, let Dt−1(p)

be the set of indices i for which pi,t−1 is kept at stage t− 1. As mentioned, since Dt−1(p)

contains the indices of most recent g(p) weight, the set {t− 1, ..., t− g(p)} is a subset of

Dt−1(p), i.e. Dt−1(p) ⊃ {t− 1, ..., t− g(p)}. At stage t, the indices set Dt(p) is obtained

by updating Dt−1(p). Since Dt(p) also must have the most recent g(p) components, we

have to add index t into the old set Dt−1(p). Now we have G(p) + 1 components in total,

thus, we need to delete one. Let it be the index not belonging to {t, ..., t− g(p) + 1} such

that

p∗it,t = min{p∗i,t : i ∈ Dt−1(p) and i ≤ t− g(p)}

We choose the it corresponding to the smallest weight p∗it,t to be deleted. If there are two

or more smallest p∗it,t, we choose the index which is farthest from t. Then, Dt(p) can be

expressed as Dt(p) = {t} ∪ (Dt(p)− {it}). By normalizing p∗i,t we get pi,t

pi,t = (
p∗i,t∑

j∈Dt(p) p
∗
j,t

), i ∈ Dt(p).

The above is only for selecting weights in forward filter. Similarly, we can apply the

selection process to backward filter. Let D̃t+1(p) denote the set of indices j for which

qj,t+1 is kept at stage t+ 1. D̃t+1(p) contains the closest g(p) indices in the future. That

is, D̃t+1(p) ⊃ {t+ 1, ..., t+ g(p)}. The way to obtain D̃t(p) by updating D̃t+1(p) is totally

the same as that in forward filter. Let jt be the index not belonging to {t, ..., t+g(p)−1}

such that

q∗jt,t = min{q∗j,t : j ∈ D̃t+1(p) and j ≥ t+ g(p)}

36

We choose jt to be the farthest from t which corresponds to the smallest weight q∗jt,t.

Then, D̃t(p) = {t} ∪ (D̃t+1(p)− {jt}) and let

qj,t =
q∗j,t∑

j∈D̃t(p) q
∗
j,t

where j ∈ D̃t(p).

Finally, the BCMIX approximation to the posterior density at time t can be written

as

f(θt|Xn) ≈
∑

i∈Dt(p),j∈D̃t+1(p)

w̃ijtπ(θt; a0 + j − i+ 1, X i,j) (3.1)

in which w̃ijt = w∗ijt/P̃t, P̃t = p +
∑

1≤t≤n,i∈Dt(p),j∈D̃t+1(p) w
∗
ijt. Thus, the BCMIX for the

posterior mean at time t is

θ̂t|n =
∑

i∈Dt(p),j∈D̃t+1(p)

w̃ijtX i,j (3.2)

3.2 Programming in C language

As mentioned in the beginning of this chapter, in order to speed up the calculation, we

implement the simulation entirely with coding in C language. Coding the Bayesian model

is quite similar in both “R” and C since the there is no packages available even in “R”.

However, for the part of eigen-decompostion, it’s different. Bunch of functions make it

extremely easy to get eigen-decomposition in “R” while we have to code all of it ourselves

in C language. The algorithms used for eigen-decomposition will be briefly introduced.

In the end of this section, some difficulties coding in C language will be mentioned along

with some possible solutions proposed.

37

3.2.1 Householder Transformation

Two algorithms for eigen-decomposition are used while programming in C language. One

is only able to provide all eigenvalues and eigenvectors at once, while another one is for

approximating a few top eigenvalues and eigenvectors. Both algorithms depend on the

Householder Triangularization performing the QR factorization to a matrix. The QR

decomposition of a matrix is a decomposition of a matrix A into a product

A = QR

where Q is an orthogonal matrix and R is an upper triangular matrix.

The Householder Reflection is used to implement the QR decomposition. The algo-

rithm can be briefly described as the following. Suppose A is a m×n matrix with m ≥ n.

We use || · || to denote the Euclidean norm and I to denote an m ×m identity matrix.

We firstly let y to be the first column of matrix A. Then, we set

u = y− βe1

where e1 is the vector (1, 0, ..., 0)T and the scalar β can be calculated from ||y|| = |β| and

the sign of β is the same as the first element of y. Then, matrix Q can be obtained by

v =
u

||u||
,

Q = I− 2vvT .

Q is usually referred as an m×m Householder matrix and

Qy = (β, 0, ..., 0)T .

Gradually, we are able to transform A into upper triangular form. If we let y be the first

column of A, we can rewrite the Q we have obtained above as Q1 and the β as β1. Then,

38

we have

Q1A =


β1 ∗ · · · ∗

0
A
′...

0


The previous step is repeated for A

′
(obtained from Q1A by removing the first column

and first row) above, giving a Householder matrix Q
′
2. However, Q

′
2 is smaller than Q1

but we want the whole operation is on Q1A instead of A
′
. Therefore, we have to expand

it toward the upper left by the following:

Qk =

 I k−1 0

0 Q
′

k


After p iterations, p = min(n,m− 1), the matrix R is computed as

R = Qp...Q2Q1A

which is an upper triangular matrix. The final orthogonal matrix Q can be obtained by

Q = QT
1Q

T
2 ...Q

T
p .

3.2.2 Numerical Eigen-Decomposition

With QR decomposition to a matrix A, the QR algorithm can be applied in order to solve

the eigen-decomposition problem. Suppose in the tth iteration, At = QtRt, then, At+1 is

constructed by At+1 = RtQt and we perform the QR decomposition to At+1 again. Note

that

At+1 = RtQt = QT
t QtRtQt = QT

t AtQt = Q−1
t AtQt,

39

Thus all {At} are similar with each other and they have the same eigenvalues. The whole

process is repeated until some certain condition is satisfied. Eigenvalues will appear on

the diagonal of matrix R and eigenvectors will appear as the columns of matrix Q.

When the dimensionality is high, usually, we care only about several top eigenvalues

which accounts the most variation. In this situation, it’s really time and memory consum-

ing to compute all eigenvalues since the number of eigenvalues (eigenvectors) is the same

as the dimension. As an alternative solution, we suggest the “Bisection” method to nu-

merically calculate a group of eigenvalues located in a specified interval. The “Bisection”

method depends on the tridiagonalization of a symmetric matrix.

At the beginning, we use “Householder Reduction” to reduce a matrix into Hessen-

berg form. Since the matrix we deal with here is the covariance matrix which is symmetric

and positive definite, it is guaranteed can be reduced into tridiagonal form. A little bit

different from the “Householder Transformation” mentioned in last section, here we leave

the first row of A unchanged and started from the second row. Particularly,

Q1A =



∗ ∗ ∗ · · · ∗ ∗

∗ ∗ ∗ · · · ∗ ∗

0
A
′...

0


Then, continue the same steps in “Householder Transformation”, we can get a series of

matrix, Q1, ...Qm−2, such that,

H = QT
m−2...Q

T
2Q

T
1AQ1Q2...Qm−2

40

where matrix H is in Hessenberg form:

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗

0 0 0 ∗ ∗


Since A here is symmetric, QTAQ is also symmetric, and any symmetric Hessenberg

matrix is tridiagonal: 

∗ ∗ 0 0 0

∗ ∗ ∗ 0 0

0 ∗ ∗ ∗ 0

0 0 ∗ ∗ ∗

0 0 0 ∗ ∗


Now, given a symmetric matrix A ∈ Rm×m, we assume that A has already been

reduced into the tridiagnoal form. Let A(1), ..., A(m) denote the principals in dimensions

1, ...,m of matrix A. The kth principal is a sub-matrix formed by the first kth rows

and first kth columns of A. The eigenvalues of A(k) are distinct and let them ordered

by λ
(k)
1 < λ

(k)
2 < ... < λ

(k)
k . The important property is that these eigenvalues strictly

interlace, satisfying the following inequalities

λ
(k+1)
j < λ

(k)
j < λ

(k+1)
j+1 (3.3)

for k = 1, 2, ...,m−1 and j = 1, 2, ..., k−1. This property makes the “Bisection” method

powerful. Figure 3.1 is an illustration of the property: The eigenvalues of A(k) interlace

those of A(k+1).

Taking the advantage of the strictly interlace property, we are able to count the

exact number of eigenvalues in any particular interval. Let’s look at a simple example.

41

Figure 3.1: Illustration of the Property of Strictly Interlace

We construct a 4× 4 tridiagonal matrix as

A =


1 1

1 0 1

1 2 1

1 −1


The determinant of each principal can be easily calculated:

det(A(1)) = 1, det(A(2)) = −1, det(A(3)) = −3, det(A(4)) = 4,

The eigenvalue of A(1) is obviously positive. From the strictly interlace property, we know

that the bigger eigenvalue of A(2) is bigger than the eigenvalue of A(1) while the smaller

eigenvalue of A(2) is smaller than the eigenvalue of A(1). Thus, the bigger eigenvalue of

A(2) must be positive. The determinant of A(2) is negative thus the smaller eigenvalue

is negative. Continue in this way, we can find that A(3) has one negative eigenvalue,

and A(4) has two negative eigenvalues. In general, for any symmetric tridiagonal matrix

A ∈ Rm×m, the number of negative eigenvalues equals to the number of sign changes in

the “Sturm Sequence” sequence

1, det(A(1)), det(A(2)), ..., det(A(m)). (3.4)

If there exists zero determinants, we define “sign change” as a change from positive or

zero to negative or from negative or zero to positive but not from positive or negative

42

to zero. Under this definition, the statement about the “Sturm Sequence” is still true.

By shifting A with aI, we can count the number of eigenvalues located in any interval

(−∞, a). Since to count the number of negative eigenvalues by the “Sturm Sequence”

1− a, det(A(1) − aI(1)), ..., det(A(m) − aI(m))

is equivalent to count the number of eigenvalues of A located in the interval (−∞, a).

Hence, we can calculate the number of eigenvalues in any interval [a, b) by subtracting the

number of eigenvalues in (−∞, a) from the number of eigenvalues in (−∞, b), for a < b.

Another important observation makes the bisection algorithm efficient in practical

calculation. That is there is a recursive formula for the determinants of those principals

of matrix A. Suppose after tridiagonalization, A has the form

A =



a1 b1

b1 a2 b2

b2 a3 ...

... ... bm−1

bm−1 am


(3.5)

The recursive relationship can be described by the following expression:

det(A(k)) = akdet(A
(k−1))− b2

k−1det(A
(k−2)). (3.6)

By introducing the shift yI and denoting q(k)(y) = det(A(k) − yI), the recursive relation-

ship 3.6 can be rewritten as

q(k)(y) = (ak − y)q(k−1)(y)− b2
k−1q

(k−2)(y). (3.7)

In order to make this recursive relationship valid for all k = 1, 2, ...,m, we define q(−1)(y) =

0 and q(0)(y) = 1.

43

By applying 3.7 for a proper values of y and counting sign changes along the way,

the bisection algorithm will locate eigenvalues in arbitrarily small intervals which means

an approximation to these eigenvalues. The computational cost is in the same order as

O(m) for each evaluation of the sequence. If we only need a few top eigenvalues, it will

be much more efficient than the QR algorithm with computational complexity O(m2).

Note that, the bisection algorithm only provide us a way to calculate eigenvalues.

The algorithm used to calculate eigenvectors is called “Inverse Iteration” which can be

briefly described as the following:

Algorithm 3.1 Inverse Iteration

Initialize an unit vector v(0) arbitrarily,

for k = 1, 2...

Solve the equation (A− µI)w = v(k−1) for w

v(k) = w/||w||

λ(k) = (v(k))TAv(k)

This algorithm relies on the fact that: for any µ ∈ R not equal to any eigenvalue of

A, (A− µI)−1 has the same eigenvectors as A, and if we denote {λj} as the eigenvalues

of A, (A − µI)−1 has the eigenvalues {(λj − µ)−1}. Our case is much easier since we

have already obtained those eigenvalues we want from bisection algorithm. Thus, we

only have to conduct one step (k = 1) of “Inverse Iteration” to obtain the corresponding

eigenvector. When the µ equals eigenvalue, A − µI is singular, however, it won’t cause

any trouble in the implementation.

As the calculation of inverse of a matrix is involved in the “Inverse Iteration” algo-

rithms, at last, we briefly introduce the algorithms for calculating the inverse of matrix.

We firstly conduct a LU decomposition to matrix A ∈ Rm×m:

A = LU

44

where L and U are lower and upper triangular matrix respectively. This is implemented

by “Gaussian Elimination” described below.

Algorithm 3.2 Gaussian Elimination

Let U = A, L = I, P = I

for k = 1 to m− 1

Select the i ≥ k which maximizes |uik|

uk,k:m ↔ ui,k:m (switch rows)

lk,1:k ↔ li,1:k−1 (switch rows)

pk,: ↔ pi,: (switch rows)

for j = k + 1 to m

ljk = ujk/ukk

uj,k:m = uj,k:m − ljkuk,k:m

After the LU decomposition of A, the problem of invert a matrix can be written as:

AA−1 = (LU)A−1 = I

If we let xi and bi denote the columns of A−1 and I respectively, for 1 ≤ i ≤ m. Then,

the problem can be expressed as solving the following linear equation system:

(LU)xi = bi, 1 ≤ i ≤ m.

For each i, the linear equation can be solved by: let yi = Uxi and firstly solve the equation

Lyi = bi

by the well known process: forward substitution. At last, we get each column xi of the

inverse matrix A−1 with solving the linear equations

Uxi = yi

45

by backward substitution.

3.2.3 Difficulties

C language has a much faster computational speed than R though, as a trade-off, it has

some drawbacks. One is that the memory size referred by a variable is very limited. In

the process of calculation, bunch of big values need to be stored, however, these values

are out of bound. In another word, the variables defined in C can’t store such big values.

This problem may lead to a wrong results.

A common solution to this problem is to take logarithm of the value before storing it.

The advantage of logarithm function is that, it reduces wide-ranging quantities to smaller

scopes. Figure 3.2 is an illustration of logarithm function (2 based). The logarithm

function is a monotone function, however, it slows down the values getting big. From

the figure we can see log2(8) is just around 3. If the value is big, the effect is much

more significant. For example, log2(810) = 10log2(8) ≈ 30, which can be easily handled

by a double variable in C language, while 810 far beyond what a double variable can

handle. After getting all calculations done, we can simply convert them into true values

by applying exponential function.

Figure 3.2: Illustration of Logarithm Function

46

One small issue need mention is how to calculate log(a+ b) only depending on log(a)

and log(b). Since in the process of calculation, all values are stored in the form of log.

The appearance of value a or b are avoided due to the risk that they are out of bound.

Thus, we recommend the following formula

log(a+ b) = log(
a+ b

b
b) = log(

a

b
+ 1) + log(b) = log(exp(log(a)− log(b)) + 1) + log(b)

in which b is always chosen as the bigger one between the two. Then we can promise

log(a)− log(b) is less or equal to zero so that exp(log(a)− log(b)) won’t be greater than

1. If b is much bigger than a, the value exp(log(a)− log(b)) will be calculated as 0.

Another difficulty is also related to the memory size. In the process of calculation,

there are bunch of values need to be stored. In order to make it easier to be retrieved

by the algorithm, those values are stored in matrices. In one dimensional case, they are

ordinary matrices. However, in multiple dimensional space, even parameters are matrices.

What we do is using four dimensional arrays to store them. In another word, matrices

whose every element is a matrix. When the dimension is not high (less than 20) and the

sample size is not big (less than 1000), it’s okay for the memory size to handle all the

matrices. However, when the dimension is high, the memory size is not capable to store

all the matrices.

Two potential solutions to this issue. One is the trade-off between time and space

which means in order to save the space of memory, we sacrifice the speed of calculation.

For example, in the original implementation, we store a series of matrices in a four

dimensional array so that the following calculations are able to retrieve them directly.

To save the memory space, we no longer store those matrices any more but calculate

them whenever needed. For each matrix, it might be re-calculated couple of times, and

that is why storing them and retrieving them directly is fast. Obviously, it’s a trade-off

between the space and time. Another possible solution is to store those matrices on the

hard drive. As we know, the space of hard drive is much bigger than the memory. Our

47

recommendation is, write every matrix into a text file named as its index in the original

four dimensional array. Since the name of every text file is right the same as its index

in the original four dimensional array, actually we store these text files (matrices) into

an abstract four dimensional array on the hard drive. The computation afterward can

read any text file from the hard drive whenever necessary. The second solution proposed

might be better than the first one if the computation of matrices is time consuming. In

that case, read a text file from hard drive is much faster than re-conducting calculation

on a matrix.

3.3 Implementation

So far, we have presented all models used, mainly, the Bayes model and PCA model and

corresponding algorithms. Before numerical studies, we’d like to provide the details of

implementations, which may make the process of computation clear. Let’s first look at

the implementation of Bayes Model.

Step 1. Calculate the parameters of posterior distribution. As mentioned in section

2.2.2, the posterior distribution given observation xi, ..., xj (1 ≤ i ≤ j ≤ n) depends on

two parameters:Ψij = Ψ +
∑j

k=i x̃
T
k x̃k and n0(ij) = n0 + (j − i + 1). A four dimensional

array is used to store Ψij:

ψ =



Ψ11

Ψ12 Ψ22

Ψ13 Ψ23 Ψ33

...

Ψ1n Ψ2n ... Ψn−1,n Ψnn



48

A two dimensional array (a matrix) is used to store n0(ij):

N =



n0(11)

n0(12) n0(22)

n0(13) n0(23) n0(33)

...

n0(1n) n0(2n) ... n0(n−1,n) n0(nn)


Then, we can get the posterior mean based on (2.28) suggested to be stored in a four

dimensional array:

µ =



X11

X12 X22

X13 X23 X33

...

X1n X2n ... Xn−1,n Xnn


log(π00) and log(πi,j) can be calculated according to formulas (2.26) and (2.27),

log(π0,0) =
n0

2
log(|Ψ|)− (

n0m

2
− 1)log(2)− log(Γm(

n0

2
))

log(πi,j) =
n0(ij)

2
log(|Ψij|)− (

n0(ij)m

2
− 1)log(2)− log(Γm(

n0(ij)

2
))

Similarly, log(πi,j) are suggested to be stored in a two dimensional array (a matrix):

log(Π) =



log(π1,1)

log(π1,2) log(π2,2)

log(π1,3) log(π2,3) log(π3,3)

...

log(π1,n) log(π2,n) ... log(πn−1,n) log(πn,n)



The advantage of storing all these values this way is, there is a one to one mapping

49

between the location in the matrix and the index of the parameter. Specifically, for

1 ≤ i ≤ j ≤ n,

Ψij = ψji, n0(ij) = Nji, X ij = µji, log(πi,j) = log(Π)j,i.

Step 2. Forward Filter. Calculate log(pit) recursively based on log(p∗it), for 1 ≤

i ≤ t ≤ n.We also suggest use two matrices to store log(pit) and log(p∗it) respectively. As

mentioned in section 2.1.1, we start with

log(p∗11) = log(π0,0)− log(π1,1) = log(π0,0)− log(Π)1,1

and store it as

log(P ∗) =



log(p∗11)


.

Then, by normalizing p∗11 with the logarithm form,

log(p11) = log(p∗11)− log(p∗11) = 0

and also store as

log(P) =



log(p11)


.

50

Follow the recursive process, next we calculate the second row of matrix log(P ∗) based

on the first row of matrix log(P):

log(p∗12) = log(1−p)+log(p11)+log(π1,1)−log(π1,2) = log(1−p)+log(P)11+log(Π)1,1−log(Π)2,1

log(p∗22) = log(p) + log(π0,0)− log(π2,2) = log(p) + log(π0,0)− log(Π)2,2

Then, the matrix log(P ∗) can be updated:

log(P ∗) =



log(p∗11)

log(p∗12) log(p∗22)


.

By normalization, we can get,

log(p12) = log(p∗12)− log(p∗12 + p∗22), log(p22) = log(p∗22)− log(p∗12 + p∗22)

Note that, the way to calculate log(a+b) has been mentioned in section 3.2.3. The second

row of log(P) now can be updated:

log(P) =



log(p11)

log(p12) log(p22)


.

51

By continuing the process, eventually, we can have two lower triangular matrices:

log(P ∗) =



log(p∗1,1)

log(p∗1,2) log(p∗2,2)

log(p∗1,3) log(p∗2,3) log(p∗3,3)

...

log(p∗1,n) log(p∗2,n) ... log(p∗n−1,n) log(p∗n,n)



log(P) =



log(p1,1)

log(p1,2) log(p2,2)

log(p1,3) log(p2,3) log(p3,3)

...

log(p1,n) log(p2,n) ... log(pn−1,n) log(pn,n)


Step 3. Estimate the parameter p. In section 2.1.4, we have suggested the value

for parameter a0 and µ0, which means the only parameter we need to estimate is p.

With unknown p, all values and parameters in Step1 and Step2 are functions of p. As

suggested in 2.1.4, the log-likelihood function can be written as:

l(p) =
n∑
t=1

log(
t∑
i=1

p∗it)

Each t corresponds to the row of the matrix log(P ∗). Based on each row of log(P ∗),

log(
t∑
i=1

p∗it) can be calculated with the way suggested in section 3.2.3.

Numerically, we have to search a bunch of values of p to find one maximize the log-

likelihood function. The grid of values of p has been suggested in section 2.1.4. Practically,

with every value of p from the grid, we do Step1 to Step3 getting a corresponding value

of log-likelihood function and we choose the p corresponding to the biggest log-likelihood.

After obtaining the proper value of p, we restart from Step1 but skip Step3 and go

to Step4 directly.

52

Step 4. Backward Filter. Calculate log(qt,tj) recursively based on log(q∗t,j), for

1 ≤ t ≤ j ≤ n. Note that, the notation here is a little bit tricky, the qt,j and q∗t,j equal to

qj,t and q∗j,t. We switch the position of j and t since t ≤ j. Similarly, we use two matrices

to store log(qt,j) and log(q∗t,j) respectively. As mentioned in section 2.1.2, we start with

log(q∗n,n) = log(π0,0)− log(πn,n)

and store it as

log(Q∗) =


log(q∗n,n)


.

By normalization

log(qn,n) = log(q∗n,n)− log(q∗n,n) = 0

and also store as

log(Q) =


log(qn,n)


.

Again, follow the recursive process, next we calculate the (n − 1)th column of matrix

log(Q∗) based on the nth column of matrix log(Q):

log(q∗n−1,n) = log(1− p) + log(qn,n) + log(πn,n)− log(πn−1,n)

log(q∗n−1,n−1) = log(p) + log(π0,0)− log(πn−1,n−1)

53

Then, the matrix log(Q∗) can be updated:

log(Q∗) =

 log(q∗n−1,n−1)

log(q∗n−1,n) log(q∗n,n)


.

By normalization:

log(qn−1,n) = log(q∗n−1,n)− log(q∗n−1,n + q∗n−1,n−1),

log(qn−1,n−1) = log(q∗n−1,n−1)− log(q∗n−1,n + q∗n−1,n−1).

and the matrix log(Q) can be updated:

log(Q) =

 log(qn−1,n−1)

log(qn−1,n) log(qn,n)


.

By continuing doing so, eventually we can get two low triangular matrix:

log(Q∗) =



log(q∗1,1)

log(q∗1,2) ...

... ... log(q∗n−2,n−2)

log(q∗1,n−1) ... log(q∗n−2,n−1) log(q∗n−1,n−1)

log(q∗1,n) ... log(q∗n−2,n) log(q∗n−1,n) log(q∗n,n)


.

54

log(Q) =



log(q1,1)

log(q1,2) ...

... ... log(qn−2,n−2)

log(q1,n−1) ... log(qn−2,n−1) log(qn−1,n−1)

log(q1,n) ... log(qn−2,n) log(qn−1,n) log(qn,n)


.

Step 5. Get smooth. In this last step, we calculate the weight wijt for the final

weighted average. Firstly, we calculate log(w∗ijt) according to formula (2.16), for i ≤ t = j:

log(w∗ijt) = log(p) + log(pit) = log(p) + log(P)ti,

for i ≤ t < j:

log(w∗ijt) = log(1− p) + log(pit) + log(qj,t+1) + log(πit) + log(πt+1,j)− log(πij)− log(π00)

= log(1− p) + log(P)ti + log(Q)j,t+1 + log(Π)ti + log(Π)j,t+1 − log(Π)ji − log(π00)

We also suggest a n × n matrix log(W ∗) to store log(w∗ijt). However, for each specific t,

we select the tth to nth row and 1st to tth column of log(W ∗) as a sub-matrix to store

log(w∗ijt). For example, starting from t = 1, we select the first column of log(W ∗) to store

log(w∗1j1), with 1 ≤ j ≤ n:

log(W ∗) =



log(w∗111)

log(w∗121)

...

log(w∗1,n−1,1)

log(w∗1,n,1)


.

55

Next, when t = 2, we select the 2nd to nth row and first two columns of log(W ∗) to store

log(w∗ij2), with 1 ≤ i ≤ 2 ≤ j ≤ n:

log(W ∗) =



log(w∗122) log(w∗222)

log(w∗132) log(w∗232)

... ...

log(w∗1,n−1,2) log(w∗2,n−1,2)

log(w∗1,n,2) log(w∗2,n,2)


.

Every time with the value of t increasing 1, the length of row of the sub-matrix decrease

1 while the length of column of the sub-matrix increase 1. Thus, in the end with t = n,

we have:

log(W ∗) =


log(w∗1,n,n) log(w∗2,n,n) ... log(w∗n−1,n,n) log(w∗n,n,n)


.

By normalizing w∗ijt, we can get the weight wijt:

log(Pt) = log(p+
∑

1≤i≤t≤j≤n
w∗ijt), wijt = exp(log(w∗ijt)− log(Pt)).

We store wijt in the matrix named W with the same structure with log(W ∗). For each

t, the way to store wijt in W is totally the same as log(w∗ijt). Note that, we don’t need

to keep wijt in the log form since after normalization, each wijt will locate in [0, 1]. For

extremely small value, it will be stored as 0.

56

According to (2.17), the final estimation at each time t can be obtained. one advan-

tage of the way storing wijt is, for each pair (i, j) , the physical location of wijt is the

same as X i,j, which will means we have a clear expression for index.

From the steps above, it’s also easy to notice that the computational complexity will

be extremely high when the sample size n is very big. Specifically, the number of weights

wijt is equal to t(n− t+ 1), for 1 ≤ t ≤ n. By a simple inequality:

xy ≤ (
x+ y

2
)2,

we know that the equality holds when x = y. Thus, the biggest number of weights will

occur when t = n − t, which is t = n/2. Since we are considering the case with big n,

without losing generality, assuming n is even, then the biggest number of weights is n2/4.

That means, the number of weights will increase as the same order as n2.

As mentioned before, BCMIX solves this problem reducing the computational com-

plexity by bounding the maximum number of weights. The first step of BCMIX is totally

the same as the Step 1 described above. Starting from Step 2, it’s different.

Step 2. Forward Filter (BCMIX). Two parameters, KK and MM have to be set

up in advance. In the literature, it is suggested that KK = 20 and MM = 10. The

matrices log(P) and log(P ∗) are no longer n×n square matrices, but with dimensionality

n×KK and n× (KK + 1) respectively. Recall the recursive process filling the matrices

log(P) and log(P ∗), it’s obvious that the first KK rows will be generated the same as in

57

the original Step 2.

log(P) =



1 2 . . . KK

1 ∗

2 ∗ ∗
...

...
. . .

KK ∗ ∗ . . . ∗
...

n



log(P ∗) =



1 2 . . . KK KK+1

1 ∗

2 ∗ ∗
...

...
. . .

KK ∗ ∗ . . . ∗
...

n


Besides, we use a matrix called D to store the index. It’s also a n×KK matrix and its

first KK rows are stored in this way:

D =



1 2 . . . KK

1 1

2 1 2
...

...
. . .

KK 1 2 . . . KK

...

n


In fact, for a particular value of t, the index indicates the time up to time t that are

involved in ”Forward Filter” and KK is the maximum number allowed. Thus, for 1 ≤

58

i ≤ t ≤ KK, all time points before t are used. For example, the first row indicates t = 1.

Only i = 1 ≤ t = 1 can be used, therefore, the first row of D is 1. The second row

indicates t = 2 and i = {1, 2} can be used, thus 1 and 2 are stored in the second row of

D. We keep this going on until t = KK with all time points 1 ≤ i ≤ t can be used but

no more allowed. Thus, the KKth row of D stores {1, 2, ..., KK}.

Starting from t = KK+1, we firstly calculate the (KK+1)th row of log(P ∗). We use

the index on the KKth row of D combining with a single index (KK + 1) to indicates

the KK + 1 columns in log(Π) involved in calculating the KK + 1th row of log(P ∗).

specifically, with

{log(P)KK,1, log(P)KK,2, ..., log(P)KK,KK},

{log(Π)KK,DKK,1 , log(Π)KK,DKK,2 , ..., log(Π)KK,DKK,KK , log(Π)KK,KK+1},

we can get the (KK + 1)th row of log(P ∗):

log(P ∗) =



1 2 . . . KK KK+1

1 ∗

2 ∗ ∗
...

...
. . .

KK ∗ ∗ . . . ∗

KK+1 ∗ ∗ . . . ∗ ∗
...

n


Now, we can explain why the matrix log(P ∗) has one more column than log(P). This is

because log(P ∗) need to contain one more nearest time point (here t = KK + 1), so that

we can start to delete one. Next, we pick the first MM elements on the (KK + 1)th row

of log(P ∗) and delete the smallest one (if two or more smallest value exit, we delete the

leftmost one). For example, we delete the lth (1 ≤ l ≤MM) element, then the (KK+1)th

59

row of log(P) can be filled by normalizing

log(P ∗)KK+1,1, ..., log(P ∗)KK+1,l−1, log(P ∗)KK+1,l+1, ..., log(P ∗)KK+1,KK+1

and updated as

log(P) =



1 2 . . . KK

1 ∗

2 ∗ ∗
...

...
. . .

KK ∗ ∗ . . . ∗

KK+1 ∗ ∗ . . . ∗
...

n


The (KK + 1)th row of D is

DKK,1, ..., DKK,l−1, DKK,l+1, ..., DKK,KK , KK + 1

and the structure is updated as

D =



1 2 . . . KK

1 ∗

2 ∗ ∗
...

...
. . .

KK ∗ ∗ . . . ∗

KK+1 ∗ ∗ . . . ∗ ∗
...

n



60

Continue this process, the (KK + 1)th to nth row of log(P ∗), log(P), and D can be

fully filled.

Step 3. Estimate the parameter p. Compared with the construction of log-likelihood

function suggested in the Step 3 of original Bayes model, the only difference is all elements

are taken from the matrix log(P ∗) shrunken by BCMIX in Forward Filter.

Step 4. Backward Filter (BCMIX). The Backward Filter with BCMIX is very

similar to that of Forward Filter (BCMIX) described above. The three matrices finally

will have the structure as the following:

log(Q∗) =



1 2 . . . KK KK+1

1 ∗ ∗ . . . ∗ ∗

2 ∗ ∗ . . . ∗ ∗
...

...
...

...
...

...

n- KK ∗ ∗ . . . ∗ ∗

n- (KK-1) ∗ ∗ . . . ∗
...

...
...

n− 1 ∗ ∗

n ∗



log(Q) =



1 2 . . . KK

1 ∗ ∗ . . . ∗

2 ∗ ∗ . . . ∗
...

...
...

...
...

n- (KK-1) ∗ ∗ . . . ∗
...

...
...

n− 1 ∗ ∗

n ∗



61

E =



1 2 . . . KK

1 ∗ ∗ . . . ∗

2 ∗ ∗ . . . ∗
...

...
...

...
...

n- (KK-1) ∗ ∗ . . . ∗
...

...
...

n− 1 ∗ ∗

n ∗


It can be simply regarded as a time-reversed forward filter if we start from the first

column of nth row. All recursive calculation are totally the same as that in forward filter.

Thus, we are not going to give the details of calculation but only provide the structure

of matrices.

Step 5. Get smooth (BCMIX). In this last step, the shrunken matrices log(P) and

log(Q) are used to calculate the weights wijt. According to (2.16), the calculation also

need the elements in log(Π) which is not a shrunken matrix. In order to select those

elements corresponding to the shrunken log(P) and log(Q), we use the index matrices

D and E to do so. For example, for a certain time point 1 ≤ t ≤ n, firstly, we use a

vector find to store all non-zero elements on tth row of matrix D. Assume the number

of non-zero element is d(t), then we have:

find = Dt,1:d(t)

Also, we use a vector bind to store all non-zero elements on (t + 1)th row of matrix E.

Assume the number of non-zero element is e(t+ 1), then we have:

bind = Et+1,e(t+1):1

Note that the order to store the (t+ 1)th row of E is reversed.

62

Then, (2.16) can be rewritten as the following. For 1 ≤ i ≤ d(t) and 1 ≤ j ≤ e(t+1),

log(w∗find[i],bind[j],t) = log(p) + log(pfind[i],t), if find[i] ≤ t = bind[j]

log(w∗find[i],bind[j],t) =log(1− p) + log(pfind[i],t) + log(qbind[j],t+1) + log(πfind[i],t)

+ log(πt+1,bind[j])− log(πfind[i],bind[j])− log(π00),

if find[i] ≤ t < bind[j].

The matrices used to store log(w∗ijt) and wijt are e(t + 1) × d(t) matrices. Since both

d(t) and e(t+ 1) have been bounded by the number KK, the total number of weights is

bounded by KK2 which won’t increase with the sample size n.

3.4 Measurement and Results

Two measurements are used: Kullback–Leibler (KL) divergence and the L2 norm of a ma-

trix which is also known as Frobenius Norm (FN). Kullback–Leibler measures the diver-

gence between two probability distributions F and F0. Specifically, the Kullback–Leibler

divergence of F from F0, denoted as DKL(F0||F) which is a measure of the information

lost when F is used to approximate the true distribution F0. The Kullback–Leibler diver-

gence between two multivariate normal distribution of the dimension m with the means

µ0, µ1 and their corresponding nonsingular covariance matrices Σ0, Σ1 is:

DKL(N0||N1) =
1

2
(tr(Σ−1

1 Σ0) + (µ1 − µ0)TΣ−1
1 (µ1 − µ0)−m− ln(

det(Σ0)

det(Σ1)
)).

Since in our case, we assume that the mean is known as the zero vector, the Kull-

back–Leibler divergence can be simplified as:

DKL(N0||N1) = DKL(Σ0||Σ1) =
1

2
(tr(Σ−1

1 Σ0)−m− ln(
det(Σ0)

det(Σ1)
)).

63

Another measurement is the L2 Norm, which is also known as the Frobenius Norm,

of a m× n matrix A is:

||A||F =

√√√√ m∑
i=1

n∑
j=1

|aij|2 =
√
trace(ATA).

For our case, let A = Σ̂−Σ0 in order to measure the divergence from estimated covariance

from true covariance.

In this simulation study, we have both 5 and 8 dimensional vectors. For each vector,

we have three scenarios (sample size is 1000):

Scenario 1. The data is generated from multi-normal distribution with mean zero

and covariance Σt. One change-point exists for Σt at t = 501. That is Σt = Σ1 for

1 ≤ t ≤ 500, and Σt = Σ2 for 501 ≤ t ≤ 1000, where Σ1 6= Σ2.

Scenario 2. The data is generated from multi-normal distribution with mean zero

and covariance Σt. Two change-points exist for Σt at t = 301 and t = 701. That is

Σt = Σ1 for 1 ≤ t ≤ 300, Σt = Σ2 for 301 ≤ t ≤ 700, and Σt = Σ3 for 701 ≤ t ≤ 1000,

where Σ1 6= Σ2 6= Σ3.

Scenario 3. The data is generated from multi-normal distribution with mean zero

and covariance Σt. Three change-points exist for Σt at t = 251, t = 501, and t = 751.

That is Σt = Σ1 for 1 ≤ t ≤ 250, Σt = Σ2 for 251 ≤ t ≤ 500, Σt = Σ3 for 501 ≤ t ≤ 750,

and Σt = Σ4 for 751 ≤ t ≤ 1000, where Σ1 6= Σ2 6= Σ3 6= Σ4.

For each kind of variable and each scenario, we simulated 500 cases within which the

sample mean can be calculated for both KL divergence and L2 Norm.

The result is shown in the table 3.1. The values shown in parentheses are the cor-

responding stand error. From both measurements, the divergence of our estimation from

the true covariance is small, especially for the estimation in multi-dimensional space.

Since different from the estimation in one dimensional space, multi-dimensional space

64

Table 3.1: Results of Simulation (Change-Point Fixed)

Number of Change-points 1 2 3

5 Dimension KL 0.111248 0.022754 0.051042
(0.015977) (0.006682) (0.012530)

FN 0.080215 0.176822 0.179665
(0.030539) (0.040290) (0.039602)

8 Dimension KL 0.593686 0.178394 0.387253
(0.031036) (0.042207) (0.027310)

FN 0.068498 0.267058 0.197097
(0.033605) (0.055403) (0.039484)

contains much more noise which will affect the accuracy of estimation. Despite of the

accuracy of estimation, what we care more about is to capture the change-points of the

covariance matrix. As we mentioned before, we expect the change of covariance matrix

will be reflected by eigenvalues.

Figures 3.3 ∼ 3.5 are the plots of eigenvalues in 5 dimensional space for 1 change-

point, 2 change-points and 3 change-points respectively. Figures 3.6 ∼ 3.8 are the plots of

eigenvalues in 8 dimensional space for 1 change-point, 2 change-points and 3 change-points

respectively. In each plot, the red line is the eigenvalues of true covariance matrix and the

blue line stands for the eigenvalues of estimated covariance matrix. From these figures,

we can see that the estimated eigenvalues vary from the true eigenvalues in an acceptable

range. This is normal in any statistical estimation which is known as the estimation error.

However, we don’t care much about how precisely an estimation is at a single time, we

expect the the dynamical behavior of the estimation will mimic that of true covariance

so that the change-points are captured. In fact, our model has completed the task almost

perfectly in this experiment. The blue lines and red lines jump at the same time. In other

words, the estimated eigenvalues change at the same time true eigenvalues change. The

only miss happens in the second change-point of eigenvalue 8 in figure 3.8. The reason

might be both the true eigenvalue and the amount of change are too small. We also note

that at some change-points, the estimated eigenvalue is unstable. For example, at the

65

third change-point of eigenvalue 3 in figure 3.4, the estimated eigenvalue jumps up and

jumps back down to the stable value.

Figure 3.3: Eigenvalues for 1 Fixed Change-Point Simulated in 5 Dimensional Space

In the previous simulation experiment, the number and location of change-point

are fixed. Next, we simulate change-points randomly with different probabilities. The

observations are still from the 5 dimensional and 8 dimensional space. As what we did

before, we simulate 500 cases with sample size 1000 for each case. Let the indicate variable

It distributed as Bernoulli, indicating if a change occurs at time t:

It :=


1, p,

0, 1− p.

The probability p is set as 0.001, 0.005, and 0.01 respectively. The results can be concluded

as in the table 3.2:

Since the change-points are randomly simulated, table 3.3 gives an exact description

of the numbers and locations of change-points for each case. “Change-Point” is shorted

66

Figure 3.4: Eigenvalues for 2 Fixed Change-Points Simulated in 5 Dimensional Space

Figure 3.5: Eigenvalues for 3 Fixed Change-Points Simulated in 5 Dimensional Space

67

Figure 3.6: Eigenvalues for 1 Fixed Change-Point Simulated in 8 Dimensional Space

Figure 3.7: Eigenvalues for 2 Fixed Change-Points Simulated in 8 Dimensional Space

68

Figure 3.8: Eigenvalues for 3 Fixed Change-Points Simulated in 8 Dimensional Space

Table 3.2: Results of Simulation (Change-Point Randomly Simulated)

Probability of Change Occurs 0.001 0.005 0.01

5 Dimension KL 1.054809 0.403882 0.496377
(0.018151) (0.013435) (0.036012)

FN 1.463088 1.144405 0.990666
(0.020171) (0.015470) (0.020319)

8 Dimension KL 0.499691 0.600790 0.732257
(0.016173) (0.026516) (0.028544)

FN 1.155180 1.295160 1.433151
(0.021665) (0.030906) (0.029558)

as “CP” in the table.

Next, we provide the plots of eigenvalues which illustrate how our estimated eigen-

values perform comparing with the true eigenvalues. Figures 3.9 ∼ 3.11 are cases in 5

dimensional space with simulated probability 0.001, 0.005, and 0.01 respectively. Figures

3.12 ∼ 3.14 are the cases in 8 dimensional space with simulated probability 0.001, 0.005,

and 0.01 respectively. The exact locations (indexes) can be find from table 3.3.

69

Figure 3.9: Eigenvalues for Random Change-Points Simulated with Probability 0.001 in 5
Dimensional Space

Figure 3.10: Eigenvalues for Random Change-Points Simulated with Probability 0.005 in 5
Dimensional Space

70

Figure 3.11: Eigenvalues for Random Change-Points Simulated with Probability 0.01 in 5
Dimensional Space

Figure 3.12: Eigenvalues for Random Change-Points Simulated with Probability 0.001 in 8
Dimensional Space

71

Figure 3.13: Eigenvalues for Random Change-Points Simulated with Probability 0.005 in 8
Dimensional Space

Figure 3.14: Eigenvalues for Random Change-Points Simulated with Probability 0.01 in 8
Dimensional Space

72

Table 3.3: Number and Location of Change-Point (Change-Point Randomly Simulated)

Probability of Change Occurs 0.001 0.005 0.01

5 Number of CP 2 7 12
Dimension Index of Location (230,402) (332,517,521, (78,95,192,209,

588,646,676, 257,264,316,421,
738) 659,720,839,989)

8 Number of CP 1 9 9
Dimension Index of Location (524) (39,164,206, (61,104,226,

266,271,592, 242,510,615,
726,774,978) 719,912,923)

By comparing the value and behavior of blue lines and red lines in the plots, we could

make some comments here. For a very small probability of change-point simulated (in this

case, p = 0.001), our change-point model works very well on both estimating eigenvalues

and capturing change-points. This is shown in figure 3.9 and figure 3.12. With a small

probability, the expected number of change-point is small. As a result, it’s more likely

to have more observations before and after a certain change-point, which could provide

more information to detect this change-point. As the probability p increases, number of

change-points gets bigger. In this situation, it’s more likely that several change-points

will appear within a short time interval, which will makes detection difficult. See the 5

dimensional case with p = 0.005. From figure 3.10 we could find several change-points are

very closed to each other and located between time 500 and 800. In fact, from table 3.3,

the exact locations of them are (517, 521, 588, 646, 676, and 738). The estimation of this

part no longer appears stable and clear. Generally speaking, our model still performs

well in this experiment, since most change-points have been captured. However, it’s

slightly worse than the result from the “fixed” experiment, which might be caused by the

randomness of change-points.

73

Chapter 4

Case Studies

Convinced by the results from the previous simulation studies, we apply our model to

some real data sets to see how it performs.

4.1 Swap Rate

Firstly, we apply the model to the swap rate data which has been shown in chapter 1. In

chapter 1, we applied PCA to a sequence of subsets of the sample. The plotted eigenvalues

and eigenvector have implied the existence of change-point in covariance matrix. For the

data we used, each observation is an eight dimensional vector stands for the daily change

of swap rate. Each column represents different maturities: maturity of 1 year, 2 years,

3 years, 4 years, 5 years, 7 years, 10 years, and 30 years. The sample size is 1256. The

original data can be found here: http://www.ams.sunysb.edu/~xing/statfinbook/

_BookData/Chap02/d_swap.txt. The figure 1.3 is the snapshot of the original swap rate

data.

The explicit formulas have been derived for observations from Normal distribution

with known mean zero. In order to match this assumption, we have to difference the

data. The data at time t is obtained by subtracting the original data at time t by time

74

http://www.ams.sunysb.edu/~xing/statfinbook/_BookData/Chap02/d_swap.txt
http://www.ams.sunysb.edu/~xing/statfinbook/_BookData/Chap02/d_swap.txt

t+1. The figure 1.4 is a snapshot of the differenced swap rate data to which we are going

to apply the Bayesian model. Figure 4.1 is the plot of change of swap rate for different

maturities. In another word, the plots of each column of the data set shown in figure 1.4.

Figure 4.1: Change of Swap Rate of Each Maturity

After applying the Bayesian model to the data, we have a sequence of estimated

covariance matrices. As mentioned before, in order to make the change visible, we do

eigen-decomposition to each estimated covariance matrix. Figure 4.2 shows the first

four eigenvalues of the estimated covariance matrices. Figure 4.3 shows the last four

eigenvalues of the estimated covariance matrices.

From each figure, we can easily observe some significant ”jumps”. For example,

75

from the plot of the first eigenvalue, five significant change-points occur around: Ju-

ly/2000, Dec/2000, Sept/2001, June/2002 and Feb/2004. In fact, the change of eigen-

vector matches the change of corresponding eigenvalue. Figure 4.4 is the plot of the first

eigenvector of estimated covariance matrices. The jumps (look like “ridges”) in this figure

agree with those changes in the 1st eigenvalue.

From the rest of the eigenvalues, we can find that the most significant five ”jumps”

all occur at the same time as those of the first eigenvalue. It implies that the whole

eigen-space has changed at these five time points, which is a strong evidence for the

structure breaks of the covariance matrix. Note that, at some change-points, such as the

time around Feb/2004, the first eigenvalue and the second eigenvalue encounter a very

small amount of change (increasing and decreasing a little bit respectively). Eigenvalue

3, eigenvalue 4 and eigenvalue 5 decrease at this time point while eigenvalue 6, eigenvalue

7 and eigenvalue 8 increase. The increase and decrease of all the eigenvalues may coun-

teract with each other resulting in an unchanged determinant of the matrix, because the

determinant can be calculated by the product of all its eigenvalues. Therefore, it confirms

us that it’s reasonable to use the eigen-structure rather than the determinant to measure

the change.

4.2 Treasury Constant Maturity Rate

The second data used is the Treasury Constant Maturity Rate (monthly and weekly

respectively) from the Federal Reserve Bank of St.Louis. In our sample, each observation

is an 11-dimensional vector whose columns stand for different maturities: 1 months, 3

months, 6 months, 1 year, 2 years, 3 years, 5 years, 7 years, 10 years, 20 years, and 30

years respectively.

The observations are taken starting from 2001-07-01 to 2012-11-01 (with sample size

136) for monthly data and from 2001-08-10 to 2012-12-28 (with sample size 594) for

76

Figure 4.2: Swap rate: The First Four Eigenvalues of Estimated Covariance Matrices

Figure 4.3: Swap Rate: The Last Four Eigenvalues of Estimated Covariance Matrices

77

Figure 4.4: Swap Rate: 1st Eigenvector of Estimated Covariance Matrices

weekly data. The differenced data (the change of the treasury constant maturity rate) is

applied to our model as it will satisfy the assumption of zero mean. Figures 4.5 and 4.6

are the snapshots for monthly and weekly data respectively.

For monthly data, figures 4.7 ∼ 4.9 are the plots of all 11 eigenvalues of the estimated

covariance matrices. Figure 4.10 is the plot of first eigenvector of the estimated covariance

matrices. The most significant change occurs around Dec/2008. All the behaviors of 11

figures agree at this time. Other potential change-points may be implied by a certain

eigenvalues. For example, around June/2006, the change is significantly reflected by

eigenvalue 3, 4, 6, 7, 8, 9, 10 and 11 but not from the eigenvalue 1, 2 and 5. Combining

78

Figure 4.5: Treasury Constant Maturity Rate: Monthly Data

Figure 4.6: Treasury Constant Maturity Rate: Weekly Data

all these 11 figures together, it’s reasonable to roughly divide the time into three pieces:

July/2001 to June/2006, June/2006 to Dec/2008 and Dec/2008 to Nov/2012. Eigenvalue

3 is a good illustration. It’s not very easy to give a clear segmentation since eigenvalues

doesn’t keep stable within several small interval. This might be caused by the small

sample size (which is 136) related to the dimension 11.

For weekly data, the figures 4.11 ∼ 4.13 are the plots of all 11 eigenvalues of the

estimated covariance matrices. Figure 4.14 is the plot of first eigenvector of the estimated

covariance matrices. In this case, the segmentation is much clearer than that of monthly

case, since the sample size is much bigger and we have enough information to detect

change-point. A few change-points are significantly shown from the figures, such as the

time around Sept/2001, May/2004, Oct/2005 and July/2008.

79

Figure 4.7: Treasury Constant Maturity Rate: Eigenvalue 1∼4 of Estimated Covariance
Matrices for Monthly Data

Figure 4.8: Treasury Constant Maturity Rate: Eigenvalue 5∼8 of Estimated Covariance
Matrices for Monthly Data

80

Figure 4.9: Treasury Constant Maturity Rate: Eigenvalue 9∼11 of Estimated Covariance
Matrices for Monthly Data

In practice, often we are only able to do a rough segmentation according to the plots

of eigenvalues, since the parameter of true distribution might change frequently within a

short time period. Just like the case in the simulation part with change-point simulated

randomly. In this situation, we are unable to get the ideal segmentation like what we

achieved in the fixed change-point case. Instead of figuring out a change-point in these

intervals, we would like to say, the distribution (parameters) changes frequently within

this interval.

Note that, by comparing the monthly data with weekly data, we can find that our

model is affected by the sample size, as all statistical inference methods do. However,

the situation may get worse if it is the multiple dimensional case. The sample will

get extremely sparse when the dimensionality is high. As in the monthly case, the

Dimension/SampleSize is around 0.1 which is very big and results in a relatively poor

performance. If the case is in a high dimensional space, like 500 dimensional space, it

might need a huge sample size to get a satisfactory result. However, the computational

81

Figure 4.10: Treasury Constant Maturity Rate: 1st Eigenvector of Monthly Data

burden usually is unacceptable.

4.3 S&P 500 Stocks

In this section, the data comes from S&P500. S&P500 stands for Standard & Poor’s

500 which is a stock market index depending on the market capitalization of 500 big

companies who have common stocks on New York Stock Exchange (NYSE) or NASDAQ

Stcok Market. S&P500 may be one of the most commonly followed equity indexes across

the nation and considered as a very good representation of the U.S. stock market.

82

Figure 4.11: Treasury Constant Maturity Rate: Eigenvalue 1∼4 of Estimated Covariance
Matrices for Weekly Data

Figure 4.12: Treasury Constant Maturity Rate: Eigenvalue 5∼8 of Estimated Covariance
Matrices for Weekly Data

83

Figure 4.13: Treasury Constant Maturity Rate: Eigenvalue 9∼11 of Estimated Covariance
Matrices for Weekly Data

The data used comes from 17 different stocks 1, which means the dimension is 17.

The data is downloaded from Yahoo!Finance. Figure 4.15 is a snapshot of the index of

ticker “A” (Agilent Technologies) from Yahoo!Finance.

The sample is taken from March 16th 2004 to March 16th 2014, while some dates have

been deleted due to index missing. We also difference the data to satisfy the assumption

of zero mean. Figure 4.16 is a snapshot (the first 15 observations) of the differenced data

which will be applied with the Bayes model. The exact sample size is 2516. Since the

dimension is high and the sample size is doubled comparing to the previous cases, we

employ BCMIX in order to speed up the calculation. Besides, we trade the speed for

saving memory size with the way mentioned in section 3.2.3.

Since our case is in 17 dimensional space, the estimated covariance matrices have 17

eigenvalues. In order to show the behavior of the eigenvalues, we pick the 4 eigenvalues

1The name of the 17 tickers:“A”, “AA”, “AAPL” “ABC” “ABT” “ACE”, “ACN”, “ACT”, “ADBE”, “ADI”,
“ADM”, “ADP”, “ADSK”, “AEE”, ”AEP”, ”AES” and ”AET”.

84

Figure 4.14: Treasury Constant Maturity Rate: 1st Eigenvector of Weekly Data

in the first, 4 eigenvalues in the middle and 4 eigenvalues in the last and plot them along

the time. See figures 4.17 ∼ 4.19. Figure 4.20 illustrates the change of first eigenvector

of estimated covariance matrices. Generally speaking, it’s easy to make a rough segmen-

tation according to these plots of eigenvalues. The all agrees with each other on the

following four major change-points around the time: Mar/2007, May/2009, Mar/2011

and Jan/2013. We can find that eigenvalues “jumps” frequently within the time period

Mar/2004 to Mar/2006. As that in previous cases, it might be caused by the nature of

the true distribution. However, one thing need to be mentioned is, the “jumps” becomes

much more dramatic in this 17 dimensional case. The amount of noise increases fast with

the increasing of dimensionality, which makes it much more difficult to only keep useful

information for change-point detection. Another appearance of the distraction of noise

85

Figure 4.15: S&P500: Snapshot of Ticker “A” from Yahoo!Finance

Figure 4.16: S&P500: Snapshot of Differenced Data

86

can be found in the time period Mar/2007 to May/2008. It is still reasonable to group all

points in this interval as coming from one same distribution depending on the continuous

trend. However, the values are not stable as what we expect. This is significantly shown

from the plots of eigenvalues 2, 3, 4, 14 and 15.

Our model still works fine in 17 dimensional space but it’s reasonable to guess that

the estimation will get quite unstable with the dimension getting higher. We are not

going to discuss change-point detection in high dimension space here, since it’s another

independent topic from low dimensional space. In traditional statistical inference, it is

totally different even for the estimation of a single covariance matrix. Bunch of shrink-

age methods are already there for the estimation in high dimensional space, however,

the hardest part of change-point detection with our Bayes model in high dimensional

space is the following. Which shrinkage method is a proper replacement of traditional

Bayesian estimation? “Proper” means it filters out the useless noise as much as possible

from a high dimensional space while keeping enough information for parameter change.

Pessimistically, we wonder if it is possible to find a way to complete this task. So far, it’s

still an open and difficult question which need to be explored in the future.

87

Figure 4.17: S&P500: Eigenvalue 1∼4 of Estimated Covariance Matrices

Figure 4.18: S&P500: Eigenvalue 7∼10 of Estimated Covariance Matrices

88

Figure 4.19: S&P500: Eigenvalue 14∼17 of Estimated Covariance Matrices

89

Figure 4.20: S&P500: First Eigenvector of Estimated Covariance Matrices

90

Chapter 5

Conclusions

We focus on change-point detection for the time series data in finance filed. The observa-

tions in finance filed are usually vectors, which means coming from a multiple dimensional

space. Thus, the parameters are no longer a simple scalar but a vector or even a matrix.

In fact, what we are interested in is the change-point in covariance matrix. In multi-

dimensional space, we are facing two major challenges. The first one is, much more noise

exists in multiple dimensional space than that in one dimensional space. We expect a

proper model which is able to filter out the noise as much as possible while it can keep

enough useful information for parameter change. The second challenge is, with a sequence

of estimated covariance matrices, how do we measure the change. It’s quite easy to find

the change in one dimensional space since the parameter is a scalar. The most intuitively

way is to plot the series of parameters along the time and figure out the existence of

significant “jumps”. However, for matrices in multiple dimensional space, it’s impossible

to plot them directly. It’s not proper to use the determinant of a matrix as the measure,

since a very small change of one element of a matrix may cause the determinant changing

dramatically, which should not be considered as a matrix change.

We employ a Bayes model proposed by Lai and Xing(2011) to complete the change-

point detection on covariance matrix. By combining the forward filter and backward filter,

91

the model outputs the estimated parameter at each time. The estimated parameter is a

weighted average of a series of posterior means. The assumption of exponential family

contributes to the closed form of final estimation, and it simplifies the computational

complexity.

The eigen-structure is chosen to measure the the change of matrices, which is moti-

vated by the spirit of principal component analysis (PCA). PCA is equivalent to eigen-

decomposition to a covariance matrix. The eigenvectors decompose the variation of a

covariance matrix into several orthogonal directions. Note that all these directions are in

one dimensional space and the amount of variation in this direction is measured by the

corresponding eigenvalue. Therefore, the eigen-structure is a good choice for projecting

the variation of multiple dimensional space into several one dimensional spaces. If the

eigen-structure of a matrix changes, we believe that the inner structure of a matrix has

changed. Besides, it turns out that eigen-structure is a better choice than the determi-

nant, as the determinant is the production of all eigenvalues. The counteraction of the

change of eigenvalues may result in a unchanged determinant.

We also have provided a few algorithms to improve the computational speed. In the

computation of basic Bayes model, the maximum number of weights involving in calcula-

tion is as the same order as n2, which results in an unbounded computational complexity.

The situation may get even worse in multi-dimensional space. Thus, we equip the Bayes

model with BCMIX approximation in order to bound the number of weights. Besides,

as we have to run the model at least hundreds of times in one scenario in simulation

studies, we implement the whole model in C language to save computational time. The

trade-off is we have to code all functions ourselves, especially for eigen-decomposition.

Two algorithms have been proposed for low and high dimensional case respectively. All

the algorithms improve the computational speed significantly.

From the results of simulation, it turns out that, our model performs well on cap-

turing change-point in covariance matrix, especially when the number of change-point

92

is not big. The model also performs well in the real data analysis, in the swap rate

data, the treasury constant maturity rate data and the S&P 500 data. From the plots of

eigenvalues of estimated covariance matrix, we are able to do rough segmentation. It’s

almost impossible to do it precisely because in several short time interval, the eigenvalues

jump up and down frequently. However, it might be caused by the natural behavior of

the distribution. As shown in the simulation part with change-point occurs randomly

with high probability, the true parameter itself changes frequently in this period of time.

Thus, in practice, instead of trying to figure out all change-points, it might be better to

figure out those intervals with constant value.

93

Bibliography

[1] AGRESTI, A. Categorical Data Analysis, second ed. Wiley & Sons, New Jersey,
2002.

[2] Attaway, S. MATLAB: A Practical Introduction to Programming and Problem
Solving, second ed. Elsevier, 2012.

[3] Bai, J. Estimation multiple breaks one at a time. Econometric Theory 13 (1997b),
315–352.

[4] Bai, J. Estimating high dimensional covariance matrices and its applications. Annals
of Economics and Finance 12, 2 (2011), 199–215.

[5] Bai, J., and Perron, P. Computation and analysis of multiple structural change
models. J. Appl. Econometrics 18 (2003), 1–22.

[6] Barry., D., and Hartigan, J. A. A bayesian analysis for change point problems.
J. Amer. Statist. Assoc. 88 (1993), 309–319.

[7] Barth, W., Martin, R. S., and Wilkinson, J. H. Calculation of the eigen-
values of a symmetric tridiagonal matrix by the method of bisection*. Numerische
Mathematik 9 (1967), 386–393.

[8] Carlin, B. P., Gelfand, A. E., and Smith, A. F. M. Hierarchical bayesian
analysis of changepoint problems. Appl. Statist. 41 (1992), 389–405.

[9] Casella, G., and George, E. I. Explaining the gibbs sampler. The American
Statistician 46, 3 (1992), 167–174.

[10] Crawley, M. J. The R Book, second ed. John Wiley & Sons, 2013.

[11] Deitel, P. J., Deitel, H. M., and Deitel, A. C: How to Program. Pearson,
2012.

[12] Diaconis, P., and Ylvisaker, D. Conjugate priors for exponential families. Ann.
Statist. 7 (1979), 269–281.

[13] Draper, N. R., and Smith, H. Applied Regression Analysis. Wiley & Sons, 1998.

[14] Enders, C. K. Applied Missing Data Analysis. The Guilford Press, New York,
2010.

94

[15] Francis, J. The QR transformation, I. The Computer Journal 4, 3 (1961), 265–271.

[16] Francis, J. The QR transformation, II. The Computer Journal 4, 3 (1962), 332–
345.

[17] Friedman, J., Hastie, T., and Tibshirani, R. Sparse inverse covariance esti-
mation with the graphical lasso.

[18] Gelfand, A. E., and Smith, A. F. M. Sampling-based approaches to calculating
marginal densities. Journal of the American Statistical Association 85, 410 (1990),
398–409.

[19] Han, J., Kamber, M., and Pei, J. Data Mining: Concepts and Techniques,
third ed. Elsevier Inc, 2012.

[20] Hastie, T., Tibshirani, R., and Friedman, J. The Elements of Statistical
Learning, second ed. Springer, 2009.

[21] Horn, R. A., and Johnson, C. R. Matrix Analysis (Ch5: Norms for Vectors
and Matrices). Cambridge University Press, Cambridge, England, 1990.

[22] Householder, A. S. Unitary triangularization of a nonsymmetric matrix. Journal
of the ACM 5, (4) (1958), 339–342.

[23] Jeffers, J. Two case studies in the application of principal component. Applied
Statistics 16 (1967), 225–236.

[24] Jolliffe, I. Principal Component Analysis. Springer Verlag, New York, 1986.

[25] Kernighan, B. W., and Ritchie, D. M. The C Programming Language. Prentice
Hall, 1988.

[26] Kublanovskaya, V. N. On some algorithms for the solution of the complete
eigenvalue problem. USSR Computational Mathematics and Mathematical Physics
1, 3 (1963), 637–657.

[27] Kullback, S. Letter to the editor: The kullback–leibler distance. The American
Statistician 41, (4) (1987), 340–341.

[28] Kullback, S., and Leibler, R. On information and sufficiency. Annals of
Mathematical Statistics 22, (1) (1951), 79–86.

[29] Kwan, C. C. Y. An introduction to shrinkage estimation of the covariance matrix:
A pedagogic illustration. Spreadsheets in Education 4 (2011).

[30] LaBudde, C. The reduction of an arbitrary real square matrix to tridiagonal form
using similarity transformations. Mathematics of Computation (American Mathe-
matical Society) 17, (84) (1963), 433–437.

[31] Lai, T. L., Liu, T., and Xing, H. A bayesian approach to sequential surveillance
in exponential families. To appear in Comm. Statist. Theory Methods, Special Issue
in honor of S. Zacks (2009).

95

[32] Lai, T. L., and Xing, H. Statistical Models and Methods for Financial Markets.
Springer, New York, 2008.

[33] Lai, T. L., and Xing, H. A simple bayesian approach to multiple change-points.
Statistica Sinica 21, 2011 (2011), 539–569.

[34] Langly, P. Elements of Machine Learning. Morgan Kauffmann Publishers, 1996.

[35] Lipschutz, S., and Lipson, M. L. Theory and Problems of Linear Algebra,
second ed. Mcgraw-Hill, 2004.

[36] McNeil, A. J., Frey, R., and Embrechts, P. Quantitative Risk Management.
Princeton University Press, 2005.

[37] Ortega, J. M., and Kaiser, H. F. The LLT and QR methods for symmetric
tridiagonal matrices. The Computer Journal 6, 1 (1963), 99–101.

[38] Pourahmadi, M. High-Dimensional Covariance Estimation. John Wiley & Sons,
2013.

[39] Rencher, A. C. Methods of Multivariate Analysis, second ed. John Wiley & Sons,
2002.

[40] Rizzo, M. L. Statistical Computing with R. Chapman & Hall/CRC, 2008.

[41] Robert, C., and Casella, G. Monte Carlo Statistical Methods, second ed.
Springer-Verlag, New York, 2004.

[42] Shao, J. Mathematical Statistics, second ed. Springer, 2003.

[43] Shumway, R. H., and Stoffer, D. S. Time Series Analysis and Its Applications,
third ed. Springer, 2011.

[44] Simar, H. Applied Multivariate Statistical Analysis, second ed. Springer.

[45] Spector, P. Data Manipulation with R. Springer, 2008.

[46] Stein, E. M., and Shakarchi, R. Real Analysis. Princeton University Press,
2005.

[47] Trefethen, L. N., and David Bau, I. Numerical Linear Algebra. Society for
Industrial and Applied Mathematics, Philadelphia, 1997.

[48] Wang, H. Bayesian graphical lasso models and efficient posterior computation.
Bayesian Analysis 7, 4 (2012), 867–886.

[49] Watkins, D. S. Fundamentals of Matrix Computations, second ed. John Wiley &
Sons, 2002.

[50] Whishart, J. The generalised product moment distribution in samples from a
normal multivariate population. Biometrika 20A, 1-2 (1928), 32–52.

96

[51] WREDE, R., and SPIEGEL, M. R. Theory and Problems of Advanced Calculus,
second ed. Mcgraw-Hill, 2002.

[52] ZOU, H., HASTIE, T., and TIBSHIRANI, R. Sparse principal component
analysis. Journal of Computational and Graphical Statistics 15, 2 (2006), 265–286.

97

Appendix

Proof of the Important Observation. Let’s firstly consider the case of n = 2, say
two matrices A, B such that AB = BA and both of them are diagonalizable. Thus, A
and B commute with each other. Suppose λ is an eigenvalue of A, denoting by Vλ the
eigenspace of λ. If we regard A, and B as linear transformations on the m ×m vector
space V , then, A is diagonalizable means all the eigenspaces span the entire vector space
V . Since A,B can commute with each other, we can get the following observation:

A(Bv) = B(Av) = λBv, ∀v ∈ Vλ

This means, ∀v ∈ Vλ, Bv ∈ Vλ. Therefore, every eigenspace Vλ of A is an invariant
subspace of B. Then, if we denote all eigenspaces of A as Vλ1 , ..., Vλs , they are the
invariant subspaces of B and span the entire vector space V . Thus, we can block B
as diag{B1, ..., Bs} by these invariant subspaces. Since B is diagonalizable, so is each
Bi. Since the diagonalization for each Bi is completed in each Vλi and we know A is
diagonalized by all Vλi , thus, A and B are simultaneously diagonalizable.

Induction of hypothesis: suppose for general n, it is correct. Consider An+1 which
commutes with every Ai, i = 1, 2, ..., n. Then we have a basis (e1, ..., em) of the entire
vector space V , each of whose member is a common eigenvector of Ai. Then, similarly,
since all the common eigenspaces are the invariant subspaces of An+1 by commutability,
so An+1 can firstly be semi-diagonalized as diag{A1

n+1, ..., A
t
n+1}, then diagonalize every

block as we do in the case of n = 2.

Proof of the Sufficient Condition. Since A1, ..., An commute with each other, so
A commute with all A1, ..., An. By the conclusion of the important observation, we
know that A and A1, ..., An can be diagonalized simultaneously. That is, there exists an
invertible matrix P such that,

P−1AP =
∑n

i=1
wiP

−1AiP

Then we can have

diag{λ1, ..., λm} =
∑n

i=1
widiag{λt1, ..., λtm}

98

According to the proof of the important observation we know that for a series of di-
agonalizable matrices who can commute with each other, they will have the common
eigenvectors. Therefore, if we denote ṽk and ṽik as the unit eigenvector with same sign of
A and Ai respectively, then ṽk = ṽik. Hence,

ṽk = 1 · ṽk =
∑n

i=1
wiṽk =

∑n

i=1
wiṽ

i
k, for k = 1, 2, ...,m.

99

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Literature Review
	1.2.1 Multiple Change Points
	1.2.2 Principal Component Analysis

	2 PCA with Multiple Change-Points
	2.1 A Bayesian Model for Multiple Change Points Detection
	2.1.1 Forward Filter
	2.1.2 Backward Filter
	2.1.3 Explicit Expressions for E(t|Xn)
	2.1.4 Estimation of Hyperparameters

	2.2 The Explicit Formulas for Normal Distributed Observations
	2.2.1 One Dimensional Case
	2.2.2 Multi-Dimensional Case

	2.3 PCA to Estimated Variance-Covariance Matrix

	3 Simulation Studies
	3.1 BCMIX Approximation
	3.2 Programming in C language
	3.2.1 Householder Transformation
	3.2.2 Numerical Eigen-Decomposition
	3.2.3 Difficulties

	3.3 Implementation
	3.4 Measurement and Results

	4 Case Studies
	4.1 Swap Rate
	4.2 Treasury Constant Maturity Rate
	4.3 S&P 500 Stocks

	5 Conclusions
	Bibliography
	Appendix

