
 

   
SSStttooonnnyyy   BBBrrrooooookkk   UUUnnniiivvveeerrrsssiiitttyyy   

 
 
 

 
 
 
 

   
   
   
   
   

The official electronic file of this thesis or dissertation is maintained by the University 
Libraries on behalf of The Graduate School at Stony Brook University. 

   
   

©©©   AAAllllll    RRRiiiggghhhtttsss   RRReeessseeerrrvvveeeddd   bbbyyy   AAAuuuttthhhooorrr...    



On the Local Isometric Embedding in R3 of
Surfaces with Zero Sets of Gaussian Curvature

Forming Cusp Domains

A Dissertation presented

by

Tsung-Yin Lin

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Mathematics

Stony Brook University

December 2015



Stony Brook University

The Graduate School

Tsung-Yin Lin

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation

Marcus Khuri - Dissertation Advisor
Associate Professor, Department of Mathematics

Xiuxiong Chen - Chairperson of Defense
Professor, Department of Mathematics

Song Sun
Assistant Professor, Department of Mathematics

Svetlozar Rachev
Professor, Finance, College of Business

This dissertation is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

ii



Abstract of the Dissertation

On the Local Isometric Embedding in R3 of
Surfaces with Zero Sets of Gaussian Curvature

Forming Cusp Domains

by

Tsung-Yin Lin

Doctor of Philosophy

in

Mathematics

Stony Brook University

2015

We study the problem of isometrically embedding a two-dimensional Rie-
mannian manifold into Euclidean three-space. It is shown that if the Gaus-
sian curvature vanishes to finite order and its zero set consists of two smooth
curves tangent at a point, then local sufficiently smooth isometric embed-
dings exist.
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Chapter 1

Introduction

It is a natural question to ask whether all two-dimensional Riemannian man-
ifolds admit local isometric embeddedings into R3, or stated in another way,
whether every abstractly defined surface actually arises (at least locally) as
a concrete surface that we may visualize in 3-space. The purpose of this pa-
per is to provide a sufficient condition for the existence of such embeddings
when the zero set of the Gaussian curvature possesses cusp intersections.
This will be accomplished by solving the traditional Monge-Ampére equa-
tion, some times referred to as the Darboux equation, that is associated with
this problem.

We point out first that counterexamples to the existence of local isomet-
ric embeddings were constructed for metrics of low regularity, by Pogorelov
[25] and by Nadirashvili and Yuan [23], both for metrics g ∈ C2,1. More-
over, Khuri found counterexamples to the local solvability of smooth Monge-
Ampére equations in [12]. Yet the question of whether or not there are any
smooth counterexamples to the isometric embedding problem is still open.

On the other hand, affirmative answers have been given for the cases
when the Gaussian curvature K does not vanish or when the metric is an-
alytic. These classical results may be proven by standard implicit function
theorem arguments when K 6= 0, and by the Cauchy-Kowalevski theorem
in the analytic case. The first results obtained, in which the curvature was
allowed to vanish, were produced by Lin. He dealt with a sufficiently smooth
metric with nonnegative curvature in [17], and a sufficiently smooth metric
with curvature vanishing to zeroth order (K(0) = 0 and |∇K(0)| 6= 0) in
[18]. Many other results were obtained in the last 15 years by Han, Hong,
Khuri, and Lin in [4, 5, 7, 8, 11, 13, 14, 15, 16]. These papers treat much
more general situations regarding the vanishing properties of K, and involve
varying degrees of regularity for the metric and solution . For results on the
higher dimensional local isometric embedding problem, see [1, 2, 10, 24, 26].

A recent result of Han and Khuri [9] shows that if K vanishes to finite
order and its zero set consists of two Lipschitz curves intersecting transversely
at a point, then a sufficiently smooth local isometric embedding exists. The
next most natural generalization would be the cases when the zero set consists
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Figure 1: Elliptic Cusp.

of two sufficiently smooth curves tangent at a point. One case that we deal
with in the current paper may be represented by Figure 1.

Without loss of generality we may assume that there are local coordinates
(x̂, ŷ) centered at the point of intersection so that the two curves are locally
given by graphs ŷ = hi(x̂), i = 1, 2, with h1 and h2 lying above and below
the x̂-axis, respectively. In order for the regions to have reasonable cusps we
require that

lim
x̂→0

hi(x̂) = lim
x̂→0

h′i(x̂) = 0, (1.1)

where the upper prime indicates differentiation. Moreover, standard cusps
satisfy certain growth restrictions (see for example [20])

h1(x̂)

x̂
is nondecreasing and

h2(x̂)

x̂
is nonincreasing, (1.2)

and ∣∣∣h(l)
i · hl−1

i

∣∣∣ ≤ Cl, for 0 ≤ l ≤ m1, (1.3)

where (l) denotes differentiation and l−1 is an exponent. In each of the four
regions cut out by the curves, the Gaussian curvature has a constant sign,
which is positive in Ω+

i , and negative in Ω−i . In this family of problems, K
is positive in cusp domains and negative in sufficiently smooth domains.

Another family of cases that we consider may be represented by Figure
2. An obvious difference from the previous case is that K is negative in cusp
domains, and is positive in sufficiently smooth domains. In both cases we will
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Figure 2: Hyperbolic Cusp.

open up the cusp domain to facilitate analysis, and for this it is convenient
to express each curve as a graph over the tangent line. However, in this
hyperbolic cusp setting, we will need more detailed information concerning
the character of the cusp. More precisely, it will be required that the graph
functions satisfy

|hi(x̂)| ≥ Cx̂1+ᾱ, (1.4)

for appropriate ranges of ᾱ > 0. Note that larger values of ᾱ correspond to
sharper cusps.

Recall that the local isometric embedding problem is equivalent to the
local solvability of a Monge-Ampére equation. To see this, we search for a
function z with |∇z(0)| = 0, such that g − dz2 is flat in a neighborhood of
the origin. Since this metric is then locally isometric to Euclidean space,
there exist functions (u, v) with g− dz2 = du2 + dv2. The map (u, v, z) then
provides the desired embedding. Furthermore, a direct computation shows
that g − dz2 is flat if and only if z satisfies the so called Darboux equation

det Hessgz = K(det g)(1− |∇gz|2). (1.5)

Our strategy, following Han and Khuri [9], will be to separately analyze
each region where the Gaussian curvature has a constant sign. Within such
a region, we will solve a linearized version of the equation (1.5) with special
boundary conditions along the zero set, as well as obtain the appropriate a
priori estimates. These estimates will then allow an application of the Nash-
Moser iteration to obtain a solution of the nonlinear equation in each region.
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Finally, we patch the solutions found in each region to form a complete
solution in a whole neighborhood of the origin. The boundary conditions
imposed on the linearized problems ensures that the solutions may be patched
together in a smooth way across the zero set. Our main theorem is as follows.

Theorem 1.1. Let g ∈ Cm0 be a Riemannian metric defined on a neigh-
borhood of a point in the plane, with Gaussian curvature K vanishing there
to the finite order N . Moreover let the zero set K−1(0) consist of two Cm0

curves which are tangent at the point, and satisfy (1.1), (1.2) and (1.3).

(1) If K is positive between the two curves and negative in the complement
with m0 ≥ 3N + 19 and m1 ≥ 2N + 6, then g admits a Cm local
isometric embedding into R3 for all m ≤ min{m1 − 1, m0 −N − 15}.

(2) If K is negative between the two curves and positive in the complement,
(1.4) is satisfied with ᾱ ∈ (0, 1), m0 ≥ 1+α

1−2α
(6N + 33) + 4N + 33

where α = ᾱ
1+ᾱ

, and m1 ≥ 6N+33
1−2α

, then g admits a Cm local isometric

embedding into R3 for all m ≤ min
{
m1 − 1, m0−(1+α)(5N+34)

(1+α)2

}
.

Note that there is no hypothesis placed on the type of cusp in case (1 ).
In (2 ) the restriction on ᾱ, which will be explained more below, comes from
the Nash-Moser iteration as opposed to difficulties incurred when solving the
linearized problem. In fact, we have found that it is possible to invert the
linearized operator without any restriction on ᾱ. This yields existence results
for linear degenerate hyperbolic equations with a cusp Cauchy surface, which
may be of independent interest. To the best of our knowledge, even this linear
problem has not been previously treated in the literature. We also point out
that if −1 < ᾱ < 0 in (2 ) then this is a special case of (1 ), and if ᾱ = 0 then
this is a special case of the results in [9].

The need to apply the Nash-Moser iteration emerges from the degeneracy
of the Darboux equation when K vanishes. In particular, when solving the
linearized equation a certain “loss of derivatives” occurs, which the Nash-
Moser iteration is specifically designed to deal with (see [21, 22]). In our
situation, a further difficulty arises. Namely, since fundamental tools such as
the trace operator and the extension operator are not bounded in standard
Sobolev spaces for cusp domains, all the energy estimates must be performed
in weighted Sobolev spaces. However when using these spaces, in addition
to the loss of derivatives, the loss of weighted functions also appears.
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When K is positive in the cusp domain, we manage to absorb the loss
of weighted functions into the loss of derivatives by Corollary 4.2, and make
the observation that the former causes no more damage than the latter.
Therefore the standard Nash-Moser iteration works in this case. On the other
hand, when K is negative in a cusp domain, although we can still absorb the
loss of the weighted functions into the loss of the derivatives, the former grows
much faster than the latter when estimating higher derivatives. Since [3] and
[19] provide restrictions on such growth for a successful application of the
Nash-Moser iteration, we need to impose a condition on the zero set in order
to stay within the appropriate framework. This condition is precisely the
restriction on the values of ᾱ that appears in case (2) in Theorem 1.1. Such
a hypothesis prevents the cusp from becoming too sharp near the origin. In
other words, it prevents the initial Cauchy surface from becoming time-like
too fast.

This paper is organized as follows. In Chapter 2, we introduce notation
and review a canonical form of the linearized equation derived in [9]. In
Chapters 3 and 5, we solve the linearized equation and obtain Moser estimates
in a cusp domain where K is positive, respectively negative. Chapters 4 and
6 are then dedicated to the Nash-Moser iteration in the cusp domains having
positive and negative curvature respectively.
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Chapter 2

The linearized canonical form

Consider here a single cusp domain Ω̂ associated with positive curvature.
That is, it arises as in the previous chapter as the region between two curves
which are tangent at a point, and bounds a domain with K > 0. We may
choose local coordinates (x̂, ŷ) so that the boundary ∂Ω̂ consists of graphs
ŷ = ±h(x̂). The cusp domain itself is then given by

Ω̂ = { (x̂, ŷ) | |ŷ| < h(x̂), 0 < x̂ < 1 }.

Here we are tacitly assuming without loss of generality that the domain is
symmetric with respect to the axis. The function h will show up frequently
as a weight function or as a parameter in a coordinate change, and if the
boundary is not symmetric across the axis, then the same methods still hold
after taking the maximum of the two sides instead.

We will follow the set up in [9]. Namely, after expressing equation (1.5)
in the coordinates (x̂, ŷ), an approximate solution z0 may be constructed by
using Taylor’s theorem, so that

det Hessgz0 −K(det g)(1− |∇gz0|2)

vanishes to high order at the origin. A full solution of (1.5) will then be
sought in the form z = z0 + ε5w, where ε > 0 is a small parameter. Let

Φ(w) := det Hessgz −K(det g)(1− |∇gz|2),

and (
a11 a12

a12 a22

)
=

(
∇22z −∇12z
−∇12z ∇11z

)
,

then the choice of z0 may be arranged so that

lim
|(x̂,ŷ)|→0

a22 = 1, a12 = O
(
|(x̂, ŷ)|

)
.
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Next, rescale the coordinates by

(x̂, ŷ) = (ε2x, ε2y),

so that the linearized equation

L(w)u :=
d

dt
Φ(w + tu)

∣∣∣
t=0

takes the form

ε−1L(w)u = aij∇iju+ 2ε4K|g|〈∇gz,∇gu〉, (2.1)

where |g| = detg and ∇ij denote covariant derivatives with respect to the
rescaled coordinates.

In order to facilitate analysis of the linearized equation, it is helpful to
eliminate the second order mixed derivative term. This may be accomplished
by a further coordinate change to (x̄, ȳ), such that ȳ = y and

a12∂x̄

∂x
+ a22∂x̄

∂y
= 0.

This equation may be solved with the method of characteristics while impos-
ing the following initial condition

x̄(x, 0) = x.

When expressed in these new coordinates, the linearized equation takes the
so called canonical form that played an important role [9]. We summarize
the result in the following lemma.

Lemma 2.1. Let g ∈ Cm0 and w ∈ C∞ with |w|C4 ≤ 1. In a neighborhood
of the origin there exists a local Cm0−2 change of coordinates

x̄ = x̄(x, y), ȳ = y,

such that in these new coordinate system the linearization takes the form

ε−1L(w)u = a22L(w)u+ (a22)−1Φ(w)[∂2
xu− ∂xlog(a22

√
|g|)∂xu],

where
L(w)u = ∂x̄(k∂x̄)u+ ∂2

ȳu+ c∂x̄u+ d∂ȳu, (2.2)

7



with

k = Kk̄(x, y, w,∇w,∇2w,∇x̄),

c = Kc̄(x, y, w,∇w,∇2w,∇3w,∇x̄,∇2x̄) + (a22)−2∂xΦ(w)∂xx̄,

d = ε2d̄(x, y, w,∇w,∇2w),

for some k̄, c̄, d̄ ∈ Cm0−4 such that k̄ > 1/2 if ε = ε(m) is chosen sufficiently
small. Moreover, we have an estimate on the new coordinates

‖(x̄, ȳ)‖Hm(Ω) ≤ Cm(1 + ‖w‖Hm+4(Ω)), (2.3)

with the constant Cm independent of ε.

We remark that the intersection of the original domain Ω̂ with a small
neighborhood of the origin may be written in the new coordinates as

Ω̄ = { (x̄, ȳ) | |ȳ| < h̄(x̄) , 0 < x̄ < 1 }.

Here h̄ is a rescaling of the initial graph h by ε−2. It is important to note that
even with this rescaling of the graph, the condition (1.3) still holds in the
new coordinates with a constant that is independent of ε. Since this is the
primary hypothesis needed to treat the elliptic regions, and it is not affected
by the rescaled graph, we will in what follows continue to denote the graph
by h instead of h̄ for simplicity.

In conclusion we have defined three different coordinate systems which
culminated in a rescaling of the domain, and a canonical form for the lin-
earization. In all of these coordinates the geometry of the domain remains
a cusp. However, in the next section, in order to facilitate analysis of the
linearized equation, we will open up the cusp by another set of coordinates
(x̃, ỹ), in which the domain is transformed into an infinite cylinder denoted
by Ω̃.

8



Chapter 3

Linear theory in elliptic cusps

According to our assumption that K > 0 in Ω̄ and vanishes along ∂Ω̄, the
linearized equation (2.2) is of degenerate elliptic type. We need to establish
existence and to prove appropriate energy estimates. The framework of the
computation is from [9], where the authors dealt with a sector domain. It
is well known that in a sector domain, the regularity of elliptic equations
depends on the angle of the sector. Smaller angles yield higher regularity.
Since in [9] angles are not necessarily small, the authors needed to use the
degeneracy to overcome this problem. Here we will use an extra coordinate
change and exploit degeneracy more directly to derive an easier computation.
However it turns out that the use of degeneracy is not necessary in the case
of cusp domains, because the angle of a cusp zero. Nevertheless we will use
the degeneracy anyway, but point out how it can be replaced by the zero
angle in the computation.

First, we make a coordinate change by

x̃ =

∫ 1

x̄

1

h(t)
dt, ỹ =

ȳ

h(x̄)
,

to bring Ω̄ to
Ω̃ = { (x̃, ỹ) | x̃ ≥ 0, −1 ≤ ỹ ≤ 1 }.

The Jacobian of the coordinate change is(
∂x̃
∂x̄

∂x̃
∂ȳ

∂ỹ
∂x̄

∂ỹ
∂ȳ

)
=

( −1
h

0
−ỹh′
h

1
h

)
,

(
∂x̄
∂x̃

∂x̄
∂ỹ

∂ȳ
∂x̃

∂ȳ
∂ỹ

)
=

(
−h 0
−ỹh′ h

)
,

and the equation (2.2) becomes

L(w)u = ∂x̃(K∂x̃u)+∂x̃(A∂ỹu)+∂ỹ(A∂x̃u)+∂ỹ(B∂ỹu)+C∂x̃u+D∂ỹu, (3.1)

9



with

K =
k

h2
,

A =
kỹh′

h2
,

B =
1

h2
+ k(

ỹh′

h
)2,

C =
−c
h
− 2kh′

h2
,

D =
d

h
− cỹh′

h2
− 2kỹh′

h2
.

We remark here that h = h(x̄(x̃)). An important consequence of this is:

Lemma 3.1. For all nonnegative integer m and real number τ , we have

dmhτ

dx̃m
= O(hτ ).

Proof. Notice that
dh(x̄)

dx̃
= h′

dx̄

dx̃
,

and
∂x̄

∂x̃
= −h(x̄),

so by (1.3) the inequality is true for m = 1 and τ = 1. A simple induction
yields the desired result.

We also remark that we merely used the boundedness of (1.3) for the
proof above. In a cusp domain we actually have∣∣∣h(l) · hl−1

∣∣∣→ 0 as ε→ 0, for l ≥ 1,

and therefore ∣∣∣dlhτ (x̄)

dx̃l
h−τ (x̄)

∣∣∣→ 0 as ε→ 0, for l ≥ 1. (3.2)

This can be used to deal with non-degenerate cases.

10



It will be convenient to cut off the coefficients away from the infinity of
the (x̃, ỹ) plane. Let ϕ ∈ C∞([0,∞)) be a nonnegative cut-off functioin with

ϕ(x̃) =

{
1, if x̃ ≥ 2,

0, if x̃ ≤ 1,

and define

Lu = ∂x̃(K̄∂x̃u) + ∂x̃(Ā∂ỹu) + ∂ỹ(Ā∂x̃u) + ∂ỹ(B̄∂ỹu) + C̄∂x̃u+ D̄∂ỹu, (3.3)

where
K̄ = ϕ2K, Ā = ϕA, B̄ = B, C̄ = ϕC, D̄ = ϕD.

We will study the boundary value problem:

Lu = f in Ω̃, u(x̃, 1) = u(x̃,−1) = 0. (3.4)

Since there is 1/h in the coefficient of L, which blows up when x̃ approaches
infinity, we need the solution to vanish at the infinity. It will be convenient
to define the following weighted Sobolev norm to control the rate at which
the functions vanish:

‖u‖2
(m,l,γ) =

∑
s≤m, t≤l

t+s≤max(m,l)

∫
Ω̃

λ−s|h−γ ∂sx̃∂tỹu|2,

where λ is a large parameter. Let C
∞

(Ω̃) be the space of the smooth functions
that vanish for x̃ large and H(m,l,γ)(Ω̃) be its closure with respect to the norm
defined above. For all the weighted norms in this paper, if m = l we will drop
the l. We also let Ĉ∞(Ω̃) denote the space of C

∞
(Ω̃) functions v satisfying

v(x̃, 1) = v(x̃,−1) = 0. For every f ∈ H(m,l,γ)(Ω̃), we search for a weak
solution u ∈ H(m,l,γ)(Ω̃) satisfying

(u, L∗v) = (f, v) v ∈ Ĉ∞(Ω̃), (3.5)

where (·, ·) is the L2(Ω̃) inner product and L∗ is the formal adjoint of L. We
first solve an auxiliary ODE.

Lemma 3.2. For every v ∈ Ĉ∞, there exists a unique solution ξ ∈ H(2m,∞,γ)(Ω̃)∩
C∞(Ω̃) of the ODE:
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m∑
s=0

λ−s∂sx̃(
ỹ2 − 2

h2γ
∂sx̃ξ) = v, (3.6)

ξ(x̃,−1) = ξ(x̃, 1) = 0, ∂sx̃ξ(0, ỹ) = 0, 0 ≤ s ≤ m− 1,

h−2γ(x̄0)

∫
x̃=x̃0

(∂sx̃∂
t
ỹξ)

2 <∞, 0 ≤ s ≤ 2m− 1, t <∞.

Proof. Denote the completion, with respect to ‖·‖(m,0,γ), of C∞(Ω̃) functions

with compact support by H
(m,0,γ)
0 (Ω̃). We first obtain a weak solution in

H
(m,0,γ)
0 (Ω̃) by the Riesz representation theorem, so the desired boundary

behavior at {ỹ = ±1} and {x̃ = 0} follows. Then we define

ρx̃0(x̃) =

{
1, if x̃ ≤ x̃0,

0, if x̃ ≥ x̃0 + 1.

and integrate the following by parts:∫
Ω̃3x̃0

(
v −

m∑
s=0

(−1)sλ(−s)∂sx̃(
ỹ2 − 2

h2γ
∂sx̃ξ)

)
ρ2m
x̃0
∂2τ
x̃ ξ = 0,

where Ω̃x̃0 is defined to be {(x̃, ỹ) | 0 ≤ x̃ ≤ x̃0,−1 ≤ ỹ ≤ 1}. For each
1 ≤ τ ≤ m, we integrate by parts so that the highest order derivative on ξ
is m + τ . We keep only the highest derivative on the left hand side of the
equality and the remaining terms on the right hand side. Notice that the
boundary integrals are either zero or independent of x̃0, and the derivatives
of ρx̃0 is bounded by a constant independent of x̃0. Therefore, by taking
limit as x̃0 goes to infinity and applying a simple induction on τ , we arrive at
ξ ∈ H(2m,0,γ)(Ω̃). This is actually the standard regularity estimate for elliptic
equations. Differentiating the equation with respect to ỹ and repeating the
argument above yields ξ ∈ H(2m,l,γ)(Ω̃) for arbitrary l ≥ 1. ξ ∈ C∞(Ω̃) is a
corollary of the Sobolev embedding theorem and regularity of ODE.

Lastly, consider h−γ∂sx̃∂
t
ỹξ ∈ Hm(Ω̃), where Hm(Ω̃) is the usual Sobolev

space. The vanishing of the integral along x̃ = x̃0 follows directly from the
trace theorem in the Sobolev space.

The next lemma is the main tool for all the energy estimates in this
chapter.
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Lemma 3.3. Suppose that |w|C4(Ω) < 1 and let u ∈ C2(Ω̃) with u(x̃, 1) =
u(x̃,−1) = 0. If ε is sufficiently small and

h−2γ−2(x̄0)

∫
x̃=x̃0

(∂sx̃u)2 < C <∞, for s = 0, 1. (3.7)

Then ∫
Ω̃

Lu
ỹ2 − 2

h2γ
u ≥

∫
Ω̃

(∂ỹu)2

h2γ+2
+

u2

h2γ+2
.

Proof. For any functions a ∈ C∞(Ω̃), integrating by part yields∫
Ω̃x̃0

auLu = −
∫

Ω̃x̃0

a[K̄(∂x̃u)2 + 2Ā∂x̃u∂ỹu+ B̄(∂ỹu)2]

+

∫
Ω̃x̃0

u2

2
[∂x̃(K̄∂x̃a) + ∂x̃(Ā∂ỹa) + ∂x̃ỹ(Āa)

−∂ỹ(∂x̃Āa) + ∂ỹ(B̄∂ỹa)− ∂x̃(C̄a)− ∂ỹ(D̄a)]

−
∫
∂Ω̃x̃0

u2

2
[K̄∂x̃aν

1 + Ā∂ỹaν
1 + ∂ỹ(Āa)ν1

−∂x̃Āaν2 + B̄∂ỹaν
2 − C̄aν1 − D̄aν2]

+

∫
∂Ω̃x̃0

a[K̄∂x̃uuν
1 + 2Ā∂x̃uuν

2 + B̄∂ỹuuν
2].

Letting a = ỹ2−2
h2γ

, then the first integral becomes:

−
∫

Ω̃x̃0

ỹ2 − 2

h2γ+2
k[ϕ2(∂x̃u)2 + 2ϕỹh′∂x̃u∂ỹu+ (ỹh′)2(∂ỹu)2] +

ỹ2 − 2

h2γ+2
(∂2
ỹu)2

= −
∫

Ω̃x̃0

ỹ2 − 2

h2γ+2
k[ϕ(∂x̃u) + ỹh′(∂ỹu)]2 −

∫
Ω̃x̃0

ỹ2 − 2

h2γ+2
(∂ỹu)2

≥
∫

Ω̃x̃0

(∂ỹu)2

h2γ+2
.

By the degeneracy of k and the fact that D = O(ε2) we have

|∂x̃(K̄∂x̃a)|+|∂x̃(Ā∂ỹa)|+|∂x̃ỹ(Āa)|−|∂ỹ(∂x̃Āa)|−|∂x̃(C̄a)|−|∂ỹ(D̄a)| ≤ o(ε)h−2γ−2,

and
∂ỹ(B̄∂ỹa) ≥ (2− o(ε))h−2γ−2.
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Let x̃0 → ∞, the desired result follows because the boundary integral van-
ishes by the degeneracy of k and the fact that h approaches zero when
x̃0 →∞.

We remark here that Lemma 3.3 is the main part where we use the
degeneracy. First of all, degeneracy helps positive terms to dominate. In
a cusp domain, we may instead use (3.2) to achieve the same consequence.
Secondly, the degeneracy also assures that the boundary integral vanishes.
Without the degeneracy, we may demand a little stronger on the condition
(3.7) that the integral on the left hand side goes to zero when x̃0 → ∞,
not just being bounded. Although this modification on (3.7) requires some
minor changes on the derivation of the existence below, we point out that
the degeneracy is not necessary in the cusp domain. Now we are ready to
obtain existence.

Theorem 3.4. Suppose that g ∈ Cm0, |w|C4(Ω) < 1 and f ∈ H(m,1,γ)(Ω̃), with
the condition ∂sx̃f(0, ỹ) = 0 for 0 ≤ s ≤ m− 1. If m ≤ m0 − 4 and ε = ε(m)
sufficiently small, then there exists a unique weak solution u ∈ H(m,1,γ)(Ω̃) of
(3.5).

Proof. Given v ∈ Ĉ∞(Ω̃), by Lemma 3.2, there exists ξ ∈ H(m,1,γ+2)(Ω̃) such
that

m∑
s=0

λ−s∂sx̃(
ỹ2 − 2

h2γ+2
∂sx̃ξ) = v, (3.8)

ξ(x̃,−1) = ξ(x̃, 1) = 0, ∂sx̃ξ(0, ỹ) = 0, for 0 ≤ s ≤ m− 1,

h−2(γ−2)(x̄0)

∫
x̃=x̃0

(∂sx̃∂
t
ỹξ)

2 <∞, for 0 ≤ s ≤ 2m− 1, t <∞.

Our first step is to establish an estimate(
Lξ, h2

m∑
s=0

(−1)sλ−s∂sx̃(
ỹ2 − 2

h2γ+2
∂sx̃ξ)

)
≥ C‖ξ‖2

(m,1,γ). (3.9)

14



We first integrate the left hand side of (3.9) by parts to see(
Lξ, h2

m∑
s=0

(−1)sλ−s∂sx̃(
ỹ2 − 2

h2γ+2
∂sx̃ξ)

)
(3.10)

=
m∑
s=0

∫
Ω̃

λ−sL(∂sx̃ξ)
ỹ2 − 2

h2γ
∂sx̃ξ +

m∑
s=1

∫
Ω̃

λ−s[∂sx̃, L]ξ
ỹ2 − 2

h2γ
∂sx̃ξ

+
m∑
s=1

s−1∑
l=0

∫
Ω̃

λ−s
(
s

l

)
∂s−lx̃ h2∂lx̃(Lξ)

ỹ2 − 2

h2γ+2
∂sx̃ξ.

The boundary behavior in (3.8) guarantees all the boundary integrals in
(3.10) vanish, and provides the condition assumed in Lemma 3.3. So we may
use Lemma 3.3 and pick ε small so that

m∑
s=0

∫
Ω̃

λ−sL(∂sx̃ξ)
ỹ2 − 2

h2γ
∂sx̃ξ ≥

m∑
s=0

λ−s
∫

Ω̃

(∂ỹ∂
s
x̃ξ)

2

h2γ+2
+

(∂sx̃ξ)
2

h2γ+2
. (3.11)

For the other two integrals in (3.10), we are going to absorb them into the
positive terms in (3.11). Consider the integral with a commutator, we use
the following to illustrate our computation∣∣∣∣ m∑

s=1

∫
Ω̃

λ−s[∂s+1
x̃ (K̄∂x̃ξ)− ∂x̃(K̄∂s+1

x̃ ξ)]
ỹ2 − 2

h2γ
∂sx̃ξ

∣∣∣∣
≤

m∑
s=1

s∑
l=0

∣∣∣∣ ∫
Ω̃

λ−s
(
s

l

)
(∂l+1
x̃

ϕ2k

h2
)(∂s−l+1

x̃ ξ)
ỹ2 − 2

h2γ
∂sx̃ξ

∣∣∣∣
≤ Cm

m∑
s=1

1∑
j=0

λ−s
∣∣∣∣ ∫

Ω̃

∂x̃
[
∂jx̃(ϕ

2k)
ỹ2 − 2

h2γ+2

]
(∂sx̃ξ)

2

∣∣∣∣ (3.12)

+Cm

m∑
s=1

2∑
j=0

λ−s
∣∣∣∣ ∫

Ω̃

∂jx̃(ϕ
2k)

ỹ2 − 2

h2γ+2
(∂sx̃ξ)

2

∣∣∣∣
+Cm

m∑
s=1

s∑
l=2

l∑
j=1

λ−s
∣∣∣∣ ∫

Ω̃

∂jx̃(ϕ
2k)

ỹ2 − 2

h2γ+2
(∂s−l+1
x̃ ξ)∂sx̃ξ

∣∣∣∣.
The first two terms in the right hand side of the last inequality of (3.12) have
k differentiated no more than twice, so by the assumption |w|C4 < 1, we can
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then pick ε small so that those two terms are bounded by

1

4

m∑
s=1

λ−s
∫

Ω

(∂sx̃ξ)
2

h2γ+2
.

The other term in (3.12) has to be estimated as well, but we cannot abuse ε.
Since these terms have higher derivatives of the coefficients, which contain
higher derivatives of w, the Nash-Moser iteration prohibits us from control-
ling them with ε. Instead, we apply Cauchy-Schwartz inequality with a small
δ

m∑
s=1

s∑
l=2

l∑
j=1

Cmλ
−s
∣∣∣∣ ∫

Ω

∂jx̃(ϕk)
ỹ2 − 2

h2γ+2
(∂s−l+1
x̃ ξ)∂sx̃ξ

∣∣∣∣
≤

m∑
s=1

s∑
l=2

l∑
j=1

Cmδλ
−s
∫

Ω̃

(∂sx̃ξ)
2

h2γ+2
+ λ−s

∫
Ω̃

[
Cm

∂jx̃(ϕk)

4δ

](∂s−l+1
x̃ ξ)2

h2γ+2
.

The first term in the right hand side can be absorbed to (3.11) when δ chosen
small.

We observe that the second term only has ∂s−l+1
x̃ ξ with s− l + 1 strictly

less than s. So if we pick λ larger than

∥∥∥∥Cm∂jx̃(ϕk)

4δ

∥∥∥∥
L∞(Ω̃)

, this term can be

absorbed into

λ−s+l−1

∫
Ω̃

(∂s−l+1
x̃ ξ)2

h2γ+2

in (3.11). Treat all the other terms in a similar way, we derived (3.9).
We then work on functional analysis. We have for any v ∈ Ĉ∞(Ω̃)

‖h2v‖(−m,−1,γ) := sup
η∈H(m,1,γ)(Ω̃)

|(η, h2v)|
‖η‖(m,1,γ)

(3.13)

= sup
η∈H(m,1,γ)(Ω̃)

|(h(y2 − 2)η, ξ)(m,0,γ)|
‖η‖(m,1,γ)

≤ C sup
η∈H(m,1,γ)(Ω̃)

‖η‖(m,0,γ)‖ξ‖(m,0,γ)

‖η‖(m,1,γ)

≤ C‖ξ‖(m,1,γ).

Here (·, ·)(m,0,γ) denotes the inner product on H(m,0,γ)(Ω̃), and in the dual

space H(−m,−1,γ)(Ω̃) of H(m,1,γ)(Ω̃) the norm ‖·‖(−m,−1,γ) is induced naturally.
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Now apply (3.9) to obtain

‖ξ‖(m,1,γ)‖L∗h2v‖(−m,−1,γ) ≥ (ξ, L∗h2v)

= (Lξ, h2v)

=

(
Lξ, h2

m∑
s=0

λ−s(−1)s∂sx̃(
ỹ2 − 2

h2γ+2
∂sx̃ξ)

)
≥ C‖ξ‖2

(m,1,γ),

together with (3.13) we arrive at

‖h2v‖(−m,−1,γ) ≤ C‖L∗h2v‖(−m,−1,γ). (3.14)

Define the linear functional F : L∗(h2Ĉ∞(Ω̃))→ R by

F (L∗h2v) = (f, h2v).

Then the following show that F is bounded on the subspace L∗(h2Ĉ∞(Ω̃))
of H(−m,−1,γ)(Ω̃),

|F (L∗h2v)| = |(f, h2v)| ≤ ‖f‖(m,1,γ)‖h2v‖(−m,−1,γ)

≤ C‖f‖(m,1,γ)‖L∗h2v‖(−m,−1,γ).

Notice that here we use our hypothesis that f ∈ H(m,1,γ)(Ω̃) and ∂sx̃f(0, y) = 0
for 0 ≤ s ≤ m− 1. We can then apply the Hahn-Banach theorem to obtain
a bounded extension of F (still denoted F ) defined on all of H(−m,−1,γ)(Ω̃).
Then by the Riesz representation theorem there exists a weak solution u ∈
H(m,1,γ)(Ω̃) of (3.5).

We then boot-strap the regularity and derive an a priori estimate needed
for the Nash-Moser iteration. We introduce here a weighted Sobolev norm
associated with the cusp domains Ω,

‖u‖2
(m,l,γ,Ω) =

∫
Ω

∑
s≤m,t≤l

t+s≤max(m,l)

|h(−γ+t+s)∂sx∂
t
yu|2.

Let C
∞

(Ω) be the collection of C∞(Ω) functions vanishing in a neigh-
borhood of the origin. H(m,l,γ)(Ω) is defined to be the closure of C

∞
(Ω)

with respect to ‖ · ‖(m,l,γ,Ω). Notice that lower derivatives of H(m,l,γ)(Ω) func-
tions vanish faster than those of higher derivatives, but all the derivatives of
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H(m,l,γ)(Ω̃) functions defined before vanish at the same speed. However, a
simple coordinate change shows ‖ · ‖(m,l,γ,Ω) is equivalent to ‖ · ‖(m,l,γ,Ω̃). The

notation R2
+ below denote the right half plane in (x, y) coordinate, ‖·‖Hm(R2

+)

and Hm(R2
+) are usual Sobolev norm and spaces.

Theorem 3.5. Suppose that g ∈ Cm0 and f ∈ C
∞

(Ω). If |w|C6(Ω) ≤ 1
and ε = ε(m) is sufficiently small then there exists a unique solution u ∈
H(m,γ)(Ω) ∩ Cm0−3(Ω) of (3.4). Moreover, there exists a constant Cm inde-
pendent of ε such that

‖u‖Hm(R2
+) ≤ Cm

(
‖w‖Hm+6(R2

+)‖f‖H2(R2
+) + ‖f‖Hm(R2

+)

)
.

Proof. Since L is strictly elliptic in every compact subset inside Ω̃ and the co-
efficients of L as well as f are at least Cm0−4, we obtain that u ∈ H(m,1,γ)(Ω̃)∩
Cm0−3. The fact that u ∈ H(m,γ)(Ω̃) can be seen by differentiating the equa-
tion (3.4) and applying mathematical induction. Integrating the expression
(3.5) by parts yields the boundary condition. We then change the coordinate
back to Ω, and all the conditions remain valid.

For the estimate we observe that from (3.3) we may solve, for any l ≥ 0,

∂lx̃∂
2
ỹu = ∂lx̃

[
B̄−1(f − ∂x̃(K̄∂x̃u)− ∂x̃(Ā∂ỹu)− ∂ỹ(Ā∂x̃u) (3.15)

−C̄∂x̃u− D̄∂ỹu− ∂ỹ(B∂ỹu)
]
.

Integrate Lu = f against ỹ2−2
h2γ

u by part as in Lemma 3.3, together with
Schwartz inequality we have

‖h−γ−1∂ỹu‖2
L2(Ω̃)

+ ‖h−γ−1u‖2
L2(Ω̃)

≤ C‖h−γf‖2
L2(Ω̃)

.

Next, we define

L1(∂x̃u) = ∂x̃Lu− (∂2
x̃A+ ∂x̃D + ∂2

x̃ỹB)∂ỹu.

The integration by parts on
∫

Ω̃
L1(∂x̃u) ỹ

2−2
h2γ

∂x̃u as in Lemma 3.3, together
with the estimate on ∂ỹu and the condition that |w|C5 ≤ 1 yield

‖h−γ−1∂x̃ỹu‖2
L2(Ω̃)

+ ‖h−γ−1∂x̃u‖2
L2(Ω̃)

≤ C‖f‖2
H1,γ(Ω̃)

.

By a similar method we obtain an estimate for ∂2
x̃u and by (3.15) we obtain

an estimate for ∂2
ỹu. The full estimate up to second order is then

‖u‖H2,γ+1(Ω̃) ≤ C‖f‖H2,γ(Ω̃). (3.16)
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Then we compute L(∂sx̃u),

∂x̃(K̄∂
s+1
x̃ u) = ∂sx̃(∂x̃(K̄∂x̃u))− s∂2

x̃K̄∂
s
x̃u (3.17)

−s∂x̃K̄∂s+1
x̃ u−

(
s

s− 2

)
∂2
x̃K̄∂

s
x̃u

−
s−3∑
l=0

(
s

l

)
∂x̃(∂

s−l
x̃ K̄∂l+1

x̃ u)−
(

s

s− 2

)
∂3
x̃K̄∂

s−1
x̃ u,

∂x̃(Ā∂ỹ∂
s
x̃u) = ∂sx̃(∂x̃(Ā∂ỹu))− s∂2

x̃Ā∂
s−1
x̃ ∂ỹu− s∂x̃Ā∂sx̃∂ỹu (3.18)

−
s−2∑
l=0

(
s

l

)
∂x̃(∂

s−l
x̃ Ā∂lx̃∂ỹu),

∂ỹ(Ā∂
s+1
x̃ u) = ∂sx̃(∂ỹ(Ā∂x̃u))− s∂x̃ỹĀ∂sx̃u− s∂x̃Ā∂sx̃∂ỹu (3.19)

−
s−2∑
l=0

(
s

l

)
∂ỹ(∂

s−l
x̃ Ā∂s+1

x̃ u),

C̄∂s+1
x̃ u = ∂sx̃(C̄∂x̃u)− s∂x̃C̄∂sx̃u−

s−2∑
l=0

(
s

l

)
∂s−lx̃ C̄∂l+1

x̃ u, (3.20)

D̄∂sx̃∂ỹu = ∂sx̃(D̄∂ỹu)−
s−1∑
l=0

(
s

l

)
∂s−lx̃ D̄∂lx̃∂ỹu, (3.21)

∂ỹ(B̄∂ỹ∂
s
x̃u) = ∂sx̃(∂ỹ(B̄∂ỹu))− s∂x̃B̄∂s−1

x̃ ∂2
ỹu (3.22)

−s(s− 1)∂2
x̃B̄∂

s−2
x̃ ∂2

ỹu−
s−1∑
l=0

(
s

l

)
∂s−lx̃ ∂ỹB̄∂

l
x̃∂ỹu

−
s−3∑
l=0

(
s

l

)
∂s−lx̃ B̄∂lx̃∂

2
ỹu.

For the last equality we need to use (3.15) to replace the terms with more
than one derivative with respect to ỹ.

For an arbitrary s we add up the left hand side of (3.17) through (3.22)
to obtain L(∂sx̃u). On the right hand side, for the terms with ∂sx̃u, ∂s+1

x̃ u and
∂sx̃∂ỹu, we observe that their coefficients are small when ε is small. There-
fore we may move them to the left hand side to form a new operator, then
integrate this new operator against ỹ2−2

hγ
∂sx̃u. The estimate as in Lemma 3.3

holds by the same type of computation.
The other terms on the right hand side have ∂lx̃f with l ≤ s and the
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lower derivatives ∂ix̃∂
j
ỹu with 0 ≤ j ≤ 1 and 0 ≤ i + j < s. We will make

an estimate by integrating them against ỹ2−2
hγ

∂sx̃u as well. Below we illustrate
our method on one of these terms, the other can be treated in the same way:∫

Ω̃

∣∣∂s−2
x̃ K̄∂4

x̃u
ỹ2 − 2

h2γ
∂sx̃u
∣∣ ≤ 4

δs
‖(h−γ+1∂s−2

x̃ K̄∂4
x̃u)‖2

L2(Ω̃)
+ δs‖h−γ−1∂sx̃u‖2

L2(Ω̃)
,

where δs is a small constant depending only on s so that δs‖h−γ−1∂sx̃u‖2
L2(Ω̃)

can be absorbed into the left hand side of our estimate.
For 4

δs
‖(h−γ+1∂s−2

x̃ K̄∂4
x̃u)‖2

L2(Ω̃)
, we notice that if s ≤ 3 we use the condi-

tion |w|C4 ≤ 1 and absorb it into the left hand side of our estimate. For the
case s > 3 we change the coordinate to (x, y) and denote the derivative with
respect to this coordinate by ∂. Then we extend u by Lemma 4.1 and apply
Lemma 4.2 below,

‖h−γ+1∂s−2
x̃ (K̄)∂4

x̃u‖L2(Ω̃)

≤ ‖h−γ+s+1∂s−2k∂4u‖L2(R2
+) ≤ ‖∂γ−s−1(∂s−2k∂4u)‖L2(R2

+)

≤ ‖∂k‖L∞(R2
+)‖u‖Hγ(R2

+) + ‖k‖Hγ+1(R2
+)‖u‖L∞(R2

+),

where the last inequality is the Nirenberg inequality (see Lemma 4.3). With
the assumption that |w|C4 ≤ 1, we have ∂k = O(ε). Apply a similar method
on the terms with f and the other coefficients, we arrive at

‖h−γ−1∂ỹ∂
s
x̃u‖L2(Ω̃) + ‖h−γ−1∂sx̃u‖L2(Ω̃)

≤ ‖f‖Hγ(R2
+) + ‖w‖Hs+6(R2

+)‖f‖H2(R2
+) +O(ε)‖u‖Hγ(R2

+)

+(1 + ‖w‖Hs+6(R2
+))‖u‖H2(R2

+).

Solving for higher derivatives of u with respect to ỹ, we obtain a similar
estimate as above.

For the terms in equations (3.16) through (3.22), we change the coordi-
nates to (x, y) for every term that has not been changed. Adding all these
estimates up to the order m we have

‖u‖Hm,γ+1(Ω)

≤ Cm(‖f‖Hγ(R2
+) + ‖w‖Hs+6(R2

+)‖f‖H2(R2
+) +O(ε)‖u‖Hγ(R2

+)

+(1 + ‖w‖Hs+6(R2
+))‖u‖H2(R2

+)).

Lastly, we pick γ = m and ε small depending on m and use the estimate
(3.16) to obtain the desired result.
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Chapter 4

The Nash-Moser iteration with elliptic cusps

In this chapter we derive the solution of our nonlinear PDE with K positive
in a cusp domain. We first provide some basic tools for the Nash-Moser
iteration. The following extension theorem is valid in a cusp domain with
the norm

‖u‖H(m,γ)(Ω) =
∑
t,s∈N

0≤t+s≤m

∫
Ω

|h−γ+t+s∂sx∂
t
yu|2.

Lemma 4.1. Suppose Ω = { (x, y) | 0 ≤ x ≤ 1, −h(x) ≤ y ≤ h(x) } is a
cusp domain with h ∈ C∞((0,∞)) satisfies∣∣h(l) · hl−1

∣∣ ≤ Cl, for l ∈ N. (4.1)

Then there is an operator

E : H(m,γ)(Ω)→ H(m,γ)(R2
+)

with a positive constant C independent of u such that

‖Eu‖H(m,γ)(R2
+) ≤ C‖u‖H(m,γ)(Ω), and Eu = u in Ω.

Moreover, we may choose Eu vanishing outside y = ±2h(x).

Proof. We may apply a coordinate change

x̃ =

∫ 1

x

1

h(x)
and ỹ =

y

h(x)

to map the domain to a half infinite cylinder Ω̃ = { (x̃, ỹ) | 1 ≤ x̃, − 1 ≤
ỹ ≤ 1 } and define the norm

‖u‖2
H(m,γ)(Ω̃)

=
∑
t,s∈N

0≤t+s≤m

∫
Ω̃

|h−γ∂sx̃∂tỹu|2.
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With the condition (4.1), it is straightforward to see that there exists positive
constants C1 and C2 such that

C1‖u‖H(m,γ)(Ω̃) ≤ ‖u‖H(m,γ)(Ω) ≤ C2‖u‖H(m,γ)(Ω̃).

Then we may define E on H(m,γ)(Ω̃) by extending u ∈ H(m,γ)(Ω̃) across the
boundary {ỹ = ±1} and require that u vanishes outside {|ỹ| ≤ 2}. Change
the coordinate back for the desired result.

Corollary 4.2. With the same assumption and the extension E defined in
Lemma 4.1, we have

‖Eu‖H(m,γ)(R2
+) ≤ Cγ‖Eu‖Hγ(R2

+)

for u ∈ C∞(Ω) and vanishes in a neighborhood or the origin.

Proof. For w ∈ C∞(R2
+), vanishes outside y = ±2h and also vanishes in a

neighborhood of the origin, we may first compute on R2
+ ∩ {y ≥ 0}∫ 1

0

∫ 2h(x)

0

|h−γ+t+s∂sx∂
t
yw|2dydx

=

∫ 1

0

∫ 2h(x)

0

h2(−γ+t+s)|∂sx∂tyw(x, y)− ∂sx∂tyw(x, 2h(x))|2dydx

=

∫ 1

0

∫ 2h(x)

0

h2(−γ+t+s)|
∫ 2h(x)

y

∂sx∂
t+1
y w(x, θ)dθ|2dydx

≤
∫ 1

0

∫ 2h(x)

0

h2(−γ+1+t+s)|∂sx∂t+1
y w(x, θ)|2dθdx,

where the last inequality is the Holder’s inequality. Then our hypothesis on
u allows us to find a family { wi | wi ∈ C∞(Ω) } such that wi → Eu in
Hγ(Ω) as i→∞. The case y ≤ 0 follows similarly.

We also record the following well known Nirenberg’s inequality, whose
proof can be found in [27].

Lemma 4.3. Let all ui below are Cm(R2
+)

(i)If α1, ...., αl are multi-indices such that |α1| + .... + |αl| = m, then there
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exists a constant C1 depending on l and m such that

‖∂α1u1 ...∂αlul‖L2(R2
+)

≤ C

l∑
j=1

(|u1|L∞(R2
+)....|̂uj|L∞(R2

+)...|ul|L∞(R2
+))‖uj‖Hm(R2

+),

where |̂uj|L∞(R2
+) denotes the omitted term in the product.

(ii) Let D ⊂ Rl be compact and contain the origin, and let G ∈ C∞(D). If
u ∈ Hm(Ω,D), then there exists a constant C2 depending on m such that

‖G ◦ u‖Hm(Ω) ≤ C2|u|L∞(Ω)(|G(0)|+ ‖u‖Hm(Ω)).

The following theorem of smoothing operator is proved in [9].

Lemma 4.4. Suppose H
l
(R2

+) is the completion of C∞ function vanishing in
a neighborhood of y-axis with respect to the usual Sobolev norm, ‖ · ‖l. Given
µ ≥ 1 there exists a linear smoothing operator Sµ : L2(R2

+)→ H
∞

(R2
+) such

that for all l,m ∈ Z≥0 and u ∈ H l
(R2

+),

(1) ‖Sµu‖m ≤ Cl,m‖u‖l, m ≤ l,

(2) ‖Sµu‖m ≤ Cl,mµ
m−l‖u‖l, l ≤ m,

(3) ‖u− Sµu‖m ≤ Cl,mµ
m−l‖u‖l, m ≤ l.

We also have the standard smoothing operator S ′µ : L2(R2
+)→ H∞(R2

+) such
that (1) to (3) hold whenever u ∈ H l(R2

+).

We compare the two smoothing operators. The construction of Sµ in-
volves cutting off near the origin. Therefore Sµu vanishes near the origin and
the boundedness requires that u vanishes near the origin. The standard oper-
ator S ′µ on the other hand consists only of convolution with smooth functions,
so its boundedness does not require vanishing.

To obtain the solution for our nonlinear PDE in the elliptic region, we
need to apply the Nash-Moser iteration. The estimate we derived in Theo-
rem 3.5 is the standard form for the iteration, and it is true that the standard
procedure works in our case.
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Proposition 4.5. If m0 ≥ 2N + 9, then we have a sequence,

{ wn | wn ∈ H
m0−8

(Ω) and wn|∂Ω = 0 },

such that wn → w in H
m0−8

(Ω), with

‖w‖m0−8 ≤ Cε2N+6.

Furthermore, Φ(wn)→ 0 in C0(Ω).

Proof. This follows from the standard Nash-Moser iteration, whose proof
can be found, for example, in [17]. We will present the details of Nash-Moser
iteration in the case when K is negative in a cusp domain, which is more
complicated. Here we instead make two remarks. First, we require a stronger
condition on the solution w that ‖w‖m0−8 ≤ Cε2N+6 for the construction of
a smooth solution across the zero set of K. This is where the condition
m0 ≥ 2N + 9 is needed. We may then require our approximate solution z0

to satisfy ‖Φ(z0)‖m0−2N−8 ≤ ε2N+6. In the details of Nash-Moser iteration
we provided later, it will be clear that this ε2N+6 be passed in the iterative
process, so that the solution w we obtain is O(ε2N+6) as in the statement.

Secondly, we started the derivation from weighted spaces over Ω̃ but ended
up with the estimate in the regular Sobolev spaces over Ω and ran Nash-Moser
iteration there. The main tool for the transfer is Corollary 4.2, whose proof
indicates that the coefficients in the estimate depend on the domain where
the functional space is defined on. We point out that the domain Ω̃ depends
on the function w at which the equation is linearized. Therefore we always
change the coordinates back to Ω first and then apply Corollary 4.2, to avoid
the dependence of the constant on w. Similar issues happened when dealing
with the case K negative in a cusp domain in the later chapters.

The complement of Ω, in whose interior K is negative, is (at least) a
Lipschitz domain and has been dealt with in [9]. We record the result,

Proposition 4.6. Suppose m0 ≥ 3N+19, φ ∈ Hm0−9(Ω) and ψ ∈ Hm0−10(Ω).
Moreover, suppose

‖φ‖m0−9,∂Ω + ‖ψ‖m0−10,∂Ω ≤ Cε2N+6.

Then there exists a sequence wn → w in H
m0−N−13

(Ω). Furthermore Φ(wn)→
0 in C0(Ω).

24



We require m0 ≥ 2N + 9 and construct w+
κ ∈ H

m0−8
(Ω+

κ ) by Proposi-
tion 4.5 satisfying

Φ(w+
κ ) = 0 in Ωκ, w+

κ = 0 on ∂Ω+
κ .

Let Ω−% be a region sharing a boundary with Ω+
κ . Then by Proposition 4.6,

we may construct w−% ∈ H
m0−N−13

(Ω−% ) satisfying

Φ(w−% ) = 0 in Ω−% , w−% |∂Ω−%
= 0 and ∂νw

−
% |∂Ω−%

= ∂νw
+
κ |∂Ω−%

,

∂τw−% (0, 0) = 0, for |τ | ≤ m0 −N − 15,

where we have used the Sobolev embedding theorem and the trace oper-
ator. Lastly, by the choice of the approximate solution, the fact that w+

κ

is in a weighted space and |h|C1(|x|≤σ) decreases to zero as the small posi-
tive parameter σ → 0, the common boundary of any pair of Ω+

κ and Ω−%
is noncharacteristic. So the solutions in each region agree to m0 − N − 15
along the boundary, and therefore patched to a solution of (1.5) in a small
neighborhood of the origin.
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Chapter 5

Linear theory in hyperbolic cusps

In this chapter, we derive the existence and regularity for the Cauchy problem
of the linearized version of equation (1.5) in a hyperbolic cusp. In contrast
to chapter 3, we do the case when K is negative in a cusp domain. We need
to apply Lemma 2.1, with some change of the notations of the linearized
equation:

L(w)u = ∂x̄(K̄∂x̄)u+ ∂2
ȳu+ C̄∂x̄u+ D̄∂ȳu, (5.1)

with

K̄ = Kk̄(x, y, w,∇w,∇2w,∇x̄),

C̄ = Kc̄(x, y, w,∇w,∇2w,∇3w,∇x̄,∇2x̄) + (a22)−2∂xΦ(w)∂xx̄∂x̄u,

D̄ = ε2d̄(x, y, w,∇w,∇2w).

In addition, hereafter R2
+ = {(x, y) | y ≥ 0}. We also remark that the

intersection of the original domain Ω̂ with a small neighborhood of the origin
may be written in the new coordinates as

Ω = { (x, y) | |x| ≤ h̃(y), 0 ≤ y ≤ 1 },

with h̃ is a rescaling of the initial graph h by ε−2. Again for simplicity we will
in what follows continue to denote the graph by h instead of h̃. With this
notation the condition (1.1) to (1.3) remain unchanged but (1.4) becomes

h ≥ Cεᾱy1+ᾱ. (5.2)

Moreover, after the coordinate change to (x̄, ȳ) the domain Ω becomes,

Ω̄ = { (x̄, ȳ) | |x̄| ≤ h̄(ȳ), 0 ≤ ȳ ≤ 1 }.

Notice that for h̄, the constant in the condition (1.3) depends on the function
w, at which the equation is linearized. This does no harm in the proof of
existence but causes trouble for the energy estimate. Our assumption that
|w|C4 ≤ 1 removes this dependence for lower derivatives, and our treatment
for higher derivatives will be elaborated when they appear.
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Equation (5.1) is degenerate hyperbolic. We will instead solve the regu-
larized equation

Lθu = f in Ω̄, u|∂Ω̄1
= φ, uy|∂Ω̄1

= ψ, (5.3)

where Lθ differs from L only in that K̄ is replaced by K̄θ = K̄ − θh̄′2,
and θ = |Φ(w)|C5 . We will require the Cauchy data φ and ψ as well as
f to vanish to high order at the origin. We denote the bottom part and
the upper part of the boundary of Ω̄ by ∂Ω̄1 and ∂Ω̄2, respectively. We
define H(m,l,γ)(Ω̄)(H

(m,l,γ)
0 (Ω̄)) to be the closure of all C∞(Ω̄) functions (which

vanish to all orders at ∂Ω̄1) with respect to the norm

‖u‖2
(m,l,γ,Ω̄) =

∫
Ω̄

∑
s≤m,t≤l

s+t≤max(m,l)

|h−γ+t+s∂sx̄∂
t
ȳu|2.

We first obtain the following existence theorem for (5.3) with homogeneous
Cauchy data and f vanishing to all order at ∂Ω̄1:

Theorem 5.1. Suppose g ∈ Cm0, w ∈ C∞, |w|C4(Ω) ≤ 1 and f ∈ H(m,l,γ)
0 (Ω̄).

If m ∈ m0 − 6 and ε = ε(m) is sufficiently small, then there exist a weak
solution uθ ∈ H(m,1,γ)(Ω̄) of (5.3) with φ, ψ = 0. That is,

(uθ, L
∗
θv) = (f, v), for all v ∈ C∞(Ω̄)

with v|∂Ω̄2
= vȳ|∂Ω̄2

= 0 and v vanishes in a neighborhood of the origin.

Proof. The collection of v as stated in the theorem will be denoted by Ĉ∞(Ω̄)
hereafter. Set

bs(x̄, ȳ) = h−2(γ−s)K̄−1
θ (x̄, ȳ)e−λȳ,

and let ζ be the unique solution of

m∑
s=0

(−1)s+1∂sx̄(bs∂
s
x̄ζȳ) = v in Ω̄,

ζ|∂Ω̄1
= ∂sx̄ζȳ|∂Ω̄1

= 0, 0 ≤ s ≤ m− 1, (5.4)

with v ∈ Ĉ∞(Ω̄). The existence and the uniqueness is guaranteed by ODE
theory. We then repeatedly differentiate ∂sx̄ζ and ∂sx̄ζȳ along ∂Ω̄1 to obtain,

∂sx̄∂
t
ȳζ|∂Ω̄1

= 0, s+ t ≤ m and 0 ≤ t ≤ 2. (5.5)
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We then establish an a priori estimate(
Lθζ,

m∑
s=0

(−1)s+1∂sx̄(bs∂
s
x̄ζȳ)

)
≥ C‖ζ‖2

(m,1,γ,Ω̄). (5.6)

Integrating the left hand side by parts yields,(
Lθζ,

m∑
s=0

(−1)s+1∂sx̄(bs∂
s
x̄ζȳ)

)
(5.7)

≥
m∑
s=0

∫
Ω̄

1

4
(∂ȳbs − 2bsD̄)(∂sx̄∂ȳζ)2

+
m∑
s=0

∫
Ω̄

[
−1

2
∂ȳ(bsK̄θ)− 4

(∂x̄bsK̄θ)
2 + (bsC̄)2

(∂ȳbs − 2bsD̄)

]
(∂s+1
x̄ ζ)2

+
m∑
s=1

s∑
l=1

Cm

∫
Ω̄

bs(∂
s
x̄∂ȳζ)∂x̄(∂

l
x̄K̄θ∂

s+1−l
x̄ ζ)

+
m∑
s=1

s∑
l=1

Cm

∫
Ω̄

bs(∂
s
x̄∂ȳζ)(∂lx̄C̄∂

s+1−l
x̄ ζ)

+
m∑
s=1

s∑
l=1

Cm

∫
Ω̄

bs(∂
s
x̄∂ȳζ)(∂lx̄D̄∂

s−1
x̄ ∂ȳζ)

+
1

2

∫
∂Ω̄

bmK̄θ(∂
m+1
x̄ ζ)2ν2 + 2bm∂

m−1
x̄ ∂2

ȳζ∂
m
x̄ ∂ȳζν1 − bm(∂mx̄ ∂ȳζ)2ν2.

The boundary integral has the correct sign by the usual non-characteristic
argument. For the positivity of the first term on the right hand side of the
equation (5.7), we compute

∂ȳbs − 2bsD̄

= −bs
(
λ

2
+ 2D̄ − 2θh̄′h̄′′

K̄θ

+ 2(γ − s)h
′

h
+
∂ȳK̄

K̄θ

)
(5.8)

≥ −bs, (5.9)

by condition (1.1) to (1.4), and our choice of coordinate. For the second term
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on the right hand side of the equation (5.7), consider

−1

4
∂ȳ(bsK̄θ)(∂ȳbs − 2bsD̄)− 4(∂x̄bsK̄θ)

2 − 4(bsC̄)2

≥ (K̄θbs)
2

[
−λ2

K̄θ

− C(γ)λ
∂ȳK̄

K̄2
θ

− 4

(
∂x̄K̄

K̄θ

)2

− 4

(
C̄

K̄θ

)2
]
.

Because −λ∂ȳK̄ −O((∂x̄K̄)2) ≥ 0, the term

−C(γ)λ
∂ȳK̄

K̄2
θ

− 4

(
∂x̄K̄

K̄θ

)2

≥ 0.

Therefore this part has the correct sign in the inequality, we only need to
take care of the other part.

Recall that C̄ = O(K + ∂xΦ(w)), so∣∣∣∣ C̄K̄θ

∣∣∣∣ ≤ −K + |∂xΦ(w)|
−K̄ + θ(h̄′)2

≤ −K + h2|h−2∂xΦ(w)|
−K̄ + θ(h̄′)2

≤ −K + θh2

−K̄ + θ(h̄′)2
≤ 1,

where we have used the fact that Φ(w) vanishes to high order at the origin.
Therefore, the part −λ2/K̄θ − (C̄/K̄θ)

2 is greater than a positive constant.
Here we emphasize the fact that only up to the second derivatives of h and h̄
are involved so far. Moreover, the computation above requires λ to be large
but not dependent on ε or θ. This is important because this computation
will be used in the energy estimate.

For the last three interior integals in (5.7), consider the following term
first, ∣∣∣∣∣

∫
Ω̄

bs(∂
s
x̄∂ȳζ)∂x̄K̄∂

s+1
x̄ ζ

∣∣∣∣∣
≤

∫
Ω̄

h−2γ+2s 1

−K̄θ

[
(∂sx̄∂ȳζ)2 + (∂x̄K̄∂

s+1
x̄ ζ)2

]
≤

∫
Ω̄

h−2γ+2s 1

−K̄θ

(∂sx̄∂ȳζ)2 + h−2γ+2s1

θ

(∂x̄K̄
h̄′

)2

(∂s+1
x̄ ζ)2.

Absorb the extra h̄′−2 in front of ∂s+1
x̄ ζ as follows,∣∣∣∂x̄K̄

h̄′

∣∣∣ ≤ |∂x̄K̄(x̄, ȳ)− ∂x̄K̄(h(ȳ), ȳ)|
h

≤

∫ x̄
h̄(ȳ)
|∂2
x̄K̄|

h
≤ |K̄|C2 . (5.10)
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Similarly, there are also such extra h̄′−2 in the rest of the integrals. However,
in those integrands, the derivatives of ζ with respect to x̄ have order strictly
smaller than s+1, so the extra h̄′−2 can be absorbed to the weighted functions.
With λ = λ(ε, θ) sufficiently large, all these integrals would be dominated by
the first two integrals of the equation (5.7). Use the proof in Corollary 4.2,
we can estimate ‖ξ‖H0,γ(Ω̄) and arrive at (5.6).

Then we compute

‖v‖(−m,0,γ,Ω̄) := sup
η∈H(m,0,γ)

0 (Ω̄)

|(η, v)|
‖η‖(m,0,γ,Ω̄)

= sup
η∈H(m,0,γ)

0 (Ω̄)

|(η,
∑m

s=0(−1)s+1∂sx̄(bs∂
s
x̄∂ȳζ))

‖η‖(m,0,γ,Ω̄)

≤ θ−1C‖ζ‖(m,1,γ,Ω̄),

and

‖ζ‖(m,1,γ,Ω̄)‖L∗θv‖(−m,−1,γ,Ω̄) ≥ (ζ, L∗θv) = (Lθζ, v)

=

(
Lθζ,

m∑
s=0

(−1)s+1∂sx̄(bs∂
s
x̄∂ȳζ)

)
≥ C‖ζ‖2

(m,1,γ,Ω̄).

Together we have,

‖v‖(−m,0,γ,Ω̄) ≤ θ−1C‖L∗θv‖(−m,−1,γ,Ω̄), for all v ∈ Ĉ∞(Ω̄). (5.11)

Define a linear functional F : X → R, where X = L∗θĈ
∞(Ω̄), by

F (L∗θv) = (f, v).

Then by (5.11) we deduce that F is bounded onX as a subspace ofH
(−m,−1,γ)
0 (Ω̄)

since

|F (L∗θv)| ≤ ‖f‖(m,0,γ,Ω̄)‖v‖(−m,0,γ,Ω̄) ≤ θ−1C‖f‖(m,0,γ,Ω̄)‖L∗θv‖(−m,−1,γ,Ω̄).

Lastly, we may apply Hahn-Banach theorem to obtain a bounded extension
of F defined on H

(−m,−1,γ)
0 (Ω̄). Since H

(m,1,γ)
0 (Ω̄) is a Hilbert space, there

exists a unique uθ ∈ H(m,1,γ)
0 (Ω̄) such that

F (ξ) = (uθ, ξ), for all ξ ∈ H(−m,−1,γ)
0 (Ω̄).
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By restricting ξ back to X, we see that uθ solves

(uθ, L
∗
θv) = (f, v), for all v ∈ Ĉ∞(Ω̄).

We define ‖ · ‖(m,γ,Ω̄) = ‖ · ‖(m,m,γ,Ω̄) and H
(m,γ)
0 (Ω̄) = H

(m,m,γ)
0 (Ω̄), then

derive the following corollary.

Corollary 5.2. Under the hypothesis of Theorem 5.1, if f ∈ H(m,γ)
0 (Ω̄) then

there exists a unique solution uθ ∈ H(m,γ)
0 (Ω̄) of (5.3) with φ, ψ = 0, for each

θ ≥ 0.

Proof. From Theorem 5.1, the weak solution uθ ∈ H
(m,1,γ)
0 (Ω̄) is also in

H
(m,1)
0 (Ω̄) as in [9]. Therefore we may apply their method to deduce the

boundary condition, uniqueness and the fact that uθ ∈ Hm(Ω̄). Then with

usual boot-strap procedure we conclude that uθ ∈ H(m,γ)
0 (Ω̄).

We define C
∞

(Ω̄) be the collection of C∞(Ω̄) functions vanishing in a

neighborhood of the origin and H
(m,γ)

0 (Ω̄) to be the completion of C
∞

(Ω̄)
with respect to the norm ‖ · ‖(m,γ,Ω̄).

Here we need to pause and introduce a notation, which is motivated by
the following estimate with the Nirenberg inequality. Let τ and σ be multi-
indices such that |τ | = t and |σ| = s, consider

‖∂τ (∂2
xx̄)∂σu‖L2

≤ C(‖(∂2
xx̄)‖L∞‖u‖Ht+s + ‖(∂2

xx̄)‖Ht+s‖u‖L∞)

≤ C(‖u‖Ht+s + ‖w‖Ht+s+6‖u‖L∞).

We merely used the fact that ‖∂2
xx̄‖Hm < C(1+ |w|Hm+6) here. This property

is actually shared by several functions, such as aij and ∂xK or the coordinate
∂x∂x̄x. If we replace ∂2

xx̄ by them in the estimate above, the same result can
be obtained. Therefore, we intend to use an abstract notation Λl to replace
this family of functions. We agree that Λl represents a Cm0−4−l function
whose Hm norm can be estimate by Cl,m(1 + ‖w‖Hl+m+6). The following are
the functions to be replaced by Λl when appropriate:

(1) An a priori estimate for the first order PDE (see [6]) yields ∂2+lx̄ = Λl.

(2) By the estimate for the first order PDE, the assumption that |w|C4 ≤ 1
and the Nirenberg inequality (Lemma 4.3) we have ∂1+l(∂x̄x) = Λl.
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(3) Similarly we have aij = Λ0 and K̄, C̄, D̄ defined in (5.1) are Λ−1,Λ0,Λ−1

respectively.

(4) By |w|C4 ≤ 1 and the Nirenberg iequality, we do have Λt · Λs = Λt+s

and ∂tΛs = Λt+s for t, s ≥ 0. Therefore, an arbitrary product, sum or
derivatives of Λ function will still be a Λ function, except the subscript
needs to be modified accordingly.

The next lemma helps us to obtain the existence with more general f and
boundary data.

Lemma 5.3. Suppose g ∈ Cm0, φ ∈ C∞(∂Ω̄), ψ ∈ C∞(∂Ω̄), and f ∈ C∞(Ω̄)

with m ≤ m0 − 4. Then there exists a function ηθ ∈ H
(m,γ)

0 (Ω̄) such that

ηθ|∂Ω̄1
= φ, ∂ȳηθ|∂Ω̄1

= ψ,

∂tx̄(f − Lθηθ)|∂Ω̄1
= 0, for 0 ≤ t ≤ m− 3, (5.12)

with

‖ηθ‖H(m,γ)(Ω̄) ≤ Cm,γ

[
m−1∑
|τ+σ|=0

‖h−γ+|τ+σ|(
ȳ

h
)1+(m−|τ+σ|)Λ|τ |∂̄

σf‖L2(Ω̄)

+
m∑

|τ+σ|=0

‖h−γ+|τ+σ|(
ȳ

h
)5+(m−|τ+σ|)Λ|τ |∂̄

σφ‖L2(∂Ω̄)

+
m−1∑
|τ+σ|=0

‖h−γ+|τ+σ|(
ȳ

h
)5+(m−|τ+σ|)Λ|τ |∂̄

σψ‖L2(∂Ω̄)

]
, (5.13)

where Cm,γ is a constant depending only on m and γ, ∂̄ is derivative with
respect to (x̄, ȳ) and τ, σ are multi-indices.

Proof. For any uθ satisfying (5.12), since ∂Ω̄1 is non-characteristic, uθ can
be expressed in terms of f , φ and ψ along the boundary. Then the estimate
below follows,
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‖uθ‖H(m,γ)(∂Ω̄) ≤ Cm,γ

[
m−2∑
|τ+σ|=0

‖h−γ+|τ+σ|(
ȳ

h
)1+(m−|τ+σ|)Λ|τ |∂̄

σf‖L2(∂̄Ω̄)

+
m∑

|τ+σ|=0

‖h−γ+|τ+σ|(
ȳ

h
)5+(m−|τ+σ|)Λ|τ |∂̄

σφ‖L2(∂Ω̄)

+
m−1∑
|τ+σ|=0

‖h−γ+|τ+σ|(
ȳ

h
)5+(m−|τ+σ|)Λ|τ |∂̄

σψ‖L2(∂Ω̄)

]
. (5.14)

Then consider coordinate change

x̃ =
x̄

h̄(ȳ)
, ỹ =

∫ 1

ȳ

1

h̄
,

which maps Ω̄ into an infinite half cylinder Ω̃ = { (x̃, ỹ)| |x̃| ≤ 1, 1 ≤ ỹ }.
Since Ω̃ is a Lipschitz domain, we have surjectivity from Hm(Ω̃) to Hm(∂Ω̃).
Then by quotienting the kernel and applying the closed graph theorem, we
obtain a η̄θ such that

∂̃τ η̄θ = ∂̃τ (h−γuθ) on ∂Ω̃1 for |τ | ≤ m− 3.

We define ηθ = hγ η̄θ, and then the estimate follows from

‖h−γηθ‖Hm(Ω̃) = ‖η̄θ‖Hm(Ω̃) ≤ Cm
∑
|τ |≤m

‖∂̃τ (h−γuθ)‖L2(∂Ω̃1),

and changing the coordinate back to (x̄, ȳ).

Here we remark in Lemma 5.3 we have to estimate the higher derivatives
of h̄. Observe the following equation along the boundary

h̄(ȳ) = x̄(h(y), y). (5.15)

Repeatedly differentiating this equation shows that the derivatives of h̄ can
be estimated by the power of h and the derivatives of the coordinate functions
(x̄, ȳ).

Here we revisit the ”loss of derivatives” issue we mentioned in the intro-
duction. A well behaved second order differential operator is expected to be
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an isomorphism L : Hm+2 → Hm, which means for an arbitrary data f ∈ Hm

we can find the unique Hm+2 solution for it. In the case we only have sur-
jectivity L : Hm+2 → Hm+N , we say it loses N derivatives and Nash-Moser
iteration is often used to defeat the loss. The ȳ/h part in the estimate above
is the main source of ”loss of weights” and we will apply Lemma 4.2 to absorb
them into the loss of derivatives. However, we see from the estimate that
the loss of weights depends on m. This causes difficulty because Nash-Moser
iteration requires an estimate

‖u‖Hm ≤ C(‖f‖Ham+b),

with a < 2 (see [19, 3], where the authors provide a counter example to the
inverse function theorem when a = 2).

This forces us to induce a strong condition (5.2) so we can rewrite the
estimate (5.13) as

‖ηθ‖H(m,γ)(Ω̄) ≤ Cm,γ

[
m−1∑
|τ+σ|=0

‖h−γ−αm+|τ+σ|Λ|τ |∂̄
σf‖L2(Ω̄)

+
m∑

|τ+σ|=0

‖h−γ−αm−3+|τ+σ|Λ|τ |∂̄
σφ‖L2(∂Ω̄)

+
m−1∑
|τ+σ|=0

‖h−γ−αm−3+|τ+σ|Λ|τ |∂̄
σψ‖L2(∂Ω̄)

]
, (5.16)

with α = ᾱ
1+ᾱ

. Notice that this estimate improves Lemma 5.3 by allowing

a weaker hypothesis φ ∈ H
(m,γ+αm+5)

0 (∂Ω̄1), ψ ∈ H
(m−1,γ+αm+5)

0 (∂Ω̄1) and

f ∈ H(m−1,γ+αm)

0 (Ω̄).

Theorem 5.4. Suppose that g ∈ Cm0, φ, ψ ∈ C
∞

(∂Ω), f ∈ C
∞

(Ω) and
|w|3N+14 ≤ εN+2, where N ≤ m0−2 is the largest integer such that ∂τK(0, 0) =
0 for all |τ | ≤ N . If m ≤ m0−3N−21

1+α
and ε = ε(m) is sufficiently small, then

there exists a unique solution uθ ∈ H
(m,γ)

(Ω) of (5.3) for each θ ≥ 0. Fur-
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theremore, there exists a constant Cm independent on of ε and θ such that

‖uθ‖H(m,m)(Ω) ≤ Cmε
−N−1

(
‖φ‖H(1+α)m+3N+14(∂Ω)

+‖ψ‖H(1+α)m+3N+13(∂Ω) + ‖f‖H(1+α)m+3N+10(R2
+)

)
+Cmε

−N−1‖w‖H(1+α)m+3N+19

(
‖φ‖H2N+13(∂Ω)

+‖ψ‖H2N+12(∂Ω) + ‖f‖H2N+9(R2
+)

)
.

Proof. For all φ, ψ and f as in the statement, we have φ ∈ H(m0−4,γ+m0+3)

0 (∂Ω̄1),

ψ ∈ H(m0−5,γ+m0+3)

0 (∂Ω̄1) and f ∈ H(m0−5,γ+m0−2)

0 (Ω̄) by a coordinate change.

Let ηθ ∈ H
(m0−4,γ+2)

(Ω̄) be as in Lemma 5.3 and ūθ ∈ H(m0−6,γ)
0 (Ω̄) be as in

Corollary 5.2 with f̂ = f − Lθηθ ∈ H(m0−6,γ)
0 (Ω̄), then clearly, upon coordi-

nate change, uθ = ūθ + ηθ establishes the existence. Uniqueness follows the
estimate, which is obtained as follows.

We first set vθ = e−
1
2
ȳ2uθ and observe that

Lθvθ := ∂x̄(K̄θ∂x̄vθ) + ∂2
ȳvθ + C̄∂x̄vθ + (2ȳ + D̄)∂ȳvθ

+(1 + ȳ2 + ȳD̄)vθ = e−
1
2
ȳ2f := f̄ .

Then define the operator

L
(m)

θ v := ∂x̄(K̄θ∂x̄v) + ∂2
ȳv + (C̄ +m∂x̄K̄θ)∂x̄v + (2ȳ + D̄)∂ȳv

+
(

1 + ȳ2 + ȳD̄ +m∂x̄C̄ +
m(m+ 1)

2
∂2
x̄K̄θ

)
v.

Thus,

L
(m)

θ ∂mx̄ vθ = ∂mx̄ f̄ −
m∑
s=3

(
m

s

)
∂sx̄K̄θ∂

m−s+2
x̄ vθ

−
m∑
s=2

(
m

s

)
∂sx̄(C̄ + ∂x̄K̄θ)∂

m−s+1
x̄ vθ

−
m∑
s=1

(
m

s

)
[∂sx̄D̄∂

m−s
x̄ (∂ȳvθ) + ȳ∂sx̄D̄∂

m−s
x̄ vθ]

:= ∂mx̄ f̄ + f̄ (m)(vθ).
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We first assume m ≤ 2N+6. Let ηθ be as in Lemma 5.3 with ηθ|∂Ω̄1
= vθ|∂Ω̄1

,
∂ȳηθ|∂Ω̄1

= ∂ȳvθ|∂Ω̄1
and

∂tx̄(f̄ − Lθηθ)|∂Ω̄1
= 0, 0 ≤ t ≤ m+N + 1.

So that we have ∂̄τηθ|∂Ω̄1
= ∂̄τvθ|∂Ω̄1

for all |τ | ≤ m + N + 3. Cosider the
function v̄θ := vθ − ηθ , which satisfies

L
(m)

θ ∂mx̄ v̄θ = ∂mx̄ (f̄ − Lθηθ) + f̄ (m)(v̄θ).

Let bm = h−2γ+2mK̄−1
θ e−λȳ and integrate the following by parts:

(−bm∂̄y∂mx̄ v̄θ, L
(m)

θ ∂mx̄ v̄θ) = (5.17)∫
Ω̄

[
− 1

2
∂ȳ(bmK̄θ)(∂

m+1
x̄ v̄θ)

2

+(∂x̄bmK̄θ −mbm∂x̄K̄θ − bmC̄)∂m+1
x̄ v̄θ∂ȳ∂

m
x̄ v̄θ

]
+

∫
Ω̄

(1

2
∂ȳbm − bm(2ȳ + D̄)(∂ȳ∂

m
x̄ v̄θ)

)2

+

∫
Ω̄

1

2
∂ȳ

[
bm

(
1 + ȳ2 + ȳD̄m∂x̄C̄ +

m(m+ 1)

2
∂2
x̄K̄θ

)]
(∂mx̄ v̄θ)

2

+

∫
∂Ω̄

[1

2
bmK̄θ(∂

m+1
x̄ v̄θ)

2ν2 − bmK̄θ∂
m+1
x̄ v̄θ∂ȳ∂

m
x̄ v̄θν1

]
−
∫
∂Ω̄

1

2
bm

[1

2
bm(∂ȳ∂

m
x̄ v̄θ)

2ν2

+
(

1 + ȳ2 + ȳD̄ +m∂x̄C̄ +
m(m+ 1)

2
∂2
x̄K̄θ

)
(∂mx̄ v̄θ)

2ν2

]
.

The boundary integral has the correct sign along ∂Ω̄2 and vanishes along
∂Ω̄1. The same computation as in (5.6) yields

λ(‖h−γ+m∂m+1
x̄ v̄θ‖+ ‖

√
|bm|∂ȳ∂mx̄ v̄θ‖+ ‖

√
|bm|∂mx̄ v̄θ‖)

≤ C(‖
√
|bm|∂mx̄ (f̄ − Lθηθ)‖+ ‖

√
|bm|f̄ (m)(v̄θ)‖).

With the condition m ≤ 2N + 6 and |w|C2N+10 ≤ 1 we have

‖
√
|bm|f̄ (m)(v̄θ)‖ ≤ Cm

m−1∑
s=0

(‖
√
|bs|∂sx̄v̄θ‖+ ‖

√
|bs|∂ȳ∂sx̄v̄θ‖).
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Then we exploit the fact that K̄ vanishes to order N at the origin, there
is a constant C such that |K̄| ≥ C−1ε2N+2(h(ȳ) − |x̄|)N+1 in Ω̄. A similar
computation as in (5.10) shows that

‖
√
|bm|∂mx̄ (f̄ − Lθηθ)‖2 ≤ Cε−2N−2

∫
Ω̄

[h−γ+m∂m+N+1
x̄ (f̄ − Lθηθ)]2.

Hereafter we use {τi | i ∈ N} to denote multi-indices. Applying (5.16) and
summing from 0 to m produces

m+1∑
s=0

‖h−γ+s∂s+1
x̄ v̄θ‖2 +

m∑
s=0

(‖
√
|bs|∂ȳ∂sx̄v̄θ‖2 + ‖

√
|bs|∂x̄v̄θ‖2) (5.18)

≤ Cmε
−N−1

[ ∫
∂Ω̄1

m+N+3∑
|τ1+τ2|=0

(h−γ−αm−(N+3)−5+|τ1+τ2|Λ|τ1|∂̄
τ2φ)2

∫
∂Ω̄1

m+N+2∑
|τ1+τ2|=0

(h−γ−αm−(N+3)−5+|τ1+τ2|Λ|τ1|∂̄
τ2ψ)2

∫
Ω̄

m+N+2∑
|τ1+τ2|=0

∫
Ω̄

(h−γ−αm−(N+3)+|τ1+τ2|Λ|τ1|∂̄
τ2f)2

]
,

when λ = λ(m) is sufficiently large. From here it is straightforward to
estimate all the x̄-derivatives of uθ, then the usual boot-strap procedure
yields the desired estimate in this special case.

We then assume m ≥ 2N + 7. We define recursively,

f̄
(m)
1 (vθ) = −

m∑
s=2N+7

(
m

s

)
∂sx̄K̄θ∂

m−s+2
x̄ vθ

−
m∑

s=2N+6

(
m

s

)
∂sx̄(C̄ + ∂x̄K̄θ)∂

m−s+1
x̄ vθ

−
m∑

s=2N+6

(
m

s

)
∂sx̄D̄∂ȳ∂

m−s
x̄ vθ − ȳ

m∑
s=2N+5

(
m

s

)
∂sx̄D̄∂

m−s
x̄ vθ

−
2N+6∑
s=3

(
m

s

)
∂sx̄K̄θη

(m−s+2)
θ −

2N+5∑
s=2

(
m

s

)
∂sx̄(C̄ + ∂x̄K̄θ)η

(m−s+1)
θ

−
2N+5∑
s=1

(
m

s

)
∂sx̄D̄∂ȳη

(m−s)
θ − ȳ

2N+4∑
s=1

(
m

s

)
∂sx̄D̄η

(m−s)
θ ,
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and

f̄
(m)
2 (vθ) = −

2N+6∑
s=3

(
m

s

)
∂sx̄K̄θv

(m−s+2)
θ

−
2N+5∑
s=2

(
m

s

)
∂sx̄(C̄ + ∂x̄K̄θ)v

(m−s+1)
θ

−
2N+5∑
s=1

(
m

s

)
∂sx̄D̄∂ȳv

(m−s)
θ − ȳ

2N+4∑
s=1

(
m

s

)
∂sx̄D̄v

(m−s)
θ ,

where v(s) := ∂sx̄vθ − η
(s)
θ with η

(s)
θ = ∂sx̄ηθ for 0 ≤ s ≤ 2N + 6 and for s ≥

2N +7, η
(s)
θ is given by Lemma 5.3 such that η

(s)
θ |∂Ω̄1

= ∂sx̄vθ|∂Ω̄1
, ∂ȳη

(s)
θ |∂Ω̄1

=
∂ȳ∂

s
x̄vθ|∂Ω̄1

with

∂tx̄(∂
s
x̄f̄ + f̄

(s)
1 (vθ)− L

(s)

θ η
(s)
θ )|∂Ω̄1

= 0, for 0 ≤ t ≤ N + 1. (5.19)

Note that f̄ (m) = f̄
(m)
1 +f̄

(m)
2 under this definition. Because φ, ψ and f vanish

in a neighborhood of the origin, uθ may be chosen from a weighted Sobolev
space with arbitrarily large weight. We only need to make sure sufficient
differentiability to construct η

(s)
θ . Since

f̄
(s)
1 ∈ Hmin(m0−s−6,N+3)

(Ω̄),

∂sx̄vθ|∂Ω̄1
∈ Hm0−s−7

(∂Ω̄1),

and
∂ȳ∂

s
x̄vθ|∂Ω̄1

∈ Hm0−s−8
(∂Ω̄1),

we must have N + 3 ≤ m0 − s− 8.
For 2N + 7 ≤ s ≤ m, v

(s)
θ satisfies

L
(s)

θ v
(s)
θ = (∂sx̄f̄ + f̄

(s)
1 (vθ)− L

(s)

θ η
(s)
θ ) + f̄

(s)
2 (vθ).

Then (5.17) results in

λ(‖h−γ+m∂x̄v
(s)
θ ‖+ ‖

√
|bs|∂ȳv(s)

θ ‖+ ‖
√
|bs|v(s)

θ ‖) (5.20)

≤ C(‖
√
|bs|(∂sx̄f̄ + f̄

(s)
1 (vθ)− L

(s)

θ η
(s)
θ )‖+ ‖

√
|bs|f̄ (s)

2 (vθ)‖).
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First we compute with |w|C2N+11 ≤ 1 that

‖
√
|bs|f̄ (s)

2 (vθ)‖2 ≤ Cs

∫
Ω̄

e−λȳ|K̄θ|−1h−2γ+2s

s−1∑
l=0

[(v
(l)
θ )2 + (∂ȳv

(l)
θ )2] (5.21)

≤ Cs

s−1∑
l=3N+11

∫
Ω̄

e−λȳ|K̄θ|−1h−2γ+2l[(v
(l)
θ )2 + (∂ȳv

(l)
θ )2]

+Cs

∫
Ω̄

3N+10∑
l=0

e−λȳ|K̄θ|−1h−2γ+2l[(∂lx̄v̄θ)
2 + (∂ȳ∂

l
x̄v̄θ)

2].

Again as in the previous case we compute:

‖
√
|bs|(∂sx̄f̄ + f̄

(s)
1 (vθ)− L

(s)

θ η
(s)
θ )‖2 (5.22)

≤ Cε−2N−2

∫
Ω̄

[h−γ+s∂N+1
x̄ (∂sx̄f̄ + f̄

(s)
1 (vθ)− L

(s)

θ η
(s)
θ )]2.

A direct computation shows it suffices to estimate the following term in
(5.22):

‖h−γ+s∂N+1
x̄ L

(s)

θ η
(s)
θ ‖

2 ≤
N+3∑
|τ |=0

‖h−γ+s−(N+3)+|τ |∂̄τη
(s)
θ ‖

2

≤
N+3∑
|τ |=0

‖h−γ+s−(N+3)+|τ |∂̄τη
(s)
θ ‖

2
L2(∂Ω̄1).
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By the computation for Lemma 5.3:

N+3∑
|τ |=0

‖h−γ+s−(N+3)+|τ |∂̄τη
(s)
θ ‖

2
L2(∂Ω̄1)

≤
s+N+3∑
|τ1+τ2|=0

‖h−γ−αs−3(N+3)−5+|τ1+τ2|Λ|τ1|∂̄
τ2φ‖2

L2(∂Ω̄1)

+
s+N+2∑
|τ1+τ2|=0

‖h−γ−αs−3(N+3)−5+|τ1+τ2|Λ|τ1|∂̄
τ2ψ‖2

L2(∂Ω̄1)

+
s+N+2∑
|τ1+τ2|=0

‖h−γ−αs−3(N+3)+|τ1+τ2|Λ|τ1|∂̄
τ2 f̄‖2

+
N+3∑

|τ1+τ2|=0

‖h−γ+s−(1+α)(N+3)+|τ1+τ2|Λ|τ1|∂̄
τ2 f̄

(s)
1 (vθ)‖2

L2(∂Ω̄).

Here we pay special attention to the last term above, because it produces
terms to be absorbed into the left hand side of (5.20),

N+3∑
|τ1+τ2|=0

‖h−γ+s−(1+α)(N+3)+|τ1+τ2|Λ|τ1|∂̄
τ2 f̄

(s)
1 (vθ)‖L2(∂Ω̄)

≤
N+3∑

|τ1+τ2|=0

s∑
l=2N+7

‖h−γ+s−(1+α)(N+3)+|τ1+τ2|Λτ1 ∂̄
τ2(∂lx̄K̄θ∂

s−l+2
x̄ vθ)‖

+
N+3∑

|τ1+τ2|=0

2N+6∑
l=3

‖h−γ+s−(1+α)(N+3)+|τ1+τ2|Λτ1 ∂̄
τ2(∂lx̄K̄θη

(s−l+2)
θ )‖L2(∂Ω̄)

+ other integrals from f̄
(s)
1 (vθ). (5.23)

We only cope with the integrals with K̄θ, the rest can be treated similarly.
First consider the integral with l ≥ 2N + 7. We change the coordinate to
(x, y) and then apply Lemma 4.1 to extend vθ to R2

+. Since the extended vθ
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vanishes outside {−2h(y) ≤ x ≤ 2h(y)}, we may apply Corollary 4.2

ε−N−1

N+3∑
|τ1+τ2|=0

‖h−γ+s−2(N+3)+1+|τ1+τ2|Λτ1 ∂̄
τ2(∂lx̄K̄θ∂

s−l+2
x̄ vθ)‖

≤ ε−N−1

s−2N−9∑
|τ1+τ2+τ3|=0

‖∂γ−s+2(N+3)∂τ1(∂2N+7
x̄ K̄)Λτ2∂

τ3vθ‖L2(R2
+)

≤ ε−N−1
(
|∂2N+7
x̄ K̄|L∞(R2

+)‖vθ‖Hγ+1(R2
+) + ‖K̄‖Hγ+2N+8(R2

+)‖vθ‖L∞(R2
+)

)
.

We want to absorb the term

ε−N−1|∂2N+7
x̄ K̄|L∞(R2

+)‖vθ‖Hγ+1(R2
+),

as well as other similar terms generated from f
(s)
1 , to the left hand side of

(5.20). To do that, we need

ε−N−1|∂2N+7
x̄ K̄|L∞(R2

+), ε−N−1|∂2N+6
x̄ C̄|L∞(R2

+),

ε−N−1|∂2N+6
x̄ D̄|L∞(R2

+), and ε−N−1|ȳ∂2N+5
x̄ D̄|L∞(R2

+) (5.24)

to be small. Observe that all these K̄, C̄ and D̄ consist of two families of
functions. One of them are originally defined on (x̂, ŷ). The functions g, Γtij,
K and z0 are of this family. Every time they are differentiated with respect
to x̄, ε2 will be produced. The other family consists of w, x̄, ȳ and aij. We
see that w itself is small by the assumption |w|C3N+14 ≤ εN+2. The function
aij = ∇ijz0 + ε5∇ijw also produces ε2 (until it reaches εN+2) each time it

is differentiated with respect to x̄. For x̄, consider the second derivative ∂2x̄
∂x2

satisfies

∂

∂y

(∂2x̄

∂x2

)
+
a12

a22

∂

∂x

(∂2x̄

∂x2

)
+ ∂x

(a12

a22

)∂2x̄

∂x2
= ∂2

x

(a12

a22

)∂x̄
∂x
,

and vanishes along y = 0. By the standard method for the first order PDE,
we may control its sup norm by the sup norm of the nonhomogeneous term,

∂2
x

(
a12

a22

)
∂x̄
∂x

. Since for all l ≥ 2 and ∂lxx̄ vanishes along the boundary {y = 0},
again ε2 will be produced (until it reaches εN+2) each time we differentiate
∂xx̄ and ∂yx̄. Since the terms in (5.24) are differentiated for at least 2N + 5
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times, we have

ε−N−1
(
|∂2N+7
x̄ K̄|L∞(R2

+) + |∂2N+6
x̄ C̄|L∞(R2

+)

+|∂2N+6
x̄ D̄|L∞(R2

+) + |ȳ∂2N+5
x̄ D̄|L∞(R2

+)

)
= O(ε).

With the condition |w|C3N+14 ≤ εN+2, the part with l ≤ 2N + 6 in (5.23)
becomes

ε−N−1

N+3∑
|τ |=0

2N+6∑
l=3

‖h−γ+s−(1+α)(N+3)+|τ |∂̄τ (∂lx̄K̄θη
(s−l+2)
θ )‖L2(∂Ω̄)

≤ Csε
−N−1

N+3∑
|τ |=0

s−1∑
l=s−2N−4

‖h−γ+s−(1+α)(N+3)+|τ |∂̄τη
(l)
θ ‖L2(∂Ω̄).

Then by the (5.14) and mathematical induction, we can sum up the result
from s = 2N + 7 to s = m:

m∑
s=2N+7

‖h−γ+s∂x̄v
(s)
θ ‖+ ‖h−γ+s∂ȳv

(s)
θ ‖+ ‖h−γ+sv

(s)
θ ‖

≤
m∑

s=2N+7

‖h−γ+s∂x̄v
(s)
θ ‖+ ‖

√
|bs|∂ȳv(s)

θ ‖+ ‖
√
|bs|v(s)

θ ‖

≤ Cm,γε
−N−1

[ m+N+3∑
|τ1+τ2|=0

‖h−γ−αm−3(N+3)−5+|τ1+τ2|Λτ1 ∂̄
τ2φ‖L2(∂Ω̄)

+
m+N+2∑
|τ1+τ2|=0

‖h−γ−αm−3(N+3)−5+|τ1+τ2|Λτ1 ∂̄
τ2ψ‖L2(∂Ω̄)

+
m+N+2∑
|τ1+τ2|=0

‖h−γ−αm−3(N+3)+|τ1+τ2|Λτ1 ∂̄
τ2f‖

+
2N+6∑
l=0

N+3∑
|τ |=0

‖h−γ−(1+α)(N+3)+l+2|τ |∂̄τ∂lx̄ηθ‖L2(∂Ω̄1)

]
+ε‖vθ‖Hγ+1(R2

+) + Cm,γε
−N−1

(
1 + ‖w‖Hγ+2N+13(R2

+)

)
‖vθ‖L∞(R2

+).
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After adding the estimate from the case m ≤ 2N + 6, it is straightforward
to derive an estimate (by the right hand side of our last inequality) on every
derivative on uθ with respect to x̄. Solving for the derivatives of uθ with
respect to ȳ from our linear equation yields a similar estimate on all the
derivatives of uθ. Then we pick γ = m, change coordinate to (x, y) and choose
ε sufficiently small. Eventually, Lemma 4.1, Corollary 4.2 and Lemma 4.3
yield

‖uθ‖H(m,m)(Ω) ≤ Cmε
−N−1

(
‖φ‖H(1+α)m+3N+14(∂Ω)

+‖ψ‖H(1+α)m+3N+13(∂Ω) + ‖f‖H(1+α)m+3N+10(R2
+)

)
+Cmε

−2N−2‖w‖H(1+α)m+3N+19

(
‖φ‖H2N+13(∂Ω)

+‖ψ‖H2N+12(∂Ω) + ‖f‖H2N+9(R2
+)

)
.
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Chapter 6

The Nash-Moser iteration with hyperbolic cusps

In this chapter, we apply Nash-Moser iteration to solve the Cauchy problem:

Φ(w) = 0 in Ω, w|∂Ω = 0 and ∂νw|∂Ω = ψ.

We will assume that the boundary data ψ is in Hm0−10
0 (∂Ω1) and that

‖ψ‖m0−10 ≤ Cε2A, where ‖ · ‖m := ‖ · ‖Hm(R2
+) and A is a large parame-

ter which we will determine. Since ψ is the normal derivative of the solution
obtained in the bordering elliptic region restricted to the shared boundary,
the assumption above is legitimate.

We start with an approximate solution z0 so that ‖Φ(0)‖ρ+1 ≤ Cε2A.
Then by the proof of Lemma 5.3, we may pick w0 such that

w0|∂Ω = 0, ∂νw0|∂Ω = ψ

and
‖w0‖H(m,m)(Ω) ≤ ‖ψ‖(1+α)(ρ+3)+5 ≤ ‖ψ‖(m0−10) ≤ Cε2A, (6.1)

assuming that m ≤ ρ+ 3 and

(1 + α)(ρ+ 3) + 5 ≤ m0 − 10.

Then by Lemma 4.1, w0 has an extension to R2
+, still denoted by w0. With

the assumption m0 − ρ− 3 ≥ 2N + 6, we compute on R2
+

‖Φ(w0)‖ρ+1 ≤ C(ε2A + ‖w0‖ρ+3) ≤ Cε2A, (6.2)

and start the iteration from here. Applying the Taylor expansion theorem to

G(t) := Φ(w0 + tu0)

gives
Φ(w0 + u0) = Φ(w0) + L(w0)u0 +Q,

where Q is the quadratic error.
Heuristically, because the quadratic error is relatively small, we can make

Φ(w0 + u0) strictly smaller than Φ(w0) by solving L(w0)u0 = −Φ(w0). We
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repeat this process and expect w0 +
∑∞

n=0 un converges to a solution. How-
ever, to use the result from the chapter 5, we need to modify the standard
procedure of Nash-Moser iteration. We define the following:

(i) µ := ε−
1
2ρ , µn := µn, and Sn := Sµn .

(ii) vn := Snwn, and θn = |Φ(vn)|C5 .

(iii) The operator Lθn is defined as in (5.3), except being linearized at vn.

(iv) un is the unique solution of Lθnun = fn in Ω, un|∂Ω = 0, ∂νu|∂Ω = 0,

where fn is to be stated below.

(v) wn+1 = wn + un.

Then we modify the equation:

Φ(wn+1) = Φ(wn) + L(wn)un +Qn(wn, un) (6.3)

= Φ(wn) + εS ′na
22(vn)Lθn(vn)un + en,

where Qn(wn, un) denotes the quadratic error in the Taylor expansion of Φ
at wn, and

en = (L(wn)− L(vn))un +Qn(wn, un)

+ ε(I − S ′n)a22(vn)Lθn(vn)un + εθna
22(vn)∂2

x̄un

+ ε(a22(vn))−1Φ(vn)[∂2
xun − ∂x(loga22(vn)

√
|g|)∂xun].

We also define

(vi) E0 = 0, and En =
n−1∑
i=0

ei.

(vii) f0 = −[εS ′0a
22(v0)]−1S0Φ(w0), and

fn = [εS ′na
22(vn)]−1(Sn−1En−1 − SnEn + (Sn−1 − Sn)Φ(w0)).

Notice that as un is in the weighted space over Ω, therefore so is wn. Thus
we may extend wn to R2

+ so that all the definition above are over R2
+, except
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the operator Lθ. Then we compute:

(i) ‖w0 − v0‖m = ‖(I − S0)w0‖m ≤ C‖w0‖m ≤ ε2A.

(ii) ‖v0‖m = ‖S0w0‖m

≤
{
C‖w0‖m ≤ Cε2A, if m ≤ ρ+ 3,

Cµm−ρ−3
0 ‖w0‖ρ+3 ≤ Cε2A, if m > ρ+ 3.

(iii) ‖w0‖3N+14 ≤ ε2A and ‖v0‖3N+14 ≤ ε2A.

(iv) ‖Φ(v0)‖m ≤ C(ε2A + ‖v0‖m+2) ≤ Cε2A.

(v) ‖f0‖m = ‖[εS ′0a22(v0)]−1S0(w0)‖m
≤ Cε−1

(
‖S ′0a22(v0)‖m‖S0Φ(w0)‖2 + ‖S ′0a22(v0)‖2‖S0Φ(w0)‖m

)
≤ Cε2A−1.

(vi) ‖u0‖H(m,m)(Ω)

≤ Cε−N−1‖f0‖(1+α)+3N+10 + Cε−2N−2‖v0‖(1+α)m+3N+19‖f0‖2N+9

≤ ε2A−2N−3.

(vii) ‖e0‖m ≤ Cε2A.

We skip the computation of (vii), the proof of (VIIIn) below will justify (vii).
The seven statements above, together with (6.1) and (6.2), imply the case
n = 0 of the following eight statements, which will prove inductively that the
wn converge to a solution.

In : ‖wn‖m ≤
{
C1ε

A, if (1 + α)m+ 3N + 10− ρ ≤ −r,
C1ε

Aµ
(1+α)m+3N+10−ρ
n , if (1 + α)m+ 3N + 10− ρ ≥ r,

for all m ≤ ρ+ 3,

IIn : ‖wn − vn‖m ≤ C2ε
Aµm+3N+13+(α−1)ρ

n , for all m ≤ ρ+ 3,

IIIn : ‖vn‖m ≤
{
C3ε

A, if (1 + α)m+ 3N + 10− ρ < 0,

C3ε
Aµ

m+3N+10+(α−1)ρ
n , if (1 + α)m+ 3N + 10− ρ > 0,

for all m ∈ Z+,

IVn : ‖wn‖3N+14 ≤ C1ε
A, ‖vn‖3N+14 ≤ C3ε

A,

Vn : ‖fn‖m ≤ C4ε
2A(1 + µρ)µm−ρn , for all m ∈ Z+,

VIn : ‖Φ(wn)‖m ≤ εAµm−ρn , and ‖Φ(vn)‖m ≤ C5ε
Aµm+3N+12+(α−1)ρ

n ,

for all m ≤ ρ+ 1,

VIIn : ‖un‖H(m,m)(Ω) ≤ εAµ(1+α)m+3N+10−ρ
n , for all m ≤ m0 − 3N − 21

1 + α
,

VIIIn : ‖en‖m ≤ C6ε
2Aµm−ρn , for all m ≤ ρ+ 1.
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Above ρ is a big constant integer we will determine.
Now we specify r. Notice that

S =
{
|(1 + α)m+ 3N + 10− ρ|

∣∣∣ 0 ≤ m <
m0 − 3N − 21

1 + α

}
is a finite set consisting of strictly positive numbers. Without loss of gen-
erality we assume that α is irrational, then r is defined as the minimum
of

S ∪
{ρ− 3N − 10

1 + α
−
⌊ρ− 3N − 10

1 + α

⌋}
∪
{⌈ρ− 3N − 10

1 + α

⌉
− ρ− 3N − 10

1 + α

}
.

We now assume the statements are valid for all nonnegative integers less than
or equal to n− 1, then prove that they hold for n.

In: Assuming that VIIn−1, then for all m ≤ ρ+ 3:

‖wn‖m =
∥∥∥w0 +

n−1∑
i=0

ui

∥∥∥
m
≤ CεA

(
1 +

n−1∑
i=0

µ
(1+α)m+3N+10−ρ
i

)
.

Therefore, if (1 + α)m+ 3N + 10− ρ ≤ −r:

‖wn‖m ≤ 2εA
( n−1∑
i=0

u−ri

)
≤ 2εA

∞∑
i=0

(
1

µr
)i ≤ C0ε

A,

else if (1 + α)m+ 3N + 10− ρ ≥ r:

‖wn‖m ≤ 2εAµ(1+α)m+3N+10−ρ
n

n−1∑
i=0

( µi
µn

)(1+α)m+3N+10−ρ

≤ 2εAµ(1+α)m+3N+10−ρ
n

n−1∑
i=0

( 1

µ(1+α)m+3N+10−ρ

)n−i
≤ 2εAµ(1+α)m+3N+10−ρ

n

∞∑
i=1

( 1

µr

)i
≤ 2C0ε

Aµ(1+α)m+3N+10−ρ
n .

Therefore In follows by setting C1 = 2C0.
IIn: Under the condition that m ≤ ρ+ 3, we deduce from In−1 that

‖wn − vn‖m = ‖(I − Sn)wn‖m ≤ CεAµm−ρ−3
n ‖wn‖ρ+3

≤ CεAµm−ρn µ(1+α)(ρ+3)+3N+10−ρ
n

≤ CεAµm+3N+13+(α−1)ρ
n .
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Pick C2 = C above, notice that C2 works for all n ∈ N.
IIIn: We further assume ρ ≤ m0− 11, and if (1 +α)m+ 3N + 10− ρ < 0,

then

m ≤
⌊ρ− 3N − 10

1 + α

⌋
,

because m is an integer. We then compute

‖vn‖m = ‖Snwn‖m ≤ C‖wn‖b ρ−3N−10
1+α

c.

Because ⌊ρ− 3N − 10

1 + α

⌋
(1 + α) + 3N + 10− ρ

=
(⌊ρ− 3N − 10

1 + α

⌋
+

3N + 10− ρ
1 + α

)
(1 + α)

≤ −r(1 + α) ≤ −r,

In implies
‖vn‖m ≤ CC1ε

A ≤ C3ε
A.

On the other hand, if (1 + α)m+ 3N + 10− ρ > 0, then again,

m ≥
⌈ρ− 3N − 10

1 + α

⌉
,

and we have

‖vn‖m ≤ Cµ
m−d ρ−3N−10

1+α
e

n ‖wn‖d ρ−3N−10
1+α

e

≤ CC1ε
Aµ

m−d ρ−3N−10
1+α

e
n µ

d ρ−3N−10
1+α

e(1+α)+3N+10−ρ
n

≤ CC1ε
Aµ

m+3N+10+ αρ
1+α
−ρ+α−α(3N+10)

1+α
n

≤ CC1ε
Aµm+3N+20+(α−1)ρ

n

≤ C3ε
Aµm+3N+20+(α−1)ρ

n .

IVn: This simply requires (3N + 14)(2 + α) < ρ.
Vn: We first estimate with the help of VIIIn−1:

‖En‖ρ+1 ≤
n−1∑
i=0

‖ei‖ρ+1 ≤ C6

n−1∑
i=0

ε2Aµi

≤ C6ε
2Aµn

∞∑
i=1

(µ−i) ≤ C6ε
2Aµn.
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We then apply Nirenberg inequality to derive

‖fn‖m ≤ Cε−1(‖Sn−1En−1 − SnEn + (Sn−1 − Sn)Φ(w0)‖m
+‖S ′na22(vn)‖m‖Sn−1En−1 + SnEn + (Sn−1 − Sn)Φ(w0)‖2)

≤ Cε−1(‖Sn−1En−1 − SnEn + (Sn−1 − Sn)Φ(w0)‖m
+µm−2

n ‖a22(vn)‖2‖Sn−1En−1 + SnEn + (Sn−1 − Sn)Φ(w0)‖2)

≤ Cε−1(‖Sn−1En−1 − SnEn + (Sn−1 − Sn)Φ(w0)‖m
+µm−2

n ‖Sn−1En−1 + SnEn + (Sn−1 − Sn)Φ(w0)‖2). (6.4)

Then we prove Vn in three different cases.

(1) m ≥ ρ+ 1. Consider

‖Sn−1En−1 − SnEn + (Sn−1 − Sn)Φ(w0)‖m
≤ ‖Sn−1En−1‖m + ‖SnEn‖m + ‖Sn−1Φ(w0)‖m + ‖SnΦ(w0)‖m
≤ C[µm−ρ−1

n−1 (‖En−1‖ρ+1 + ‖Φ(w0)‖ρ+1)

+µm−ρ−1
n (‖En‖ρ+1 + ‖Φ(w0)‖ρ+1)]

≤ Cε2A[µm−ρn + µm−ρn−1 ]

≤ Cε2A(1 + µρ)µm−ρn .

For the other part we compute

‖Sn−1En−1 + SnEn + (Sn−1 − Sn)Φ(w0)‖2 (6.5)

≤ ‖Sn−1En−1 − En−1‖2 + ‖En−1 − En‖2 + ‖En − SnEn‖2

+‖Sn−1Φ(w0)− Φ(w0)‖2 + ‖Φ(w0)− SnΦ(w0)‖2

≤ C(µ2−ρ−1
n−1 ‖En−1‖ρ+1 + ‖en−1‖2 + µ2−ρ−1

n ‖En‖ρ+1

µ2−ρ−1
n−1 ‖Φ(w0)‖ρ+1 + µ2−ρ−1

n ‖Φ(w0)‖ρ+1)

≤ Cε2A(1 + µρ)µ2−ρ
n .

Substituting the above into (6.4):

‖fn‖m
≤ C[ε2A(1 + µρ)µm−ρn + εAµm−ρn ε2A(1 + µρ)µ2−ρ

n ]

≤ Cε2A(1 + µρ)µm−ρn ,

where the last inequality requires ρ ≥ 2.
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(2) ρ+ 1 > m ≥ 2. By the computation in (6.5):

‖Sn−1En−1 − SnEn + (Sn−1 − Sn)Φ(w0)‖m ≤ Cε2A(1 + µρ)µm−ρn ,

the rest is the same as case (1).

(3) m < 2. As ‖S ′na22(vn)‖m ≤ C:

‖fn‖m ≤ Cε−1(‖Sn−1En−1 − SnEn + (Sn−1 − Sn)Φ(w0)‖m).

Similar computation to the previous cases yields the desired estimate.

VIn: From (6.3) and our definition of fi for 0 ≤ i ≤ n− 1, we have

Φ(wn) = (I − Sn−1)Φ(w0) + (I + Sn−1)En−1 + en−1.

We require further that m ≤ ρ+ 1, so

‖Φ(wn)‖m
≤ C

(
µm−ρ−1
n−1 ‖Φ(w0)‖ρ+1 + µm−ρ−1

n−1 ‖En−1‖ρ+1 + ‖en−1‖m
)

≤ Cε2Aµm−ρn−1 ≤ Cε2A(1 + µρ)µm−ρn

≤ ε2A−1µm−ρn .

Moreover since

‖Φ(vn)‖m ≤ ‖Φ(wn)‖m + ‖Φ(wn)− Φ(vn)‖m
≤ ε2A−1µm−ρn + ε‖wn − vn‖m+2

≤ ε2A−1µm−ρn + CεA+1µ(1+α)m+3N+12−ρ
n

≤ εA(εA−1 + Cε)µ(1+α)m+3N+12−ρ
n ,

VIn is valid assuming A ≥ 2.
VIIn: We apply Theorem 5.4 with φ, ψ = 0 to see

‖un‖H(m,m)(Ω) ≤ C[ε−N−1‖fn‖(1+α)m+3N+10

+ ε−2N−2‖vn‖(1+α)m+3N+19‖fn‖2N+9]

≤ C[ε2A−N−1(1 + µρ)µ(1+α)m+3N+10−ρ
n

+ ε3A−2N−2(1 + µρ)µ(1+α)m+6N+29+(α−1)ρ
n µ2N+9−ρ

n ]

≤ C[ε2A−N−2µ(1+α)m+3N+10−ρ
n

+ ε3A−2N−3µ(1+α)m+3N+10−ρ+5N+28+(α−1)ρ
n ]

≤ εAµ(1+α)m+3N+10−ρ
n .
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The last inequality above requires A ≥ N + 3 and ρ > 5N+28
1−α .

VIIIn: Recall that the error is

en = Qn(wn, un) + ε(I − S ′n)a22(vn)Lθ(vn)un

+(L(wn)− L(vn))un + εθna
22(vn)∂2

x̄un

+ε(a22(vn))−1Φ(vn)[∂2
xun − ∂x(loga22(vn)

√
|g|)∂xun].

We will estimate it term by term.

(1) By Taylor’s theorem we have,

Qn(wn, vn) =

∫ 1

0

(1− t) ∂
2

∂t2
Φ(wn + tun)dt.

Then by the Sobolev embedding theorem and the Nirenberg inequality:

‖Qn(wn, un)‖m ≤
∫ 1

0

C(‖∇2Φ(wn + tun)‖2)‖un‖4‖un‖m+2

+‖∇2Φ(wn + tun)‖m+2‖un‖4.

Then by (iii) of Lemma 4.4:

‖Qn(wn, un)‖m ≤ C[(1 + ‖wn‖4 + ‖un‖4)‖un‖4‖un‖m+2

+(1 + ‖wn‖m+2 + ‖un‖m+2)‖un‖2
4]

≤ Cε2A(µm−ρ+6N+33+(α−1)ρ
n + µm−ρ+(α−2)ρ+9N+53

n )

≤ Cε2Aµm−ρn ,

where we have used m ≤ ρ+ 1, α < 1, 9N+53
2−α ≤ ρ and 6N+33

1−α ≤ ρ.

(2) Recall that µρ = ε−
1
2

‖ε(I − S ′n)a22(vn)Lθ(vn)un‖m
≤ Cε[‖a22(vn)‖m‖fn‖2 + ‖a22(vn)‖2‖fn‖m]

≤ Cε[‖vn‖m+2‖fn‖2 + ‖fn‖m]

≤ Cε[εAµm+3N+10+(α−1)ρ
n ε2A(1 + µρ)µ2−ρ

n + ε2A(1 + µρ)µm−ρn ]

≤ Cε2Aµm−ρn .

For the last inequality we need 3N+12
1−α ≤ ρ.
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(3) We first recall that L(w)u = εaiju;ij + 2ε5K|g|〈∇gz,∇gu〉. So a direct
computation together with the Nirenberg inequality yeilds,

‖(L(wn)− L(vn))un‖m
≤ Cε(‖wn − vn‖m‖un‖4 + ‖wn − vn‖4‖un‖m+2)

≤ Cε(εAµm+3N+13+(α−1)ρ
n εAµ4(1+α)+3N+10−ρ

n

+εAµ4+3N+13+(α−1)ρ
n εAµ(1+α)m+3N+10−ρ

n

≤ Cε2A+1(µm−ρ+6N+31+(α−1)ρ
n + µm+αm+(α−1)ρ+6N+23−ρ

n )

≤ Cε2A+1(µm−ρ+6N+31+(α−1)ρ
n + µm−ρ+6N+24−(1−2α)ρ

n )

≤ Cε2A+1µm−ρn ,

where we have used m ≤ ρ+ 1, 6M+31
1−α ≤ ρ, α < 1

2
and 6N+24

1−2α
≤ ρ.

(4) With the Sobolev embedding theorem and the Nirenberg inequality:

|εθna22(vn)∂2
x̄un‖m

≤ εθn(‖un‖2 + ‖vn‖m+2‖un‖2 + ‖un‖m+2 + ‖vn‖4‖un‖m+2)

≤ εA+1µ4+3N+13+(α−1)ρ
n εAµ2(1+α)+3N+10−ρ

n

+εA+1µ4+3N+13+(α−1)ρ
n CεAµm+3N+12+(α−1)ρ

n εAµ2(1+α)+3N+10−ρ
n

+εA+1µ4+3N+13+(α−1)ρ
n εAµ(1+α)(m+2)+3N+10−ρ

n

+εA+1µ4+3N+13+(α−1)ρ
n CεAµ4+3N+10+(α−1)ρ

n εAµ(1+α)(m+2)+3N+10−ρ
n

≤ Cε2Aµm−ρn .

The last inequality requires m ≤ ρ + 1, α < 1
2
, 6N+31

1−α ≤ ρ, 6N+32
1−2α

≤ ρ

and 9N+46
2−3α

≤ ρ.

(5) Again with the Sobolev embedding theorem and the Nirenberg inequal-
ity:

‖ε(a22(vn))−1Φ(vn)∂2
xun‖m

≤ ε(‖a22(vn)‖m‖Φ(vn)‖2‖un‖4

+‖a22(vn)‖2‖Φ(vn)‖m‖un‖4 + ‖a22(vn)‖2‖Φ(vn)‖2‖un‖m+2

≤ Cε2Aµm−ρn ,

where we need m ≤ ρ+ 1, α < 1
2
, 9N+44

2−3α
≤ ρ and 6N+33

1−2α
.

(6) Under the same conditions, using the computation as in case (5) implies

‖ε(a22)−1Φ(vn)∂x(loga22(vn)
√
|g|)∂xun‖m ≤ CεAµm−ρn .
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Therefore, the discussion above concludes the main result in this chapter,

Corollary 6.1. Suppose m0 ≥ 1+α
1−2α

(6N + 33) + 4N + 33 and A ≥ N + 3,

and write χ := bm0−13
(1+α)2

− 5N+21
1+α
c by, then wn → w ∈ Hχ and Φ(wn) → 0 in

C0(Ω).

Proof. Pick ρ = bm0−13
1+α
c − 2N − 9, so that the conditions we need on ρ

in the iteration procedure are valid, including m0 − ρ − 3 ≥ 2N + 6, (1 +
α)(ρ + 3) + 5 ≤ m0 − 10 and ρ ≥ 6N+33

1−2α
. Moreover, it is easy to check

(1 + α)χ+ 3N + 10− ρ ≤ −1. Thus

‖wi − wj‖χ ≤
i−1∑
n=j

‖un‖χ ≤ εN+3

i−1∑
n=j

µ(1+α)χ+3N+10−ρ
n ≤ εN+3

i−1∑
n=j

µ−n.

Hence the wn form a Cauchy sequence in Hχ(Ω). Also,

‖Φ(wn)‖C0(Ω) ≤ C‖Φ(wn)‖2 ≤ εN+3µ2−ρ
n ,

whose limit is 0 as n→∞ because ρ ≥ 2.

For a solution of (1.5) in a neighborhood of the origin, we need to obtain a
solution in the complement of Ω−1 ∪Ω−2 . The complement consists of domains
whose boundary are at least Lipschitz. However, we cannot apply the result
in [9] directly, since they dealt with sectors, whose angle can be made small
by a linear transformation. Instead, we first apply a coordinate change,

x̃ = x
1
3 , ỹ = y.

The assumption ᾱ < 1 implies this coordinate change map Ω+
κ to a cusp

domain. Then we may use the method in the previous chapters to derive the
same estimate. Therefore as in [9],

Proposition 6.2. If m0 ≥ 2N + 9, then we have a sequence,

{ wn | wn ∈ H
m0−8

(Ω) and wn|∂Ω = 0 },

such that wn → w in H
m0−8

(Ω), with

‖w‖m0−8 ≤ Cε2N+6.

Furthermore, Φ(wn)→ 0 in C0(Ω).
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To prove the main theorem, on each elliptic region Ω+
κ we construct w+

κ ∈
H
m0−8

(Ω+
κ ) which satisfies,

Φ(w+
κ ) = 0 in Ωκ , w+

κ = 0 on ∂Ω+
κ .

Then by the trace theorem

∂νw
+
κ ∈ Hm0−10(∂Ω+

κ ),

which satisfies the conditions of Corollary 6.1. Therefore we may use Corol-
lary 6.1 to obtain w−% ∈ Hχ(Ω−% ) (with χ defined in Corollary 6.1) satisfying

Φ(w−% ) = 0 in Ω−% , w−% |∂Ω−%
= 0 and ∂νw

−
% |∂Ω−%

= ∂νw
+
κ |∂Ω−%

.

Lastly, we want to patch individual solutions to a complete one in a neigh-
borhood of the origin. Consider any pair of w+

κ and w−% sitting on Ω+
κ and

Ω−% respectively. By the choice of the approximate solution, the fact that w+
κ

and w−% are in weighted spaces and |h|C1(|y|≤σ) decreases to zero as the small
positive parameter σ → 0, the common boundary of any pair of Ω+

κ and
Ω−% is noncharacteristic. Together with the trace theorem and the Sobolev
embedding theorem we deduce that w+

κ and w−% agree along the boundary
up to order χ− 2. This assures the combined solution is Cχ−2 smooth across
the boundary. Therefore we have constructed a solution in a neighborhood
of the origin.
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