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Studying complex systems and emergent phenomena is very popular to-
day. The reason is that we desperately need more knowledge about many
complex systems such as cells, organisms, society and emergent phenomena
on the internet. Applying physical and quantitative methods to such systems
resulted in many discoveries, yet a lot of knowledge is missing. In particular,
we dont fully understand living systems including their emergence. What
are the minimal requirements for life? How to make a chemical system ca-
pable of inheritance and open ended evolution? If a system is capable of
Darwinian evolution, is it necessarily a living system? Modern life relies in
its functioning (including inheritance and capability to evolve) on long poly-
meric molecules: proteins and nucleic acids. Because of their indispensable
role in cells it is very important to understand the origins of these biological
polymers as well as their role in the emergence of inheritance, evolution and
metabolism. Are long biological polymers enough to jump-start life? We pro-
pose physical mechanisms of emergence of long bio-polymers in the prebiotic
world. We use HP lattice model to model polymerization, interaction and
folding of short chains of hydrophobic (H) and polar (P) monomers. We show
that such chains fold into relatively compact structures exposing hydrophobic
patches. These hydrophobic patches act as primitive versions of modern pro-
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teins catalytic site and assist in polymerization of other HP-sequences. These
HP-sequences form autocatalytic, self-sustaining dynamical systems capable
of multimodality: ability to settle at multiple distinct quasi-stable states
characterized by different groups of dominating polymers. We study proper-
ties of these systems to see their role in the chemistry-to-biology transition.
We also propose a stochastic simulation algorithm for modeling agent-based
complex systems which is particularly well suited for polymeric systems with
several types of monomers. This algorithm is efficient for sparse systems:
systems where the number of the species which could possible be generated
is much higher than the number of species actually generated. It allows for
simulation of systems with unlimited number of molecular species.
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Chapter 1

Chapter 1: Knowledge landscape

I, however, believe that there is at least one philosophical problem
in which all thinking people are interested. It is the problem of
cosmology: the problem of understanding the world – including
ourselves, and our knowledge, as part of the world. All science
is cosmology, I believe, and for me the interest of philosophy, no
less than of science, lies solely in the contributions which it has
made to it. For me, at any rate, both philosophy and science
would lose all attraction if they were to give up that pursuit.

Popper [1, 1959, preface]

1.1 Defining life

As human beings we can easily separate living objects from non-living ones
or at least we think we can. Some people even argue that life is something
that “you know when you see it”. It seems as if it was almost clear that life
is a special class of physical phenomena. Yet, as scientists, as physicists, can
we say it is?

It appears natural to start answering this question with a definition of life.
If there is no proper definition how can we argue on the matter? Attempts
to define life however encounter significant difficulties. Hundreds of differ-
ent definitions of life have been suggested over the years. In 2002 alone 40
definitions of life were proposed [2]. And this is precisely the problem: why
would we need so many definitions if we know what we are talking about?
Indeed, if we look at the multitude of these definitions we can notice that
there appears to be a certain inherent problem with the definition of life, as
Andy Pross noticed [3]. For almost every definition one can find a population
of living organisms that doesn’t fit the definition or a non-living object that
does. Many the definitions are incompatible with each other. One can find
a great deal of the definitions and good discussion in [2, 3].

One of the problems with defining life is that process of defining is to a
degree similar to a process of defining a chair. An intuitive definition of a
chair would be ”a char is what we sit on”. Yet somebody can say ”I use
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chairs to stand on, so according to your definition my chair isn’t a chair” or
”I sit on my floor. Is my floor also a chair?” The critique which is addressed
to the definitions of life is very similar.

As an example we can consider the definition of life by NASA ”Life is a
self-sustained chemical system capable of undergoing Darwinian evolution”[4].
This is a great definition. But what about a population of males stuck at
a Mars colony soon-to-be out of food. They cannot procreate and cannot
evolve. At the same time they are clearly alive. One can argue that a popu-
lation should be considered within a broader context of the whole humanity.
Yet if it was a self-sustaining colony with both genders present, we wouldn’t
need to add extra factors into the definition.

These kind of problems with definitions might stem from enormous com-
plexity of living entities and enormous complexity of the outside world into
which they are immersed. Attempts to capture this complexity in one for-
mal definition resulted in the multitude of the definitions each of which is
concentrated on certain aspects of living systems. Because the question of
origin of life is an extremely captivating one, it attracted people from various
fields of study: biology, chemistry, geology, physics, computer science and
engineering. Approaches taken by the researchers from different fields reflect
the paradigm existing in the field at the moment, which is reflected in the
definitions of life they use in their works.

With the rise of the theory of information and spread of its adepts into the
field of biology the view of life as information processing became increasingly
popular and is now essentially a dominating view among many researchers
from different fields[5]. This approach seems to be very attractive. The life in
this paradigm is a self-sustained system capable of information transfer and
evolution and the origin of life is a process of creating new information out
of randomness. While the approach is very attractive, it has its drawbacks.
For example computer viruses are capable of informational self replication,
but they are not considered alive. As well as not every dissipative system
that appears ordered can self sustain can be called living. These two time
scales (quick metabolic reactions of self-maintenance and slow process of
inheritance and evolution) are not the only ones which a characteristic of
life. Living organisms are also behave and develop: the latter one is a very
distinctive feature of life as the opposite to non-living dissipative systems
and computer or biological viruses. Omitting these stages from definition of
life and disregarding them while searching for the origin of life may be the
problem which stagnates the origin of life research[5].
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The approach taken in this work is strongly influenced by the information
theory. We are going to consider physical principles which can be a foun-
dation of spontaneous information creation as well as possible limitations of
those physical principles.

1.2 What is so special about life?

First of all, because there is no proper definition of life even within a certain
approach, we have to exhaustively list all the properties which known life
exhibits and then rank them according to importance to the property of
being “alive”. Because the author of this work surely enough thinks within
a certain paradigm, not all possible properties will be listed, for a property
reflects an angle from which one can look on a certain object and how one
logically groups parts and features of this object.

Enormous complexity. For a person who haven’t been exposed to biol-
ogy such as a physicist or an engineer the first encounter with cell biology
is a bewildering experience. Organization and complexity even of the sim-
plest living cells is magnificent. Even the simplest1 organism Candidatus
Carsonella ruddii, a bacteria which cannot survive on its own and requires
a host to provide for essential nutrients, has a DNA of 213 genes or about
160 00 nucleotides, almost as many types of proteins(182 genes code for pro-
teins), each responsible for a certain function, as well as RNA and pool of
smaller molecules[6, 7].

DNA, RNA and proteins are complex entities on their own. DNA is a
very long polymeric molecule made from four types of small molecules called
nucleotides. The sequence of the nucleotides is called genetic code and it
stores information about proteins – the actual workhorse of the cell. Proteins
are made out of 20 types of small molecules called amino acids. Some of the
proteins are responsible for ”reading” DNA in order to make proteins, some
for ”copying” it in order to make progeny of the cell. In addition there are
signaling proteins, proteins which let nutrients inside, proteins which help
other proteins to fold properly in order to perform functions, proteins which
break nutrients into accessible food, proteins which make cell move and so
on and on and on[8]. Besides DNA and proteins, cells have a third type
of long polymers – RNA, which is similar to DNA, but is used by cells for

1the organism having the shortest known DNA
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both functioning and information storage2. When proteins ”read” DNA, they
produce RNA, which is then being used by ribosome (a molecular machine
which is a mixture of RNAs and proteins) to produce proteins (see figure 1).
Even this simplistic view isn’t simple at all, there are endless details which
were omitted here.

Figure 1: When proteins ”read” DNA, they produce RNA, which is then
being used by ribosome (a molecular machine which is a mixture of RNAs
and proteins) to produce proteins (this picture is from Wikimedia Commons)

When one thinks about this complexity with regards to the origin of life
a series of questions naturally arise. Does it have to be so complicated to
function? What is the simplest living system possible? How could such a
complexity originate in the chaos of prebiotic Earth? These are not idle
questions. In fact there’s an argument that the complexity of the living
systems produces the huge space of possibilities which enable life to be what
it is[9, 10]. Just 182 genes are about 160 000 nucleotides. At the every
genome copying event any nucleotide can be substituted with 3 other. This
produces about 4160000 possible genomes.

Autonomy and purposeful character of life. In biology it is very hard
to exclude the notion of purpose from scientific discussion. This notion arises
naturally: when talking about evolution, we can clearly distinguish between
adaptation and maladaptation, thus distinguishing between so to say “right”
and “wrong” actions of a biological entity which benefit or hurt a given entity.
Nor in physics neither in chemistry we cannot talk about any kind of purpose

2 This fact when discovered had tremendous influence on the origin of life community
and changed the way how we think about it for many years.
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or notion of “self”, while one of the important questions of evolutionary
theory is the question of what is the entity which benefits from the “right”
actions. “The central theoretical problem of teleonomy3 will be that of the
nature of the entity for whose benefit adaptations may be said to exist.”[11]
In the scientific argument on what constitutes a single organism, for example,
one of the definitions is: “It’s one set of genetically identical cells that are in
communication with one another that have a common purpose or at least can
coordinate themselves to do something.”[12] The notion of self and notion of
purpose are emergent phenomena in biology.

Inheritance. The property of inheritance in perhaps the most obvious one.
Every living cell passes its DNA to its daughters with high precision. All
descendants look similar to their ancestors. The information how to develop,
look and very often how to behave is preserved between the generations
with great precision. While ability to replicate itself isn’t unique to life –
computer viruses do it very well. Heritability is a minimum requirement for
life. It has to make more of itself in order to pass traits to further generation
and participate in natural selection.

Exponential growth. If one looks at the living organisms it appears that
they, given enough food and good conditions, would multiply exponentially.
This observation led to a popular requirement for self-replicating systems to
undergo exponential growth [13, 14, 15] Such systems, given enough food,
can grow indefinitely while being constantly diluted, in particular moved to
a new vessel containing new food supplies.

1.3 Evolvability

I have hitherto sometimes spoken as if the variations . . . had been
due to chance. This, of course, is a wholly incorrect expression, but
it serves to acknowledge plainly our ignorance of the cause of each
particular variation.

Darwin [16, Chapter 5]

3“Teleonomy is the quality of apparent purposefulness and of goal-directedness of struc-
tures and functions in living organisms brought about by natural laws.” (Wikipedia defi-
nition)
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Another very characteristic property of life is evolvability. There are very
few definitions of life that do not include this peculiar ability. Yet defining
evolution is also tricky. Generally speaking evolution is a fascinating ability
of living organisms to thrive not even despite imperfections of inheritance,
but precisely due to the imperfections. That is notoriously different from the
properties of the complex machines created by humans. If one makes a copy
of a blueprint with a mistake and then makes a copy of this copy also with
a mistake and so on, they will likely end up with a machine which doesn’t
work, even if they try to do it with hundreds of thousands machines and
check if at least one will benefit from a random change4. The ability of the
living organisms to evolve is indeed an amazing one. Maybe that is why in
the origin of life as well in artificial life research it is ubiquitous to concentrate
on the evolutionary properties of life as the defining feature[4, 17, 18].

At this point in order to continue I have to define genotype and phenotype,
because those concepts play the key role in discussions of evolution.

Genotype or genome can be thought about as an information carrier,
for like a tape, that keeps information about organism and which is being
copied in order to replicate the organism.

Phenotype, on the other hand, is the “composite of an organism’s ob-
servable characteristics or traits, such as its morphology, development, bio-
chemical or physiological properties, phenology, behavior, and products of be-
havior (such as a bird’s nest)”[19]. There is a non-trivial relationship between
phenotype and genotype, which itself is a topic of discussions [20, 21, 22]

It is very common to distinguish two types of evolution – adaptive and
innovative[23]. The first one is the classic Darwinian evolution. The princi-
ples of Darwinian evolution are:
“ 1. Different individuals in a population have different morphologies, phys-
iologies, and behaviors (phenotypic variation).
2. Different phenotypes have different rates of survival and reproduction in
different environments (differential fitness).
3. There is a correlation between parents and offspring in the contribution of
each to future generations (fitness is heritable)[24].”
Thus, given that a certain genotype appears and it corresponds to a pheno-
type with higher fitness, it will get fixed in the population. Here, evolution

4A biologist would say that the experiment was performed on a population scale. In
fact this is the only proper way to talk about evolution, that is why I had to make a
comment about hundreds of thousands of machines
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is an ability to preserve “good” changes. The second type of evolution is the
ability to invent new functions, to grow more complex so to say.

The reason why one needs to introduce innovative evolution in addition
to adaptive is that natural selection doesn’t have a creative power. It allows
the best innovations to spread, but cannot invent them. As Hugo de Vries
said : “natural selection may explain the survival of the fittest, but it cannot
explain the arrival of the fittest” [25]. Thus in order to understand the
origins of life and its diversity and resilience we need to understand origins
of innovability. It was shown[22] that modern biological systems which are
capable of innovative evolution share one property in common. This property
is a relation between genotype and phenotype. In particular, living systems
have vast genotype networks. Consider a genotype to be a node in a graph
and a mutation to be an edge which connects to genotypes which differ
only in this mutation. Because there are many possible mutations, each
genotype has many neighboring genotypes. What is interesting is that a
single mutation (a hop in the graph of genotypes) will likely not result in the
change of a phenotype. Moreover, after making one more mutation there is
a high chance again that phenotype will stay the same. Having very many
consecutive mutations can change genotype drastically, yet the phenotype
may stay the same[22, 23]. The other property is that every genotype in
the graph mentioned above has great phenotypic diversity of its neighbors.
It means that every genotype has many neighbors with viable phenotypes,
each of which is different from the current and different from each other. This
allows living systems, so to say, explore their space of genotypes through the
large network and discover new phenotypes (inventions)[22, 23].

There is yet another type of evolution researchers care about – this is
open ended evolution. There is no unique definition or cohesive theory of
open-ended evolution[26]. Roughly speaking it can be though of as one that
continually produces novel forms[27]. The problem with open-ended evo-
lution is that it is relatively easy to make a system which would adapt to
certain external conditions, but then will stay unchanged in its local maxi-
mum of fitness[28, 26]. Life on the other hand is known to continue to evolve
even without change in the external conditions. In the famous experiment
on evolution when Richard Lenski has been tracking genetic changes in 12
initially identical populations of E. coli, the bacteria continued to evolve after
60 000 generations or 27 years[29]! The understanding of open-ended evolu-
tion is important for the origin of life community as well as for the machine
learning one. In order to claim that one has discovered how the life could
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have originated on Earth or can originate in principle one has to replicate at
least the most important properties of life; and open-endnesness of evolution
is one of them. To the best of my knowledge this problem hasn’t been solved
yet[28]. For the machine learning community this problem is important be-
cause search of global optima of the objective function is often stuck in local
minima and there is an argument[30] that if an open-ended dynamics to be
created in the system the difficulty mentioned above can be overcome.

In machine learning research, however, one need not to search for the
origins of open-ended evolution, but just for a set-up which will be able
to provide it. While there is a certain controversy if it has been achieved
yet[31, 32, 26], I believe that it was.

One can consider novelty search[30] as an example. In novelty search,
one considers a population of agents, each of which has a defined genotype
and a certain phenotype. Populations go through a process of reproduc-
tion and selection. The objective of the selection is however novelty : how
different is a specimen under consideration compared to all specimens that
ever existed. The authors of the novelty algorithm claim that it achieves
open-endnesness[30].

In this approach as well as in another one, which I believe achieved open-
ended evolution – MAP-elites [33] – individuals usually have well-defined
large genotypes with phenotypes corresponding to them. In biological terms
it would mean that the individuals already have DNA which codes for pro-
teins. In addition to that researchers can always add extra requirements,
such as a complete history of individuals in novelty search[30] or artificially
defined ecological niches like in MAP-elites[33] In the origin of life research
on the other hand the knowledge of how all of the above can emerge from the
“prebiotic soup” of small molecules is the question. Emergence of an open-
ended evolution contrary to construction makes the origin of life research so
hard. The next chapter will give a brief overview of more than a hundred
of years of research. It is not intended to be complete but rather to explain
main challenges and reasons behind our approach to the question.
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Chapter 2. From non-life to life. What was there
before life and why there is a problem

But even more important was that Miller’s experiments moved life’s
origin from philosophical speculation to the realm of hard, experimen-
tal science.

A.Wagner [10, Chapter 2]

This chapter is concerned with models for the origin of life on the planet
Earth. More precisely it attempts to give a review of existing hypotheses,
logical links that connect them as well as logical gaps and inconsistencies.

To say that the origination of life on Earth is a mystery is to say nothing.
After decades of research in biology, geology, chemistry and physics we are
still clueless about several stages of the origin of life. The problem is perhaps
that unlike with origins of different species one cannot blame the origin of life
onto evolutionary forces, because one has to explain the origin of evolution
itself. Specifically one has to explain an open-ended evolution and this is
not an easy task. During the last couple of decades computer scientists and
engineers joined the quest of looking for ways an open-ended evolution could
emerge on its own. Yet all to no avail. I claim, the belief that evolution will
solve all our problems with creating recognizably living entities has to an
extent hampered the process. Researchers try to see systems experience an
evolutionary dynamics as early as possible. To show that a system, no matter
how simple it is, is “evolvable” (and thus as a prerequisite for evolvability as
capable of heritability) is a very important part of to proof for a researcher
to avoid critique[34, 35, 36, 37]. Yet this might have been not the case on
the early Earth and we need to consider this possibility. It is also possible
that there are certain requirements on the complexity of a system capable of
open-ended or innovative evolution[9].

Heritability itself is not an easy task to achieve. While computer scientists
can easily invent in silico systems which will replicate with a desired degree of
faithfulness[38, 26, 33], chemists and biologists have managed to implement
reasonable replication in vitro only for very simplest and thoroughly designed
systems[13, 39]. Yet heritability is a necessary component of evolvability. The
very definition of evolution relies on it5.

5See Chapter 1
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Another reason for the enigmatic nature of the origins of life is the timing
and speed of the origin. We all know how fragile living organisms are: it is
very easy to turn one into inanimate matter, but impossible to revert things
back. Nevertheless early Earth, where and when life originated and persisted,
was an incredibly harsh environment. After Earth was formed about 4.5 ·109

years ago[40] it was in the molten state because of high activity of volcanoes
and frequent collision with other bodies[41]. Gradually surface of the Earth
cooled down and it accumulated the atmosphere. Then around 4.1−3.8 ·109

years ago it went through a stage called Late Heavy Bombardment, which
was marked (as it’s clear from its name) by disproportionately large number
of collision with asteroids[42] The Earth was significantly hotter and tectonic
activity was higher, being responsible for constant circulation of the material.
The atmosphere was uninviting – high pressure hot hydrogen and carbon
dioxide[43]. Yet earliest evidences of life correspond to a very close time
– biogenic graphite was discovered in 3.7 billion-year-old meta-sedimentary
rocks in Western Greenland[44, 45, 46].

Invention of such complex structures out of nothing by basically means of
random search in the given time frame is an impressive achievement. This is
not the most life is capable of, however. The Murchison meteorite6 contained
common amino acids and a complex mixture of alkanes7[47, 48].

Not all stages of life are equally hard to explain. The early stage of
abiogenesis are uniformly agreed upon. The hypothesis that appeared the
earliest happens to be the most accepted now. It is a “primordial soup”
theory stated by Alexander Oparin and John Haldane in the 1920s. It was
summarized by Robert Shapiro in the following form[49, p.100].

“Early Earth’s reducing atmosphere, being exposed to energy
sources of various forms, produced simple organic compounds,
such as for example amino acids. These compounds formed a
“soup” which may have had various concentrations at different
locations. Further transformation brought up more complex or-
ganic polymers and eventually life.”

This hypothesis was confirmed in 1952 in the famous Miller-Urey exper-
iment in which Stanley Miller and Harold Urey imitated the early Earth’s

6a more than 100kg meteorite that fell near Murchison, Victoria, in Australia, in 1969.
7similar to that found in the MillerUrey experiment
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environment and produced 5 different amino acids out of the mixture of wa-
ter (H2O), methane (CH4), ammonia (NH3), and hydrogen (H2)[50]. “Later
experiments produced many other of lifes construction materials, including
sugars and parts of DNA” [51]

Exciting as it is, primordial soup theory has one pretty obvious issue.
“Further transformation brought up more complex organic polymers and
eventually life”[49] isn’t precisely the recipe for life formation and requires a
consistent theory which would be able to shine some light on what kind of
“transformations” are capable of bringing about life. I am going to describe
the most popular view on the order and nature of the transformations that
had to take place.

To determine the way prebiotic chemistry followed we need to know when
it is time to stop and let evolution to take on. The simplest form of life we
know is bacterial. Probably because of that it is traditional to imagine the
final destination of prebiotic chemistry to be some sort of proto-bacteria.

More precisely it is vastly agreed upon that the first substances which one
can call living should be autonomous cell-like objects (vesicles), which grow
and split into daughter cells[4, 3]. These vesicles are seen as capable of un-
dergoing a process of adaptive evolution and thus rather faithful information
transfer to further generations. The process of transfer being error-prone
drives the evolution. The vesicles are also often seen to experience a set of
metabolic reactions. These entities further can be taken on by the creative
forces of open ended evolution and develop into bacterial cells with present
day complex molecular machinery.

The reasoning seems very intuitive:

• An entity must be encapsulated in order to keep concentrations of rele-
vant chemicals high. Being encapsulated also helps to maintain notion
of “self” by providing feedback, say between presence of genes and how
they affect cell performance.

• It has to be reasonably good in replication in order to be evolvable. If
new “better” traits are not remembered by descendants, then it would
be impossible to preserve them and thus evolve.

• Constant growth and replication requires cell to consume, transform
and excrete molecules. In order to do this it must have a primitive
metabolic system.
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And the view is surely enough very popular. It has its opponents though.
Bacteria as we know them might be a rather late stage of life development.
Reasonable criticism comes from the fact that early life didn’t have to look
like modern; it could have been easily totally different, less efficient and
eventually phased out during evolution[3]. There’s also a possibility that
encapsulation isn’t necessary for evolution and steady growth[52, 5]. Seeing
life as an information transfer and production machine also can be a very
limiting approach[5].

Nonetheless, mainstream view establishes the stages of prebiotic chem-
istry that are thought to have happened. Traditionally we can speak about
three approaches to the order of events of that phase of primordial soup
theory when long biopolymers, evolution and life in general appear. These
would be:

• Encapsulation-first. One needs small vesicles which would play a
role of small test tubes, where relevant molecules will have high con-
centration and wouldn’t diffuse away. Vesicles also put informational
and metabolic molecules together, thus generating a feedback link be-
tween them. Thus appearance of vesicles is a necessary requirement for
information preservation, metabolism, autonomy and evolution.

• Metabolism-first. A minimum requirement for life is metabolism:
organisms must harvest energy and produce molecular building blocks
from it. Thus first of all they need a network of chemical reactions to
exist.

• Information-first. Without ability to replicate itself and pass in-
formation to future generations there is no Darwinian evolution. So
minimal requirement for life is heritability.

Because it is virtually impossible that all three – encapsulation, informa-
tional polymers and metabolism – appeared simultaneously there’s an argu-
ment about which came first. The necessity of encapsulation seems very rea-
sonable and is widely accepted in the origin of life community [53, 54, 55, 56].
It means that the main disagreement is about whether metabolism or infor-
mational polymers must be the necessary first step for life to emerge on Earth.
If we look at the problem naively it seems to be a chicken and egg type is-
sue: in order to produce reasonably long biopolymers which can faithfully
replicate one needs metabolic apparatus; yet without inheritance how can
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cell “remember” its metabolic machines. Despite this complication, there is
a certain similarity in the approaches metabolism-first and information-first
camps take. Both of them concentrate on producing (in vitro or in silico)
autonomous self-reproducing entities capable of an open ended evolution(see
for example [57, 54, 5, 28]). In the following two sections I describe the main
theories and critique of the camps.

2.1 Information First: RNA world hypothesis

Perhaps it was the discovery of DNA structure[58, 59] in 1953 and proposal
of the central dogma of molecular biology in 1956[60] that pushed scientific
community towards informational approach towards the origins of life. The
structure of the DNA as well as RNA offers a great way to implement chemical
inheritance and evolution. The information is stored digitally on a linear
structures (genes) which are read only in one direction. Information can be
restored and copied. In addition the process of copying is error-prone with
a very low rate and there is a repair mechanism (in modern cells) enhancing
faithfulness of replication[61, 62, 63].

DNA has four types of nucleotides it is constructed from. They are called
guanine, thymine , adenine, and cytosine and abbreviated into G, T, A and
C correspondingly. Nucleotides can form relatively weak bonds with other
non-adjacent monomers called hydrogen bonds. These bonds are called base-
pairs because any one of the monomers can bond (form a pair) only with a
certain other monomer: A with T and C with G[64]. (see figure 2 (a)).

The nature of the bonds allows DNA to be a perfect molecule for preserv-
ing information between generations. Each DNA strand in the living cells
forms a double helix with another, complement DNA strand. Because hydro-
gen bonds are not covalent, they can be broken relatively easily. Therefore
the two strands of DNA can be pulled apart. Because strands are comple-
mentary to each other information stored on one is duplicated in the other.
During the DNA replication in the cell this allows for the easy information
transfer between generations. RNA is very similar to DNA, but due to a bit
different structure the base pairing makes it fold on itself like proteins do[8].
Thus nucleic acids seem a very natural candidate for the basis of life.

Early on it was thought that life strictly separates information in the
form of DNA/RNA and function in the form of proteins. As a result, despite
the attractiveness of nucleic acids as first substances of life, it wasn’t clear
how metabolic reactions including formation of the DNA or RNA could be
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Figure 2: Nucleotides can form relatively weak bonds with other non-adjacent
monomers called hydrogen bonds. These bonds are called base-pairs because
any one of the monomers can bond (form a pair) only with a certain other
monomer: A with T and C with G (this picture is from Wikimedia Commons)

possible without proteins, which in their modern form are impossible without
nucleic acids. Consequently the scientific community still was puzzled with
the chicken and egg problem. After the discovery of functional properties
of RNA[65, 66, 67] (see3) though the spirit of great optimism towards the
informational approach flooded the mainstream. Ability of RNA to perform
catalytic functions like proteins do and its prominent role in the protein
building molecular machine ribosome[68] fascinated minds of the scientists.
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Figure 3: 3D structure of hammerhead RNA. Hammerhead RNA is a small
RNA enzyme (ribozyme) which is capable of self-cleavage. Self-cleavage prop-
erties were first discovered in 1986[69, 70]. It is one of the first discovered
ribozymes and is thought to play major role in origination of life because of
its ubiquity[71, 72]. (this picture is from Wikimedia Commons)

The hypothesis that self-replicating RNA (ribozyme) is a precursor to
all the life on Earth is called the RNA-world hypothesis. Besides the abil-
ity of RNA to serve both as functional and informational polymers, another
argument in favor of RNA-world is that all modern cells have the same mech-
anism for peptide synthesis and this is RNA which catalyzes the peptide bond
formation[73, 74]. A recent study[75] argues that that ribosomal RNA was
that self-replicating entity which is a precursor to all modern life. They have
found that rRNA of E. coli K12 encodes the entire set of tRNA’s of this
microbe as well as some proteins. The authors examined only one specie,
thus the results can be an anomaly, however if replicated in other species
they indeed indicate that the ribosome is very likely have evolved prior to
cellular life and could be a precursor to all modern life.

The RNA world hypothesis is indeed a beautiful one. A molecule which
can be used for self replication and for catalyzing reactions can be both a
metabolizing agent and a unit of information storage. It is very easy to
imagine how such a molecule could undergo adaptive evolution. It can also
possibly be an intermediate step between single self-replicating entity and
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complex metabolic apparatus of a cell[75].
No wonder so much effort has been put into explaining origin of RNA

from the primitive chemical building blocks and also producing effective and
prebiotically plausible self-replicating RNA molecules[76, 77, 78]. However
it is not that easy. Most of the today’s catalysts are extremely long. They
couldn’t possibly be the first molecules. Significant effort was put into cre-
ating a prebiotically plausible replicase. The best results are an 189-letter-
long single piece self-copying RNA[79, 80] and a pair of cross-replicating
ribozymes which catalyze each other formation from 4 oligonucleotides[14],
each ribozyme being around 60-70 nucleotides long.

One of the arguments against the RNA-world hypothesis is that the repli-
cases mentioned above were designed by people with very good knowledge
of biochemistry[81]. It is hard to imagine the first replicase could be very
efficient or very precise. Yet for decent inheritance and thus evolution one
needs a very accurate replicase. This problem is called “error catastrophe”.
It was discovered my Manfred Eigen[82]. He calculated accuracy required to
avoid error catastrophe. The longer the sequence the more accurately it has
to replicate itself. He found that a replicase with fifty nucleotides can make
less than one mistake; the replicase with 100 nucleotides also cannot make
more than one mistake[82, 83]. Current 189 letters candidate for the original
replicase makes several times as many mistakes[84]. It is obviously not good
enough, even despite the fact that it was carefully designed.

Another critique of the RNA-world is a supply and demand issue. Even
if there was a faithful replicase, it would result in the exponential growth of
the population. This is surely good, this is what life does, but on the other
hand exponential growth requires enormous amount of raw material. As An-
dreas Wagner analyzed in [23] if RNA replicase copies one letter per second
after six hours RNA replicase system will consume 1 ton of nucleotides. This
amount of very special food is hard to produce in big enough concentrations
without biological source. In addition to that the “food” itself isn’t the easi-
est thing to make[85]. These two problems are often given by the proponents
of metabolism first hypothesis[23, 81, 36] as an argument for either “citric
acid cycle world” or “protein world”8. The problem with nucleic acids is
that unlike proteins, which are composed out of relatively easy to synthe-
size amino acids, they are composed out of much more complex nucleotides
(each of nucleotides itself is made out of three sub-units[64])[85]. Nucleotides

8see 2.2 for more details
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aren’t made easily prebiotically and don’t readily couple together even when
activated[85].

It is possible that RNA itself is a result of biological evolution[86, 87]. A
solution which is still information-first was proposed by Nick Hud[85] who
argued that RNA is a product of evolution of proto-RNA, a more prebiot-
ically plausible RNA-like oligomer. They also propose a possible pathways
of the evolution. This solution indeed can help with with the problem of
nucleotides, but doesn’t help with the supply issue. It is also important to
notice that protein world also faces the supply and demand problem, though
not in such a harsh form because amino acids are an easier material to make.

2.2 Metabolism-first: proteins and citric-acid cycle

The problem with food supply has a plausible solution in the metabolism-
first set of hypotheses. It is also a geologically plausible solution. To ensure
exponential growth of RNA, one needs a lot of nucleotides, which also are not
simple molecules and have to be produced from simpler materials. The source
of a tremendous amount of this simpler material was found in hydrothermal
vents [88]. Hydrothermal vents can provide energy for running metabolic cy-
cle known as citric acid cycle which is capable of producing nucleotides. The
citric acid cycle is a metabolic pathway which is used by aerobic organisms
to make energy[8] (see figure 4). It is ubiquitous in nature and thus seems a
plausible precursor to life.

On the other hand, citric acid cycle has its problems. First it has many
parasitic reactions which make sustaining the main body of the cycle implausible[36].
Second, studies of a metabolism first model GARD[89, 35] indicate that it is
very improbable for metabolic network to undergo adaptive evolution[34, 28].
Hence, while very attractive and powerful, the idea of citric acid cycle as a
precursor of all life remains a controversial one.

Another candidate is protein-like molecules autocatalytic cycles In mod-
ern organisms metabolic networks are enormously complex and many path-
ways heavily rely on proteins. That is why they are attractive candidates for
metabolism-first models. The amino acids – monomeric units of proteins –
are also very easily made in prebiotic reactions. Protein-based metabolic cy-
cles were proposed and popularized by Stuart Kauffman[90]. The main idea
is simple. Polypeptides can catalyze two types of reactions: condensation
and cleavage of other polypeptides, thus it is a possibility that they can form
reflexively autocatalytic sets. It is argued[90] that the emergence of such sets
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Figure 4: Citric acid cycle. Citric acid cycle is autocatalytic: it makes two
molecules of citric acid out of one through a chain of ten chemical reactions.
Portions of this metabolic cycle appear in the most ancient forms of life.
It can run in two directions. These properties make it a very attractive
candidate for the “grandfather of all metabolic activities”[23]. However there
is no experimental support yet for emergence of the cycle from prebiotic soup.
(picture is from Wikimedia Commons)

is an inevitable property of sufficiently complex sets of polypeptides.
This research sparked interest to autocatalytic sets and many scientist

attempted to produce and studying them[91, 92, 93, 94, 95].
Autocatalytic sets are subject to the same criticism as citric acid cy-

cle and partially RNA: it requires a high monomer supply, very well may
be not evolvable and may suffer from parasitic reactions. Yet it as well as
information-first theories deserves more investigation or a powerful alterna-
tive theory.
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2.3 On the way to discover origins of life: aims of this
thesis

Both information-first and metabolism-first camps share their target: they
are looking for self-sustained, autocatalytic, self-replicating capable of adap-
tive evolution, which would emerge out of prebiotic soup. Very often theoret-
ical models and in vitro experiments are criticized for lack of some features
of living organisms. It is not necessarily true, however, that life evolved right
out of prebiotic soup. Self-sustainability, evolvability, heritability and resem-
blance of current life didn’t have to occur at the same stage of life origin.
It is possible that every particular step may only provide a good ground for
the next one. In this dissertation I don’t claim we found a perfect model of
life origins, but rather a self-sustaining system with complex and selective
dynamics, which we claim is an important step towards further stages of
evolution.

First, I believe, it is important to discover a prebiotically plausible sys-
tem, which doesn’t die out. It doesn’t have to have any form of inheritance.
It just need to produce biomass and have a complex dynamic behavior – an
Oparin’s “self-reproducing garbage bag”. If such a system is not stuck in
one dynamical attractor, but on the contrary, is capable of investigation of
the phase space, capable of innovability, it can discover new interactions and
molecules. Systems which discover molecules which can be used for imple-
menting “memory” would survive because it will be able to preserve good
innovations. The separation into memory and function present in current or-
ganisms can be achieved by continuing exploration. Thus our research starts
with search of self-sustaining system capable of discovering new molecules
and interaction and physical mechanisms which are responsible for emer-
gence of such a system from prebiotic soup. The next important step is to
find principles which can explain discovery of inheritance or memory.

Bio-polymeric systems are good candidates for a role of such systems.
First, formation of a complex autocatalytic network of polymers cannot be
excluded probabilistically[90, 96]. Second, it was shown that if autocatalytic
networks include rare uncatalyzed reactions then new autocatalytic sets can
arise and system can avoid a curse of single attractor[17, 28]. Third, if poly-
mers in such systems can grow long enough they will automatically discover
new polymers, which will have new functions. However there is a problem
with the polymeric solution. It is what we call a Flory problem or problem
of short lengths: spontaneously polymerizing molecules have an exponen-
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tial length distribution and don’t grow long enough to perform functions of
modern proteins and RNAs.

The Flory length problem arises due to the fact that even if there’s enough
raw material RNA and protein chains tend to be just few monomers long.
This is a significant challenge. For proteins and RNA to function and to
store meaningful amount of information the length should be significant. It
is estimated that the shortest length for proteins and RNA’s is around 60-
100[76]. Nor RNA neither proteins are capable of self polymerization. Many
attempts to polymerize them in the lab using various prebiotically plausible
catalysts resulted in rather short chains9. I explore possible solution to the
Flory length problem in Chapter 3

In Chapter 5 I investigate dynamical and evolutionary properties of this
solution.

We have also developed computational methods for studying chemical sys-
tems with emergent behavior. These methods allow to simulate systems with
unlimited number of molecular species, allowing for exploration of complex
systems with non-trivial dynamics[97]. They are strongly rooted in physics
and can account for small fluctuations, which likely played important role
in the emergence of first biological systems. Thus I believe the proposed
method[97] can be an important tool in the investigations of complex chem-
ical systems with emergent behavior. The method is explained in section
4.

9See chapter 3 for details
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Chapter 3. Solution to the problem of short length

This chapter is a copy of the chapters 3-6, 8 of the paper [81]

3.1 The “Flory Length Problem”: polymerization pro-
cesses produce mostly short chains

Prebiotic polymerization experiments rarely produce long chains. It is com-
monly assumed that the chain lengths of proteins or nucleic acids that could
have initiated the transition to biology must be at least 30-60 monomers
long [98]. Both amino acids or nucleotides can polymerize under prebiotic
conditions without enzymes, but they produce mostly short chains [99, 100,
101, 102, 103]. Leman et al. showed that carbonyl sulfide (COS), a sim-
ple volcanic gas, brings about the formation of oligo-peptides from amino
acids under mild conditions in aqueous solution in minutes to hours. But
the products are mainly dimers and trimers [102]. Longer chains can some-
times result through adsorption to clays [104, 105] or minerals [106, 76], from
evaporation from tidal pools [107], from concentration in ice through eutec-
tic melts [108], or from freezing [109] or temperature cycling. Even so, the
chain-length extensions are modest.

For example, mixtures of Gly and Gly2 grow to about 6-mers after 14
days [110, 111] on mineral catalysts such as calcium montmorillonite, hec-
torite, silica or alumina. Or, in the experiments of Kanavarioti, polymers
of oligouridylates are found up to lengths of 11 bases long, with an av-
erage length of 4 [108] after samples of phosphoimidazolide-activated uri-
dine we frozen in the presence of metal ions in dilute solutions. Similar
results are found in other polymers: a prebiotically plausible mechanism
produces oligomers having a combination of ester and amide bonds up to
length 14 [112].

It is puzzling how prebiotic processes might have overcome what we call
the “Flory Length Problem” – i.e. the tendency of any polymerization pro-
cess to produce a distribution in which there are more short chains and fewer
long chains. Standard polymerization mechanisms lead to the the Flory or
Flory-Schulz distribution of populations f(l), whereby short chains are ex-
ponentially more populated than longer chains [113],

f(l) = a2l(1− a)l−1, (1)
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where l is the chain length and a is the probability that any monomer addition
is a chain termination. The average chain length is given by 〈l〉 = a(2− a);
see Figure 5(a).

Prebiotic monomer concentrations are thought to have been in the range
of micromolar to millimolar [114, 115, 116, 108, 117]. Given micromolar
concentrations of monomers, and given 〈l〉 = 2, the concentration of 40-mers
would be ≈ 10−19 mol/L. Figure 5(b) shows that where the chain-length
distributions are known for prebiotic syntheses, they are well fit by the Flory
distribution (or exponential law f(l) ∝ constantl) [118, 119]).
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Figure 5: Polymerization processes lead to mostly short chains. (a) Spontaneous
polymerization processes typically lead to a Flory distribution of chain lengths. Green line
gives 〈l〉 = 6, blue corresponds to 〈l〉 = 2 (b) Fitted distributions from experiments on
prebiotic polymerization: red – Kanavarioti [108], cyan – Ding [120], magenta – Ferris [121]

3.2 The foldamer-autocat mechanism: Short HP chains
fold and catalyze the elongation of other HP chains

We propose that the key to the Chemistry-to-Biology transition may have
been foldable polymers (“foldamers”). Today’s biological foldamers are pre-
dominantly proteins (although RNA molecules and synthetic polymers can
also fold [122, 123, 124]). Many foldamers adopt specific native conforma-
tions, mainly through a binary solvation code of particular sequence patterns
of the H (hydrophobic) and P (polar) monomers [125]. We call these HP
copolymers.

Since today’s bio-catalysts are proteins, it is not hard to imagine that
early primitive proteins could have been primitive catalysts. Precision and
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complexity are not required for peptides to perform biological functions. For
example, proteins generated from random libraries can sustain the growth
of living cells [126]. And, specific binding actions between random peptides
and small molecules are not rare [127]. Below, we describe results of com-
puter simulations that lead to the conclusion that short random HP chains
carry within them the capacity to autocatalytically become longer and more
protein-like.

3.2.1 Here are the premises of the model

1. Some random HP sequences can fold into compact structures.

2. Some of those foldamers will have exposed hydrophobic “landing pad”
surfaces.

3. Foldamers with landing pads can catalyze the elongation of other HP
chains.

4. These foldamer-catalysts form an autocatalytic set.

Here is evidence for these premises.

1. Non-designed random HP sequences are known to fold. HP polymers
have been studied extensively as a model for the folding and evolution
of proteins [128, 125, 129, 130, 131]. Those studies show that folded
structures can be encoded simply in the binary patterning of polar
and hydrophobic residues, with finer tuning by specific interresidue
contacts [132, 133]. This is confirmed by experiments [134, 135, 136,
137]. Moreover it was shown [138] that sequences capable of collapsing
into compact structures can be prebiotically selected just under the
forces of hydrolysis and aggregation.

2. Exposed hydrophobic clusters and patches are common on today’s pro-
teins. A study of 112 soluble monomeric proteins [139] found patches
ranging from 200 to 1, 200Å2, averaging around 400Å2; they are of-
ten binding sites for ligands or other proteins. Modern proteins have
many sites of interaction with other proteins, typically nearly a dozen
partners. Almost 3/4 of protein surfaces have geometrical properties
that are amenable to interactions and those sites are enriched in hy-
drophobes [140].
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3. Surface hydrophobic patches on proteins are often sites of catalysis [141,
139, 142, 143]. For example, hydrophobic clusters on the surface of
lipases serve as initiation sites where the hydrophobic tail of a sur-
factant interacts with the patch first [142]. A hydrophobic cluster on
Cytochrome-c Oxidase is known to increase kcat[143].

4. Primitive proteins might have catalyzed peptide-chain elongation. Of
course, today’s cells synthesize proteins using ribosomes, wherein the
catalysis is carried out by RNA molecules. Yet, there are reasons to
believe that peptide chain elongation might alternatively be catalyz-
able by proteins. First, peptide chain elongation entails a condensa-
tion step and the removal of a water molecule [64, chapter 3, p. 82].
Dehydration reactions can occur in water if carried out in nonpolar
environments [144, 145], such as protein surfaces. Second, a major
route of protein synthesis in simple organisms such as bacteria and
fungi utilizes nonribosomal peptide synthetases, and which don’t in-
volve mRNAs [146, 147].

3.3 Modeling the dynamics of HP chain growth and
selection

The dynamics of the model. We assume that chain polymerization takes
place within a surrounding solution that contains a sufficient supply of ac-
tivated H and P monomers. Since living systems – past or present – must
be out-of-equilibrium, this assumption is not very restrictive. In our model,
activated H and P monomers are supplied by an external source at rate a.
A given chain elongates by adding a monomer at rate β. Just to keep the
bookkeeping simple, we consider a steady state process in which molecules
are removed from the system by degradation or dilution at the same rate
they are synthesized. We assume chains can undergo spontaneous hydrolysis
due to interaction with water; any bond can be broken at a rate h. Without
loss of generality we define the unit rate by setting β = 1. All other rates
are taken relative to this chain-growth rate.

Chain folding in the model. In addition, our model also allows for how
the collapse properties of the different HP sequences affect the populations
that polymerization produces. A standard way to study the properties of HP
sequence spaces is using the 2D HP lattice model [128, 125]. In this model,
each monomer of the chain is represented as a bead. Each bead is either H
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Figure 6: Examples of HP sequences that fold to unique native structures
in the HP lattice model. Red (or pink if in the beginning of the sequence)
corresponds H monomers and, blue to P .

or P. Chains have different conformations, represented on a 2-dimensional
square lattice. The free energy of a given chain in a given conformation
equals (the number of HH noncovalent contacts) × (the energy eH of one HH
interaction). Some HP sequences have a single lowest-free-energy structure,
which we call native, having native energy Enat:

Enat = nhφeH . (2)

where nhφ is the number of HH contacts in the native structure of that
particular sequence.

A virtue of the HP lattice model is that for chains shorter than about 25
monomers long, every possible conformation of every possible sequence can
be studied by exhaustive computer enumeration. Thus folding and collapse
properties of whole sequence spaces can be studied without bias or param-
eters. Prior work shows that the HP lattice model reproduces many of the
key observations of protein sequences, folding equilibria, and folding kinet-
ics of proteins[148]. A main conclusion from previous studies is that a non-
negligible fraction of all possible HP sequences can collapse into compact and
structured and partially folded structures resembling native proteins [128];
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see fig. 6. The reason that the 2-dimensionality adequately reflects proper-
ties of 3-dimensional proteins is because the determinative physics is in the
surface-to-volume ratios (because the driving force is burial of H residues).
And, it is helpful that the 10-30-mers that can be studied in 2D have the same
surface-to-volume ratios as typical 3D proteins, which are 100-200-mers [149].

We assume that folded and unfolded states behave differently, as they
do in modern proteins. We suppose that a folded chain is prevented from
further growth, and also are protected from hydrolysis. This simply reflects
that open chains are much more accessible to degradation from the solvent
or adsorption onto surfaces than are folded chains. Even so, folding in our
model is a reversible, as it is for natural proteins, so some small fraction of
the time even folded chains are unfolded, and in that proportion, our model
allows further growth or degradation. For this purpose, we estimate the
folding and unfolding rate coefficients for any HP sequence as [150]:

ln

(
kf
ku

)
= −∆G/kT = Enat/kT −N ln z, (3)

where z is the number of rotational degrees of freedom per peptide bond.
Catalysis in the model. Some HP sequences will fold to have exposed

hydrophobic surfaces. These surfaces could act as primitive catalysts, as
modern proteins do more optimally today. Fig. 7 illustrates a common mech-
anism of catalysts; namely translational localization of the reacting compo-
nents. A protein A (the catalyst molecule) has a hydrophobic “landing pad”
to which a growing reactant chain B and a reactant monomer C will bind,
localizing them long enough to form a bond that grows the chain. How much
rate acceleration could such a localization give? Here is a rough estimate.

For chain elongation, the catalytic rate will increase if the polymer-
ization energy barrier is reduced by hydrophobic localization, by a factor
βcat/βno cat ∝ exp(EH · nc/kT ), where nc is the number of H monomers in
the landing pad (see figure 10). The free energy of a typical hydrophobic
interaction is 1-2 kT . We take the minimum size of a landing pad to be
3. For a landing pad size of 3-4 hydrophobic monomers, this binding and
localization would reduce the kinetic barrier by 3-8 kT, increasing the poly-
merization rate by 10 to 3000 times. Of course, this rate enhancement is
much smaller than the 107-fold of modern ribosomes [151], but even small
rate accelerations might have been relevant for prebiotic processes.

In order to simulate this dynamics, we run stochastic simulations. We
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Figure 7: Some HP foldamers have hydrophobic patches, which serve as “land-
ing pads” that can catalyze the elongation of other HP chains. Chain A folds
and exposes a hydrophobic sticky spot, or landing pad, where another HP molecule B,
as well as an H monomer C, can bind. This localization reduces the barrier for adding
monomer C to growing chain B.

used Expandable Partial Propensity Method (EPDM) [97, not published]10.

3.4 Results

3.4.1 Folding alone does not solve the Flory Length Problem. But
folding plus catalysis does.

We compare three cases: Case 1 is a reference test in which sequences grow
and undergo hydrolysis but no other factors contribute, Case 2 allows for
chain folding, but not for catalysis and Case 3 allows for both chain folding
and catalysis. Case 1 simply recovers the Flory distribution, as expected,
with exponentially decaying populations with chain length (see figure 8 gray
lines). In the Case 2 when chains can fold, they can bury some monomers
in their folded cores. Thus, chains that are compact or folded degrade more
slowly than chains that don’t fold. Figure 9 (Case 2) indeed shows that folded
polymers have higher populations than unfolded ones. This result is in the

10Description and the corresponding C++ library, can be found at:
https://github.com/abernatskiy/epdm.
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Figure 8: Chains become elongated by foldamer-catalyst HP sequences. Case
1 (gray): A soup of chains has a Flory-like length distribution in the absence of folding
and catalysis. Case 2 (blue): A soup of chains still has a Flory-like length distribution
in the absence of catalysis (but allowing now for folding). Case 3 (red): A soup of chains
contains considerable populations of longer chains when the soup contains HP chains that
can fold and catalyze. We run 30 simulations for every case. To produce each line we took
a time average over 106 time points in the steady state interval, then counted molecules
for each length and divided it it by the total molecular count.

agreement with the work of Shakhnovich et al. [138]; they showed that com-
pact structures are favored under conditions of aggregation and hydrolysis.
However folding alone does not solve the Flory length problem (see Figure 9
case 2 and Figure 8 blue lines). However, shows that this situation does not
solve the Flory length problem either. Folding does increase the populations
of some foldamer sequences relative to others, but the effects are too small
affect the shape of the overall distribution (see figure 8 blue lines). Case 3
gives considerably larger populations of longer chains than cases 1 or 2 give
(red lines on figure 8). When chains can both fold by themselves and also
catalyze the elongation of others, such polymerization processes will “bend”
the Flory distribution. This effect is robust over an order of magnitude of
the hydrolysis and dilution parameters. The result is that some HP chains
can fold, expose some hydrophobic surface, and reduce the kinetic barrier for
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Figure 9: The distributions over individual sequences are highly heteroge-
neous. We show the populations (molecule counts of individual sequences) for the three
cases: in case 1 we don’t allow folding or catalysis, in case 2 we allow folding but not
catalysis, and in case 3 both folding and catalysis are allowed. For all the cases gray dots
represent populations of the sequences that cannot fold, blue – sequences that fold, but
cannot catalyze and red – sequences which act as catalysts and for which at least one
elongation reaction has been catalyzed. For cases 1 and 2, populations of the sequences of
the given length are distributed exponentially. Thus we can take mean or median popu-
lation for the given length as a faithful representation of the behavior of average sequence
of that length. The case 3 is drastically different: the populations of the sequences of the
given lengths are distributed polynomially. While most of the sequences have very low
population for the longer chains, several sequences (mostly autocatalytic ones) have very
high ones and constitute most of the biomass. For the case 3 neither mean or median
are good representations of the behavior of the chains, as we can see from the figure, all
the chains basically separate into two groups with different distributions, this information
cannot be shown in the mean or median. Every point on the panels is a time average over
106 time points in the steady state interval. Lower limit of 10−6 is due to computational
precision.

elongating other chains. These enhanced populations of longer chains occur
even though the degree of barrier reduction is relatively small.

Case 3 is qualitatively different than cases 1 and 2. Even though cases
1 and 2 have substantial variances, they have well-defined mean values that
diminish exponentially with chain length. Case 3 has much bigger variances,
and a polynomial distribution of chain lengths, so neither the mean nor
median are good representations of the behavior of the chains; see figure
9(Case 3).
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3.4.2 The foldamer-catalyst sequences form an autocatalytic set.

The present model makes specific predictions about what molecules consti-
tutes the autocatalytic set – which HP sequences and native structures are in
it, and which ones are not. Figure 10 shows a few of the HP sequences that
fold to single native structures. Figure 10 (a) shows those foldamers that are
catalysts while Figure 10 (b) shows those foldamers that are not catalysts.

(a) Catalytic foldamers (b) Non-catalytic foldamers

Figure 10: (a) HP lattice chains that fold and are autocatalytic. They fold into
unique structures and have landing pads that can catalyze the elongation of each other.
(b) HP chains that fold, but are not catalytic. Most chains are not catalysts, but
the size of the autocatalytic set is non-negligible; see Fig. 12.

In short, all HP sequences that are foldamer-catalysts are members of the
autocatalytic set: any two HP foldamer-catalyst sequences are autocatalytic
for each other. Figure 11 shows two examples of autocatalytic paired chain
elongations. The top row of Figure 11 shows crosscatalysis : a polymer A
elongates a polymer B while B is also able to elongate A. The bottom row
of Figure 11 shows autocatalysis : one molecule C elongates a another C
molecule in solution.
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Agr AfAu

Cgr CfCu

CgrCuCf

BgrBf Bu

Figure 11: Top: Cross-catalysis of 2 different sequences. Bottom: Auto-
catalysis of 2 copies of an identical sequence. Dashed arrows (- - -) represent multiple
reactions of chain growth. Among them there are both · · ·HH +H → · · ·HHH catalyzed
reactions and spontaneous chain elongations. Catalysis is represented by red solid arrows
(—). Solid black lines (—) are folding reactions. Chains, which we call “autocatalytic”
experience catalysis during one (or more often several) of the steps of elongation. Then,
when they reach the length at which they can fold (Au, Bu, Cu), they fold and serve
as catalysts them selves (Af , Bf , Cf ). Mutual catalysis can happen between different
sequences (here A and B) and between different instances of the same sequence (here C).

3.4.3 The size of the autocatalytic set grows with the size of the
sequence space.

An important question is how the size of an autocatalytic set grows with the
size of the sequence space. Imagine first the situation in which the chemistry-
to-biology transition required one or two “special” proteins as autocatalysts.
This situation is untenable because sequence spaces grow exponentially with
chain length. So, those few particular special sequences would wash out as
biology moves into an increasingly larger sequence space sea. In contrast,
Figure 12 shows that the present mechanism resolves this problem. On the
one hand, the fraction of HP sequences that are foldamers is always fairly
small (about 2.3% of the model sequence space), and the fraction of HP
sequences that are also catalysts is even smaller (about 0.6% of sequence
space). On the other hand, Figure 12 shows that the populations of both
foldamers and foldamer-cats grow in proportion to the size of sequence space.
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Figure 12: Different sequence spaces grow exponentially with chain length.
(Gray) The number of all HP sequences. (Blue) The number of foldamers. (Red) The
number of foldamer catalysts.

The implication is that the space of autocats in the CTB might have been
huge.

Figure 13 makes a closely related point. It shows that for longer chains,
the fraction of biomass that is produced by autocatalysts completely takes
over and dominates the polymerization process, relative to just the basic
polymerization dynamics itself, even though the catalytic enhancements are
quite modest. This is due to two factors: (1) the number of autocatalysts
grow longer sequences (see fig.12 and (2) folding alone is not sufficient to pop-
ulate longer chains. We find that the average hydrophobicity of the dominant
sequences in these runs is 68%.

At this point, we note what our model is, and what it is not. Our model
is not intended as an accurate atomistic depiction of a real catalytic mecha-
nism. It is a coarse-grained toy model, of which there will be variants. The
mechanism we explore here is the translational localization of the two re-
actants, polymer B and monomer C, in the chain extension reaction. And,
while this model is 2-dimensional, extensive previous studies have shown that
it captures many important principles of folding and sequence-to-structure
relationships. At the present time, this type of model is the only unbiased,
complete and practical way to explore plausibilities of physical hypotheses
such as the present one.

We note that the present model is not necessarily exclusive to proteins.
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Figure 13: The longer chains the chains, the bigger the contribution of the
autocatalysts. Each red line shows how the contribution of autocatalytic chains to the
biomass of the given length grows with chain length. Different red lines correspond to
different simulation runs. The black line shows the median over 30 simulations.

Nucleic acid molecules are also able to fold in water, indicating differential
solvation. While our present model focuses on hydrophobic interactions, it
is simply intended as a concrete model of solvation, that could more broadly
include hydrogen bonding or other interactions. So, while our analysis here
is only applicable to foldamers, that does not mean it is limited to proteins.
The unique power that foldable molecules have for catalyzing reactions –
in contrast to other nonfoldable polymeric structures – is that foldamers
lead to precisely fixing atomic interrelationships in relative stable ways over
the folding time of the molecule. It resembles a microscale solid, with the
capability that substrates and transition states can recognize, bind, and react
to those stable surfaces. For example, serine proteases utilize a catalytic triad
of 3 amino acids. So, foldability in some type of prebiotic polymer, could
conceivably have had a special role in allowing for primitive catalysis. Here,
we use a toy model to capture that simple idea, namely that a folded polymer
can position a small number of residues in a way that can catalyze a reaction.
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3.5 Models and methods

In this section I will go over the physics and computer simulations in more
details. This section is an expansion of the Supplementary Information to
the [81].

We model our system with a set of likely prebiotic chemical reactions
which could happen in cell-like vesicles. To model the sequence-structure re-
lationship for polymers, we use 2D HP lattice model. To determine if a given
sequence can fold or act as a catalyst we have to determine if it has a unique
free energy conformational minimum. We need to do so because when se-
quence has the only conformational minimum it tends to stay longer in it and
thus is being more stable compared to sequences with several conformational
minima. The problem of determining if the sequence has a unique minimum
is NP-complete[152] and thus limits our analysis to relatively short chains.
Because of that we had to limit length of possible polymers to 25mers. Binary
polymers up to length 25 give us about 108 possible molecules. Depending
on how strongly coupled the system is there will be ∝ 108 to ∝ 1016 possible
reactions. Such tremendous number of reactions is hard to process, yet every
particular system cannot have so many species. Moreover, because we essen-
tially try to model small cell-like vesicles, the system would have very small
number of molecules (much less than NA). The best method to determine
the behavior of such systems is stochastic simulations. They take into ac-
count non-deterministic nature of chemical reactions and allow fluctuations
to play important role in the dynamics of a chemical system, which is likely
to be important in the emergent phenomena such as the origin of life. The
method we use is called the Expandable Partial-Propensity Direct Method
(EPDM)[97]. This method allows to work with unlimited number of possible
species and reactions if only few of them appear in the system in the same
time.

In every simulation we were looking for several properties of the system.
We were mostly interested in steady state statistics. In order to determined a
steady state we ran several simulations under different conditions and looked
at the time, when total number of species stops growing and when length
distribution stops changing. Across the set of conditions used in [81] and in
this work we found that steady state was reached by 40s of the simulation
time. Then we ran simulation for 100 more seconds. Because for every run
recordings were made every 0.0001s, this guaranteed 106 time points during
the steady state to calculate various statistics.
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The main statistic we were interested in is a steady state length distribu-
tion. To calculate it we took the average population of every sequence over
time during the million time steps. Then we summed all the populations of a
given length, obtained total populations for all n-mers, n ∈ [1, 25], and then
computed every population as:

pn =

∑
all n-mers∑

total population
(4)

giving probability of finding an n-mer of a randomly chosen molecule in the
system. We also looked at statistics of the length distributions over an en-
semble of simulations with identical parameters starting with the same initial
conditions as well as dependency of the distributions on the parameters.

3.5.1 Experiment 1: Does our bare polymerization reproduces
the Flory distribution?

In our first experiment we modeled unassisted prebiotic polymerization. We
assumed that polymerization took place in small cell-like vesicles, which serve
to preserve high concentration of the reacting molecules. Monomers (H and
P ) can diffuse into the vesicle. Because polymerization reaction is ther-
modynamically unfavorable in water[105] these monomers must carry extra
chemical energy which can be released during the polymerization and thus
drive polymerization reaction. We call such monomers activated (H? and
P ?). Activation of the monomers can happen with either help of light or
CO/H2S[115] or ATP[153] fore example. Activated monomers can interact
with polymers to produce longer polymers. We set the rate of this reaction
to β = 1. This doesn’t affect generality of our calculations and sets up a
reference rate. All other rates are relative to the polymerization rate.

activated 1-mer + n-mer
β−→ (n+ 1)mer (5)

We assume unaided polymerization is a rather slow process and thus rate of
import of activated monomers a has to be much faster. In our simulations
we vary this rate in the wide range of a ∈ [100, 5000].

∅ a−→ H? orP ? (6)

Another process which prebiotic polymers would naturally undergo is hydrol-
ysis: water present in the vesicle will break the bonds between monomers.
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This process has a constant rate h per bond.

n-mer
h−→ l-mer + (n− l)-mer (7)

Hydrolysis rates strongly depend on the temperature. Hydrolysis rate of
proteins under neutral conditions and room temperature are known. Typical
values for the half-time for the hydrolysis of a bond under neutral conditions
and room temperature are on the order of hundreds of years11. Here, we
explored a range of hydrolysis rates that are about 0.01 − 1 of the poly-
merization rate. This allows us to deduce spontaneous polymerization rates,
which in our case are on the order of days.

This elementary model describes basic chemical events which a mixture
of prebiotic polymers in a vesicle would undergo. Another important process,
which has to be added is vesicle growth. Vesicles are known to grow and split
spontaneously as the mass inside them increases[156]. Thus molecules either
dilute away or leave the system as vesicles divide. In this model we consider
bulk reactions and describe this process by the deletion reaction with the
rate d:

anything
d−→ ∅ (8)

In our simulations this rate is in the range d ∈ [0.01, 0.1]. The results of the
simulations are described in the section 3.4 The source file of the model and
parameters of the simulation are located at https://github.com/gelisa/

hp_world_data/tree/master/001

3.5.2 Experiment 2. What is the effect on the distribution of just
HP folding?

In our next experiment we were checking if folding affects the dynamics
of the HP polymerization. To do so we allowed HP-polymers with unique
conformational minima to undergo folding and unfolding reactions.

Folding and unfolding reactions happen much faster than the polymer-
ization processes, with corresponding rate coefficients of kf � ku � β:

folded chain
ku−→ unfolded chain

unfolded chain
kf−→ folded chain

(9)

11The hydrolysis rate constants of oligopeptides in neutral conditions are of the order
of 10−11 − 10−10: 1.310−10M−1s−1 for benzoylglycylphenylalanine (t1/2 = 128y)[154],
6.310−11M−1s−1(t1/2 = 350y) for glycylglycine and 9.310−11M−1s−1 for glycylvaline
[155].
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We used the most realistic values we could obtain for these rates and for
the folding free energies for proteins. We took Enat from the HP model,
known folding free energies from experimental data [157, 158], and we used
the relationship [150]:

ln

(
kf
ku

)
= −∆G/kT = Enat/kT −N ln z, (10)

where z is the number of rotational degrees of freedom per peptide bond. To
account for the difference between the 2D model and real 3D proteins, we
calibrated the parameters taken from the literature to yield unfolding/folding
rates that are meaningful in the context of the other rates in our model:
folding is much faster than growth and for any of the sequence in our pool
kf/ku ∈ (102, 104) [157, 158] for 3D proteins. Because the literature models
are only mean-field, averaged over sequences, and in order to retain sequence
dependence here, we set the unfolding rate of all sequences to the average for
their lengths, and assigned all the sequence dependence to kf . So, we used:
significantly.

ku = exp[12− 0.1
√
N − EH(0.5N + 1.34)],

kf = ku exp(∆G)
(11)

The model is not sensitive to varying these parameters over a wide range.
We use Eh ≈ (1 − 2)kT, so kunf ≈ 102, which leads to a range of unfolding
rates from one unfolding per hour to one unfolding per day. Folding rates
vary from a reaction per hour to a reaction per fraction of a second.

In our simulations we started with the same initial population as in Ex-
periment 1. To calculate the result in length distribution, we computed the
average population of every sequence for each trajectory over time over all
the recordings after 40s, resulting in a million time steps. The results of
the experiment are in the section 3.4. The source file of the model and pa-
rameters of the simulation are located at https://github.com/gelisa/hp_
world_data/tree/master/002

3.5.3 Experiment 3. What is the effect on the distribution of both
folding and catalysis?

In this experiment we studied our main hypothesis: that hydrophobic interac-
tion responsible for the folding of HP-sequences also is capable of facilitating
autocatalytic growth of the polymers by catalyzing H to H bond formation.
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The catalytic step is:

Catalyst +H + · · ·HH︸ ︷︷ ︸
l−1

βcat−−→ Catalyst + · · ·HHH︸ ︷︷ ︸ . (12)

The rate enhancement is βcat = β · exp(Eh · nc/kT ), where hydrophobic
sticking energy is eH , the number of contacting hydrophobes is nc, which
varies in the range 3 − 6. With the hydrophobic energies of eH = 1 − 2kT,
this gives catalysis rates around hours to days per reaction. Because the
EPDM supports only binary reactions, we divided the reaction above into to
steps: interaction of catalyst with a monomer with rate β and the reaction
of this complex with a polymer has the rate βcat.

In addition to folding in this in-silico experiment, we also accounted for
the pairwise contact interactions between two proteins, with the parameters
as indicated above. We explored ranges of parameters. We observed signif-
icant stability of the length distribution towards change of h and d in the
range: 0.05 / d ≈ h / 0.5. The distributions we observe are quite sensitive
to the choice of hydrophobic energy, as expected for chemical reactions, since
this enters into the exponent of the rate expression. In the generally phys-
ical range of eh = 1 − 3kT , we observe a bending of the Flory distribution,
as noted in the text. The results of the experiment are in the section 3.4.
The source file of the model and parameters of the simulation are located at
https://github.com/gelisa/hp_world_data/tree/master/003

3.6 Conclusion

This section is based on the conclusion section of [81]. Life requires
some form of autocatalysis [90, 159, 160]. Molecular mechanism which can ex-
plain it is only know for very small and simple molecules[13] or for exquisitely
designed RNA sequences[161]. Yet the mechanism which can be responsi-
ble for emergence of Kauffman-style set of polymers is unknown. We have
found that autocatalysis is inherent in the process of polymerization of HP-
polymers. Due to the hydrophobic interaction small fraction of randomly
synthesized HP polymers can fold into stable compact states. A fraction of
those folded structures have a set of hydrophobic monomers exposed to the
surface. They provide “landing pads”: hydrophobic surfaces that can help
to catalyze the elongation of other HP oligomers (see Figure 11).

The fraction of all the HP sequences that can fold to unique structures
(2.3% for lengths up to 25-mers) is not negligible. 12.7% of them have cat-

38

https://github.com/gelisa/hp_world_data/tree/master/003


alytic surfaces which can facilitate growth of other HP sequences. This con-
stitutes 0.3% of the whole sequence space. These ratios are big enough for
the sequences to be found by random exploration of the sequence space and
remain do not change significantly at least up to 25-mers; see figure 12. It
also has been shown that biologically active proteins can be designed based
on the HP folding rule [162]. This and the reasonably high frequency of ac-
tive polymers predicted by HP model suggests that discovery of autocatalytic
biologically active sequences during the random prebiotic polymerization is
plausible.
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Chapter 4: Exact rule-based stochastic simulations
for systems with unlimited number of molecular

species

This section is an exact copy of [97]

Frequently used abbreviations and symbols

SSA – Stochastic Simulation Algorithm
DM – Direct Method[163]
PDM – Partial propensity Direct Method[164]
SPDM – Sorting Partial propensity Direct Method[164]
EPDM – Expandable Partial propensity Direct Method
N – number of molecular or agent species
M – number of all possible reactions or agent interactions
α – maximum number of possible reactions or agent interactions between
any pair of molecular or agent species

4.1 Introduction

Mathematical modeling of chemical reactions is an important part of systems
biology research.

The traditional approach to modeling chemical systems is based on the
law of mass of action equations which assumes reactions to be macroscopic,
continuous and deterministic. It doesn’t account for the discreteness of the
reactions or temporal and spatial fluctuations, describing only the average
properties instead. This makes it ill-suited for modeling nonlinear systems or
systems with a small number of participating molecules, such as living cells.

In contrast, stochastic simulation algorithms (SSAs) do account for dis-
creteness and inevitable randomness of the process. As a result, these meth-
ods are becoming increasingly popular in modern theoretical cell biology[165,
166, 167]. Additionally, they have more physical rigor compared to the em-
pirical law of mass action ordinary differential equations[168].

It is worth mentioning that replacing molecules with any other interact-
ing agents does not invalidate the approach, as long as certain conditions
are met. This makes it suitable for modeling many non-chemical systems
in areas such as population ecology [169, 170], evolution theory [171, 172],
immunology[173], epidemiology [174, 175, 176], sociology [177, 178], game
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theory [179], economics [180, 181], robotics [182, 183] and information tech-
nology [184].

The majority of contemporary SSAs are based on the algorithm by Gillespie[185,
163, 168] known as direct method (DM). It describes a system with a finite
state space undergoing a continuous-time Markov process. The time spent
in every state is distributed exponentially; future behavior of the system de-
pends only on its current state. Gillespie has shown[168] that for chemical
systems these assumptions hold if the system is well-stirred and molecular
velocities follow Maxwell-Boltzmann distribution. Because of DM’s good
physical basis its solutions are as accurate or more accurate than the law of
mass equations, which isn’t necessarily a good predictor of mean values of
molecular populations[163].

Time complexity of DM is linear in the number of reactions. For highly
coupled systems that means that the run-time grows as a square of the num-
ber of species. This poses a problem for many models in systems biology
which describe systems with a multitude of molecular species connected by
complex interaction networks. Storage complexity of the DM is linear in the
number of possible reactions.

Many alternative SSAs which improve the time complexity of DM (see
Table 1 for an incomplete list) were developed. Approximate SSAs make such
improvements at the cost of introducing additional approximately satisfied
assumptions, while exact SSAs achieve better run-time by performing a faster
computation that is equivalent to the one performed by DM. Exact methods
have been developed with time per reaction that is linear[164] or, for sparsely
connected networks, even constant[186] in the number of molecular species.

One deficiency shared by most SSAs is that they operate with a static
list of all possible reactions and species, while for some systems of inter-
est maintaining such a list is not possible. An example of such system is
heterogeneous polymers undergoing random polymerization, an object of in-
terest for the researchers of prebiotic polymerization and early evolutionary
processes. The number of heteropolymers that can be produced by such a
process is infinite. Even if we only consider species of length up to L, we
have to deal with O(pL) species, where p is the number of monomer species.
This causes both time and storage complexity of stochastic models to grow
exponentially with L, which limits the studies to very short polymers.

However, if an algorithm can maintain a dynamic list of molecular species
and interactions, the complexity of modeling such systems can be substan-
tially reduced. In our example, the set of possible species is so large that
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even for moderate cutoff L the vast majority of all possible species will have
a population of zero. If at any time step a specie has a population of zero, no
reaction can happen in which this specie is a reagent. Therefore, the reac-
tions involving such a specie need not be tracked until some reaction occurs
in which the specie is a product.

In addition, many studies are concerned with emergent phenomena, which
often involve the system exhibiting some dynamical pattern, e.g. sitting
in a stable or chaotic attractor. Such phenomena tend to only involve a
subset of possible states and transitions and not explore the space of all
possibilities uniformly. This may limit the species and reactions involved
in the phenomenon to a small subset of all possible species and reactions.
For example, in the study by Guseva et al.[81] effective populations of all
sequences are∝ 103, while the number of all the possible species is∝ 107. The
model is tightly coupled, thus time costs are 104 times higher and memory
costs are 108 times higher than they could be if only the final subset of
reactions and species was considered and the SSA retained the time and
storage complexity of the best SSAs for static lists (e.g. PDM[164]).

However, not only this subset is unknown prior to the experiment, but the
transient to the behavior of interest may involve many more species and re-
actions than the behavior itself. Thus, the simulation cannot be constrained
to use a smaller list of species and reactions if such list is static.

One class of systems in which reactions cannot be listed occurs in solid
state chemistry. To simulate those, Henkelman and Jonsson[187] developed
an algorithm in which the list of possible reactions is generated on the fly and
used in the standard Gillespie’s algorithm. This approach was formulated as
a part of simulation framework specific to solid state chemistry. It remained
obscure outside of the solid state chemistry community and was rediscov-
ered independently by authors of the present work early in the course of its
preparation.

Here we present extendable partial-propensity direct method (EPDM): a
general purpose, exact SSA in which species and reactions can be added and
removed on the fly. Unlike Henkelman and Jonsson’s approach, our algorithm
is based on the partial-propensity direct method (PDM) by Ramaswamy et
al.[164] and retains its linear time complexity in the number of species. Stor-
age complexity is linear requirements in the number of reactions.

Only the species with nonzero populations and the reactions involving
them are recorded and factored into the complexity. This reduces time com-
plexity of executing one reaction by a factor of Ntot/N where Ntot is the
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number of all possible species and N is the number of species with nonzero
population at the time of the reaction. Storage complexity is reduced by the
square of that factor for densely connected reaction networks.

We test the performance of a C++ implementation of our algorithm12

for two chemical systems, investigate scaling and compare the performance
with two other SSAs. The results confirm our predictions regarding the
algorithm’s complexity.

Exact • Direct method (DM) [185, 163]
• First reaction method (FRM) [185]
• Gibson-Bruick’s next-reaction method (NRM)[188]
• Optimized direct method (ODM) [189]
• Sorting direct method (SDM) [190]
• Partial propensity direct method (PDM) [164]

Approximate • τ -leaping [191, 192, 193, 194]
• kα-leaping [191]
• Implicit τ -leaping [195]
• The slow-scale method [196]
•R-leaping [197]
•L-leap [198]
•K-leap [199]

Table 1: List of some exact and approximate stochastic simulation algorithms

4.2 Direct stochastic algorithms now

4.2.1 Gillespie Algorithm

Being an exact SSA, our algorithm performs an optimized version of the
same basic computation as the Gillespie’s DM[200, 163]. DM is based on the
following observation:

Probability that any particular interaction of agents occurs within
a small period of time is determined by and proportional to a

12https://github.com/abernatskiy/epdm
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product of a rate constant specific to this interaction and a num-
ber of distinct combinations of agents required for the interaction.

Since we developed EPDM with chemical applications in minds, we will here-
after refer to agents of all kinds as molecules. However, as long as the ob-
servation above holds, the method is valid for any other kind of agent (see
Introduction).

The algorithm starts with initialization (Step 1) of the types and num-
bers of all the molecules initially present in the system, reaction rates and the
random number generator. Then propensities of all reactions are computed
(Step 2). Propensity aµ of a reaction Rµ (µ ∈ {1, 2, ...,M}) is proportional
to its reaction rate cµ:

aµ = hµcµ. (13)

Here, hµ is the number of distinct molecular reactant combinations for reac-
tion Rµ at the current time step, a combinatorial function which depends on
the reaction type and the numbers of molecules of all reactant types [185].
Total propensity is the sum of propensities of all reactions:

a =
M∑
µ=1

aµ. (14)

The next step (Step 3), called Monte Carlo step or sampling step, is
the source of stochasticity. Two real-valued, uniformly distributed random
numbers from [0, 1) are generated. The first (r1) is used to compute time to
next reaction τ :

τ =
1

a
ln

(
1

r1

)
. (15)

The second one (r2) determines which reaction occurs during the next time
step τ . The j-th reaction occurs if

j−1∑
µ=1

aj 6 ar2 <

j∑
µ=1

aj. (16)

The next step is update (Step 4): simulation time is increased by τ
generated at Step 3, molecules counts are updated using the stoichiometric
numbers of the sampled reaction and propensities are updated in accordance
with the new molecular counts.
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The last step is iteration: go back to Step 3 unless some termination
condition is met. Termination should occur if no further reactions are possible
(i.e. when the total propensity a = 0). Optional termination conditions may
include reaching a certain simulation time, performing a given number of
reactions, reaching some steady state etc.

At every step the algorithm looks through the list of all M possible re-
actions. Therefore, the time it takes to process one reaction (i.e. perform
Steps 3 and 4) is proportional to M :

treac = O(M). (17)

There must be a record for every reaction, so the space complexity is also
O(M).

4.2.2 Partial propensity methods

For many systems it is valid to neglect reactions which involve more than
two molecules or agents. This premise allows for a class of partial-propensity
direct methods. The method described in the present work is among those.

If α is the maximum number of reactions which may happen between any
pair of the reagent species then M = O(αN2). Then the expression for the
time complexity of DM (17) becomes quadratic in N :

treac = O(αN2). (18)

Partial-propensity direct method (PDM) and sorting partial-propensity di-
rect method (SPDM) [164] improve this bound to O(αN) by associating each
reaction with one of the involved reagents and sampling the reactions in two
stages. In the first stage the first reactant specie of the reaction to occur is
determined; this takes O(N) operations. The second stage determines the
second specie and a particular reaction to occur; this takes O(αN) opera-
tions, and the total complexity of the sampling step adds up to O(αN).

Since any specie can be involved in at most O(αN) uni-molecular or
bi-molecular reactions, only O(αN) values have to be updated when the
molecular counts change. This enables PDM and SPDM to perform the
update step without worsening the time complexity of the sampling step.

The final time complexity of these algorithms

treac = O(αN) (19)
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holds irrespective of the degree of coupling of the reaction network. The
number of records required for sampling is still O(M) = O(αN2).

Note that for sparsely coupled reaction networks, time complexity can be
improved further to O(1)[186]; here we won’t concern ourselves with such
reaction networks.

4.3 Algorithm description

4.3.1 Reaction grouping

Similar to PDM and SPDM[164], our method relies on splitting the reactions
into groups associated with one of the reagents. To simplify this procedure,
we reformulate all reactions with up to two reagents as bimolecular by in-
troducing the virtual void specie ∅ which always has a molecular count of
1. It can interact with other, real species and itself, however its stoichiome-
try is always zero. With these new assumptions, unimolecular reactions are
reformulated as follows:

Si → products⇒
1Si + 0∅→ products.

(20)

Source reactions are also reformulated:

∅→ products⇒
0∅ + 0∅→ products.

(21)

Our algorithm keeps a list of species existing in the system to which
entries can be added. When a new specie Si is added to the list, the algorithm
considers every specie Sj in the updated list. For each (unordered) pairing
{Si, Sj} a list of possible reactions is generated. If the list is not empty, it is
associated with Sj, the specie that has been added to the list earlier unless
it coincides with Si. If Si = Sj, the list is associated with Si.

For example, the first step of the initialization stage involves adding the
first element to the list of species which is always the void specie ∅. At
this point there are no species in the list aside from ∅, so the algorithm
checks which kinds of reactions may happen between ∅ and itself. Due to
the reformulation (21) this will involve all source reactions. Their list will be
generated and associated with the newly added specie ∅.

Another example. Suppose the list of known species is [∅, S1] and we’re
adding a specie S2 which reacts with S1, itself and also participates in some
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unimolecular reactions. The list becomes [∅, S1, S2] and the algorithm pro-
ceeds to pair up S2 with every specie in it and generate reaction lists.

Due to the reformulation (20) it will find all the unimolecular reactions
for the pair {S2,∅}. The list of these reaction will be associated with the
previously known specie of the pair, ∅.

When considering the pair {S2, S1} it will find all the reactions between
S1 and S2 and associate them with S1.

Finally, it will consider a pair {S2, S2} and find its reactions with itself.
Since there are no previously known species in the pair, the reactions will be
associated with S2.

4.4 Propensities generation

As the reactions are generated and associated with species we also compute
and store some propensities.

For all reactions Rµ with up to two participating molecules full propen-
sities aµ are

aµ = ninjcµ for a bimolecular reaction

of distinct species i 6= j, Si + Sj → products,

aµ =
1

2
ni(ni − 1)cµ for a bimolecular reaction

of identical species 2Si → products,

aµ = nicµ for a unimolecular reaction

Si → products,

aµ = cµ for a source reaction ∅→ products.

(22)

Since the void specie ∅ has a fixed population of 1 we can use the formula
for the unimolecular reactions for source reactions as well: aµ = 1 · cµ for
∅→ products. Then for all reactions we can define partial propensity w.r.t.
the reactant specie Si as

π(i)
µ ≡ aµ/ni. (23)
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For the reactions with up to two reagents, partial propensities are[164]

π(i)
µ = njcµ for a bimolecular reaction

of distinct species i 6= j, Si + Sj → products,

π(i)
µ =

1

2
(ni − 1)cµ for a bimolecular reaction

of identical species 2Si → products,

π(i)
µ = cµ for a unimolecular reaction

Si → products,

π(∅)
µ = cµ for a source reaction ∅→ products.

(24)

Suppose some specie Sj is added to the list of known species as described
in section 4.3.1. For every specie Si in the updated list we generate a list
of possible reactions between Si and Sj and associate it with Si. For every
reaction Rijk in the list, we compute its rate constant cijk and its partial

propensity π
(i)
ijk w.r.t. Si using formulas (24).

We also keep some sums of propensities to facilitate the sampling. Given
a list of reactions between Si and Sj associated with Si, we define Ψ

(i)
ij as

Ψ
(i)
ij =

αij∑
k=1

π
(i)
ijk, (25)

where αij is the number of reactions possible between Si and Sj.

Λ
(i)
i is the sum of partial propensities of all reactions associated with Si:

Λ
(i)
i =

mi∑
j=1

Ψ
(i)
ij . (26)

Here, mi is the number of lists of reactions with other species associated with
Si.

Σi is the full propensity of all reactions associated with Si:

Σi = niΛ
(i)
i . (27)

and a is defined as a total full propensity of all reactions in the system:

a =
N∑
i=1

Σi. (28)
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Data type
Necessary members

Significance
Containers Scalars References Functions

TotalPopulation Linked list of
Populations

Total propen-
sity a (28),
current time
t, random
generator
state

– – Represents the
whole system
being modeled

Population Linked list of
Relations,
linked list of
RelationAddresses

Specie S,
molecular
count n,
propensity
sums Σ (27)
and Λ (26)

– – Represents a popu-
lation of molecules
of a specie S

Relation Linked list of
Reactions

Partial
propensity
sum Ψ (25)

To
RelationAddress

pointing to
this Relation

– Data on all re-
actions possible
between a pair
of species, to be
stored withing the
list of an owner
specie

RelationAddress – – To a
Relation,
its owner’s
Population,
list con-
taining this
RelationAddress

and itself

– Reference to a
Relation to be
kept by a non-
owner specie,
useful in propen-
sity updates and
population dele-
tions

Reaction Array of pairs
(ID, σ) of IDs
and stoichiome-
tries of partici-
pating species

Rate constant
c, partial
propensity
π w.r.t. the
owner specie
(24)

– – Represents a reac-
tion

Specie – Unique, com-
pact specie
identifier ID

– Specie::

reactions

(Specie)

An extended specie
representation ca-
pable of keeping
extra information
to generate lists of
possible reactions
with reactions()

method quickly

Table 2: List of data structure types used by the algorithm
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4.4.1 Data model

From Relation of
some Specie with
IDm ≠ IDj to IDi

To Population of
the Specie IDm 

To Relation of
the Specie IDm to IDi

To Relation Address
record held by the
Population of IDk

From Relation
Address record held

by the Population 
of IDk

Total Population

a, t

ni, Σi,
Λi

Population

IDi
Specie

Relation

Ψij, IDi

c, π, IDi
Reaction

-σIDi    IDi
-σIDj    IDj
σp1      IDp1

      ...
σpM     IDpM

reactants
products

nj, Σj,
Λj

Population

IDj
Specie

c, π, IDj
Reaction

-σIDj      IDj
-σIDk     IDk
σp1       IDp1

       ...
σpM      IDpM

reactants
products

Relation Address

Relation

Ψjk, IDj

Relation Address

Figure 14: EPDM data model. Circles with arrows denote references. Ref-
erences shown in black form the hierarchical linked list; in implementation,
many of those are hidden within the std::list container. Auxiliary ref-
erences added for dynamic updates are shown in blue. Letters and boxes
within the boxes indicate non-reference member variables. Crossed empty
circle represents a null reference.

Similar to Steps 3 and 4 in Gillespie’s DM (see section 4.2.1), execution
of each reaction in our algorithm involves two steps: sampling and updating.
We’ll refer to the data used in the sampling process as primary and call all
the data which is used only for updating auxiliary.

To minimize the overhead associated with adding and removing the data
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we use a hierarchical linked list (multi-level linked list of linked lists). We
define several data structure types (see table 2), many of which include lists
of instances of other types. Complete data model is shown in Figure 14.

Top level list is stored within a structure of type TotalPopulation. Aside
from the list, the structure holds the data describing the system as a whole:
total propensity a (see (28)), current simulation time t and the random gen-
erator state.

Elements of the top level list are structures of type Population, each of
which holds the information related to the molecular population of a par-
ticular specie Si. The information about the specie itself, to which we will
in the context of its Population refer as the owner specie, is represented by
a member object of user-defined class Specie (see note 2 at the end of this
section), containing a unique string specie identifier IDi as a member vari-
able. Population also contains the number of molecules in the population

ni, total propensity of the population Σi and total partial propensity Λ
(i)
i

w.r.t. Si of all reactions associated with Si (see eqs. (27) and (26)).
The Population structures are appended to the top level list sequen-

tially over the course of the algorithm execution (see section 4.3.1). Each
of them holds, in addition to the data mentioned above, two linked lists:
of structures of type Relation and of structures of type RelationAddress.
The former stores the list of all reactions possible between the owner specie
and some other specie that has been added later in the course of the al-
gorithm’s operation. RelationAddress structures hold the references used
to access Relations in which the owner specie participates, but not as an
owner. Those include all the species added before the owner.

It can be observed that the Population which has been added first will
necessarily has an empty list of RelationAddresses and a potentially large
list of Relations, with as many elements as there are species with which the
first specie has any reactions. On the other hand, the Population added
last will not be an owner of any Relations and its list of those will be
empty. In this case, all information about the specie’s reactions is owned by
other species and only available within the Population through the list of
RelationAddresses.

A Relation structure owned by Si holds a linked list of all possible
Reactions between Si and Sj and their total partial propensity Ψ

(i)
ij (see

eq. (25)). Reactions store the reaction rate cijk, partial propensity π
(i)
ijk, a

table of stoichiometric coefficients and IDs of all participating species, in-
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cluding products. Additionally, each of them stores an auxiliary reference to
the RelationAddress structure pointing to this Relation.

RelationAddress is an auxiliary structure holding references to a Relation
in which the owner specie participates without owning it, and to the Population
of the specie which does own the Relation. It also contains the references
to itself and to the list holding it.

Notes:

1. We will say that a TotalPopulation is valid iff all variables mentioned
in eqs. (24–28) satisfy these equations and all references mentioned in
the present section are valid and point where intended.

2. Unique specie string ID format and Specie objects are user-defined
and must be freely convertible between each other. The utility of hav-
ing a separate Specie class lies in it having a user-defined method
reactions() : (self, Specie) → ListOfReactions which produces a
list of all reactions possible between the specie described by a caller
object and a specie described by the the argument object. For some
systems, this computation can be made much faster if some auxiliary
data can be kept in the structure describing a specie. String IDs on the
other hand are intended as memory efficient representations of specie
data which are used when this computation may not be needed, e.g. to
represent reaction product not yet present in the system or for specie
comparison.

Our method does not rely on this separation other than as a means of
optimization.

3. Additionally, in our implementation we provide a global structure to
hold the parameters of the system which may influence the behavior of
the reactions() method of class Specie.
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4.4.2 Adding a Population

Algorithm 1 Adding a Population

1: function AddPopulation(tp, ID, n)
2: Append a new Population pN to tp’s list
3: Convert ID to a Specie object S
4: SN ← S, nN ← n
5: Λ

(N)
N ← 0, ΣN ← 0

6: for all Populations pi in tp’s list do
7: ListOfReactions← SN .reactions(Si)
8: if ListOfReactions is empty then
9: continue

10: end if
11: Append a new Relation ρiN to pi’s list
12: Append all Reactions in ListOfReactions

to ρiN ’s list
13: Ψ

(i)
iN ← 0

14: for all Reactions RiNk in ρiN ’s list do
15: Compute π

(i)
iNk using (24)

16: Ψ
(i)
iN ← Ψ

(i)
iN + π

(i)
iNk

17: end for
18: Λ

(i)
i ← Λ

(i)
i + Ψ

(i)
iN

19: Append a new RelationAddress structure RANi
to pN ’s list

20: Store references to ρiN , pi, RANi and pN ’s list of
RelationAddresses at RANi

21: Store reference to RANi at ρiN
22: end for
23: Recompute a using (28)
24: end function

Suppose that we have a valid TotalPopulation with N−1 Populations.
To add a Population based on a specie ID and a molecular count n, we fol-
low the method described in section 4.3.1 (see also algorithm 1). We begin by
appending a Population pN to TotalPopulation’s list. pN ’s Specie struc-
ture SN is converted from ID, its molecular count nN ← n and propensities
Λ

(N)
N ← 0, ΣN ← 0.
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Next, for each Population pi in TotalPopulation’s updated list (includ-
ing the newly added pN) we compute a list of all possible reactions between
SN and pi’s Specie Si. If the list is not empty, it is then converted into
Relation ρiN and stored at pi’s list of those. To do the conversion, we com-
pute partial propensities π

(i)
iNk and Ψ

(i)
iN using eqs. (24) and (25). We also

store copies of Si’s ID at every Reaction in the list and at the Relation ρiN
itself, to keep track of the specie w.r.t. which the current partial propensities
are computed. ρiN ’s reference to the RelationAddress structure is invalid
at this point.

After appending the Relation we update pi’s propensities: Λ
(i)
i ← Λ

(i)
i +

Ψ
(i)
iN , Σi ← niΛ

(i)
i .

We then proceed to create a RelationAddress structure RANi pointing
to ρiN . A blank structure is appended to pN ’s list. We take references to
ρiN , pi, RANi and pN ’s list of RelationAddresses and save them at RANi.

Then, we take the reference to RANi and store it at ρiN . At this point,
all references in the whole structure are valid and correct.

Processing each pi in the TotalPopulation’s list takes O(α), so the whole
procedure up to this point takes O(αN). At this point we need to update
the total propensity of the system a by recomputing it, which takes O(N)13.

The total number of operations it takes to add one Population is O(αN).
The operation preserves the validity of the data structure.

4.4.3 Initialization stage

To initialize the data structure, we make a TotalPopulation with an empty
list of Populations, initialize a ← 0, t ← 0 and the random generator
with a seed. The only variable that needs to take a particular value for the
TotalPopulation to be valid is a and it has the correct value of 0; therefore,
it is a valid TotalPopulation. We build the data structure by adding the ini-
tial populations to this structure as described in section 4.4.2. The resulting
structure is valid because we only used validity-preserving operations.

Adding every population takesO(αN) operations and it must be repeated
N times. This brings the complexity of the initialization step to O(αN2).

13It can be done during the iteration in O(1), but we chose to recompute it for improved
numerical accuracy.
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4.4.4 Deleting a Population

Algorithm 2 Deleting a Population

1: function DeletePopulation(tp, pi)
2: for all Relations ρij in pi’s list do
3: Follow ρij’s reference to RelationAddress

pointing at it, RAji
4: Use the reference at RAji to itself and to the

list holding it to remove it from the list
5: end for
6: for all RelationAddress RAij in pi’s list do
7: Follow RAij’s reference to the Relation ρji

and to the Population pj owning it
8: Remove ρji from pj’s list
9: end for

10: Delete all the date in the pi structure
11: Remove pi from tp’s list
12: end function

Our algorithm is designed to keep track only of the species with a nonzero
molecular count and reactions involving them. To accomplish that, we use
the addition operations described in the previous section and deletion op-
eration described here (see also algorithm 2). Deletion is only ever applied
to Populations of species with zero molecules. All propensities of reactions
involving such species are zeros; this enables us to simplify the procedure.

To remove a Population pi, we begin by removing all RelationAddress
structures pointing at Relations in pi’s list. Each Relation ρij in pi’s list
contains a reference to the RelationAddress structure pointing at it, RAji,
which in turn contains a reference to itself and to a list holding it. We use
those to remove each RAji from its list. Since Si can be involved in at most
N relations, this step takes O(N) operations.

Next, we remove all Relations in which Si participates, but which are
owned by other species. For each RelationAddress RAij we follow its refer-
ences to the Population pj of the other specie and to its Relation ρji with
Si. We use those to remove ρji from pj’s list. This step also takes O(N)
operations.

Finally, we delete the whole Population structure pi from TotalPopulation’s
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list. We recursively remove all the structures in its lists, which takes O(N)
operations for the list of RelationAddresses and O(αN) operations for the
list of Relations. The resulting TotalPopulation is valid since all the
propensities of the reactions involving Si are zeros and the remaining propen-
sity sums has not changed; it also contains no invalid references.

The final complexity of the deletion operation is O(αN).

4.4.5 Sampling stage

Similarly to DM[185] and PDM[164], our algorithm simulates the system by
randomly sampling time to the next reaction and the reaction itself with
certain distributions. Here we describe how it happens in our algorithm.

We begin by generating two random numbers r1 and r2. The first one is
used to compute the time to the next reaction τ exactly as in DM and PDM
(see eq. (15)). The second random number r2 is used to sample the reaction
similarly to how its done in PDM[164].

The sampling process has three stages (see algorithm 3). During the first
stage (lines 2-6) we determine the first specie participating in the reaction
to happen. To this end, we go through the list of Populations p1...pN until
the following condition is satisfied:

J∑
i=1

Σi 6 ar2 <
J+1∑
i=1

Σi. (29)

The second stage (lines 7-11) involves finding the second reactant. We
look for a Relation ρJK among those attached to the Population pJ for
which the following condition holds:

J∑
i=1

Σi + nJ

K∑
i=1

Ψ
(J)
Ji 6 ar2 <

J∑
i=1

Σi + nJ

K+1∑
i=1

Ψ
(J)
Ji (30)

During the third stage (lines 12-16), we determine which of the reactions
possible between the two species is going to happen. We go through ρJK ’s
list of the Reactions, looking for a reaction RJKL such that

J∑
i=1

Σi + nJ

K∑
i=1

Ψ
(J)
Ji + nJ

L∑
i=1

π
(J)
JKi 6 ar2 <

<

J∑
i=1

Σi + nJ

K+1∑
i=1

Ψ
(J)
Ji + nJ

L+1∑
i=1

π
(J)
JKi.

(31)
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Note how equations (29) and (30–31) are similar, but their implemen-
tation in the pseudocode (algorithm 3) is different. This design minimizes
sampling errors due to floating point representation, making the first stage
exact.

The resulting reaction sampling finds a reaction in exactly the same man-
ner as equation (16) does. However, the first and the second stages of this
sampling process take O(N) steps and the third step takes O(α) steps, re-
sulting in a total time complexity of O(N + α). Using (16) directly requires
O(M) steps[185], which is O(αN2) for densely connected reaction networks.

Algorithm 3 Reaction sampling

1: function SampleReaction(tp, r2)
2: s1 ← 0, s2 ← 0
3: while ar2 > s1 do
4: Get a new Population pi from tp’s list
5: s2 ← s1, s1 ← s1 + Σi

6: end while
7: g ← (ar2 − s2)/ni
8: while g > 0 do
9: Get a new Relation ρij from pi’s list

10: g ← g −Ψ
(i)
ij

11: end while
12: g ← g + Ψ

(i)
ij

13: while g > 0 do
14: Get a new Reaction Rijk from ρij’s list

15: g ← g − π(i)
ijk

16: end while
17: return Rijk

18: end function
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4.4.6 Updating stage

Algorithm 4 Post-sampling data update

1: function UpdateExistingPopulations(tp, RIJK)
2: for all species Si participating in RIJK do
3: Search for a Population of specie Si in tp’s list

using its IDi

4: if Si has a Population pi in tp’s list then
5: ni ← ni + σi(RIJK)
6: for all RelationAddresses RAij in pi’s list do
7: Follow the references at RAij to get

the Relation ρji and its owner
Population pj

8: Λ
(j)
j ← Λ

(j)
j −Ψ

(j)
ji

9: Ψ
(j)
ji ← 0

10: for all Reactions Rjik in ρji’s list do

11: Recompute π
(j)
jik using (24)

12: Ψ
(j)
ji ← Ψ

(j)
ji + π

(j)
jik

13: end for
14: Λ

(j)
j ← Λ

(j)
j + Ψ

(j)
ji

15: Σj ← nj · Λ(j)
j

16: end for
17: else
18: AddPopulation(tp, IDi, σi(RIJK))
19: end if
20: end for
21: for all Populations pi in tp’s list do
22: if ni == 0 then
23: DeletePopulation(tp, pi)
24: end if
25: end for
26: end function

When the reaction to occur RJKL is known, our algorithm proceeds to
update the data to reflect the changes in species’ populations and propen-
sities (see also algorithm 4). For every specie Si involved in RJKL we read
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its IDi from the array stored at RJKL. We run a sequential search for this
specie’s Population pi over the list kept in TotalPopulation. If the specie’s
Population is found, its molecular count ni is updated using the stoichio-
metric coefficient σi(RJKL):

ni ← ni + σi(RJKL). (32)

Stoichiometric coefficients are negative for reagents, so their molecular counts
may become zero after this step.

After updating the molecular count, we also update all partial and total
propensities which depend on it. From every RelationAddress RAij in pi’s
list we obtain references to a Relation ρji in which Si participates and to

the Population pj of its owner specie. For ρji we recompute all π
(j)
jik and Ψ

(j)
ji

from scratch using formulas (24) and (25). For pj, we update the propensity
sums as follows:

Λ
(j)
j ← Λ

(j)
j −Ψ

(j)
ji ,

Σj ← njΛ
(j)
j .

(33)

Since each of the species involved in RJKL may be involved in O(αN)
reaction, updating the structure in this way takes a total of O(αN) opera-
tions.

If the specie Si is a product, its Population may not exist yet. In this
case we add a new Population of Si using its IDi as described in section
4.4.2. The molecular count of the newly added specie is its stoichiometric
coefficient in RJKL, σi(RJKL). Additions take O(αN) operations.

When we’re done updating the existing Populations and adding the new
ones, we iterate through the list of Populations again and delete the ones
with a molecular count of zero as described in section 4.4.4. The deletion
takes O(αN).

Finally, we recompute the total propensity of the system a using (28).

4.4.7 Summary of EPDM

EPDM is an SSA which only maintains the data about the species with
nonzero molecular count (see algorithm 5). This ensures that the number of
tracked molecular species N is as low as possible.

Our algorithm uses a data structure described in section 4.4.1. The struc-
ture holds one entry for each possible reaction, bringing storage requirements
of our algorithm to O(αN2).
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The data structure is initialized by constructing it to be empty, then
adding the specie data for every specie initially present in the system. The
process is described in section 4.4.3 and takes O(αN2) operations.

Each step of the simulation executes a single reaction. It is composed of a
sampling step (see section 4.4.5) and an updating step (section 4.4.6). Each
of these takes αN operations, so the total number of operations needed to
simulate one reaction is also O(αN).

When some reaction produces any number of molecules of a previously
unknown specie, specie data is added as described in section 4.4.2. To gener-
ate the reactions dynamically, a user-defined function reactions() is used
which takes two species and produces a list of reactions between them, com-
plete with rates.

When any specie’s molecular count reaches zero, its data is pruned from
the structure as described in section 4.4.4.
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Algorithm 5 EPDM overview

1: . Initialization stage, see section 4.4.3
2: Create TotalPopulation tp based on initial conditions
3: while a > 0 and termination conditions not met do
4: . Sampling stage, see section 4.4.5
5: Generate two random numbers r1 and r2

6: Compute τ using (15)
7: R←SampleReaction(tp, r2)
8: . Updating stage, see section 4.4.6
9: for all species Si involved in R do

10: Search tp’s list for Population of Si
11: if a Population pi of Si has been found then
12: Update Si’s molecular count ni
13: Update all partial propensities which

depend on ni
14: else if no Population of Si has been found then
15: Add a Population of Si to tp’s list
16: . details in section 4.4.2
17: end if
18: end for
19: Find all Populations with n == 0 in tp’s list
20: Remove all found Populations
21: . details in section 4.4.4
22: end while

4.4.8 Implementation

We implemented our algorithm as a C++ framework. The user must de-
fine a class Specie with a constructor from a string ID which must save
the string into the member variable m id. The class must define a method
Specie::reactions(Specie) returning a list of possible Reactions between
the caller Specie and the argument.

After implementing the class Specie, users can simulate the system. Two
stopping criteria are currently available by default: the algorithm can stop
either when a certain number of reactions have been executed or a certain
simulation time has passed.

A global dictionary with arbitrary parameters loaded from a configuration
file is provided for convenience.
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The implementation is currently available for Linux and Mac OS X. It is
tested with GNU gcc 4.9.3 and GNU make 4.1.

The code is available at https://github.com/abernatskiy/epdm.

4.5 Benchmarks

We benchmark performance of EPDM against two direct methods: PDM[164]14

and DM[201]15

Because our model was designed with complex systems in mind we stud-
ied performance only for strongly coupled systems. In both systems every
specie can interact with every other specie in a unique way, ensuring that
the number of reactions is

M =
N(N + 1)

2
(34)

and
α = 1. (35)

Both models are designed in such a way that the total number of species is
preserved throughout the simulation time.

Models below are designed to measure the performance of our method.
They don’t fully illustrate the power of the model because they have fixed
number molecules, which is necessary to keep for benchmark. The most strik-
ing performance gain is achieved when listing all the species isn’t possible
in principle or due to computational costs. For example, in case of realistic
polymerization and autocatalysis model used to study prebiotic polymeriza-
tion [81] it was possible to increase the maximum length of simulated poly-
mers from 12 to 25 by employing our algorithm. Note that limit of 25 wasn’t
due to restrictions of our algorithm, but due to necessity to calculate min-
imum energy folding configuration of every chain, which is an NP-complete
problem.

4.6 CPU time of EPDM is linear for a strongly coupled
system

The first model (”colliding particles”) is made to test how our algorithm
performs on chemical systems where no new molecules are created and no

14We took implementation from http://mosaic.mpi-cbg.de/pSSALib/pSSAlib.html
15We took implementation from http://sourceforge.net/projects/stochkit/
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Figure 15: CPU time per reaction as a function of the number of species in
the system for ”colliding particles” model (section 4.6) for EPDM, PDM and
DM.

molecules ever disappear. This is a model of a system consisting of colliding
particles of N species. Particles behave like rigid spheres: they collide, and
bounce back without internal changes. All of the particle species are known
in advance, none are added or removed over the course of the simulation.
The system is defined by the following set of equations:

Pi + Pj
k−→ Pi + Pj, i, j ∈ [1, N ]. (36)

In our simulations we vary number of species N from 10 to 7000. Every
specie has a population of 50 molecules. Collision rate k is fixed at 0.5 s−1.
Every simulation runs until 5000 reactions have occurred. For every value
of N , CPU time to simulation completion was measured 10 times and the
average time is reported.

Figure 15 shows CPU time it takes per reaction for DM, PDM and EPDM.
DM is clearly quadratic. For any given N PDM outperforms the EPDM, but
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both are linear in time. It is important to note that DM and PDM were
stopped for a relatively low values of N due to excessive RAM consumption
(about ∼ 120GB) by both of the applications, which we suspect was due to
implementation issues (in particular, in XML handling libraries).

4.7 CPU time stays linear when species are actively
deleted and created

The second test checks if algorithm keeps linear time when Populations are
added and removed from the system. The test system (”particles with color”)
consists of N colliding particles of N types, each of which has an internal
property (”color”) that is changed in the collision. The following equation
defines the system:

Pα
i + P β

j
k−→ Pα+1

i + P β+1
j , i, j ∈ [1, N ], α, β ∈ [1,Ω] (37)

Indexes i, j enumerate particle types and run from 1 to N . Indexes α, β
enumerate colors of particles; particle can have one of Ω colors. During the
collision color index of a participating particle goes up Pα

i → Pα+1
i , until it

reaches maximal index Ω, after which it drops back to 0: PΩ
i → P 0

i .
Since every combination of a particle type and a color is considered a

separate specie, every reaction causes two species to go extinct and their
Populations to be deleted. It also adds two new species, which requires
adding two new Populations. Thus, the total number of species simultane-
ously present in the system is maintained at exactly the same level. Every
specie is represented in the system by a single molecule.

To run such a simulation in DM and PDM frameworks we had to enumer-
ate all NΩ of the possible species. This slows down the simulation enough
to make the comparison impossible beyond a small number of species. The
figure 16 shows how CPU time per reaction depends on the number of species
in EPDM.

4.8 Conclusion and Discussion

Stochastic simulations are actively used in molecular and systems biology.
The bigger and more complex the system, the more important the perfor-
mance of the simulation algorithm becomes. It is also more burdensome or
even impossible to list all the species and reactions for complex systems. We
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Figure 16: CPU time per reaction for EPDM simulation of ”particles with
color” (see section 4.7).

introduced a general purpose, exact stochastic simulation algorithm which
allows to avoid listing all the possible species and reactions by defining the
general rules governing the system instead. Built within the partial propen-
sity framework [164, 186], our algorithm achieves linear time complexity in
the number of molecular species.

The algorithm has its limitations. First, it is limited to reactions of
maximum of two reactants. In the chemical system that doesn’t present much
of an issue because reactions with three molecules are significantly rarer then
binary reactions and more complex reactions can be represented as sequences
of binary reactions. Second, it cannot simulate spatially nonhomogeneous
systems. However, as long as all reactions involve no more than two reactants
and the observation from section 4.2.1 holds, it is possible to simulate any
system for which the set of reactions between any two species is known.

Benchmarks suggest that our algorithm is slower than PDM by a constant
factor. Therefore, one should use PDM when it is unlikely that a significant
proportion of species will have a molecular count of zero.

Our results suggest that in complex systems (such as polymerization re-
actions and networks of intra-cellular reactions) and in the case of emer-
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gent phenomena studies (e.g. origins of life) EPDM can significantly im-
prove the performance of the stochastic simulations. The software imple-
mentation of the algorithm is available as an open source public repository
https://github.com/abernatskiy/epdm.
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Chapter 5: Conclusions and discussion

5.1 Conclusions

Living organisms today use informational polymers such as proteins and
nucleic acids for their functioning. It is a common belief that monomeric
units of these polymers could have polymerized into short random sequences.
However it is not clear how chains long enough for functioning could have
been produced and what physical process is responsible for the production
of longer non-random chains that could sustain its own production. In this
thesis a physical mechanism which explains the emergence of metabolic sets
of non-random biopolymers and a plausible mechanism of solving the problem
of production of long polymers prebiotically has been proposed.

We have studied physical systems consisting of hydrophobic and polar
amino acid-like molecules which are capable of spontaneous random polymer-
ization. We have shown that hydrophobic interaction which drives folding
of these polymers can also be a driving force of mutual catalysis. When an
oligomer folds and have an exposed hydrophobic patch, this patch can serve
as a landing pad for a growing chain and a hydrophobic monomer. This
landing pad localizes the growing chain and the monomer and also lowers
an activation energy due to hydrophobic interaction. We have showed that
such a system can escape Flory problem (the problem of short lengths) and
produces self-sustaining sets of non-random polymers.

In order to test our hypothesis, we used Gillespie-like stochastic simu-
lations. We developed an algorithm which allows to simulate systems with
potentially infinite number of types of molecules. This algorithm is a gen-
eral purpose stochastic simulation algorithm that works best for the systems
where there are very many (potentially infinite) possible molecular species
only few of which are present at every given moment. This algorithm is
available through Github[97] for free use.

5.2 Discussion

5.2.1 Evolvability and dynamical behavior of the HP-based auto-
catalytic ensembles

This section is taken from [81] There are a few problems chemistry-to-
biology models in general and autocatalytic models in particular encounter.
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One of them is lack of variability and evolvability. Due to the compositional
bias or poor dynamical structure of the model such systems converge to one
state (attractor or attractor basin) determined by internal dynamics of the
system and do not respond to directional selection (see discussions in [119, 28]
for example). For a complex system that has many attractors a perturbation
can move the system over a threshold to the basin of another attractor. This
allows for exploration of the sequence space and thus possible evolvability of
the system.

HP ensembles have, we believe, two possible attractors, which allows
for the exploration of the sequence space. First, as one can see from the
figure 17(a) trajectories split distinctively between two attraction distribu-
tions. There are no trajectories that lay in between the two attractors, which
shows that there’s no switching between the attractors and the separation
is not a result of stochasticity. In addition to that each of the distributions
has a set of specific sequences which most often dominate the populations.
Figure 17(b) shows a few of the structures dominating HP ensembles for the
“green” distribution and for the “red” ones. The red and green species differ
only in random seeds for the simulations. Each of the two attractors has
its own “signature ensemble” of HP sequences that is an emergent property
of the dynamics. It is possible that adding more realism to our model (20
monomer types, rather than 2; allowing for longer chains; etc) could lead to
larger numbers of attractors. Second, our simulations are limited to 25mers,
but in fact the chains can grow longer. This fact allows for the further ex-
ploration of the sequence and functionality space beyond what can be seen
in our simulations. If we are talking about protein-like molecules, some of
the chains will act not only as autocats but also would be capable of binding
to other molecules, which could result in a chemical innovation.

5.2.2 Heritability in HP-based autocatalytic systems

One of problems many autocatalytic metabolic systems experience is not only
lack of evolvability, but a more basic lack of proper heritability[28]. For a sys-
tem in order to enjoy a Darwinian evolution it must first of all remember its
current state for a mutant to compete with. We studied heritable properties
of the HP-systems under random split of the vesicles containing the system.
Preliminary results suggests rather poor heritability, but high innovability of
the system. The properties of the system aren’t however thoroughly studied
and is a subject to further research.
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Figure 17: (a) HP catalytic system has at least two attractors. The lines are length
distributions from case 3. Again, each line represents distribution of length in the steady
state for one simulation run. It is clear that there are two kinds of distribution which get
realized during the simulations. The system bifurcates either to a state represented by a
green line or to one represented by a red one. These are the same lines as on figure 9(a),
but separated in two sets by k-means clustering. (b) Structure of the sequences which
most often are main contributors into the total population of the polymers of their length.
Top panel corresponds to the macrostate shown in red on the panel (a), lower one, to the
one shown in green.
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Davide De Lucrezia, Rudolf M Füchslin, Stuart a Kauffman, Norman
Packard, and Irene Poli. A stochastic model of the emergence of auto-
catalytic cycles. Journal of Systems Chemistry, 2(1):2, 2011.

[94] Wim Hordijk, Mike Steel, and Stuart Kauffman. The Structure of
Autocatalytic Sets: Evolvability, Enablement, and Emergence. Acta
Biotheoretica, 60(4):379–392, 2012.

[95] Wim Hordijk and Mike Steel. A formal model of autocatalytic sets
emerging in an RNA replicator system. Journal of Systems Chemistry,
4(1):3, 2013.

[96] Wim Hordijk and Mike Steel. Autocatalytic sets extended: Dynamics,
inhibition, and a generalization. Journal of Systems Chemistry, 3(1):5,
2012.

[97] Anton V. Bernatskiy and Elizaveta A. Guseva. Exact rule-based
stochastic simulations for the system with unlimited number of molec-
ular species. 9 2016.

[98] Jack W Szostak and A D Ellington. In Vitro Selection of Functional
Nucleic Acids. In The RNA World, pages 511–533. Cold Spring Harbor
Laboratory Press, 1993.

78



[99] Everett L Shock. Stability of peptides in high-temperature aqueous
solutions, 1992.

[100] R Bruce Martin. Free Energies and Equilibria of Peptide Bond Hydrol-
ysis. Biopolymers, 45:351–353, 1998.

[101] M. Paecht-Horowitz, J. Berger, and A. Katchalsky. Prebiotic Synthe-
sis of Polypeptides by Heterogeneous Polycondensation of Amino-acid
Adenylates. Nature, 228(5272):636–639, 11 1970.

[102] Luke Leman, Leslie E Orgel, and M Reza Ghadiri. Carbonyl sulfide-
mediated prebiotic formation of peptides. Science (New York, N.Y.),
306(5694):283–6, 10 2004.

[103] Leslie E Orgel. Prebiotic chemistry and the origin of the RNA world.
Critical reviews in biochemistry and molecular biology, 39(2):99–123,
2004.

[104] M. Rao, D. G. Odom, and J. Oró. Clays in prebiological chemistry.
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[164] Rajesh Ramaswamy, Nlido González-Segredo, and Ivo F Sbalzarini.
A new class of highly efficient exact stochastic simulation algorithms
for chemical reaction networks. The Journal of chemical physics,
130(24):244104, 6 2009.

[165] Darren James Wilkinson. Stochastic Modelling for Systems Biology.
CRC Press, 2011.

[166] A Arkin, J Ross, and H H McAdams. Stochastic kinetic analysis of de-
velopmental pathway bifurcation in phage lambda-infected Escherichia
coli cells. Genetics, 149(4):1633–48, 8 1998.

[167] Guy Karlebach and Ron Shamir. Modelling and analysis of gene regula-
tory networks. Nature Reviews Molecular Cell Biology, 9(10):770–780,
10 2008.

[168] Daniel T. Gillespie. A rigorous derivation of the chemical master equa-
tion. Physica A: Statistical Mechanics and its Applications, 188(1-
3):404–425, 9 1992.

85



[169] Tobias Reichenbach, Mauro Mobilia, and Erwin Frey. Mobility pro-
motes and jeopardizes biodiversity in rockpaperscissors games. Nature,
448(7157):1046–1049, 8 2007.

[170] A J McKane and T J Newman. Predator-prey cycles from resonant
amplification of demographic stochasticity. Physical review letters,
94(21):218102, 6 2005.

[171] Ulf Dieckmann and Richard Law. The dynamical theory of coevo-
lution: a derivation from stochastic ecological processes. Journal of
Mathematical Biology, 34(5-6):579–612, 5 1996.

[172] Jean-Franois Le Galliard, Rgis Ferrière, and Ulf Dieckmann. Adap-
tive evolution of social traits: origin, trajectories, and correlations of
altruism and mobility. The American naturalist, 165(2):206–24, 2 2005.

[173] Giulio Caravagna, Alberto dOnofrio, Paolo Milazzo, and Roberto Bar-
buti. Tumour suppression by immune system through stochastic oscil-
lations. Journal of Theoretical Biology, 265(3):336–345, 2010.

[174] J Legrand, R F Grais, P Y Boelle, A J Valleron, and A Flahault.
Understanding the dynamics of Ebola epidemics. Epidemiology and
infection, 135(4):610–21, 5 2007.

[175] Romulus Breban, John M. Drake, David E. Stallknecht, and Pejman
Rohani. The Role of Environmental Transmission in Recurrent Avian
Influenza Epidemics. PLoS Computational Biology, 5(4):e1000346, 4
2009.

[176] Matt J Keeling and Pejman Rohani. Modeling infectious diseases in
humans and animals. Princeton University Press, 2008.

[177] Maxim S Shkarayev, Ira B Schwartz, and Leah B Shaw. Recruitment
dynamics in adaptive social networks. Journal of physics. A, Mathe-
matical and theoretical, 46(24):245003, 2013.

[178] Giuseppe Carbone and Ilaria Giannoccaro. Model of human collec-
tive decision-making in complex environments. The European Physical
Journal B, 88(12):339, 12 2015.

86



[179] Mauro Mobilia. Stochastic dynamics of the prisoner’s dilemma with
cooperation facilitators. Physical review. E, Statistical, nonlinear, and
soft matter physics, 86(1 Pt 1):011134, 7 2012.

[180] Dranreb Earl Juanico. Critical network effect induces business oscilla-
tions in multi-level marketing systems. 9 2012.

[181] Miquel Montero. Predator-Prey Model for Stock Market Fluctuations.
SSRN Electronic Journal, 2008.

[182] S. Berman, A. Halasz, M.A. Hsieh, and V. Kumar. Optimized Stochas-
tic Policies for Task Allocation in Swarms of Robots. IEEE Transac-
tions on Robotics, 25(4):927–937, 8 2009.

[183] Spring Berman, Adam Halasz, Vijay Kumar, and Stephen Pratt. Bio-
Inspired Group Behaviors for the Deployment of a Swarm of Robots to
Multiple Destinations. In Proceedings 2007 IEEE International Con-
ference on Robotics and Automation, pages 2318–2323. IEEE, 4 2007.

[184] J. Hillston. Fluid flow approximation of PEPA models. In Second
International Conference on the Quantitative Evaluation of Systems
(QEST’05), pages 33–42. IEEE, 2005.

[185] Daniel T Gillespie. A general method for numerically simulating the
stochastic time evolution of coupled chemical reactions. Journal of
Computational Physics, 22(4):403–434, 12 1976.

[186] Rajesh Ramaswamy and Ivo F. Sbalzarini. A partial-propensity variant
of the composition-rejection stochastic simulation algorithm for chem-
ical reaction networks. Journal of Chemical Physics, 132(4):1–6, 2010.

[187] Graeme Henkelman and Hannes Jonsson. Long time scale kinetic
Monte Carlo simulations without lattice approximation and predefined
event table. The Journal of Chemical Physics, 115(21):9657, 2001.

[188] Michael A. Gibson and Jehoshua Bruck. Efficient Exact Stochastic
Simulation of Chemical Systems with Many Species and Many Chan-
nels. The Journal of Physical Chemistry A, 104(9):1876–1889, 2000.

[189] Yang Cao, Hong Li, and Linda Petzold. Efficient formulation of the
stochastic simulation algorithm for chemically reacting systems. The
Journal of Chemical Physics, 121(9):4059, 2004.

87



[190] James M. McCollum, Gregory D. Peterson, Chris D. Cox, Michael L.
Simpson, and Nagiza F. Samatova. The sorting direct method for
stochastic simulation of biochemical systems with varying reaction ex-
ecution behavior. Computational Biology and Chemistry, 30(1):39–49,
2 2006.

[191] Daniel T. Gillespie. Approximate accelerated stochastic simulation
of chemically reacting systems. The Journal of Chemical Physics,
115(4):1716, 2001.

[192] Yang Cao, Daniel T. Gillespie, and Linda R. Petzold. Avoiding negative
populations in explicit Poisson tau-leaping. The Journal of Chemical
Physics, 123(5):054104, 2005.

[193] Yang Cao, Daniel T. Gillespie, and Linda R. Petzold. Efficient step
size selection for the tau-leaping simulation method. The Journal of
Chemical Physics, 124(4):044109, 2006.

[194] Xinjun Peng, Wen Zhou, and Yifei Wang. Efficient binomial leap
method for simulating chemical kinetics. The Journal of Chemical
Physics, 126(22):224109, 2007.

[195] Muruhan Rathinam, Linda R. Petzold, Yang Cao, and Daniel T. Gille-
spie. Stiffness in stochastic chemically reacting systems: The implicit
tau-leaping method. The Journal of Chemical Physics, 119(24):12784,
2003.

[196] Yang Cao, Daniel T. Gillespie, and Linda R. Petzold. The slow-scale
stochastic simulation algorithm. The Journal of Chemical Physics,
122(1):014116, 2005.

[197] Anne Auger, Philippe Chatelain, and Petros Koumoutsakos. R-leaping:
Accelerating the stochastic simulation algorithm by reaction leaps. The
Journal of Chemical Physics, 125(8):084103, 2006.

[198] Xin-jun Peng and Yi-fei Wang. L-leap: accelerating the stochastic
simulation of chemically reacting systems. Applied Mathematics and
Mechanics, 28(10):1361–1371, 10 2007.

88



[199] Xiaodong Cai and Zhouyi Xu. K -leap method for accelerating stochas-
tic simulation of coupled chemical reactions. Journal of Chemical
Physics, 126(7):1–10, 2007.

[200] Joseph Leo Doob. Stochastic Processes. John Wiley & Sons,
Inc.;Chapman & Hall, New York, New York, USA, 1953.

[201] Kevin R Sanft, Sheng Wu, Min Roh, Jin Fu, Rone Kwei Lim, and
Linda R Petzold. StochKit2: software for discrete stochastic simulation
of biochemical systems with events. Bioinformatics (Oxford, England),
27(17):2457–8, 9 2011.

89


	Chapter 1: Knowledge landscape
	Defining life
	What is so special about life?
	Evolvability

	Chapter 2. From non-life to life. What was there before life and why there is a problem
	Information First: RNA world hypothesis
	Metabolism-first: proteins and citric-acid cycle
	On the way to discover origins of life: aims of this thesis

	Chapter 3. Solution to the problem of short length
	The ``Flory Length Problem'': polymerization processes produce mostly short chains
	The foldamer-autocat mechanism: Short HP chains fold and catalyze the elongation of other HP chains
	Here are the premises of the model

	Modeling the dynamics of HP chain growth and selection
	Results
	Folding alone does not solve the Flory Length Problem. But folding plus catalysis does.
	The foldamer-catalyst sequences form an autocatalytic set.
	The size of the autocatalytic set grows with the size of the sequence space.

	Models and methods
	Experiment 1: Does our bare polymerization reproduces the Flory distribution?
	Experiment 2. What is the effect on the distribution of just HP folding?
	Experiment 3. What is the effect on the distribution of both folding and catalysis?

	Conclusion

	Chapter 4: Exact rule-based stochastic simulations for systems with unlimited number of molecular species
	Introduction
	Direct stochastic algorithms now
	Gillespie Algorithm
	Partial propensity methods

	Algorithm description
	Reaction grouping

	Propensities generation
	Data model
	Adding a Population
	Initialization stage
	Deleting a Population
	Sampling stage
	Updating stage
	Summary of EPDM
	Implementation

	Benchmarks
	CPU time of EPDM is linear for a strongly coupled system
	CPU time stays linear when species are actively deleted and created
	Conclusion and Discussion

	Chapter 5: Conclusions and discussion
	Conclusions
	Discussion
	Evolvability and dynamical behavior of the HP-based autocatalytic ensembles
	Heritability in HP-based autocatalytic systems



