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Abstract of the Dissertation 

Modeling the effect of sequencing error 

by 

Ruiqi Zhang 

Doctor of Philosophy 

in 

Applied Mathematics and Statistics 

 

Stony Brook University 

2014 

 

Genotype misclassification errors are known to reduce the power to detect genetic association, 

but the size of the effect is not known in next generation sequencing (NGS).  The non-centrality 

parameter (NCP) and hence power of the association test allowing for errors for a specified error 

model at a base pair was found. This NCP was compared to the NCP for the usual chi-square 

test. The asymptotic power was compared to simulated power for specific settings of the true 

genotype and phenotype frequencies in the case and control populations, genotype 

misclassification rates, and total sample size. An R script was provided for calculating the NCP.  

Next, the effect of misclassification error using data from NGS technology for case-control 

genetic association studies was modeled. The Likelihood Ratio Test Allowing for Error using 

NGS data (LRTNGS) was derived. The estimated genotype frequencies and misclassification rates 

from the observed base pair reads were calculated using the expectation-maximization (EM) 

algorithm. This statistic allows for both non-differential and differential misclassification. The 
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distribution of LRTNGS was studied by simulations for both null and alternative settings. The 

effects of genotyping misclassification rates on the sample size needed to maintain the constant 

asymptotic Type I and Type II error rates were studied. For at risk minor allele frequencies less 

than 0.01, large sample sizes were required for the asymptotic distribution to be a good 

approximation. Increasing the sequencing coverage increased the estimated power and the 

adequacy of simulated power. 
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Chapter 1 Introduction 

1-1 Research Background 

Many common human diseases and traits are believed to be influenced by several 

genetic and environment factors, but the identification of genetic variants contributing to 

these „complex diseases‟ is slow. Genome-wide association studies (GWAS) are an 

examination of many common genetic variants in different individuals to see if any 

variant is associated with a trait and to identify common genetic factors that influence 

health and disease 
18

. GWAS represent a powerful new method for investigating the 

genetic architecture of complex diseases 
20

.  

Although GWAS have found hundreds of common variants associated with disease, 

there is still a large fraction of heritability that needs to be explained. The limitations of 

GWAS that focus on the common genetic variants have motivated scientists to consider 

the contribution of rare variants to phenotypic expression
23, 26

. The increasing availability 

of high-throughput sequencing technologies has enabled studies of rare variants 
2
. Next-

generation sequencing (NGS) refers to DNA sequencing technologies that highly 

parallelized the sequencing process and enable the sequencing of thousands to millions of 

molecules at once
8
. NGS technology makes it possible to directly sequence case-control 

samples for testing disease association including rare variants and has greatly expanded 

the resolution possible in GWAS
19

.  
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Misclassification is defined as the incorrect classification of a subject. 

Misclassification errors are present in the majority of data and can affect the validity of a 

study 
25

. Several researchers have investigated the effects of genotype and phenotype 

misclassification on the power and robustness of statistical association methods. Bross
3
 

studied the effect of classification errors on the chi-square test applied to a     table. 

Assuming that the classification error mechanism is independent of case/control status, 

there is no change in the probability of a type I error due to classification error. The 

power for the test, however, is reduced. Since the point estimates of the population 

frequency parameters incorporate the probability of misclassification into the expected 

difference between the frequencies, their expected values are not the true population 

frequencies. Mote and Anderson 
22

 extended the work of Mitra
21

 and Bross
3
 and proved 

that the power of the chi-square test with no error is always greater than or equal to the 

power of the test when errors are present but ignored.  

Gordon et al.
7, 12

  applied the results in Mitra to find the noncentrality parameter 

(NCP)   of the     contingency table test in the presence of misclassification error and 

showed that misclassification errors in genotype and phenotype can significantly reduce 

the power of genetic association test. Kang et al 
15-17

 examined the impact of each 

individual SNP genotyping error for the chi-square test of independence. They 

determined which SNP genotyping misclassification error was most deleterious in term 

of increase in the sample size required to maintain type I and type II error rates.
 
Later, 

Gordon et al.
8, 9, 10

 developed a likelihood ratio test allowing for errors (     ) that 

incorporates double sampling information to increase the power of the association test in 
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the presence of genotype and phenotype misclassification errors. Ji et al.
14

 then calculated 

the corresponding NCP for      .  

Recently, Gordon et al.
8
 present a new statistic that allows for association testing 

among cases and controls directly using raw base pair reads instead of genotypes produce 

by an intermediate algorithm.  

1-2 Research Objectives 

In this paper, we apply the approach in Kim et al.
18

 to the work of Gordon et al.
8
 

That is, instead of using the probability of true sequence-read counts for individual   in 

the likelihood function (denoted by  ( 
  
 ( )

 ( )
) in Gordon et al.

8
), we use the probability 

of observed sequenced- read counts from Kim et al.
17

. Then the observed number of less 

common alleles with coverage  ( ) follows a binomial distribution, with number of 

trials  ( ) and probability   (   ( )
 ( )

   
 ( )

   
 ( )

)  (
 ( )
  ( )

)   
  ( )(  

   )
 ( )   ( )

, where     is the probability of observing the less common allele at a base 

pair.  We estimate the genotype frequencies and misclassification rates using the EM 

algorithm.  

The main purpose of this dissertation is to study the effect of misclassification 

error of the case-control association test in the genetic analysis. Chapter 2 presents the 

derivation of the NCP from both the chi-square test and likelihood ratio test at a base 

pair. And we study the consistency of the two NCPs through simulation studies. Also we 

conduct simulation studies to evaluate the accuracy of the asymptotic power and 
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investigate how power would change as the parameter settings change. Chapter 3 

introduces the likelihood ratio test allowing for differential misclassification applying to 

NGS data, and describes the EM algorithms for obtaining maximum likelihood estimates 

of genotype frequency and differential misclassification errors under the alternatives. 

Chapter 3 also studies the test statistic power by a simulation study. In Chapter 4, we 

draw conclusions and discuss possible future work.  
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Chapter 2 Association Test For a Base Pair 

2-1 The Chi-square Test Statistic 

 The classical     chi-square test is often used as a test of association. At each 

gene locus, an individual receives two alleles, one from each parent. Consider a gene 

with allele types labeled as at risk (1) and not at risk (2). Let    be the number of cases 

(affected), and    be the number of controls (unaffected). Let  

   be the number of participants having the at risk allele, and    be the number of 

participants not having the at risk allele. The      table is given by: 

Table 2.1 Contingency table for trait and genotype 

Allele type  Cases Controls Total 

At risk              

Not at risk              

Total         

Here,      is the number of at risk alleles in the cases, and      is the number of at 

risk alleles in the controls;      is the number of not at risk alleles in the cases, and      is 

the number of not at risk alleles in the controls. The null hypothesis is that there is no 

association between alleles in cases and controls. Under the null hypothesis, the chi-

square test has a central chi-square distribution with 1 degree of freedom asymptotically.  

2-2 Asymptotic Non-Centrality Parameter 

Mitra
20

 derived the asymptotic power function of the chi-square test of equality of 

distribution for the     contingency table. In general, under the alternative hypothesis 
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that the frequencies are not the same in cases and controls, the asymptotic distribution of 

the chi-square test for the     contingency table follows a non-central chi-square 

distribution with     degrees of freedom and non-centrality parameter (NCP)  , where 

  is the number of genotypes in the model. 

Let   
  denote the true frequency of at risk allele in the case group (affected), and 

let   
  denote the true frequency of at risk allele in the control group (unaffected). Then 

the true frequency of not at risk allele in the case group is     
 , and the true frequency 

of not at risk allele in the control group is     
 .  

The frequency of the at risk allele in the combined case and control group is 

  
  

    
       

 

     
  

and the frequency of the not at risk allele in the combined case and control group is 

  
  

          
       

 

     
  

The NCP of the     chi-square test is given by: 

  
     (  

    
 ) (     )

(    
      

 )(          
      

 )
                     (   ) 

The asymptotic power of the association test of case-control association is then 

found by integrating the non-central chi-square density function: 

         (    
 (   )) 
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Here,  (    
 (   )) is the cumulative distribution function (CDF) of the non-central chi-

square distribution with   degree of freedom and NCP   evaluated at the     percentile 

of the central    distribution.  

At each gene locus, with the at risk allele labeled as 1 and not at risk allele labeled 

as 2, the genotype for a SNP can be   ⁄    ⁄        . Let   be the number of allele 2 in 

the genotype. Then the genotype can be identified by the value of  . The error model 

used here is given in Table 2.2 and is called GLHO error model
7, 11

. It is a     matrix, 

where each cell contains the probability that a specific genotype   is classified as    

where           . The GLHO model assumes that errors are introduced into alleles 

randomly and independently. Here, I assume the probability that at risk allele is 

misclassified as not at risk allele is equal to the probability that the not at risk allele is 

misclassified as the at risk allele, and is denoted by  . I also assume that the 

misclassification is non-differential; that is, the misclassification error probabilities are 

the same for cases and controls. Let       be the probability that allele    is coded as  , 

        . Then my assumption can be written as: 

         (      
 )   {

                                 

                       
 

 

Table 2.2 Probability of observed genotype under GLHO error matrix 

Observed Recoded 

Genotype    
True Recoded Genotype   

0 1 2 

0 (   )   (   )    

1   (   )    (   )    (   ) 
2     (   ) (   )  
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Let     
  denote the true genotype frequency of genotype   in phenotype  , and  

    denote the frequency of genotype   in phenotype   under the GLHO error model. 

Under HWE, we have:    
  (    

 )     
     

 (    
 )    

  (  
 )     

  

(    
 )     

     
 (    

 )    
  (  

 ) . Then the genotype frequencies      in the 

presence of errors are given by: 

(           )
 
   (   

     
     

 )                                        (   ) 

 That is, using Table 2.2 and equation (2-2), the observed genotype frequencies in 

the presence of errors are: 

    (   )    
   (   )   

       
  

      (   )   
  [   (   ) ]   

    (   )   
  

         
   (   )   

  (   )    
  

The frequencies of allele 1 in the case group,   , and in the control group,   , can 

be calculated. 

       
   

 
 

        
   

 
 

The corresponding NCP in presence of error is then obtained by substituting the 

allele frequencies    and    in equation (2-1). 
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     (     )

 
(     )

(         )(               )

 
     (    

   

      
   

 )
 
(     )

(  (    
   

 )    (    
   

 )) (        (    
   

 )    (    
   

 ))

 
     (     )

(  ((   )   
  

 
 
   
      

 )    ((   )   
  

 
 
   
      

 ))

 

((   )   
  

 
    

      
  ((   )   

  
 
    

      
 ))

 

(  (    
  

 
    

  (   )   
 )    (    

  
 
    

  (   )   
 ))

 

2-3 Likelihood Ratio Test Allowing for Allele Misclassification 

 Ji et al.
14

 calculated the NCP for the Likelihood Ratio Test Allowing for Error 

(     ) in the presence of random phenotype and genotype errors when using resampling 

(double-sampling).  Here I extend Ji et al.
14

 and derive a Likelihood Ratio Test that 

allows for allele errors at a base pair in sequencing. A portion of the Methods and 

Notations are taken from Gordon et al.
13

 and Ji et al.
14 

For each term used in this section,   indicates the phenotype, and   indicates the 

allele type. The prime superscript is used to indicate the true phenotype or genotype. For 

example,      indicates that the true phenotype classification of an individual is not 

affected, and       that the true phenotype is affected. The notation      indicates that 

an individual‟s true allele type is 1 and       indicates that the true allele type is 2. 
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Let    denote the event that an individual has observed allele type   ( =1, 2), and 

   
  denote the event that an individual has true allele type    (  =1, 2). Let    denote the 

event that an allele has observed phenotype   (     ), and    
  denote the event that an 

allele has true phenotype    (  =0, 1). Let     denote the number of alleles with observed 

phenotype   (     ) and observed allele type   (     ). Let       
     (   

     
 ) 

denote the population frequency of true allele    for individuals with true phenotype    

(              ). The null hypothesis that allele frequencies are equal in case groups 

and control groups can be written as: 

    
      

       
      

  

Let  (    )     (       
 )  denote the probability that a true phenotype i‟ is misclassified as 

 . Here I assume that there is no phenotype misclassification error; that is: 

      ,
            
            

 

Let    
     (   

 ) denote the population frequency of true phenotype   (      ). 

The likelihood function allowing for error is given by: 

 ( )  ∑∑      (   (     )) 

  

  

where    (     ) is the probability of having observed events      . We assume that 

conditional on the true data, the observed data are independent. That is the classification 

process for the phenotype is independent of the classification process for the genotype. 

Then,   (          
     

 )    (  |   
 )   (       

 ). It follows that: 
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  (         
     

 )    (          
     

 )   (   
     

 )

   (  |   
 )   (       

 )   (   
     

 )

   (  |   
 )   (       

 )   (   
      

 )   (   
 )   

    
 
 
 
    

 
 
      
    

  

Then 

  (     )  ∑∑   (         
     

 )

    

  

The log-likelihood function is given by: 

 ( )  ∑∑      (   (     )) 

  

 ∑∑      (∑∑   (         
     

 )

    

) 

  

 ∑∑      (∑∑   (      
 )   (      

 )   (   
     

 )   (   
 )

    

) 

  

 ∑∑      (∑∑ 
    

 
 
 
    

 
 
      
    

 

    

) 
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2-4 NCP for the Likelihood Ratio Test 

Here I derive a closed-form expression for the NCP of Likelihood Ratio Test 

allowing for allele errors using Fisher‟s information matrix. By using the NCP, the power 

under different scenarios can be determined for any specified significance level.  

The unit of data used here is the individual allele. The list of parameters follows Ji 

et al.
14

 To derive the test statistic, let  ̃ be: 

 ̃  (    
      

      
      

    
    

 )  

The parameters are subject to the constraints that:  

    
      

        
      

      
    

    

Thus, the free parameters are(    
      

    
 )

 
. 

Fisher‟s information matrix of  ̃ is: 

 ̃( )   ( 
    ( )

  ̃  ̃ 
) 

Then, we have 

 ( )  ∑∑      (∑∑                
    

 

    

) 

  

 ∑∑      (∑∑                
    

 

    

) 

  

                   (   ) 

where index    and    are replaced by the index  ‟ and    for clarity.    ranges from 0 to 1, 

and    ranges from 1 to 2. 
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The first order derivatives of the log-likelihood function (2-3) with respect to 

      
  and    

  are given by: 

  ( )

       
  

 

       
 ∑∑      (∑∑                

    
 

    

) 

  

 ∑∑   

  

             
 

∑ ∑                 
    

 
    

                                                                      (   ) 

  ( )

    
  

 

    
 ∑∑      (∑∑                

    
 

    

) 

  

 ∑∑   

  

∑                 
 

  

∑ ∑                 
    

 
    

                                                                      (   ) 

Here       is not zero when     , and       is not zero when     . Thus, equation (2-4) 

and equation (2-5) are not zero when        . In this case, equation (2-4) can be 

simplified as: 

  ( )

       
  ∑   

 

        
 

∑            
    

 
  

 

 ∑   

 

     

∑            
 

  
                                                                                                (   )    

Likewise, equation (2-5) becomes: 

  ( )

    
  ∑   

 

∑            
 

  

∑            
    

 
  

 
∑     

   
                                                          (   ) 

Let ∑        , equation (2-7) can be written as: 

  ( )

    
  

∑     

   
  

  

   
  

Then I take the second order derivatives of the log-likelihood function, I have: 
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(1) When       ;       ;                 the (      )  (      ) element 

of 
    ( )

  ̃  ̃ 
 is: 

   ( )

       
        

  
 

  
       

 (∑   

 

     

∑            
 

  

)   ∑   

 

          

(∑            
 

  ) 
 

 Let  

      (     )  ∑∑   (         
     

 )

    

 ∑∑                
    

 

    

 

 I have: 

    (  (    )    
 )  

  

    (    (    )    
 )  

  

    (  (    )    
 )  

  

    (    (    )    
 )  

  

 Thus, 

 (   )     (     )       

Thus, the (      )  (      ) element of  ̃( ) is: 

 * 
   ( )

       
        

 +   [∑   

 

          

(∑       
     

 
 

 
  )

 ]   ∑   

 

          

(∑            
 

  ) 
 

(2) For                               , the (      )  (    ) element of 

    ( )

  ̃  ̃ 
 is 

   ( )
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 By symmetry, the (    )  (      ) element of 
    ( )

  ̃  ̃ 
 is also 0. 

Thus, the (      ) (    ) and (    )  (      ) element of  ̃( ) is 

 [ 
   ( )

    
        

 ]    

(3)  For               ; the (         ) of 
    ( )

  ̃  ̃ 
  is 

   ( )

    
   

 

    
 (

  

   
 )   

  

   
   

 I have: 

 (  )      
  

Thus, the (         ) element of  ̃( ) is 

 [ 
   ( )

    
  ]  

 

   
  

Finally, the information matrix  ̃( )  (   )   
 can be written as: 

[
 
 
 
 
 
   
   
 
 
 
 

   
   
 
 
 
 

 
 
   
   
 
 

 
 
   
   
 
 

 
 
 
 
   
 

 
 
 
 
 
   ]

 
 
 
 
 

 

where 

       
   (

  

   
 

(   ) 

   
) 

       
   

 (   )
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 (   )

      
 

       
   (

(   ) 

   
 

  

   
) 

       
   (

  

   
 

(   ) 

   
) 

       
   

 (   )

      
 

       
   

 (   )

      
 

       
   (

(   ) 

   
 

  

   
) 

    
 

  
  

    
 

  
  

The 6×3 matrix   
  ̃

   
 is given by: 

  
 ((    

      
      

      
    

    
 )

 
)

 ((       
    

 )
 
)

 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

     
 

   

     
 

     
 

     
 

   
 

     
 

   

     
 

     
 

     
 

   
 

     
 

   

     
 

     
 

     
 

   
 

     
 

   

     
 

     
 

     
 

   
 

   
 

   

   
 

     
 

   
 

   
 

   
 

   

   
 

     
 

   
 

   
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

(

 
 

   
    
    
    
   
    )
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Let        
      

 , and define   as:   (       
    

 )
 
 (   ) , where 

  (  ),   (    
    

 ). Then Fisher‟s information matrix of  ( ) is: 

 ( )   ( 
    ( )

     
) 

After applying Lemma 1 from Ji et al., I have: 

 ( )     ̃( )  (
         
         
         

) 

where 

     (    ) [  
  (

 

   
 

 

   
)    

  (
 

   
 

 

   
)]  

      [  
  (    )(

 

   
 

 

   
)    

  (    ) (
 

   
 

 

   
) 

      

     (    )[  
  (

 

   
 

 

   
)     

  (
 

   
 

 

   
)] 

     [  
  (

 

   
 

 

   
)    

  (    )(
 

   
 

 

   
)] 

      

          

     (
 

  
  

 

  
 ) 

The non-centrality parameter   is given by: 
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   (    
      

 )  ( )(    
      

 ) 

where 

 ( )      (      ) (
      
      

)
  

(
   
   

) 

This test statistic is asymptotically distributed as a non-central chi-square 

distribution with 1 degree of freedom and NCP    under the alternative hypothesis. 
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2-5 Results 

2-5-1 NCP Comparison between Chi-square Test and Likelihood Ratio Test  

In this section, the NCP ( ) of the chi-square test and the NCP (  ) of the 

likelihood ratio test are compared. The two NCPs are calculated under different 

parameter settings, and the corresponding powers are calculated for significance level 

    . The absolute difference in NCPs and the corresponding powers, defined as        

and                   , are also calculated. Here, the sample size is 200 and the 

phenotype frequency is 0.5. Three sets of case and control allele frequencies are studied, 

i.e. (1) 0.005, 0.01 (2) 0.01, 0.05 (3) 0.005, 0.05. The error rate ranges from 0 to 0.025, in 

increments of  0.005. The results are shown in Table 2.3.   

From Table 2.3, the two NCP calculations are consistent with each other.  
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Table 2.3 NCP of Chi-square Test and Likelihood Ratio Test 

 

 
NCP Power 

    
      

                                                 

0.005 0.01 

0 0.336 0.337 0.001 0.09 0.09 0.00 

0.005 0.2 0.2 0 0.07 0.07 0.00 

0.01 0.141 0.141 0 0.07 0.07 0.00 

0.015 0.108 0.108 0 0.06 0.06 0.00 

0.02 0.087 0.087 0 0.06 0.06 0.00 

0.025 0.073 0.073 0 0.06 0.06 0.00 

0.01 0.05 

0 5.498 5.605 0.107 0.65 0.66 0.01 

0.005 4.682 4.759 0.077 0.58 0.59 0.01 

0.01 4.06 4.118 0.058 0.52 0.53 0.01 

0.015 3.571 3.616 0.045 0.47 0.48 0.00 

0.02 3.177 3.212 0.035 0.43 0.43 0.00 

0.025 2.852 2.88 0.028 0.39 0.40 0.00 

0.005 0.05 

0 7.572 7.735 0.163 0.79 0.79 0.01 

0.005 6.364 6.479 0.115 0.71 0.72 0.01 

0.01 5.465 5.55 0.085 0.65 0.65 0.01 

0.015 4.771 4.835 0.064 0.59 0.59 0.01 

0.02 4.218 4.268 0.05 0.54 0.54 0.00 

0.025 3.767 3.808 0.041 0.49 0.50 0.00 

Notations:   = NCP from Chi-square test,    = NCP from likelihood ratio test.  

Notes: Sample size = 200, phenotype frequency = 0.5, significance level = 0.005. 
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2-5-2 Simulation 

In Section 2-2, I derived the NCP from the log-likelihood ratio test in the presence 

of allele error. In this section, I conducted simulation studies to evaluate the accuracy of 

the asymptotic power of the likelihood ratio test allowing for allele errors, and 

investigated how the power would change as the parameter settings changed.  

The total sample size was set to 10,000. The true phenotype frequency of controls 

was 0.5. Let       
      

   denote the ratio of case allele frequency to control allele 

frequency. Here the values of    are 2, 3 and 4 respectively. Case and control allele 

frequencies were set as shown in Table 2.4. 

Table 2.4 Allele frequency settings in simulation study 

     
      

    

Setting 1 0.005 0.0075 1.5 

Setting 2 0.005 0.01 2 

Setting 3 0.005 0.015 3 

Setting 4 0.005 0.02 4 

Setting 5 0.01 0.015 1.5 

Setting 6 0.01 0.02 2 

Setting 7 0.01 0.03 3 

 Setting 8  0.02 0.03 1.5 

Notations:     
 = control at risk allele frequency.     

 = case at risk allele frequency.   

    
      

 = ratio of case allele frequency to control allele frequency. 

 

The error rate ranges over the interval [0.005, 0.025] in increments 0.005. Thus, 

there were 30 different configurations of parameters settings considered, with 1000 

replicates for each parameter setting. 

To run each simulation, I first specified the allele frequencies for cases and 

controls. I calculated the true genotype frequencies assuming Hardy-Weinberg 
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equilibrium. Then I generated case and control data based on the true phenotype and 

genotype frequencies. I then introduced genotype errors into cases and controls using the 

GLHO error matrix as presented in Table 2.2. Then I counted all alleles based on the 

observed genotypes, and performed the     chi-square allelic test. The simulation 

power was was          and was defined to be the proportion of replicates for a given set 

of parameter specifications whose test statistic exceeded the critical value using the 

asymptotic null distribution. That is 

         
                                

                          
  

Table 2.5 presents the results of the simulation power and asymptotic power at 

significance level 0.05 under various parameter settings. The asymptotic power was 

     
  

 and was calculated from the likelihood ratio test given in Section 2-2-2.  I also 

reported the standard error and 95% confidence intervals of the simulation power. 
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Table 2.5 Comparison of asymptotic and Simulation Power 

Setting     
      

      
Power 

RE SE 95% CI 
                 

1 0.005 0.0075 1.5 

0.005 0.38 0.35 0.00 0.02 0.34, 0.39 

0.01 0.28 0.25 0.00 0.01 0.24, 0.28 

0.015 0.22 0.23 0.00 0.00 0.21, 0.24 

0.02 0.19 0.19 0.00 0.00 0.18, 0.20 

0.025 0.16 0.16 0.00 0.00 0.13, 0.19 

2 0.005 0.01 2 

0.005 0.89 0.89 0.00 0.01 0.87, 0.91 

0.01 0.76 0.76 0.00 0.01 0.73, 0.79 

0.015 0.64 0.62 0.03 0.02 0.59, 0.65 

0.02 0.55 0.51 0.08 0.02 0.48, 0.54 

0.025 0.48 0.47 0.01 0.02 0.44,0.50 

3 0.005 0.015 3 

0.005 1.00 1.00 0.00 0.00 1.00,1.00 

0.01 1.00 1.00 0.00 0.00 1.00, 1.00 

0.015 0.99 0.99 0.00 0.00 0.99, 1.00 

0.02 0.98 0.98 0.00 0.00 0.97, 0.99 

0.025 0.96 0.95 0.00 0.01 0.94, 0.97 

4 0.005 0.02 4 

0.005 1.00 1.00 0.00 0.00 1.00,1.00 

0.01 1.00 1.00 0.00 0.00 1.00, 1.00 

0.015 1.00 1.00 0.00 0.00 1.00, 1.00 

0.02 1.00 1.00 0.00 0.00 1.00, 1.00 

0.025 1.00 1.00 0.00 0.00 1.00, 1.00 

Notation:     
  = true at risk allele frequency in controls.     

  = true at risk allele frequency 

in cases.   = at risk allele frequency ratio of cases to controls.   = error rate.    

|              
  

|

     
  

 = relative error between  the asymptotic and simulation power. 

SE: standard error. 95%CI: 95% confidence interval of the simulated power. 

Note: Sample size is 10,000. Number of replicates is 1000. Phenotype frequency is 0.5. 

Significance level is 0.05. 
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Table 2.5 Comparison of asymptotic and Simulation Power (Continued) 

Setting     
      

      
Power 

RE SE 95% CI 
                 

5 0.01 0.015 1.5 

0.005 0.76 0.76 0.00 0.01 0.73, 0.79 

0.01 0.65 0.65 0.00 0.02 0.62, 0.68 

0.015 0.56 0.54 0.03 0.02 0.51, 0.57 

0.02 0.49 0.45 0.08 0.02 0.42, 0.48 

0.025 0.43 0.42 0.03 0.02 0.39, 0.45 

6 0.01 0.02 2 

0.005 1.00 1.00 0.00 0.00 1.00, 1.00 

0.01 1.00 1.00 0.00 0.00 1.00, 1.00 

0.015 1.00 1.00 0.00 0.00 1.00, 1.00 

0.02 1.00 1.00 0.00 0.00 1.00, 1.00 

0.025 1.00 1.00 0.00 0.00 1.00, 1.00 

7 0.01 0.03 3 

0.005 1.00 1.00 0.00 0.00 1.00, 1.00 

0.01 1.00 1.00 0.00 0.00 1.00, 1.00 

0.015 1.00 1.00 0.00 0.00 1.00, 1.00 

0.02 1.00 1.00 0.00 0.00 1.00, 1.00 

0.025 1.00 1.00 0.00 0.00 1.00, 1.00 

8 0.02 0.03 1.5 

0.005 0.99 0.98 0.01 0.00 0.98, 0.99 

0.01 0.97 0.96 0.01 0.00 0.96, 0.98 

0.015 0.94 0.93 0.01 0.00 0.93, 0.94 

0.02 0.91 0.92 0.00 0.00 0.90, 0.92 

0.025 0.88 0.87 0.01 0.01 0.87, 0.88 

Notation:     
  = true at risk allele frequency in controls.     

  = true at risk allele frequency 

in cases.   = at risk allele frequency ratio of cases to controls.   = error rate.    

|              
  

|

     
  

 = relative error between  the asymptotic and simulation power. SE= 

standard error. 95%CI= 95% confidence interval of the simulated power. 

Note: Sample size is 10,000. Number of replicates is 1000. Phenotype frequency is 0.5. 

Significance level is 0.05. 
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The comparison of the simulation and asymptotic power under different 

parameter settings is given in Table 2.5. The maximum relative error for the 5% 

significance level was 0.08 in two situations: (1) when the at risk allele frequency in the 

control group is 0.005, the at risk allele frequency in the case group is 0.01, and the error 

rate is 0.02. (2) when the at risk allele frequency in the control group is 0.01, the at risk 

allele frequency in case group is 0.015, and the error rate is 0.02. Whenever the 

asymptotic power exceeds 0.67, the simulation power is close to the asymptotic power. 

When the asymptotic power is less than 0.67, minor differences may occur. In general, 

the simulation power was slightly lower than the asymptotic power, and the aymptotic 

powers are in agreement with simulation powers under each configuration of the 

parameter settings. 

As expected, this result is consistent with the finding (Mote and Anderson
22

; 

Gordon et al.
12,13

) that the power from the likelihood ratio test decreases as the error rates 

increases when the level of significance remains the same. For a fixed value of the 

control allele frequency, the asymptotic power increases as the ratio of case to control at 

risk allele frequency increases. For a fixed ratio of case to control at risk allele frequency, 

the asymptotic power increases as the control allele frequency increases. When the 

control allele frequency is 0.005 and the ratio between case and control allele frequency 

was 4, the power is always 1, so that genotype error rate and the allele frequency ratio 

were not significant factors in determining the power. When control allele frequency was 

0.01, and the case/control allele frequency ratio was 2, power was always 1. At these 

settings, the error rate and case/control allele frequency ratio had no significant effect on 

the power. 
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Table 2.6 shows the asymptotic power for various sample sizes under the six parameter 

settings at significance level 0.05. Sample sizes are: 1000,  2000,  5000,  10000 and 20000. 

Power rate is defined as the ratio between power with error and power without error. The 

Phenotype frequency is 0.5. The error rate ranges from 0 to 0.025, in increment of 0.005.  

The asymptotic power has similar pattern under different parameter settings. For all 

parameter settings, the power when there is no misclassification error is the upper bound for the 

actual power. When the sample size is small (i.e.1000), power is highly sensitive to the error 

rate. Even a small error rate will bring down the power significantly. When the sample size is 

5000 or more, the error rate is not so important.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

27 
 

Table 2.6 Asymptotic power as a function of sample size 

    
      

Asymptotic power Power ratio 

Sample size Sample size 

1000 2500 5000 10000 20000 1000 2500 5000 10000 20000 

0.005 1.5 

0 0.109 0.202 0.355 0.612 0.888 1.00 1.00 1.00 1.00 1.00 

0.005 0.082 0.132 0.218 0.384 0.653 0.75 0.65 0.61 0.63 0.74 

0.01 0.072 0.106 0.163 0.280 0.494 0.66 0.52 0.46 0.46 0.56 

0.015 0.066 0.092 0.135 0.223 0.393 0.61 0.45 0.38 0.36 0.44 

0.02 0.063 0.083 0.117 0.187 0.326 0.58 0.41 0.33 0.31 0.37 

0.025 0.061 0.077 0.105 0.163 0.279 0.56 0.38 0.30 0.27 0.31 

0.005 2 

0 0.254 0.536 0.827 0.984 1.000 1.00 1.00 1.00 1.00 1.00 

0.005 0.170 0.353 0.609 0.885 0.994 0.67 0.66 0.74 0.90 0.99 

0.01 0.134 0.264 0.467 0.756 0.964 0.53 0.49 0.56 0.77 0.96 

0.015 0.114 0.213 0.376 0.642 0.908 0.45 0.40 0.45 0.65 0.91 

0.02 0.101 0.181 0.314 0.551 0.839 0.40 0.34 0.38 0.56 0.84 

0.025 0.093 0.159 0.271 0.478 0.769 0.37 0.30 0.33 0.49 0.77 

0.005 
 

3 

0 0.615 0.945 0.999 1.000 1.000 1.00 1.00 1.00 1.00 1.00 

0.005 0.448 0.825 0.984 1.000 1.000 0.73 0.87 0.98 1.00 1.00 

0.01 0.350 0.702 0.941 0.999 1.000 0.57 0.74 0.94 1.00 1.00 

0.015 0.288 0.599 0.879 0.993 1.000 0.47 0.63 0.88 0.99 1.00 

0.02 0.245 0.518 0.809 0.980 1.000 0.40 0.55 0.81 0.98 1.00 

0.025 0.214 0.453 0.740 0.958 0.999 0.35 0.48 0.74 0.96 1.00 

0.005 4 

0 0.858 0.998 1.000 1.000 1.000 1.00 1.00 1.00 1.00 1.00 

0.005 0.722 0.981 1.000 1.000 1.000 0.84 0.98 1.00 1.00 1.00 

0.01 0.608 0.942 0.999 1.000 1.000 0.71 0.94 1.00 1.00 1.00 

0.015 0.518 0.887 0.994 1.000 1.000 0.60 0.89 0.99 1.00 1.00 

0.02 0.449 0.826 0.984 1.000 1.000 0.52 0.83 0.98 1.00 1.00 

0.025 0.395 0.763 0.966 1.000 1.000 0.46 0.76 0.97 1.00 1.00 

Notation:     
  = control at risk allele frequency.   = case at risk allele frequency/ control allele frequency. 

Note: Power ratio = Power with error / Power without error. 
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Table 2.6 Asymptotic power as a function of sample size (Continued) 

    
      

Asymptotic power Power ratio 

Sample size Sample size 

1000 2500 5000 10000 20000 1000 2500 5000 10000 20000 

0.01 1.5 

0 0.172 0.357 0.615 0.890 0.995 1.00 1.00 1.00 1.00 1.00 

0.005 0.136 0.268 0.474 0.765 0.967 0.79 0.75 0.77 0.86 0.97 

0.01 0.115 0.217 0.383 0.652 0.914 0.67 0.61 0.62 0.73 0.92 

0.015 0.102 0.184 0.321 0.561 0.848 0.59 0.52 0.52 0.63 0.85 

0.02 0.094 0.162 0.276 0.488 0.779 0.55 0.45 0.45 0.55 0.78 

0.025 0.087 0.145 0.243 0.430 0.713 0.51 0.41 0.40 0.48 0.72 

0.01 2 

0 0.454 0.830 0.985 1.000 1.000 1.00 1.00 1.00 1.00 1.00 

0.005 0.356 0.710 0.945 0.999 1.000 0.78 0.86 0.96 1.00 1.00 

0.01 0.293 0.609 0.885 0.994 1.000 0.65 0.73 0.90 0.99 1.00 

0.015 0.250 0.527 0.818 0.982 1.000 0.55 0.63 0.83 0.98 1.00 

0.02 0.218 0.462 0.751 0.962 1.000 0.48 0.56 0.76 0.96 1.00 

0.025 0.195 0.410 0.687 0.933 0.998 0.43 0.49 0.70 0.93 1.00 

0.01 3 

0 0.894 0.999 1.000 1.000 1.000 1.00 1.00 1.00 1.00 1.00 

0.005 0.815 0.995 1.000 1.000 1.000 0.91 1.00 1.00 1.00 1.00 

0.01 0.737 0.984 1.000 1.000 1.000 0.82 0.98 1.00 1.00 1.00 

0.015 0.665 0.965 1.000 1.000 1.000 0.74 0.97 1.00 1.00 1.00 

0.02 0.602 0.939 0.999 1.000 1.000 0.67 0.94 1.00 1.00 1.00 

0.025 0.546 0.907 0.996 1.000 1.000 0.61 0.91 1.00 1.00 1.00 

0.01 4 

0 0.991 1.000 1.000 1.000 1.000 1.00 1.00 1.00 1.00 1.00 

0.005 0.976 1.000 1.000 1.000 1.000 0.98 1.00 1.00 1.00 1.00 

0.01 0.952 1.000 1.000 1.000 1.000 0.96 1.00 1.00 1.00 1.00 

0.015 0.920 1.000 1.000 1.000 1.000 0.93 1.00 1.00 1.00 1.00 

0.02 0.883 0.999 1.000 1.000 1.000 0.89 1.00 1.00 1.00 1.00 

0.025 0.844 0.997 1.000 1.000 1.000 0.85 1.00 1.00 1.00 1.00 

0.02 1.5 

0 0.300 0.622 0.894 0.995 1.000 1.00 1.00 1.00 1.00 1.00 

0.005 0.257 0.542 0.831 0.985 1.000 0.86 0.87 0.93 0.99 1.00 

0.01 0.225 0.477 0.767 0.967 1.000 0.75 0.77 0.86 0.97 1.00 

0.015 0.201 0.424 0.706 0.943 0.999 0.67 0.68 0.79 0.95 1.00 

0.02 0.182 0.381 0.649 0.912 0.997 0.61 0.61 0.73 0.92 1.00 

0.025 0.167 0.345 0.598 0.878 0.993 0.56 0.56 0.67 0.88 0.99 

Notation:     
  = control at risk allele frequency.   = case at risk allele frequency/ control at risk allele 

frequency. 

Note: Power ratio = Power with error / Power without error. 
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Chapter 3 Association Test using NGS data 

NGS studies can identify multiple causal variants of a disease that may not be apparent 

from data generated by SNP-chip technology. One of the challenges of NGS is misclassification 

error. I consider a diploid gene in this section; that is, a gene that contains two alleles, one from 

the mother and the other from the father. 

 Figure 3.1 from Gordon et al.
7
 is an example of the number of observed sequence-read 

counts for a single individual   at four SNP loci. The top panel shows a stretch of the two 

strands of the DNA sequence for this individual. In this example, they are labeled as „strand 01‟ 

and „strand 02‟. Four SNP loci are illustrated. This individual is heterozygous at SNP01 with 

genotype T/A, homozygous at SNP02 with genotype G/G, heterozygous at SNP03 with genotype 

A/G, and homozygous at SNP04 with genotype A/A. The bottom panel shows the sequence 

reads consisting of random selections of one of the two strands. From the figure, the total count 

of reads is 8. „Strand 01‟ is selected 5 times, and „strand 02‟ is selected 3 times. We assume that 

allele A is the at-risk allele for these four SNPs. The observed numbers of allele A at the four 

loci is 3, 0, 5, and 8 respectively.  
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Figure 3.1 Example representation of sequence reads for an individual 

 

Gordon et al.
8
 provided a new test statistic for association testing in NGS studies that 

incorporates non-differential misclassification. These authors found that at very low error rates, 

misclassifying a common homozygote as a heterozygote causes loss of power to detect 

association, and the power loss increases as the minor allele frequency decreases. This is 

consistent with findings by Kang et al.
15-17

. Kim et al.
18

 extended the use of NGS data to the 

linear trend test (LTT) developed by Cochran
4
 and Armitage

1
, and focused on slightly more 

common causal variants. In this section, I apply the approach in Kim et al.
18

 to the work of 

Gordon et al.
8
 That is, instead of using the probability of true sequence-read counts for an 

individual in the likelihood function, I use the probability of the observed sequence read counts. 

This statistic allows for differential misclassification errors in base pair reads and tests whether 

the true genotype frequencies differ between cases and controls. I estimate the probability of the 

genotype frequencies and misclassification error rates based on the observed base pair reads 



 

31 
 

using the expectation-maximization (EM) algorithm and report the power of this test for the bi-

allelic case. 

3-1 Likelihood Ratio Test allowing for Differential Misclassification using 

NGS Data 

The following notation is from Gordon et al.
8
: 

  The index   denotes the phenotype for an individual:     for control group and     

for case group. I code the two alleles at a base pair position as 1 and 2, where allele “1” is the at-

risk allele, and “2” is the not at-risk allele. The index   (       ) denotes the genotype for an 

individual, where   is the number of 1 alleles. The superscript   denotes that the status of an 

individual is true. For example,   
 ( )

 denotes the event that the true genotype of individual m is 

 , and   
 ( )

 denotes the event that the true affection status of individual m is  . Let     
  denote 

the true genotype frequency of genotype   in phenotype  ; that is,    
    (  

    
 ).  

The null hypothesis assumes that the true genotype frequencies are equal in cases and 

controls. Let   
  denote the true population frequency of genotype   under   . We have:   

  

   (  
 ). Thus, the null hypothesis can be expressed as:  

       
     

    
         . 

The alternative hypothesis (  ) that the true genotype frequencies in cases and controls 

are unequal can be written as:  
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                      . 

Let   denote the total number of individuals that are sequenced. I specify that the first    

subjects are in the control group and that the remaining    subjects are in the case group so that: 

         . 

Let  ( ) denote the total count of reads for individual   at the base pair position. I 

assume the number of reads is the same for each individual and call it “coverage” in this study. 

Let   ( ) and   ( ) denote the observed number of 1 and 2 alleles recorded for individual   

respectively. We have:   ( )    ( )   ( ). Here   ( )      ( ) are random variables 

that incorporate the misclassification errors of individual sequence reads. In the example from 

Figure 3,   ( )    at SNP01,   ( )    at SNP 02,    ( )    at SNP03 and   ( )    at 

SNP04. 

Let  (    )  denote the probability that allele    is misclassified as allele   ,        = 1, 2.  

The phenotype class is    where     refers to control group and     refers to case group. The 

statistic proposed here allows for differential but symmetric misclassification. I define symmetric 

misclassification that the misclassification rates are the same in both directions. Let    denote the 

probability of misclassification in controls, and let    denote the probability of misclassification 

in cases. Symmetric misclassification is:  (  )   (  )      (  )   (  )    . I define 

differential misclassification as the misclassification probabilities are unequal in cases and 

controls, that is       .  



 

33 
 

For individual  , let    ( )
 ( )

 denote the event that the number of at-risk alleles recorded 

at a single base pair is    with coverage  ( ). Let   
 ( )

 denote that the true affection status is  . 

Let   
 ( )

 denote the true genotype is  . Kim et al.
18

 found that the probability of event    ( )
 ( )

 

given the event (  
 ( )

   
 ( )

) is: 

  (   ( )
 ( )

   
 ( )

   
 ( )

)  (
 ( )
  ( )

)   
  ( )(     )

 ( )   ( )
 ( ) 

Here     denotes the probability of recording the at-risk allele (“1”) given that the 

affection status is   and the genotype is  . For individual  , when the true genotype is “22”(   

 ), every observed allele “1” is a “2” that has been misclassified. Thus,      (  ) . When the 

true genotype is “11”(    ), every allele recorded as “1” is correctly read. Thus       

 (  ) .  When the true genotype is “12”(    ), then: 

   

   (                                                    )   (                   )

   (                                                              )   (                   )

  (  )  
 

 
 (   (  ) )  

 

 
 

In general,     can be written as: 

    
   

 
 (  )  

 

 
(   (  ) ) 

Under the assumption of symmetric but differential misclassification,     is: 
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(    )  

     
 

 
   

       

                                              (   ) 

Let   
    (  

 ) denote the true sampling frequency of phenotype  . Here, I assume that 

the phenotype is measured without error. Then, 

  
  

  

 
   

  
  

 
 

Let (   ( )
 ( )

   
 ( )

) be the observed data. That is, the observed number of alleles of 

reads, the true genotype, and the true affection status. In general, the log-likelihood of the 

observed data under hypothesis     (    for null hypothesis,     for alternative hypothesis) 

is: 

  ( )    (  )  ∑ ∑ (  
 ( )

)  (  (   ( )
 ( )

   
 ( )

))

 

   

 

   

 ∑ ∑ (  
 ( )

)  (∑  (   ( )
 ( )

   
 ( )

   
 ( )

)

 

   

)

 

   

 

   

 ∑   (∑  (   ( )
 ( )

   
 ( )

   
 ( )

)

 

   

)

  

   

 ∑   (∑  (   ( )
 ( )

   
 ( )

   
 ( )

)

 

   

)

 

      

                                (   ) 

Here,  () denotes the indicator function so that  (  
 ( )

) is 1 when the true affection 

status is   for individual m and is 0 otherwise.  
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From the chain rule for conditional probabilities, I have: 

  (   ( )
 ( )

   
 ( )

   
 ( )

)    (   ( )
 ( )

   
 ( )

   
 ( )

)   (  
 ( )

   
 ( )

)

     (   ( )
 ( )

   
 ( )

   
 ( )

)   (  
 ( )

   
 ( )

)   (  
 ( )

)

 (
 ( )
  ( )

)   
  ( )(     )

 ( )   ( )
   
   

                         (   ) 

 Thus, from equation (3-3), the log-likelihood of the observed data under the alternative 

hypothesis is: 

  ( )    (  )  ∑   (∑((
 ( )

  ( )
)   

  ( )(     )
( ( )   ( ))

   
   

 )

 

   

)

  

   

 

 ∑   (∑((
 ( )

  ( )
)   

  ( )(     )
( ( )   ( ))

   
   

 )

 

   

)

 

      

(    ) 

And the log-likelihood of the observed data under the null hypothesis is: 

  ( )    (  )  ∑   (∑((
 ( )

  ( )
)    

  ( )(     )
( ( )   ( ))

  
   

 )

 

   

)

  

   

      

 ∑   (∑((
 ( )
  ( )

)    
  ( )(     )

( ( )   ( ))
  
   

 )

 

   

)

 

      

 (    ) 

3-2 Test Statistic using NGS data from Likelihood Ratio Test Allowing for 

Misclassification 

The test statistic using NGS data is:  
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          [  (  ̂)    (  ̂)],  

where   (  ̂)    (  ̂) .   (  ̂) and   (  ̂) are the maximum log-likelihood values under the 

alternative and null hypothesis respectively. There are three parameters             in the test to 

estimate with the restriction ∑    
 
     . Thus, degrees of freedom is      . Under the null 

hypothesis, this test statistic follows a central chi-square distribution. The maximum log-

likelihood for each hypothesis is determined from the Expectation Maximization (EM) algorithm 

as described in the following section. 

3-3 The Expectation Maximization (EM) Algorithm 

The Expectation-Maximization (EM) algorithm
6
 is used to find the maximum likelihood 

estimates of a statistical model that contains latent variables where the equations cannot be 

solved directly. The EM algorithm consists of the iteration of two steps: the Expectation (E) step 

and the Maximization (M) step. The E step calculates the expected value of the log-likelihood 

function with respect to the conditional distribution of the latent data. The M step finds the 

parameters that maximize the expectation of the complete log-likelihood. These two steps are 

applied iteratively until the difference between the successive log-likelihood values is less than a 

specified value. 

Let ()( ) denote the r
th

 step estimate of a parameter. For example,       
( )

  and    
 ( )

 denote 

the r
th

 step estimates of the parameters        and    
 , respectively. These values are updated in 

each iteration of the EM-algorithm.  
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3-3-1 EM Algorithm for Obtaining the Maximum Likelihood Estimates (MLEs) under 

Alternative Hypothesis 

Expectation (E) step: 

Define the complete data to be the observed data and unobserved data. That is, the 

observed number of alleles of reads, the true genotype, and the true affection status.  

The log-likelihood of the complete data under the hypothesis     is:   

  (    )  ∑ ∑∑*  (  
 ( )

   
 ( )

)    (  (   ( )
 ( )

   
 ( )

   
 ( )

))+

 

   

 

   

 

   

          (   ) 

Here,   (  
 ( )

   
 ( )

) is 1 when the true genotype is   is and the true affection status is   

of individual  ,  (  
 ( )

   
 ( )

) is 0 otherwise. 

Let    denote the expected value of the log-likelihood of the complete data, conditional 

on the observed data under the hypothesis   , where     for null hypothesis, and     for 

alternative hypothesis. I have:   

    [  (    )|             ]

  *(∑ ∑∑*  (  
 ( )

   
 ( )

)  (  (   ( )
 ( )

   
 ( )

   
 ( )

))+

 

   

 

   

 

   

)  (   ( )
 ( )

   
 ( )

)+

 ∑ ∑∑ *  (  
 ( )

   
 ( )

) (   ( )
 ( )

   
 ( )

)+

 

   

 

   

 

   

   (  (   ( )
 ( )

   
 ( )

   
 ( )

))  
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From equation (9),    is: 

   ∑ ∑∑ *  (  
 ( )

   
 ( )

) (   ( )
 ( )

   
 ( )

)+

 

   

 

   

 

   

   ((
 ( )
  ( )

)   
  ( )(     )

 ( )   ( )
   
   

 ) (   ) 

             Let        

( )
 = *  (  

 ( )
   

 ( )
) (   ( )

 ( )
   

 ( )
)+ . Since the expected value of an 

indicator function is equal to the probability of the event,          can be written as: 

       

( )
  *  (  

 ( )
   

 ( )
) (   ( )

 ( )
   

 ( )
)+    ((  

 ( )
   

 ( )
)| (   ( )

 ( )
   

 ( )
))

 
  (   ( )

 ( )
   

 ( )
   

 ( )
)

  ( 
  ( )
 ( )

   
 ( )

)
 

  (   ( )
 ( )

   
 ( )

   
 ( )

)

∑   ( 
  ( )
 ( )

   
 ( )

   
 ( )

) 
   

 

From equation (3-4), I have: 

       

( )
 

(
 ( )
  ( )

)    
  ( )(     )

 ( )   ( )
   
   

 

∑ [(
 ( )
  ( )

)    
  ( )(     ) 

( )   ( )   
   

 ] 
   

 
   

  ( )(     )
 ( )   ( )

   
 

∑ [   
  ( )(     ) 

( )   ( )   
 ]  

   

                        (   ) 

The quantity        

( )
 denotes the Bayesian posterior probability (BPP) that individual m 

has true phenotype i and true genotype j , given the observed data (   ( )
 ( )

   
 ( )

), under the 

hypothesis   . I have        

( )
        

( )
        

( )
   , where                           
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Under the alternative hypothesis   , I have:  

       

( )
 

   
  ( )(     )

 ( )   ( )
   
 

∑ [   
  ( )(     ) 

( )   ( )   
 ]  

   

                      (    ) 

Under the null hypothesis   , I have : 

       

( )
 

   
  ( )(     )

 ( )   ( )
   
 

∑ [   
  ( )(     ) 

( )   ( )   
 ]  

   

  
   

  ( )(     )
 ( )   ( )

  
 

∑ [   
  ( )(     ) 

( )   ( )  
 ]  

   

                              (    ) 

The difference between equation (3-9 a) and equation (3-9 b) is that genotype frequencies 

in case group and control group are the same under the null hypothesis. i.e.    
     

    
 . 

Therefore, from equation (3-7), under alternative hypothesis, I have:  

    [  (    )|             ]

 ∑ ∑∑       

( )

 

   

 

   

 

   

   [(
 ( )
  ( )

)    
  ( )(     )

 ( )   ( )
   
   

 ] ( 

    ) 

 Under null hypothesis, I have: 

    [  (    )|             ]

 ∑ ∑∑       

( )

 

   

 

   

 

   

   [(
 ( )
  ( )
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  ( )(     )

 ( )   ( )
  
   

 ] (     ) 



 

40 
 

I discussed the E step above, and I now consider the M step of the EM algorithm. I use 

the superscript (r) to indicate the r-th step iteration.  

From equation (3-10a), the r
th

 step of    can be written as: 

  
( )  ∑ ∑∑       

( )(   )

 

   

 

   

 

   

   [(
 ( )
  ( )

) (   
( ))

  ( )

(     
( ))

(    ( ))
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 ∑ ∑∑       
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 ∑ ∑       
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 ∑ ∑       

( )(   )
*     

( )
     

 +
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( )(   )
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 ( )
  ( )

) (   
( ))
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(     
( ))

    ( )
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 (    )  

where  

       

( )(   )
 

(   
(   ))

  ( )

(     
(   ))

 ( )   ( )

   
(   )

∑ [(   
(   ))

  ( )

(     
(   ))

 ( )   ( )

   
(   )]  

   

 

Next I take the partial derivatives of equation (3-11) with respect to    
( )

    
( )

    
( )

, while 

holding        

( )(   )
 constant, then:  
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 ∑
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I set the partial derivative to be 0 to give: 
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Similarly from 
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(   )      
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I got: 
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From  
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I got:  
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I rewrite equation (3-12a) : 
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That is:  

∑ (       

( )(   )
(     

( ))  (         

( )(   )
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( ))

  

   

   (     )  

Similarly, equation (3-12b) can be rewritten as: 
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That is:  
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From equation (3-13a) and (3-13b): 
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Thus, 
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            Similarly, I have:  
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( )

 
∑        
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∑        

( )(   )  
   

  
 

Analogous results will be achieved after taking the partial derivatives to equation (3-11) 

with respect to    
( )

    
( )

       
( )

. In general, the r-th iteration updates of the estimated true 

genotype frequencies in the control group and in the case group are: 

   
( )  

∑        

( )(   )  
   

  
         (      )   

( )
 

∑        

( )(   ) 
      

  
         (      ) 

Under the assumption of symmetric but differential misclassification rate, from equation 

(3-11), the r-th step log-likelihood   
( )

 can also be written as: 
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Differentiating    with respect to    and   , and setting it to be zero, I have: 
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Since   ( )    ( )   ( ), equation (3-15a), (3-15b) can be simplified as: 

∑
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Solving equation (3-16a), I have: 
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Similarly, after solving equation (16 b), I have:  
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3-3-2 EM Algorithm for Obtaining the MLEs under the Null hypothesis 

The log-likelihood of the complete data under    is: 

     (  )  ∑ ∑∑* (   ( )
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As described in section 3-3-1, let    denote the expected value of the log-likelihood of 

the complete data, conditional on the observed data under the null hypothesis. I have:  
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The r-th step   can be written as : 
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Using the same algebra as in section 3-3-1, the r-th step genotype frequency is: 
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The r-th step differential but symmetric misclassification error rate is: 
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 Thus, from equation (3-5a) and (3-5b), the r-th step log-likelihood of the observed data 

under the alternative hypothesis is: 
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The log-likelihood of the observed data under the null hypothesis is: 
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Under hypothesis   , when the difference of log-likelihoods of observed data between 

the   
   step and the (    )    step is less than the tolerance, i.e., when     (  

(   )
 )  

   (  
(    )

 )             . I report    (  
  ) as the maximum likelihood under   , that is: 

  (  ̂)     (  
  ). Here, I use a tolerance of 10

-5
 and                                

                              

3-4 Simulation 

3-4-1 Generating the samples 

Genotype frequencies were determined from the allele frequencies by assuming HWE. 

For each individual  , let   
 ( )

 be the true at-risk allele frequency for affection status  , and let 

   
 ( )

 be the true genotype frequency for affection status   and genotype  . At a single locus, 

   
 ( )

 (    
 ( )

)
 

    
 ( )

    
 ( )

(    
 ( )

)    
 ( )

 (  
 ( )

)
 

. First, I set the true 
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genotype for individual   by generating the random number  ( ) that followed a uniform 

distribution from 0 to 1. If  ( )     
 ( )

, then I set the true genotype to “0”. If     
 ( )

  ( )  

   
 ( )

    
 ( )

, then I set the true genotype to “1”. If    
 ( )

    
 ( )

  ( )   , then I set the 

true genotype to “2”. Next, I generated the read data. I generated a random variable  , which 

represented the number of reads of the at-risk allele in   reads for individual  . Then   ( )  

 . From equation (8),   followed a binomial distribution with number of trials   and probability 

   . (1) When the true genotype was “0”,    , and     
   

 
   

 

 
(    )    ; (2) When the 

true genotype was “2”,    , then      
   

 
   

 

 
(    )      ; (3) When the true 

genotype was “1”,      then      (
 

 
)    (

 

 
) (    )  

 

 
. The distribution of   ( ) is 

summarized in Table 3.1. 

 

 

Table 3.1 Distribution of X, the number of observed reads of the at-risk allele in V reads 

 True genotype Distribution 

  ( )    

0      (    ) 

1      (      ) 

2      (    ⁄ ) 

Notation:   ( )= number of reads of at-risk allele in   reads for individual  . 

For each setting of the parameters, under the null hypothesis, let  
( )

 be the starting point 

of the at-risk allele frequency. Let   
( )

 be the starting point of the misclassification rate for 
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affection status  . I first calculated the starting values of the genotype frequencies   
( )

 :   
( )

 

(   ( ))
 
,   

( )
   ( )(   ( )),   

( )
 ( ( ))

 
. At step 0, with the values of   ( ),   

( )
 

and   
( )

, I calculated the 0
th

 step log-likelihood     
( )

  by applying equation (3-22b). Then I 

calculated the 0-th step Bayesian Posterior Probability (BPP)          

( )
 from equation (3-20). At 

step 1, I calculated the genotype frequencies   
( )

and misclassification rates   
( )

 from equation 

(3-14a), (3-14b), (3-17a) and (3-17b). Then by using   ( ),   
( )

 and   
( )

, I calculated the the 1
st
 

step BPP          

( )
from equation (3-20). Next, the 1

st
 step log-likelihood     

( )
was calculated 

from equation (3-22b). I stopped the iteration sequence when the difference between log-

likelihood     
(    ) and     

   step is smaller than the tolerance     . The value of     
(    ) 

was then used as the maximized log-likelihood for the random staring value ( ( )   
( )

). The 

maximum of all random staring values‟ maximized log-likelihood was then used as the global 

maximum log-likelihood and was denoted as     ̂. 

A similar method was applied for the alternative hypothesis. Under   , let   
( )

 be the 

starting point of the at-risk allele frequency with affection status  , and let   
( )

 be the starting 

point of the misclassification rate with affection status  . I calculated the starting values of the 

genotype frequencies    
( )

using HWE:    
( )

 (    
( )

)
 

    
( )

    
( )

(    
( )

)    
( )

 

(  
( )

)
 

. As with the null hypothesis, at step 0, by applying equation (3-22 a), I calculated the 0
th

 

step log-likelihood     
( )

 from the values of   ( ),    
( )

 and   
( )

 . Then I calculated the 0
th

 step 

Bayesian Posterior Probability (BPP)          

( )
 from equation (3-20). At step 1, I calculated the 1

st
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step genotype frequencies    
( )

and misclassification rates   
( )

 from equation (3-14a), (3-14b), (3-

17a) and (3-17b). By using   ( ),    
( )

 and   
( )

, I calculated the 1
st
 step BPP          

( )
from 

equation (3-20). Then the 1
st
 step log-likelihood     

( )
was calculated from equation (3-22a). 

Continued the iterations until the difference between (    ) step log-likelihood     
(    ) and 

   step     
   step is small than the tolerance     . The value of     

(    ) was then used as the 

maximized log-likelihood for this random starting values (   
( )

   
( )

). The maximum of all 

maximized log-likelihood values was then used as the global maximum log-likelihood, and was 

denoted as     ̂. 

 

 

 

 

3-4-2 Choosing initial values for the EM algorithm 

Before performing the simulation study for various parameter settings, I performed a 

simulation study to assess the adequacy of the distribution and number of random starting values 

for finding the global maximum likelihood and the convergence rate of my EM algorithm.  

The true at-risk allele frequencies were set to 0.005 in controls and 0.005 in cases; that is, 

the null hypothesis was true. The true misclassification error rates were 0.001 in controls and 

0.001 in cases. The total number of cases was 1000 and the total number of controls was 1000. 
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For both the null and alternative likelihood functions, I chose 500 independent random starting 

points for the at-risk allele frequencies in case and control group respectively. Each starting point 

followed a uniform distribution from 0 to 1. I chose 500 independent random starting points for 

the misclassification rate in the case group and control group. Each starting point followed a 

uniform distribution  (   ). I compared three distributions here: (1)  (   ); (2)  (     ); (3) 

 (     ). The maximum EM step per starting value was 100. The total number of samples was 

50.  

Table 3.2 is a summary of the number of iterations to convergence under the three 

distributions of random staring values for the null and alternative maximum likelihood functions. 

 

Table 3.2 Summary of number of iterations until tolerance limit achieved 

Under null hypothesis 

 

misclassification rate 

distribution 

Number of iterations U(0,1) U(0,0.5) U(0,0.1) 

Mean 6.20 5.96 5.51 

Standard Deviation 0.79 0.83 0.72 

Minimum 4 4 4 

Maximum 13 12 11 

Under the alternative hypothesis 

 

misclassification rate 

distribution 

Mean 5.93 5.93 5.75 

Standard Deviation 0.63 0.63 0.67 

Minimum 4 4 4 

Maximum 10 12 10 
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From Table 3.2, the maximum number of iterations was 13 and the minimum was 4. All 

three distributions had a small number of iterations before reaching tolerance.  

Table 3.3 shows the descriptions of the maximized likelihood functions for selected 

replicates. The first column “Rep” shows replicate number (1 to 10 and 50). The second column 

shows the likelihood function using the true parameters as calculated from equation (22). The 

next set of columns summarizes the maximum log-likelihood values using the starting values of 

misclassification rate from three distributions under the null hypothesis. There are two columns 

under each distribution for each replicate. The first column is the number of maximized log-

likelihoods observed, which is 2 for the  (   ) and  (     ) distributions of starting values. It is 

1 for the  (     ) distribution. The second column is the value of the local maximized log-

likelihood, and the entry underneath is the corresponding frequency of the local maximum. The 

next set of columns is the summary of maximum log-likelihood values for the three distributions 

of starting values under the alternative hypothesis. The first column is the number of observed 

maximized log-likelihoods. All three distributions have only 1 value under each parameter 

values. The second column is the value of the local maximized log-likelihood, and as for null 

hypothesis, the underneath value is the corresponding frequency of each local maximum log-

likelihood. 

For example, for replicate 1, the likelihood value from the true parameter values was -

1637.27. Under the null hypothesis, when the starting value of misclassification rate followed 

 (   ), two values of the maximized likelihood were obtained: -3005.97 and -1636.99. Among 

500 random starting values, 243 of 500 converged to -3005.97, 257 of 500 converged to -

1636.99. When the starting value followed  (     ), the same two maximized log-likelihoods 
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were obtained, 60 of 500 were -3005.97, and 440 of 500 were -1636.99. When the starting value 

followed  (     ), all 500 converged to -1636.99. Under the alternative hypothesis, 500 random 

starting value settings all converged to the log-likelihood -1636.58 for each distribution. 
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Table 3.3 Maximized log-likelihood values under three distributions of misclassification rate initial 

values 

Rep         ̂     ̂ 

  
 

U(0,1) U(0,0.5) U(0,0.1) all dist
n 

                  

1 -1637.27 2 -3005.97 -1636.99 2 -3005.97 -1636.99  -1636.99  -1636.58 

  500  243 257  60 440 1 500 1 500 

2 -1618.77 2 -2992.22 -1618.34 2 -2992.22 -1618.34  -1618.34  -1618.08 

  500  243 257  73 427 1 500 1 500 

3 -1576.76 2 -2939.37 -1574.01 2 -2939.37 -1574.01  -1574.01  -1573.29 

  500  243 257  58 442 1 500 1 500 

4 -1599.75 2 -2970.61 -1599.19 2 -2970.61 -1599.19  -1599.19  -1598.92 

  500  223 277  52 448 1 500 1 500 

5 -1639.43 2 -3010.62 -1638.18 2 -3010.62 -1638.18  -1638.18  -1637.49 

  500  220 280  55 445 1 500 1 500 

6 -1649.69 2 -3020.33 -1648.69 2 -3020.33 -1648.69  -1648.69  -1647.03 

  500  214 286  59 441 1 500 1 500 

7 -1598.67 2 -2972.31 -1598.39 2 -2972.31 -1598.39  -1598.39  -1598.37 

  500  206 294  53 447 1 500 1 500 

8 -1617.04 2 -2982.48 -1616.18 2 -2982.48 -1616.18  -1616.18  -1614.17 

  500  246 254  58 442 1 500 1 500 

9 -1614.28 2 -2982.49 -1613.34 2 -2982.49 -1613.34  -1613.34  -1610.46 

  500  236 264  60 440 1 500 1 500 

10 -1637.37 2 -2997.02 -1635.64 2 -2997.02 -1635.64  -1635.64  -1634.97 

  500  241 259  63 437 1 500 1 500 

… …  … …  … …  …  … 

50 -1570.22  2 -2935.33 -1567.07 2 -2935.33 -1567.07  -1567.07  -1566.07 

  500  227 273  54 446 1 500 1 500 

 

Notation:     = log-likelihood from parameters;     ̂=maximum log-likelihood under null hypothesis; 

    ̂=maximum log-likelihood under alternative hypothesis;   = number of maximized log-likelihood 

value
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Figure 3.2 Comparison of the global max rate of three distributions under the null hypothesis 

 

Figure 3.2 is the plot of the global max rate for each distribution of random starting 

values for the null hypothesis. Here global max rate = number of global maximized log-

likelihood/ total number of maximized log-likelihoods = number of global maximum log-

likelihood/500. For example, under the null hypothesis, for replicate 1 of distribution (   ) , 257 

out of 500 has global maximized log-likelihood of -1636.99. Then the global max rate = 

257/500=0.514; similarly, for distribution  (     ), the global max rate = 440/500=0.88; for 

 (     ) the global max rate = 500/500=1. Under the alternative hypothesis, the global max rate 

= 500/500 = 1 for all distributions of random starting values. 

In conclusion, no more than two maximized log-likelihood values were obtained under 

the various settings of the distribution of random starting values. Random starting values that 

follow the  (     ) distribution always had maximized value that is equal to the global 

maximum. Under   , both  (   ) and  (     ) obtained two „local maximum‟ log-likelihood 
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values. Distribution U(0, 1) had around 50% global max rate, and distribution U(0, 0.5) had 

around 88% global max rate. Starting values of the misclassification rate that follow distribution 

 (     ) showed the best behavior with respect to the estimation of each parameter and the 

maximized likelihood. It did not require more iterations till convergence, compared to the other 

two distributions. Hence, in the following simulations I chose  (     ) as the distribution of 

misclassification rate starting values. 
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3-4-3 Results 

In this section, I report several simulations to evaluate the performance of the 

likelihood ratio test using NGS data in the presence of both non-differential and differential 

misclassification at a single locus. The parameter values used in this section are given in 

Table 3.4.  

Table 3.4 Parameter settings of the simulation studies 

Parameter Notation Value 

  
  True at-risk allele frequency in control group 0.005, 0.02, 0.05, 0.1 

  
  True at-risk allele frequency in case group   

    

  The difference of at-risk allele frequency 

between control and case group 

0, 0.01, 0.025 

  Coverage 8, 40 

  
  True misclassification rate in control group 0.001, 0.04 

  
  True misclassification rate in case group 0.001, 0.04 

   Number of controls 1000, 2500, 5000, 

10000 

   Number of cases 1000, 2500, 5000, 

10000 

  Number of replicates at each setting 100 

  Number of starting points 100 

  Number of maximum EM steps per starting 

point 

100 

 

For each simulation, the starting values of the at-risk allele frequency followed the 

uniform distribution  (   ), and the starting value of misclassification rate followed the 

uniform distribution  (     ). I considered both non-differential and differential 

misclassification rates, that is, the misclassification rate in control and case groups were 

(0.001, 0.001), (0.04, 0.04), (0.001, 0.04) and (0.04, 0.001).  
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3-4-3-1 The estimated genotype frequencies and misclassification rate from EM 

I first performed a simulation to study the estimation of misclassification rates and 

genotype frequencies from my EM algorithm. I considered 24 parameter settings with 

1000 observations from the control group and 1000 from the case group. Table 3.5 

presents the results of estimated misclassification ratios. The misclassification ratio is 

defined as the ratio of estimated value of the misclassification rate to the true value of 

misclassification rate. In Table 3.5, the first four columns are the correct values of the 

parameter settings. The following four columns contain the average and standard deviation 

of the estimated misclassification ratios for both null and alternative hypotheses. Table 

3.6a presents the results of the estimated genotype frequency ratios under the null 

hypothesis. Table 3.6b contains the values of the estimated genotype frequency ratios 

under the alternative hypothesis. Here, the genotype frequency ratio is defined to be the 

ratio of the estimated value of genotype frequency to the true value of genotype frequency. 

In Table 3.6a and Table 3.6b, the first four columns contain the true parameter values. The 

next six columns contain the average and standard deviation of the corresponding 

estimated genotype frequency ratios under the specific hypothesis. Figure 3.3 and Figure 

3.4 are the graphical representations of Table 3.6a and Table 3.6b. 

From the ratio of misclassification rate results, the observed average was between 

0.98 and 1.05, and the observed standard deviation was between 0.02 and 0.46. The 

observed value from EM algorithm was a good estimate of the true misclassification value 

under both the null and alternative hypotheses.  
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The average of the estimated genotype ratios ranged from 0.8 to 1.03 under the null 

hypothesis, and ranged from 0.40 to 2.80 under the alternative hypothesis. The standard 

deviation of the estimated genotype ratios was between 0.42 to 5.22 under the null 

hypothesis, and was between 0.00 and 10.44 under the alternative hypothesis. From Figure 

3.4a and 3.4b, the EM algorithm provided good estimates of the common homozygote and 

heterozygote genotype frequencies under different parameter settings. The estimation of 

the rare homozygote genotype depended on the true at-risk allele frequencies. As the true 

at-risk allele frequency increased, the accuracy of the estimation of the rare homozygote 

genotype frequencies increased. There was no significant pattern of parameter estimations 

for differential and non-differential misclassification rates. 
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Table 3.5 Estimated misclassification ratio distribution under simulation settings 

True at-risk allele 

frequency 

True 

misclassification 

rate 

Estimated misclassification 

ratio 

Control Case 

Control Case Control Case AVE SD AVE SD 

0.005 0.005 

0.001 0.001 1.02 0.20 1.01 0.24 

0.04 0.04 1.00 0.04 0.99 0.03 

0.001 0.04 1.00 0.03 1.01 0.24 

0.04 0.001 1.03 0.24 1.01 0.04 

0.02 0.02 

0.001 0.001 0.99 0.17 0.98 0.19 

0.04 0.04 1.00 0.03 1.00 0.03 

0.001 0.04 1.00 0.03 0.99 0.16 

0.04 0.001 1.00 0.18 1.00 0.03 

        

0.005 0.015 

0.001 0.001 1.01 0.15 0.99 0.17 

0.04 0.04 1.00 0.02 1.00 0.03 

0.001 0.04 1.00 0.02 0.99 0.16 

0.04 0.001 0.99 0.17 1.00 0.02 

0.005 0.03 

0.001 0.001 0.98 0.17 0.98 0.17 

0.04 0.04 1.00 0.02 1.00 0.02 

0.001 0.04 1.00 0.02 0.99 0.13 

0.04 0.001 0.99 0.16 1.00 0.02 

0.02 0.03 

0.001 0.001 0.99 0.16 1.02 0.14 

0.04 0.04 1.00 0.03 1.00 0.02 

0.001 0.04 0.99 0.03 0.99 0.16 

0.04 0.001 1.01 0.17 1.00 0.03 

0.02 0.045 

0.001 0.001 1.00 0.03 1.00 0.02 

0.04 0.04 1.00 0.03 1.00 0.02 

0.001 0.04 1.00 0.03 0.99 0.14 

0.04 0.001 1.02 0.19 1.00 0.02 

Note: Number of cases = 1000. Number of controls = 1000. Coverage = 8. 

Number of replicates = 100. Number of starting points = 100. 

Notation: Estimated misclassification ratio = Estimated misclassification rate/ true 

misclassification rate. SD = Standard  
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Table 3.6a Estimated genotype frequency ratios under the null hypothesis 

    Under the null hypothesis 

True at-risk allele 

 frequency 

True 

misclassification rate 

Estimated genotype frequency ratio 

         

Control Case Control Case AVE SD AVE SD AVE SD 

0.005 0.005 

0.001 0.001 1.00 0.00 0.99 0.24 0.80 3.94 

0.04 0.04 1.00 0.00 0.99 0.23 1.00 4.38 

0.001 0.04 1.00 0.00 0.98 0.20 1.00 5.22 

0.04 0.001 1.00 0.00 0.99 0.18 1.00 4.38 

0.02 0.02 

0.001 0.001 1.00 0.00 1.00 0.10 1.02 1.29 

0.04 0.04 1.00 0.01 1.01 0.12 0.92 1.09 

0.001 0.04 1.00 0.00 1.01 0.12 0.83 1.04 

0.04 0.001 1.00 0.00 0.98 0.12 0.89 1.04 

0.05 0.05 

0.001 0.001 1.00 0.01 0.99 0.07 0.99 0.47 

0.04 0.04 1.00 0.01 1.00 0.06 1.00 0.42 

0.001 0.04 1.00 0.01 1.00 0.08 0.99 0.46 

0.04 0.001 1.00 0.01 1.01 0.07 1.03 0.45 

Note: Number of cases = 1000. Number of controls = 1000. Coverage = 8. Number of 

replicates = 100. Number of starting points = 100. 

Notation:   = frequency of genotype   (       ). Estimated genotype frequency ratio = 

Average estimated genotype value/ true genotype value. AVE = Average of estimated 

genotype frequency ratio. SD = Standard deviation of estimated genotype frequency ratio. 
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Figure 3.3a Average of estimated genotype frequency ratio under the null hypothesis 

 

Figure 3.3b Standard deviation of estimated genotype frequency ratio under the null 

hypothesis 
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Table 3.6b Estimated genotype frequency ratios under the alternative hypothesis 

    Under the alternative hypothesis 

True at-risk allele 

 frequency 

True 

 misclassification rate 
Estimated genotype frequency ratio 

                        

Control Case Control Case AVE SD AVE SD AVE SD AVE SD AVE SD AVE SD 

0.005 0.015 

0.001 0.001 1.00 0.00 0.98 0.31 0.80 5.63 1.00 0.00 1.00 0.17 1.02 1.98 

0.04 0.04 1.00 0.00 1.03 0.32 0.80 5.63 1.00 0.01 1.01 0.19 0.80 1.93 

0.001 0.04 1.00 0.00 0.99 0.37 1.20 6.86 1.00 0.01 1.00 0.17 1.11 2.13 

0.04 0.001 1.00 0.00 1.03 0.30 0.80 5.63 1.00 0.01 1.00 0.18 0.98 1.85 

0.005 0.03 

0.001 0.001 1.00 0.00 1.01 0.36 2.00 10.44 1.00 0.01 0.99 0.14 1.02 0.97 

0.04 0.04 1.00 0.00 1.07 0.30 1.60 7.88 1.00 0.01 1.01 0.13 1.08 1.13 

0.001 0.04 1.00 0.00 0.99 0.32 0.40 4.00 1.00 0.01 0.98 0.11 0.96 0.99 

0.04 0.001 1.00 0.00 1.00 0.29 2.80 10.26 1.00 0.01 1.00 0.13 1.04 1.02 

0.02 0.03 

0.001 0.001 1.00 0.01 1.00 0.14 1.00 1.38 1.00 0.01 1.00 0.12 1.12 1.13 

0.04 0.04 1.00 0.01 0.99 0.17 1.12 1.93 1.00 0.01 0.98 0.11 1.01 1.23 

0.001 0.04 1.00 0.01 1.01 0.16 0.87 1.39 1.00 0.01 1.02 0.14 1.03 1.03 

0.04 0.001 1.00 0.01 1.02 0.16 1.02 1.43 1.00 0.01 1.01 0.14 1.09 1.00 

0.02 0.045 

0.001 0.001 1.00 0.01 1.01 0.16 1.12 1.82 1.00 0.01 1.00 0.10 1.02 0.63 

0.04 0.04 1.00 0.01 1.02 0.17 0.95 1.66 1.00 0.01 1.01 0.10 1.04 0.70 

0.001 0.04 1.00 0.01 1.00 0.16 0.85 1.47 1.00 0.01 0.98 0.10 0.94 0.66 

0.04 0.001 1.00 0.01 1.00 0.14 1.08 1.64 1.00 0.01 1.01 0.11 0.96 0.61 

0.05 0.1 

0.001 0.001 1.00 0.01 1.01 0.10 0.98 0.64 1.00 0.01 1.00 0.07 0.98 0.30 

0.04 0.04 1.00 0.01 0.99 0.08 1.06 0.65 1.00 0.01 1.00 0.06 0.95 0.33 

0.001 0.04 1.00 0.01 1.01 0.09 0.96 0.58 1.00 0.01 1.00 0.06 0.99 0.34 

0.04 0.001 1.00 0.01 1.00 0.10 0.91 0.63 1.00 0.01 1.00 0.06 0.99 0.32 

Note:  Number of cases = 1000. Number of controls = 1000. Coverage = 8. Number of replicates = 100. Number of starting points = 100.Notation: 

Estimated genotype frequency ratio = average estimated genotype value/ true genotype value. AVE = average of estimated genotype frequency ratio. SD = 

standard deviation of estimated genotype frequency ratio.    = frequency of genotype   with affect status  . (             ).
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Figure 3.4a Average of estimated genotype frequency ratio under the alternative hypothesis 

 

Figure 3.4b Standard deviation of estimated genotype frequency ratio under the alternative 

hypothesis 
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3-4-3-2 The properties of LRTNGS  

Under the null hypothesis, the test statistic LRTNGS appeared to follow an asymptotic 

central chi-square distribution with two degrees of freedom. Under the null hypothesis, the 

expected value of LRTNGS should be equal to its degrees of freedom, i.e. 2.  I studied the 

properties of the test statistic LRTNGS from the simulations as described in section 3-4-1. I 

defined the average of LRTNGS as the sum of simulated LRTNGS values divided by the total 

number of replicates.  

Table 3.7 contains the results of the average LRTNGS with different parameter settings 

under the null hypothesis. The first two columns are the values of the true misclassification 

rates, the next two columns are the true at-risk allele frequencies, and the last two columns 

are the average and standard deviation of the LRTNGS from simulations. The comparisons of 

the average LRTNGS  with different at-risk allele frequencies in Table 3.7 are displayed in 

Figure 3.5. 

Table 3.7 Results of LRTNGS under the null hypothesis 

True 

misclassification rate 

True at-risk 

allele frequency 
LRTNGS 

Control Case  Average SD 

0.001 0.001 

0.005 1.07 1.34 

0.02 1.68 1.48 

0.05 1.90 1.97 

0.1 1.95 1.87 

     

0.04 

 

0.04 

 

0.005 1.08 1.11 

0.02 1.65 1.61 

0.05 2.02 2.01 

0.1 2.26 2.56 

     



 

68 

 

Table 3.7 (Continued) Results of LRTNGS under the null hypothesis 

Misclassification 

rate 

At-risk allele 

frequency 
LRTNGS 

Control Case  mean SD 

0.001 0.04 

0.005 1.12 1.29 

0.02 1.81 1.47 

0.05 2.28 1.75 

0.1 2.23 2.61 

     

0.04 0.001 

0.005 1.13 1.28 

0.02 1.52 1.49 

0.05 1.95 2.36 

0.1 2.06 1.85 

 
Note: Number of controls is 1000, number of cases is 1000. Number of replicates is 100. Coverage = 

8. 

 

 

 

Figure 3.5 Comparison of the average LRTNGS for different at-risk allele frequency 

 

Note: Number of controls = 1000, number of cases = 1000. Number of replicates = 100. Coverage = 8. 
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Under the null hypothesis, for sample size 1000 in each group, with both non-

differential and differential misclassification rate, the value of the average LRTNGS was 

between 1 and 2.3. As the true at-risk allele frequency increased, the value of the average 

LRTNGS  increased. When the true at-risk allele frequency was less than     , the average 

LRTNGS was less than 2. When the true at-risk allele frequency was equal or greater than 0.05, 

the average LRTNGS was around 2, which was the degrees of freedom of central chi-square 

test. When the sample size was small and the true at-risk allele frequency was small, the cell 

count of the rare homozygotes was extremely low. The effective degree of freedom was less 

than 2, so that the average of LRTNGS was less than 2. A possible future study would be to 

evaluate the properties of LRTNGS using permutation testing. 

I then performed another set of simulations to study the effect of sample size on the 

average of the LRTNGS under the null hypothesis. Three sample sizes in each group were 

considered here: 2500, 5000 and 10000. The simulation results are shown in Table 3.8. The 

first column is the true at-risk allele frequency. The second column contains the setting of 

sample size. The next 12 columns contain the results of LRTNGS  under different 

misclassification rates. Under each setting of misclassification rates, the first column was the 

average of the simulated LRTNGS; the second column was the standard deviation of the 

simulated LRTNGS, and the third column was the 95 percentile of the simulated LRTNGS. The 

last row of Table 3.8 contains the average, standard deviation, and 95 percentile of the 

asymptotic LRTNGS under the null hypothesis. Figure 3.6 shows the relationship between 

average LRTNGS and sample size with different at-risk allele frequencies under the null 

hypothesis.  
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Table 3.8 Simulated LRTNGS values for different sample size under the null hypothesis 

True at-risk 

allele 

frequency 

Sample 

size 

Simulated        

True misclassification rate in control and case group 

(0.001,0.001) (0.04,0.04) (0.001,0.04) (0.04,0.001) 

AVE SD 95% AVE SD 95% AVE SD 95% AVE SD 95% 

0.005 

2000 1.07 1.33 3.24 1.08 1.11 3.33 1.12 1.29 3.87 1.13 1.28 3.92 

5000 1.42 1.43 3.96 1.40 1.51 4.49 1.33 1.68 3.62 1.15 1.33 3.83 

10000 1.49 1.45 3.83 1.51 1.59 4.02 1.44 1.50 4.72 1.52 1.49 4.18 

20000 1.83 1.80 5.35 1.67 1.58 4.78 1.62 1.91 4.58 1.70 1.75 5.58 

0.02 

2000 1.68 1.48 4.88 1.55 1.36 4.38 1.72 2.15 4.66 1.52 1.49 4.50 

5000 1.80 1.72 4.93 1.65 1.60 4.53 1.81 1.47 4.40 1.87 2.11 4.99 

10000 1.93 1.73 5.14 1.80 1.53 5.91 1.93 1.51 5.77 2.22 1.59 5.51 

20000 2.30 2.33 6.51 1.90 1.90 5.12 2.41 2.48 7.50 2.37 2.46 7.23 

Asymptotic        2.00 2.00 5.99 2.00 2.00 5.99 2.00 2.00 5.99 2.00 2.00 5.99 

 

Note: Coverage = 8 

Notation:        = Statistic from log-likelihood ratio test using NGS data. AVE= Average of 

the simulated LRTNGS. SD = Standard deviation of the simulated LRTNGS. 95% = 95% percentile 

of the simulated LRTNGS 

 

Figure 3.6 Distribution of the average LRTNGS for different sample size with at-risk allele 

frequency 0.005 (figure (a)) and 0.02 (figure (b)) under the null hypothesis 
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Using the results from Table 3.8, I then performed a linear regression analysis on the 

average LRTNGS and the sample size given the fixed at-risk allele frequencies and 

misclassification rate. The general form of each linear regression can be written as: 

      
̅̅ ̅̅ ̅̅ ̅̅ ̅̅     

 

√ 
   

where       
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the average of the simulated LRTNGS and   is the sample size  . The terms   

and   are the regression coefficients.  

Table 3.9 contains the results of the linear regression analysis under each parameter 

setting. The first column contains the values of true at-risk allele frequency, the second and third 

column contain the value of misclassification rates in control and case group. Column  ̂ contain 

the estimated value of regression intercept,  , and column  ̂ contain the estimated value of 

regression coefficient  . The column labeled   (    ) is the corresponding p-value. The column 

labeled    is the coefficient of determination. 
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Table 3.9 Linear regression of average LRTNGS on sample size 

At-risk 

allele 

frequency 

  

Misclassification Model:       
̅̅ ̅̅ ̅̅ ̅̅ ̅̅     

 

√ 
  

 
Control Case  ̂ Pr(>|t|)   ̂ Pr(>|t|)     

 Non-differential      

0.005 
0.001 0.001 2.06 0.004 -45.06 0.039 0.92 

0.04 0.04 1.92 0.000 -37.37 0.004 0.99 

0.02 
0.001 0.001 2.40 0.007 -35.32 0.126 0.76 

0.04 0.04 1.93 0.000 -17.26 0.023 0.96 

 Differential       

0.005 
0.001 0.04 1.79 0.001 -30.88 0.019 0.96 

0.04 0.001 1.82 0.022 -33.10 0.218 0.61 

0.02 
0.001 0.04 2.47 0.012 -37.81 0.183 0.67 

0.04 0.001 2.75 0.001 -56.53 0.011 0.98 

 

From Table 3.9, the estimated intercept of the regression  ̂ was between 1.79 and 2.75, 

and was significant at level 0.05. The estimated coefficient  ̂ was between -17.26 and -56.53. 

Under non-differential misclassification, the average proportion of variation explained by the 

linear regression was 0.91 (=(0.92+0.99+0.76+0.96)/4); Under differential misclassification, the 

average proportion of variation explained was 0.81 ((0.96+0.61+0.67+0.98)/4). This linear 

regression provided a better fit for non-differential misclassification scenario than differential 

misclassification. In general, a low frequency of the at-risk allele requires a greater sample size 

than a high frequency of the at-risk allele for the average LRTNGS to be close to 2. As sample size 

increased, the average of LRT increased with 2 as a plausible limit.  
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3-4-3-3 Simulation Power 

The previous studies were performed using coverage equaled 8. In this section, I 

performed another set of simulations using coverage equaled 40. I then combined the results 

from the two scenarios together to study the effects of coverage on the power of the test 

statistic.  

Simulation power (        ) was defined as the proportion of test statistic values that 

exceed the critical value from the simulation. The critical value from the simulation was the 

value on the scale of the simulated LRTNGS beyond which I rejected the null hypothesis at the 

level of significance   of the test. i.e.: 

         
     (                                               )

                          
  

The Power estimated by method of moments (              ) was defined as: 

                (  (   ̂)      
 ( )) 

Where   (   ̂) was the non-central chi-squared distribution with non-centrality 

parameter  ̂ and 2 degrees of freedom,     
 ( ) was the critical value of a central chi-squared 

distribution with 2 degrees of freedom at significance level  . From the method of moments,  ̂ 

was calculated as the difference between average of simulated        and the degrees of 

freedom, i.e.:  ̂         (      )   .  

Table 3.10 contains the power of the simulation and the power estimated by the method 

of moments under different parameter settings at significance level 0.05. The first four columns 
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showed the true parameter values under each setting. The next columns showed the critical 

value, the simulation power and the asymptotic power with coverage = 8 and coverage = 40 

respectively.  

 

 

 

Table 3.10 Distribution of directly simulated power and estimated power from NCP using 

method of moments 

At-risk allele 

frequency 

Misclassification 

rate 

Coverage 

8 40 

Control Case Control Case 
critical 

value 
                   

critical  

value 
                   

0.005 0.015 

0.001 0.001 3.24 0.96 0.80 3.99 0.96 0.81 

0.04 0.04 3.33 0.84 0.70 3.70 0.93 0.79 

0.001 0.04 3.87 0.90 0.75 4.42 0.91 0.81 

0.04 0.001 3.92 0.87 0.70 4.23 0.89 0.78 

0.005 0.03 

0.001 0.001 3.24 1.00 1.00 3.99 1.00 1.00 

0.04 0.04 3.33 1.00 1.00 3.70 1.00 1.00 

0.001 0.04 3.87 1.00 1.00 4.42 1.00 1.00 

0.04 0.001 3.92 1.00 1.00 4.23 1.00 1.00 

0.02 0.03 

0.001 0.001 4.68 0.55 0.40 4.88 0.58 0.47 

0.04 0.04 4.38 0.32 0.42 5.31 0.52 0.43 

0.001 0.04 4.66 0.51 0.40 5.15 0.54 0.45 

0.04 0.001 4.50 0.50 0.40 4.98 0.51 0.42 

0.02 0.045 

0.001 0.001 4.68 0.99 0.98 4.88 1 0.98 

0.04 0.04 4.38 0.98 0.97 5.31 1 0.99 

0.001 0.04 4.66 0.97 0.97 5.15 0.99 0.98 

0.04 0.001 4.50 0.99 0.97 4.98 1 0.98 

Note: Number of cases = 1000. Number of controls = 1000. Significance level = 0.05. 

 

 

 

 



 

75 

 

Table 3.10 showed that the power determined by the simulation was always larger than 

power determined by the NCP using the method of moments. As the difference between at-risk 

allele frequencies in control and case group increased, the power increased. In the situation 

where the difference in allele frequencies was the same, low at-risk allele frequencies always had 

higher power at the same significance level. The power in the presence of differential 

misclassification was always in between the high and low non-differential misclassification 

powers when all other parameters were the same.   

Comparing the results of 40 coverage to 8 coverage, when all other parameters were the 

same, and the difference of the at-risk allele frequency in control and case group was greater than 

0, the 40 coverage had the larger critical value and larger power than the 8 coverage. for the 

same significance level. For example, when the at-risk allele frequencies in control and case 

group were 0.005 and 0.015 respectively, and the misclassification rates in control and case 

groups were 0.04 and 0.04, the 40 coverage power was 0.93 at significance level 0.05, while the 

8 coverage power was 0.84 at significance level 0.05. The critical values of the coverage 40 

seemed to be closer to the asymptotic distribution than the critical values for coverage 8. 
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Chapter 4 Discussions and Future Work 

Variants with low frequency may contribute a large fraction of risk in genetically 

associated diseases. Misclassification of the genotype reduces the power and increases the bias of 

the estimation of genetic parameters. In this dissertation, I studied the effect of misclassification 

error for case-control association studies with low frequency of at-risk allele. 

I extended the result of Ji et al. for the NCP for the Likelihood Ratio Test Allowing for 

allelic errors. The NCP was a function of the sample size, genotype frequencies and genotype 

misclassification errors. My simulation study showed that the asymptotic power using this NCP 

predicted the simulation power. The NCP thus can be used to calculate the asymptotic power for 

a fixed sample size and/or sample size for a fixed power for the association test at any 

significance level. For smaller sample sizes, power decreased as the misclassification rate 

increased for fixed minor allele frequencies in cases and controls. A large sample size was 

required to maintain the power for small minor allele frequencies. An R script that considered the 

genotype misclassification at a base pair was given in Appendix A to calculate the power gain or 

loss based on given parameter values.  

I then studied the association testing with NGS technology. I present a test statistic that 

allows for genotype misclassification using base pair reads directly from sequencing. This 

statistic can test for association with observed genotype and misclassification errors in the data. 

This statistic provided asymptotically unbiased estimations of genotype frequencies and 

genotype misclassification rates using the Bayesian posterior probability. Based on the results of 

simulation studies, low frequency of at-risk allele required a greater sample size than high 
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frequency of at-risk allele to maintain power. Also, genotyping misclassification error resulted in 

an increase in the required sample size to maintain power at a fixed level of significance.  

In this dissertation, I noticed when the at-risk allele frequency was small, the average of 

test statistic was less than 2 in the simulation studies. Possible future work would be to evaluate 

the properties of the test statistic using permutation testing. Additionally, the NCP for the 

likelihood ratio test using NGS data could be developed. In this way, power and sample size 

calculations for any parameter settings could be determined at any significance level. 
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Appendices 

Code R 

A. Non-centrality parameter from Fisher’s information matrix of association test for a 

base pair  

ncp_power_fisher<-function(pt10,pt11,q0,N,e,a){ 

q1<-1-q0 

p01<-(1-e+(2*e-1)*pt10)*q0 

p02<-(e-(2*e-1)*pt10)*q0 

p11<-(1-e+(2*e-1)*pt11)*q1 

p12<-(e-(2*e-1)*pt11)*q1 

i11<-N*(2*e-1)^2*(q0^2*(1/p01+1/p02)+q1^2*(1/p11+1/p12)) 

i12<-N*(q0^2*(2*e-1)*(1/p01-1/p02)-q1^2*(2*e-1)^2*(1/p11+1/p12)) 

i21<-N*(2*e-1)*(q0^2*(1/p01-1/p02)-q1^2*(1/p11-1/p12)) 

i22<-N*(q0^2*(1/p01+1/p02)+q1^2*(2*e-1)*(1/p11-1/p12)) 

i33<-N*(1/q0+1/q1) 

i13<-0 

i23<-0 

i31<-0 

i32<-0 

J<-i11-c(i12, i13)%*%solve(matrix(c(i22,i32,i23,i33),2,2))%*%c(i21,i31) 

ncp<-(pt10-pt11)*J*(pt10-pt11) 

power_ncp<-1-pchisq(qchisq(1-a,1),1,ncp) 
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return(c(ncp,power_ncp)) 

} 

B. Likelihood Ratio Test allowing for misclassification using NGS data by EM 

algorithm 

library(MASS) 

comb<-function (n,m){ 

 factorial(n)/(factorial(m)*factorial(n-m)) 

     } 

#a: number of settings 

EMLRT <- function (n1_cases, n1_control, S, qt0, N, V, p, a){ 

qt1 <- 1 - qt0 

N0 <- N * qt0 # Number of Controls, remains constant through each EM algorithm update 

N1 <- N - N0 # Number of Cases 

EMLRT_H0 <- function(n1_cases,n1_control, S, p, a) { 

e_matrix_H0 <- matrix(,S,2) 

p_matrix_H0 <- matrix(,S,3) 

lnL0 <- c() 

r_H0_vec <- c() 

r_control <- c() 

r_case <- c() 

control_geno <- c() 

case_geno <- c() 

control_geno_e <- c() 

case_geno_e <- c() 
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t00 <- c() 

t01 <- c() 

t02 <- c() 

t10 <- c() 

t11 <- c() 

t12 <- c() 

for (i in 1: S) { # S: starting points 

#cat ("The number of starting point:", S, "\n") 

r_H0 <- 0 

lnL0_new <- 0  

lnL0_old <- 10 

    at0_old <- runif(1,0,1) # starting point of at0 

    #at1_ini <- runif(1,0,1) # starting point of at1 

    #Under H0, at0 = at1 

    at1_old <- at0_old 

    e0_old <- runif(1,0,0.1) # starting point of e0 

# Here, assuming the symmetric error rates so that e0_21 = e0_12 

    #e0_old <- runif(1,0,0.1) # starting point of e1 

    e0_old <- e0_old 

     

    e1_old <- runif(1,0,0.1) # starting point of e1_12 

    e1_old <- e1_old 

    #e1_21_old <- runif(1,0,0.1) # starting point of e1_21 
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pt00_old <- (1-at0_old)^2 

pt01_old <- 2*at0_old*(1-at0_old) 

pt02_old <- (at0_old)^2 

pt10_old <- (1-at1_old)^2 

pt11_old <- 2*at1_old*(1-at1_old) 

pt12_old <- (at1_old)^2 

flag <- 0 

while (flag == 0) { 

if (abs(lnL0_new - lnL0_old) > 10^(-3)) { 

lnL0_old <- lnL0_new 

u00_old <- (2-0)/2*e0_old + (0/2)*(1-e0_old) 

u01_old <- (2-1)/2*e0_old + (1/2)*(1-e0_old) 

u02_old <- (2-2)/2*e0_old + (2/2)*(1-e0_old) 

u10_old <- (2-0)/2*e1_old + (0/2)*(1-e1_old) 

u11_old <- (2-1)/2*e1_old + (1/2)*(1-e1_old) 

u12_old <- (2-2)/2*e1_old + (2/2)*(1-e1_old) 

pt0_old <- pt00_old 

pt1_old <- pt01_old 

pt2_old <- pt02_old 

 

lnL0_control_old <- 0 

lnL0_case_old <- 0 

 for (m in 1:N0) { 
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  lnL0_control_old <- lnL0_control_old +  

    log((comb(V, n1_control[m])*u00_old^n1_control[m]*(1-

u00_old)^(V-n1_control[m]))*pt0_old*qt0 + 

    (comb(V, n1_control[m])*u01_old^n1_control[m]*(1-

u01_old)^(V-n1_control[m])*pt1_old*qt0) + 

    (comb(V, n1_control[m])*u02_old^n1_control[m]*(1-

u02_old)^(V-n1_control[m])*pt2_old*qt0)) 

    } 

 for (m in 1:N1) { 

  lnL0_case_old <- lnL0_case_old +  

    log((comb(V, n1_cases[m])*u10_old^n1_cases[m]*(1-

u10_old)^(V-n1_cases[m]))*pt0_old*qt1 + 

           (comb (V, n1_cases[m])*u11_old^n1_cases[m]*(1-u11_old)^(V-

n1_cases[m])*pt1_old*qt1) + 

      (comb(V,n1_cases[m])*u12_old^n1_cases[m]*(1-u12_old)^(V-

n1_cases[m])*pt2_old*qt1)) 

    } 

 lnL0_new <- lnL0_control_old + lnL0_case_old  

#ti,j: tao_ij_m  postior probability 

 for (m in 1:N0) # control group 

 { 

 t00[m] <- (u00_old^n1_control[m]*(1-u00_old)^(V-n1_control[m])*pt0_old)/  

  ((u00_old^n1_control[m]*(1-u00_old)^(V-n1_control[m])*pt0_old)+ 

   (u01_old^n1_control[m]*(1-u01_old)^(V-n1_control[m])*pt1_old)+ 

   (u02_old^n1_control[m]*(1-u02_old)^(V-n1_control[m])*pt2_old)) 

 t01[m] <- (u01_old^n1_control[m]*(1-u01_old)^(V-n1_control[m])*pt1_old)/ 
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   ((u00_old^n1_control[m]*(1-u00_old)^(V-n1_control[m])*pt0_old)+ 

    (u01_old^n1_control[m]*(1-u01_old)^(V-n1_control[m])*pt1_old)+ 

    (u02_old^n1_control[m]*(1-u02_old)^(V-n1_control[m])*pt2_old)) 

 t02[m] <- (u02_old^n1_control[m]*(1-u02_old)^(V-n1_control[m])*pt2_old)/ 

   ((u00_old^n1_control[m]*(1-u00_old)^(V-n1_control[m])*pt0_old)+ 

    (u01_old^n1_control[m]*(1-u01_old)^(V-n1_control[m])*pt1_old)+ 

    (u02_old^n1_control[m]*(1-u02_old)^(V-n1_control[m])*pt2_old)) 

     } 

 for (m in 1:N1) # case group, i=1 

 { 

 # j = 0 

 t10[m] <- (u10_old^n1_cases[m]*(1-u10_old)^(V-n1_cases[m])*pt0_old)/ 

   ((u10_old^n1_cases[m]*(1-u10_old)^(V-n1_cases[m])*pt0_old)+ 

    (u11_old^n1_cases[m]*(1-u11_old)^(V-n1_cases[m])*pt1_old)+ 

    (u12_old^n1_cases[m]*(1-u12_old)^(V-n1_cases[m])*pt2_old)) 

 

 # j = 1 

 t11[m] <- (u11_old^n1_cases[m]*(1-u11_old)^(V-n1_cases[m])*pt1_old)/ 

   ((u10_old^n1_cases[m]*(1-u10_old)^(V-n1_cases[m])*pt0_old)+ 

    (u11_old^n1_cases[m]*(1-u11_old)^(V-n1_cases[m])*pt1_old)+ 

    (u12_old^n1_cases[m]*(1-u12_old)^(V-n1_cases[m])*pt2_old)) 

 # j = 2 

 t12[m] <- (u12_old^n1_cases[m]*(1-u12_old)^(V-n1_cases[m])*pt2_old)/ 
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   ((u10_old^n1_cases[m]*(1-u10_old)^(V-n1_cases[m])*pt0_old)+ 

    (u11_old^n1_cases[m]*(1-u11_old)^(V-n1_cases[m])*pt1_old)+ 

    (u12_old^n1_cases[m]*(1-u12_old)^(V-n1_cases[m])*pt2_old)) 

  } 

 t00_sum_old <- 0 

 t01_sum_old <- 0 

 t02_sum_old <- 0 

 t10_sum_old <- 0 

 t11_sum_old <- 0 

 t12_sum_old <- 0 

 for (m in 1:N0) { 

  t00_sum_old <- t00_sum_old + t00[m] 

  t01_sum_old <- t01_sum_old + t01[m] 

  t02_sum_old <- t02_sum_old + t02[m] 

    } 

 for (m in 1:N1) { 

  t10_sum_old <- t10_sum_old + t10[m] 

  t11_sum_old <- t11_sum_old + t11[m] 

  t12_sum_old <- t12_sum_old + t12[m] 

    } 

 pt0_new <- (t00_sum_old + t10_sum_old) / N 

 pt1_new <- (t01_sum_old + t11_sum_old) / N 

 pt2_new <- (t02_sum_old + t12_sum_old) / N 
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M1_control <- 0 

M2_control <- 0 

M1_case <- 0 

M2_case <- 0 

 for (m in 1: N0) { # Control group 

  M1_control <- M1_control + n1_control[m] * t00[m] + (V - n1_control[m]) * 

t02[m] 

  M2_control <- M2_control + V * (t00[m] + t02[m]) 

    } 

 for (m in 1:N1) { # Case Group 

  M1_case <- M1_case + n1_cases[m] * t10[m] + (V - n1_cases[m]) * t12[m] 

  M2_case <- M2_case + V * (t10[m] + t12[m]) 

    } 

  e0_new <- M1_control/M2_control 

  e1_new <- M1_case/M2_case 

e0_old <- e0_new 

e1_old <- e1_new 

pt00_old <- pt0_new 

pt01_old <- pt1_new 

pt02_old <- pt2_new 

pt10_old <- pt0_new 

pt11_old <- pt1_new 

pt12_old <- pt2_new 

pt_new <- c(pt0_new, pt1_new, pt2_new) 
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r_H0 <- r_H0 + 1 

} #if 

else {flag <- 1} 

if (r_H0 >= 100) {flag <- 1}  

} # while 

e_matrix_H0[i,] <- c(e0_new, e1_new) 

p_matrix_H0[i,] <- c(pt0_new,pt1_new,pt2_new) 

lnL0[i] <- lnL0_new 

r_H0_vec[i] <- r_H0 

} # for(i in 1:S) 

write.table(e_matrix_H0, paste(paste("C:/Users/Ruiqi 

Zhang/Dropbox/Research/2014.3/IncreaseSampleSize/S", a, "/e_matrix_H0_rep", sep = 

""),p,".txt", sep = "")) 

write.table(p_matrix_H0, paste(paste("C:/Users/Ruiqi 

Zhang/Dropbox/Research/2014.3/IncreaseSampleSize/S", a, "/p_matrix_H0_rep", sep = 

""),p,".txt", sep = "")) 

write.table(r_H0_vec, paste(paste("C:/Users/Ruiqi 

Zhang/Dropbox/Research/2014.3/IncreaseSampleSize/S", a, "/r_H0_rep", sep = ""),p,".txt", sep 

= "")) 

write.table(lnL0, paste(paste("C:/Users/Ruiqi 

Zhang/Dropbox/Research/2014.3/IncreaseSampleSize/S", a, "/lnL0_rep", sep = ""),p,".txt", sep = 

"")) 

#return(lnL0) 

#cat("LRT_H0 is: ", LRT_H0, "\n") 

} # End of LRT_H0 

EMLRT_H1 <- function(n1_cases,n1_control, S, p, a){ 

e_matrix_H1 <- matrix(,S,2) 
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p_matrix_H1 <- matrix(,S,6) 

lnL1 <- c() 

r_H1_vec <- c() 

#r_H1 <- 0 # count of step 

for (i in 1: S) { # S: starting points under H1 

#cat ("The number of starting point:", S, "\n") 

r_H1 <- 0 

    at0_old <- runif(1,0,1) # starting point of at0 under H1 

    at1_old <- runif(1,0,1) # starting point of at1 under H1 

    #Under H1, at0 != at1 

    e0_old <- runif(1,0,0.1) # starting point of e0 under H1 

    # Here, assuming the symmetric error rates so that e0_21 = e0_12 

    #e0_old <- runif(1,0,0.1) # starting point of e1 under H1 

     

    e1_old <- runif(1,0,0.1) # starting point of e1 under H1 

    #e1_old <- runif(1,0,0.1) # starting point of e1 

pt00_old <- (1-at0_old)^2 

pt01_old <- 2*at0_old*(1-at0_old) 

pt02_old <- (at0_old)^2 

pt10_old <- (1-at1_old)^2 

pt11_old <- 2*at1_old*(1-at1_old) 

pt12_old <- (at1_old)^2 

lnL1_new <- 0  
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lnL1_old <- 10 

# %%%%%%%%%%% Loop starts 

t00 <- c() 

t01 <- c() 

t02 <- c() 

t10 <- c() 

t11 <- c() 

t12 <- c() 

flag <- 0 

while (flag == 0) { 

if (abs(lnL1_new - lnL1_old) > 10^(-3)) { # EM under H1 

lnL1_old <- lnL1_new 

u00_old <- (2-0)/2*e0_old + (0/2)*(1-e0_old) 

u01_old <- (2-1)/2*e0_old + (1/2)*(1-e0_old) 

u02_old <- (2-2)/2*e0_old + (2/2)*(1-e0_old) 

u10_old <- (2-0)/2*e1_old + (0/2)*(1-e1_old) 

u11_old <- (2-1)/2*e1_old + (1/2)*(1-e1_old) 

u12_old <- (2-2)/2*e1_old + (2/2)*(1-e1_old) 

lnL1_control_old <- 0 

lnL1_case_old <- 0 

 for (m in 1:N0) { 

  lnL1_control_old <- lnL1_control_old +  

    log((comb(V, n1_control[m])*u00_old^n1_control[m]*(1-

u00_old)^(V-n1_control[m]))*pt00_old*qt0 + 
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    (comb(V, n1_control[m])*u01_old^n1_control[m]*(1-

u01_old)^(V-n1_control[m])*pt01_old*qt0) + 

    (comb(V, n1_control[m])*u02_old^n1_control[m]*(1-

u02_old)^(V-n1_control[m])*pt02_old*qt0)) 

    } 

 for (m in 1:N1) { 

  lnL1_case_old <- lnL1_case_old +  

    log((comb(V, n1_cases[m])*u10_old^n1_cases[m]*(1-

u10_old)^(V-n1_cases[m]))*pt10_old*qt1 + 

           (comb (V, n1_cases[m])*u11_old^n1_cases[m]*(1-u11_old)^(V-

n1_cases[m])*pt11_old*qt1) + 

      (comb(V,n1_cases[m])*u12_old^n1_cases[m]*(1-u12_old)^(V-

n1_cases[m])*pt12_old*qt1)) 

    } 

 lnL1_new <- lnL1_control_old + lnL1_case_old  

 for (m in 1:N0) # control group 

 { 

 t00[m] <- (u00_old^n1_control[m]*(1-u00_old)^(V-n1_control[m])*pt00_old)/  

  ((u00_old^n1_control[m]*(1-u00_old)^(V-n1_control[m])*pt00_old)+ 

   (u01_old^n1_control[m]*(1-u01_old)^(V-n1_control[m])*pt01_old)+ 

   (u02_old^n1_control[m]*(1-u02_old)^(V-n1_control[m])*pt02_old)) 

 t01[m] <- (u01_old^n1_control[m]*(1-u01_old)^(V-n1_control[m])*pt01_old)/ 

   ((u00_old^n1_control[m]*(1-u00_old)^(V-n1_control[m])*pt00_old)+ 

    (u01_old^n1_control[m]*(1-u01_old)^(V-n1_control[m])*pt01_old)+ 

    (u02_old^n1_control[m]*(1-u02_old)^(V-n1_control[m])*pt02_old)) 

 t02[m] <- (u02_old^n1_control[m]*(1-u02_old)^(V-n1_control[m])*pt02_old)/ 
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   ((u00_old^n1_control[m]*(1-u00_old)^(V-n1_control[m])*pt00_old)+ 

    (u01_old^n1_control[m]*(1-u01_old)^(V-n1_control[m])*pt01_old)+ 

    (u02_old^n1_control[m]*(1-u02_old)^(V-n1_control[m])*pt02_old)) 

     } 

 for (m in 1:N1) # case group, i=1 

 { 

 # j = 0 

 t10[m] <- (u10_old^n1_cases[m]*(1-u10_old)^(V-n1_cases[m])*pt10_old)/ 

   ((u10_old^n1_cases[m]*(1-u10_old)^(V-n1_cases[m])*pt10_old)+ 

    (u11_old^n1_cases[m]*(1-u11_old)^(V-n1_cases[m])*pt11_old)+ 

    (u12_old^n1_cases[m]*(1-u12_old)^(V-n1_cases[m])*pt12_old)) 

 # j = 1 

 t11[m] <- (u11_old^n1_cases[m]*(1-u11_old)^(V-n1_cases[m])*pt11_old)/ 

   ((u10_old^n1_cases[m]*(1-u10_old)^(V-n1_cases[m])*pt10_old)+ 

    (u11_old^n1_cases[m]*(1-u11_old)^(V-n1_cases[m])*pt11_old)+ 

    (u12_old^n1_cases[m]*(1-u12_old)^(V-n1_cases[m])*pt12_old)) 

 # j = 2 

 t12[m] <- (u12_old^n1_cases[m]*(1-u12_old)^(V-n1_cases[m])*pt12_old)/ 

   ((u10_old^n1_cases[m]*(1-u10_old)^(V-n1_cases[m])*pt10_old)+ 

    (u11_old^n1_cases[m]*(1-u11_old)^(V-n1_cases[m])*pt11_old)+ 

    (u12_old^n1_cases[m]*(1-u12_old)^(V-n1_cases[m])*pt12_old)) 

  } 

 t00_sum_old <- 0 
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 t01_sum_old <- 0 

 t02_sum_old <- 0 

 t10_sum_old <- 0 

 t11_sum_old <- 0 

 t12_sum_old <- 0 

 for (m in 1:N0) { 

  t00_sum_old <- t00_sum_old + t00[m] 

  t01_sum_old <- t01_sum_old + t01[m] 

  t02_sum_old <- t02_sum_old + t02[m] 

    } 

 for (m in 1:N1) { 

  t10_sum_old <- t10_sum_old + t10[m] 

  t11_sum_old <- t11_sum_old + t11[m] 

  t12_sum_old <- t12_sum_old + t12[m] 

    } 

 pt00_new <- t00_sum_old / N0 

 pt01_new <- t01_sum_old / N0 

 pt02_new <- t02_sum_old / N0 

 pt10_new <- t10_sum_old / N1 

 pt11_new <- t11_sum_old / N1 

 pt12_new <- t12_sum_old / N1 

e0_new <- 0 

e1_new <- 0 



 

94 

 

M1_control <- 0 

M2_control <- 0 

M1_case <- 0 

M2_case <- 0 

 for (m in 1: N0) { # Control group 

  M1_control <- M1_control + n1_control[m] * t00[m] + (V - n1_control[m]) * 

t02[m] 

  M2_control <- M2_control + V * (t00[m] + t02[m]) 

    } 

 for (m in 1:N1) { # Case Group 

  M1_case <- M1_case + n1_cases[m] * t10[m] + (V - n1_cases[m]) * t12[m] 

  M2_case <- M2_case + V * (t10[m] + t12[m]) 

    } 

  e0_new <- M1_control/M2_control 

  e1_new <- M1_case/M2_case 

e0_old <- e0_new 

e1_old <- e1_new 

pt00_old <- pt00_new 

pt01_old <- pt01_new 

pt02_old <- pt02_new 

pt10_old <- pt10_new 

pt11_old <- pt11_new 

pt12_old <- pt12_new 

pt_new <- c(pt00_new, pt01_new, pt02_new, pt10_new, pt11_new, pt12_new) 
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r_H1 <- r_H1 + 1}  

else {flag <- 1} #if 

if (r_H1 >= 100) {flag <- 1}  

} # while 

e_matrix_H1[i,] <- c(e0_new, e1_new) 

p_matrix_H1[i,] <- c(pt00_new,pt01_new,pt02_new,pt10_new,pt11_new,pt12_new) 

lnL1[i] <- lnL1_new 

r_H1_vec[i] <- r_H1 

} # for(i in 1:S) 

write.table(e_matrix_H1, paste(paste("C:/Users/Ruiqi 

Zhang/Dropbox/Research/2014.3/IncreaseSampleSize/S", a, "/e_matrix_H1_rep", sep = 

""),p,".txt", sep = "")) 

write.table(p_matrix_H1, paste(paste("C:/Users/Ruiqi 

Zhang/Dropbox/Research/2014.3/IncreaseSampleSize/S", a, "/p_matrix_H1_rep", sep = 

""),p,".txt", sep = "")) 

write.table(r_H1_vec, paste(paste("C:/Users/Ruiqi 

Zhang/Dropbox/Research/2014.3/IncreaseSampleSize/S", a, "/r_H1_rep", sep = ""),p,".txt", sep 

= "")) 

write.table(lnL1, paste(paste("C:/Users/Ruiqi 

Zhang/Dropbox/Research/2014.3/IncreaseSampleSize/S", a, "/lnL1_rep", sep = ""),p,".txt", sep = 

"")) 

} # End of the LRT_H1 function 

EMLRT_H0(n1_cases,n1_control, S, p, a) 

EMLRT_H1(n1_cases,n1_control, S, p, a) 

} # End of EMLRT function 

EMLRT_all <- function (V, N , qt0, at0_ini, at1_ini, e0_ini, e1_ini, S, R, a) {  

for (p in 1:R) { 
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qt1 <- 1 - qt0 

N0 <- N * qt0 # Number of Controls, remains constant through each EM algorithm update 

N1 <- N - N0 # Number of Cases 

pt00 <- (1-at0_ini)^2 

pt01 <- 2*at0_ini*(1-at0_ini) 

pt02 <- (at0_ini)^2 

pt10 <- (1-at1_ini)^2 

pt11 <- 2*at1_ini*(1-at1_ini) 

pt12 <- (at1_ini)^2 

e0 <- e0_ini 

e1 <- e1_ini 

r_control <- c() 

r_case <- c() 

control_geno <- c() 

case_geno <- c() 

control_geno_e <- c() 

case_geno_e <- c() 

t00 <- c() 

t01 <- c() 

t02 <- c() 

t10 <- c() 

t11 <- c() 

t12 <- c() 
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r_control <- runif (N0,0,1) 

for (j in 1:N0) { # [1 

 if (r_control[j] <= pt00) {control_geno[j] <- "00"} 

 else {if ((r_control[j] > pt00) & (r_control[j] <= pt00 + pt01)) {control_geno[j] <- 

"01"} 

  else {control_geno[j] <- "11"} 

  }  

   }  # 1] 

r_case <-  runif (N1,0,1) 

for (j in 1:N1) { #[2 

 if (r_case[j] <= pt10)  {case_geno[j] <- "00"} 

 else {if ((r_case[j] > pt10)&(r_case[j] <= pt10 + pt11)) {case_geno[j] <- "01"} 

  else {case_geno[j] <- "11"} 

  } 

   } # 2] 

n1_control <- c() 

n1_cases <- c() 

for (j in 1:N0) { #[3 

 if (control_geno[j] == "00") { # no allele "1" for individual i at a single base pair position 

      xless_controls <- rbinom(1,V,e0) # number of 

misclassified "2" to "1" alleles 

      if (xless_controls == 0) {control_geno_e[j] <- "00"} 

       else {if ((xless_controls > 0) & 

(xless_controls < V)) {control_geno_e[j] <- "01"} 

        else {control_geno_e[j] <- "11"} 



 

98 

 

        } 

      n1_control[j] <- xless_controls 

      }  

 else {if (control_geno[j] == "11"){ # all allele "1" for individual i at a single base pair 

position #[4 

       xless_controls <- rbinom(1,V,1-e0) # 

numbers of observed less common alleles 

       if (xless_controls == 0) {control_geno_e[j] 

<- "11"} 

       else {if ((xless_controls > 

0)&(xless_controls < V)) {control_geno_e[j] <- "01"} 

        else {control_geno_e[j] <- "00"} 

        } 

      n1_control[j] <- xless_controls 

       } 

  else { 

   x1_controls_e <- rbinom(1,V,(1/2)*e0 + (1/2)*(1-e0)) # Number of 

observed "1" alleles in control groups 

    if (x1_controls_e == 0) {control_geno_e[j] <- "00"} 

   else {if ((x1_controls_e > 0)&(x1_controls_e < V)) 

 {control_geno_e[j] <- "01"} 

    else {control_geno_e[j] <- "11"} 

    } 

   n1_control[j] <- x1_controls_e 

   } 

  } # 4] 
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   } # 3] 

for (j in 1:N1) { #[3 

 if (case_geno[j] == "00") { # no allele "1" for individual i at a single base pair position 

      xless_cases <- rbinom(1,V,e1) # number of 

misclassified "2" to "1" alleles 

      if (xless_cases == 0) {case_geno_e[j] <- "00"} 

       else {if ((xless_cases > 0) & (xless_cases < 

V)) {case_geno_e[j] <- "01"} 

        else {case_geno_e[j] <- "11"} 

        } 

      n1_cases[j] <- xless_cases 

      }  

 else {if (case_geno[j] == "11"){ # all allele "1" for individual i at a single base pair 

position #[4 

       xless_cases <- rbinom(1,V,1-e1) # number 

of misclassified "1" to "2" alleles 

       if (xless_cases == 0) {case_geno_e[j] <- 

"11"} 

       else {if ((xless_cases > 0)&(xless_cases < 

V)) {case_geno_e[j] <- "01"} 

        else {case_geno_e[j] <- "00"} 

        } 

      n1_cases[j] <- xless_cases 

       } 

  else { 

   x1_cases_e <- rbinom(1,V,(1/2)*e1 + (1/2)*(1-e1)) 
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   if (x1_cases_e == 0) {case_geno_e[j] <- "00"} 

   else {if ((x1_cases_e > 0)&(x1_cases_e < V)) 

 {case_geno_e[j] <- "01"} 

    else {case_geno_e[j] <- "11"} 

    } 

   n1_cases[j] <- x1_cases_e 

   }  

  } # 4] 

   } # 3] 

write.table(case_geno_e, paste(paste("C:/Users/Ruiqi 

Zhang/Dropbox/Research/2014.3/IncreaseSampleSize/S", a, "/case_geno_e_rep", sep = ""), p, 

".txt", sep = "")) 

write.table(control_geno_e, paste(paste("C:/Users/Ruiqi 

Zhang/Dropbox/Research/2014.3/IncreaseSampleSize/S", a, "/control_geno_e_rep", sep = ""), p, 

".txt", sep = "")) 

u00 <- (2-0)/2*e0 + (0/2)*(1-e0) 

u01 <- (2-1)/2*e0 + (1/2)*(1-e0) 

u02 <- (2-2)/2*e0 + (2/2)*(1-e0) 

u10 <- (2-0)/2*e1 + (0/2)*(1-e1) 

u11 <- (2-1)/2*e1 + (1/2)*(1-e1) 

u12 <- (2-2)/2*e1 + (2/2)*(1-e1) 

# The initial log-likelihood 

lnL0_control_ini <- 0 

lnL0_case_ini <- 0 

 for (m in 1:N0) { 

  lnL0_control_ini <- lnL0_control_ini +  
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    log((comb(V, n1_control[m])*u00^n1_control[m]*(1-u00)^(V-

n1_control[m]))*pt00*qt0 + 

    (comb(V, n1_control[m])*u01^n1_control[m]*(1-u01)^(V-

n1_control[m])*pt01*qt0) + 

    (comb(V, n1_control[m])*u02^n1_control[m]*(1-u02)^(V-

n1_control[m])*pt02*qt0)) 

    } 

 for (m in 1:N1) { 

  lnL0_case_ini <- lnL0_case_ini +  

    log((comb(V, n1_cases[m])*u10^n1_cases[m]*(1-u10)^(V-

n1_cases[m]))*pt10*qt1 + 

           (comb (V, n1_cases[m])*u11^n1_cases[m]*(1-u11)^(V-

n1_cases[m])*pt11*qt1) + 

      (comb(V,n1_cases[m])*u12^n1_cases[m]*(1-u12)^(V-

n1_cases[m])*pt12*qt1)) 

    } 

 lnL0_ini <- lnL0_control_ini + lnL0_case_ini  

write.table(lnL0_ini, paste(paste("C:/Users/Ruiqi 

Zhang/Dropbox/Research/2014.3/IncreaseSampleSize/S", a, "/lnL_ini_rep", sep = ""), p , ".txt", 

sep = "")) 

EMLRT(n1_cases, n1_control, S, qt0, N, V, p, a) 

} # Replicates 

} # End of EMLRT_all function 

 

 


