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Abstract of the Dissertation

Integrability and non-integrability in the
Ising model

by

Michael Assis

Doctor of Philosophy

in

Physics

Stony Brook University

2014

The Ising model at magnetic field H = 0 is one of the most important exactly solved models
in statistical mechanics, solved on the square lattice in 1944 by Onsager, and later by others
on the triangular lattice; its magnetic susceptibility at H = 0 continues to be an unsolved
aspect of the model, however. The susceptibility can either be viewed as a sum over all
correlation functions of the integrable model at H = 0, or else as a second derivative of the
free energy of the non-integrable Ising model in a field. Therefore, its analytic properties,
though derived from the non-integrable model, can be studied through series expansion of the
integrable correlation functions. We begin this process by analyzing the first four terms in
the form factor expansion of the diagonal correlation functions, and after summing over the
diagonal form factor expansion, the first four terms of the diagonal susceptibility expansion.
We have been able to reduce the form factor and susceptibility expansion terms, given as
multi-dimensional integrals, to closed-form functions in all cases.

Under the limit of H → ∞ with the interaction energy E → −∞, the isotropic Ising
model becomes a hard particle lattice gas model, with exclusion of nearest neighbor lattice
sites. In this limit, the triangular lattice Ising model becomes the exactly solved hard hexagon
model, while the square lattice becomes the non-integrable hard squares model. We study
in detail these models for finite lattice sizes in order to understand the differences between
integrable and non-integrable models. We consider the partition functions zeros and their
density for different boundary conditions, and find notable differences in the density which
is attributed to an extra factorization in the transfer matrices of hard hexagons which is
absent in hard squares. We also study the special point at fugacity z = −1 of hard squares
where all eigenvalues of the transfer matrix are equimodular and where the grand partition
function’s value depends on boundary conditions.

iii



Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Ising Model Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Hard Particle Lattice Gas Correspondence . . . . . . . . . . . . . . . . . . . 6
1.4 Transfer Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Zeros and Equimodular Curves . . . . . . . . . . . . . . . . . . . . . . . . . 12
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Summary of New Results 27
2.1 Paper 1: Ising Model Diagonal Form Factors . . . . . . . . . . . . . . . . . . 28

2.1.1 New Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Paper 2: Ising Model Diagonal Susceptibility . . . . . . . . . . . . . . . . . . 31

2.2.1 New Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Paper 3: Hard Hexagons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 New Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 Paper 4: Hard Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1 New Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Paper 1 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Summary of formalism and results . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 General Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.2 Explicit results for f

(2)
N,N(t) . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.3 Explicit results for f
(3)
N,N(t) . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 The derivation of the results for f
(2)
N,N(t) . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Linear differential equations for C
(2)
m (N ; t) . . . . . . . . . . . . . . . 61

3.3.2 Polynomial solution for C
(2)
2 (N ; t) . . . . . . . . . . . . . . . . . . . . 62

iv



3.3.3 Polynomial solution for C
(2)
1 (N ; t) . . . . . . . . . . . . . . . . . . . . 64

3.3.4 The constant K
(2)
0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 The derivation of the results for f
(3)
N,N(t) . . . . . . . . . . . . . . . . . . . . . 65

3.4.1 Polynomial solution for C
(3)
3 (N ; t) . . . . . . . . . . . . . . . . . . . . 67

3.4.2 Polynomial solutions for C
(3)
2 (N ; t) and C

(3)
0 (N ; t). . . . . . . . . . . 68

3.4.3 Polynomial solution for C
(3)
1 (N ; t) . . . . . . . . . . . . . . . . . . . . 70

3.4.4 Determination of K
(3)
0 . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 The Wronskian cancellation for f
(2)
N,N(t) and f

(3)
N,N(t) . . . . . . . . . . . . . . 71

3.6 Factorization for f
(n)
N,N with n ≥ 4 . . . . . . . . . . . . . . . . . . . . . . . . 72

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.A Form factors in the basis FN and FN+1 . . . . . . . . . . . . . . . . . . . . . 75

3.B Polynomial solution calculations for C
(2)
1 (N ; t) . . . . . . . . . . . . . . . . . 81

3.C Coupled differential equations for C
(3)
m (N ; t) . . . . . . . . . . . . . . . . . . 84

3.D The ODE and recursion relation for C
(3)
3 (N ; t) . . . . . . . . . . . . . . . . . 85

3.E Homomorphisms for C
(3)
0 (N ; t) and C

(3)
2 (N ; t) . . . . . . . . . . . . . . . . . 88

3.F Homomorphisms for Ω
(4)
4 (N ; t) . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.G Exact results for the C
(4)
m ’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Paper 2 95
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2 Computations for χ̃

(3)
d (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2.1 Differential algebra structures and modular forms . . . . . . . . . . . 101
4.3 Computations for χ̃

(4)
d (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3.1 Computation of χ̃
(4)
d,3(t) . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.2 Simplification of L
(4)
4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3.3 k-balanced 4F3 hypergeometric function . . . . . . . . . . . . . . . . 110
4.3.4 L

(4)
4 is 4F3 solvable, up to a pullback . . . . . . . . . . . . . . . . . . 111

4.4 The linear differential equation of χ̃
(5)
d in mod. prime and exact arithmetics . 114

4.4.1 The linear differential operator L
(5)
4 . . . . . . . . . . . . . . . . . . . 117

4.4.2 On the order-six linear differential operator L
(5)
6 : “Special Geometry” 117

4.5 Singular behavior of χ̃
(3)
d (x) . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.5.1 The behavior of χ̃
(3)
d (x) as x → 1 . . . . . . . . . . . . . . . . . . . . 119

4.5.2 The behavior of χ̃
(3)
d (x) as x → −1 . . . . . . . . . . . . . . . . . . . 119

4.5.3 The behavior of χ̃
(3)
d (x) as x → e±2πi/3 . . . . . . . . . . . . . . . . . 120

4.6 Singular behaviour of χ̃
(4)
d (x) . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.6.1 Behavior of χ̃
(4)
d (t) as t → 1 . . . . . . . . . . . . . . . . . . . . . . . 120

4.6.2 Behavior of χ̃
(4)
d (t) as t → −1 . . . . . . . . . . . . . . . . . . . . . . 124

v



4.7 Conclusion: is the Ising model “modularity” reducible to selected (q+1)Fq
hypergeometric functions ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.A Miscellaneous comments on the modular curve (4.27) . . . . . . . . . . . . . 126
4.B Solution of M4 analytical at x = 0 . . . . . . . . . . . . . . . . . . . . . . 127
4.C The linear differential operator L(5)

11 in exact arithmetic . . . . . . . . . . . . 129

4.D Analysis of the singular behavior of χ̃
(3)
d (x) . . . . . . . . . . . . . . . . . . . 130

4.D.1 The behavior as x → 1 . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.D.2 The behavior as x → −1 . . . . . . . . . . . . . . . . . . . . . . . . 132
4.D.3 The behavior as x → e±2πi/3 . . . . . . . . . . . . . . . . . . . . . . 136

4.E Analysis of the singular behavior of χ̃
(4)
d;2(t) as t → 1 . . . . . . . . . . . . . 140

4.F Towards an exact expression for 3I>1 − 4I>2 . . . . . . . . . . . . . . . . . . 140
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5 Paper 3 147
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.2.1 Partition function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.2.2 Transfer matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.2.3 The thermodynamic limit . . . . . . . . . . . . . . . . . . . . . . . . 152
5.2.4 Partition function zeros versus transfer matrix eigenvalues . . . . . . 153

5.3 The partition functions κ±(z) per site for hard hexagons . . . . . . . . . . . 155
5.3.1 Algebraic equations for κ±(z) . . . . . . . . . . . . . . . . . . . . . . 156
5.3.2 Partition function for complex z . . . . . . . . . . . . . . . . . . . . 157

5.4 Transfer matrix eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.4.1 Analytic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.4.2 Numerical results in the sector P = 0 . . . . . . . . . . . . . . . . . 159
5.4.3 Eigenvalues for the toroidal lattice partition function . . . . . . . . . 162

5.5 Partition function zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.5.1 Cylindrical boundary conditions . . . . . . . . . . . . . . . . . . . . 166
5.5.2 Toroidal boundary conditions . . . . . . . . . . . . . . . . . . . . . . 171
5.5.3 Density of zeros for zy ≤ z ≤ zd . . . . . . . . . . . . . . . . . . . . . 173

5.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.6.1 The thermodynamic limit . . . . . . . . . . . . . . . . . . . . . . . . 178
5.6.2 Existence of the necklace . . . . . . . . . . . . . . . . . . . . . . . . 178
5.6.3 Relation to the renormalization group . . . . . . . . . . . . . . . . . 178
5.6.4 Analyticity of the partition function . . . . . . . . . . . . . . . . . . 179

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.A The singularities of κ±(z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.A.1 High density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.A.2 Low density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.B Expansion of ρ−(z) at zc and zd . . . . . . . . . . . . . . . . . . . . . . . . . 183

vi



5.C The Hauptmodul equations and the κ± equimodular curves . . . . . . . . . 184
5.C.1 κ+ versus κ− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
5.C.2 The κ± equimodular curves . . . . . . . . . . . . . . . . . . . . . . . 186

5.D Cardioid fitting of partition function zeros . . . . . . . . . . . . . . . . . . . 188
5.E Transfer-matrix algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.E.1 Partition function zeros . . . . . . . . . . . . . . . . . . . . . . . . . 191
5.E.2 Transfer matrix eigenvalues . . . . . . . . . . . . . . . . . . . . . . . 193

5.F Finite-size scaling analysis of zc(L) and zd(L) . . . . . . . . . . . . . . . . . 195
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6 Paper 4 206
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
6.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

6.2.1 Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.2.2 The physical free energy . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.2.3 Analyticity and transfer matrix eigenvalues . . . . . . . . . . . . . . . 214
6.2.4 Analyticity and partition function zeros . . . . . . . . . . . . . . . . . 215
6.2.5 Relation of zeros to equimodular curves . . . . . . . . . . . . . . . . . 216

6.3 Global comparisons of squares and hexagons . . . . . . . . . . . . . . . . . . 218
6.3.1 Comparisons of partition function zeros . . . . . . . . . . . . . . . . . 218
6.3.2 Comparisons of equimodular curves with partition zeros . . . . . . . 221

6.4 Comparisons on −1 ≤ z ≤ zd . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
6.4.1 Transfer matrix eigenvalue gaps . . . . . . . . . . . . . . . . . . . . . 228
6.4.2 The density of partition zeros of L× L lattices on the negative z axis 230
6.4.3 Partition zeros versus phase derivatives . . . . . . . . . . . . . . . . . 232
6.4.4 Glitches in the density of zeros . . . . . . . . . . . . . . . . . . . . . 234
6.4.5 Hard square density of zeros for z → zd. . . . . . . . . . . . . . . . . 235
6.4.6 The point z = −1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
6.4.7 Behavior near z = −1 . . . . . . . . . . . . . . . . . . . . . . . . . . 236

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
6.5.1 Series expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
6.5.2 Transfer matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
6.5.3 Partition function zeros . . . . . . . . . . . . . . . . . . . . . . . . . 238
6.5.4 Behavior near zc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
6.5.5 Behavior near z = −1 . . . . . . . . . . . . . . . . . . . . . . . . . . 239

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
6.A Characteristic polynomials at z = −1 . . . . . . . . . . . . . . . . . . . . . . 241

6.A.1 Characteristic polynomials P F
Lh

. . . . . . . . . . . . . . . . . . . . . 241

6.A.2 Characteristic polynomials P F+
Lh

. . . . . . . . . . . . . . . . . . . . . 243
6.A.3 Characteristic polynomials PC

Lh
. . . . . . . . . . . . . . . . . . . . . 245

6.A.4 Characteristic polynomials PC0+
Lh

. . . . . . . . . . . . . . . . . . . . 245

vii



6.B Partition functions at z = −1 . . . . . . . . . . . . . . . . . . . . . . . . . . 247
6.B.1 The torus ZCC

Lv,Lh
(−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

6.B.2 The Klein bottle ZKC
Lv ,Lh

(−1) with twist in Lv direction . . . . . . . . 252
6.B.3 The cylinder ZFC

Lv,Lh
(−1) = ZCF

Lh,Lv
(−1) . . . . . . . . . . . . . . . . . 253
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1.1 History

The 2D Ising model is certainly the most celebrated of the exactly solved models in
statistical mechanics [161, 163], the subject of continuous ongoing research since the famous
solution in 1944 by Lars Onsager of the two-dimensional zero field Ising model on the square
lattice [176]. In the intervening decades, many detailed aspects of this integrable model,
where the free energy is given in closed form, have been studied, such as the correlation
functions [140, 168, 253, 254, 156], spontaneous magnetization [259, 72, 184, 168], and the
magnetic susceptibility [93, 20, 254, 234, 256, 257, 157, 160, 158, 171, 172, 261, 263, 266,
264, 265, 55, 56, 59, 60, 58, 50, 47, 45, 51, 170, 48, 46, 52, 44, 53, 14, 69, 236]. However,
even after 70 years of study there remain outstanding questions that have eluded simple
answers, such as the analytic structure of the magnetic susceptibility and the Ising model in
the presence of a magnetic field.

In 1999, Nickel discovered that there appears to be an accumulation of singularities in
the magnetic susceptibility along the curve describing the phase transition of the model [171,
172], giving a natural boundary in the complex plane of the magnetic susceptibility beyond
which the susceptibility cannot be analytically continued. The susceptibility can be derived
either from the sum over all the two-point correlation functions of the integrable Ising model
at zero magnetic field, or else from a second derivative of the free energy of the non-integrable
Ising model in a magnetic field. Therefore, the natural boundary connects a non-integrable
model with an integrable model, and it remains unknown whether natural boundaries can
arise more generally in integrable models. In this respect, studying the natural boundary
offers the opportunity to illuminate differences between integrable and non-integrable models.
Ongoing attempts have been made to investigate the accumulation of singularities in the
susceptibility by studying the singularities that arise in the expansion of the susceptibility
in terms of n-fold integrals [263, 266, 264, 265, 55, 56, 59, 60, 58, 50, 47, 45, 51, 170, 48, 46,
52, 44, 53]. We have studied the diagonal form factor expansion of the correlation functions
in detail and conjecture its analytical form [12]. By summing over the form diagonal factor
expansion, we have also given closed form solutions to the diagonal susceptibility n-fold
integrals for n = 3, 4 and studied their singularity structures, which differ from those of the
form factor expansion.

Another alternative to study integrability and the phenomena of the natural boundary
in the Ising model is to consider the limit of the magnetic field H → ∞ while taking the
interaction energy E → −∞, keeping their product fixed. This leads to the hard particle
lattice gas limit; in the case of a triangular lattice it leads to the hard hexagon model
and in the case of a square lattice it leads to the hard square model. Even though the
Ising model at zero magnetic field has been exactly solved on both the square [176] and
triangular lattices [118, 231, 115, 232, 240, 169, 258, 227], the hard particle limit produces
an integrable model only for the case of hard hexagons [29, 30, 133]. Therefore, the hard
particle limit provides a natural platform to study the relationship between integrable and
non-integrable models. So far no evidence of a curve of singularities has arisen in the study
of hard hexagons; we report, however, possible evidence for such a curve on a segment of
the negative real fugacity axis for hard squares. The exclusion of a similar curve for hard
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hexagons appears to be caused by an extra symmetry in the model which causes its transfer
matrices to have an extra factorization and the roots of their characteristic polynomials to
be double roots. We also study the curious point at fugacity z = −1 for hard squares, where
the free energy may have a boundary condition dependence and where the eigenvalues of
the transfer matrices have special properties. No such special point has been identified in
hard hexagons. However, the existence of such a special point in hard squares does not
seem generic; in fact, many of the noted properties require a special symmetry at precisely
z = −1 to cause massive cancellations. Therefore, the existence of a global extra symmetry
in the hard hexagon transfer matrices appears to be the clearest property distinguishing
integrability in the two models.

1.2 Ising Model Definition

The Ising model is a spin model that can be defined on any graph. An atom is assumed
to lie on each vertex of the graph and have a spin of either σ = +1 or σ = −1. Atoms are
allowed to interact only with their nearest neighbors on the graph as well as with an external
magnetic field H. For concreteness, we consider only two regular lattices, the square and
triangular lattices.

If the interactions of an atom with its nearest neighbors is independent of direction, the
model is called isotropic; otherwise, when the interaction energy depends on the direction of
the neighbor, such as its horizontal versus vertical neighbors, the model is called anisotropic.
If, furthermore, the interaction energies vary throughout the lattice, the model is called
inhomogeneous. We only consider homogeneous Ising models, where the interaction energies
are independent of the location of the atoms in the lattice.

The anisotropic interaction energy of the Ising model on the square and triangular lattices,
Esq and Etr, respectively, are defined as

Esq = −Eh
∑
h

σiσj − Ev
∑
v

σiσj −H
∑
i

σi (1.1)

where the first and second sums are over all horizontal and vertical nearest neighbor pairs,
respectively, and

Etr = −Eh
∑
h

σiσj − Ev
∑
v

σiσj − Ed
∑
d

σiσj −H
∑
i

σi (1.2)

where the third sum is over all nearest neighbor pairs along the third direction in the trian-
gular lattice. When Ei > 0 the model is called ferromagnetic and when Ei < 0 the model is
antiferromagnetic. For the isotropic Ising model, the interaction energies Ei are all equal to
each other, denoted by E.

3



The canonical partition function Z of the Ising model is then defined by

Z =
∑
σ

e−E/kBT (1.3)

where the sum is over all configurational choices of all spins on the lattice.
The thermodynamic limit is the limit where the size of the lattice grows without bound

in all directions. The free energy f is then defined by

f = − lim
N→∞

kBT

N
ln(Z) (1.4)

where N is the total number of atoms in the lattice. In the thermodynamic limit, the
free energy of the Ising model is independent of the boundary conditions of the lattice.
However, for the finite lattice, we consider various boundary conditions, such as toroidal and
cylindrical, in order to understand the approach to the thermodynamic limit from multiple
perspectives.

The 2D Ising model is celebrated as the first exactly solved model in statistical mechanics
to feature a non-zero temperature Tc where a continuous phase transition occurs [176]. For
the square lattice Ising model, this critical temperature occurs at the temperature Tc that
solves the following equation

k = 1 (1.5)

where
k = sinh(2Eh/kBT ) sinh(2Ev/kBT ) (1.6)

For the isotropic lattice in the thermodynamic limit, the critical temperature occurs at

Tc =
2E

kB ln(1 +
√

2)
(1.7)

Starting at this temperature, as the temperature decreases the ferromagnetic spontaneous
magnetization M0, defined by

M0 = lim
H→0+

1

N
∑
i

σi (1.8)

becomes non-zero and positive, becoming M0 = 1 in the limit T → 0. The proof of the
functional form of the ferromagnetic spontaneous magnetization has a long history [202, 259,
72, 184, 168, 214, 237, 3, 154, 28], and in the thermodynamic limit it is given by the following
expression

M0 =

{
(1− k−2)1/8 T ≤ Tc
0 T > Tc

(1.9)

For the antiferromagnetic Ising model, the spins favor anti-aligning while the magnetic
field biases the spins toward either σ = ±1 depending on the sign of H. As H → 0, the
average magnetization will be go to 0 for all temperatures, and a spontaneous magnetization
will not be seen. However, as T → 0 the antiferromagnet will exhibit an increase in ordering
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corresponding to anti-aligned spins. If the lattice is bipartite, the lowest energy configuration
at T = 0 will correspond to spins on each sub-lattice being equal and opposite the spins of
the other sub-lattice. Therefore, for the antiferromagnetic Ising model on a bipartite lattice,
we define the staggered spontaneous magnetization M∗

0 as

M∗
0 = lim

H→0+

1

N ∗
∑
i

σ∗i (1.10)

where N ∗ corresponds to the number of spins σ∗ on one of the sub-lattices. The staggered
spontaneous magnetization for the antiferromagnetic Ising model on a square lattice in the
thermodynamic limit is given by

M∗
0 =

{
(1− k−2)1/8 T ≤ Tc
0 T > Tc

(1.11)

For the square lattice at H = 0, the critical temperature is the same for both the
ferromagnetic and antiferromagnetic cases, since Equations 1.5 is invariant under the trans-
formation Ei → −Ei. Likewise, the spontaneous magnetization is the same for both cases,
accounting for the staggered order. The square lattice Ising model’s invariance under this
transformation is not limited to the location of the critical temperature and spontaneous
magnetization. The free energy is invariant as well. The underlying cause of the square
lattice invariance is due to the fact that the square lattice is bipartite, that is, the lattice can
be divided into two sub-lattices A and B such that each spin on one sub-lattice only interacts
with spins on the other sub-lattice. Therefore, the interaction energy in Equation 1.1 can
be rewritten in terms of spins distinguished by which sub-lattice they belong to,

Esq = −Eh
∑
h

σAi σ
B
j − Ev

∑
v

σAi σ
B
j −H

∑
i

σAi −H
∑
j

σBj (1.12)

At H = 0, we can re-arrange the interaction energy further

Esq = Eh
∑
h

σAi (−σBj ) + Ev
∑
v

σAi (−σBj ) (1.13)

Therefore, when Ei → −Ei, the interaction energy goes to a ferromagnetic interaction energy
of a model where each spin in the B lattice is defined to be the negative of its definition
for the ferromagnetic case. However, since the partition function is the sum over all spin
configurations, it will be invariant under the operation σBj → −σBj , so that for the square
lattice at H = 0, the free energy is invariant under the change from ferromagnetism to
antiferromagnetism.

The triangular lattice, however, is not bipartite, and its interaction at H = 0 cannot be
written in terms of spins on sub-lattices. Therefore, the free energy depends on the choice
of sign for the Ei. For the ferromagnetic triangular Ising model, the critical temperature
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occurs at the solution of
ktr = 1 (1.14)

where

ktr =
(1− v2

1)(1− v2
2)(1− v2

3)

4[(1 + v1v2v3)(v1 + v2v3)(v2 + v3v1)(v3 + v1v2)]1/2
(1.15)

where vi = tanh(Ei/kBT ). In the isotropic case, this gives

Tc =
4E

kB ln(3)
(1.16)

The spontaneous magnetization for the ferromagnetic case has the following form [184, 103,
227]

Mtr
0 =

{
(1− k−2

tr )1/8 T ≤ Tc
0 T > Tc

(1.17)

The antiferromagnetic square Ising model has two unique ground states at T = 0, both
of which have staggered order and which are related to each other by inversion of all spins.
The triangular antiferromagnetic Ising model, however, has a countable number of ground
states at T = 0 which are not simply related to each other under inversion of all spins [240,
86]. This countable number of ground states gives the triangular antiferromagnetic Ising
model non-zero entropy at T = 0. Therefore, there is disorder at all temperatures, so that
no phase transition occurs in the antiferromagnetic triangular Ising model at H = 0.

1.3 Hard Particle Lattice Gas Correspondence

Lattice gases are a discrete approximation of gases where each molecule is confined to lie
on vertices of a lattice. Hard particle lattice gas models in particular are lattice gas models
where the molecule is assumed to be infinitely repulsive in a small area around it, typically
nearest neighbor sites, while farther away it does not interact with other molecules. We only
consider the case where at most one molecule is allowed to occupy a site. Lattice gases are
typically studied on regular 2D lattices, such as the triangular and square lattices, and a
molecule is given an occupation number at the site of a vertex, σ = 0 if the site is vacant
and σ = 1 if it is being occupied. The interaction potential energy for hard particle lattice
gas models is then given by

U(σi, σj) =

{
∞ if σi, σj are nearest neighbors
0 otherwise

(1.18)

so that the grand partition function becomes

Ξ(z;N ) =
∑
σi

zne−βU(σi,σj) (1.19)
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where the sum is over all site occupancies σi on the lattice, where n is the total number of
occupied lattice sites for a given configuration of σ’s, where z is the fugacity, and where N
is the total number of lattice sites and the thermodynamic limit corresponds to the limit
N →∞. From the infinite potential, the sum only counts configurations where there are no
nearest neighbors.

Since the infinite repulsion precludes two hard particles from being neighbors on a lattice,
the area carved out around a particle forms a shape characteristic of that lattice, a shape
attributed as the shape of the molecule. On the square and triangular lattices, for exam-
ple, the hard particle lattice gas models take the names hard squares and hard hexagons,
respectively.

Hard squares and hard hexagons can be related to the Ising model by the following
correspondence. For the isotropic Ising model in a field, we define

u = e−4J/kBT (1.20)

x = e−2H/kBT (1.21)

Then for hard squares we define
y = ux1/2 (1.22)

and for hard hexagons
y = ux1/3 (1.23)

Now in the limit J → −∞ and H → ∞, so that u → ∞ and x → 0, while keeping y fixed
(H/J = 4 for hard squares and H/J = 6 for hard hexagons), the partition function for the
Ising model becomes the respective hard particle grand partition function, with the fugacity
defined by

z = y2 = u2x (1.24)

for hard squares and
z = y3 = u3x (1.25)

for hard hexagons.
From the grand partition function, the hard particle lattice gas pressure p(z;N ) and

density ρ(z;N ) can be found through the relations

p(z;N )

kBT
=

1

N
ln[Ξ(z;N )] (1.26)

and

ρ(z;N ) =
1

N
z
d

dz
ln[Ξ(z;N )] = z

d

dz

p(z;N )

kBT
(1.27)

and in the thermodynamic limit we choose the notation p(z;N )→ p(z) and ρ(z;N )→ ρ(z).
A universal feature of positive potential models, such as hard particle lattice gases, is the

existence of a singularity on the negative real fugacity axis, which follows from Groeneveld’s
theorem on the alternation of sign of cluster integrals [104]. For the cluster expansion of the
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pressure p(z)

p̄(z) =
p(z)

kBT
=
∞∑
n=1

bnz
n (1.28)

and density ρ(z)

ρ(z) =
∞∑
n=1

nbnz
n (1.29)

where the bn are the reduced cluster integrals, Groeneveld’s theorem states that the bn must
alternate in sign. Therefore, the radius of convergence of these series will be determined by
an unphysical singularity on the negative real axis at zd. For hard hexagons, zd has been
proven to be at exactly at zd = (11− 5

√
5)/2 [29, 30], while for hard squares its location has

been numerically evaluated to be at zd = −0.11933888188(1) [233], where the parenthesis
indicates the uncertainty in the last digit.

Expanding the pressure about zd, we expect the following form in general

p̄(z) =
∞∑

n=0

cn(z − zd)n + (z − zd)φ
∞∑

n=0

dn(z − zd)n + (z − zd)φ+θ1

∞∑
n=0

en(z − zd)n + . . . (1.30)

where φ is the critical exponent at zd and θ1 is the first correction to scaling exponent, and
φ and θ1 are not expected to be integers. From these definitions, the critical exponent of
the density ρ(z) will be φ − 1. It had long been observed that many models in statistical
mechanics of purely positive potentials all share the same critical exponent φ at their re-
spective unphysical singularity zd, depending only on the dimension of the lattice. For 2D
lattices, it was found that φ ' 5/6, holding exactly for the solved hard hexagon model [19,
84, 85, 147, 17]. This was finally proven to be the case, even for the more general case
of repulsive-core potentials with an attractive component, in 1999 by Park and Fisher, by
proving its correspondence with the Yang-Lee edge singularity [178]. For hard hexagons,
the following exponents also hold: the order parameter exponent β = 1/9, the specific heat
exponent α = 1/3, and the correlation length exponent ν = 5/6.

1.4 Transfer Matrices

A useful method of analyzing models in statistical mechanics is through the use of transfer
matrices T [111, 142, 166, 148, 167, 145], which can be viewed as building up the lattice
one row at a time. The basis of the rows and columns of the matrix correspond to the
valid possible configuration states of a single row of states. Each matrix element, then, gives
the contribution to the partition function from two consecutive rows corresponding to the
configuration states of the matrix element’s row and column. Depending on the boundary
conditions of the lattice along the row, the transfer matrix may be considered to have free
or cylindrical boundary conditions, TF and TC respectively, which can affect the number of
configurational states per row and the matrix entries.
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Part of the appeal of the transfer matrix method stems from the fact that the sum
over configurational states in the definition of the partition function in Equation 1.3 can
be performed simply through matrix multiplication of the transfer matrix with itself an
appropriate number of times. Given an Lh × Lv square lattice, periodic in the Lv direction,
for example, the partition function is given by the following expression

Z = TrTLv(Lh) (1.31)

where the dependence of the transfer matrix T on Lh is explicitly shown, while for free
boundary conditions in the Lv direction, appropriate boundary vectors vB and v′B are needed

Z = 〈vB|TLv−1(Lh)|v′B〉 (1.32)

Twisted boundaries along the transfer direction can also be used, such as for Möbius
strips and Klein bottles. The partition function can be written either using a matrix O(Lh)
which reflects the entries of a matrix horizontally or vertically,

Z = TrTLv(Lh)O(Lh) (1.33)

Alternatively, the definition of the trace can be modified to sum over the anti-diagonal
elements for Möbius strips and Klein bottles, or over other off-diagonals for other types of
twisted boundary conditions.

As long as the transfer matrix is diagonalizable though the use of a diagonalizing matrix
P , the product PP−1 can be inserted Lv times between each transfer matrix in the product
in Equation 1.31. Then, because the trace of a matrix product is invariant with respect to
cyclic permutations of the matrices in the product, the matrices P and P−1 can be arranged
to diagonalize each T into the diagonal matrix D = P−1TP so that the trace of the product
will equal the trace of DLv . Therefore, we can rewrite the partition function periodic in the
Lv direction as a sum over powers of the transfer matrix eigenvalues λk,

Z = TrDLv(Lh) =
∑
k

λLv
k (Lh) (1.34)

where the dependence of the eigenvalues λk on (Lh) is explicitly shown. For the case of free
boundary conditions in the direction of transfer,

Z =
∑
k

dk · λLv−1
k (Lh) (1.35)

where
dk = (vB · vk)(vk · v′B) (1.36)

and where the vk are the eigenvectors of the transfer matrix.
Twisted boundary conditions also can be written in terms of the eigenvalues of the transfer

matrix. Every matrix satisfies its own characteristic polynomial p(x), by direct substitution
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of the matrix for the variable x → T (Lh). This gives a homogeneous linear recurrence
relation for the transfer matrix for consecutive powers of the matrix, a recurrence relation of
the order of the matrix. Therefore, the partition function for a given Lh but increasing Lv
can be determined through the recurrence relation as a function of Lv. Every entry in the
matrix will separately satisfy the linear recurrence relation, and therefore any linear function
of the transfer matrix elements which is independent of Lv will also satisfy the recurrence
relation. Since the trace in Equation 1.31, the dot product in Equation 1.32, and modified
traces to account for twists are all linear functions of the elements of the transfer matrix
independent of Lv, the partition functions for all these different boundary conditions along
the transfer direction all satisfy the same linear recurrence relation. The general solution of
a linear recurrence relation is the linear combination of the solutions of the characteristic
polynomial,

Z =
∑
k

ck(LH)λLv
k (Lh) (1.37)

where the ck depend on the boundary conditions and can be determined by the initial
conditions of the recurrence relation, that is the values of the partition function Z(Lh) for
different values of Lv. Once the eigenvalues λk and the ck are determined, the partition
function for other values of Lv can easily be computed. For periodic boundary conditions
along the transfer direction, all the ck = 1, and for free boundary conditions, the ck are as
given in Equation 1.35 in terms of the boundary vectors. For twisted boundary conditions
along the transfer direction, the ck can be determined through the initial conditions.

When the transfer matrix is invariant under a symmetry operation, its characteristic
polynomial will factor into sectors. For example, for cylindrical boundary conditions, we can
construct a set corresponding to a particular configuration of spins and those other configu-
rations formed by rotating that configuration around the cylinder. The transfer matrix will
be invariant under the transposition of rows and columns corresponding to rotating around
the cylinder this constructed set of states. For each such a set of states, the transfer matrix
will be invariant under transposition of rows and columns corresponding to its rotation. The
symmetry in this case corresponds to the conservation of linear momentum, and it is possible
to choose a linear momentum basis for the matrix. This new basis can be organized in terms
of those states which transform into themselves after 1, 2, . . . rotations around the cylinder,
corresponding to a momentum of 0, 1, . . .. In this case, the characteristic polynomial will
factor into sectors corresponding to particular momenta. For other or additional symme-
tries, the transfer matrix characteristic polynomial will further factor. The free boundary
condition transfer matrix, for which momentum isn’t conserved, still conserves parity and its
characteristic polynomial factors into two sectors, corresponding to configurations of positive
and negative parity.

When free boundary conditions along the direction of transfer are considered, so that
boundary vectors are used in Equation 1.35, the (vB and (v′B will have positive parity, and
in the case of cylindrical boundary condition transfer matrices, they will also have momentum
zero. Therefore, their dot-product with the transfer matrix eigenvalues will only be non-zero
whenever the eigenvalues of the transfer matrix have positive parity, as well as momentum
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zero for cylindrical transfer matrices. The partition function for free boundary conditions
along the direction of transfer will then depend only on the eigenvalues corresponding to the
reduced sector, and therefore the linear recursion relation satisfied by the partition function
will be of a smaller order given by the order of the sector.

The main appeal of the transfer matrix method can be seen in taking the limit Lv →∞.
When the temperature is positive, the transfer matrix will have only positive terms, so
that from the Perron-Frobenius theorem [181, 95, 96, 174] it is guaranteed that the largest
eigenvalue will be positive and non-degenerate. If we order the transfer matrix eigenvalues so
that λ0 is the largest magnitude eigenvalue, then we can rewrite Equation 1.34 for periodic
boundary conditions along the transfer direction in the following manner

Z = λLv
0 (Lh)

[
1 + (λ1(Lh)/λ0(Lh))

Lv + . . .
]

(1.38)

Then, in the limit Lv →∞ when the temperature is positive, all terms except the first one
go to zero so that

f = − lim
N→∞

kBT

N
ln(Z) ≈ − lim

N→∞

kBTLv
N

ln(λ0(Lh)) (1.39)

For the square lattice, the total number of sites is given by N = LhLv, so that there will
remain a factor of Lh in the denominator in Equation 1.39 above. As the size of the transfer
matrix is increased for larger and larger rows so that Lh →∞, the free energy will be given
exactly by

f = −kBT ln
(
λ

(∞)
0

)
(1.40)

where λ
(∞)
0 is the largest eigenvalue of the transfer matrix in the limit Lh →∞. In order for

a thermodynamic limit to exist, the free energy must independent of boundary conditions,
so that for positive temperatures, λ

(∞)
0 of the cylindrical transfer matrix TC will be dominant

and equal to the corresponding λ
(∞)
0 of the free transfer matrix TF . Another consequence

is that c0 6= 0 in Equation 1.37 for any boundary conditions along the transfer direction for
both TC and TF .

For non-positive temperatures, including complex temperatures, a consequence of a the-
orem by Beraha, Kahane, and Weiss [34, 35, 33, 32]1 is that for finite Lh, for all boundary
conditions whose partition functions have the same linear recurrence relation, one (or more)
same eigenvalue(s) at T will be dominant (or equimodular) for all boundary conditions along
the transfer direction, except possibly at isolated points, as long as no two eigenvalues have
the same modulus everywhere in the complex temperature plane. Therefore, for finite Lh,
it is generally sufficient to consider only one boundary condition from all partition functions
derived from the same sectors of the characteristic polynomial, since at most isolated points
will have a boundary condition dependence. In the thermodynamic limit, however, where

1Sokal has generalized the theorem [226, 210] so that the λk(Lh) are algebraic functions that need not
be from the same characteristic equation; this extension is irrelevant for partition functions defined through
transfer matrices.
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Lh →∞, no theorem exists to guarantee boundary condition independence at non-positive
temperatures of the free energy. Therefore, is it also not guaranteed that the limiting dom-
inant eigenvalue for TC at a non-positive temperature be equal to the limiting dominant
eigenvalue of TF at that temperature.

For one dimensional models, the transfer matrix is generally the simplest approach to
solving a model, since there is no Lh dependence to the largest eigenvalue; diagonalization of
a single transfer matrix is sufficient to solve the model. However, 1D models with short-range
interactions do not exhibit a continuous phase transition [116, 195, 88]. For two dimensional
models which can have phase transitions, however, the dependence of the largest eigenvalue
on Lh means that a knowledge of how to diagonalize the transfer matrix for each Lh is
necessary before being able to take the limit Lh → ∞. It was through exactly such a
determination of the largest eigenvalue of the cylindrical transfer matrix for each Lh, using
periodic boundary conditions in the direction of transfer, that Onsager first solved the free
energy of the 2D Ising model in 1944 [176].

1.5 Zeros and Equimodular Curves

Another approach to study models in statistical mechanics, initiated by Lee and Yang in
1952 [151], is to study the roots of the finite partition function of the model. Lee and Yang
originally considered magnetic field zeros; this was generalized by Fisher [92] and others [2,
138, 175] to temperature zeros. For the isotropic Ising model at H = 0 or the hard particle
lattice gases on a finite sized lattice, the variables u or z defined above, respectively, cast the
partition function into the form of a polynomial, which can be written in the following form

Z =
∏
i

(1− t/ti) (1.41)

where t = u or t = z and ti is a root of the polynomial. Therefore, the partition function
is completely specified by its roots. In the thermodynamic limit, the free energy can be
written, up to an additive constant, in terms of the density g(x, y) of the limiting positions
of the partition function roots zi = x+ iy as

f = −kBT
∫ ∞
−∞

∫ ∞
−∞

g(x, y) ln(z − x− iy)dxdy (1.42)

where the density g(x, y) is defined as the limit N → ∞ and dx, dy → 0 of the number
N g(x, y)dxdy of partition function roots in the area x± dx+ i(y ± dy).

As long as the lattice is finite, so that the partition function is a polynomial, there cannot
be a root on the positive real temperature or fugacity axis, since by definition the partition
function is a sum of positive terms. Therefore, the complex roots of the partition function
can only approach the positive real axis for a finite lattice. However, in the thermodynamic
limit, the roots may converge to the positive real axis, at a location corresponding to the
critical temperature Tc or critical fugacity zc. In principle the approach of the roots to the
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positive real axis could be used to estimate the critical location for unsolved models, although
in practice the approach is slow enough to be impracticable.

For the anisotropic square lattice Ising model atH = 0, the temperature roots accumulate
in the thermodynamic limit to areas [230] given by the solution of the following equation

cosh(2J1/KBT ) cosh(2J2/KBT )− sinh(2J1/KBT ) cos(θ1)− sinh(2J2/kBT ) cos(θ2) (1.43)

In the isotropic case, the square lattice temperature roots lie on the circle given by

| sinh(2J/KBT )|2 = 1 (1.44)

Lu and Wu [155] have determined the density of roots along the circle to be

| sin θ|
π2

K(sin θ) (1.45)

where θ is defined by sinh(2J/KBt) = exp(iθ) and where K is the complete elliptic integral
of the first kind.

For the anisotropic triangular lattice at H = 0 the roots accumulate to areas [230]
corresponding to the solution of the following equation

cosh(2J1/KBT ) cosh(2J2/KBT ) cosh(2J3/kBT )

+ sinh(2J1/KBT ) sinh(2J2/KBT ) sinh(2J3/kBT )

− sinh(2J1/KBT ) cos(θ1)− sinh(2J2/KBT ) cos(θ2)

− sinh(2J3/KBT ) cos(θ1 + θ2) (1.46)

In the isotropic case, the triagular lattice roots lie on two curves, the circle given by

w = sinh(2J/kBT )[sinh(2J/kBT ) + cosh(2J/kBT )] = 1 (1.47)

and the interval on the negative w real axis

Re(w) = (−2,−1/2) (1.48)

Lu and Wu [155] give the density on the circle as

| sin θ|
π2
√
A(θ)

K(k) (1.49)

where θ is defined from w = exp(iθ), A(θ) =
√

5 + 4 cos θ, and where

k2 =
1

16

[
3

A(θ)
− 1

]
[1 + A(θ)]3 (1.50)
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while the density on the line segment is given by

| sinhλ|
π2k
√
B(λ)

K(k−1) (1.51)

where λ is defined from w = − exp(λ), B(λ) =
√

5− 4 cosh(λ), and where

k2 =
1

16

[
3

B(θ)
− 1

]
[1 +B(θ)]3 (1.52)

It is not necessary that the interaction energies be anisotropic for roots to lie in areas.
Matveev and Shrock were the first to show that even an integrable model with isotropic
couplings can have roots which lie in areas [159].

For general ferromagnetic Ising models in a field H 6= 0, Lee and Yang proved that the
magnetic field zeros x lie on the imaginary H axis for real temperatures T or on the circle
|e2H | = 1. Alternatively, by recasting the Ising model in a field into a lattice gas model, where
the free energy f is proportional to the pressure p and the magnetization M is proportional
to the density ρ, they proved that the roots of the grand partition function as a function
of fugacity lie on a circle. For T ≤ TC , the roots form a full circle, but for T > Tc a gap
will open up in the circle around zc, or alternatively, around the origin in the imaginary H
axis, forming two endpoints called the Yang-Lee edge. It was also shown by Kortman and
Griffiths [141] that the density of zeros at the Yang-Lee edge diverges in the thermodynamic
limit, depending on the dimensionality. Calling the density of roots on the imaginary H axis
g(h) with edges at h = ±ih0, the density will diverge as

g(h) = [|h| − h0(T )]σ (1.53)

where g(h) is defined so that the number of roots hi between ih and i(h + dh) is N g(h)dh.
The free energy in the thermodynamic limit can then be written as

f = kBT

∫ ∞
−∞

g(hi) ln(h− ihi)dhi (1.54)

The roots of the partition function can be viewed as branch cuts of the free energy, with
branch points at h = ±ih0. Near the branch points, the free energy will then behave as

f ∝ [|h| − h0(T )]σ+1 (1.55)

The Yang-Lee exponent σ was only known exactly in 1D and in the limit d → ∞ as σ =
−1/2, 1/2, respectively [151, 141]. In the limit T → ∞ of Ising ferromagnets in a field
in arbitrary dimension, Kurtze and Fisher proved [146] that the Yang-Lee edge singularity
corresponds to the singularity on the negative real axis of a fluid of hard dimers on the
same lattice, giving a relationship between the Yang-Lee edge singularity and the negative
real fugacity axis singularities of this repulsive-core model. Poland noticed that the critical

14



exponents of the negative fugacity singularities of a wide variety of repulsive-core models
appeared to be universal, depending only dimensionality [183]. In 1999 Park and Fisher
proved that indeed the negative real fugacity singularities for repuslive-core models all belong
to the Yang-Lee edge universality class [178]. In fluid language, the free energy f is recast
in terms of the pressure p of the fluid, so that the critical exponent φ of the pressure p or
density ρ on the negative fugacity axis corresponds to the Yang-Lee quantity σ+ 1. Finally,
knowing the exactly solved hard hexagon model critical exponent φ = 5/6 yields a Yang-Lee
edge critical exponent in d = 2 of σ = −1/6. Furthermore, the exponent of σ = −1/6
will therefore also corresponds to the divergence of the density of the fugacity roots of any
repulsive-core model at zd, including hard squares.

Yang and Lee’s circle theorem gives precise information on the location of the complex
fugacity roots of fluids, a circle; however, it only applies to fluids that correspond to fer-
romagnetic Ising models in a field. There are several results which are less restrictive and
also apply to antiferromagnetic potentials. For 1D hard particle lattice gases, Penrose and
Elvey have proven that the thermodynamic limit distribution of zeros of the grand partition
function lie on simply connected arcs [180]. In 2D, exact and numerical results show that
partition function roots can accumulate to discrete points, curves, or else occupy areas as
the size of the lattice increases, for example [208, 230, 247, 228, 229, 159, 211]. For mod-
els of dimension ≥ 2, using Pirogov-Sinai theory [182] Biskup et al have proven [38] that
a large class of models which depend on one complex variable have zeros which lie on at
most a countable number of simple smooth curves which begin and end at multiple points,
points where multiple curves depart from, the number of multiple points in any compact set
of the complex plane is finite, and they characterize the nature of the degeneracies of the
roots. They also consider the case of their class of models depending on multiple complex
variables [39]. In general, however, there is no single theory able to classify the nature and
location of the roots of a generic model in statistical mechanics, and no result is known
concerning the roots of the hard hexagon and hard square grand partition functions in the
thermodynamic limit.

By way of contrast, rather than try to locate and characterize the locus of roots of a
model, a theorem by Ruelle allows the rigorous exclusion of regions of the complex plane
from having zeros in the thermodynamic limit [196, 197, 198]. Ruelle’s theorem has been
applied to hard squares [117, 201] and hard hexagons [149, 150]; however, the regions of
exclusion near the origin in these two cases did not yield any new information than could
already be obtained numerically.

The locations of the roots of the partition function can be at least partially understood
in terms of the eigenvalues of the transfer matrix with appropriate boundary conditions.
When the temperature u or fugacity z is negative or complex, the Perron-Frobenius theo-
rem ceases to apply, and it cannot be guaranteed that the largest magnitude eigenvalue of
the transfer matrix is either unique or positive. In fact, away from the positive real axis,
the eigenvalue which was largest on the positive real axis may be superseded in magnitude
by other eigenvalues. The locations where such a transition occurs, that is, the locations
where two or more eigenvalues have equal modulus in the complex u or z plane, are called
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equimodular curves. In general, the physical eigenvalue which is maximum on the positive
real axis will not be the maximal eigenvalue throughout the whole complex plane. Along an
equimodular curve, the phase difference between the largest eigenvalues changes, and since
the partition function is the sum of eigenvalues in Equation 1.34, the partition function will
have at least one minima along the equimodular curve. Since the largest eigenvalues form the
largest contribution to the magnitude of the partition function, the partition function will
have zeros close to where the largest eigenvalues have equal magnitude and opposite phase,
that is, near the equimodular curves of the transfer matrix. For finite Lh, the theorem by
Beraha, Kahane, and Weiss [34, 35, 33, 32] 2 states that the limiting zeros for Lv → ∞ of
all partition function which obey a given linear recurrence relation converge either to iso-
lated points, which depend on boundary conditions along the direction of transfer, or else
to the equimodular curves, which are independent of boundary conditions, as long as no
two eigenvalues have equal modulus everywhere in the complex plane. In particular, for the
TF (Lh) transfer matrix, the roots of the partition functions of cylindrical (periodic along
the Lv direction) and Möbius (twist in the Lv direction) boundary conditions for finite Lh
will converge to the same equimodular curves as Lv → ∞, and similarly for toroidal and
Klein bottle boundary conditions for the TC(Lh) transfer matrix. The theorem is silent,
though, concerning how the partition functions zeros for free-free boundary conditions re-
late to cylindrical (free along the Lv direction) boundary conditions, how these relate to
cylindrical/Möbius boundary conditions and how any of these relate to toroidal/Klein bot-
tle boundary conditions. Furthermore, their theorem does not apply to the thermodynamic
limit where both Lh, Lv →∞; in particular, it does not guarantee that equimodular curves
of TC converge to those of TF in the thermodynamic limit.

Since the partition function roots converge to the critical point on the positive temper-
ature or fugacity axis in the thermodynamic limit, there will be (at least) one equimodular
curve for both cylindrical and free transfer matrices TC and TF , respectively, that crosses the
positive real axis in the thermodynamic limit at the location Tc or zc. This (these) curve(s)
will separate two different maximum eigenvalues on the positive real axis by definition, one
above and one below the critical point, and the critical point will be a singularity for both
eigenvalues. These two physical eigenvalues do not need to be related to each other ana-
lytically; from the exact solution of hard hexagons, for example, it is known that the two
eigenvalues on either side of zc (to be precise, the limit Lv, Lh →∞ of λ

1/LvLh

0 (Lh) for both
λ0(Lh)) satisfy different algebraic equations [133].

2See footnote on page 11. Also, Wood appears to have independently thought of using equimodular
curves to study limiting locations of partition function zeros [246, 248, 250]. See also [218]. Earlier than all
of these, in 1967 Nilsen and Hemmer [173] presented a method for finding limiting grand partition function
zeros in terms of equimodular poles of the grand pressure function, in the context of hard squares.
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[95] Georg Frobenius. “Über Matrizen aus positiven Elementen”. German. In: Preuss.
Akad. Wiss. Sitzungsber. (1908), pp. 471–476.
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Une Dimension”. In: Physica 16.2 (1950), pp. 137–143. issn: 0031-8914. doi: http:
//dx.doi.org/10.1016/0031-8914(50)90072-3.

[117] J. B. Hubbard. “Convergence of Activity Expansions for Lattice Gases”. In: Phys.
Rev. A 6 (4 Oct. 1972), pp. 1686–1689. doi: 10.1103/PhysRevA.6.1686.
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2.1 Paper 1: Ising Model Diagonal Form Factors

The Ising model two-point correlation functions 〈σ0,0σM,N〉 are defined by

〈σ0,0σM,N〉 =
1

Z

∑
σ

σ0,0σM,Ne
−E/kBT (2.1)

where σ0,0 is chosen because in the thermodynamic limit the correlations will be independent
of location in the bulk; only relative locations between two spins matter.

The Ising model correlations have a long history, which began when Kaufman and On-
sager computed the row correlation function (M = 0 above) in 1949 as a Toeplitz ma-
trix [140]. A major development happened in 1963 when Montroll, Potts, and Ward [168]
used the Pfaffian method to give the general correlations 〈σ0,0σM,N〉 in the thermodynamic
limit as determinants of the size the length of the path chosen between σ0,0 and σM,N . Their
method would give the row correlations as an N × N determinant while for the diagonal
correlations a 2N×2N determinant. The next year, however, Stephenson used their method
on the triangular lattice, and specializing to the square lattice by taking the diagonal inter-
action energy to zero, the diagonal correlation was given a N × N Toeplitz determinantal
form [227].

In 1984 and the next year, Ghosh and Shrock gave examples up to N = 6 of the cor-
relations written in terms of the complete elliptic integrals of the first and second kind for
the anisotropic case along the diagonal [99], and for the isotropic case for row [100] and
off-diagonal [219] correlations.

The reduction of correlations to elliptic integrals of the first and second kind, K(k)
and E(k), respectively, follows from writing the coefficients in the Toeplitz determinant as
hypergeometric functions, taking the determinant, and then using contiguous relations to
write the hypergeometric functions in terms of the basis of K(k) and E(k). The Toeplitz
matrix entries can all be written in terms of hypergeometric functions of the form F (±1/2, n±
1/2;n+ 1; t), where

t =

{
k2, T < Tc
k−2, T > Tc

(2.2)

and where k is defined in Equation 1.6. These can then be related to the complete elliptic
integrals by the following correspondence

K(t1/2) =
π

2
F (1/2, 1/2; 1; t) (2.3)

E(t1/2) =
π

2
F (−1/2, 1/2; 1; t) (2.4)

When M,N are large, finding the determinants of the Toeplitz matrices for the correla-
tions 〈σ0,0σM,N〉 is not an efficient method of computation. As M,N →∞, the correlations
become the spontaneous magnetization M0,

lim
M,N→∞

〈σ0,0σM,N〉 =M0 (2.5)
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where for T < Tc,M0 = (1− t)1/4, and so we can seek an expansion for the correlation func-
tions around M,N → ∞ whose first term is exactly M0, and further terms are corrections
of order M,N . That is, for T < Tc

〈σ0,0σM,N〉 = (1− t)1/4

{
1 +

∞∑
n=1

f
(2n)
M,N

}
, (2.6)

and for T > Tc

〈σ0,0σM,N〉 = (1− t)1/4

∞∑
n=0

f
(2n+1)
M,N , (2.7)

This is the form factor expansion of the correlation functions, where f
(n)
M,N are sums in the

finite lattice or n-fold integrals in the thermodynamic limit. When M = 0 or N the expansion
is called the row or diagonal form factor expansion, respectively.

The process of deriving the form factor expansion was started in 1966 in [253] for row
correlations, in [81] for general correlations, and in [162, 163] for diagonal correlations. The
method of [253] was carried out to all orders in [254] in the form of an exponential expansion
in the thermodynamic limit,

〈σ0,0σM,N〉 = (1− t)1/4 exp

(
∞∑
n=1

F 2n
M,N

)
(2.8)

for T < Tc, and for T > Tc

〈σ0,0σM,N〉 = (1− t)1/4

∞∑
m=0

G2n+1
M,N exp

(
∞∑
n=1

F̃ 2n
M,N

)
(2.9)

where the F 2n
M,N , F̃

2n
M,N are 2n-fold integrals, and the G2n+1

M,N are (2n+ 1)-fold integrals. From
this exponential expansion, the first few terms of the form factor expansion were given.

The exponential terms were expanded to all orders in 2007 to give the form factor ex-
pansion [156, 54], for the row and diagonal form factors, and derived independently for the
row form factors in [62, 63].

The first leading term for T > Tc was found in [254] to be written in terms of hyperge-
ometric functions contiguous to the complete elliptic integrals of the first and second kinds
as

f
(1)
N,N(t) = λN t

N/2FN (2.10)

where

λN =
(1/2)N
N !

(2.11)

FN(t) = 2F1(1/2, N + 1/2;N + 1; t) (2.12)

and (a)n = a(a + 1) · · · (a + n − 1) is the Pochhammer symbol. As an example, f
(1)
0,0 =
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2
π
K(t1/2) = F0. The relation of the one dimensional integral to hypergeometric functions

follows directly from the integral form of the hypergeometric function

2F1(a, b; c; t) =

∫ 1

0

xb−1(1− x)c−b−1(1− tx)−adx (2.13)

However, it is not obvious that in general the n-fold integrals appearing in the full expan-
sion factor into products of one dimensional integrals related to hypergeometric functions.
In 2007 in [54] it was found by means of large series expansions in Maple examples for n as
high as 9 and N as high as 4 that the diagonal form factors could all be written as sums of
products of the complete elliptic integrals of the first and second kinds. However, no analytic
proof was found for these examples.

2.1.1 New Results

In [12] we present a new method for exactly factoring the n-fold diagonal form factor
integrals into sums and products of one-dimensional integrals. We find that all the n-
fold integrals can be written as sums of products of hypergeometric functions of the form

2F1(1/2, N + 1/2;N + 1; t) which occurs in f
(1)
N,N and which are contiguous to the complete

elliptic integrals of the first and second kinds. In particular, we prove results for n = 2, 3
give a result for n = 4, valid for all N , and conjecture the general form of the result for
arbitrary n.

The exact results, together with the conversion of the examples up to n = 5 of [54] to
the contiguous basis FN , FN+1 lead us to the following conjecture on the structure of the
diagonal form factors

f
(2n)
N,N (t) =

n−1∑
m=0

c(2n)
m f (2m)

m,m (t) +
2n∑
m=0

C2n
m (N ; t)F 2n−m

N Fm
N+1 (2.14)

t−N/2f
(2n+1)
N,N (t) = t−N/2

n−1∑
m=0

c(2n+1)
m f (2m+1)

m,m (t) +
2n+1∑
m=0

C2n+1
m (N ; t)F 2n+1−m

N Fm
N+1

(2.15)

where the c
(n)
m are constants, and the C

(n)
m are polynomials with the following palindromic

structure

C(2n)(N ; t) = tn(2N+1)+mC(2n)
m (N ; 1/t) (2.16)

C(2n+1)(N ; t) = tn(2N+1)+mC(2n+1)
m (N ; 1/t) (2.17)

and where the degrees of the polynomials are given by

degC2n
m (N ; t) = degC2n+1

m (N ; t) = n(2N + 1) (2.18)
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While the method presented in [12] is very general and applies to all orders of the diagonal
form factor expansion, the procedure becomes very cumbersome beyond n = 4.

2.2 Paper 2: Ising Model Diagonal Susceptibility

One of the main unresolved portions of the 2D Ising model is the magnetic susceptibility
χ, defined as follows

χ = −β ∂
2f(H,T )

∂H2

∣∣∣∣
H=0

= β
∞∑

M=−∞

∞∑
N=−∞

[
〈σ0,0σM,N〉 −M2

]
, (2.19)

One method to analyze the magnetic susceptibility is to use the form factor expansion of
the correlations in this double sum formula. Then, the double sums over M,N can be
summed under the integral sign, to produce a high or low temperature series expansion for
the susceptibility. For T < Tc

χ = β(1− t)1/4

∞∑
n=1

χ̂(2n) (2.20)

and for T > Tc

χ = β(1− t)1/4

∞∑
n=0

χ̂(2n+1) (2.21)

where χ̂(n) is an n-fold integral defined by

χ̂(n) =
∞∑

M=−∞

∞∑
N=−∞

f
(n)
M,N (2.22)

Some work has been done to study the behavior of the general χ̂n for particular values
of n [263, 266, 264, 265, 47]. However, a simpler problem is to only sum over the diagonal
correlation functions [57], which can be interpreted physically as having the magnetic field
only interact with the spins lying along the diagonal in the bulk.

kBTχd(t) =
∞∑

N=−∞

[
〈σ0,0σN,N〉 −M2

]
, (2.23)

Again, the sum over N can be performed under the integral sign in the form factor expansion
to yield the diagonal susceptibility expansions

kBTχd(t) = (1− t)1/4

(
1 +

∞∑
n=1

χ̃
(2n)
d (t)

)
, (2.24)
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for T < Tc and

kBTχd(t) = (1− t)1/4

∞∑
n=0

χ̃
(2n+1)
d (t), (2.25)

for T > Tc. The first integrals of the high and low temperature diagonal susceptibility
expansion were exactly solved in [57] as

χ̃
(1)
d (x) =

1

1− x
(2.26)

χ̃
(2)
d (t) =

t

4(1− t)
(2.27)

where for odd n the variable x = t1/2 = k−1 is used rather than t.
While these leading term results appear simple, the next leading terms χ̃

(3)
d (x) and χ̃

(4)
d (t)

are much more involved. In [57] they were found to be solutions of linear differential equa-
tions of orders 6 and 8, respectively, both of which factor into a direct sum of three linear
differential operators. In each case, the solution of the smallest direct sum factor was found
to be the previous term in the susceptibility series, χ̃

(1)
d (x) and χ̃

(2)
d (t), respectively, and it

has been conjectured [] that the previous term χ̃
(n−2)
d (t) is always in the linear combination

of the solution of the term χ̃
(n)
d (t). Of the remaining two direct sum factors in each case, the

second largest order factors were solved in terms of hypergeometric functions contiguous to
the elliptic integrals of the first and second kind. However, the largest order factors in each
case were left unsolved in [57].

In [47], the largest factor in the direct sum of χ̃
(3)
d (x) was finally solved for in terms of a

3F2 hypergeometric function, although the linear combination of the three solutions which
gives χ̃

(3)
d (x) was not given, nor was the singularity structure of χ̃

(3)
d (x) determined.

2.2.1 New Results

In [9] we completed the study of χ̃
(3)
d (x) and χ̃

(4)
d (t) by solving the remaining largest

factor in the direct sum decomposition of the linear ODE for χ̃
(4)
d (x) and giving the linear

combinations of the three solutions which produce χ̃
(3)
d (x) and χ̃

(4)
d (x). We also analytically

compute the full singularity structure at all of the finite singular points of χ̃
(3)
d (x) and χ̃

(4)
d (t)

by solving the connection problems.
Through the use of a pullback in the argument of the hypergeometric function we were

able to write the 3F2 hypergeometric function of the largest factor of χ̃
(3)
d (x) in terms of

sums and products of 2F1 hypergeometric functions contiguous to the elliptic integrals of
the first and second kind. However, the third factor in the direct sum of the linear ODE for
χ̃

(4)
d (t) gives rise to a solution which is a solution of a Calabi-Yau ODE. We have been able

to express this solution in terms of a linear differential operator of order 3 acting upon a

4F3 hypergeometric function. We were unable, however, to reduce the solution to sums and
products of 2F1 hypergeometric functions contiguous to the elliptic integrals of the first and
second kind. It appears that the Ising susceptibility has a more complex analytic structure
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compared to the Ising model form factors, which appear to all be given in terms of elliptic
integrals of the first and second kinds.

We also considered the diagonal susceptibility term χ̃
(5)
d (x), first considered in [57]. We

were unable to perform a full direct sum decomposition of the linear differential operator
due to memory constraints, although we were able to solve some of its factors in terms
of 2F1 hypergeometric functions contiguous to the elliptic integrals of the first and second
kind. As was seen in χ̃

(3)
d (x) and χ̃

(4)
d (x) already, we determined that the previous diagonal

susceptibility term χ̃
(3)
d (x) is in the linear combination of the solution of χ̃

(5)
d (x).

2.3 Paper 3: Hard Hexagons

Hard hexagons was first studied approximately through series expansions, starting in
1966 [200], where an approximation for zc was found, and in [97], where an approxima-
tion for zd was found. The free energy of the hard hexagon model was exactly solved by
Baxter [29, 30] in the thermodynamic limit on the positive real fugacity axis using corner
transfer matrices rather than the transfer matrices defined above. Baxter found that the hard
hexagon model exhibits a continuous phase transition at the fugacity point zc = (11+5

√
5)/2,

and he identified a low density and a high density partition function per site, κ− and κ+,
respectively, valid below and above zc. The κ± are defined as

κ± = lim
Lv ,Lh→∞

Z1/LvLh (2.28)

Baxter gave the partition functions per site as infinite products in terms of an auxiliary
variable x, and he also gave the fugacity z as an infinite product in terms of the same x.
These infinite products can be written in terms of theta functions [13, 19] and Joyce found
that the auxiliary variable x can be eliminated in order to give κ± in terms of z [133]. Joyce
found, in fact, that κ± are algebraic functions, which are singular at zc, as well as at the
unphysical singularity zd = (11− 5

√
5)/2.

For κ+, Joyce showed that it satisfies an algebraic equation of order 24 in κ+ and order
22 in z. He also showed that κ− is an algebraic function, but did not give the algebraic
equation. Joyce also derived algebraic equations for the mean density in the high and low
density regime, ρ± = −z dκ±

dz
[133]. The algebraic equation for ρ+ is of order 4 in ρ+ and

order 2 in z, while the algebraic equation for ρ− is of order 12 in ρ− and order 4 in z.

2.3.1 New Results

For the low density regime we have found in [10] by means of a Maple series expansion
computation that the low density partition function per site κ− satisfies an algebraic equation
of order 24 in κ− and order 22 in z. We also found that the algebraic equation for the high
density partition function per site given by Joyce as well as the new low density algebraic
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equation satisfy the following palindromic condition

z44 · f±
(
−1

z
,
κ±
z

)
= f±(z, κ±). (2.29)

where the f± are the algebraic equations satisfied by κ±.
Using our new algebraic equation, we found an exact Puiseux series expansion for the

mean density at the location of the unphysical singularity zd on the negative real fugacity
axis, in agreement with the exponents associated with the Yang-Lee edge, which is related
by universality to hard hexagons. This series was written as the sum of six series multiplying
leading exponents −1/6 and 0 and the corrections to scaling exponents 2/3, 3/2, 7/3, 19/6.
Interestingly, the series multiplying the exponent 0 has a sign change at the 555th term.

We also study extensively the hard hexagon model on the finite L×L lattice by enumer-
ating exactly the partition function up to L ≤ 39 for several boundary conditions in order
to locate the partition function zeros. We further calculate the transfer matrices eigenvalues
for Lh ≤ 30 in order to compute the equimodular curves for various boundary conditions.

Using both partition function zeros as well as equimodular curves we are able to explore
the analytic structure of the model in the complex fugacity plane. The boundary where the
high and low density partition functions per site are equimodular would correspond to the
limiting location of the locus of zeros of the finite partition function in the thermodynamic
limit if κ− and κ+ are the only two dominant eigenvalues of the transfer matrices throughout
the complex plane in the thermodynamic limit. We have found, however, that there is a
“necklace” of partition function zeros which accumulate in the left half-plane which do not
appear to converge to the curve where κ− and κ+ are equimodular. Since the finite transfer
matrices also give extra equimodular curves in necklace region, we conjecture that at least
one new eigenvalue is dominant in the necklace region in the thermodynamic limit, and
perhaps many more.

We have compared, for both partition function zeros and equimodular curves, the de-
pendence of the curves and zeros on boundary conditions, considering both cylindrical and
toroidal boundary conditions. In general, we find the zeros for different boundary conditions
converging to each other, and that the equimodular curves for toroidal boundary conditions
appear to be converging to the cylindrical boundary condition equimodular curves. We con-
jecture that the zeros and equimodular curves are converging mutually to each other, but
it is still unclear at present the limiting locus of the zeros and equimodular curves in the
thermodynamic limit. It is also unknown how the new eigenvalues in the necklace region may
affect the analytic continuation across the zero curves, especially if the number of eigenvalues
increases with increasing lattice size.

Because it is an exactly solved model, the hard hexagon model exhibits many special
features which are likely not shared with non-integrable models. For example, we find that
the characteristic polynomial of its transfer matrix in the translationally invariant sector
factorizes and its resultant has predominantly double roots. Neither of these features are
seen in other hard particle lattice gases defined on the square lattice, or other Archimedean
lattices (unpublished). This has the effect that the equimodular curves do not have any gaps
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but are continuous.
Both the partition function roots and the equimodular curves contain a line segment

on the negative real axis, whose right-most endpoint is converging towards the unphysical
singularity at zd. We have not been able to determine the limiting value of the left-most
endpoint, however. At zd we have examined for finite lattices the exponent of the divergence
of the density of roots, which has the critical exponent of −1/6. We have found that even
for L = 39 the divergence at zd showed significant oscillations so that the convergence to an
exponent of −1/6 is slow for hard hexagons. Furthermore, the −1/6 divergence was limited
to a very small interval very close to zd, while the density of roots in the rest of the interval
on the negative real axis exhibits a different divergence exponent.

2.4 Paper 4: Hard Squares

The hard square model was first discussed in 1965 by Gaunt and Fisher as an approx-
imation of the hard-sphere lattice gases [98], and since then it has proven an interesting
unsolved model in statistical mechanics [188, 200, 173, 199, 117, 201, 26, 249, 102, 84, 246,
248, 250, 106, 179, 136, 18, 135, 105, 90, 130, 91, 131, 132, 25, 4, 70, 127, 71]. Interest in
the model also stems from the correspondence that at fugacity z = 1, the partition function
on a square lattice of size N ×N is equal to the number of binary matrices of order N ×N ,
that is, square matrices whose elements are either 0 or 1 [24].

It has long been known through series expansions that the hard square model exhibits a
physical phase transition on the positive real fugacity axis [98]. The best current estimation
is zc = 3.79625517391234(4) [105], where the uncertainty in the last digit is indicated in the
parenthesis. The value of the unphysical singularity zd is also of interest in series expansions,
since due to being closer to the origin than zc, series expansions are dominated by effects
from zd. A precise knowledge of the location of zd allows the use of a transformation to move
the location of zd farther away in order to give better series expansions around the physical
singularity zc. The best current estimate of zd is zd = −0.11933888188(1) [233].

The complex fugacity zeros in the Lv →∞ limit of the grand partition function of hard
squares have been located as early as 1967 by Nilsen and Hemmer [173] for Lh = 3, 4 and
screw boundary conditions, through a method analogous to equimodular curves but for the
grand pressure ensemble. They also computed the density of the roots along the curves.
Using Ruelle’s method, a small region of the complex plane near the origin was determined
to be zero-free in the thermodynamic limit by Hubbard and Runnels in 1972 [117, 201].
Later in 1987, Wood argued that the zeros of the grand partition function should converge
to the transfer matrix equimodular curves in the Lv →∞ limit and studied the equimodular
curves of hard squares for Lh ≤ 6 for toroidal boundary conditions [246, 248, 250]. Aside
from numerous studies of the thermodynamic limit of the zeros zc and zd on the real axis,
no further attempt at understanding the complex zeros was undertaken.

Recently, it was discovered by Fendley et al [90] and further investigated by Baxter [25]
that the grand partition function of hard squares at the negative fugacity value of z = −1
depends strongly on boundary conditions, the ratio Lv/Lh, as well as the orientation of the
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lattice with respect to boundary conditions. Fendley et al [90] discovered that the grand
partition function of hard squares with toroidal boundary conditions becomes Z(−1) = 1
whenever Lv and Lh are co-prime and furthermore, that all of the eigenvalues of the TC(Lh)
transfer matrix at z = −1 are equimodular of unit modulus. They checked these results up
to Lh = 15 and Lv = 20. These discoveries were subsequently proven to hold for all Lv, Lh
by Jonsson in 2006 [130]. Baxter investigated other boundary conditions as well as cases
where the lattice is rotated 45◦ with respect to the boundary conditions. Baxter found [25]
that for cylindrical boundary conditions where the lattice is parallel to the boundaries,
that the eigenvalues for TC(Lh) for Lh ≤ 12 also are all of unit modulus. Jonsson noticed
further [130] and subsequently proved for all Lv and odd Lh [132] that when Lh is odd, the
partition function value at z = −1 follows one of two cases: if gcd(Lh − 1, Lv) = 3 then
Z(−1) = −2, otherwise Z(−1) = 1. For cylindrical boundary conditions of TC(Lh) with
even Lh, Adamaszek proved [4] that Z(−1) has polynomial growth in Lv and conjectured a
form for the generating function of Z(−1) as a funciton Lv, including a conjecture that the
sequence of Z(−1) as a function of Lv is only repeating for Lh = 2 mod 4.

When the lattice is oriented at 45◦ with respect to the boundary conditions, the transfer
can have eigenvalues with modulus other than unity, first noticed by Baxter [25]. For toroidal
boundary conditions, Jonsson has proved [131] that if Lv, Lh are co-prime, then Z(−1) = 2
if LvLh = 0 mod 3 and Z(−1) = −1 otherwise; also, if Lv, Lh are not co-prime but both
are divisible by 3, then the Z(−1) has asymptotic exponential growth in Lv + Lh, less than
LvLh, so that the free energy is still zero in the thermodynamic limit. Jonsson further
proved [131] in this case that the eigenvalues have modulus zero, unity, or else also, when
Lh = 0 mod 3 a modulus of the form [4 cos2(πn/Lv)]

1/3. Baxter also considered cylindrical
boundary conditions with the lattice oriented at 45◦ to the boundaries for Lh ≤ 12. He
found that for Lh = 1 mod 3 that all of the eigenvalues of TC(Lh) have modulus zero so
that Z(−1) = 0; otherwise the eigenvalues have modulus either zero or unity and he found
Z(−1) 6= 0.

There are many remaining cases of boundary conditions, aspect ratios Lv/Lh, and orien-
tations of the lattice for which no proven results exist. However, from the existing proofs, it
appears that the free energy in the thermodynamic limit for all boundary conditions consid-
ered and where the lattice is parallel to the boundaries will have the limit f(−1) = 0, since
the partition function is sub-exponential in LvLh for all cases studied. When the lattice is
oriented at 45◦ to the boundaries, the free energy in the proven cases also remains zero, but
if Baxter’s finding for cylindrical boundary conditions and Lh = 1 mod 3 holds for all Lh,
then the free energy in the thermodynamic limit can also diverge at z = −1. The nature
of the point z = −1 is unclear, and it may constitute the first demonstrable point where
thermodynamics, which requires boundary condition independence, does not apply. No such
special point has been seen in the hard hexagon model on finite lattices, and it is not clear
how universal such a feature is.
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2.4.1 New Results

In [11] we perform a similar analysis for hard squares on the finite lattice as we did
for hard hexagons [10], and we compare and contrast the properties of each in order to
understand the relationship between integrable and non-integrable models. We also consider
in detail the dependence of the partition function roots and equimodular curves on boundary
conditions.

We consider the effect of boundary conditions in detail. We compute the zeros of the
torus, cylinder, and plane L×L lattices. The transfer matrices can have either free or cylin-
drical boundary conditions for each transfer row, and considering only the largest modulus
eigenvalue(s) is equivalent to a partition function infinitely long and with periodic boundary
conditions along the transfer direction. The free and cylindrical transfer matrices correspond,
then, to infinitely wide cylinders of finite height or infinitely wide torii partition functions.
However, restricting the free transfer matrix eigenvalues to only the positive parity sector is
equivalent to an infinitely long plane of finite width, while restricting the cylindrical trans-
fer matrix eigenvalues to the zero momentum, positive parity sector 0+ is equivalent to an
infinitely long cylinder of finite radius. From the transfer matrix, we therefore have four
different boundary conditions, a torus, a long tube, and wide ring, and long plane. As
is expected, the roots of the torus and plane L × L partition functions lie closest to the
equimodular curves of the transfer matrices corresponding to torii and planes, respectively.
The roots of the L× L cylinder partition function, however, lie much closer to the transfer
matrix corresponding to the wide ring, that is, periodic in the direction of transfer.

The roots and equimodular curves of hard squares exhibit much greater structure than
hard hexagons. Just as was the case for hard hexagons, hard squares features a “necklace” of
partition function roots and equimodular curves. However, for hard squares, the “necklace”
covers a much larger area and extending farther towards zc. It is unclear whether in the
thermodynamic limit the necklace will converge to zc or not. The hard squares equimodular
curves also exhibit much greater structure. Near the special point z = −1, smaller and
smaller loops, regions, and endpoints form with increasing transfer row size Lh. It is un-
clear the effect of the developing structure on the analytical behavior of the thermodynamic
functions hear z = −1.

Roughly half of all of the partition function roots for hard squares lie along the negative
real axis in the range −1 ≤ z ≤ zd, which allows for a detailed study of their density in
that range. As was the case for hard hexagons, our examination of the divergence of the
density of zeros near zd, which diverges in the thermodynamic limit with a −1/6 critical
exponent, showed a very slow convergence to this exponent for finite lattices. Oscillations
in the density were seen around zd and the −1/6 power law divergence was only discernable
in an interval very close to zd, while the density in the rest of the line segment obeyed a
different overall power law exponent.

As opposed to hard hexagons, the resultant of the transfer matrix characteristic polyno-
mials have only single roots, so that along the equimodular curves there are finite sized gaps.
Along the line of zeros on the negative real axis, in particular, the number of gaps increases
with increasing lattice size so that a countable infinity will exist in the thermodynamic limit.
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However, as the size of the transfer row Lh increases, the size of the gaps appears to decrease
exponentially. From the Beraha, Kahane, Weiss theorem, the zeros of the partition function
for finite Lh as Lv → ∞ will converge to the equimodular curves. We prove a relation be-
tween the density of roots D(z) in the limit Lv → ∞ and the phase difference θ(z) of two
equimodular dominant eigenvalues on equimodular curves,

2πD(z) =
dθ

dz
(2.30)

We define the density of roots on the square lattice as

D(z) = lim
Lv→∞

1

Lv[zi+1 − zi]
(2.31)

where zi is the i-th root from zd, and likewise for zi+1, and the z in D(z) is the limit of zi as
Lv → ∞.1 Both D(z) and θ(z) depend linearly on Lh. The θ(z) depends on the boundary
conditions of the transfer matrix TC(Lh) or TF (Lh), and hence also the density of roots. We
have noticed, however, that the two θ(z) appear to be converging to each other for increasing
Lh, and the convergence is fastest closest to zd.

The presence of gaps in the equimodular curve on the negative real axis causes singular-
ities in the derivative of the phase difference. Therefore, according to Equation 2.30, this
causes a divergence in the density of roots at the endpoints of the gap in the limit Lv →∞.
However, the thermodynamic limit is the limit where both Lv, Lh → ∞, and so both the
gaps and the root densities need to be studied in this limit. As Lh increases, the gap lengths
become exponential smaller while for a fixed value of Lv, the distances between consecutive
roots of an Lv × Lh partition function only decrease linearly with Lh. While this would
suggest that the gaps will not affect the root density in the thermodynamic limit, neverthe-
less, the zero densities for L × L partition functions exhibit what we call “glitches” along
intervals centered around the locations of the gaps. For these L × L lattices, the distance
between consecutive roots is orders of magnitude larger than the length of the gaps. It ap-
pears that the amplitude of the glitches may be decreasing for increasing L×L lattice sizes,
but it remains unclear how or whether these singularities caused by exponentially smaller
gap intervals will affect the density of roots in the thermodynamic limit or the analytic con-
tinuation of thermodynamic functions across the line segment. Importantly, for the Lh we
have analyzed and for all boundary conditions, any gaps and glitches are superimposed onto
a density/phase derivative which appears to be finite as z → −1.

We have also seen a second source of singularities in the Lv →∞ limit of the density of
partition function roots very close to the special point z = −1. The gaps mentioned earlier
occur when two equimodular dominant eigenvalues become equal and real-valued at the
endpoints of the gap. However, a complex conjugate pair of eigenvalues can be overtaken in
modulus by another complex conjugate pair, causing a discontinuity in the phase derivative
at that point, and therefore also a singularity in the density of roots. We’ve noticed these

1Equation 2.30 was stated without proof in [173] in a different context and proven independently in [38].
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level crossing singularities only very near z = −1, −1 + 10−5 < z < −1 + 10−2 and for
Lh > 12. For a given Lh, there can be multiple such level crossings near z = −1. We do
not have enough data for a conjecture but it appears that the number of such crossings may
be increasing with Lh. The trend of the locations of the level crossings for increasing Lh
was inconclusive. The level crossings for TC(Lh) occurred at locations different fro mthose
of TF (Lh), though the TC(Lh) crossings farthest from z = −1 for a given Lh always occurred
at a greater distance than the farthest TC(Lh) level crossings for the same Lh, and Lh which
had level crossings for TC may not have a level crossing TF and vice-versa.

We also explore the partition function value at the special point z = −1 in considerable
detail for lattices oriented parallel to their boundaries. It had already been discovered by
Fendley et al [90] and proven for all Lh in [130] that all of the eigenvalues of the cylindrical
transfer matrix TC(Lh) at z = −1 are of unit modulus. Its characteristic polynomial, then,
factorizes into products of different roots of unity. Jonsson [130] gave a table for Lh ≤ 50 of
the factored characteristic polynomials for the full TC(Lh), and we have provided a similar
table for the 0+ sector of TC(Lh) for Lh ≤ 29. We have looked for the first time at free
transfer matrix TF (Lh) for Lh ≤ 20 and have found the same phenomena of all eigenvalues
being of unit modulus. We also tabulate the partition function values at z = −1 of Lv × Lh
lattices for Lv ≤ 20 and Lv ≤ 16 on the torus, cylinder, plane, Möbius band, and Klein
bottles (both with twists in the Lv direction). Since the transfer matrices satisfy linear
recursion relations given by their characteristic polynomials, tabulations of values up to Lv
equal to the order of the transfer matrix for a given Lh will yield a generating function for a
given Lh for the partition function values at z = −1 as a function of Lv; we have determined
generating functions for Lh ≤ 16. We find, surprisingly, that in all cases for the torus and
the cylinder, the generating functions for their sequences as a function of Lv are given by the
negative of the logarithmic derivative of the characteristic polynomial of the corresponding
transfer matrix. We further conjecture that along a periodic direction (including twists),
all generating functions are repeating, and we give a conjectured form to the generating
functions. We further find that even though twisted boundary conditions satisfy the same
linear recursion relation as periodic boundary conditions in Lv, the generating functions in
the twisted case are repeating with much smaller period due to extra cancellations that do
not occur for the periodic cases. We have also seen cases of Z(−1) = 0, but only for free-free
boundary conditions, and only for the one-dimensional cases of either Lv, Lh = 1 and for
either Lv, Lh = 1 mod 3. For two dimensional lattices, the partition function has only been
found to equal zero at z = −1 for the cylindrical lattice rotated at 45◦ for Lh = 1 mod 3,
seen by Baxter for Lh ≤ 12 [25].

The nature of the special point z = −1 continues to remain unknown and very intriguing.
The free energy at z = −1 may depend on boundary conditions if the lattice is rotated with
respect to the boundaries, the segment −1 < z < zd appears to have a countable number
of singularities in the thermodynamic limit due to exponentially decreasing gaps, and level
crossing singularities appear to be accumulating near z = −1. And yet, the limit z → −1 of
the density of roots appears to be finite as Lh →∞. Clearly much remains to be understood
concerning this special point.
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Abstract

We present a general method for analytically factorizing the n-fold form factor in-
tegrals f

(n)
N,N(t) for the correlation functions of the Ising model on the diagonal in

terms of the hypergeometric functions 2F1([1/2, N+1/2]; [N+1]; t) which appear

in the form factor f
(1)
N,N(t). New quadratic recursion and quartic identities are

obtained for the form factors for n = 2, 3. For n = 2, 3, 4 explicit results are
given for the form factors. These factorizations are proved for all N for n = 2, 3.
These results yield the emergence of palindromic polynomials canonically asso-
ciated with elliptic curves. As a consequence, understanding the form factors
amounts to describing and understanding an infinite set of palindromic polyno-
mials, canonically associated with elliptic curves. From an analytical viewpoint
the relation of these palindromic polynomials with hypergeometric functions asso-
ciated with elliptic curves is made very explicitly, and from a differential algebra
viewpoint this corresponds to the emergence of direct sums of differential oper-
ators homomorphic to symmetric powers of a second order operator associated
with elliptic curve.
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3.1 Introduction

The form factor expansion of Ising model correlation functions is essential for the study
of the long distance behavior and the scaling limit of the model. This study was initiated
in 1966 when Wu [253] computed the first term in the expansion of the row correlations
both for T > Tc, where the result is a one dimensional integral, and for T < Tc, where the
result is a 2 dimensional integral. By at least 1973 it was recognized [162] that the diagonal
correlations and form factors are a specialization of the results for the row correlations. The
extension to form factors for correlations in a general position and from the leading term
to all terms was first made in 1976 [254]. This leads to the general result that for the two
dimensional Ising model with interaction energy E = −

∑
j,k{Ev σj,kσj+1,k +Eh σj,kσj,k+1},

with σj,k = ±1, the form factor expansion for T < Tc is

〈σ0,0σM,N〉 = (1− t)1/4 · {1 +
∞∑
n=1

f
(2n)
M,N}, (3.1)

where t = (sinh 2Ev/kBT sinh 2Eh/kBT )−2, and for T > Tc

〈σ0,0σM,N〉 = (1− t)1/4 ·
∞∑
n=0

f
(2n+1)
M,N , (3.2)

where t = (sinh 2Ev/kBT sinh 2Eh/kBT )2, and where f
(n)
M,N are n-fold integrals.

The form factor expansions (3.1) and (3.2) are of great importance for the study of the
magnetic susceptibility of the Ising model

χ(T ) =
1

kBT
·
∑
M,N

{〈σ0,0σM,N〉 −M2}, (3.3)

where M = (1 − t)1/8 for T < Tc and equals zero for T > Tc is the spontaneous magne-
tization. The study of this susceptibility has been the outstanding problem in the field for
almost 60 years. The susceptibility is expressed in terms of the form factor expansion as

kBT · χ(T ) = (1− t)1/4 ·
∑
m

χ(m)(T ), (3.4)

where
χ(m)(T ) =

∑
M,N

f
(m)
M,N , (3.5)

with m = 2n, for T < Tc, and m = 2n + 1, for T > Tc. In the last twelve years a large
number of remarkable properties have been obtained for both χ(n)(T ) [171, 172, 177, 263,
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266, 264, 50, 45, 51, 69] and the specialization to the diagonal [57]

χ
(n)
d (t) =

∑
N,N

f
(m)
N,N . (3.6)

These remarkable properties of χ(n) and χ
(n)
d (t) must originate in properties of the f

(n)
M,N

themselves.
For 40 years after the first computations of Wu, the form factor integrals for n ≥ 2

appeared to be intractable in the sense that they could not be expressed in terms of previously
known special functions. However, in 2007 this intractability was shown to be false when
Boukraa et al [54] discovered by means of differential algebra computations on Maple, using
the form for the form factors proven in [156], many examples for n as large as nine that
the form factors in the isotropic case Eh = Ev can be written as sums of products of the
complete elliptic integrals K(t1/2) and E(t1/2) with polynomial coefficients, where for the
diagonal case (M = N) we may allow Ev 6= Eh.

These computer derived examples lead to the obvious

Conjecture 1
All n-fold form factor integrals for Ising correlations may be expressed in terms of sums

of products of one dimensional integrals with polynomial coefficients.

The first discovery that the n-fold multiple integrals which arise in the study of integrable
models can be decomposed into sums of products of one dimensional integrals (or sums) was
made for the correlation functions of the XXZ spin chain

HXXZ = −
∞∑

j=−∞

{σxj σxj+1 + σyjσ
y
j+1 + ∆σzjσ

z
j+1}. (3.7)

These correlations were expressed as multiple integrals for the massive regime (∆ < −1)
in 1992 [128] and in the massless regime (−1 ≤ ∆ ≤ 1) in 1996 [129]. In 2001 Boos and
Korepin [40] discovered that for the case ∆ = −1, the special correlation function (called
the emptiness probability)

P (n) = 〈
n∏
j=1

(
1 + σzj

2

)
〉, (3.8)

for n = 4 could be expressed in terms of ζ(3), ζ(5), ζ2(3) and ln 2, and this decomposition
in terms of sums of products of zeta functions of odd argument was extended to P (5) in [41]
and P (6) in [213]. Similar decompositions of the correlation function 〈σz0σzn〉 were obtained
for n = 3 in [209], for n = 4 in [43] and for n = 5 in [212]. The extension to the XXZ
model chain (3.7) with ∆ 6= −1 of the decomposition of the integrals for the third neighbor
correlation 〈σi0σi3〉 for i = x, z was made in [137].

The discovery in [54] that a similar reduction takes place for Ising correlations thus leads
to the more far reaching
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Conjecture 2
All multiple integral representations of correlations and form factors in all integrable

models can be reduced to sums of products of one dimensional integrals.

If correct this conjecture must rest upon a very deep and universal property of integrable
models.

In [54] the form factors were reduced to sums of products of the complete elliptic integrals
K(t1/2) and E(t1/2). However, the results become much more simple and elegant when
expressed in terms of the hypergeometric functions FN and FN+1 where

FN = 2F1([1/2, N + 1/2]; [N + 1]; t) (3.9)

appears in the form factor for n = 1

f
(1)
N,N(t) =

tN/2

π
·
∫ 1

0

xN−1/2(1− x)−1/2(1− tx)−1/2 · dx = λN · tN/2 · FN , (3.10)

where

λN =
(1/2)N
N !

, (3.11)

and (a)0 = 1 and for n ≥ 1 (a)n = a(a+ 1) · · · (a+ n− 1) is Pochhammer’s symbol. Note

that F0 = 2
π
K(t1/2) = f

(1)
0,0 (t).

The expressions for f
(n)
N,N(t) in terms of FN and FN+1 are obtained from [54], rewritten

by use of the contiguous relations for hypergeometric functions, and we give some of these
expressions in 3.A. In all cases studied the form factors have the form

f
(2n)
N,N (t) =

n−1∑
m=0

K(2n)
m · f (2m)

N,N (t) +
2n∑
m=0

C(2n)
m (N ; t) · F 2n−m

N · Fm
N+1, (3.12)

f
(2n+1)
N,N (t)

tN/2
=

n−1∑
m=0

K(2n+1)
m ·

f
(2m+1)
N,N (t)

tN/2
+

2n+1∑
m=0

C(2n+1)
m (N ; t) · F 2n+1−m

N · Fm
N+1, (3.13)

where f
(0)
N,N = 1. The degrees of the polynomials C

(j)
m (N ; t) are for N ≥ 1

deg C(2n)
m (N ; t) = deg C(2n+1)

m (N ; t) = n · (2N + 1), (3.14)

with C
(n)
m (N ; t) ∼ tm as t ∼ 0.

These polynomials are different from the corresponding polynomials in the K, E basis in
that they have the palindromic property

C(2n)
m (N ; t) = tn(2N+1)+m · C(2n)

m (N ; 1/t), (3.15)

C(2n+1)
m (N ; t) = tn(2N+1)+m · C(2n+1)

m (N ; 1/t). (3.16)
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We conjecture that these results are true generally.
In this paper we begin the analytic proof of Conjecture 1 and the derivation and gen-

eralization of the results of [54] for the diagonal correlation M = N by studying the three

lowest order integrals f
(n)
N,N(t) for n = 2, 3, 4. The results are summarized in Sec. 2.

In Sec. 3 we derive the results for f
(2)
N,N(t). We proceed by first differentiating the integral

f
(2)
N,N(t) with respect to t, which removes the term proportional to f

(0)
N,N(t) from the general

form (3.12). The resulting two dimensional integral is then seen to factorize into a sum
of products of one dimensional integrals. This factorized result is then compared with the
derivative of (3.12) to give three coupled first order inhomogeneous equations for the three

polynomials C
(2)
m (N ; t). These equations are decoupled to give inhomogeneous equations of

degree three which are explicitly solved to find the unique polynomial solutions C
(2)
m (N ; t).

In Sec. 4 we extend this method to f
(3)
N,N(t). The first step is to apply to f

(3)
N,N(t) the

second order operator which annihilates f
(1)
N,N(t). However, in this case we have not found

the mechanism which factorizes the resulting three dimensional integral. Instead we use the
property discovered in [54] that the resulting integral satisfies a fourth order homogeneous
equation which is homomorphic to the symmetric cube of a second order operator and
thus a factorized form is obtained. This form is then compared with the form obtained by
applying the second order operator to the form (3.13), and from this comparison we obtain

4 coupled inhomogeneous equations for the 4 polynomials C
(3)
m (t). These equations are then

decoupled to give inhomogeneous equations of degree 5 for C
(3)
3 (N ; t) and of degree 8 for the

three remaining polynomials. We then solve these equations under the assumption that a
polynomial solution exists.

The results for f
(n)
N,N(t) with n = 1, 2, 3 have a great deal of structure which can be

generalized to arbitrary arbitrary n. Of particular interest is the fact that f
(2n)
N,N (t) vanishes

as tn(N+n) and f
(2n+1)
N,N (t)/tN/2 vanishes as tn(N+n+1) at t → 0 while each individual term

in the expansions (3.12) and (3.13) vanishes with a power (which may be zero) which is

independent of N . This cancellation for f
(2)
N,N(t) and f

(3)
N,N(t) is demonstrated in Sec. 5 and

gives an interpretation of several features of the results obtained in Secs. 3 and 4. It also
provides an alternative form (3.138) for f

(3)
N,N(t) compared to the form (3.13). In Sec. 6, in a

differential algebra viewpoint, the canonical link between the 20-th order ODEs associated
with the C

(4)
m (N ; t) of f

(4)
N,N(t) and the theory of elliptic curves is made very explicit with the

emergence of direct sums of differential operators homomorphic to symmetric powers of a
second order operator associated with elliptic curves, and in an analytical viewpoint, is made
very explicit with exact expressions (given in Appendix G), for the polynomials C

(4))
m (N ; t)

, valid for any N . We conclude in Sec. 7 with a discussion of possible generalizations of our
results.
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3.2 Summary of formalism and results

The form factor integrals for the diagonal correlations are [54, 156] for T < Tc

f
(2n)
N,N (t) =

tn(N+n)

(n!)2 π2n

∫ 1

0

2n∏
k=1

dxk x
N
k

n∏
j=1

(
(1− tx2j)(x

−1
2j − 1)

(1− tx2j−1)(x−1
2j−1 − 1)

)1/2

∏
1≤j≤n

∏
1≤k≤n

(
1

1− tx2k−1x2j

)2 ∏
1≤j<k≤n

(x2j−1 − x2k−1)2 (x2j − x2k)
2,

(3.17)

and for T > Tc

f
(2n+1)
N,N (t) =

t(n+1/2)N+n(n+1)

n!(n+ 1)!π2n+1

∫ 1

0

2n+1∏
k=1

dxk x
N
k

n+1∏
j=1

x−1
2j−1[(1− tx2j−1)(x−1

2j−1 − 1)]−1/2

n∏
j=1

x2j[(1− tx2j) (x−1
2j − 1)]1/2

∏
1≤j≤n+1

∏
1≤k≤n

(
1

1− tx2j−1x2k

)2

∏
1≤j<k≤n+1

(x2j−1 − x2k−1)2
∏

1≤j<k≤n

(x2j − x2k)
2. (3.18)

When t = 0 the integrals in (3.17) and (3.18) reduce to a special case of the Selberg
integral [215, 245]

f
(2n)
N,N (t) ∼ tn(N+n)

(n!)2π2n

Γ(N + n+ 1/2)Γ(n+ 1/2)

Γ(N + 1/2)Γ(1/2)

×
n−1∏
j=0

[
Γ(N + j + 1/2)Γ(j + 1/2)Γ(j + 2)

Γ(N + n+ j + 1)

]2

(3.19)

and

f
(2n+1)
N,N (t) ∼ tN(n+1/2)+n(n+1)

n!π2n+1

Γ(N + 1/2)Γ(1/2)

Γ(N + n+ 1)

×
n−1∏
j=0

[
Γ(N + j + 3/2)Γ(j + 3/2)Γ(j + 2)

Γ(N + n+ j + 2)

]2

(3.20)
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In particular

f
(2)
N,N(t) = tN+1 ·

λ2
N+1

(2N + 1)
+O(tN+2), (3.21)

f
(3)
N,N(t) = t3N/2+2 ·

λ3
N+1

2(2N + 1)(N + 2)2
+O(t3N/2+3). (3.22)

3.2.1 General Formalism

For the special case f
(2)
N,N(t) we will analytically derive the form (3.12) without making

any assumptions. However, for the general case we will proceed by assuming the forms (3.12)
and (3.13) as an ansatz and with this as a conjecture, we will derive inhomogeneous Fuchsian

equations for the polynomials C
(n)
m (N ; t)

Ω(n)
m (N ; t) · C(n)

m (N ; t) = I(n)
m (N ; t), (3.23)

where Ω
(n)
m (N ; t) is a linear differential operator and I

(n)
m (N ; t) a polynomial.

In all cases which have been studied, the operator Ω
(n)
m (N ; t), corresponding to the lhs of

(3.23), has a direct sum decomposition where each term in the direct sum is homomorphic to
a either a symmetric power or a symmetric product for different values of N , of the second
order operator

O2(N ; t) = D2
t −

1 +N −Nt
t(1− t)

·Dt +
4 + 4N − t − 2Nt

4 t2 (1− t)
, (3.24)

where Dt = d/dt. The operator O2(N ; t) is equivalent to the operator L2(N ; t) which

annihilates f
(1)
N,N(t) [54], as can be seen in the operator isomorphism

O2(N ; t) · tN/2 + 1 = tN/2 + 1 · L2(N ; t). (3.25)

The solutions of O2(N ; t) are expressed in terms of hypergeometric functions by noting
that

t2 · (1− t) ·O2(N) = t · (tDt + a)(tDt + b) − (tDt − a′)(tDt − b′),

with

a = −N − 1/2, b = −1/2, a′ = N + 1, b′ = 1, (3.26)
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which for |t| < 1 2 has the two fundamental solutions [244, p. 283]

ta
′ · 2F1([a+ a′, b+ a′]; [a′ − b′ + 1]; t), tb

′ · 2F1([a+ b′, b+ b′]; [b′ − a′ + 1]; t). (3.27)

Using (3.26) we have the two solutions of O2(N)

u1(N ; t) = tN+1 · 2F1([1/2, 1/2 +N ]; [N + 1]; t) = tN+1 · FN , (3.28)

and: t · 2F1([1/2, 1/2−N ]; [1−N ]; t). (3.29)

The solution u1(N ; t) in (3.28) is regular at t = 0 and has the expansion

u1(N ; t) = tN+1 ·
∞∑
n=0

bn(N) · tn, (3.30)

with

bn(N) =
(1/2)n (1/2 +N)n

(N + 1)n n!
. (3.31)

Since we will in this paper work with positive integer values of N , it is better to introduce
as the second solution

tN+1 · 2F1([1/2, 1/2 +N ]; [1]; 1 − t). (3.32)

When N is not an integer the hypergeometric function (3.32) can be written as the following
linear combination of the two previous solutions (3.28) and (3.29)

Γ(−N)

Γ(1/2) Γ(1/2−N)
· tN+1 · 2F1([1/2, 1/2 +N ]; [N + 1]; t)

+
Γ(N)

Γ(1/2) Γ(1/2 +N)
· t · 2F1([1/2, 1/2−N ]; [1−N ]; t). (3.33)

The hypergeometric function (3.32) is not analytic at t = 0 but, instead, has a logarithmic
singularity.

From [21, (2) on p.74 and (7) on p.75] we may choose to normalize the analytical part of
the second solution to t as t→ 0. Denoting such a solution u2(N ; t), it reads

u2(N ; t) = t ·
N−1∑
n=0

an(N) · tn + tN+1 ·N · λ2
N ·

∞∑
n=0

bn(N) [kn − ln(t)] · tn, (3.34)

2For |t| > 1, we write z = 1/t and the identical procedure is found to interchange a with a′ and b with b′.
Thus the two fundamental solutions valid near t =∞ are ũ1(N ; z) = z−1/2 · 2F1([1/2, 1/2+N ]; [1+N ]; z) =
z−1/2 · FN , ũ2(N ; z) = z−N−1/2 · 2F1([1/2, 1/2−N ]; [1−N ]; z). The identification of the hypergeometric
functions of (3.28) and (3.29) with these two solutions is a consequence of the palindromic property of the
operator O2(N ; t). However, we note that ũj(N ; z) is not the analytic continuation of uj(N ; t).
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with a0(N) = 1 and for n ≥ 1

an(N) =
(1/2)n (1/2−N)n

(1−N)n n!
= λN ·

(1/2)n (N − n)!

(1/2)N−n n!
(3.35)

and kn = Hn(1) +Hn+N(1)−Hn(1/2)−Hn+N(1/2), where

Hn(z) =
n−1∑
k=0

1

z + k
(3.36)

are the partial sums of the harmonic series. The series expansion (3.34) corresponds to the
maximal unipotent monodromy structure of O2(N ; t) which amounts to writing the second
solution as:

u2(N ; t) = w2(N ; t) − N · λ2
N · u1(N ; t) · ln(t) (3.37)

where w2(N ; t) = t + · · · is analytical at t = 0. This function w2(N ; t) is the solution
analytic at t = 0, different from u1(N ; t), of an order-four operator which factorizes as the
product Õ2(N ; t) · O2(N ; t), where Õ2(N ; t) and O2(N ; t) are two order-two homomorphic
operators

Õ2(N ; t) · I1 = J1 · O2(N ; t), (3.38)

where one of the two order-one intertwinners I1 and J1 is quite simple, namely

I1 =
1

t
·Dt −

t − 2

2 t2 · (t − 1)
− N

2 t2
. (3.39)

Finally, we note the relation which follows from the Wronskian of O2(N ; t),

u1(N) · u2(N + 1) − βN · u2(N) · u1(N + 1) = tN+2, (3.40)

with

βN =
(2N + 1)2

4N(N + 1)
. (3.41)

3.2.2 Explicit results for f
(2)
N,N(t)

For f
(2)
N,N(t) the parameter K

(2)
0 and the polynomials C

(2)
m (N ; t) of the form (3.12) are

explicitly computed in Section 3.3 as

K
(2)
0 = N/2, (3.42)
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and

C(2)
m (N ; t) = A(2)

m · tm ·
2N+1−m∑
n=0

c(2)
m;n(N) · tn, (3.43)

with

A(2)
n = (−1)n+1 · N

2
·
(
n

2

)
· βnN . (3.44)

Using the notation that

[f ]n = = the coefficient of tn in the expansion of f at t = 0 (3.45)

we have for 0 ≤ n ≤ N − 1

c
(2)
2;n(N) = c

(2)
2; 2N−1−n(N) = [t−2u2(N)2]n =

n∑
k=0

ak(N) · an−k(N), (3.46)

c
(2)
1;n(N) = c

(2)
1; 2N−n(N) = [t−2u2(N)u2(N + 1)]n =

n∑
k=0

ak(N) · an−k(N + 1), (3.47)

and
c

(2)
1;N(N) = λ2

N + c
(2)
2,N−1(N), (3.48)

and where for 0 ≤ n ≤ N

c
(2)
0;n(N) = c

(2)
0; 2N+1−n(N) = [t−2u2

2(N + 1)]n = c
(2)
2;n(N + 1), (3.49)

where an(N) is given by (3.35). We note that the sum (3.46) for c
(2)
2,N−1 may be written by

use of the second form of an(N) in (3.35) in the alternative form

c
(2)
2;N−1 = λ2

N · 2N ·HN(1/2), (3.50)

where HN(z) is given by (3.36).
We also derive the recursion relation for N ≥ 1

f
(2)
N,N(t) = N f

(2)
1,1 (t) − N

2
t1/2 ·

N−1∑
j=1

f
(1)
j,j (t) · f (1)

j+1,j+1(t)

j(j + 1)
. (3.51)
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3.2.3 Explicit results for f
(3)
N,N(t)

For f
(3)
N,N(t) the parameter K

(3)
0 and the polynomials C

(3)
m (N ; t) of the form (3.13) are

explicitly computed in Section 3.4 as

K
(3)
0 =

3N + 1

6
, (3.52)

and

C(3)
m (N ; t) = A(3)

m · tm ·
2N+1−m∑
n=0

c(3)
m,n(N) · tn +

N − 1

N
λN · C(2)

m (N, t), (3.53)

where we make the definition C
(2)
3 (N, t) = 0 and

A(3)
n = (−1)n+1 · 2

3
·
(
n

3

)
· λN · βnN . (3.54)

The coefficients c
(3)
m;n(N)’s are given by a simple quartic expression of the an’s and bn’s. For

0 ≤ n ≤ N − 1 they read

c
(3)
3;n(N) = c

(3)
3; 2N−2−n(N) = [t−N−4u3

2(N)u1(N)]n =

=
n∑

m=0

m∑
l=0

l∑
k=0

ak(N) · al−k(N) · am−l(N) · bn−m(N), (3.55)

and

c
(3)
2;n(N) = c

(3)
2; 2N−n−1(N) = [t−N−4u2

2(N)u2(N + 1)u1(N)]n =

=
n∑

m=0

m∑
l=0

l∑
k=0

ak(N) · al−k(N) · am−l(N + 1) · bn−m(N), (3.56)

for 0 ≤ n ≤ N

c
(3)
0;n(N) = c

(3)
0; 2N−n+1(N) = [t−N−4u3

2(N + 1)u1(N)]n

=
n∑

m=0

m∑
l=0

l∑
k=0

ak(N + 1) · al−k(N + 1) · am−l(N + 1) · bn−m(N), (3.57)
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and for 0 ≤ n ≤ N − 1

c
(3)
1;n(N) = c

(3)
1; 2N−n(N) = [t−N−4u2(N)u2

2(N + 1)u1(N)]n

=
n∑

m=0

m∑
l=0

l∑
k=0

ak(N) · al−k(N + 1) · ak−m(N + 1) · bn−m(N), (3.58)

with the middle term of C
(3)
1 (N ; t) of order N + 1

c
(3)
1;N =

βN · λ2
N

N
+ βN · λN ·

[
(N − 1) · c(3)

2;N−1 + 4 c
(2)
2;N−1

]
− 2

3
· βN · λN

N2
·
[
2N2 · c(3)

3;N−2 + (N2 − 1/4) · c(3)
3;N−1

]
, (3.59)

where an(N) and bn(N) are given by (3.35) and (3.31).

3.3 The derivation of the results for f
(2)
N,N(t)

We begin our derivation of the results for f
(2)
N,N of Sec. 3.2.2 by integrating (3.17) (with

2n = 2) by parts using

u = yN−1/2 · (1− y)1/2 · (1− ty)1/2, (3.60)

du = yN−3/2 [N · (1− y) · (1− ty) − 1/2 (1 − t y2)]

(1− y)1/2 · (1 − t y)1/2
· dy, (3.61)

dv =
dy

(1 − t xy)2
, v =

y

1− txy
, (3.62)

to find

f
(2)
N,N(t) =∫ 1

0

dx

∫ 1

0

dy
tN+1

2π2

xN+1/2 yN−1/2 (1− ty2)

(1− x)1/2 (1 − t x)1/2 (1− y)1/2 (1 − t y)1/2 (1− txy)

−N
∫ 1

0

dx

∫ 1

0

dy
tN+1

π2

xN+1/2 yN−1/2 (1− y)1/2 (1− ty)1/2

(1− x)1/2 (1− tx)1/2 (1− txy)
. (3.63)

The first term in (3.63) is separated into two parts as∫ 1

0

dx

∫ 1

0

dy
t · xN yN

2π2

x1/2

y1/2

1

(1− x)1/2 (1− tx)1/2 (1− y)1/2 (1− ty)1/2 (1− txy)

−
∫ 1

0

dx

∫ 1

0

dy
t · xN yN

2π2

t x1/2y3/2

(1− x)1/2 (1− tx)1/2 (1− y)1/2 (1− ty)1/2(1− txy)
, (3.64)
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and in this second term we interchange x ↔ y. Then, recombining these two terms, we
see that the factor 1 − txy cancels between the numerator and denominator in (3.64). Thus
the first term in (3.63) factorizes and we find

f
(2)
N,N(t) =

∫ 1

0

dx

∫ 1

0

dy
tN+1

2π2

xN+1/2yN−1/2

(1− x)1/2 (1− tx)1/2 (1− y)1/2 (1− ty)1/2

−N
∫ 1

0

dx

∫ 1

0

dy
tN+1

π2

xN+1/2 yN−1/2 (1− y)1/2 (1− ty)1/2

(1− x)1/2 (1− tx)1/2 (1− txy)

=
t1/2

2
· f (1)

N,N · f
(1)
N+1,N+1

−N
∫ 1

0

dx

∫ 1

0

dy
tN+1

π2

xN+1/2 yN−1/2 (1− y)1/2 (1− ty)1/2

(1− x)1/2 (1− tx)1/2 (1− txy)
. (3.65)

From (3.17) we find for N ≥ 1 that the integral in the second term of (3.65) is f
(2)
N,N(t) −

f
(2)
N+1,N+1(t) and thus we have

f
(2)
N,N(t) =

t1/2

2
· f (1)

N,N(t) · f (1)
N+1,N+1(t) −N · [f (2)

N,N(t) − f (2)
N+1,N+1(t)]. (3.66)

From (3.66) we obtain the recursion relation

f
(2)
N+1,N+1(t) =

N + 1

N
· f (2)

N,N(t) − t1/2

2N
· f (1)

N.N(t) · f (1)
N+1,N+1(t), (3.67)

and thus for N ≥ 1

f
(2)
N,N(t) = N f

(2)
1,1 (t) − N

2
t1/2 ·

N−1∑
j=1

f
(1)
j,j (t) · f (1)

j+1,j+1(t)

j(j + 1)
. (3.68)

To proceed further we return to (3.65) which we write in terms of FN as

f
(2)
N,N(t) =

λN λN+1

2
· tN+1 · FN · FN+1

−N
∫ 1

0

dx

∫ 1

0

dy
tN+1

π2

xN+1/2 yN−1/2 (1− y)1/2 (1− ty)1/2

(1− x)1/2 (1− tx)1/2 (1− txy)
. (3.69)

The integral in (3.69) does not have a manifest factorization. However, if we compute
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df
(2)
N,N(t)/dt in the contour integral form of (3.17), and note that

d

dt

[
(y − t1/2) (1− t1/2y)

(x− t1/2) (1− t1/2x)

]1/2

=
1

t1/2

[
(y − t1/2)(1− t1/2y)

(x− t1/2)(1− t1/2x)

]1/2
(xy − 1)(x− y)(t− 1)

(y − t1/2)(1− t1/2y)(x− t1/2)(1− t1/2x)
, (3.70)

the resulting integral does factorize and, introducing GN , some well-suited linear combination
of FN and FN+1,

GN = 2F1([3/2, N + 3/2]; [N + 1]; t)

=
1 + t

(1− t)2
· FN −

t

(1− t)2
· 2N + 1

N + 1
· FN+1, (3.71)

we find

df
(2)
N,N(t)

dt
= (1− t) · tN · (2N + 1)λ2

N

16 (N + 1)
·
[
(2N + 1)2 · FN+1 ·GN

−(2N − 1)(2N + 3) · FN ·GN+1] . (3.72)

It remains to integrate (3.72). However, in general, integrals of products of two hyperge-
ometric functions with respect to the argument will not have the form of the product of two
hypergeometric functions. We will thus proceed in the opposite direction by differentiating
(3.12) for 2n = 2 with respect to t and equating the result to (3.72) to obtain differential

equations for the C
(2)
m (N ; t) which we will then solve to obtain the final results (3.42)–(3.44).

From a straightforward use of the contiguous relations of hypergeometric functions [21],
we introduce the following well-suited linear combination of FN and FN+1

F̄N = 2F1([3/2, N + 3/2]; [N + 2]; t) =
4 (N + 1)

2N + 1
· dFN
dt

=
1

1− t
·
(

2 · (N + 1) · FN − (2N + 1) · FN+1

)
. (3.73)

The derivative of (3.12) with 2n = 2 may be written in the quadratic form3

B1 · F 2
N + B2 · FN · F̄N + B3 · F̄ 2

N , (3.74)

3For convenience the dependence of the C
(2)
m on N and t is suppressed here and below (see (3.78)).
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with

B1 =
dC

(2)
0

dt
− (N+1)

2(N+1/2)t
· C(2)

1 +
(N+1)

(N+1/2)
· dC

(2)
1

dt

− (N+1)2

(N+1/2)2 t
· C(2)

2 +
(N+1)2

(N+1/2)2
· dC

(2)
2

dt
, (3.75)

B2 =
(N+1/2)

(N+1)
· C(2)

0

+

[
1 +

1

2(N+1/2)
+

1− 2t+N(1− t)
2(N+1/2)t

]
· C(2)

1 − (1− t)
2(N+1/2)

· dC
(2)
1

dt

+
(N+1)(3+2N−2t)

2(N+1/2)2t
· C(2)

2 − (N+1)(1−t)
(N+1/2)2

· dC
(2)
2

dt
, (3.76)

B3 = − (1− t)
4(N + 1)

· C(2)
2 − (2+2N−t)(1−t)

4(N+1/2)2t
· C(2)

2 +
(1−t)2

4(N+1/2)2
· dC

(2)
2

dt
. (3.77)

The derivative of f
(2)
N,N(t) in (3.72) by use of contiguous relations [21] is expressed in terms

of FN and F̄N as

df
(2)
N,N(t)

dt
= B4 · F 2

N +B5 · FN · F̄N +B6 · F̄ 2
N , (3.78)

where,

B4 =
2N + 1

4
· λ2

N t
N ,

B5 =
[t −N(1− t)](2N + 1)

4(N + 1)
· λ2

N t
N ,

B6 = − NβNλ
2
N

4 (N + 1)
· (1− t) · tN+1 (3.79)
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3.3.1 Linear differential equations for C
(2)
m (N ; t)

To obtain the C
(2)
m (N ; t) we equate (3.74) with (3.78) and find the following first order

system of equations for C
(2)
m (N ; t)

(2N + 1)

4
· λ2

N · tN =
dC

(2)
0

dt
− (N+1)

2(N+1/2)t
· C(2)

1 +
(N+1)

(N+1/2)
· dC

(2)
1

dt

− (N+1)2

(N+1/2)2t
· C(2)

2 +
(N+1)2

(N+1/2)2
· dC

(2)
2

dt
, (3.80)

(2N + 1) · [t−N(1− t)]
4 (N + 1)

· λ2
N · tN =

(N+1/2)

(N+1)
· C(2)

0

+

[
1 +

1

2(N+1/2)
+

1− 2t +N (1− t)
2(N+1/2)t

]
· C(2)

1 − (1− t)
2 (N+1/2)

dC
(2)
2

dt

+
(N+1)(3+2N−2t)

2 (N+1/2)2t
· C(2)

2 − (N+1)(1−t)
(N+1/2)2

· dC
(2)
2

dt
, (3.81)

− (2N + 1)2

16 (N + 1)2
· λ2

N · (1− t) · tN+1 = − (1− t)
4 (N + 1)

· C(2)
1

− (2+2N−t)(1−t)
4 (N+1/2)2t

· C(2)
2 +

(1−t)2

4 (N+1/2)2
· dC

(2)
2

dt
. (3.82)

From this first order coupled system we obtain third order uncoupled equations for the
C

(2)
m (N ; t)

2 (1− t)2 · t2 · d
3C

(2)
0

dt3
− 6 (N − (N − 1) t) (1− t) t · d

2C
(2)
0

dt2

+ 2 [N + 2N2 + (1 + 4N − 4N2) t − (5N − 2N2) t2] · dC
(2)
0

dt

+ (2N + 1)(2Nt− 2N − 1) · C(2)
0 =

N (N + 1) (2N + 1)2

2
· λ2

N · (1− t) · tN , (3.83)
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2 (1− t)2 (1 + t) · t3 · d
3C

(2)
1

dt3
− 2 (1− t) [1 + 3N + 4t+ (1− 3N)t2] · t2 · d

2C
(2)
1

dt2

+ 2[2 + 4N + 2N2 + (3 + 4N − 2N2) · t− (3 + 8N + 2N2) · t2 + 2N2 · t3] · t · dC
(2)
1

dt

− [4 + 8N + 4N2 + (5 + 6N) · t− (5 + 10N + 4N2) · t2] · C(2)
1

=
(2N + 1)2 · [−2N2 (N + 1) · (t+ 1)2 + (4N + 1) · t]

(N + 1)
· λ2

N · (1− t) · tN+1, (3.84)

and

2 (1− t)2 · t3 · d
3C

(2)
2

dt3
− 6 (1 +N −Nt) · (1− t) · t2 · d

2C
(2)
2

dt2

+ 2 [7 + 9N + 2N2 − (7 + 12N + 4N2) · t + (1 + 3N + 2N2) · t2] · t · dC
(2)
2

dt

− [16 + 24N + 8N2 − (15 + 28N + 12N2) · t + (2 + 6N + 4N2) · t2] · C(2)
2

=
N2 (2N + 1)4 · (1− t)

8(N + 1)2
· λ2

N · tN+2. (3.85)

From (3.83)–(3.85) it follows that C
(2)
m (N ; t) and t2N+m+1 · C(2)

m (N ; 1/t) satisfy the same

equation and thus, if C
(2)
m (N ; t) are polynomials they will satisfy the palindromic property

(3.15). From (3.83) and (3.85) it follows that the polynomials C
(2)
0 (N ; t) and C

(2)
2 (N ; t)

satisfy

C
(2)
0 (N ; t) =

N

(N + 1) · β2
N+1 · t2

· C(2)
2 (N + 1; t). (3.86)

We therefore may restrict our considerations to C
(2)
1 (N ; t) and C

(2)
2 (N ; t).

We will obtain the polynomial solutions for the differential equations (3.83)–(3.85) by
demonstrating that the homogeneous parts of the equations are homomorphic to symmetric
products or symmetric powers of the second order operator O2(N).

3.3.2 Polynomial solution for C
(2)
2 (N ; t)

Denote Ω
(2)
2 (N, t) the order-three linear differential operator acting on C

(2)
2 (N, t) on the

left hand side of (3.85). Then it is easy to discover that the operator Ω
(2)
2 (N, t) is exactly the

symmetric square of the second-order operator O2(N ; t)

Ω
(2)
2 (N, t) = Sym2

(
O2(N ; t)

)
, (3.87)

which has the three linearly independent solutions

u1(N ; t)2, u1(N ; t) · u2(N ; t), u2
2(N ; t) (3.88)

62



where the functions uj(N ; t) for j = 1, 2 are defined by (3.30)-(3.36). The indicial exponents
of (3.85) at t = 0 are

2N + 2, N + 2, 2, (3.89)

which are the exponents respectively of the three solutions (3.88). Therefore, because the

inhomogeneous term in (3.85) starts at tN+1 the coefficients c
(2)
2,n in (3.43) for 0 ≤ n ≤ N − 1

will be proportional to the first N coefficients in the expansion of u2
2(N ; t) about t = 0.

Equation (3.85) is invariant under the substitution

C
(2)
2 (N ; t) −→ t2N+3 · C(2)

2 (N ; 1/t), (3.90)

which maps one solution into another. Therefore if it is known that the solution C
(2)
2 (N ; t)

is a polynomial the palindromic property

c
(2)
2;n = c

(2)
2;2N−1−n (3.91)

must hold and thus C
(2)
2 (N ; t) is given by (3.46) where the normalizing constant A

(2)
2 remains

to be determined.
However, the invariance (3.90) is by itself is not sufficient to guarantee the existence of

a polynomial solution with the palindromic property (3.15). To demonstrate that there is a
polynomial solution we examine the recursion relation which follows from (3.85)

A
(2)
2 · {2n (2N − n) (N − n) · c(2)

2;n(N)

+ (4N n − 2N − 2n2 + 2n− 1) (2n− 1− 2N))) · c(2)
2;n−1(N)

+ 2 (n− 1) (2N − n+ 1)(N − n+ 1)) · c(2)
2;n−2(N)}

= (δn,N − δn,N+1) · N
2 (2N + 1)4

8 (N + 1)2
· λ2

N . (3.92)

where c
(2)
2;n(N) = 0 for n ≤ −1 and we may set c

(2)
2;0 = 1 by convention . By sending

n → 2N−n+1 in (3.92) we see that c
(2)
2;n(N) and c

(2)
2;2N−n−1(N) do satisfy the same equation

as required by (3.91).

To prove that the solution C
(2)
2 (N ; t) is indeed a polynomial we examine the recursion

relation (3.92) for n = N . If there were no inhomogeneous term then, because of the factor

N − n in front of c
(2)
2;n, the recursion relation (3.92) for n = N would give a constraint on

c
(2)
2;N−1 and c

(2)
2;N−2. This constraint does in fact not hold, which is the reason that the solution

u2
2(N ; t) is not analytic at t = 0 but instead has a term tN+2 ln t. However, when there is

a nonzero inhomogeneous term at order tN+2 the recursion equation (3.92) is satisfied with

a nonzero A
(2)
2 . The remaining coefficients c

(2)
2,n for N ≤ 2N − 1 are determined by the

palindromy constraint (3.91).

For C
(2)
2 (N ; t) to be a polynomial we must have c

(2)
2;n(N) = 0 for n ≥ 2N . From the

recursion relation (3.92) we see that because of the coefficient 2N − n in front of c
(2)
2;n(N)
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the coefficient c
(2)
2;2N(N) may be freely chosen. The choice of c

(2)
2;2N(N) 6= 0 corresponds to

the solution of Ω
(2)
2 (N ; t) which has the indicial exponent N + 2 and clearly does not give a

polynomial solution. However by setting n = 2N + 1 in (3.92) we obtain

2 (N + 1) (2N + 1) · c(2)
2;2N +1(N) − (2N + 1)2 · c(2)

2;2N(N) = 0. (3.93)

and if we choose c
(2)
2;2N(N) = 0 we obtain c

(2)
2;2N+1(N) = 0 also. Therefore because (3.92) is

a three term relation, it follows that c
(2)
2;n(N) = 0 for n ≥ 2N as required for a polynomial

solution.
It remains to explicitly evaluate the normalization constantA

(2)
2 which satisfies (3.92) with

n = N . A more efficient derivation is obtained if we return to the original inhomogeneous
equation (3.85). Then we note that if we include the term with n = 0 in the second terms on
the right-hand side of (3.34) in the computation of the term of order tN+2 in the left hand
side of (3.85) we must get zero because u2

2 is a solution of the homogeneous part of (3.85).
Therefore when we use the extra term in u2

2 of

− 2 tN+2 ·N · λ2
N · ln t, (3.94)

in the lhs of (3.85), and keep the terms which do not involve ln t, we find

2 (N2 − 1) · c(2)
2;N−2(N) − (2N2 − 1) · c(2)

2;N−1(N) = −4N3 · λ2
N . (3.95)

Thus, using (3.95) we evaluate (3.92) with n = N as

− 4A
(2)
2 N3 λ2

N =
N2 (2N + 1)4

8 (N + 1)2
· λ2

N , (3.96)

and thus

A
(2)
2 = −N

2
· β2

N . (3.97)

3.3.3 Polynomial solution for C
(2)
1 (N ; t)

The computation of C
(2)
1 (N ; t) has features which are characteristic of C

(n)
m (N ; t) which

are not seen in C
(2)
2 (N ; t). Similarly to what has been done in the previous subsection we

introduce Ω
(2)
1 (N ; t), the order-three linear differential operator acting on C

(2)
1 (N ; t) in the

lhs of (3.84).

The indicial exponents at t = 0 of the operator Ω
(2)
1 (N ; t) are

1, N + 1, 2N + 2 (3.98)

This order-three operator Ω
(2)
1 (N ; t) is found to be related to the symmetric product of O2(N)
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and O2(N + 1) by the direct sum decomposition

Sym
(
O2(N), O2(N + 1)

)
· t = Ω

(2)
1 ⊕

(
Dt −

N + 1

t

)
. (3.99)

The three linearly independent solutions of Ω
(2)
1 (N ; t) are to be found in the set of four

functions

t−1 · u1(N ; t) · u1(N + 1; t), t−1 · u2(N, t) · u1(N + 1; t),

t−1 · u1(N ; t) · u2(N + 1; t), t−1 · u2(N ; t) · u2(N + 1; t), (3.100)

where from the definitions of u1(N ; t) in (3.30) and u2(N ; t) in (3.34) the behaviors of these
four solutions as t → 0 are t2N+2, tN+2, tN+1, t respectively.

Following the argument given above for C
(2)
2 (N ; t) we conclude that because the inho-

mogeneous term in (3.83) is of order tN+1 that the terms up through order tN must be
proportional to the solution of the homogeneous equation

t−1 · u2(N ; t) · u2(N + 1; t), (3.101)

which begins at order t. This observation determines the form (3.43) and the coefficients

(3.47) c
(2)
1;n(N) for 0 ≤ n ≤ N−1. The normalizing constant A

(2)
1 and the remaining coefficient

c
(2)
1;N(N) (3.48) are then obtained from the inhomogeneous equation (3.83). Finally, to prove

that C
(2)
1 (N ; t) is actually a palindromic polynomial the recursion relation for the coefficients

c
(2)
1;n(N) must be used. Details of these computations are given in 3.B.

3.3.4 The constant K
(2)
0

Finally, we need to evaluate the constant of integration K
(2)
0 in (3.12). This is easily done

by noting that from the original integral expression (3.17) that f
(2)
N,N(0) = 0 for all N . From

(3.43)– (3.44) we see that

C
(2)
0 (N ; 0) = −N

2
, C

(2)
1 (N ; 0) = C

(2)
2 (N ; 0) = 0, (3.102)

and using this in (3.12) we obtain K
(2)
0 = N/2 as desired.

3.4 The derivation of the results for f
(3)
N,N(t)

The form factor f
(3)
N,N(t) is defined by the integral (3.18) with 2n+1 = 3, and if we are to

follow the method of evaluation developed for f
(2)
N,N(t), we need to demonstrate analytically

that there is an operator which, when acting on the integral, will split it into three factors.
Unfortunately we have not analytically obtained such a result.
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However, we are able to proceed by using the methods of differential algebra and from [54]

it is known computationally for integer N that f
(3)
N,N is annihilated by the operator L4(N) ·

L2(N) where

L2(N) = D2
t +

2t− 1

(t− 1)t
·Dt −

1

4t
+

1

4(t− 1)
− N2

4t2
, (3.103)

and L2(N) annihilates f
(1)
N,N(t), and where,

L4(N) = D4
t + 10

(2t− 1)

(t− 1) t
·D3

t +
(241t2 − 241t+ 46)

2 (t− 1)2 t2
·D2

t

+
(2t− 1)(122t2 − 122t+ 9)

(t− 1)3 t3
·Dt +

81

16

(5t− 1)(5t− 4)

t3 (t− 1)3
− 5

2

N2

t2
·D2

t

+
(23− 32t)N2

2 (t− 1) t3
·Dt +

9

8

(8− 17t)N2

(t− 1) t4
+

9

16

N4

t4
. (3.104)

Furthermore the operator L4(N) is homomorphic to the symmetric cube of L2(N) by the
following relation,

L4(N) ·Q(N) = R(N) · Sym3(L2(N)), (3.105)

where,

Q(N) = (t− 1) · t ·D3
t +

7

2
(2t− 1) ·D2

t +
(41t2 − 41t+ 6)

4 (t− 1) t
·Dt

+
9

8

(2t− 1)

(t− 1) t
− 9

4

(t− 1)N2

t
·Dt −

9

8

(2t− 1)

t2
N2, (3.106)

and

R(N) = (t− 1) · t ·D3
t +

23

2
(2t− 1) ·D2

t +
21

4

6− 29t+ 29t2

(t− 1) t
·Dt

+
9

8

(2t− 1) (125t2 − 125t+ 16)

(t− 1)2 t2
− 9N2

4
·
(

(t− 1)

t
·Dt +

(10t− 9)

2 t2

)
.

(3.107)

We therefore conclude that since f
(3)
N,N(t) is regular at t = 0 and the solution of L2(N)

which is regular at t = 0 is FN , that

Q(N) ·B0 · t3N/2 · F 3
N = L2(N) · f (3)

N,N , (3.108)

where B0 is a normalizing constant which is determined from the behavior at t = 0. From
the integral (3.18) we find

f
(3)
N,N =

N + 2

4 (N + 1/2)

(
(1/2)N+1

(N + 2)!3

)3

· t3N/2+2 + O(t3N/2+3), (3.109)
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and from the expansion of FN we have

Q(N) · t3N/2 · F 3
N =

3(2N + 1)3

8 (N + 1)2 (N + 2)
· t3N/2 + O(t3N/2+1), (3.110)

and thus

B0 =
1

3
· λ3

N . (3.111)

Operating Q(N) on t3N/2F 3
N , one can write the result in the basis FN and F̄N . Similarly,

one can operate on the form f
(3)
N,N in (3.13) with L2(N) and write the result in the same basis

FN and F̄N . Then, matching powers of the hypergeometric functions on both sides of the
relation (3.108) will yield four coupled inhomogeneous ODEs to be solved. The four coupled
ODEs are given in 3.C.

For C
(3)
m (N ; t) with m = 0, 1, 2, the reduction of the four coupled second order equations

leads to inhomogeneous 8-th order uncoupled ODEs for each C
(3)
m (N ; t) separately, of the

form
8∑
j=0

Pm,j (t) · tj · d
j

dtj
C(3)
m (N ; t) = Im(t), (3.112)

where

I0 = tN+1 ·
14∑
j=0

I0(j) · tj, I1 = tN+1 ·
17∑
j=0

I1(j) · tj,

I2 = tN+2 ·
14∑
j=0

I2(j) · tj, (3.113)

where the Im(t) are antipalinromic and Pm,n(t) are polynomials. In particular

Pm,8(t) = (1− t)9 · Pm(t), (3.114)

where P0(t) and P2(t) are order six and P1(t) is order eight.

However, for C
(3)
3 (N ; t) a step-by-step elimination process in the coupled system termi-

nates in a fifth order equation instead. We derive and present this 5th order equation in 3.D,
but the eighth order equations given by Maple are too long to present.

3.4.1 Polynomial solution for C
(3)
3 (N ; t)

The homogeneous operator on the LHS of the ODE (3.176) for C
(3)
3 (N, t) is found on

Maple to be isomorphic to Sym4(O2(N)) · t(N+1), the symmetric fourth power of O2(N)
multiplied by t(N+1). Therefore all five solutions of the homogeneous equation are given as
t−(N+1) times products of the solutions u1(N ; t) and u2(N ; t). The fifth order ODE has at
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t = 0 the indicial exponents

−N + 3, 3, N + 3, 2N + 3, 3N + 3. (3.115)

Therefore because the polynomial solution must by definition be regular at t = 0 the first
N + 1 terms (from t3 through tN+3) in the solution

t−(N+1) · u3
2(N) · u1(N), (3.116)

which vanishes as t3, will solve the inhomogeneous equation (3.176), so that

C
(3)
3 (N ; t) = A

(3)
3 · t3 ·

2N−2∑
n=0

c
(3)
3;n · tn, (3.117)

where for 0 ≤ n ≤ N − 1

c
(3)
3;n =

n∑
m=0

m∑
l=0

l∑
k=0

ak(N) · al−k(N) · am−l(N) · bn−m(N). (3.118)

The lowest order inhomogeneous term is tN+3 which is the next indicial exponent in (3.115)

and therefore the normalizing constant A
(3)
3 is found from the first logarithmic term in the

solution of the homogeneous equation by exactly the same argument used for C
(2)
2 (N ; t).

Thus we find

A
(3)
3 =

2

3
· β3

N · λN . (3.119)

The remaining demonstration that C
(3)
3 (N ; t) is a palindromic polynomial follows from

the recursion relation for the coefficients, as was done for C
(2)
2 (N ; t), with the exception

that because the inhomogeneous term in (3.176) is proportional to tN+1(t2 − 1) instead of
tN+1(t− 1), there is an identity which must be verified. Details are given in 3.D.

3.4.2 Polynomial solutions for C
(3)
2 (N ; t) and C

(3)
0 (N ; t).

A new feature appears in the computation of C
(3)
2 (N ; t) and C

(3)
0 (N ; t).

The indicial exponents at t = 0 of the 8-th order operator Ω
(3)
2 (N ; t)

−N + 2, 2, 3, N + 2, N + 3, 2N + 2, 2N + 3, 3N + 3, (3.120)

and for Ω
(3)
0 (N ; t) are

−N, 0, 1, N + 1, N + 2, 2N + 2, 2N + 3, 3N + 3, (3.121)

and from these exponents it might be expected that the solution of Ω
(3)
2 (N ; t) (Ω

(3)
0 (N ; t))

which is of order t2 (t0) could have a logarithmic term t3 ln t (t ln t) which would preclude the
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existence of a polynomial solution of the corresponding inhomogeneous equation. However,
this does, in fact, not happen because there is a decomposition of the 8-th order operators
into a direct sum of the third order operators Ω

(2)
2 (N ; t) (Ω

(2)
0 (N ; t)) with exponents 2, N +

2, 2N + 2 (0, N + 1, 2N + 2) and new fifth order operators M
(3)
m (N ; t)

Ω(3)
m (N ; t) = M (3)

m (N ; t) ⊕ Ω(2)
m (N ; t) (3.122)

with exponents −N + 2, 2, N + 2, 2N + 2, 3N + 2 for M
(3)
2 (N ; t) and −N, 0, N + 1, 2N +

2, 3N + 3) for M
(3)
0 (N ; t). Furthermore M

(3)
2 (N ; t) is homomorphic to the symmetric fourth

power of O2(N) and M
(3)
0 (N ; t) is homomorphic to the symmetric fourth power of O2(N +1)

(see 3.E for details). The inhomogeneous equation is solved in terms of a linear combination
of the solutions of the third order and fifth order homogeneous equations.

However, a simpler form of the answer results if we notice the isomorphisms

Ω
(3)
2 (N ; t) = Sym (O2(N), O2(N), O2(N), O2(N + 1)) · tN+2, (3.123)

Ω
(3)
0 (N ; t) = Sym (O2(N), O2(N + 1), O2(N + 1), O2(N + 1)) · tN+4, (3.124)

The desired solutions for Ω
(3)
2 (N ; t) are constructed from the two solutions which have

the exponents 2 and 3,

t−N−2 · u2
2(N) · u1(N) · u2(N + 1), t−N−2 · u3

2(N) · u1(N + 1), (3.125)

which by use of the Wronskian condition (3.40) may be rewritten as a linear combination of
two solutions each with the exponent of 2 as

A
(3)
2 · t−N−2 · u2

2(N) · u1(N) · u2(N + 1) +B
(3)
2 · u2

2(N), (3.126)

and similarly for C
(3)
0 (N ; t), we choose as the solution of the homogeneous equation the two

solutions with exponent 0

A
(3)
0 · t−N−4 · u3

2(N + 1) · u1(N) +B
(3)
0 t−2 · u2

2(N + 1). (3.127)

This procedure determines the constants c
(3)
2;n for 0 ≤ n ≤ N − 1 and and c

(3)
0;n for 0 ≤ n ≤ N ,

with palindromy determining the remaining c
(3)
2;n for N ≤ n ≤ 2N − 1 (3.56) and and c

(3)
0;n for

N + 1 ≤ n ≤ 2N + 1 (3.57).

The constants A
(3)
2 and B

(3)
2 in (3.53) are found by using (3.53) with (3.56) in the inho-

mogeneous equation for C
(3)
2 (N ; t) and matching the first two terms in the inhomogeneous

terms of orders tN+2 and tN+3 (which are the same orders as the corresponding indicial ex-

ponents (3.120)). This generalizes the determination of A
(2)
m for C

(2)
m above. Similarly the

constants A
(3)
0 and B

(3)
0 are found using (3.53) with (3.57) in the inhomogeneous equation for

C
(3)
0 and matching to the inhomogeneous terms tN+1 and tN+2. Thus we obtain the results

(3.53)-(3.54) summarized in section 3.2.3.
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3.4.3 Polynomial solution for C
(3)
1 (N ; t)

The computation of C
(3)
1 (N ; t) has further new features.

The 8-th order homogeneous operator Ω
(3)
1 (N ; t) of the inhomogeneous equation for

C
(3)
1 (N ; t) has the eight indicial exponents at t = 0

−N + 1, 1, 2, N + 1, N + 2, 2N + 2, 2N + 3, 3N + 3, (3.128)

and, as in the case of Ω
(3)
0 (N ; t) and Ω

(3)
2 (N ; t) has a decomposition into a direct sum of

Ω
(2)
1 (N ; t) and a fifth order operator. However, simpler results are obtained by observing

that Ω
(3)
1 (N ; t) is homomorphic to the symmetric product

Sym
(
O2(N), O2(N), O2(N + 1), O2(N + 1)

)
· tN+3

= Ω
(3)
1 (N ; t)⊕

(
Dt −

(N + 1)

t

)
, (3.129)

which satisfies a 9-th order ODE with indicial exponents at t = 0

−N + 1, 1, 2, N + 1, N + 2, N + 3, 2N + 2, 2N + 3, 3N + 3. (3.130)

The solutions with exponents of 1 and 2 are respectively

t−N−3 · u2(N) · u1(N) · u2
2(N + 1), t−N−3 · u2

2(N) · u2(N + 1) · u1(N + 1), (3.131)

and again, recalling the Wronskian relation (3.40), we may construct the polynomial

C
(3)
1 (N ; t), similar to the construction of C

(3)
2 (N ; t), from the linear combination

A
(3)
1 · t−N−3 · u2(N) · u1(N) · u2

2(N + 1) + B
(3)
1 · t−1 · u2(N) · u2(N + 1), (3.132)

which determines the coefficients c
(3)
1;n for 0 ≤ n ≤ N − 1, with palindromy determining

the remaining c
(3)
1;n for N + 1 ≤ n ≤ 2N (3.58). The coefficients A

(3)
1 and B

(3)
1 (3.132) are

determined in a manner similar to the determination of A
(3)
2 and B

(3)
2 , by matching to the

terms of order tN+1 and tN+2.
Finally the term c

(3)
1;N is computed by using the previously determined results for

C
(3)
2 (N ; t) and C

(3)
3 (N ; t) in the coupled differential equation (3.174), giving the result (3.59).

3.4.4 Determination of K
(3)
0

It remains to determine the constant K
(3)
0 (3.52), which is easily done by setting t = 0 in

(3.13) to obtain

0 = K
(3)
0 · λN + A

(3)
0 +

N − 1

N
· λN · A(2)

0 , (3.133)
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and using (3.44) and (3.54).

3.5 The Wronskian cancellation for f
(2)
N,N(t) and f

(3)
N,N(t)

The polynomials C
(n)
m (N ; t) are of order tm as t → 0. However, from (3.21) and (3.22)

we see that f
(2)
N,N(t) vanishes as tN+1 and f

(3)
N,N(t) vanishes as tN+2. Therefore for t → 0, a

great deal of cancellation must occur in (3.12) and (3.13). This cancellation is an important
feature of the structure of the results of sec. 2.2 and 2.3.

To prove the cancellations we note that the n-th power of the Wronskian relation (3.40)
is

t−n(N+2) ·
n∑
j=0

(−1)j ·
(
n

j

)
· βjN · [u2(N + 1)u1(N)]n−j · [u2(N)u1(N + 1)]j = 1, (3.134)

or alternatively,

n∑
j=0

(−1)j ·
(
n

j

)
· βjN ·

[
u2(N + 1)

t

]n−j
· u2(N)j · F n−j

N F j
N+1 = 1. (3.135)

Thus, by defining
N
= to mean equality up though and including terms of order tN we see

immediately from the form (3.12) with (3.42) for K
(2)
0 and (3.46), (3.47) and (3.49) for the

c
(2)
m,n with 0 ≤ n ≤ N that the terms though order tN in f

(2)
N.N(t) are

f
(2)
N,N

N
=

N

2
·

{
1−

2∑
j=0

(−1)j
(

2

j

)
· βjN ·

[
u2(N + 1)

t

]2−j

· u2(N)j F 2−j
N F j

N+1

}
, (3.136)

which vanishes by use of (3.135). This derivation has made no use of c
(2)
1;N . This term

contributes only to order tN+1 and may be determined from the normalization amplitude
(3.21). This provides an alternative to the derivation of (3.48) of Appendix B.

To prove the cancellation for f
(3)
N,N(t) we note that because of the term C

(2)
m (N ; t) in

C
(3)
m (N ; t) for m = 0, 1, 2 in (3.53) we may use the expression (3.12) and (3.42)-(3.49) for

f
(2)
N,N(t) in the form

2∑
m=0

C(2)
m (N ; t) · F 2−m

N Fm
N+1 = f

(2)
N,N(t) − N

2
. (3.137)
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Thus from (3.13), (3.10) and (3.137) we obtain an alternative form for f
(3)
N,N(t) of

f
(3)
N,N(t) =

{
2

3
+
N − 1

N
f

(2)
N,N(t)

}
· f (1)

N,N(t) + tN/2 ·
3∑

m=0

C̄(3)
m (N ; t) · F 3−m

N Fm
N+1, (3.138)

where

C̄3
m(N ; t) = (−1)n+1 · 2

3
·
(
n

3

)
· βnN · λN ·

2N+1−m∑
n=0

c(3)
m;nt

n. (3.139)

We have already demonstrated by use of (3.136) that f
(2)
N,N(t) vanishes though order tN .

Therefore using the expressions (3.55)-(3.58) for c
(3)
m;n which are all valid through (at least)

order tN and the definition (3.10) of f
(1)
N,N(t) we find

f
(3)
N,N(t)

tN/2
N
=

2

3
λNFN ·

{
1 −

3∑
j=0

(−1)j ·
(

3

j

)
· βjN ·

[
u2(N + 1)

t

]3−j

· u2(N)j · F 3−j
N F j

N+1

}
,

(3.140)
which vanishes by use of the Wronskian relation (3.135) with n = 3.

We have thus demonstrated that f
(3)
N,N(t)/tN/2 vanishes to order tN as t→ 0. However we

see, from the original integral (3.18), that in fact f
(3)
N,N(t)/tN/2 is of order tN+2. Therefore the

coefficient of tN+1 must also vanish. This is not proven by (3.140). However the coefficient

c
(3)
1,N has not been used in the derivation of (3.140) and the choice of c

(3)
1,N to make the

coefficient of tN+1 vanish provides an alternative derivation of (3.59).

3.6 Factorization for f
(n)
N,N with n ≥ 4

In principle the methods of differential algebra of the previous sections can be extended
to form factors f

(n)
N,N(t) with n ≥ 4. However, the complexity of the calculations rapidly

increases.
For f

(2n)
N,N (t) there are 2n+ 1 polynomials C

(2n)
m (N ; t) and since from [54] we find that for

N ≥ 1
L2n+1 · · · L3 · L1 · f (2n)

N,N (t) = 0, (3.141)

where Lk is a linear differential operator of order k, the polynomials C
(2n)
m (N ; t) will satisfy

a system of 2n+ 1 coupled differential equations where the maximum derivative order is n2.
These equations can be decoupled into 2n+ 1 Fuchsian ODEs which generically have order
n2 (2n+ 1).

Similarly for f
(2n+1)
N,N (t) we found in [54] that

L2n+2 · · · L4 · L2 · f (2n+1)
N,N (t) = 0, (3.142)
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and thus the 2n + 2 polynomials C
(2n+1)
m (N ; t) satisfy inhomogeneous coupled equations of

maximum differential order n(n+1) which for N ≥ 1 are generically decoupled into Fuchsian
equations of order 2n(n+ 1)2.

We have obtained for f
(4)
N,N(t) the 20-th order ODEs for C

(4)
m (N ; t) in the cases N =

1, · · · , 10 and will illustrate the new features which arise by considering the case m = 4.
We find by use of Maple that (at least for low values of N) the operator Ω

(4)
4 (N ; t) has a

direct sum decomposition

Ω
(4)
4 (N ; t) = M

(4)
7 (N)⊕M (4)

5;1 (N)⊕M (4)
5,2 (N)⊕M (4)

3 (N), (3.143)

where M
(4)
k;n(N) is order k and is homomorphic to the symmetric k − 1 power of O2(N)

M
(4)
7 (N) · J (4)

2 (N ; t) = G
(4)
2 (N ; t) · Sym6(O2(N)), (3.144)

M
(4)
5;1 (N) · J (4)

1 (N ; t) = G
(4)
1 (N ; t) · Sym4(O2(N)), (3.145)

M
(4)
5;2 (N) = Sym4(O2(N)), (3.146)

M
(4)
3 (N) · J0(N ; t) = G

(4)
0 (N ; t) · Sym2(O2(N)), (3.147)

where the intertwinners J
(4)
m (2; t) and G

(4)
m (2; t) are linear differential operator of order m.

The intertwinners J
(4)
m (2; t) in (3.144)-(3.147), are explicitly given in 3.F. Further examples of

intertwinners are given in 3.F. These differential algebra exact results (in particular (3.144)-
(3.147)) are the illustration of the canonical link between the palindromic polynomials and
the theory of elliptic curves.

Direct sum decompositions1 have been obtained for Ω
(2)
m (N ; t), Ω

(3)
m (N ; t) and Ω

(4)
m (N ; t)

and we conjecture that this occurs generically for all Ω
(n)
m (N ; t). Taking into account the

homomorphism of O2(N ; t) and O2(N + 1; t), and recalling, for instance, subsections 3.4.2)
and 3.4.3, it may be easier to write direct sum decomposition formulae in terms of sum of
symmetric products of O2(N ; t) and O2(N + 1; t). In order to extend these results, beyond

these few special cases of Ω
(4)
m (N ; t), a deeper and systematic study of the homomorphisms

is still required.
From an analytical viewpoint, a complication which needs to be understood is how to

use the solutions of the homogeneous operators Ω
(n)
m (N ; t) to obtain the polynomial solution

of the inhomogeneous equations. The first difficulty here is that for C
(4)
m (N ; t) the inho-

mogeneous terms are large polynomials, of order 100 and higher. Moreover, the orders of
palindromy point of the C

(4)
4 (N ; t) with N = 1, · · · , 10 are all larger than the order tN+4

where the solutions of the homogeneous operators M
(4)
k;n(N ; t) have their first logarithmic

singularity. Consequently linear combinations of solutions must be made which cancel these
logarithmic singularities at tN+4 to give sets of solutions to Ω

(4)
4 (N ; t) which are analytic up

1Note that in direct sum decomposition like (3.143), some ambiguity may occur with terms like

M
(4)
5;1 (N) ⊕ M

(4)
5,2 (N) where M

(4)
5,1 (N) and M

(4)
5,2 (N) are both homomorphic to a same operator (here

Sym4(O2(N))).
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to the order of the first inhomogeneous terms. Thus the determination of the correct linear
combination of solutions of the operators M

(4)
k;n(N ; t) is significantly more complex than was

the case for C
(3)
m (N ; t). Exact results for the C

(4)
j ’s, based on the Wronskian cancellation

method of Sec. 3.5, and valid for any value of N are displayed in 3.G. These are exact re-
sults for the palindromic polynomials in terms of FN and u2(N), namely two hypergeometric
functions associated with elliptic curves. Thus, these analytical results can also be seen as
an illustration of the canonical link between our palindromic polynomials and the theory of
elliptic curves. They confirm the deep relation we find, algebraically and analytically, on
these structures with the theory of elliptic curves. In a forthcoming publication we will show
that the relation is in fact, more specifically, a close relation with modular forms.

3.7 Conclusions

In this paper we have proven the factorization, for all N , of the diagonal form factor
f

(n)
N,N(t) for n = 2, 3 previously seen in [54] for N ≤ 4 and provided a conjecture for n = 4.

Besides new results like the quadratic recursion (3.51), or non trivial quartic identities (like
(3.55)– (3.58)), one of the main result of the paper is the fact that, introducing the selected
hypergeometric functions FN , which are also elliptic functions, and are simply related to the
(simplest) form factor f

(1)
N,N , the form factors actually become polynomials of these FN ’s with

palindromic polynomial coefficients. The complexity of the form factors, is, thus, reduced
to some encoding in terms of palindromic polynomials. As a consequence, understanding
the form factors amounts to describing and understanding an infinite set of palindromic
polynomials, canonically associated with elliptic curves.

We also observe that all of these palindromic polynomials are built from the solutions
of the operator O2(N), and, therefore, are all properties of the basic elliptic curve which
underlies all computations of the Ising model. There is a deep structure here which needs to
be greatly developed. The differential algebra approach of the linear differential operators
associated with these palindromic polynomials is found to be a surprisingly rich structure
canonically associated with elliptic curves. In a forthcoming publication, we will show that
such rich structures are closely related to modular forms.

Analytically, the conjecture and the Wronskian method of logarithm cancellation can be
extended to large values of n, but the method of proof by differential equations becomes
prohibitively cumbersome for n ≥ 4. This is very similar to the situation which occurred
for the factorization of correlations in the XXZ model where the factorizations of [40, 41,
213, 209, 43, 212, 137] done for small values of the separation of the spins by means of
explicit computations on integrals was proven for all separations in [42] by means of the
qKZ equation satisfied by the correlations and not by the explicit integrals which are the
solution of this equation. This suggests that our palindromic polynomials may profitably be
considered as a specialization of polynomials of n variables. Moreover, if the two conjectures
presented in the introduction are indeed correct, then such kind of structures could also
have relevance to the 8 vertex model and to the higher genus curves which arise in the chiral
Potts model. Consequently the computations presented here could be a special case of a
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much larger modularity phenomenon. This could presumably generalize the relations which
the Ising model has with modular forms and Calabi-Yau structures [46].
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Appendix

3.A Form factors in the basis FN and FN+1

By use of the contiguous relations for hypergeometric functions the examples given in [54]

of f
(n)
N,N(t) expressed in terms of the elliptic integrals K(t1/2) and E(t1/2) may be re-expressed

in terms of the functions FN and FN+1. Several examples are as follows

f
(2)
0,0 =

t

4
· F0 · F1, (3.148)

f
(2)
1,1 =

1

2
− 1

4
(t+ 1)

(
2 t2 + t+ 2

)
· F 2

1

+
32

25
· t · (4t2 + 5 t+ 4) · F1 · F2 −

34

27
t2 (t+ 1) · F 2

2 , (3.149)

f
(2)
2,2 = 1 − 1

26
(t+ 1) (64 t4 + 16 t3 + 99 t2 + 16 t+ 64) · F 2

2

+
52

28 · 3
· t · (64t4 + 88 t3 + 105 t2 + 88 t+ 64) · F2 · F3

− 54

27 · 32
· t2 · (t+ 1) (2 t2 + t+ 2) · F 2

3 , (3.150)

f
(2)
3,3 =

3

2

− 1

27 · 3
· (t+ 1)

(
576 t6 + 96 t5 + 730 t4 + 425 t3 + 730 t2 + 96 t+ 576

)
· F 2

3

+
72

212 · 3
· t (768t6 + 928 t5 + 1240 t4 + 1455 t3 + 1240 t2 + 928 t+ 768) · F3 F4

− 74

215 · 3
· t2 (t+ 1) (64 t4 + 16 t3 + 99 t2 + 16 t+ 64) · F 2

4 . (3.151)
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For f
(3)
N,N with N = 0, · · · , 4

f
(3)
0,0 =

1

2 · 3
· f (1)

0,0 −
1

2 · 3
(1 + t) · F0

3 +
1

22
t · F0

2 · F1, (3.152)

f
(3)
1,1

t1/2
=

2

3
·
f

(1)
1,1

t1/2
− 1

23 · 3
(1 + t)

(
23t2 + 13 t+ 23

)
· F1

3

+
32

26
t
(
8t2 + 15 t+ 8

)
· F1

2 · F2 −
34

26
t2(t+ 1)F1F

2
2 +

35

29
t3 · F2

3, (3.153)

f
(3)
2,2

t
=

7

2 · 3
·
f

(1)
2,2

t

− 1

210 · 3
(1 + t)

(
26 · 3 · 7 t4 + 1136 t3 + 3229 t2 + 1136 t+ 1344

)
· F2

3

+
52

211 · 3
t
(
25 · 32t4 + 596 t3 + 859 t2 + 596 t+ 25 · 32

)
· F2

2 · F3

− 55

210 · 32
(t+ 1)(3t2 + 4t+ 3) t2 · F2 · F 2

3 +
56

211 · 34
t3
(
3t2 + 8 t+ 3

)
· F3

3, (3.154)
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f
(3)
3,3

t3/2
=

5

3
·
f

(1)
3,3

t3/2

− 1

211 · 34
(t+ 1)(27 · 33 · 52t6 + 49680 t5 + 153306 t4 + 160427 t3

+ 153306 t2 + 49680 t+ 27 · 33 · 52) · F 3
3

+
72

216 · 33
t(210 · 32 · 5t6 + 79200 t5 + 128104 t4 + 168593 t3

+ 128104 t2 + 79200 t+ 210 · 32 · 5) · F 2
3 · F4

− 74

216 · 33
(t+ 1)t2(24 · 32 · 5t4 + 670 t3 + 1763 t2 + 670 t+ 24 · 32 · 5) · F3 · F 2

4

+
76

221 · 34
t3(26 · 5t4 + 740 t3 + 1407 t2 + 740 t+ 26 · 5) · F 3

4 , (3.155)

f
(3)
4,4

t2
=

13

6
·
f

(1)
4,4

t2

− 1

222 · 3
(t+ 1) (214 · 5 · 7 · 13t8 + 3254272 t7 + 11474624 t6 + 8672032 t5

+ 20423231 t4 + 8672032 t3 + 11474624 t2 + 3254272 t+ 214 · 5 · 7 · 13) · F 3
4

+
33

223 · 5
t(212 · 3 · 52 · 7t8 + 3334912 t7 + 4845120 t6 + 7068720 t5

+ 8865649 t4 + 7068720 t3 + 4845120 t2 + 3334912 t+ 212 · 3 · 52 · 7) · F 2
4 · F5

− 36

220 · 53
t2(t+ 1)(24 · 32 · 5 · 72t6 + 26292 t5 + 69377 t4 + 78580 t3

+ 69377 t2 + 26292 t+ 24 · 32 · 5 · 72) · F4 · F 2
5

+
38

220 · 53
t3(23 · 33 · 5 · 7 t6 + 23 · 33 · 7 · 11t5 + 28413 t4 + 46432 t3

+ 28413 t2 + 23 · 33 · 7 · 11 t+ 23 · 33 · 5 · 7) · F 3
5 . (3.156)

The coefficients which are not given in factored form all contain large prime factors.
For f

(4)
N,N with N = 0, 1, 2, 3

f
(4)
0,0 =

1

3
· f (2)

0,0 −
1

22 · 3
· t · F 4

0 +
1

25
· t · F 2

0 · F 2
1 , (3.157)

f
(4)
1,1 = − 1

23 · 3
+

5

2 · 3
· f (2)

1,1 +
1

25 · 3
(4t4 + 4t3 + 15t2 + 4t+ 4)(t+ 1)2 · F 4

1

− 3

27
t(t+ 1)(8t4 + 18t3 + 35t2 + 18t+ 8) · F 3

1 · F2

+
34

211
· t2 (8t4 + 28t3 + 45t2 + 28t+ 8) · F 2

1 · F 2
2

− 35

212
· t3 · (t+ 1) · (4t2 + 11t+ 4) · F1 · F 3

2 +
37

215
t4(t2 + 4t+ 1) · F 4

2 , (3.158)
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f
(4)
2,2 = −1

3
+

22

3
· f (2)

2,2

+
1

214 · 3
(
214 t10 + 40960 t9 + 84480 t8 + 136640 t7 + 176180 t6

+201075 t5 + 176180 t4 + 136640 t3 + 84480 t2 + 40960 t+ 214
)
· F 4

2

− 52

214 · 32
t (t+ 1)

(
213 t8 + 13312 t7 + 29504 t6 + 36320 t5 + 45337 t4

+36320 t3 + 29504 t2 + 13312 t+ 213
)
· F 3

2 · F3

+
54

217 · 32
t2
(
212 t8 + 11264 t7 + 21760 t6 + 31576 t5 + 36209 t4

+31576 t3 + 21760 t2 + 11264 t+ 212
)
· F 2

2 · F 2
3

− 56

215 · 34
· t3 (t+ 1)

(
28 t6 + 480 t5 + 906 t4 + 979 t3 + 906 t2

+480 t+ 28
)
· F2 · F 3

3

+
58

215 · 34
t4
(
25 t6 + 96 t5 + 177 t4 + 224 t3 + 177 t2 + 96 t+ 25

)
· F 4

3 , (3.159)
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f
(4)
3,3 = − 7

23
+

11

2 · 3
· f (2)

3,3

+
1

216 · 34

(
213 · 34 · 7t14 + 10838016 t13 + 19643904 t12 + 34169856 t11

+50403584 t10 + 62791680 t9 + 73309425 t8 + 79935700 t7 + 73309425 t6

+62791680 t5 + 50403584 t4 + 34169856 t3 + 19643904 t2 + 10838016 t

+213 · 34 · 7
)
· F 4

3

− 72

219 · 34
t (t+ 1)

(
214 · 33 · 7t12 + 4257792 t11 + 9547776 t10 + 13813120 t9

+19341120 t8 + 21399090 t7 + 24976435 t6 + 21399090 t5 + 19341120 t4

+13813120 t3 + 9547776 t2 + 4257792 t+ 214 · 33 · 7
)
· F 3

3 · F4

+
74

225 · 35
t2 ·
(
215 · 32 · 7 t12 + 4988928 t11 + 9680384 t10 + 15992320 t9

+21863120 t8 + 26325960 t7 + 28527015 t6 + 26325960 t5 + 21863120 t4

+15992320 t3 + 9680384 t2 + 4988928 t+ 215 · 32 · 7
)
· F 2

3 · F 2
4

− 76

227 · 34
t3 · (t+ 1)

(
214 · 3 · 7t10 + 501760 t9 + 1191680 t8 + 1548640 t7

+2065400 t6 + 2169745 t5 + 2065400 t4 + 1548640 t3

+1191680 t2 + 501760 t+ 214 · 3 · 7
)
· F3 · F 3

4

+
78

231 · 34
t4 ·
(
212 · 7t10 + 71680 t9 + 147840 t8 + 235040 t7 + 299555 t6

+339180 t5 + 299555 t4 + 235040 t3 + 147840 t2 + 71680 t+ 212 · 7
)
· F 4

4 . (3.160)

For f
(5)
N,N with N = 1, 2, 3

f
(5)
1,1

t1/2
= −22

5
·
f

(1)
1,1

t1/2
+
f

(3)
1,1

t1/2

+
1

26 · 3 · 5
(t+ 1)2(26 + 136t3 + 159t2 + 136t+ 26) · F 5

1

− 3

28
t(t+ 1)(25t4 + 80t3 + 99t2 + 80t+ 25) · F 4

1 · F2

+
33

212
t2(27t4 + 368t3 + 483t2 + 368t+ 27) · F 3

1 · F 2
2

− 35

210
t3(t+ 1)(4t2 + 5t+ 4) · F 2

1 · F 3
2

+
37

215
t4(8t2 + 13t+ 8) · F1 · F 4

2 −
39

215 · 5
(t+ 1) · t5 · F 5

2 , (3.161)
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f
(5)
2,2

t
= − 137

23 · 5
·
f

(1)
2,2

t
+

3

2
·
f

(3)
2,2

t

+
1

218 · 3 · 5
(
8 t2 + 7 t+ 8

) (
29 · 3 · 61 t8 + 241856 t7 + 508200 t6 + 708609 t5

+780244 t4 + 708609 t3 + 508200 t2 + 241856 t+ 29 · 3 · 61
)
· F 5

2

− 52

218 · 32
t (t+ 1)

(
92160 t8 + 239360 t7 + 540576 t6 + 723924 t5

+868861 t4 + 723924 t3 + 540576 t2 + 239360 t+ 92160
)
· F 4

2 · F3

+
54

220 · 33
t2
(
90624 t8 + 338816 t7 + 743304 t6 + 1122432 t5 + 1278697 t4

+1122432 t3 + 743304 t2 + 338816 t+ 90624
)
· F2

3 F3
2

− 56

217 · 34
t3 (t+ 1)

(
1392 t6 + 4010 t5 + 6983 t4 + 8136 t3

+6983 t2 + 4010 t+ 1392
)
· F 2

2 · F 3
3

+
58

220 · 35
t4
(
684 t6 + 2752 t5 + 5161 t4 + 6240 t3 + 5161 t2 + 2752 t

+684) · F2 · F 4
3

− 59

219 · 36
t5 (t+ 1)

(
42 t4 + 133 t3 + 167 t2 + 133 t+ 42

)
· F 5

3 , (3.162)
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f
(5)
3,3

t3/2
= − 127

3 · 5
·
f

(1)
3,3

t3/2
+ 2 ·

f
(3)
3,3

t3/2

+
1

220 · 35 · 5
(
216 · 34 · 5 · 17 t14 + 1377976320 t13 + 3016452096 t12

+5930641920 t11 + 9308313280 t10 + 12328157240 t9 + 14834544515 t8

+15849843292 t7 + 14834544515 t6 + 12328157240 t5 + 9308313280 t4

+5930641920 t3 + 3016452096 t2 + 1377976320 t+ 216 · 34 · 5 · 17
)
· F 5

3

− 72

222 · 35
t (t+ 1)

(
219 · 33 · 5 t12 + 151511040 t11 + 351000576 t10

+605214208 t9 + 835692208 t8 + 1025976166 t7 + 1112168875 t6

+1025976166 t5 + 835692208 t4 + 605214208 t3 + 351000576 t2

+151511040 t+ 219 · 33 · 5
)
· F 4

3 · F4

+
74

229 · 35
t2
(
218 · 33 · 52 t12 + 572129280 t11 + 1334317056 t10

+2446757888 t9 + 3545541888 t8 + 4425343776 t7 + 4784608975 t6

+4425343776 t5 + 3545541888 t4 + 2446757888 t3 + 1334317056 t2

+572129280 t+ 218 · 33 · 52
)
· F 3

3 · F 2
4

− 76

227 · 35
t3 (t+ 1)

(
213 · 3 · 5 · 7 t10 + 2007040 t9 + 4885888 t8 + 7228048 t7

+9666130 t6 + 10423545 t5 + 9666130 t4 + 7228048 t3 + 4885888 t2

+2007040 t+ 213 · 3 · 5 · 7
)
· F 2

3 · F 3
4

+
78

234 · 35
t4
(
214 · 5 · 13 t10 + 3665920 t9 + 9078784 t8 + 15185664 t7

+20375540 t6 + 22605185 t5 + 20375540 t4 + 15185664 t3 + 9078784 t2

+3665920 t+ 214 · 5 · 13
)
· F3 · F 4

4

− 710

235 · 35 · 5
t5 (t+ 1)

(
213 · 5 t8 + 104960 t7 + 267136 t6 + 319904 t5

+436441 t4 + 319904 t3 + 267136 t2 + 104960 t+ 213 · 5
)
· F 5

4 . (3.163)

3.B Polynomial solution calculations for C
(2)
1 (N ; t)

We here give explicitly the calculational details for C
(2)
1 (N ; t).

Using the form (3.43) in the inhomogeneous equation (3.83) we find the recursion relation
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for the coefficients c
(2)
1;n for n 6= N, N + 1, N + 2, N + 3

2n · (n−N) (n− 2N − 1) · c(2)
1;n

− {2n3 − 6Nn2 − 2(4 +N − 2N2)n+ 5 + 6N} · c(2)
1;n−1

− {2n3 − 6(3 +N)n2 + (46 + 34N + 4N2)n − 35− 38N − 8N2} · c(2)
1;n−2

+ 2 (n− 2)(n− 2N − 3)(n−N − 3) · c(2)
1;n−3 = 0. (3.164)

where by definition c
(2)
1;n = 0 for n ≤ −1. This recursion relation has four terms instead

of the three terms in the corresponding relation (3.92) for c
(2)
2;n. We note that, if we send

n → 2N − n+ 3 in (3.164), we see that c
(2)
1;n and c

(2)
2N−n satisfy the same equation. Since the

coefficient of c
(2)
1;n vanishes for n = 0, the term c

(2)
1;0 is not determined from (3.164) and by

convention we set c
(2)
1;0 = 1

Following the procedure used for C
(2)
2 (N ; t) we note that equation (3.84) will be satisfied

to order tN if we choose the c
(2)
1;n for 0 ≤ n ≤ N − 1 to be the corresponding coefficients in

t−1 · u2(N ; t) · u2(N + 1; t) and hence (3.47) follows.
The inhomogeneous recursion relations for n = N, N + 1 are

A
(2)
1 {−(2N2 + 2N − 5) · c(2)

1;N−1 + (8N2 + 8N − 35) · c(2)
1;N−2

− 6(N − 2)(N + 3) · c(2)
1;N−3} = −2N2(2N + 1)2 λ2

N , (3.165)

A
(2)
1 {−2N (N + 1) · c(2)

1;N+1 − (2N + 1)2 · c(2)
1;N

+ (6N2 + 6N − 5) · c(2)
1;N−1 + 4 (N + 2)(N − 1) · c(2)

1;N−2}

= −(2N + 1)2 (4N3 + 4N2 − 4N − 1)λ2
N

4 (N + 1)
, (3.166)

and the relations for N + 2, N + 3 are identical with N, N + 1, respectively, with the
(palindromic) replacement

c
(2)
1;N−m −→ c

(2)
1;N+m. (3.167)

If there were no inhomogeneous term (3.165) would be a new constraint in the coefficients

c
(2)
1;n for n = N−1, N−2, N−3. However this constraint does not hold (because the solution

to the homogeneous equation has a term tN+1 ln t).

The normalizing constant A
(2)
1 can be evaluated from (3.165) and the sum on the LHS of

(3.165) is evaluated the same way the corresponding sum was for C
(2)
2 (N ; t), by comparing
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with the full solution t−1 u2(N ; t)u2(N + 1; t) of the homogeneous equation. Thus we find

− (2N2 + 2N − 5) · c(2)
1;N−1(N) + (8N2 + 8N − 35) · c(2)

1;N−2(N)

− 6 (N + 3) (N − 2) · c(2)
1;N−3(N) = −2N2 (N + 1)λ2

N , (3.168)

and, hence, we find from (3.165)

A
(2)
1 = NβN . (3.169)

It remains to compute c
(2)
1;N from (3.166). We obtain the palindromic solution by requiring

that c
(2)
1,N+1 = c

(2)
1;N−1 and thus (3.166) reduces to

(2N + 1)2 · c(2)
1;N + (4N2 + 4N − 5) · c(2)

1;N−1 + 4(N + 2)(N − 1) · c(2)
1;N−2

= −(2N + 1)2 (4N3 + 4N2 − 4N − 1)λ2
N

4(N + 1)
. (3.170)

An equivalent and more efficient method for evaluating c
(2)
1;N , which avoids the need to eval-

uate the sums on the LHS of (3.170), is to directly evaluate C
(2)
1 (N ; t) in terms of C

(2)
2 (N ; t)

by use of the coupled equation (3.82). From this we find

c
(2)
1;N(N) = λ2

N +
N−1∑
k=0

ak(N) · aN−1−k(N), (3.171)

and, by explicitly evaluating the sum in (3.171), we obtain the result (3.48). Finally, the

c
(2)
1;n for N + 1 ≤ n ≤ 2N are determined from the palindromy of (3.164).
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3.C Coupled differential equations for C
(3)
m (N ; t)

The four coupled differential equations for C
(3)
m (N ; t) are

− 2N + 1

2 · (t− 1) t
· C(3)

0 (t) − (N + 1) (2 tN + 1 + t)

t2 · (2N + 1) (t− 1)
· C(3)

1 (t)

− 2
(N + 1)2 (2 tN + 3)

t2 (2N + 1)2 (t− 1)
· C(3)

2 (t) − 8
(N + 1)3 (tN − t+ 3)

(t− 1) (2N + 1)3 t2
· C(3)

3 (t)

+
tN + 2 t−N − 1

(t− 1)t
· d
dt
C

(3)
0 (t) + 2

(N + 1) (tN −N + t)

t (t− 1) (2N + 1)
· d
dt
C

(3)
1 (t)

+ 4
(N + 1)2 (tN −N + 1)

t (t− 1) (2N + 1)2
· d
dt
C

(3)
2 (t) + 8

(N + 1)3 (tN −N + 2− t)
t (2N + 1)3 (t− 1)

· d
dt
C

(3)
3 (t)

+
d2

dt2
C

(3)
0 (t) + 2

N + 1

2N + 1
· d

2

dt2
C

(3)
1 (t) + 4

(N + 1)2

(2N + 1)2
· d

2

dt2
C

(3)
2 (t)

+ 8
(N + 1)3

(2N + 1)3 ·
d2

dt2
C

(3)
3 (t) =

3

4
tN−1 · (2N + 1) ·B0(N), (3.172)

− 2
(N + 1) (2N + 6 tN + 3 t+ 2)

t2 (2N + 1)2
· C(3)

1 (t)

− 8
(N + 1)2 (4 tN + 4N + 5 + t)

t2 (2N + 1)3
· C(3)

2 (t)

− 24
(N + 1)3 (6N + 2 tN + 9− 2 t)

(2N + 1)4 t2
· C(3)

3 (t) + 6
d

dt
C

(3)
0 (t)

+ 4
(N + 1) (5 tN +N + 3 t+ 1)

t (2N + 1)2
· d
dt
C

(3)
1 (t)

+ 8
(N + 1)2 (2N + 4 tN + t+ 4)

t (2N + 1)3
· d
dt
C

(3)
2 (t)

+ 48
(N + 1)3 (tN +N + 3− t)

t (2N + 1)4
· d
dt
C

(3)
3 (t) + 4

(t− 1) (N + 1)

(2N + 1)2
· d

2

dt2
C

(3)
1 (t)

+ 16
(N + 1)2 (t− 1)

(2N + 1)3
· d

2

dt2
C

(3)
2 (t) + 48

(N + 1)3 (t− 1)

(2N + 1)4
· d

2

dt2
C

(3)
3 (t)

=
3

2
tN−1 · (2N2t+ t+ 4 tN − 2N − 2N2) ·B0(N), (3.173)
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C
(3)
1 (t) + 4

(N + 1) (2N + 2− t)
t (2N + 1)2

· C(3)
2 (t) + 4

(t− 1) (N + 1)

(2N + 1)2
· d
dt
C

(3)
2 (t)

+ 4
(N + 1)2 (12N2 − 16 tN − 2 t2N + 30N + 2 t2 + 18− 17 t)

(2N + 1)4 t2
· C(3)

3 (t)

+ 8
(t− 1) (N + 1)2 (tN + 5N − t+ 5)

t (2N + 1)4
· d
dt
C

(3)
3 (t)

+ 8
(t− 1)2 (N + 1)2

(2N + 1)4
· d

2

dt2
C

(3)
3 (t) =

3

4

(2N + 1)2

(N + 1)
· tN+1 ·B0(N), (3.174)

6 · C(3)
0 (t) + 4

(N + 1) (4N + 2 tN + 4− t)
t (2N + 1)2

· C(3)
1 (t)

+ 8
(N + 1)2 (4N2 + 8N2t− 10 t2N + 10 tN + 12N − t− 4 t2 + 8)

(2N + 1)4t2
· C(3)

2 (t)

+ 48
(N + 1)3 (4N2 − 2 t2N − 10 tN + 16N + 2 t2 + 13− 14 t)

(2N + 1)5 t2
· C(3)

3 (t)

+ 16
(t− 1) (N + 1)

(2N + 1)2
· d
dt
C

(3)
1 (t)

+ 16
(t− 1) (N + 1)2 (5 tN + 3N + 2 t+ 3)

t (2N + 1)4
· d
dt
C

(3)
2 (t)

+ 96
(N + 1)3 (t− 1) (tN + 3N + 4− t)

t (2N + 1)5 · d
dt
C

(3)
3 (t)

+ 16
(t− 1)2 (N + 1)2

(2N + 1)4
· d

2

dt2
C

(3)
2 (t) + 96

(t− 1)2(N + 1)3

(2N + 1)5
· d

2

dt2
C

(3)
3 (t)

= 3 tN · (3N (t− 1) + 2 t− 1) ·B0(N), (3.175)

where B0(N) is given by (3.111).

3.D The ODE and recursion relation for C
(3)
3 (N ; t)

The ODE for C
(3)
3 (N ; t) can be found by carefully using the four coupled ODEs (3.172)–

(3.175). First use (3.174) to solve for C
(3)
1 (N ; t) and then use this is in Equation (3.175) in

order to solve for C
(3)
0 (N ; t). Next, use both C

(3)
0 (N ; t) and C

(3)
1 (n; t) in (3.172) and (3.173)

to produce ODEs of orders four in C
(3)
2 (N, t) and five in C

(3)
3 (N ; t) in (3.172) and orders

three in C
(3)
2 (N ; t) and four in C

(3)
3 (N ; t) in (3.173).

In the new (3.172), the fourth derivative of C
(3)
2 (N ; t) can be solved in terms of the

other derivatives, and likewise in the new (3.173), the third derivative of C
(3)
2 (N ; t) can be
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solved in terms of the other derivatives. Taking the derivative of the expression for the
third derivative of C

(3)
2 (N ; t) and equating it to the expression for the fourth derivative of

C
(3)
2 (N ; t) we find an alternate expression for the third derivative of C

(3)
2 (N ; t). Finally,

equating the two expressions for the third derivative of C
(3)
2 (N ; t), a full cancellation of all

of the derivatives of C
(3)
2 (N ; t) takes place, leaving a fifth order ODE in terms of only C

(3)
3 (t)

4
[
2 (N − 1) (2N + 1) (3N + 1) (N + 1) t4

− (2N + 3) (36N3 − 7N2 − 69N − 32) t3

+4 (N + 2) (36N3 − 10N2 − 116N − 69) t2

−(2N + 5) (60N3 − 23N2 − 275N − 188)t

+18 (2N + 3) (N + 3) (N − 3) (N + 1)] · C(3)
3 (t)

− 8
[
(N − 1) (2N + 1) (3N + 1) (N + 1) t4

−(−130N + 40N3 − 47 + 24N4 − 73N2) t3

+2
(
18N4 − 129 + 45N3 − 113N2 − 270N

)
t2

−(−253N2 − 422 + 24N4 − 740N + 80N3) t

+ (N + 1)
(
6N3 + 19N2 − 114N − 211

)]
· t · d

dt
C

(3)
3 (t)

+ 20 (t− 1)
[
2N (N − 1) (N + 1) · t3

−3 (2N3 − 4N2 − 8N − 3) · t2 + 3 (−13 + 2N3 − 8N2 − 24N) t
]

−2 (N − 9) (N + 2) (N + 1)] · t2 · d
2

dt2
C

(3)
3 (t)

+ 40 (t− 1)2
[
(N − 1)2 t2 − (4N + 1 + 2N2)t+ (N + 5) (N + 1)

]
· t3 · d

3

dt3
C

(3)
3 (t)

− 40 (t− 1)3 [(N − 1)t−N − 1] t4 · d
4

dt4
C

(3)
3 (t) + 8 (t− 1)4 · t5 · d

5

dt5
C

(3)
3 (t)

= −3 (t2 − 1) ·N2 (2N + 1)6

(N + 1)3
· tN+3 ·B0(N). (3.176)

From this differential equation we obtain the recursion relation for the coefficients c
(3)
3;n

and the normalization constant A
(3)
3 defined by the form (3.53), where by definition c

(3)
3;n = 0
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for n ≤ −1

A
(3)
3 · {8n (2N − n) (N − n) (N + n) (3N − n) · c(3)

3;n

+ 4 (2N + 1− 2n)
(
2− 7n+ 7N −N2 + 4n4 − 12N3 − 8n3 + 24N3n

−4N2n+ 11n2 + 4N2n2 − 16Nn3 + 24Nn2 − 22Nn
)
· c(3)

3;n−1

− 16 (N + 1− n)
(
9− 22n+ 22N +N2 + 3n4 − 18N3 − 12n3 + 18N3n

−6N2n+ 23n2 + 3N2n2 − 12Nn3 + 36Nn2 − 46Nn
)
· c(3)

3;n−2

+ 4 (2N + 3− 2n)
(
32− 69n+ 69N + 7N2 + 4n4 − 36N3 − 24n3 + 24N3n

−12N2 n + 59n2 + 4N2n2 − 16N n3 + 72Nn2 − 118N n
)
· c(3)

3;n−3

− 8 (n− 2) (2N + 2− n) (N + 2− n) (N − 2 + n) (3N + 2− n) · c(3)
3;n−4}

= (δn,N − δn,N+2) · 3(2N + 1)6

(N + 1)3
·B0. (3.177)

We note by sending n→ 2N − n+ 2 that c
(3)
3;n and c

(3)
3;2N−2−n satisfy the same equation.

For n = 0 (3.177) is identically zero for any c
(3)
3;0 which we set equal to unity by convention.

For 0 ≤ n ≤ N − 1 the rhs of (3.177) vanishes and hence the c
(3)
3;n are identical with the

coefficients (3.118) of the solution (3.116) ot the homogeneous equation.

For n = N the coefficient of c
(3)
3;N vanishes, and thus if there were no inhomogeneous

term, the coefficients c
(3)
3;n for n = N − 4, N − 3 , N − 2 N − 1 would have to satisfy a

non trivial constraint. This constraint does not, in fact, hold and is the reason that the
homogeneous equation has a term tN+3 ln t. However, with a nonvanishing inhomogeneous
term, the equation for n = N determines the normalization constant.

For n = N + 1 the equation (3.177) reduces to

8 (N + 1) (N − 1) (2N + 1) (2N − 1) · (c(3)
3;N+1 − c

(3)
3,N−4)

− 8 (2N + 1) (2N − 1)
(
2N2 − 1

)
· (c(3)

3;N − c
(3)
3;N−2) = 0 (3.178)

which will be satisfied by the palindromic property

c
(3)
3;n = c

(3)
3;2N−2−n (3.179)

with n = N + 1 and n = N . Finally, the c
(3)
3;n for N ≤ n ≤ 2N − 2 are determined from the

palindromy of (3.177).
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3.E Homomorphisms for C
(3)
0 (N ; t) and C

(3)
2 (N ; t)

The fifth order operator M
(3)
0 (N ; t) in the direct sum decomposition (3.122) of Ω

(3)
0 (N ; t)

has the homomorphism (in terms of the operator L2(N))

M
(3)
0 (N) · J (3)

0 (N ; t) = G
(3)
0 (N ; t) · Sym4(L2(N + 1)), (3.180)

where the intertwinners J
(3)
0 (N ; t) and G

(3)
0 (N ; t) are:

J
(3)
0 (N ; t) = tN+1 · (t− 1) · t ·

(
Dt −

d ln(RA
N )

dt

)
= tN+1 ·

(
(t− 1) · t ·Dt − (2N + 2 (N + 1))

)
, (3.181)

G
(3)
0 (N ; t) = tN+1 · (t− 1) · t ·

(
Dt −

d ln(RB
N )

dt

)
, (3.182)

where

RA
N = (t− 1)2 (2N +1) · t−2 (N +1), (3.183)

RB
N = (t+1) (t−1)4N −3

t2N +6 · PN , (3.184)

PN = (4N + 3) · (3N + 2) · (t2 + 1) + 2 (20N2 + 15N + 2) · t
= (4N + 3) · (3N + 2) · (t+ 1)2 (3.185)

+4 (2 (2N + 1) (N − 1) +N) · t.

The homomorphism for M
(3)
2 (N ; t) is

M
(3)
2 (N ; t) · J (3)

2 (N ; t) = G
(3)
2 (N ; t) · Sym4(L2(N + 1)), (3.186)

where the intertwinners J
(3)
2 (N ; t) and G

(3)
2 (N ; t) are

J
(3)
2 (N ; t) = tN+2 ·

(
(t− 1) · t ·Dt + 2 (N + 1) · t + 2N

)
, (3.187)

G
(3)
2 (N ; t) = tN+2 · (t− 1) · t ·

(
Dt −

d ln
(
RB
N

(
−(N + 1)

))
dt

)
, (3.188)

where RB
N is exactly the RB

N in (3.184).

3.F Homomorphisms for Ω
(4)
4 (N ; t)

Many exact results have been obtained on the intertwinners occurring in (3.144), (3.145),
(3.146), (3.147) . Let us display the simplest ones.
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For J
(4)
0 (N ; t) we have

J
(4)
0 (2; t) = t2 · (t+ 1) · (2t2 + t+ 2),

J
(4)
0 (3; t) = t2 · (t+ 1) ·

(
64 t4 + 16 t3 + 99 t2 + 16 t+ 64

)
,

J
(4)
0 (4; t) = t2 · (t+ 1) ·

(
576 t6 + 96 t5 + 730 t4 + 425 t3 + 730 t2 + 96 t+ 576

)
,

J
(4)
0 (5; t) = t2 · (t+ 1) ·

(
16384 t8 + 2048 t7 + 19264 t6

+6608 t5 + 28861 t4 + 6608 t3 + 19264 t2 + 2048 t+ 16384
)
. (3.189)

For J
(4)
1 (N ; t) we have

2 t3 · J (4)
1 (2; t) = (t− 1) · J (4)

0 (2; t) ·Dt − 2 t · (10t4 + 2t3 − 5t − 4),

64 t4 · J (4)
1 (3; t) = (t− 1) · J (4)

0 (3; t) ·Dt

− 2 t · (448 t6 + 32 t5 + 95 t4 − 220 t2 − 112 t− 128),

576 · t5 · J (4)
1 (4; t) = (t− 1) · J (4)

0 (4; t) ·Dt

− 2 t · (5184 t8 + 192 t7 + 406 t6 + 1148 t5 − 2471 t3 − 1288 t2 − 864 t− 1152),

16384 · t6 · J (4)
1 (5; t) = (t− 1) · J (4)

0 (5; t) ·Dt

− 2 t · (180224 t10 + 4096 t9 + 7488 t8 + 15168 t7 + 41307 t6

− 83454 t4 − 44112 t3 − 29952 t2 − 22528 t− 32768). (3.190)

Finally, the simplest J
(4)
2 (N ; t), namely J

(4)
2 (2; t) reads:

16 t6 · J (4)
2 (2; t) = 8 (t − 1)2 · J (4)

0 (2; t) ·D2
t

− t · (t − 1) · (432t4 + 80t3 − 99t2 − 240t− 208) ·Dt

+ 3 (1040t5 − 1176t4 − 233t3 − 100t2 + 168t+ 256). (3.191)

3.G Exact results for the C
(4)
m ’s

The f
(4)
N,N(t)’s have a new feature not previously seen. The inhomogeneous terms on the

ODE’s for C
(2)
m (N ; t) and C

(3)
m (N ; t) begin at tN+a where a is 0,1 or 2 depending on the

values of m. Therefore to the order needed for the polynomial solution the logarithms in the
solution u2(N) never can contribute. However, for f

(4)
N,N(N ; t) the order of the inhomogeneous

terms grows as t2N instead of tN . Therefore, since logarithms occur in u2(N) at order tN+1

in order to find the polynomial solution to the 20-th order inhomogeneous equation in terms
of the solutions of u2(N) and u1(N) we need to find linear combinations of solutions of the
terms in the direct sum decomposition which cancel these logarithms.
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This procedure for solving the inhomogeneous equations is too cumbersome by itself to obtain explicit results as was
done for f

(2)
N,N(t) and f

(3)
N,N(t). However, when the cancellation of logarithms is combined with the Wronskian cancellation

method of section 5 it is possible to conjecture results for C
(4)
m (N ; t) which have been verified to satisfy the 20th order

inhomogeneous equations through N = 10:

C
(4)
0

2N+1
= −K̄(4)

0 ·
u4

2(N + 1)

t4
− K̄(4)

0 ·
4

N
· C(2)

0 ·
u2(N + 1)

t2

+
2

3
·
[
C

(2)
0 ·

u2
2(N + 1)

t2
− 2βN · C(2)

0 ·
u2

2(N + 1) · u2(N)

t2
· FN+1 − C(2)

1 ·
u3

2(N + 1)

t3
· FN+1

]
+
Nλ2

3
· βN ·

u3
2(N + 1)

t4
· tN+2 · FN+1, (3.192)

C
(4)
1

2N+1
= 4 · K̄(4)

0 · βN
u3

2(N + 1)u2(N)

t3

+ K̄
(4)
0 ·

4

N
·
[
2 βN · C(2)

0 ·
u2(N + 1) · u2(N)

t
− C(2)

1 ·
u2

2(N + 1)

t2

]
+

2

3
·
[
6 β2

N · C
(2)
0 ·

u2(N + 1) · u2
2(N)

t
· FN+1 + 2C

(2)
1 ·

u3
2(N + 1)

t3
· FN − 2C

(2)
2 ·

u3
2(N + 1)

t3
· FN+1

]
− Nλ2

3

[
βN ·

u3
2(N + 1)

t3
· tN+1 · FN + 3β2

N ·
u2

2(N + 1) · u2(N)

t3
· tN+2 · FN+1

]
, (3.193)

C
(4)
2

2N+1
= −6 K̄

(4)
0 · β2

N ·
u2

2(N + 1) · u2
2(N)

t2

−
(

4

N
· K̄(4)

0 + 2

)
·
[
β2
N · C

(2)
0 · u2

2(N) − 2βN · C(2)
1

u2(N + 1) · u2(N)

t
+ C

(2)
2

u2
2(N + 1)

t2

]
+

2

3
·
[
−6β3

N · C
(2)
0 · u3

2(N) · FN+1 − 9 βN · C(2)
1 ·

u2(N + 1) · u2(N)

t
+ 6C

(2)
2 ·

u3
2(N + 1)

t3
· FN

]
+
Nλ2

3
·
[
3β2

N ·
u2

2(N + 1) · u2(N)

t2
· tN+1 · FN + 3 · β3

N ·
u2(N + 1) · u2

2(N)

t2
· tN+2 · FN+1

]
, (3.194)
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C
(4)
3

2N+2
= K̄

(4)
0 4 · β3

N ·
u2(N + 1) · u3

2(N)

t

− K̄
(4)
0 ·

4

N
·
[
β2
N · C

(2)
1 · u2

2(N) − 2 βN · C(2)
2 ·

u2(N + 1)u2(N)

t

]
+

2

3
·
[
2 β3

N · C
(2)
0 · u3

2(N) · FN − 2 β3
N · C

(2)
1 · u3

2(N) · FN+1 − 6 βN · C(2)
2 ·

u2
2(N + 1) · u2(N)

t2·
· FN

]
− Nλ2

3
·
[
3 β3

N ·
u2(N + 1) · u2

2(N)

t
· tN+1 · FN + β4

N ·
u3

2(N)

t
tN+2 · FN+1

]
, (3.195)

C
(4)
4

2N+3
= −K̄(4)

0 · β4
N · u4

2(N) − K̄(4)
0 ·

4

N
· β2

N · C
(2)
2 · u2

2(N)

+
2

3
·
[
β3
N · C

(2)
1 · u3

2(N) · FN + 2 β2
N · C

(2)
2 ·

u2(N + 1) · u2
2(N)

t
· FN + β2

N · C
(2)
2 · u2

2(N)

]
+
N λ2

3
· β4

N · u3
2(N) · tN+1 · FN (3.196)

In order to construct the full C
(4)
m , the expressions above are series expanded up to the order of palindromy, with palindromy

determining the rest of the terms. The palindromy points of the C
(4)
m are given as follows: m = 0 : 2N+1, m = 1 : 2N+1,

m = 2 : 2N + 2, m = 3 : 2N + 2, m = 4 : 2N + 3. Therefore, the expressions above give all terms to all C
(4)
m except for the

middle term of C
(4)
2 at order 2N + 2, which is determined such that all terms in f

(4)
N cancel up to and including 2N + 3.

Note that while these C
(4)
m guarantee that all terms will vanish up to and including 2N + 3, it is not obvious that the

expansion at order 2N + 4 will match the expansion of f
(4)
N , even though it is the case.
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Abstract

We give the exact expressions of the partial susceptibilities χ
(3)
d and χ

(4)
d

for the diagonal susceptibility of the Ising model in terms of modular forms
and Calabi-Yau ODEs, and more specifically, 3F2([1/3, 2/3, 3/2], [1, 1]; z) and

4F3([1/2, 1/2, 1/2, 1/2], [1, 1, 1]; z) hypergeometric functions. By solving the con-
nection problems we analytically compute the behavior at all finite singular points
for χ

(3)
d and χ

(4)
d . We also give new results for χ

(5)
d . We see in particular, the

emergence of a remarkable order-six operator, which is such that its symmet-
ric square has a rational solution. These new exact results indicate that the
linear differential operators occurring in the n-fold integrals of the Ising model
are not only “Derived from Geometry” (globally nilpotent), but actually corre-
spond to “Special Geometry” (homomorphic to their formal adjoint). This raises
the question of seeing if these “special geometry” Ising-operators, are “special”
ones, reducing, in fact systematically, to (selected, k-balanced, ...) q+1Fq hyper-
geometric functions, or correspond to the more general solutions of Calabi-Yau
equations.
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4.1 Introduction

The magnetic susceptibility of the Ising model is defined in terms of the two point spin
correlation function as

kBT · χ =
∞∑

M=−∞

∞∑
N=−∞

{〈σ0,0σM,N〉 −M2}, (4.1)

where M is the spontaneous magnetization of the Ising model.
The exact analysis of the Ising model susceptibility is the most challenging and important

open question in the study of the Ising model today. This study [20, 254] began in 1973-76
by means of summing the nth particle form factor contribution to the correlation function
〈σ0,0σM,N〉. In these papers it was shown that for T < Tc

kBT · χ(t) = (1− t)1/4 · (1 +
∞∑
n=1

χ̃(2n)(t)), (4.2)

where1 t = (sinh 2Ev/kBT sinh 2Eh/kBT )−2 and for T > Tc by

kBT · χ(t) = (1− t)1/4 ·
∞∑
n=0

χ̃(2n+1)(t), (4.3)

where t = (sinh 2Ev/kBT sinh 2Eh/kBT )2.
The χ̃(n) are given by n-fold integrals. In [254] the integrals for χ̃(1) and χ̃(2) were

evaluated, and since that time there have been many important studies [234, 177, 69], of
the behavior as t → 1, of the singularities in the complex t-plane [177, 171, 172] and the
analytic properties of χ̃(n) as a function of t for the isotropic case [263, 266, 264, 265, 59,
47, 45, 51, 46, 170, 50] for n = 3, 4, 5, 6. These studies are still ongoing.

More recently it was discovered [57] that if in (4.1) the sum is restricted to the spins on
the diagonal

kBT · χd(t) =
∞∑

N=−∞

{〈σ0,0σN,N〉 −M2}, (4.4)

where

kBT · χd(t) = (1− t)1/4 ·

(
1 +

∞∑
n=1

χ̃
(2n)
d (t)

)
, (4.5)

for T < Tc and

kBT · χd(t) = (1− t)1/4 ·
∞∑
n=0

χ̃
(2n+1)
d (t), (4.6)

1The classical interaction energy of the Ising model is E = −
∑

j,k

(
Evσj,kσj+1,k + Ehσj,kσj.k+1

)
where

j(k) specifies the row (column) of a square lattice and the sum is over all sites of the lattice.
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for T > Tc, the χ̃
(n)
d (t) are n-fold integrals which have a much simpler form than

the integrals for χ̃(n)(t) but retain all of the physically interesting properties of these
integrals.

For T < Tc, the integrals χ̃
(n)
d (t) read

χ̃
(2n)
d (t) =

tn
2

(n!)2

1

π2n
·
∫ 1

0

· · ·
∫ 1

0

2n∏
k=1

dxk ·
1 + tn x1 · · ·x2n

1 − tn x1 · · ·x2n

×
n∏
j=1

(
x2j−1(1− x2j)(1− tx2j)

x2j(1− x2j−1)(1 − t x2j−1)

)1/2

×
∏

1≤j≤n

∏
1≤k≤n

(1 − t x2j−1 x2k)
−2

×
∏

1≤j<k≤n

(x2j−1 − x2k−1)2 (x2j − x2k)
2, (4.7)

where t is given by t = (sinh 2Ev/kBT sinh 2Eh/kBT )−2.

For T > Tc, the integrals χ̃
(n)
d (t) read

χ̃
(2n+1)
d (t) =

tn(n+1)

π2n+1n!(n+ 1)!
·
∫ 1

0

· · ·
∫ 1

0

2n+1∏
k=1

dxk

×1 + tn+1/2 x1 · · ·x2n+1

1 − tn+1/2 x1 · · ·x2n+1

·
n∏
j=1

(
(1− x2j)(1 − t x2j) · x2j

)1/2

×
n+1∏
j=1

(
(1 − x2j−1)(1 − t x2j−1) · x2j−1

)−1/2

×
∏

1≤j≤n+1

∏
1≤k≤n

(1 − t x2j−1 x2k)
−2 (4.8)

×
∏

1≤j<k≤n+1

(x2j−1 − x2k−1)2
∏

1≤j<k≤n

(x2j − x2k)
2,

where x = sinh 2Ev/kBT sinh 2Eh/kBT = t1/2.
In [57] we found that

χ̃
(1)
d (t) =

1

1− t1/2
, and: χ̃

(2)
d (t) =

1

4
· t

1 − t
, (4.9)

and that χ̃
(3)
d (t) and χ̃

(4)
d (t) are solutions of differential equations of order 6 and 8. The

corresponding linear differential operators of each is a direct sum of three factors. In both
cases, there was a differential equation which was not solved in [57].

In this paper we complete this study of χ̃
(3)
d (t) and χ̃

(4)
d (t) by solving all of the differential
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equations involved. We then use the solutions of these equations to analytically compute the
singular behavior at all of the finite singular points. In this way we are able to give analytic
proofs of the results conjectured in appendix B of [57] by numerical means.

We split the presentation of our results into two parts: the solution of the differential
equations and the use of the differential equations to compute the behavior of χ

(3)
d (t) and

χ
(4)
d (t) at the singularities. The solution of the differential equations is presented in section

4.2 for χ
(3)
d (t) and in section 4.3 for χ

(4)
d (t). In particular we focus on the difficult problem

of solving a particular order-four operator to discover, finally, a surprisingly simple result.
The linear differential equation for χ

(5)
d (t) is studied in section 4.4, yielding the emergence

of a remarkable order-six operator. The singular behaviors of χ
(3)
d (t) and χ

(4)
d (t) are given in

section 4.5 and 4.6, respectively. This analysis requires that the (global) connection problem
to be solved. The details of these computations are given in appendices C and D. We conclude
in section 4.7 with a discussion of the emergence of q+1Fq hypergeometric functions, with all
these previous results underlying modularity in the Ising model [262, 153] through elliptic
integrals, modular forms and Calabi-Yau ODEs [7, 6].

4.2 Computations for χ̃
(3)
d (t)

It was shown in [57] that χ̃
(3)
d (x) is annihilated by an order-six linear differential equa-

tion. The corresponding linear differential operator L(3)
6 is a direct sum of irreducible linear

differential operators (the indices are the orders):

L(3)
6 = L

(3)
1 ⊕ L

(3)
2 ⊕ L

(3)
3 . (4.10)

The solution of L(3)
6 which is analytic at x = 0 is thus naturally decomposed as a sum:

Sol(L(3)
6 ) = a1 · χ̃(3)

d;1(x) + a2 · χ̃(3)
d;2(x) + a3 · χ̃(3)

d;3(x), (4.11)

where the χ̃
(3)
d;j are analytic at x = 0. The solutions χ̃

(3)
d;1(x) and χ̃

(3)
d;2(x) were explicitly

found in [57] to be

χ̃
(3)
d;1(x) =

1

1− x
, and: (4.12)

χ̃
(3)
d;2 =

1

(1− x)2
· 2F1([1/2,−1/2], [1]; x2) − 1

1− x
· 2F1([1/2, 1/2], [1]; x2)(4.13)
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where one notes the occurrence of χ̃
(1)
d = χ̃

(3)
d;1 in χ̃

(3)
d (x). The last term, χ̃

(3)
d;3(x), is annihilated

by the order-three linear differential operator

L
(3)
3 = D3

x +
3

2

n2(x)

d(x)
·D2

x +
n1(x)

(x+ 1)(x− 1) · x · d(x)
·Dx

+
n0(x)

(x+ 1) (x− 1)2 · x · d(x)
,

where:

d(x) = (x+ 2) (1 + 2x) (x+ 1) (x− 1) (1 + x+ x2) · x,
n0(x) = 2x8 + 8x7 − 7x6 − 13x5 − 58x4 − 88x3 − 52x2 − 13x+ 5,

n1(x) = 14x8 + 71x7 + 146x6 + 170x5 + 38x4

−112x3 − 94x2 − 19x+ 2.

n2(x) = 8x6 + 36x5 + 63x4 + 62x3 + 21x2 − 6x− 4. (4.14)

The linear differential operator L
(3)
3 has the following regular singular points and expo-

nents:

1 + x+ x2 = 0, ρ = 0, 1, 7/2 → x7/2,

x = 0 ρ = 0, 0, 0 → log2 terms,

x = 1 ρ = −2, −1, 1 → x−2, x−1, (4.15)

x = −1 ρ = 0, 0, 0 → log2 terms,

x = ∞ ρ = 1, 1, 1 → log2 terms.

The singularities at x = 2, −1/2 are apparent.

By use of the command dsolve in Maple, we found in [47] that the solution to L
(3)
3 [χ

(3)
d;3] =

0 which is analytic at x = 0 is

χ
(3)
d;3(x) =

(1 + 2x) · (x + 2)

(1− x) · (x2 + x+ 1)
· 3F2([1/3, 2/3, 3/2], [1, 1]; Q), (4.16)

where the pullback Q reads:

Q =
27

4

(1 + x)2 · x2

(x2 + x+ 1)3
. (4.17)

Now the coefficients ai in the sum decomposition (4.11) of χ̃
(3)
d (x), can be fixed by ex-

panding and matching the rhs of (4.11) with the expansion of χ̃
(3)
d (x), and solving for the

expressions in front of three xn, with n ≥ n0, n0 being the highest local exponent of L(3)
6 .

100



This gives

χ̃
(3)
d (x) =

1

3
· χ̃(3)

d;1(x) +
1

2
· χ̃(3)

d;2(x) − 1

6
· χ̃(3)

d;3(x). (4.18)

By use of a family of identities on 3F2 hypergeometric functions [185] (see eqn. 27 page

499) the expression (4.16) of χ̃
(3)
d (x) reduces to

χ
(3)
d;3(x) =

(1 + 2x) · (x + 2)

(1− x) · (x2 + x+ 1)
·
[

2F1([1/6, 1/3], [1]; Q)2 (4.19)

+
2Q

9
· 2F1([1/6, 1/3], [1]; Q) · 2F1([7/6, 4/3], [2]; Q)

]
.

It is instructive, however, to discuss further the reason why χ
(3)
d;3(x) has this solution in

terms of 2F1 functions.

4.2.1 Differential algebra structures and modular forms

From a differential algebra viewpoint, the linear differential operator L
(3)
3 can be seen to

be homomorphic4 to its formal adjoint:

L
(3)
3 · adjoint(T2) = T2 · adjoint(L(3)

3 ), (4.20)

where:

T2 =
(1 + x+ x2)

(1 − x)4
·D2

x +
m1(x)

(x + 1) (x − 1)5 (2x+ 1) (x+ 2) · x
·Dx

− 1

4
· m0(x)

(2x+ 1) (x+ 2) (x + 1) (1 + x+ x2) (x − 1)6 · x
, (4.21)

and where:

m1(x) = 2 x6 − 6x5 − 53x4 − 92x3 − 81x2 − 34x − 6,

m0(x) = 8 x8 − 4x7 − 222x6 − 769x5 − 1153x4

−1341x3 − 1129x2 − 490x − 84.

Related to (4.20) is the property that the symmetric square2 of L
(3)
3 has a (very simple)

rational solution R(x). It thus factorises into an (involved) order-five linear differential

4 For the notion of differential operator equivalence see [186] and [113].

2In general, for an irreducible operator homomorphic to its adjoint, a rational solution occurs for the
symmetric square (resp. exterior square) of that operator when it is of odd (resp. even) order.
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operator and an order-one operator having the rational solution:

R(x) =
1 + x + x2

(x− 1)4
, Sym2(L

(3)
3 ) = L5 ·

(
Dx −

d

dx
ln(R(x))

)
. (4.22)

In a forthcoming publication we will show that the homomorphisms of an operator with
its adjoint naturally leads to a rational solution for its symmetric square or exterior square
(according to the order of the operator).

Relation (4.20), or the fact that its symmetric square has a rational solution, means that
this operator is not only a globally nilpotent operator [47], but it corresponds to “Special
Geometry”. In particular it has a “special” differential Galois group [139]. We will come
back to this crucial point below, in section 4.3.1 (see (4.43)).

Operator L
(3)
3 is in fact homomorphic to the symmetric square of a second order linear

differential operator3

X2 = D2
x +

1

2
· (2x + 1) · (x2 + x+ 2)

(1 + x+ x2) · (1 + x) · x
·Dx −

3

2
· 1

(1 + x+ x2)2
, (4.23)

since one has the following simple operator equivalence [186] with two order-one intertwin-
ners:

L
(3)
3 ·M1 = N1 · Sym2(X2), with: (4.24)

M1 =
(1 + x) · x
(1− x)2

·Dx +
1

2
· (1 + 2x) · (x+ 2)

(1 + x+ x2) · (1− x)
,

N1 =
(1 + x) · x
(1− x)2

·Dx −
1

2
· 24x5 + 15x4 + 8x6 − 10x3 − 69x2 − 60x− 16

(1− x)3(1 + 2x) (x + 2) (1 + x+ x2)
.

The second order operator X2 is not homomorphic to the second order operators associ-
ated with the complete elliptic integrals of the first or second kind. However, from (4.20)
and (4.22), we expect X2 to be “special”. This is confirmed by the fact that the solution
Sol(X2, x) of X2, analytical at x = 0 has the integrality property1: if one performs a
simple rescaling x → 4x the series expansion of this solution has integer coefficients:

Sol(X2, 4x) = 1 + 6x2 − 24x3 + 60x4 − 96x5

+120x6 − 672x7 + 5238x8 − 25440x9 + · · · (4.25)

From this integrality property [46, 143], we thus expect the solution of X2 to be associated
with a modular form, and thus, we expect this solution to be a 2F1 up to not just one, but
two pullbacks. Finding these pullbacks is a difficult task, except if the pullbacks are rational
functions. Fortunately we are in this simpler case of rational pullbacks, and consequently,

3Finding X2 (or an operator equivalent to it) can be done by downloading the implementation [112].

1See also the concept of “Globally bounded” solutions of linear differential equations by G. Christol [101].
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we have been able to find the solution [47] to deduce that the third order operator L
(3)
3 is

3F2-solvable or 2F1-solvable up to a Hauptmodul pullback [110] (see (4.16), (4.19)).
We can make the modular form character of (4.16), (4.19), which is already quite clear

from the Hauptmodul form of (4.17), very explicit by introducing another rational expression,
similar to (4.17):

Q1(x) =
27x · (1 + x)

(1 + 2x)6
. (4.26)

The elimination of x between Q = Q(x) (see (4.17)) and Q1 = Q1(x) gives a polyno-
mial relation with integer coefficients Γ(Q, Q1) = 0, where the algebraic curve Γ(u, v) = 0
(which is, of course, a rational curve) is in fact a modular curve already encountered [46]
associated with an order-three operator F3 which emerged in χ̃(5) (see [45]):

−4u3 v3 + 12u2 v2 · (v + u) − 3u v · (4 v2 + 4u2 − 127u v)

+4 (v + u) · (u2 + v2 + 83u v) − 432u v = 0. (4.27)

The hypergeometric functions we encounter in (4.19), in the expression of the solution of

L
(3)
3 actually have two possible pullbacks as a consequence of the remarkable identity on the

same hypergeometric function2:

(1 + 2x) · 2F1

(
[
1

6
,

1

3
], [1]; Q(x)

)
= (1 + x+ x2)1/2 · 2F1

(
[
1

6
,

1

3
], [1]; Q1(x)

)
. (4.28)

Other rational parametrizations and pullbacks can also be introduced, as can be seen in 4.A.
Relation (4.28) on 2F1 yields other remarkable relations on the 3F2 with the two pullbacks

Q and Q1: their corresponding order-three linear differential operators are homomorphic.
Consequently one deduces, for instance, that 3F2([1/3, 2/3, 3/2], [1, 1]; Q1) is equal to the

2Along this line see for instance [238].
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action of the second order operator U2 on 3F2([1/3, 2/3, 3/2], [1, 1]; Q):

(x2 + x + 1)3 · (1 − 8x − 8x2) · 3F2([1/3, 2/3, 3/2], [1, 1]; Q1)

= −U2

[
3F2([1/3, 2/3, 3/2], [1, 1]; Q)

]
, where: (4.29)

U2 = p(x) ·
(
D2
x − 2 · d

dx
ln
( x2 + x + 1

(x − 1) (x + 2) (1 + 2x)

)
·Dx

)
+
( 1 + 2 x

x2 + x + 1

)2

· q(x), with:

p(x) = x2 · (1 + x)2 (1 + 2 x)2 (1 + 8 x+ 12x2 + 8x3 + 4x4),

q(x) = 8x10 + 40x9 + 81x8 + 84x7 + 24x6 − 54x5 − 63x4

−18x3 − 2x − 1. (4.30)

thus generalizing the simple automorphic relation (4.28).
The modularity of these functions can also be seen from the fact that the series expansions

of (4.16), (4.19), or (4.28) have the integrality property [46]. Actually, if one performs a simple
rescaling x → 4x, their series expansions actually have integer coefficients [46, 143]:

χ̃
(3)
d;3(4x) = 2 + 20x + 104x2 + 560x3 + 2648x4 + 12848x5

+58112x6 + 267776x7 + 1181432x8 + 5281328x9 + · · · , (4.31)

or

2F1

(
[
1

6
,

1

3
], [1]; Q(x)

)
[x → 4 · x] = 1 + 6x2 − 24x3 + 60x4 − 96x5

+120x6 − 672x7 + 5238x8 − 25440x9 + 81972x10 + · · · , (4.32)

which can be turned into positive integers if we also change x into −x.
This provides more examples of the almost quite systematic occurrence [46] in the Ising

model of (globally nilpotent [255]) linear differential operators associated with elliptic curves,
either because one gets straightforward elliptic integrals, or because one gets operators as-
sociated with modular forms. For the diagonal susceptibility of the Ising model, are we also
going to see the emergence of Calabi-Yau-like operators [7, 6] as already discovered in χ̃(6)

(see [46]) ?

4.3 Computations for χ̃
(4)
d (t)

We now turn to the computation of χ̃
(4)
d (t), whose differential operator L(4)

8 is of order
eight and is a direct sum of three irreducible differential operators [57]:

L(4)
8 = L

(4)
1 ⊕ L

(4)
3 ⊕ L

(4)
4 . (4.33)
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The solution of L(4)
8 analytic at t = 0, is thus naturally decomposed as a sum:

Sol(L(4)
8 ) = a1 · χ̃(4)

d;1(t) + a2 · χ̃(4)
d;2(t) + a3 · χ̃(4)

d;3(t). (4.34)

The solutions χ̃
(4)
d;1(t) and χ̃

(4)
d;2(t) were explicitly found1 to be [57]

χ̃
(4)
d;1(t) =

t

1− t
, and: (4.35)

χ̃
(4)
d;2 =

9

8
· (1 + t) · t2

(1 − t)5
· 3F2

(
[
3

2
,

5

2
,

5

2
], [3, 3];

−4 t

(1 − t)2

)
=

1 + t

(1− t)2
· 2F1([1/2,−1/2], [1]; t)2 − 2F1([1/2, 1/2], [1]; t)2

− 2t

1− t
· 2F1([1/2, 1/2], [1]; t) · 2F1([1/2,−1/2], [1]; t). (4.36)

Here, again, one notes the occurrence of χ̃
(2)
d which is χ̃

(4)
d;1 up to a normalization factor.

One should be careful that the 3F2 closed form (4.36) for χ̃
(4)
d;2, together with the previous

exact result (4.16), may yield to a q+1Fq with rational pullback, prejudice which has no
justification for the moment.

Similar to L
(3)
3 , the order-three operator for χ̃

(4)
d;2, is homomorphic to its adjoint and its

symmetric square has a simple rational function solution. The exact expressions (4.36) for

χ̃
(4)
d;2 are obtained in a similar way to the solution (4.16), (4.19) of L

(3)
3 in the previous section.

We first find [112] that the corresponding linear differential operator is homomorphic to the
symmetric square of a second order operator, which turns out to have complete elliptic
integral solutions. The emergence in (4.36) of a 3F2 hypergeometric function with the
selected2 rational pullback −4 t/(1 − t)2 is totally reminiscent (even if it is not exactly of
the same form) of Kummers’s quadratic relation [238, 48], and its generalization to 3F2

hypergeometric functions (see the relations (4.12), (4.13) in [15, 16], and (7.1) and (7.4)
in [243]), for example:

3F2

(
[1 + α − β − γ,

α

2
,
α + 1

2
], [1 + α − β, 1 + α − γ];

−4 t

(1 − t)2

)
= (1 − t)α · 3F2([α, β, γ], [1 + α − β, 1 + α − γ]; t). (4.37)

which relates different8
3F2 hypergeometric functions. In fact, similar to (4.29), we do have

1The first line in (4.36) can, for instance, be found by directly using the command dsolve in Maple, and
the second line follows by use of identity 520 on page 526 of [185]. This result is also easily obtained by using
Maple to directly compute the homomorphisms between the order-three operator and the operator which
annihilates 2F1([1/2, 1/2], [1]; t).

2The fundamental role played by such specific pullbacks as isogenies of elliptic curves has been underlined
in [48].

8Note that the Saalschützian difference (4.54) (see below) of the 3F2 in the lhs of (4.37) is independent
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an equality between the 3F2 hypergeometric function with the pullback u = −4 t/(1 − t)2

and the same 3F2 hypergeometric, where the pullback has been changed5 into v = −4 (1 −
t)/t2,

3F2

(
[
3

2
,

5

2
,

5

2
], [3, 3];

−4 (1− t)
t2

)
= V2

[
3
F2

(
[
3

2
,

5

2
,

5

2
], [3, 3];

−4 t

(1 − t)2

)]
, (4.38)

where V2 is a second-order operator similar to the one in (4.29). The elimination of t in
these two pullbacks, gives the simple genus zero curve

u2 v2 − 48 v u + 64 · (u+ v) = 0, (4.39)

reminiscent of the simplest modular equations [109, 187, 241]. This genus zero curve can also
be simply parametrized with u = −4 t/(1 − t)2 and9 v = 4 t · (1 − t). Again, one gets an
identity similar to (4.38), with another order-two intertwinner V2:

3F2

(
[
3

2
,

5

2
,

5

2
], [3, 3]; 4 t · (1− t)

)
= V2

[
3
F2

(
[
3

2
,

5

2
,

5

2
], [3, 3];

−4 t

(1 − t)2

)]
. (4.40)

4.3.1 Computation of χ̃
(4)
d,3(t)

The third term χ̃
(4)
d;3 in the sum (4.64) is the solution analytic at x = 0 of the order-four

linear differential operator

L
(4)
4 = D4

t +
n3(t)

(t+ 1) · d4(t)
·D3

t + 2
n2(t)

(t2 − 1) · t · d4(t)
·D2

t

+2
n1(t)

(t2 − 1) · t · d4(t)
·Dt − 3

(t+ 1)2

(t− 1) · t2 · d4(t)
, (4.41)

where:

d4(t) = (t2 − 10 t+ 1) · (t− 1) · t, n1(t) = t4 − 13 t3 − 129 t2 + 49 t − 4,

n2(t) = 5 t5 − 55 t4 − 169 t3 + 149 t2 − 28 t + 2,

n3(t) = 7 t4 − 68 t3 − 114 t2 + 52 t − 5.

of α, β, γ and equal to 1/2, in contrast with the rhs.

5This amounts to changing t into 1 − t.
9This amounts to changing t into −t/(1− t) or −1/(1− t).
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The operator L
(4)
4 has the following regular singular points and exponents

t = 0, ρ = 0, 0, 0, 1 → log3 terms,

t = 1, ρ = −2,−1, 0, 1 → t−2, t−1, log term,

t = −1, ρ = 0, 1, 2, 7 → t7 log term, (4.42)

t = ∞, ρ = 0, 0, 0, 1 → log3 terms.

The singularities at the roots of t2 − 10t + 1 = 0 are apparent. This order-four operator
(4.41) is actually homomorphic to its formal adjoint:

adjoint(L2) · L(4)
4 = adjoint(L

(4)
4 ) · L2, (4.43)

where L2 is the order-two intertwinner:

L2 =
(
Dt −

d

dt
ln(r(t))

)
·Dt where:

r(t) =
(t2 − 10t + 1)(t + 1)

t · (t− 1)3
. (4.44)

The remarkable equivalence of (4.41) with its adjoint is related to the fact that the exterior
square of (4.41) has a rational function solution, that is, that the exterior square factors into
an order-five operator L5 and an order-one operator with a rational function solution (which
coincides with r(t) in (4.44)).

Ext2(L
(4)
4 ) = L5 ·

(
Dt −

d

dt
ln(r(t))

)
. (4.45)

In other words, the (irreducible) order-four operator (4.41) is not only globally nilpotent
(“Derived from Geometry” [47]) it is a “special” G-operator [255] (Special Geometry): its
differential Galois group becomes “special” (symplectic of orthogonal groups, see for in-
stance [139]).

This highly selected character of the order-four operator (4.41) is further confirmed by
the “integrality property” [46] of the series expansion of its analytical solution at t = 0:

Sol(L
(4)
4 ) = t + 11/8 t2 + 27/16 t3 + 2027/1024 t4

+9269/4096 t5 + 83297/32768 t6 + · · · (4.46)
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which, in one rescaling t = 16u, becomes a series with integer coefficients:

Sol(L
(4)
4 ) = 16u + 352u2 + 6912u3 + 129728u4 + 2372864u5

+42648064u6 + 756609024u7 + 13286784384u8 (4.47)

+231412390144u9 + 4002962189824u10 + 68843688570880u11

+1178125203260416u12 + 20074611461902336u13

+340769765322760192u14 + 5765304623564259328u15

+97249731220784896768u16 + 1636034439292348588288u17 + · · ·

This integrality property [143] suggests a modularity [46, 153, 262] of this order-four operator
(4.41). The simplest scenario would correspond to (4.46) being elliptic integrals or, beyond,
modular forms that would typically be, up to differential equivalence, a 2F1 hypergeometric
function with not one but two pullbacks (the relation bewteen these two pullbacks being
a modular curve). More involved scenarios would correspond to (4.41) being a Calabi-
Yau ODE [7, 6] or some other mirror map (see [46]). We have first explored the simplest
scenarios (elliptic integrals, modular forms), which, as far as differential algebra is concerned,
amounts to seeing if this order-four operator (4.41) corresponds, up to differential operator
equivalence, to symmetric powers of a second order operator. This simple scenario is ruled
out1. We are now forced to explore the much more complex Calabi-Yau framework, with two
possible scenarios: a general Calabi-Yau order-four ODE [7, 6], or a Calabi-Yau order-four
ODE that is 4F3 solvable, the solution like (4.46) being expressed, up to operator equivalence,
in term of a 4F3 hypergeometric function up to a pullback that remains to be discovered. This
last situation would correspond to the 4F3 Calabi-Yau situation we already encountered in
χ̃(6) (see [46]). The 4F3 solvability is clearly a desirable situation, because everything can
be much more explicit.

In constrast with the (globally nilpotent) order-two operators, finding that a given order-
four operator corresponds to a given 4F3 operator up to a pullback (and up to homomor-
phisms) is an extremely difficult task, because the necessary techniques have not yet been
developed. Quite often, it goes the other way (no go result): one can rule out a given order-
four operator being a 4F3 operator with a rational pullback (up to differential operator
equivalence).

In fact, and fortunately, operator (4.41) turns out to be, a nice example. It has singu-
larities at 0, 1, −1, ∞, and these points have to be mapped to 0, 1, ∞ (the singularities
of 4F3 hypergeometric functions) by the pullback. Assuming a rational pullback of degree
two, there is a systematic algorithm to find all of the rational pullback mapping 0, 1, −1, ∞
onto 0, 1, ∞. This systematic algorithm is described in [89] for order-two operators, but the
same approach works (with little change) for fourth order operators as well5. The rational

1 See for instance, van Hoeij’s program [112] from ISSAC’2007.

5For order-two equations with four singularities (HeunG ...), there are already hundreds of cases (now
all found), see [114]. Looking at the size of that table [114] it is clear that providing an algorithm for finding
pullbacks will be quite hard.
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pullback function can actually be obtained (with some trial and error) from this mapping
of singularities constraint and from the exponent-differences, in the same way as in section
2.6 in [49]. The reader who is just interested in the surprisingly simple final result and not
the mathematical structures, in particular the interesting relations between some Calabi-
Yau ODEs and selected 4F3, can skip the next three subsections1 and jump directly to the
solution of (4.41) given by (4.63) with (4.61).

4.3.2 Simplification of L
(4)
4

As a “warm up”, let us, for the moment, try to simplify the order-four operator (4.41),
getting rid of the apparent singularities t2 − 10t + 1 = 0, and trying to take into account
all the symmetries of (4.41): for instance, one easily remarks that (4.41) is actually invariant
by the involutive symmetry t ↔ 1/t.

Let us introduce the order-four operator

L4 = D4
x +

10x2 − 2x − 5

(x− 1) (1 + 2 x)x
·D3

x +
1

4
· (5x+ 4) · (6x2 − 13x + 4)

(x− 1)2 (1 + 2x)x2
·D2

x

+
1

4
· x + 8

(x− 1)2 (1 + 2x)x2
·Dx −

3

4 · (x− 1) (1 + 2 x)x3
, (4.48)

where 1 + 2x = 0 is an apparent singularity. One can easily verify that the order-four
operator (4.41) is the previous operator (4.48), where we have performed the t ↔ 1/t
invariant pullback:

x = − 4 t

(1 − t)2
, L

(4)
4 = L4

[
x → − 4 t

(1 − t)2

]
. (4.49)

The operator (4.48) is homomorphic to another order-four operator with no apparent
singularities

M4 = D4
x + 2 · 5x − 4

(x− 1) · x
·D3

x +
1

4
· (95x2 − 160x + 56)

(x− 1)2 · x2
·D2

x

+
1

4
· 45x3 − 124x2 + 104x − 16

(x− 1)3 · x3
·Dx −

2x − 5

4 · (x− 1)3 · x3
, (4.50)

as can be seen by the (very simple) intertwinning relation:

M4 ·Dx =
(
Dx +

10x2 − 4x − 3

(x− 1) (1 + 2 x) · x

)
· L4. (4.51)

This last operator with no apparent singularities, is homomorphic to its adjoint in a very

1Which correspond, in fact, to the way we originally found the result.
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simple way:

adjoint(M4) · x4 · (1− x) = x4 · (1− x) · M4. (4.52)

Do note that, remarkably, the exterior square of M4, is an order five operator and not the
order six operator one could expect generically from an intertwinning relation like (4.51) (the
exterior square of the order-four operator (4.48) is of order six with the rational function
solution (1 + 2x)/x). Taking into account all these last results, no apparent singularities,
the singularities being the standard 0, 1, ∞ singularities, the intertwinning relation (4.51),
the fact that the exterior square is of order five, the order-four operator (4.50) looks like a
much simpler operator to study than the original operator (4.41).

4.3.3 k-balanced 4F3 hypergeometric function

Let us make here an important preliminary remark on the 4F3 linear differential opera-
tors. Let us consider a 4F3 hypergeometric function

4F3([a1, a2, a3, a4], [b1, b2, b3]; t), (4.53)

with rational values of the parameters ai and bj. Its exponents at x = 0 are 0, 1 − b1,
1 − b2, 1 − b3, its exponents at x = ∞ are a1, a2, a3, a4, and its exponents at x = 1
are 0, 1, 2 and S where S is the Saalschützian difference:

S = (b1 + b2 + b3) − (a1 + a2 + a3 + a4). (4.54)

The Saalschützian condition [205, 206, 207, 242] S = 1 is thus a condition of confluence of
two exponents at x = 1.

The linear differential order-four operators annihilating the 4F3 hypergeometric function
(4.53) are necessarily globally nilpotent, and they will remain globally nilpotent up to pull-
backs and up to differential operator equivalence2. In contrast, the corresponding order-four
operators are not, for generic (rational) values of the parameters ai and bj, such that they
are homomorphic to their formal adjoint (“special geometry”), or such that their exterior
square, of order-six, has a rational function solution (a degenerate case corresponding to the
exterior square being of order five).

These last “special geometry” conditions (see (4.43) and (4.45)), correspond to selected
algebraic subvarieties in the parameters ai and bj. In the particular case of the exterior
square of the order-four operator being of order five1, we will show, in forthcoming pub-
lications, that the parameters ai and bj of the hypergeometric functions are necessarily

2Global nilpotence is preserved by pullback (change of variables) and by homomorphisms (operator
equivalence).

1This condition is seen by some authors, see (11) in [108], as a condition for the ODE to be a Picard-
Fuchs equation of a Calabi-Yau manifold. These conditions, namely (11) in [108], are preserved by pullback,
not operator equivalence.
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restricted to three sets of algebraic varieties: a codimension-three algebraic variety included
in the Saalschützian condition [205, 206, 207, 242] S = 1 and two (self-dual for the adjoint)
codimension-four algebraic varieties, respectively included in the two hyperplanes S = −1
and S = 3.

Imagine that one is lucky enough to see the order-four operator (4.50) (which is such
that its exterior square is of order five) as a 4F3 solvable Calabi-Yau situation: one is, thus,
exploring particular 4F3 hypergeometric functions corresponding to these (narrow sets of)
algebraic varieties which single out particular ( k = −1, 1, 3) k-balanced hypergeometric
functions5 (rather than the well-poised hypergeometric functions, or very well-poised8 hy-
pergeometric functions [164, 165] one could have imagined1). We are actually working up
to operator equivalence, which amounts to performing derivatives of these hypergeometric
functions. It is straightforward to see that the n-th derivative of a hypergeometric function
shifts the Saalschützian difference (4.54) by an integer, and that this does not preserve the
condition for the exterior square of the corresponding order-four operator to be order five:
it becomes an order-six operator, homomorphic to its formal adjoint, with a rational func-
tion solution. The natural framework for seeking 4F3 hypergeometric functions (if any) for
our order-four operators (4.41), (4.48), (4.50) is thus (selected) k-balanced hypergeometric
functions (rather than the well-poised, or very well-poised, hypergeometric functions [165]
...).

4.3.4 L
(4)
4 is 4F3 solvable, up to a pullback

Let us restrict ourselves to the, at first sight, simpler order-four operators (4.48), (4.50):
even if we know exactly the rational values of the parameters ai and bj, finding that a
given order-four operator corresponds to this given 4F3 operator, up to a pullback (and up
to homomorphisms), remains a quite difficult task. We have first studied the case where
the pullback in our selected 4F3 hypergeometric functions is a rational function. This first
scenario has been ruled out on arguments based on the matching of the singularities and of
the exponents of the singularities.

We thus need to start exploring pullbacks that are algebraic functions. Algebraic func-
tions can branch at certain points (this can, for instance, turn a regular point into a singular
point). The set of algebraic functions is a very large one, so we started2 with the simplest
algebraic function situation, namely, square roots singularities. A first examination of the

5 k-balanced hypergeometric functions correspond to the Saalschützian difference being an integer : S =
k, k an integer.

8Note that very well-poised hypergeometric series are known [193] to be related with ζ(2), ζ(3), ..., which
are constants known to occur in the Ising model [265].

1Note that the conditions to be well-poised hypergeometric series are actually preserved by the transfor-
mation ai → 1 −ai, bj → 2 −bj , which corresponds to changing the linear differential operator, associated
with hypergeometric functions, into its formal adjoint.

2And also because we had a Ising model prejudice in favour of square roots [50] ...
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matching of the singularities, and of the exponents of the singularities, indicates that we
should have square roots at x = 1 only.

Along this square root line, let us recall the well-known inverse Landen transformation
in terms of k, the modulus of the elliptic functions parametrizing the Ising model:

k −→ 1 −
√

1 − k2

1 +
√

1 − k2
. (4.55)

In terms of the variable x = k2, this inverse Landen transformation reads:

x −→ P (x) =
(1 −

√
1 − x

1 +
√

1 − x

)2

=
x2 − 8x + 8

x2
− 4 · (2− x) · (1− x)1/2

x2
. (4.56)

Using this pullback P (x), we have actually been able to obtain the solution of the order-four
differential operator (4.50) in terms of four terms like

4F3

(
[
1

2
,

1

2
,

1

2
,

1

2
], [1, 1, 1], P (x)

)
. (4.57)

This slightly involved solution is given in 4.B.
We can now get the solution of (4.41), the original operator L

(4)
4 , from this slightly

involved result, since (4.41) is (4.50) up to a simple pullback, namely the change of variable

(4.49). Going back from (4.49) to the original variable t in L
(4)
4 , the previous pullback (4.56)

simplifies remarkably:

P
(
− 4 t

(1 − t)2

)
=

1 + t4

2 · t2
− 1 − t4

2 · t2
= t2, (4.58)

the Galois conjugate of (4.56) giving 1/t2. Of course, once this key result is known, namely
that a t2 pullback works, it is easy to justify after the fact this simple monomial result:
after all, L

(4)
4 has singularities at 0, 1, −1, ∞, and these points can be mapped (under t2)

to 0, 1, ∞ (i.e. the singularities of 4F3 hypergeometric functions).
Pullbacks have a natural structure with respect to composition of functions1. It is worth

noting that (4.58) describes the composition of two well-known isogenies of elliptic curves,
the inverse Landen transformation (4.56) and the rational isogeny −4t/(1 − t)2 underlined
by R. Vidunas [239] and in [48], giving the simple quadratic transformation t → t2.

All this means that the solution of L
(4)
4 can be expressed in terms of the hypergeometric

1Suppose that an operator O2 is a pullback of an operator O1, where the pullback f is a rational function
and that O3 is also a pullback of O1, where the pullback is a rational function g. Then O3 is also a pullback
of O2. To compute this pullback function, one has to compose g and the inverse of f .
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function

4F3

(
[
1

2
,

1

2
,

1

2
,

1

2
], [1, 1, 1], t2

)
(4.59)

and its derivatives. Actually considering the hypergeometric operator H having (4.59) as a
solution, it can be seen to be homomorphic to (4.41)

A3 · H = L
(4)
4 · A3, (4.60)

where the order-three intertwinners A3 and A3 read, respectively, (with d3(t) = t · (t+ 1) ·
(t− 1)2 · (t2 − 10 t+ 1)):

A3 = 2 · (1 + t) · t3 ·D3
t +

2

3
· 16t2 − t− 11

t− 1
· t2 ·D2

t

+
1

3
· 31t2 − 4t− 11

t− 1
· t ·Dt + t, (4.61)

A3 =
2

t − 1
·D3

t +
2

3
· 1

d3(t)
· (10 t4 − 107 t3 − 225 t2 + 163 t− 17) ·D2

t

+
1

3
· 1

t · d3(t)
· (5 t4 − 66 t3 − 900 t2 + 290 t− 33) ·Dt

+
1

3
· 1

t · d3(t)
· (t3 − 21 t2 + 99 t− 23). (4.62)

From the intertwinning relation (4.60), one easily finds that the solution of L
(4)
4 which is

analytic at t = 0 is A3 acting on (4.59):

χ̃
(4)
d;3 = A3

[
4F3([1/2, 1/2, 1/2, 1/2], [1, 1, 1]; t2)

]
. (4.63)

Having with (4.63) a normalization for χ̃
(4)
d;3, we can now fix the values of the coefficients

ai in the sum (4.34) for χ̃
(4)
d (t). They can be fixed by expanding and matching the rhs with

(4.34) and χ̃
(4)
d (t), and solving for the expressions in front of three tn, with n ≥ n0, n0 being

the highest local exponent of L(4)
8 . This gives

χ̃
(4)
d =

1

23
· χ̃(4)

d;1 +
1

3 · 23
· χ̃(4)

d;2 −
1

23
· χ̃(4)

d;3. (4.64)

Remark: It is quite surprising to find exactly the same 4F3 hypergeometric function
(4.59) with the exact same, remarkably simple pullback t2 as the one we already found in
the order-four Calabi-Yau operator L4 in χ̃(6) [46].

Comment: Of course, from a mathematical viewpoint, when looking for a pullback
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one can in principle always ignore all apparent singularities. These calculations displayed
here look a bit paradoxical: the calculations performed with the (no apparent singularities)
operator (4.50), which looks simpler (it has an exterior square of order five, and is very simply
homomorphic to its adjoint, ...) turns out to have a more complicated pullback (4.56), than
the amazingly simple pullback (namely t2) we finally discover for the original operator (4.41)
(see (4.63)). The “complexity” of the original operator (4.41) is mostly encapsulated in the
order-three intertwinner A3 (see (4.61)). The “4F3-solving” of the operator amounts to
reducing the operator, up to operator equivalence (4.60), to a 4F3 hypergeometric operator
up to a pullback. Finding the pullback is the difficult step: as far as “4F3-solving” of an
operator is concerned, what matters is the complexity of the pullback, not the complexity of
the operator equivalence.

Ansatz: Of course, knowing the key ingredient in the final result (4.63), namely that
the pullback is just t2, it would have been much easier to get this result. Along this line one
may recall the conjectured existence of a natural boundary at unit circle |t| = 1 for the
full susceptibility of the Ising model, and, more specifically for the diagonal suscpetibility
n-fold integrals we study here, the fact that the singularities are all N -th root of unity (N
integer). Consequently, one may have, for the Ising model, a tN prejudice for pullbacks.

In forthcoming studies of linear differential operators occurring in the next (bulk) χ̃(n)’s

or (diagonal) χ̃
(n)
d ’s, when trying to see if these new (Calabi-Yau like, special geometry)

operators are q+1Fq reducible up to a pullback, we may save some large amount of work by
assuming that the corresponding pullbacks are of the simple form tN where N is an integer.

4.4 The linear differential equation of χ̃
(5)
d in mod.

prime and exact arithmetics

The first terms of the series expansion of χ̃
(5)
d (x) read:

χ̃
(5)
d (x) =

3

262144
· x12 +

39

1048576
· x14 +

5085

67108864
· x16 (4.65)

+
9

67108864
· x17 +

33405

268435456
· x18 +

315

536870912
· x19 + · · ·

where x = t1/2 = sinh 2Ev/kT sinh 2Eh/kT is our independent variable.

In order to obtain the linear differential equation for χ̃
(5)
d (x), we have used in [57] a “mod.

prime” calculation which amounts to generating large series modulo a given prime, and then
deduce, the linear differential operator for χ̃

(5)
d (x) modulo that prime.

With 3000 coefficients for the series expansion of χ̃
(5)
d (x) modulo a prime, we have

obtained linear differential equations of order 25, 26, · · · . The smallest order we have reached
is 19, and we have assumed that the linear differential equation of χ̃

(5)
d (x) is of minimal order

19.
In [50], we have introduced a method to obtain the minimal order of the ODE by pro-
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ducing some (≥ 4) non minimal order ODE and then using the ”ODE formula” (see [45, 51,

50] for details and how to read the ODE formula). The ODE formula for χ̃
(5)
d (x) reads

31Q + 19D − 302 = (Q+ 1) · (D + 1) − f, (4.66)

confirming that the minimal order of the ODE for χ̃
(5)
d (x) is 19. Note that the degree of

the polynomial carrying apparent singularities should be 237 (see Appendix B in [45]). Call

L(5)
19 the differential operator (known mod prime) for χ̃

(5)
d (x).

The singularities and local exponents of L(5)
19 are1

x = 0, ρ = 05, 1/2, 14, 23, 43, 3, 7, 12,

x =∞, ρ = 15, 3/2, 24, 33, 4, 53, 8, 13,

x = 1, ρ = −3,−2,−1, 04, 23, 42, · · · , (4.67)

x = −1, ρ = 05, 24, 43, 62, 82, 102, · · · ,
x = x0, ρ = 5/2, 7/2, 7/2, · · · ,
x = x1, ρ = 23/2, · · ·

where x0 (resp. x1) is any root of 1 + x+ x2 = 0 (resp. 1 + x+ x2 + x3 + x4 = 0), and the
trailing · · · denote integers not in the list.

Note that, in practice, we do not deal with is the minimal order differential operator
L(5)

19 but with an operator of order 30 (that L(5)
19 rightdivides): order 30 is what we have

called in [45, 51, 50] the “optimal order”, namely the order for which finding the differential
operator annihilating the series requires the minimum number of terms in the series. With
the tools and methods developed in [45, 51, 170], we are now able to factorize the differential
operator and recognize some factors in exact arithmetic. This way, we may see whether some
factors occurring L(5)

19 follow the ”special geometry” line we encountered for χ̃
(3)
d and χ̃

(4)
d .

Our first step in the factorization of L(5)
19 is to check whether L(3)

6 (the differential operator

for χ̃
(3)
d ) is a right factor of L(5)

19 , meaning that the solutions of L(3)
6 (and in particular the

integral χ̃
(3)
d ) are also solution of L(5)

19 . This is indeed the case.
Using the methods developed in [45, 51, 170], we find that the series for the difference

χ̃
(5)
d (x) −α χ̃(3)

d (x) requires an ODE of minimal order 17 for the value5 α = 8. This confirms

that L(3)
6 is in direct sum of L(5)

19 , and that some (order-four) factors of L(3)
6 are still in L(5)

17 :

L(5)
19 = L(3)

6 ⊕ L(5)
17 (4.68)

This order four factor is obviously L
(3)
1 ⊕ L

(3)
3 . Since these factors are in direct sum

in L(3)
6 , the order-seventeen operator L(5)

17 is also the annihilator of χ̃
(5)
d (x) − β χ̃

(3)
d,2(x) for

1 The local exponents are given as (e.g.) 23 meaning 2, 2, 2

5 Comparing with eq.(58) in [57], one should not expect a 1/2 contribution, since the sum on the

g5(N, t)’s still contains χ̃
(3)
d .
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β = 4, meaning that we also have

L(5)
19 = L

(3)
2 ⊕ L(5)

17 (4.69)

At this step, the differential operator L(5)
17 is known in prime. To go further in the

factorization, we use the method developped in [45, 51] along various singularities and local

exponents of L(5)
17 which read1:

x = 0, ρ = 05, 1/2, 14, 23, 42, 3, 7, ln(z)4, z1/2,

x =∞, ρ = 15, 3/2, 24, 33, 4, 52, 8, ln(z)4, z3/2,

x = 1, ρ = −3,−2,−1, 04, 23, · · · , ln(z)3, z−3, z−2, z−1,

x = −1, ρ = 05, 24, 43, 62, 82, · · · , ln(z)4, (4.70)

x = x0, ρ = 5/2, 7/2, 7/2, · · · , z5/2, z7/2, z7/2 ln(z),

x = x1, ρ = 23/2, · · · , z23/2

where x0 and x1 are again the roots of 1 + x + x2 = 0 and 1 + x + x2 + x3 + x4 = 0, and
the trailing · · · denote integers not in the list. The last column shows the maximum ln(z)

occurring in the formal solutions of L(5)
17 , z being the local variable of the expansion.

Use is made of section 5 of [57] to recognize exactly some factors. This is completed by
an usual rational reconstruction [170].

We are now able to give new results completing what was given in Section 5 of [57]. The

linear differential operator L(5)
17 has the factorization:

L(5)
17 = L

(5)
6 · L

(5)
11 . (4.71)

The linear differential operator L(5)
11 has been fully factorized and the factors are known in

exact arithmetic (the indices are the orders)

L(5)
11 = L

(3)
1 ⊕ L

(3)
3 ⊕

(
W

(5)
1 · U (5)

1

)
⊕
(
L

(5)
4 · V

(5)
1 · U (5)

1

)
, (4.72)

and are given in 4.C.
The factor L

(5)
6 is the only one which is known in primes and it is irreducible. The irre-

ducibility has been proven with the method presented in section 4 of [45]. This is technically
tractable since there are only two free coefficients (see (4.76), (4.77)) that survive in the

expansion of the analytical series at x = 0 of L
(5)
6 .

In the factorization (4.71), (4.72) of L(5)
11 and L(5)

17 , the factors are either known and

occurring elsewhere (L
(3)
1 , L

(3)
3 ) or simple order-one linear differential operators (U

(5)
1 , V

(5)
1 ,

W
(5)
1 ), except the order-four operator L

(5)
4 and the order-six operator L

(5)
6 . It is then for these

specific operators that we examine whether they are “Special Geometry”.

1There are solutions analytic at x = 0 with exponents 0, 1, 2, 4, 7.
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4.4.1 The linear differential operator L
(5)
4

The order-four linear differential operator L
(5)
4 has the following local exponents

x = 0, ρ = −2,−2,−1, 0,

x = ∞, ρ = 3, 3, 4, 5,

x = 1, ρ = −2,−2,−2,−2, (4.73)

x = −1, ρ = −2,−2, 0, 0,

1 + x + x2 = 0, ρ = −1, 0, 1, 2,

At all these singularities x0, the solutions have the maximum allowed degree of log’s (i.e.
ln(x− x0)3), except at the singularities roots of 1 + x + x2 = 0, where the solutions carry
no log’s.

If we consider the linear differential operator L
(5)
4 · d(x), where

d(x)−1 = x2 · (1− x)2 · (1 + x)2 · (1 + x + x2), (4.74)

nothing prevents (as far as the ρ’s and log’s are concerned) to check whether this conjugated
operator is homomorphic to a symmetric cube of the order-two linear differential operator
of an elliptic integral.

We find the solution of L
(5)
4 as

Sol(L
(5)
4 ) = d(x)−1 ·

(
3x · E(x)3 − (2x4 + 3x3 − 4x2 − 6x+ 2) (1 + x)2 ·K(x)3

+(1 + x) (5x4 − 23x2 − 10x+ 4) ·K(x)2 · E(x)

−(2− x− 17x2 − 10x3 + 2x4) ·K(x) · E(x)2
)
, (4.75)

where E and K are the usual complete elliptic integrals 2F1([1/2,−1/2], [1], x2) and

2F1([1/2, 1/2], [1], x2). Again the occurrence of (very simple) elliptic integrals is underlined.

4.4.2 On the order-six linear differential operator L
(5)
6 : “Special

Geometry”

Let us write the formal solutions L
(5)
6 at x = 0, where the notation [xp] means that the

series begins as xp (const.+ · · · ). There is one set of five solutions and one analytical solution

S1 = [x7] ln(x)4 + [x4] ln(x)3 + [x2] ln(x)2 + [x0] ln(x) + [x0],

S2 = [x7] ln(x)3 + [x4] ln(x)2 + [x2] ln(x) + [x0],

S3 = [x7] ln(x)2 + [x4] ln(x) + [x3], (4.76)

S4 = [x7] ln(x) + [x4], S5 = [x7], and:

S6 = [x2], (4.77)
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In view of this structure, the linear differential operator L
(5)
6 cannot be (homomorphic to) a

symmetric fifth power of the linear differential operator corresponding to the elliptic integral.
The next step is to see whether the exterior square of L

(5)
6 has a rational solution, which

means that L
(5)
6 corresponds to ”Special Geometry”. With the six solutions (4.76), seen as

series obtained mod. primes, one can easily built the general solution of Ext2(L
(5)
6 ) as∑

k,p

dk,p · (Sk
dSp
dx
− Sp

dSk
dx

), k 6= p = 1, · · · , 6, (4.78)

which should not contain log’s, fixing then some of the coefficients dk,p.

For a rational solution of Ext2(L
(5)
6 ) to exist, the form (free of log’s)

D(x) ·
∑
k,p

dk,p · (Sk
dSp
dx
− Sp

dSk
dx

), (4.79)

should be a polynomial, where the denominator D(x) reads

D(x) = xn1 · (x+ 1)n2 · (x− 1)n3 · (1 + x+ x2)n4 · (1 + x+ x2 + x3 + x4)n5 ,

the order of magnitude of the exponents nj being obtained from the local exponents of the

singularities. With series of length 700, we have found no rational solution for Ext2(L
(5)
6 ).

Even if L
(5)
6 is an irreducible operator of even order, we have looked for a rational solution

for its symmetric square. The general solution of Sym2(L
(5)
6 ) is built from (4.76) as∑

k,p

fk,p · Sk Sp, k ≥ p = 1, · · · , 6, (4.80)

and the same calculations are performed. With some 300 terms, we actually found that
Sym2(L

(5)
6 ) has a rational solution of the form1 (with P196(x) a polynomial of degree 196):

x4 · P196(x)

(x+ 1)10 · (x− 1)14 · (1 + x+ x2)21 · (1 + x+ x2 + x3 + x4)9
, (4.81)

thus showing that L
(5)
6 does correspond to ”Special Geometry”.

Note that the occurrence (4.76), (4.77) of two analytic solutions at x = 0, for L
(5)
6 , which

is irreducible, is a situation we have encountered in Ising integrals [45, 170]. The order twelve
differential operator (called Lleft12 in [170]) has four analytical solutions at x = 0 and it has
been demonstrated that it is irreducible [170].

1Note that this form occurs, for a non minimal representative of L
(5)
6 , in the factorization (4.71). On

this point, see the details around (43), (44) in [45].
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4.5 Singular behavior of χ̃
(3)
d (x)

Now we have obtained all the analytic solutions at the origin of the linear differential
equations of χ̃

(3)
d and χ̃

(4)
d , we turn to the exact computation of their singular behavior at

the finite singular points.
To obtain the singular behavior of χ̃

(3)
d (x) amounts to calculating the singular behavior

of each term in (4.18). The details are given in 4.D.

4.5.1 The behavior of χ̃
(3)
d (x) as x → 1

The evaluation of the singular behavior as x → 1 corresponds to straightforward calcu-
lations that are given by (4.12) (see (4.122) and (4.128)):

sol(L
(3)
6 )(Singular, x = 1) =

2

π
· 3 a3 + a2

(1 − x)2
+
(
−
(3a3 + a2

π

)
+ a1

+3 a2 ·
(

5π

9Γ2(5/6)Γ2(2/3)
− 8π

Γ2(1/6)Γ2(1/3)

))
· 1

1− x
+
a2

2π
· ln(1− x). (4.82)

When specialized to the combination (4.18) defining χ̃
(3)
d (x), the singular behavior reads

χ̃
(3)
d (x)(Singular, x = 1) =

(1

3
− 5π

18Γ2(5/6)Γ2(2/3)
+

4π

Γ2(1/6)Γ2(1/3)

)
· 1

1 − x

+
1

4 π
· ln(1 − x). (4.83)

This result agrees with the result determined numerically in appendix B of [57].

One remarks, for the particular combination (4.18) giving χ̃
(3)
d (x), that the most divergent

term disappears. Note that this is what has been obtained [59] for the susceptibility χ̃(3)

where the singularity (1− 4w)−3/2 of the ODE is not present in χ̃(3).

4.5.2 The behavior of χ̃
(3)
d (x) as x → −1

The calculations of the singular behavior as x → −1 rely mostly on connection formulae
of 2F1 hypergeometric functions, and the results are given below in (4.129) and (4.159). For
the combination (4.18), the singular behavior reads

χ̃
(3)
d (x)(Singular, x = −1) =

1

4π2
· ln(1 + x)2 +

(
1

4π
− 2 ln(2)− 1

2π2

)
· ln(1 + x),

which agrees with the result of appendix B of [57].
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4.5.3 The behavior of χ̃
(3)
d (x) as x → e±2πi/3

The result for the singular behaviour χ̃
(3)
d (x) as x → x0 = e±2πi/3 reads:

χ̃
(3)
d (Singular, x = x0) = −8 · 31/4

35π
eπi/12 · (x− x0)7/2

= −0.0957529 · · · eπi/12 · (x− x0)7/2. (4.84)

This agrees with the numerical result of Appendix B of [57]

− 1

3

√
2 eπi/12 · b · (x− x0)7/2, (4.85)

with b = 0.203122784 · · ·

4.6 Singular behaviour of χ̃
(4)
d (x)

To obtain the singular behavior of χ̃
(4)
d (x) amounts to obtaining the singular behavior of

each term in (4.34).

4.6.1 Behavior of χ̃
(4)
d (t) as t → 1

The calculations of the singular behavior of χ̃
(4)
d;2(t) as t → 1 are displayed in 4.E, and

read

χ̃
(4)
d;2(t)(Singular, t = 1) =

8

π2(1− t)2
− 8

π2(1− t)

+
5

2π2
· ln 16

1− t
− 3

2π2
· ln2 16

1− t
. (4.86)

To compute the singular behavior of χ̃
(4)
d;3(t) as t → 1 we need the expression of the

hypergeometric function 4F3([1/2, 1/2, 1/2, 1/2], [1, 1, 1]; z) as z → 1. This hypergeometric
function is an example of solution of a Calabi-Yau ODE, and explicit computations of its
monodromy matrices have been given [80].

The differential equation for 4F3([1/2, 1/2, 1/2, 1/2], [1, 1, 1]; z) is Saalschützian and
well-poised (but not very-well-poised). At z = 1 it has one logarithmic solution and three
analytic solutions of the form

∞∑
n=0

cn · (1− z)n. (4.87)
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The cn satisfy the fourth order recursion relation

16n · (n− 1)2 (n− 2) · cn − 24 (n− 1)(n− 2)(2n2 − 6n+ 5) · cn−1

+16 (n− 2)2 (3n2 − 12n+ 13) · cn−2 − (2n− 5)4 · cn−3 = 0, (4.88)

where cn = 0 for n ≤ −1. The vanishing of the coefficient cn at n = 0, 1, 2, of cn−1 at
n− 1, 2 and cn−2 at n = 2 guarantees that c0, c1, c2 may be chosen arbitrarily.

The behaviour at z = 1 of 4F3([1/2, 1/2, 1/2, 1/2], [1, 1, 1]; z), which is the solution of the
ODE that is analytic at z = 0, is given in theorem 3 of Bühring [64] with the parameter

s =
3∑
j=1

bj −
4∑
j=1

aj = 1, (4.89)

(i.e. the Saalschützian condition [205, 206, 207, 242]). For completeness we quote this
theorem which is valid for all p+1Fp([a1, · · · , ap+1], [b1, · · · , bp]; z) when the parameter s of
(4.89) is any integer2 s ≥ 0:

Γ(a1) · · ·Γ(ap+1)

Γ(b1) · · ·Γ(bp)
· p+1Fp([a1, · · · , ap+1]; [b1, · · · , bp]; z)

=
s−1∑
n=0

I<n · (1− z)n +
∞∑
n=s

I>n · (1− z)n

+(1− z)s ·
∞∑
n=0

[wn + qn · ln(1− z)] · (1− z)n, (4.90)

for |1− z| < 1, −π < arg(1− z) < π and p = 2, 3, · · · where for 0 ≤ n ≤ s− 1

I<n = (−1)n · Γ(a1 + n)Γ(a2 + n)(s− n− 1)!

Γ(a1 + s)Γ(a2 + s)n!
·
∞∑
k=0

(s− n)k
(a1 + s)k(a2 + s)k

· A(p)
k , (4.91)

for s ≤ n

I>n = (−1)n · (a1 + s)n−s)(a2 + s)n−s
n!

·
∞∑

k=n−s+1

(k − n+ s)!

(a1 + s)k(a2 + s)k
· A(p)

k , (4.92)

2Again we emphasise the role of k-balanced hypergeometric functions.
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and

wn + qn · ln(1− z) = (−1)s · (a1 + s)n(a2 + s)n
(s+ n)!n!

×

(
n∑
k=0

(−n)k
(a1 + s)k(a2 + s)k

· A(p)
k [ψ(1 + n− k) + ψ(1 + s+ n)

−ψ(a1 + s+ n) − ψ(a2 + s+ n) − ln(1− z)]) , (4.93)

where (a)n = a (a+ 1) · · · (a+n− 1) is the Pochhammer’s symbol. The A
(p)
k are computed

recursively in [64] as p− 1 fold sums. In particular

A
(2)
k =

(b2 − a3)k (b1 − a3)k
k!

, (4.94)

and

A
(3)
k =

k∑
k2=0

(b3 + b2 − a4 − a3 + k2)k−k2 (b− 1− a3)k−k2 (b3 − a4)k2 (b2 − a4)k2
(k − k2)! k2!

=
(b1 + b3 − a3 − a4)k(b2 + b3 − a− 3− a4)k

k!
(4.95)

× 3F2([b3 − a3, b3 − a4, −k]; [b1 + b3 − a−a4, b2 + b3 − a3 − a4]; 1).

For use in (4.63) we need to specialize to aj = 1/2, bj = 1, where

A
(3)
k =

k∑
k2

(1 + k2)k−k2 (1/2)k−k2 (1/2)2
k2

(k − k2)! k2!

= k! · 3F2([1/2, 1/2,−k], [1, 1]; 1), (4.96)

and for respectively n = 0 and n ≥ 1

I<0 = 4
∞∑
k=0

k!

(3/2)2
k

· A(3)
k , I>n = (−1)n

(3/2)2
n−1

(n)!
·
∞∑
k=n

(k − n)!

(3/2)2
k

· A(3)
k . (4.97)

We note, in particular, the terms

A
(3)
0 = 1, A

(3)
1 = 3/4, A

(3)
2 = 41/32. (4.98)

Using these specializations in (4.90) we compute the terms in χ̃
(4)
d;3(t) which diverge as t → 1.
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The term (1− t)−1 · ln(1− t2) cancels and we are left with

χ̃
(4)
d;3(t)(Singular, t = 1) =

1

π2
·
(

8

3 (1− t)2
+

56

3 (1− t)
+

16

3 · (1− t)
· (3 I>1 − 4 I>2 )

)
+

8

3 π2
· ln 1− t2

16
.(4.99)

Thus, using (4.35), (4.86) and (4.99), we find the terms in sol(L
(4)
8 ), which diverge as

t → 1, are

sol(L
(4)
8 )(Singular, t = 1) =

8 (a3 + 3a2)

8π2
· 1

(1− t)2

+
(
a1 −

8(3a2 − 7a3)

3π2
+

16 a3

3π2
· (3I>1 − 4I>2 )

)
· 1

1− t

+
15a2 − 16a3

π2
· ln(

16

1− t
) − 3a2

2π2
· ln2(

16

1− t
), (4.100)

where the constant 3I>1 − 4I>2 reads (with 200 digits):

3I>1 − 4I>2 = (4.101)

−2.212812128930821923547976814986050021481359293357467766171

630847360232164854964985815375185842526324049358792616932061

331297671076950376704358248264961101007730925578212714241825

5205323181711923135264 · · · (4.102)

When specializing to the particular combination (4.64), the singular behavior of the

integral χ̃
(4)
d (t) reads

χ̃
(4)
d (t)(Singular, t = 1) =

1

8 (1− t)
·
(

1 − 1

3π2
[64 + 16 · (3I>1 − 4I>2 )]

)
+

7

16π2
· ln 16

1− t
− 1

16π2
· ln2 16

1− t
, (4.103)

This agrees2 with the result determined numerically in Appendix B of [57].

We find again and similarly to χ̃
(3)
d (t) that the most divergent term disappears for the

particular combination giving χ̃
(4)
d (t). And here again, this is what has been observed [59]

for the susceptibilty χ̃(4) at the singularity x = 16w2 = 1 which occurs in the ODE as x−3/2

and cancels in the integral χ̃(4).

2Note that there is an overall factor of 2 between this result and the results given in Appendix B of [57]

which comes from a multiplicative factor of 2 in the series (around t = 0) of χ̃
(4)
d (t) used in [57]. This applies

also to the result of the singular behavior at t = −1.
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Remark: It is worth recalling that similar calculations for χ̃(4), also based on the eval-
uation of a connection matrix (see section 9 of [265]), require to evaluate a constant I−4 that
is actually expressed in terms of ζ(3):

I−4 =
1

16 π3
·
(4π2

9
− 1

6
− 7

2
· ζ(3)

)
, (4.104)

when the bulk χ̃(3) requires some Clausen constant [265] that can be written as:

Cl(π/3) =
31/2

108
· (3 · ψ(1, 1/3) + 3 · ψ(1, 1/6) − 8π2). (4.105)

It is quite natural to see if the constant 3I>1 − 4I>2 given with 200 digits in (4.101), can also
be obtained exactly in terms of known transcendental constants ( ζ(3), · · · ), or evaluations
of hypergeometric functions that naturally occur in connection matrices [265] (see (4.185) in
4.F). This question is sketched in 4.F.

4.6.2 Behavior of χ̃
(4)
d (t) as t → −1

When t → −1 the only singular terms come from χ̃
(4)
d;3(t). Furthermore the operator A3

of (4.61) is non-singular at t = −1. Therefore, the only singularities in χ̃
(4)
d (t) come from

the terms with ln(1 − t2) in the expansion (4.90) of 4F3([1/2, 1/2, 1/2, 1/2], [1, 1, 1]; t2) at

t → −1. Thus, from (4.64) we find that the singular part of χ̃
(4)
d (t) at t = −1 reads

χ̃
(4)
d;sing(t) = −1

8
χ̃

(4)
d;3;sing(t) = −1

8
ln(1− t2) · A3 ·

∞∑
n=0

qn · (1− t2)n+1, (4.106)

with qn obtained from (4.93) as

qn =
(3/2)2

n

(n+ 1)!n!
·

n∑
k=0

(−n)k
(3/2)2

k

· A(3)
k , (4.107)

where A
(3)
k is given by (4.95). We know from the exponents of L

(4)
4 at t = −1 that the result

has the form (t + 1)7 · ln(t + 1). Therefore to obtain this term in a straight forward way
we need to expand the coefficient of ln(1− t2) to order (1 + t)9 in order that the term from
(1 + t) ·D3

t be of order (1 + t)7. This is tedious by hand but is easily done on Maple and we

find that the leading singularity in χ̃
(4)
d (t) at t = −1 is

χ̃
(4)
d (Singular, t = −1) =

1

26880
· (1 + t)7 · ln(1 + t), (4.108)

which agrees with Appendix B of [57].
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4.7 Conclusion: is the Ising model “modularity” re-

ducible to selected (q+1)Fq hypergeometric functions

?

In this paper we have derived the exact analytic expressions for χ̃
(3)
d (t) and χ̃

(4)
d (t) and

from them have computed the similar behaviour at all singular points. We have also obtained
some additional exact results for χ̃

(5)
d (t) (see section 4.4). This completes the program

initiated in [57] where the singularities were studied by means of formal solutions found
on Maple and numerical studies of the connection problem [265]. In this sense we have a
complete solution to the problem. However, in another sense, there are still most interesting
open questions.

In section 4.3.1 we used the solution of the hypergeometric connection problem [64] which
gave the connection constants I<n and I>n as multiple sums. However there are special cases,
as mentioned in [65], where it is known by indirect means that the series can be simplified,
but for which a direct simplification of the series has not been found. One example is given by
the computation in section 4.2 of the singularity of χ̃

(3)
d (t) at t = 1 which we accomplished

by means of the reduction (4.19) of a 3F2 function to a product of 2F1 functions. This
produced the gamma function evaluation of the singularity at x = 1 of (4.128). This
singularity could also have been computed directly from the 3F2 function in (4.16) by use of
the Bühring formula (4.90) but a reduction of the sums for the required In to the gamma

function form is lacking. There are two suggestions that such a reduction may exist for χ̃
(4)
d (t)

at t = 1. The first is that, by analogy with the corresponding calculation for χ̃(4)(t) in the
bulk [234], the amplitude could be evaluated in terms of ζ(3). The second is that evaluations
of Calabi-Yau [80] hypergeometric functions like 4F3([1/2, 1/2, 1/2, 1/2], [1, 1, 1]; z) take

place. The larger question, of course, is how much the structure seen in χ̃
(n)
d (t) and χ̃(n)(t)

for n = 1, 2, 3, 4 can be expected to generalize to higher values of n. It is the opinion of the
authors that there is a great deal of mathematical structure of deep significance remaining
to be discovered.

These new exact results for the diagonal susceptibility of the Ising model confirm that the
linear differential operators that emerge in the study of these Ising n-fold integrals, are not
only “Derived From Geometry” [47], but actually correspond to “Special Geometries” (they
are homomorphic to their adjoint, which means [139] that their differential Galois group is
“special”, their symmetric square, exterior square has rational function solutions, ...). More
specifically, when we are able to get the exact expressions of these linear differential operators,
we find out that they are associated with elliptic function theory (elliptic functions [12] or
modular forms), and, in more complicated cases, Calabi-Yau ODEs [7, 6]. This totally

confirms what we already saw [47] on χ̃(5) and χ̃(6). We see in particular, with χ
(5)
d , the

emergence of a remarkable order-six operator which is such that its symmetric square has a
rational solution.

Let us recall that it is, generically, extremely difficult to see that a linear differential
operator corresponding to a Calabi-Yau ODE [7, 6], is homomorphic to a q+1Fq hypergeo-
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metric linear differential operator up to an algebraic pullback. Worse, it is not impossible
that many of the Calabi-Yau ODEs are actually reducible (up to operator equivalence) to

q+1Fq hypergeometric functions up to algebraic pullbacks that have not been found yet. Let
us assume that this is not the case, and that the Calabi-Yau world is not reducible to the
hypergeometric world (up to involved algebraic pullback), we still have to see if the “Special
Geometry” operators that occur for the Ising model, are “hypergeometric” ones, reducing, in
fact systematically to (selected k-balanced) q+1Fq hypergeometric functions, or correspond
to the more general solutions of Calabi-Yau equations.
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Appendix

4.A Miscellaneous comments on the modular curve

(4.27)

Let us introduce other rational expressions, similar to (4.17) and (4.26):

Q2(x) =
27x4 · (1 + x)

(x + 2)6
, Q3(x) = − 27x · (1 + x)4

(x− 1)6
,

where recalling the expression of (4.26) one has (for instance):

Q2(x) = Q1

(1

x

)
= Q1

(
− 1 + x

x

)
, Q3(x) = Q1

(
− 1

1 + x

)
= Q1

(
− x

1 + x

)
= Q2(−1 − x) = Q2

(
− 1 + x

x

)
.

Remarkably the elimination of x between the Hauptmodul Q = Q(x) and Q2 = Q2(x)
(or Q = Q(x) and Q3 = Q3(x)) also gives the same modular curve (4.27).

We also have remarkable identity on the same hypergeometric function with these new
Hauptmodul pullbacks (4.109):

(x + 2) · 2F1

(
[
1

6
,

1

3
], [1]; Q(x)

)
= 2 · (1 + x+ x2)1/2 · 2F1

(
[
1

6
,

1

3
], [1]; Q2(x)

)
, (4.109)
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and:

(1 − x) · 2F1

(
[
1

6
,

1

3
], [1]; Q(x)

)
= (1 + x+ x2)1/2 · 2F1

(
[
1

6
,

1

3
], [1]; Q3(x)

)
. (4.110)

The (modular [46]) curve (4.27) should not be confused with the fundamental modular
curve [46]

59 v3 u3 − 12 · 56 u2 v2 · (u+ v) + 375 u v · (16u2 + 16 v2 − 4027 v u)

−64 (v + u) · (v2 + 1487 v u + u2) + 212 · 33 · u v = 0, (4.111)

corresponding to the elimination of the variable x between the previous Hauptmodul (4.17)
and another Hauptmodul4 QL(x):

QL(x) = −108 · (1 + x)4 · x
(x2 − 14x + 1)3

. (4.112)

The new modular curve (4.27) also has a rational parametrization, (u, v) =
(QL(x), Q4(x)), between this last new Hauptmodul (4.112) and a new simple Hauptmodul:

Q4(x) = 108 · (1 + x)2 · x2

(1 − x)6
. (4.113)

4.B Solution of M4 analytical at x = 0

The solution of M4, analytical at x = 0, reads:

Sol(x) = (1 − x)3/4 · ρ(x) · sol(x), (4.114)

where sol(x) reads:

Z1 · 4F3

(
[
1

2
,

1

2
,

1

2
,

1

2
], [1, 1, 1]; P (x)

)
+ Z2 · 4F3

(
[
3

2
,

3

2
,

3

2
,

3

2
], [2, 2, 2]; P (x)

)
+Z3 · 4F3

(
[
5

2
,

5

2
,

5

2
,

5

2
], [3, 3, 3]; P (x)

)
+ Z4 · 4F3

(
[
7

2
,

7

2
,

7

2
,

7

2
], [4, 4, 4]; P (x)

)
,

with

Z1 = −512 · n1

d1

, Z2 = 128 · n2

d2

, Z3 = −54 · n3

d3

, Z4 = −625 · n4

d4

,

4Related by a Landen transformation on x1/2 see [46].
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and

n1 = (7x3 − 56x2 + 112x − 64) · (1 − x)1/2

+(x− 1) (x3 − 24x2 + 80x − 64),

n2 = (2352x2 − 472x3 − 3904x + 2048 + 19x4) · (1 − x)1/2

+x5 − 125x4 + 1288x3 − 4048x2 + 4928x − 2048,

n3 = (x6 − 28080x3 − 355x5 − 52992x + 17920 + 5750 x4 + 57760x2) · (1 − x)1/2

−2 (x− 1) (20x5 − 855x4 + 6736x3 − 18992x2 + 22016x − 8960),

n4 = (x2 − 8x + 8) (x4 − 64x3 + 320x2 − 512x + 256) · (1 − x)1/2

−4 (x− 1) (x− 2) (3x − 4) (x − 4) (x2 − 16x + 16),

and

d1 = (1− x) · x2 · ((x− 2) · (x2 − 16x + 16) · (1 − x)1/2

−2 (x− 1) (3x− 4) (x− 4)),

d2 = (1− x) · x4 · (4 · (x− 2) · (1 − x)1/2 + x2 − 8x + 8),

d3 = (1− x) · x6 · (2 (x− 1) − (x− 2) · (1 − x)1/2),

d4 = (1− x) · x8,

and

ρ(x) =
(

(2− x) · (1 − x)1/2 + 2 · (x − 1)
)1/2

,

and where P (x) denotes the pullback (4.56):

P (x) =
x2 − 8x + 8

x2
− 4 · (2− x) · (1− x)1/2

x2
. (4.115)

This solution has the integrality property [143]. Changing x into 64x the series expansion
of the previous solution (4.114) has integer coefficients:

Sol(64x) = 128 + 2560 x + 116736x2 + 6072320x3 + 335104000x4

+19117744128x5 + 1114027622400x6 + 65874638708736x7

+3937277209282560x8 + · · ·
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4.C The linear differential operator L(5)
11 in exact arith-

metic

The factors occurring in the differential operator L(5)
11 read

U
(5)
1 = Dx −

d

dx
ln
( x

(1 − x)3

)
, (4.116)

V
(5)

1 = Dx −
1

2
· d
dx

ln
( (1 + x + x2)3

(1 + x)2 · (1 − x)6 · x2

)
, (4.117)

W
(5)
1 = Dx −

1

2
· d
dx

ln
( (x2 + 1)2

(1 + x)2 · (1 − x)6 · x

)
, (4.118)

L
(5)
4 = D4

x +
p3

p4

· D3
x +

p2

p4

· D2
x +

p1

p4

· Dx +
p0

p4

, (4.119)

with:

p4 = x3 · (1 + x+ x2) · (x+ 1)3 · (x− 1)4
(

160 + 3148x+ 24988x2 + 86008x3

+141698x4 + 69707x5 − 141750x6 − 358707x7 − 356606x8 − 1071x9 + 347302x10

+510214x11 + 347302x12 − 1071x13 − 356606x14 − 358707x15 − 141750x16

+69707x17 + 141698x18 + 86008x19 + 24988x20 + 3148x21 + 160x22
)
,

p3 = 2 x2 · (x+ 1)2 · (x− 1)3 ·
(
−880− 16620x− 126586x2 − 421558x3 − 520547x4

+733378x5 + 3794648x6 + 6252130x7 + 3922367x8 − 4349032x9 − 12817741x10

−12881692x11 − 2612141x12 + 10986996x13 + 16830947x14 + 12283572x15

+729267x16 − 8919176x17 − 10905121x18 − 5398478x19 + 866024x20

+3665682x21 + 3069821x22 + 1351818x23 + 323590x24 + 36308x25 + 1680x26
)
,
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p2 = 2 x · (x− 1)2 ·
(

2400 + 38692x+ 228422x2 + 366806x3 − 1591741x4 − 8948446x5

−18137183x6 − 10301088x7 + 31576074x8 + 82978356x9 + 80098415x10

−8308172x11 − 123518048x12 − 158759046x13 − 65285821x14 + 78248130x15

+152708392x16 + 124727752x17 + 26488355x18 − 65301174x19 − 90679899x20

−47527872x21 + 4032496x22 + 27473954x23 + 23107094x24 + 9927812x25

+2288564x26 + 245416x27 + 10800x28
)
,

p1 = 2 (x− 1) ·
(
−1440− 15176x− 3552x2 + 632252x3 + 3988986x4 + 11012538x5

+10122851x6 − 31358640x7 − 125311964x8 − 166380144x9 + 20063039x10

+375202188x11 + 523233277x12 + 189830162x13 − 422078559x14 − 747281488x15

−440223099x16 + 161161298x17 + 530901457x18 + 491902752x19 + 168466049x20

−168274188x21 − 282329480x22 − 158906808x23 − 754525x24 + 72189798x25

+61435092x26 + 25677392x27 + 5672988x28 + 577984x29 + 24000x30
)
,

p0 = −3600− 52880x− 324108x2 − 1147996x3 − 1575180x4 + 8228874x5

+52977905x6 + 108476130x7 − 739178x8 − 371064711x9 − 563202298x10

−29824206x11 + 842725375x12 + 1075242362x13 + 273493047x14 − 909934423x15

−1189246308x16 − 414338515x17 + 420114304x18 + 702981552x19 + 447865799x20

+30467322x21 − 270639170x22 − 233990685x23 − 67035676x24 + 45089100x25

+61580064x26 + 29851532x27 + 7030080x28 + 714400x29 + 28800x30.

4.D Analysis of the singular behavior of χ̃
(3)
d (x)

Let us give a detailed analysis of the singularity behaviour of χ̃
(3)
d;2(x) and χ̃

(3)
d;3(x) around

the three singularities: x = +1, −1, e±2πi/3.

4.D.1 The behavior as x → 1

To evaluate χ̃
(3)
d;2(x) for x → 1 we use

2F1(1/2, 1/2; 1;x2) =
2

π
· ln
[

4

(1− x2)1/2

]
, and: (4.120)

2F1(1/2,−1/2; 1;x2) =
2

π
·
(

1 +
1− x2

2
[ln

4

(1− x2)1/2
− 1

2
]

)
, (4.121)
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to find, from (4.13), that

χ̃
(3)
d;2(x)(Singular, x = 1) =

2

π(1− x)2
− 1

π(1− x)
+

1

2π
ln(1− x) (4.122)

To evaluate χ̃
(3)
d;3(x) as x → 1 we use (1) on page 108 of [21]

2F1([1/6, 1/3], [1], Q) =
Γ(1)Γ(1/2)

Γ(5/6)Γ(2/3)2

F1([1/6, 1/3], [1/2], 1−Q)

+
Γ(1)Γ(−1/2)

Γ(1/6)Γ(1/3)
· (1−Q)

1/2
2 F1([5/6, 2/3], [3/2], 1−Q), (4.123)

2F1([7/6, 4/3], [2], Q) = 18
∂

∂Q
· 2F1(1/6, 1/3; 1;Q)

=
Γ(2)Γ(−1/2)

Γ(5/6)Γ(2/3)
· 2F1([7/6, 4/3], [3/2]; 1−Q)

+
Γ(2)Γ(1/2)

Γ(7/6)Γ(4/3)
· (1−Q)−1/2 · 2F1([5/6, 2/3], [1/2]; 1−Q). (4.124)

Then as x → 1 one has

(1−Q)−1/2 =
2√
3

1

1− x
− 1√

3
+O(1− x), (4.125)

2F1([1/6, 1/3], [1], Q)2 −→ π

Γ2(5/6)Γ2(2/3)
, (4.126)

2Q

9
· 2F1([1/6, 1/3], [1], Q) · 2F1([7/6, 4/3], [2], Q)

−→ 2

π(1− x)
− 1

π
− 4π

9Γ2(5/6)Γ2(2/3)
− 8π

Γ2(1/6)Γ2(1/3)
, (4.127)

and, thus, one deduces

χ̃
(3)
d;3(x)(Singular, x = 1) =

6

π
· 1

(1− x)2

+
3

(1− x)
·
[
− 1

π
+

5π

9Γ2(5/6)Γ2(2/3)
− 8π

Γ2(1/6)Γ2(1/3)

]
. (4.128)
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4.D.2 The behavior as x → −1

When x → −1 it is straightforward from (4.13) to obtain

χ̃
(3)
d;2(Singular, x = −1) =

1

2π
· ln(1 + x). (4.129)

To evaluate χ̃
(3)
d;3 we note, when x → −1, that Q vanishes as Q ∼ 27

4
(1+x)2. However,

we cannot directly set Q = 0 in (4.16) or (4.19) because we must analytically connect the
solution analytic at x = 0 to the proper solution at x = −1. To do this we need further
connection formulas.

We first do the general case with no logs and then specialize to our case of c = 1 by
taking the limit.

There are two solutions (1) on page 74 of [21], u1 and u2 and they connect to z = 1
using (1) on page 108 of [21] as

u1 = 2F1([a, b], [c]; z) (4.130)

=
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

· 2F1([a, b], [a+ b− c+ 1]; 1 − z)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
· (1− z)c−a−b · 2F1([c− a, c− b], [c− a− b+ 1]; 1 − z),

u2 = z1−c · 2F1([a+ 1− c, b+ 1− c], [2− c]; z) (4.131)

= z1−c · {Γ(2− c)Γ(c− a− b)
Γ(1− a)Γ(1− b)

· 2F1([a+ 1− c, b+ 1− c], [a+ b− c+ 1]; 1 − z)

+
Γ(2− c)Γ(a+ b− c)

Γ(a+ 1− c)Γ(b+ 1− c)
· (1− z)c−a−b · 2F1([1− a, 1− b], [c− a− b+ 1]; 1 − z)}

Furthermore by use of

z1−c · 2F1([a+ 1− c, b+ 1− c], [a+ b− c+ 1]; 1 − z)

= 2F1([a, b], [a+ b− c+ 1]; 1 − z), (4.132)

and the companion equation obtained by the replacement a → c− a and b → c− b

z1−c · 2F1([1− a, 1− b], [c− a− b+ 1]; 1 − z)

= 2F1([c− a, c− b], [c− a− b+ 1]; 1 − z), (4.133)
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we rewrite (4.131) as

u2 = z1−c · 2F1([a+ 1− c, b+ 1− c], [2− c]; z) (4.134)

=
Γ(2− c)Γ(c− a− b)

Γ(1− a)Γ(1− b)
· 2F1([a, b], [a+ b− c+ 1], 1− z)

+
Γ(2− c)Γ(a+ b− c)

Γ(a+ 1− c)Γ(b+ 1− c)
· (1− z)c−a−b · 2F1([c− a, c− b], [c− a− b+ 1]; 1 − z).

Thus we have the connection matrix for c 6= 1[
u1

u2

]
= C ·

[
2F1([a, b], [a+ b− c+ 1]; 1 − z)

(1− z)c−a−b · 2F1([c− a, c− b], [c− a− b+ 1]; 1 − z)

]
,

with

C =

[
C11 C12

C21 C22

]
, where: (4.135)

C11 =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, C12 =
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
, (4.136)

C21 =
Γ(2− c)Γ(c− a− b)

Γ(1− a)Γ(1− b)
, C22 =

Γ(2− c)Γ(a+ b− c)
Γ(a+ 1− c)Γ(b+ 1− c)

.

Furthermore, using

C11C22 − C12C21 =
1− c

c− a− b
, (4.137)

we have for c 6= 1

C−1

[
u1

u2

]
=

[
2F1([a, b], [a+ b− c+ 1]; 1 − z)

(1− z)c−a−b · 2F1([c− a, c− b], [c− a− b+ 1]; 1 − z)

]
, (4.138)

with:

C−1 =
c− a− b

1− c
·
[

C22 −C12

−C21 C11

]
. (4.139)

We now need to take the limit c → 1 where the connection matrix becomes singular. In
this limit we write

u2 = u1 + (1− c) · ũ2, (4.140)

where

ũ2 = ln z 2F1([a, b], [1]; z) − ∂

∂c
2F1([a+ 1− c, b+ 1− c], [2− c]; z)|c=1. (4.141)
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Then, by subtracting (4.130) from (4.135) we find[
u1

ũ2

]
= C̃ ·

[
2F1([a, b], [a+ b]; 1 − z)

(1− z)1−a−b
2F1([1− a, 1− b], [2− a− b]; 1 − z)

]
,

with

C̃ =

[
C11 C12

C̃21 C̃22

]
, where: (4.142)

C̃21 = lim
c→1

C21 − C11

1− c

=
Γ(1− a− b)

Γ(1− a)Γ(1− b)
· (2ψ(1)− ψ(1− a)− ψ(1− b)), (4.143)

C̃22 = lim
c→1

C22 − C12

1− c
=

Γ(a+ b− 1)

Γ(a)Γ(b)
· (2ψ(1) − ψ(a) − ψ(b)),

where ψ(z) = Γ′(z)/Γ(z). Similarly from (4.138) we find

C̃−1

[
u1

ũ2

]
=

[
2F1([a, b], [a+ b]; 1 − z)

(1− z)1−a−b · 2F1([1− a, 1− b], [2− a− b]; 1 − z)

]
, (4.144)

with

C̃−1 = (1− a− b) ·
[

C̃22 −C12

−C̃21 C11

]
. (4.145)

We may now use (4.142) and (4.144) to study χ̃
(3)
d;3(x) as given by (4.19) as x → −1. To

do this we note that, as x goes from x = 0 to x = −1 on the real axis, Q(x) increases
monotonically from zero to one as x goes from 0 to −1/2, and decreases monotonically from
one to zero as x goes from −1/2 to −1. On the segment 0 ≥ x > −1/2 the connection
formula (4.142) with for u1 is the same as (4.123) and (4.124) which we recall are

2F1([1/6, 1/3], [1]; Q) =
Γ(1)Γ(1/2)

Γ(5/6)Γ(2/3)
· 2F1([1/6, 1/3], |1/2]; 1 −Q)

+
Γ(1)Γ(−1/2)

Γ(1/6)Γ(1/3)
· (1−Q)1/2 · 2F1([5/6, 2/3], [3/2]; 1 −Q), (4.146)

2F1([7/6, 4/3], [2]; Q) = 18
∂

∂Q
2F1([1/6, 1/3], [1]; Q)

=
Γ(2)Γ(−1/2)

Γ(5/6)Γ(2/3)
2F1([7/6, 4/3], [3/2]; 1 −Q)

+
Γ(2)Γ(1/2)

Γ(7/6)Γ(4/3)
(1−Q)−1/2

2F1([5/6, 2/3], [1/2]; 1 −Q). (4.147)
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From (4.17) one easily gets:

1 −Q =
(1− x)2 (1 + 2x)2 (2 + x)2

4 · (1 + x+ x2)3
. (4.148)

Using (4.148), and the fact that there is no singularity at x = −1/2, we see that we must
choose near x = −1/2

(1−Q)1/2 =
(1− x) · (1 + 2x) · (2 + x)

2 · (1 + x+ x2)3/2
, (4.149)

which is positive for 0 > x > −1/2 and negative for −1/2 > x > −1. Therefore, for
−1/2 > x > −1, we see that

u1 = 2F1([1/6, 1/3], [1]; Q) −→ Γ(1)Γ(1/2)

Γ(5/6)Γ(2/3)
· 2F1([1/6, 1/3], [1/2], 1 −Q)

− Γ(1)Γ(−1/2)

Γ(1/6)Γ(1/3)
· (1−Q)1/2

2F1([5/6, 2/3], [3/2]; 1 −Q). (4.150)

We now can use (4.144) in the right hand side of (4.150) to find that for −1/2 > x > −1

2F1([1/6, 1/3], [1], Q) →
√

3

2π
ũ2 +

1

2

(
Γ(1/2)

Γ(5/6)Γ(2/3)
· C̃22 +

Γ(−1/2)

Γ(1/6)Γ(1/3)
C̃21

)
· u1

=

√
3

2π

(
2F1([1/6, 1/3], [1]; Q) lnQ − ∂

∂c
2F1([7/6− c, 4/3− c], [2− c]; Q)|c=1

)
+

1

2

(
Γ(1/2)

Γ(5/6)Γ(2/3)
· C̃22 +

Γ(−1/2)

Γ(1/6)Γ(1/3)
· C̃21

)
· 2F1([1/6, 1/3], [1]; Q). (4.151)

We note that

Γ(1/2)

Γ(5/6)Γ(2/3)
· C̃22 +

Γ(−1/2)

Γ(1/6)Γ(1/3)
· C̃21 (4.152)

=
Γ(1/2)Γ(−1/2)

Γ(5/6)Γ(1/6)Γ(2/3)Γ(1/3)
· (4ψ(1) − ψ(1/3) − ψ(2/3) − ψ(1/6)− ψ(5/6)),

with ψ(z) = Γ′(z)/Γ(z) and from page 19 of [21] that

ψ(1) = −γ, ψ(1/3) + ψ(2/3) = −2γ − 3 ln 3, (4.153)

ψ(1/6) + ψ(5/6) = −2γ − 3 ln 3 − 4 ln 2, (4.154)

so that we have

Γ(1/2)

Γ(5/6)Γ(2/3)
· C̃22 +

Γ(−1/2)

Γ(1/6)Γ(1/3)
· C̃21 = −

√
3

2π
· (6 ln 3 + 4 ln 2), (4.155)
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and thus as x → −1

2F1([1/6, 1/3], [1]; Q) =

√
3

2π
(lnQ − (3 ln 3 + 2 ln 2)) +O(Q lnQ)

=

√
3

π
(ln(1 + x) − 2 ln 2) +O[(1 + x) ln(1 + x)]. (4.156)

Similarly

2F1(7/6, 4/3; 2;Q) = 18
∂

∂Q
· 2F1([1/6, 1/3], [1]; Q)

→ 9
√

3

π
· Q−1, (4.157)

so as x → −1

Q · 2F1([7/6, 4/3], [2]; Q) −→ 9
√

3

π
+O(1). (4.158)

Thus, using (4.156) and (4.158) in (4.19), we find, as x → −1, that

χ̃
(3)
d;3 (Singular, x = −1) = − 3

2π2
· ln2(1 + x) + 3

2 ln 2− 1

π2
· ln(1 + x). (4.159)

4.D.3 The behavior as x → e±2πi/3

When x → e±2πi/3 then Q → ∞ and χ̃
(3)
d;3 becomes singular. Thus to extract this

singularity we to connect that solution analytic at x = 0 to the singularity at x = e±2πi/3.
To do this it is convenient to notice that Q is symmetric about x = −1/2. This is seen by
letting

x = −1/2 + iy, (4.160)

to obtain

Q(y) =
(1 + 4y2)2

(1− 4
3
y2)3

, (4.161)

and we define z by

z = (1−Q(y))1/2 =
i y · (9/4 + y2)

(3/4− y2)3/2
. (4.162)

Furthermore, as y goes from 0 to
√

3/2, Q(y) goes from 1 to ∞. In the previous section
we have already connected the solution analytic at x = 0 with the solution analytic at
x = −1/2.
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We rewrite the solutions (4.146) and (4.147) using (4.162) as

2F1([1/6, 1/3], [1]; Q) =
Γ(1)Γ(1/2)

Γ(5/6)Γ(2/3)
· 2F1([1/6, 1/3], [1/2]; z2)

+
Γ(1)Γ(−1/2)

Γ(1/6)Γ(1/3)
· z · 2F1([5/6, 2/3], [3/2]; z2) (4.163)

2F1(7/6, 4/3; 2;Q) = 18
∂

∂Q
· 2F1([1/6, 1/3], [1]; Q)

=
Γ(2)Γ(−1/2)

Γ(5/6)Γ(2/3)
· 2F1([7/6, 4/3], [3/2]; z2)

+
Γ(2)Γ(1/2)

Γ(7/6)Γ(4/3)
· z−1 · 2F1([5/6, 2/3], [1/2]; z2). (4.164)

These solutions must be connected from y = 0 to y =
√

3/2 along the straight line path
(4.160). On this path z2 is on the negative real axis and, hence, we may use the connection
formula (2) on page 109 of [21]

2F1([a, b], [c]; z2) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
· (−z2)−a · 2F1([a, 1− c+ a], [1− b+ a]; z−2)

+
Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

· (−z2)−b · 2F1([b, 1− c+ b], [1− a+ b]; z−2). (4.165)

Thus using (4.165) in (4.163) and (4.164) we find

2F1([1/6, 1/3], [1/2], z2) =
Γ(1/2)Γ(1/6)

Γ(1/3)Γ(1/3)
(−z2)−1/6 · 2F1([1/6, 2/3], [5/6]; z−2)

+
Γ(1/2)Γ(−1/6)

Γ(1/6)Γ(1/6)
· (−z2)−1/3

2F1([1/3; 5/6], [7/6]; z−2) (4.166)

2F1([5/6, 2/3]; [3/2]; z2) =
Γ(3/2)Γ(−1/6)

Γ(2/3)Γ(2/3)
· (−z2)−5/6 · 2F1([5/6, 1/3], [7/6]; z−2)

+
Γ(3/2)Γ(1/6)

Γ(5/6)Γ(5/6)
· (−z2)−2/3 · 2F1([2/3, 1/6], [5/6]; z−2), (4.167)

2F1([7/6, 4/3], [3/2]; z2) =
Γ(3/2)Γ(1/6)

Γ(4/3)Γ(1/3)
(−z2)−7/6

2F1([7/6, 2/3], [5/6]; z−2)

+
Γ(3/2)Γ(−1/6)

Γ(7/6)Γ(1/6)
· (−z2)−4/3 · 2F1([4/3, 5/6], [7/6]; z−2), (4.168)
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2F1([5/6, 2/3], [1/2]; z2) =
Γ(1/2)Γ(−1/6)

Γ(2/3)Γ(−1/3)
· (−z2)−5/6 · 2F1([5/6, 4/3], [7/6]; z−2)

+
Γ(1/2)Γ(1/6)

Γ(5/6)Γ(−1/6)
· (−z2)−2/3 · 2F1([2/3, 7/6], [5/6]; z−2). (4.169)

Thus we obtain

2F1([1/6, 1/3], [1]; Q) =
3

2

Γ(2/3)

Γ(5/6)2
· (−z2)−1/6 · 2F1([1/6, 2/3], [5/6]; z−2)

−3

2

Γ(5/6)2

πΓ(2/3)
(−z2)−1/3 · 2F1([1/3; 5/6], [7/6]; z−2)

+
3
√

3

2

Γ(5/6)2

πΓ(2/3)
· z · (−z2)−5/6 · 2F1([5/6, 1/3], [7/6]; z−2)

−
√

3

2

Γ(2/3)

Γ(5/6)2
· z · (−z2)−2/3 · 2F1([2/3, 1/6], [5/6]; z−2), (4.170)

and

2F1([7/6, 4/3], [2]; Q) = −9

2

Γ(2/3)

Γ(5/6)2
· (−z2)−7/6

2F1([7/6, 2/3], [5/6]; z−2)

+9
Γ(5/6)2

πΓ(2/3)
· (−z2)−4/3 · 2F1([4/3, 5/6], [7/6]; z−2)

+9
√

3
Γ(5/6)2

πΓ(2/3)
z−1 · (−z2)−5/6 · 2F1([5/6, 4/3], [7/6]; z−2)

−3
√

3

2

Γ(2/3)

Γ(5/6)2
· z−1 · (−z2)−2/3 · 2F1([2/3, 7/6], [5/6]; z−2). (4.171)

Then setting
z = i z̄ (4.172)

with z̄ real and nonnegative we obtain

2F1([1/6, 1/3], [1]; Q) =

√
3

2
(
√

3− i) Γ(2/3)

Γ(5/6)2
· z̄−1/3 · 2F1([1/6, 2/3], [5/6]; −z̄−2)

+
3

2
(i
√

3 − 1)
Γ(5/6)2

πΓ(2/3)
· z̄−2/3 · 2F1([1/3, 5/6], [7/6]; −z̄−2), (4.173)

and

2F1([7/6, 4/3], [2]; Q) = −3
√

3

2
(
√

3− i) Γ(2/3)

Γ(5/6)2
· z̄−7/3 · 2F1([7/6, 2/3], [5/6]; −z̄−2)

+9 (1− i
√

3)
Γ(5/6)2

πΓ(2/3)
· z̄−8/3 · 2F1([4/3, 5/6], [7/6]; −z̄−2). (4.174)
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Now we note that
Q = 1 − z2 = 1 + z̄2, (4.175)

and thus

2F1([1/6, 1/3], [1]; Q)2 +
2Q

9
2F1([1/6, 1/3], [1]; Q) · 2F1([7/6, 4/3], [2]; Q)

= (
√

3− i)2 Γ(2/3)2

Γ(5/6)4
· z̄−2/3 · 2F1([1/6, 2/3], [5/6]; −z̄−2)

×
(

3

4
· 2F1([1/6, 2/3], [5/6]; −z̄−2)− 1

2
(1 + z̄−2) · 2F1([7/6, 2/3], [5/6]; −z̄−2)

)

+(i
√

3− 1)2 Γ(5/3)4

π2Γ(2/3)2
· z̄−4/3 · 2F1([1/3, 5/6], [7/6]; −z̄−2)

×
(

9

4
2F1([1/3, 5/6], [7/6]; −z̄−2)− 3 (1 + z̄−2) · 2F1([4/3, 5/6], [7/6]; −z̄−2)

)
+

6
√

3

π
i z̄−1 · 2F1([1/6, 2/3], [5/6]; −z̄−2) · 2F1([1/3, 5/6], [7/6]; −z̄−2)

−4

√
3

π
i z̄−1 (1 + z̄−2) · 2F1([1/6, 2/3], [5/6]; −z̄−2) 2F1([4/3, 5/6], [7/6]; −z̄−2)

−2

√
3

π
i z̄−1 (1 + z̄−2) · 2F1([7/6, 2/3] [5/6]; −z̄−2) · 2F1([1/3, 5/6], [7/6]; −z̄−2).

As z̄ → ∞ the last three terms go as

− 54
√

3

π35
· i z̄−3 (4.176)

Thus, noting, as x → e2πi/3, that

z̄ −→ 33/4

2
e−3πi/4 · (x− x0)−3/2, (4.177)

and
(1 + 2x) · (x + 2)

(1− x) · (x2 + x+ 1)
−→ eπi/3

x− x0

, (4.178)

we find that the leading singularity at x0 = e2πi/3 in χ̃
(3)
d,3 is

χ̃
(3)
d;3(Singular, x = x0) =

16 · 35/4

35π
· eπi/12 · (x− x0)7/2. (4.179)
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4.E Analysis of the singular behavior of χ̃
(4)
d;2(t) as t → 1

To get the singular behaviour of χ̃
(4)
d;2(t) as t → 1, we use (12) of page 110 of [21]

2F1([1/2,−1/2], [1]; t) =
2

π
(4.180)

+
1− t
2π
· [ψ(1) + ψ(2) − ψ(3/2) − ψ(1/2) − ln(1− t)] +O((1− t)2 ln(1− t)),

and

2F1([1/2, 1/2], [1]; t) =
1

π
· [2ψ(1) − 2ψ(1/2) − ln(1− t)]

+
1

π
· [1− t

4
(2ψ(2) − 2ψ(3/2) − ln(1− t))] +O((1− t)2 ln(1− t) (4.181)

we have

2F1([1/2,−1/2], |1]; t)

=
2

π
− 1− t

2π

(
1 − 4 ln 2 + ln(1− t2)

)
+O((1− t)2 ln(1− t2)

=
2

π
·
(

1 +
1− t

4
(ln

16

1− t
− 1)

)
+O((1− t)2 ln(1− t), (4.182)

and

2F1([1/2, 1/2], [1], t) = (4.183)

=
1

π
·
(

ln
16

1− t
+

1− t
4
· (ln

16

1− t
) − 2

)
+O((1− t)2 ln(1− t).

Using these in (4.13) we find the result quoted in the text in (4.86).

4.F Towards an exact expression for 3I>1 − 4I>2

The constant 3I>1 − 4I>2 occurs for χ̃
(4)
d (t) through χ̃

(4)
d;3 which is obtained (4.63) by the

action of the differential operator A3 on 4F3([1/2, 1/2, 1/2, 1/2], [1, 1, 1]; t2).
The constant 3I>1 − 4I>2 can then be deduced from the 4 × 4 connection matrix for

4F3([1/2, 1/2, 1/2, 1/2], [1, 1, 1]; t2). The line of the connection matrix relating the solutions
at t = 0 to the solutions at t = 1 is

[A4,1, −1/2 · A4,1 + 2/π2, A4,3 − 2 i/π, A4,4 + i/π],
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and the constant 3I>1 − 4I>2 reads

4

3π2
· (3 I>1 − 4 I>2 ) = − 16

π2
+

17

108
· A4,1 −

2

3
· A4,3 −

4

3
· A4,4, (4.184)

The entry A4,1 of the connection matrix is actually the evaluation of the hypergeometric
function (4.59) at t = 1:

A4,1 = −2 · 4F3

(
[
1

2
,

1

2
,

1

2
,

1

2
], [1, 1, 1], 1

)
. (4.185)

There is, at first sight, a “ln(2)” coming from the terms in the Buhring formula [64] involving
the ψ function. This is the ”same” log 2 which appears in the connection formulas for E(k)
and K(k). However, numerically, these ln(2) contributions in A4,3 and A4,4 read respectively
(α = −1.9453040783 · · · , γ = 0.5274495683 · · · ):

A4,3 = α + 2 · β · ln(2), A4,4 = γ − β · ln(2), (4.186)

β = 0.101321183 · · ·

The fact that these two entries occur through the linear combination A4,3 + 2 ·A4,4 actually
cancel a ln(2) contribution in the expression of the constant 3I>1 − 4I>2 .

Similar constants (see (4.104) for the bulk χ̃(4), (4.105) for the bulk χ̃(3)) can be deduced
from entries of the connection matrices (occurring in the exact calculation of the differential
Galois group [265]), such entries being often closely related to evaluation, at selected singular
points, of the holonomic solutions we are looking at. When hypergeometric functions like
(4.59) pop out, it is not a surprise to have entries that can be simply expressed as these
hypergeometric functions at x = 1 (see (4.185)). Along this line, it is worth recalling that
ζ(3) (or ζ(5), ...) can be simply expressed in terms of a simple evaluation at x = 1 of a

q+1Fq hypergeometric function [144] (see also [192]):

ζ(3) = 4F3([1, 1, 1, 1], [2, 2, 2]; 1), (4.187)

ζ(5) =
32

31
· 6F5([

1

2
,
1

2
,
1

2
,
1

2
,
1

2
, 1], [

3

2
,
3

2
,
3

2
,
3

2
,
3

2
]; 1).

It is thus quite natural to ask if the sums in I>1 and I>2 can be evaluated in terms of
known constants such as ζ(3) or evaluations (for instance at t = 1) of hypergeometric
functions.
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5 LPTMC, UMR 7600 CNRS, Université de Paris, Tour 23, 5ème étage, case 121,
4 Place Jussieu, 75252 Paris Cedex 05, France

Abstract

We study the analyticity of the partition function of the hard hexagon model in
the complex fugacity plane by computing zeros and transfer matrix eigenvalues
for large finite size systems. We find that the partition function per site computed
by Baxter in the thermodynamic limit for positive real values of the fugacity is
not sufficient to describe the analyticity in the full complex fugacity plane. We
also obtain a new algebraic equation for the low density partition function per
site.
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5.1 Introduction

The hard hexagon model was solved by Baxter over 30 years ago [22, 29, 30]. More
precisely Baxter computed the thermodynamic limit of the grand partition function per site
for real positive values of the fugacity z

lim
Lv ,Lh→∞

Z
1/LvLh

Lv ,Lh
(z) with 0 < Lv/Lh < ∞ fixed. (5.1)

Even more precisely Baxter computed the limit

κ(z) = lim
Lh→∞

λmax(z;Lh)
1/Lh , (5.2)

where λmax(z;Lh) is the largest eigenvalue of the transfer matrix. Baxter found that there
are two distinct regions of positive fugacity

0 ≤ z < zc and zc < z < ∞, (5.3)

with

zc =
11 + 5

√
5

2
= 11.0901699473 · · · , (5.4)

where in each separate region the partition function per site has separate analytic expressions,
which we denote by κ−(z) for the low density, and by κ+(z) for the high density intervals
respectively. The low density function κ−(z) has branch points at zc and

zd = − 1

zc
=

11− 5
√

5

2
= −0.0901699473 · · · , (5.5)

is real and positive in the interval zd ≤ z ≤ zc and is analytic in the plane cut along the real
axis from zd to −∞ and zc to +∞. Conversely the high density function κ+(z) is real and
positive for zc ≤ z < +∞ and is analytic in the plane cut along the real axis from zc to
−∞.

For the purpose of thermodynamics it is sufficient to restrict attention to positive values
of the fugacity. However, it is of considerable interest to investigate the behavior of the
partition function for complex values of z as well. For finite size systems the partition
function is, of course, a polynomial and as such can be specified by its zeros.

In the thermodynamic limit the free energy will be analytic in all regions which are the
limit of the zero free regions of the finite system [260]. In general there will be several such
regions. One such example with three regions is given by Baxter [23]. There appears to be
no general theorem stating when the free energy of a system can be continued through the
locus of zeros.

The analytic structure of the free energy in the complex fugacity plane is not in general
determined by the the free energy on the positive z axis and for hard hexagons it is only
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for the positive z axis that a complete analysis has been carried out. In this paper we
address the problem of determining analyticity in the complex z plane by computing the
partition function zeros on lattices as large as 39 × 39 and comparing these zeros with the
locus computed from the limiting partition functions per site computed by Baxter for real
positive value for the fugacity 0 ≤ z ≤ ∞. We will see that the two functions κ±(z) are not
sufficient to describe the location of the zeros in the complex z plane. There is, of course,
no reason that κ±(z) should be sufficient to represent the partition function in the entire
complex z plane. We propose in section 5.6.2 an extension of Baxter’s methods which can
explain our results in the portion of the complex plane not covered by κ±(z).

In section 5.2 we present the relation between partition function zeros and the eigenval-
ues of the transfer matrix with special attention to the differences between cylindrical and
toroidal boundary conditions.

In section 5.3 we begin by recalling the results of Baxter [22] for κ±(z) and the subsequent
analysis of Joyce [133] for the high density regime for the polynomial relation between z and
κ+(z). For the low density regime we derive a new polynomial relation between z and κ−(z).
Some details of the analysis of κ±(z) and the associated density ρ−(z) are presented in 5.A
and 5.B.

In section 5.4 we compute transfer matrix eigenvalues and equimodular curves for the
maximum eigenvalues for values of Lh as large as 30. We demonstrate the difference between
the equimodular curves of the full transfer matrix and the equimodular curves for eigenvalues
restricted to the sector P = 0. These equimodular curves are compared with the partition
functions per site κ±(z).

In section 5.5 we present the results for partition function zeros for both toroidal and
cylindrical boundary conditions for a variety of Lh × Lv lattices. For Lh = Lv the largest
sizes are 39 × 39 for cylindrical and 27 × 27 for toroidal boundary conditions. We compare
the zeros with κ±(z) and with the equimodular eigenvalue curves of section 5.4 for both the
cases Lv = Lh and Lv � Lh and we analyze the density of zeros on the negative z axis.
We analyze the dependence of the approach as L→∞ of the endpoints zd(L) and zc(L) to
zd and zc by means of finite size scaling and identify several correction to scaling exponents.

In section 5.6 we use our results to discuss the relation of the free energy on the positive
real fugacity axis to the partition function in the full complex fugacity plane and some
concluding remarks are made in section 5.7. A description of the methods used for the
numerical computations of eigenvalues and zeros are given in 5.E and the numerical details
of the finite size scaling are given in 5.F.

5.2 Preliminaries

In this section we review the concepts of partition function, transfer matrix, free energy
and partition function zeros and highlight the properties we discuss in later sections.
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5.2.1 Partition function

The hard hexagon model is defined on a triangular lattice, which is conveniently viewed
as a square lattice with an added diagonal on each face as shown in figure 5.1. Particles are
placed on the sites of the lattice with the restriction that if there is a particle at one site no
particle is allowed at the six nearest neighbor sites. The grand canonical partition function
on the lattice with Lv rows and Lh columns is computed as

ZLv ,Lh
(z) =

∞∑
N=0

g(N) · zN , (5.6)

where g(N) is the number of allowed configurations with N particles. By definition on a
finite lattice the partition function is a polynomial which can be described by its zeros zk as∏

(1 − z/zk). For hard hexagons the order of the polynomial is bounded above by LvLh/3
which becomes an equality when it is an integer.

5.2.2 Transfer matrices

An alternative and quite different representation of the partition function on the finite
lattice is given in terms of a transfer matrix T (z;Lh) computed in terms of the local Boltz-
mann weights in figure 5.1 as

T{b1,···bLh
},{a1,··· .aLh

} =

Lh∏
j=1

W (aj, aj+1; bj, bj+1), (5.7)

where the occupation numbers aj and bj take the values 0 and 1 and for periodic boundary
conditions in the horizontal direction we use the convention that Lh + 1 ≡ 1. Then the hard
hexagon weights W (aj, aj+1; bj, jj+1) are written (see page 403 of [29, 30]) in the form

W (aj, aj+1; bj, bj+1) = 0

for ajaj+1 = bjbj+1 = ajbj = aj+1bj+1 = aj+1bj = 1, (5.8)

and otherwise:

W (aj, aj+1; bj, bj+1) = z(aj+aj+1+bj+bj+1)/4. (5.9)

This transfer matrix does not satisfy T = T t: thus there may be complex eigenvalues even
for z ≥ 0. As far as real values of z are concerned, the matrix elements are all non negative
for z ≥ 0 and, thus, by the Perron-Frobenius theorem the maximum eigenvalue is real and
positive.

For lattices with toroidal boundary conditions where there are periodic boundary condi-
tions in the vertical direction

ZP
Lv ,Lh

(z) = Tr TLv(z;Lh). (5.10)
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Figure 5.1: Boltzmann weights for the transfer matrix of hard hexagons

For lattices with cylindrical boundary conditions where there are free boundary condition in
the vertical direction

ZC
Lv ,Lh

(z) = 〈vB|TLv(z;Lh)|v′B〉, (5.11)

where vB and v′B are suitable vectors for the boundary conditions on rows 1 and Lv. For
the transfer matrix (5.7) with Boltzmann weights given by the symmetrical form (5.8) with
(5.9) the components of the vectors vB and v′B for free boundary conditions are

vB(a1, a2, · · · , aLh
) = v′B(a1, a2, · · · , aLh

) =

Lh∏
j=1

zaj/2. (5.12)

When the transfer matrix is diagonalizable (5.10) and (5.11) may be written in terms of
the eigenvalues λk and eigenvectors vk of the transfer matrix TLh

(z) as

ZP
Lv ,Lh

(z) =
∑
k

λLv
k (z;Lh) and (5.13)

ZC
Lv ,Lh

(z) =
∑
k

λLv
k (z;Lh) · ck where ck = (vB · vk)(vk · v′B). (5.14)

5.2.3 The thermodynamic limit

For finite size systems the hard hexagon partition function is a polynomial and the
transfer matrix eigenvalues are all algebraic functions. However, for physics we must study
the thermodynamic limit where Lv, Lh → ∞ and, because both the partition function
and the transfer matrix eigenvalues diverge in this limit we consider instead of the partition
function the free energy

−F/kBT = lim
Lv ,Lh→∞

(LvLh)
−1 · lnZLv ,Lh

(z). (5.15)

For real positive values of z this limit must be independent of the aspect ratio 0 < Lv/Lh <
∞ for thermodynamics to be valid.
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In terms of the transfer matrix representations of the partition function (5.13) and (5.14)
we take the limit Lv → ∞

lim
Lv→∞

L−1
v · lnZLv ,Lh

(z) = lnλmax(z;Lh). (5.16)

For the limiting free energy (5.15) to exist and be non zero it is required that

0 < lim
Lh→∞

L−1
h · lnλmax(z;Lh) < ∞, (5.17)

or, equivalently, that the partition function per site exists

κ(z) = lim
Lh→∞

λmax (z;Lh)
1/Lh < ∞, (5.18)

(in other words the maximum eigenvalue must be exponential in Lh). This exponential
behavior will guarantee that for real positive z

lim
Lh→∞

lim
Lv→∞

(LvLh)
−1 lnZLv ,Lh

(z) = lim
Lv ,Lh→∞

(LvLh)
−1 · lnZLv ,Lh

(z), (5.19)

independent of the aspect ratio Lv/Lh. However for complex “nonphysical values” of z this
independence of the ratio Lv/Lh is not obvious. In particular for hard squares at z = −1 all
eigenvalues of the transfer matrix lie on the unit circle and the partition function ZLv ,Lh

(−1)
depends on number theoretic properties [90, 130, 61, 25] of Lv and Lh.

5.2.4 Partition function zeros versus transfer matrix eigenvalues

It remains in this section to relate partition function zeros to transfer matrix eigenvalues
and eigenvectors. For finite lattices the partition function zeros can be obtained from (5.13)
and (5.14) if all eigenvalues and eigenfunctions are known. We begin with the simplest case
where

Lv → ∞ with fixed Lh, (5.20)

considered by Beraha, Kahane and Weiss [34, 33, 32] as presented by Salas and Sokal [210].
This is the case of a cylinder of infinite length with Lh sites in the finite direction where the
aspect ratio Lv/Lh → ∞.

Generically the eigenvalues have different moduli and in the limit (5.20) the partition
function will have zeros when two or more maximum eigenvalues of T (z;Lh) have equal
moduli

|λ1(z;Lh)| = |λ2(z;Lh)|. (5.21)

The locus in the complex plane z is called an equimodular curve [246, 248, 250, 251]. On
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this curve

λ1(z;Lh)

λ2(z;Lh)
= eiφ(z), (5.22)

where φ(z) is real and depends on z. The density of zeros on this curve is proportional to
dφ(z)/dz.

A simple example occurs for hard hexagons where on segments of the negative z-axis
there is a complex conjugate pair of eigenvalues which have the maximum modulus.

However, we will see that for the hard hexagon model there are points in the complex
plane where more than two eigenvalues values have equal moduli. Indeed, for hard squares
at z = −1, we have previously noted that all eigenvalues have modulus one.

For values of z in the complex plane where the interchange of (5.19) holds the limiting
locus of partition function zeros for the square Lv = Lh lattice will coincide with the transfer
matrix equimodular curves. However there is no guarantee that the interchange (5.19) holds
in the entire complex z plane.

Our considerations are somewhat different for toroidal and cylindrical boundary condi-
tions and we treat these two cases separately.

Cylindrical boundary conditions

For cylindrical boundary conditions the partition function is given by (5.14) which in
addition to the eigenvalues of T (Lh) depends on the boundary vector vB (5.12). Because
of the periodic boundary conditions in the Lh direction there is a conserved momentum P .
Consequently the transfer matrix and translation operator may be simultaneously diagonal-
ized. Therefore the transfer matrix may be block diagonalized by a transformation which
is independent of z and hence the characteristic equation will factorize. Furthermore the
boundary vector (5.12) for the cylindrical case satisfies

vB(a1, a2, · · · , aLh
) = vB(aLh

, a1, · · · , aLh−1) (5.23)

and thus is also translationally invariant. Therefore the only eigenvectors which contribute
to the partition function in (5.14) lie in the translationally invariant subspace where P = 0.
Consequently we are able to restrict our attention to the reduced transfer matrix for this
translationally invariant sector where the momentum of the state is P = 0 because all of
the scalar products ck in (5.14) for eigenvectors in sectors with P 6= 0 vanish.

Toroidal boundary conditions

For toroidal boundary conditions the partition function in (5.13) is the sum over all
eigenvalues and a new feature arises because for P 6= 0, π the eigenvalues for ±P are de-
generate in modulus, but may have complex conjugate phases which are independent of z.
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By grouping these two eigenvalues together we see that the discussion leading to (5.21) still
applies. There are now three types of equimodular curves:

1) Two eigenvalues are equal for crossings of eigenvectors with P = 0, π,

2) Three eigenvalues are equal for crossings of eigenvectors of P = 0, π with P 6= 0, π,

3) Four eigenvalues are equal for crossing of eigenvectors with P 6= 0, π.

Nonzero finite aspect ratios Lv/Lh

We are, of course, not really interested in the limit (5.20) but rather in the case of
finite nonzero aspect ratio Lv/Lh and particularly in the isotropic case Lv = Lh. There is
apparently no general theory for finite nonzero aspect ratio in the literature and we will
study this case in detail below.

5.3 The partition functions κ±(z) per site for hard

hexagons

Baxter [22, 29, 30] has computed the fugacity and the partition function per site in terms
of an auxiliary variable x using the functions

G(x) =
∞∏
n=1

1

(1− x5n−4)(1− x5n−1)
, (5.24)

H(x) =
∞∏
n=1

1

(1− x5n−3)(1− x5n−2)
, Q(x) =

∞∏
n=1

(1− xn). (5.25)

For high density where 0 < z−1 < z−1
c the results are

z =
1

x
·
(G(x)

H(x)

)5

and (5.26)

κ+ =
1

x1/3
· G

3(x)Q2(x5)

H2(x)
·
∞∏
n=1

(1− x3n−2)(1− x3n−1)

(1− x3n)2
, (5.27)

where, as x increases from 0 to 1, the value of z−1 increases from 0 to z−1
c .

For low density where 0 ≤ z < zc

z = −x ·
(H(x)

G(x)

)5

and (5.28)
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κ− =
H3(x)Q2(x5)

G2(x)
·
∞∏
n=1

(1− x6n−4)(1− x6n−3)2(1− x6n−2)

(1− x6n−5)(1− x6n−1)(1− x6n)2
, (5.29)

where, as x decreases from 0 to −1, the value of z increases from 0 to zc.

5.3.1 Algebraic equations for κ±(z)

The auxiliary variable x can be eliminated between the expressions for z and κ (5.26)-
(5.29) and the resulting functions κ±(z) are in fact algebraic functions of z. To give these
algebraic equations we follow Joyce [133] and introduce the functions

Ω1(z) = 1 + 11z − z2, (5.30)

Ω2(z) = z4 + 228z3 + 494z2 − 228z + 1, (5.31)

Ω3(z) = (z2 + 1) · (z4 − 522z3 − 10006z2 + 522z + 1). (5.32)

For the high density Joyce (see eqn. (7.9) in [133]) showed that the function κ+(z)
satisfies a polynomial relation of degree 24 in the variable κ+(z)

f+(z, κ+) =
4∑

k=0

C+
k (z) · κ6k

+ = 0, where (5.33)

C+
0 (z) = −327 z22

C+
1 (z) = −319 z16 · Ω3(z),

C+
2 (z) = −310 z10 · [Ω2

3(z) − 2430 z · Ω5
1(z)],

C+
3 (z) = −z4 · Ω3(z) · [Ω2

3(z) − 1458 z · Ω5
1(z)]

C+
4 (z) = Ω10

1 (z). (5.34)

Joyce has also derived an algebraic equation for the density (see eqn. (8.28) in [133]) which
follows from (5.33).

For low density we have obtained by means of a Maple computation the substantially
more complicated polynomial relation which was not obtained in [133]

f−(z, κ−) =
12∑
k=0

C−k (z) · κ2k
− = 0, where (5.35)
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C−0 (z) = −232 · 327 · z22,

C−1 (z) = 0

C−2 (z) = 226 · 323 · 31 · z18 · Ω2(z),

C−3 (z) = 226 · 319 · 47 · z16 · Ω3(z),

C−4 (z) = −217 · 318 · 5701 · z14 · Ω2
2(z),

C−5 (z) = −216 · 314 · 72 · 19 · 37 · z12 · Ω2(z) Ω3(z),

C−6 (z) = −210 · 310 · 7 · z10 · [273001 · Ω2
3(z) + 26 · 35 · 5 · 4933 · z · Ω5

1(z)],

C−7 (z) = −29 · 310 · 11 · 13 · 139 · z8 · Ω3(z) Ω2
2(z),

C−8 (z) = −35 · z6 · Ω2(z) · [7 · 1028327 · Ω2
3(z) − 26 · 34 · 11 · 419 · 16811 · z · Ω5

1(z)],

C−9 (z) = −z4 · Ω3(z) · [37 · 79087 Ω2
3(z) + 26 · 36 · 5150251 · z · Ω5

1(z)],

C−10(z) = −z2 · Ω2
2(z) · [19 · 139Ω2

3(z) − 2 · 36 · 151 · 317 · z · Ω5
1(z)]

C−11(z) = −Ω2(z) Ω3(z) · [Ω2
3(z) − 2 · 613 · z · Ω5

1(z)],

C−12(z) = Ω10
1 (z). (5.36)

We have verified that Joyce’s algebraic equation for the density (see eqn. (12.10) in [133])
follows from (5.35).

We note the symmetry

z44 · f±
(
−1

z
,
κ±
z

)
= f±(z, κ). (5.37)

In 5.A we discuss the behavior κ±(z) at the singular points zc, zd.

5.3.2 Partition function for complex z

From section 5.2.4 we see that the simplest construction of the partition function of
hard hexagons in the complex z plane would be if the low and high density eigenvalues in
the thermodynamic limit were the only two eigenvalues of maximum modulus and that the
interchange of limits (5.19) holds for z in the entire complex plane. Then the zeros would
be given by the equimodular curve |κ+(z)| = |κ−(z)|. Because the partition functions per
site κ±(z) satisfy algebraic equations this curve will satisfy an algebraic equation which can
be found by setting κ+(z) = rκ−(z) in the equation (5.33) for κ+(z) and computing the
resultant between equations (5.35) and (5.33). The solutions of this equation for r on the
unit circle will give all the locations where κ±(z) have equimodular solutions. We have
produced this equation using Maple but unfortunately is it too large to print out. However,
we are only interested in the crossings of the maximum modulus eigenvalues. Consequently
we have computed this curve not from its algebraic equation but directly from the parametric
representations (5.26)-(5.29). We plot this curve in figure 5.2. The curve crosses the positive
real axis at zc and the negative real axis at z = −5.9425104 · · · which is exactly determined
from the algebraic equation of the equimodular curve given in 5.C. The tangent to the
equimodular curve is discontinuous at this negative value of z.
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We will see in the next section that this two eigenvalue assumption is insufficient to
account for our finite size computations in some regions of the plane.

Figure 5.2: The equimodular curve for |κ−(z)| = |κ+(z)| in the complex z plane. The
crossing of the positive z axis is at zc and the crossing of the negative z axis is at z =
−5.925104 · · ·

5.4 Transfer matrix eigenvalues

To obtain further information on the partition function in the complex z plane we com-
pute, in this section, the eigenvalues for finite sizes of the transfer matrix T (z; Lh) for the
case of periodic boundary conditions in the Lh direction.

There are two ways to study the eigenvalues of the transfer matrix; analytically and
numerically. Numerical computations can be carried out on matrices which are too large for
symbolic computer programs to handle. However, analytic computations reveal properties
which cannot be seen in numerical computations. Consequently we begin our presentation
with analytic results before we present our numerical results.

5.4.1 Analytic results

The eigenvalues of a matrix are obtained as the solutions of its characteristic equation.
For the transfer matrices of the hard hexagon model this characteristic equation is a poly-
nomial in the parameter z and the eigenvalue λ with integer coefficients. Consequently the
eigenvalues λ are algebraic functions of z. In general such characteristic polynomials will be
irreducible (i.e. they will not factorize into products of polynomials with integer coefficients).

There are two important analytic non-generic features of the hard hexagon eigenvalues:
factorization of the characteristic equation and the multiplicity of the roots of the resultant.
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Factorization of the characteristic equation

For a transfer matrix with cylindrical boundary conditions the characteristic equation
factorizes into subspaces characterized by a momentum eigenvalue P . In general the charac-
teristic polynomial in the translationally invariant P = 0 subspace will be irreducible. We
have found that this is indeed the case for hard squares. However, for hard hexagons we find
that for Lh = 12, 15, 18, the characteristic polynomial, for P = 0, factors into the product
of two irreducible polynomials with integer coefficients. We have not been able to study the
factorization for larger values of Lh but we presume that factorization always occurs and
is a result of the integrability of hard hexagons. What is unclear is if for larger lattices a
factorization into more than two factors can occur.

Multiplicity of the roots of the resultant

An even more striking non-generic property of hard hexagons is seen in the computation
of the resultant of the characteristic polynomial in the translationally invariant sector. The
zeros of the resultant locate the positions of all potential singularities of the solutions of the
polynomials.

We have been able to compute the resultant for Lh = 12, 15, 18, and find that almost all
zeros of the resultant have multiplicity two which indicates that there is in fact no singularity
at those points and that the two eigenvalues cross. This very dramatic property will almost
certainly hold for all Lh and must be a consequence of the integrability (although to our
knowledge no such theorem is in the literature).

5.4.2 Numerical results in the sector P = 0

For the partition function with cylindrical boundary conditions only the transfer matrix
eigenvalues with P = 0 contribute. In this sector we have numerically computed eigenvalues
of the transfer matrix, in the P = 0 sector, for systems of size as large as Lh = 30 which
has dimension 31836. For such large matrices brute force computations will obviously not be
sufficient and we have developed algorithms specific to this problem which we sketch in 5.E.
We restrict our attention to values of Lh being a multiple of three, to minimize boundary
effects which will occur when the circumference Lh is incompatible with the three-sublattice
structure of the triangular lattice.

In figure 5.3 we plot the equimodular curves for the crossing of the largest transfer matrix
eigenvalues in the P = 0 sector for Lh = 12, 15, 18, 21, 24, 27, and in figure 5.4 we plot
Lh = 30. It is obvious from these curves that more than two eigenvalues of the transfer
matrix contribute to the partition function because of the increasing number of regions in
the left half plane which we refer to as the “necklace”. A striking feature is that there is
a pronounced mod 6 effect where for Lh ≡ 3 (mod 6) there is a level crossing curve in the
necklace on the negative real z axis which is not present for Lh ≡ 0 (mod 6). The level
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crossing curves separate the necklace into well defined regions. The number of these regions
is Lh/3 − 4 for L ≤ 27. The number of regions for Lh = 30 is the same as for Lh = 24.
For Lh = 21, 27 all the branch points of the necklace are given in table 5.1 and in table 5.2
for Lh = 18, 24, 30.

There are further features in figures 5.3 and 5.4 which deserve a more detailed discussion.

Comparison with the equimodular curve of κ±(z)

If the two eigenvalues κ±(z) computed in [22] were sufficient to describe the Lh →
∞ thermodynamic limit of these finite size computations then the equimodular curves of
figures 5.3 and 5.4 must approach the equimodular curve of κ±(z) of figure 5.2. We make
this comparison for Lh = 30 in figure 5.4.

In figure 5.4 the agreement of the κ±(z) level crossing curve with the eigenvalue equimod-
ular curve for Lh = 30 is exceedingly good in the entire portion of the plane which does not
include the necklace. However, in the necklace region the κ±(z) curve does not agree with
either the inner or outer boundaries of the necklace but rather splits the necklace region into
two parts.

A more quantitative argument follows from the values of the leftmost crossing with the
negative real axis of the necklace given in table 5.1 for Lh ≡ 0 (mod 6) and in table 5.2 for
Lh ≡ 3 (mod 6). In both cases the left most crossing moves to the left to a value which if
extrapolate in terms of 1/Lh lies between 9 and 10. The Y branching in tables 5.1 and 5.2 also
moves to the left but does not extrapolate to a value to the left of z = −5.9425104 · · · where
the κ±(z) equimodular curve crosses the negative real axis. We interpret this as implying
that the necklace persists in the thermodynamic limit and that at least one more transfer
matrix eigenvalue is needed to explain the analyticity of the free energy in the complex z
plane.

Lh = 21 Lh = 27 comment
−3.7731 −4.1138 Y branching

−5.5898± 5.8764i −4.6228± 7.2480i necklace end
−5.2737± 6.5159i
−5.2321± 6.3840i

−5.2264± 1.3949i −5.3175± 1.4134i
−7.2883± 2.4533i −7.6848± 2.4225i

−7.9020 −8.2803 leftmost crossing

Table 5.1: The branch points of the necklace of the equimodular curves of hard hexagons
with cylindrical boundary conditions for Lh = 21, 27.
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Figure 5.3: Plots in the complex fugacity plane z of the equimodular curves of hard hexagon
eigenvalues with cylindrical boundary conditions of size Lh = 12, 15, 18, 21, 24, 27. The
value of Lh is given in the upper left hand corner of the plots.
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Figure 5.4: Comparison of the dominant eigenvalue crossings Lh = 30 shown in red with
the equimodular curve |κ+(z)| = |κ−(z)| of figure 5.2 shown in black. Color online.

Lh = 18 Lh = 24 Lh = 30 comment
−3.8370 −4.0637 −4.3794 Y branching

−6.3703± 4.0485i −4.8079± 7.0090i −4.4043± 7.4623i necklace end
−6.5389± 4.7519i −6.9134± 4.4771i
−5.8477± 3.8460i −5.8526± 3.4864i

−7.1499 −7.8663 −8.0937 leftmost crossing

Table 5.2: The branch points of the necklace of the equimodular curves of hard hexagons
with cylindrical boundary conditions for Lh = 18, 24, 30.

The endpoints zd(Lh) and zc(Lh)

In table 5.3 we give the endpoints which approach the unphysical and the physical singular
points of the free energy zd and zc. We also give in this table the ratio of the largest to the
next largest eigenvalue at zd(Lh) and zc(Lh) as determined from eigenvalue crossings. In the
limit Lh → ∞ this ratio must go to unity so the deviation from one is a measure of how far
the finite size Lh is from the thermodynamic limit.

5.4.3 Eigenvalues for the toroidal lattice partition function

For lattices with toroidal boundary conditions the eigenvalues of all momentum sectors,
not just P = 0, contribute to the partition function. In particular, in the thermodynamic
limit for P = ±2π/3, it is shown in [27] that there is an eigenvalue λ±2π/3(z;Lh) such that
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Lh zd(Lh) λ1/λmax zc(Lh) λ1/λmax

12 −0.09051765 0.45085 9.7432± 5.0712i 0.55487
15 −0.09037303 0.53048 10.2971± 3.9465i 0.54278
18 −0.09030007 0.59046 10.5753± 3.2016i 0.58463
21 −0.09026034 0.63709 10.7340± 2.6730i 0.62006
24 −0.09023555 0.67431 10.8310± 2.2852i 0.65030
27 −0.09021968 0.70467 10.8955± 1.9834i 0.67582
30 −0.09020833 0.72989 10.9389± 1.7499i 0.69827
∞ −0.09016994 1.00000 11.09016994 1.00000

Table 5.3: The values of the endpoints zd(L), zc(L) for hard hexagons on the cylindrical
lattice with length Lh as determined from the equimodular eigenvalue curves and the ratios
of the first excited state λ1 to the largest eigenvalue λmax at zd(Lh) and zc(Lh).

for z ≥ zc

lim
Lh→∞

λ±2π/3(z;Lh)

λmax(z;Lh)
= e±2πi/3. (5.38)

These two eigenvalues with P = ±2π/3 cause significant differences from the equimodular
curves for P = 0 for finite values of Lh. We illustrate this in figures 5.5 and 5.6. In figure 5.5
we plot the equimodular curves for toroidal boundary conditions for Lh = 9, 12, 15, 18, 21.

In these figures level crossings of 2 eigenvalues are shown in red, of 3 eigenvalues in
green and 4 eigenvalues in blue. For sectors separated by a red boundary, both sectors have
momentum P = 0. For sectors separated by a green boundary, one sector has momentum
P = 0, and the other has two eigenvalues of equal modulus and fixed phases of e±2πi/3. For
sectors separated by a blue boundary, each sector has two eigenvalues of equal modulus, and
fixed phases of e±2πi/3. The equimodular curve |κ−(z)| = |κ+(z)| is plotted in black for
comparison.

It is instructive to compare the necklace regions of the plots of figure 5.5 with the cor-
responding plots of figure 3 where the momentum of the eigenvalues is restricted to P = 0.
We do this in figure 6 where in the necklace region we have added in dotted red lines the
P = 0 level crossing of figure 5.3 which are, now, crossings of sub-dominant eigenvalues.

There are two important observations to make concerning these plots.

The rays out to infinity

The most striking difference between the equimodular curves for cylindrical and toroidal
boundary conditions is that there are “rays” of equimodular curves which go to infinity.
These rays all have three equimodular eigenvalues which separate a sector
with P = 0 from a sector with P = ±2π/3. In the limit Lh → ∞ these three eigenvalues
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Figure 5.5: Plots in the complex fugacity plane z of the equimodular curves of hard hexagon
eigenvalues for toroidal lattices for L = 12, 15, 18, 21. On the red lines 2 eigenvalues are
equimodular, on the green lines 3 eigenvalues are equimodular and on the blue lines 4 eigen-
values are equimodular. The equimodular curve |κ−(z)| = |κ+(z)| is given in black for
comparison. Color online.
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Figure 5.6: Comparison in the complex fugacity plane z of the necklace region of the
equimodular curves of hard hexagon maximal eigenvalues for toroidal lattices for Lh =
12, 15, 18, 21, 24 with the eigenvalue crossing in the P = 0 sector of figure 5.3. On the red
lines 2 eigenvalues are equimodular, on the green lines 3 eigenvalues are equimodular and
on the blue lines 4 eigenvalues are equimodular. The dotted red curves are the additional
crossings in the P = 0 sector from figure 5.3 which are now sub-dominant. The equimodular
curve |κ−(z)| = |κ+(z)| is given in black for comparison. Color online.
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on the rays become equimodular independent of z, and thus there will be no zeros on these
rays in the thermodynamic limit.

Dominance of P = 0 as Lh → ∞

We see in figure 5.6 that for the smaller values of Lh, such as 12 and 15, a sizable portion
the region in the necklace has momentum P = ±2π/3. However, as seen in the plots for
Lh = 18, 21 and 24 as Lh increases the regions with P = 0 grow and squeeze the regions
with P = ±2π/3 down to a very small area. It is thus most natural to conjecture that, in
the limit Lh → ∞, only momentum P = 0 survives, except possibly on the equimodular
curves themselves.

5.5 Partition function zeros

We now turn to zeros of the partition function ZL,L(z) on the lattices of size L × L.
Just as we required the creation of specialized algorithms to compute the eigenvalues of the
transfer matrix so we need specialized algorithms to compute the polynomials. We have
studied both cylindrical and toroidal boundary conditions.

5.5.1 Cylindrical boundary conditions

We have computed partition function zeros for lattices with cylindrical boundary condi-
tions for sizes up to 39 × 39. We plot these zeros in figure 5.7. These plots share with the
equimodular P = 0 eigenvalue curves of figure 5.3 the feature of having a necklace in the
left half plane beyond the Y branching. These plots also have the feature that as the size
increases the number of zeros inside the necklace region increases. However, in contrast with
the equimodular P = 0 eigenvalue curves there is no necklace for L = 15.

Branching of the necklace

We give the left most crossing of the necklace, the Y branching point and the necklace
endpoint in table 5.4. We note that the left most crossing is to the left of the corresponding
left most crossing of the transfer matrix eigenvalue equimodular crossings given in tables 5.1
and 5.2. These crossings are moving to the right with increasing L for L ≥ 27. The Y
branchings are moving to the right for L ≥ 30. These trends are the opposite of what was
found for the transfer matrix eigenvalue curves which only went up to Lh = 27. We note
that for 15 × 15 through 27 × 27 there is only one region in the necklace. However. for
30× 30 there are two regions, for 33× 33 three, for 36× 36 five and for 39× 39 seven. It is
unknown if the number of regions increases for larger lattices.
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L leftmost crossing Y branching necklace endpoints
15 no necklace −6.8311
18 −8.666 −5.6655
21 −9.1957 −4.5411 (min)
24 −8.8963± 0.264i −4.7137
27 −9.4969 −4.8031 −6.292287± 7.325196i
30 −9.2717± 0.541i −5.0851 (max) −5.515958± 8.174231i
33 −9.4610 −4.8875 −4.728011± 8.742729i
36 −9.213± 0.527i −4.6972 −4.797746± 8.473961i
39 −9.3221 −4.5687 −4.270164± 8.792602i

Table 5.4: The necklace crossing and endpoints as a function of L for the L×L lattice with
cylindrical boundary conditions. There is a mod 6 phenomenon apparent in both the location
of the necklace crossings and the endpoint. The necklace endpoints at L = 27, 33, 39 and
at L = 30, 36 are moving to the right.

Comparison with the eqimodular curves

In figure 5.8 we compare the equimodular curves for Lh = 27 with the partition function
zeros of the 27 × 27 lattice by plotting the partition function zeros for the lattices 27 ×
27, 27 × 54, 27 × 135 and 27 × 270. This comparison clearly shows how slight kinks for
27× 27 grow into an equimodular curve with 5 separate regions.

The endpoints zd(L) and zc(L)

In table 5.5 we give the values of the endpoints which approach zd and zc. We note that
the values of zd(Lh) and zc(Lh) of table 5.3 as determined from the equimodular curves are
significantly closer to the limiting values zd and zc than the corresponding values of table 5.5.
We also note that, in table 5.3, Re(zc(Lh)) is monotonic and approaches zc from below, while
in table 5.5 Re(zc(Lh)) is not monotonic and approaches zc from above.

It is clear in table 5.5 that zd(L) is converging rapidly to zd and a careful quantitative
analysis well fits the data with the form

zd(L)− zd = b0L
−12/5 + b1L

−17/5 + b2L
−22/5 + a3L

−27/5 + · · · (5.39)

with
b0 = 1.7147(1), b1 = −9.30(2), b2 = 48(2), b3 = −180(30). (5.40)

The exponent 12/5 is the leading exponent of the energy operator of the Lee-Yang edge as
is seen from analysis of [119] and [68]. It is expected to be the inverse of the correlation
exponent ν at z = zd but a computation of this correlation length is not in the literature.
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Figure 5.7: Plots of partition function zeros in the complex fugacity plane z of hard hexagon
model for lattices with cylindrical boundary conditions of size 15×15, 18×18, 21×21, 24×
24, 27× 27, 30× 30, 33× 33, 36× 36, 39× 39.
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Figure 5.8: The partition function zeros for the lattices 27 × 27 , 27 × 54 27 × 135 and
27× 270. For 27× 270 the equimodular curve is shown in red. Color online

L zd(L) zc(L)
9 −0.0957417573 5.9002937473± 12.2312152474i
12 −0.0932266680 9.2335210855± 9.3476347389i
15 −0.0920714392 10.5114514245± 7.2812520022i
18 −0.0914523473 11.0571925423± 5.8559364459i
21 −0.0910853230 11.3084528958± 4.8492670401i
24 −0.0908515103 11.4268383658± 4.1113758041i
27 −0.0906942824 11.4806273673± 3.5521968857i
30 −0.0905839894 11.5012919280± 3.1162734906i
33 −0.0905039451 11.5044258314± 2.7682753249i
36 −0.0904442058 11.4981796564± 2.4848695493i
39 −0.0903985638 11.4869896404± 2.2501329582i
∞ −0.0901699437 11.0901699437

Table 5.5: The values of zd(L), and zc(L) as a function of L for the L × L lattice with
cylindrical boundary conditions as determined from the zeros of the partition function.
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For zc(L) the data of table 5.5 is well fit by

|zc(L)| − zc = a0L
−6/5 + a1L

−2 + a2L
−14/5 + · · · (5.41)

where
a0 = 53.0(1), a1 = −50(5), a2 = −200(50) (5.42)

where the exponent y = 6/5 is the inverse of the correlation length exponent ν of the hard
hexagon model at z = zc [27]. The exponent −2 is consistent with −y−|y′| where y′ = −4/5
is the exponent for the subdominant energy operator φ(3.1) for the three state Potts model
[87] and the exponent −14/5 follows from −y − 2|y′|. We note that the potential exponents
−y − 1 and −2y do not appear in (5.41).

The analysis leading to (5.39) and (5.41) and the relation with conformal field theory is
given in appendix F.

Comparison with the equimodular curve of κ±(z)

Figure 5.9: The equimodular curves for |κ−(z)| = |κ+(z)| in the complex z plane and the
partition function zeros for cylindrical boundary conditions on the 39 × 39 lattice

In figure 5.9 we compare the zeros for the 39 × 39 lattice with the equimodular curve of
the κ±(z) of figure 5.2. Unlike the comparisons of figure 5.4 the κ±(z) equimodular curve
does not have a region of overlap with the zeros of the 39 × 39 lattice. However, in the
region to the right of the necklace, if

lim
Lh→∞,Lv→∞

ZLv ,Lh
(z)1/LvLh is independent of Lv/Lh,

then, for this region, the limiting locus of zeros will agree with the κ± equimodular curve. We
have examined this possibility and find that we can well fit this portion of the zero locations
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of figure 5.7 by a shifted cardioid

Re(z) =
a

2
+ c + a cos θ +

a

2
· cos 2θ,

Im(z) = a sin θ +
a

2
· sin 2θ. (5.43)

The fitting parameters a and c depend on L, and, when plotted versus 1/L, these values fall
very closely on a straight line which extrapolated to L → ∞ gives a curve which is virtually
indistinguishable from the κ± equimodular curve outside of the necklace regions. We take
this to be evidence that in this non necklace region the limit (5.43) for cylindrical boundary
conditions is independent of the ratio Lv/Lh. Further numerical details are given in 5.D.

5.5.2 Toroidal boundary conditions

It is numerically more difficult to compute partition function zeros for toroidal boundary
conditions and the maximum size we have been able to study is 27 × 27. These results are
plotted in figure 5.10. There is a necklace for L ≥ 12 and there are zeros in the necklace
region for 15 × 15 through 21 × 21. For 24 × 24 and 27 × 27 there are no zeros in the
necklace region.

Comparison with the equimodular curve of κ±(z)

In figure 5.11 we compare the partition function zeros for toroidal boundary conditions
on the 27 × 27 lattice with the equimodular curve of κ±(z). Outside of the necklace region
the agreement is much closer than it was for the cylindrical case for the 39 × 39 lattice. It
is appealing to attribute this agreement with the absence of boundary effects.

Dependence on the aspect ratio Lv/Lh

We conclude our study of partition function zeros by examining the dependence of the
zeros on the aspect ratio Lv/Lh of the Lh × Lv lattices. In figure 5.12 we plot the partition
function zeros for the toroidal lattices of various ratios Lv/Lh as large as 40 for Lh =
15, 18, 21. We see that the number of zeros outside the main curve increases for fixed Lh
with increasing aspect ratio and for fixed aspect ratio decreases with increasing Lh. It is
furthermore obvious that even for an aspect ratio of 40 there are remarkably few zeros on
the rays seen in the transfer matrix equimodular curves of figure 5.5. From this we conclude,
for fixed Lv/Lh < ∞ with Lh → ∞, that the partition function zeros of the Lh × Lv on
the toroidal lattice will not have any rays of zeros which extend to infinity.
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Figure 5.10: Plots of partition function zeros in the complex fugacity plane z for hard
hexagon with toroidal boundary conditions of size L× L with L = 12, 15, 18, 21, 24, 27.
The value of L× L is given in the upper left hand corner of the plots.
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Figure 5.11: The equimodular curves for |κ−(z)| = |κ+(z)| in the complex z plane and the
partition function zeros for toroidal boundary conditions on the 27× 27 lattice

5.5.3 Density of zeros for zy ≤ z ≤ zd

On the negative z axis we label as zj the position of the jth zero where z1 is the zero
nearest to z = 0 and zy is the zero closest to the Y branching on the negative z axis. Then
calling NL the number of zeros in the interval zy ≤ z ≤ 0 on a finite lattice of size L × L
the density D(z) in the thermodynamic limit is proportional to

D(z) = lim
L→∞

DL(zj) where DL(zj) =
1

NL · (zj − zj+1)
. (5.44)

This density of zeros will diverge at zd as (1 − z/zd)
−1/6, which is obtained from the

leading term in the expansion of ρ−(z). This expansion is obtained, in 5.B, from the algebraic
equation (see eqn. (12.10) in [133]) as

ρ−(z) = t
−1/6
d · Σ0(td) + Σ1(td) + t

2/3
d · Σ2(td) + t

3/2
d · Σ3(td)

+t
7/3
d · Σ4(td) + t

19/6
d · Σ5(td), (5.45)

where td = 5−3/2 · (1− z/zd), the fractional powers are all defined positive for positive td
and where the Σi(td) read
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Figure 5.12: Partition function zeros for toroidal boundary conditions on the lattices 15 ×
150, 15×300, 15×600, the lattices 18×180, 18×360 and the lattice 21×210. The number
of points off of the main curve for fixed aspect ratio Lv/Lh decreases with increasing Lh.
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(5.46)

The term in t
2/3
d was first obtained by Dhar [84] but the full expansion has not been previously reported. The form

(5.45) follows from the renormalization group expansion [68] of the singular part of the free energy at z = zd

fs = t
2/y
d ·

4∑
n=0

t
−n(y′/y)
d ·

∞∑
m=0

an;m · tmd , (5.47)

where y = 12/5 is the leading renormalization group exponent for the Yang-Lee edge, and y′ = −2, the exponent for the
contributing irrelevant operator which breaks rotational invariance on the triangular lattice, is determined from the term
t
2/3
d in (5.45).
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The density ρ−(z) has singularities only at zd and zc in the plane cut on ∞ ≤ z ≤ zd
and zc ≤ z ≤ ∞. However, this does not require that the series (5.46) for Σj(td) will have
td evaluated at zc as their radii of convergence. We have investigated this by computing
the coefficients cj(n) of zn in the series for Σj(td) using Maple up to n = 1200. For Σ0(td)
these coefficients are all positive for n > 1 and for Σj(td) with j = 2, 3, 4 all coefficients are
negative. However, for Σ5(td) the coefficients are negative for 0 ≤ n ≤ 19 and positive for
n ≥ 20. For Σ1(td) the coefficients are positive for 0 ≤ n ≤ 554 and negative for n ≥ 555.
Furthermore the ratios rj = cj(n)/cj(n+ 1) seem to be converging to 2−3/2 = 0.08944271 · · ·
which corresponds to z = 0.

We investigate the density ρ−(z) further by plotting, in figure 5.13, DL(zj) as a function
of z computed from the zeros of the L × L lattice with cylindrical boundary conditions
for L = 33, 36, 39. The values of DL(zj) for all three lattices lie remarkably close to the
same curve except for the region −0.093 < z < zd, where some scatter is observed which
is caused by the finite size of the lattice.

Figure 5.13: Log plots of the density of zeros DL(zj) on the negative z axis for L × L
lattices with cylindrical boundary conditions. The figure on the right is an expanded scale
near the singular point zd.

To estimate the divergence of D(z), at z = zd, we write for z near zd

D(z) ∼ A · (zd − z)α and thus
D(z)

D′(z)
∼ zd − z

α
, (5.48)

where D′(z) is the derivative of D(z). In figure 5.14 we plot DL(zj)/D
′
L(zj), where we define

D′L(zj) =
DL(zj+1)−DL(zj)

zj+1 − zj
. (5.49)

176



Figure 5.14: Plots of DL(zj)/D
′
L(zj) on the negative z axis for L×L lattices with cylindrical

boundary conditions. For the plot on the left it is impressive that for the range −4.0 ≤ z ≤
−0.14 the data is extremely well fitted by the power law form (5.48) with an exponent −1.32
(which corresponds to a slope of −0.76) and an intercept zf = −0.029. The plot on the right
is an expanded scale near zd and the line passing through z = zd with slope of −6 is plotted
for comparison which corresponds to the true exponent = −1/6 which only is observed in a
very narrow range near zd of −0.095 ≤ z ≤ zd = −0.0901 · · · .

For z, away from zd, the plot is very well fitted by the z-line

DL(z)

D′L(z)
∼ zf − z

α
, (5.50)

with αf = −1.32 · · · (or α−1
f = −0.76 · · · ), and zf = −0.029 · · · However, for −0.14 ≤

z ≤ zd this fit is no longer valid. We make in figure 5.14 a comparison with the true value
of α = −1/6, which is obtained from κ−(z). This figure vividly illustrates the very limited
range of validity for the use of perturbed conformal field theory and scaling arguments to
describe systems away from critical points. The same phenomenon has been seen in [121,
eqn. (4.8) and Fig. 4] for Hamiltonian chains.

5.6 Discussions

The results of the numerical studies presented above allow us to discuss in some detail
the relation of the functions κ±(z), which completely describe the hard hexagon partition
function per site on the positive z axis, with the partition function per site in the full
complex z plane. In particular the approach to the thermodynamic limit, the existence of
the necklace, the relation to the renormalization group and questions of analyticity will be
addressed.
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5.6.1 The thermodynamic limit

When the fugacity z is real and positive the free energy and the partition function per
site is independent of the aspect ratio Lv/Lh of the Lh × Lv lattice as Lh, Lv → ∞, and
will be the same for both cylindrical and toroidal boundary conditions. This is a necessary
condition for thermodynamics to be valid.

However, the example of hard squares at z = −1, where it is found [90, 130, 61, 25] that
the partition function ZLv ,Lh

(−1) depends on number theoretic properties of Lv and Lh,
demonstrates that there may be places in the complex z plane where a thermodynamic limit
independent of Lv/Lh does not exist. We have investigated in sections 5.4 and 5.5 the extent
to which our data supports the conclusion that for complex z there is a thermodynamic
limit independent of the aspect ratio Lv/Lh as stated in (5.19). If this independence holds
then the limiting locus of partition function zeros will lie on the limiting locus of transfer
matrix equimodular curves. However, the converse does not need to be true and there is no
guarantee that zeros will lie on all limiting loci of transfer matrix eigenvalues. In particular
we have argued in sections 5.4.3 and 5.5.2 that for toroidal boundary conditions there will
be no zeros in the rays which go to infinity.

5.6.2 Existence of the necklace

All the data both for partition function zeros and transfer matrix eigenvalues contain a
necklace in the left half plane. Such a necklace is incompatible with a partition function
which only includes the functions κ±(z).

For cylindrical boundary conditions it is clear from figures 5.3 and 5.4 that the limiting
locus of transfer matrix equimodular curves in the necklace region has not yet been obtained.
Furthermore in figures 5.3 and 5.4 there are equimodular curves inside the necklace region
beginning at Lh = 18 whereas in figure 5.7 partition function zeros only appear clearly
inside the necklace region for lattices 30 × 30 and greater.

For toroidal boundary conditions the dominance of the P = 0 sector in the limit Lh →
∞, discussed in section 5.4.3, implies that in the thermodynamic limit the necklace will be
the same as for cylindrical boundary conditions.

The simplest mechanism which will account for this behavior is for there to be one (or
more) extra eigenvalue(s) of the transfer matrix which becomes dominant in the necklace
region. Further analytic computation is needed to verify this mechanism. However, the
present data does not rule out the possibility that for sufficiently large systems the necklace
region could be filled with zeros.

5.6.3 Relation to the renormalization group

The form of the singularity of the density ρ−(z) at z = zd given in section 5.5.3 in
(5.47) is not the most general form, allowed by the renormalization group. The most general
form allows the singular part of the free energy to have y′ = −1, which would give a term
in (5.45) with exponent t

1/4
d (which is, in fact, not present). This may be explained by the
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following renormalization group argument given by Cardy [66]. The integer corrections given
by ny′ are conformal descendants of the identity operator. The total scaling dimension of
these operators is N + N̄ . Their conformal spin is N − N̄ , where N and N̄ are nonnegative
integers, and the corresponding exponent y′ is 2 − N − N̄ . However, the six fold lattice
symmetry of the hard hexagon model allows only operators with N − N̄ ≡ 0 (mod 6).
Therefore the dimensions y′ cannot be odd which is what is observed in (5.45). The same
conclusion will apply also to hard squares but not for hard triangles.

5.6.4 Analyticity of the partition function

The final property to be discussed is the relation of the analyticity of the free energy
obtained by analytically continuing the free energy from the positive z axis into the complex
z plane.

For hard hexagons the functions κ±(z) have singularities only at z = zd, zc, ∞, whereas
the partition function per site in the complex plane fails to be analytic at those boundaries
which are the thermodynamic limit of the equimodular curves. It is obvious for hard hexagons
that these boundaries have nothing to do with the analyticity of κ±(z). However it is
unknown if in general the partition function per site on the real axis can be continued
analytically beyond the region where it corresponds to the maximum modulus of the transfer
matrix eigenvalue.

The other locus where the hard hexagon model has partition function zeros is on the
negative real axis for z ≤ zd. These zeros correspond to the complex conjugate solutions
for κ−(z) alone and have no connection with κ+(z). The leading singular behavior of hard
hexagons at zd is believed to be a property shared by all systems with purely repulsive
(positive) potentials and is a universal repulsive-core singularity [147, 178]. Therefore it is
of considerable interest to determine whether the ability to continue through this locus of
zeros, which is the case for the integrable system of hard hexagons, will hold for all the
non-integrable models in the same universality class.

5.7 Conclusion

The hard hexagon model solved by Baxter [22, 29, 30] not only satisfies the Yang-Baxter
equation but also as shown by Joyce [133] and Tracy et al [191, 235] has a remarkable
structure in terms of algebraic modular functions and their associated Hauptmoduls. It is
thus a good candidate for a global analysis in the whole complex plane of the partition
function per site which is complementary to a local analysis based on series expansions and
perturbation theory.

In this paper we have made a precision finite size study for the hard hexagon model
of the zeros of the partition function and of the equimodular curves of the transfer matrix
in the complex fugacity plane z. This study reveals that the partition function per site
has more structure for complex z than has been seen in previous studies on much smaller
systems [246, 248, 250, 251]. In particular our results demonstrate that the conjecture on
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zeros of the hard hexagon partition function made in [251] is incorrect, and corresponds to a
too simple high density equimodular condition of the Hauptmodul being real. This condition
has to be replaced by more involved equimodular conditions involving both the low and high
density partition functions. Furthermore we have found that the results of [22, 29, 30] on
the positive z axis are not sufficient to determine all of the analytic structure of the partition
function per site in the complex z plane.

The full significance of our results is to be seen in the comparison with hard squares and
with the Ising model in a magnetic field which do not satisfy a Yang-Baxter equation and will
not have the global properties of modular functions. In particular we note that in section 5.4.1
it was found that on the negative z axis the zeros of the resultant of the characteristic
equation of the transfer matrix have the remarkable property that their multiplicity is two.
This is in distinct contrast with hard squares where the multiplicity of the roots of the
resultant is one.

Hard squares and hexagons are the limiting case of Ising models in a magnetic field when
the field becomes infinite. The results of this paper have extensions to Ising models in a
finite magnetic field which will be presented elsewhere.
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Appendix

5.A The singularities of κ±(z)

The partition functions per site κ±(z) are singular at zc, zd and ∞. At z = zc, and
z = zd, the values of the three Ωi read respectively

Ω1(zc) = 0, Ω2(zc) = (55/2zc)
2, Ω3(zc) = −(55/2zc)

3, (5.51)

Ω1(zd) = 0, Ω2(zd) = (55/2zd)
2, Ω3(zd) = (55/2zd)

3. (5.52)
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5.A.1 High density

As z → ∞ the physical κ+(z), which satisfies the algebraic equation (5.33), diverges.
There is only one such real solution and by direct expansion of (5.33) we find that

κ+(z) = z1/3 +
1

3
z−2/3 +

5

9
z−5/3 +

158

81
z−8/3 +

2348

243
z−11/3 + · · · (5.53)

which agrees with eqn. (7.14) in [133]. It follows from (5.53) that κ+(z) has a branch cut
on the segment −∞ < z ≤ zd and that on this segment the phase is

e±πi/3 for Imz = ±ε → 0. (5.54)

When zc < z < ∞ there is one real positive, one real negative, and one complex
conjugate pair of solutions to the fourth order equation (5.33) for κ6

+. The negative solu-
tion is larger in magnitude than the positive solution, and, thus, cannot correspond to any
eigenvalue of the transfer matrix. However, the magnitude of the complex conjugate pair of
solutions is less than the value of the real positive root. At z = zc the real positive root
collides with the complex conjugate pair.

When z = zc, introducing the rescaled variable

wc+ = Ω3(zc) ·
κ6

+(zc)

z6
c

= −(55/2/zc)
3 · κ6

+(zc), (5.55)

we find that (5.33) reads (wc+ +39)3 = 0. Thus, using (5.55) and the fact that κ+(zc) must
be positive, we obtain

κ+(zc) = (33 · 5−5/2 zc)
1/2 = 2.3144003 · · · (5.56)

which is (7.17) of [133].
For z = zd, introducing the rescaled variable wd+ = Ω3(zd) · κ6

+(zd)/z
6
d = (55/2/zd)

3 ·
κ6

+(zd), we find that (5.33) also reads (wd+ + 39)3 = 0. Using (5.54), one gets κ+(zd)
6 =

39/58 (1525 − 682 51/2) or κ+(zd) = e±πi/3 0.208689 · · · .

5.A.2 Low density

When z = zc equation (5.35) reduces using (5.51) to the eleventh order equation

f−(zc, wc−) =
11∑
k=0

C̃−k · w
k
c− = 0 (5.57)

181



with wc− = 55/2 κ2
−(zc)/zc and

C̃−0 = −232 · 327,

C̃−1 = 0,

C̃−2 = 226 · 323 · 31,

C̃−3 = −226 · 319 · 47,

C̃−4 = −217 · 318 · 5701,

C̃−5 = 216 · 314 · 72 · 19 · 37,

C̃−6 = −210 · 310 · 7 · 273001,

C̃−7 = 29 · 310 · 11 · 13 · 139,

C̃−8 = −35 · 7 · 1028327,

C̃−9 = 37 · 79087,

C̃−10 = −19 · 139,

C̃−11 = 1, (5.58)

which factorizes as

f−(zc, wc−) = (wc− + 24)2 · (wc− − 33)3 · (wc− − 24 · 33)6 = 0. (5.59)

From the second factor in (5.59) we obtain the solution

κ−(zc) = (33 · 5−5/2 zc)
1/2 = κ+(zc), (5.60)

as required by continuity. At z = zc the solution for κ−(zc) is three fold degenerate which
also agrees with the degeneracy of κ+(zc).

For 0 < z < zc there is one real positive, one real negative and five complex conjugate
solutions of the 12th order equation (5.35). Three of the complex conjugate pairs have a
modulus less than the real positive solution. At z = zc a collision of the real positive root
with one of the complex conjugate pairs occurs.

When z = zd an analogous reduction can be made by use of (5.52) and of the rescaling
wd− = 55/2 κ2

−(zd)/zd. We find, in analogy to (5.59), the factorization

f−(zd, wd−) = −(wd− − 24)2 · (wd− + 33)3 · (wd− + 24 · 33)6 = 0. (5.61)

At z = zd the last factor in (5.61) vanishes and we find

κ−(zd) = (−24 · 33 · 5−5/2 zd)
1/2 = (24 · 33 · 5−5/2/zc)

1/2

= 4 |κ+(zd)| = 0.83475738 · · · . (5.62)

For zd < z < 0 there are three real positive, three real negative, and three complex
conjugate solutions of the polynomial relation (5.35) of degree twelve in κ2

−, and all three
of the complex conjugate solutions have a modulus smaller than the largest positive real
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solution. The largest positive real solution is the dominant eigenvalue, until z = zd, when a
collision with the next real largest solution and two complex conjugate pairs occurs.

5.B Expansion of ρ−(z) at zc and zd

The low density function ρ−(z) satisfies the polynomial equation of degree twelve in ρ−
and degree four in z (see eqn. (12.10) in [133])

ρ11
− · (ρ− − 1) · z4 − [ρ5

− z
3 − (ρ− − 1)5 z] · p7

+ρ2
− · (ρ− − 1)2 · p8 · z2 + ρ− · (ρ− − 1)11 = 0 (5.63)

where

p7 = 22ρ7
− − 77 ρ6

− + 165ρ5
− − 220ρ4

− + 165ρ3
− − 66ρ2

− + 13ρ− − 1,

p8 = 119ρ8
− − 476ρ7

− + 689ρ6
− − 401ρ5

− − 6ρ4
− + 125ρ3

− − 63ρ2
− + 13ρ− − 1. (5.64)

This equation has the remarkable property that at z = zc, zd it reduces to a fifth order
equation

−275 + 123
√

5

8000
· (10ρ− − 5 +

√
5)5 = 0 for z = zc, (5.65)

−275− 123
√

5

8000
· (10ρ− − 5 −

√
5)5 = 0 for z = zd. (5.66)

There are four distinct Puiseux expansions of ρ− about zc which are real for z < zc. The
leading exponents of these expansions are −1, −1/6, 0, 0. The physical solution must be
finite at z = zc and we see from (5.65) that the two solutions which are constant at z = zc
have the value ρ−(zc) = (1− 5−1/2)/2. To decide which of these two Puiseux expansions is
the correct physical solution we need the independent condition that the leading nonanalytic
term has exponent 2/3. The result [133, p. 12.15] follows from this additional condition.

At z = zd there are also four Puiseux expansions of ρ−(z) which are real for zd < z. The
leading exponents are, again, −1, −1/6, 0, 0. Now, unlike ρ−(zc), the density is not constant
at z = zd, but diverges with exponent −1/6. Furthermore, in the cluster expansion of ρ−(z)
about z = 0, it follows, from a theorem of Groeneveld [104], that because the sign of the
coefficient of zn is (−1)n−1, the density must be negative in the segment zd < z < 0. The
leading term of the Puiseux expansion with exponent −1 is positive and is, thus, excluded.
There are six conjugate solutions with exponent −1/6. The member of this class which has
the correct negative behavior z → zd+ is the result given in (5.45).
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5.C The Hauptmodul equations and the κ± equimod-

ular curves

The equations (5.33) and (5.35) for κ± may be usefully re-expressed in terms of the
Hauptmodul H

H = 1728 z · Ω5
1(z)

Ω2
3(z)

, (5.67)

by making the rescaling

W± = Ω3(z) ·
(κ±
z

)6

. (5.68)

For high density it is straight forward to use (5.67) and (5.68) in (5.33) to obtain

P+(W+, H) = H2 · W 4
+ + 27 · 36 · (27H − 32) · W 3

+

+ 27 · 316 · (45H − 32) · W 2
+ − 212 · 325W+ − 212 · 333 = 0. (5.69)

The algebraic curve P+(W+, H) = 0 is the union of two genus zero curves.

For low density the polynomial relation (5.35) on κ− in the z variable can be written in
terms of the Hauptmodul (5.67), and of the rescaled variable W− (5.68), as follows

P−(W−, H) = H6 · W 12
− + 212 · 37 · P11 · W 11

− + 219 · 313 · P10 · W 10
−

−232 · 318 · P9 · W 9
− − 236 · 329 · P8 · W 8

− + 252 · 338 · P7 · W 7
−

+262 · 346 · P6 · W 6
− − 277 · 356 · P5 · W 5

− − 285 · 365 · P4 · W 4
−

+2100 · 373 · P3 · W 3
− − 2110 · 383 · P2 · W 2

− + 47 · 2126 · 392 · W−
−2132 · 399 = 0, (5.70)
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where the polynomials Pn read:

P11 = 85423588659H5 − 1273194070087H4 + 5683675368960H3

−3624245 · 212 · 36H2 + 901 · 219 · 39H − 224 · 311,

P10 = 2098366262345322754767H5 − 4991131592299977169590H4

+3893219286516719759223H3 − 1056221406812154079936H2

+56427952366139092992H − 483780265 · 217 · 35,

P9 = 15382723254412673871318753H4 + 26277083153777345473689849H3

+4098422120568047655974595H2 + 37921229707060286737587H

+1560354561975860656,

P8 = 1020939125266735071750904401H4 − 1161800973997140083525143956H3

+214393801490313112726470774H2 − 2006070488338798415238516H

+59190955246329648961,

P7 = 508697400997842959916351H3 − 554351605658908065490725H2

−35192800976394203832051H − 2775596721861024679,

P6 = 1245962466251450908065H3 − 15255449815782496728645H2

+8457596543456744207175H − 13332664262978720611,

P5 = 114630292396020573H2 − 366034684810378734H + 92792159042784817,

P4 = 938107512437391H2 − 1026461977730478H + 933965999427127,

P3 = 121395557277H − 59327302513,

P2 = 11532609H − 1281659. (5.71)

Do note that the algebraic curve P−(W−, H) = 0 is actually a genus zero curve. The
algebraic curve (5.70) is the sum of 43 monomials of degree six in H and degree 12 in W−,
as compared to a sum of 157 monomials of degree 22 in z and degree 24 in κ− for (5.35). At
first sight, the polynomial relation (5.70), in the Hauptmodul and the rescaled variable W−,
looks quite different from (5.35). In fact, the two polynomial relations (5.70) and (5.35) are
in agreement, as can be seen on the quite remarkable identity

z66 · P−(W−, H) = 1218 · f−(z, κ−) · f−(z, e2πi/3 κ−) · f−(z, e−2πi/3 κ−), (5.72)

where the l.h.s. of (5.72) is actually a polynomial expression in terms of κ− and z.

5.C.1 κ+ versus κ−

The functions κ− and κ− are not related by analytic continuation. However, because both
W+ and W− are algebraic functions of the same Hauptmodul we can eliminate H between
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(5.69) and (5.70) to obtain the following algebraic relation between W+ and W−

W−
4W+

6 + 32W−
3W 5

+ · (1509W− − 512W+)

−2 W 2
−W

3
+ · (W 3

− − 411832512W 2
−W+ + 937623552W−W

2
+ − 50331648W 3

+)

−32W−W
2
+ · (34791W 4

− − 182579836224W 3
−W+ − 1128985165824W 2

−W
2
+

−549067948032W−W
3
+ + 8589934592W 4

+)

+ (W 4
− − 84091500544W 3

−W+ − 1482164797440W 2
−W

2
+ − 8145942347776W−W

3
+

+68719476736W 4
+) · (W 2

− − 172928W−W+ + 4096W 2
+) = 0. (5.73)

This remarkable algebraic relation for hard hexagons follows from the modular properties of
κ+ and κ− and is not expected to exist for a generic system.

One verifies easily that eliminating W+ between (5.69) and (5.73) one recovers (5.70),
and that eliminating W− between (5.70) and (5.73) one recovers (5.69).

The polynomial relation (5.73) of degree six in W+ and W−, is actually also a genus zero
algebraic curve.

The situations where κ− = κ+ (see (5.60)) correspond to W− = W+ in (5.73). It
yields the values 0, −39, −57707, 22743 ± 30268 i, corresponding to W− = W+ = −39.
Note that κ− = .83475738 · · · in (5.62) corresponds to the integer value W− = −212 39.

5.C.2 The κ± equimodular curves

The κ± equimodular condition reads |W+| = |W−| in terms of W±. Setting the ratio

r =
W+

W−
, (5.74)

we can obtain a polynomial relation between this ratio r and the Hauptmodul H, eliminating
W− between P−(W−, H) = 0 and P+(r · W−, H) = 0, by performing a resultant. This
resultant calculation yields a polynomial condition P (r, H) = 0, where the polynomial,
of degree 36 in r and degree 18 in H, is the sum of 577 monomials. When H = 0 this
polynomial reduces to

P (r, 0) = 2108 · r3 · (4096 r + 19683)6 · (4096 r − 1)12 · (r − 1)6, (5.75)

and when H = 1, it reduces to

P (r, 1) = (330225942528 r3 + 216854102016 r2 + 72695294208 r + 1)3

×(16777216 r3 − 297467904 r2 + 2692418304 r − 1)6 · (256 r + 27)9. (5.76)

The equimodularity condition |κ+| = |κ−| corresponds to an algebraic curve in the
(x, y) complex plane (z = x + i y). This curve can be obtained by writing the Hauptmodul
as a function of x and y, namely H = X(x, y) + i Y (x, y), where X(x, y) and Y (x, y)
are quite large rational expressions of x and y, and then parametrising the equimodularity
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condition |r| = 1 as r = (1− t2)/(1 + t2) + 2 i t/(1 + t2), where t is a real variable. This
amounts to writing

P

(
1− t2

1 + t2
+ i · 2 t

1 + t2
, X(x, y) + i Y (x, y)

)
= P(x, y, t) + i · Q(x, y, t) = 0.

where P(x, y, t) and Q(x, y, t) are quite large rational expressions of the real variables x, y
and t. Let us denote N1(x, y, t) the numerator of P(x, y, t) and N2(x, y, t) the numerator
of Q(x, y, t). Eliminating t between N1(x, y, t) = 0 and N2(x, y, t) = 0, performing a
resultant, one will get finally a quite large polynomial condition P(x, y) = 0, corresponding
to the algebraic equation of the equimodularity condition |κ+| = |κ−|.

Icosahedral symmetry of the equimodular curve

The polynomial condition is too large to be given explicitly here. It is, however, worth
noting that, since the equimodular curve is deduced from polynomial expressions that depend
only on the Hauptmodul H, the equimodular curve has the quite non-trivial property that
it is compatible with the icosahedral symmetry of the hard hexagon model [134]. This
icosahedral symmetry corresponds to the following symmetry of the Hauptmodul (5.67).
Let us introduce the complex variable ζ defined by z = ζ5, the fifth root of unity ω and
the golden number τ

ω = 1/4
√

5 − 1/4 + 1/4 i
√

2

√
5 +
√

5, τ =
1 +
√

5

2
. (5.77)

Let us consider the order-five transformation h5

ζ −→ h5(ζ) = τ · ω + (1− τ) ζ

ω + τ ζ
. (5.78)

It is a non-trivial but straightforward calculation to see that the Hauptmodul H, seen as
a function of the complex variable ζ, is actually invariant by this order-five transformation
h5, by the involution ζ → −1/ζ as well as the order-five transformation ζ → ω · ζ:

H(ζ) = H(h5(ζ)) = H
(−1

ζ

)
= H(ω · ζ). (5.79)

A selected point of the equimodular curve

The algebraic equimodular curve P(x, y) = 0 intersects the real axis y = 0 at the
critical value zc (i.e. H = 0, see (5.75)) and at an algebraic value z = −5.94254104 · · ·
corresponding to the algebraic value of the Hauptmodul H = 1.2699347 · · · , a root of the
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polynomial P12(H) of degree twelve in H:

P12(H) = 4206595200930643574789609575412 · H12

−3035676163450716673183784433435873765727935868148497169025 · 29 · H11

+180032218185835528405034756761309783218694171171683152985 · 216 · H10

−963917598568487789731961832547602704647778692096330233 · 225 · H9

+4687917985071549790872555988500591318811098924601809 · 233 · H8

−11794524087347323954434252908699683281468087505905 · 241 · H7

+34111250660390601705930372758400977149413250857 · 248 · H6

−16562829715197286592872531393597405351924479 · 257 · H5

+10432786705236893496285793791292996147041 · 265 · H4

−4452980987936971936196603653288348935 · 273 · H3

+2184609189525225289847951233328377 · 280 · H2

−14687865423363371951559480967168 · 1761607683 · H
+9564979206. (5.80)

This algebraic point corresponds to the following algebraic values of W±, in (5.70) and
(5.69), W+ = −5404.2605 · · · and W− = 2118.9287 · · · + 971.5363 · · · i, the ratio r =
W+/W− being, as it should, a complex number of unit modulus, namely −0.3920 · · · +
i .9199 · · · This algebraic point is characterized by the fact that W+ or κ6

+ (but not κ−) is
a real number: κ6

+ = 26.6786 · · · but κ− = 0.864 · · · − 1.497 · · · i.

5.D Cardioid fitting of partition function zeros

Examples of the excellent fit by the cardioid curve (5.43) of the inner boundary of the
partition function zero on cylindrical lattices referred to in section 5.5.1 for the cases 33 ×
33, 36 × 36 and 39 × 39 are plotted in figure 5.D.15. In figure 5.D.16 we plot the values
of a(L) and c(L) the best fitted cardioid of (5.43) versus 1/L and observe that they are
remarkable well fitted by a straight line which extrapolates as L → ∞ to

a = 7.6302 · · · c = −4.1268 · · · (5.81)
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Figure 5.D.15: Fitting of the partition function zeros for cylindrical boundary conditions
to the cardioid of (5.43) for the 33× 33, 36× 36 and 39× 39 lattice.

Figure 5.D.16: The fitting parameters a and c for cylindrical boundary conditions of the
cardioid (5.43) versus L for the partition zeros of the L× L lattice.

5.E Transfer-matrix algorithms

Figure 5.E.17: The movement of the transfer-matrix cut-line in the general case.

To calculate the partition functions ZLv ,Lh
(z) we use what are known as ‘transfer matrix’

techniques. These work by moving a cut-line through the lattice and constructing a partial
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partition function for each possible configuration/state of sites on the cut-line. The most
efficient way of calculating the partition function is to build up the lattice site-by-site as
illustrated in figure 5.E.17. Sites on the cut-line are shown as large solid circles. Each
of these sites can be either empty or occupied. Because of the hard particle constraint,
nearest neighbors cannot be occupied simultaneously. So any configuration can be mapped
to a binary integer in an obvious fashion with empty sites mapped to 0 and occupied sites
to 1. The distinct configurations along the cut-line are thus circular n-bit strings with no
repeated 1’s. Their number is given by the Lucas numbers L(n) (sequence A000204 in
the OEIS [225]), which have the simple recurrence L(n) = L(n − 1) + L(n − 2). In fact,
L(n) = (1+

√
5)/2)n+(1−

√
5)/2)n, so the number of allowed configurations has the growth

constant (1 +
√

5)/2 = 1.618 . . ., and are therefore exponentially rare among the integers.
Hence as is standard in such a case we use hash tables as our basic data structure to store
and access the sparse array representing the state space of the model.

For each configuration we maintain a partial partition function (sum over all states) for
the lattice sites already visited with each occupied site given weight z and each empty site
given weight 1. The shaded circles in figure 5.E.17 represent sites already fully accounted
for, that is, all possible occupancies have been summed over. The open circles are sites that
are yet to be visited and hence are not yet accounted for. The black circles are not yet
fully accounted for since their possible ‘interactions’ with the open sites have not yet been
included. The movement of the cut-line in figure 5.E.17 consists of a move from the site at
position (j, k+1) to the ‘new’ site at position (j+1, k) with ‘interactions’ with the neighbor
sites at (j, k) and (j + 1, k + 1). Notice that the update of the partial partition functions
does not depend on the state of any other sites on the cut-line. Formally we can view the
update as a matrix multiplication w = Tv, mapping the vector of partition functions v
prior to the move to the vector of partition functions w after the move. The great advantage
of the site-by-site updating is that we need not store the actual transfer matrix T; it is
given implicitly by a set of simple updating rules depending only on the ‘local’ configuration
(states) of the sites on the cut-line which are nearest neighbors to the new site.

We shall refer to the configuration of sites prior to the move as a ‘source’ and denote
its integer representation with an S while a configuration after the move is referred to as
a ‘target’ and denoted with a T . In an update we simply have to determine the allowed
configuration of the ‘new’ site, that is, whether the new site is occupied or empty. The
‘hard’ constraint makes this very simple since the new site can be occupied only when all
neighbor sites in the source configuration are empty. Since each site can be either empty (0)
or occupied or (1) the four sites around the face have 16 possible configurations but only
6 are allowed because of the hard constraint. The 3 sites along the left and top form the
‘local’ source configuration and there are 5 (out of 8) allowed configurations. The local target
configuration is given by the states of the 3 sites along the bottom and right of the face (2
sites occur in both source and target). By writing down the 6 allowed local configurations
one can easily deduce the following simple updating rules
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Z(T000) = Z(S000) + Z(S010),

Z(T100) = Z(S100),

Z(T010) = z · Z(S000), (5.82)

Z(T001) = Z(S001),

Z(T101) = Z(S101),

where the subscript triplets represent the states of the ‘local’ source sites at positions (j, k),
(j, k+1), (j+1, k+1) and target sites at positions (j, k), (j+1, k), (j+1, k+1), respectively.

The transfer matrix algorithm described above takes care of the summation over sites in
the interior of the lattice. Special rules apply at the top and bottom of a column. When
adding a site at the top of a new column we include interactions between the site left of
the new site and the site in the previous column on the bottom row (this interaction along
a diagonal edge implements part of the periodic boundary condition in the Lh direction).
Finally after we have completed a new column the site ‘left over’ in the previous column
is superfluous to requirements and we can ‘contract’ the state space by summing over the
states of this site. The number of distinct configurations for a column of height Lh sites
is then L(Lh + 1) for a partially completed column, and L(Lh) when the column has been
completed.

The transfer matrix algorithm described above is the same whether used in the calculation
of partition function zeroes or eigenvalue crossings. Below we briefly outline how it is used
in the two cases.

5.E.1 Partition function zeros

To calculate partition function zeros we need the exact partition function on an Lv ×Lh
lattice. This is simply a polynomial in z of degree Lv · Lh/3 with integer coefficients. So
for each state along the cut-line the partial partition function is maintained as an array
of integers of size Lv · Lh/3 + 1. The coefficients become very large and in order to deal
with this the calculations were performed using modular arithmetic. So the calculation for a
given size lattice was performed several times modulo different prime numbers with the full
integer coefficients reconstructed from the calculated remainders using the Chinese remainder
theorem. Utilizing the standard 32-bit integers we used primes of the form pi = 230 − di,
that is we used the set of largest primes smaller than 230. Depending on the Lv and Lh the
number of primes required to reconstruct the exact integer coefficients can exceed 100. The
zeros of the partition function can then be calculated numerically (to any desired accuracy)
using root finders such as MPSolve [37] or Eigensolve [94]. We used MPSolve with a few
calculations checked by using Eigensolve.

The transfer-matrix algorithm can readily be parallelised. One of the main ways of
achieving a good parallel algorithm using data decomposition is to identify an invariant
under the operation of the updating rules. That is, we seek to find some property of the
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configurations along the cut-line which does not alter in a single iteration. As mentioned
above only the ‘new’ site can change occupation status. Thus, any site not directly involved
in the update cannot change from being empty to being occupied and vice versa. This
invariant allows us to parallelise the algorithm in such a way that we can do the calculation
completely independently on each processor with just two redistributions of the data set each
time an extra column is added to the lattice. This method for achieving a parallel algorithm
has been used extensively for other combinatorial problems and the interested reader can
look at [126] or [107, Ch 7] for details.

Cylindrical boundary conditions are simply implemented by starting the transfer matrix
calculation with the all empty state having weight one (all other states having weight zero),
iterating the algorithm to add Lh columns and then summing over all states.

Toroidal boundary conditions are fairly easy to implement but they are computationally
expensive. The problem is that in order to include the interactions between sites in the first
and last columns we have to ‘remember’ the state of the first column. Here we did this by
simply specifying the initial state of the first column SI, starting with the initial weights
Z(S) = 0 when S 6= SI and Z(SI) = zm, where m is number of occupied sites in SI . For
each value of SI we then perform the transfer matrix calculation as described above until the
final column has been completed. Finally we put in the interactions between the occupation
numbers in the last column with state S and those in the first column, sum over all states
S, and repeat for all SI. The saving grace is that one does not have to do this calculation
for all values of SI. Indeed, any SI related by translational and reflection symmetry give
rise to the same result. In table 5.E.6 we have listed the number of distinct initial states
NI one needs to consider in a calculation of the partition function with toroidal boundary
conditions on a lattice of width Lh. The numbers NI are given by sequence A129526 in the
OEIS [225]. Note that for large Lh states which are invariant under the generators of the
dihedral group DLh

are exponentially rare. Therefore L(Lh)/NI ∼ 2Lh for Lh � 1, and this
is nicely brought out by the entries in table 5.E.6. Naturally the calculations for different
initial states can be done completely independently making it trivial to parallelise over SI

(one can also fairly easily combine this with the parallel algorithm over state space should
this be required).

Lh NI L(Lh) L(Lh)/NI Lh NI L(Lh) L(Lh)/NI

3 2 4 2.00 6 5 18 3.60
9 9 76 8.44 12 26 18 12.38

15 64 1364 21.31 18 209 5778 27.64
21 657 24476 37.25 24 2359 103682 43.95
27 8442 439204 52.02 30 31836 1860498 58.44

Table 5.E.6: The number NI of distinct initial states required to calculate the partition
function with toroidal boundary conditions compared to the total number of states given by
the Lucas numbers.
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The bulk of the large scale calculations for this part of the project were performed on the
cluster of the NCI National Facility at ANU. The NCI peak facility is a Sun Constellation
Cluster with 1492 nodes in Sun X6275 blades, each containing two quad-core 2.93GHz Intel
Nehalem CPUs with most nodes having 3GB of memory per core (24GB per node). The
largest size calculation we performed was for cylindrical boundaries where we went up to
39×39. This required the use of 256 processors (cores to be precise) taking around 140 CPU
hours per prime with the calculation being repeated for 25 primes. The largest calculation
for toroidal boundaries was the 27× 27 lattice. This is sufficiently small memory wise to fit
on a single core so we only used a parallelisation over initial states. The calculation took
around 550 CPU hours per prime with the calculation repeated for 14 primes.

5.E.2 Transfer matrix eigenvalues

The equimodular curves on Lh×∞ strips where eigenvalues of largest modulus cross can
be obtained from numerical studies using the transfer matrix algorithm outlined above. As
we have seen, the dimension dim T of the transfer matrix T for hard hexagons confined to a
strip of height Lh grows exponentially fast with Lh. Hence the calculation of the eigenvalues
of T and the resulting equimodular curves quickly becomes a very demanding task. We
have however seen that the updating rules (5.82) do not require us to manipulate or store
all the (dim T)2 entries of T, but rather operate on two vectors of size dim T, namely v and
Tv, representing the set of conditional probabilities before and after a move of the cut-line.
In other words, the trick of adding the sites to the system one at a time has produced a
sparse-matrix factorization of T.

It is possible to take further advantage of this gain to extract also the leading eigenvalues
of T. Namely, we use a set of iterative diagonalisation methods in which the object being
manipulated is not T itself but rather its repeated action on a suitable set of vectors. An
iterative scheme that works well even in the presence of complex and degenerate eigenvalues
is known as Arnoldi’s method [8]. This forms part of a class of algorithms called Krylov
subspace projection methods [203, 204]. These methods take full advantage of the intricate
structure of the sequence of vectors Tnv naturally produced by the power method. If one
hopes to obtain additional information through various linear combinations of the power
sequence, it is natural to formally consider the Krylov subspace

Kn(T,v) = Span{v,Tv,T2v, ...,Tn−1v}

and to attempt to formulate the best possible approximations to eigenvectors from this
subspace. We make use of the public domain software package ARPACK [152] implementing
Arnoldi’s method with suitable subtle stopping criteria. The ARPACK package allows one
to extract eigenvalues (and eigenvectors) based on various criteria, including the one relevant
to our calculations, namely the eigenvalues of largest modulus.

The problem specific input for this type of calculation only consists in a user supplied
subroutine providing the action of T on an arbitrary complex vector v. In our case this
amounts to iterating the update rules (5.82) until a complete column has been added to the
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lattice. In particular, the sparse-matrix factorization and the subtleties having to do with
the ‘inflation’ of the state space before the addition of the first site in a new row, as well as
the ‘contraction’ after the addition of the last site in a completed row, are all hidden inside
this subroutine and not visible to Arnoldi’s method. The iterations of T are thus computed
for a fixed complex value of the fugacity z until the ARPACK routines have converged.

Very briefly, we trace the equimodular curve as follows. First we find a point on the
equimodular curve; we can choose a point on the negative real axis, say z0 = −1, that we
know is on the curve. To find a new point z on the curve we start at the previous point and
look for a new point on a circle of radius ε (in general we use ε = 10−2) at an angle θ0 from
the previous point. In general this trial point will not lie on the equimodular curve. Our
algorithm then finds a new point by using the Newton-Raphson method to converge in the
angle θ towards a zero in the distance between leading eigenvalues. The pair (z, θ) is then used
as the starting values (z0, θ0) for a new iteration of the search algorithm. This procedure in
then iterated until the equimodular curve has been traced. Points where the curve branches
are detected by noting that the third leading eigenvalue becomes equal in modulus to the
leading eigenvalue. End points are detected by noting that the procedure cannot find a new
point (in fact it turns around and converges towards a point on the part of the curve already
traced). Many aspects of this search algorithm involve subtleties, in particular automatizing
the procedure in the case where the equimodular curve has a complicated topology with
many branchings; this will be described fully in a separate publication [120].

As for the partition function zeroes, we are interested in tracing the equimodular curves
for both toroidal and cylindrical boundary conditions. Since in both cases we use the same
transfer matrix T (i.e., with periodic boundary conditions in the Lh direction) it might
seem that the curves would be identical. This is not the case. Indeed, in the cylindrical
case the initial condition imposed on the first column of the lattice is that all sites in the
preceding column are empty. In particular, this initial state is translational invariant and
thus has momentum P = 0. This momentum constraint can be imposed by rewriting T in the
translational and reflection symmetric subspace of dimension NI . Once again, an appropriate
‘inflation’ and ‘contraction’ of the state space has to be performed at the beginning and the
end of the user supplied subroutine, as the kink on the cut-line describing the intermediate
states breaks the dihedral symmetries explicitly. But since these intermediate steps are
hidden from Arnoldi’s method, the end result amounts to diagonalising a transfer matrix of
smaller dimension, dim T = NI . Meanwhile, the equimodular curve for toroidal boundary
conditions is obtained by diagonalising the original transfer matrix without the P = 0
constraint, i.e., with dimension dim T = L(Lh).

The memory requirements of the algorithm up to the largest size Lh = 30 that we
attempted is quite modest and the calculation can be performed on a basic desktop or
laptop computer. As an example the calculation of the equimodular curve for Lh = 30 with
cylindrical boundary conditions took about 10 days on a MacBook Pro with a quad core I7
2.3GHZ processor.
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5.F Finite-size scaling analysis of zc(L) and zd(L)

According to the theory of finite-size scaling (FSS) [67], the free energy per site corre-
sponding to the j-th eigenvalue of the transfer matrix has the scaling form

1

L
fj

(
|z − zc|Ly, uL−|y

′|
)
, (5.83)

where zc is the critical point, y is the leading relevant eigenvalue under the renormalization
group (RG), and u is the coupling to an RG irrelevant operator with eigenvalue y′ < 0.
If more than one RG irrelevant coupling is present there will be further arguments to the
function, which we here omit for clarity. The equimodularity condition |f1| = |f2| can
obviously be written in the same scaling form as can the partition function zeros. Moreover,
FSS assumes that the functions fj are analytic in their arguments for z 6= zc, which implies
at leading order that

|z − zc| = AL−y +BuL−y−|y
′| + . . . , (5.84)

where A and B are non-universal constants. To higher orders, the terms appearing on the
right-hand side involve powers of L−1 that can be any non-zero linear combination of y and
|y′| with non-negative integer coefficients. There is obviously no guarantee that all such
terms will appear, since some of the multiplying constants (A,B, . . .) may be zero.

When it is known that z → zc as L→∞, with zc real, one can similarly analyze distances
other than |z − zc| to the critical point that vanish linearly with z − zc. Examples include
||z| − zc|, Re(z) − zc, Im(z), and Arg(z).1 According to the general principles of FSS [67]
these variables can be developed on |z− zc| and the irrelevant RG couplings, and (5.84) will
follow, albeit necessarily with different values of the non-universal constants (A,B, . . .).

The critical point zc > 0 in the hard hexagon model is known to be in the same univer-
sality class as the three-state ferromagnetic Potts model [252]. The energy operator of the
latter [87] provides the RG eigenvalue y = 2 − 2h2,1 = 6/5, where we have used the Kac
table notation hr,s, familiar from conformal field theory (CFT), for the conformal weight of
a primary operator φ(r,s). Subdominant energy operators, φ(3,1) and φ(4,1), follow from CFT
fusion rules and lead to RG eigenvalues y′ = −4/5 and y′′ = −4 respectively. Our numerical
analysis of |zc(L)| − zc for L up to 39 (see table 5.5) gives good evidence for the FSS form

|zc(L)| − zc = a0L
−6/5 + a1L

−2 + a2L
−14/5 + . . . . (5.85)

The powers of L−1 appearing on the right-hand side can be identified with y, y + |y′| and
y + 2|y′|. This is compatible with the above general result; note however that the power
2y = 12/5, which is a priori possible, is not observed numerically.

The CFT of the Lee-Yang point zd < 0 is much simpler [68], since there is only one
non-trivial primary operator φ(2,1). It provides the RG eigenvalue y = 12/5. Our numerical

1Obviously we here exclude cases where the variable is identically zero, such as when Im(z) = 0, or when
||z| − zc| = 0 because of a circle theorem.
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analysis of |zd(L)− zd| (see table 5.5) gives strong evidence for the FSS form

|zd(L)− zd| = b0L
−12/5 + b1L

−17/5 + b2L
−22/5 + . . . . (5.86)

The powers of L−1 on the right-hand side can be identified with y, y+1 and y+2. The integer
shifts in (5.86) can be related to descendent operators in the CFT, since |y′| is a positive
integer for descendents of the identity operator; note that some descendents are ruled out
by symmetry arguments, as in section 5.5.3. Another source of corrections in powers of L−1

is that the data of table 5.5 are computed for L × L systems with cylindrical boundary
conditions. Indeed, while the length L along the periodic direction is unambiguous, the one
along the free direction should possibly be interpreted as L+a in the continuum limit, where
a is a constant of order unity. In any case, it is remarkable that y+ 1 = 11/5 does not occur
in (5.86).

To probe the finite-size scaling form, i.e., determine which terms actually occur in the
asymptotic expansion, we carry out a careful numerical analysis of how the endpoints zd(L)
and zc(L) approach zd and zc in the thermodynamic limit. Since our data for end-point
positions is most extensive in the case of partition function zeros with cylindrical boundary
conditions we analyse the data of table 5.5. We also tried to analyse the data in table 5.3
obtained from equimodular calculations, but we found that this data set suffers from nu-
merical instability presumably because our determination of the end-point position is not
sufficiently accurate. Note that the data in table 5.5 can be calculated to any desired nu-
merical accuracy since it is obtained from the zeros of polynomials. Obviously the data for
zd(L) is much closer to the thermodynamic limit zd than is the corresponding data for zc(L)
so it is no surprise that the analysis of zd(L) is ‘cleaner’ than that for zc(L) and hence we
start our exposition with the former.

Firstly, plotting ln |zd(L)−zd| versus lnL confirms a power-law relationship (see left panel
of figure 5.F.18). To estimate the exponent we take a pair of points at L and L−3, calculate
the resulting slope of a straight line through the data-points, and in figure 5.F.18 we plot the
slope versus 1/L. Clearly, the slope can be extrapolated to the predicted value, 12/5, for the
exponent. We next look for sub-dominant exponents. Accepting the 12/5 exponent as exact
we form the scaled sequence, s(L) = L12/5|zd(L)−zd| ' a+b/Lα, and look at the sequence of
differences, d(L) = s(L)− s(L− 3) ∝ 1/Lα+1, thus eliminating the constant term. As before
we calculate the slope of ln d(L) versus lnL and plot against 1/L. From figure 5.F.18 the
slope is seem to extrapolate to a value of −2, so α = 1 and hence the sub-dominant exponent
is 17/5. We then repeat the analysis starting with the d(L) sequence which we scale by L2.
The estimates for the local slopes are shown in figure 5.F.18 and are again consistent with
a slope of −2, indicating that the third exponent in the asymptotic expansion is 22/5.

From the above analysis we conclude that the correct asymptotic form is (5.86). It is
tempting to conjecture that the sequence of integer spaced corrections L−12/5−k will continue
indefinitely. However, we cannot completely rule out the presence of extra terms such as
L−n·12/5 for n ≥ 2. This is borne out by a further analysis using five terms in the asymptotic
expansion namely the three exponents firmly established above and a further two terms
with exponents 2y = 24/5, y + 3 = 27/5, and y + 3 = 27/5, y + 4 = 32/5, respectively. The
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Figure 5.F.18: The left panel are log-log plots of the data for |zd(L) − zd| (filled circles),
d(L) (open circles) and L2d(L) − (L − 3)2d(L − 3) (diamonds). In the right panel we plot
the corresponding local slopes versus 1/L.

resulting amplitude estimates are shown in figure 5.F.19. Clearly, the fits using only terms of
the form y + k display much less variation against 1/L and this could be an indication that
only these types of terms are present in the asymptotic expansion. However, the amplitude
b3 when fitting using an exponent 24/5 does not appear to vanish and hence we are not
willing to claim with certainty that this term is absent. If we assume only terms of the
form y + k, we can obtain refined amplitude estimates by truncating the expansion after a
fixed number of terms and fitting using sub-sequences of consecutive data points. Results
for the leading amplitude b0 are displayed in figure 5.F.20. Note that the estimates are quite
accurate and that as more terms from the asymptotic expansion are included the estimates
have less variation. We estimate that

b0 = 1.7147(1), b1 = −9.30(2), b2 = 48(2), b3 = −180(30). (5.87)

We now turn to zc(L) where we start by analysing the data for |zc(L)| − zc. Note that
the modulus |zc(L)| can be viewed as a crude approximation to where the zeros intercept
the real axis since it amounts to saying that the zeros approach the real axis along a circle.
Many other measures of the distance/approach to zc could be used but this one happens
to be particularly well-behaved so we start our exposition with this quantity. As above we
first look at the local log-log slope for this data shown in the left panel of figure 5.F.21.
In this case the data displays pronounced curvature but nevertheless it seems reasonable
that the slope can be extrapolated to the predicted value −6/5. We next look for sub-
dominant exponents. Accepting the 6/5 exponent as exact we form the scaled sequence,
s(L) = L6/5(|zc(L)| − zc) ' a + b/Lα. We again look at the sequence d(L) of differences
and plot the local slopes in the right panel of figure 5.F.21 using open circles. In this case
the results are not as clear cut. The data can be extrapolated to a value > −2 and it is
consistent with the predicted exponent y + |y′| = 2, which would yield a slope of −1.8. We
then repeated the analysis scaling d(L) by L9/5 and looking at the differences. The local
slopes are shown as diamonds in the right panel of figure 5.F.21. Clearly no meaningful
extrapolation can be performed on this data other than to say that a value of −1.8 cannot
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Figure 5.F.19: Amplitude estimates versus 1/L when fitting to a five-term asymptotic form
akin to (5.86), but with two additional exponents as indicated on the plots.

Figure 5.F.20: Estimates for the leading amplitude b0, plotted versus 1/L in the asymptotic
expansion (5.86) when truncating after 4 to 8 terms and using only exponents 24/5 + k.
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be ruled out.

Figure 5.F.21: Local slopes versus 1/L for ||zc(L)| − zc| in the left panel and in the right
panel the sequences d(L) (open circles) and L9/5d(L)− (L− 3)9/5d(L− 3) (diamonds).

To further investigate the asymptotic scaling form we turn to amplitude fitting using

|zc(L)| − zc = a0/L
6/5 + a1/L

10/5 + a2/L
∆. (5.88)

We look at three possible values for the third exponent ∆, namely y + 1 = 11/5, 2y = 12/5,
or y + 2|y′| = 14/5. The results are displayed in figure 5.F.22 where we plot the estimated
values of the three amplitudes for the three different values of ∆. Firstly, we note that the
estimates for the amplitude a0 (left panel) are quite stable though the estimates become more
stable as the value of ∆ is increased. Secondly, the data for the amplitude a1 (middle panel)
is very striking; for a ∆ of 11/5 or 12/5 the estimates vary greatly with L and even have the
wrong sign from the extrapolated value; in sharp contrast for ∆ = 14/5 the estimates are
quite well converged with only a mild dependence on L. Finally, for the amplitude a2 (right
panel) we see that the amplitude estimates for ∆ = 11/5 or 12/5 may well extrapolate to a
value of 0 while the estimates for ∆ = 14/5 clearly extrapolate to a non-zero values around
−200 or so. Taken together this is quite clear evidence that the correct value of the third
exponent is ∆ = y + 2|y′| = 14/5. We estimate roughly that

a0 = 53.0(1), a1 = −50(5), a2 = −200(50). (5.89)

In figure 5.F.23 we plot the data for |zc(L)|− zc (left panel) and |zd(L)− zd| (right panel)
and the asymptotic fits obtained above.

It is universally expected that the end-point zc(L) converges towards zc, as can be con-
firmed by analyzing the behavior of Re(zc(L)) and Im(zc(L)) against 1/L. This obviously
means that the imaginary part must vanish as L→∞. To examine this we repeat the above
analysis for arg(zc(L)). The ‘local-slope’ analysis is not as clear-cut in this case but it is
consistent with the two leading terms in (5.88). The amplitude analysis is again very clean
as can be seen in figure 5.F.24 and from this we obtain the amplitude estimates

a0 = 15.83(2), a1 = −3.0(5), a2 = 8(2). (5.90)
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Figure 5.F.22: Amplitude estimates versus 1/L. The panels (from left to right) shows the
estimates for the amplitudes a0, a1 and a2 when fitting to the asymptotic form (5.88) while
using three different values for the third exponent ∆.

Figure 5.F.23: Data for |zc(L)| − zc (left panel) and |zd(L) − zd| (right panel) and fitted
curves to the asymptotic forms (F.3) and (5.86) using the listed amplitude estimates (5.89)
and (5.87).

These values of course differ from those in (5.89) since we are analyzing a different quantity.
Finally we carried out a similar analysis for the quantity |zc(L)− zc|. Again the evidence

for the leading amplitude being −6/5 was firm. However, the local-slope analysis for the sub-
dominant term was inconclusive. In figure 5.F.25 we plot the amplitude estimates obtained
when fitting to (F.3). We observe a very strong variation in a1 and a2, but on the other
hand the amplitude estimates are nice and monotonic, suggesting that the data might just
be really hard to fit. In particular we note that a1 could extrapolate to 0. We then tried a
new fit using an additional fourth term with exponent −18/5, thus assuming exponents of
the form y+k|y′| = 6/5+k ·4/5 In this case we found much more stable amplitude estimates
with a0 = 183.5(5). The other amplitudes displayed quite a bit of scatter so we will not quote
error-bars, but we found a1 ' 6.5, a2 ' 930 and a3 ' −5200. Remarkably a1 is quite small
compared to the other quantities which may well explain the numerical difficulties we had
with the analysis. Note that we make no claim that y + k|y′| exhausts the exponents and it
is quite likely that other exponents, such as 2y + |y′| = 16/5, could occur, but our data sets
are too limited to answer such questions beyond the terms explicitly included in (F.3).
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Figure 5.F.24: Amplitude estimates versus 1/L. The panels (from left to right) shows the
estimates for the amplitudes a0, a1 and a2 when fitting arg(zc(L)) to the asymptotic form
(5.88) while using three different values for the third exponent ∆.

Figure 5.F.25: Amplitude estimates versus 1/L. The panels (from left to right) shows the
estimates for the amplitudes a0, a1 and a2 when fitting to the asymptotic form (F.3) while
using the data for |zc(L)− zc|.

201



References

[8] W. E. Arnoldi. “The principle of minimized iterations in the solution of the matrix
eigenvalue problem”. In: Quarterly of Applied Mathematics 9 (1951), pp. 17–29.

[22] R J Baxter. “Hard hexagons: exact solution”. In: Journal of Physics A: Mathematical
and General 13.3 (1980), pp. L61–L70.

[23] R J Baxter. “Chromatic polynomials of large triangular lattices”. In: Journal of
Physics A: Mathematical and General 20.15 (1987), pp. 5241–5261.

[25] R. J. Baxter. “Hard Squares for z = −1”. English. In: Annals of Combinatorics 15.2
(2011), pp. 185–195. issn: 0218-0006. doi: 10.1007/s00026-011-0089-2.

[27] R J Baxter and P A Pearce. “Hard hexagons: interfacial tension and correlation
length”. In: Journal of Physics A: Mathematical and General 15.3 (1982), pp. 897–
910.

[29] Rodney Baxter. Exactly Solved Models in Statistical Mechanics. Academic Press, 1982.
isbn: 978-0120831807.

[30] Rodney Baxter. Exactly Solved Models in Statistical Mechanics. Dover Books on
Physics. Dover Publications, 2008. isbn: 978-0486462714.

[32] S Beraha, J Kahane, and N.J Weiss. “Limits of chromatic zeros of some families of
maps”. In: Journal of Combinatorial Theory, Series B 28.1 (1980), pp. 52–65. issn:
0095-8956. doi: http://dx.doi.org/10.1016/0095-8956(80)90055-6.

[33] Sami Beraha and Joseph Kahane. “Is the four-color conjecture almost false?” In:
Journal of Combinatorial Theory, Series B 27.1 (1979), pp. 1–12. issn: 0095-8956.
doi: http://dx.doi.org/10.1016/0095-8956(79)90064-9.

[34] Sami Beraha, Joseph Kahane, and N.J Weiss. “Limits of Zeroes of Recursively Defined
Polynomials”. In: Proceedings of the National Academy of Sciences of the United
States of America 72.11 (1975). Nov., 1975, p. 4209. issn: 0095-8956.

[37] Dario Andrea Bini and Giuseppe Fiorentino. “Design, analysis, and implementation
of a multiprecision polynomial rootfinder”. English. In: Numerical Algorithms 23.2–3
(2000), pp. 127–173. issn: 1017-1398. doi: 10.1023/A:1019199917103.

[61] Mireille Bousquet-Mélou, Svante Linusson, and Eran Nevo. “On the independence
complex of square grids”. English. In: Journal of Algebraic Combinatorics 27.4 (2008),
pp. 423–450. issn: 0925-9899. doi: 10.1007/s10801-007-0096-x.

[66] J. L. Cardy. Private communication.

[67] John Cardy. Scaling and Renormalization in Statistical Physics. English. Ed. by P.
Goddard and J. Yeomans. Vol. 5. Cambridge Lecture Notes in Physics. Cambridge
University Press, 1996. isbn: 9780521499590.

[68] John L. Cardy. “Conformal Invariance and the Yang-Lee Edge Singularity in Two
Dimensions”. In: Phys. Rev. Lett. 54 (13 Apr. 1985), pp. 1354–1356. doi: 10.1103/
PhysRevLett.54.1354.

202

http://dx.doi.org/10.1007/s00026-011-0089-2
http://dx.doi.org/http://dx.doi.org/10.1016/0095-8956(80)90055-6
http://dx.doi.org/http://dx.doi.org/10.1016/0095-8956(79)90064-9
http://dx.doi.org/10.1023/A:1019199917103
http://dx.doi.org/10.1007/s10801-007-0096-x
http://dx.doi.org/10.1103/PhysRevLett.54.1354
http://dx.doi.org/10.1103/PhysRevLett.54.1354


[84] Deepak Dhar. “Exact Solution of a Directed-Site Animals-Enumeration Problem in
Three Dimensions”. In: Phys. Rev. Lett. 51 (10 Sept. 1983), pp. 853–856. doi: 10.
1103/PhysRevLett.51.853.

[87] Vl. S. Dotsenko. “Critical behavior and associated conformal algebra of the Z3 Potts
model”. English. In: Journal of Statistical Physics 34.5–6 (1984), pp. 781–791. issn:
0022-4715. doi: 10.1007/BF01009440.

[90] Paul Fendley, Kareljan Schoutens, and Hendrik van Eerten. “Hard squares with neg-
ative activity”. In: Journal of Physics A: Mathematical and General 38.2 (2005),
p. 315.

[94] Steven Fortune. “An Iterated Eigenvalue Algorithm for Approximating Roots of Uni-
variate Polynomials”. In: Journal of Symbolic Computation 33.5 (2002), pp. 627–646.
issn: 0747-7171. doi: http://dx.doi.org/10.1006/jsco.2002.0526.

[104] J. Groeneveld. “Two theorems on classical many-particle systems”. In: Physics Letters
3.1 (1962), pp. 50–51. issn: 0031-9163. doi: http://dx.doi.org/10.1016/0031-
9163(62)90198-1.

[107] A. J. Guttmann, ed. Polygons, Polyominoes and Polycubes. Vol. 775. Lecture Notes
in Physics. Springer Science and Canopus Academic Publishing Ltd., 2009. isbn:
978-1-4020-9926-7.

[119] C. Itzykson, R.B. Pearson, and J.B. Zuber. “Distribution of zeros in Ising and gauge
models”. In: Nuclear Physics B 220.4 (1983), pp. 415–433. issn: 0550-3213. doi:
http://dx.doi.org/10.1016/0550-3213(83)90499-6.

[120] J L Jacobsen and I Jensen. (in preparation). 2013.

[121] Jesper Lykke Jacobsen. “Exact enumeration of Hamiltonian circuits, walks and chains
in two and three dimensions”. In: Journal of Physics A: Mathematical and Theoretical
40.49 (2007), p. 14667.

[126] Iwan Jensen. “A parallel algorithm for the enumeration of self-avoiding polygons on
the square lattice”. In: Journal of Physics A: Mathematical and General 36.21 (2003),
pp. 5731–5745.

[130] Jakob Jonsson. “Hard Squares with Negative Activity and Rhombus Tilings of the
Plane”. In: The Electronic Journal of Combinatorics 13 (2006), R67.

[133] G. S. Joyce. “On the Hard-Hexagon Model and the Theory of Modular Functions”. In:
Philosophical Transactions of the Royal Society of London. Series A, Mathematical
and Physical Sciences 325.1588 (1988), pp. 643–702. doi: 10.1098/rsta.1988.0077.

[134] G S Joyce. “On the icosahedral equation and the locus of zeros for the grand partition
function of the hard-hexagon model”. In: Journal of Physics A: Mathematical and
General 22.6 (1989), pp. L237–L242.

[147] Sheng-Nan Lai and Michael E. Fisher. “The universal repulsive-core singularity
and Yang-Lee edge criticality”. In: The Journal of Chemical Physics 103.18 (1995),
pp. 8144–8155. doi: http://dx.doi.org/10.1063/1.470178.

203

http://dx.doi.org/10.1103/PhysRevLett.51.853
http://dx.doi.org/10.1103/PhysRevLett.51.853
http://dx.doi.org/10.1007/BF01009440
http://dx.doi.org/http://dx.doi.org/10.1006/jsco.2002.0526
http://dx.doi.org/http://dx.doi.org/10.1016/0031-9163(62)90198-1
http://dx.doi.org/http://dx.doi.org/10.1016/0031-9163(62)90198-1
http://dx.doi.org/http://dx.doi.org/10.1016/0550-3213(83)90499-6
http://dx.doi.org/10.1098/rsta.1988.0077
http://dx.doi.org/http://dx.doi.org/10.1063/1.470178


[152] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide: Solution of
Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. English.
Software, Environments and Tools. SIAM - Society for Industrial and Applied Math-
ematics, 1998. isbn: 978-0-89871-407-4. doi: http://dx.doi.org/10.1137/1.

9780898719628.

[178] Youngah Park and Michael E. Fisher. “Identity of the universal repulsive-core singu-
larity with Yang-Lee edge criticality”. In: Phys. Rev. E 60 (6 Dec. 1999), pp. 6323–
6328. doi: 10.1103/PhysRevE.60.6323.

[191] M P Richey and C A Tracy. “Equation of state and isothermal compressibility for the
hard hexagon model in the disordered regime”. In: Journal of Physics A: Mathematical
and General 20.16 (1987), pp. L1121–L1126.

[203] Youcef Saad. Numerical methods for large eigenvalue problems: theory and algorithms.
English. Ed. by Yves Robert and Youcef Saad. Algorithms and architectures for ad-
vanced scientific computing. Manchester University Press, 1992. isbn: 0-470-21820-7.

[204] Yousef Saad. Numerical Methods for Large Eigenvalue Problems: Revised Edition.
English. Vol. 66. Classics in Applied Mathematics. SIAM - Society for Industrial and
Applied Mathematics, 2011. isbn: 978-1-61197-072-2. doi: http://dx.doi.org/10.
1137/1.9781611970739.
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Abstract

In this paper we compare the integrable hard hexagon model with the non-
integrable hard squares model by means of partition function roots and transfer
matrix eigenvalues. We consider partition functions for toroidal, cylindrical, and
free-free boundary conditions up to sizes 40 × 40 and transfer matrices up to
30 sites. For all boundary conditions the hard squares roots are seen to lie in
a bounded area of the complex fugacity plane along with the universal hard
core line segment on the negative real fugacity axis. The density of roots on
this line segment matches the derivative of the phase difference between the
eigenvalues of largest (and equal) moduli and exhibits much greater structure
than the corresponding density of hard hexagons. We also study the special
point z = −1 of hard squares where all eigenvalues have unit modulus, and we
give several conjectures for the value at z = −1 of the partition functions.
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6.1 Introduction

There is a fundamental paradox in the practice of theoretical physics. We do exact
computations on integrable systems which have very special properties and then apply the
intuition gained to generic systems which have none of the special properties which allowed
the exact computations to be carried out. The ability to do exact computations relies on the
existence of sufficient symmetries which allow the system to be solved by algebraic methods.
Generic systems do not possess such an algebra and the distinction between integrable and
non-integrable may be thought of as the distinction of algebra versus analysis.

This paradox is vividly illustrated by the two dimensional Ising model. In zero magnetic
field Onsager [176] computed the free energy by means of exploiting the algebra which now
bears his name. On the other hand in 1999 Nickel [171, 172] analyzed the expansion of the
susceptibility at zero magnetic field for the isotropic Ising model on the square lattice and
discovered that as a function of the variable s = sinh 2E/kBT the susceptibility has a dense
set of singularities on the circle |s| = 1 which is the same location as the thermodynamic limit
of the locus of zeros of the finite lattice partition function. From this Nickel concluded that
the curve of zeros is a natural boundary of the susceptibility in the complex s plane. This
is a phenomenon of analysis not seen in any previously solved statistical system. Further
study of this new phenomenon has been made by Orrick, Nickel, Guttmann and Perk [177]
and in [69] the phenomenon of the natural boundary was studied on the triangular lattice.
However the implication of these results for other models has not been investigated.

The hard square and hard hexagon models can be obtained from the Ising model in a
magnetic field H in the limit H → ∞ for the square and triangular lattices respectively,
and thus it is natural to study the question of analyticity in these two models. However,
unlike the Ising model at H = 0 where both the square and triangular lattices have been
exactly solved, the hard hexagon model is exactly solved [22, 29, 30, 27] whereas the hard
square model is not. Thus, the comparison of these two models is the ideal place to study
the relation of integrability to the analyticity properties of the free energy in the complex
plane.

Three different methods may be used to study the non-integrable hard square model:
Series expansions of the free energy in the thermodynamic limit, transfer matrix eigenvalues
for chains of finite size Lh and zeros of partition functions on the Lv × Lh lattices of finite
size and arbitrary aspect ratio Lv/Lh.

Series expansions of the partition function per site κ(z) of the hard square model [98,
200, 26, 188, 70, 136] of up to 92 terms [70] and analysis of transfer matrix eigenvalues [188]
for chains of up to 34 sites [105] show that κ(z) has a singularity on the positive z-axis [105]

zc = 3.79625517391234(4) (6.1)

and a singularity on the negative z-axis [106, 127]

zd = −0.119338886(5) (6.2)
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The hard hexagon model has two singular points at [22, 29, 30, 27]

zc;hh =
11 + 5

√
5

2
= 11.09016 · · ·

zd;hh =
11− 5

√
5

2
= −0.09016 · · · (6.3)

For hard squares, series expansions [98, 200, 26, 188, 70, 136] have been used to estimate
the leading critical exponents at zc and zd, and correction to scaling exponents have been
estimated as well. For hard hexagons there are no singular points of the free energy other
than zc;hh, zd;hh, ∞. It is not known if there are any further singular points for hard squares.
In [105] the singularity at zc is determined to be in the Ising universality class and in [127]
the first two exponents at zd are shown to agree with those of the Lee-Yang edge and hard
hexagons. However these long series expansions have not given information about additional
higher order singularities at zc and zd or singularities which may occur at other values of z.

In 2005 a very remarkable property of hard squares, which is not shared by hard hexagons,
was discovered [90] by means of studying the eigenvalues of the transfer matrix for finite size
systems [90, 130, 131, 132, 4, 25]. These studies discovered that at the value of the fugacity
z = −1 all eigenvalues of the transfer matrix with cylindrical boundary conditions have unit
modulus and the partition function of the Lh×Lv lattice with toroidal boundary conditions
depends on divisibility properties of Lv and Lh. However, the free energy for these boundary
conditions in the thermodynamic limit is zero. For the lattice oriented at 45o, on the other
hand, for cylindrical boundary conditions of the transfer matrix, there are some eigenvalues
which do not have unit modulus [131] and for free boundary conditions of the transfer matrix
with Lh ≡ 1 (mod 3) all roots of the characteristic equation are zero and thus the partition
function vanishes.

In [10] we computed for hard hexagons the zeros of the partition function for L×L lattices
with cylindrical and toroidal boundary conditions as large as 39 × 39 and the eigenvalues
of the transfer matrix with cylindrical boundary conditions. For these cylindrical transfer
matrices both momentum and parity are conserved, and for physical (positive) values of z
the maximum eigenvector is in the sector of zero momentum positive parity P = 0+. From
these cylindrical transfer matrices we computed the equimodular curves where there are
two eigenvalues of the row transfer matrix of (equal) maximum modulus both in the sector
P = 0+ and for the full transfer matrix.

In this paper we extend our study of partition function zeros and transfer matrix equimod-
ular curves to hard squares for systems as large as 40×40 and compare them with correspond-
ing results for hard hexagons [10]. There are many differences between these two systems
which we analyze in detail. In addition to the transfer matrix with cylindrical boundary
conditions we also introduce the transfer matrix with free boundary conditions. Thus we are
able to give two different transfer matrix descriptions for the partition function zeros of the
cylindrical lattice. For hard hexagons there is strong evidence that this boundary condition
preserves integrability.

In section 6.2 we recall the relation between finite size computations in the complex plane
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of zeros of L × L lattices and eigenvalues of the L site transfer matrix. In section 6.3 we
make a global comparison in the complex z plane of the equimodular curves and partition
function zeros of hard squares with hard hexagons. In section 6.4 we make a more refined
comparison on the negative z axis.

The comparisons presented in sections 6.3 and 6.4 reveal many significant differences
between hard squares and hard hexagons which we discuss in detail in section 6.5. We
conclude in section 6.6 with a presentation of potential analyticity properties of hard squares
which can be different from hard hexagons.

In 6.A we tabulate the factored characteristic polynomials of the transfer matrix at the
point z = −1 and the multiplicity of the eigenvalue +1. We also give formulas for the growth
of the orders of the transfer matrices, where such a formula is known, and for all cases the
asymptotic growth is given by NLh

G where NG is the golden ratio.
In 6.B we consider the partition function values at z = −1 on Lv × Lh lattices for the

torus, cylinder, free-free rectangle, Möbius band and Klein bottle boundary conditions. We
give generating functions for the sequences of values of the partition function of the Lv ×Lh
lattice as a function of Lv and find that almost all sequences of values are repeating. We
conjecture that along the periodic Lv direction (including twists for the Möbius band and
Klein bottle cases) the sequences will always be repeating. Furthermore, for the torus and
the cylinder (along the periodic Lv direction), we conjecture that the generating functions
are given by the negative of the logarithmic derivative of the characteristic polynomial of
their transfer matrices at z = −1. This allows us to conjecture the periods of their repeating
sequences. Finally, for the Möbius band (along the periodic Lv direction) and Klein bottle
we conjecture that their generating functions are the logarithmic derivative of products of
factors (1− xni)mj , where ni, mj are integers.

6.2 Formulation

The hard square lattice gas is defined by a (occupation) variable σ = 0, 1 at each site of a
square lattice with the restriction that no two adjacent sites can have the values σ = 1 (i.e.
the gas has nearest neighbor exclusion). The grand partition function on the finite Lv × Lh
lattice is defined as the polynomial

ZLv ,Lh
(z) =

∑
n=0

zng(n;Lv, Lh). (6.4)

where g(n;Lv, Lh) is the number of hard square configurations which have n occupied sites.
These polynomials can be characterized by their zeros zj as

ZLv ,Lh
(z) =

∏
j

(1− z/zj), (6.5)

where zj and the degree of the polynomial will depend on the boundary condition imposed on
the lattice. This formulation of the partition function as a polynomial is completely general
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for lattice models with arbitrary interactions.
The partition function for hard squares may also be expressed in terms of the transfer

matrix formalism. For the cylindrical transfer matrix with periodic boundary conditions in
the horizontal direction, the transfer matrix for hard squares is defined as

TC{b1,···bLh
},{a1,··· .aLh

}(z;Lh) =

Lh∏
j=1

W (aj, aj+1; bj, bj+1), (6.6)

where the local Boltzmann weights W (aj, aj+1; bj, bj+1) for hard squares of figure 6.1 may be
written as

W (aj, aj+1; bj, bj+1) = 0 for ajaj+1 = aj+1bj+1 = bjbj+1 = ajbj = 1 (6.7)

with aLh+1 ≡ a1, bLh+1 ≡ b1 and otherwise

W (aj, aj+1; bj, bj+1) = zbj . (6.8)

For the transfer matrix with free boundary conditions

TF{b1,···bLh
},{a1,··· .aLh

}(z;Lh) =(
Lh−2∏
j=1

W (aj, aj+1; bj, bj+1)

)
WF (aLh−1, aLh

; bLh−1, bLh
), (6.9)

where
WF (aLh−1, aLh

; bLh−1, bLh
) = zbLh−1+bLh . (6.10)

The corresponding transfer matrices for hard hexagons are obtained by supplementing (6.7)
with

W(aj, aj+1; bj, bj+1) = 0 for aj+1bj = 1. (6.11)

Figure 6.1: Boltzmann weights for the transfer matrix of hard squares

We will consider four types of boundary conditions.
The grand partition function for Lv × Lh lattices with periodic boundary conditions in
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both the Lv and Lh directions is given in terms of TC as

ZCC
Lv ,Lh

(z) = Tr TLv
C (z;Lh). (6.12)

For free boundary conditions in the horizontal direction and periodic boundary conditions
the vertical direction the partition function is obtained from TF as

ZCF
Lv ,Lh

(z) = Tr TLv
F (z;Lh). (6.13)

For periodic boundary conditions in the horizontal direction and free boundary conditions
the vertical direction the partition function is obtained from TC as

ZFC
Lv ,Lh

(z) = 〈vB|TLv−1
C (z;Lh)|v′B〉, (6.14)

where vB and v′B are suitable vectors for the boundary conditions on rows 1 and Lv. For the
transfer matrix (6.6) with Boltzmann weights given by the asymmetrical form (6.7), (6.8)
the components of the vectors vB and v′B for free boundary conditions are

vB(a1, a2, · · · , aLh
) =

Lh∏
j=1

zaj , v′B(b1, b2, · · · , bLh
) = 1. (6.15)

These vectors are invariant under translation and reflection.
For free boundary conditions in both directions

ZFF
Lv ,Lh

(z) = 〈vB|TLv−1
F (z;Lh)|v′B〉, (6.16)

When the transfer matrix is diagonalizable (6.12)-(6.16) may be written in terms of the
eigenvalues λk and eigenvectors vk of the transfer matrix

ZCC
Lv ,Lh

(z) =
∑
k

λLv
k;C(z;Lh), (6.17)

ZCF
Lv ,Lh

(z) =
∑
k

λLv
k:F (z;Lh), (6.18)

ZFC
Lv ,Lh

(z) =
∑
k

λLv−1
k;C (z;Lh) · dC,k where dC,k = (vB · vC,k)(vC,k · v′B), (6.19)

ZFF
Lv ,Lh

(z) =
∑
k

λLv−1
k;F (z;Lh) · dF,k where dF,k = (vB · vF,k)(vF,k · v′B). (6.20)

For hard squares and hard hexagons the transfer matrices TC(z;Lh) are invariant under
translations and reflections and thus momentum P and parity ± are good quantum numbers.
Furthermore the boundary vectors vB and v′B of (6.15) are invariant under translation and
reflection, and consequently dC,k = 0 unless the eigenvectors vk lie in the positive parity
sector P = 0+.
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For hard squares the matrix TF (z;Lh) is invariant under reflection so the eigenvectors
in the scalar products are restricted to positive parity states. However for hard hexagons
TF (z;Lh) is not invariant under reflection and all eigenvectors will contribute to (6.20).

Note that partition function zeros for all four boundary conditions have previously been
studied for antiferromagnetic Potts models [220, 194, 36, 216, 222, 221, 217, 223, 76, 78, 74,
75, 77, 79, 210, 122, 125, 123, 124]. In that case the relations to transfer matrix eigenvalues
were similar to (6.19),(6.20). However, with periodic boundary conditions along the transfer
direction the partition function was defined as a Markov trace, and (6.17),(6.18) were replaced
by expressions involving non-trivial eigenvalue multiplicities [189, 190].

6.2.1 Integrability

To compare integrable with non-integrable systems a definition of integrability is required.
The notion of integrability originates in the discovery by Baxter that the Ising model and

the 6 and 8 vertex models, which have transfer matrices that depend on several variables,
have a one parameter subspace for which the transfer matrices with different parameters
will commute if cyclic boundary conditions are imposed [29, 30]. This global property of the
transfer matrix follows from a local property of the Boltzmann weights used to construct the
transfer matrix, known as the star-triangle or the Yang-Baxter equation.

The hard hexagon model has only one parameter, the fugacity, but is also referred to as
integrable because Baxter [22, 29, 30] found that it may be realized as a special case of the
model of hard squares with diagonal interactions which does have a one parameter family of
commuting transfer matrices with cylindrical boundary conditions.

This concept of integrability has been generalized to transfer matrices with boundary
conditions which are not cylindrical if special boundary conditions are imposed which satisfy
a generalization of the Yang-Baxter equation [82, 83, 224] known as the boundary Yang-
Baxter equation. This has been investigated for models closely related to hard hexagons [31,
5] but the specialization to hard hexagons with free boundary conditions has apparently not
been made.

6.2.2 The physical free energy

For thermodynamics we are concerned with the limit Lv, Lh → ∞, and in the physical
region where z is real and positive the partition function per site κ(z), the physical free
energy F (z) and the density ρ(z) are defined as limits of the finite size grand partition
function as

κ(z) = lim
Lv ,Lh→∞

ZLv ,Lh
(z)1/LvLh , (6.21)

−F (z)/kBT = lim
Lv ,Lh→∞

(LvLh)
−1 · lnZLv ,Lh

(z) (6.22)
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and

ρ(z) = −z d
dz
F (z). (6.23)

This limit must be independent of the boundary conditions and aspect ratio 0 < Lv/Lh <
∞ for thermodynamics to be valid. The free energy vanishes and is analytic at z = 0. For
hard hexagons as z →∞

F (z)/kBT =
1

3
ln z + F̃HH(z) and ρ(z)→ 1

3
(6.24)

and for hard squares

F (z)/kBT =
1

2
ln z + F̃HS(z) and ρ→ 1

2
, (6.25)

where F̃HH(z) and F̃HS(z) are analytic at z →∞. From this formulation series expansions
of the free energy about both z = 0 and 1/z = 0 are derived. The partition function per site,
physical free energy and density for 0 ≤ z ≤ zc and zc ≤ z ≤ ∞ are different functions which
are not related to each other by analytic continuation around the singularity at zc. For hard
hexagons the density for both the low and the high density regime may be continued to the
full z plane which for low density is cut from −∞ ≤ z ≤ zd;hh and zc;hh ≤ z ≤ ∞ and for
high density cut from zd;hh ≤ z ≤ zc;hh. Indeed, both the low and high density partition
functions per site and the density for hard hexagons are algebraic functions [133, 10] and
thus have analytic continuations even beyond the cuts in the z plane.

To study the possibility of analytic continuation for hard squares of the physical partition
function per site and density from the positive z axis into the complex z plane we consider
both the formulation in terms of the transfer matrix and the zeros of the partition function.

6.2.3 Analyticity and transfer matrix eigenvalues

For 0 < z < ∞ all matrix elements of the transfer matrices are positive so the Perron-
Frobenious theorem guarantees that the largest eigenvalue λmax is positive and the corre-
sponding eigenvector has all positive entries. Thus for all cases

lim
Lv→∞

L−1
v · lnZLv ,Lh

(z) = lnλmax(z;Lh) (6.26)

and thus the free energy is

− F/kBT = lim
Lh→∞

L−1
h lnλmax(z;Lh). (6.27)

Furthermore the cylindrical transfer matrices for both squares and hexagons have trans-
lation and reflection invariance. Therefore the eigenvalues of the lattice translation operator
are eiP where P , the total momentum, has the values 2πn/Lh, and the eigenvalues of the
reflection operator are ±1. Each transfer matrix eigenvalue has a definite value of P and
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parity and λmax has P = 0+ (where + indicates the reflection eigenvalue). Therefore for
0 ≤ z ≤ ∞ the eigenvalue λmax of the transfer matrix TC is the eigenvalue of an eigenvector
in the sector P = 0+.

To obtain the analytic continuation of the density from the positive z axis into the
complex z plane we need to continue the limit as Lh → ∞ of the eigenvalue with P = 0+

which is maximum on the positive axis. However, the analytic continuation of λmax off
of the segment 0 ≤ z ≤ ∞ will not, of course, have the largest modulus in the entire
complex z plane. The analytic continuation of λmax will be maximum only as long as it
has the largest modulus of all the eigenvalues and ceases to be maximum when z crosses an
equimodular curve where the moduli of two (or more) eigenvalues are the same. It is thus of
importance to determine the thermodynamic limit of the equimodular curves of the largest
eigenvalues of the transfer matrix. In the thermodynamic limit the regions of 0 ≤ z ≤ zc
and zc ≤ z ≤ ∞ are separated by one or more of these equimodular curves. In [10] it was
seen that for hard hexagons with finite Lh the equimodular curves separate the z plane into
several regions. However, because the eigenvectors with different momentum and parity lie
in different subspaces only the eigenvalues corresponding to eigenvectors with P = 0+ can
affect the analytic continuation of the density.

For the hard square transfer matrix with free boundary conditions, TF (z;Lh), the eigen-
value λmax will lie in the positive parity sector for positive z and the analytic continuation
off the positive real axis will be constrained to eigenvalues in the positive parity sector. For
hard hexagons, where TF (z;Lh) is not reflection symmetric, λmax is not constrained to lie in
a restricted sub-space.

It is thus clear from the formulation of the physical free energy and the density in terms
of the transfer matrix that the process of analytic continuation off of the positive z axis
and the taking of the thermodynamic limit do not commute. In the thermodynamic limit
it is not even obvious that for a non-integrable model an analytic continuation through the
limiting position of the equimodular curves is possible.

6.2.4 Analyticity and partition function zeros

The considerations of analytic continuation in terms of partition function zeros is slightly
different because by definition polynomials are single valued. However, once the thermody-
namic limit is taken the limiting locations of the zeros will in general divide the complex z
plane into disconnected zero free regions. For hard squares and hard hexagons the physical
segments 0 ≤ z < zc and zc < z < ∞ lie in two separate zero free regions. The density is
uniquely continuable into the zero free region and in these regions the free energy will be
independent of boundary conditions and aspect ratio. For hard hexagons the density for
both the low and high density cases are further continuable beyond the zero free region into
the respective cut planes of section 6.2.2. However, for hard squares there is no guarantee
that further continuation outside the zero free regions is possible.
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6.2.5 Relation of zeros to equimodular curves

For finite lattices the partition function zeros can be obtained for ZCC
Lv ,Lh

(z) and ZCF
Lv ,Lh

(z)
from (6.17) and (6.18) if all eigenvalues are known. For ZFC

Lv ,Lh
(z) and ZFF

Lv ,Lh
(z) both the

eigenvalues and eigenvectors are needed to obtain the zeros from (6.19) and (6.20).
The limiting case where

Lv → ∞ with fixed Lh, (6.28)

is presented in [210, 122, 125, 123, 124],[246, 248, 23] with various boundary conditions
extending the work of [34, 35, 32]. In this limit (6.28) the partition function will have zeros
when two or more maximum eigenvalues of T (z;Lh) have equal moduli

|λ1(z;Lh)| = |λ2(z;Lh)|. (6.29)

Consider first ZCC
Lv ,Lh

(z) and ZCF
Lv .Lh

(z) where we see from (6.17) and (6.18) that only
eigenvalues are needed. Thus, for these two cases, when only two largest eigenvalues λ1,2

need to be considered we may write

ZLv ,Lh
(z) = λLv

1

[
1 +

(
λ2

λ1

)Lv

+ · · ·

]
. (6.30)

Then at values of z where |λ1| = |λ2| with λ2/λ1 = eiθ we have for large Lv

ZLv ,Lh
(z) = λLv

1 [1 + eiθLv + · · · ] (6.31)

and hence ZLv ,Lh
(z) will have a zero close to this z when

eiθLv = −1, (6.32)

that is when
θLv = (2n+ 1)π (6.33)

with n an integer. This relation becomes exact in the limit Lv →∞. Calling zi and zi+1 the
values of z at two neighboring zeros on the equimodular curve we thus obtain from (6.33)

θ(zi+1)− θ(zi) = 2π/Lv. (6.34)

Let s(z) be the arclength along an equimodular curve. Then the derivative of θ(s(z))
with respect to s is defined as the limit of

∆θ

∆s
≡ θ(s(zi+1))− θ(s(zi))

s(zi+1)− s(zi)
, (6.35)
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Thus, defining the density of roots on the equimodular curve as

D(s) = lim
Lv→∞

1

Lv[s(zi+1)− s(zi)]
, (6.36)

we find from (6.34) and (6.35) that for Lv → ∞ with Lh fixed that the density of zeros on
an equimodular curve is

dθ(s)

ds
= 2πD(s). (6.37)

For ZFC
Lv ,Lh

(z) and ZFF
Lv ,Lh

(z) from (6.19) and (6.20) we have instead of (6.30)

ZLv ,Lh
(z) = λLv

1 d1

[
1 +

(
λ2

λ1

)Lv d2

d1

+ · · ·

]
, (6.38)

with
d2

d1

= reiψ, (6.39)

where in general r 6= 1. Thus writing

λ2

λ1

= εeiθ, (6.40)

the condition for a zero in the limit Lv →∞ which generalizes (6.32) is

εLveiθLvreiψ = −1, (6.41)

from which we obtain

ε = r−1/Lv = e− ln r/Lv ∼ 1− ln r

Lv
, (6.42)

θLv + ψ = (2n+ 1)π. (6.43)

Thus as Lv → ∞ the locus of zeros approaches the equimodular curve as ln r/Lv and the
limiting density is still given by (6.37).

These considerations, however, are in general not sufficient for the study of the thermo-
dynamic limit where instead of (6.28) we are interested in the limit

Lv →∞, Lh →∞, with fixed Lv/Lh (6.44)

and the physical free energy must be independent of the aspect ratio Lv/Lh.
To study the limit (6.44) there are several properties of the dependence of the equimodular

curves on Lh which need to be considered:

1. The derivative of the phase θ(s) on a curve can vanish as Lh → ∞ on some portions
of the curve;
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2. The number of equimodular curves can diverge as Lh → ∞ and there can be regions
in the z plane where they become dense;

3. The length of an equimodular curve can vanish as Lh →∞.

The first of these properties is illustrated for hard hexagons in [10]. The second and third
properties have been observed for antiferromagnetic Potts models in [73].

We will see that all three phenomena are present for hard squares. The roots of the
L × L partition function in the limit L → ∞ converge to lie on the Lh → ∞ limit of the
equimodular curves.

6.3 Global comparisons of squares and hexagons

In [10] we computed for hard hexagons the zeros for L×L lattices of ZCC
L,L(z) for toroidal

boundary conditions, and for cylindrical boundary conditions where

ZFC
L,L(z) = ZCF

L,L(z). (6.45)

We also computed the equimodular curves for both the full transfer matrix TC(z;Lh) relevant
to ZCC

Lv ,Lh
(z) and the restriction to the subspace P = 0+ relevant for ZFC

Lv ,Lh
(z). In this paper

we compute the same quantities for hard squares and compare them with the results of [10].
We also compute the equimodular curves for TF (z;Lh) relevant for ZCF

Lv ,Lh
(z) and ZFF

Lv ,Lh
(z).

For hard hexagons we restricted attention to Lv, Lh multiples of three which is commensurate
with hexagonal ordering. Similarly for hard squares we restrict attention here to Lv, Lh even
to be commensurate with square ordering.

6.3.1 Comparisons of partition function zeros

We have computed zeros of the hard square partition function in the complex fugacity
z plane for L× L lattices with cylindrical and free boundary conditions for L ≤ 40 and for
toroidal boundary conditions for L ≤ 26 using the methods of [10]. In figure 6.2 we compare
partition function zeros for cylindrical boundary conditions of hard squares on the 40 × 40
lattice with hard hexagons on the 39×39 lattice and in figure 6.4 the comparison is made for
free boundary conditions. In figure 6.3 we compare for toroidal boundary conditions hard
squares on the 26× 26 lattice with hard hexagons on the 27× 27 lattice.

For both hard squares and hard hexagons there is a line of zeros on the negative real axis
ending at zd and zd;hh, respectively. The ratio of real roots to complex roots for hard squares
is roughly 1/2:1/2 while for hard hexagons the ratio is roughly 2/3:1/3.

The most obvious difference between hard squares and hard hexagons in figures 6.2-6.4
is that the zeros of hard squares are seen to lie in an area instead of being confined to a few
well defined curves as is seen for hard hexagons.

For cylindrical boundary conditions the filling up of this area proceeds in a remarkably
regular fashion.
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Figure 6.2: Comparison in the complex fugacity plane z of the zeros of the partition function
ZFC
L,L(z) = ZCF

L,L(z) with cylindrical boundary conditions of hard squares on the 40×40 lattice
on the left to hard hexagons on the 39× 39 lattice on the right. The location of zc and zc;hh
is indicated by a cross.

Figure 6.3: Comparison in the complex fugacity plane z of the zeros of the partition function
ZCC
L,L(z) with toroidal boundary conditions of hard squares on the 26× 26 lattice on the left

to hard hexagons on the 27× 27 lattice on the right.The location of zc and zc;hh is indicated
by a cross.
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Figure 6.4: Comparison in the complex fugacity plane z of the zeros of the partition function
ZFF
L,L(z) with free boundary conditions of hard squares on the 40 × 40 lattice on the left to

hard hexagons on the 39 × 39 lattice on the right. The location of zc and zc;hh is indicated
by a cross.

For the lattices 4N × 4N there are N − 1 outer arcs each of 4N points, then there is
a narrow arclike area with close to 4N zeros and finally there is an inner structure that is
connected to z = −1. For the innermost of the N − 1 arcs the zeros appear in well defined
pairs.

For lattices (4N + 2)× (4N + 2) there are N − 1 outer arcs each of 4N + 2 points, then
a narrow arclike area which has close to 4N + 2 zeros and finally an inner structure that is
connected to z = −1.

For all boundary conditions the zeros of hard squares appear to converge in the L→∞
limit to a wedge which hits the positive z axis at zc. This is distinctly different from the
behavior of hard hexagons where the zeros appear to approach zc;hh on a well defined one
dimensional arc.

In figure 6.5 we illustrate the dependence on L of the hard square zeros of ZFC
L,L(z) =

ZCF
L,L(z) of the L×L lattice by giving a combined plot of all the zeros for 12 ≤ L ≤ 40. This

reveals that the three cases of L = 6n + 4, 6n + 2 and 6n approach the common limit in
three separate ways. There is one well defined curve whose position does not depend on L
which consists only of the points of L = 6n+ 4 lattices.

In table 6.1 we list the value of the zero closest to the three endpoints zc, zd and −1 for
the L × L cylindrical lattices with 24 ≤ L ≤ 40. We also list the number NL of zeroes in
−1 ≤ z ≤ zd plus the number of zeroes z < −1. For L = 40 we note that Re[zc(40)] > zc
whereas for L ≤ 38 we have Re[zc(L)] < zc. This behavior of zc(L) in relation to zc is similar
to what is seen for hard hexagons in table 5 of [10] where Re[zc(L)] > zc for L ≥ 21 and only
starts to approach zc from the right for L = 36.
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L zc(L) zd(L) z−1(L) NL

24 3.690334± i1.324109 −0.119976 −0.956723 128 + 0
26 3.718433± i1.226238 −0.119871 −0.979835 153 + 5
28 3.739986± i1.141529 −0.119788 −0.986589 176 + 0
30 3.756751± i1.067554 −0.119723 −0.991656 201 + 5
32 3.769947± i1.002431 −0.119671 −0.992168 231 + 1
34 3.780438± i0.944686 −0.119628 −0.989045 259 + 9
36 3.788852± i0.893150 −0.119592 −0.976523 288 + 0
38 3.795647± i0.846884 −0.119563 −0.994325 325 + 9
40 3.801169± i0.805129 −0.119538 −0.991673 358 + 0
∞ 3.796255 −0.119338 −1

Table 6.1: The endpoints zc(L), zd(L) and z−1(L) for the L × L cylindrical lattices with
24 ≤ L ≤ 40. The number of zeros NL on the segment −1 ≤ z ≤ zd as well as the very small
number of points z ≤ −1 which do not contribute to the density.

6.3.2 Comparisons of equimodular curves with partition zeros

We have computed equimodular curves for the hard square transfer matrix TC(z;Lh) in
the sector P = 0+ for even Lh ≤ 26 and for the full transfer matrix for Lh ≤ 18. For hard
squares we have computed the equimodular curves for the full TF (z;Lh) and the restriction
to the positive parity sector for Lh ≤ 16. For hard hexagons the equimodular curves of
TC(z;Lh) were computed in [10] for Lh ≤ 21 and in the sector P = 0+ for Lh ≤ 30.
Equimodular curves for the hard hexagon transfer matrix TF (z;Lh) are computed here for
Lh ≤ 21.

In figure 6.6 we plot the equimodular curves and zeros for hard squares. This is to be
compared with the similar plot for hard hexagons in figure 6.7. In both cases we note that
the zeros for ZFC

L,L(z) and ZCF
L,L are identical while the corresponding equimodular curves are

different.
The equimodular curves of hard squares are strikingly different from those of hard

hexagons for all cases considered. The hard hexagon plots consist of a few well defined
sets of curves which, with the exception that the curves for P = 0+ do not have rays ex-
tending to infinity, are qualitatively very similar for all four cases. For hard squares, on the
other hand, the four different plots are qualitatively different from each other and are far
more complicated than those for hard hexagons.

The cylinder partition function ZFC
L,L(z) = ZCF

L,L(z) allows a direct comparison between
the equimodular curves of TF (z) and TC0+(z) in figures 6.6 and 6.7, since both transfer
matrices can be used to construct the same partition function. For both hard squares and
hard hexagons these figures show that the zeros of the L × L cylindrical partition function
lie much closer to the equimodular curves of TF (z) rather than TC0+ . It is only for much
larger aspect ratios that the cylinder zeros lie close to the TC0+ equimodular curves, as
can be seen, for example, in figure 6.8, where we plot the hard square ZFC

26n,26(z) roots for
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Figure 6.5: Combined plot of hard square zeros of ZCF
L,L(z) = ZFC

L,L(z) for the L × L lattice
with cylindrical boundary conditions for 12 ≤ L ≤ 40. We exhibit a mod six effect by
plotting L = 6n+ 4 as circles, L = 6n+ 2 as boxes and L = 6n as crosses, The values of Lh
are shown in the different colors indicated in the legend. It is to be noticed that there is a
distinguished curve where only points L = 6n + 4 lie. The location of zc is indicated by a
cross.

n = 1, 2, 3, 4, 5, 10 along with the Lh = 26 equimodular curves of TC0+(z).
For hard squares, the arclike structures noted above for figure 6.2 are in remarkable

agreement with the TF (z) curves which originate near z = −1 and extend to infinity. There
are Lh such equimodular curves which is exactly the number of points seen above to lie on
each of the arclike structures of zeros.

For hard squares both TC(z;Lh) and TF (z;Lh) shown in figure 6.6 have equimodular
curves which extend out to |z| =∞. In 6.C we present an analytical argument that both the
TC(z;Lh) and TF (z;Lh) curves have Lh branches going out to infinity at asymptotic angles

arg z = (1+2k)π
Lh

with k = 0, 1, . . . , Lh − 1.

For hard hexagons it was seen in [10] that when Lh ≡ 0 (mod 3) the curves for TC(z;Lh)
as illustrated in figure 6.7 have 2Lh/3 rays extending to infinity which separate regions with
P = 0+ from regions with ±2π/3. However, for the hard hexagon matrix TF (z;Lh) it is
evident in figure 6.7 there is much more structure in the curves which extend to infinity.
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Figure 6.6: Comparison for hard squares of the three types of zeros and the 4 types of
equimodular curves. Clockwise from the upper left we have for L = 16: ZCC

L,L(z) with
TC(z;L), ZCF

L,L(z) with TF (z;L), ZFC
L,L(z) with TC(z;L) restricted to P = 0+ and ZFF

L,L(z)
with TF (z;L) restricted to positive parity. We note that the zeros of ZFC

L,L(z) and ZCF
L,L(z)

are identical even though the equimodular curves are very different. The location of zc is
indicated by a cross.
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Figure 6.7: Comparison for hard hexagons of the three types of zeros and the 3 types of
equimodular curves. Clockwise from the upper left we have for L = 21: ZCC

L,L(z) with
TC(z;L), ZCF

L,L(z) with TF (z;L), ZFC
L,L(z) with TC(z;L) restricted to P = 0+ and ZFF

L,L(z)
with TF (z;L). We note that the zeros of ZFC

L,L(z) and ZCF
L,L(z) are identical even though the

equimodular curves are very different. The location of zc;hh is indicated by a cross.
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This is shown on a much larger scale in figure 6.9. This more complicated structure for the
equimodular curves of TF (z;Lh) presumably results from the fact that for hard hexagons
TF (z;Lh) is neither translation nor reflection invariant.

Just as for hard hexagons it is only possible for hard squares to identify an endpoint of
an equimodular curve approaching zc for the transfer matrix TC(z;Lh) in the P = 0+ sector.
We give the location of the zc(Lh) and zd(Lh) endpoints for P = 0+ in table 6.2.

For hard squares the transfer matrix TF (z;Lh) with free boundary conditions is invari-
ant under parity in contrast with hard hexagons where there is no parity invariance. The
maximum eigenvalue for hard squares has positive parity and in figure 6.10 we compare for
Lh = 16 the equimodular curves of TF (z;Lh) with the restriction to positive parity. We also
compare the equimodular curves for Lh = 16 of TC(z;Lh) and its restriction to P = 0+.

Lh zc(Lh) endpoint zd(Lh) endpoint
4 −0.8806± i3.4734 −0.1259
6 1.6406± i3.2293 −0.1216
8 2.5571± i2.6694 −0.1204

10 2.9955± i2.2264 −0.1200
12 3.2374± i1.8961 −0.1197
14 3.3845± i1.6461 −0.1196
16 3.479± i1.4547
18 3.544± i1.3032
20 3.591± i1.1780
22 3.627± i1.0722
24 3.654± i0.9841
26 3.675± i0.9117
∞ 3.796255 −0.119338

Table 6.2: The endpoints of the equimodular curves of TC(z;Lh) with P = 0+ which approach
zc and zd as Lh increases. For Lh ≤ 14 the endpoints are computed from the vanishing of
the discriminant of the characteristic polynomial and have been computed to 50 decimal
places. For Lh ≥ 16 they are determined numerically to 3 decimal places and consequently
the deviation from zd is too small to be accurately determined.

6.4 Comparisons on −1 ≤ z ≤ zd

A much more quantitative comparison of hard squares and hard hexagons can be given on
the interval −1 ≤ z ≤ zd. We treat both transfer matrix eigenvalues and partition function
zeros.
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Figure 6.8: Plots in the complex fugacity z-plane of the zeros of the partition function
ZFC
Lv ,Lh

(z) of hard squares for Lv × 26 lattices with cylindrical boundary conditions (in red)
compared with the P = 0+ equimodular curves of TC(z; 26) (in black). The location of zc is
indicated by a cross.
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Figure 6.9: Equimodular curves for the hard hexagon transfer matrix TF (z;Lh) for Lh = 21
showing the complex structure which exists for |z| ≥ 12. The location of zc is indicated by
a cross.

Figure 6.10: On the left the comparison for hard squares with Lh = 16 of the equimodular
curves of TC(z;Lh) in black with the restriction to P = 0+ in red. On the right the compar-
ison for hard squares with Lh = 16 of the equimodular curves of TF (z;Lh) in black with the
restriction to the positive parity sector in red. The location of zc is indicated by a cross.
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6.4.1 Transfer matrix eigenvalue gaps

The eigenvalues of the transfer matrix TC(z;Lh) for hard hexagons for P = 0+ have two
very remarkable properties discovered in [10]

1. The characteristic polynomial of TC(z) in the sector P = 0+ for Lh = 9, 12, 15, 18
factorizes into the product of two irreducible polynomials with integer coefficients.

2. The roots of the discriminant of the characteristic polynomial which lie on the real axis
for z < zd;hh(L) all have multiplicity two for Lh ≤ 18. In particular on the negative
real axis the maximum eigenvalue is real only at isolated points. We conjecture this is
valid for all Lh.

The hard hexagon transfer matrix TF (z;Lh) for Lh = 3, 6, 9 also has the remarkable
property that all the roots of the resultant on the interval −1 < z < zd have multiplicity
two. This is very strong evidence to support the conjecture that hard hexagons with free
boundary conditions in one direction and cyclic in the other direction is obtained as a limit
from a model which obeys the boundary Yang-Baxter equation of [82, 83, 224].

Neither property i) nor ii) can be considered as being generic and neither property holds
for hard squares where there are small gaps in the equimodular curves where the maximum
eigenvalues of both Tc(z;Lh) and TF (z;Lh) are real and non-degenerate. These gaps are
caused by the collision of a complex conjugate pair of eigenvalues at the boundaries of the
gaps. On−1 ≤ z ≤ zd the maximum eigenvalue of TC(z;Lh) is in the sector P = 0+. We have
computed these gaps numerically for Lh ≤ 20 and more accurately from the discriminant of
the characteristic polynomial for Lh ≤ 14. We give these gaps in table 6.3 for Lh ≤ 20. For
Lh ≥ 22 most of the gaps are too small to actually observe their width, but their locations
can still be determined numerically and are given in table 6.4 for 22 ≤ Lh ≤ 30.

The gaps of TF (z;Lh) are not the same as those of TC(z;Lh). The gaps of TF (z;Lh) are
given in table 6.5 where we see that with increasing Lh they approach the gaps of TC(z;Lh)
of table 6.3.

The location of gaps for larger values of Lh may be extrapolated by observing that when
the maximum eigenvalues λmax are complex they may be written as |λmax|e±iθ/2 where θ is
defined in section 6.2.5. The eigenvalues collide and become real when θ/π is an integer. In
principle each of the separate equimodular curves on −1 ≤ z ≤ zd could be independent of
each other, but as long as we are to the right of any equimodular curve which intersects the z
axis, we define by convention the eigenvalue phase at the right of a gap to be the same as the
phase at the left of the gap. We then choose θ not to be restricted to the interval 0 to π but
to continuously increase as z decreases from zd to the first crossing of an equimodular curve.
This convention preserves the alternation of the signs of the real eigenvalues seen in table
6.3. For Lh = 6 we illustrate the behavior of this phase in figure 6.11. At the boundaries of
the gaps the derivative of the phase diverges as a square root, and for Lh = 6 this derivative
is also plotted in figure 6.11.

228



Lh zl(Lh) zr(Lh) gap eigenvalue sign
6 −0.52385422 −0.47481121 4.904301× 10−2 −
8 −0.30605227 −0.30360084 2.35243× 10−3 −

10 −0.23737268 −0.23720002 1.7266× 10−4 −
−0.77929238 −0.73645527 4.283711× 10−2 +

12 −0.20401756 −0.20400239 1.517× 10−5 −
−0.49539291 −0.49352002 1.87289× 10−3 +

14 −0.18464415 −0.18464265 1.50× 10−6 −
−0.37193269 −0.37180394 1.2875× 10−4 +
−0.92551046 −0.91949326 6.01721× 10−3 −

16 −0.17211444 −0.1721143 1.4× 10−7 −
−0.305086 −0.305078 8× 10−6 +
−0.64336 −0.64204 1.32× 10−3 −

18 −0.163389012 −0.163388998 1.4× 10−8 −
−0.2643054 −0.2643045 9× 10−7 +
−0.494482 −0.494388 9.4× 10−5 −

20 −0.156991031 −0.156991029 2× 10−9 −
−0.23723539 −0.23723530 9× 10−8 +
−0.404127 −0.494120 7× 10−6 −
−0.7537 −0.7523 1.4× 10−3 +

Table 6.3: The gaps on the segment −1 ≤ z ≤ zd where the maximum eigenvalue of the
transfer matrix TC(z;Lh) for hard squares on cylindrical chains of length Lh is real for
6 ≤ Lh ≤ 20.

Lh 1 2 3 4 5 6 7 8
22 −0.152 −0.218 −0.346 −0.598
24 −0.148 −0.204 −0.305 −0.494 −0.844
26 −0.145 −0.193 −0.276 −0.423 −0.683
28 −0.143 −0.184 −0.254 −0.371 −0.574 −0.93
30 −0.140 −0.178 −0.237 −0.334 −0.495 −0.75
32 −0.1388 −0.172 −0.223 −0.305 −0.435 −0.642 −0.972
34 −0.1373 −0.167 −0.213 −0.282 −0.390 −0.558 −0.815
36 −0.1360 −0.163 −0.204 −0.264 −0.355 −0.494 −0.701
38 −0.1348 −0.160 −0.196 −0.249 −0.327 −0.444 −0.616 −0.871
40 −0.1338 −0.157 −0.190 −0.237 −0.305 −0.405 −0.548 −0.752

Table 6.4: The location of the very small gaps on the segments −1 ≤ z ≤ zd where the
maximum eigenvalue of the transfer matrix TC(z;Lh) for hard squares is real. For Lh =
22, 24, 26, 28, 30 the values are obtained from the data; for Lh ≥ 32 the values are
obtained from extrapolation using figure 6.12.
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Lh zl(Lh) zr(Lh) gap eigenvalue sign
6 −0.4517 −0.4439 7.8× 10−3 −
8 −0.3004 −0.2999 5× 10−4 −

10 −0.23987 −0.23983 4× 10−5 −
−0.6933 −0.6868 6.6× 10−3 +

12 −0.2079551 −0.2079504 4.6× 19−6 −
−0.46977 −0.46908 6.9× 10−4 +

14 −0.18864888 −0.8864835 5.3× 10−7 −
−0.362749 −0.362722 2.7× 10−5 +
−0.85376 −0.85315 6.1× 10−4 −

16 −0.175819604 −0.175819540 6.4× 10−8 −
−0.3024077 −0.3024052 2.5× 10−6 +
−0.61069 −0.61049 2.0× 10−4 −

Table 6.5: The gaps on the segment −1 ≤ z ≤ zd where the maximum eigenvalue of
the transfer matrix TF (z;Lh) for hard squares on the free chain of length Lh is real for
6 ≤ Lh ≤ 16.

For any given value of z this unrestricted phase grows linearly with Lh and thus we define
a normalized phase

φ =
θ

2πLh
. (6.46)

The gaps occur when Lhφ = 1. In figure 6.12 we plot the normalized phases φC of TC(z;Lh)
for 4 ≤ Lh ≤ 26 and observe that they fall remarkably close to a common limiting curve. We
may thus use this curve to extrapolate the locations of the gaps for Lh ≥ 32. These values
are given in table 6.4 for 32 ≤ Lh ≤ 40. We also plot in figure 6.12 the normalized phase φF
for TF (z;Lh) and note that φF → φC as Lh becomes large.

6.4.2 The density of partition zeros of L×L lattices on the negative
z axis

For both hard squares and hard hexagons the zeros on the negative real axis are suffi-
ciently dense that a quantitative comparison in terms of a density is possible.

The density of partition function zeros on Lv×Lh lattices with Lv/Lh fixed and Lv, Lh →
∞ is defined here as the limit of the finite lattice quantity

D̃Lv ,Lh
(zj) =

1

LvLh(zj+1 − zj)
> 0 (6.47)

and the positions of the zeros zj increase monotonically with j. To analyze this density we
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Figure 6.11: The normalized phase φC(z) of the equimodular curve of TC(z;Lh) and the
derivative −dφC(z)/dz for Lh = 6 which has one gap on −1 ≤ z ≤ zd where λmax is real.

Figure 6.12: The normalized phase angles φC of TC(z;Lh) (on the left) and φF of TF (z;Lh)
(on the right) on the segment −1 ≤ z ≤ zd as a function of z.

will also need the nth order lattice derivative

D̃
(n)
Lv ,Lh

(zj) =
D̃

(n−1)
Lv ,Lh

(zj+1)− D̃(n−1)
Lv ,Lh

(zj)

zj+1 − zj
. (6.48)

As long as the density on −1 ≤ z ≤ zd is the boundary of the zero free region which
includes the positive real axis (and where the thermodynamic limiting free energy is inde-
pendent of the aspect ratio Lv/Lh), the limiting density computed directly for the Lv × Lh
lattice is given in terms of the normalized phase angle (6.46) φ(z) on the interval −1 ≤ z ≤ zd
by use of (6.37) as

lim
Lh,Lv→∞

D̃Lv ,Lh
(z) = − lim

Lh→∞

dφ(z)

dz
. (6.49)
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Partition function zeros have been computed for systems much larger than it has been
possible to compute eigenvalues and the largest lattices are for the L×L cylinders. In figure
6.13 we plot the density and the first three lattice derivatives for hard squares for the 40×40
cylindrical lattice on −1 ≤ z ≤ zd. On this scale the density appears to be quite smooth
and a local maximum is seen in the first derivative.

Figure 6.13: The density of zeros and the first three lattice derivatives for hard squares for
the 40 × 40 lattice with cylindrical boundary conditions in the region −1 ≤ z ≤ zd. The
glitch, defined in section 6.4.4, caused by the gap given in table 6.4 at z = −0.752 is clearly
visible in the second and third derivatives.

6.4.3 Partition zeros versus phase derivatives

For hard hexagons the density of partition function zeros on the negative z axis lie very
close to the density computed from the derivative of the phase angle (6.49). Moreover all the
lattice derivatives are smooth and featureless except very near zd;hh and also agree remarkably
well with the derivatives computed from the phase angle. This is in significant contrast to
hard squares.

In figure 6.14 we compare the density of zeros and its first two lattice derivatives with the
same quantities computed from the normalized phase derivative curves of the corresponding
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transfer matrix for the 22 × 22 toroidal lattice and the 14 × 14 cylindrical lattice. For the
density almost all zeros are seen to fall remarkably close to the normalized phase derivative
curves. In the first derivative of the normalized phase derivative curve we see the divergences
due to the gaps at −0.60 for TC(z; 22) and at −0.85 and −0.36 for TF (z; 14). In the second
derivative, the divergences become more pronounced and the gap at −0.35 of TC(z; 22)
becomes noticeable.

Figure 6.14: The density and the first two derivatives of the partition function zeros (in red)
compared with the derivatives of the normalized phase derivative curves (in black) of the
toroidal lattice ZCC

22,22(z) for the TC(z; 22) on the left and the zeros of ZCF
14,14(z) = ZFC

14,14(z)
cylinder and the TF (z; 14) transfer matrices (on the right). The divergences due to the gaps
at z = −0.598, −0.346 for TC(z; 22) and at z = −0.853, −0.3627 for TF (z; 14) can be seen.

The derivatives of the normalized phase derivative curves all exhibit oscillations in the
vicinity of z = −1 which become larger and cover an increasing segment of the z axis as
the order of the derivative increases. In these oscillatory regions noticeable discrepancies
between the lattice derivative of the zeros and the derivatives of the normalized phase are
apparent.
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6.4.4 Glitches in the density of zeros

The gaps in the equimodular curves of hard squares on −1 ≤ z ≤ zd which caused the
divergences in the normalized phase curves in figure 6.14 lead to irregularities in the density
of the L×L partition function zeros which we refer to as “glitches”. These glitches upset the
smoothness of the density of zeros on the finite lattice and become increasingly apparent in
the higher derivatives of the density. The glitch at z = −0.752 is quite visible in the second
and third derivatives in figure 6.13.

To illustrate further the relation of gaps to glitches in the density of zeros we plot the
third derivatives of the density of cylindrical L×L lattices on an expanded scale in figure 6.15
where we indicate with solid arrows the positions of the corresponding gaps in the TC(z;Lh)
equimodular curves of table 6.4. On these expanded scales we observe that as the size of the
L × L lattice increases the number of glitches increases, they move to the right and their
amplitude decreases. These properties follow from the properties of the gaps of table 6.4
and the normalized phase curve of figure 6.12.

Figure 6.15: The third derivative of the density of hard squares for 40× 40, 38× 38, 36×
36, 34 × 34 lattices with cylindrical boundary conditions in the region −0.7 ≤ z ≤ −0.25 .
The gaps of table 6.4 are indicated by solid arrows

There also appear to be deviations of the zeros from a smooth curve at values of z where
the phases of the complex conjugate pair of maximum modulus eigenvalues are ±π/2. These
deviations have no relation to gaps in the equimodular curves and are indicate with dashed
arrows in figure 6.15.
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6.4.5 Hard square density of zeros for z → zd.

As z → zd the density diverges as

D(z) ∼ (zd − z)−α, (6.50)

where from the universality of the point zd with the Lee-Yang edge it is expected that
α = 1/6, which was also found to be the case for hard hexagons. We investigate the exponent

α using the method used in [10] by plotting in figure 6.16 the quantity DL(z)/D
(1)
L (z) for

L = 40 and compare this with

D(z)/D′(z) ∼ (zd − z)/α with α = 1/6, (6.51)

which is expected to hold for z → zd.
As was the case for hard hexagons this limiting form is seen to hold only for z very close

to zd and for comparison we also plot a fitting function

f(z) = (zf − z)/αf with zf = −0.058, αf = 1/0.88, (6.52)

which well approximates the curve in the range −0.30 ≤ z ≤ −0.16. This same phenomenon
has been seen in [121, equation (4.8) and figure 41] for Hamiltonian chains.

Figure 6.16: The plot of density/derivative for the partition function zeros of hard squares
for 40× 40 cylindrical lattice. The red line has α = 1/6 and zd = −0.119. The blue line has
αf = 1/0.88 = 1.14 and zf = −0.058.

6.4.6 The point z = −1

Hard squares have the remarkable property, which has no counterpart for hard hexagons,
that at z = −1 all roots of the characteristic equation are either roots of one, or minus
one, with various multiplicities. These roots have been computed for the full transfer matrix

235



TC(−1;Lh) either directly [90], [25] to size 15 or using a mapping to rhombus tilings [130] to
size Lh = 50. In 6.A we present factorizations of the characteristic polynomial TC(−1;Lh)
for the reduced sector P = 0+ for Lh ≤ 29, and of TF (−1;Lh) for Lh ≤ 20 both for the
unrestricted and positive parity sectors. In 6.B we give the partition function values at
z = −1.

6.4.7 Behavior near z = −1

The density of zeros of figure 6.13 for the 40× 40 cylinder is finite as z → −1. However
the first derivative is sufficiently scattered for z ≤ −0.95 that an estimate of the slope is
impracticable.

Furthermore there is a great amount of structure in the equimodular curves near the
point z = −1 where all eigenvalues are equimodular and which is not apparent on the scale
of the plots in figure 6.6. We illustrate this complexity for Lh = 12 for P = 0+ in figure 6.17
where we see that there are equimodular curves which intersect the z axis for z ≥ −1. These
level crossings are a feature also for TC(z) without the restriction to P = 0+ and for TF (z)
and TF (z) with + parity as well. In general there are several such crossings for a given Lh.
We give the values of the crossing furthest to the right in table 6.6. It is not clear whether
these level crossings will persist to the right of z = −1 as Lh →∞. We also note that often
there are more than one such level crossing, as illustrated in figure 6.17 for TF (z; 12).

Figure 6.17: Plots in the complex fugacity z plane near z = −1 for Lh = 12 of the equimod-
ular curves of hard square transfer matrix TC(z;Lh) with P = 0+ (on the left) and TF (z, Lh)
with + parity (on the right) on a scale which shows the level crossings on the z-axis to the
right of z = −1.
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L P = 0+ TC parity = + TF
12 −0.9973 −0.91295 −0.9988 same
14 none −0.9195 −0.999296 −0.999092
16 none −0.96 none none
18 −0.99994 −0.9990
20 −0.9995
22 −0.9999
24 −0.9974
26 −0.9990
28 −0.9996

Table 6.6: Positions of the right-most equimodular curve crossings of the negative z-axis for
hard squares of TC(z) in the sector P = 0+ and unrestricted and of TF (z) in the plus parity
sector and unrestricted.

6.5 Discussion

The three different techniques of series expansions, transfer matrix eigenvalues and par-
tition function zeros give three quite different perspectives on the difference between the
integrable hard hexagon model and non-integrable hard squares.

6.5.1 Series expansions

Consider first the series expansion of the physical free energy of hard squares [70, 127],
which is analyzed by means of differential approximants, as compared with the exact solution
of hard hexagons [22].

The hard hexagon free energy for both the high and low density regimes satisfies Fuch-
sian differential equations which can be obtained from a finite number of terms in a series
expansion [10].

For an non-integrable model like hard squares, the best kind of differential approximant
analysis to be introduced is not clear. For integrable models, even if one has a small number
of series coefficients, restricting to Fuchsian ODEs has been seen to be an extremely efficient
constraint. However for a (probably non-integrable) model like hard squares, there is no
reason to restrict the linear differential equations annihilating the hard square series to
be Fuchsian. In [127] the existing 92 term series are analyzed by means of differential
approximants but the series is too short to determine whether z = −1 is, or is not, a
singular point.

The method of series expansions and differential approximants are not well adapted
to analyze qualitative differences between hard squares and hard hexagons. This is to be
compared with the transfer matrix eigenvalues and partition function zeros presented above
which show dramatic differences between the two systems.
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6.5.2 Transfer matrices

The clearest distinction between integrable hard hexagons and non-integrable hard
squares is seen in the factorization properties of the discriminant of the characteristic poly-
nomials of the transfer matrices TC(z;Lh) and TF (z;Lh). At the zeros of the discriminant
the transfer matrix in general fails to be diagonalizable and the eigenvalues may have singu-
larities.

For hard hexagons these discriminants contain square factors which exclude the exis-
tence of gaps in the equimodular curves and singularities of the maximum eigenvalue on
the negative z-axis. This was observed for TC(z;Lh) in [10]. In the present paper these
square factors and lack of gaps has been observed for the transfer matrix TF (z;Lh) of hard
hexagons for all value of Lh studied and supports the conjecture that integrability can be
established by extending the methods of [82, 83, 224, 31, 5]. For hard squares there are no
such factorizations, so that its equimodular curves have gaps and the maximum eigenvalue
has singularities on the negative real z-axis.

6.5.3 Partition function zeros

In [10] we qualitatively characterized the partition function zeros as either being on curves
or being part of a necklace, and in the present paper we have characterized the zeros as filling
up areas. However, further investigation is required to determine if these characterizations of
the qualitative appearance of zeros of the finite system characterize the thermodynamic limit.
In [10] we initiated such a study by examining the dependence of the right-hand endpoints
of the necklace on the size of the lattice and observed that the endpoints move to the right
as the lattice size increases. However, there is not sufficient data to reliably determine the
limiting behavior. Thus, if in the thermodynamic limit the endpoint moved to zc;hh the
notion of zeros being on a curve might not persist. Similarly, it needs further investigation
to determine if the zeros of hard squares, which we have characterized as filling up an area,
will fill the area in the thermodynamic limit or whether further structure develops.

On the negative z-axis both hard hexagons and hard squares have a line of zeros which
has been investigated in detail in section 6.4. The density of zeros for z < zd:hh for hard
hexagons is mostly featureless and smooth, which is quite consistent with the low density
free energy having a branch cut starting at zd;hh. Hard squares zeros, on the other hand,
have a series of “glitches” whose number increases as z approaches zd and which correspond
to the locations of the gaps in the equimodular curves. A rigorous analysis of behavior of
these glitches needs to be made.

6.5.4 Behavior near zc

The equimodular curves of hard hexagons were extensively studied in [10]. The equimod-
ular curves, as illustrated for Lh = 21 in figure 6.7, consist of the curve where the low and
high density physical free energy are equimodular and a necklace region which surrounds
this equimodular curve in part of the left half-plane.
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For hard hexagons there is only one unique curve of zeros of the L×L partition function
which is converging towards zc;hh as L→∞. However, for hard squares the partition function
zeros in figures 6.2-6.4 do not lie on a single unique curve near zc. This is clearly seen in the
plots of figure 6.5 where the zeros appear to be converging to a wedge behavior as L → ∞
which is analogous to the behavior of the equimodular curves of figure 6.18.

The behavior of the equimodular curves of hard squares near zc in figure 6.6 is qualita-
tively different from the behavior of hard hexagons in figure 6.7. This is vividly illustrated
in figure 6.18 where we plot the equimodular curves for Tc(z;Lh) with P = 0+ for all values
4 ≤ Lh ≤ 26. We see in this figure that there is an ever increasing set of loops in the
equimodular curves which approach zc as Lh →∞.

It needs to be investigated if this behavior of both the zeros and the equimodular curves
for hard squares will have an effect on the singularity at zc beyond what is obtained from
the analysis of the series expansion of [70, 127].

Figure 6.18: The equimodular curves in the complex z plane of the TC(z;Lh) transfer matrix
in the 0+ sector for 4 ≤ Lh ≤ 26 plotted together. The different values of Lh are given
different shadings as indicated on the plot. The location of zc is indicated by a cross.

6.5.5 Behavior near z = −1

Finally we note that the relation of the equimodularity of all eigenvalues at z = −1 to
the analytic behavior of the physical free energy is completely unknown, as is the curious
observation for 12 ≤ Lh ≤ 28 found in table 6.6 that there are equimodular curves of
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TC(z;Lh) and for TF (z;Lh) which cross the negative z-axis to the right of z = −1. There are
many values of Lh for which there are more than one such curve. It would be of interest to
know if this feature persists for Lh > 28 and if it does, does the point of rightmost crossing
move to the right. If such a phenomenon does exist it would cause a re-evaluation of the
role of zeros on the negative z-axis.

6.6 Conclusions

The techniques of series expansions, universality and the renormalization group apply
equally well to describe the dominant behavior at zc and zd of hard hexagons and hard
squares. However the results of this paper reveal many differences between integrable hard
hexagons and non-integrable hard squares which have the potential to create further analytic
properties in hard squares which are not present in hard hexagons.

The renormalization group combined with conformal field theory predicts that both zc
and zd will be isolated regular singularities where the free energy will have a finite number
of algebraic or logarithmic singularities, each multiplied by a convergent infinite series. This
scenario is, of course, far beyond what can be confirmed by numerical methods. Indeed hard
squares are predicted to have the same set of 5 exponents at zd which hard hexagons have
[133],[10] even though only two such exponents can be obtained from the 92 terms series
expansion [127].

The emergence of the critical singularities predicted by the renormalization group at
either zc or zd is a phenomenon which relies upon the thermodynamic limit and we have
seen that hard squares approach this limit in a more complicated manner than do hard
hexagons.

Near zc the limiting position of the zeros for hard squares appears to be a wedge. This
is far more complex than the behavior of hard hexagons.

Near zd the zeros of both hard hexagons and hard squares are observed to lie on a segment
of the negative z-axis. If this indeed holds in the thermodynamic limit it would be satisfying
if a genuine proof could be found which incorporates the fact that some level crossings have
been observed to the right of z = −1.

On the negative z-axis hard squares have glitches in the density of zeros and gaps in
the equimodular curves which hard hexagons do not have. In the thermodynamic limit the
glitches and gaps may become a dense set of measure zero by the analysis leading to table
6.4 . Does this give a hint of the analytical structure of non-integrable models?
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Appendix

6.A Characteristic polynomials at z = −1

In [130] it was proven that all of the eigenvalues of the TC(−1;Lh) transfer matrix at
z = −1 are roots of unity and the characteristic polynomials were given in that paper up
to Lh = 50. Below we give the factorized characteristic polynomials PC0+

Lh
in the 0+ sector

at z = −1 up to Lh = 29. The transfer matrix TF (z;Lh) has not been considered before in
the literature, and below we give the factorized characteristic polynomials P F

Lh
and P F+

Lh
of

the full TF (−1;Lh) and the restricted positive parity sector, respectively, at z = −1 up to
Lh = 20. In all cases divisions are exact.

6.A.1 Characteristic polynomials P F
Lh

The degree of P F
Lh

is exactly the Fibonacci number F (n) defined by the recursion relation

F (Lh + 2) = F (Lh + 1) + F (Lh) (6.53)

with the initial conditions F (−1) = 0, F (0) = 1, so that its generating function is

GF =
(2 + t)

(1− t− t2)
(6.54)

and thus as Lh → ∞ the degree of the polynomial P F
Lh

grows as NLh
G , where NG = (1 +√

5)/2 ∼ 1.618 · · · is the golden ratio.
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The first 20 polynomials are

P F
1 = (x6 − 1)(x3 − 1)−1(x2 − 1)−1(x− 1)

P F
2 = (x4 − 1)(x2 − 1)−1(x− 1)

P F
3 = (x8 − 1)(x4 − 1)−1(x− 1)

P F
4 = (x6 − 1)(x4 − 1)(x3 − 1)−1(x− 1)

P F
5 = (x10 − 1)(x8 − 1)(x4 − 1)−1(x2 − 1)−1(x− 1)

P F
6 = (x14 − 1)(x4 − 1)2(x2 − 1)−1(x− 1)

P F
7 = (x18 − 1)(x12 − 1)(x8 − 1)(x6 − 1)(x4 − 1)−2(x3 − 1)−1(x− 1)

P F
8 = (x22 − 1)(x16 − 1)2(x8 − 1)−1(x4 − 1)2(x− 1)

P F
9 = (x26 − 1)(x20 − 1)3(x14 − 1)(x10 − 1)−1(x8 − 1)(x4 − 1)−2(x2 − 1)−1(x− 1)

P F
10 = (x30 − 1)(x24 − 1)3(x18 − 1)2(x8 − 1)−1(x6 − 1)(x4 − 1)3(x3 − 1)−1

(x2 − 1)−1(x− 1)

P F
11 = (x34 − 1)(x28 − 1)3(x22 − 1)4(x16 − 1)(x14 − 1)(x8 − 1)(x4 − 1)−3(x− 1)

P F
12 = (x38 − 1)(x32 − 1)4(x26 − 1)6(x20 − 1)2(x10 − 1)(x8 − 1)−1(x4 − 1)3(x− 1)

P F
13 = (x42 − 1)(x36 − 1)5(x30 − 1)8(x24 − 1)5(x12 − 1)(x10 − 1)(x8 − 1)2(x6 − 1)

(x4 − 1)−3(x3 − 1)−1(x2 − 1)−1(x− 1)

P F
14 = (x46 − 1)(x40 − 1)5(x34 − 1)11(x28 − 1)11(x22 − 1)3(x14 − 1)−1(x8 − 1)−1

(x4 − 1)4(x2 − 1)−1(x− 1)

P F
15 = (x50 − 1)(x44 − 1)5(x38 − 1)14(x32 − 1)18(x26 − 1)8(x22 − 1)(x20 − 1)

(x16 − 1)−2(x8 − 1)2(x4 − 1)−4(x− 1)

P F
16 = (x54 − 1)(x48 − 1)6(x42 − 1)17(x36 − 1)25(x30 − 1)17(x24 − 1)4(x18 − 1)(x14 − 1)

(x12 − 1)−1(x10 − 1)−1(x8 − 1)−1(x6 − 1)(x4 − 1)4(x3 − 1)−1(x− 1)

P F
17 = (x58 − 1)(x52 − 1)7(x46 − 1)21(x40 − 1)35(x34 − 1)31(x28 − 1)11(x26 − 1)−1

(x22 − 1)(x20 − 1)3(x14 − 1)−1(x10 − 1)−1(x8 − 1)2(x4 − 1)−4(x2 − 1)−1

(x− 1)

P F
18 = (x62 − 1)(x56 − 1)7(x50 − 1)25(x44 − 1)50(x38 − 1)52(x32 − 1)24(x26 − 1)4

(x22 − 1)−1(x16 − 1)2(x8 − 1)−2(x4 − 1)5(x2 − 1)−1(x− 1)

P F
19 = (x66 − 1)(x60 − 1)7(x54 − 1)29(x48 − 1)67(x42 − 1)82(x36 − 1)50(x30 − 1)14

(x24 − 1)−2(x18 − 1)3(x14 − 1)−1(x12 − 1)(x10 − 1)(x8 − 1)2(x6 − 1)

(x4 − 1)−5(x3 − 1)−1(x− 1)

P F
20 = (x70 − 1)(x64 − 1)8(x58 − 1)34(x52 − 1)84(x46 − 1)122(x40 − 1)97(x34 − 1)35

(x28 − 1)4(x26 − 1)(x20 − 1)−3(x14 − 1)(x10 − 1)(x8 − 1)−2(x4 − 1)5

(x− 1) (6.55)
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and from these we see that the degrees of the multiplicity of the eigenvalue +1 are

0, 1, 1, 2, 1, 3, 2, 5, 3, 8, 9, 17, 20, 33, 45, 74, 105, 167, 250, 389, . . . (6.56)

where we find a “mod 4” effect.

6.A.2 Characteristic polynomials P F+
Lh

The degrees of P F+
Lh

follow the sequence A001224 in the OEIS [225] and they are related
to the Fibonacci sequence F (n) as follows:

F (Lh + 1) + F (Lh+1
2

+ 1)

2
, Lh = odd (6.57)

F (Lh + 1) + F (Lh

2
)

2
, Lh = even (6.58)

This sequence has the following generating function

GF+ =
GF

2
+
t3 + t2 + t+ 2

2(1− t2 − t4)
(6.59)

so that the degree of the polynomials P F+
Lh

grow as NLh
G with a sub-dominant growth of

N
Lh/2
G .
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The first 20 polynomials are

P F+
1 = (x6 − 1)(x3 − 1)−1(x2 − 1)−1(x− 1)

P F+
2 = (x4 − 1)(x2 − 1)−1

P F+
3 = (x8 − 1)(x4 − 1)−1

P F+
4 = (x6 − 1)(x3 − 1)−1(x2 − 1)

P F+
5 = (x8 − 1)(x5 − 1)(x4 − 1)−1

P F+
6 = (x7 − 1)(x4 − 1)2(x2 − 1)−2(x− 1)

P F+
7 = (x18 − 1)(x9 − 1)−1(x8 − 1)(x6 − 1)2(x4 − 1)−1(x3 − 1)−1(x2 − 1)−1

(x− 1)

P F+
8 = (x22 − 1)(x16 − 1)2(x11 − 1)−1(x8 − 1)−2(x2 − 1)(x− 1)

P F+
9 = (x20 − 1)3(x14 − 1)(x13 − 1)(x10 − 1)−3(x8 − 1)(x7 − 1)−1(x4 − 1)−2

(x− 1)

P F+
10 = (x18 − 1)2(x15 − 1)(x12 − 1)3(x9 − 1)−2(x6 − 1)(x4 − 1)2(x3 − 1)−1

(x2 − 1)−2

P F+
11 = (x34 − 1)(x17 − 1)−1(x16 − 1)(x14 − 1)4(x11 − 1)4(x4 − 1)−1(x2 − 1)−1

P F+
12 = (x38 − 1)(x32 − 1)4(x19 − 1)−1(x16 − 1)−4(x13 − 1)6(x10 − 1)3(x2 − 1)2

P F+
13 = (x36 − 1)5(x30 − 1)8(x21 − 1)(x18 − 1)−5(x15 − 1)−8(x12 − 1)6(x10 − 1)(x9 − 1)

(x8 − 1)(x6 − 1)(x5 − 1)−1(x4 − 1)−2(x3 − 1)−1(x2 − 1)

P F+
14 = (x34 − 1)11(x28 − 1)11(x23 − 1)(x20 − 1)5(x17 − 1)−11(x14 − 1)−11(x11 − 1)3

(x4 − 1)3(x2 − 1)−3(x− 1)

P F+
15 = (x50 − 1)(x32 − 1)18(x26 − 1)8(x22 − 1)6(x25 − 1)−1(x19 − 1)14(x16 − 1)−18

(x13 − 1)−8(x10 − 1)(x8 − 1)(x4 − 1)−1(x2 − 1)−2(x− 1)

P F+
16 = (x54 − 1)(x48 − 1)6(x30 − 1)17(x27 − 1)−1(x24 − 1)−2(x21 − 1)17(x18 − 1)26

(x15 − 1)−17(x12 − 1)−4(x10 − 1)−1(x7 − 1)(x6 − 1)(x5 − 1)(x3 − 1)−1

(x2 − 1)2(x− 1)

P F+
17 = (x52 − 1)7(x46 − 1)21(x29 − 1)(x28 − 1)11(x26 − 1)−7(x23 − 1)−21(x22 − 1)

(x20 − 1)38(x17 − 1)31(x14 − 1)−11(x11 − 1)−1(x10 − 1)−1(x8 − 1)

(x4 − 1)−3(x2 − 1)(x− 1)

P F+
18 = (x50 − 1)25(x44 − 1)50(x31 − 1)(x28 − 1)7(x26 − 1)4(x25 − 1)−25(x22 − 1)−50

(x19 − 1)52(x16 − 1)26(x13 − 1)−4(x8 − 1)−1(x4 − 1)4(x2 − 1)−3

P F+
19 = (x66 − 1)(x48 − 1)67(x42 − 1)82(x33 − 1)−1(x30 − 1)8(x27 − 1)29(x24 − 1)−66

(x21 − 1)−82(x18 − 1)52(x15 − 1)13(x14 − 1)−1(x12 − 1)−1(x9 − 1)

(x8 − 1)(x7 − 1)(x6 − 1)2(x5 − 1)(x4 − 1)−1(x3 − 1)−1(x2 − 1)−2

P F+
20 = (x70 − 1)(x64 − 1)8(x46 − 1)122(x40 − 1)97(x35 − 1)−1(x32 − 1)−8(x29 − 1)34

(x26 − 1)85(x23 − 1)−122(x20 − 1)−97(x17 − 1)35(x14 − 1)5(x8 − 1)−1

(x4 − 1)(x2 − 1)3 (6.60)
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and from these we find that the degrees of the multiplicity of the eigenvalue +1 are

0, 0, 0, 1, 1, 2, 1, 2, 1, 4, 7, 11, 8, 10, 20, 47, 69, 86, 103, 162, . . . (6.61)

where again there is a “mod 4” effect.

6.A.3 Characteristic polynomials PC
Lh

The characteristic polynomials PC
Lh

for TC(−1;Lh) have been well analyzed in [130] and
are listed in appendix A of that paper to Lh = 50. The degree of the polynomials are the
Lucas numbers which satisfy the recursion relation (6.53) with initial conditions L(0) =
2, L(1) = 1 and which have the generating function

GC =
1 + 2t

(1− t− t2)
(6.62)

From the long list of [130] we find that the degrees of the multiplicity of the eigenvalue +1
are

1, 1, 2, 3, 0, 4, 1, 7, 8, 13, 2, 26, 9, 49, 38, 107, 28, 228, 49, 501, 324, 1101, 258, 2766, 469,

5845, 3790, 13555, 2376, 35624, 5813, 75807, 38036, 180213, 30482, 480782, 69593,

1047429, 485658, 2542453, 385020, 6794812, 914105, 15114481, 9570844, 36794329,

5212354, 101089306, 12602653, 222317557, . . . (6.63)

where we find a “mod 6” effect.

6.A.4 Characteristic polynomials PC0+
Lh

The degrees of the polynomials PC0+
Lh

are discussed in appendix B of [188] and are the
series A129526 in the OEIS [225]. However, an explicit form is not known.

We have computed the characteristic polynomials in the less restrictive case of the mo-
mentum P = 0 sector. The degrees of the polynomials follow the series A000358 in the
OEIS [225], which is given by the formula

1

Lh

∑
n|Lh

φ

(
Lh
n

)
[F (n− 2) + F (n)] (6.64)

where φ(n) is Euler’s totient function (the number of positive integers < n which are rela-
tively prime with n). In particular when Lh is prime (6.64) specializes to

1 +
F (Lh − 2) + F (Lh)− 1

Lh
(6.65)
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which grows as NLh
G .

The order of the restricted positive parity polynomial PC0+ is greater than the negative
parity polynomial PC0− and thus PC0+ also grows as NLh

G .
The first 29 polynomials are

PC0+
1 = (x− 1)

PC0+
2 = (x4 − 1)(x2 − 1)−1

PC0+
3 = (x3 − 1)(x− 1)−1

PC0+
4 = (x2 − 1)2(x− 1)−1

PC0+
5 = (x2 − 1)2(x− 1)−1

PC0+
6 = (x4 − 1)(x3 − 1)(x2 − 1)−1

PC0+
7 = (x4 − 1)2(x2 − 1)−2(x− 1)

PC0+
8 = (x10 − 1)(x5 − 1)−1(x− 1)(x2 − 1)

PC0+
9 = (x3 − 1)(x− 1)2(x2 − 1)2

PC0+
10 = (x8 − 1)(x7 − 1)(x2 − 1)−1(x− 1)

PC0+
11 = (x5 − 1)2(x4 − 1)3(x2 − 1)−3

PC0+
12 = (x18 − 1)(x9 − 1)−1(x6 − 1)(x4 − 1)(x3 − 1)2(x2 − 1)(x− 1)−1

PC0+
13 = (x7 − 1)3(x2 − 1)6(x− 1)−2

PC0+
14 = (x16 − 1)3(x11 − 1)(x8 − 1)−3(x5 − 1)(x4 − 1)(x2 − 1)3(x− 1)−1

PC0+
15 = (x9 − 1)4(x6 − 1)2(x4 − 1)4(x3 − 1)3(x2 − 1)−4(x− 1)−1

PC0+
16 = (x26 − 1)(x14 − 1)3(x13 − 1)−1(x10 − 1)3(x7 − 1)−2(x5 − 1)3(x4 − 1)5

(x2 − 1)−4(x− 1)

PC0+
17 = (x11 − 1)6(x8 − 1)8(x4 − 1)−2(x2 − 1)4(x− 1)3

PC0+
18 = (x24 − 1)6(x18 − 1)3(x15 − 1)(x12 − 1)−5(x9 − 1)3(x6 − 1)−1(x4 − 1)

(x3 − 1)4(x2 − 1)8(x− 1)3

PC0+
19 = (x13 − 1)8(x10 − 1)18(x7 − 1)3(x5 − 1)−6(x4 − 1)5(x2 − 1)−3(x− 1)2

PC0+
20 = (x34 − 1)(x22 − 1)15(x17 − 1)−1(x16 − 1)2(x14 − 1)6(x11 − 1)−8(x8 − 1)

(x7 − 1)4(x4 − 1)17(x2 − 1)−12

PC0+
21 = (x15 − 1)10(x12 − 1)27(x9 − 1)12(x6 − 1)3(x5 − 1)(x4 − 1)9(x3 − 1)7

(x2 − 1)−1(x− 1)−3

PC0+
22 = (x32 − 1)10(x26 − 1)14(x20 − 1)15(x19 − 1)(x16 − 1)−10(x13 − 1)14

(x10 − 1)−9(x7 − 1)(x5 − 1)6(x4 − 1)2(x2 − 1)22(x− 1)−2

PC0+
23 = (x17 − 1)13(x14 − 1)45(x11 − 1)43(x8 − 1)4(x7 − 1)15(x4 − 1)5

(x2 − 1)16(x− 1)−3
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PC0+
24 = (x42 − 1)(x30 − 1)45(x24 − 1)27(x21 − 1)−1(x18 − 1)16(x15 − 1)−20

(x12 − 1)9(x10 − 1)10(x9 − 1)2(x8 − 1)3(x6 − 1)9(x5 − 1)−10

(x4 − 1)27(x3 − 1)12(x2 − 1)−23

PC0+
25 = (x19 − 1)16(x16 − 1)92(x13 − 1)116(x10 − 1)20(x8 − 1)−8(x5 − 1)5

(x4 − 1)41(x2 − 1)−33(x− 1)2

PC0+
26 = (x40 − 1)15(x34 − 1)42(x28 − 1)105(x23 − 1)(x22 − 1)20(x20 − 1)−15

(x17 − 1)36(x16 − 1)(x14 − 1)−45(x11 − 1)9(x8 − 1)−1

(x7 − 1)28(x4 − 1)16(x2 − 1)26(x− 1)4

PC0+
27 = (x21 − 1)19(x18 − 1)155(x15 − 1)263(x12 − 1)92(x9 − 1)−27(x7 − 1)

(x5 − 1)26(x4 − 1)17(x3 − 1)19(x6 − 1)7(x− 1)9(x2 − 1)67

PC0+
28 = (x50 − 1)(x38 − 1)120(x32 − 1)168(x26 − 1)110(x25 − 1)−1(x22 − 1)15

(x20 − 1)5(x19 − 1)−54(x16 − 1)42(x13 − 1)−26(x11 − 1)6

(x10 − 1)(x8 − 1)43(x5 − 1)4(x4 − 1)55(x2 − 1)−10(x− 1)2

PC0+
29 = (x23 − 1)23(x20 − 1)205(x17 − 1)581(x14 − 1)364(x11 − 1)36(x7 − 1)−14

(x10 − 1)15(x5 − 1)−5(x4 − 1)131(x2 − 1)−115 (6.66)

and from these we find that the degrees of the characteristic polynomials are

1, 2, 2, 3, 3, 5, 5, 8, 9, 14, 16, 26, 31, 49, 64, 99, 133, 209, 291, 455, 657, 1022, 1510, 2359,

3545, 5536, 8442, 13201, 20319, 31836, 49353, 77436, 120711, 189674, 296854, 467160,

733363, 1155647, 1818594, 2869378, 4524081, 7146483, . . . (6.67)

where we find there is a “mod 6” effect.

6.B Partition functions at z = −1

Successive powers of transfer matrices always satisfy a linear recursion relation, since
any matrix satisfies its own characteristic polynomial. Therefore, any linear function of the
matrix or its components which is independent of the power of the matrix will also satisfy
the same linear recursion relation. The usual functions involved in creating partition func-
tions from transfer matrices, the trace of the matrix, dot products with boundary vectors,
and modified traces to account for Möbius and Klein bottle boundary conditions, all cause
the respective partition functions to satisfy the same linear recursion relation as their trans-
fer matrix, its characteristic polynomial. In particular, the Klein bottle partition function
ZKC
Lv ,Lh

(z) satisfies the same linear recursion relation in Lv as the torus ZCC
Lv ,Lh

(z), since it
is constructed from the same transfer matrix TC(z;Lh), and the cylinder partition func-
tion ZCF

Lv ,Lh
(z) satisfies the same recursion relation in Lv as the Möbius partition function

ZMF
Lv ,Lh

(z) since they are both constructed from the same transfer matrix TF (z;Lh).
Therefore, the generating functions for the partition functions for a given Lh and for
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general z are rational functions in z and x = Lv whose denominators are the characteristic
polynomials of the Lh transfer matrix and whose numerators are polynomials given by the
product of the characteristic polynomial and the initial terms of the series (the numerator
has degree 1 less in x than the degree of the characteristic polynomial).

When the transfer matrix can be block diagonalized and the boundary vector dot products
cause the partition function to be a function of only a restricted set of matrices in the
direct sum, the partition function will satisfy a recursion relation of smaller order than the
order of the full transfer matrix. As an example, TC(z;Lh) can be block diagonalized into
different momentum sectors, and ZFC

Lv ,Lh
(z) is only a function of the reflection symmetric zero

momentum sector 0+, so that the cylinder ZFC
Lv ,Lh

(z) will satisfy a recursion relation in Lv of
the order of the 0+ sector and not the order of the full TC(z;Lh) matrix. Likewise, ZFF

Lv ,Lh
(z)

satisfies a recursion relation in Lv of the order of the positive parity sector of TF (z;Lh).
Beyond restrictions to particular matrix sectors, however, in general the polynomials in

the numerator and denominator of the generating functions do not partially cancel, regardless
of the initial conditions of the recursion relation, so that partition functions in z generally
satisfy a recursion relation of the same order as its transfer matrix. This holds generically
for hard hexagons and hard squares even if at particular values of z some cancellations can
occur in the generating function.

For hard squares at z = −1 the denominators of the generating functions simplify to the
expressions given in appendix A, whose orders grow according to the order of the transfer
matrices. The numerators, however, are such that massive cancellations occur, so that the
partition functions as a function of x = Lv at z = −1 satisfy linear recursion relations of much
smaller degree than than the partition function does for general z. The form of the numerator
is dependent on the initial conditions of the recursion relation, that is, the partition function
value at z = −1 for the first several values of Lv. This, in turn, is dependent on boundary
conditions: both the torus and the Klein bottle partition functions satisfy the same linear
recursion relation of their transfer matrix TC(−1;Lh), but the numerators of their generating
functions are different, so that the Klein bottle exhibits much more massive cancellations
than the torus for a given Lh. Likewise, the cylinder ZCF

Lv ,Lh
(−1) and the Möbius band have

different recursion relation orders due to different amounts of cancellations at z = −1.
The cylinder has the property that for odd Lh, Z

FC
Lv ,Lh

(−1) = −2 whenever gcd(Lh −
1, Lv) = 0 mod 3, and ZFC

Lv ,Lh
(−1) = 1 otherwise [132]. Therefore, the linear recursion

relation of ZFC
Lv ,Lh

(−1) for odd Lh is always of order 1 or 2, even though for generic z the
partition function ZFC

Lv ,Lh
(z) satisfies a linear recursion relation of the order of the 0+ sector of

the TC(z;Lh) transfer matrices, which grows as NLh
G . The initial conditions for the cylinder

for odd Lh, therefore, are able to effect incredible cancellations to its generating function
whose denominators are given in Appendix A.

In [130] it was proven that for the torus partition function, ZCC
Lv ,Lh

(−1) = 1 whenever
Lv, Lh are co-prime. Since for each Lh the torus at z = −1 satisfies a linear recursion
relation, its initial conditions happen to be exactly suited to allow for this number theoretic
property. This property does not extend to other boundary conditions even when they satisfy
the same overall linear recursion relation. The Klein bottle satisfies the same TC(−1;Lh)
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linear recursion relation that the torus also satisfies, but its initial conditions do not cause
it to share in the torus’ co-primality property.

A repeating sequence with period n will have a generating function of the form
p(x)/(1 − xn). Therefore, since all of the eigenvalues of the transfer matrices TC(−1;Lh)
and TF (−1;Lh) are roots of unity, as long as the denominators have only square-free factors,
the sequences of partition function values at z = −1 will be repeating, with a period given
by the lcm of the exponents nj in the factors (1 − xnj). Most sequences below are repeat-
ing, with a period often much larger than the order of the transfer matrix. For the limited
cases considered below, all generating functions along a periodic direction (including a twist
for Möbius bands and Klein bottles) are repeating. Along the free direction, the sequences
are not always repeating; the cylinder for Lh = 0 mod 4 is non-repeating and the free-free
partition function is non-repeating for four of the Lh considered. In [4] a general form for
the generating functions of ZFC

Lv ,Lh
(−1) for even Lh is conjectured, along with the conjecture

that for even Lh the only repeating sequences for ZFC
Lv ,Lh

(−1) are when Lh = 2 mod 4. We
make the following conjecture:

Conjecture 1 Along a periodic direction (including twists) all generating functions are re-
peating.

We further find below that along the periodic direction, all repeating sequences are sums of
repeating sub-sequences of period pj which have value zero except at locations pj − 1 mod
pj where their value is an integer multiple of pj. Often the value is exactly pj. Therefore,
the generating functions along a periodic direction are logarithmic derivatives of a product
of factors of the form (1 − xpj)mj , where mj is an integer. We conjecture that this always
holds:

Conjecture 2 Along a periodic direction (including twists), all generating functions are
logarithmic derivatives of products of the form

∏
j(1− xpj)mj , where pj and mj are integers.

As it turns out, for the limited cases considered below, we find surprisingly that the gen-
erating functions for the torus and the cylinder along the periodic direction are exactly
the negative of the logarithmic derivative of the characteristic polynomial of their transfer
matrices at z = −1, so that we have the further conjecture:

Conjecture 3 The generating functions of the torus and cylinder (along the periodic direc-
tion) are equal to the negative of the logarithmic derivative of their characteristic polynomials,
that is, GCC

Lh
= − d

dx
ln
(
PCC
Lh

)
and GCF

Lh
= − d

dx
ln
(
PCF
Lh

)
, respectively.

This is similar to a conjecture in [1]. We note that this does not hold for general z, nor for
Möbius bands or Klein bottles at z = −1. Due to this conjecture, we can use the results from
appendix 6.A to further the tables of periods for the sequences ZCC

Lv ,Lh
(−1) and ZCF

Lv ,Lh
(−1),

where we notice a mod 3 pattern.
For ZCC

Lv ,Lh
(−1), for Lh = 0 mod 3 we conjecture that the periods are given by the

lcm(Lh, 2Lh, . . . , nLh), where n is often given by n = Lh/3− 1.
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For ZCF
Lv ,Lh

(−1), for Lh = 1 mod 3 we conjecture that the periods are given by the
lcm(6, 12, . . . , 6n), where n is often 2(Lh − 4)/3 + 1.

We also note that the periods of the cylinder (along the periodic Lv direction), the Möbius
band, and the free-free plane are all equal, and the periods of the Klein bottle and cylinder
(along the free Lv direction) are equal.

Below we list both the generating functions and tables of values for all boundary con-
ditions, since number theoretic properties such as the torus’s co-primality property can be
missed by simply considering the generating functions. The periods of repeating sequences
are tabulated, along with the minimal order of the recursion relations. All generating func-
tions listed were determined by computing all partition function values up to the order of the
transfer matrix and canceling the numerator and denominators of the generating function to
arrive at the minimal order linear recursion relation; however, we extend the table of values
to higher Lh.
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6.B.1 The torus ZCC
Lv,Lh

(−1)

Lh\Lv 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 -1 1 3 1 -1 1 3 1 -1 1 3 1 -1 1 3 1 -1 1 3
3 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1
4 1 3 1 7 1 3 1 7 1 3 1 7 1 3 1 7 1 3 1 7
5 1 1 1 1 -9 1 1 1 1 11 1 1 1 1 -9 1 1 1 1 11
6 1 -1 4 3 1 14 1 3 4 -1 1 18 1 -1 4 3 1 14 1 3
7 1 1 1 1 1 1 1 1 1 1 1 1 1 -27 1 1 1 1 1 1
8 1 3 1 7 1 3 1 7 1 43 1 7 1 3 1 7 1 3 1 47
9 1 1 4 1 1 4 1 1 40 1 1 4 1 1 4 1 1 76 1 1
10 1 -1 1 3 11 -1 1 43 1 9 1 3 1 69 11 43 1 -1 1 13
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 1 3 4 7 1 18 1 7 4 3 1 166 1 3 4 7 1 126 1 7
13 1 1 1 1 1 1 1 1 1 1 1 1 -51 1 1 1 1 1 1 1
14 1 -1 1 3 1 -1 -27 3 1 69 1 3 1 55 1 451 1 -1 1 73
15 1 1 4 1 -9 4 1 1 4 11 1 4 1 1 174 1 1 4 1 11

Table 6.B.7: ZCC
Lv ,Lh

(−1)

The generating functions GCC
Lh

as a function of x = Lv are given below.

GCC
1 =

1

(1− x)
, GCC

2 = GCC
1 +

4x3

(1− x4)
− 2x

(1− x2)
, GCC

3 = GCC
1 +

3x2

(1− x3)
,

GCC
4 = GCC

2 +
4x

(1− x2)
, GCC

5 = GCC
1 +

20x9

(1− x10)
− 10x4

(1− x5)
,

GCC
6 = GCC

3 −GCC
1 +GCC

2 +
12x5

(1− x6)
, GCC

7 = GCC
1 +

56x27

(1− x28)
− 28x13

(1− x14)
,

GCC
8 = GCC

4 +
40x9

(1− x10)
, GCC

9 = GCC
3 +

36x17

(1− x18)
+

36x8

(1− x9)
,

GCC
10 = GCC

2 +
70x13

(1− x14)
+

10x4

(1− x5)
+

40x7

(1− x8)
,

GCC
11 = GCC

1 +
110x54

(1− x55)
+

176x43

(1− x44)
− 88x21

(1− x22)
. (6.68)
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ZCC Lh 1 2 3 4 5 6 7 8 9 10 11
TC order 2 3 4 7 11 18 29 47 76 123 199

min rec order 1 3 3 4 6 8 15 12 18 24 77
period 1 4 3 4 10 12 28 20 18 280 220

Table 6.B.8: The minimal order of the recursion relation and the period of the repeating sequence of ZCC
Lv ,Lh

(−1) as a
function of Lv.

6.B.2 The Klein bottle ZKC
Lv,Lh

(−1) with twist in Lv direction

Lh\Lv 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 -1 -3 -1 1 -1 -3 -1 1 -1 -3 -1 1 -1 -3 -1 1 -1 -3 -1 1
3 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1
4 -1 5 -1 1 -1 5 -1 1 -1 5 -1 1 -1 5 -1 1 -1 5 -1 1
5 -1 3 -1 3 -1 3 -1 3 -1 3 -1 3 -1 3 -1 3 -1 3 -1 3
6 1 -5 4 -1 1 -2 1 -1 4 -5 1 2 1 -5 4 -1 1 -2 1 -1
7 1 -3 1 5 1 -3 1 5 1 -3 1 5 1 -3 1 5 1 -3 1 5
8 1 7 1 3 1 7 1 3 1 7 1 3 1 7 1 3 1 7 1 3
9 1 5 4 5 1 8 1 5 4 5 1 8 1 5 4 5 1 8 1 5
10 -1 -7 -1 -3 -1 -7 13 5 -1 -7 -1 -3 -1 -7 -1 5 -1 -7 -1 -3
11 -1 -5 -1 3 9 -5 -1 3 -1 5 -1 3 -1 -5 9 3 -1 -5 -1 13
12 -1 9 2 5 -1 12 -1 5 2 9 -1 8 -1 9 2 5 -1 12 -1 5
13 -1 7 -1 7 -1 7 13 7 -1 7 -1 7 -1 21 -1 7 -1 7 -1 7
14 1 -9 1 3 1 -9 1 -29 1 1 23 3 1 -9 1 3 1 -9 1 13

Table 6.B.9: ZKC
Lv ,Lh

(−1)
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The generating functions GKC
Lh

as a function of x = Lv are given below.

GKC
1 =

1

(1− x)
, GKC

2 = −GKC
1 +

4x3

(1− x4)
− 2x

(1− x2)
, GKC

3 = −GKC
1 +

3x2

(1− x3)
,

GKC
4 = −GKC

2 − 2GKC
1 +

4x

(1− x2)
, GKC

5 = GKC
4 +GKC

2 +GKC
1 ,

GKC
6 = −GKC

4 +GKC
3 +GKC

1 , GKC
7 = 2GKC

2 + 3GKC
1 , GKC

8 = GKC
4 + 2GKC

1 ,

GKC
9 = GKC

5 +GKC
3 + 3GKC

1 , GKC
10 = −GKC

8 − 14x13

(1− x14)
+

8x7

(1− x8)
+

14x6

(1− x7)
,

GKC
11 = GKC

7 − 2GKC
1 +

10x4

(1− x5)
. (6.69)

ZKC Lh 1 2 3 4 5 6 7 8 9 10 11
TC order 2 3 4 7 11 18 29 47 76 123 199

min rec order 1 3 2 4 2 5 3 4 4 20 7
period 1 4 3 4 2 12 4 4 6 56 20

Table 6.B.10: The minimal order of the recursion relation and the period of the repeating sequence of ZKC
Lv ,Lh

(−1) as a
function of Lv.

6.B.3 The cylinder ZFC
Lv,Lh

(−1) = ZCF
Lh,Lv

(−1)

The generating functions GFC
Lh

as a function of x = Lv are given below. For odd Lh there are only two cases:

GFC
3n±1 =

1

(1− x)
GFC

3n = GFC
3n±1 −

3

(1− x3)
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Lh\Lv 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1
3 -2 1 1 -2 1 1 -2 1 1 -2 1 1 -2 1 1 -2 1 1 -2 1
4 -1 3 -3 5 -5 7 -7 9 -9 11 -11 13 -13 15 -15 17 -17 19 -19 21
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 2 -1 1 4 -1 -1 4 1 -1 2 1 1 2 -1 1 4 -1 -1 4 1
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 -1 3 5 5 3 7 1 1 -1 3 -3 5 3 7 1 9 -1 3 -3 5
9 -2 1 1 -2 1 1 -2 1 1 -2 1 1 -2 1 1 -2 1 1 -2 1
10 -1 -1 1 1 9 -1 1 1 -11 -1 1 11 9 -1 1 -9 -11 -1 11 11
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 2 3 -3 8 -5 7 8 9 -9 14 -11 13 2 15 -15 8 -17 19 -4 21
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 -1 -1 1 1 -1 13 1 1 13 -1 15 1 -1 -15 1 15 -15 -1 -13 15
15 -2 1 1 -2 1 1 -2 1 1 -2 1 1 -2 1 1 -2 1 1 -2 1
16 -1 3 5 5 3 7 1 33 -1 3 13 5 3 7 -31 9 -1 35 -3 5

Table 6.B.11: ZFC
Lv ,Lh

(−1) = ZCF
Lh,Lv

(−1)

For even Lh:

GFC
2 = GFC

1 − 2(1 + x)

(1− x4)
, GFC

4 =
x

(1− x2)
− (1− x)2

(1− x2)2
, GFC

6 = −GFC
3 +GFC

2 +GFC
1 ,

GFC
8 =

1

5
GFC

4 − 4

5

(1 + x)(1− x5)2

(1− x10)(1− x)2
+

8

5

x(1 + x)(x3 + 3)(1− x5)

(1− x10)(1− x)
,

GFC
10 = GFC

2 +
10x(1 + x)(1 + x2)

(1− x8)
− 10x(x2 + x+ 1)

(1− x7)
,

GFC
12 =

7

9
GFC

4 − 4(1− x6)(1− x9)

(1− x18)
+

2

3

(1 + x)(1− x2)(1− x3)2

(1− x6)2
+

(2x5 + 2x4 + 55x3 + 55)

9(1− x6)
,

GFC
14 = GFC

2 +
28x3pFC14

(1− x16)
− 14x3(x7 + x6 + x2 + x+ 1)

(1− x11)
− 14x3(1 + x)

(1− x5)
,

GFC
16 =

243GFC
4 + 2108GFC

1

455
+

16(1 + x)(1− x13)pFC16;1

13(1− x26)
+

32(1 + x)(1− x7)pFC16;2

7(1− x14)
+

8(1− x2)pFC16;3

5(1− x10)
,

(6.70)
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pFC14 = x12 + x11 + x7 + x6 + x5 + x2 + x+ 1,

pFC16;1 = −2x11 + 6x9 − 3x8 + 4x7 − 9x6 + 5x5 − 5x4 + 9x3 − 4x2 + 3x− 6,

pFC16;2 = −x5 + 3x3 − x2 + x− 3,

pFC16;3 = 7x7 + 7x6 − 3x5 + x4 − 5x3 + 12x2 + 6x+ 10. (6.71)

ZFC Lh 2 4 6 8 10 12 14 16
TC0+ order 2 3 5 8 14 26 49 99

min rec order 2 3 5 7 13 15 25 29
period 4 – 12 – 56 – 880 –

Table 6.B.12: The minimal order of the recursion relation and the period of the repeating sequence of ZFC
Lv ,Lh

(−1) as a
function of Lv.255



The generating functions GCF
Lh

as a function of x = Lv are given below.

GCF
1 =

6x5

(1− x6)
− 3x2

(1− x3)
− 2x

(1− x2)
+

1

(1− x)
, GCF

2 =
4x3

(1− x4)
− 2x

(1− x2)
+

1

(1− x)
,

GCF
3 =

8x7

(1− x8)
− 4x3

(1− x4)
+

1

(1− x)
, GCF

4 = GCF
1 +GCF

2 +
4x

(1− x2)
− 1

(1− x)
,

GCF
5 = GCF

3 +
10x9

(1− x10)
− 2x

(1− x2)
, GCF

6 = 2GCF
2 +

14x13

(1− x14)
+

2x

(1− x2)
− 1

(1− x)
,

GCF
7 = GCF

3 −GCF
2 +GCF

1 +
18x17

(1− x18)
+

12x11

(1− x12)
,

GCF
8 = −GCF

3 +
22x21

(1− x22)
+

32x15

(1− x16)
+

4x3

(1− x4)
+

2

(1− x)
,

GCF
9 = GCF

6 −GCF
5 +GCF

2 +
26x25

(1− x26)
+

60x19

(1− x20)
+

16x7

(1− x8)
− 24x3

(1− x4)
,

GCF
10 = GCF

4 −GCF
3 +GCF

2 +
30x29

(1− x30)
+

72x23

(1− x24)
+

36x17

(1− x18)
. (6.72)

ZCF Lh 1 2 3 4 5 6 7 8 9 10
TF order 2 3 5 8 13 21 34 55 89 144

min rec order 2 3 5 6 13 16 26 36 60 60
period 6 4 8 12 40 28 72 176 3640 360

Table 6.B.13: The minimal order of the recursion relation and the period of the repeating sequence of ZCF
Lv ,Lh

(−1) as a
function of Lv.
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Lh\Lv 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 -1 -2 -1 1 2 1 -1 -2 -1 1 2 1 -1 -2 -1 1 2 1 -1
2 -1 -3 -1 1 -1 -3 -1 1 -1 -3 -1 1 -1 -3 -1 1 -1 -3 -1 1
3 -1 -1 -1 -5 -1 -1 -1 3 -1 -1 -1 -5 -1 -1 -1 3 -1 -1 -1 -5
4 -1 3 -4 -1 -1 6 -1 -1 -4 3 -1 2 -1 3 -4 -1 -1 6 -1 -1
5 -1 1 -1 -3 9 1 -1 5 -1 1 -1 -3 -1 1 9 5 -1 1 -1 -3
6 1 -5 1 3 1 -5 15 3 1 -5 1 3 1 -5 1 3 1 -5 1 3
7 1 -3 -2 -3 1 12 1 5 -20 -3 1 0 1 -3 -2 5 1 12 1 -3
8 1 5 1 -3 1 5 1 -27 1 5 -21 -3 1 5 1 5 1 5 1 -3
9 1 3 1 -5 1 3 -13 3 1 -47 1 -5 27 3 1 3 1 3 1 5
10 -1 -7 -4 -3 -1 -4 -1 5 -40 -7 -1 72 -1 -7 26 5 -1 -4 -1 -3
11 -1 -5 -1 -1 -1 -5 -1 -9 -1 -5 87 -1 -1 93 -1 7 -35 -5 -1 -1
12 -1 7 -1 -5 -1 7 -1 3 -1 57 -1 -5 155 7 -1 -125 -1 7 -39 5

Table 6.B.14: ZMF
Lv ,Lh

(−1)
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6.B.4 The Möbius band ZMF
Lv,Lh

(−1) with twist in the Lv direction

The generating functions GMF
Lh

as a function of x = Lv are given below.

GMF
1 =

6x5

(1− x6)
− 3x2

(1− x3)
− 2x

(1− x2)
+

1

(1− x)
, GMF

2 =
4x3

(1− x4)
− 2x

(1− x2)
− 1

(1− x)
,

GMF
3 =

8x7

(1− x8)
− 4x3

(1− x4)
− 1

(1− x)
, GMF

4 = −GMF
2 +GMF

1 +
4x

(1− x2)
− 3

(1− x)
,

GMF
5 = GMF

3 − 10x9

(1− x10)
+

10x4

(1− x5)
+

2x

(1− x2)
,

GMF
6 = 2GMF

2 − 14x13

(1− x14)
+

14x6

(1− x7)
− 2x

(1− x2)
+

3

(1− x)
,

GMF
7 = GMF

3 +GMF
2 +GMF

1 +
18x17

(1− x18)
− 12x11

(1− x12)
− 18x8

(1− x9)
+

12x5

(1− x6)
+

2

(1− x)
,

GMF
8 = −3GMF

3 − 5GMF
2 +

22x21

(1− x22)
+

32x15

(1− x16)
− 22x10

(1− x11)
− 6x

(1− x2)
− 7

(1− x)
,

GMF
9 = −GMF

6 +GMF
3 +GMF

2 − 26x25

(1− x26)
+

60x19

(1− x20)
+

26x12

(1− x13)
− 50x9

(1− x10)
− 2x

(1− x2)
+

4

(1− x)
,

GMF
10 = 2GMF

7 −GMF
3 −GMF

1 − 30x29

(1− x30)
− 72x23

(1− x24)
+

30x14

(1− x15)
+

96x11

(1− x12)
− 24x5

(1− x6)
− 3

(1− x)
.

(6.73)

ZMF Lh 1 2 3 4 5 6 7 8 9 10
TF order 2 3 5 8 13 21 34 55 89 144

min rec order 2 3 5 5 13 16 23 35 60 59
period 6 4 8 12 40 28 72 176 3640 360

Table 6.B.15: The minimal order of the recursion relation and the period of the repeating sequence of ZMF
Lv ,Lh

(−1) as a
function of Lv.
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6.B.5 The free-free plane ZFF
Lv,Lh

(−1)

Lh\Lv 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0 -1 -1 0 1 1 0 -1 -1 0 1 1 0 -1 -1 0 1 1 0 -1
2 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1
3 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1
4 0 1 -1 2 -1 3 -2 3 -3 4 -3 5 -4 5 -5 6 -5 7 -6 7
5 1 -1 1 -1 1 1 -1 3 -1 1 1 -3 3 -1 1 3 -3 3 -1 -1
6 1 -1 -1 3 1 -3 1 5 -1 -5 3 5 -3 -3 5 3 -5 -1 5 1
7 0 1 1 -2 -1 1 2 3 -1 -2 -1 -1 4 3 -1 -2 -3 3 4 1
8 -1 1 1 3 3 5 3 3 3 3 -1 1 -3 -1 -3 1 -3 1 1 5
9 -1 -1 -1 -3 -1 -1 -1 3 3 1 5 1 5 5 1 1 -3 -5 -5 -5
10 0 -1 1 4 1 -5 -2 3 1 2 -1 3 -4 -7 7 10 -1 -7 -4 5
11 1 1 -1 -3 1 3 -1 -1 5 -1 1 1 -1 -3 -1 7 -1 -3 -3 3
12 1 1 -1 5 -3 5 -1 1 1 3 1 5 -1 17 -1 5 1 -1 -1 3
13 0 -1 1 -4 3 -3 4 -3 5 -4 -1 -1 2 1 -1 0 5 -3 10 -9

Table 6.B.16: ZFF
Lv ,Lh

(−1)
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The generating functions GFF
Lh

as a function of x = Lv are given below.

GFF
1 =

2x4(1 + x)

(1− x6)
+

1

(1− x3)
− 1

(1− x)
, GFF

2 =
2x2(1 + x)

(1− x4)
− 1

(1− x)
,

GFF
3 =

2x3(x− 1)(1 + x2)

(1− x8)
+

2x

(1− x2)
− 1

(1− x)
,

GFF
4 =

1

3
GFF

1 − (1− x)2

3(1− x2)2
+

x

3(1− x2)
+

1

3(1− x)
,

GFF
5 = GFF

3 +
10x3(1− x) + 4(1− x)2(2x2 + x+ 2)

5(1− x5)
+

2

5(1− x)
,

GFF
6 = 2GFF

2 +
2(1− x)(5x5 + 10x4 + x3 − x2 + 11x+ 9)

7(1− x7)
+

3

7(1− x)
,

GFF
7 = GFF

3 +
pFF7 (x6 + x3 + 1)(1− x2)

3(1− x18)
+

(1− x)(1− x2)2(x2 + x+ 1)2

3(1− x6)2
+

1

3(1− x)
,

GFF
8 =

−3GFF
4 +GFF

1

11
+

2(1 + x)(1− x11)pFF8;1

11(1− x22)
+

2(1− x8)pFF8;2

(1− x16)
− 15

11(1− x)
,

GFF
9 = GFF

3 +
pFF9;1

(1− x20)
+

pFF9;2

(1− x14)
+

2(1− x)pFF9;3

13(1− x13)
+

2

13(1− x)
,

GFF
10 =

1

9
GFF

4 +
4pFF10;1

3(1− x18)
+

2pFF10;2

5(1− x15)
−

pFF10;3

2(1− x12)
−

pFF10;4

90(1− x6)2
+

pFF10;5

90(1− x6)
+

4

15(1− x)
,

GFF
11 = GFF

3 +
pFF11;1

(1− x34)
+

pFF11;2

(1− x16)
−

2(1− x2)pFF11;3

7(1− x14)
+

(1− x)pFF11;4

11(1− x11)
+

27

77(1− x)
, (6.74)
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pFF7 = x9 + x8 + 2x6 − 7x5 + 4x4 − 4x3 + 7x2 − 2x+ 1,

pFF8;1 = 8x9 + 9x7 − 2x6 + x5 + 5x4 − 5x3 − x2 + 2x− 9,

pFF8;2 = −x7 − x6 − 2x5 − x4 + x+ 2,

pFF9;1 = 2(2x5 + x4 − x− 2)(1 + x2)(1− x10),

pFF9;2 = 2(−x5 − x3 + x2 − x+ 1)(1 + x)(1− x7),

pFF9;3 = 14x11 + 28x10 + 16x9 + 17x8 − 8x7 − 7x6 + 7x5 + 21x4 + 35x3 + 36x2 + 11x+ 12,

pFF10;1 = x(1− x)(x6 + x3 + 1)(1− x6),

pFF10;2 = (1 + x)(1− x3)(2x10 − 4x8 + 4x7 + 4x6 − 7x5 + x4 + 7x3 − 4x2 − 2x+ 4),

pFF10;3 = (1− x6)(5x5 + 5x4 − 4x3 − 7x2 + 7x+ 4),

pFF10;4 = (1− x)(1− x2)2(37x4 + 86x3 + 111x2 + 86x+ 37),

pFF10;5 = (97x3 + 97x2 + 48x+ 49)(1− x2),

pFF11;1 = 2x2(1 + x)(1− x17)(x13 − 2x9 + x8 + x6 + x5 − x4 − x3 − x+ 2),

pFF11;2 = (1− x8)(x7 + x6 + x5 − 3x4 − x3 + x2 + 3x− 1),

pFF11;3 = 8x11 + 8x10 + 2x9 + 9x8 − 4x7 − 4x6 − 3x5 + 11x4 + 12x3 + 12x2 − x+ 6,

pFF11;4 = −4x9 − 8x8 − 56x7 − 16x6 + 24x5 + 20x4 − 28x3 − 32x2 + 8x+ 48. (6.75)

ZFF Lh 1 2 3 4 5 6 7 8 9 10 11
TF+ order 2 2 4 5 9 12 21 30 51 76 127

min rec order 2 2 4 5 9 9 17 21 31 35 51
period 6 4 8 – 40 28 – – 3640 – 20944

Table 6.B.17: The minimal order of the recursion relation and the period of the repeating sequence of ZFF
Lv ,Lh

(−1) as a
function of Lv.
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6.C Hard square equimodular curves as |z| → ∞
Consider hard squares for a system of width Lh = 2L sites. The boundary conditions

can be free or periodic, but not restricted by parity or momentum. We wish to show that
the transfer matrices TC(z;Lh) and TF (z;Lh) both have 2L branches of equimodular curves
going out to |z| → ∞.

Let A (resp. B) denote the maximally packed state with L particles occupying the even
(resp. odd) numbered sites. Similarly, for k � L, let Ak denote the classes of states having
L− k particles of which O(L) have positions overlapping with those of A and O(1) overlap
with those of B. More loosely, the states Ak have the same order as A, up to small local
perturbations. The states Bk are similarly defined from B.

To discuss the |z| → ∞ limit we replace z by z−1 and consider a perturbation theory for
|z| � 1. After division by an overall factor, the Boltzmann weight of state A is 1, and each
of the states in the class Ak have weight zk.

To order zero (i.e., considering only statesA andB) the transfer matrix is the permutation
matrix of size 2, with eigenvalues λ1 = 1 and λ2 = −1.

To order k � L it is easy to see that the only non-zero matrix elements connect an
A-type state to a B-type state and vice versa. Physically this means that if we start from
a state which has predominantly particles on the even sublattice, it will remain so forever:
we stay in the same ordered phase. Mathematically it is not hard to see that this implies
that the eigenvalues λ1 and λ2 will continue to just differ by an overall sign, order by order
in perturbation theory. Other eigenvalues are O(z), hence play no role since then cannot be
equimodular with λ1 and λ2.

The perturbative result λ1 + λ2 = 0 breaks down at an order k which is sufficiently high
to create a domain wall across the strip/cylinder/torus between the two different ordered
states. This happens precisely for k = L. It follows that λ1 + λ2 = O(zL), implying that

λ2/λ1 = −1 +O(zL) . (6.76)

To obtain equimodularity, the left-hand side must be on the unit circle. For |z| � 1 this will
happen when zL is perpendicular to −1, so that arg(zL) = ±π/2. It follows that there are
2L equimodular curves going out of z = 0 with the angles

arg(z) =
(1 + 2k)π

2L
with k = 0, 1, . . . , 2L− 1. (6.77)
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Potts Model Partition Functions for Strips of the Triangular Lattice”. English. In:
Journal of Statistical Physics 114.3–4 (2004), pp. 763–823. issn: 0022-4715. doi: 10.
1023/B:JOSS.0000012508.58718.83.

[74] Shu-Chiuan Chang and Robert Shrock. “Exact Potts model partition functions on
strips of the honeycomb lattice”. In: Physica A: Statistical Mechanics and its Appli-
cations 296.1–2 (2001), pp. 183–233. issn: 0378-4371. doi: http://dx.doi.org/10.
1016/S0378-4371(01)00143-1.

[75] Shu-Chiuan Chang and Robert Shrock. “Exact Potts model partition functions on
wider arbitrary-length strips of the square lattice”. In: Physica A: Statistical Me-
chanics and its Applications 296.1–2 (2001), pp. 234–288. issn: 0378-4371. doi: http:
//dx.doi.org/10.1016/S0378-4371(01)00142-X.

[76] Shu-Chiuan Chang and Robert Shrock. “Ground state entropy of the Potts antifer-
romagnet on strips of the square lattice”. In: Physica A: Statistical Mechanics and
its Applications 290.3–4 (2001), pp. 402–430. issn: 0378-4371. doi: http://dx.doi.
org/10.1016/S0378-4371(00)00457-X.

[77] Shu-Chiuan Chang and Robert Shrock. “Ground State Entropy of the Potts Antifer-
romagnet on Triangular Lattice Strips”. In: Annals of Physics 290.2 (2001), pp. 124–
155. issn: 0003-4916. doi: http://dx.doi.org/10.1006/aphy.2001.6143.

[78] Shu-Chiuan Chang and Robert Shrock. “T = 0 partition functions for Potts antifer-
romagnets on lattice strips with fully periodic boundary conditions”. In: Physica A:
Statistical Mechanics and its Applications 292.1–4 (2001), pp. 307–345. issn: 0378-
4371. doi: http://dx.doi.org/10.1016/S0378-4371(00)00544-6.

[79] Shu-Chiuan Chang and Robert Shrock. “General structural results for Potts model
partition functions on lattice strips”. In: Physica A: Statistical Mechanics and its
Applications 316.1–4 (2002), pp. 335–379. issn: 0378-4371. doi: http://dx.doi.
org/10.1016/S0378-4371(02)01028-2.

264

http://dx.doi.org/10.1007/s10955-011-0212-0
http://dx.doi.org/10.1023/B:JOSS.0000012508.58718.83
http://dx.doi.org/10.1023/B:JOSS.0000012508.58718.83
http://dx.doi.org/http://dx.doi.org/10.1016/S0378-4371(01)00143-1
http://dx.doi.org/http://dx.doi.org/10.1016/S0378-4371(01)00143-1
http://dx.doi.org/http://dx.doi.org/10.1016/S0378-4371(01)00142-X
http://dx.doi.org/http://dx.doi.org/10.1016/S0378-4371(01)00142-X
http://dx.doi.org/http://dx.doi.org/10.1016/S0378-4371(00)00457-X
http://dx.doi.org/http://dx.doi.org/10.1016/S0378-4371(00)00457-X
http://dx.doi.org/http://dx.doi.org/10.1006/aphy.2001.6143
http://dx.doi.org/http://dx.doi.org/10.1016/S0378-4371(00)00544-6
http://dx.doi.org/http://dx.doi.org/10.1016/S0378-4371(02)01028-2
http://dx.doi.org/http://dx.doi.org/10.1016/S0378-4371(02)01028-2


[82] I. V. Cherednik. “Factorizing particles on a half-line and root systems”. Russian. In:
Teoreticheskaya i Matematicheskaya Fizika 61 (1 1984), pp. 35–44.

[83] I. V. Cherednik. “Factorizing particles on a half-line and root systems”. English. In:
Theoretical and Mathematical Physics 61.1 (1984), pp. 977–983. issn: 0040-5779. doi:
10.1007/BF01038545.

[90] Paul Fendley, Kareljan Schoutens, and Hendrik van Eerten. “Hard squares with neg-
ative activity”. In: Journal of Physics A: Mathematical and General 38.2 (2005),
p. 315.

[98] David S. Gaunt and Michael E. Fisher. “Hard-Sphere Lattice Gases. I. Plane-Square
Lattice”. In: The Journal of Chemical Physics 43.8 (1965), pp. 2840–2863. doi: http:
//dx.doi.org/10.1063/1.1697217.
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