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Abstract of the Dissertation

A Sharp Boundary Model for Electrocardiac Simulations

by

Shuai Xue

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2015

We present a sharp boundary electrocardiac simulation model based on the �nite

volume embedded boundary method for the solution of voltage dynamics in irregular

domains with anisotropy and a high degree of anatomical detail. This method is second

order accurate uniformly up to boundaries and is able to resolve small features without

the use of �ne meshes. This capability is necessary to enable the repeated simulations

required for future veri�cation and validation (V&V) and uncertainty quanti�cation

(UQ) studies of de�brillation, where �ne-scale heterogeneities, such as those formed by

small blood vessels play an important role and require resolution.
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Chapter 1

Introduction

1.1 Overview and Motivation

Heart failure is a leading cause of death in the industrial world [1, 14]. Great

e�orts have been devoted to understanding the underlying physiological mechanisms

for the normal and abnormal behaviour of the heart. As the "engine" of the circulatory

system, the heart keeps pumping blood to provide oxygen and nutritions to the body,

and also removes metabolic wastes from the organs. Since normal contractions of the

heart depends largely on the electrical signals sent from the brain, the study of the

electrical activities within the cardiac tissue plays a cruicial role in understanding the

physiological fundamentals of heart functions and the prevention and treatment of

cardiac diseases [74].

Extensive experimental studies have been performed to investigate the electrical

activities within the cardiac tissue which coordinate the mechanical contraction of

the heart [27, 28, 43]. In the beginning of each mechanical contraction, the contral
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signal sent from the brain triggers the opening of the sodium channels on myocyte

membranes in the sino-atrial node, which initiates a rapid action potential upstroke.

The local voltage gradient resulted by the upstroke in turn leads to the opening of

the sodium channels in the neighbouring cells, which results in the propagation of the

action potential wave across the cardiac tissue [57].

Although in-vivo and in-vitro experiments still remain the most trustworthy meth-

ods for testing the correctness of electrocardiac theories and propositions, numerical

simulations are playing more and more important roles in studying the propagation

of action potential waves in the cardiac tissue. Compared with experiments the nu-

merical models have severial advantages, among which strong explanatory abilities and

economical beni�ts are prominent. For example, in the study of re-entry wave genesis

and 3D votex propagation [32], most experiments only document the action potential

evolution on the heart surface, in contrast, with numerical simulation tools, scientists

can easily visualize the deformation and translation of the vortexes within the cardiac

tissue, which in turn inspires the generation of new hypothesis. The economical beni�ts

are easily seen by considering experiments in which cardiac tissues of humman or other

higher animals are involved.

Two di�erent categories of mathematical models for the action potential propaga-

tion in cardiac tissue have been adopted by researchers in the �eld of electrocardiology,

which re�ects the existence of two di�erent perspectives on the electrophysiological

proterties of the heart tissue. In the �rst approach, the cardiac tissue is treated as a

discrete network of cells, which has a �nite number of states. The future state of a

given cell is dermined by its current state and the states of its eighbours. The simple

cellular automaton (CA) model [76] and coupled map lattices (CML) model [53] fall

into this category. The main advantages of the discrete models are their simplicity
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intuitiveness and simplicity, which resulted in their popularity in the early days when

the computational resources were limited. However, the discreteness of cell states pre-

vents them from being used to the study of rate-dependent e�ects and other important

phenomena [9].

The other category consists of models of the continuous type. The underlying

assumption of these models is that at the macroscopic scale the cardiac tissue can

be viewed as a functional syncytium of electrically coupled cells [77], the validation

of which has been shown by experiments [27, 29]. These models successfully remove

the restriction of discrete models that the cell states must be discrete, which lends

them to the investigation of a wider range of problems. The most popular continuous

models are the bidomian and monodomain models. As the most complete model for

describing electrocardiac phenomena, the bidomian model has been widely used in

simulations such as action potential propagation in complex geometries [47], excitation

and repolarization patterns [38], and currents injection into cardiac tissue [96], etc.

However, since the bidomain model involves an implicit equation of the extracellular

potential, the solution of which is time consuming, in early dates its application to

3D full heart simulations was prohibitive. To overcome this shortcoming, the mono-

domain simpli�cation was proposed. By assuming the equality of the anisotropies in

the intracellular and extracellular spaces, it achieved great simpli�caiton over the more

complete model. It has been shown that in the absence of injection of currents in the

extracellular space, the mono-domain model renders realistic solutions for a wide range

of problems [46, 7, 75]. However, for some interesting applications, such as low energy

de�brillations [70], this limitation is too restrictive for the monodomain model to be

useful. In latter sections, we will review the monodomain and bidomain models in

more detail.
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Both the bidomain and monodomain models are of the reaction-di�usion type.

The di�usion part describes the propagation of the action potential, and the reaction

part corresponds to ionic currents through the cell membrane. A number of models of

the ionic currents have been proposed at di�ering levels of complexity and completeness.

The human ventricular myocyte model of Iyer et al. [49] includes as many as 67

variables. In contrast, the FitzHugh-Nagumo model [36] for general excitable media

only involves two viriables. Although complex models can better reproduce existing

experimental results through careful selection of parameters, too many parameters

often a�ect the model robustness and introduce inconsistencies between models of the

same animal species and speci�c regions of the heart [13]. Moreover, the overhead of

using these complex models in 3D simulations with the geometry of a real heart and

reasonable mesh re�nement is quite formidable.

To overcome the complexities of detailed cardiac cell models, several reduced mod-

els have been proposed [3, 25, 32]. Among the widely used reduced models, the Fenton-

Karma (FK) three variable model is a typical, maintaining most of the quantitative

properties of the more complicated models, while reducing the computational complex-

ities signi�cantly [30]. These properties have made the FK model popular in a wide

range of studies, including vortex dynamics in the myocardium [32], mechanisms for

discordant alternans [109], temperature e�ects [33, 35] and the promising �eld of low

energy de�brillation [12, 34]. In this thesis, we adopt the FK model to describe the

evolution of the transmembrane ionic currents, the details of which are given in the

following sections.

The main result of this thesis is the introduction of a high order sharp boundary

treatment of the voltage equation into cardiac models. From the perspective of mathe-

matical physics, the reaction-di�usion equations in bidomain and monodomain models
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are elliptic and parabolic equations. Severial numerical methods have been developed

for the solution of elliptic and parabolic equations in domains with complex geometries,

among which the ghost cell method [103], phase �eld method [31], immersed boundary

method [73], �nite element method [91], immersed interface method [64], and embedded

boundary method [50] have been more widely adopted. In this thesis we extended the

embedded boundary method to solve elliptic and parabolic equations with anisotropic

di�usion tensors. The resulting algorithm allows arbitrary order of accuracy in the L∞

norm, and as implemented here with algorithm details included is second order accu-

rate. Local mesh re�nement techniques, such as, h-re�nement [66] and p-re�nement

[100] can be adopted to improve the numerical resolution on coarse grids. Both the

arbitrary order of accuracy and the second order details are new, for the case of tensor

di�usion, as considered here. The code is based on the �nite volume discretization

of the voltage equation, based on the embedded boundary method (EBM). We solve

the bidomain equations, representing the cardiac tissue as a syncytium of overlapping

intracellular and extracellular domains [16], as is needed in de�brillation modelling.

For this same purpose we emphasize the resolution of small myocardial discontinuities,

such as blood vessels and infarct scars, which can become the substrate for producing

virtual electrodes when de�brillation voltage is applied [110, 70].

The major motivation of this work is a planned veri�cation and validation (V&V)

and uncertainty quanti�cation (UQ) study of de�brillating voltages applied at elec-

trodes on the exterior of the heart as outlined by Pathmanathan et al. in [81]. The

purpose of the voltage is to reset the electrical state of the heart, so that normal cycles

of a heart beat will follow. Such V&V/UQ studies require repeated simulations, and

their success depends in part on the number feasible within a given resource limit.

Thus the ability to obtain useful solutions on a coarse mesh is the primary �gure of
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merit considered here, which is achieved by applying the high order numerical method

introduced in this paper.

The implementation of the algorithms in this thesis uses an existing C++ EBM

library developed by Dr. Shuqiang Wang as a starting point. Wang solved elliptic and

parabolic equations in 2D and 3D geometries with complex geometries [108]. It should

be noted that Wang's EBM library is based on an earlier EBM library developed by

Roman Samulyak and Jian Du, which is documented in [93].

1.2 Related Work

Our sharp boundary method is designed to perform highly accurate electrocardiac

simulations on domains with complex geometries. Great e�ort has been devoted to this

�eld to investigate the underlying mechanics of a wide range of electrocardiac phenom-

ena with more and more anatomical details included. In the following paragraphs, we

will review related electrocardiac simulation studies with a focus on both the numerical

methods adopted and the physiological problems investigated.

As one of the most widely adopted numerical simulation tools in electrocardiol-

ogy, the immersed boundary method (IBM) was developed by Peskin [85] in 1970s for

the study of �ow patterns around heart valves. For its capability to model general

�uid-structure interactions, IBM has been applied in a variety of scienti�c studies,

such as cochlea modelling [6], bio�lm processing [23], valveless pumping [52], and �uid

dynamics [69]. In IBM the interaction of elastic material and an incompressible viscous

�uid is handled mathematically by the introduction of a mixture of Eulerian and La-

grangian variables, which are correlated by an interaction equation involving the Dirac
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delta function. The Cartesian variables are de�ned on an underlying Cartesian mesh,

on top of which a curvilinear mesh where the Lagrangian variables are de�ned moves

freely. The evolutions of complex boundary geometries are essentially described by the

movement of the curvilinear Lagrangian meshes. However, the numerical approxima-

tion of the Dirac function introduces an arti�cial transition layer in the vicinity of the

boundary, which may case volume loss of small structures, such as, blood vessels. It

should be emphasized that a prominent advantage of using IBM for cardiac simulations

is its simplicity of coupling the voltage propagation and the mechanical contractions of

the heart, which makes it attractive in large scale simulations where the interactions

of the surrounding tissue and heart plays an indispensable role.

The standard approach in cardiac simulations involving complex geometries is

the �nite volume method (FEM). This method has been successfully applied to the

study of a wide range of topics in cardiology, including in�uence of abrupt changes

in tissue geometry [45], unidirectional block due to wavefront curvature [91], blood

�ow around complex endovascular devices [11], and e�ects of coronary vasculature

on de�brillation [8]. One of the most important advantages of FEM is its complete

ecosystem. Since its invention in 1950s, FEM has become the most popular method

in numerical solutions of partial di�erential equations, where complex geometries need

to be handled. As a result, numerous commercial and open-source FEM packages

have been developed for a variety of speci�c �elds, such as, aerodynamics [113], �uid

mechanics [15], thermodynamics [48], and magnetohydrodynamics [92]. It is worth

noting, combined with high-quality mesh generating algorithms, FEM can accurately

resolve �ne anatomical structures, such as coronary vasculatures with in ventricles.

However, the generation of high-quality meshes is not trivial, in general several mesh

generation procedures need to be inspected before the appropriate one is chosen, which
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may incur a cost in both human- and machine-time.

Both IBM and FEM require an explicit handling of boundary conditions, which

leads to relatively complicated code implementations near boundaries. To eliminate

this complication, the phase-�eld method (PFM) has been introduced, in which bound-

ary conditions are substituted by a partial di�erential equation for the evolution of an

auxiliary phase-�eld [54]. Integral phase-�eld values zero and one are initially assigned

to each mesh cell, with a transition occurs near the boundary. Then these integral

values are di�used and the discrete boundary is de�ned to the collection of mesh cells

where phase-�eld values are within the neighbourhood of a certain fractional. Since the

explicit boundary conditions are eliminated, the implement of PFM can be much sim-

pler than those of IBM and FEM. However, the di�used phase-�eld values introduced

an arti�cial transition layer, which can lead to volume loss of the heart tissue and even

total disappearance of �ne structures [5]. Recently PFM is employed by Fenton et al.

for the simulation of electrical scroll wave propagation in anatomically realistic rabbit

ventricular models.

Another numerical method widely used in electrocardiac simulations is the �nite

volume method (FVM). In this method, the complex geometry of heart tissue is em-

bedded in a Cartesian grid, where control volumes are de�ned as the intersections of

Cartesian mesh cells and the tissue region. For each control volume, the divergence the-

orem is applied, which transform volume integrals into surface integrals. FVM has been

successfully applied to the studies of extracellular potential distributions [83], cardiac

ischaemia modelling [51], discontinuous electrical activations [102], etc. Unlike PFM,

the domain boundaries are resolved accurately by the introduction of cut-cells, which

makes it especially attracting when �ne anatomical structures are involved. However,

the extra accuracy does not come for free, since the handling of boundary conditions is
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more complicated than for PFM. It is worth noting, the embedded boundary method

(EBM) employed in this thesis is a modi�cation of the original FVM. While the origi-

nal FVM de�nes unknown variables at the centroids of control volumes, EBM always

de�nes the unknowns at the centers of regular Cartesian cells [50]. The details of EBM

will be elaborated in the following chapters.

1.3 Dissertation Organization

Chapter 1 gives a brief overview of the di�erent mathematical models in elec-

trocardiaology and motivated the development of our new sharp boundary numerical

method for simulating the action potential propagation in the cardiac tissue.

Chapter 2 presents the governing equations in the bidomain and monodomain

model of electrocardiology and discusses the relations between this two commonly

adopted models.

Chapter 3 introduces the expended embedded boundary (EBM) method. The

treatment of the expended EBM follows ideas of [71, 108]. We present what appears to

be a new feature for this method, the solution with anisotropic di�usion. Our solution

is shown to be second-order accurate in the L∞ (as well as the L1) norm. Use of

the L∞ norm for convergence analysis means that the order of accuracy is maintained

uniformly up to the boundary.

Chapter 4 is devoted to the veri�cation of our method. We show the second-order

convergence of the solution for the Poisson equation in a 3D sperical domain. And

code comparison are made with the previously veri�ed and validated phase �eld code

[30].
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Chapter 5 illustrated some of the applications of the new method in electrocardiac

simulations. we illustrate the resolution of the method by showing the �ow of electrical

signals around small blood vessels, and for the bidomain model, the enhanced coupling

between the two voltage systems that results. We illustrate the use of our code to

determine (a) the smallest blood vessels relevant to de�brillation and (b) the coarsest

grid to be used to study such small blood vessels. Depending on the purpose of the

simulation and of the resulting accuracy required, the grid resolution needed will be

determined. A detailed analysis of this nature is out of the scope of this thesis, as it

depends on details not considered here (blood vessel wall resistivity, the physiology of

small blood vessels in the heart, and the accuracy needed for the repeated simulations

which will be part of a V&V, optimization, UQ and QMU analysis with engineering

safety margins). In a separate study, the smallest relevant blood vessels have a diameter

set by the blood vessel wall resistivity, and have been estimated as 200 µm [8]. From

this fact and the present work, see especially the key Fig. 5.4, we require about 4 cells

across the blood vessel. Thus we see that the maximum useful mesh size is about 200/4

= 50 µm. This is to be compared to the heart itself, with a diameter of 8 cm [88].

Chapter 6 contains our main conclusions and a discussion of some promising im-

provements and extensions.
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Chapter 2

Governing Equations

Electrocardiac physiology is described by a system of reaction-di�usion equations,

with the transmembrane ionic currents de�ning the reaction and the electric potential

equations solved as a di�usion process. Both the currents and the potentials represent

averages over a region containing many cells. The problem is complicated by

• complex, sti� and interacting reaction rates

• thin walls of the quasi-two dimensional heart chamber with small scale features

such as blood vessels or isolated regions of diseased tissue and

• strongly anisotropic di�usion, with more rapid di�usion along one dimensional

�bres nearly parallel to the heart chamber walls.

In this chapter, we make a detailed description of the bidomain and monodomain

models and show their relationship with each other. Then we discuss di�erent types

of ionic current models, which are necessary components in both the bidomain and
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monodomain models. Through comparison with other ionic current models, we show

that the Fenton-Karma (FK) model is both very e�cient and accurate. As a result,

we used the FK model in all the subsequent simulations of this thesis.

2.1 Bidomain Model

As reviewed in Chapter 1, there are two main categories of mathematical models

describing the action potential propagation in the cardiac tissue: discrete models and

continuous models. Although the restriction of computational resources in the earlier

times made the discrete models more popular, with the recent fast development of high

performence computing clusters (HPCC) [55], the continuous models have become the

stardard choice of the electrocardiologicl community, for their allowance of contiuously

varying myocyte states.

To the date, the most complete and widely adopted continous model of electrical

activities within the heart is the bidomain model. In this model, the unequal anisotropy

ratios of the intracellular and extracellular spaces are expressed explicitly, which better

re�ects the fact, compared with the simplistic monodomain model (discussed in the

next section), that myocetes are embedded in a complex network of gap junctions, body

�uid and �ne capillaries, etc. As the de�brillatoins voltage is deposited in the extra-

cellular tissue, but its bene�cial e�ect occurs within the cellular tissue, the bidomain

model, which couples the two is needed for de�brillation studies.
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2.1.1 Model Equations

In the most general case, the bidomain model describes the distribution of elec-

trical potential in a domain Ω, which consists of the heart tissue region , and the

surrounding tissue region T = Ω\H. It is assumed that H is a syncytium composed of

overlapping intracellular and extracellular spaces, which are coupled with each other

by transmembrane current �ows [16]. To make the following discussions more clear,

we introduce some notations here. We use φi and φe to denote the intracellular and

extracellular potentials, respectively. And the electric potential in the surrounding tis-

sue T is denoted by φt. Besides, Cm denotes the membrane capacity and χ denotes the

surface to volume ratio of the cardiac myocytes.

Di, De and Dt are de�ned as the anisotropic conductivity tensors in the intracel-

lular, extracellular, and surrounding tissue regions, respectively. The elements of Di

and De are determined by the local myocardial �bre orientation [31],

D∗ = β⊥∗ I +
(
β‖∗ − β⊥∗

)
ffT , (2.1)

where β‖∗ and β⊥∗ (*=i, e), are the conductivities longitudinal and transversal to the

�bre, which is parallel to a unit vector f . As in [24], we assume Dt to be an isotropic

tensor,

Dt = βtI, (2.2)

where βt is the scalar conductivity in T.

By Ohm's law, we get the current densities Ji and Je in the intracellular and

extracellular spaces, respectively:
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Ji = −Di∇φi, (2.3)

Je = −De∇φe. (2.4)

By assuming only membrane related sources in the intracellular and extracellular

spaces, the law of the conservation of electric charges leads to the following divergence

forms:

∇ · Ji = −Im, (2.5)

∇ · Je = Im, (2.6)

where Im is the transmembrane current term, which assumes the following form

Im = χ

(
Cm

∂φ

∂t
+ Iion (φ,y)

)
. (2.7)

In Eq. 2.7, φ = φi−φe is the transmembrane voltage, and Iion (φ,y) corresponds to

the ionic current component, which is determined by φ and the vector of gate variables

y controlling the ionic current chanels in the membrane. It is worth noting that there

are a lot of di�erent of models describing the dynamics of the gate variable y, which

are systems of ordinary di�erential equations (ODE) as followng,

∂y

∂t
= g (φ,y) . (2.8)
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These ODE models varies greatly in their complexity, from the simplest FitzHugh-

Nagumo model [79] with only two gate variables, to the very complex Iyer-Mazhari-

Winslow model [104] with as many as 67 variables. In this thesis, we will adopt the

Fenton-Karma (FK) model, which is both computationally e�cient and �exible enough

to match the results from more complex models and experiments. In the FK model

Iion (φ,y) = Ifi (φ, v) + Iso (φ) + Isi (φ,w) , (2.9)

∂v

∂t
= H (φc − φ) (1− v) /τ−v (φ)−H (φ− φc) v/τ+

v , (2.10)

∂w

∂t
= H (φc − φ) (1− w) /τ−w −H (φ− φc)w/τ+

w , (2.11)

Ifi (φ, v) = − v
τd
H (φ− φc) (1− φ) (φ− φc) , (2.12)

Iso (φ) =
φ

τo
H (φc − φ) +

1

τr
H (φ− φc) , (2.13)

Isi (φ,w) = − w

2τsi

(
1 + tanh

[
k
(
φ− φsi

c

)])
, (2.14)

where Ifi, Iso and Isi denote the fast-inward, slow-outward, and slow-inward ionic

currents respectively, y = (v, w) is the vector of gate variables controlling the fast- and

slow-inward components, and H is the standard Heaviside step function. A detailed

discussion of the FK model and the values of parameters in it can be found in [32].
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Combining Eqs. 2.3, 2.5, and 2.7, we get the parabolic part of the bidomain

di�erential equations system

∇ · (Di∇ (φ+ φe)) = χ

(
Cm

∂φ

∂t
+ Iion (φ,y)

)
. (2.15)

On the other hand, adding Eq. 2.5 to Eq. 2.6 gives

∇ · (Ji + Je) = 0. (2.16)

Substitute Eqs. 2.3and 2.4 and the relation φi = φ+ φe into Eq. 2.16, we get

∇ · (Di∇φ) +∇ · ((Di +De)∇φe) = 0, (2.17)

which is one of the elliptic equations in the bidomain model. Similarly, we can

apply the conservation law of electric charges to the surrounding region T, which leads

to the other elliptic equation in the bidomain model:

∇ · (Dt∇φt) = 0. (2.18)

2.1.2 Boundary Conditions

As any other di�erential systems, the existence and uniqueness of the solution to

the bidomain model depends on the speci�cation of the proper boundary conditions.

As a convention for notations, we use ∂H to denote the boundary of the cardiac tissue,
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and ∂T to denote the exterior boundary of of the surrounding tissue (in contrast, the

interior boundary is adjacent to H). We assume the surrounding tissue is electrically

isolated from the environment, then there is no current through ∂T , which gives

Dt∇φt · n = 0, (2.19)

where n is the unit normal vector on ∂T. On the boundary of cardiac tissue ∂H,

a common assumption [4] is that there exists direct contact between the extracellular

space ofH and the surrounding tissue T, which leads to the continuation of the potential

φe = φt, (2.20)

and the current

De∇φe · n = Dt∇φt · n. (2.21)

Lastly, we assume there is an isolation between the intracellular space of H and

the surrounding tissue T, which leads to

Di∇φi · n = 0,

which is equivalent to

Di∇φ · n +Di∇φe · n = 0. (2.22)
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For convenience considerations, we collect all the di�erentail equations (Eqs. 2.8,

2.15, 2.17, 2.18) and the boundary conditions (Eqs. 2.19, 2.20, 2.21, 2.22) of the

bidomain model, and list here

∇ · (Di∇φ) +∇ · (Di∇φe) = χ
(
Cm

∂φ
∂t

+ Iion (φ,y)
)

x ∈ H, (2.23)

∇ · (Di∇φ) +∇ · ((Di +De)∇φe) = 0 x ∈ H, (2.24)

∂y
∂t

= g (φ,y) x ∈ H, (2.25)

∇ · (Dt∇φt) = 0 x ∈ T, (2.26)

φe − φt = 0 x ∈ ∂H, (2.27)

De∇φe · n−Dt∇φt · n = 0 x ∈ ∂H, (2.28)

Di∇φ · n +Di∇φe · n = 0 x ∈ ∂H, (2.29)

Dt∇φt · n = 0 x ∈ ∂T, (2.30)

to which we will apply our extended embedded boundary method for numerical

simulations.

2.2 Monodomain Model

Although the bidomain is the most complete description of the electrical phe-

nomena occuring within the cardiac tissue, it is di�cult to design both e�cient and

accurate numerical schemes for it. However, if we assume there is no injection of cur-

rent into the extracellular space, it can be simpli�ed to the monodomain model, which

can genenrate highly accuracy approximations to the original bidomain model [90]. In
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contrast to the bidomain model, the monodomain model only involves a single PDE,

which is numerically more tractable.

The key simplifying assumption is that the ansiotropy of the intracellular space is

the same as that of the extracellular space, which is equivalent to the statement that

the intracellular di�usion tensor Di is proportional to the extracellular di�usion tensor

De,

Di = αDe. (2.31)

Substitute Eq. 2.31 into Eqs. 2.23, 2.24, we get

∇ ·
(

1

1 + α
Di∇φ

)
= χ

(
Cm

∂φ

∂t
+ Iion (φ,y)

)
.

By de�ning D = Di

(1+α)χCm
, the above equation is simpli�ed into

∂φ

∂t
= ∇ · (D∇φ)− ∇ · (Di∇φ)

Cm
, (2.32)

which is the common form of the monodomain equation. It should be emphasized

that the solution domain of the monodomain model only includes the cardiac tissue

region H, so we only need to specify the boundary condition on ∂H. Following the

convention in most cardiological literatures, we assume the heart tissue is electrically

isolated from the environment, which leads to the non-�ux boundary condition

D∇φ · n = 0. (2.33)

19



Chapter 3

Numerical Methods

3.1 Overview of Numerical Methods

The goal of the present work is to resolve small features within the di�usion

equation on computationally feasible grids. At issue is the number of grid cells needed

to obtain convergence relative to the �ne scale feature size. Additionally, the sharp

boundaries (of the heart tissue or of the feature) are a numerical issue, so that localized

convergence near the heart boundary or near a feature is an important issue.

We mention commonly used methods for the solution of the di�usion equation,

but a full comparison of these methods is out of the scope of the present paper.

3.1.1 Ghost Cell Method

Ghost Cell (GC) [17, 56]. The ghost cell method was originally developed

to solve �uid dynamics problems where internal boundaries play an important role
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[42]. This method has been adopted extensively for its great capability to track dis-

continuities as sharp internal boundaries and conserve the conserved quantities at a

discrete level [42]. This method has been used to implement highly accurate boundary

conditions for both body-�tted grids and Cartesian grids [20].

The underlying idea of the ghost cell method is very straightforward. Missing

data points near a domain boundary for a �nite di�erence stencil used to solve the

di�erential equation are added by extrapolation from interior points along coordinate

directions, even ambiguously if needed in higher dimensions near concave boundary

segments. In e�ect, this plan is equivalent (or nearly so) to a stair step interface,

located at the cell edges that mark a transition from a cell center which lies in the

domain to a cell center outside of the domain.

Compared with body-�tted grid computations, e.g., the �nite element method,

the ghost cell method doesn't incur the costly grid-generation expenses. And it has

been shown in simulations of compressible �ow about circular cylinders and airfoil

applications [21], that the ghost cell method can achieve the same high accuracy as

more complex body-�tted method. However, most of the traditional implementations

of the ghost cell method su�ers from the shortcoming that grid clustering near the

body must be maintained to the far-�eld boundary [82]. To overcome this problem,

a type of local mesh re�nement [26] has been proposed for resolving the vicinity of

boundaries in structured grids.

The original reference is �rst order [42], but extensions to second order accuracy

have been given [40].
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3.1.2 Phase Field Method

Phase Field (PF) [31]. The phase �eld method has been applied to a wide

range of problems including thermodynamics [84], material solidi�cation [54], melt

convection [5], and intracellular dynamics [59]. As with the level set method [78],

the main advantage of the phase �eld method is its avoidance of the explicit track of

interfaces.

An additional equation (the phase �eld) interpolates between the inside and the

outside, with a di�usive interface connecting these two regions. The width of the

interface zone depends on the particular choice of the phase �eld function, and the

typical value is �ve cells [31]. This method is only �rst order accurate, which means

a relatively high computational overhead when simulations with �ne resolution are

performed. In [10] the phase �eld width is reduced to zero in a mathematical limit,

leading to a thin or thinner interface transition region. The method appears to be

�rst order accurate (when a sharp interface is speci�ed as input), but the order of

convergence has not been documented.

It is worth noting that the phase �eld method has been applied by Fenton et al.

[31] to the simulations of electrical wave propagation in cardiac tissue with none trivial

geometries. As a way to verify the correctness of our new sharp boundary embedded

boundary method, we perform a comparison study in Chap 4 with the phase �eld

method, where the transmembrane potential (V ) and the conduction velocity (CV )

are simulated using both method. The �nal results shows V and CV converges to the

common asymptotic values with mesh re�nement for both method.

22



3.1.3 Immersed Boundary Method

Immersed Boundary Method (IBM) [86, 73]. The immersed boundary

method was �rst developed by Peskin [85] for the simulation of cardiac mechanics and

associated blood �ow. Later numerous variations of the original immersed bound-

ary method have been proposed and applied to the simulations of inviscid �ows with

complex immersed boundaries [2] and unsteady viscous �ows [105].

The underlying idea of the immersed boundary method is similar to that of the

phase �eld method, which is the avoidance of the creation of structured or unstructured

grids that conform to the body. In traditional �nite volume or �nite element method,

a two step process is needed for the generation of structured or unstructured grids. In

the �rst step, a surface grid covering the boundaries is generated. Then the surface

grid is adopted as the boundary condition for the generation of the body grid for the

volume enclosed by the surface. Once the grid is generated, the transformation to

a curvilinear coordinate system is introduced, and the original PDE systems can be

solved using the conventional �nite di�erence method. However, in many situations,

the cost for generating �ne quality surface and volume grids is very high, which greatly

decrease the e�ciency and applicability of the traditional method.

On the contrary, the task of grid generation in the immersed boundary method

is greatly simpli�ed. This is especially true for the simulations of �ows with moving

boundaries, in which the traditional methods need to generate a body-conformal grid

for every time step [80]. In contrast, in the immersed boundary method, the Heaviside

function associated with the boundary is replaced with a numerically spread Heaviside

function. Only one Cartesian grid is generated for the whole simulation. However,

the complexity reduction comes with the expense of a more complex treatment of the
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boundary conditions. This feature is typical for Cartesian type methods, such as the

embedded boundary method, which is discussed in subsequent sections. In general, the

interface width of the immersed boundary method is several cells wide, with the width

depending on the size of the jump in the coe�cients. The method and its accuracy is

well documented. It is �rst order accurate.

3.1.4 Finite Element Method

Finite Elements [91]. Arguably the �nite element method is the most popular

method used in both industrial and academic investigations where domains with com-

plex geometries are involved. It has been successfully used in a vast range of practical

projects including thermodynamics [60], solid mechanics [44], aerodynamics [37], elec-

tromagnetism [39], environment protection [72], and nanotechnology [89]. The widely

acceptance of the �nite elements comes from its solid mathematical foundation, ex-

treme versatile applicability, and relatively straight underlying ideas. Moreover, the

great availability of the �nite element implementations in commercial and open source

libraries has made it particularly popular in the simulation of the behaviours of complex

physical systems, and the design phase of large engineering projects [22].

The method requires a body-�tting grid adapted to complex problem features.

The whole problem domain is subdivided into simpler parts, which is called �nite ele-

ments. Then the solution of the partial di�erential equations describing the underlying

mechanics of the physical or engineering system will be transformed to a collection of

variational problems, the minimal solutions of which are solved on each �nite element.

The combination of these solutions will give an approximation to the original problem

to an order of accuracy determined by the speci�cation of the simulation task and
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the computational resources available. It should be pointed out that, the generation

of the �nite elements and the process of combining numerical solutions on each �nite

element to construct global approximation demands a lot of computational e�orts, in

the since of both developing time and computational time [99], which is in contrast

to the methods where a body-�tting mesh is not necessary, such as, the phase �led

method, immersed boundary method, and the embedded boundary method.

3.1.5 Immersed Interface Method

Immersed Interface Method (IIM) [65]. The immersed interface method was

originally proposed to numerically solve �ow problems where the interaction between

the �ow and moving boundaries play an important role in the underlying mechanics

[61]. The main motivation for the invention of the immersed interface method is sim-

ilar to those of the other Cartesian grid methods, such as, the immersed boundary

method and the embedded boundary method, which is to avoid the cost of constantly

reconstruct body-�tting grid for moving boundary problems.

To clearly explain the idea underlying the immersed interface method, we need to

have a better understanding of the aforementioned immersed boundary method [85].

In the original immersed boundary method, the boundary of the immersed object is

treated as a collection of Lagrangian particles, the con�guration of which determines

the distribution of the force resulted by the existence of the object on the immersing

�uid. These Lagrangian boundary is immersed in a Cartesian grid representing the

�uid, and a Dirac delta function is introduced to approximate the interaction between

the boundary and the �uid. The coupling between the immersed boundary and the �uid

�eld is through the spreading of the singular fore, represented by the Dirac function,
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from the Lagrangian boundary to the Cartesian mesh, and the feedback of the �uid

velocity in the other way around [111]. The adoption of the Dirac function successfully

removes the singularity in the partial di�erential equations and the underlying �uid

�eld, which greatly simpli�es the formulation of the numerical schemes. However,

the simplicity doesn't come without any cost, one major shortcoming of the immersed

boundary method is the introduction of an arti�cial thickness resulted by the utilization

of discrete Dirac functions. As a result, lots of e�ort has been devoted to �nd optimal

discrete Dirac functions with a narrow support [87].

The major shortcoming of the original immersed boundary method is that it is

only �rst order accuracy [85]. To overcome this shortcoming the immersed interface

method was proposed by LeVeque and Li [64]. The most important di�erence between

this method and the immersed boundary method is that, the new method explicitly

incorporates the jump condition resulted from the existence of the Dirac function into

the �nite di�erence method [63]. The elimination of the requirement that the Dirac

function to be approximated by a smooth function, which leads to sharp immersed

boundaries and overall second order accuracy. One prominent advantage of the im-

mersed interface method over the immersed boundary method is that, when all the

necessary jump conditions are known, the sharpness of the boundary computed by the

method doesn't depend on the grid resolution, which means second or even higher or-

der accuracy can be achieved [111]. Another advantage is that the immersed interface

method conserves the volume enclosed by the immersed boundary very well, which

makes it attractive to model conservation laws.

However, the high order immersed interface method requires the derivation of

necessary jump conditions across the boundary, a process which is not at all straight

forward or intuitive. The resulting implementation is sometimes complicated and the
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the addition of additional degrees of freedom within the cut cells will also increase the

computing overhead [61].

3.1.6 Embedded Boundary Method

Embedded Boundary Method (EBM) [71, 108]. The embedded boundary

method is also a Cartesian grid method. It is originally developed to solve single

component Poisson [50] and heat equations [71] in 2D domain with complex geometries,

and has been extended to handle problems in 3D domains [94] and with multiple

components [106]. The method is able to achieve second order convergence and doesn't

require the speci�cation of complicated geometries as the immersed interface method.

In essence, the embedded boundary method is a type of �nite volume method, so the

high order �ux integration over boundary faces in cut cells plays an important role in

the overall accuracy of the method.

It is worth noting that the original embedded boundary method is only able to han-

dle elliptic operators with isotropic di�usion tensor, which is a too strong requirement

for modelling the electrocardiac phenomena, where the existence of �bre orientations,

inter-cellular junctions and sick tissues [95] all contribute do the anisotropic proper-

ties of the cardiac tissue. To overcome this shortcoming, here we present an extended

sharp boundary embedded boundary method, which is speci�cally designed to handle

anisotropic elliptic operators. It has second order convergence in L∞ (uniformly up to

the boundary), so that boundary region anomalies will not occur in the solution. And

the details of the new algorithm is given in the following section.
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3.2 Embeded Boundary Method

On the basis of the above survey, the EBM (and possibly also IIM) appear to be

the most suitable for high resolution of �ne detailed features in the heart geometry,

with blood vessels and/or defective tissues de�ning the �ne scale structures.

We use the EBM to discretise the parabolic subsystem of the FK model. Originally

proposed by Colella et al. [50, 71, 94], the EBM method maintains sharp boundaries

and interfaces in geometrically complex domains [93, 108]. It is locally conservative and

robust in marginally resolved calculations [94]. The EBM has recently been extended

to solve the elliptic interface problem [19, 93, 108] and the two-phase incompressible

�ow problem [107].

EBM is a �nite di�erence method, which treats cut cells (grid cells partly inside

the cardiac tissue and partly outside) in a manner di�erently from the regular, non-cut

cells. The computational domain is thus discretized as a collection of control volumes

formed by the intersection of the domain with rectangular Cartesian grid cells. Whether

a cell center is inside or outside of the domain, the corresponding primary unknowns

are always cell-centered.

To achieve accurate solutions of the voltage equation, additional degrees of freedom

are needed for the cut cells. It is necessary to capture the crossings of the cardiac

anatomy with the underlying Cartesian grids to apply the EBM. This geometrical

information is readily available in most state-of-art mesh generation tools and we adopt

the FronTier library [41]. The di�usion process in a cut cell has zero values in the

outside portion of the cut cell and "normal" values in the interior portion of the cut

cell. Thus the tensor di�usivities de�ned in the interior region must be supplemented

by information on the size of the interior and exterior portions of the cut cell. With
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tensor, as opposed to scalar di�usivities, directives of the voltage in x-, y-, and z-

direction, instead of only the derivative normal to the tissue boundary, are involved in

the calculation of boundary �ux.

The result, as analysed in [71] is a second order accurate method in the L∞

norm, meaning that anomalous boundary signals will not occur in the method. This

result is established for a scalar di�usion matrix only, and the cited reference explains

the method in this case only. Accordingly, we detail here the discretization and the

modi�cations needed for a tensor di�usivity, and document in Chap. 4 convergence

rates for this case, a new contribution of the present paper. The algorithm is organized

in a manner that allows formulation for an arbitrary order of accuracy.

To solve the non-linear system of equations in the bi-domain model numerically,

we adopt the operator splitting scheme proposed by Dos Santos et al [24]. In this

discretization, each time step consists of the solution of three sub-problems, i.e., a

parabolic PDE, a system of non-linear ODEs, and a system of elliptic PDEs. The

second order Crank-Nicolson method and �rst order forward-Euler method are used to

solve the parabolic PDE and the system of non-linear ODEs respectively, which leads

to the following semi-discrete system:

1.

(
1− ∆t

2
Li

)
ϕn+1/2 =

(
1 +

∆t

2
Li

)
ϕn + ∆t Li ϕ

n
e , (3.1)

2. ϕn+1 = ϕn+1/2 −∆t Iion

(
ϕn+1/2, yn

)
/ (χCm) , (3.2)

yn+1 = yn + ∆t g
(
ϕn+1/2, yn

)
, (3.3)

3. (Li + Le)ϕ
n+1
e = −Li ϕn+1, (3.4)

Lt ϕ
n+1
t = 0, (3.5)
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where Li, Le and Lt denote the operators ∇ · (Di∇) / (χCm), ∇ · (De∇) / (χCm),

and ∇ · (Dt∇); ϕn+1, ϕn+1
e , ϕn+1

t , and yn are discretizations of φ, φe, φt, and y at time

step n. The von Neumann analysis in [50] shows the above scheme is unconditionally

stable.

The EBM method is applied to solve the parabolic PDE (3.1) and the system of

elliptic PDEs (3.4, 3.5) in the above semi-discrete system. To give a clear explanation

of the EBM method, it is necessary to make a mathematically unambiguous description

of the spatial discretization of the solution domain. We will follow the notations given

by Schwartz et al. [94], describing the discretizaiton of a general irregular domain

Ω embedded in a Cartesian grid. The Cartesian grid consists of rectangular cuboids

Γi = [ih, (i + u)h], i ∈ Z3, where u is the vector with all entries equal to one, h is the

mesh spacing. We de�ne control volumes Vi = Γi ∩Ω and face elements Ai± 1
2
ed
, which

is the intersection of ∂Vi with the coordinate planes
{
x : xd =

(
id ± 1

2

)
h
}
. Here es is

the unit vector in the s-direction. Similarly we de�ne the boundary elements ABi to be

∂Ω∩Γi. Then we have the following decomposition of the surfaces of control volumes:

∂Vi =

(
d⋃
s=1

Ai± 1
2
es

)⋃
ABi .

With the above de�nitions of the basic geometric objects, several real-valued quan-

tities necessary for the EBM discretization can be introduced.

• Dimensionless area: volume fractions κi = |Vi|h−d, face apertures αi± 1
2
es

=∣∣∣Ai± 1
2
es

∣∣∣h−(d−1), and boundary apertures αBi =
∣∣ABi ∣∣h−(d−1).

• Centroids and average outward normals to the boundary
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xi =
1

|Vi|

∫
Vi

x dV,

xi± 1
2
es

=
1∣∣∣Ai± 1
2
es

∣∣∣
∫
A

i± 1
2es

x dA,

xBi =
1

|ABi |

∫
AB

i

x dA,

ni
B =

1

|ABi |

∫
AB

i

n dA,

where nB is the outward normal to ∂Ω. To achieve second or higher order ac-

curate numerical method, a way to approximate the above geometric quantities is

needed. Here we employ the marching tetrahedra method [101], a widely used algo-

rithm in computer graphics for generating implicit surfaces, which clari�es eliminate

some ambiguity problems of the well known marching cubes algorithm [67]. To avoid

disturbance to the description to the main algorithm, the details of using the marching

tetrahedra method to calculate the aforementioned geometric quantities is deferred to

Sec.

Since the EBM method discussed here can be used to solve a variety of elliptic and

parabolic PDEs, we will illustrate the detailed scheme in a more general way than the

speci�c application for the bi-domain model. The main innovation of the new scheme

is in the discretization of the �ux through surfaces of each control volume. We apply

the EBM method to the Poisson equation with the Dirichlet boundary condition
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∇ ·D∇ψ = ρ, in Ω (3.6)

D∇ψ = gd (x) , on ∂Ω (3.7)

where D is an anisotropic di�usion tensor. Brief discussions indicating the con-

struction of high order schemes to parabolic equations and Neumann boundary condi-

tions will be given later.

In the EBM method, we average Eq. (3.6) over each control volume Γi, and use the

divergence theorem to transform the volume integrals into integrals over the boundary

∂Γi

∫
Vi

ρ dV =
∑
±=+,−

d∑
s=1

∫
A

i± 1
2es

~F · n dA+

∫
AB

i

~F · n dA, (3.8)

where the �ux term ~F = D∇ψ. As in [18], we de�ne the notation 〈·〉S as the

average of a quantity over the domain S (2D or 3D), then Eq. (3.8) can be rewritten

as

〈ρ〉i =
1

κih

(∑
±

∑
s

αi± 1
2
es

〈
~F · n

〉
i± 1

2
es

+ αBi

〈
~F · n

〉
i,B

)
, (3.9)

where the further notation simpli�cations 〈·〉i = 〈·〉Vi , 〈·〉i± 1
2
es

= 〈·〉A
i± 1

2es

, and

〈·〉i,B = 〈·〉AB
i
are introduced. A variety of high order schemes can be introduced by

applying appropriate quadrature rules to the calculation of average values in Eq. (3.9).

At a �rst glance, a nth order quadrature rule over Vi and (n+ 1)th order quadrature
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rules over Ai± 1
2
es

and ABi are necessary for the construction of nth order accurate

�nite volume schemes for Eq. (3.9). However, a modi�ed equation analysis as in [50]

shows that approximating
〈
~F · n

〉
i± 1

2
es
and

〈
~F · n

〉
i,B

to the nth order of accuracy is

su�cient to make the solution errors nth order convergent. For high order quadrature

rules on irregular domains the reader can refer to [62, 112].

In the remaining part of the paper, we will focus on a 2nd order discretization of

Eq. (3.9), which requires us to approximate both
〈
~F · n

〉
i± 1

2
es

and
〈
~F · n

〉
i,B

to the

2nd order. It is easy to verify that

〈
~F · n

〉
i± 1

2
es

= D
(
xi± 1

2
es

)
∇ψ

(
xi± 1

2
es

)
· es +O

(
h2
)
, (3.10)

〈
~F · n

〉
i,B

= D
(
xBi
)
∇ψ

(
xBi
)
· ni

B +O
(
h2
)
. (3.11)

Since we assume the geometric quantities xi± 1
2
es
, xBi , and ni

B are accurate to

O (h2), second-order approximations to the gradient ∇ψ at the centroids xi± 1
2
es

and

xBi su�ces to make the whole scheme O (h2) accurate.

3.3 The Gradient Approximation at A Face Centroid

We de�ne the discrete variable φ, φi ≈ ψ
((
i + 1

2
u
)
h
)
. Then the gradient at the

face centroids ∇ψ
(
xi± 1

2
es

)
can be approximated by linear combinations of φi and the

boundary values. At any given face Ai± 1
2
es
, two types of approximations of ψ's partial

derivatives need to be constructed: φ′
i± 1

2
es
≈ dψ

des

(
xi± 1

2
es

)
, the derivative along the

axis normal to the face; and φ′
i± 1

2
es′
≈ dψ

des′

(
xi± 1

2
es′

)
, s′ 6= s, the derivatives along axes

parallel to the face. We detail the numerical schemes used in each case.
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3.3.1 Normal Derivative Approximation

In this case, we will follow the bilinear interpolation method in [94]. Firstly,

centered di�erences in the normal direction are calculated at the centers of four faces

including the face Ai± 1
2
es
. Then iterated linear interpolations in the two axis-directions

parallel to Ai± 1
2
es

are performed to get an O (h2) accurate derivative value at the face

centroid. It should be emphasized that by �face center�, we refer to the center of the

full rectangular face, which does not necessarily coincide with the face centroid xi± 1
2
es

calculated by quadrature rules.

As a concrete example, we consider the face Ai+ 1
2
e3

with outward normal e3 as

shown in Fig 3.1, where pk (k = 1 . . . 4) are the face centers, and p is the face centroid.

To simplify the formulas, we introduce the following notation

φi
(l,m,n) = φi+le1+me2+ne3 . (3.12)

Then we de�ne φpk
z as the centered di�erence in the direction of e3 at the face

center pk, i.e.

φp1
z =

φi
(0,0,1) − φi

(0,0,0)

h
, φp2

z =
φi

(1,0,1) − φi
(1,0,0)

h
, (3.13)

φp3
z =

φi
(1,1,1) − φi

(1,1,0)

h
, φp4

z =
φi

(0,1,1) − φi
(0,1,0)

h
. (3.14)

Lastly, we perform the bilinear interpolation
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Figure 3.1: Stencil for the approximation of the normal derivative at the face centroid.
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φp
z =

4∑
k=1

λkzφ
pk
z , (3.15)

where the interpolation coe�cients are

λ1
z =

(x− x2) (y − y2)

(x1 − x2) (y1 − y2)
, λ2

z =
(x− x1) (y − y2)

(x2 − x1) (y1 − y2)
, (3.16)

λ3
z =

(x− x1) (y − y1)

(x2 − x1) (y2 − y1)
, λ4

z =
(x− x2) (y − y1)

(x1 − x2) (y2 − y1)
. (3.17)

3.3.2 Parallel Derivative Approximation

In this case, we start by calculating centered averages in the normal direction

at the centers of nine faces including face Ai± 1
2
es
. Then we perform the bi-quadratic

interpolation with the average values to get a quadratic polynomial in two variables.

Finally, we calculate the partial derivatives of that polynomial and get their values

at the face centroid xi± 1
2
es
. Since the centered average is accurate to O (h2), and the

biquadratic interpolation is accurate to O (h3), the aforementioned scheme results in

parallel derivative approximations accurate to O (h2).

Similar to the situation in Fig 3.1, we consider the example of a face Ai+ 1
2
e3

with

outward normal e3 as shown in Fig 3.2. As before, pk (k = 1 . . . 9) and p are face

centres and the face centroid, respectively. We �ne φ̄pk as the centered average at the

face center pk, i.e.,
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Figure 3.2: Stencil for the approximations of the parallel derivatives at the face centroid.
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φ̄p1 =
φi

(0,0,1) + φi
(0,0,0)

2
, φ̄p2 =

φi
(1,0,1) + φi

(1,0,0)

2
, φ̄p3 =

φi
(2,0,1) + φi

(2,0,0)

2
, (3.18)

φ̄p4 =
φi

(0,1,1) + φi
(0,1,0)

2
, φ̄p5 =

φi
(1,1,1) + φi

(1,1,0)

2
, φ̄p6 =

φi
(2,1,1) + φi

(2,1,0)

2
, (3.19)

φ̄p7 =
φi

(0,2,1) + φi
(0,2,0)

2
, φ̄p8 =

φi
(1,2,1) + φi

(1,2,0)

2
, φ̄p9 =

φi
(2,2,1) + φi

(2,2,0)

2
. (3.20)

By �tting the data φ̄pk (k = 1 . . . 9) with a biquadratic polynomial and calculating

its x-directional derivatives at p, we get

φp
x =

9∑
k=1

λkxφ
pk
x , (3.21)

with combination coe�cients

λ1
x = α1β1, λ

2
x = α2β1, λ

3
x = α3β1, (3.22)

λ4
x = α1β2, λ

5
x = α2β2, λ

6
x = α3β2, (3.23)

λ7
x = α1β3, λ

8
x = α2β3, λ

9
x = α3β3, (3.24)
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where

α1 =
(2x− x2 − x3)

(x1 − x2) (x1 − x3)
, α2 =

(2x− x1 − x3)

(x2 − x1) (x2 − x3)
, α3 =

(2x− x1 − x2)

(x3 − x1) (x3 − x2)
,

β1 =
(y − y2) (y − y3)

(y1 − y2) (y1 − y3)
, β2 =

(y − y1) (y − y3)

(y2 − y1) (y2 − y3)
, β3 =

(y − y1) (y − y2)

(y3 − y1) (y3 − y2)
.

Similarly, we can construct interpolation φp
y . Both φp

x and φp
y are accurate to

O (h2).

3.4 Boundary Conditions

In this section, we discuss the di�erentiation of the Dirichlet boundary condition

(3.7). Our method is a generalization of the approach proposed by Schwartz et al. [94].

As shown in Fig 3.3 we choose a nine-cell stencil on each of the two planes P1 and P2,

both perpendicular to es, where s is given by

{
s :
∣∣nB
s

∣∣ ≥ ∣∣nB
k

∣∣ , k = 1, 2, 3
}
. (3.25)

In other words, es is the axis-direction closest to the boundary normal nB; xB is

the centroid of the partial boundary included in the cell; p and q are the intersection

points of es with planes P1 and P2, respectively. Then we de�ne the distances from

xB to the intersection points: d1 = ‖xB − p‖ and d2 = ‖xB − q‖.
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Figure 3.3: Stencil for the approximation of the derivatives at the boundary centroid.
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As mentioned before, we need to approximate the gradient ∇φB =
(
φB
x , φ

B
y , φ

B
z ,
)

at the partial boundary centroid xB to O (h2) accuracy. To simplify the following

discussion, we assume es = e1. Then the approximation of φB
x is di�erent from those

of φB
y and φB

z . For the calculation of φB
x , we �rst use biquadratic interpolation to

calculate φ̄p and φ̄q, which are O (h3) accurate approximations to ψ (p) and ψ (q).

The value of φ̄p is a linear combination of the nine cell center values on plane P1, and

φ̄q is calculated analogously with values on P2. Then we combine the boundary value

φB determined by the Dirichlet condition with the intersection values φ̄p and φ̄q using

the scheme given in [94] to construct

φB
x =

1

d2 − d1

(
d2

d1

(
φB − φ̄p

)
− d1

d2

(
φB − φ̄q

))
. (3.26)

To construct φB
y , we start by using the interpolation method in Eq. (3.21) to get

O (h2) accurate approximations φp
y and φ

q
y with the nine cell center values on P1and P2,

respectively. Then φB
y can be constructed by applying the following linear extrapolation

to φp
y and φq

y :

φB
y =

1

d2 − d1

(
d2φ

p
y − d1φ

q
y

)
. (3.27)

The same idea can be applied to the calculation of φB
z .
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3.5 Calculation of Geometric Quantities Using March-

ing Tetrahedra Method

To approximate the basic geometric quantities κi, αi± 1
2
es
, αBi , xi, xi± 1

2
es
, xBi , and

ni
B with high accuracy, we employ the marching tetrahedra method, a widely used

algorithm in computer graphics.

The underlying construction of the marching tetrahedra method is consistent with

that of the embedded boundary method, in which the solution domains with complex

geometries are embedded in a Cartesian grid. At the beginning stage, we calculate the

signed distance of each node in the Cartesian grid to the embedded surface, which will

be used in the following interpolations. In our case of cardiac simulations, the input

data are 3D MRI photographs consisting of binary values for each pixel. A value of one

means the position corresponding to that pixel locates inside the cardiac tissue, and a

zero value means outside of the tissue [68]. Based on this binary values, the breadth-

�rst search (BFS) algorithm [58] can be applied to calculate the signed distance to the

embedded boundary for each Cartesian node.

Besides the requiring the signed distance to be available for each Cartesian nodes,

the application of the marching tetrahedra algorithm also necessitate the division of

each Cartesian cuboid into six tetrahedra. As shown in Fig. 3.4, each cuboid is cut in

half three times. For each of the three pairs of opposite faces, we cut through them

along a common diagonal direction. It is easy to see that all six resulting tetrahedra

shares one of the main diagonals of the cuboid. As a result, we are also considering six

face diagonals and one main diagonal, in addition to the twelve edges of the cuboid, a

total of nineteen edges. Since we have the signed distances of both end points for each

one of the nineteen edges, we can apply the linear interpolation technique to locate the
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Figure 3.4: Divide each cube into six tetrahedra.
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crossing point on each edge, which intersects with the embedded boundary.

For each of the six tetrahedra in a given cuboid, there are total 16 possible con-

�gurations, which falls into three distinct categories, i.e., no intersection; one vertex

locates on a di�erent side of the embedded boundary than the other three; two pairs

of the four vertices locates on di�erent sides of the boundary, as illustrated in Fig. 3.5.

From this �gure, it is easy to notice that the parts enclosed inside the embedded bound-

ary are always tetrahedra or prisms, the centroids of faces and volume can be easily

determined. With all these centroids, we can perform area or volume averaging over

the six consisting tetrahedra to determine the aforementioned geometric quantities for

all the cut cells.

44



Figure 3.5: Di�erent con�gurations of tetrahedra cut by the embedded interface.
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Chapter 4

Veri�cation

In this section, we verify the numerical algorithm with two tests. In the �rst

test, we apply the EBM to solve the Poisson's equation with an anisotropic di�usion

tensor in a 3D spherical domain. Second-order convergence is observed by comparing

numerical to analytical solutions. In the second test, we solve the voltage equation with

both EBM and PF in a slab geometry, where nearly identical transmembrane potentials

and conduction velocities of the depolarizing wave front are observed in regions away

from the boundaries. All the test results con�rm the accuracy and correctness of the

EBM.

4.1 Poisson's Equation in 3D Spherical Domain

Since the main challenge in solving the bidomain equations is the existence of

elliptic operators with anisotropic di�usion tensors, we verify the new algorithm by

solving an anisotropic Poisson equation. Within a spherical computational domain Ω
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with center (0, 0, 0) and radius 0.5, we solve the Poisson's equation with the Dirichlet

boundary condition as:

∇ · (Dφ (x)) = f (x) x ∈ Ω, (4.1)

φ (x) = φB (x) x ∈ ∂Ω, (4.2)

where the di�usion tensor D, the right-hand side function f , and the boundary

value function φB are given as

D =
1

3


7 2 1

2 6 −2

1 −2 5

 , (4.3)

f (x) =− 76

3
sin (x) sin (2y) sin (3z)− 8 sin (x) cos (2y) cos (3z)

+ 2 cos (x) sin (2y) cos (3z) +
8

3
cos (x) cos (2y) sin (3z) . (4.4)

φB (x) = sin (x) sin (2y) sin (3z) . (4.5)

The analytical solution to the above boundary-value problem is
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φe (x) = sin (x) sin (2y) sin (3z) . (4.6)

It is worth noting that the choice of this analytical solution is solely for the purpose

of convergence order analysis, and has no direct relation to the bidomain model. We

use φi and φei to denote the numerical and corresponding exact solutions at the cell

centroid xi, and de�ne the L1, L2 and L∞ errors as:

ε1 =
∑
i

|φi − φei |h3κi, (4.7)

ε2 =

(∑
i

|φi − φei |
2 h3κi

) 1
2

, (4.8)

ε∞ = max
i
|φi − φei | , (4.9)

where h is the space step size and κi is the volume fraction. To estimate the order

of convergence, we consider mesh sizes of 16, 32, 64, and 128, denoted by grids I, II,

III, and IV, respectively. In Table 4.1, we show the orders of convergence deduced from

the three types of errors under di�erent mesh sizes. The entries from the last three

columns of Table 4.1 con�rm the second-order accuracy of the method.

4.2 Comparison of EBM and PF

We compare EBM and PF for the solution of the voltage equation in a slab ge-

ometry. The transmembrane potential (V ) and the conduction velocity (CV ) of the
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Table 4.1: Orders of convergence for three types of errors

Error Type I II III IV I / II II / III III / IV
ε1 6.13e-4 7.04e-5 1.47e-5 3.59e-6 3.12 2.26 2.03
ε2 1.03e-3 9.52e-5 1.86e-5 4.64e-6 3.44 2.36 2.00
ε∞ 1.18e-2 1.20e-3 1.39e-4 1.87e-5 3.29 3.12 2.89
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depolarizing wave front are compared in the center of the slab, away from its bound-

aries. By this measure, the two methods are nearly identical. The reason for this near

identity is that the compared statistics are not in�uenced by boundary e�ects, while

it is only in the boundary e�ects that the methods di�er.

We choose the slab region [0, 1.0]× [0, 0.5]× [0, 2.0] (cm). The direction of cardiac

�bers is chosen to be parallel to the z-axis. An initial stimulus is applied in a region

at the bottom of the slab.

Five mesh sizes are considered, starting from ∆x = 1.0 mm, with each following

mesh re�ned by a factor of 2. The starting ∆x is quite coarse compared to the typical

size of cardiac cells, which is approximately 100µm long and 10-25µm in diameter [97].

The �nest mesh is used to calculate errors in the other four cases. The di�erence for

this �ducial grid is smaller than the mesh di�erences, indicating that the two codes are

converging to a common solution.

Table. 4.2 shows the errors and order of convergence for CV . In Table. 4.3 we

present the error analysis and convergence orders based on comparison of L1 norms of

V . It is shown that both PF and EBM methods converge in �rst order. To achieve

second order accuracy in both time and space, second-order operator-splitting schemes,

e.g., Strang splitting [98], need to be applied to the bidomain equations.
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Table 4.2: CV error and convergence order comparison

Mesh Size PF Err PF Order EBB Err EBM Order PF − EBM

15× 10× 25 3.43e-02 3.51e-02 7.77e-02
30× 20× 50 1.89e-02 0.86 1.72e-02 1.03 1.71e-03
60× 40× 100 0.742e-02 1.35 0.612e-02 1.49 1.29e-03
120× 80× 200 0.151e-02 2.30 0.147e-02 2.06 3.14e-05
240× 160× 400 1.46e-06

Table 4.3: V (L1-norm) error and convergence order comparison
Mesh Size PF Err PF Order EBM Err EBM Order PF − EBM

15× 10× 25 5.19e-01 5.30e-01 7.44e-02
30× 20× 50 2.06e-01 1.34 1.86e-01 1.51 2.11e-02
60× 40× 100 0.729e-01 1.50 0.689e-01 1.43 4.09e-03
120× 80× 200 0.178e-01 2.03 0.174e-01 1.99 5.11e-04
240× 160× 400 1.08e-04
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Chapter 5

Applications

The main motivation of this work is to develop an improved numerical method

to support the study of the low-energy anti�brillation pacing (LEAP) initiative [70],

whose e�ect depends on the successful generation of virtual electrodes in the vicinities

of heterogeneities in the myocardium. As a result, the accurate resolution of small

features, e.g., blood vessels, plays an essential role in de�brillation simulations. In

this section, we �rst demonstrate the strength of our EBM method by showing the

voltage distribution on blood vessel walls during a de�brillation event. The calculation

is representative of ones needed to determine the smallest relevant blood vessels for

consideration. With the blood vessel size �xed, a systematic statistical analysis gives

suggestions on the choice of appropriate mesh resolutions for practical de�brillation

simulations on complex 3D domains. Because optimization, V&V and UQ typically

require a large number of simulations, determination of minimum mesh requirements

is important.
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Figure 5.1: Transmembrane potential (mV) in a slab before applying the de�brillation
shock.
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Figure 5.2: Cross section view of the transmembrane potential before applying the
de�brillation shock.
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5.1 De�brillation Simulation

De�brillation consists of one or more strong voltage pulses applied across the heart.

This voltage is originally applied to the extracellular space, and so the coupling of this

signal to the intracellular voltages is essential for de�brillation to succeed. The dual

voltage systems and the coupling between them is described by the bidomain model as

discussed in Chap. 5.

Our simulation domain is chosen to be a slab taken from a segment of the heart

wall, with dimensions [0, 4] × [0, 1] × [0, 2] (mm). The spatial resolution is 0.025

(mm) and the time step size is 0.01 (ms). The values of conductivities of the cardiac

tissue H and the surrounding tissue T are chosen as in [24]. Three blood vessels are

placed perpendicular to the xz-plane, with radii ranging from 50 to 500 microns, which

are typical sizes found in coronary vasculature [70, 8]. It should be emphasized that

although the two larger vessels, 40 and 16 mesh cells in diameter, respectively, can be

resolved in both PF and EBM methods, the smallest one with only 4 mesh cells in

diameter can not be captured correctly in the PF model, due to its arti�cial transition

layers.

As shown in Fig. 5.1, an initial stimulus is applied to the bottom of the slab,

resulting a depolarization wave-front propagating upwards. To assist the observation

of potential distributions in the vicinity of blood vessels, in Fig. 5.2 we show the 2D

cross section view of the same simulation as in Fig. 5.1. When the wave-front passes

the blood vessels, a de�brillation shock of strength 5 V/cm in the x-direction is applied

to the slab. Shortly after the de�brillation shock, as illustrated in Fig. 5.3, voltage

drops are observed across all three blood vessels. In fact, the electrical discontinuity

introduced by the blood vessels acts as a source for the transfer of the shock energy from
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Figure 5.3: Transmembrane potential (mV) in a slab after applying the de�brillation
shock.
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the intracellular domain to the cardiac cell domain, which expedites the de�brillation

process.

5.2 Mesh Resolution

The determination of a proper mesh resolution is a prerequisite for any de�bril-

lation simulation. To make suggestions for the choice of appropriate mesh resolutions

for practical simulations on complex domains, a systematic statistical analysis is per-

formed using a simpli�ed slab geometry as that in Sec 5.1. We consider a slab region

[−0.2, 0.2]× [−0.2, 0.2]× [−0.2, 0.2] (mm), in which a blood vessel with diameter 0.1

mm is located perpendicular to the xz-plane. The cardiac cells in the slab are initialized

by the resting membrane potential, then a shock of strength 5V/cm in the x-direction

is applied for 0.1 ms.

To perform a statistical analysis of the e�ect of the mesh resolution on wave

propagation across the blood vessel, we perform multiple simulations with di�erent

combinations of mesh resolutions and positions of the blood vessel. Eight resolution

levels are adopted, with the diameter of the blood vessel ranging from 2∆x to 8∆x

in mesh units. For each mesh resolution, we choose one of 25 positions within the

small region [−∆x, ∆x]× [−∆x, ∆x] as the crossing point of the blood vessel axis and

the xz-plane. The voltage drops across the blood vessel are calculated for di�erent

combinations, and the results are summarized in Fig. 5.4.

In Fig. 5.4, the bottom and top of the box are the �rst quartile (Q1) and third

quartile (Q3), respectively. The band inside the box denotes the median. The lower

and upper ends of the whisker are the minimum and maximum of the data. From the
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Figure 5.4: Variation of the voltage drop across the blood vessel under mesh re�nement.
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plot, we can observe a fast convergence of the voltage drop as the resolution increases.

With only a 4∆x diameter, the relative error in the voltage drop calculation is already

within 10%, when taking the 8∆x values as accurate. Moreover, even in the case of

a resolution as low as 2∆x, the calculated voltage drops are still within a reasonably

small neighborhood of the 8∆x resolution results. In conclusion, four or fewer cells

across the blood vessel should su�ce in a whole heart simulation for the purpose

of UQ analysis, while higher resolutions are necessary for fully accurate whole heart

simulations. Further e�orts to improve the algorithm could reduce these numbers.
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Chapter 6

Conclusions

We extend the �nite volume embedded boundary method (EBM), originally pro-

posed by Johansen and Colella [50], to the solutions of elliptic and parabolic equations

involving anisotropic di�usion tensors and indicate a methodology for construction

of solutions of an arbitrary order of accuracy. A new type of sharp-boundary elec-

trocardiac simulation tool based on the EBM method is introduced and applied to

de�brillation studies using the bidomain model. It is shown that the new method

is second-order-accurate uniformly up to boundaries, which particularly aids the res-

olution of small features in the heart tissue. This capability lends our method to

the promising �eld of low-energy de�brillation, where the generation of virtual elec-

trodes around small heterogeneities in the myocardium plays an indispensable role.

To improve the e�ciency as well as to keep the accuracy of practical simulations, a

systematic statistical analysis is performed in order to determine the appropriate mesh

resolution. It is shown that four mesh cells are needed to resolve the �nest blood vessels

for the purpose of UQ analysis. However, for highly accurate whole heart simulations,

the usage of more mesh cells is recommended. To further improve the accuracy, in
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the future, we plan to add more physiological details, such as the 3D complex heart

geometry, realistic myocardiac �ber orientations, and more complete models of ionic

currents, into our model. Extensions to higher-order accuracy may be bene�cial to

further reduce resolution requirements. Second order accuracy in time (not considered

here) will require Strang splitting of the sequential equation solution method.
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