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Abstract of the Dissertation

The Ricci flow on manifolds with boundary

by

Panagiotis Gianniotis

Doctor of Philosophy

in

Mathematics

Stony Brook University

2013

In this thesis, we investigate issues related to boundary
value problems for the Ricci flow.

First, we focus on a compact manifold with boundary and
show the short-time existence, regularity and uniqueness of the
flow. To obtain these results we impose the boundary condi-
tions proposed by Anderson for the Einstein equations, namely
the mean curvature and the conformal class of the boundary.
We also show that a certain continuation principle holds. Our
methods still apply when the manifold is not compact, as long
as it has compact boundary and an appropriate control of the
geometry at infinity.

Secondly, motivated by the static extension conjecture in
Mathematical General Relativity, we study a boundary value
problem for the Ricci flow on warped products. We impose the
boundary data proposed by Bartnik for the static vacuum equa-
tions, which are the mean curvature and the induced metric of
the boundary of the base manifold.
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We conclude the thesis applying the results above to study
the flow on a 3-manifold with symmetry. We show the long
time existence of the flow and study its behavior in different
situations.
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Chapter 1

Introduction

Ricci flow has been proven to be a powerful tool of geometric analysis in the
study of the relation between the geometry and topology of Riemannian
manifolds. In this thesis, motivated by certain problems in geometry and
mathematical general relativity on manifolds with boundary, we develop a
general existence theory for the Ricci flow on such manifolds. This chapter
begins with a brief overview of the Ricci flow, continues with a description
of prior work on the Ricci flow on manifolds with boundary and concludes
with the main results of the thesis.

1.1 A brief overview of Ricci flow.

Let (M, g0) be a complete, compact Riemannian manifold. We say that a
one-parameter family of complete Riemannian metrics g(t) with g(0) = g0
evolves by the Ricci flow, if it satisfies the partial differential equation

∂tg = −2 Ric(g).

The Ricci flow was introduced by Hamilton in 1982 in [Ham82], where he
showed that for every intial metric g0 the flow admits a unique solution
for small time. The intuition is that the Ricci flow should behave as the
geometric analogue of the heat diffusion equation

∂tu = ∆u.

Heat diffusion tends to smooth out uneven heat distributions and flow
towards harmonic functions (i.e. constants when M is closed). In a simi-
lar manner it is expected that Ricci flow should inherit some of this nice
behavior, although it is a much more complicated, nonlinear system of
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equations.
Due to the diffeomorphism invariance of the Ricci tensor it is preferable

to understand Ricci flow as a dynamical system in the quotient space of
Riemannian metrics modulo diffeomorphisms and rescalings. The steady
state solutions in this picture will be Einstein metrics, i.e. metrics that
satisfy Ric(g) = λg, or more generally metrics which satisfy an equation
of the form Ric+LXg = λg for some constant λ and a vector field X. Such
metrics are called Ricci solitons in the literature.

The normalized Ricci flow, defined as

∂tg = −2 Ric+
2
n

rg,

r being the average of the scalar curvature, is equivalent to the Ricci flow
up to rescalings and preserves the volume. The following Theorem by
Hamilton, justifies the analogy with the heat equation.

Theorem 1.1. Let (M, g0) be a three dimensional closed Riemannian manifold
with positive Ricci curvature. Then, the solution to the normalized Ricci flow
exists for all time and converges exponentialy to a metric with constant positive
curvature.

The Ricci flow has had many successes since then. We will only men-
tion and give references to a few of them here. On surfaces, in [Ham88]
and [Cho91] it is shown that the normalized Ricci flow always converges
to a metric of constant curvature. The normalized Ricci flow on mani-
folds of dimension great or equal to four and positive curvature operator
converges to a metric with constant positive curvature. See for instance
[Ham86],[BW08]. Also, in [Ham86] Ricci flow is used to classify all 4-
manifolds that admit metrics with nonnegative curvature operator. More-
over, Brendle and Schoen used Ricci flow to prove the differentiable sphere
Theorem in [BS09].

The analogy with the heat equation, taken literally turns out not to be
accurate since the flow will in general develop singularities. It is a ma-
jor area of active research on Ricci flow to understand in depth how these
singularities form. Perelman, introduced new tools in [Per02], [Per03a],
[Per03b] that allowed him to understand singularities in dimension three
and realized Hamilton’s program towards the proof of Thurston’s Ge-
ometrization conjecture using Ricci flow with surgery.

In the realm of complete noncompact manifolds, Shi in [Shi89b] proved
that if the initial metric has uniformly bounded curvature, then Ricci flow
admits a solution with uniformly bounded curvature for small time. In
particular he shows the following Theorem.
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Theorem 1.2. Let (M, g0) be an n-dimensional complete noncompact Rieman-
nian manifold with Riemannian curvature tensor satisfying

|Rm |2 ≤ k0, on M.

Then, there exists T(n, k0) > 0 such that the Ricci flow equation has a smooth
solution g(t) with g(0) = g0 for 0 ≤ t ≤ T(n, k0). Moreover it satisfies estimates

sup
M
|∇m Rm |2 ≤ Cm

tm , 0 ≤ t ≤ T(n, k0).

He also proceeds to investigate the behaviour of the flow on noncom-
pact three-manifolds with bounded nonnegative Ricci curvature obtaining
the full classification of such manifolds in [Shi89a].

1.2 Prior work on manifolds with boundary and
incomplete manifolds.

In light of the results described in the previous section, it is a natural ques-
tion whether it is possible to use Ricci flow to deform metrics which are
incomplete, and what kind of conditions would be required in order to ob-
tain reasonable existence and uniqueness statements. In particular, if M is
a manifold with boundary, what would be the appropriate boundary data?

Proving an existence theorem for the Ricci flow, apart from the non-
linearity of the equation, a serious obstacle comes from the diffeomorphism
invariance of the Ricci tensor. This phenomenon had been observed long
time ago in the Einstein equations in General Relativity and other PDEs
that have a gauge invariance. For the Ricci flow, Hamilton first overcame
the difficulty using the implicit function theorem of Nash-Moser. However,
DeTurck later in [DeT83] discovered a simpler proof for the existence of
Ricci flow on closed manifolds. He showed that, up to diffeomorphisms,
it is equivalent to a modified parabolic equation, where standard parabolic
theory applies.

On manifolds with boundary the situation is more complicated. First,
due to the diffeomorphism invariance of Ricci flow, one would like to im-
pose boundary conditions which are geometric, in the sense that they are
preserved under the action of diffeomorphisms that fix the boundary. Since
Ricci flow is a second order equation, this hints that the boundary condi-
tions should involve the induced metric and the second fundamental form.
Secondly, the boundary conditions should provide a well posed parabolic
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boundary value problem for the modified equation.
The first work on the topic was by Shen, in [She96], where he studied

a natural Neumann-type boundary value problem for the Ricci flow, im-
posing conditions on the second fundamental form of the boundary. He
proves the following Theorem.

Theorem 1.3. For any given compact Riemannian manifold with boundary (M, g0)
with A(g0) = λg0, there is a short time solution to the Ricci flow satisfying
g(0) = g0 and

At = λgt

on ∂M for all t, where A is the second fundamental form of ∂M and λ a constant.

However, one would like a more general existence theory which will
allow the deformation of arbitrary metrics. In this direction, Pulemotov
in [Pul12] shows that one can deform metrics with boundary of merely
constant mean curvature.

Theorem 1.4. Let (M, g0) be a compact Riemanninan manifold with boundary.
Assume that the boundary has constant mean curvature H0. Then, given any
smooth function µ(t) with µ(0) = 1 there exists a solution to the Ricci flow
satisfying on ∂M:

Ht = µ(t)H0,

where Ht denotes the mean curvature of ∂M.

Unfortunately there is only control of the mean curvature along this
flow and we should expect that a uniqueness statement doesn’t hold in this
case. More boundary conditions need to be imposed to achieve uniqueness.

Regarding the long time behavior of Ricci flow, Shen and Cortissoz in
[She96] and [Cor09] extend Theorem 1.1 of Hamilton, under the assump-
tion that the boundary is totally geodesic or convex umbilic.

On surfaces there has been more progress. One should mention the
work of Brendle in [Bre02a], [Bre02b], Tong Li in [Li93], Cortissoz in [Kor07]
and Cortissoz and Murcia in [CM12]. They study the Ricci flow under
Neumann-type boundary conditions. Related is also the work of Brendle
on the closely related Yamabe flow in [Bre02c].

To conclude this section, and put the discussion above in the broader
context of the Ricci flow on general incomplete manifolds, we mention
a different point of view considered by Topping in [Top10]. Using the
pseudolocality of the Ricci flow and exploiting its special properties in
dimension 2 he shows the existence of “instantaneously complete” Ricci
flow solutions initiating from possibly incomplete surfaces. Later, with
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Giesen in [GT09] they show the uniqueness of in this class of solutions, in
the case where the initial metric has negative Gauss curvature.

1.3 Motivation and main results.

The aim of this section is to motivate the work presented in this thesis. It
becomes clear from the preceding discussion that we would like to supple-
ment the Ricci flow with boundary conditions which will allow the flow to
start from arbitrary metrics on manifolds with boundary. Moreover, these
boundary data should be able to determine the flow uniquely and also be
invariant under diffeomorphisms that fix the boundary.

In the following, we will describe some other geometric problems that
this work is motivated and inspired from.

1.3.1 Boundary value problems for Einstein metrics.

The first motivation comes from the work of Anderson on boundary value
problems for the Einstein equations in [And08]. Theorem 1.1 of [And08],
states that the moduli space E k,α

λ of Ck,α Einstein metrics with Einstein con-
stant λ, assuming a certain topological condition, is a Banach manifold (E
is the space of Einstein metrics modulo the action of diffeomorphisms that
fix the boundary).

Theorem 1.5 (Theorem 1.1 in [And08]). Suppose π1(M, ∂M) = 0. Then for
any λ ∈ R, the moduli space E k,α

λ , if nonempty, is an infinite dimensional C∞

smooth Banach manifold.

We can view this as a “local” solvability result, since the existence of
an Einstein metric g̃ immediately implies that any infinitesimal Einstein
deformation integrates to a path of Einstein metrics.

However, to understand the global problem, it is necessary to impose
appropriate boundary conditions. The geometric nature of the Einstein
equations hints that they should involve the induced metric and the second
fundamental form of the boundary. However, as we see below, the obvious
choice of boundary data is not the correct one.

The Dirichlet and Neumann problems are not elliptic.

Naturaly one would like to investigate the Dirichlet and Neumann bound-
ary value problems for the Einstein equations.
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• Dirichlet problem. Given a Ck,α Riemannian metric γ on ∂M, find a
Ck,α Einstein metric g on M such that the induced metric gT on ∂M is
γ.

• Neumann problem. Given a Ck−1,α symmetric 2-tensor h on ∂M, find a
Ck,α Riemannian Einstein metric g on M such that the second funda-
mental form A of ∂M with respect to g is h.

However, a consequence of the Gauss equation is that the Dirichlet condi-
tion does not yield a well posed elliptic boundary value problem.

Let g be an Einstein metric satisfying Ric = λg. The Gauss equation for
∂M becomes

|A|2 −H2 + sγ − (n− 1)λ = 0,

where sγ is the scalar curvature of γ. The ellipticity of the Dirichlet prob-
lem would imply that if Π is the boundary map

Π : E k,α → Metk,α(∂M)

g 7→ gT (1.1)

then its linearization DΠg at any Einstein metric g should be a Fredholm
operator.

However, if g is a Ck,α Einstein metric the Gauss equation implies that sγ

should be Ck−1,α. For an arbitrary metric γ though, sγ will only be Ck−2,α,
which is an infinite codimension subspace of Ck−1,α.

It turns out that neither Neumann boundary conditions give an elliptic
problem. In this case the boundary map is

Π′ : E → S2(T∗∂M)

g 7→ A(g)

Its linearization DΠ′g at an Einstein metric g with totally geodesic bound-
ary (or with second fundamental form vanishing at an open set of the
boundary) will have an infinite dimensional kernel, due to the infinites-
imal deformations of g by diffeomorphisms of M which do not fix the
boundary.

An elliptic boundary value problem for the Einstein equations.

In Theorem 1.2 of [And08] Anderson proposes a boundary value problem
for the Einstein equations which turns out to be elliptic. In particular, he
proves the following Theorem.
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Theorem 1.6. The boundary map

Π̃ : E k,α → Ck,α(∂M)× Ck−1,α(∂M)

g 7→ ([gT],H(g))

is C∞ smooth and Fredholm of index 0.

Here, Ck,α denotes the pointwise conformal classes of Ck,α metrics on
∂M, and gT, H(g) the induced metric and the mean curvature of the
boundary respectively.

The natural question that arises is whether the boundary conditions
described above yield a good existence and uniqueness theory for the Ricci
flow. This would lead to many new interesting questions regarding the
behaviour of the solutions and should also lead to a better understanding
of the corresponding elliptic problem.

1.3.2 A Boundary value problem for the static vacuum equa-
tions.

The second motivation of this work comes from General Relativity. The
simplest possible solutions to the Einstein vacuum equations, i.e. Ric = 0,
are static metrics. These are Lorenzian metrics on R×M of the form

−V2dt2 + gM,

where gM is a Riemannian metric on a 3-manifold M and V is a smooth
function on M. In this setting, the Einstein equations become the following
elliptic system on gM and V

Ric(gM) = V−1D2
gM

V (1.2)
∆gMV = 0. (1.3)

The equations above are called static vacuum equations. The Riemannian
metric V2dt2 + gM induced by a solution (g, V) of (1.2),(1.3) is also Ricci
flat.

Clearly, on closed 3-manifolds solutions gM of the static vaccum equa-
tions are flat and V is constant. However, Anderson in [And99], generaliz-
ing a result of Lichnerowicz, proves that the same is true for noncompact
complete solutions. Therefore, the natural setting to seek nontrivial solu-
tions to these equations is a manifold with boundary.
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Bartnik in [Bar89],[Bar02], motivated by his definition of quasilocal mass
in general relativity, poses the following conjecture.

Conjecture. Given a Riemannian metric g in B3 ⊂ R3, there is a unique
static asymptotically flat Riemannian metric ḡ in R3 \ B3 which satisfies

ḡT = gT,
H(ḡ) = H(g),

where B3 denotes the unit ball in R3 and H , gT the mean curvature and
the induced metric respectively of the boundary ∂B3.

We will refer to the boundary data above, i.e. the induced metric and
mean curvature, as Bartnik data. From an analytic point of view, the static
vacuum equations with the Bartnik boundary data form an elliptic bound-
ary value problem. For work on this conjecture we refer the reader to the
work of Miao in [Mia03], and Anderson and Khuri in [AK11].

1.3.3 Main results.

The conformal class and mean curvature as boundary data for the Ricci
flow.

Let g0 be a Riemannian metric on Mn+1 and γ(x, t) arbitrary smooth Rie-
mannian metrics on ∂M and η an arbitrary smooth function on ∂M× [0, ∞).
Assume the compatibility conditions [γ(0)] = [gT

0 ] and H(g0) = η|t=0. In
Chapter 4 we prove the following Theorem.

Theorem 1.7 (Theorem 4.9). There exists a T > 0 and a smooth solution to
the Ricci flow defined away from ∂M × 0 which satisfies on ∂M the boundary
conditions

H(g(t)) = ηt, (1.4)[
g(t)T

]
= [γ(t)], (1.5)

for t > 0. As t → 0, g(t) converges in the Cheeger-Gromov C1,α sense (i.e. up to
diffeomorphisms that fix the boundary) to g0 and C∞ away from the boundary.

Moreover, higher order compatibility conditions on the data (g0, γ, η) can im-
prove this convergence to Ck,α and the regularity of g up to ∂M× 0 (see Theorem
4.9).

We note that a version of this Theorem which satisfies the initial data
in the usual sense g(0) = g0 does hold. However, such a solution will
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generally not be C∞ smooth up to the boundary even for positive time. This
issue is related to the invariance of the equation under diffeomorphisms
and is discussed in remark 4.4.2.

Moreover, the Theorem also holds when the manifold is noncompact
(complete) with compact boundary, since our techniques still apply once
we assume that g0 has geometry bounded in W2,p (see Definition 1) and
Rm(g0) ∈ Lp.

It is well known that incomplete solutions of the Ricci flow are in gen-
eral not unique. On a manifold with boundary though, the boundary data
(1.4),(1.5) allow us to obtain the following uniqueness result.

Theorem 1.8 (Theorem 4.10). A C3 (up to ∂M× 0) solution to the Ricci flow
satisfying the boundary conditions (1.4),(1.5) is uniquely determined by the initial
data g0 and the boundary data ([γ], η).

Finally, in chapter 6 we obtain an extension condition for the flow. On
closed manifolds, a Ricci flow defined for t < T with uniformly bounded
curvature tensor can be extended past time T. On compact manifolds with
boundary, we observe that appropriate control of the data ([γ], η) and uni-
form bounds on the ambient curvature and the second fundamental form
A of the boundary suffice for the extension of the flow. This is the follow-
ing Theorem.

Theorem 1.9. [Theorem 6.1] Let g(t) be a smooth Ricci flow with maximal time
of existence T < ∞ and smooth boundary data ([γ(x, t)], η(x, t)) defined for all
0 ≤ t < ∞. Then

sup
0≤t<T

(
sup
x∈M
|Rm(g(t))|g(t) + sup

x∈∂M
|A(g(t))|g(t)

)
= +∞.

Bartnik data for the Ricci flow on warped products.

Let N = Mn+1 × Fm and ĝ be an Einstein metric on F, with Einstein con-
stant λ. Given a Riemannian metric g0 and a function f0 on M, one can
define the warped product metric h0 = g0 + f 2

0 ĝ on N. If M is noncompact
(complete), assume that ĝ is Ricci flat, Rm(g0) ∈ Lp, f0 ∈ W2,p, that g0 has
geometry bounded in W2,p (again, see Definition 1) and ∂M is compact.

The Ricci flow equation on N, assuming the solution has the form

9



h(t) = g(t) + f (t)2 ĝ, becomes

∂tg = −2 Ricg +2m f−1D2
g f , (1.6)

∂t f = ∆g f + (m− 1)
|d f |2g

f
− λ

f
. (1.7)

For F = R and m = 1 this becomes a Ricci flow on static metrics.
Let γ(t), η(t) be arbitrary, smooth, one parameter families of Rieman-

nian metrics and functions on ∂M, satisfying the zeroth order compatibility
conditions γ(0) = gT

0 and η(0) = H(g0). Imposing the Bartnik data, and
applying the techniques of Chapter 4 we obtain the following existence
result for (1.6), (1.7) in Chapter 5.

Theorem 1.10 (Theorem 5.2). Given h0 as above, there exists T > 0 and solu-
tions g, f of (1.6),(1.6), smooth and defined away from the corner ∂M × 0, such
that h(t) = g(t) + f (t)2 ĝ is a Ricci flow for t ≤ T, satisfying

g(t)T = γ(t),
H(g(t)) = η(t),

for all t > 0. In addition, there exists a a family of diffeomorphisms φt of M
such that φ∗t g(t), φ∗t f (t) convege to g0, f0 respectively, as t → 0 in C1,α(MT)
(uniformly). Moreover, the convergence is also Ck up to ∂M× 0 if Ric(h) satisfies
higher order compatibility conditions.

In addition, if M is noncompact and g0 is controlled in C2, then h(t) has
uniformly bounded curvature for all t ≤ T.

10



Chapter 2

Background material

2.1 Function spaces

In this section we define the function spaces we will need. Let Mn+1 be a
compact or noncompact n+1-dimensional manifold with compact bound-
ary ∂M and interior Mo. We denote MT = Mo× (0, T), ∂MT = ∂M× (0, T).

Fix a smooth Riemannian metric ḡ on M and its Levi-Civita connection
∇. Let {Us} be an open cover of M, and φs a collection of charts such that

φs : Us → B(0, r̄) ⊂ Rn+1 , if Us does not intersect the boundary

φs : Us → B(0, r̄)+ ⊂ Rn+1 , if Us intersects the boundary.

for some r̄ > 0 (where r̄ is uniform over all charts). In the last case assume
that

φs|∂M∩Us
: ∂M ∩Us → V := Bn(0, r̄) ⊂ Rn.

Let also ρs be a partition of unity subordinate to that open cover.
We will use the convention that Greek indices correspond to directions

tangent to the boundary, ranging from 1 to n, while the 0 index to the
inward transversal direction.

Definition 1. We say that ḡ has uniformly bounded geometry in W2,p, if
there exists a uniform constant C > 1 so that the components of ḡ in each
of the coordinate systems defined above satisfy

C−1δij ≤ ḡij ≤ Cδij (as bilinear forms)
||ḡij||W2,p ≤ C

Here the W2,p norm is defined with respect to the flat metric induced in
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each coordinate chart.

When M is non-compact we will always assume that ḡ has uniformly bounded
geometry in W2,p.

Consider any tensor bundle E of rank k over M, with projection map π,
equipped with the connection inherited by ∇. The completion of the space
of the time dependent C∞(MT) compactly supported sections of E, with
respect to the norm

‖u‖W2,1
p (MT)

= ‖u‖Lp(MT) + ‖∇ u‖Lp(MT) + ‖∇
2 u‖Lp(MT) + ‖∂tu‖Lp(MT)

will be denoted by W2,1
p (MT). Let also

|u|L2,1
p (MT)

= ‖∂tu‖Lp(MT) + ‖∇
2 u‖Lp(MT)

be the principal part of the norm ‖u‖W2,1
p (MT)

. If τ is a section of E, we will

denote by sτ
ijk...
µν... the coordinates of this tensor with respect to the trivializa-

tion based at Us.
We define the following norm for time dependent Lp(∂MT), and W1,p(∂MT)

sections of E∂M = {v ∈ E |π ◦ v ∈ ∂M}, for λ = 1− 1
p .

‖v‖
W

λ, λ
2

p (∂MT)
= ‖v‖Lp(∂MT) + |v|Lλ, λ

2
p (∂MT)

,

‖v‖
W

1+λ, 1+λ
2

p (∂MT)
= ‖v‖Lp(∂MT) + ‖∇

T v‖Lp(∂MT) + | ∇
T v|
L

λ, λ
2

p (∂MT)
,

where ∇T
denotes the connection induced on E∂M. Setting ρ̂s = ρs ◦ φ−1

s ,
we define

|v|
L

λ, λ
2

p (∂MT)
= ∑

s
max
i1,...,ik

|ρ̂s
svi1,...,il il+1,...,ik |Lλ, λ

2
p (VT)

where, for every function f ∈ Lp(VT)

| f |p
Lα,β

p (VT)
= | f |p

Lα,0
p (VT)

+ | f |p
L0,β

p (VT)

| f |p
Lα,0

p (VT)
=

n

∑
µ=1

∫ +∞

0
h−(1+pα)‖∆µ,h f ‖p

Lp(Vi,h,T)
dh

| f |p
L0,β

p (VT)
=

∫ +∞

0
h−(1+pβ)‖∆t,h f ‖p

Lp(VT−h)
dh.

12



In the above,

∆µ,h f (y, t) = f (y + heµ, t)− f (y, t)
∆t,h f (y, t) = f (y, t + h)− f (y, t)

Vµ,h,T =
{
(y, t) ∈ VT|y + heµ ∈ V

}
.

Analogous spaces exist also in the elliptic setting, see for instance [Sol67].
For l > 0 nonintegral, we will denote by Cl,l/2(M × [0, τ], E) the Ba-

nach space of time dependent sections u of E having continuous up to
the boundary derivatives ∂r

t ∇
q u for all r, q satisfying 2r + q < l, satisfy-

ing appropriate Hölder conditions in the time and space directions. More
precisely, the norm is given by

|u|l,l/2 = sup
s

max
I
|suI |[l],B(0,1) + sup

s
max

I
〈suI〉l,l/2,B(0,1) ,

where suI are the coordinate functions of u in the coordinate system Us
and

| f |k,B(0,1) = ∑
0≤2r+q≤k

||∂r
t∂

q
x f ||∞

〈 f 〉l,l/2,B(0,1) = ∑
2r+q=[l]

〈
∂r

t∂
q
x f
〉

l−[l],x + ∑
0<l−2r−q<2

〈
∂r

t∂
q
x f
〉

l−2r−q
2 ,t

.

Here, for 0 < ρ < 1

〈 f 〉ρ,x = sup
x 6=y, t

| f (x, t)− f (y, t)|
|x− y|ρ

〈 f 〉ρ,t = sup
t 6=t′, x

| f (x, t)− f (x, t′)|
|t− t′|ρ .

We will also denote by |u|k and 〈u〉l,l/2 the norms

〈u〉l,l/2 = sup
s

max
I
〈suI〉l,l/2,B(0,1)

|u|k = sup
s

max
I
|suI |k,B(0,1).

For any integer k ≥ 0 we will denote by Ck(M× [0, τ]) the space of sections
with all the derivatives ∂r

t ∇
q u for 2r + q ≤ k continuous, equipped with

the norm | · |k.
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It is not hard to see that Cε, ε
2 (∂MT) and C1+ε, 1+ε

2 (∂MT) embed in Wλ, λ
2

p (∂MT)

and W1+λ, 1+λ
2

p (∂MT) respectively, provided that ε > λ. We will also need
the following embedding theorems.

Lemma 2.1.

1. For 1 < p < ∞, and u ∈W2,1
p (MT),

||u||
W1+λ,(1+λ)/2

p
+ || ∇ u||Wλ,λ/2

p (∂MT)
≤ C1||u||W2,1

p (MT)
.

2. If n+3
2 < p < ∞ and 0 < α < min(1, 2− (n+3

p )), then

〈u〉α,α/2 ≤ C2

(
δ

2− n+3
p −α|u|L2,1

p (MT)
+ δ
− n+3

p −α‖u‖Lp(MT)

)
.

3. If n + 3 < p < ∞ and 0 < α ≤ 1− n+3
p , then

〈∇ u〉α,α/2 ≤ C3

(
δ

1− n+3
p −α|u|L2,1

p (MT)
+ δ
−(1+ n+3

p +α)‖u‖Lp(MT)

)
.

In the above, the constants do not depent on T > 0 and 0 < δ ≤ min(d, T1/2),
where d is a constant depending on the chosen atlas {Us}.

Estimates (2), (3) still hold in the case M is noncompact, under the assumption
that the geometry is bounded in W2,p and p > n + 2.

Proof. By Lemma 3.3 in Chapter II of [LSU67] or Lemma A.1 in [Wei91] the
estimates hold for domains in Rn+1 or Rn+1

+ satisfying the cone condition.
We will show below that the global estimates (2),(3) hold in the case that
M is noncompact and ḡ has geometry bounded in W2,p.

First, by the Sobolev embedding (since p > n + 2) there is a constant
C > 0, uniform in s, such that |uij|0,B(0,r̄)×[0,T] ≤ C||uij||W1,p

e (B(0,r̄)×[0,T])
,

where uij are the components of the 2-tensor u in a given coordinate chart

(Us, φs) and W1,p
e denotes the Sobolev space with respect to the standard

Euclidean metric and connection.
However, the uniform control of the geometry in W2,p provides uniform

bounds on |ḡij|C1 (since p > n + 1), which imply the estimate

||uij||W1,p
e
≤ C||u||

W1,p
ḡ (B(0,r̄)×(0,T))

≤ C||u||W2,1
p (MT)

,

14



where W1,p
ḡ is defined using ḡ and its connection. Here too, the constant

is independent of the choice of the chart. Therefore the estimates above
provide uniform C0 bounds on uij(x, t), in any coordinate chart.

Now, we estimate

||uij||
p
W2,1

p,e (B(0,r̄)×[0,T])
=

∫
|u|pe dx + ∑

k

∫
|∂kuij|

p
e dx + ∑

k,l

∫
|∂k∂luij|

p
e dx

≤ C
(∫
|u|pḡdvolḡ +

∫
| ∇ u|pḡdvolḡ +

∫
| ∇2 u|pḡdvolḡ

)
≤ C||u||p

W2,1
p (MT)

.

Where C > 0 does not depend on the choice of the particular chart. Note
that the only terms inside ∇2 uij which contain second derivatives of ḡ are
of the form u ∗ ∂2 ḡ. However, since there is a uniform C0 bound on uij,
the uniform W2,p bound on ḡij is enough to estimate such terms. Then
estimates (2), (3) directly follow from the corresponding estimates in each
coordinate chart, since the constants above maybe chosen the same for all
charts.

From now on we fix some p > n + 3 and some α = 1− n+3
p and ε >

λ. Then, as the previous Lemma implies, the Sobolev space W2,1
p (MT)

embeds in the Hölder space C1+α, 1+α
2 (MT). Moreover, we get the following

estimates (see Corollary A.2 in [Wei91]).

Lemma 2.2. For all u ∈W2,1
p (MT), with u(., 0) ≡ 0, n + 3 < p < ∞, 0 < γ =

(1− n+3
p )/2 and all sufficiently small T > 0

1. |u|1 ≤ C4Tγ|u|L2,1
p (MT)

.

2. |u|Lβ,β/2
p (∂MT)

≤ C5Tγ|u|L2,1
p (MT)

, for all β ∈ (0, 1).

Finally, we will often use the following product estimate.

Lemma 2.3. If f1, f2 ∈ L
α,β
p (VT) ∩ L∞(VT) and ρ̂ = ρ ◦ φ−1, then

|ρ̂ f1 f2|Lα,β
p (VT)

≤ C6|| f1 f2||∞ + || f1||∞|ρ̂ f2|Lα,β
p (VT)

+ || f2||∞|ρ̂ f1|Lα,β
p (VT)

.
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2.2 The second fundamental form and mean cur-
vature.

Let g be a Riemannian metric on M and N the ourward unit normal to
∂M with respect to g. The second fundamental form A of the boundary is
defined by

A =
1
2
(LNg)T .

Its trace is the mean curvature, given by

2H(g) = trgT LNg.

First variation of the mean curvature.

Lemma 2.4. If gt is a smooth one-parameter family of metrics, such that g0 = g,
and ∂tg|t=0 ≡ h, the variation of the mean curvature of the boundary is given by
the formula:

2H′g(h) = trgT ∇Nh + 2δ∂M

(
h(N)T

)
− h(N, N)H(g). (2.1)

Proof.

2H′g = −hαβ(LNg)αβ + trγ(LNg)′ = −2 〈A, h〉+ trγ LN′g + trγ LNh
= −2 〈A, h〉+ trγ L−h00N

2
g + trγ L−h(N)T g + trγ LNh

= −2 〈A, h〉 − h(N, N)H + δ∂M

(
h(N)T

)
+ trγ∇Nh + 2 〈A, h〉

= trγ∇Nh + 2δ∂M

(
h(N)T

)
− h(N, N)H.

The mean curvature in local coordinates.

Lemma 2.5. In local coordinates the mean curvature of the boundary of M is

2H = gT,αβνi∂i(gαβ)−
(

2g0lgαk√
g00

+
g0lg0kg0α

(
√

g00)3
−

gT,αβg0βg0lg0k√
g00

)
∂α(gkl).
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Proof.

2H(g) = trgT(LNg) = gT,αβ(LNg)αβ

= gT,αβ
(

N(gαβ)− g([N, ∂α], ∂β)− g(∂α, [N, ∂β])
)

= gT,αβ
(

νi∂i(gαβ) + 2∂α(ν
i)giβ

)
= gT,αβνi∂i(gαβ) + 2gT,αβ∂α(ν

ε)gεβ + 2gT,αβ∂α(ν
0)g0β

= gT,αβνi∂i(gαβ) + 2∂α(ν
α) + 2gT,αβg0β∂α(ν

0).

Since νi = − g0i√
g00

we compute

∂α(ν
i) =

(
g0lgik√

g00
− g0lg0kg0i

2(
√

g00)3

)
∂α(gkl).

Therefore

2H = gT,αβνi∂i(gαβ)+

(
2g0lgαk√

g00
− g0lg0kg0α

(
√

g00)3
+

gT,αβg0βg0lg0k√
g00

)
∂α(gkl).
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Chapter 3

Two linear parabolic boundary
value problems.

In this chapter we discuss two linear parabolic boundary value problems
on M which will later arise as linearizations of the Ricci-DeTurck equation.
Theorems 3.1 and 3.2 are applications of the work of Solonnikov on the
solvability in Lp spaces of parabolic boundary value problems satisfying
general boundary conditions (see[Sol65]). The adaptation of his results in
our case does not require any essential modification if M is compact or
noncompact with geometry bounded in W2,p.

Let g be a C1+ε Riemannian metric on M, for some ε > 1 − 1
p and

p > n + 3, and γ the induced metric on the boundary. Then,

βg(u) = divg u− 1
2

d trg u

is the Bianchi operator and H′g the linearization of the mean curvature at g
(see 2.1).

Theorem 3.1. Consider the following linear parabolic initial-boundary value prob-
lem on symmetric 2-tensors on M

∂tu− trg∇
2 u = F(x, t)

βg(u) = G(x, t)
H′g(u) = D(x, t)

uT − trγ uT

n γ = 0

 on ∂M (3.1)

u|t=0 = u0

18



for F ∈ Lp(MT), G, D in the corresponding Wλ,λ/2
p (∂MT) space and u0 ∈

W2,p(Mo). Assuming that the zeroth order compatibility conditions

βg(u0) = G(x, 0)
H′g(u0) = D(x, 0)

uT
0 −

trγ uT
0

n
γ = 0

hold, problem (3.1) has a unique solution u ∈ W2,1
p (MT) which satisfies the esti-

mate

‖u‖W2,1
p (MT)

≤ C8

(
‖F‖Lp(MT) + ‖G‖W

λ, λ
2

p (∂MT)

+‖D‖
W

λ, λ
2

p (∂MT)
+ ‖u0‖W2,p(Mo)

)
. (3.2)

Moreover the constant C8 stays bounded as T → 0 and depends on the C1+ε

norms of g and g−1.

Proof. The method followed in Chapter IV of [LSU67] and Theorem 5.4 of
[Sol65] carries over to the manifold setting, after the necessary adaptation
to the realm of manifolds and vector bundles (see [Pul12]). We only need
to show that the following boundary value problem on Rn+1

+ = {x0 ≥
0} ⊂ Rn+1 satisfies the complementing condition (see [LSU67],[Sol65] and
[Èı̆d69]).

∂tukl − ∆euclukl = F̂kl

δij∂i(ujk)−
1
2

δij∂kuij = Ĝk

δαβ∂ouαβ − 2δαβ∂αuβ0 = D̂ (3.3)

uαβ −
δεζuεζ

n
δαβ = 0

u|t=0 = 0.

Here, F̂kl ∈ Lp(R
n+1
+ ) and Ĝk, D̂ ∈ Wλ,λ/2

p,0 (∂Rn+1
+ ) ( by Wλ,λ/2

p,0 we denote
the subspace with initial condition u|t=0 = 0). One obtains (3.3) by ex-
pressing (3.1) in local coordinates around a point x of the boundary, with
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gij(x) = δij, freezing the coefficients at (x, 0) and keeping the higher order
terms. The principal symbols of the boundary operators are:

i ∑
l

ξlhlk −
i
2 ∑

l
ξkhll (3.4)

iξ0 ∑
α

hαα − 2i ∑
α

ξαh0α (3.5)

and the principal symbol of the parabolic operator ∂t − ∆eucl, is (p + |ζ|2 +
τ2)hij, where ζ = (ζ1, . . . , ζn) ∈ Rn and |ζ| its Euclidean norm. We obtain
the following positive root τ̂ = i

√
p + |ζ|2. Setting equations (3.4), (3.5) to

zero and letting ξ0 = τ̂, ξα = ζα, we get the following system:

iτ̂h00 + i ∑
α

ξαhα0 −
i
2

τ̂ ∑
l

hll = 0 (3.6)

iτ̂h0µ + i ∑
α

ξαhαµ −
i
2

ξµ ∑
l

hll = 0 (3.7)

iτ̂ ∑
α

hαα − 2i ∑
α

ξαh0α = 0 (3.8)

hαβ = φδαβ. (3.9)

Since the principal symbol of the equation is in diagonal form, the comple-
menting condition is equivalent to proving that system (3.6)-(3.9) has only
the zero solution when (p, ζ) satisfy

Rep ≥ −δ1|ζ|2 (3.10)

for some 0 < δ1 < 1.
From equation (3.6) we have

2i ∑
α

ζαhα0 = iτ̂ ∑
l

hll − 2iτ̂h00 = iτ̂(tr h− 2h00), (3.11)

while multiplying equation (3.7) by 2ζµ and then adding over µ we find:

∑
µ

2iτ̂ζµh0µ + 2i ∑
α,µ

ζαζµhαµ − i ∑
µ

ζ2
µ tr h = 0. (3.12)

This gives, taking (3.11) and hαµ = φδαµ into account:

iτ̂2(tr h− 2h00) + 2i|ζ|2φ− i|ζ|2 tr h = 0 (3.13)
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which, after substituting for τ̂, leads to the equation:

ph00 = pnφ + 2(n− 1)|ζ|2φ (3.14)

Now, by equation (3.8) we have:

2i ∑
α

ζαh0α = iτ̂ ∑
α

hαα = iτ̂φn (3.15)

which combined with (3.6) gives:

2iτ̂h00 + iτ̂φn− iτ̂ tr h = 0 (3.16)

and therefore iτ̂h00 = 0. Now, (3.10) implies that p 6= −|ζ|2, which gives
τ̂ 6= 0 and thus h00 = 0.

Now, by (3.14) we have that

φ
(

pn + 2|ζ|2(n− 1)
)
= 0. (3.17)

However, assumption (3.10) implies that
(

pn + 2|ζ|2(n− 1)
)
6= 0, since

2(n−1)
n > 1 for n ≥ 2. This gives that φ = 0.
Now we have established that φ = h00 = 0 it is easy to see that h0µ = 0,

by (3.8). This proves the complementing condition for system (3.3).

Remark 3.0.1. Theorem 3.1 is still valid if we consider γt and gt evolving
such that γ0 = gT. Note that the complementing condition is satisfied
if γt and gT

t are in the same conformal class. If not, the openness of this
condition implies that it holds at least for some short time τ̂ > 0 depending
on Cε,ε/2 bounds of γt and gt. Thus, we either get local (in time) existence
or a global solution and the constant C8 depends on the C1+ε, 1+ε

2 norms of
gt and γt and the C0 norms of g−1 and γ−1.

Before we state Theorem 3.2 a few definitions are in order. Given a
metric g and a positive function f on M, we can define the following first
order differential operator

P(g, f )(u, φ)r = grlgpq∇p uql −
1
2

grlgpq∇l upq −m f−1grk∇k φ

acting on a symmetric 2-tensor u and a function φ on M.
In the following, u and F1 are symmetric 2-tensors, β1 a section of the

restricton to ∂M of the tangent bundle of M, F2 and β2 functions on B and
∂M respectively, and β3 a symmetric 2-tensor on ∂M. Abusing slightly
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notation we will not use different symbols to distinguish among function
spaces containing sections of different bundles but of the same nature.

Moreover, for the coefficients of the boundary operator P(g, f ) to have the
right regularity so that the following Theorem holds, we note that the back-
ground metric ḡ has to be at least C1+ε (with respect to the atlas defined in
Chapter 2).

Theorem 3.2. Let F1, F2 ∈ Lp, boundary data β1, β2 ∈ Wλ,λ/2
p and β3 ∈

Wλ+1, λ+1
2

p . Then, given initial data u0 ∈ W2,p, φ0 ∈ W2,p, and assuming
that the zeroth order compatibility conditions hold, there exists a unique solution
(u, φ) ∈W2,1

p to the following parabolic system

∂tukl − trg∇
2 ukl = F1

kl (3.18)

∂tφ− trg∇
2

φ = F2 (3.19)

satisfying on ∂M the conditions

P(g, f )(u, φ)r = βr
1 (3.20)

H′g(u) = β2 (3.21)

gT
εζ = β3

εζ (3.22)

Moreover, u and φ satisfy the following estimate

||u||W2,1
p

+ ||φ||W2,1
p
≤ C

(
||F1||Lp + ||F2||Lp + ||β1||Wλ,λ/2

p
+ ||β2||Wλ,λ/2

p

+ ||β3||
W

λ+1, λ+1
2

p

+||u0||W2,p + ||φ0||W2,p) . (3.23)

Proof. The symbols of the boundary operators, setting ξ = (τ, ζ) are:

∑
k

iξkσkl −
i
2

ξl ∑
k

σkk − im f−1ξl ϕ, (3.24)

iτ ∑
α

σαα − 2i ∑
α

ζασα0, (3.25)

σαβ. (3.26)

For l = 0, setting (3.24) equal to zero , we obtain

iτσ00 + i ∑
α

ζασα0 −
i
2

τ ∑
k

σkk − iµτϕ = 0, (3.27)
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where µ = m f−1. Similarly, for l = β in (3.24) we get the equation

iτσβ0 + i ∑
α

ζασαβ −
i
2

ζβ ∑
k

σkk − iµζβ ϕ = 0, (3.28)

while setting (3.25) and (3.26) equal to zero we obtain

iτ ∑
α

σαα − 2i ∑
α

ζασα0 = 0, (3.29)

σαβ = 0. (3.30)

In particular, combining (3.29) with (3.30) we get

∑
α

ζασα0 = 0. (3.31)

Equations (3.27) and (3.30) now give

i
2

τσ00 − iµτϕ = 0. (3.32)

Moreover, multiplying (3.28) with ζβ, summing over β and combining with
(3.31) we obtain

iτ ∑
β

ζβσ0β −
i
2
|ζ|2σ00 − iµ|ζ|2ϕ =

i
2
|ζ|2σ00 + iµ|ζ|2ϕ = 0. (3.33)

This, together with (3.32) imply that σ00 = ϕ = 0, since |ζ|2 6= 0, µ 6= 0 and
τ 6= 0.

Finally, with the aid of equation (3.28) we obtain that σ0α = 0. Therefore,
the boundary value problem satisfies the complementing condition.
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Chapter 4

A general boundary value
problem for the Ricci flow.

In this chapter we describe a boundary value problem for the Ricci flow
and study issues of short-time existence, regularity and uniqueness. We
will focus in the case that the manifold M is compact, describing the re-
quired estimates in detail.

The results of this chapter can be extended to non-compact manifolds,
as long as the boundary is compact, and the initial metric has geometry
bounded in W2,p and curvature in Lp. The modifications needed to obtain
the result for the noncompact case are treated in chapter 5.

Let g0 be a W2,p ∩ C1+ε Riemannian metric on Mn+1. Consider also
γ(x, t) ∈ C1+ε, 1+ε

2 (∂MT), a family of boundary metrics and a function
η(x, t) ∈ Cε, ε

2 (∂MT), where ε is always 1 − 1
p < ε < 1 and p > n + 3.

Moreover, assume that the following zeroth order compatibility conditions
hold.

[γ0] =
[

g̃T
]

(4.1)

η(·, 0) = H(g̃)

We supplement the Ricci flow equation

∂tg = −2 Ric(g) (4.2)

with the boundary conditions[
gT
]

= [γt] (4.3)

H(g) = η(x, t)
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and the initial condition
g(0) = g0, (4.4)

and aim to study the existence and regularity of solutions.
As is well known, the Ricci flow equation is not strongly parabolic, so

we will first study the Ricci-DeTurck equation

∂tg = −2 Ric(g) + LW(g,g̃)g, (4.5)

with the boundary conditions

W(g, g̃) = 0[
gT
]

= [γt] (4.6)

H(g) = η(x, t).

Here, W(g, g̃)l = glrgpq
(

Γr
pq(g)− Γ̃r

t,pq

)
, Γ(g) being the Christoffel sym-

bols of g, and Γ̃t the Christoffel symbols of a family of metrics g̃t with
g̃|t=0 = g0. We will assume g̃ is at least C2(MT), unless g0 itself doesn’t
belong to C2 in which case we chose g̃ ≡ g0.

Finally, define

κ = max
{
‖g0‖W2,p(Mo), |g0|1+ε, |(g0)−1|0, |γ|1+ε, 1+ε

2
, |η − η0|ε, ε

2

}
.

Remark 4.0.2. The geometric nature of Ricci flow requires the boundary
data to be geometric, namely invariant under diffeomorphisms that fix the
boundary. The data (4.3) have this property. However, passing to the De-
Turck equation we need to impose the additional, gauge-dependent bound-
ary conditionW(g, g̃) = 0.

Remark 4.0.3. We allow the background metric g̃t to vary and define a time
dependent reference gauge. This, as will be discussed in section 4.2, allows
higher regularity of the solution on ∂M× 0.

4.1 Short-time existence of the Ricci-DeTurck flow.

We can now state and prove the main short time existence Theorem

Theorem 4.1. Consider the boundary value problem (4.5),(4.6) with initial con-
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dition g(0) = g0. For the data (g0, g̃, η, γ) define

Λ = max
{

κ, sup
t

{
‖g̃− g0‖W2,p(Mo) + ‖∂t g̃(t)‖Lp(Mo)

}}
.

For any K > 0 there exists a T = T(Λ, K) > 0 and a solution g(t) ∈ W2,1
p (MT)

of this initial-boundary value problem which satisfies
‖g− g0‖W2,1

p (MT)
≤ K.

Proof. Using the background connection∇ the Ricci-DeTurck equation (4.5)
can be expressed as

∂tg− trg∇
2
.,. g = R(g(x, t),∇ g(x, t))−LV(g)g, (4.7)

where V(g) = girgpq(Γ̃r
t,pq − Γr

pq), while in local coordinates we get (see
[CLN06])

R(g,∇ g)ij = gpq ḡkl (gikRjplq + gjkRiplq
)

−gpqgkl
(

1
2
∇i gkp∇j glq +∇p gjk∇l giq −∇p gjq∇q gil

)
+gpqgkl (∇j gkp∇q gil +∇i gkp∇q gjl

)
.

Moreover, we will express the boundary condition for the conformal
class in the form:

gT
t −

trγt gT
t

n
γt = 0.

Following [Wei91], for K, T > 0 we define the following subset of W2,1
p (MT):

MT
K(g0) =

{
u ∈W2,1

p (MT)
∣∣∣u|t=0 = g0, ‖u− g0‖W2,1

p (MT)
≤ K

}
.

Choose δ > 0 such that (g0)ijξiξ j ≥ δ|ξ|2eucl in every coordinate system of
the fixed atlas. Note that δ is controlled from below in terms of κ. Lemma
2.2 implies that for every K > 0, there exists 0 < To(K, g0) ≤ 1 such that
det(uij) ≥ δ/2 and (u−1)ii ≥ δ/2 for every u ∈ MTo

K (g0). In particular,
u(x, t) is a metric for all t ∈ [0, To].

Now, let T ≤ To. For every w ∈ MT
K(g0) the following linear parabolic

boundary value problem is well defined:
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∂tu− trg0 ∇2 u = R(w(x, t),∇w(x, t))−LV(w)w− trg0 ∇2 w + trw∇
2 w ≡ Fw

βg0(u) = βg0(w)−W(w) ≡ Dw

H′g0(u) = H′g0(w)−H(w) + η(x, t) ≡ Gw

uT − trγt uT

n
γt = 0

u|t=0 = g0

and has a unique solution u ∈ W2,1
p (MT), by Theorem 3.1. This defines a

map
S : MT

K(g0)→W2,1
p (MT)

where S(w) is this solution.
Notice that a fixed point of S solves the nonlinear boundary value prob-

lem. Therefore, it suffices to prove that S is a map from MT
K(g0) to itself

and also a contraction, as long as T is small enough. The existence of the
fixed point will follow, since MT

K(g0) is a complete metric space.
It is easy to see that σ = S(w)− g0 satisfies

∂tσ− trg0 ∇2
σ = Fw + trg0 ∇2 g0 ≡ F̂w

βg0(σ) = Dw

H′g0(σ) = H′g0(w− g0)− (H(w)−H(g0)) + η(x, t)− η(x, 0) ≡ Ĝw

σT − trγt σT

n
γt = 0

σ|t=0 = 0

Here we used that βg0(g0) = 0 and the compatibility condition H(g0) =

η|t=0. Lemma 4.2 below and the parabolic estimate of Theorem 3.1 show
that for any K, S maps MT

K(g0) to itself, if T is small enough.

Finally, for any w1, w2 ∈ MT
K(g0), S(w1) − S(w2) similarly satisfies a

linear initial-boundary value problem of the form (3.1). Then, the estimate
of Lemma 4.3 below shows that S is a contraction for small T > 0.
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The uniform bound of existence time follows from the fact that a uni-
form bound of κ implies uniform bounds of the constants of Lemmata 4.2,
4.3, and the constant C8 of the parabolic estimate of Theorem 3.1.

4.1.1 The key estimates: Lemmata 4.2 and 4.3

Lemma 4.2. Let w ∈ MT
K(g0) for some K > 0 and T ≤ To(K, g0). Then,

there exists a constant C(K, g̃, η) and a function ζ : [0,+∞) → [0,+∞) with
ζ(T)→ 0 as T → 0, such that the following estimate holds:

‖F̂w‖Lp(MT) + ‖Dw‖
W

λ, λ
2

p (∂MT)
+ ‖Ĝw‖

W
λ, λ

2
p (∂MT)

≤ C(K, g̃, η)ζ(T),

where

C(K, g̃, η) = C
(

K, sup
t

{
‖g̃t − g0‖W2,p(Mo) + ‖∂t g̃t‖Lp(Mo)

}
,

‖g0‖W2,p(Mo), |η − η0|ε, ε
2

)
Proof. Since w ∈ MT

K(g0), Lemma 4.5 below implies that w ∈ C1(MT) and
therefore

|R(w,∇w)|h ≤ C
(

K, ‖g0‖W2,1
p (MT)

)
.

This gives

‖R(w,∇w)‖Lp(MT) ≤ C
(

K, ‖g0‖W2,p(Mo)

)
ζ(T).

Next, we estimate

‖LV(w)w‖Lp(MT) ≤ T1/p sup
t
‖LV(w)w|t‖Lp(Mo)

≤ C
(

K, sup
t
‖g̃t‖W2,p(Mo)

)
ζ(T).

We also have

‖ trg0 ∇2 g0‖Lp(MT) ≤ C
(
‖g0‖W2,p(Mo)

)
T1/p.

Combining these estimates we obtain

‖R(w,∇w)−LV(w)w+ trg0 ∇2 g0‖Lp(MT) ≤ C
(

K, sup
t
‖g̃(t)‖W2,p(Mo)

)
ζ(T).
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To estimate the rest of Fw we estimate using Lemma 4.5:

|((g0)ij − wij)∇2
i,j w|ḡ ≤ C max

k,l
|((g0)ij − wij)∇2

i,j wk,l|

≤ C
(

K, ‖g0‖W2,1
p (MT)

)
max
i,j,k,l
| ∇2

i,j wk,l|

≤ C
(

K, ‖g0‖W2,1
p (MT)

)
ζ(T)| ∇2 w|ḡ.

This gives the estimate

‖ trg0 ∇2 w− trw∇
2 w‖Lp(MT) ≤ C

(
K, ‖g0‖W2,p(Mo)

)
ζ(T)

and proves

‖F̂w‖Lp(MT) ≤ C
(

K, sup
t
‖g̃(t)‖W2,p(Mo)

)
ζ(T).

It now remains to control the norms of Ĝw and Dw. Given any w ∈ MT
K(g0)

(we assume that T < To(K, g0)), define h = w− g0, and for every 0 ≤ s ≤ 1

gs(x, t) = g0(x) + s · h(x, t)

Then by the fundamental theorem of calculus we get that

2H(w)− 2H(g0) =
∫ 1

0
2H′gs(h)ds

and therefore

Ĝw := 2H′g0(h)−
(

2H(w)− 2H(g0)
)
+ 2(η(x, t)− η(x, 0))

=
∫ 1

0
(2H′g0

(h)− 2H′gs(h))ds + 2(η(x, t)− η(x, 0)).
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Now, denoting As := 2H′g0
(h)− 2H′gs(h) we calculate

As = trgT
0
(∇0,N0 h)− trgT

s
(∇s,Ns h)︸ ︷︷ ︸

αs
1

+ 2δ0,∂M(h(N0)
T)− 2δs,∂M(h(Ns)

T)︸ ︷︷ ︸
αs

2

+ h(Ns, Ns)H(gs)− h(N0, N0)H(g0)︸ ︷︷ ︸
αs

3

(4.8)

which, in the coordinates of the fixed atlas, are

H(g) =
1
2

(
gαβνi∂i(gαβ) + 2∂α(ν

α) + 2gαβg0β∂α(ν
0)
)

αs
1 = (gαβ

0 νi
0 − gαβ

s νi
s)∂ihαβ − 2(gαβ

0 νi
0Γl

o,iα − gαβ
s νi

sΓ
l
s,iα)hlβ

αs
2 =

(
gαβ

s νi
s − gαβ

o νi
o

)
∂αhiβ +

(
gαβ

s ∂α(ν
i
s)− gαβ

o ∂α(ν
i
o)
)

hiβ

+
(

gαβ
o νi

oΓ̂j
o,αβ − gαβ

s νi
sΓ̂

j
s,αβ

)
hij

αs
3 =

1
2

{(
νi

sν
j
sν

k
s gαβ

s ∂k(gs,αβ)− νi
0ν

j
0νk

0gαβ
0 ∂k(g0,αβ)

)
hij

+2
(

νi
sν

j
s∂α(ν

α
s )− νi

0ν
j
0∂α(ν

α
0 )
)

hij

+2
(

νi
sν

j
sgαβ

s gs,0β∂α(ν
0
s )− νi

0ν
j
0gαβ

0 g0,0β∂α(ν
0
0)
)

hij,

where Ns = νi
s∂i = − g0i

s
(g00

s )1/2 ∂i is the outward unit normal, Γ̂ the Christoffel

symbols of the connection induced on ∂M, and gij
s represents the inverse of

the matrix gs,ij(i.e the induced metric on the cotangent bundle). To simplify

notation, gαβ
s denotes the inverse of the matrix {gαβ}α,β=1,...,n.

Now, to indicate how the estimates of this lemma are established, we
show how the term

(gαβ
0 νi

0 − gαβ
s νi

s)∂ihαβ =
(
(gαβ

0 − gαβ
s )νi

0 + (νi
0 − νi

s)gαβ
s

)
∂ihαβ
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is estimated. We have

|ρ̂(gαβ
0 − gαβ

s )νi
0∂ihαβ|

L
λ, λ

2
p (VT)

≤ C|gαβ
0 − gαβ

s |0|∂ihαβ|0|νi
0|0

+|gαβ
0 − gαβ

s |0|νi
0|0|ρ̂∂ihαβ|

L
λ, λ

2
p (VT)

+|gαβ
0 − gαβ

s |0|∂ihαβ|0|ρ̂νi
0|
L

λ, λ
2

p (VT)

+|νi
0|0|∂ihαβ|0|ρ̂(gαβ

0 − gαβ
s )|

L
λ, λ

2
p (VT)

≤ C
(

K, ‖g0‖W2,1
p (MT)

)
ζ(T)‖h‖W2,1

p (MT)
,

where the last inequality follows from Lemma 4.5.
The terms that are of zeroth order in h, for example 2(gαβ

0 νi
0Γl

o,iα −
gαβ

s νi
sΓl

s,iα)hlβ, are of first order in g0 and gs, but they are estimated in a
similar way:

2(gαβ
0 νi

0Γl
o,iα − gαβ

s νi
sΓ

l
s,iα)hlβ =

2
(
(gαβ

0 − gαβ
s )νi

0Γl
0,iα + gαβ

s (νi
0 − νi

s)Γ
l
0,iα + gαβ

s νi
s(Γ

l
0,iα − Γl

s,iα)
)

hlβ.

For example, the term gαβ
s νi

s(Γl
0,iα − Γl

s,iα)hlβ can be estimated again us-
ing Lemma 4.5;

|ρ̂gαβ
s νi

s(Γ
l
0,iα − Γl

s,iα)hlβ|
L

λ, λ
2

p (VT)
≤ C|gαβ

s νi
s|0|Γl

0,iα − Γl
s,iα|0|hlβ|0

+ |gαβ
s νi

s|0|hlβ|0|ρ̂(Γl
0,iα − Γl

s,iα)|
L

λ, λ
2

p (VT)

+ |gαβ
s |0|hlβ|0|Γl

0,iα − Γl
s,iα|0|ρ̂νi

s|
L

λ, λ
2

p (VT)

+ |νi
s|0|hlβ|0|Γl

0,iα − Γl
s,iα|0|ρ̂gαβ

s |
L

λ, λ
2

p (VT)

+ |νi
sgαβ

s |0|Γl
0,iα − Γl

s,iα|0|ρ̂hlβ|
L

λ, λ
2

p (VT)

≤ C
(

K, ‖g0‖W2,1
p (MT)

)
ζ(T)‖h‖W2,1

p (MT)
.

The procedure indicated above carries over to estimate all the terms of
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As, providing us with the estimate

|As|0,VT + |ρ̂As|
L

λ, λ
2

p (VT)
≤ C

(
K, ‖g0‖W2,1

p (MT)

)
ζ(T)‖h‖W2,1

p (MT)

≤ C
(

K, ‖g0‖W2,1
p (MT)

)
ζ(T),

since ‖h‖W2,1
p (MT)

≤ K. Now, under the assumptions for η, this proves that

‖Ĝw‖
W

λ, λ
2

p (∂MT)
≤ C

(
K, ‖g0‖W2,1

p (MT)
, |η − η0|ε, ε

2

)
ζ(T).

Similarly, the linearization of the map w 7→ W(w, g̃) at u(x, t) is given
by

W ′u(τ)l = βu(τ)l + (τlrupq − ulrτijuipujq)(Γ(u)r
pq − Γ̃r

t,pq). (4.9)

So, given any w ∈ MT
K(g0), T < T0, since βg0(g0) = 0 we have

(Dw)l = βg0(w)l − (W(w, g̃)−W(g0, g̃))l −W(g0, g̃)l

= βg0(h)l −
∫ 1

0
W ′gs(h)lds−W(g0, g̃)l

=
∫ 1

0
(βg0(h)− βgs(h))lds +∫ 1

0
(hlrgpq

s − gs,lrhijg
ip
s gjq

s )(Γr
s,pq − Γ̃r

t,pq)ds−W(g0, g̃)l.

Again, using a coordinate system intersecting the boundary, we have:

β(h) = gij
(

∂ihjl − hrlΓ
r
ij − hjrΓr

il

)
− 1

2
∂l(gijhij)

βg0(h)l − βgs(h)l = (g0,ij − gij
s )∂ihjl − (g0,ijΓr

0,ij − gij
s Γr

s,ij)hrl

−(g0,ijΓr
0,il − gij

s Γs,il)hjr

−1
2

(
(∂lg0,ij − ∂lg

ij
s )hij + (g0,ij − gij

s )∂lhij

)
.

Finally, a series of estimates of the same form as those used for the mean
curvature part of the boundary conditions gives the required estimate:

‖Dw‖
W

λ, λ
2

p (∂MT)
≤ C

(
K, ‖g̃− g0‖W2,1

p (MT)
, ‖g0‖W2,p(Mo)

)
ζ(T)

≤ C(K, g̃, η)ζ(T).
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Lemma 4.3. Let K > 0 and T ≤ To(K, g0). Then, there exists a constant C(K, g̃)
such that for every w1, w2 ∈ MT

K(g0) the following estimate holds:

‖Fw1 − Fw2‖Lp(MT) + ‖Dw1 − Dw2‖
W

λ, λ
2

p (∂MT)
+ ‖Gw1 − Gw2‖

W
λ, λ

2
p (∂MT)

≤ C(K, g̃)ζ(T)‖w1 − w2‖W2,1
p (MT)

, (4.10)

where

C(K, g̃) = C
(

K, sup
t

{
‖g̃− g0‖W2,p(Mo) + ‖∂t g̃‖Lp(Mo)

}
, ‖g0‖W2,p(Mo)

)
.

Proof. If w1, w2 ∈ MT
K(g0) and w−1

1 , w−1
2 are the metrics induced on the

cotangent bundle, Lemma 2.2 gives that

|w1 − w2|1 + |w−1
1 − w−1

2 |0 ≤ C
(

K, ‖g0‖W2,1
p (MT)

)
ζ(T)‖w1 − w2‖W2,1

p (MT)
.

which is enough to prove in a similar manner with Lemma 4.2 that

‖R(w1,∇w1)−R(w2,∇w2)− (LV(w1)
w1 −LV(w2)w2)‖Lp(MT)

≤ C
(

K, sup
t
‖g̃(t)‖W2,p(Mo)

)
ζ(T)‖w1 − w2‖W2,1

p (MT)
. (4.11)

Then, again as in the proof of Lemma 4.2, we have

| trg0 ∇2 w1 − trw1 ∇
2 w1 − (trg0 ∇2 w2 − trw2 ∇

2 w2)|h ≤

|(g0,ij − wij
1 )∇

2
i,j(w1 − w2)|h + |(wij

2 − wij
1 )∇

2
i,j w2|h

≤ C(K, g0)ζ(T)| ∇2
(w1 − w2)|h + C(K, g0)|w2 − w1|0 | ∇

2 w2|h

which, by Lemma 2.2, gives

‖ trg0 ∇2 w1 − trw1 ∇
2 w1 − (trg0 ∇2 w2 − trw2 ∇

2 w2)‖Lp(MT)

≤ C
(

K, ‖g0‖W2,1
p (MT)

)
ζ(T)|w1 − w2|L2,1

p (MT)
(4.12)
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and proves

‖Fw1 − Fw2‖Lp(MT) ≤ C
(

K, sup
t
‖g̃‖W2,p(Mo)

)
ζ(T)‖w1 − w2‖W2,1

p (MT)
.

To establish the estimates for the boundary data, we define

h = w1 − w2

gs = w1 + s · h.

Then, again as in the proof of Lemma 4.2, we get:

Gw1 − Gw2 =
∫ 1

0
(2H′g0(h)− 2H′gs(h))ds

Dw1 − Dw2 =
∫ 1

0
(βg0(h)− βgs(h))lds +∫ 1

0
(hlrgpq

s − gs,lrhijg
ip
s gjq

s )(Γr
s,pq − Γ̃r

t,pq)ds

and the same computation gives the estimate

‖Gw1 − Gw2‖
W

λ, λ
2

p (∂MT)
+ ‖Dw1 − Dw2‖

W
λ, λ

2
p (∂MT)

≤

C(K, g̃)ζ(T)‖w1 − w2‖W2,1
p (MT)

.

4.1.2 A few technical Lemmata.

Lemma 4.4. Let δ0 > 0. There exists a positive constant C, such that for matrix
valued functions g, gl ∈ L∞(VT)∩L

α,β
p (VT), l = 1, 2 for which det(gij), det(gl,ij) ≥

δ0 and gii, gii
l ≥ δ0 holds:

1. |ρ̂gij|Lα,β
p (VT)

≤ C|g|0
(
|ρ̂g|Lα,β

p (VT)
+ 1
)

2. |ρ̂
(

gij
1 − gij

2

)
|Lα,β

p (VT)
≤ C · B1 · B2

(
|ρ̂( g1 − g2 )|Lα,β

p (VT)
+ |g1 − g2|0

)

3. |ρ̂(g00)−1/2|Lα,β
p (VT)

≤ C · |g|0
(
|ρ̂g|Lα,β

p
+ 1
)
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4. |ρ̂
(
(g00

1 )−1/2 − (g00
2 )−1/2) |Lα,β

p (VT)
≤ C · B1 · B2.

(
|ρ̂ (g1 − g2)|Lα,β

p (VT)
+ |g1 − g2|0

)
where |gl|0 ≤ B1 and |ρ̂gl|Lα,β

p (VT)
≤ B2 and the constants depend on δ and the

cutoff function ρ̂.

Proof. The result follows from Weidemaier, Corollary A.3.

Lemma 4.5. Let g0, g1 ∈ MT
K(g0), T ≤ T0(K, g0), gs = g0 + s(g1 − g0) and

(U, φ, ρ) a chart whose domain intersects the boundary, with the corresponding

cutoff function ρ and ρ̂ = ρ ◦ φ−1. Let also νi
s = −

g0i
s

(g00
s )−1/2 be the components of

the outward unit normal to the boundary with respent to gs. Then:

1. |gs,ij|1,VT + |ρ̂gs,ij|
L

λ, λ
2

p (VT)
+ |ρ̂∂kgs,ij|

L
λ, λ

2
p (VT)

≤ C(K, g0)

2. |gij
0 − gij

s |1 + |g0,ij − gs,ij|1 ≤ C(K, g0, δ)ζ(T)‖h‖W2,1
p (MT)

3. |ρ̂(gij
0 − gij

s )|
L

λ, λ
2

p (VT)
+ |ρ̂(g0,ij− gs,ij)|

L
λ, λ

2
p (VT)

≤ C(K, g0, δ)ζ(T)‖h‖W2,1
p (MT)

4. |ρ̂∂kgij
s |
L

λ, λ
2

p (VT)
≤ C(K, g0, δ)

5. |νi
s|0 + |ρ̂νi

s|
L

λ, λ
2

p (VT)
+ |ρ̂∂ανi

s|
L

λ, λ
2

p (VT)
≤ C(K, g0, δ)

6. |νi
0 − νi

s|1 + |ρ̂(νi
0 − νi

s)|
L

λ, λ
2

p (VT)
≤ C(K, g0, δ)ζ(T)‖h‖W2,1

p (MT)

7. |ρ̂∂ανi
s|
L

λ, λ
2

p (VT)
≤ C(K, g0, δ)

where lim
T→0+

ζ(T) = 0.

Proof. Since g0, g1 are in MT
K(g0) we get that gs ∈ MT

K(g0). Therefore the
estimate

‖gs − g0‖W2,1
p (MT)

≤ K

holds. Using Lemma 2.2, and assuming T ≤ 1 we compute:

|gs|1 ≤ |gs − g0|1 + |g0|1 ≤ C4K + C∗4 (g0)

|gs|
L

λ, λ
2

p (∂MT)
≤ |gs − g0|

L
λ, λ

2
p (∂MT)

+ |g0|
L

λ, λ
2

p (∂MT)
≤ C5K + C∗5 (g0)
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where C∗4 = |g0|1 and C∗5 = |g0|
L

λ, λ
2

p (∂MT)
.

We also have that ‖gs‖W2,1
p (MT)

≤ ‖gs − g0‖W2,1
p (MT)

+ ‖g0‖W2,1
p (MT)

. This,
using Lemma 2.1, gives:

| ∇ gs|
L

λ, λ
2

p (∂MT)
≤ C1‖gs‖W2,1

p (MT)
≤ C1K + C∗1 (g0)

where C∗1 (g0) = ‖g0‖W2,1
p (MT)

. Now, the estimate

|ρ̂∂kgs,ij|
L

λ, λ
2

p (VT)
≤ C (ḡ, {Us}, φs) |ρ̂∇k gs,ij|

L
λ, λ

2
p (VT)

completes the proof of (1).
Estimate (2) follows directly from (1), Lemma 2.2 and the fact that

det(gs,ij) ≥ δ/2, since the inverse is given in terms of the determinant
and the cofactor matrix.

Lemma 4.4, proves (3), since

|gs,ij|0 + |ρ̂gs,ij|
L

λ, λ
2

p (VT)
≤ C(K, g0)

|ρ̂(g0,ij − gs,ij)| ≤ C5Tγ‖g0 − gs‖W2,1
p (MT)

≤ C5Tγ‖h‖W2,1
p (MT)

|g0 − gs|0 ≤ C4Tγ‖h‖W2,1
p (MT)

where the first inequality follows from (1) while the second and third in-
equalities by Lemma 2.2.

For estimate (4), note that ∂k(gij
s ) = −gqi

s ∂kgs,pqgpj
s . Then, by (1) we get

the estimate
|ρ̂∂k(gij

s )|
L

λ, λ
2

p (VT)
≤ C(K, g0, δ)

The estimate of |νi
0− νi

s|0 + |∂α(νi
0− νi

s)|0 follows from (1) and (2) of this
Lemma. For the rest we have:

|ρ̂(νi
0 − νi

s)|
L

λ, λ
2

p (VT)
=

∣∣∣∣∣∣ρ̂
 g0i

0√
g00

0

− g0i
s√
g00

s

∣∣∣∣∣∣
L

λ, λ
2

p (VT)

≤
∣∣∣ρ̂ ((g00

0 )−
1
2 − (g00

s )−
1
2

)
g0i

0

∣∣∣
L

λ, λ
2

p (VT)
+ |ρ̂(g0i

0 − g0i
s )(g00

s )−
1
2 |
L

λ, λ
2

p (VT)

≤ C(K, g0, δ)ζ(T)‖h‖W2,1
p (MT)
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where the last inequality follows from Lemma 4.4, Lemma 2.2 and the fact
that T ≤ T0.

Lemma 4.4, since g00
s ≥ δ/2, also proves that

|ρ̂∂α(ν
i
s)|
L

λ, λ
2

p (VT)
=

∣∣∣∣∣∂α

(
g0i

s√
g00

s

)∣∣∣∣∣
L

λ, λ
2

p (VT)

≤ C(K, g0, δ)

and this finishes the proof of this Lemma.

4.2 Regularity of the Ricci-DeTurck flow.

The solution of the Ricci-DeTurck boundary value problem obtained in
the previous section is in the Sobolev space W2,1

p (MT) for p > n + 3, and

therefore has only C1+α, 1+α
2 regularity in MT. In this section we show that

certain higher order compatibility conditions on ∂M are necessary and suf-
ficient to obtain higher regularity on ∂M× 0. We also obtain an automatic
smoothing effect of the flow for positive time (up to the boundary).

4.2.1 Higher order compatibility conditions

Assuming that g(x, t) is a Cl+2, l
2+1(MT) solution to the Ricci-DeTurck flow

∂tg = −2 Ric(g) + LW(g,g̃)g

we easily see that all the derivatives hk ≡ ∂k
t g|t=0 ∈ Cl+2−2k(M), 0 ≤ k ≤[

l
2

]
+ 1 are determined by the initial data g|t=0 = g0 ∈ Cl+2(M̄), by differ-

entiating the equation with respect to t, and then commuting ∂k
t with ∂i∂j,

which is possible as long as 2k + 2 < l + 2, i.e. 0 ≤ k ≤
[

l
2

]
.

Moreover, if g(x, t) satisfies the boundary conditions (4.6), differentiat-
ing with respect to t we get:

∂k
tW(gt, g̃t)|t=0 = 0 (4.13)

∂k
tH(gt)|t=0 = ∂k

t η|t=0 (4.14)

∂k
t

(
gT

t −
trγt(gT

t )

n
γt

)∣∣∣∣∣
t=0

= 0 (4.15)
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So, from (4.15) for k ≤
[

l
2

]
+ 1, we see that additional conditions need to

be satisfied by hk, and hence by g0, on ∂M. Similarly, for k ≤
[

l+1
2

]
(so as

2k + 1 < l + 2 ), the ∂k
t derivatives commute with the space derivatives of

the first order operatorsW ,H on (4.13), (4.14), and give additional restric-
tions on the initial data on the boundary.

In particular, if l > 0, since (g0)T = γ|t=0 we see that
.
γ |t=0 is specified,

up to a conformal factor by h1:

.
γ |t=0 = hT

1 −
trγ0 hT

1
n

γ0 + f γ0 (4.16)

where f is an arbitrary function. Moreover, if l > 1,
.
η |t=0 is also specified

by the initial data:
.
η |t=0 = H′g0(h1) (4.17)

In the section below, we show how parabolic regularity implies that
these conditions are also sufficient to obtain higher regularity of a solution
to the Ricci-DeTurck boundary value problem.

4.2.2 Regularity up to t = 0

Theorem 4.6. Let g(x, t) ∈W2,1
p (MT) a solution of the Ricci-DeTurck boundary

value problem (4.21),(4.22). For l = k + α, α ≤ 1− n+3
p , if g̃ ∈ Cl+2, l+2

2 (Mo ×
[0, T]) then g ∈ Cl+2, l+2

2 (Mo × [0, T]). Moreover, if η ∈ Cl+1, l+1
2 (∂MT), γ ∈

Cl+2, l+2
2 (∂MT) and g̃ ∈ Cl+2, l+2

2 (MT) and the data g0,η,γ,g̃ satisfy the nec-
essary compatibility conditions, there exists a τ, 0 < τ ≤ T, such that g ∈
Cl+2, l+2

2 (Mτ).

Proof. First we prove interior regularity. Let p ∈ Mo, any point in the
interior of M, U a neighbourhood of p not intersecting the boundary, a
smooth chart φ : U → B(0, 1) and a smooth cutoff function ζ defined on
Rn+1 such that ζ|B(0,1/2) ≡ 1 and ζ|B(0,1)−B(0,3/4) ≡ 0.

Given a Riemannian metric gij on B(0, 1) we can define the differential
operator

L(∂t, ∂x, gij)(u)kl = ∂t(ukl)− gij∂i∂j(ukl)

acting on symmetric 2-tensors on B(0, 1).
Now, since g(x, t) solves the Ricci-DeTurck flow, in these coordinates it
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satisfies the parabolic equation

L(∂t, ∂x, gij)(g)kl = S(g, ∂g, g̃, ∂g̃, ∂2 g̃)kl (4.18)

Define vkl = ζgkl. It is easy to see that it satisfies the equation

∂tvkl − gij∂i∂j(vkl) = ζSkl − gij∂i∂j(ζ)gkl − 2gij∂i(ζ)∂j(gkl) (4.19)

on B(0, 1), with initial data vkl|t=0 = ζg0
kl ∈ C2+α and Dirichlet boundary

data v|∂B(0,1) ≡ 0. Since the compatibility conditions of any order hold (ζ
is zero on a neighbourhood of ∂B(0, 1)), and the coefficients of the equa-
tion are in Cα, α

2 (B(0, 1)T) by Lemma 2.2, it follows from standard parabolic
theory (see [LSU67]) that this boundary value problem has a unique solu-
tion in C2+α,(2+α)/2(B(0, 1)T). Since p ∈ Mo was arbitrary, we obtain that
g ∈ C2+α, 2+α

2 (Mo × [0, T]).
The argument presented above, since the coefficients and the right hand

side of (4.19) are in C1+α, 1+α
2 (B(0, 1)× [0, T]), shows that if g̃ is in C3+α, 3+α

2 (Mo×
[0, T]), so is g. Thus, a standard bootstrapping argument shows that g ∈
Ck+α, k+α

2 (Mo × [0, T]) as long as g̃ is.

It remains to prove the regularity of the solution of the Ricci-DeTurck
equation in a neighbourhood of the boundary, under the assumptions of
the Theorem.

We need to establish some notation first. Let φ : U → φ(U) ⊂ Rn+1

be any smooth chart on a domain U intersecting the boundary of M, such
that φ(U ∩ ∂M) = φ(U) ∩ {x0 = 0}, and let gab, γεσ be symmetric posi-
tive definite (n + 1)× (n + 1) and n× n matrices respectively. Define the
following differential operators

B(∂x, gab)(u)i = gpq∂p(uqi)−
1
2

gpq∂i(upq)

H(∂x, gab)(u) = gT,αβνi∂i(uαβ) +(
2g0lgαk√

g00
− g0lg0kg0α

(
√

g00)3
+

gT,αβg0βg0lg0k√
g00

)
∂α(ukl)

C(γεσ)(u)αβ = uαβ −
γµνγαβ

n
uµν

Now, take any p ∈ ∂M, and consider a smooth coordinate system as
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the above with φ(p) = 0 and gij(0)|t=0 = δij.
By Lemma 2.5, 2H(g) = H(∂x, gab(x, t))(g). Thus, in addition to (4.18),

gij(x, t) satisfy the following conditions on φ(U) ∩ {x0 = 0}.

B(∂x, gab(x, t))(g)i = gpqgriΓ̃r
pq

H(∂x, gab(x, t))(g) = 2η(x, t) (4.20)
C(γεσ)(g)αβ = 0

and the initial condition gij|t=0 = g0
ij.

Notice that after “freezing” the coefficients at x = 0, t = 0, the operators
L(δab), B(δab), H(δab), C(δεσ), satisfy the complementing condition, as the
computation in Theorem 3.1 shows. The openness of this condition implies
that the same is true for the operators L(gab), B(gab), H(gab), C(γεσ), as
long as gab and γεσ are close to δab.

We will extend (4.19), (4.20) to a parabolic boundary value problem on
Rn+1

+ using a smooth cutoff function 0 ≤ η ≤ 1 on Rn+1
+ supported in a

ball B+(0, r) such that η|B+(0,r/2) ≡ 1. For this, define the metrics

aab(x, t) = ηgab(x, t)− (1− η)δab

on Rn+1
+ , and

αεσ = ηγt,εσ + (1− η)δεσ

on Rn. Then, choosing r, τ > 0 small enough, the operators L(aab(x, t)),
B(aab(x, t)), H(aab(x, t)), C(αεσ(x, t)) will satisfy the complementing con-
dition, defining a parabolic boundary value problem on Rn+1

+ × [0, τ].
Now, let 0 ≤ ζ ≤ 1 be a smooth cutoff function supported in B+(0, r/2),

ζ|B+(0,r/3) ≡ 1, and set v = ζg.
Then v satisfies the equation

L(∂t, ∂x, aij)(v)kl = ζSkl − gij∂i∂j(ζ)gkl − 2gij∂i(ζ)∂j(gkl)

and the boundary conditions

B(∂x, aab(x, t))(v)i =
(

1− n
2

)
∂i(ζ) + ζgpqΓ̃r

t,pqgri

H(∂x, aab(x, t))(v) = 2ζη + nνi∂i(ζ) + να∂α(ζ) +
gαβ

T g0βg0lg0kgkl√
g00

∂α(ζ)

C(αεσ)(v)αβ = 0
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on Rn+1
+ . Therefore, by Theorem 5.4 of [Sol65], and the same bootstrap-

ping argument we used for the interior regularity, we can prove that g ∈
Cl+2, l+2

2 (M× [0, τ]) for some small τ > 0, since ζg0
kl satisfies the necessary

higher order compatibility conditions as long as g0
kl does.

Remark 4.2.1. For g ∈ W2,1
p (MT), the metrics g(t) are uniformly equivalent

and satisfy a uniform Hölder condition in the t direction. Therefore, one
can iterate the argument above to show boundary regularity up to time T.

4.2.3 Boundary regularity for t > 0

Theorem 4.7. Let g be a solution in W2,1
p (MT) of the Ricci-DeTurck boundary

value problem with respect to a C∞ family of background metrc is g̃ and C∞ initial
and boundary data. Then g is in C∞(M× (0, τ]). In particular the compatibility
conditions of any order are satisfied by g(t) for any t > 0.

Proof. We already know that g ∈ C1+α, 1+α
2 (MT), for α ≤ 1− n+3

p . Setting
l = k + α, we are going to do induction on the order k of the regularity.
Suppose that g ∈ Cl+1, l+1

2 (M× (0, τ]).
Set d =

[
l
2

]
+ 1, and choose 0 < τo < τ. We will use the notation

vτo(x, t) ≡ v(x, t + τo).

The idea is to use the arguments in the proof of Theorem 4.6 for the quan-
tity

wkl = tdζgτo
kl

For the boundary regularity (interior regularity can be proven in the same
way), w will satisfy the equation

L(∂t, ∂x, aτo
ab)(w)kl = td

{
ζSkl − gij∂i∂j(ζ)gkl − 2gij∂i(ζ)∂j(gkl)

}τo
+ dtd−1ζgτo

kl

on Rn+1
+ , the conditions

B(∂x, aτo
ab)(w)i = td

{(
1− n

2

)
∂i(ζ) + ζgpqΓ̃r

pqgri

}τo

H(∂x, aτo
ab)(w) = td

{
2ζη + nνi∂i(ζ) + να∂α(ζ) +

gαβ
T g0βg0lg0kgkl√

g00
∂α(ζ)

}τo

C(ατo
εσ)(w)αβ = 0
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on ∂Rn+1
+ and the initial condition w|t=0 = 0.

The coefficients of L, B, H and C are in Cl+1, l+1
2 (M× [0, τ − τo]), while

the right hand side of the equation is in Cl,l/2(M × [0, τ − τo]). Then w
will be in Cl+2, l+2

2 (M × [0, τ − τo]) as long as the necessary compatibility
conditions hold.

To prove this, first note that assuming that w ∈ Cl+2, l+2
2 (M× [0, τ− τo]),

we have that

∂i
tw|t=0 =

{
0 i < d

d!ζgτo i = d

Using this, and commuting derivatives, we compute for 0 ≤ i ≤ d− 1

∂i
t(B(aτo

ab)(w)|t=0 = ∂i
t

(
td
{(

1− n
2

)
∂i(ζ) + ζgpqΓ̃r

pqgri

}τo)∣∣∣
t=0

= 0

∂i
t(H(aτo

ab)(w)|t=0 =

∂i
t

td

{
2ζη + nνi∂i(ζ) + να∂α(ζ) +

gαβ
T g0βg0lg0kgkl√

g00
∂α(ζ)

}τo
∣∣∣∣∣∣

t=0

= 0

and ∂i
t(C(α

τo
εσ)(w))|t=0 = 0 for 0 ≤ i ≤ d. This shows that the initial and

boundary data satisfy the compatibility conditions.
Hence, w ∈ Cl+2, l+2

2 (M × [0, τ − τo]), and since τo was arbitrary g ∈
Cl+2, l+2

2 (M× (0, τ]).

Remark 4.2.2. The assumption that the data are smooth is not necessary.
Given an initial metric in Ck,ε(M) ∩W2,p(Mo), k ≥ 1, boundary data γ ∈
Cl,l/2(∂M× (0, τ]), η ∈ Cl−1, l−1

2 (∂M× (0, τ]) and Γ̃t ∈ Cl−1, l−1
2 (∂M× (0, τ]),

for l = k′ + α, k′ ≥ k, the solution will be in Cl,l/2(M× (0, τ]).

4.2.4 Regularity of the DeTurck vector field

According to the following Proposition, the DeTurck vector field W can
gain one derivative, without requiring all the compatibility conditions needed
to increase the regularity of g. Only higher order compatibility of the ini-
tial data with the reference metrics is needed. Thus, it can be assumed to
be as smooth as the solution to the Ricci-DeTurck flow.

Proposition 4.2.1. Let g ∈ Cl,l/2(MT) be a solution of the Ricci-DeTurck equa-
tion, l > 3. Assume further that g̃ is in Cl+1, l+1

2 (MT) and that the compatibility
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condition hk = ∂k
t g̃t|t=0 is satisfied for k ≤

[
l+1

2

]
. Then, the DeTurck vector field

W is in Cl,l/2(MT).

Proof. Applying the Bianchi operator βg = divg−1
2 d trg in both sides of the

Ricci-DeTurck equation we get

βg(∂tg) = βg(LWg).

Commuting derivatives we obtain

βg(LWg) = ∆W + Ric(W),

where ∆ = trg∇2 and Ric(W) = Ric(W , ·).
By the linearization formula ofW (4.9) we get that

∂tWb = βg(∂tg)b − gbrUijgipgjq
(

Γr
pq − Γ̃r

t,pg

)
− gpq∂t(Γ̃r

t,pq),

with Uij = −2 Ricij +LWgij.
Combining the above we get the following evolution equation forW

∂tW = ∆W + Ric(W) + Q,

where Q is an expression involving at most two derivatives of the metric.
By parabolic regularity, given the Dirichlet boundary condition W|∂M = 0
and the validity of the compatibility conditions at t = 0 it follows that
W ∈ Cl,l/2(M× [0, T]) as long as g ∈ Cl,l/2(M× [0, T]).

4.3 Uniqueness of the Ricci-DeTurck flow

Let g1, g2 ∈ W2,1
p (MT) be two solutions to the Ricci-DeTurck boundary

value problem (4.21),(4.22) satisfying the same initial and boundary data.
Choosing K > 0 such that gi ∈ MT

K(g0), there is a τ̂ > 0 such that the
map S defined in the proof of the existence Theorem is a contraction map
of Mτ̂

K(g0) to itself, and therefore has a unique fixed point. Since g1, g2
are both fixed points, they have to agree on [0, τ̂]. Assuming the data are
smooth enough to guarantee that gi(t) are C2 for t > 0, one can apply the
same argument regarding t0 as initial time. Then, an open-closed argu-
ment concludes that g1 ≡ g2 on [0, T].

In particular, assuming that the data (g0, g̃, [γ], η) are smooth, the re-
sults above prove the following Theorem.
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Theorem 4.8. For every K > 0 and

Λ = max
{

κ, sup
t

{
‖g̃(t)− g0‖W2,p(Mo) + ‖∂t g̃(t)‖Lp(Mo)

}}
,

there exists a unique solution g(t) for some short time T = T(Λ, K) > 0 of the
Ricci-DeTurck equation

∂tg = −2 Ric(g) + LW(g,g̃)g, (4.21)

where W(g, g̃)l = glrgpq(Γ(g)r
pq − Γ(g̃t)r

pq), satisfying on ∂M the boundary
conditions:

W(g, g̃) = 0
H(g) = η (4.22)[

gT
]

= [γ].

and the estimate ‖g− g0‖W2,1
p (MT)

≤ K. The solution is C∞ away from the corner

∂M× 0, and extends on M× [0, T] as a C1+α, 1+α
2 family of metrics. Moreover, if

the data g0, γ, η and g̃ satisfy the necessary higher order compatibility conditions,
then g is Ck+α, k+α

2 up to ∂M× 0.

4.4 The boundary value problem for the Ricci
flow

Let g0 be a smooth Riemannian metric on a compact Riemannian manifold
with boundary M, γt be a smooth family of metrics of the boundary, and η
a smooth function on ∂M× [0,+∞). We assume that they satisfy the zero
order compatibility condition (4.1). The aim is to study the existence and
regularity of a Ricci flow evolution of g0 on M, such that the conformal
class of the boundary metric is [γt] and the mean curvature of the bound-
ary is η. The existence will follow by the standard argument of pulling
back a solution of the Ricci-DeTurck flow by a family of diffeomorphisms.
However the issue of how smooth this family is at the corner ∂M× 0 of the
parabolic domain will become relevant, as it may be only C0 despite be-
ing smooth everywhere else. Theorem 4.9 describes how this phenomenon
affects the existence and regularity. Before discussing the proof we make
some remarks on the regularity of a solution to the Ricci flow g(t) with the

44



boundary conditions under consideration.
As it was shown in subsection (4.2), certain higher order compatibility

conditions among the initial and boundary data are necessary for the reg-
ularity of the Ricci-DeTurck flow on the corner ∂M × 0. Naturally, such
obstruction to regularity appears in any evolution initial-boundary value
problem, and so does for the Ricci flow.

For instance, for the boundary value problem (4.2), (4.3), (4.4), the com-
patibility conditions (4.16), (4.17), with h1 = −2 Ric(g0), are needed for a
C2 or C3 solution to exist. Notice that these compatibility conditions are ex-
clusively formulated in terms of the Ricci tensor of the initial metric. More
generally, differentiating the boundary conditions with respect to time, we
get

RicT − trγ RicT

n
γ = f γ +

trγ gT

n
γ̇,

so that since [γ] = [gT],

RicT −
trgT RicT

n
gT = f γ +

trγ gT

n
γ̇.

Also, the mean curvature condition gives,

H′g(Ric) = −1
2

η̇.

Using the evolution equation of the Ricci tensor under Ricci flow (see for
instance [CLN06]), and the contracted second Bianchi identity we observe
that Ric satisfies the following boundary value problem

∂t Ric = ∆L Ric, on M (4.23)

where ∆L is the Lichnerowicz Laplacian, and on ∂M

RicT −
trgT RicT

n
gT = f γ +

trγT gT

n
γ̇

H′g(Ric) = −1
2

η̇ (4.24)

βg(Ric) = 0.

Notice that the computation in Theorem 3.1 shows that it satisfies the com-
plementing condition and is parabolic.

Now, since ∂k
t g = −2∂k−1

t Ric, it follows that the compatibility condi-
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tions on g(0) needed for g(t) ∈ Ck(MT), with k > 3, are the same as those
for Ric ∈ Ck−2 , satisfying (4.23), (4.24). Note also that by the contracted
second Bianchi identity the compatibility conditions of any order hold for
the last boundary condition.

For example Ric ∈ C2(MT) and g ∈ C4(MT) require an additional
compatibility condition between (∆L Ric)T and γ̈|t=0, which, in the simple
case that the conformal class stays fixed along the flow, will be(

∆L Ric(g0)
)T

= ρg0,T

for some function ρ on ∂M.

Theorem 4.9. Let g0, γ, η as in Theorem 4.8. There exists a T > 0 and a smooth
family of metrics g(t) for 0 < t ≤ T that solves the Ricci flow equation

∂tg = −2 Ric(g) (4.25)

and satisfies on ∂M the boundary conditions

H(g) = η (4.26)[
gT
]

= [γ].

In addition, g(t) converges in the Cheeger-Gromov C1,α sense (i.e. up to dif-
feomorphisms that fix the boundary) to g0 and C∞ away from the boundary, as
t→ 0.

Moreover, if g0, γ, η satisfy the necessary higher order compatibility conditions
for the Ricci tensor Ric to be in the class Ck(MT), then

1. g(t) converges to g0 in the geometric Ck+2,α sense.

2. g ∈ Ck(MT)∩C∞(Mo × [0, T]), and there exists a Ck+1 diffeomorphism φ
of M which fixes the boundary and is C∞ in the interior such that g(0) =
φ∗g0. Also, if k ≥ 1, φ is Ck+2 and g ∈ Ck+1(MT).

3. The Riemann tensor Rm is in Ck(MT) and Rm(g(0)) = φ∗ Rm(g0).

Also, T is controlled from below in terms of κ.

Proof. By Theorem 4.8, choosing a family of smooth background metrics g̃,
there exists a solution ĝ(t) to the Ricci-DeTurck boundary value problem
(4.21),(4.22), which is in C∞ (MT − (∂M× 0)

)
and in C1+α, 1+α

2 (MT) if no
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other higher order compatibility conditions hold.

The DeTurck vector fieldW(ĝ(t), g̃) is also in C∞(MT− (∂M× 0)).Then,
for some ε > 0, the ODE

d
dt

ψ = −W ◦ ψ

ψε = idM (4.27)

defines a unique smooth flow ψt for t > 0, which extends at t = 0 continu-
ously up to the boundary, and smoothly in the interior.

Then, g(t) = ψ∗t ĝ(t) solves the Ricci flow equation (see for instance
[CLN06]). Moreover, since the diffeomorphisms ψt fix the boundary, and
the mean curvature and conformal class are invariant under such diffeo-
morphisms, it follows that g(t) satisfies the boundary conditions (4.26).

Since
(

ψ−1
t

)∗
g(t) = ĝ(t) and ĝ(t) → g0 in the C1,α sense as t → 0, we

get that g(t)→ g0 in the geometric C1,α sense.
Now, assume that g0, γ, η satisfy the higher order compatibility condi-

tions necessary for the Ricci tensor to be in Ck(MT) and the metric g in
Ck+2(MT) under the Ricci flow. We need similar compatibility conditions
to hold for the Ricci-DeTurck flow, in order to improve the regularity of ĝ.
In general we don’t expect them to hold for an arbitrary choice of back-
ground metrics g̃, so we have to choose them carefully.

As the discusion in subsection (4.2) shows, the time derivatives at t = 0
of solutions g, ĝ to the Ricci flow and Ricci-DeTurck flow respectively

hk = ∂k
t g|t=0

ĥk = ∂k
t ĝ|t=0

are completely specified by the initial data g0 and the background metrics
g̃ in the case of ĥk. Observe that if g̃t is chosen so that ∂t g̃|t=0 = 0 and
∂k

t g̃|t=0 = hk for k > 1, we get

ĥk = hk. (4.28)

To see this, note that ĥl is determined, through the equation, by ĥ0, . . . , ĥl−1
and ∂k

t g̃|t=0 for k < l. Thus, assuming that (4.28) holds for k < l we get

∂k
t (LW(ĝ,g̃) ĝ)|t=0 = 0, for k < l
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since ∂k
tW|t=0 = 0 for k < l. Note that ∂tW|t=0 = 0, by the contracted

second Bianchi identity. Then, we compute

ĥl = ∂l−1
t (−2 Ric(ĝ)+LW(ĝ,g̃) ĝ)|t=0 = ∂l−1

t (−2 Ric(ĝ))|t=0 = F(ĥ1, . . . , ĥl−1)

for some expression F. On the other hand,

hl = ∂l−1
t (−2 Ric(g))|t=0 = F(h1, . . . , hl−1)

for the same expression F. Hence, (4.28) follows by induction, since ĥ0 =
h0 = g0.

Now, (4.28) implies that higher order compatibility of the data of the
Ricci flow boundary value problem imply higher order compatibility of
the same order for the Ricci-DeTurck flow.

Theorem 4.8 shows that ĝ(t) is actually in Ck+2+α, k+2+α
2 (MT), which im-

mediately implies that g(t) converges to g0 in the geometric Ck+2,α sense.
Moreover, the regularity of ψ in M × [0, T] is at least Ck+1, i.e. it has

t time and s space derivatives for 2t + s ≤ k + 1, since W is of first order
on the metric. It follows that Rm(g(t)) = ψ∗t (Rm(ĝ(t))) is in Ck(MT), and
Rm(g(0)) = ψ∗0 Rm(ĝ(0)).

By Proposition (4.2.1), if k ≥ 1, the DeTurck field and also ψ is in Ck+2,
therefore g(t) ∈ Ck+1(MT). Otherwise, if k = 0, g(t) ∈ C0(MT) (up to the
boundary, at t = 0).

The lower bound of the existence time T > 0 is a consequence of the
corresponding estimate for the Ricci-DeTurck flow, after the observation
that the background metrics g̃ can be chosen so that

sup
t
{‖g̃(t)− g0‖W2,p(Mo) + ‖∂t g̃(t)‖Lp(Mo)} ≤ 1.

Remark 4.4.1. By parabolic theory, necessary compatibility conditions are
also sufficient to get higher regularity of a solution. However, the Ricci flow
is not parabolic, and this is manifested by loss of derivatives. On the other
hand, the Ricci tensor satisfies a parabolic boundary value problem and, as
predicted, the compatibility conditions give the expected smoothness.

Remark 4.4.2. Setting the initial condition ψ|t=0 = idM in (4.27), we obtain
a solution to the Ricci flow satisfying g(0) = g0. However, the diffeomor-
phisms ψ will have finite degree of regularity up to the boundary, even for
t > 0, depending on the compatibility of the data. Thus, g(t) will also have
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finite regularity along ∂M× [0, T]. This is in contrast to the behaviour of so-
lutions to parabolic boundary value problems, which become immediately
smooth for t > 0, as long as the boundary data are smooth.

The simple example of a rotationaly symmetric Ricci flow on the n + 1
dimensional ball illustrates the situation. Consider metrics of the form

g = φ2(r)dr2 + ψ2(r)ds2
n

where 0 < r ≤ 1 and ds2
n is the standard metric on Sn. Notice that

the symmetries imposed fix most of the gauge freedom, allowing only
reparametrizations of the radial variable r. Under Ricci flow the evolution
equations of φ and ψ are (see [CK04])

∂tφ = n
∂2

s ψ

ψ
φ (4.29)

∂tψ = ∂2
s ψ− (n− 1)

1− (∂sψ)2

ψ
(4.30)

where ∂s = φ−1∂r.
The diffeomorphism freedom in the r direction is the reason that φ does

not satisfy a parabolic equation and satisfies a transport-type equation in-
stead. In case the initial and boundary data don’t satisfy the first compati-
bility condition for the mean curvature, ψ will be worse than C3(M× [0, T])
and the right hand side of (4.29) will be worse than C1(M× [0, T]). Equa-
tion (4.29) doesn’t enjoy the smoothing properties of a parabolic equation
and, as an ODE in t, we can’t expect smooth dependence on the initial data.
Thus, low regularity of g(t) at ∂M× 0 can propagate in ∂M× {t > 0}.

4.5 Uniqueness of the Ricci flow.

We can now use the harmonic map heat flow for manifolds with bound-
ary (see [Ham75]) to establish the uniqueness of C3(MT) solutions to the
boundary value problem for the Ricci flow obtained in Theorem 4.9 . We
obtain the following Theorem.

Theorem 4.10. A solution to the boundary value problem (4.25),(4.26) in C3(MT)
is uniquely determined by the initial data g0 and the boundary data ([γ], η).

Proof. Let g1(t), g2(t) be two C3(MT) solutions to the Ricci flow satisfying
the same initial and boundary conditions. Consider the following heat
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equations for maps φi : (M, gi)→ (M, g0):

dφi

dt
= ∆gi(t),g0φi in M, (4.31)

φ|∂M = id∂M on ∂M, (4.32)

with initial condition
φ|t=0 = idM. (4.33)

For integral m > 0 and p > n + 3 we can define the Sobolev spaces
W2m,m

p (Mε, M) of maps f : M → M, by requiring the coordinate represen-
tations of f with respect to an atlas of M to be in W2m,m

p (Mε). This space
consists of the Lp functions on Mε = M× (0, ε) with the derivatives ∂r

t∇̂s

in Lp(Mε) for 2r + s ≤ 2m. The space W2m,m
p (Mε, M) does not depend on

the atlas used for its definition, as long as p > n + 3.
The results in Part IV, section 11 of [Ham75] show that there exist so-

lutions φi ∈ W2,1
p (Mε, M), for small ε > 0. The convexity assumption of

this result for the target (M, g0) is not needed here, since φ|t=0 = idM and
thus φi(t) remain diffeomorphisms of M for small t. Also, by the theory
in [LSU67] and [Sol65] these results hold under the current assumption for
the regularity of gi(t).

Moreover, the first order compatibility condition for the boundary value
problem (4.31)-(4.33) holds since

dφi

dt
= ∆gi(0),g0φi(0) = ∆g0,g0 idM = 0.

Thus, the diffeomorphisms φi(t) are in W4,2
p (Mε, M).

Given the regularity of φi and gi we know that ĝi = (φi(t))∗ gi(t) ∈
W2,1

p (Mε). Then, ĝi satisfies the Ricci-DeTurck equation with background
metric g0 and the geometric boundary data are still satisfied by ĝi since φi
fix the boundary. Also notice that the gauge condition

W(ĝi, g0)|∂MT = 0

holds, since
∆gi(t),g0φi(t) = −W(ĝi(t), g0) ◦ φi(t) (4.34)

and
∆gi(t),g0φi(t)|∂MT = 0.

By the uniqueness of W2,1
p solutions of the Ricci-DeTurck boundary value

50



problem, we have that ĝ1(t) = ĝ2(t) and W(ĝ1(t), g0) = W(ĝ2(t), g0) for
0 ≤ t ≤ ε. Now (4.34) and (4.31) imply that φ1 = φ2, thus g1 = φ∗1 ĝ1 =
φ∗2 ĝ2 = g2.

Theorem 4.10 has the following corollary:

Corollary 4.11. If φ is an isometry of g0 which preserves the boundary data,
namely

φ∗η(x, t) = η(x, t)
[φ∗γ(x, t)] = [γ(x, t)] ,

and g(t) is a solution to the corresponding Ricci flow boundary value problem
then φ is an isometry of g(t) for all t.

Proof. It is a consequence of the diffeomorphism invariance of the Ricci
flow equation and the uniqueness. If φ is an isometry of g0 which preserves
the boundary data and g(t) is a solution of the Ricci flow boundary value
problem then φ∗g(t) is also a solution with the same initial and boundary
data. By uniqueness we obtain that φ∗g(t) = g(t).

4.6 A more general boundary value problem.

The methods used in the preceding sections can be applied to prove the fol-
lowing generalization of Theorem 4.9, in which the mean curvature at any
time t depends on the induced metric on ∂M via a given smooth function
η(x, t, gT, (gT)−1).

Theorem 4.12. Theorem 4.9 holds if we replace the boundary condtion for the
mean curvature with

H(g) = η
(

x, t, gT, (gT)−1
)

. (4.35)

The existence time T is controlled from below in terms of

max
{
‖g0‖W2,p(Mo), |g0|1+ε, |(g0)−1|0, |γ|1+ε, 1+ε

2
, |η|C2

}
,

where |η|C2 is a C2 norm in all the arguments of η.

Proof. Regarding the short-time existence of the Ricci-DeTurck flow, esti-
mates on the line of Corollary A.3 of [Wei91] establish that the estimates of
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Lemmata 4.2 and 4.3 remain valid when

Ĝw = H′g0(w− g0)− (H(w)−H(g0)) +

η(x, t, wT, (wT)−1)− η(x, 0, g0,T, (g0,T)−1)

Gw1 − Gw2 = H′g0(w1 − w2)− (H(w1)−H(w2)) +

η(x, t, wT
1 , (wT

1 )
−1)− η(x, 0, w0,T

2 , (w0,T
2 )−1)

with the corresponding constants now controlled by the norm of η(x, t, ·, ·).
The regularity theorems are still valid since the dependence of η on gT

is of zero order. Now, pulling back by the DeTurck diffeomorphisms we
obtain a solution to the Ricci flow satisfying (4.35). Finally, the arguments
in section 4.3 and Theorem 4.10 establish the uniqueness of solutions of the
boundary value problems for the Ricci-DeTurck and the Ricci flow equa-
tions.

Remark 4.6.1. Ricci flow is typically thought as a flow on the space of met-
rics modulo diffeomorphisms and rescalings. However, prescribing the
mean curvature does not fit well in this picture, unless it vanishes. We
point out that the generalization above gives the possibility to impose scale
invariant boundary conditions on the mean curvature.

For instance, we may require H(g(t)) = η̄
φ , where η̄ and φ are smooth

functions on ∂M × [0,+∞), φ defined by gT = φ2γ and η arbitrary ( but
such that the zeroth order compatibility conditions hold).
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Chapter 5

Ricci flow on warped products
with Bartnik’s data.

5.1 Some background on the geometry of warped
products.

Let (Mn+1, g) and (Fm, ĝ) be smooth Riemannian manifolds. Given a smooth
function f on M, we can define the Riemannian metric h = g + f 2 ĝ on
N = M× F. In this section we will describe the connection and the basic
curvature quantities of h in terms of g and f .

We will write∇h,∇ and ∇̂ for the connections of h, g and ĝ respectively.
Let p1 : N → M, p2 : N → F be the projections to each of the factors of
N. Given vector fields X, Y, Z on M and U, V, W on F, we will also use
X, Y, Z, U, V, W for the pullbacks under p1, p2 of these vector fields on N.
We will also assume that the vector fields above commute. The following
Propositions are standard formulae, which can be found in the literature,
see for instance [Bes08]. We state them here without proof.

Proposition 5.1.1. The connection ∇h of h on the vector fields X, Y, U, V as
above is given by

∇h
YX = ∇YX

∇h
YU =

Y( f )
f

U

∇h
UX =

X( f )
f

U

∇h
VU = −∇ f

f
h(U, V) + ∇̂VU
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Proposition 5.1.2. The curvature tensor Rmh of h is given in terms of the curva-
ture Rm of g and f by

Rmh(X, Y)Z = Rm(X, Y)Z
Rmh(X, Y)U = 0

Rmh(X, U)Z =
D2

g f (X, Z)
f

U

Rmh(X, U)V = −
D2

g f (X, ·)
f

h(U, V)

Rmh(U, V)Z = 0

Rmh(U, V)W = R̂m(U, V)W −
|d f |2g

f 2 h(V, W)U +
|d f |2g

f 2 h(U, W)V

Proposition 5.1.3. The Ricci tensor of h is given by

Rich(V, W) = R̂ic(V, W)−
(

∆g f
f

+ (m− 1)
|d f |2g

f 2

)
h(V, W)

Rich(X, Y) = Ricg(X, Y)− m
f

D2
g f (X, Y)

Rich(X, V) = 0

Moreover, if ĝ is Einstein, i.e. R̂ic = λĝ we have

Rich(V, W) = −
(

∆g f
f

+ (m− 1)
|d f |2g

f 2 −
λ

f 2

)
h(V, W)

5.2 The Ricci flow on warped products with Ein-
stein fibres

A direct consequence of Proposition 5.1.3 is the following.

Proposition 5.2.1. The Ricci flow on (N, h(t) = g(t) + f (t)2 ĝ) is equivalent to
the following system of equations on g and f

∂tg = −2 Ricg +2m f−1D2
g f (5.1)

∂t f = ∆g f + (m− 1)
|d f |2g

f
− λ

f
(5.2)
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Next, we express the Ricci-DeTurck equation for h(t) in terms of g and
f . Using orthonormal frames {Xi} of g and {Uj} around points in M and
F respectively, we can compute the DeTurck vector field with respect to a
background metric h̃ = g̃ + f̃ 2 ĝ as:

W(h, h̃) =
n

∑
i=1

(∇h
Xi

Xi −∇h̃
Xi

Xi) +
p

∑
j=1

(∇h
Uj

Uj −∇h̃
Uj

Uj)

= W(g, g̃)− m∇g f
f

+
m∇g̃ f̃

f̃

(
f̃
f

)2

,

and compute

LW(h,h̃)h = LW(h,h̃)g + 2 fW(h, h̃)( f )ĝ

= LW(g,g̃)g− pL f−1∇g f g + LVg + 2 fW(h, h̃)( f )ĝ

= LW(g,g̃)g− 2m f−1D2
g f + 2m f−2d f ⊗ d f + LVg + 2 fW(h, h̃)( f )ĝ,

where V( f , f̃ , g̃) = m∇g̃ f̃
f̃

(
f̃
f

)2
= m f̃ f−2∇g̃ f̃ . Putting everything together

we obtain the following Proposition.

Proposition 5.2.2. The Ricci-DeTurck equation on h

∂th = −2Rich + LW(h,h̃)h

is equivalent to the system

∂tg = −2 Ricg +LW(g,g̃)g + 2m f−2d f ⊗ d f + LVg (5.3)

∂t f = ∆g f + (m− 1)
|d f |2g

f
− λ

f
+W(h, h̃)( f ). (5.4)

Following Shi [Shi89b] we express the flow using the background con-
nection ∇ of a Riemannian metric ḡ, which we will choose later to be the
initial metric. Since we want to allow for varying background metrics g̃,
we write

W(g, g̃) =W(g, ḡ) + Φ(g),

where Φ(g)r = grlgpq(Γl
pq − Γ̃l

pq). After a direct computation we obtain

∂tgkl − gij∇i∇j gkl = A(g, f ; g̃, f̃ ),

∂t f − gij∇i∇j f = B(g, f ; g̃, f̃ ),
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where

A(g, f ; g̃, f̃ ) = R(g,∇ g)kl + LΦgkl + 2m f−2∇k f ∇l f + LVgkl,

B(g, f ; g̃, f̃ ) = − f−1gij∇i f ∇j f − λ f−1 − gijgab
(
∇i g̃ja −

1
2
∇a g̃ij

)
∇b f

+m f̃ f−2 g̃ij∇i f̃ ∇j f ,

with

Rkl = gpq ḡrs (gkrR̄lpsq + glrR̄kpsq
)

−gpqgrs
(

1
2
∇k grp∇l gsq +∇p glr∇s gkq −∇p glq∇q gks

)
+gpqgrs (∇l grp∇q gks +∇k grp∇q gls

)
,

LVgkl = m
(
∇k( f̃ f−2glb g̃ba∇a f̃ ) +∇l( f̃ f−2gkb g̃ba∇a f̃ )

)
−Vcgcd(∇k gld +∇l gkd −∇d gkl)

= m
(
∇k( f̃ f−2glb g̃ba∇a f̃ ) +∇l( f̃ f−2gkb g̃ba∇a f̃ )

− f̃ f−2 g̃ba∇a f̃ (∇k glb +∇l gkb −∇b gkl)
)

.

5.3 A boundary value problem for the Ricci-DeTurck
equation.

Now let Mn+1 be a manifold with compact boundary ∂M, (F, ĝ) be a com-
plete Riemannian manifold and h0 = g0 + f 2

0 ĝ a warped product metric on
N = M× F.

If M is noncompact, we assume that ĝ is Ricci flat, Rm(g0) ∈ Lp, f0 ∈
W2,p (p > n + 3) and bounded away from zero, and that g0 has geometry
bounded in W2,p. Note that we allow Rm(g0) and D2

g0
f0 to be unbounded

in L∞.
Moreover, let γ(t) be C1+ε, 1+ε

2 family of Riemannian metrics on ∂M,
and η(t) a Cε, ε

2 family of functions on ∂M. We assume the zeroth order
compatibility conditions

gT
0 = γ(0),

H(g0) = η(0).

As in chapter 4, aiming to prove the short-time existence of the Ricci flow
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with Bartnik’s boundary conditions, the mean curvature H(g) and the in-
duced metric gT, we first focus on the Ricci-DeTurck equation

∂th = −2Rich + LW(h,h̃)h. (5.5)

It is defined with the aid of a time dependent family of background metrics
h̃. To obtain a well posed parabolic boundary value problem, we need to
impose that a solution h(t) will satisfy the following conditions on ∂M, for
every t.

W(h, h̃)(t) = 0, (5.6)
H(g(t)) = η(t), (5.7)

g(t)T = γ(t). (5.8)

Now we can prove the following existence theorem.

Theorem 5.1. There exists a T > 0 and a unique solution h(t) = g(t)+ f (t)2 ĝ of
(5.5)-(5.8), with g(0) = g0, g− g0 ∈ W2,1

p (MT) and f ∈ W2,1
p (MT). Moreover,

f , g are smooth (C∞) solutions of (5.3)-(5.4) away from the corner ∂M × 0 and
they belong to C1+α, 1+α

2 (MT). In particular, if M is not compact we have, for all
t ∈ [0, T],

sup
M

(| ∇ g(t)|ḡ + | ∇ f (t)|ḡ) < ∞. (5.9)

If the data (g0, g̃, f0, f̃ , γ, η) satisfy the necessary compatibility conditions then
g and f belong to Ck+α, k+α

2 (UT), for any precompact neighbourhood U ⊂ M
intersecting ∂M.

Moreover, if (g0, f0) ∈ Ck,α(M) for k ≥ 2 then (g(t), f (t)) ∈ Ck,α(M) for all
t.

Proof. The proof is via a fixed point argument, following the method in
[Wei91], where a W2,1

p solution to the nonlinear boundary value problem is
obtained as a fixed point of a suitable map.

We will assume that ḡ = g0. For K, T > 0, we may define the following
set of pairs (w, σ) ∈W2,1

p , where w are 2-tensors and σ functions:

MT
K =

{
(w, σ) ∈W2,1

p

∣∣∣ w|t=0 = 0, σ|t=0 = 0, ||w||W2,1
p
≤ K, ||σ||W2,1

p
≤ K

}
.

For any (w, σ) ∈ MT
K, define gw = g0 + w, fσ = f0 + σ and h(w,σ) = gw +

f 2
σ ĝ. Note that for T > 0 small enough, depending on K, gw and h(w,σ)

will define Riemannian metrics on M and N respectively, as W2,1
p embeds
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to C1+α, 1+α
2 for p > n + 3 and α = 1− n+3

p . Then, the following boundary
value problem is well defined.

∂tukl − ḡij∇i∇j ukl = A(gw, fσ; g̃, f̃ )− (ḡij − gij
w)∇i∇j wkl (5.10)

∂tφ− ḡij∇i∇j φ = B(gw, fσ; g̃, f̃ )− (ḡij − gij
w)∇i∇j σ

+ḡij∇i∇j f0 (5.11)

Ph0(u, φ) = Ph0(w, σ)−W(h(w,σ), h̃)

H′g0
(u) = H′g0

(w)−H(gw) + η (5.12)

u(t)T = γ(t)− γ(0)

Note that for any (w, σ) ∈ MT
K the right-hand sides of equations (5.10),(5.11)

belong to Lp. This is a consequence of the embedding of W2,1
p to C1+α, 1+α

2 ,
and the assumption that the curvature of ḡ is in Lp. Therefore, by Theorem
3.2, the boundary value problem (5.10), (5.11), (5.12) has a unique solution
(u, φ) = S(w, σ) satisfying u|t=0 = 0, φ|t=0 = 0. In other words, it defines a
map

S : MT
K →W2,1

p .

Now, a series of estimates similar to those in section 4.1 show that for T > 0
small enough S maps MT

K to itself and it is also a contraction. Hence, it
has a fixed point (w′, σ′) and the corresponding Riemannian metric h(w′,σ′)
solves (5.3), (5.4) with the boundary conditions (5.6)-(5.8). It is important
to note that these estimates depend heavily on the embedding of W2,1

p in

C1+α, 1+α
2 mentioned above, which still holds in the noncompact case, under

the additional assumption of geometry bounded in W2,p.
The regularity statement of the Theorem can be proven using the lin-

ear parabolic theory for boundary value problems developed in [Sol65] to
bootstrap the regularity, after appropriately localizing the equation as in
section 4.2. The overall argument however is similar to that of the analo-
gous situation is 4.2, so we omit it here.

Estimate (5.9) follows simply from the fact that g, f are in C1+α, 1+α
2 . Now

we proceed to show that if g0 ∈ Ck+α then g(t) ∈ Ck+α. Is enough to show
that uniform estimates hold for all charts not intersecting the boundary.

Let B(0, r̄) ⊂ Rn be the Euclidean ball of radius r̄ and fix a cutoff func-
tion ζ supported in B(0, r̄). If g and f denote the solutions of (5.3), (5.4),
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consider the quantities

vkl = ζgkl,
ψ = ζ f ,

expressed in the coordinates described in chapter 2. In B(0, r̄) they satisfy
equations of the form

∂tvkl − gij∂i∂jvkl = S1(g, ∂g, f , ∂ f ; g̃, f̃ , ∂g̃, ∂ f̃ , ḡ, ∂ḡ, ∂2 ḡ),

∂tψ− gij∂i∂jψ = S2(g, ∂g, f , ∂ f ; g̃, f̃ , ∂g̃, ∂ f̃ , ḡ, ∂ḡ),

zero boundary conditions, and initial conditions controlled in Ck+α. By
standard parabolic estimates we obtain

|vkl|
B(0,ρ)T

2+α, 2+α
2

+ |ψ|B(0,ρ)T

2+α, 2+α
2
≤ c(|S1|

B(0,ρ)T
α, α

2
+ |S2|

B(0,ρ)T
α, α

2
+ |g0|2,α + | f0|2,α)

≤ c
(
|gkl|

B(0,ρ)T

1+α, 1+α
2

+ | f |B(0,ρ)T

1+α, 1+α
2

+ |g0|2,α + | f0|2,α)

)
,

where c > 0 does not depend on the particular coordinate chart, but de-
pends on |ḡ|C2,α and T (Note that we can choose g̃ = ḡ away from ∂M
).

However, the fixed point (w′, σ′) satisfies the bound

||w′||W2,1
p

+ ||σ′||W2,1
p
≤ 2K.

By the embedding of W2,1
p (MT) in C1+α, 1+α

2 we obtain uniform control of

|vkl|
B(0,ρ)T

2+α, 2+α
2

and |ψ|B(0,ρ)T

2+α, 2+α
2

in terms of K.

Bootstrapping the above estimate gives uniform control in Ck,α.

5.4 The Ricci flow.

As in chapter 4 we can now use Theorem 5.1 to prove the short-time exis-
tence of Ricci flow on warped products with Bartnik’s data. For simplicity
we assume that all the data (g0, γ, η), defined at the begining of section 5.3
are smooth (C∞). The result is described in the following Theorem.

Theorem 5.2. There exists T > 0 and solutions g, f of (5.1)-(5.2), smooth and
defined away from the corner ∂M× 0, such that h(t) = g(t) + f (t)2 ĝ is a Ricci
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flow, satisfying

g(t)T = γ(t), (5.13)
H(g(t)) = η(t),

for all t > 0. In addition, there exists a a family of diffeomorphisms φt of M
such that φ∗t g(t), φ∗t f (t) convege to g0, f0 respectively, as t → 0 in C1,α(MT)
(uniformly).

Moreover, the regularity up to ∂M× 0, and the convergence of φ∗t g(t), φ∗t f (t)
to the initial data is improved, if Ric(h) satisfies higher order compatibility condi-
tions.

In addition, if M is noncompact and g0 is controlled in C2, then h(t) has
uniformly bounded curvature for all t ≤ T.

Proof. Given the data g0, f0, γ, η, we first need to choose h̃ = g̃+ f̃ 2 ĝ appro-
priately so that compatibility conditions that are satisfied for the boundary
value problem (5.1)-(5.2), (5.13)-(5.14) will still hold for the Ricci-DeTruck
boundary value problem (5.3)-(5.4), (5.6)-(5.7), as in Theorem 4.9. Note that
in the non-compact case, g̃, f̃ may coincide with g0, f0 outside a compact
set. Pulling back by the diffeomorphisms φt generated by W(h, h̃), setting
an initial condition φε = idM, we obtain the solution to the Ricci flow. In the
non-compact case, the flow ofW(h, h̃) is well defined, since it is uniformly
bounded by 5.9.

Remark 5.4.1. Assuming higher order control of the geometry at infinity on
can obtain uniform convergence of φ∗t h(t) to h0 in the appropriate topology.
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Chapter 6

A continuation principle.

As Ricci flow is a nonlinear system of equations, its solutions are not ex-
pected to exist for all time. For that reason, a central issue in the study
of Ricci flow is understanding what is the nature of the singularities that
appear and also what kind of conditions suffice for the continuation of the
flow. However, Ricci flow is a PDE with geometric character due to the
invariance of the equation under the action of diffeomorphisms. Thus, it
is expected and desirable to have a geometric characterization of the de-
veloping singularities, as a first step towards understanding how the flow
could cease to exist at a finite time.

On closed manifolds, it is a well known result of Hamilton [Ham82] that
the flow exists as long as the norm of the curvature tensor stays bounded.
The following theorem is the appropriate generalization on compact man-
ifolds with boundary.

Theorem 6.1. Let g(t) be a smooth Ricci flow with maximal time of existence
T < ∞ and smooth boundary data ([γ(x, t)], η(x, t)) (as in Theorem 4.9) defined
for all 0 ≤ t < ∞. Then

sup
0≤t<T

(
sup
x∈M
|Rm(g(t))|g(t) + sup

x∈∂M
|A(g(t))|g(t)

)
= +∞.

Proof. Assume that T < ∞ and for some K > 0

sup
x∈M
|Rm(g(t))|g(t) + sup

x∈∂M
|A(g(t))|g(t) ≤ K (6.1)

for all t < T.
The bound (6.1) implies that g(t) are uniformly equivalent and in ad-

dition that gT have bounded curvature for t < T. We show that gT are
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actually controlled in C1,ε as t → T. Let u(x, t) be a function such that
gT = u

4
n−2 γ (when n ≥ 3). If R(γ) and R(gT) are the scalar curvatures of

γ and gT respectively, it is known that u satisfies an elliptic equation of the
form

a∆u + R(γ)u− R(gT)u
n+2
n−2 = 0,

where a = a(n) and ∆ is the Laplacian with respect to the uniformly equiv-
alent and controlled in C1,ε metrics γ(t). Now, elliptic regularity and the
uniform bounds on u, R(γ), R(gT) imply that u, and hence gT, is controlled
in C1,ε. For n = 2 the situation is similar.

Next, we observe that the interior injectivity radius iM, the injectiv-
ity radius of the boundary i∂M and the “boundary injectivity radius” ib
are uniformly bounded below for t < T. Here we need to clarify that
iM ≥ io means that for any p ∈ Mo the exponential map expp restricted to
a ball of radius ρ < min{io, dist(p, ∂M)} is a diffeomorphism onto its im-
age while the boundary injectivity radius determines the size of the collar
neigbourhood of the boundary in which the normal exponential map is a
diffeomorphism.

Since g(t) are uniformly equivalent, for any p ∈ Mo there exists a ro > 0
such that distt(p, ∂M) ≥ ro for all t < T. This also shows that the volume
ratio

Volt(Bt(p, r))
rn+1 ≥ c

for all r ≤ ro and t < T, which together with the curvature bound gives
that injM(p) is bounded below. A similar argument controls the injectivity
radius i∂M of the boundary.

Moreover, by comparison geometry the bounds on the curvature and
the second fundamental form control the “focal” distance of the boundary.
Then, since the metrics are uniformly equivalent, the boundary cannot
form “self-intersections”, hence the boundary injectivity radius ib is also
bounded below.

Now, (6.1) and the discussion above implies that there exist positive
constants R0, i0, d0, S0 such that for all t ∈ [0, T)

|Ric(M, g)|g ≤ R0, |Ric(∂M, gT)|gT ≤ R0 (6.2)

iM ≥ i0, i∂M ≥ i0, ib ≥ 2i0 (6.3)

|H(g)|Lip(∂M) ≤ S0, diam(M, g) ≤ d0. (6.4)

Theorem 3.1 of [AKK+
04] states that the class of Riemannian manifolds

satisfying the bounds above is C1,ε-precompact. Thus, there is a sequence
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tj → T and C2,ε diffeomorphisms φj of M such that the metrics hj = φ∗j g(tj)

converge in C1,ε. In addition, the fact that both hT
j and g(tj)

T are uniformly
bounded in C1,ε implies that φj|∂M are actually controlled in C2,ε.

Next, we show that hj are uniformly bounded in W2,p(Mo). The bounds
above imply that the “harmonic radius” of (M, hj) is uniformly bounded
below. It is also known that in harmonic coordinates the Ricci curva-
ture becomes elliptic. Moreover, in boundary harmonic coordinates (see
[AKK+

04]) the metric components satisfy a boundary value problem of the
form (4.20), which is elliptic in the sense of [ADN64]. The mean curvature
and conformal class are Cε and C1,ε controlled respectively and the har-
monic coordinate functions are controlled in C2,ε. Thus, the Lp estimates in
Solonnikov [Sol67] provide uniform W2,p control of hj in these coordinates
(in a ball or “half ball” of smaller size). Note that the W2,p estimates up to
the boundary of [Sol67] hold under the current regularity assumptions on
hj, γ and η. Finally, since the harmonic coordinate functions C2,ε controlled
we obtain the uniform estimate of hj in W2,p(Mo).

Now, g(t) is a smooth Ricci flow for t < T, and therefore g(tj) satisfy
the necessary compatibility conditions of any order. The same is true for
hj since for the Ricci flow these conditions are imposed on the Ricci tensor
and are diffeomorphism invariant. Thus, by the short time existence result
and the uniform control of hj, [φ∗j γ] and φ∗j η, there exist smooth solutions
hj(t) to the Ricci flow boundary value problem with hj(tj) = hj, for a
uniform amount of time.

By uniqueness, g(t) = (φj)∗hj(t) for all j and t ≥ tj. Therefore, taking
j large, the argument above shows that the solution g(t) can be extended
past time T.

Remark 6.0.2. An examination of the proof of Theorem 3.1 in [AKK+
04]

indicates that Hölder control on the mean curvature is probably enough to
obtain precompactness in Hölder spaces. The assumption on the Lipschitz
control of the mean curvature could then be removed. However, we will
avoid the technical details of this improvement here, since in general the
mean curvature η can be assumed to have high degree of regularity.
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Chapter 7

An example.

In this chapter study the Ricci flow on M = [0, 1]× S1 × S1 equipped with
metrics of the form

g = p2(r)dr2 + q2(r)dθ2 + u2(r)dφ2. (7.1)

We obtain long time existence if the mean curvature of the boundary is
zero and its the conformal class remains fixed along the flow. Moreover, we
show that the flow may converge to a product metric or diverge, depending
on the conformal class of the boundary.

We begin by introducting the notation and some basic facts on the ge-
ometry of metrics of the form 7.1. The distance parameter s is defined
as

s =
∫ r

0
p(r)dr.

We will also write ∂s := 1
p ∂r and indicate differentiation with respect to ∂s

with ′.
A direct computation shows that the sectional curvatures of tangent

planes containing ∂s are

sec(s, θ) = −q′′

q
= −Q′′ − (Q′)2, (7.2)

sec(s, φ) = −u′′

u
= −U′′ − (U′)2, (7.3)

where P = log p, Q = log q, U = log u. We also compute

sec(θ, φ) = Q′U′.,
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Letting A(r0) be the second fundamental form of the slice r = r0, with
respect to ∂s , we compute that

A(r) = ∂sQq2dθ2 + ∂sUu2dφ2

|A|2 = (Q′)2 + (U′)2

Thus the mean curvature η(r) of each slice becomes

η(r) = (Q + U)′.

The components of the Ricci tensor are

Ricrr = −p2
(

Q′′ + U′′ + (Q′)2 + (U′2)
)

Ricθθ = −q2
(

Q′′ + (Q′)2 + Q′U′
)

Ricφφ = −u2
(

U′′ + (U′)2 + Q′U′
)

If g(t) solves by the Ricci flow, the evolution equations of P, Q and U
are

dP
dt

= Q′′ + U′′ + (Q′)2 + (U′)2 (7.4)

dQ
dt

= Q′′ + (Q′)2 + Q′U′ (7.5)

dU
dt

= U′′ + (U′)2 + Q′U′ (7.6)

Setting V = Q + U and C = Q −U, the obtain the following equivalent
evolution equations.

dV
dt

= V′′ + (Q′)2 + (U′)2 + 2Q′U′ = V′′ + (V′)2

dC
dt

= C′′ + (Q′)2 − (U′)2 = C′′ + C′V′

Now, let g0 be an initial metric of the form 7.1, and assume that the
mean curvature of the two boundary components is α0, α1 respectively
(with respect to the outward pointing unit normal vectors).

Suppose that g(t) is the Ricci flow provided by Theorem 4.9 preserving
the mean curvature and the conformal class of the (disconnected) bound-
ary. By Corollary 4.11, the form 7.1 of the metric is preserved, since it is
uniquelly determined by its symmetries.
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The boundary conditions, in terms of V and C, become

V′|r=0 = −α0, V′|r=1 = α1

C|r=0 = c0, C|r=1 = c1

where c0 and c1 represent the corresponding values for g0. The pair (c0, c1)
parametrizes the conformal classes of a metric of the form 7.1 on ∂M.

In order to compute the evolution equations of quantities involving
derivatives of V and C we will need the commutator [∂t, ∂s], which is given
by

[∂t, ∂s](u) = −Ṗ∂su

= −
(

V′′ + (Q′)2 + (U′)2
)

u′ (7.7)

= −
(

V′′ + |A|2
)

u′.

Using (7.8) we compute the evolution equation of η(r) = V′

dη

dt
= ∂sV̇ −

(
V′′ + (Q′)2 + (U′)2

)
η

=
(

V′′ + (V′)2
)′
−
(

V′′ + (Q′)2 + (U′)2
)

η

= η′′ + ηη′ −
(
(Q′)2 + (U′)2

)
η

= η′′ + ηη′ − |A|2η.

Similarly, we compute the evolution equation of w = C′

dw
dt

= ∂sĊ−
(

V′′ + |A|2
)

w

=
(
C′′ + wη

)′ − η′w− |A|2w

= w′′ + ηw′ − |A|2w.

The following lemmata describe the evolution of the distance between
the two boundary components and the volume of the manifold.

Lemma 7.1. If the sum of the mean curvatures of the two boundary components
is non-negative, i.e. α0 + α1 ≥ 0, their distance l is nondecreasing.
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Proof.

dl
dt

=
∫ 1

0

dp(r)
dt

dr =
∫ 1

0

(
V′′ + |A|2

)
pdr =

∫ l

0
(V′′ + |A|2)ds

≥ V′(l)−V′(0) = α1 + α0 ≥ 0

Lemma 7.2. The evolution of the volume is given by

dVol
dt

= 2α1eV(l) + 2α0eV(0) +
∫ l

0

(
(C′)2 − (V′)2

2

)
ds. (7.8)

Proof.

dVol
dt

=
d
dt

∫ 1

0
eV pdr =

∫ 1

0
(V̇ + Ṗ)eV pdr

=
∫ l

0

(
V′′ + (V′)2 + V′′ + |A|2

)
eVds

= 2
∫ l

0
V′′eVds +

∫ l

0
((V′)2 + |A|2)eVds

= 2V′eV |l0 +
∫ l

0

(
|A|2 − (V′)2

)
eVds

= 2α1eV(l) + 2α0eV(0) +
∫ l

0

(
(C′)2 − (V′)2

2

)
ds

= 2α1eV(l) + 2α0eV(0) +
∫ l

0
sec(θ, φ)ds

Remark 7.0.3. Note that if C is constant at t = 0, it will remain constant
along the flow. In this case, if the boundary components are minimal,
Lemma 7.2 implies that the volume is nonincreasing along the flow. This,
however, is not in general the case.

From now on we assume that both boundary components are minimal,
namely α0 = α1 = 0. A direct application of the maximum principle yields
the following preliminary estimates.

Lemma 7.3. As long as the flow exists, V and C are bounded from above and
below.
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Proof. Since V′ = 0 on the boundary, at any maximum (r, t) of V we have
V′′ ≤ 0 so

V̇(r, t) = V′′ + (V′)2 ≤ 0

If we define
Vmax(t) = max

r
V(r, t)

then
V̇max ≤ 0

which implies that the maximum V is nonincreasing. The same argument
shows that the minimum of V is nondecreasing, hence V is bounded above
and below along the flow.

On the other hand, C satisfies fixed Dirichlet data so we need to focus
on the behaviour in the interior. At an interior maximum (r, t) of C, C′ = 0
and the evolution equation gives Ċ ≤ 0 there, so C remains bounded above.
Like before, the same argument can show that C is also bounded below.

Next, we show that the Ricci flow has the expected uniformizing effect
on C and V.

Lemma 7.4. As long as the flow exists the estimate |A|2 ≤ 1
2t holds.

Proof. A computation shows that |A|2 = η2+w2

2 , which corresponds to the
decomposition of the second fundamental form to the trace and a trace free
parts.

Set ρ = η2+w2

2 . A direct computation shows that

ρ̇ = ρ′′ + ηρ′ −
(
(η′)2 + (w′)2

)
− (η2 + w2)2

2
,

= ρ′′ + ηρ′ −
(
(η′)2 + (w′)2

)
− 2ρ2.

Now, η = V′ satisfies homogeneous Dirichlet boundary conditions, i.e.
η|r=0 = η|r=1 = 0, and since the conformal classes of the boundary com-
ponents are fixed along the flow

Ċ|r=0,1 = C′′|r=0,1 + C′V′|r=0,1 = C′′|r=0,1 = w′|r=0,1 = 0.

Therefore, ρ′|r=0 = ρ′|r=1 = 0 and the maximum principle implies that
ρmax(t) = maxr ρ(r, t) satisfies

ρ̇max ≤ −2ρ2.
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Hence, ρmax(t) ≤ 1
2t+ 1

ρmax(0)
≤ 1

2t , which proves the lemma.

Lemma 7.5. The length l satisfies the estimate l(t) ≤ l(0)(2ρmax(0)t + 1)1/2.

Proof. By the evolution equation for l we obtain

l̇ =
∫ l

0
ρds ≤ lρmax(t) ≤

l
2t + 1

ρmax(0)

, (7.9)

hence l̇
l ≤

1
2t+ 1

ρmax(0)
, which gives

l ≤ l0(2ρmax(0)t + 1)1/2.

The next step is to show that the flow exists for all time. By Theorem 6.1,
it suffices to show that the ambient curvature and the second fundamental
form of the boundary remain bounded. The arguments above show that
the required control on |A|2 holds, so it remains to control the curvature.

Lemma 7.6. The curvature remains bounded along the flow.

Proof. Notice that

|Ric |2 = (V′′ + |A|2)2 + (Q′′ + (Q′)2 + Q′U′)2 + (U′′ + (U′)2 + Q′U′)2.

Given that |A|2 = (Q′)2 + (U′)2 is controlled, it is enough to control s1 :=
V′′ and s2 := C′′. A computation shows that their evolution equations are

ṡ1 = s′′1 + ηs′1 − (2η2 + w2)s1 − ηws2 (7.10)
ṡ2 = s′′2 + ηs′2 − (2w2 + η2)s2 − ηws1 (7.11)

Setting σ = 1
2(s

2
1 + s2

2) we compute

σ̇ = σ′′ − (s1)
2 − (s2)

2 + ησ′ − (2η2 + w2)s2
1 − (2w2 + η2)s2

2 − ηws1s2 − ηws1s2

= σ′′ + ησ′ − (η2 + w2)σ− [(s′1)
2 + (s′2)

2 + (ηs1 + ws2)
2]

≤ σ′′ + ησ′ − (η2 + w2)σ. (7.12)

On the boundary we have η̇ = η = w′ = 0, hence

σ′ = s1s′1 + s2s′2 = η′η′′ + w′w′′ = η′(η̇ − ηη′ + |A|2η) = 0.
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Combining this with the evolution equation of σ we obtain

σ̇max ≤ 0,

which shows that σ remains bounded above.

In the next Lemma we show that σ behaves like 1
t , as t→ ∞.

Lemma 7.7. σ satisfies an estimate of the form σ ≤ f
t , for an approrpiate constant

f > 0.

Proof. The evolution equation of F = tσ + ρ is

Ḟ = tσ̇ + σ + ρ̇

= t
(

σ′′ + ησ− (η2 + w2)σ−
(
(s′1)

2 + (s′2)
2 + (ηs1 + ws2)

2
))

= (tσ)′′ + η(tσ)′ − (η2 + w2)(tσ)− t
(
(s′1)

2 + (s′2)
2 + (ηs1 + ws2)

2
)
+ σ

+ρ′′ + ηρ′ − (η2 + w2)2

2
− 2σ

≤ F′′ + ηF′.

On the boundary F′ = tσ′ + ρ′ = ηη′ + ww′ = 0. Therefore, by the maxi-
mum principle F is bounded. This implies that

σ ≤ f
t

for some constant f , which proves the lemma. In particular, since ρmax is
decreasing and F|t=0 = ρ, it follows that we can choose f = ρmax(0).

Now we state and finish the proof of the result.

Theorem 7.8. Let g0 be a Riemannian metric on M = S1× S1× [0, 1] of the form
7.1, with minimal boundary. The Ricci flow solution which keeps the boundary
minimal and fixes its conformal class exists for all time. Moreover,

1. |Rm | ≤ f
t and |A|2 ≤ 1

2t for some constant f > 0.

2. There exists a constant Λ > 0 such that if c0 = c1 and l(0)|A0| ≤ 1√
Λ

, then

l remains bounded and the flow converges in C2 to a flat product metric. The
same holds if C|t=0 is constant.

3. If c0 6= c1, the distance l of the two boundary components satisfies
l ≥ a

√
t + b and the flow diverges.
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Proof. By Lemmata 7.4, 7.7 we know that the flow exists for all time, and
the curvature decays to zero. Moreover, the flow will converge in C2 to a
flat product metric, provided that the distance of the two boundary com-
ponents l remains bounded.

We first demonstrate that this is not the case if c0 6= c1. By Lemma 7.4

a := |c0 − c1| =
∣∣∣∣∫ l

0
C′ds

∣∣∣∣ ≤ ∫ l

0

1√
t + b

ds =
l√

t + b

Therefore, we obtain l ≥ a
√

t + b.
By Lemma 7.3, V ≥ v∗ for a uniform constant v∗. Hence, we have the

estimate

Vol =
∫ l

0
eVds ≥ lv∗.

Therefore, the convergence statement (1) will follow once we show that
the volume is uniformly bounded. By 7.8 we have:

dVol
dt

=
∫ l

0

w2 − η2

2
ds ≤

∫ l

0

w2

2
ds (7.13)

We have to estimate
∫ l

0 w2ds. For this, we compute

d
dt

(∫ l

0
w2ds

)
=

∫ l

0
2wẇds +

∫ l

0
w2Ṗds

=
∫ l

0
2w(w′′ + ηw′ − |A|2w)ds +

∫ l

0
w2(V′′ + |A|2)ds

= 2
∫ l

0
ww′′ds + 2

∫ l

0
ww′ηds− 2

∫ l

0
|A|2w2ds

+
∫ l

0
w2η′ds +

∫ l

0
w2|A|2ds

≤ −2
∫ l

0
(w′)2ds. (7.14)

In the last step we integrate by parts and use that w′ = η = 0 on the
boundary (since the mean curvature and Ċ are there).

Since
∫ l

0 wds =
∫ l

0 C′ds = c1 − c0 = 0, there exists a constant Λ, inde-
pendent of l, such that∫ l

0
w2ds ≤ Λl2

∫ l

0
(w′)2ds. (7.15)
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Combining (7.14) and (7.15) we obtain

d
dt

(∫ l

0

w2

2
ds
)
≤ − 2

Λl2

∫ l

0

w2

2
ds. (7.16)

Setting Y(t) =
∫ l

0
w2

2 ds we obtain d
dt log Y ≤ − 2

Λl2 . Then, the estimate of l
in Lemma 7.5 imples that

d
dt

log Y ≤ − 1
Λl(0)2ρmax(0)(t + 1

2ρmax(0)
)
= − κ

t + 1
2ρmax(0)

,

where κ = 1
Λl(0)2ρmax(0)

. Therefore Y satisfies the estimate

Y ≤ Y0

(2ρmaxt + 1)κ
.

Now, by 7.13, for the volume of M to remain bounded, it suffices to have∫ ∞
0 Y(t)dt < ∞. This holds if κ > 1 or equivalently l(0)2ρmax(0) < 1/Λ.

If instead C|t=0 is constant, then Y(0) = 0. Thus Y ≡ 0 and the statement
again follows.

Remark 7.0.4. It is not hard to show that the scale invariant quantity lρmax
is nonincreasing along the flow. Indeed, we compute

d(l2ρmax)

dt
= 2ll̇ρmax + l2ρ̇max ≤ 2ll̇ − 2l2ρ2

max

= 2(l2ρmax)

(
l̇
l
− ρmax

)
≤ 0,

where the last inequality follows from inequality (7.9).
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[LSU67] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva, Lin-
ear and quasilinear equations of parabolic type, Translated from the
Russian by S. Smith. Translations of Mathematical Monographs,
Vol. 23, American Mathematical Society, Providence, R.I., 1967.
MR 0241822 (39 #3159b)

[Mia03] Pengzi Miao, On existence of static metric extensions in general rel-
ativity, Comm. Math. Phys. 241 (2003), no. 1, 27–46. MR 2013750

(2004j:83043)

[Per02] G. Perelman, The entropy formula for the Ricci flow and its geomet-
ric applications, ArXiv Mathematics e-prints (2002).

[Per03a] , Finite extinction time for the solutions to the Ricci flow on
certain three-manifolds, ArXiv Mathematics e-prints (2003).

75



[Per03b] , Ricci flow with surgery on three-manifolds, ArXiv Mathe-
matics e-prints (2003).

[Pul12] A. Pulemotov, Quasilinear Parabolic Equations and the Ricci Flow
on Manifolds with Boundary, arXiv:1012.2941v3 (2012).

[She96] Ying Shen, On Ricci deformation of a Riemannian metric on manifold
with boundary, Pacific J. Math. 173 (1996), no. 1, 203–221. MR
1387799 (97a:53058)

[Shi89a] Wan-Xiong Shi, Complete noncompact three-manifolds with nonneg-
ative Ricci curvature, J. Differential Geom. 29 (1989), no. 2, 353–
360. MR 982179 (90c:53112)

[Shi89b] , Deforming the metric on complete Riemannian manifolds,
J. Differential Geom. 30 (1989), no. 1, 223–301. MR 1001277

(90i:58202)

[Sol65] V. A. Solonnikov, On boundary value problems for linear parabolic
systems of differential equations of general form, Trudy Mat. Inst.
Steklov. 83 (1965), 3–163. MR 0211083 (35 #1965)

[Sol67] , Estimates in Lp of solutions of elliptic and parabolic systems,
Trudy Mat. Inst. Steklov. 102 (1967), 137–160. MR 0228809 (37

#4388)

[Top10] Peter Topping, Ricci flow compactness via pseudolocality, and flows
with incomplete initial metrics, J. Eur. Math. Soc. (JEMS) 12 (2010),
no. 6, 1429–1451. MR 2734348 (2011k:53089)

[Wei91] P. Weidemaier, Local existence for parabolic problems with fully non-
linear boundary condition; an Lp-approach, Ann. Mat. Pura Appl.
(4) 160 (1991), 207–222 (1992). MR 1163209 (94b:35150)

76


	Acknowledgements
	Introduction
	A brief overview of Ricci flow.
	Prior work on manifolds with boundary and incomplete manifolds.
	Motivation and main results.
	Boundary value problems for Einstein metrics.
	A Boundary value problem for the static vacuum equations.
	Main results.


	Background material
	Function spaces
	The second fundamental form and mean curvature.

	Two linear parabolic boundary value problems.
	A general boundary value problem for the Ricci flow.
	Short-time existence of the Ricci-DeTurck flow.
	The key estimates: Lemmata 4.2 and 4.3
	A few technical Lemmata.

	Regularity of the Ricci-DeTurck flow.
	Higher order compatibility conditions
	Regularity up to t=0
	Boundary regularity for t>0
	Regularity of the DeTurck vector field

	Uniqueness of the Ricci-DeTurck flow
	The boundary value problem for the Ricci flow
	Uniqueness of the Ricci flow.
	A more general boundary value problem.

	Ricci flow on warped products with Bartnik's data.
	Some background on the geometry of warped products.
	The Ricci flow on warped products with Einstein fibres
	A boundary value problem for the Ricci-DeTurck equation.
	The Ricci flow.

	A continuation principle.
	An example.

