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Abstract of the Dissertation

A Two Dimensional Description of Heegaard Splittings

by

Chandrika Sadanand

Doctor of Philosophy

in

Mathematics

Stony Brook University

2017

Consider the following two ways to decompose 3-manifolds:

(i) A compact 3-manifold can be decomposed by a Heegaard splitting into
two well-understood, homeomorphic manifolds, glued along their bound-
ary.

(ii) A compact orientable 3-manifold can be decomposed uniquely as a con-
nect sum of prime 3-manifolds.

Stallings described Heegaard splittings using classes of continuous maps be-
tween surfaces and two dimensional complexes. He studied the Poincaré con-
jecture with these maps using group theory. This dissertation considers these
maps more literally, using geometric and topological arguments. One might
wonder if these maps fold the surface, or crush handles. We find that minimal
genus Heegaard splittings of prime 3-manifolds (with a couple exceptions) can
be described by locally injective two dimensional maps. These locally injec-
tive maps induce families of conformal structures, and also square complex
structures, on the domain surface. The 3-manifold, together with a mini-
mal Heegaard splitting, can be recovered from any member of a family. The
construction on primes can be “sewn” together to make a statement for all
Heegaard splittings and arbitrary compact orientable 3-manifolds.
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Chapter 1

Introduction

This dissertation investigates a two dimensional geometric equivalent of a
group theoretic construction of Stallings. He used this construction to reformu-
late the Poincaré conjecture [14]. The relationship to the Poincaré conjecture
suggests a rich structure in Stallings’ construction that I seek to understand
in dimension two. This investigation leads to geometric questions about two
dimensional mappings that are directly related to three manifolds.

The geometric construction uses Heegaard splittings to associate, to each
3-manifold, a class of continuous maps between a surface and a two dimen-
sional complex from which the 3-manifold can be recovered. This is explained
in Chapter 2. We say these maps describe the 3-manifold. One might won-
der how these maps are related to each other, or if they fold the surface, or
crush handles. In Chapter 3, we show folds, crushing and branch covering
can be avoided when π2 of the manifold is trivial. Such 3-manifolds are called
irreducible.

Theorem. There is a local embedding describing each irreducible 3-manifold.

S2 × S1 is the only 3-manifold that has non-trivial π2 that cannot be
decomposed non-trivially by connect sum. It is known that every compact
orientable 3-manifold that does not have S2 × S1 as a connect summand is
given by connect sums of irreducible 3-manifolds. The local embeddings in the
theorem above can be “sewn” together to give maps representing this larger
class of manifolds. These “nice” maps give rise to families of two dimensional
structures corresponding to each 3-manifold. Definitions of the terms below
are given in Chapter 4, where these corollaries are explained.

Corollary. For every compact oriented 3-manifold that does not have S2 ×
S1 as a connect summand, there is a family of non-positively curved square
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complexes that have the topology of surfaces that have been glued to each other
along a finite set of points.

Corollary. For every compact oriented 3-manifold that does not have S2×S1

as a connect summand, there is a family of surfaces glued together at finitely
many points, equipped with complex structures and quadratic differentials on
each surface component.

Finally, in Chapter 5, some examples are discussed.
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Chapter 2

Background

In 1966, John Stallings published a paper titled “How not to prove the Poincaré
conjecture” [14]. Here he outlines a failed argument to show that any simply
connected 3-manifold must be S3. He shares the ideas “in order to deter others
from making similar mistakes,” but also to spread the insight gained from this
mistake [14]. Indeed, the paper has captured the attention and imagination of
topologists over the years.

In the paper, Stallings reduces the Poincaré conjecture to two dimensions
and then approaches it with group theory, showing where the argument cannot
continue. This dissertation stops to explore the two dimensional scenario in
a literal geometric sense. The motivation here is the idea that it must hold
interesting structure if it was used to study the Poincaré conjecture.

In what follows, we begin by introducing the main tool in this discussion
(Section 2.1). Then we show how this tool was used by Stallings to reduce
the Poincaré conjecture to a statement involving continuous maps between
two dimensional spaces (Section 2.2). This brings us to the setting of the
investigation in this dissertation: continuous maps between two dimensional
spaces. Finally we introduce some ideas that will be useful in understanding
the main result (Section 2.3).

2.1 Heegaard Splittings

Suppose that M is a compact 3-manifold without boundary.

Definition 1. A Heegaard splitting or Heegaard decompostion of M is a de-
composition M = H1 ∪H2, where H1 and H2 are homeomorphic 3-manifolds
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that intersect in their shared boundary, which is a surface of genus g. Further,
each Hi is a handle body. Namely, H1 and H2 are the result of taking a closed
3-ball and attaching g 1-handles, or solid cylinders.

Figure 2.1: A handle body of genus four.

The shared boundary ∂H1 = ∂H2 will be called the splitting surface Σg,
where g is the genus.

This is an elegant decomposition because each of the parts, the handle
bodies and the splitting surface, are well-understood topological spaces. Hee-
gaard splittings were first described by Poul Heegaard in his 1898 thesis [5].
The rest of this section describes his work and ideas.

Theorem 1. (Heegaard) Every compact 3-manifold without boundary has a
Heegaard decomposition.

Proof sketch. One can obtain a Heegaard splitting of a 3-manifold by finitely
triangulating it, and then thickening the 1-skeleton and the dual 1-skeleton
until they meet along a surface. The genus of the two resulting handle bodies
is found to be the same using the Euler characteristic and taking Poincaré
duality into account.

Another option is to work in the smooth category, taking a Morse function
on the 3-manifold, f , so that f(critical point of degree i) = i. A Heegaard
splitting is obtained by taking the pre-image of 3

2
as a splitting surface, since

the two components of the complement of this surface are open handle bodies.

Two Heegaard splittings of a 3-manifold are equivalent if there is an auto-
morphism that sends handle bodies to handle bodies and splitting surface to
splitting surface. From the above proofs, it follows that each 3-manifold has
infinitely many Heegaard splittings (up to equivalence).
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Example. Below, S3 is shown as the one-point compactification of R3 and
as the union of two handle bodies of genus four. For better viewing, the two
handle bodies have been drawn so that there is some space between them.
This is schematic only. In a Heegaard splitting, the boundaries of the two
handle bodies are the same set.

Figure 2.2: Genus four Heegaard splitting of S3.

Below, a genus three splitting of S3 is shown. One can imagine a similar
picture to describe a Heegaard splitting of any genus of S3.

Figure 2.3: Genus three Heegaard splitting of S3.

Waldhausen showed in 1968 that all Heegaard splittings of S3 have the
form of the examples above [17].

Given a Heegaard splitting, it is possible to build a new splitting for the
same 3-manifold with one more handle. This procedure involves removing a
3-ball from the manifold that intersects the splitting surface in a disk, and
replacing it with a 3 ball that contains a torus with one boundary component.
In this way, the topology of the manifold is not changed, but the splitting is.
The picture below show how this can be done, beginning with any point x on
the splitting surface.
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Figure 2.4: Stabilization.

Definition 2. This procedure to increase the genus is called stabilization.

Sometimes, it is possible to do this process in reverse. More precisely, we
mean to find a 3-ball that intersects the splitting surface in a torus with one
boundary component, and replace it with a 3-ball that has a disk with the
same boundary embedded inside.

Definition 3. The reverse procedure (decreasing genus) is called destabiliza-
tion.

Remark 1. Given a Heegaard splitting, one can always find a 3-ball that in-
tersects the splitting surface in a disk. Such a ball can be found in a small
enough neighbourhood of any point on the splitting surface. However, one
cannot always find a 3-ball that intersects the splitting surface in a torus with
one boundary component. Thus, one can always stabilize, but destabilization
is not always possible.

Theorem 2. (Reidemeister-Singer [12] [13]) Beginning with a Heegaard split-
ting of a 3-manifold, one can obtain any other splitting of this manifold by
performing a finite sequence of stabilizations and destabilizations.

Definition 4. An invariant of a manifold is the smallest number of handles
of a Heegaard splitting. This is called the Heegaard genus.

The one dimensional homology group of Σg is Z2g. Consider representa-
tives of a standard generating set for this group, shown below on a surface of
genus four as blue and black curves. Now consider Σg included into a handle
body as its boundary. Notice that half of these representatives are now null-
homologous. In the example shown below, the handle body is seen shaded
and the blue curves are null homologous when included into it. Therefore,
given a map describing a Heegaard decomposition, the coordinate projections
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each kill half of the first homology. There are instances when they are the
same half, for example maps describing the genus one Heegaard decomposi-
tion of S1 × S2. There are also instances when they are disjoint halves, for
example, maps describing the standard genus g Heegaard decomposition of the
3-sphere. Finally there are instances where the halves intersect non-trivially
as well, such as maps describing the genus three Heegaard decomposition of
the three dimensional torus.

Figure 2.5: A handle body of genus four, shown with representatives of a basis
for the first homology of the boundary.

Definition 5. A Heegaard diagram describing a Heegaard decomposition is a
triple (Σg,A,B), whereA and B are sets of g curves on a surface of genus g,
Σg, with the following properties.

1. The curves in A are a maximal set of homologically non-trivial, indepen-
dent, disjoint representatives each with null homotopic image under ι1,
the inclusion of Σg into the handle body H1.

2. the curves in B are a maximal set of homologically non-trivial, indepen-
dent disjoint representatives each with null homotopic image under ι2,
the inclusion of Σg into the handle body H2.

It is common to call the free homotopy classes in A blue diagram curves and
those in B red diagram curves. They will also be depicted in these colours in
figures.

Remark 2. Using only the properties (1), (2) above, each of A and B must
have g elements by the argument in the paragraph preceding this definition.

Definition 6. Two Heegaard diagrams (Σ,A,B) and (Σ′,A′,B′) are equiv-
alent if there is a homeomorphism between the surfaces that takes the free
homotopy classes of curves in A to the free homotopy classes of curves in A′

as sets, and similarly for B and B′. They are also equivalent if there is a
homeomorphism between the surfaces that takes the free homotopy classes of
curves in A to the free homotopy classes of curves in B′, and similarly for B

and A′.
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The curves in A dictate the attachment of H1 to Σg with the following
procedure. Cut Σg along the curves of A. This yields a sphere with 2g disks
removed, because the curves are homologically non-trivial and independent
and because there are g of them. Label all the boundary components by the
curve in A they were cut from. Glue 2g disks to this space to form a sphere.
Attach a 3-ball to the sphere. Finally identify pairs of the glued on disks
according to the labeling on their boundary. The picture below shows this last
step, where the letters label pairs of disks to be identified.

Figure 2.6: A handle body shown as a solid 3-ball with pairs of closed disks
on the boundary identified.

Similarly, the curves in B dictate the attachment of H2 to Σg, and thus
one can reconstruct a Heegaard splitting from a diagram.

Remark 3. There are infinitely many Heegaard diagrams describing a single
Heegaard decomposition, (up to the equivalence described above).

A simple way to produce several Heegaard diagrams for the same Heegaard
decomposition is to perform what is called a handle slide. The definition below
is from “An introduction to Heegaard Floer homology,” by Ozsváth and Szabó
[10].

Definition 7. Two Heegaard diagrams (A,B) and (A′,B′) on a surface of
genus g differ by a handle slide if B = B′, and A \ {γ} = A′ \ {γ′} such that
for some δ ∈ A, δ, γ, and γ′ bound a pair of pants. The roles of A and B may
be reversed as well.

An example of a handle slide is shown below. The curves in A are shown
in blue, and the curves in B are shown in red.
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Figure 2.7: A handle slide between two Heegaard diagrams for the genus three
Heegaard splitting of S3.

To see that performing a handle slide does not change the attachment of a
handle body, consider the following. There are disks attached to the splitting
surface along γ and δ that are contained in the handle body noted by A. Notice
that there is also an embedded disk in the handle body attached to the splitting
surface along γ′. This is best seen by imagining γ in the picture of a 3-ball
with pairs of disks labeled for identification (see Figure 2.6). Cutting along
the disk attached along γ′, and then gluing along the pair of disks labelled by
γ, we arrive at the handle body noted by A′, but also, we see that it is the
same handle body noted by A.

Theorem 3. (Reidemeister-Singer [12] [13]) Given two Heegaard diagrams for
a Heegaard decomposition, one can be obtained from the other by performing
a sequence of handle slides.

When considering a Heegaard diagram, it will be helpful to consider repre-
sentative curves that intersect minimally. This can be achieved by picking an
arbitrary hyperbolic structure on Σg, and moving the diagram curves by iso-
topy to their geodesic representatives. Then the curves intersect transversally
and minimally.

Remark 4. This implies that there are finitely many intersection points (since
if a pair curves intersected infinitely many times, there would be an accumula-
tion point of these intersections where transversality would be contradicted).
There also must be finitely many connected components of the complement
of the diagram curves in the surface. We can bound the number of connected
components because the number of intersections and number of diagram curves
is finite. Every diagram curve segment that is not interrupted by intersections
is locally on the boundary of two (not necessarily distinct) connected compo-
nents of the complement.
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2.2 Reduction of the Poincaré conjecture to

Two Dimensions

In this section we restrict our attention or orientable 3-manifolds, and ex-
plain Stallings’ construction relating Heegaard splittings to continuous maps
between two dimensional spaces.

The following definition and ideas are directly from Milnor’s 1962 paper,
“A unique decomposition theorem for 3-manifolds,” [8].

Definition 8. A compact, orientable 3-manifold, M , is prime if for any 3-
manifolds, M1 and M2, M = M1#M2 implies at least one of M1 or M2 is the
3-sphere.

Theorem 4. (Kneser [7]) Every compact, orientable 3-manifold can be written
as a finite connect sum of prime 3-manifolds. This decomposition is unique up
to reordering, homeomorphism, and adding S3 as a summand.

We conclude that if there were an exotic 3-sphere, its decomposition into
primes would consist of prime exotic spheres. So it suffices to consider prime
3-manifolds.

Definition 9. A 3-manifold is irreducible if every embedded 2-sphere bounds
a 3-ball. If a 3-manifold is not irreducible, it is reducible.

Remark 5. All primes except S2 × S1 are irreducible.

This can be seen by considering a prime 3-manifold, M , that has an em-
bedded S2 that does not bound a 3-ball. The S2 cannot separate M because
that would contradict M being prime. Therefore there is an embedded S1 that
intersects the S2 once transversally. We thicken the union of the embedded S2

and S1 inside M to give S2×S1 with a 3-ball deleted (this step is an exercise).
This implies that S2 × S1 is a connect summand of M . M , however is prime,
so it must be S2 × S1 itself.

Due to this consideration, it suffices to consider only irreducible 3-manifolds
(since S2×S1 is not simply connected). There is also a notion of irreducibility
of Heegaard splittings.

Definition 10. A Heegaard decomposition is said to be irreducible if every
essential (i.e., not null homotopic) embedded closed curve on the separating
surface Σg is not null homotopic when included into at least one of the handle
bodies H1 and H2. If a Heegaard splitting is not irreducible is it reducible.
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Example. The g = 3 splitting of S3 is shown below with an essential simple
closed curve that is null homotopic when included into each of the handle
bodies. This means that this Heegaard splitting is reducible. In fact, using
the theorem of Waldhausen mentioned in the previous section, we can say
that all Heegaard splittings of S3 are reducible except the g = 0 and g = 1
splittings.

Figure 2.8: An essential simple closed curve on the splitting surface that is null
homotopic in each of the handle bodies, in the genus three Heegaard splitting
of S3.

Naively, the notions of reducibility of 3-manifolds and of Heegaard split-
tings are related because when a curve on Σg is null homotopic when included
into both handle bodies, this creates an immersed S2 in M . However, the
relation is much deeper.

Theorem 5. (Haken’s Lemma 1968 [3]) Let M = H1 ∪ H2 be a Heegaard
splitting of a 3-manifold. Suppose there is an embedded S2 in M that does not
bound a 3-ball. Then there is an(other) embedded S2 that does not bound a
3-ball in M that intersects the splitting surface in a simple closed curve.

Remark 6. Every Heegaard splitting of a reducible 3-manifold is reducible.
This is due to the preceding theorem.

This statement makes use of the sphere theorem of Papkyriakopoulos.

Theorem 6. (Papakyriakopoulos 1957) If π2(M) is not trivial, there is an
embedding of S2 in M that is not null homotopic.

Claim 1. If a Heegaard splitting is reducible, then either the splitting can be
destabilized, or the 3-manifold is reducible.

Proof of Claim 1. Beginning with a reducible Heegaard splitting, there is an
essential curve on the splitting surface that is null homotopic when included
into both of the handle bodies. Disks can be immersed in each handle body to
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realize these null homotopies. Thus, we have an immersed S2 in M . If it does
not represent a trivial element of π2(M), then the 3-manifold is reducible. If
it is trivial, first homotope the immersed S2 to an embedding. Consider the
immersed disk that realizes the null homotopy of the reducing curve in one of
the handle bodies. If it is already an embedding we are done. If not, lift to the
universal cover of the handle body. Here, there are several pre-images of this
disk that intersect. The universal cover of a handle body is homeomorphic
to a closed 3-ball with a cantor set removed on its boundary. Here, the disks
must be immersed with embedded boundaries. In this space, the disks can
be moved equivariantly to not intersect each other and so that each one is
embedded. Doing this to both disks, we obtain an embedded S2. Now since it
represents a trivial element, it bounds, and the reducing curve must separate
the splitting surface (since the S2 separates M). Therefore the 3-ball must
contain a component of the splitting surface with at least one handle. Finally
if we remove this 3-ball and replace it with another that is split with no handle,
it would be equivalent to destabilizing, possibly multiple times.

Remark 7. Given a reducible Heegaard splitting, the above claim gives way
to find a “reducing” embedded sphere in M . Cutting along this sphere and
“coning it off” will either destabilize the Heegaard splitting or produce non-
trivial connect summands of M .

Remark 8. Consider the genus one Heegaard splitting of S3. This can be
destabilized because it is possible to find a 3-ball that intersects the splitting
surface in a torus with one boundary component. However, this boundary
component is null homotopic when included into the splitting surface. In
fact, it is not possible to find an essential simple closed curve on the splitting
surface that is null homotopic when included into each of the handle bodies.
Therefore this is an example of a Heegaard splitting that can be destabilized,
but is irreducible.

Begin with an irreducible Heegaard splitting of an irreducible 3-manifold
that is simply connected. It is equivalent to the Poincaré conjecture to state
that it must be the genus one or genus zero decomposition of S3. Now Stallings
notes that manifolds with Heegaard genus one (lens spaces) are classified, and
none of them is an exotic 3-sphere. So he reformulates the conjecture as
follows: If we have a Heegaard splitting of an irreducible 3-manifold that has
genus g ≥ 2, and the 3-manifold is simply connected, then the splitting must
be reducible [14]. The simply connected condition is reduced to a group theory
condition:

Proposition 1. Let M = H1 ∪H2 be a Heegaard splitting, with splitting sur-
face Σg, of genus g. Let ιi : Σg ↪−→ Hi, for i = 1, 2 be the inclusions of the
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splitting surface into the handle bodies.

M is simply connected if and only if ι1∗× ι2∗ : π1(Σg) −→ π1(H1)×π1(H2)
is surjective.

Proof. Consider the Seifert Van Kampen theorem on the Heegaard splitting
M = H1∪H2. The fundamental group of M is the push out of (π1(Σg), ι1, ι2).

Fg b
// π1(M)

π1(Σg) ι1
// //

ι2

OOOO

Fg

a

OO

Where a is the homomorphism induced by the inclusion of H1 into M , and b is
induced by the inclusion ofH2 intoM . We also have the following commutative
diagram, where pi are the coordinate projections.

Fg Fg × Fg
p2oooo

p1
����

π1(Σg) ι1
// //

ι2

OOOO

ι1×ι2

99

Fg

If ι1× ι2 is surjective, then the above diagrams can be put together in a single
commutative diagram.

Fg b
// π1(M)

Fg × Fg

p2

OOOO

p1
// // Fg

a

OO

π1(Σg)

ι2

==

ι1×ι2

99

ι1

77

The push out of a cartesian product is trivial, so M is simply connected.

Now suppose M is simply connected. This implies that for every α ∈
π1(Σg) such that ι1(α) 6= 1, we must have ι2(α) = 1. The symmetric statement
with 1 and 2 switched is true as well. Therefore ι1(π1(Σg)) × 1 and 1 ×
ι1(π1(Σg)) are in the image of ι1 × ι2. Since ιi are surjective, these are have
Fg × 1 and 1× Fg. This generates Fg × Fg, so ι1 × ι2 is surjective.
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So, the Poincaré conjecture is equivalent to: if M = H1∪H2 is a Heegaard
splitting of an irreducible 3-manifold with genus g ≥ 2, and ι1∗× ι2∗ is surjec-
tive, the splitting must be reducible.

Finally, by definition a Heegaard splitting is reducible if and only if there
is an essential embedded closed curve that is null homotopic when included
into both of the handle bodies. This is equivalent to a non-trivial element in
ker(ι1∗ × ι2∗) having an embedded representative.

The final statement equivalent to the Poincaré conjecture is then: if M =
H1 ∪ H2 is a Heegaard splitting of an irreducible 3-manifold with genus g ≥
2, and ι1∗ × ι2∗ is surjective, there is an element of non-trivial element in
ker(ι1∗ × ι2∗) that has an embedded representative.

Stalling’s paper is about attempting to prove the following statement. If
φ : π1(Σg) −→ Fg×Fg be any homomorphism that is surjective (Fg is the free
group on g generators), then there must be an element in kerφ that has an
embedded representative in Σg. Note that this statement implies the Poincaré
conjecture.

This dissertation studies continuous maps

f : Σg −→ (bouquet of g circles)× (bouquet of g circles)

between the corresponding topological spaces, with the idea that they must
have a rich structure if they can be used to study the Poincaré conjecture.

2.3 Square Complexes

The target space in the map described in the previous section, the cartesian
product of two bouquets of g circles, will be denoted (∨gS1)×(∨gS1). Consider
its topology. There are g2 tori (coming from the product of each pair of
circles) with identifications. The table below shows the possible topologies
of a neighbourhood of a point in this space, organized by the topology of the
neighbourhoods of the pairs of points they are indexed by, one in each bouquet
of g circles. The image at the bottom right depicts a neighbourhood that
cannot be embedded in three dimensions. Instead, I have drawn a subspace
of this neighbourhood, and put ellipses to indicate that more (4g2 in total)
sheets should approach the centre point. The topology of this neighbourhood
is described below.
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Figure 2.9: The local topology around various points in (∨gS1)× (∨gS1).

Claim 2. Let w be the point in ∨gS1 that has no neighbourhood homeomorphic
to an interval (the wedge point). The local topology around (w,w) ∈ (∨gS1)×
(∨gS1) is the cone on the join of 2g points with 2g points. This space cannot
be embedded in R3 when g > 1.

This claim will be proven shortly, but first it will be helpful to have some
definitions at our disposal.

Recall the definition of a CW complex [4]: An n-cell is a topological space
homeomorphic to a closed n-dimensional ball. A 0-cell is a point. A CW
complex, X, is the union ∪nXn constructed by beginning with X0, a discrete
set of 0-cells, and then defining Xn inductively as a quotient of Xn−1 tα Dn

α,
where Dn

α are n-cells. For each n-cell, there is a continuous attaching map φα :
∂Dn

α → Xn−1, and the quotient is by the equivalence relation x ∼ φα(x). Xn

is called the n-skeleton of X. In general these spaces can be very complicated.
The attaching maps can be restricted to less complicated behaviour by giving
the cells the combinatorial structure of cubes, and adding that attaching maps
restricted to open faces of cubes be homeomorphisms onto their images. The
following definition is from “Special Cube Complexes,” by Haglund and Wise
[2].

Definition 11. A 0-cube is a point. An edge (or one dimensional cube) is the
interval I := [0, 1]. An n-cube is the n-fold cartesian product of the interval
In taken as a subspace of Rn. A k-face of an n-cube is a subspace of In given
by restricting n − k coordinates to a vector in {0, 1}n−k. An open face is a
face with all lower dimensional faces removed.

A cube complex, X, is the union ∪nXn, where X0 is a discrete set of 0-
cubes, and then Xn is defined inductively as a quotient of Xn−1 tα Cn

α , and
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Cn
α are n-cubes.

X1 := X0 tα C1
α

/
∼ where for each edge, C1

α, there is an attaching map
ϕα : ∂C1

α → X0, and x ∼ ϕα(x). Thus, as with a CW complex, a one di-
mensional cube complex is simply a graph. Now we inductively define the
equivalence relation ∼, needed to construct higher skeletons. Suppose we
have defined ∼ for Xn−1 := Xn−2 tα Cn−1

α

/
∼. The image of the interior of

an (n − 1)-cube in the quotient space Xn−1 will be called an open (n − 1)-
cube in Xn−1. For example, the open edges of X1 (a graph) are the maximal
open interval subspaces that do not include vertices. For each n-cube, Cn

α in
Xn−1 tα Cn

α , there is an attaching map ϕα : ∂Cn
α → Xn−1 such that ϕα re-

stricted to each open face of In is a homeomorphism to an open cell in Xn−1.

Given a continuous map between two cube complexes f : X −→ Y , it is a
combinatorial map of cube complexes if each open cube in the domain is sent
homeomorphically to an open cube in the target space.

In this dissertation, we will be using two dimensional cube complexes, or
square complexes. These are given by identifying the edges of squares (I2) to
edges of graphs with homeomorphisms (such that the attaching maps on the
full boundary of each square is continuous).

Definition 12. Consider an open n-cell in a cube complex. Take star-shaped
neighbourhoods of all its boundary vertices that do not intersect pairwise, and
let T be the union of these open sets. Now intersect T with the open cell. This
intersection has 2n connected components C1

T , C
2
T , . . . C

2n

T (because an n cube
has 2b vertices). There was some choice in T . Define an equivalence relation as
follows: Ci

T ∼ Cj
T ′ if and only if their intersection is non empty. This creates

2n equivalence classes. Each class is called a corner of the n-cell.

A set intersects a corner if it intersects all the elements in the equivalence
class.

Given a vertex in the cube complex, if every neighbourhood of this vertex
intersects a set of corners, we say these corners meet at this vertex.

For each square corner, there are exactly two edge corners with the follow-
ing property: every neighbourhood of every set in the edge corner intersects
the square corner. We say that these edge corners are on the boundary of the
square corner.
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Note that ∨gS1 has a natural CW complex structure given by one vertex
and g edges. It is trivially a one dimensional cube complex. The product
(∨gS1) × (∨gS1) has a CW complex structure induced, and it is a square
complex. This can be seen by giving the interior of the edges in ∨gS1 the
structure of the interval [−1, 1] and noting that in (∨gS1) × (∨gS1), the 2-
cells are the cartesian products of these edges, which then have the induced
structure of I2. The attaching map condition is also satisfied. Now we can
proceed to the proof of the claim regarding the topology around the point
(w,w) ∈ (∨gS1)× (∨gS1).

Proof of Claim 2. First we note that for every pair of one dimensional corners
that meet at w, there is a two dimensional corner meeting at (w,w). This
gives the 4g2 two dimensional corners alluded to earlier, since w is 2g-valent.
Similarly, for every one dimensional corner meeting w, there are two meeting
(w,w). Therefore there are 4g one dimensional corners meeting at (w,w). We
have yet to determine the adjacency of these corners.

Consider the following graph:

V = {1-corners meeting at (w,w)}
E = {(α, β)|α and β are the boundary corners of a 2-corner meeting at (w,w)}

Take the cone on this graph, and consider the cone point. For each edge in
the graph, a 2-corner meets the cone point, and for each vertex in the graph,
a 1-corner meets the cone point. Further, note that the adjacency of these
corners is the same as in the space (∨gS1)× (∨gS1).

We finish the proof by understanding the structure of this graph. From our
observations at the beginning of this proof, |V | = 4g and |E| = 4g2. There are
two types of 1-cells in (∨gS1) × (∨gS1): those that arise as a product of the
form 1-cell×0-cell, and those that arise as a product of the form 0-cell×1-cell.
Locally, we can separate the corners of 1-cells meeting at (w,w) into two types
depending on the type of the 1-cell to which they belong. This partitions V
into two sets. There are 2g corners of each type meeting at (w,w), since w is
2g-valent. Note that the attaching maps of 2-cells in (∨gS1)×(∨gS1) alternate
between the two types of edges. This implies that the corner of a 2-cell has
one 1-corner of each type in its boundary. Therefore, the graph is bipartite.
Now, the first sentence in this proof implies that the graph is in fact com-
plete and bipartite (“for every pair of one dimensional corners that meet at w,
there is a two dimensional corner meeting at (w,w),”). The join of 2g points
with 2g points is exactly this complete bipartite graph. This shows that the
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local topology around (w,w) is the cone on the join of 2g points with 2g points.

To show that a neighbourhood of (w,w) cannot be embedded in R3, we
show that the join of 2g points with 2g points is not planar. We claim that
planarity of the graph is equivalent to the neighbourhood’s ability to be em-
bedded in R3. If it is planar, the graph can be embedded on the unit S2 in R3

and the cone on this graph can be embedded by taking the origin as the cone
point. If the cone on the graph can be embedded in R3, then we take a small
S2 centred at the cone point, and it must intersect the embedded space in a
graph isomorphic to the graph on which we are taking a cone. This implies
this graph is planar. The complete bipartite graph on 2g points and 2g points
has K3,3 (the complete bipartite graph on three points and three points) as a
subgraph, as long as g > 1. K3,3 is an obstructing subgraph to planarity, thus
for g > 1, a neighbourhood of (w,w) cannot be embedded in R3. For g = 1,
(∨gS1)× (∨gS1) = T 2 and can be embedded in 3-space.

Note that the graph discussed in this proof is the link of the vertex. If the
links of all the vertices in a cube complex satisfy a certain condition, the cube
complex exhibits properties of non-positively curved spaces. The following
definition is again from Haglund and Wise’s paper [2].

Definition 13. A square complex is non-positively curved if the cycles in the
graphs that are the links of each vertex are of length four or more.

A complete bipartite graph does not have multiple edges, so there are no
cycles of length two. The bipartite condition forces cycles to be of even length,
so there cannot be cycles of length three. Therefore, (∨gS1)× (∨gS1) is non-
positively curved.

One can begin to imagine how a surface might map to (∨gS1) × (∨gS1).
Several questions arise. How would it wind around the tori? Is it crumpled?
Are there branch points and folding? What about if we look only at maps
that are related to Heegaard splittings? Can we see the properties of a 3-
manifold in these maps? These questions are partially answered in Chapter 4,
and motivate the following work.
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Chapter 3

Main Theorem

Given a Heegaard splitting M = H1∪H2, with a splitting surface Σg = ∂H1 =
∂H2, there are two inclusion maps ιi : Σg −→ Hi. Knowing these two maps
is sufficient to reconstruct M . The two maps can be expressed as a single
map ι1 × ι2 −→ H1 ×H2. We say that ι1 × ι2 describes the Heegaard splitting
M = H1 ∪H2.

Now, suppose ι1 and ι2 were post-composed by a deformation retraction
that took Hi to a bouquet of g circles, ∨gS1. Let ι′1 and ι′2 be the respective
compositions.

Claim 3. We can recover the Heegaard splitting M = H1 ∪H2 from ι′1 × ι′2 :
Σg −→ (∨gS1) × (∨gS1) (for any choice of deformation to a graph in the
constructions of ι′i).

Proof. We recover a Heegaard diagram for M = H1 ∪ H2 from ι′1 × ι′2. One
can pick g points in ∨gS1 so that their complement is connected and simply
connected. Nudging these points within a small neighbourhood, they can be
arranged so that the pre-image of each point by ι′1 is a union of simple closed
curves on Σg. Of these curves, some may be null homotopic, in which case
they should be ignored. If there is more than one that is essential (there will
be at least one), they will all be homotopic to one another. Take this free
homotopy class and pick a simple representative αi. Let αi be in A. This
gives us g disjoint curves that are homologically non-trivial and independent
in A as desired. The curves in B are obtained with the same method from ι′2.

Now we show that (Σg,A,B) is a Heegaard diagram for M = H1∪H2. We
will show that A denotes the attachment of H1 to Σg. The proof is the same
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for B and H2.

For each of the curves in A, consider its image at each moment in time
under the chosen deformation retraction fromH1 to a bouquet of g circles. This
realizes a map from a disk to H1 whose boundary is αi. Using an argument as
in the proof of Claim 1, these maps are homotopic to embeddings of disjoint
disks in H1. Removing the embedded disks, one at a time, must give a handle
bodies of decreasing genus. This is because these disks are homotopic to
the pre-image of a point in ∨gS1 by a deformation retraction. Each disk
cannot cannot separate H1 (since the point it is a pre-image of in ∨gS1, up to
homotopy, does not separate). Since there are g disks, removing them results
in a 3-ball, as desired. This implies A denotes the attachment of H1.

Figure 3.1: A 3-ball with some closed disks removed on the boundary, obtained
by removing disks from a handle body. Letter markings show where the disks
used to be.

From this proof, it is clear that not only can we reconstruct the Heegaard
splitting M = H1∪H2 from ι′1×ι′2, but that changing this map by a homotopy
would not affect our ability to do so. Therefore, we say that all of these types
of maps describe M = H1 ∪H2. See the definition below.

Definition 14. A map f from a surface S of genus g to the cartesian product
of two bouquets of g circles describes a Heegaard splitting M = H1 ∪ H2 if
it can be written as ι′1 × ι′2 up to homotopy. Here ιi are the inclusions of
the separating surface into the handle bodies, followed by some deformation
retraction of the handle bodies to a bouquet of circles.

Definition 15. A map f : S −→ (∨gS1) × (∨gS1) is said to be irreducible if
it describes an irreducible Heegaard decomposition.
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Remark 9. If f is an irreducible map, then kerf∗ has no non-trivial element
with a representative that is a simple closed curve.

Proposition 2. Let M = H1 ∪H2 be an irreducible Heegaard decomposition.
The complement of the curves of any associated Heegaard diagram in Σg is
homeomorphic to a finite union of discs. In other words, the Heegaard diagram
fills the surface.

Proof. Consider the handle body Hi and the g curves of a Heegaard diagram
that encode its attachment to Σg. Here is a picture of Σ4 embedded in R3

with curves drawn encoding attachment of Hi to the “inside.” Notice that the
complement of these curves in Σg is sent to a null-homotopic subset of Hi by
ιi.

Figure 3.2: Half of a Heegaard diagram.

Now suppose the proposition were false. That is, suppose that there was a
Heegaard diagram for M = H1 ∪H2 that has a complement with a connected
component that is not a disk. This implies that there is an essential simple
closed curve in the complement of the diagram. Since it does not intersect
any curves in A, it must have null-homotopic image by ι1 and since it does
not intersect any curves in B, it must have null-homotopic images by ι2. This
contradicts the irreducibility of of M = H1 ∪H2.

The traditional picture of a Heegaard diagram is of red and blue curves.
Following this tradition, the discs described above, can be thought of as poly-
gons with alternating red and blue edges made from segments of these curves.

Definition 16. Consider an embedded curve γ on Σg. Take a tubular neigh-
bourhood T of γ. Removing the image of γ from this tubular neighbourhood
leaves two connected components. One of these components will be called AT
and the other will be called BT . Now we make an equivalence relation. Any
two components of (possibly distinct) deleted tubular neighbourhoods of γ are
equivalent if and only if their intersection is non-empty. Notice that there are
two equivalence classes and AT and BT are in different classes. Call these two
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classes the two sides of γ.

A set intersects a side of γ if it intersects all the sets in this equivalence
class. The number of connected components of such an intersection is defined
as the minimum number of connected components of the intersection with all
the sets in the equivalence class.

Alternatively, an irreducible Heegaard diagram is taut if every open poly-
gon intersects a side of a diagram curve in at most one connected component.

A region of Σg is shown below, with two polygons which are part of two
different Heegaard diagrams shown. The first picture is not taut. The open
polygon intersects the same side of a curve in two connected components. The
second picture is taut. Here, while the open polygon does intersect the sides
of a curve in two connected components, they are the opposite sides.

Figure 3.3: Two regions of Heegaard diagrams. The left is not taut, while the
right is taut.

Theorem 7. Every irreducible Heegaard decomposition has at least one asso-
ciated taut Heegaard diagram.

Proof. The proof is constructive, beginning with any Heegaard diagram and
modifying it until a taut Heegaard diagram is achieved.

If this Heegaard diagram is already taut, we are finished.
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If not, there exists a polygon that touches some diagram curve from the
same side twice. Such incidences will be called problems. Notice that multiple
problems may occur on a single polygon, or along a single curve.

Given a problem, without loss of generality, let the problematic curve be
red. This is reflected in all the pictures that follow. Consider a curve segment
with one end point on each of the two segments shared by the problematic curve
and problematic polygon, and with interior inside the problematic polygon.
Below, such a segment is shown in orange for the problem shown above.

Figure 3.4: An orange segment that intersects the same side of a diagram
curve in two connected components.

The problematic curve is broken into two segments by the end points of
the orange curve. Consider each of the two closed curves given by the union of
each of these segments with the orange curve individually. Isotopic copies of
these curves are found as two of the boundaries of the pair of pants obtained by
thickening the graph given by the problematic curve and the orange segment
in Σg. Call these two boundary curves α and β. The third boundary is isotopic
to the problematic curve itself.
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Figure 3.5: Representatives of the free homotopy classes [α] and [β], shown in
two ways: (i) as a union of segments of the problematic curve and the orange
curve, and (ii) as the cuffs of a pair of pants constructed by the problematic
curve and the orange segment.

Let us consider replacing the problematic curve (one of the boundaries of
these pants) with α or β (one of the other two boundaries on the pants), to
produce a new set of red curves. More explicitly, consider erasing the prob-
lematic red curve, and colouring either α or β red.

We claim that this swap, if possible, strictly reduces the number of inter-
sections between red and blue curves.

The picture below includes the minimal number of blue arcs possible so that
the diagram is filling and does not intersect the orange arc. The elimination
of an intersection points is seen.

Figure 3.6: The suggested change to the red half of the Heegaard diagram.
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Figure 3.7: A neighbourhood of the problematic curve before and after the
suggested swaps, this time with a few more blue arcs.

If one of these swaps were assured to give a new Heegaard diagram for the
same Heegaard decomposition, this process could be repeated as long as there
is a problem, each time reducing the intersections between red and blue curves
by two. The number of intersections is finite and bounded below by zero, as
shown in the previous lemma. Therefore, this process would end with a taut
configuration.

To show that one of these swaps must give a new Heegaard diagram for the
same Heegaard decomposition, several cases must be explored combinatorially.

If α is isotopic to another red curve in the original Heegaard diagram,
then β must not be, since the red curves of a Heegaard diagram must be
homologically independent. Then, by a single handle slide, the problematic
curve can be replaced by β to give a new Heegaard diagram, associated to the
same Heegaard decomposition. Similarly, if β is isotopic to a red curve in the
original Heegaard diagram, then the problematic curve can be replaced with α.

Assume neither α nor β is isotopic to a red curve in the original Heegaard
diagram. In this case, cut Σg along all the red curves, and label them to recall
the identifications needed to recover Σg. This is a sphere with 2g discs removed.
Note that, by the way it is defined, the orange segment does not intersect any
red (or blue for that matter) curves. Therefore, the graph given by the union
of the problematic curve and the orange segment can be embedded in the
sphere with 2g discs removed. When this graph is thickened in this space, the
pair of pants bounded by the problematic curve, α, and β are embedded in
the sphere with 2g discs removed as well.
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Figure 3.8: The embedding of the pair of pants introduced in Figure 3.5.

Either α or β must separate one copy of the problematic curve from the
other. Without loss of generality let it be β. The aim is to show that the
problematic curve can be replaced by β to give a new Heegaard diagram as-
sociated to the same Heegaard decomposition.

This will be shown by constructing a sequence of embedded pairs of pants
that dictate a sequence of handle slides that ultimately make the desired re-
placement.

Cut along β. This produces two connected components. Pick either one
of these to work with. Call this space S. We will embed our pairs of pants
that dictate handle slides in this space. Identify as many of the red curves as
possible to each other. Each identification creates a handle with a red curve
wrapped around it.

Figure 3.9: S is shown before and after identifications.

In general S is now a surface of genus p with n+ 2 boundary components
(n boundary components besides the problematic curve and β). Further, S
has a red curve around each handle, and isotopic to each of the boundary
components except for β. Consider the following pair of pants decomposition
by curves: the problematic curve, γ1 . . . , γ2p, . . . , γ2p+n = β.
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Figure 3.10: A pair of pants decomposition of S.

By a handle slide, the problematic curve can be replaced by γ1 to give a
new Heegaard diagram associated to the same Heegaard decomposition. A
second handle slide allows γ1 to be replaced by γ2. Next γ2 is replaced with
γ3, and so on until γ2p+(n−1) is replaced with β, as desired.

Theorem 8. There is a locally injective map f : S −→ (∨gS1) × (∨gS1)
describing every irreducible Heegaard decomposition of genus greater than zero.

Proof. Begin with a taut diagram for an irreducible Heegaard decomposition
M = Hblue ∪Hred. Let the curves describing the attachment of Hblue to Σg be
blue. Similarly, let the curves describing the attachment of Hred to Σg be red.
Again, we assume that the curves are in a minimally intersecting configuration.

This diagram will be used to give a particular map f : Σg −→ (∨gS1) ×
(∨gS1) that is locally injective and then we will check that it describes M =
Hblue ∪Hred.

Defining f : In the target, (∨gS1)×(∨gS1), consider each coordinate (∨gS1).
For simplicity, call one the blue coordinate and the other the red coordinate.
After removing the wedge point of ∨gS1, g open intervals remain. Orient
these intervals arbitrarily. In the blue copy of ∨gS1, Pick g points on the blue
∨gS1, one at the midpoint of each of these intervals. Call these blue points.
Pick a bijection between the set of blue points and the set of blue diagram
curves. Repeat the process on the red coordinate, and call the chosen points
red points. Now orient the diagram curves on Σg arbitrarily.
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Figure 3.11: A region of Σg is shown with orientations chosen on the Heegaard
diagram curves. The two coordinates of (∨gS1)× (∨gS1) are shown with blue
and red points chosen as well as orientations on the edges.

Recalling the definition of “side,” there is now a right side (and left side)
of each curve using these orientations. There is also a right side of each of the
points in the intervals picked out in the preceding paragraph.

Due to Proposition 2, this Heegaard diagram induces a cell decomposi-
tion structure on Σg. Every vertex in this cell decomposition is quadrivalent.
Consider the dual cell decomposition. Every face in this cell decomposition
must have four edges (it is a cell decomposition of squares). We take this to
be a square complex structure with the diagram curves intersecting the mid-
point of the edges of each square. Each square has one blue curve and one
red curve running through it, cutting it precisely into quarters. This can be
done by moving the diagram by an isotopy. The two diagram curves that run
through a given square are associated to two points, one in the blue coordi-
nate ∨gS1 and one in the red coordinate ∨gS1. We would like to construct
a map f : Σg −→ (∨gS1) × (∨gS1). The idea is that f sends the interior of
each square homeomorphically to the product of maximal intervals in the two
coordinate ∨gS1 which contain these two points. The interior of the squares
are mapped by f such that the right side of the red curve is sent to the right
side of the red point and the right side of the blue curve is sent to the right
side of the blue point.

28



Figure 3.12: The definition of f on the interior of a square.

Now we say precisely how to set this up. Consider f as two coordinates
f = fblue × fred, where fi : Σg −→ ∨gS1. Each of the 1-cells in the square cell
decomposition of Σg intersects exactly one diagram curve in one point. If this
diagram curve is blue, let fblue send the open 1-cell to the maximal interval
subset of ∨gS1 that contains the blue point assigned to the diagram curve.
This should be done in such a way so that the half interval that intersects
the right side of the diagram curve is sent to the right of the blue point. Let
the boundary of this 1-cell be sent to the wedge point. If the diagram curve
is red, let fred send the open 1-cell to the maximal interval subset of ∨gS1

that contains the red point assigned to the diagram curve, with the boundary
of the 1-cell being sent to the wedge point. Now consider a closed 2-cell in
the square cell decomposition of Σg. fblue and fred are defined on alternating
boundary edges of this cell. The rest of the 2-cell is sent by fblue to a straight-
line homotopy between the definition(s) of fblue on the boundary. Note that
the attaching map of the cell may not be injective, but this will imply that
the homotopy is the constant homotopy that does not change with time. fred
is defined on the closed 2-cell in the same way. The map f is defined this way
on all of Σg and it is by definition continuous. It is also clear that f restricted
to the interior of a 2-cell is a homeomorphism onto its image.

Checking f is locally injective: Recall that (∨gS1) × (∨gS1) also has a
cell decomposition made up of squares. The map f , as defined, is a combina-
torial map of square complexes. Therefore, it suffices to check that f is locally
injective at the vertices of the square complex structure on Σg.

Claim 4. No two corners meeting at a vertex are sent to the same image
corner.
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Proof. Consider a vertex, v, of the square complex structure on Σg. Note that
it is contained in the interior of a single polygon of the dual cell decomposition
induced by the Heegaard diagram curves.

If the corners of two 1-cells meeting at v have the same image corner, it
follows from the definition of fblue and fred on the 1-skeleton of Σg that these
two 1-cells intersect the same Heegaard diagram curve. (Recall that each 1-
cell intersects exactly one diagram curve.) This means that the polygon dual
to the vertex v has two edges made up of a single diagram curve. Further,
it implies that one side of this diagram curve intersects the open polygon in
two connected components, one along each of these edges. Thus the Heegaard
diagram is not taut. This is a contradiction.

Suppose there are two square corners, σ and δ, that meet at v and f(σ) =
f(δ). The edge corners on the boundary of σ and δ must be sent to the edge
corners on the boundary of f(σ), because f is a continuous combinatorial
map of square complexes. f(σ) has two boundary edge corners. The number
of edge corners on the boundary of σ or δ is three or four. As the picture
below shows, if there were only two, the edge corners would have to be on the
boundary of both σ and δ. This would imply the original Heegaard diagram
was not in a minimally intersecting configuration, which is a contradiction. In
the picture below, the orange edge corners are on the boundary of the shown
square corners.

Figure 3.13: The behaviour of edge corners and square corners.
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We have already shown that two edge corners meeting at v cannot have
the same image. Three or four edge corners being sent to two edge corners by
f would force this. Therefore no two square corners meeting at v can have the
same image.

Consider a small star shaped neighbourhood of a vertex, v, of the square
complex structure of Σg. There is only one vertex in this neighbourhood, and
it is the only point in the neighbourhood sent to a vertex by f (since f is a
combinatorial map of square complexes). The rest of the neighbourhood can
be decomposed into open intervals and open disks (one in each of the corners
that meet at v) that do not intersect pairwise and result from intersecting
open cells with the star shaped neighbourhood. The above claim proves that
the images of these sets do not intersect pairwise. The map f is defined to be
an embedding on each of these sets. Therefore f is injective locally at v.

Checking that f describes the Heegaard decomposition: Recall that
f describes M = Hblue ∪ Hred if, up to homotopy equivalence of the domain,
and product homotopy equivalence of the target, f = ιblue × ιred : Σg −→
Hblue × Hred, where ι· are the inclusion maps from the separating surface to
Hblue and Hred respectively. First, we check that fblue = ιblue up to homotopy
equivalence of the target space. Consider the fibres of fblue. An example of
what these fibres look like is shown below. Recall that fblue sends the interior
of each square in Σg to a maximal interval in ∨gS1. The blue curve running
through the square is sent to the blue point in this interval. In fact, the full
pre-image of each blue point in Σg is a blue diagram curve. The full pre-image
of any other point in the same maximal interval as a blue point is an isotopic
curve. Again, think of it one square at a time first, and then put them to-
gether. The full pre-image of the wedge point is graph on Σg given by the
1-skeleton of the square complex structure, with the edges that intersect blue
diagram curves removed. This can be seen by thinking about each square first.
The pre-image of the wedge point in each closed square is the boundary edges
that do not intersect a blue diagram curve. Notice that all the fibres except
the pre-image of the wedge point are topological circles. All this follows from
the definition of f .
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Figure 3.14: A genus two example of one coordinate of f .

Consider including Σg into a larger space as follows. Remove the fblue
pre-image of the wedge point from Σg. Each connected component of the re-
maining space is made up of the squares through which a given blue diagram
curve runs. It is a cylinder of “height” 1. There are g such cylinders remain-
ing, and they have a product structure of (0, 1)× S1 induced by the fibres of
f . Include these cylinders into solid cylinders, (0, 1)×D2 so that the S1 fibres
are included as boundaries to the D2 fibres of the solid cylinder. Now glue Σg

back together, and glue the solid cylinders back together accordingly. We now
formalize the preceding argument. First glue two disks to each cylinder to g
copies of [0, 1]×D2. Parametrize the D2 coordinate of these cylinders as a unit
disk using “polar coordinates” (r, θ), 0 ≤ r ≤ 1. Now glue Σg back together
along the pre-image of the wedge point. If two boundary disks ({0} ×D2 or
{1} ×D2) are identified along an arc on their S1 boundary, each point in this
arc belongs to a ray in each of the two disks. Identify these rays. Note that
the centres of all the boundary disks are identified in this process. Call the
resulting space H.

Claim 5. H is a handle body and there is a homeomorphism φ : H −→ Hblue

so that the inclusion ι : Σg ↪−→ H is equal to φ ◦ ιblue.

Recall we wanted to show that fblue = ιblue up to homotopy equivalence. If
the claim is true, the proof is completed by noting that ∨gS1 is a deformation
retract of H. The deformation retraction is realized by taking each point on
each disk in the solid cylinders (r, θ), and continuously shrinking the radius r
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to 0. Call this deformation retraction d. Each cylinder becomes an interval,
and the way the solid cylinders were glued together leads to these intervals
being glued together into a bouquet of circles. This can be seen by considering
the glueing locus under d, and noting that it is all sent to a single point in
the end. Then note that fblue = d ◦ ι because we set up the product structure
on the hollow cylinders so that each S1 fibre was the fblue pre-image of a
point in ∨gS1 (not the wedge point). So we have fblue = d ◦ ι = d ◦ φ ◦
ιblue, and d ◦ φ is a homotopy equivalence as desired (since the composition of
a homeomorphism and deformation retraction gives a homotopy equivalence
together with inclusion composed with a homeomorphism). This completes
the proof of Theorem 8.

Now we prove Claim 5.

Proof. Recall how Hblue is attached to Σg: a disk is attached along each blue
diagram curve on Σg, and then a 3-ball is attached to the resulting 2-complex.
We claim that the method of attaching H is equivalent to this. Consider, in the
construction of H, the disk {1

2
}×D2 in each solid cylinder. The S1 boundary

of such a disk is a blue diagram curve. So both constructions attach disks along
the blue diagram curves. Let A be the space remaining when we remove these
disks and Σg from H. We will prove that A is a 3-ball that is attached to the
rest of H in the same way that the 3-ball in attached in the description of Hblue.

The middle disk {1
2
} × D2 cuts each solid cylinder in half. Each half is

a cone on a disk given by the “bottom” and “sides” of the cylinder. This is
shown below.

Figure 3.15: The cone structure of half of a solid cylinder.
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The two cones that share the disk {1
2
} ×D2. Note that the cone structure

restricted to {0} ×D2 and {1} ×D2 is compatible with the polar coordinates
chosen on these disks. Recall that when the solid cylinders are glued together
to form H, rays of one of these disks are identified with rays of another. This
implies that A can be expressed as a cone relating to the cone structure we
have placed on the half cylinders. Cut Σg along the blue diagram curves (cut
the cylinders in half) and glue in disks along all boundary components. This
is simply S2. The cone on this space with S2 removed is A. This is an open
3-ball. In this way, it is seen that H and Hblue are attached to Σg in the same
way, completing the proof.
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Chapter 4

Corollaries

4.1 Reducible 3-Manifolds

We can put together the results from Section 2.2 and Chapter 3 to make
statements about all compact orientable 3-manifolds (we include reducible 3-
manifolds and reducible Heegaard Splittings now).

Definition 17. Begin with a surface Σ with finitely many disjoint planar
subsurfaces (surfaces without handles), Si. Consider the following equivalence
classes. Each Si forms an equivalence class. Points not in any Si form a
singleton equivalence class. The quotient by this equivalence relation collapses
each planar subsurface to a point. The result, Σ′ will be called a pinched
surface. Σ′ is a pinching of Σ.

Corollary 1. Suppose M is an compact orientable 3-manifold with Heegaard
splitting M = H1 ∪H2 of genus greater than zero. Then it can be described by
a map f : Σg → (∨gS1)× (∨gS1) such that it factors through a map f̃ (shown
below)

Σg
f //

��

(∨gS1)× (∨gS1)

Σ̃g

f̃

55

such that

• Σ̃g is a pinching of Σ.

• f̃ restricted to a surface subspace of Σ̃g describes an irreducible Heegaard
splitting M ′ = H ′1 ∪H ′2, where M ′ is a connect summand of M .
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• Let S be a surface subspace of Σ̃g. If f̃ |S is locally injective unless it
describes S2 × S1

Proof. Let M = H1 ∪H2 be a Heegaard splitting of genus greater than zero.

Case 1: M = S3 Then due to Waldhausen, we know that if we model
S3 as the one point compactification of R3, then the splitting surface is the
standard embedding of a surface of genus g in R3. Then g − 1 disjoint two
dimensional spheres can be chosen so that the complement of these spheres,
with the boundaries coned off, are each a genus one Heegaard splitting on S3.

Figure 4.1: Two disjoint embedded S2 in the genus three Heegaard splitting
of S3, such that the complement is three genus one Heegaard splittings of S3

(when the boundaries are coned off).

Each of these spheres intersect Σg in a single essential simple closed curve.
Call these curves {γi}g−11 . Choose a path δ that has one end point on γ1,
the other on γg−1 and intersects each γi, with 1 < i < g − 1, once. Con-
sider the union of the spheres with δ in M . the complement of this set is g
connected components each with one boundary component homeomorphic to
S2. The splitting surface is also broken into g connected components, each
one homeomorphic to a torus with a disk missing. Cone off the boundary of
each remaining 3-manifold component. This gives g copies of the genus one
Heegaard splitting of S3. (The cone on S2 is a 3-ball, so this makes the the
resulting spaces 3-manifolds. The cone on S1 is a disk, so this makes the re-
sulting splitting surfaces tori. The resulting spaces must be connect summands
of M , so they must be S3.)
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To construct f , we let f take the union δ ∪i γi to the vertex of (∨gS1) ×
(∨gS1). Thus f factors through Σ̃g = a bouquet of g tori. Note that δ ∪i γi,
when thickened in Σg, is a planar surface. On each torus, we let f̃ be a locally
injective map describing the genus one decomposition of S3. This should be
done in a way that makes f̃ well defined on the entire bouquet (only the wedge
point of Σ̃g is sent to the vertex of (∨gS1)× (∨gS1) by f̃). f is then defined as
the composition of the quotient to the bouquet of tori followed by f̃ . One can
see that f describes the Heegaard splitting by noting that the intersection of
the two dimensional spheres with Hi together with δ form a contractible subset
of Hi. Therefore, a deformation retraction of Hi to a graph can be given by
retracting this set to a point, to get a bouquet of solid tori, and then retracting
these solid tori to circles, to get the desired bouquet of circles. The definition
of f̃ implies that each coordinate of f is such a deformation retraction up to
homotopy.

Case 2: M 6= S3 Then let M = P1#P2 . . . Pn be the unique decomposition
of M into primes, where Pi 6= S3.

If M is reducible, using Theorem 5 and Theorem 6 an embedded sphere
can be found in M that realizes a non trivial connect sum of M and intersects
the splitting surface in a single essential simple closed curve. Consider the
complement of this sphere, and cone off the boundaries to give two Heegaard
splittings whose genera sum to g. For each of these, if π2 = 1, repeat the
process. Continue this until all Pi are constructed. By pushing each sphere off
of the 3-ball formed by coning off the boundary in the previous step, there is
a natural embedding of the spheres in M . This process constructs a set of dis-
joint embedded spheres in M that realize the connect sum M = P1#P2 . . . Pn,
and that each intersect the splitting surface in a single essential simple closed
curve.

If M is irreducible we can skip the previous paragraph and begin here. If
the Heegaard splittings of Pi can be destabilized, then continue choosing two
dimensional spheres that realize the destabilizations until the complement of
all the spheres in M is a number of minimal genus Heegaard decompositions
with 3-balls missing.

Proceed as in the previous case. Again, call the family of curves that is
the intersection of the embedded two dimensional spheres with the splitting
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surface {γi}n1 . Again, pick a path, δ, that has one end point on γ1 and the
other on γn and intersects γi once transversally, for 1 < i < n. Thickening
δ ∪i γi give a planar subsurface of Σg. Collapsing this subsurface to a point
gives Σ̃g, which is a bouquet of surfaces whose genera add to g. f̃ takes the
wedge point to the vertex of (∨gS1) × (∨gS1). Each surface subspace of Σ̃G,
Sj, is the image of a component of the complement of δ ∪i γi in Σg. Each
such component is embedded in a component of the complement of the two
dimensional spheres in M . Each of these three dimensional components is
either a prime Pi with a 3-ball missing, or a 3-sphere with a 3-ball missing.
The map f̃ is defined on Sj to be a locally injective map describing Pi or S3

accordingly. That is unless Pi = S2×S1, in which case a locally injective map
is not possible, and any map describing the genus one Heegaard splitting of
S2×S1 should be chosen. Again, this should be done so that f̃ is well defined
on the entire bouquet of surfaces Σ̃g.

Remark 10. There are reducible Heegaard splittings that can be described
by locally injective maps. Osborne found examples of genus two Heegaard
diagrams that are filling and taut. These genus two Heegaard splittings are
reducible, but they can be described by locally injective maps using. This can
be shown using the methods of the proof of Theorem 8. An example like this
can be seen in Section 5.1.

In the the remainder of the corollaries (Chapter 4) we by and large do not
discuss the reducible case discussed in this section. However the reader should
keep in mind that analogous arguments to the proof of Corollary 1 can be
used to address reducible Heegaard splittings using a pinched surface in the
discussion that follows.

4.2 Square Complexes

Note that in the proof of Theorem 8, we saw that the splitting surface in an ir-
reducible Heegaard splitting has a natural family of square complex structures.
We also saw that that there are maps, f : Σg −→ (∨gS1)× (∨gS1), describing
the Heegaard splitting that are combinatorial maps of cube complexes with
respect to these structures. In fact, the square complex structures on the sur-
face must be non-positively curved. This is because the links of vertices on
the surface are sent to the link of the vertex of (∨gS1) × (∨gS1). Recall that
the links are each graphs, and the map between links must send vertices to
vertices and edges to edges, because f is a combinatorial map of cube com-
plexes. Therefore, if the minimum length of cycles in the domain is bounded
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below by the minimum length of cycles in the target. Since (∨gS1) × (∨gS1)
is non-positively curved, this implies the square complex structures on the
splitting surfaces are also non-positively curved.

Corollary 2. For every irreducible Heegaard splitting, there is a natural family
of surfaces with non-positively curved square complex structures.

For every compact orientable 3-manifold with Heegaard splitting M = H1∪
H2, there is a natural family of pinched surfaces with non-positively curved
square complexes.

In both cases, the 3-manifold (with Heegaard splitting) can be recovered
from a single member of this family. Members of the family do not have self
osculating hyperplanes.

The last sentence of this corollary will be explained later, but for now,
without explanation, we state that not having self osculating hyperplanes is
equivalent to tautness (Definition 16).

Corollary 2 places Heegaard decompositions of 3-manifolds into the cate-
gory whose objects are two dimensional cube complexes and whose morphisms
are combinatorial maps.

Consider a combinatorial map between two square complexes that describe
Heegaard splittings. One way in which this is possible is a n-sheeted branch
covering from a surface to another with a pair of branch points of degree n (the
branch points must occur at vertices). In this case, the number of Heegaard
diagram curves and the genus are both divided by n (taking Euler character-
istic into account). This can be extended to a branch covering between the
3-manifolds they describe. By taking an arc inside each handle body that
connects the two ramification points, and does not intersect any of the disks
whose boundaries are Heegaard diagram curves (dual to the square complex
structure), an embedded circle in the 3-manifold is formed. A branch map can
be created with the circle being the branch points of degree n.

Question 1. Which combintorial maps between splitting surfaces with square
complex structures can be extended to maps between 3-manifolds?

4.2.1 Handle Slides

Handle slides are realized in the square complexes as follows. Dual to the
square complex structure, is a Heegaard diagram describing the 3-manifold. A
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blue handle slide of this Heegaard diagram is determined by choosing a simple
path γ in the complement of the blue curves on the splitting surface, with
end points on distinct blue curves, α and α′. This is because the space given
by the union of the path and the two blue curves can be thickened to give
a pair of pants, P with two blue cuffs. Then by Definition 7, a handle slide
is performed by replacing one of the blue curves on the cuffs of these pants
with the remaining cuff that is not blue. This path, γ, can be changed by a
homotopy that keeps its end points on the blue curves, and keep the rest of the
path in the complement of the blue curves so that it is in the 1-skeleton of the
square complex structure. From here, we modify the square complex structure
as follows. Consider the cuff of P that is not blue. It is homotopic to a closed
curve ρ in the one skeleton of the square complex given by concatenating four
paths:

1. Without loss of generality, assume γ intersects the right side of α and
the left side of α′. Beginning at the point x where γ intersects the
boundary of a square containing a segment of α′, travel “parallel” to
α′ (not intersecting α′) along the boundaries of squares intersecting α′,
ending at x again.

2. Beginning at x, travel along γ̄ (= γ(1 − t)) to the point y, where γ
intersects the boundary of a square containing a segment of α.

3. Beginning at y, travel “parallel” to ᾱ (not intersecting α) along the
boundaries of squares intersecting α, ending at y.

4. Beginning at y, travel along γ, ending at x.

Suppose the curve ρ is n edges long. Cut along this curve and glue in a
cylinder of height one square and circumference n squares. After this, remove
the cylinder consisting of squares that α intersects. Glue together the exposed
boundaries by identifying pairs of edges that were on the boundary of a square
that intersected α. This will give a new square complex that describes the same
3-manifold and this operation is dual to a handle slide. Below, on the top left,
α and α′ are shown in blue and γ is shown in orange. On the top right, the
curve ρ is shown in orange. On the bottom left, the added cylinder is shown
in green. Finally, on the bottom right, the cylinder consisting of squares that
intersect α is removed. Notice the difference in the shown blue diagram curves.
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Figure 4.2: An example of a handle slide with square complexes.

4.2.2 Relation to Work of Haglund and Wise

Corollary 2 relates to the main theorem (Theorem 1.1) in the aforementioned
paper [2], which says that if a cube complex does not have any of four types
of pathologies, then there is a local isometry from the cube complex to a
standard cube complex of a finitely generated right-angled Artin group. The
various parts of this statement are explained, as it relates to this work, as
follows.

The pathologies are illustrated below [2].

Figure 4.3: Four pathologies of the 2-skeleton of a cube complex.

They are defined in terms of strips of the surface Σ.
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Definition 18. Consider an alternating sequence of squares, σi, and edges ei,
{σ0, e0, σ1, e1, σ2, e2, . . . , σn, en}, such that:

• σ0 = σn and e0 = en

• ei and ei+1 are edges of σi+1 that are not adjacent.

Let S be the closure of the union of all the edges and squares in the above
sequence. S is a strip of Σ.

Each pathology is then defined as follows. The numbers match Figure 4.3.

1. A strip for which there is i, j such that σi = σj and ei 6= ej.

2. A strip that is not an orientable subspace of Σ.

3. The third pathology is called a self osculating hyperplane. Orient e0
arbitrarily. Orient the remaining ei so that their formal sum is a cocycle.
Pathology (3) is the existence of a vertex that contains ei and ej in its
coboundary with the same sign.

4. The fourth pathology is called inter osculating hyperplanes. Suppose
there are two strips S and S ′ such that σi = σ′j but ei and e′j are consec-
utive edges in the boundary of the shared square σi. Orient ei arbitrarily,
and then orient the remaining edges of S so that they form a cocycle.
Orient e′j so that ei and e′j appear with the same sign in the coboundary
of the vertex at which they meet. Then orient the remaining edges in
S ′ so that they form a cocycle. Pathology (4) occurs when there is a
vertex, v disjoint from σi that is in the intersection of S and S ′ such that
an oriented edge of S and and oriented edge of S ′ appear with the same
sign in the coboundary of v.

In our setting, which begins with a cube complex structure on Σ that
describes a Heegaard splitting, each pathology can be described in terms of the
Heegaard diagram dual to the square complex structure. Again, the numbers
correspond to the picture above.

1. A Heegaard diagram curve intersects itself.

2. A neighbourhood of a diagram curve is a Möbius band (instead of a
cylinder).
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3. (self osculating hyperplane) A Heegaard diagram is not taut. This can
be seen by considering the vertex in Figure 4.3, (3), where four squares
are shown meeting. This vertex is dual to some polygon. This polygon
intersects one side of the following curve in two connected components.
A single Heegaard diagram curve cuts all the shown squares in (3) con-
secutively in half. By definition this is not taut.

4. The fourth pathology is described by two Heegaard diagram curves, α
and β. The pathology occurs when there are two polygons that intersect
the same side of α and they also both intersect the same side of β. One
of the polygons has a segment of α and a segment of β consecutively
on it’s boundary, while for the other polygon, the segment of α and the
segment of β are not consecutive on its boundary.

A square complex can be built where X0 is a single point. There is an
edge for each Heegaard diagram curve, so that X1 is a bouquet of 2g circles.
Then a square is attached to a pair of edges so as to form a torus, if the two
corresponding diagram curves intersect. Again, this is described in our setting,
and the more general definitions can be found in [2]. Call this square complex
A.

Definition 19. A finitely generated right angled Artin group is a group that
can be presented with finitely many generators and relations that are commu-
tators of pairs of these generators.

Note that A is the presentation complex of such a group.

Definition 20. A is called the standard cube complex of its fundamental group
(which is a finitely generated right angled Artin group).

A is a subspace of (∨gS1) × (∨gS1) (the target space of a map describing
the Heegaard splitting). Dual to each square in Σg, there are two diagram
curves intersecting. For each pair of diagram curves that intersect, there is
a square in A that forms a torus together with the edges that correspond to
these two curves. Thus there is a natural combinatorial map of cube com-
plexes Σg → A ⊂ (∨gS1) × (∨gS1) given by sending each square, σ, in Σg to
the square in A which forms a torus together with the two edges that corre-
spond to diagram curves that intersect in the interior of σ.

In fact, this map is exactly the map we have been considering. To be
precise, the results of Chapter 3 could be stated with this vocabulary as follows.
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Corollary 3. If M is an irreducible 3-manifold, there exist Heegaard diagrams
for M such that dual to the diagram curves on the splitting surface, Σg, is a
square complex that does not exhibit pathologies (1), (2), (trivially) or (3)
(tautness), and therefore, the natural combinatorial map of square complexes
Σg → A ⊂ (∨gS1)× (∨gS1) is locally injective.

Now the theorem of Haglund and wise supposes a metric on the square
complexes by taking each square to have the standard euclidean metric of a
1 × 1 square (and each edge is of length one). Their theorem restricted to
surfaces says that a square complex on a surface, Σ, that does not exhibit
pathologies (1), (2), (3), or (4) will map locally isometrically by the natural
combinatorial map of square complexes Σ→ A.

Remark 11. The square complexes in this dissertation have “3/4” of the hy-
pothesis of this Haglund and Wise’s theorem, and result in a local embedding
instead of a local isometry to the same target space, which is a subspace of
the product of bouquets.

To see that the map constructed in Theorem 8 is not a local isometry
with the metric defined above, consider the following. In the case g > 1,
any square complex structure on Σg must have a vertex where more than
four squares meet. This is due to Euler characteristic considerations. Now
suppose we have a square complex structure on Σg that describes an irre-
ducible Heegaard splitting. Let f be the combinatorial map of square com-
plexes Σg → (∨gS1)×(∨gS1) constructed in Theorem 8. Take a vertex, v, that
is of valence greater than four. Consider the map from the link of v to the link
of f(v) in the target space. Recall the link of f(v) is the complete bipartite
graph on (2g, 2g). The link of v is circular graph with number of vertices and
edges equal to the valence of v. The domain link contains vertices that are
three edges apart because the valence of v is greater than four. However, in
the target link, their image is only one edge apart (the two vertices are not in
the same partition of the bipartite graph because a path of three edges must
begin and end in different partitions). The existence of an edge that connects
these two points implies there is another square corner meeting f(v). This
corner contains a right angled triangle in (∨gS1) × (∨gS1) whose orthogonal
edges are the image of the shortest path between two points in the domain,
and the hypotenuse is the shortest path between their images. Thus f is not
a local isometry at v. Below, v is shown. The link of v is shown in grey. Two
points in the link that are three edges apart and the shortest path between
them are shown in orange. The image of all this is shown in the same colours.
As proven previously, a neighbourhood of the f(v) cannot be embedded in R3,
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and so all of it cannot be simultaneously pictured. Nevertheless, due to the
argument above, there is a square meeting f(v) as shown in green. It is clear
that the orange path in the green square is not the shortest between its end
points. The shortest path is shown in green.

Figure 4.4: f is not a local isometry.

Question 2. What Heegaard splittings can be described by square complex
structures that do not inter osculating hyperplanes? What Heegaard splittings
can be described by square complexes structures that do not have any of the
described pathologies?

4.3 Conformal Structures and Quadratic Dif-

ferentials

We can also consider the conformal structure induced by these squares to get
a family of Riemann surface structures on the splitting surface. However, in
general a Riemann surface can be broken into flat squares in many ways, so
a conformal structure alone does not capture the information of the Heegaard
splitting or 3-manifold. An exception to this is genus one splittings of lens
spaces, described in Section 5.1. For other Heegaard splittings, additional in-
formation is required.

The fibres of the two coordinates of a combinatorial map of square com-
plexes describing a Heegaard splitting are transversal foliations with singular-
ities. This is can be seen by considering the construction of these maps on the
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interior of each square. This information can be captured with a quadratic
differential.

Definition 21. A quadratic differential, on a Riemann surface Σ, is a holo-
morphic section of T ∗Σ⊗ T ∗Σ.

Definition 22. Locally, a vector field of unit length on which a quadratic
differential, φ, is positive can be integrated to give a global foliation of Σ with
singularities. This is called the horizontal foliation of φ. Another foliation
with singularities can be constructed such that φ on tangent directions is
negative. This is called the vertical foliation of φ.

Remark 12. These two foliations with singularities are orthogonal (Note that
if φ = f(z)dz ⊗ dz and φ(a∂x + b∂y) > 0, then φ(−b∂x + a∂y) < 0, where
a, b ∈ R). In particular dz ⊗ dz has positive foliation made up of horizontal
lines in C, and negative foliation made of vertical lines.

A quadratic differential with horiztonal and vertical foliations equal to the
fibres of the two coordinates of the map describing the Heegaard splitting
can be created as follows. Make coordinate patches for each square to a unit
square in C with quadratic differential dz⊗ dz, and making small disk shaped
patches at the vertices that map to the unit disk in C with quadratic differ-
ential zndz⊗ dz where 2n+ 4 is the valence of the vertex. The square patches
should be chosen to overlap each other but not include the vertices.

In the picture below, which represents the splitting surface of a genus
three decomposition of the three dimensional torus, these fibres are shown. It
should be imagined embedded in a cube with opposite faces identified. The
entire cube with opposite faces identified is T 3, and the two components of the
complement of the surface in this space are genus three handle bodies. Points
on the same blue leaf have the same image by the first coordinate, and points
on the same red leaf have the same image by the second coordinate. This
example is explained in more detail in Section 5.2.
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Figure 4.5: A surface of genus three shown with the fibres of the two coordi-
nates of a map describing a genus three Heegaard splitting of T 3.

Corollary 4. For every irreducible Heegaard splitting, there is a natural family
of pairs (Riemann surface, quadratic differential).

For every compact orientable 3-manifold with Heegaard splitting M = H1∪
H2, there is a natural family of pinched surfaces with each surface subspace
having a conformal structure and a quadratic differential.

Again, in both cases the 3-manifold and Heegaard splitting can be recovered
from any member of this family.

One can also ask about maps between two pairs (Σ, φ)→ (Σ′, φ′) inducing
maps between the 3-manifolds they describe, as in Question 1. The effect of
handle slides on these structures is also similar to Section 4.2.1, and is de-
scribed in terms of strips as before.

It is interesting to observe the change to a 3-manifold and Heegaard split-
ting induced by changing the conformal structure and quadratic differential
on a surface describing it.

Remark 13. Rational fractional Dehn twists along certain simple closed curves
can change a a pair (Σ, φ), describing one 3-manifold, into a pair (Σ′, φ′),
describing another 3-manifold. This is described in detail in the case g = 1 in
Section 5.1.

4.3.1 Tautness

The tautness of Definition 16 that is crucial for Theorem 8 is not captured
in Corollary 4. This can be described this in the language of quadratic dif-
ferentials by contrasting abelian differentials with quadratic differentials. The
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following follows the exposition in Papadopoulos’ Handbook of Teichmüller
Theory [11].

Definition 23. An abelian differential is a holomorphic 1-form on a Riemann
surface.

A natural question is whether a given quadratic differential, φ can be writ-
ten as ω ⊗ ω, where ω is an abelian differential.

Definition 24. Two orthogonal foliations arise from an abelian differential
ω by integrating ω in simply connected neighbourhoods to give holomorphic
coordinate patches. Consider two such overlapping patches U and V . Let
p ∈ U , q ∈ V and a ∈ U ∩ V . Then the coordinate maps are u(a) =

∫ a
p
ω and

v(a) =
∫ a
q
ω. Note that u(a)− v(a) is the constant

∫ q
p
ω. Thus the transition

map is u = v +
∫ q
p
ω, which is a translation in C. Now, one can pull back

the foliation by horizontal lines and the foliation by vertical lines in C to
the Riemann surface consistently over coordinate patches. These define the
horizontal foliation and vertical foliation of ω.

Remark 14. Note that the horizontal and vertical foliations of ω are the hori-
zontal and vertical foliations of ω ⊗ ω (away from the singularities).

One can construct a branched double cover of a Riemann surface with a
quadratic differential (Σ, φ). If locally φ = f(z)dz ⊗ dz, a simply connected
neighbourhood of each point is covered by two conformally equivalent neigh-
bourhoods, one with the abelian differential

√
f(z)dz and one with the abelian

differential −
√
f(z)dz. If this double cover is disconnected, then φ can glob-

ally be written as the square of one of its roots. The transition map between
the coordinate map u(a) =

∫ a
p

√
f(z)dz and v(a) =

∫ a
p
−
√
f(z)dz is u = −v.

This is a rotation by π. Thus if we have a quadratic differential that is not
the square of an abelian differential, we

Restrict attention to a strip (Definition 18) of Σ. What is the obstruction
to finding an ω here such that φ = ω ⊗ ω? We can think of a strip as a
cylinder (with one foliation by circles and a transverse foliation whose leaves
have end points on opposite boundary components) that is immersed in Σ.
On the cylinder, it is possible to choose coordinate charts to rectangles in C
such that the transition maps are translations. When the strip is immersed
in Σ, if a segment of a boundary component of the cylinder is identified with
itself, transition maps that are rotations will also be required. In the picture
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below, consider the shown coordinate patches. If each are sent to C so that
the red foliation is horizontal, all the transition maps cannot be translations.

Figure 4.6: The foliation in red cannot be induced by an abelian differential.

Corollary 5. A taut Heegaard diagram of an irreducible 3-manifold, M , con-
structs a pair (Σ, φ) describing M such that φ is the square of an abelian
differential when restricted to any strip of Σ.

Unfortunately, we cannot say that φ is the square of an abelian differential
globally on Σ because the foliations may have odd ordered singularities.

Question 3. What Heegaard splittings are described by pairs (Σ, φ) such that
φ = ω ⊗ ω?

4.3.2 Relation to Work of Wolf

Wolf had the idea of studying quadratic differentials on Riemann surface, Σ,
using equivariant maps from the universal cover of a Riemann surface to trees
whose edges have lengths in R (there is a π1(Σ) action on both domain and
target) [18]. Given such an equivariant map, a foliation with transverse mea-
sure is given on the universal cover by the fibres of the map. A path transverse
to the foliation is measured by taking the length of its image in the tree. This
induces a foliation with transverse measure on the Riemann surface because
of the equivariance. Classes of foliations can be constructed by looking at
homotopy classes of these equivariant maps. Conversely, beginning with a
quadratic differential on a Riemann surface, it can be lifted to the universal
cover. Taking a quotient to the vertical leaf space, we get a π1(Σ) equivariant
map to a tree. Each edge on the tree corresponds to a one parameter family
of vertical leaves. The length of this edge is transverse width of this family,
obtained by integrating the real value of the local square root along a path
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transverse to this family, and taking its absolute value.

Wolf proved that given a Riemann surface, Σ, and a class of measured
foliations, F, there is a unique quadratic differential, φ, such that the vertical
leaves of φ are F. This is a classic theorem of Hubbard and Masur [6], to which
Wolf’s proof brings a new perspective.

His approach is to show the existence of a harmonic representative in a class
of maps corresponding to a measured foliation F. He then goes on to show
that one can construct a quadratic differential from derivatives of this map,
and that its vertical leaves are the fibres of the map and that this quadratic
differential is unique with this property [18].

Definition 25. A harmonic map h : Σ→ T between a Riemann surface and
a tree with real edge lengths is a map such that except for at a discrete set of
points, it is locally a harmonic map onto its image. That is for each point in
Σ, there is a neighbourhood around it on which h mapping to its image is the
real part of a holomorphic function.

It is immediate that the maps Σg → (∨gS1) × (∨gS1) constructed in this
dissertation have harmonic coordinates with respect to the conformal structure
on the splitting surface discussed in this section.

Corollary 6. Consider a combinatorial map of square complexes f : Σg →
(∨gS1)×(∨gS1) describing an irreducible 3-manifold. Apply a conformal struc-
ture on Σg such that each square isomorphic to a unit square in C. The coor-
dinate maps f1 and f2 (where f = f1 × f2) are harmonic.

Recall that harmonic maps are also energy minimizing maps.

Definition 26. Given a map between Σ with a Riemannian metric and R,
f : Σ→ R, the energy is E(f) =

∫
A
〈df, df〉dA, where dA is the area form, and

the inner product is induced by the Riemannian metric.

Remark 15. While the definition of energy requires a conformal metric to be
chosen on Σ, energy does not vary depending on this choice.

Remark 16. Consider a harmonic coordinate of a map describing a 3-manifold,
f1 : Σg → ∨gS1. Using the flat metric on each square of Σg, there exists a
vector field v on the square, such that at each point, df1(w) = 〈v, w〉 for all
tangent vectors w. Then 〈df, df〉 := 〈v, v〉. Consider that we have charts
that take each square to the square {a + ib|a, b ∈ (0, 1)} ⊂ C and with these
coordinates, f1 is a (the real part) of each point. Therefore df(w) = 〈∂y, w〉,
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and 〈df, df〉 = 〈∂y, ∂y〉 = 1. Therefore the energy of each coordinate on each
square is 1 (since the area of each square is 1).

Consider an arbitrary Heegaard splitting of a 3-manifold, M . Consider a
a map f : Σg → (∨gS1) × (∨gS1) describing it. Let f = f1 × f2. For every
conformal structure on Σg, we can calculate E(f1) + E(f2) using a conformal
metric. If M is irreducible, a conformal structure that minimizes this function
is found using the methods previously discussed in the first paragraph of this
section (Section 4.3). If M is not irreducible, there are two possibilities.

Case 1 E(f1) +E(f2) does not have a minimum in the Teichmüller space of
Σg. In this case, the infimum of the total energy E(f1) +E(f2) must still exist
since it is bounded below by zero. Therefore there is a sequence of conformal
structures on Σg that does not converge in the Teichmüller space with total
energy converging to this infimum. In the augmented Teichmüller space, this
sequence converges to a marked Riemann surface with nodes. The 3-manifolds
described by points in the augmented Teichmüller space are discussed in Sec-
tion 4.1, Corollary 1. This occurs when there is a simple closed curve in Σg

that is sent by f (and therefore by f1 and f2) to a point. Then both E(f1)
and E(f2) decrease when the length of this curve decreases. Decreasing the
length of this curve limits to collapsing this curve to a point, giving a Riemann
surface with nodes. Recall the diagram of Corollary 1.

Σg
f //

q1
��

(∨gS1)× (∨gS1)

Σg
/
γi

q2
��

Σ̃g

f̃

;;

We have added the Riemann surface with nodes Σg
/
γi (γi are disjoint simple

closed curves that are sent to distinct points by q1). One can think of Riemann
surfaces with nodes as several Riemann surfaces with pairs of points identified.
Then q2 sends any Riemann surface components that are spheres to points to
create the pinched surface Σ̃g. The composition f̃◦q2 has harmonic coordinates
on Riemann surface components that are not spheres and do not describe
S2 × S1.
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Case 2 E(f1) + E(f2) has a minimum in the Teichmüller space of Σg. In
this case, we have transverse foliations (if they were not transverse, it would
be possible to decrease the energy which moving to infinity in the Teichmüller
space, as discussed in in Case 1). This case occurs when a filling Heegaard
diagram can be recovered from f . The examples of Osborne described in
Section 5.1 and also in Remark 10 are a case of this. He gives Heegaard
diagrams of lens spaces of genus two which are filling and taut. This results
in a locally injective map, which results in a Riemann surface and quadratic
differential describing these splittings. However, the intersection number of
the diagrams he provides are lower than the intersection number of the genus
one diagram of the same space. This implies there are fewer squares on the
genus two splitting surface than on the genus one splitting surface. Therefore
the total energy of the harmonic maps describing these genus two splittings is
less than the energy of harmonic maps describing the genus one splittings. It
is perhaps surprising that a reducible Heegaard splitting could be described
by a lower energy map than an irreducible splitting for the same manifold.
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Chapter 5

Examples

5.1 Lens Spaces

Consider 3-manifolds that have a Heegaard splitting with a single handle.
These are called lens spaces. They were introduced by Tietze in 1908 [16].
They are all prime, and S2 × S1 is the only lens space that is reducible.
Excluding S2 × S1, all the genus one Heegaard splittings of lens spaces are
irreducible. This is because any essential simple closed curve on the two di-
mensional torus does not separate the surface. Therefore the existence of such
a curve that bounds a disk in both handle bodies implies the existence of a
two dimensional sphere embedded in the lens space that does not separate.
As we have seen earlier, in the discussion after Remark 5, this implies that
S2×S1 is a connect summand of the lens space. This is a contradiction, as we
have excluded S2×S1 in our hypothesis and lens spaces are prime. Therefore,
there cannot be a reducing curve and the Heegaard splitting is irreducible. We
restrict attention to irreducible lens spaces in what follows (we do not consider
S2 × S1).

A lens space can be described by two integer parameters p and q, and is
denoted L(p, q). Recall they have genus one Heegaard splittings, so Heegaard
diagrams for these are pairs of simple essential curves on a two dimensional
torus. For simplicity we define the p and the q in terms of Heegaard dia-
grams. This is not how it is usually done, but this view ties in best with this
dissertation. The first integer, p is equal to the number of intersections of a
Heegaard diagram for L(p, q) (notice there are no handle slides for the single
genus case). The second integer, q is coprime to p, and is found by starting
at a point on a diagram curve and numbering the intersection points as one
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travels along the curve (pick a direction). Then starting at a point on the
other curve, read off the numbers while travelling along it (pick a direction).
The consecutive numbers on the list obtained will differ by a constant, modulo
p. This constant is q, and L(p, q) = L(p,−q(modp)) = L(p, q−1(modp)). It
turns out the fundamental group of the lens space L(p, q) is Z/Zp.

Consider the domain and the target for maps that describe genus one Hee-
gaard splittings. The splitting surface is the two dimensional torus, and the
target space is the product of two bouquets of a single circle. This is also the
two dimensional torus. Now because of this thesis, we know there is a locally
injective representative map that describes the Heegaard splitting. Locally
injective endomorphisms of T 2 are covering maps. And so, the irreducible lens
spaces can be described by finite sheeted covering maps of the torus.

Claim 6. The degree of the covering map is p.

Proof. Begin with a covering map f : T 2 −→ S1 × S1 that describes L(p, q).
Recall, that one can obtain a Heegaard diagram for the splitting described by
taking the curves that are the coordinate pre-images of a point on each circle
coordinate of S1 × S1. Below we see two points whose pre-image should be
considered to obtain a diagram. The pre-image of the blue points should be
coloured blue and the pre-image of the red points should be coloured red.

Figure 5.1: S1 × S1 shown with a blue point and a red point selected on each
coordinate circle.

Note that the blue and the red curves intersect once above. Call the in-
tersection point y. Now, in the domain T 2, the the diagram we obtained has
p intersection points. Therefore there are p pre-images of y. This shows that
the degree of f is p.
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In the example below, using the notation of the proof above, f is the map
between tori and it describes L(5, 2).

Figure 5.2: Pre-images of the red and blue points.

The other integer, q, can be seen in the square complex structures and
conformal structures. Taking each S1 to be of unit length, we have a metric
on S1 × S1, which imparts a conformal structure of a single square on the
target torus. This induces a conformal structure made of p squares on the
domain torus. Recall that the squares can be combinatorially drawn as the
dual to the Heegaard diagram. This shows how the p squares are attached
together to give a torus.

Proposition 3. The conformal structure of the domain T 2 is given by at-
taching p squares to make a cylinder of circumference p and height one, and
then attaching the remaining boundary components with a q

p
twist. There is a

distinct conformal structure for each lens space.

Proof. The first sentence becomes clear when one draws the squares dual to
the diagram, and observes how they are attached to each other. This is best
seen in the universal cover. Above, we saw part of the universal cover of the
Heegaard diagram of L(5, 2). One can imagine the corresponding picture for
any lens space. If we lift a cell decomposition dual to the Heegaard diagram to
the universal cover, we obtain a tiling by squares dual to the previous picture.
The orange cell decompositions below are this dual decomposition. Looking
back at the picture above, one may consider what the fundamental domains
of the infinite sheeted covering map on the left look like. These fundamental
domains are drawn in black on the picture below. From here, it can be seen
that the top of an orange square is not glued to it’s own bottom but to the
bottom of the square q squares to the right. This shows that a q

p
twist is
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present, since there are p orange squares in one fundamental domain. Below
L(5, 1) is shown for comparison.

Figure 5.3: Fundamental domains in the universal cover of the splitting surface.

The second sentence in this claim comes from the following observations.

1. The two spaces obtained by gluing a flat cylinder of circumference p
and height one with a q

p
twist and with a q+np

p
twist are conformally

equivalent for any integer n.

2. The two spaces obtained by gluing a flatcylinder of circumference p and
height one with a q

p
twist and with a −q(modp)

p
twist are conformally

equivalent (there is an orientation reversing conformal homeomorphism).

3. After the squares are glued together, “tops and bottoms” of the squares
form a simple closed curve on the torus, while the two other sides of all
the squares form another simple closed curve. A fractional Dehn twist
of q

p
along one of these curves gives the same conformal structure as

performing a fractional Dehn twist of q−1(modp)
p

along the other curve.
This can be seen with a calculation in modular arithmetic.

These are exactly the considerations when one is taking a quotient of the
upper half plane to obtain the moduli space of conformal structures on the
torus. Therefore the conformal structure on T 2 induced by L(p, q) and L(p′, q′)
are equivalent if and only if L(p, q) is homeomorphic to L(p′, q′).

Example of Osborne: A Genus Two Splitting of a Lens Space

The author understood these examples through conversation with John Hempel,
who referenced the work of Osborne [9], who cites the work of Stevens [15].
Consider the following Heegaard diagram.
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Figure 5.4: A Heegaard splitting for a lens space with fundamental group
Z/13Z.

Let a, b, c, d be non zero integers such that |ac − bd| = p, where p is a
prime. Then Z/pZ = 〈x, y, |xayb = 1, xcyd = 1〉. Further, this presentation
can be realized by a Heegaard diagram [9], [15]. This means that there is a
genus two Heegaard diagram such that if the blue curves are labelled x and
y, the two relations describe the intersection of two red curves with these blue
curves. The 3-manifold this describes is a lens space with fundamental group
Z/pZ. The example above is such a diagram with a = 5, b = 2, c = 1, d = 3.
It describes a lens space with fundamental group Z/13Z.

By construction it has a+ b+ c+d = 11 intersection points, which is fewer
than the 13 intersection points needed for a diagram for this manifold of genus.
Any Heegaard decomposition for genus greater than one is reducible [1], so in
particular this one must be reducible. Still, this diagram is filling and taut.
This can be seen by careful inspection of the connected components of the
complement. Most components are rectangles, and can be seen at a glance.
The complements that might be more difficult to follow as they wind around
the surface are shown below. after some inspection, it can be seen that they
are polygons. They are all intersect each side of each curve in at most one
component (the diagram is taut).
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Figure 5.5: Connected components of the complement of the Heegaard dia-
gram.

5.2 Three Dimensional Torus

Consider the three dimensional torus, T 3, as a solid cube with opposite faces
identified. A Heegaard splitting can be found by considering two embedded
graphs. Give the solid cube the structure of a cell complex with eight vertices,
twelve edges, six faces and one 3-cell. After identifying opposite faces of the
cube, the 1-skeleton of the resulting cell complex has one vertex and three
edges. The 1-skeleton of the dual cell complex has one vertex (because the
original decomposition had one 3-cell), and three edges (because the original
decomposition had three faces). These two graphs are disjointly embedded as
shown below.
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Figure 5.6: A genus three Heegaard splitting of T 3.

Thickening these two graphs until T 3 is exhausted results in a genus three
Heegaard splitting. The picture above shows the splitting surface. This Hee-
gaard splitting can be described by the map induced on the splitting surface
by retracting each handle body to the shown 1-skeleton it contains. in the
picture below (also seen in the previous section), the fibres of the coordinate
taking the splitting surface to the edges of the cube are shown in red. The
fibres of the coordinate taking the splitting surface to the dual 1-skeleton are
shown in blue. This Heegaard splitting is irreducible and the described map
is locally injective.

Figure 5.7: Coordinate fibres of a locally injective map describing a genus
three Heegaard splitting of T 3.
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