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Abstract of the Dissertation

Non-adiabatic Dynamics of Gene Regulatory Network

by

Cong Chen

Doctor of Philosophy

in

Physics

Stony Brook University

2015

Gene regulatory network is a mathematical model of gene expression
and regulation in cell environment. The concept of network comes from
network in math and computer science. In gene network each node is a
gene that has different expression level and links between nodes repre-
sent direct regulation (activation or repression). Gene network is stochas-
tic with intrinsic noise from biochemical reactions involved and extrinsic
noise from environment. It is non-equilibrium with frequent matter/energy
exchange and active entropy production. One crucial character of gene
network is the involvement of multiple timescales: timescale of protein
synthesis/degradation and timescale of regulation processes. Conven-
tional studies are concentrated at adiabatic limit where regulation pro-
cesses are much more frequent than protein synthesis/degradation and
adiabatic approximation is valid. We explore non-adiabatic dynamics of
gene network by develop a mapping from N-dimensional protein concen-
tration space to 2N extended space using similarity to quantum mechanics
and path integral. We applied our theory to self activator which is the sim-
plest network motif. Our theory is able to explain steady states at differ-
ent adiabaticity and demonstrates non-equilibrium properties like eddy
current. We also studied relationship between cancer heterogeneity and
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non-adiabatic dynamics of core cancer network. In non-adiabatic regime,
the cancer network shows alternation of phenotypic states, weaker stabil-
ity, optimal transition rate and diversity of transition paths. This suggests
possible source of cancer heterogeneity from non-adiabatic dynamics of
core cancer network.
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Chapter 1

Introduction
1.1 Gene Regulatory Network
1 2

A gene is a piece of DNA sequence that encodes a functional protein.

Within a cell, proteins can be structural and accumulate, or they can be

enzymes that catalyse specific reactions. There are thousands of genes in

a single cell, the complex functions of the cell is largely determined by the

expression of different genes. For example, yeast has over 5000 genes. For

the fermentation process during which yeast processes sugar into ethanol,

the expression level of over 2000 genes are changed. What is the mecha-

nism for different genes to work coorperately during the process? Human

has about 20000-25000 genes. For a single cell in human, only 20% of all

human genes are expressed at any given time. What is the mechanism that

determines certain genes are expressed while certain genes are repressed

1Chapter 3 is largely a reprint of a published paper coauthored with my advisor Pro-
fessor Jin Wang and Kun Zhang, Haidong Feng, Masaki Sasai:
”Multiple coupled landscapes and non-adiabatic dynamics with applications to self-
activating genes”
Physical Chemistry Chemical Physics, 2015, DOI: 10.1039/C5CP04780C

2Chapter 4 is largely a reprint of a submitted paper coauthored with Professor Jin
Wang to Scientific Reports and is currently under review
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in the same cell environment?

The answer to both questions is the gene regulation mechanism. It is

now understood that the expression of a gene (whose transcription prod-

uct is a protein or an RNA) is not determined solely by the gene itself.

It can be activated or repressed by another gene. The regulation usually

takes the form of binding/unbinding of a regulatory protein that is the

translation product of the regulatory gene to a piece of DNA sequence on

the target gene that controls the transcription process.

The fact that a gene can be activated or repressed by another gene

makes the whole system a network. Within the network, each node repre-

sents a protein, mRNA or protein/protein complexes that is the transcrip-

tion/translation product of a gene. The links or edges between nodes are

activation or repression reactions. The evolution of the network controls

the expression level of protein and RNA products.[1, 2, 3].

Gene network is essential to the biological behaviors of the cell. In

a living organism, though all the cells share the same genome, they can

show very different phenotypes. Different genes can be activated and

as a result cells differentiate differently and have different fates.[4] This

cell differentiation process is controlled by gene network.[5] During the

differentiation process, the network has to be stable so that differenti-

ated cells of the same type can have consistent gene expression levels

and stable functionality.[6, 7] There’s also uncertainty associated with the

network so that mutations can happen and biological evolution is possi-

ble. Gene network responds to external environment. In example, when

yeast cells are placed in sugar solution, the high sugar concentration will

trigger the fermentation network to produce enzymes to process sugar

into alcohol.[1] Similar behaviors are found in multicellular animals. This

kind of behaviors is essential for cells to survive and evolve in different

environments.[8, 9]
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Gene network has vast implications in biology and clinical therapy.

For example in one of the most fundamental problems in biology, the

cell fate problem. Stem cells that share the same genome will differen-

tiate into different cells with different functionality. The differentiation

process is controlled by gene network. Recently there has been exciting

development in this research field. Researchers are able to transform a

differentiated cell from animal into a multi-potent cell that has the abil-

ity to re-differentiate.[10, 11]. This makes reprograming and control of

differentiation network possible. It has the future potential to make re-

generative medicine.[12] Another important implication is the cancer core

network that controls the development of cancer. It is now understood

cancer is caused by collective gene-gene interactions as well as single gene

mutation.[13, 14, 15, 16, 17] From the gene network point of view, cancer

can be seen as a biological state of gene regulatory network that is hidden

deep under the complex network dynamics. Cancer state is not accessible

in normal situations but can be reached in rare cases. The network point

of view refreshes our knowledge about cancer and provides new ideas for

cancer therapy.

To study gene network, on one hand we need to study the structure of

the network through wiring diagram. The wiring diagram of a network

provides a map of all regulatory interactions. For example we know a

certain protein won’t have a high concentration if its repressor is present,

or will likely have a high concentration if its activator is present. For a

toggle switch with two genes that repress each other, there will not likely

be a stable state where both genes are activated at the same time.[18] A

large network usually contains many small network motifs.[4] For exam-

ple, one gene self-activator/repressor or two gene toggle switch.[19, 20]

In other words, smaller network motifs are building blocks of larger net-

work. It’s important for us to understand behavior of small network motif
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as well as structure of larger networks.

However, the wiring diagram of the network is not the whole story. To

get a full understanding of gene network we need to study its dynamics as

well. To study network dynamics, first of all we need to consider all bio-

chemical reactions involved explicitly. Usually they include the protein

synthesis/degradation and the regulatory reactions. One typical regula-

tion reaction is through binding/unbinding of one regulatory protein or

protein complexes to the promotor site of the target gene.[21] As we will

see different reaction rates will result in different evolution results. Besides

bio-chemical reaction rates, there are several factors about gene network

we need to consider. Here we give a brief introduction.

1.2 Properties Of Dynamics

One of the major task in studying gene network dynamics is to identify

all possible biological states that are stable steady states of gene network

with different gene expression levels. Gene expression level is measured

by corresponding protein copy number or concentration. Gene network

dynamics, when considered in phase space composed of protein concen-

trations, is a multi-dimensional thermodynamic system. This thermody-

namic system is different from conventional physical thermodynamic sys-

tems in several ways.

First of all. It is an open system that has frequent energy, matter and in-

formation exchange with outer cell environment. With frequent exchange

of matter, energy and information, gene network is an open and non-

equilibrium system.[22] As we shall see in the self activator and cancer

core network example later, even after long evolution the system reaches

steady state with stable probability distribution, there still can be a non-

trivial flux that breaks detailed balance.[22, 23] As a result of system be-
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ing non-equilibrium, the kinetic path from one stable biological state to

another is irreversible. The forward and backward transition following

the same path will not have equal probability. Furthermore, the opti-

mal transition path doesn’t follow the gradient of a potential function but

drifted by the non-gradient steady state flux. This makes the forward

and backward optimal transition paths different. The fact that forward

and backward optimal paths go through different intermediate states can

have implications in many biological systems and clinical therapy.[24] The

non-equilibriumnes can be measured quantitatively by entropy produc-

tion rate.

Second of all, gene network is a stochastic system with intrinsic and

extrinsic fluctuations. In cell environment, the copy number of proteins

is limited with typical number of a few hundreds.[25] The intrinsic fluc-

tuation from bio-chemical reactions involved, though can be ignored in

bulk chemical system when molecule numbers are large, needs to be con-

sidered explicitly in gene network and plays an important role in gene

network evolution.[26] On the other hand, the extrinsic fluctuation from

biological and thermal environment is important too. Intrinsic fluctuation

and extrinsic fluctuation have different properties. Intrinsic fluctuation is

‘local’ meaning it depends on current protein copy numbers and gene net-

work state. Extrinsic fluctuation from the environment is usually modeled

as ‘global’ noise. Both intrinsic and extrinsic fluctuations are assumed to

be space and time uncorrelated. The strength and properties of fluctuation

have a dramatic effect on the evolution of gene network.[27, 28, 29, 30, 31]

The dynamics of the network is usually assumed to be Markovian.

That is, at any given time, the future state of the system at the next time

step only depends on the current state and doesn’t depend on any infor-

mation of the past or the momentum. The deterministic part of the dynam-

5



ics can be modeled with Ordinary Differential Equation (ODE).[32, 33]

ẋ = F(x) (1.1)

x means the protein or RNA (corresponds to each node in the network)

concentration. For a N-network that has N nodes, x will be an N-vector.

On the left hand side is the shift of the system during the next time step.

On the right hand side F (x) is a deterministic force that is a function of

x. The dependence on x reflects the nature of bio-chemical reactions in-

volved. Certain reactions are more likely to happen when concentrations

of proteins involved are high or low.

This type of determinist equation is widely used in the study of many

different system dynamics. It is used in the study of linear and non-linear

dynamics[34] and systems like chaos, biological and social networks. The

fact that the deterministic force depends only on x reflects the Markovian

property of deterministic dynamics. Driving force doesn’t know the ‘mo-

mentum’ and has no memory of the past. The ‘attractor’ of such system

can be identified as solutions of F (x) = 0. For gene network this corre-

sponds to possible biological states. After long time evolution the network

reaches steady state, the stable gene expression levels quantified by x, or

the location in the phase space, tends to be at those ‘attractors’.

The dynamics of gene network, as mentioned, is stochastic. For this

purpose the dynamic equation has to be stochastic instead of determinis-

tic. The Stochastic Differential Equation (SDE) is usually used to model

stochastic dynamics:[27, 35]

ẋ = F (x) + η(x, t) (1.2)

This is also known as Langevin equation.[36] In this equation, η(x, t)

is the intrinsic or extrinsic fluctuation. It is also an N-vector that corre-
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sponds to N nodes of the network. When take average over the distribu-

tion of fluctuation, we have the fluctuation variance < η(x, t)η(x′, t′) >=

Dij(x)δxx′δtt′ . Dij(x) is an N × N matrix function of x known as diffusion

coefficients/matrix. It is symetric and measures the strength and distribu-

tion of the fluctuation. The two delta functions indicate fluctuations are

neither time or space correlated.

In the study of gene network, one important task is to identify all pos-

sible biological states. In the case of zero or weak fluctuation this can

be done by solving ODE F(x) = 0. We can also study the local sta-

bility around the ‘attractor’. However, when fluctuation is present, the

emergence of fluctuation makes the trajectory of the system unpredictable.

Even if we prepare two systems at exactly the same initial condition, the

evolution results will be very different. The local attractor of ODE doesn’t

have to be the final stable states.

To study global distribution of biological states, as well as global stabil-

ity and thermodynamical properties, instead of trajectory which is stochas-

tic and local we can study the evolution of the system from the probability

evolution point of view. We will see the landscape theory based on steady

state probability distribution provides a global picture of biological states

distribution, and unveils several thermodynamical properties of gene net-

work.

1.3 Adiabatic and Non-Adiabatic Dynamics

The stochastic dynamics of gene network includes multiple bio-chemical

reactions. It must include synthesis and degradation of transcription fac-

tors (TF) and regulatory processes like binding/unbinding of transcription

factors to genes. While they all play important roles in shaping epigenetic
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landscape,[37] they can be grouped into regulatory processes that change

gene states (activate or repress), and protein synthesis/degradation. This

introduces a hierarchy in the timescales involved.

In the conventional study, due to the complexity of the system a sim-

pler circumstance is usually considered where the protein translation/degradation

is much slower than the regulatory processes. This is called adiabatic

limit.[19, 38, 39, 40, 41] Under adiabatic limit, the gene states, or the ensem-

ble of DNA occupancies can be thought to reach quasi-equilibrium as a

result of frequent switches. The gene network evolution can be thought as

a birth-death problem in protein concentration space with averaged syn-

thesis rate that is determined by the concentration of transcription factors.

The adiabatic limit approximation works well for prokaryotic cells. It

greatly simplifies the dynamical equation from size exponential of N mas-

ter equation to size linear in N Fokker-Planck equation. But for eukaryotic

cells, processes like chromatin de-condensation and folding of DNA can

reduce the binding/unbinding speed and a lot of times we are at non-

adiabatic regime. [42, 43] In order to understand eukaryotic gene network

dynamics, we need to consider binding/unbinding processes at least at

comparable rates to transcription factor synthesis/degradation.

While some of the non-adiabatic stochastic system dynamics has been

studied numerically like electron transition, network dynamics, molecular

motors[19, 20, 41, 44, 45, 46], there’s not a global theoretical framework to

quantify the global properties of biological systems under non-adiabatic

dynamics. For non-adiabatic gene network dynamics, adiabatic approxi-

mation is no longer valid. The landscape can still be constructed numer-

ically, but the relationship between landscape potential and dynamics is

not clear and global properties like steady state flux, global stability and

thermodynamical properties like transition can be hard to quantify. On

the numerical end the master equation that governs the dynamics grows
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exponentially in size and Monte Carlo simulation quickly becomes ineffi-

cient.

In the third chapter we develop a theoretical framework by using the

similarity between gene network dynamics and quantum mechanics. In

the fourth chapter we do a detailed study of non-adiabatic dynamics in a

cancer network and unveil its relationship to cancer heterogeneity.
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Chapter 2

Dynamics Properties And Cal-
culation Of Transition Rate
2.1 Landscape And Flux Theory

The dynamics of stochastic system can usually be modeled with Langevin

equation[34, 47]:

ẋ = F (x) + η(x, t) (2.1)

Langevin equation can be interpreted as the trajectory of stochastic sys-

tem evolution in phase space. At each time step, system undergoes a deter-

ministic drift governed by driving force F, and a random drift determined

by diffusion coefficient.

The trajectory picture clearly demonstrates different roles determinis-

tic force and random fluctuation play in system dynamics. However it is

not helpful when we want to study global properties like distribution of

stable states, robustness and thermodynamical properties like transition

paths and rates. We need a probability description in phase (protein con-

centration) space. The probability of finding the system being at a specific

10



point in phase space can be defined as[48]

P (x, t) =< δ(x− x′(t)) >η

Here x′(t) is a solution of the dynamical equation and < . . . >η means

average with respect to the noise. We require P to be properly normalized∫
P (x, t)dx = 1.

In the case there’s no fluctuation, the dynamic equation is determin-

istic without fluctuation component.ẋ = F (x). Average over noise in the

expression of probability distribution can be removed P (x, t) = δ(x−x′(t)).

The time derivative of P can be written as

∂tP (x, t) = −ẋ′ d
dx
δ(x− x′(t))

= −F (x′)
d

dx
δ(x− x′(t))

= − d

dx
(F (x′)δ(x− x′(t)))

= − ∂

∂x
(F (x)P (x, t))

This describes the probability evolution under a deterministic drifting

force. It is a special case of Fokker Planck equation when the fluctuation

is turned off. When we have both deterministic force and fluctuation, we

need to use stochastic calculus and consider Kramers Moyal expansion

of Langevin equation explicitly. Under the same spirit, it can be shown

that the Langevin equation that describes trajectory is equivalent to the

Fokker-Planck equation that describes probability evolution[49]:

∂

∂t
P (x, t) = − ∂

∂x
(F(x))P (x, t) +

1

2

∂2

∂x2
(D(x)P(x, t)) (2.2)

The idea of landscape was introduced in the study of protein folding

and dynamics.[50] For a quasi-equilibrium system, there exists a potential
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energy surface. The evolution of the system is like a charged (gravitaional

or electrical) particle moving on the energy surface. The local minimum

of the potential energy can be identified as stable states, they are local at-

tractors that traps the system. The system evolves in a gradient way. It

always escapes high potential mountains and gets attracted by low poten-

tial basins.

Landscape picture is a very helpful method in studying global proper-

ties of stochastic biological systems. The topography of the energy surface

helps us visualize the distribution of stable biological states in phase space.

It helps us identify possible transition paths and intermediate states. Re-

lationship between potential energy function and system dynamics can

be constructed so that we know better how dynamics shapes landscape,

which is of both scientific and clinical interest.

Without loss of generality, we will take a Fokker-Planck system as an

example where there is a clear relationship between landscape potential

and dynamics. We will discuss different cases with detailed balance kept/broken

and if there is emergence of non-zero steady state flux. The idea of land-

scape is generalized to gene network. A potential energy surface can be

constructed where local basins are identified as possible phenotypic states.

As we will see, for gene network in general it is hard to construct rela-

tionship between landscape potential and dynamics. It’s hard to quantify

steady state flux and thermodynamical properties.

For the Fokker Planck system we have above with driving force F and

diffusion matrix D, its physical meaning is how probability distribution

P (x, t) evolves with time. On the right hand side of Fokker Planck equa-

tion, the first term is the drift term associated with deterministic driving

force and the second term is the diffusion term associated with stochastic

fluctuation.

Compared with probability conservation equation, the Fokker-Planck
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equation can be written in a similar way with right hand side as divergent

of a flux term.
∂

∂t
P (x, t) +∇ · J(x, t) = 0

Here, the flux J(x, t) is N-dimensional vector and depends on x and t.

It is a probability flux that measures the probability flows in and out of the

point in phase space.

After long time evolution, the probability distribution will reach steady

state ṖSS0. The probability conservation equation implies the steady state

flux is divergent free∇ · JSS = 0. For equilibrium system, steady state JSS

itself is zero. There’s no flux at steady state, detailed balance is constructed

and the system is at equilibrium. A clear analytical relationship can be

constructed between landscape potential and dynamics.

For more compact and concise results, we absorb the factor 1
2

into the

definition of D just for this section. When system reaches steady state with

ṖSS = 0, the steady state probability distribution PSS doesn’t change with

time. If at steady state the system is at detailed balance with JSS = 0, we

have FPSS − ∂(DPSS) = 0. In the case D is constant which means the

fluctuation is uniform and global, this indicates the driving force is a pure

gradient of a potential function F = D∂ ln(PSS). Further we can see the

steady state probability distribution has the form of PSS = eD
−1

∫
F·dx. We

can identify the landscape potential formally as V = −
∫
F/D · dx and

PSS = e−V . It is clear from this equation that landscape potential is related

to driving force F as well as fluctuation D. F plays the role of a conserva-

tive force field that can define a potential when integrate over x. D plays

the role similar to a ‘metric’ in a curved space. For such system, parti-

tion function and free energy can be constructed, equilibrium statistical

mechanics can be applied and thermodynamical quantities like the global

stability, global phase, phase diagram are studied.[23, 51, 52, 53, 54]

When the detailed balance is broken, non-trivial flux emerges as a sign
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of system being non-equilibrium. Statistical mechanics for equilibrium

system can not be applied and quantifying global thermodynamical quan-

tities can be challenging. First of all, even at steady state when PSS doesn’t

change with time, steady state flux JSS is non-zero. The driving force is no

longer gradient and will include a curl term. In the case diffusion matrix

is constant we have F = D∂ ln(PSS) − JSS/PSS . The driving force de-

composition implies that driving force contains a gradient part that plays

the role of conservative force field which defines the potential energy. It

also contains a curl term that is proportional to the steady state flux. The

non-equilibrium potential is related to steady state probability distribu-

tion in a similar manner as equilibrium potential does. But this time non-

equilibrium potential is related to non-zero steady state curl flux which

is not known priori. The stochastic dynamics of biological system is not

determined by the gradient potential alone, but also by the non-zero flux.

The emergence of steady state flux is a character of system being non-

equilibrium and is not present when system is equilibrium with detailed

balance.[22, 23, 52, 54, 55, 56, 57]

Gene network is a non-equilibrium stochastic system. Moreover it

is not governed by Langevin or Fokker-Planck equations (gene network

is governed by chemical master equation). Landscape potential can still

be constructed numerically but it can be hard to build a relationship be-

tween landscape and dynamics. We can formally define landscape po-

tential as V = − ln(PSS) so that we still have PSS = e−V . PSS can be

achieved numerically through Monte Carlo simulation[58, 59, 60] so that

landscape can be constructed numerically. However, it is not clear in this

case how landscape potential is related to driving force and fluctuation.

Or in other words, how driving force and fluctuation will affect landscape,

stable states, steady state flux, global stability and other thermodynamic

quantities.
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Equilibrium and non-equilibrium system landscapes are different in

many ways. From the construction steps, equilibrium landscape can be

constructed directly from underlying driving force and diffusion matrix.

Driving force contains only gradient term. Similar to conservative force

in physics it can define a potential energy whose local minimum corre-

sponds to a stable biological state of the network. The stochastic dynam-

ics is purely determined by gradient force. Non-equilibrium landscape, on

the other hand, is not known priori. It needs to be constructed from steady

state probability distribution. The driving force in this case contains con-

servative gradient force as well as curl flux force. The steady state is non-

equilibrium with global non-zero flux that breaks detailed balance. The

steady state flux is a measure of frequent matter and energy exchange with

outer biological environment. The stochastic dynamics of non-equilibrium

system is governed by gradient force and curl flux.

2.2 Transition Rate And Path Integral

An important problem in gene network dynamics is to study transitions

between stable biological states induced by noise. In this section we give

a brief introduction to the escaping problem and show how it is related to

path integral method. We will apply this method in the next two chapters

when we study transition paths and rates.

Assume the network we have, when reaches steady state after long

time evolution, shows multiple stable states. If we prepare the system at

one of the stable states, when the fluctuation is small (temperature is low),

There’s a hierarchy in timescales. The distribution thermalize inside the

well in a short time. But it takes a relative long time to escape the well due

to the barrier.
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Assume initially the system is at a stable state with protein concentra-

tion x1, the barrier top is xs. xs is the boundary of the escaping problem.[61]

If given infinite long time, the system will surely escape to infinity.

The escaping rate is defined as:

R =

∫
boundary jds∫
x1 well ρdx

(2.3)

From quantum mechanics we know the out going current corresponds

to the imaginary part of energy.

−2ImE

∫ xs

−∞
|ψ|2dx =

1

2im
(ψ∗∇ψ − ψ∇ψ∗) = j (2.4)

In one dimension this is equivalent to:

R(En) = j[

∫
dx|ψ|2]−1 = −2ImEn (2.5)

So escaping rate is proportional to thermal weighted average of the

imaginary part of energy, that is the imaginary part of partition function.

The problem becomes how to get the imaginary part of partition function.

R = −2Im[
∑
n

Z−1e−En/DEn] = 2Im[
∂

∂β
lnZ] (2.6)

here β = 1
D

. Assume we have two stable states x1 and x2 at steady

state of gene network evolution. In landscape picture, the steady state

probability distribution has the form PSS = e−V , where x1 and x2 are the

two local minimum of landscape potential V .

This time initial distribution cannot escape to infinity and energy is

real. We prepare the system initially at one stable state x1. It reaches equi-

librium inside x1 potential well within a short time. Because of the barrier
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between x1 and x2 is high, it takes a relative long time T for the ’particle’

to jump to x2 potential well. The escaping rate will be defined in the T

timescale while the probability distribution mostly remains inside x1 po-

tential well at equilibrium while there’s a small flux penetrates the barrier.

We can calculate transition rate by studying how initial distribution

decays with time.[62]

〈x1, tf = T | e−HT |x0, ti = 0〉

For a Fokker-Planck system we discussed in the last section.

∂tP = −∇(FP ) +
1

2
∇2P (2.7)

Define ’momentum operator’ p = −∇, the above equation has the form

of Schrodinger’s Equation:

∂tP = [
1

2
Dp2 + p · F ]P = ĤP (2.8)

Ĥ is the Hamiltonian operator.

This tells us the probability to propagate from one point to another

point near it is:

〈x1| 1 +Hδt |x2〉 ≈ 1− Lδt (2.9)

where L is Lagrangian:

L =
1

2D
(ẋ− F )2 (2.10)

This naive derivation didn’t consider stochastic properties of the sys-
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tem. To count stochasticity in, instead of normal integral we have to use Ito

calculus or Stratonovich integral. It is proved[63] the correct Lagrangian

under stochastic calculus is:

L =
1

2D
(ẋ− F )2 +

1

2
∇ · F (2.11)

Path integral tells us the probability to propagate from initial point(xi, ti =

0) to final point (xf , tf = T ) is:

P = 〈xf | e−HT |xi〉 = N

∫
[Dx]e−S (2.12)

On the right hand side S is action that follows a specific path:

S =

∫ T

0

dtL(x, ẋ, t) (2.13)

In order to calculate the transition amplitude, we have to integrate over

all possible paths. Each path contributes a factor that is proportional to

the exponential of its negative action. The effective hamiltonian can be

constructed follow standard Legendre transformation.

H =
1

2D
ẋ2 − 1

2D
F 2 − 1

2
∇ · F

=
1

D

(
1

2
ẋ2 − Veff

)
(2.14)

Veff is the effective potential. The effective potential is different from

the landscape potential.
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Veff =
1

2
F 2 +

D

2
∇ · F (2.15)

The path integral formalism tells us: a dissipative bio-system under

FPE with landscape potential V is equivalent to a charged particle moving

in effective potential Veff , at least in the sense of path integral. We also

notice that when diffusion matrix D is small, that is, in the limit where

fluctuation is weak. Veff is governed by the first term. The two stable

points have F = 0, correspond to Veff = 0. This agrees with our earlier

dissicusion that in the deterministic limit the solution of ODE corresponds

to stable states. The saddle point of the barrier also has F = 0, thus Veff =

0. The effective potential has the shape of ‘W ’.

Now we can calculate the ’stay’ probability. The largest contribution

comes from oscillations around the stable point, and this part is trivial.

The next leading contribution comes from the particle initially at x1,

going to the saddle point xs and bounce back. We use instanton/anti-

instanton method to calculate this.

Instanton is the classical solution of equation of motion, connecting

initial point x1, ti and final point x2, tf . We get this solution by minimizing

action. We will call instanton trajectory xc(t) and corresponding action

S0.[64]

According to Caroli[65], we only need to consider instanton of infinite

large time T →∞, or instanton with zero energy for our own purpose. We

use semi-classical approximation, that is only consider contribution from

trajectories around instanton:

x(t) = x(t)c + y(t) (2.16)
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In general y can be expanded in eigenmodes:

y =
∑
n

λnyn (2.17)

yn(t = 0) = yn(t = T ) = 0 (2.18)∫ T

0

yn(t)ym(t) = δn,m (2.19)

Use that δS
δx
|x=xc = 0, and keep the second order of y in the exponential,

the probability becomes:

P = Ne−S0

∫
[Dy] exp−{ 1

D

∫ T

0

dt(ẏ2 − (∇ · F )ẏy

+
1

2
∇2(

1

2
F 2 +

D

2
∇ · F )y2)} (2.20)

the second term in the exponential is zero as:

∫ T

0

dt(∇ · F (xc))ẏy =
1

2
(∇ · F (xc))y

2

∣∣∣∣t=T
t=0

= 0 (2.21)

The survival probability becomes:

P = Ne−S0

∫
[dy] exp−

∫ T

0

dt[
1

2D
(ẏ2 − V ′′y2)]

= Ne−S0 det[
1

D
(−∂2

t + V ′′)]−1/2 (2.22)

This is the contribution from one instanton. Similarly there will be anti-

instanton going from xf to xi. Because of the emergence of flux, instanton

and anti-instanton have different trajectories. Contribution from one anti-

instanton can be written as:
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Ne−S
∗
0 det[

1

D
(−∂2

t + V ′′)∗]−1/2 (2.23)

Instantons and Anti-instantons are well localized pseudo-particles in

time axes. To ensure we get to xf at the end, the trajectory must be xi →
xf → xi → xf → xi . . .→ xf or the distribution of instanton, anti-instanton

must be i→ a→ i→ a . . .→ i.

Integrate over the locations of centers gives us:∫ T

0

dt1

∫ T

0

dt2 . . .

∫ T

0

dtn =
T n

n
(2.24)

In the case of multi instanton we have to consider corrections from

finite transition time of each transition. Contribution from instanton and

anti-instanton becomes:

Pi = NKe−S0

Pa = NK∗e−S
∗
0 (2.25)

Sum over all such trajectories, we get the survival probability as well

as transition rate R.

P = N
∑
evenn

(
√
KK∗e−

1
2

(S0+S∗0 )T )n

n!

= N(eRT + e−RT ) (2.26)
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2.3 Calculation Of Transition Rate

We first explain why we only consider instanton with zero energy. Strictly

speaking, to calculate transition rate we have to calculate:∫ ∞
0

dTe−S(T ) (2.27)

No matter how large the exponential is when T is finite, when the inte-

gral goes to infinity, it converges to:∫ ∞
0

dTe−S(T ) → Te−S(∞) (2.28)

which means the integral is controlled by S(∞).

We have to calculate two things: the prefactor N and the exponential

factor K(K∗).

Calculation of N is somewhat standard. Assume effective potential V

can be approximated as V ≈ 1
2
ωr2. For large T, we have:

N [det(−∂2
t + ω2)]−1/2 = (

ω

π
)1/2e−ωT (2.29)

On the other hand, by carefully integrate over zero mode and compare

with one instanton case we can get:

K =
(S0

2π

)1/2

∣∣∣∣ det(−∂2
t + ω2)

det′(−∂2
t + V ′′)

∣∣∣∣1/2 (2.30)

K∗ =
(S∗0

2π

)1/2

∣∣∣∣ det(−∂2
t + ω2)

det′(−∂2
t + V ′′)∗

∣∣∣∣1/2 (2.31)
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According to Coleman[64], if we can construct solution of equation:

(−∂2
t +W )ψ = λψ (2.32)

with boundary condition:

ψλ(t = 0) = 0 (2.33)

∂tψλ(t = 0) = 1 (2.34)

We have:

det(−∂2
t +W 1)

det(−∂2
t +W 2)

=
ψ1(T )

ψ2(T )
(2.35)

thus:

det(−∂2
t + ω2)

ψ0(T )
= πN2 (2.36)

By approximate effective potential as harmonic oscillator around stable

point and construct wave function ψ0 we see we get correct normalization

constant N.

Similarly for the other determinant, we want to construct solution from

two zero modes of fluctuation equation. When T is large, zero mode be-

haves as:

x1 = S−1
0 dx̄/dt→ Ae−|t| (2.37)

y1 → Ae±|t| (2.38)

A can be determined from ’time translation’ zero mode:

t =

∫ x̄

0

dx(2V )−1/2 = − ln[S
−1/2
0 A−1 ˙̄x] (2.39)
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Solution of smallest eigenvalue reads:

ψ0 = (2A)−1(eT/2x1 + e−T/2y1) (2.40)

And finally:

det′(−∂2
t + V ′′)

det(−∂2
t + ω2)

=
ψ0(T )

λ0eT/2
=

1

2A2
(2.41)

This method provides a way to calculate prefactor. Next we discuss

how to calculate S0 which is the action of classical path. The effective

action S =
∫
Ldt is the exponential part of the path integral which calcu-

lates the probability of the system travels from initial point to final point.

In order for the path to make dominant contribution among all paths, the

corresponding action should be minimized. From the effective Lagrangian

we can get conjugate momentum to be:

p =
∂

∂x
L =

1

D
(ẋ− F )

The hamiltonian is

E = pẋ− L =
1

2D
ẋ2 =

1

2D
ẋ2 − 1

2D
F 2 − 1

2
D∂(F/D) =

1

2D
ẋ2 − Veff

We can see the inverse of diffusion matrix D−1 plays the role of ‘metric’

in a curved space. We can intorduce line element in curved space as dl =√
( 1
D

)µνdxµdxν . There are two terms on the right hand side. The first term

can be explained as kinetic energy term. The second depends only on

x and can be interpreted as an effective potential energy. The energy is
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conserved for classical path. From above equation we get

dt =

√
D−1
µν dxµdxν

2(E + Veff )
= dl

√
1

2(E + Veff )
(2.42)

We are considering action of classical path. The integral is challenging

since we are integrating over infinite long time and infinite slow speed.

Luckily we can transform the integral over time into line integral in curved

space. Use the expression of the line element in curved space and dt, the

action can be transformed into integral in space[66, 67] :

S =

∫
pẋdt =

∫ xf

xi

√
2(E + Veff )dl −

∫ xf

xi

F/Ddx (2.43)

The path that minimizes above action corresponds to the dominant

path connecting initial and final states. The calculation of prefactor and

dominant path action complete the calculation of the transition rate. We

will apply this method in the next two chapters.
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Chapter 3

Multiple coupled landscapes
and non-adiabatic dynam-
ics
3.1 Introduction

In physical and biological systems that have frequent energy and matter

exchange with environments (e.g. gene regulatory networks), stochastic-

ity is often unavoidable with intrinsic and extrinsic fluctuations [68, 69].

These stochastic processes have been modeled mathematically as drifted

Brownian motions, where the system evolves in a way similar to a point

particle moving diffusively along an underlying landscape. This similar-

ity has led to a landscape picture where steady states are identified as local

minimums and non-equilibrium dynamics as flows on the landscape de-

termined by the landscape gradient and a curl flux measuring the degree

of deviation from detailed balance [20, 23, 24, 53, 70].

A single landscape, however, is not sufficient for describing the pro-

cess which is dynamically modulated by the discrete change in the system
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state as in gene regulatory networks [39, 71, 72] and molecular motors

[73, 74, 75]. By regarding discrete change as hopping between different

landscapes, these processes are described by coupled multiple landscapes,

which are characterized with different timescales, timescale within each

landscape and timescale of transitions among landscapes.

In order to quantify this hierarchy in timescales, we introduce an adi-

abaticity parameter ω. Large ω corresponds to the adiabatic limit where

the inter-landscape hoping is more frequent than the intra-landscape mo-

tion. Due to the rapid transitions, a single effective landscape emerges

from the ‘average’ of multiple landscapes. In the small ω non-adiabatic

limit, the description can be simplified as the system traps in one of the

discrete landscapes for a long time [19, 20, 39, 41, 71, 72]. In the moder-

ate non-adiabatic region, however, a proper physical understanding and

analytical treatment is still challenging as numerical simulation quickly

becomes inefficient as system size grows.

In this study, we use a N -gene regulatory network as an example to

show that by developing a continuous spinor representation and the as-

sociated path integral method, the underlying 2N discretely (e.g. each

gene has 2 discrete states: on and off) coupled continuous stochastic pro-

cesses can be mapped onto stochastic continuous process in a 2N dimen-

sional extended space. In other words, there exists mathematical map-

ping of the dynamics on 2N discretely coupled landscapes onto the one

single landscape in 2N dimensional extended space. Our work, for the

first time, provides a general analytic treatment of non-adiabatic dynam-

ics for the discretely coupled continuous non-equilibrium stochastic sys-

tems. It gives a physical and quantitative picture to understand dynamics

in non-adiabatic regime. On this 2N dimensional landscape, eddy cur-

rent emerges as a sign of non-equilibrium non-adiabatic dynamics and

plays an important role in system evolution. We also generalize our re-
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sult to the general multi-gene network with each gene of having multiple

binding sites or multiple activated states, so that it can be applied to vari-

ety of gene networks and discretely coupled continuous non-equilibrium

stochastic physical and biological systems.

Many interesting physical effects emerge due to non-adiabaticity man-

ifested by the eddy current in extended space. We do a detailed numerical

study of N = 1 self-activator as a special case of our general treatment.

Our theory is able to explain the enhancement of fluctuations in non-

adiabatic region. Most importantly by extending to 2-dimensional space,

the transition between ‘on’ and ‘off’ states becomes irreversible due to flux

emergence in 2-dimensional space. There is energy or heat dissipation

measured by the entropy production associated with this irreversibility.[23]

An optimal transition rate can appear at weak non-adiabatic region. We

can see different behavior for ‘on’ to ‘off’ and ‘off’ to ‘on’ transitions due

to irreversibility. The optimal rate can play an important role in gene net-

work evolution and similar biological systems.

3.2 Model

To demonstrate our point, we study an N -gene regulatory network. Other

physical and biological systems work in a similar way (e.g. N -electronic

surfaces). For this specific network, each gene has one binding site on

which one of the transcription factors can be bound. As a result, each gene

has discrete on/off states that have different transcription expression lev-

els [76]. The whole N -gene network has 2N discrete states. We use s to de-

note a specific discrete (gene on and off) state of the network, and Ps(n, t)

to denote the probability of the system at state s with protein numbers

n = (n1, n2, . . . nN). The master equation is 2N dimensional. Especially for
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N = 1 self activator motif where the transcription factor is a dimer, the

master equation is

∂tP1(n) =
h0

2
(n+ 2)(n+ 1)P0(n+ 2)− fP1(n)

+ g1(P1(n− 1)− P1(n)) + k((n+ 1)P1(n+ 1)− nP1(n))

∂tP0(n) = −h0

2
n(n− 1)P0(n) + fP1(n− 2) (3.1)

+ g0(P0(n− 1)− P0(n)) + k((n+ 1)P0(n+ 1)− nP0(n))

Here g/k is the protein synthesis/degradation rate, h/f is the bind-

ing/unbinding rate. At large volume limit, protein concentration x = n
V0

becomes continuous. After dropping out higher order terms of 1
V0

master

equation becomes:

∂t

(
P1(n)

P0(n)

)
=

(
−∂xF1 + ∂2

xD1

−∂xF0 + ∂2
xD0

)(
P1(n)

P0(n)

)

+

(
−f h

f −h

)(
P1(n)

P0(n)

)
(3.2)

Where we define h = h0
2
n2, redefine k = k · V0. The driving forces and

diffusion coefficients are F1 = 1
V0

(g1 − kx), F0 = 1
V0

(g0 − kx) and D1 =
1

2V 2
0

(g1 + kx), D0 = 1
2V 2

0
(g0 + kx).

This equation has the form of coupled Fokker-Planck equation. The

first operator matrix H0 defines 2 discrete Fokker-Planck landscapes. The

second operator matrix Hb describes the hopping processes that couple

the discrete landscapes. As we can see from Fig. 1, at ω = 0.001 when

the coupling is weak, steady state shows two Fokker-Planck basins. At

ω = 1000 when the coupling is strong, the two basins merge into one.
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Figure 1: One-dimensional landscape of self activator at different adia-
baticity

In a more general N -gene network, the dynamic master equation is 2N

dimensional. For each of the s-components which corresponds to a specific
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spin state we have:

∂

∂t
Ps(n, t) =

∑
i for si=1

hijPs′(n1, . . . ni−1, ni − 2, ni+1, . . . nN , t) (3.3)

+
∑

i for si=0

fijPs′′(n1, . . . ni−1, ni + 2, ni+1, . . . nN , t)

−
∑

i for si=0

hijPs(n1, . . . ni−1, ni, ni+1, . . . nN , t)

+
∑

i for si=1

fijPs(n1, . . . ni−1, ni, ni+1, . . . nN , t)

+
∑

i for si=1

gi1(Ps(n1, . . . ni−1, ni − 1, ni+1, . . . nN , t)− Ps(n, t))

+
∑

i for si=0

gi0(Ps(n1, . . . ni−1, ni − 1, ni+1, . . . nN , t)− Ps(n, t))

+ ki((ni + 1)Ps(n1, . . . ni−1, ni + 1, ni+1, . . . nN , t)− niPs(n, t))

Here s′ corresponds to the spin configuration where s′i = 0 while si = 1

and the rest components of s and s′ are the same. s′′ corresponds to the

spin configuration where s′′i = 1 while si = 0 and the rest equal. In the

case the transcription factor is dimer hij has the form of h̃ij
2
nj(nj − 1). In

the large volume limit, protein concentration xi = ni
V0

becomes continu-

ous. The master equation above has the form of coupled Fokker-Planck

equation:
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∂

∂t
Ps(x, t) =

∑
i for si=1

hijPs′(x, t) +
∑

i for si=0

fijPs′′(x, t) (3.4)

−
∑

i for si=0

hijPs(x, t)−
∑

i for si=1

fijPs(x, t)

− 1

V0

∑
i for si=1

∂xi(g
i
1Ps(x, t)) +

∑
i for si=1

1

2V 2
0

∂2
xi

(gi1Ps(x, t))

− 1

V0

∑
i for si=0

∂xi(g
i
0Ps(x, t)) +

∑
i for si=0

1

2V 2
0

∂2
xi

(gi0Ps(x, t))

+
∑
i

1

V0

∂xi(k
ixiPs(x, t)) +

1

2V 2
0

∑
i

∂2
xi

(kixiPs(x, t))

Again it has the form of coupled Fokker-Planck equation.

d

dt
Ps(n, t) =

∑
s′

Hss′Ps′(n, t) =
∑
s′

(H0ss′ +Hbss′)Ps′(n, t) (3.5)

H in the above equation can be decomposed as H = H0 + Hb, where

H0 is diagonal and describes protein synthesis/degradation, and Hb rep-

resents the binding/unbinding processes with non-diagonal elements de-

scribing hopping between discrete on and off gene states. H0 has terms of

gi0, gi1 and ki, where gi0 and gi1 are the protein synthesis rates of i-protein

when i-gene is at unbound and bound states, respectively. ki is the degra-

dation rate of i-protein. In Hb, we use hij and fij , where hij is the binding

rate of j-protein with i-gene, fij is the corresponding unbinding rate. In

the case where the transcription factor is dimer, hij = 1
2
h̃ijnj(nj − 1). fij

eaquals k × ω is constant. As mentioned, the key character of such system

is the hierarchy of two timescales, one for protein synthesis/degradation

and the other for gene activation/repression. To quantify this timescale

hierarchy, we introduce adiabaticity parameter as ω = f/k. Other param-
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eters we use to set up the networks are Xeq = f/h (equilibrium constant

of binding), Xad = (g0 + g1)/2k (synthesis relative to degradation) and

δX = (g1 − g0)/2k (difference in on and off synthesis). We can make dis-

crete protein copy numbers ni continuous by considering large volume

limit, and replace ni with concentration xi = ni/V0. In this way, we always

work in the continuous x-space.

In the self activator example we considered,H0 defines 2 discrete Fokker-

Planck states and Hb describies the coupling between these states. Adia-

baticity ω describes the relative strength of Hb and H0. When ω is large,

we arrive at the adiabatic limit. From the master equation, Hb dominates

over H0, so that we are always close to the steady state r0 of Hb: Hbr0 = 0.

For self-activator, r0 = ( h√
h2+f2

, f√
h2+f2

)T . The master equation becomes

∂tP (n, t) = 1TH0(P (n, t)r0), which has the form of one-dimensional FPE

[39, 77]. The other limit, when ω is small, corresponds to the weakly cou-

pling case where hopping between different states is rare. H0 dominates

over Hb. Because H0 is 2 dimensional and diagonal, if we prepare the ini-

tial state at one of the 2 discrete states, the system tends to be trapped there

for a long time. This is exactly what we see from Fig. 1.

The moderate ω non-adiabatic regime is of particular interest. As has

been pointed out, dynamics in this region can be crucial to physical and

biological system dynamics [20, 41, 72]. However, in this regime, terms in

H0 and Hb are comparable, the adiabatic approximation no longer works.

For general N-gene network, although the master equation is exact, its size

grows as 2N , numerical simulation quickly becomes non-efficient. A clear

physical and analytical picture is needed to find a way around this.

3.2.1 Path Integral and Effective Lagrangian

The master equation has the form of Schrödinger equation. The 2N × 1

state vector P plays the role of wave function. H = H0 + Hb becomes
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the hamiltonian operator when acting on P. Though H is non-hermitian,

reflecting the non-equilibrium features of the system, the change of gene

on/off states is similar to the change of spin-up/down states of electron

[72]. To quantify the ‘spin state’ of the ith gene, we use spinor |si〉 param-

eterised by θi and φi.

|si〉 =

(
cos2 θi

2
eiφi/2

sin2 θi
2
e−iφi/2

)
〈si| =

(
e−iφi/2, eiφi/2

)
(3.6)

With spin up representing the bound state and spin down the unbound

state. This spinor is properly normalized: 〈si|si〉 = 1, the identity operator

in spin space can be written as:

Is =
∏
i

1

4π

∫
d cos θidφi |si〉 〈si| (3.7)

The amplitude in the two components of |si〉 has the physical meaning

of the probability of the corresponding binding site being at bound/unbound

state. A general state of the system |x, s, t〉can be described with protein

copy number x = (x1, x2, . . . xN) and ‘spin’ state s = s1 ⊗ s2 . . . sN .

Path integral method tells us that the transition probability from an ini-

tial point with protein concentration xi = (x1
i , x

2
i , . . . x

N
i )(with 1, 2, . . . , N

labeling genes or proteins) and spin states si at time ti to the final point

with (xf , sf , tf ) can be calculated by sum over all paths connecting these

two points with exponential weight proportional to the integral of effec-
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tive Lagrangian along the path [78]. That is:

P (xf , sf , tf |xi, si, ti) = 〈xf , sf | e
∫ tf
ti
Hdτ |xi, si〉

= 〈xf , sf |

[
lim

∆t→0

∏
∆t

Ix ⊗ Is(1 +H∆t)Ix ⊗ Is

]
|xi, si〉

= 〈xf , sf | lim
∆t→0

(
τ=tf∏

τ=ti+∆t

|p, s, τ〉 〈p, s, τ | (1 +H∆t) |p, s, τ −∆t〉 〈p, s, τ −∆t|

)
|xi, si〉

= const
∏
i

DxDpD cos θiDφie−
∫
Ldt (3.8)

Here, L is the effective Lagrangian, which contains 2N coordinate q-

like variables xi and ci with ci being the probability of the si = 0 state, and

2N momentum p-like variables pi and φi.

To simplify our notation we will note sin2(θi/2) as ci, thus cos2(θi/2) =

1− ci The matrix element 〈p, s, τ | (1 +H∆t) |p, s, τ −∆t〉 receives contribu-

tion from 3 parts:

〈p, s, τ | 1 |p, s, τ −∆t〉 = 1 + i
∑
i

piẋi∆t− i
∑
i

φiċi∆t (3.9)

〈p, s, τ |H0 |p, s, τ −∆t〉 =
∑
i

1

V0

(−ipi)(gi0 − kixi)ci +
∑
i

1

V0

(−ipi)(gi1 − kixi)(1− ci)

−
∑
i

1

2V 2
0

p2
i (g

i
0 + kixi)ci −

∑
i

1

2V 2
0

p2
i (g

i
1 + kixi)(1− ci)(3.10)

〈p, s, τ |Hi |p, s, τ −∆t〉 =
∑
i

∑
j

(
−hijci + hijcie

−iφi + fij(1− ci)eiφi − fij(1− ci)
)

(3.11)
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The effective Lagrangian L, turns out to be:

−L =
∑
i

ipi
d

dt
xi −

∑
i

iφi
d

dt
ci (3.12)

∑
i

1

V0

(−ipi)(gi0 − kixi)ci +
∑
i

1

V0

(−ipi)(gi1 − kixi)(1− ci)∑
i

1

2V 2
0

p2
i (g

i
0 + kixi)ci −

∑
i

1

2V 2
0

p2
i (g

i
1 + kixi)(1− ci)∑

i

∑
j

(
−hijci + hijcie

−iφi + fij(1− ci)eiφi − fij(1− ci)
)

Effective Langrangian is equivalent to Hamiltonian in providing dy-

namics information. Under spinor representation it is possible to map the

original dynamics in continuous x space with discrete gene states into con-

tinuous dynamics in x space and spin space.

3.2.2 Deterministic Dynamics and Intrinsic Noise

Effective Lagrangian provides information of dynamics in continuous x

space as well as in spin space. To reduce the dimensionality and concen-

trate on the dynamics in the observable space, we can integrate out the

conjugate variables. We do so by expanding over conjugate variables pi
and φi. The first order terms correspond to classic dynamics, or determin-

istic dynamics:

−Lcl =
∑
i

ipi
d

dt
xi −

∑
i

iφi
d

dt
ci

+
∑
i

1

V0

(−ipi)(gi0 − kixi)ci +
∑
i

1

V0

(−ipi)(gi1 − kixi)(1− ci)

+
∑
i

∑
j

iφi (fij(1− ci)− hijci) (3.13)
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When integrating over φi and pi, Lcl contributes 2N delta functions,

providing 2N deterministic equations for xi and ci.

ẋi =
1

V0

(
gi0ci + gi1(1− ci)− kixi

)
ċi =

∑
j

(fij(1− ci)− hijci) (3.14)

We notice that though we didn’t use self-consistent assumption, at deter-

ministic level we obtain the same result as the self-consistent approach

with zero-fluctuation hamiltonian equations [79]: ẋ = ∂H
∂p

∣∣
p=0

and ċ =
∂H
∂φ

∣∣
φ=0

.

As we go to the next leading order, we obtain quadratic terms of con-

jugate variables pi and φi. This corresponds to semi-classical dynamics.

−Lsc = −
∑
i

1

2V 2
0

p2
i (g

i
0 + kixi)ci −

∑
i

1

2V 2
0

p2
i (g

i
1 + kixi)(1− ci)

−
∑
i

1

2
φ2
i

(∑
j

(fij(1− ci) + hijci)

)
(3.15)

After the Hubbard-Stratonovich transformation, quadratic terms provide

gaussian intrinsic fluctuations [66]. This suggests the effective dynamics

is governed from the original 2N × N dynamics to now by a 2N dimen-

sional coupled Langevin system with coordinate dependent diffusion co-

efficients:

ẋi =
1

V0

(gi0ci + gi1(1− ci)− kixi) + ηxi, (3.16)

ċi =
N∑
j=1

fij(1− ci)−
N∑
j=1

hijci + ηci, (3.17)

with ηxi and ηci being intrinsic gaussian noises;

37



〈ηxi(t)ηxj(t′)〉 =
1

V0
2

(
gi0ci + gi1(1− ci) + kixi

)
δijδ(t− t′),

〈ηci(t)ηcj(t′)〉 =

(∑
j

(fij(1− ci) + hijci)

)
δijδ(t− t′).

If we view the problem in terms of probability distribution, the coupled

Langevin equations are equivalent to a 2N dimensional FPE governed sys-

tem:

∂tP (n, s, t) = −
∑
xi

∂xi(FxiP )−
∑
ci

∂ci(FciP )

+
∑
xi

∂2
xi

(DxixiP ) +
∑
ci

∂2
ci

(DciciP ). (3.18)

Mapping the system stochastic dynamics to the probability evolution

via FPE provides a landscape picture for dynamics especially in the non-

adiabatic region. Define potential U from the steady state probability dis-

tribution ρSS as U = − log ρSS . The stable steady states correspond to local

minimums of U . The stability of the steady state is determined by the ge-

ometry or depth of the basin. Probability conservation tells us the steady

state flux is: jSSi = −Fiρss+∂j(Dijρ
ss) and∇· j = 0. The steady state flux is

divergent free and therefore a rotational curl. If we define F̃i = Fi−(∂jDij),

the steady state flux can be written in a way similar to what we have in

constant diffusion coefficient case: j = −FρSS + ∂ · (DρSS) = −F̃ρSS +

D · ∂ρSS . The driving force can be decomposed into a gradient part plus a

curl part: Fi = −Dij∂jU + jssi /ρ
ss + ∂jDij or F̃i = −Dij∂jU + jssi /ρ

ss. [23].

The system undergoes a drifted Brownian motion on this 2N -dimensional

extended space landscape. If there’s only conservative gradient force, the

system would be equilibrated at a steady state and there is no flux. The
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non-zero steady state flux, or eddy current gives a quantitative measure

of the detailed balance breaking. As we sill see in the self activator exam-

ple, it plays an important role in entropy production and non reversible

system dynamics.
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Figure 2: Steady state distribution of self-activator in extended space at
(a): ω = 1000, (b):ω = 1, (c):ω = 0.01

3.2.3 Generalization to N -gene network with multiple binding sites

The example we considered with each gene has only one binding site is

rather simplified. If we consider each gene can have up toM binding sites,

then each gene has 2M discrete spin states. For instance, when M = 2, the

i-gene state has 2M = 4 discrete states: (Psi=00(n, t), Psi=10(n, t), Psi=01(n, t), Psi=11(n, t))T .

These 2M discrete states can have different protein synthesis rate; instead

of gi0 and gi1 now we have 2M different gisi . We introduce an extra index

1 ≤ µ ≤ M to distinguish different binding sites on the same gene. The

”spin” state of ith gene can be represented as |si〉 =
∏M

µ=1 |s
µ
i 〉. The identity

operator in spin space is:

Is =
N∏
i=1

(
1

(4π)M

M∏
µ=1

(∫ 1

0

dcµi

∫ 2π

−2π

dφµi

)
|si〉 〈si|

)

The probability of propagation can still be calculated using path inte-

39



gral when we pay special attention to the index µ. Follow a similar routine

we get effective Lagrangian:

−L =
∑
i

ipiẋi −
∑
i

iφµi ċ
µ
i

+
∑
i

1

V0

∑
si

gisi

∏
sµi =1

(1− cµi )
∏
sνi =0

cνi

− kixi


− 1

2V 2
0

∑
i

p2
i

∑
si

gisi

∏
sµi =1

(1− cµi )
∏
sνi =0

cνi

+ kixi


+
∑
i,j

∑
µ

[−hµijc
µ
i + hµijc

µ
i e
−iφµi

+fµij(1− c
µ
i )eiφ

µ
i − fij(1− ci)]

When expand the effective lagrangian over pi and φµi up to the second

order, we see the coupled FPE system is equivalent to N(M + 1) dimen-

sional coupled Langevin equations:

ẋi =
1

V0

∑
si

gisi

∏
sµi =1

(1− cµi )
∏
sνi =0

cνi

− kixi
+ ηxi ,

ċµi =
∑
j

fµij(1− c
µ
i )−

∑
j

hµijc
µ
i + ηcµi (3.19)

〈ηxi(t)ηxj(t′)〉 =
1

V 2
0

∑
si

gisi

∏
sµi =1

(1− cµi )
∏
sνi =0

cνi

− kixi
 δijδ(t− t′)

〈ηcµi (t)ηcνj (t
′)〉 =

(∑
j

(
fµij(1− c

µ
i ) + hµijc

µ
i

))
δµνδ(t− t′) (3.20)
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3.2.4 Generalization to gene with multiple transcription level

However, if the genes are regulated also by mechanism such as chromatin

structure change [20, 41, 43, 80] or histone modification [81, 82, 83], it

should be reasonable to assume that a single gene has more than two

states. Then, it is proper to introduce a multiple component spinor:

|si〉 =


c1
i e
iφ1i /2

...

cMi e
iφMi /2

 〈si| =
(
e−iφ

1
i /2 . . . , e−iφ

M
i /2
)

(3.21)

The normalization condition
∑

µ c
µ
i = 1 is preserved by the form of

Hi. In the example of N = 1 network where there is one x variable and

(M − 1) independent cµ variables. Assume we can still write down the

master equation in the coupled FPE form:

∂tPs(n, t) =
∑
s′

(H0 +Hi)ss′Ps′(n, t) (3.22)

where H0 is diagonal in s space and Hb describes the jumping pro-

cesses. The identity operator in s space would look like:

Is =
M∏
µ=1

(
1

4π

∫ 1

0

dcµ
∫ 2π

−2π

dφµ |s〉 〈s|
)

(3.23)

Start with coupled FPE that has Schrodinger Equation like form and

follow path integral formula we get the transition probability from initial

state |xi, si, ti〉 to final state |xf , sf , tf〉 to be:

P (xf , sf , tf |xi, si, ti) = 〈xf , sf | e
∫
Hdt |xi, si〉 (3.24)

= const
∏
i,µ

∫
DxiDpiDcµiDφ

µ
i e
−

∫
Ldt
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Plug in the identity operator in x space and new one in s space.

Similarly we have:

〈p, s, t|1|p, s, t−∆t〉 = 1 + i
∑
i

piẋi∆t+ i
1

2

∑
i,µ

φµi ċ
µ
i ∆t (3.25)

〈p, s, t|H0|p, x, t−∆t〉 =
∑
s

′

[
(H0)ss

∏
i

ci(s)

]
(3.26)

〈p, s, t|Hi|p, x, t−∆t〉 =
∑
s,s′

′′

[
(Hi)ss′

∏
i

ci(s
′)ei(φ

ν−φµ)/2

]
(3.27)

effective Lagrangian turns out to be:

−L = i
∑
i

piẋi +
i

2

∑
i,µ

φµi ċ
µ
i +

∑
s

′

[
(H0)ss

∏
i

ci(s)

]

+
∑
s,s′

′′

[
(Hi)ss′

∏
i

(
ci(s

′)ei(φ
ν−φµ)/2

)]
(3.28)

Here
∑′

s is a sum over all possible swith si at the µ state.
∑′′

s,s′ is a sum

over all possible s and s′ with si at the µ state and s′i at the ν state. As in the

L = 2 case,H0 alone defines the LN N -dimensional x space FP landscapes

with proper driving force and intrinsic fluctuation. Hb is non-diagonal .

The adiabatic parameter ω can be defined as ω = |typical element ofHb|
|typical element ofH0| to reflect

the time scale hierarchy of the two sets of processes. We notice that out

of the L cµ elements only L − 1 are independent due to the probability

conservation.

The first order terms, corresponding to deterministic classical dynam-
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ics, are:

−Lcl = i
∑
i

piẋi +
i

2

∑
i,µ

φµi ċ
µ
i +

∑
s

′
∑
i

pi
∂(H0)ss
∂pi

∏
j

cj(s)

+
∑
s,s′

µ6=ν

[
(Hi)ss′

i(φν − φµ)

2

∏
i

ci(s
′)

]
(3.29)

After integration over pi and φµi , this contributes delta functions which

provide deterministic equations:

ẋi = i
∑
s

′

[(
∂(H0)ss
∂pi

) ∣∣∣∣
p=0

·
∏
j

cj(s)

]

ċµi =
∑
s,s′

s′i=ν 6=µ=si

[
(Hi)s′s

∏
j

cj(s)− (Hi)ss′
∏
j

cj(s
′)

]

Especially the normalization is conserved at classical level:

∑
µ

ċµi =
∑
s,s′

si 6=s′i

[
(Hi)s′s

∏
i

ci(s)− (Hi)ss
∏
i

ci(s
′)

]
= 0 (3.30)

The quadratic terms provide information of intrinsic fluctuation. We are

extremely interested in cµi part. Notice that cross terms like φµφν don’t

contribute after integration. We are left with quadratic terms of φµi :

Lsc =
1

2

∑
s

∑
i

p2
i

(
∂2(H0)ss
∂p2

i

)
(3.31)

− 1

8

∑
s,s′

si=µ6=ν=s′i

(Hi)ss′(φ
µ2 + φν2)

∏
i

ci(s
′)(φµ2 + φν2)
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Just like in M = 2 spinor case we have worked out, the quadratic

terms, after HubbardStratonovich transformation, provide non-constant

gaussian fluctuation:

ẋi = i
∑
s

′

[(
∂(H0)ss
∂pi

) ∣∣∣∣
p=0

·
∏
j

cj(s)

]
+ ηxI (3.32)

ċµi =
∑
s,s′

s′i=ν 6=µ=si

[
(Hj)s′s

∏
i

cj(s)− (Hi)ss′
∏
j

cj(s
′)

]
+ ηcµi (3.33)

with diffusion coefficients:

〈ηxi(t)ηxj(t′)〉 = −
∑
s

[
∂2

∂2
pi

(H0)ss

(∏
j

cj(s)

)]
δijδ(t− t′)(3.34)

〈ηcµi (t)ηcξi
(t′)〉 =

∑
s,s′

si=µ 6=ν=s′i

[
(Hj)s′s

∏
i

cj(s) + (Hi)ss′
∏
j

cj(s
′)

]
δµξδ(t− t′)(3.35)

Because onlyL−1 of theL cµi variables are independent, those areN×L
dimensional coupled Langevin equations. From the view of probability

distribution, this is equivalent to aN×L dimensional FP landscape system

with N -dimensional x space and N × (L − 1) c-space. The evolution in

the continuous spinor coordinate c-space plays an important role in the

network evolution, especially in the non-adiabatic region. At adiabatic

limit, because the dynamics of c variables are totally determined by x-

variables, we go back to the N -dimensional x-space FP landscape picture.

When L = 2, we get back to the on/off N -gene network in the last section.
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3.2.5 Gauge Theory

FPE can be written in a Schrodinger Eq. like form. It’s very similar to

Schrodinger Eq. of a charged particle moving in EM field. We can iden-

tify the corresponding scalar field as well as vector field, and specify their

gauge transformation rules. The field strength tensor, or curvature in dif-

ferential geometry, is related to heat dissipation which is a path dependent

physical quantity invariant under gauge transformation.[84]

Define differential operator∇i = ∂i− 1
2
D−1
ij Fj , FPE has the Schrodinger

Equation like form:

1

D
∂t(Dρ) = ∇2(Dρ)−

[
1

2

(
∂i

(
F

D

)
i

)
+

F 2

4D2

]
Dρ (3.36)

This is similar to a charged particle moving in electronic-magnetic field

with scalar potential:

V = −[
1

2
∂i(

Fi
D

) +
F 2

4D2
] (3.37)

and vector potential:

Ai = −(D−1)ijFj (3.38)

We have field strength tensor:

Rij = [∇i,∇j] = ∂iAj − ∂jAi (3.39)

which is invariant under gauge transformation:

Ai → Ai + ∂iΛ (3.40)
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Heat dissipation along a closed loop:

T∆sm = −
∮
C

Aidxi = −
∮
C

(D−1)ijAjdxi

= −1

2

∫
Σ

dσijRij (3.41)

is a gauge invariant physical quantity.[85]

If N = 1, in adiabatic case there’s no curvature structure as x-space is a

one dimensional space: there’re not enough degrees of freedom for vector

potential to be non-trivial.

IfN > 1, in adiabatic limit the landscape and flux live inN dimensional

x space. We have a set of N-component vector field, and N(N−1)
2

indepen-

dent field strength tensor components, as defined in Eq. (3.38) and Eq.

(3.39).

The field strength tensors are related to heat dissipation as Eq. (3.41)

shows. As N-components vector field Ai only depends on x, heat dissipa-

tion gets contribution only from evolution in x-space.

But in spin variable formalism, even when N=1, by introducing ex-

ternal dimension c, we have 2-dimensional non-trivial vector potential

(Ax, Ac), thus nontrivial curvature:

Rxc = ∂xAc − ∂cAx (3.42)

Rcx = ∂cAx − ∂xAc (3.43)

Rxx = Rcc = 0 (3.44)

This can be easily generalized to finite N case, with scalar potential

defined as Eq. (3.37), vector potential defined as in Eq. (3.38). Because

now we are working in 2N dimensional x − c space, vector potential has
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2N components (Ax, Ac).

A = (Ax, Ac) = (− Fx
Dxx

,− Fc
Dcc

) (3.45)

The field strength tensor can still be defined as in Eq. (3.39), and is

invariant under gauge transformation Eq. (3.40).

Compared with the gauge theory we had before in x-space, the main

differences are:

1. Scalar potential contains contribution from c space as well as from x

space.

V = −[
1

2
(∂x

Fx
Dxx

) +
Fx

2

4Dxx
2
]− [

1

2
(∂c

Fc
Dcc

) +
Fc

2

4Dcc
2
] (3.46)

2. Vector potential is 2N dimensional.

(Ax, Ac) = (− Fx
Dxx

,− Fc
Dcc

) (3.47)

3. Field strength tensor contains contributionsRxmxn from x space,Rcmcn

from c space, and cross terms Rxmcn from x − c space. When calcu-

lating heat dissipation of a closed loop, as Eq. (3.39) and Eq. (3.41)

shows, even when filed strength tensors in x space and c space van-

ish, the cross terms can be non-trivial and contributes to the heat

dissipation rate.

T∆sm = −
∮
C

Aidxi == −
∫

Σ

dσxcRxc (3.48)

4. The phase ∆sm is gauge invariant under gauge transformation Eq.

(3.40). The origin of this phase is the non-trivial curvature of internal
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space caused by the deviation from equilibrium state. This is similar

to Berry phase in quantum phenomenon.

3.2.6 Non-equilibrium thermodynamics and FDT

FPE can be written as:

∂tρ = L̂ρ = [−∂iFi + ∂i∂jDij]ρ (3.49)

At steady state, do small perturbation to driving force F :

F (x)→ F ′(x) = F (x) + h(t)δF (x) (3.50)

The FPE operator becomes L̂′ = L̂− h(t)δL̂, where δL̂ = ∂i(δFi) + δFi∂i

The probability evolves as:

P (x, t) = exp

[∫ t

t′
dτ(L̂− h(τ)δL̂)

]
P (x, t′) (3.51)

For t ≤ t′, define response function:

RΩ =
< δΩ(t) >

δh(t′)(t− t′)

∣∣∣∣
δF=0

(3.52)

=

∫
dxΩ[ρ(x, t)− ρss(x, t)]

δh(t′)(t− t′)

∣∣∣∣
δF=0

(3.53)

=

∫
dxΩ(x)eL̂(t−t′)(−δL̂)ρss(x) (3.54)

Plug in the expression we get for δL:

RΩ = − < Ω(t)∂iδFi(t
′) > (3.55)

−
[
< Ω(t)δFi(t

′)F̃ (t′)D−1
ik > + < Ω(t)δFi(t

′)V
(ss)
k (t′)D−1

ik (t′) >
]

(3.56)
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If the perturbation is independent of x: δF = 1, we get:

RΩ
i (t− t′) = − < Ω(t)∂ ln ρss(x) > (3.57)

= − < Ω(t)F̃k(t
′)D−1

ik (t′) > − < Ω(t)V ss
k (t′)D−1

ik (t′) >(3.58)

This is generalized FDT in non-equilibrium thermodynamics.[85] The

second term on the right hand side is directly related to the non-equilibrium

effects, as we can see it is related to the non-trivial flux jSS = ρSSV SS .

Choose Ω = Vi and sum over i:

RV =

∫
dxV (x)[−∂ρ(x)] =

∫
dx[∂ · j(x)] ln ρ(x) (3.59)

=
d

dt

∫
dxρ(x) ln ρ(x) = −Ṡ (3.60)

Entropy changing rate can be decomposed into two parts:

Ṡ =< Vi · ∂i ln ρ(x) >=< ViD
−1
ij Vj > + < ViD

−1
ij F̃j >= eP − Ṡm (3.61)

eP is the entropy production rate of the system, Ṡm is the entropy pro-

duction rate caused by heat dissipation. These two entropy production

rates are closely related to flux Vi.

We want to separate the steady state contribution and non steady state

contribution. For this purpose we take Ω = Vi − V SS
i in the FDT equation:

< Vi∂i ln[P SS/P (x)] >= Ḟfree/T (3.62)

= < vSSi Dij
−1vj > − < viDij

−1vj >= Qhk/T − ep (3.63)

where Qhk is the house keeping heat, Ffree = T < ln[P (x)/P SS(x)] > is

free energy.

In adiabatic case, the landscape and flux live in x-space. If N = 1, x
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is one-dimensional, there will be no flux at all. We can write down the

entropy production rate:

Ṡ =< V · ∂x ln ρ(x) >=< Vi(Dxx)
−1
ij Vj > + < Vi(Dxx)

−1
ij F̃j >= eP − Ṡm(3.64)

We can distinguish entropy production rate from the system and from

heat dissipation, of each landscapes.

eP =< Vi(Dxx)
−1
ij Vj > (3.65)

Ṡm = − < Vi(Dxx)
−1
ij F̃j > (3.66)

The house keeping heat and free energy changing rate reads:

Qhk/T =< V SS
i (Dxx)

−1
ij Vj > (3.67)

Ḟfree/T = Qhk/T − eP (3.68)

As in adiabatic case, the flux lives in x space. Thus all these entropy

production rates are calculated according to the evolution in x space.

In the spin-variable formalism we workd out which can deal with non-

adiabatic case, as flux lives in 2N dimensional x − c space, the flux in the

non-equilibrium term shall be replaced with new flux in x−c space. There

will be new contribution coming from c space, representing jumpings be-

tween different states.

The entropy production rate now looks like:

Ṡ =< Vi · ∂i ln ρ(x) >=< ViD
−1
ij Vj > + < ViD

−1
ij F̃j >= eP − Ṡm (3.69)

50



with system and heat dissipation EPRs:

eP =< ViD
−1
ij Vj >=< VxDxx

−1Vx > + < VcDcc
−1Vc > (3.70)

Ṡm = − < ViD
−1
ij F̃j >= − < VxDxx

−1F̃x > − < VcDcc
−1F̃c > (3.71)

The house keeping heat and free energy changing rate now depends

on x− c space flux as well.

Qhk/T =< V SS
x(i)Dxx(ij)

−1Vx(j) > + < V SS
c(i)Dcc(ij)

−1Vc(j) > (3.72)

Ḟfree/T = Qhk/T − eP (3.73)

We see under our framework, there are additional contribution terms

from c-space to both of the entropy production rates. This is no surprise.

With the introduction of the continuous spin variable c, the system evolves

in c space as well as in x space. There will be contribution coming from

evolution in c space as well as from x space. This is especially meaningful

for non-adiabatic case: in non-adiabatic region, jumping rates are compa-

rable to x-space evolution. The adiabatic picture no longer works and we

have to deal with jumping in a similar way to x-space evolution. This is

what spin variables are introduced for. We see clearly here it brings addi-

tional contribution to thermodynamic quantities like entropy production

rates.
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3.3 Application to self activator

We will apply our theory to a self activating motif with transcription factor

being dimer. This is one of the basic building bricks of larger networks.The

master equation, in large volume limit, has the form of coupled Fokker-

Planck equation as in Eq. (3.2). Introducing two components spinor to

quantify the binding site, the equivalent two dimensional Fokker-Planck

equation in extended space is:

∂

∂t
P = −∂x(FxP )− ∂c(FcP ) + ∂2

x(DxP ) + ∂2
x(DcP ) (3.74)

with driving force and diffusion:

Fx =
1

V0

(cg0 + (1− c)g1 − kx)

Fc = f(1− c)− 1

2
h0x

2c

Dx =
1

2V 2
0

[cg0 + (1− c)g1 + kx]

Dc =
1

2
[f(1− c) +

1

2
h0x

2c] (3.75)

As Fig. 1 suggests, when ω is small, the coupling between on/off

state is weak. The landscape shows two separate basins. At adiabatic

limit(ω = 1000), the two basins merge into one as adiabatic approximation

suggests. As Fig. 2 shows, in the new formalism of Fokker-Planck system

in extended space, the two separate basins at small ω show up at c = 0

‘on’ state and c = 1 ‘off’ state. As ω increases, the two basins move against

each other and at adiabatic limit coincide at almost the same location, cor-

respond to single peak at adiabatic limit.

The adiabatic approximation that maps the system to a 1-dimensional
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Figure 3: Steady state distribution of self-activator in extended space with
white arrow being non-gradient flux at (a): ω = 1000, (b):ω = 1, (c):ω =
0.01

Fokker-Planck system, though numerically a good approximation, lacks

the ability to demonstrate non-equilibriumness of the system as there is

no curl flux in one-dimensional systems. At adiabatic limit, the K matrix

dominates over L. We can construct a normalized steady state solution r0

of jumping matrix K.

Hir0 = 0 (3.76)

r0 =
1√

h(x)2 + f(x)2

(
h(x)

f(x)

)
(3.77)

We can assume the actual probability P is r0 plus a small fluctuation

P = Pr0 + ξ.

Equation (8) becomes:

∂tP = 1TH0(Pr0 + ξ) ≈ 1TH0(Pr0) (3.78)

This is a second order PDE of P (x) and has the form of FPE. Which

gives a clear landscape picture in x space. In N = 1 self regulating case it
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looks like:

∂tP = −∂x(
h(x)√

h(x)2 + f(x)2
PF1) +

1

2
∂2
x(

h(x)√
h(x)2 + f(x)2

PD1)

−∂x(
f(x)√

h(x)2 + f(x)2
PF0) +

1

2
∂2
x(

f(x)√
h(x)2 + f(x)2

PD0) (3.79)

One-dimensional system is governed by equilibrium gradient driving

force and always leads to detailed balance. In our new formalism, as

showed in Fig. 3 that the non-trivial flux (white arrows) originated from

the spin coupling emerges in the expanded x-c space as a sign of system

being at non-equilibrium state.

The Fano Factor of steady states, defined as variance/mean, quanti-

fies the global stability. For a single Poisson peak, Fano Factor equals one.

Large fano factor indicates large deviation from single Poisson peak and

large fluctuation. Fig. 4(a) shows how Fano factor changes with adiabatic-

ity. In the adiabatic limit, as adiabatic approximation suggests, due to fre-

quent binding/unbinding processes, system is always close to the steady

state of Hb. It is a weighted average of ‘on’ and ‘off’ peak and is itself

Poisson like. The fano factor is close to one. In the moderate non-adiabatic

region, Fano factor increase as adiabaticity decreases. It is because when

the coupling between ‘on’ and ‘off’ states is weak, the adiabatic peak splits

into ‘on’ and ‘off’ peaks that contribute to Fano factors.

While for 1-dimensional landscape of self activator, the driving force

is purely gradient, the transitions from both off to on and on to off are re-

versible. When extended to 2-dimensional landscape the transition paths

are clearly non-reversible with emergence of eddy-current in addition to

gradient component. The 2-dimensional landscape makes it possible to

study irreversible optimal transitions between off and on states. We focus

on the mean first passage time (MFPT) for both on to off and off to on
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Figure 4: Thermodynamic quantities of self activator calculated in
extended space under unified landscape framework (a):Fano factor.
(b):Mean first passage time(MFPT). (c):Difference between forward and
backward three-point correlation functions. (d):Entropy production rate
per turn of the gene on-off switch.

states. From Fig. 4(b) we see a kinetic turnover behavior where an optimal

time or transition rate exists with respect to adiabaticity. From mean first

passage time, we see that in the adiabatic regime, the discrete landscapes

are strongly coupled. The rate limiting step is determined by the adia-

batic barrier between the two states on a single effective landscape (intra-

landscape dynamics). Decreasing the ω decreases the coupling between

discrete landscapes. The ‘averaged’ single basin at adiabatic limit splits

into ‘on’ and ‘off’ states as ω decreases. The effective barrier becomes less
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than the one in the adiabatic case and the transition rate become higher.

On the other hand, in the small ω regime, the rate limiting step is deter-

mined by the non-adiabatic jumping between the landscapes. The discrete

landscapes are weakly coupled, system tends to stay in either ‘on’ or ‘off’

state for a long time. Decreasing the ω further decreases the frequency or

probability of jumping and therefore the transition rate decreases. This

explains the turnover behavior of rate or kinetic time with respect to adia-

baticity ω. [19, 44]

Difference in forward and backward three-point correlation functions,

as Fig. 4(c) shows, indicates the system evolution is irreversible in time

due to the presence of the flux that breaks detailed balance. As ω decreases

(non-adiabaticity increases), the irreversibility becomes more pronounced.

We should note that these non-equilibrium features become more evident

as ω decreases from the adiabatic regime to the non-adiabatic regime.

The entropy production rate representing the dissipation directly as-

sociated with the degree of deviation from equilibrium, is closely related

to the new flux in extended space. Fig. 4(d) shows EPR decreases as ω

increases. The non-zero flux promotes the non-adiabatic fluctuations and

dissipation in the smaller ω regime. Three-point correlation and entropy

production rate both show that non-adiabatic regime where the discrete

landscapes are weakly coupled shows higher deviation from the equilib-

rium reflected by the higher heat dissipation and higher irreversibility.

Our theory provides a unified landscape theory in this regime with 2-

dimensional eddy current that measures the degree of the system being

deviated from equilibrium.

Above all, our theory is capable to explain the non-equilibrium and ir-

reversible properties of network dynamics with eddy current emerging in

extended space, and provides a theoretical framework to study dynamics

(transition rate, path) within a single unified landscape for both adiabatic
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and non-adiabatic dynamics.

3.4 Conclusions

In this work, we systematically studied discretely coupled stochastic pro-

cesses and associated non-adiabatic dynamics that are common in physics

and biology. We started with exact master equations, and showed by using

the continuous spinor representation we are able to map the dynamics in

2N discretely coupled landscapes into a single landscape in the extended

space. Our result, at deterministic level, agrees with self-consistent ap-

proximation. It also unveils the role intrinsic fluctuation played in system

evolution. Intrinsic fluctuation lies not only in synthesis and degradation

processes, but also in the binding/unbinding processes. In other words,

for a coupled Fokker-Planck system (e.g. N-gene network), we have in-

trinsic fluctuation not only within each of the discrete Fokker-Planck land-

scapes, but also in the hopping processes. This is clearly demonstrated in

the unified landscape formalism with fluctuation in both protein concen-

tration x-variables and discrete state specifying c-variables.

The unified landscape picture provides a theoretical and analytical frame-

work for non-equilibrium dynamics at non-adiabatic region. The map-

ping from 2N discretely coupled N -dimensional stochastic system into a

2N -dimensional Fokker-Planck system significantly improves numerical

calculation efficiency in non-adiabatic region where adiabatic approxima-

tion is not valid. As we can see from the self activator example, it captures

thermal dynamical properties like fluctuation enhancement, irreversibil-

ity, transition rate turn over. The steady state flux introduced in the ex-

tended space is the key signature of the non-equilibrium dynamics. It

gives a quantitative measure of the detailed balance breaking. It also en-

ables us to study optimal transition path and rate under familiar Fokker-
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Planck framework.
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Chapter 4

Non-adiabatic dynamics as
possible source of cancer het-
erogeneity
4.1 Introduction

Tumor cells are known to have remarkable variability in phenotypes, a

phenomenon known as heterogeneity. The distinct phenotypes lead to

diversified biological behavior. This is important in cancer research and

clinical therapy. The origin of heterogeneity is closely related to the mech-

anism of cancer [86]. The idea of Darwinian-like clonal evolution is based

on the discovery of acquisition of oncogenic mutations. It stresses the

gene-centric development in which heterogeneity arises from the diver-

sity of genotypes resulting from clonal evolution. On the other hand, the

cancer cells are often hierarchically organized into non tumorigenic and

tumorigenic cells with distinct phenotype manifestations [87, 88]. The dif-

ferences in tumorigenic potential within the same tumor is largely deter-

mined by epigenetic diversification. In other words, the origin of hetero-
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geneity is often non-genetic[89]. The heterogeneity can be from the epi-

genetics and micro-environment such as DNA methylation and histone

modifications. It can also come from stochastic nature of biological and

chemical reactions involved. More and more evidences show that genetic

heterogeneity is not likely to make major contribution to cancer hetero-

geneity [90, 91, 92, 93]. Epigenetic origin of cancer heterogeneity is of both

academic and clinical interest.

The cancer was often thought to be determined by the individual gene

mutations. More evidences accumulated that cancer is a disease state

emerged from the whole gene network, rather than only through indi-

vidual gene mutations[94]. The results of dynamics and evolution for the

gene network are largely determined by the topology of the network while

at the same time the gene network dynamics is stochastic with intrinsic

fluctuation from statistical molecular number fluctuations and external

fluctuation from cell environment[69, 95]. The deterministic and stochas-

tic dynamics of cancer core network can provide possible source for cancer

heterogeneity.

In cancer gene regulatory network, a key motif often emerged for func-

tion and cell fate decision making is the self activation and mutual repression[14,

96, 97]. For instance Rac1/RhoA circuits mediates amoeboid/mesenchymal

transitions in Metastatic carcinoma cells[98]. miR200/ZEB double neg-

ative circuits in many cancer cells[99]. To explore heterogeneity arising

from network dynamics, we will study one such cancer gene motif.

The key character of the dynamics for this cancer gene motif is the in-

volvement of multiple timescales: timescale of protein synthesis/degradation

and timescale of gene regulation or gene state switching processes. Adia-

baticity is introduced to quantify the hierarchy of these time scales[14, 19,

20, 38, 39, 43]. Many studies are concentrated in adiabatic limit where the

rates for gene state switching due to regulations are much faster than the

60



rates of protein synthesis/degradation. At this limit, adiabatic approxima-

tion is valid and driving force often has the form of Hill function[39, 77].

Two major stable states often emerge in this limit with one gene acti-

vated and the other repressed. We identify these two states to be normal

state and cancer state. Analytical and numerical studies show that under

certain conditions there can be a third intermediate state in addition to

normal and cancer states. The intermediate state has the nature of pre-

malignant state [52, 53, 97, 100, 101].

Although adibatic (fast regulation) assumption might be good for some

prokaryotic cells such as bacteria, the regulation time scales can be elon-

gated by the epigenetic factors in eukaryotic cells such as DNA methy-

lation and histone remodifications. As M. Sasai and other researchers

pointed out, though histone modification of single histones can be quick

and frequent, the cooperative change of many histones which represents

histone states occurs on a much slower time scale accompanied by dynam-

ical DNA methylation/demethylation [43, 102] When the reaction time

scale is extended to non-adiabatic region with slower regulation. The

translation/transcription and degradation processes happen more frequently

compared to the regulatory processes. The gene states rarely change and

there’s sufficient time for protein copy number to reach transcription level

determined by the gene state. This usually leads to slower epigenetic

states change.

In this study we suggest a possible source of cancer heterogeneity as

being from epigenetics through gene regulation dynamics in the non-adiabatic

(slow regulation) regime. The cancer heterogeneity is reflected from the

emergence of more phenotypic states, larger protein concentration fluctu-

ations, wider distribution of kinetics and multiplicity of paths from normal

to cancer state, higher energy cost per gene switching and weaker stability.
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4.2 Model

We choose our cancer gene regulatory motif with mutually repression

and self activation through transcription factor binding/unbinding. Fig.5

shows the regulation scheme of the two genes. Gene A and gene B each

has 2 binding sites. The first binding site can be bound to a monomer pro-

duced by the other gene and the synthesis rate will be suppressed by a

factor λR at the bound state (representing the repression gene regulation).

The second binding site can be bound to a tetramer produced by itself

and the synthesis rate will be raised by a factor λA (representing activation

gene regulation). In previous similar network models, the form of tran-

scription factor is usually chosen from monomer to tetramer. While there’s

no direct experiment evidence as of which form transcription factor takes,

we make a resonable assumption that TF factors take monomer-tetramer

form. The 4 discrete states of each gene has protein synthesis rates set

as:g00, g01 = g00λA, g10 = g00λR, g11λAλR. The first index i in gij represents

the first binding site being at bound (1) state or unbound (0) state, the sec-

ond index j represents the second binding site. The degradation rate for

both proteins is set as k = 1. For simplicity, the unbinding rate for all bind-

ing sites is set as f . The binding rate for the first binding site (of both gene

A and B) is given as hi1 = f
Xeq1

nj and for the second binding site is given

as hi2 = f
Xeq2

ni(ni− 1)(ni− 2)(ni− 3). Xeq1 and Xeq2 are equilibrium con-

stants(ratio of binding and unbinding kinetics). The adiabatic parameter

is defined as ω = f/k.

For the self activating and mutually repressing network motif, the two

genes Gene A and Gene B each has two binding sites. The first binding

site of gene A(B) can be bound to a monomer produced by gene B(A) and

the synthesis rate of protein A(B) will be repressed by a factor λR. The

second binding site of gene A(B) can be bound to a tetramer produced by
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Figure 5: Regulation scheme of self activating mutually repressing regula-
tory motif

gene A(B) and the synthesis rate of A(B) will be raised by a factor λA. We

are using multiplicative model with activation and repression effectively

measured as multiplicative factors instead of conventional additive fac-

tors. We believe multiplicative model is more close in practice as to how

gene regulatory network make biological logic decisions. The synthesis

rates for different bound/unbound states are g00, g10 = λRg00, g01 = λAg00,

g11 = λRλAg00. The degradation rate for both protein A and protein B are

set equat kA = kB = k. The unbinding rate for all the 4 binding sites are set

equat f1A = f2A = f1B = f2B = f = k·ω. The binding rate for the first bind-

ing site of gene A(B) is h1A = f
Xeq1

nB (h1B = f
Xeq1

nA). The binding rate for

the second binding site of gene A(B) is h2A = f
Xeq2

nA(nA−1)(nA−2)(nA−3)

(h2B = f
Xeq2

nB(nB − 1)(nB − 2)(nB − 3)). The model can be expressed by
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the chemical reactions:

GeneA0α + (n+ 1)B
f1A
�
h1A

Gene1α
A + nB GeneAα0 + (n+ 4)A

f2A
�
h2A

GeneAα1 + nA

GeneB0α + (n+ 1)A
f1B
�
h1B

Gene1α
B + nA GeneBα0 + (n+ 4)B

f2B
�
h2B

GeneBα1 + nB

nA
k

�
g

(n+ 1)A nB
k

�
g

(n+ 1)B

In above reactions, α represents an arbitrary state of the binding site, it

can be 0 or 1. At large volume limit, protein concentration x = n
V

becomes

continuous variable. For simplicity we absorb the volume ‘V’ into g, f and

Xeqs. We set synthesis rates g00 = 5, λA = 8, λR = 0.2, degradation rate

k = 0.1, unbinding rate f = k · ω and binding rate h1A = f
Xeq1

xB (h1B =
f

Xeq1
xA), h2A = f

Xeq2
x4
A (h2B = f

Xeq2
x4
B). Equilibrium constant for mutual

repression is set as Xeq1 = 15 and for self activation Xeq2 = 504. The

master equation that govers network dynamics has the form of coupled

Focker-Planck equation:

∂tP = (H0 + Hb)P (4.1)

P is a 16 component vector whose component Ps(x, t) represents the

probability of the system being at gene state s with protein concentration

x at time t.

P =



P1111(x, t)

P1110(x, t)

P1101(x, t)

P1100(x, t)
...

P0000(x, t)


(4.2)
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H0 describes protein synthesis and degradation processes. It is diago-

nal with 16 diagonal elements. Each describes a continuous landscape at

corresponding discrete gene state.

H0 =



L1111 0 0 0 . . .
...

0 L1110 0 0 . . .
...

0 0 L1101 0 . . .
...

0 0 0 L1100 . . .
...

...
...

...
... . . . ...

. . . . . . . . . . . . . . . L0000


(4.3)

Each diagonal element Lijkl (each index i, j, k, l can be either 0 or 1) is a

‘Focker-Planck’ operator:

Lijkl = −∂xA(gij−kAxA)−∂xB(gkl−kBxB)+
1

2
∂2
xA

(gij+kAxA)+
1

2
∂2
xB

(gkl+kBxB)

(4.4)

On the other hand, Hb describes binding/unbinding processes and is

non-diagonal. It describes the ‘coupling’ between discrete gene states.

Hb =



r1111 h2B h1B 0 . . .
...

f2B r1110 0 h1B . . .
...

f1B 0 r1101 h2B . . .
...

0 f1B f2B r1100 . . .
...

...
...

...
... . . . ...

. . . . . . . . . . . . . . . r0000


(4.5)

The diagonal elements rijkl in HB are escaping rates from gene state
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ijkl.

r1111 = −f1A − f2A − f1B − f2B

r1110 = −f1A − f2A − f1B − h2B

r1101 = −f1A − f2A − h1B − f2B

r1100 = −f1A − f2A − h1B − h2B

... =
...

...
...

...

r0000 = −h1A − h2A − h1B − h2B (4.6)

Conventional studies for gene regulation dynamics are concentrated at

adiabatic limit of fast regulation binding/unbinding compared to the pro-

tein synthesis/degradation. In this case, adiabatic approximation is valid

and underlying stochastic dynamics can be described by the dynamic mas-

ter equation, which has the form of 2-dimensional Fokker-Planck equation

in the continuous limit[39]. Deterministic part of the driving force has the

form of Hill function[97] while the stochastic part of the force can come

from the intrinsic statistical number fluctuations in concentrations or ex-

ternal fluctuations. The problem is greatly simplified. In the more general

case, we should use master equation explicitly to describe the stochastic

dynamics. Since each gene has four discrete states (00, 01, 10 and 11). The

master equation which governs the dynamics, is 24 = 16 dimensional. At

large volume limit, the protein concentration variables xi = ni/V become

continuous. The master equation becomes ’Coupled Fokker-Planck’ equa-

tion. It has 16 discrete ’Fokker-Planck’ states that correspond to the system

being at one of the 16 gene states. These Fokker-Planck states are coupled

by the binding/unbinding reactions. There are two crucial time scales

involved in such system: the timescale of protein synthesis/degradation

and the timescale of binding/unbinding of regulatory gene network. Adi-

abatic parameter ω = f/k as the ratio between protein regulation bind-
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ing/unbinding rate to the gene and the protein synthesis/degradation

rate is introduced to quantify the hierarchy of the two timescales. The

probability evolution follows coupled Fokker-Planck equation. In the cou-

pled Fokker-Planck equation (master equation in large volume limit), the

population or probability P is a 16 component state vector. Each compo-

nent Ps stands for the probability of the system with protein concentration

x being at gene state ‘s’. H0 and Hb are operators that can act on P. H0 is

diagonal with 16 operators that describe the protein synthesis and degra-

dation processes. Hb is non-diagonal with binding/unbinding terms that

describe the ‘coupling’ between the gene states. The physical picture of

coupled system is clear. Each component of H0 defines a probability land-

scape corresponding to a discrete state of the four binding sites being at a

specific bound/unbound gene state. Hb describes the ‘hopping’ processes

between these states. The adiabatic parameter ω is a measure of the rela-

tive strength of regulatory binding/unbinding of protein to the gene and

protein synthesis and degrdation. When ω is large, Hb dominates over H0,

the ‘hopping’ happens so frequently that the ‘hopping’ processes reaches

an equilibrium and adiabatic regime of fast regulation is reached. When

ω is small, the ‘hopping’ is rare and the system tends to stay in one of the

16 gene state landscapes. The non-adiabatic regime of slow regulation is

reached. The moderate ω non-adiabatic regime is of special interest where

proper approximation or analytical treatment is often lacking.

In practice, we use Gillespie algorithm[103] to solve the coupled master

equation/Fokker-Planck equations we obtain the steady state probability

which gives the underlying landscape of the network system quantifying

the probability of the emergent phenotypic states and the evolution dy-

namics in time covering all the regimes of interests from adiabatic to non-

adiabatic case and in between. Various analytical approximations made

in adiabatic and non-adiabatic regimes are consistent with the full Gille-
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(a) Two dimensional steady state
distribution at ω = 100

(b) Two dimensional steady state
distribution at ω = 0.1

(c) Two dimensional steady state
distribution at ω = 0.001

(d) Three dimensional steady
state distribution at ω = 100

(e) Three dimensional steady
state distribution at ω = 0.1

(f) Three dimensional steady state
distribution at ω = 0.001

(g) Three dimensional landscape
at ω = 100

(h) Three dimensional landscape
at ω = 0.1

(i) Three dimensional landscape
at ω = 0.001

Figure 6: Two and Three dimensional landscape from fast regulation adi-
abaticity to slow regulation non-adiabaticity at ω = 100, 0.1, 0.001

spie simulations. We also developed a method for quantifying the optimal

path in both adiabatic and non-adiabatic regime. Details are included in

the supporting information.
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4.3 Adiabatic and Non-Adiabatic Dynamics

The gene network dynamics can be simulated with the Gillespie algorithm[103].

Various analytical approaches can be developed to approximate the adi-

abatic fast regulation and non-adiabatic slow regulation limit. When ω is

large, we are at adiabatic limit where adiabatic approximation of fast regu-

lation of protein to the gene compared to the protein synthesis/degradation

is valid[39, 77].

WhenHb terms representing binding/unbinding or gene switches dom-

inate over H0 terms representing protein synthesis/degradation, the dy-

namics of the fast degree of freedom (gene switching) quickly reaches

equilibrium which is the steady state ofHb:

Hbξ = 0 (4.7)

here ξ is a 16 components state vector and is normalized as 1T · ξ =∑
i ξi = 1. Being close to ξ, the total probability distribution can be written

as:

P = ρξ + ε (4.8)

where ρ is a scaler function of x and t, ε is a small deviation from ρξ.

The probability of the gene network with x protein concentration is

the sum over the probabilities of the network at x protein concentration

but being at different gene states . That is 1T · P =
∑

i Pi ≈ ρ. Multiply

the master equation using 1T from the left, and notice we always have

1THb = 0. The master equation becomes:

∂tρ = 1TH0ρξ =
∑
i

(H0)ii(ξiρ) (4.9)

The right hand side is the sum of 16 Fokker-Planck equations resulting
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the final form of 2-dimensional Fokker-Planck equation. The driving force

has the form of Hill functions and intrinsic fluctuation is x dependent.

d

dt
ρ = −∂xA(FAρ)− ∂xB(FBρ) +

1

2
∂2
xA

(DAρ) +
1

2
∂2
xB

(DBρ) (4.10)

with driving force and diffusion coefficients:

FA = g00
f

f + h1A

f

f + h2A

+ g01
f

f + h1A

h2A

h2A + f

+g10
h1A

h1A + f

f

h2A + f
+ g11

h1A

h1A + f

h2A

h2A + f
− kxA

FB = g00
f

f + h1B

f

f + h2B

+ g01
f

f + h1B

h2B

h2B + f
(4.11)

+g10
h1B

h1B + f

f

h2B + f
+ g11

h1B

h1B + f

h2B

h2B + f
− kxB

DA = g00
f

f + h1A

f

f + h2A

+ g01
f

f + h1A

h2A

h2A + f

+g10
h1A

h1A + f

f

h2A + f
+ g11

h1A

h1A + f

h2A

h2A + f
+ kxA

DB = g00
f

f + h1B

f

f + h2B

+ g01
f

f + h1B

h2B

h2B + f
(4.12)

+g10
h1B

h1B + f

f

h2B + f
+ g11

h1B

h1B + f

h2B

h2B + f
+ kxB (4.13)

When the whole system reaches steady state (protein concentrations in

addition to the gene switchings), we can quantify the landscape as :

U = − ln ρSS(x) (4.14)

The stable states correspond to local minimum of the landscape U .

The stability of the states is related to the topography of the landscape in

terms of basin depths. The Fokker-Planck equation can also be written in
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terms of probability conservation with lefthand side being the probability

change in time and righthand side as the divergence of the flux. The phys-

ical meaning is clear. The probability increase and decrease is associated

with the flux in and out. The flux is given as jSSi = −Fiρss + 1
2
∂j(Dijρ

ss)

and is divergent free ∇ · j = 0 in steady state. Define F̂i = Fi − 1
2
(∂jDij),

flux can be written as j = −FρSS + 1
2
∂ · (DρSS) = −F̂ρSS + 1

2
D ·∂ρSS , which

is similar to constant diffusion case:. The driving force can be decomposed

into a gradient part plus a curl part: Fi = −1
2
Dij∂jU + jssi /ρ

ss + 1
2
∂jDij or

F̂i = −1
2
Dij∂jU + jssi /ρ

ss. Non-zero flux is a measure of how far the system

deviates from the detailed balance (how far away the system is from equi-

librium). The non-zero flux is the origin of the irreversibility and entropy

production[23, 52].

As shown in Fig. 6, simulations under adiabatic approximation con-

firms that besides normal state and cancer state, an intermediate state

emerges as possible source of phenotype alternation. With the dynamic

equation being 2-dimensional Fokker-Planck equation under adiabatic ap-

proximation, it is possible to quantify optimal path using minimal action

approach. The 2D Fokker-Planck system is equivalent to a Lagrangian dy-

namic system with effective Lagrangian[24, 67]:

L = −
∑
i,j

1

2Dij

(ẋi − Fi)(ẋj − Fj) +
∑
i,j,k

1

2
Dik∂k(FjD

−1
ij ) (4.15)

Path integral tells us that, among all the possible transition paths con-

necting initial (normal) state and final (cancer) state, the possibility of a

single path is proportional to the exponential of the negative action S =∫ tf
ti
Ldt. The optimal path is the one that minimizes action S[78].As have

been pointed out, by using kinetic equation and energy conservation along

optimal path, the action can be simplified into a line integral along the

path[104, 105]
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S =

∫ xf

xi

dl
√

2(E − Veff (x))−
∫ lf

li

dl
∑
i,j

Fl (4.16)

D−1
ij plays the role of metric in the curved space. dl =

√∑
i,j D

−1
ij dxidxj

is the ‘distance’. Fl is the force projected to the path line modularized

by the diffusion. The second term in the action suggests the path is irre-

versible since the force is not a pure gradient. The curl flux component of

the force will lead to non-trivial contribution to the dynamics. This con-

firms the irreversibility of cancer model: the reversed optimal path will no

longer be the optimal path as the new action is larger and the probability

for the reversed path is smaller.

Fig. 9 shows clearly that at adiabatic limit, the optimal transition path

going through the intermediate state. In other words, a large portion of

the transition paths will go through intermediate state, resulting in a hub

with portion of the cells showing the intermediate alternative phenotype.

As ω decreases, binding/unbinding processes are less frequent and

we reach the non-adiabatic regime. Adiabatic approximation is no longer

valid. We have to use 16 dimensional master equation explicitly.

In the small ω, or weak coupling limit. Hb coupling terms are much

smaller than H0 terms. System tends to stay in one of the 16 states and

rarely jumps to another. In this limit, besides normal state and cancer

state, we are able to identify more intermediate states. Especially the ’off-

off’ state where both genes are repressed. These states have a great impact

on the cancer transition behaviour. There are also smaller peaks emerging

around the cancer state, suggesting possible phenotype alternations even

after the system reaches cancer state.

The moderate ω non-adiabatic region is of special interest. Conven-

tionally in this regima solid theoretical framework and analytical results

are hard to achieve. Recent progress[24, 66, 72, 79] showed that the sim-
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ilarity between coupled Fokker-Planck equation and Schrodinger equa-

tion. One can represent Fokker-Planck equation in the operator form and

introduce spinor representation to quantify discrete gene states. In other

words, the coupled discrete (gene state) and continuous (protein degrees

of freedom) processes are very hard to study analytically. However, we

can map the problem to the total continuous representation so that ana-

lytical approach is possible. This is realized by monitoring the occupation

or probability of the gene on and off states instead of the discrete label-

ing itself, since occupation is a continuous variable. The result is then the

continuous processes in extended dimensions (new continuous variables

including the occupations of the gene on and off states). Path integral can

further map the Hamiltonian dynamics into Lagrangian dynamics with

effective Lagrangian. After Hubbard-Stratonovich transformation the ef-

fective Lagrangian provides information of the dynamics at both classic

(deterministic level) and semi-classical (intrinsic fluctuation) level in the

extended continuous space.

In our case, there are 4 on/off binary binding sites, it is proper to intro-

duce 4 two-components spinors. 4 auxiliary variables: (cA0, cA1, cB0, cB1)

and their conjugate variables are introduced to quantify the dynamics of

the spinors. Follow the path integral procedure with spinor represen-

tation, the original coupled Focker-Planck system is mapped to a single

Fokker-Planck equation in 2 + 4 = 6 dimensional extended space.

∂tP = −
i=2∑
i=1

∂xi(F̃xiP )−
j=4∑
j=1

∂cj(F̃cjP )

+
i=2∑
i=1

1

2
∂2
xi

(D̃xiP ) +

j=4∑
j=1

1

2
∂2
cj

(D̃cjP )
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with driving force and diffusion coefficients:

F̃xA = cA0cA1g00 + cA0(1− cA1)g01

+(1− cA0)cA1g10 + (1− cA0)(1− cA1)g11 − k · xA
F̃xB = cB0cB1g00 + cB0(1− cB1)g01

+(1− cB0)cB1g10 + (1− cB0)(1− cB1)g11 − k · xB

F̃cA0
= f(1− cA0)− f

Xeq1

xBcA0

F̃cA1
= f(1− cA1)− f

Xeq2

xAcA1

F̃cB0
= f(1− cB0)− f

Xeq1

xAcB0

F̃cB1
= f(1− cB1)− f

Xeq1

xBcB1

D̃xA = cA0cA1g00 + cA0(1− cA1)g01

+(1− cA0)cA1g10 + (1− cA0)(1− cA1)g11 + k · xA
D̃xB = cB0cB1g00 + cB0(1− cB1)g01

+(1− cB0)cB1g10 + (1− cB0)(1− cB1)g11 + k · xB

D̃cA0
= f(1− cA0) +

f

Xeq1

xBcA0

D̃cA1
= f(1− cA1) +

f

Xeq2

xAcA1

D̃cB0
= f(1− cB0) +

f

Xeq1

xAcB0

D̃cB1
= f(1− cB1) +

f

Xeq1

xBcB1

The steady state probability distribution provides a global landscape

picture. Compared with coupled 16 discrete landscapes, a global unified
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landscape with continuous variables in the extended dimensions captures

the non-equilibrium property of the system. Non zero flux emerges in ex-

tended space as a measure of the system being at non-equilibrium and ir-

reversible. It also provides a clear picture not only for a unified landscape

but also for dynamics covering both intra continuous and inter discrite

landscapes dynamics. We can see from this formalism that deterministic

force and intrinsic fluctuation lie not only within each discrete landscape

in x-space, but also in the hopping processes that are quantified by con-

tinuous c-variables. The dynamics in extended space can influence the

attractors on the landscape and fluctuation induced transitions.

In particular, the optimal transition path can be quantified under this

unified framework in continuous extended space. Fig. 10 shows the op-

timal path obtained using minimal action approach under 6-dimensional

unified landscape projected to 2-dimensional nA − nB space. Compared

with optimal path at adiabatic limit, it’s more tilted towards the ‘off-off’

state. This is due to the location change of intermediate state as a result of

the weakened coupling, the change of gradient force of the landscape and

non-equilibrium flux.

4.4 Results and Discussions

4.4.1 Cancer Heterogeneity from Landscape View

In our model, there are two time scales quantifying the interaction strengths

of the gene networks. One is the protein synthesis (g) and degradation

rates (k), while the other is the binding(h)/unbinding(f) of regulatory pro-

teins to the gene leading the gene state to switch. When the relative time

scale ω = f/k is small, then the regulation processes are relatively slow

and the gene switch (on and off) slower than the protein synthesis and
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degradation. In this non-adiabatic regime, the couplings among genes

through protein regulations are loose due to the weak regulations. The

individual genes can be either switched on or off without much influences

from others. In this non-adibatic regime, the number of states one expects

from the gene network can reach up to 2N where N is the number of genes.

When the relative time scale ω = f/k is large, then the regulation processes

are fast and the genes switch faster than the protein synthesis and degra-

dation. In this adiabatic regime, the couplings among genes are tight due

to the strong regulations. The on and off states of genes are controlled by

the interactions with other genes. Therefore, one expects that only finite

number of states emerge as a result of gene interactions.

Due to the intrinsic and extrinsic fluctuations, the gene network dy-

namics is stochastic. Following the individual stochastic trajectory will

not provide global information. We explore the probability evolution in-

stead. The steady state probability landscape quantifies the chances of

each individual state. It gives a global description for the network sys-

tem. From the simulations of the kinetic processes involved in our cancer

gene network motif, we see the steady state probability (Pss) and poten-

tial landscape (U = −lnPss) projected in two and three dimensions with

respect to two protein concentrations (gene products). Heterogeneity is

directly related to the number of attractors of the landscape. The numbers

and locations of the attractors determine the possible phenotypes that can

be observed[23, 52].

As we can see from Fig.6 in main text, the landscape at adiabatic limit,

extreme non-adiabatic limit and moderate non-adiabatic regime are very

different. In the extreme non-adiabatic region, Hb terms are much smaller

than H0 terms. The gene states defined by H0 are decoupled and we can

expect as many discrete states as the dimension of H0 matrix. In our

examples, it is up to 16 states. In the other limit where Hb dominates
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over H0, adiabatic approximation is valid and the system is mapped to

an N-dimensional network whose number of stable states tends to be less.

The moderate non-adiabatic regime, as we can see, is different from either

limit. The location of the stable states are close to the ones in the extreme

non-adiabatic regime, but the smaller basins that are close to larger basins

merge to major peaks which is similar to the case in adiabatic limit. In

the adiabatic regime when the gene network is strongly coupled (gene

regulation time scale is much faster than the protein synthesis and degra-

dation), three states emerge. Two states are mutually repressive to each

other. One state has one gene on and the other gene off. This leads to the

state with one gene expression high and the other gene expression low.

Here gene expression is represented by the corresponding protein concen-

tration. The other state is just the opposite. The high expression of the first

gene and low expression of the second gene can be used to represent the

cancer state, while the high expression of the second gene and low expres-

sion of the first gene can be used to represent the normal state. Then we

see both normal and cancer states emerge from the gene network motif.

Furthermore, both states are quantified by the two basins of attractions on

the landscape with large probability. The reason of the normal and cancer

state/basin appearance lies in the fact of the mutual repressing interac-

tions among the genes. We also notice that a third state quantified by the

basin of attraction emerges representing an gene on-gene on state. The

appearance of this state/basin is from the self activation of both genes.

Both experimentally and clinically, premalignant state between normal

and cancer have been observed[106, 107]. The emergence of intermedi-

ate state/basin between normal and cancer state in this core cancer gene

regulatory motif may shed lights on quantifying the premalignant state.

As shown in Fig. 6(b), 6(c), 6(e), 6(f), 6(h), 6(i), in the non-adiabatic

regime when the gene network is weakly coupled (gene regulation time
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scale is slower than the protein synthesis and degradation), more states

quantified by local basins of attractions emerge. As mentioned, the slow

regulations can come from epigenetic effects of extra time scales from DNA

methylation and histone regulations. The normal and cancer state basins

still persist under slow regulation regime. Due to the weak binding/unbinding,

the self activation is suppressed. The intermediate basin is shifted towards

the gene-off gene-off state and splits into multiple states. Besides these

three major state basins (normal, cancer and off-off state), we have ob-

served the emergence of many local state basins around the major basins.

The multiple local basins around the major basins give a quantitative pic-

ture of the cancer heterogeneity. Cancer state is not an individual state

but composed of many states as we can see clearly under the epigenetic

conditions. The possible physical mechanism of the cancer heterogeneity

is thus from the weakening of the regulatory interactions among genes in

the gene network. The epigentics such as DNA mythylation and histone

remodification can naturally lead to the effective weakening of the gene

interactions.

From another angle, we can see as the gene network is weakly coupled

due to the weakening of interactions in Hb of Eq. (4.1). (with epigenetics of

DNA methylation and histone remodification being possible source), one

expects to have the emergence of many states or phenotypes. The state

basins are relatively shallow. Thus this is a possible physical mechanism

of cancer heterogeneity. As the coupling among genes become stronger,

more and more states are merged together. Shallower basins are merged

to deeper and larger basins. As a result, there are less phenotypic states

but relatively more stable. While the weak coupling between genes (or

landscapes of fixed gene states) at non-adiabatic regime can explain the

emergence of alternative phenotypic states, we will do a detailed study of

fluctuation, stableness, transitions and thermodynamic properties to fur-
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ther unveil the relationship between heterogeneity and non-adiabatic net-

work dynamics.

4.4.2 Cancer Heterogeneity from Fluctuations in Concentrations and

Kinetics

We can further characterize the cancer heterogeneity from the fluctuations

in concentrations and kinetics. Fig. 7 shows the Fano factor which is the

ratio of variance versus the mean of the protein concentrations (gene prod-

ucts). In a pure random process, statistical fluctuations from intrinsic noise

has a Poisson nature in which case Fano factor is equal to 1. We see when

the adiabaticity parameter ω of relative regulatory binding/unbinding to

progein synthesis and degradation is large, the fluctuations is non-Poisson

in this adiabatic regime. This is due to the nature of underlying reactions

of protein synthesis and degradation. On the other hand, when the adia-

baticity parameter ω of relative regulatory binding/unbinding to protein

synthesis and degradation is small, the fluctuations are significantly larger.

The significant larger fluctuations give the variances and heterogeneity.

This heterogeneity is coming from the emergence of the many local state

basins of attractions.

In Fig. 8(a), 8(b), 8(c), we also show the heterogeneity in kinetics.

We plot the statistical distribution of first passage time from normal to

cancer state. We see when the adiabaticity parameter ω of relative bind-

ing/unbinding to synthesis and degradation is large (Fig. 8(a)), the dis-

tribution of kinetics is rather narrow in this adiabatic regime. This is

due to the limited kinetic paths between normal and cancer state basins.

On the other hand, when the adiabaticity parameter ω of relative bind-

ing/unbinding to synthesis and degradation becomes smaller (Fig. 8(b)),

the statistical distribution of the kinetics is significantly wider. The signifi-

cant wider distribution indicates that there are many more pathways from
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Figure 7: Fano factor from slow regulation non-adiabaticity to fast regula-
tion adiabaticity

normal to cancer state basins. This shows the kinetic variance and hetero-

geneity. Again, this kinetic heterogeneity is coming from the emergence

of the many local state basins of attractions. These new basins of attrac-

tions lead to a rougher landscape and therefore multiple non-equivalent

pathways from normal to cancer state. Finally, when the adiabaticity pa-

rameter ω of relative binding/unbinding to synthesis and degradation is

extremely small (Fig. 8(c)), the statistical distribution of the kinetics be-

comes narrower. Under this condition, the rate limiting step is the switch-

ing speed of the genes rather than the protein synthesis or degradations.

Due to the slowness of the switching speed caused by the slow regulation,

single or limited switchings dominate the kinetics. Therefore, although

there are more local basins, there are only limited explorations under ex-

treme slow switchings and the kinetic heterogeneity becomes less.
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(a) FPT distribution at ω = 100 (b) FPT distribution at ω = 0.1 (c) FPT distribution at ω = 0.001

Figure 8: FPT distribution from slow regulation non-adiabaticity to fast
regulation adiabaticity

4.4.3 Cancer Heterogeneity from Kinetic Paths, Energy Cost and Sta-

bility

We can see the effects of heterogeneity on the kinetic paths from nor-

mal state to cancer state. We show the optimal kinetic paths when the

adiabaticity parameter ω of relative binding/unbinding to synthesis and

degradation is large (Fig. 9). We can see there is almost a unique path from

normal state to cancer state through the intermediate premalignant state.

The fluctuations around the optimal paths are small and the optimal path

tube is narrow. However, when the adiabaticity parameter ω of relative

binding/unbinding to synthesis and degradation is small (Fig. 10), the

optimal path from normal state to cancer state deviates from the adiabatic

optimal path. This is due to the emergence of more local state basins of

attractions, leading to the shifts for the optimal paths. Furthermore, we

see the fluctuations around this optimal path is relatively large compared

with the adiabatic path, resulting a wider optimal path tube from normal

to cancer state. Again, this is due to the presence of the multiple local state

basins. Notice the discussion on the path fluctuations here in relation to

the heterogeneity is consistent with the discussion on the kinetic hetero-
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geneity (Fig. 8) where wider distribution of kinetics implies multiple paths

from normal state to cancer state.

(a) ω = 100 Adiabatic Approximation

Figure 9: Compare optimal path(white and green) at adiabatic limit un-
der adiabatic approximation and real paths. Colored paths are real paths
generated by Gillespie simulation

The cancer heterogeneity can also be reflected by the energy cost per

gene switching. Being irreversible dynamic system, there is energy or

heat dissipation measured by the entropy production associated with this

irreversibility.[19, 23, 108] Fig. 10 shows the energy cost per gene switch-

ing from non-adiabaticity of slow regulation compared to protein synthe-

sis/degradation to adiabaticity of fast regulation compared to protein syn-

thesis/degradation. We see the energy cost per gene switching increases

monotonically with respect to the slower regulation compared to the pro-

tein synthesis/degradation (decrease in ω). The increase of the energy cost

is due to the heterogeneity in non-adiabatic slow regulation regime from
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(a) ω = 0.1 x-c Approximation

Figure 10: Compare optimal path(white and green) at moderate non-
adiabatic region under unified landscape approximation and real paths.
Colored paths are real paths generated by Gillespie simulation
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the emergence of multiple state basins of attractions. Gene switchings cost

more energy because of the number of state flipping is more.

Figure 11: Energy cost per turnover from slow regulation non-adiabaticity
to fast regulation adiabaticity

The heterogeneity can also be seen from the stability explorations. The

stability of the normal and cancer state can be quantitatively measured

by the kinetic time from one state to another. If the kinetic transition time

from normal(cancer) state to cancer(normal) state is long, then the stability

of normal(cancer) state is high. This is because the normal state can then

be maintained for a long (short) time. In Fig. 11, we see the mean first

passage time from normal to cancer state with respect to the adiabaticity

parameter ω of gene regulation versus protein synthesis/degradation. The

kinetics shows a non-monotonic behavior. At very low ω of extreme non-

adiabatic regime with slow regulation, the rate limiting step is the gene

switching. Increasing the regulation speed leads to the faster switching
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and therefore faster kinetics. On the other hand, as the regulation time

scale becomes faster than the protein synthesis and degradation, there is

no sufficient time for protein copy numbers to reach to the transcription

level corresponding to the gene state for each gene switching. Therefore,

the rate limiting step is no longer gene switching anymore. In fact, the

adiabatic barrier from one transcription (concentration) level to another is

determined by the protein synthesis/degradation averaged over the rapid

gene switchings. The faster the regulation speed or gene switchings, the

harder for the gene transcription in terms of protein concentration level

to catch for the specific gene state, therefore the kinetics becomes longer.

Therefore both faster and slower regulation or switching give slower ki-

netics, while in the moderate regime of ω of gene regulation or switching

relative to protein synthesis/degration, there is an optimal kinetic speed

from normal to cancer state. Therefore, from the kinetics, we can see the

stability is high at large ω (adiabatic regime). This is due to the limited

state basins with significant depths. For smaller ω (non-adiabatic regime),

the faster kinetics emerges. This implies less stability. The lower stability

is from the the emergence of the multiple states with shallower basins. The

very small ω of extreme non-adiabatic regime only has a moderate increase

of the kinetic time scale and therefore slightly higher stability relative to

the optimal one, in contrast with the adiabatic case for much longer du-

ration and higher stability. As we can see the lower stability is another

reflection of the underlying heterogeneity.

4.5 Conclusion

In this study, we use a core cancer gene regulatory motif to study the

possible source of cancer heterogeneity. Normal state and cancer state,

as well as intermediate states emerge as possible phenotype alternations
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Figure 12: MFPT from slow regulation non-adiabaticity to fast regulation
adiabaticity

in both adiabatic fast and non-adiabatic slow regulation regime. Slow

regulations can come from epigentics of DNA methylation and histone

remodification which lead to weaker coupling among genes. As a re-

sult, more steady states corresponding to more phenotype manifestations

emerge. The cancer heterogeneity is reflected from the emergence of more

phenotypic states, the larger transcription level concentration fluctuations,

wider kinetic distributions and multiplicity of kinetic paths from normal

to cancer state, more energy cost per gene switching, and weaker stabil-

ity. The relationship between non-adiabatic slow regulation dynamics and

epigenetic heterogeneity in cancer gene networks calls attention for fur-

ther study.

86



Chapter 5

Conclusion
In this dissertation, we first give a brief introduction to gene network and

its properties. Gene network is a mathematical model for the mechanism

that controls gene expression through regulatory interactions. Each node

of the network being a protein, RNA or protein complexes that is the tran-

scription/translation products of a genes. The links or edges between

nodes are the activating or repressive regulatory reactions that can be di-

rect or indirect.

The biological properties of the cell is largely determined by the ex-

pression level of the nodes in the gene network. On the other hand, the

transcription/translation products also participate in the regulatory inter-

actions so that it is a network with feedback and network can respond

to environment. A typical regulatory mechanism is through binding of

a regulatory protein to the promoter site of the target gene and as a re-

sult activate or repress the gene. This is essential in biology. It is due to

the feedback structure cells can respond to environment changes, adapt

to changes and evolve. Gene network is a highly non-equilibrium system

with frequent matter, energy and information exchange with outer envi-

ronment. As a result, detailed balance is broken even at steady state after

long time evolution. The level of non-equilibriumnes can be quantified

with non-zero steady state flux and entropy production. Gene network is

87



also a stochastic system with intrinsic noise from biological chemical re-

actions involved and extrinsic noise from environment. Stochastic system

is usually modeled with stochastic differential equation (SDE) which de-

scribes the stochastic trajectory of the system, and Fokker Planck Equation

(FPE) which describes the evolution of the probability distribution. The

dynamics is usually assumed to be Markovian and fluctuation is assumed

to be space and time uncorrelated.

In the second chapter, we give a brief review of landscape and flux

theory. Landscape theory visualizes system undergoes stochastic dynam-

ics as charged particle moving on the potential energy surface. Landscape

picture is useful in visualizing global distribution of stable biological states

and quantifying global dynamical properties. We briefly summarize the

relationship between stochastic Langevin/Fokker Planck system and La-

grangian system. We see in the sense of path integral, effective Lagrangian

and corresponding path integral formalism can be constructed and the

transition/escaping probability can be represented as path integral over

all possible paths connecting initial and final states. Transition rate is rec-

ognized in this formalism. We further show in practice how to calculate

transition rate and dominant path.

In the third chapter, we discuss in detail adiabatic and non-adiabatic

dynamics of gene network. The time scale hierarchy of protein synthe-

sis/degradation and regulation processes introduces different dynamics

at adiabatic regime and non-adiabatic regime. Conventional study is con-

centrated in adiabatic regime where adiabatic approximation is valid and

problem is greatly simplified. However, non-adiabatic dynamics is im-

portant in prokaryotic gene network and can have important biological

implications. We show that by using spinor representation and path in-

tegral method we are able to map the 2N dimensional gene network dy-

namics that is governed by master equation into a Langevin system in 2N
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extended space. This greatly reduces the complexity of the system and

makes numerical study of large network possible. More importantly, it

provides an unified landscape picture in the extended space. This pro-

vides a unified theoretical framework and is helpful in studying global

and thermodynamical properties.

In the fourth chapter, we study the relationship between cancer hetero-

geneity and non-adiabatic network dynamics. It is now understood can-

cer is controlled by gene network rather than single gene mutation. We

use a self-activating and mutual-repressing two gene motif as a simplified

core cancer network. At all adiabaticity regime we see normal and cancer

states. At moderate non-adiabatic regime we see in addition to normal

and cancer states there’s premalignant state emerges and multiple pheno-

typical variations of cancer state, a clear sign of heterogeneity. We further

quantify heterogeneity by studying global stability that is measured by

Fano factor. The distribution of first passage time, the mean first passage

time at different adiabaticity, and diversity of transition paths all suggest

moderate non-adiabatic regime has more heterogeneity and this hetero-

geneity is mainly due to the non-adiabatic dynamics of cancer network.

We get to the conclusion that non-adiabatic dynamics is essential to

eukaryotic gene network evolution. It can have vast implication in real bi-

ological systems. We also have investigated a 6-gene core cancer network.

Since this work is not completed yet we didn’t include it in the disserta-

tion. For the result we got so far, non-adiabatic dynamics in this network

is able to explain stem cell, cancer, cancer stem cell states development,

as well as cancer heterogeneity and cancer cancer metastasis. We hope to

finish this project soon. In the future, since the unified landscape picture

for non-adiabaric gene network dynamics is constructed and complexity

of numerical simulation is greatly reduced, we hope further investigation

into non-adiabatic dynamics of gene network can be done.
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