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Abstract of the Dissertation

Exploring the Space of Superconformal Field Theories

by

Madalena Duarte de Almeida Lemos

Doctor of Philosophy

in

Physics

Stony Brook University

2015

This dissertation focuses on the study of superconformal field theories (SCFTs)
through the so-called (super)conformal bootstrap program.

The goals of this program are twofold: to chart the space of allowed SCFTs and
to solve specific theories. The hope is that symmetries and a few simple physical
assumptions, combined with basic consistency requirements (crossing symmetry
and unitarity) are powerful enough to completely “solve” these theories. In doing
so we never have to provide a Lagrangian description for the theories in question,
and thus we can employ the bootstrap in studying SCFTs for which no such
description is known. This is the case of many of the theories considered in this
dissertation, making the bootstrap an ideal tool to explore them.

Most of this dissertation focuses on SCFTs in four-dimensions with N = 2 su-
persymmetry. The large amount of symmetry of these theories makes them more
tractable, and we find that the crossing symmetry equations admit a solvable sub-
sector. This gives rise to the identification of a two-dimensional chiral algebra
inside the four-dimensional SCFT, which allows for exact results to be obtained,
including new unitarity bounds, constraining the space of allowed SCFTs. How-
ever, if we want to study the full theory, we must analyze the full set of crossing

iii



equations by resorting to numerical techniques. In this work we begin such an
analysis, obtaining various bounds on central charges and operator dimensions
which are valid for any SCFT. In the last part of this dissertation we extend
the numerical bootstrap analysis for SCFTs in six-dimensions with N = (2, 0)
supersymmetry.

Chapters 2, 3 and 4 are essentially identical to Refs. [1–3], and the results of the
final chapter will appear in Ref. [4].
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for several different values of the central charge. . . . . . . . . . . . . . . . . 170

4.24 Upper and lower bounds on the OPE coefficient squared of E2r0 as a function
of r0 and 1

c
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.25 Region where the lower bound on the OPE coefficient squared of E2r0 is strictly
positive as a function of r0 and 1

c
. . . . . . . . . . . . . . . . . . . . . . . . . 173

4.26 Upper and lower bounds on λ2E4 as a function of the central charge c. . . . . 175

5.1 Schematic representation of the spectrum of operators appearing in the stress
tensor four-point function in a (2, 0) theory without higher spin currents. . . 192

5.2 Central charge bounds for a six-dimensional theory with N = (2, 0). . . . . . 194
5.3 Bound on the OPE coefficient squared of the D [0,4] multiplet. . . . . . . . . 196
5.4 Bound on the OPE coefficient squared of the B [0,2] multiplet with ℓ = 1. . . 198
5.5 Bound on the OPE coefficient squared of the B [0,2] multiplet with ℓ = 3. . . 199
5.6 Bound for the dimension of the first unprotected scalar operator for a N =

(2, 0) theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
5.7 Bound for the dimension of the first unprotected spin two operator for a

N = (2, 0) theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

xi



5.8 Bound for the dimension of the first unprotected spin four operator for a
N = (2, 0) theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

5.9 Bounds on the spin 0, 2, 4 superconformal primary dimensions when a gap is
imposed in one of the other channels. . . . . . . . . . . . . . . . . . . . . . . 204

5.10 Simultaneous bounds on the spin 0, 2, 4 superconformal primary dimensions. 205
5.11 Bounds on the spin 0, 2, 4 superconformal primary dimensions when a gap

is imposed in one of the other channels assuming there is no short D [0,4]
multiplet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.12 Bound on the first spin 0 superconformal primary long dimension as a function
of the inverse central charge c, without adding the D[0,4] short multiplet. . . 207

5.13 Bound on the first spin 0 superconformal primary long dimension as a function
of the inverse of the cutoff Λ, for the analysis of the A1 theory. . . . . . . . . 208

5.14 Bound on the dimension of the second scalar superconformal primary dimen-
sion ∆′

0, as a function of the dimension of the dimension of the first scalar
superconformal primary ∆0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

5.15 Bounds on the OPE coefficient (squared) of a scalar operator of dimension ∆0,
and of the D[0,4] multiplet as a function of the dimension of the dimension of
the first scalar superconformal primary ∆0. . . . . . . . . . . . . . . . . . . . 210

5.16 Bound on the dimension of the second spin ℓ = 2, 4 superconformal primary
dimension ∆′

2,4, as a function of the dimension of the dimension of the first
spin ℓ = 2, 4 superconformal primary. . . . . . . . . . . . . . . . . . . . . . . 211

I.1 The value of λ2E4 for N = 2 SQCD with Nf = 4 flavors. . . . . . . . . . . . . 271

xii



List of Tables

2.1 Schur operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Dual Coxeter number and dimensions for simple Lie groups. . . . . . . . . . 50
2.3 Unitarity bounds for the anomaly coefficient k4d in N = 2 theories. . . . . . 51
2.4 Central charges for N = 2 SCFTs with Higgs branches given by one-instanton

moduli spaces for GF instantons. . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5 The operator content of the chiral algebra of the so(8) theory up to level 5. . 62
2.6 Chiral algebra generators for the genus two theory with h 6 3. . . . . . . . . 77

3.1 Generators of the T4 chiral algebra. . . . . . . . . . . . . . . . . . . . . . . . 92
3.2 Quantum numbers and multiplicities of T4 null operators up to dimension 7

2
. 94

3.3 Explicit null relations of the T4 chiral algebra up to dimension three. . . . . 95
3.4 Explicit null relations of the T4 chiral algebra at dimension 7/2. . . . . . . . 96

4.1 Properties of rank one SCFTs associated to maximal mass deformations of
the Kodaira singularities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.2 Superconformal blocks for the Er0 four point function in the 2̂ channel. . . . 127
4.3 Superconformal blocks for the Er0 four point function in the chiral channel. . 137

5.1 Stress tensor superconformal blocks . . . . . . . . . . . . . . . . . . . . . . . 188

B.1 Summary of unitary irreducible representations of the N = 2 superconformal
algebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

F.1 Superconformal blocks for the different su(2, 2|2) representations appearing in
the OPE of two moment map operators. . . . . . . . . . . . . . . . . . . . . 248

F.2 Flavor symmetry selection rules for multiplets appearing in the B̂1× B̂1 OPE
in simple theories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

F.3 Superconformal blocks for the Er0 four point function in the 2̂ channel. . . . 255

G.1 Parameters used for the SDPA and SDPA-GMP solvers. . . . . . . . . . . . 264

xiii



Acknowledgments

First and foremost I want to thank my advisor Leonardo Rastelli for all his guidance and
support. It has been a great pleasure to explore the space of superconformal field theories
with him as my guide. For his constant availability, finding the time to answer my questions
seven days a week, and for his amazing intuition and knowledge. I could not have asked for
a better advisor.

I would like to thank Chris Beem, Pedro Liendo, Wolfger Peelaers and Balt van Rees
for very fruitful collaborations and discussions from which I have learnt a great deal. Very
special thanks should go to Balt van Rees for his infinite patience, for keeping me in the right
direction and for all he has taught me. I am also indebted to Pedro Liendo for all his help
and for playing the role of a mentor. It’s been truly a pleasure to work with you. Thanks
also to Abhijit Gadde and Wenbin Yan for very pleasant discussions. Many thanks to Chi
Ming Hung for all his help with the YITP cluster.

I would like to thank Professors Michael Anderson, Barry McCoy, Peter van Nieuwen-
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Chapter 1

Introduction

The conformal bootstrap is an old dream in theoretical physics, that the symmetries and
a few simple physical assumptions, combined with basic consistency requirements (crossing
symmetry and unitarity) are powerful enough to completely “solve” conformal field theo-
ries (CFTs). By solving we mean obtaining the spectrum of operators and all three-point
functions, the CFT data, which is enough to compute any correlator.

Conformal field theories are of natural importance in theoretical physics. They arise
in many physical applications, from statistical mechanics, where they describe the critical
behavior of systems at second order phase transitions, to perturbative string theory in the
worldsheet formulation. Through the AdS/CFT correspondence conformal field theories in
the large N limit are dual to semiclassical quantum gravity in asymptotically anti- de Sitter
spacetimes. They also arise as fixed points of the renormalization group flow of quantum
field theories, therefore being of natural importance for the study of quantum field theories
in general.

The great amount of symmetry of these theories also makes them more tractable, espe-
cially in two-dimensions, where the conformal algebra is extended to a infinite-dimensional
one, the Virasoro algebra. There the bootstrap was very successful, leading to many exactly
solvable “rational” CFTs. The techniques used, however, do not apply to higher dimensions,
or even generically to non-rational CFTs in two-dimensions.

The recent revival of the bootstrap stemmed from the work of Rattazzi, Rychkov, Tonni
and Vichi [6], who were able to use these constraints, combined with numerical techniques,
to exclude the existence of theories in certain regions of the space of conformal dimensions
of operators. The statement that a given CFT spectrum is not consistent with crossing sym-
metry is translated into the existence of a solution to a linear or semidefinite programming
problem, which can be solved by resorting to known algorithms. Owing to the very general
assumptions that go into this program, these methods allow one to constrain the space of
conformal field theories by placing bounds on the operator dimensions and also on operator
product expansion (OPE) coefficients (such as the central charge of the theory). It was also
found that some physically interesting theories, such as the two and three-dimensional Ising
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model, sit at special “kinks” of the exclusion curves separating the region in parameter space
for which there are solutions to crossing symmetry compatible with unitarity and the region
where there are none. In cases such as these there are even indications that there is an
actual theory living on the boundary of the allowed region, and this method has been used
to obtain operator dimensions and OPE coefficients with very good precision. It is worth
mentioning that this was accomplished by just studying one particular correlator, whereas
for there to be a consistent CFT one would have to study all possible correlators, and so
allowed theories are much more constrained.1

A big advantage of this method is that it does not rely on the existence of any Lagrangian,
contrasting most currently available methods, and as such it can be applied to theories for
which no such description is known. It is also non-perturbative in nature, and the dimensions
and OPE coefficients found this way are the complete answer, thus applying to any theory
irrespectively of whether a parameter exists in which one could do perturbation theory.
Therefore it is particularly useful for strongly coupled theories which have no marginal
deformations, as is the case of many of the theories considered in this dissertation.

The focus of this dissertation will be the bootstrap program for superconformal field
theories (SCFTs), and our goals are twofold: to chart the space of allowed theories, and to
use it to study specific models. In what follows we describe the outline of the thesis and
summarize our main results.

1.1 N = 2 SCFTs in four dimensions

Most of this dissertation is devoted to the study of four dimensional N = 2 SCFTs. The
large amount of symmetry makes these theories more tractable than the lower or non-
supersymmetric theories, and has lead to many exact results (see, e.g., [10] for a recent
review). Nevertheless the space of N = 2 SCFTs is vast, and much richer than the maxi-
mally supersymmetric case. There has been an explosion of results, with many new SCFTs
found, and there is still no complete classification of the landscape of such theories. While
theories that can be described by a Lagrangian can be classified [11], there is a large number
of theories for which no Lagrangian description is known. Yet the current landscape of the-
ories appears to have some structure, hinting that a classification might be possible, as will
be discussed in detail in section 4.2. We might also hope that some of the non-Lagrangian
theories also are uniquely specified by few discrete data. For example the e6 theory of Mi-
nahan and Nemeschansky [12] discussed in subsection 4.6.2 could plausibly be the unique
theory with e6 flavor symmetry, and with the appropriate central charges.

Altogether this makes the (superconformal) bootstrap program a natural tool to chart
out the space of theories, and to attempt to “solve” some of them. One could even expect

1Work along these lines has been done recently in [7–9], where the authors considered multiple correlators
and found even stronger constraints from the bootstrap.
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the bootstrap program to prove more constraining due to the large amount of supersym-
metry. This indeed turns out to be the case, and we found that the bootstrap equations
for a certain class of operators admit a solvable subsector, allowing for exact results to
be obtained, including new analytic bounds on the allowed central charges of the theory.
These results can then be complemented by numerical bounds obtained using the techniques
already mentioned.

In chapter 2 we describe a new correspondence between four-dimensional SCFT with
N ≥ 2 and two-dimensional chiral algebras. We show that these four-dimensional theories
contain a protected subsector which is captured by a non-unitary two-dimensional chiral
algebra. The existence of a stress tensor in the four-dimensional theory implies the chiral
algebra will have a meromorphic stress tensor, although with a negative central charge,
fixed in terms of the four-dimensional c central charge. Moreover, flavor symmetries of the
four-dimensional theory give rise to affine Kac-Moody currents at a negative level (fixed in
terms of the four-dimensional flavor central charge k) in the chiral algebra. The graded
partition function of the chiral algebra is exactly captured by a four-dimensional quantity –
the Schur limit of the superconformal index [13]. The superconformal index [14] counts (with
signs) the protected spectrum of the theory, setting to zero any combination of multiplets
which might recombine to form a long multiplet. Therefore it can be very useful in the study
of the protected spectrum of SCFTs, and a vast literature exists on it (see, e.g., [15] for a
recent review). Combining the information extracted from the index with the aforementioned
correspondence between four-dimensional SCFTs and two-dimensional chiral algebras can
prove valuable in studying the four-dimensional theory.

This is explored in chapter 3, where we focused on the chiral algebras associated with
the so-called TN theories.2 These theories, which are non-Lagrangian for N > 3,3 are of
natural interest for being one of the building blocks of class S theories [17, 18]. As such
through well defined four-dimensional operations, which also have a clear meaning in the
two-dimensional chiral algebra, one can obtain many non-Lagrangian theories starting from
these ones. By analysing the Schur limit of the superconformal index and accentuating its
two-dimensional interpretation as a graded partition function by making manifest the critical
affine module structure, we were able to conjecture the full set of generators of the chiral
algebras associated with these theories. This allowed us to bootstrap the chiral algebra of
the T4 theory, by imposing associativity of the operator product algebra of the conjectured
set of generators. Associativity turns out to be constraining enough to completely fix all
OPE coefficients, including the central charges. Armed with this explicit construction we
computed null relations on the chiral algebra, which correspond to Higgs branch chiral ring
relations on the four-dimensional side, some of which were previously unknown.

Another direct consequence of the existence of this protected subsector is that the cross-
ing symmetry equations split into two sets, one only involving the exchange of protected

2See [16] for a recent review of these theories.
3The T3 theory is nothing more than the e6 theory of Minahan and Nemeschansky already mentioned.
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operators (which is simply the crossing equation for the two-dimensional chiral algebra),
while the other involves both protected and unprotected operators. The bootstrap program
then becomes a two step process: in the first step we solve the crossing equation for this
protected sector analytically, serving as input for the second step, where the full-fledged
crossing equations, governing the unprotected part, are analyzed numerically. By studying
one particular scalar four-point function (of the moment map operators) the first step gave
us new analytic bounds, for theories with a given flavor symmetry, involving both central
charges k and c . It also allowed us to fix completely (for interacting theories) the protected
contributions to the full four-dimensional correlator of this type of operators.

By also resorting to numerical techniques, further constraints can be obtained, yielding
information about the unprotected operators in the theory, such as their dimensions and
OPE coefficients. It also provides additional bounds on the central charges of the theory,
valid for any N = 2 SCFT. In chapter 4 we initiate this numerical analysis. We take an
abstract operator-algebraic viewpoint in order to unify the description of Lagrangian and
non-Lagrangian theories. While there is much to explore by employing the superconformal
bootstrap program to study N = 2 SCFTs, we have taken a first step by approaching these
theories from two different angles. On one we study correlators of moment map operators
(which are related by supersymmetry to the flavor currents), focusing on theories with a given
flavor symmetry (in particular su(2) and e6), while on the other we study correlators of chiral
primaries (whose vacuum expectation values (vevs) parametrize the Coulomb branch). For
the former operators the bootstrap program is the two-step process described above, however
the latter are not captured by the chiral algebra, and as such we can only resort to numerical
methods to study them. From the first correlator we find numerical bounds involving the c
and k central charges, while from the latter we find central charge bounds for theories with
a Coulomb branch operator of a given dimension. It is also interesting to bound other OPE
coefficients. For example in the four-point function of chiral primaries some of these can tell
us about relations on the Coulomb branch chiral ring.

1.2 Six-dimensional N = (2, 0) SCFTs

The final chapter 5 of this dissertation applies the bootstrap method for the maximally
supersymmetric theory in six dimensions, which will appear in [4].4 This theory plays an
important role in theoretical physics, as many lower dimensional theories can be obtained
from its compactification. In particular a vast class of four-dimensional N = 2 SCFTs, the
theories of class S, can be obtained as the low-energy limit of twisted compactifications of
N = (2, 0) theories on a Riemann surface [17, 18]. Dualities among the four-dimensional
theories can then be understood from such compactifications. However, despite its central

4Six dimensions is also the largest in which one can have a superconformal field theory [19–21].
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role, very little is known about N = (2, 0) theories beyond the free case. The main problem
starts with the fact that these theories have no Lagrangian description, and thus the usual
tools we have to study SCFTs are not available. These theories are isolated, having no
marginal deformations that preserve the superconformal algebra osp(8⋆|4), corresponding to
non-trivial fixed points of the renormalization group in six dimensions [22]. Nevertheless,
as we have been stressing throughout this dissertation, this is not an impediment from the
bootstrap point of view, therefore making the superconformal bootstrap the ideal tool to
tackle these theories.

Contrasting with the four-dimensional N = 2 SCFTs considered in the previous chapters,
maximally supersymmetric theories are much more constrained. Whereas before a large part
of our objectives was to constrain the space of allowed theories, for the N = (2, 0) there is
a proposed classification arising from string theory. The symmetry group of these theories
does not allow for flavor symmetries, and the known SCFTs are classified by simply-laced
Lie algebras [23]. However we can still ask the question of whether there can exist “exotic”
theories, that do not find a realization in string or M-theory. For the theories of type An and
Dn there is a dual description in the large n limit through the AdS/CFT correspondence in
terms of supergravity on AdS7 × S4 and AdS7 × RP4 respectively [24, 25]. As such, in this
limit, the numerical bootstrap results obtained in this dissertation should recover the known
results from supergravity on AdS7 × S4 [26, 27]. Beyond the large n limit, the only results
for correlation functions have been obtained in [28], where the authors found a protected
sector of operators and observables isomorphic to a two-dimensional chiral algebra, allowing
for the calculation of correlators in that subsector. Similarly to Chapters 2 and 4, to make
statements about operators not captured by this chiral algebra we must resort to numerical
techniques to analyze the full crossing symmetry equations.

As the starting point in the superconformal bootstrap program for N = (2, 0) SCFTs we
want to consider an operator any local conformal field theory must have – the stress tensor.
However we will not have to take the four-point function of the stress tensor itself, as we can
consider instead that of the superconformal primary of the super multiplet the stress tensor
belongs to. This has the advantage that the superconformal primary is a spin zero operator,
avoiding the technically challenging bootstrap of a spin two operator.

We start by asking the question of what the lowest possible central charge (for an inter-
acting theory) can be. Our results suggest that the lowest possible central charge corresponds
precisely to that of the A1 theory, therefore ruling out any “exotic” theories with smaller
central charges. Moreover we find evidence that there is a unique N = (2, 0) SCFT with
this central charge, which must correspond exactly to the A1 theory (in M-theory this corre-
sponds to the low-energy theory on two M5 branes [29, 30]). In addition we obtain bounds
on OPE coefficients of protected operators which were not captured by the chiral algebra of
[28], as well as bounds on the low-lying spectrum of unprotected operators. We will argue
that, at least for the A1 case, these bounds must be saturated by the physical theories,
paving the way for a possible bootstrap of this theory.
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Chapter 2

Infinite Chiral Symmetry in Four
Dimensions

The contents of this chapter appear in [1]: “Infinite Chiral Symmetry in Four Dimensions”,
C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B. C. van Rees,
arXiv:1312.5344 [hep-th], Commun. Math. Phys. 336, no. 3, 1359 (2015)
DOI: 10.1007/s00220-014-2272-x

2.1 Introduction

It has long been recognized that supersymmetric quantum field theories enjoy many special
properties that make them particularly useful testing grounds for more general ideas about
quantum field theory. This is largely a consequence of the fact that many observables in such
theories are “protected”, in the sense of being determined by a semiclassical calculation with
a finite number of corrections taken into account, or alternatively by some related “finite-
dimensional” problem that admits the type of closed-form solution that is uncharacteristic
of interacting quantum field theories. In most circumstances, these techniques have a semi-
classical flavor to them. For example, in cases where supersymmetric partition functions can
be computed by localization, the calculation is generally performed starting from a weakly
coupled Lagrangian description of the theory.

A notable omission from the currently available techniques is a way to directly access the
interacting superconformal phases of theories that do not admit a Lagrangian formulation.
By now, there exists a veritable menagerie of models in various dimensions that exhibit
conformal phases with varying amounts of supersymmetry, but only in the nicest cases
do such models belong to families that include free theories as special points, allowing for
properties of the interacting theory to be studied semiclassically. Even for those Lagrangian
models, the standard supersymmetric toolkit does not seem to exploit some of the most
powerful structures of conformal field theory, such as the existence of a state/operator map
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and of a well-controlled and convergent operator product expansion.
Meanwhile, recent years have witnessed a surprising resurgence of progress centering

around precisely these aspects of conformal field theory in the form of the conformal boot-
strap [31, 32]. In large part, this progress has been inspired by the development of numerical
techniques for extracting constraints on the defining data of a CFT using unitarity and cross-
ing symmetry [6, 33]. Generally speaking, these techniques are equally applicable to theories
with and without supersymmetry, and despite promising early results [34–37], it has not
been entirely clear the extent to which supersymmetry improves the situation. Nevertheless,
the possibility that supersymmetry may act as a crucible in which exact results can be forged
even for strongly interacting CFTs is irresistible, and we are led to ask the question:

Do the conformal bootstrap equations in dimension d > 2 admit a solvable trun-
cation in the case of superconformal field theories?

Having formulated the question, it is worth pausing to consider in what sense the answer
could be “yes”. The most natural possibilities correspond to known situations in which
bootstrap-type equations are rendered solvable. There are two primary scenarios in which
the constraints of crossing symmetry are nontrivial, yet solvable:

(I) Meromorphic (and rational) conformal field theories in two dimensions.

(II) Topological quantum field theories.

The subject of this chapter is the realization of the first option in the context of N > 2
superconformal field theories in four dimensions. The same option is in fact viable for (2, 0)
superconformal theories in six dimensions. That subject is elaborated upon in a separate
article [28]. Although we will not discuss the subject at any length in the present work, the
second option can also be realized using similar techniques to those discussed herein.

The primary hint that such an embedding should be possible was already observed in
[36, 38], building upon the work of [27, 39–43]. In a remarkable series of papers [27, 38–43],
the constraints of superconformal symmetry on four-point functions of half-BPS operators
in N = 2 and N = 4 superconformal field theories were studied in detail. This analysis
revealed that the superconformal Ward identities obeyed by these correlators can be conve-
niently solved in terms of a set of arbitrary real-analytic functions of the two conformal cross
ratios (z, z̄), along with a set of meromorphic functions of z alone. In a decomposition of the
four-point function as an infinite sum of conformal blocks, these meromorphic functions cap-
ture the contribution to the double operator product expansion of intermediate “protected”
operators belonging to shortened representations. The real surprise arises when these results
are combined with the constraints of crossing symmetry. One then finds [36, 38] that the
meromorphic functions obey a decoupled set of crossing equations, whose general solution
can be parametrized in terms of a finite number of coefficients. For example, in the impor-
tant case of the four-point function of stress-tensor multiplets in an N = 4 theory, there is a
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one-parameter family of solutions, where the parameter has a direct physical interpretation
as the central charge (conformal anomaly) of the theory. The upshot is that the protected
part of this correlator is entirely determined by abstract symmetry considerations, with no
reference to a free-field description of the theory.

In this chapter we establish a conceptual framework that explains and vastly generalizes
this observation. For a general N = 2 superconformal field theory, we define a protected
subsector by passing to the cohomology of a certain nilpotent supercharge ◗ . This is a
familiar strategy – for example, the definition of the chiral ring in an N = 1 theory follows
the same pattern – but our version of this maneuver will be slightly unconventional, in that
we take ◗ = Q + S to be a linear combination of a Poincaré and a conformal supercharge.
In order to be in the cohomology of ◗ , local operators must lie in a fixed plane R2 ⊂ R4.
Crucially, their correlators can be shown to be non-trivial meromorphic functions of their
positions. This is in contrast to correlators of N = 1 chiral operators, which are purely
topological in a general N = 1 model, and strictly vanish in an N = 1 conformal theory due
to R-charge conservation.

The meromorphic correlators identified by this cohomological construction are precisely
the ingredients that define a two-dimensional chiral algebra.1 Our main result is thus the
definition of a map χ from the space of four-dimensional N = 2 superconformal field theories
to the space of two-dimensional chiral algebras,

χ : 4d N = 2 SCFT −→ 2d Chiral Algebra.

In concrete terms, the chiral algebra computes correlation functions of certain operators in
the four-dimensional theory, which are restricted to be coplanar and further given an explicit
space-time dependence correlating their SU(2)R orientation with their positions, see (2.27).
For the case of four-point functions of half-BPS operators, assigning the external operators
this “twisted” space-time dependence accomplishes precisely the task of projecting the full
correlator onto the meromorphic functions appearing in the solution to the superconformal
Ward identities. To recapitulate, those mysterious meromorphic functions are given a direct
interpretation as correlators in the associated chiral algebra, and turn out to be special
instances of a much more general structure.

The explicit space-time dependence of the four-dimensional operators is instrumental in
making sure that they are annihilated by a common supercharge ◗ for any insertion point
on the plane. From this viewpoint, our construction is in the same general spirit as [44]
(see also [45]). These authors considered particular examples of correlators in N = 4 super

1We have settled on the expression “chiral algebra” as it is the most common in the physics literature.
We consider it to be synonymous with “vertex operator algebra”, though in the mathematical literature some
authors make a distinction between the two notions. We trust no confusion will arise with the overloading
of the word “chiral” due to its unavoidable use in the four-dimensional context, e.g., “chiral and anti-chiral
4d supercharges”, “the N = 1 chiral ring”, etc.
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Yang-Mills theory that are invariant under supercharges of the same schematic form Q+ S.
Their choices of supercharges are inequivalent to ours, and do not lead to meromorphic
correlators.

The operators captured by the chiral algebra are precisely the operators that contribute
to the Schur limit of the superconformal index [13, 14, 46], and we will refer to them as Schur
operators. Important examples are the half-BPS operators that are charged under SU(2)R
but neutral under U(1)r, whose vacuum expectation values parameterize the Higgs branch
of the theory, and the SU(2)R Noether current. The class of Schur operators is much larger,
though, and encompasses a variety of supermultiplets obeying less familiar semi-shortening
conditions. Operators associated to the Coulomb branch of the theory (such as the half-BPS
operators charged under U(1)r but neutral under SU(2)R) are not of Schur type. In a pithy
summary, the cohomology of ◗ provides a “categorification” of the Schur index. It is a
surprising and useful fact that this vector space naturally possesses the additional structure
of a chiral algebra.

Chiral algebras are rigid structures. Associativity of their operator algebra translates into
strong constraints on the spectrum and OPE coefficients of Schur operators in the parent
four-dimensional theory. We have already pointed out that this leads to a unique determi-
nation of the protected part of four-point function of stress-tensor multiplets in the N = 4
context [36]. Another canonical example is the four-point function of “moment map” oper-
ators in a general N = 2 superconformal field theory. The moment map M is the lowest
component of the supermultiplet that contains the conserved flavor current of the theory,
and as such it transforms in the adjoint representation of the flavor group G. We find that
the associated two-dimensional meromorphic operator J(z) := χ[M ] is the dimension-one
generating current of an affine Lie algebra ĝk2d , with level k2d fixed in terms of the four-
dimensional flavor central charge. As the four-point function of affine currents is uniquely
fixed, this relation completely determines the protected part of the moment map four-point
function. In turn, this information serves as essential input to the full-fledged bootstrap
equations that govern the contributions from generic long multiplets in the conformal block
decomposition of these four-point functions. These equations can be studied numerically to
derive interesting bounds on non-protected quantities, following the approach of [36]. We
present numerical bounds that arise for various choices of G in chapter 4. It is worth em-
phasizing that the protected part of the four-point function receives contributions from an
infinite tower of intermediate shortened multiplets, and without knowledge of its precise
form the numerical bootstrap program would never get off the ground. In theories that ad-
mit a Lagrangian description, one could appeal to non-renormalization theorems and derive
the same protected information in the free field limit; the chiral algebra then just serves
as a powerful organizing principle to help obtain the same result. However, the abstract
chiral algebra approach seems indispensable for the analysis of non-Lagrangian theories –
for example, when G is an exceptional group.

As a byproduct of a detailed study of the moment map four-point function, we are
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able to derive new unitarity bounds that must be obeyed by the central charges of any
interacting N = 2 superconformal field theory. By exploiting the relation between the
two- and four-dimensional perspectives, we are able to express certain coefficients of the
four-dimensional conformal block decomposition of the four-point function in terms of central
charges; the new bounds arise because those coefficients must be non-negative in a unitary
theory. Saturation of the bounds signals special properties of the Higgs branch chiral ring.
This is a particular instance of a more general encoding of four-dimensional physics in the
chiral algebra, the surface of which we have only barely scratched. One notable aspect
of this correspondence is the interplay between the geometry of the Higgs branch and the
representation theory of the chiral algebra; for example, null vectors that appear at special
values of the affine level imply Higgs branch relations.

We describe several structural properties of the map χ. Two universal features are the
affine enhancement of the global flavor symmetry, and the Virasoro enhancement of the global
conformal symmetry. The affine level in the chiral algebra is related to the flavor central
charge in four dimensions as k2d = −1

2
k4d, while the Virasoro central charge is proportional

to the four-dimensional conformal anomaly coefficient,2 c2d = −12c4d. A perhaps surprising
feature of these relations is that the two-dimensional central charges and affine levels must be
negative. Another universal aspect of the correspondence is a general prescription to derive
the chiral algebra associated to a gauge theory whenever the chiral algebra of the original
theory whose global symmetry is being gauged is known.

Turning to concrete examples, we start with the SCFTs of free hypermultiplets and free
vector multiplets, which are associated to free chiral algebras. With the help of the general
gauging prescription, we can combine these ingredients to find the chiral algebra associated to
an arbitrary Lagrangian SCFT. We also sketch the structure of the chiral algebras associated
to SCFTs of class S, which are generally non-Lagrangian. In several concrete examples, we
present evidence that the chiral algebra has an economical presentation as a W-algebra,
i.e., as a chiral algebra with a finite set of generators [49]. We do not know whether all
chiral algebras associated to SCFTs are finitely generated, or how to identify the complete
set of generators in the general case. Indeed, an important open problem is to give a
more precise characterization of the class of chiral algebras that can arise from physical
four-dimensional theories. Ideally the distinguishing features of this class could be codified
in a set of additional axioms. Since chiral algebras are on sounder mathematical footing
than four-dimensional quantum field theories, it is imaginable that this could lead to a
well-defined algebraic classification problem. If successful, this approach would represent
concrete progress towards the loftier goal of classifying all possible N = 2 SCFTs.

On a more formal note, four-dimensional intuition leads us to formulate a number of new
conjectures about chiral algebras that may be of interest in their own right. The conjectures

2There are two tensorial structures in the four-dimensional trace anomaly, whose coefficients are con-
ventionally denoted a and c. It is the c anomaly that is relevant for us, in contrast to the better studied a
anomaly, which decreases monotonically under RG flow [47, 48].
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generally take the form of an ansatz for the cohomology of a BRST complex, and include new
free-field realizations of affine Lie algebras at special values of the level and new examples
of quantum Drinfeld-Sokolov reduction for nontrivial modules. We present evidence for
our conjectures obtained from a low-brow, level-by-level analysis, but we suspect that more
powerful algebraic tools may lead to rigorous proofs.

The organization of this chapter is as follows. In §2.2 we review the arguments be-
hind the appearance of infinite-dimensional chiral symmetry algebras in the context of two-
dimensional conformal field theories. We explain how the same structure can be recovered
in the context of N = 2 superconformal field theories in four dimensions by studying ob-
servables that are well-defined after passing to the cohomology of a particular nilpotent
supercharge in the superconformal algebra. This leads to the immediate conclusion that
chiral symmetry algebras will control the structure of this subclass of observables. In §2.3,
we describe in greater detail the resulting correspondence between N = 2 superconformal
models in four dimensions and their associated two-dimensional chiral algebras. We outline
some of the universal features of the correspondence. We further describe an algorithm that
defines the chiral algebra for any four-dimensional SCFT with a Lagrangian description in
terms of a BRST complex. In §2.4, we describe the immediate consequences of this structure
for more conventional observables of the original theory. It turns out that superconformal
Ward identities that have previously derived for four-point functions of BPS operators are
a natural outcome from our point of view. We further derive new unitarity bounds for the
anomaly coefficients of conformal and global symmetries, many of which are saturated by
interesting superconformal models. We point out that the state space of the chiral algebra
provides a categorification of the Schur limit of the superconformal index. In §2.5, we detail
the construction and analysis of the chiral algebras associated to some simple Lagrangian
SCFTs. We also make a number of conjectures as to how to describe these chiral algebras
as W-algebras. In §2.6 we provide a sketch of the class of chiral algebras that are associ-
ated to four-dimensional theories of class S. We conclude in §2.7 by listing a number of
interesting lines of inquiry that are opened up by the results reported here. Several appen-
dices are included that review relevant material concerning the superconformal algebras and
representation theory used in our constructions.

2.2 Chiral symmetry algebras in four dimensions

The purpose of this section is to establish the existence of infinite chiral symmetry algebras
acting on a restricted class of observables in any N = 2 superconformal field theory in four
dimensions. This is accomplished in two steps. First, working purely in terms of the relevant
spacetime symmetry algebras, we identify a particular two-dimensional conformal subalgebra
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of the four-dimensional superconformal algebra,3

sl(2)× ŝl(2) ⊂ sl(4 | 2) ,

with the property that the holomorphic factor sl(2) commutes with a nilpotent supercharge,

◗ , while the antiholomorphic factor ŝl(2) is exact with respect to the same supercharge. We
then characterize the local operators that represent nontrivial ◗ -cohomology classes. The
only local operators for which this is the case are restricted to lie in a plane R2 ⊂ R4 that
is singled out by the choice of conformal subalgebra. The correlation functions of these
operators are meromorphic functions of the insertion points, and thereby define a chiral
algebra. As a preliminary aside, we first recall the basic story of infinite chiral symmetry in
two dimensions in order to distill the essential ingredients that need to be reproduced in four
dimensions. The reader who is familiar with chiral algebras in two-dimensional conformal
field theory may safely proceed directly to §2.2.2.

2.2.1 A brief review of chiral symmetry in two dimensions

Let us take as our starting point a two-dimensional quantum field theory that is invariant
under the global conformal group SL(2,C). The complexification of the Lie algebra of
infinitesimal transformations factorizes into holomorphic and anti-holomorphic generators,

L−1 = −∂z , L0 = −z∂z , L+1 = −z2∂z ,
L̄−1 = −∂z̄ , L̄0 = −z̄∂z̄ , L̄+1 = −z̄2∂z̄ ,

(2.1)

which obey the usual sl(2)× sl(2) commutation relations,

[L+1, L−1] = 2L0 , [L0, L±1] = ∓L±1 ,

[L̄+1, L̄−1] = 2L0 , [L̄0, L̄±1] = ∓L̄±1 .
(2.2)

We need not assume that the theory is unitary, but for simplicity we will assume that the
space of local operators decomposes into a direct sum of irreducible highest weight repre-
sentations of the global conformal group. Such representations are labelled by holomorphic
and anti-holomorphic scaling dimensions h and h̄ of the highest weight state,

L0|ψ〉h.w. = h|ψ〉h.w. , L̄0|ψ〉h.w. = h̄|ψ〉h.w. , (2.3)

3In this section, we adopt the convention of specifying the complexified versions of symmetry algebras.
This will turn out to be particularly natural in the discussion of §2.2.2. We generally attempt to select bases
for the complexified algebras that are appropriate for a convenient real form. Our basic constructions are
insensitive to the signature of spacetime, though in places we explicitly impose constraints that follow from
unitarity in Lorentzian signature.
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and we further assume that h and h̄ are not equal to negative half-integers (in which case
one would find finite-dimensional representations of sl(2)).

Chiral symmetry arises as a consequence of the existence of any local operator O(z, z̄)
which obeys a meromorphicity condition of the form

∂z̄O(z, z̄) = 0 =⇒ O(z, z̄) := O(z) . (2.4)

Under the present assumptions, such an operator will transform in the trivial representa-
tion of the anti-holomorphic part of the symmetry algebra and by locality will have h equal
to an integer or half-integer. Meromorphicity implies the existence of infinitely many con-
served charges (and their associated Ward identities) defined by integrating the meromorphic
operator against an arbitrary monomial in z,

On :=

∮
dz

2πi
zn+h−1O(z) . (2.5)

The operator product expansion of two meromorphic operators contains only meromorphic
operators, and the singular terms determine the commutation relations among the associated
charges, cf. [49]. This is the power of meromorphy in two dimensions: an infinite dimensional
symmetry algebra organizes the space of local operators into much larger representations,
and the associated Ward identities strongly constrain the correlation functions of the theory.

Some examples of this structure are ubiquitous in two-dimensional conformal field theory.
The energy-momentum tensor in a two-dimensional CFT is conserved and traceless in flat
space, ∂µTµν = T µ

µ = 0, leading to two independent conservation equations

∂z̄Tzz(z, z̄) = 0 =⇒ Tzz(z, z̄) := T (z) ,

∂zTz̄z̄(z, z̄) = 0 =⇒ Tz̄z̄(z, z̄) := T (z̄) .
(2.6)

The holomorphic stress tensor T (z) is a meromorphic operator with (h, h̄) = (2, 0), and its
self-OPE is fixed by conformal symmetry to take the form

T (z)T (w) ∼ c/2

(z − w)4 +
2T (w)

(z − w)2 +
∂T (w)

(z − w) , (2.7)

which implies that the associated conserved charges obey the commutation relations of the
Virasoro algebra with central charge c,

Ln :=

∮
dz

2πi
zn+1T (z) , [Lm, Ln] = (m− n)Lm+n +

c

12
m(m2 − 1)δm+n,0 . (2.8)

Similarly, global symmetries can give rise to conserved holomorphic currents JAz (z, z̄) =:
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JA(z) with (h, h̄) = (1, 0). The self-OPEs of such currents are fixed to take the form

JA(z)JB(w) ∼ k δAB

(z − w)2 +
∑

C

ifABC
JC(w)

(z − w) , (2.9)

with the structure constants fABC those of the Lie algebra of the global symmetry. The
conserved charges in this case obey the commutation relations of an affine Lie algebra at
level k,

JAn :=

∮
dz

2πi
zn JA(z) , [JAm, J

B
n ] =

∑

c

ifABCJCm+n +mk δABδm+n,0 . (2.10)

The algebra of all meromorphic operators, or alternatively the algebra of their corresponding
charges, constitutes the chiral algebra of a two-dimensional conformal field theory.

In most physics applications, the spectrum of a CFT will include non-meromorphic oper-
ators that reside in modules of the chiral algebra of the theory. In the generic case in which
the chiral algebra is the Virasoro algebra, this just means that there are Virasoro primary
operators with h̄ 6= 0. Nevertheless, the correlation functions of the meromorphic operators
can be taken in and of themselves to define a certain meromorphic theory. Such theories are
referred to by various authors as chiral algebras, vertex operator algebras, or meromorphic
conformal field theories. Though some of these names are occasionally assigned to structures
that possess some extra nice properties, such as modular invariant partition functions, we
will be discussing the most basic version. Henceforth, by chiral algebra we will mean the
operator product algebra of a set of meromorphic operators in the plane.4 So defined, a
chiral algebra is strongly constrained by the requirements of crossing symmetry. In what
follows, we show that any N = 2 superconformal field theory in four dimensions possesses a
class of observables that define a chiral algebra in this sense.

2.2.2 Twisted conformal subalgebras

Chiral algebras are ordinarily thought to be a special feature of conformal-invariant models
in two dimensions. Indeed, the appearance of an infinite number of conserved charges as
defined in (2.5) follows from the interaction of two different ingredients that are special to two
dimensions. Firstly, the operators that give rise to the chiral symmetry charges are invariant
under (say) the anti-holomorphic factor of the two-dimensional conformal algebra, while
transforming in a nontrivial representation of the holomorphic factor, so they are nontrivial
holomorphic operators on the plane. The powerful machinery of complex analysis in a single

4In a preview of later discussions, we mention that by W-algebra we will mean a chiral algebra for
which the space of local operators is generated by a finite number of operators via the operations of taking
derivatives and normal-ordered multiplication.
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variable then produces the infinity of conserved charges in (2.5).5

In dimension d > 2, it is the first of these conditions that fails the most dramatically, while
the latter seems more superficial. Indeed, correlation functions in a conformal field theory
in higher dimensions can be restricted so that all operators lie on a plane R2 ⊂ Rd, and the
resulting observables will transform covariantly under the subalgebra of the d-dimensional
conformal algebra that leaves the R2 in question fixed,

sl(2)× sl(2) ⊂ so(d+ 2) . (2.11)

These correlation functions will be largely indistinguishable from those of an authentic two-
dimensional CFT, and if one could locate operators that were chiral with respect to this
subalgebra, then the arguments of §2.2.1 would go through unhindered and a chiral sym-
metry algebra could be constructed that would act on R2-restricted correlation functions.
However, a local operator that transforms in the trivial representation of either copy of sl(2)
in (2.11) will necessarily be trivial with respect to all of so(d+2). As such, the only “mero-
morphic” operator on the plane in a higher dimensional theory is the identity operator, and
no chiral symmetry algebra can be constructed. This is ultimately a consequence of the sim-
ple fact that the higher dimensional conformal algebras do not factorize into a holomorphic
and anti-holomorphic part: any two sl(2) subalgebras will be related by conjugation.

The brief arguments given above are common knowledge, and essentially spell the end to
any hopes of recovering chiral symmetry algebras in a general higher-dimensional conformal
field theory. We have reproduced them here to clarify the mechanism by which they will be
evaded in the coming discussion. In particular, we will see that the additional tools at our
disposal in the case of superconformal field theories are sufficient to give life to chiral algebras
in four dimensions. Before describing the construction, let us recall a simple example which
illustrates the mechanism that will be used.

Intermezzo: translation invariance from cohomology

In a quantum field theory with N = 1 supersymmetry in four dimensions, there exists a
special class of operators known as chiral operators (not to be confused with the meromorphic
operators of §2.2.1, which are chiral in a different sense) that lie in short representations of
the supersymmetry algebra and satisfy a shortening condition in terms of a chiral half of the
supercharges,

{Qα,O(x)] = 0 , α = ± . (2.12)

5From another point of view, one can hardly hope to find a meromorphic sector in a higher dimensional
CFT due to Hartogs’ theorem, which implies the absence of singularities of codimension greater than one in a
meromorphic function of several variables. This has been overcome in, e.g., [50, 51] by considering extended
operators that intersect in codimension one. The problem, then, is that the meromorphic structure does not
impose constraints on the natural objects in the original theory – the local operators.
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The translation generators in R4 are exact with respect to the chiral supercharges,

Pαα̇ = {Qα, Q̃α̇} , (2.13)

and consequently, via the Jacobi identity, the derivative of a chiral operator is also exact,

[Pαα̇,O(x)] = {Qα,O′(x)] . (2.14)

Because the chiral supercharges are nilpotent and anti-commute, the cohomology classes of
chiral operators with respect to the supercharges Qα are well-defined and independent of the
insertion point of the operator. Schematically, one can write

[Oi(x)]Qα
:= Oi . (2.15)

Products of chiral operators are then free of short distance singularities and form a ring at
the level of cohomology. Correlation functions of chiral operators have the excellent property
of being independent of the positions of the operators,

〈O1(x1)O2(x2) . . .On(xn)〉 = 〈[O1(x1)][O2(x2)] . . . [On(xn)]〉 = 〈O1O2 . . .On〉 . (2.16)

A suggestive way of phrasing this well-known feature of the chiral ring is that although chiral
operators transform in a nontrivial representation of the four-dimensional translation group,
their cohomology classes with respect to the chiral supercharges transform in the trivial
representation. The passage from local operators to their cohomology classes modifies the
transformation properties of these local operators under the spacetime symmetry algebra, in
this case rendering them trivial.

Holomorphy from cohomology

To recover chiral algebras in four dimensions, we adopt the same philosophy just illustrated
in the example of the chiral ring. We will find a nilpotent supercharge with the property
that cohomology classes of local operators with respect to said supercharge transform in a

chiral representation of an sl(2)× ŝl(2) subalgebra of the full superconformal algebra, and as
such behave as meromorphic operators. Such local operators will then necessarily constitute
a chiral algebra as described in §2.2.1.

The first task that presents itself is an algebraic one. To realize chiral symmetry at
the level of cohomology classes, we identify a two-dimensional conformal subalgebra of the
four-dimensional superconformal algebra,

sl(2)× ŝl(2) ⊂ sl(4 | 2) ,

along with a privileged supercharge ◗ for which the following criteria are satisfied:
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• The supercharge is nilpotent: ◗ 2 = 0.

• sl(2) and ŝl(2) act as the generators of holomorphic and anti-holomorphic Möbius
transformations on a complex plane C ⊂ R4.

• The holomorphic generators spanning sl(2) commute with ◗ .

• The anti-holomorphic generators spanning ŝl(2) are ◗ commutators.

In searching for such a subalgebra, we can first restrict our attention to subalgebras of
sl(4|2) that keep the plane fixed set-wise. There are two inequivalent maximal subalgebras
of this kind: sl(2|1)× sl(2|1), which is the symmetry algebra of an N = (2, 2) SCFT in two
dimensions, and sl(2) × sl(2|2), which is the symmetry algebra of an N = (0, 4) SCFT in
two dimensions. One easily determines that the first subalgebra cannot produce the desired
structure; we proceed directly to consider the second case.

The four-dimensional N = 2 superconformal algebra and the two-dimensional N = (0, 4)
superconformal algebra are summarized in Appendix A. In embedding the latter into the
former, we take the fixed two-dimensional subspace to be the one that is fixed pointwise by
the rotation generator

M⊥ :=M +
+ −M+̇

+̇
. (2.17)

The generator of rotations acting within the fixed plane is the orthogonal combination,

M :=M +
+ +M+̇

+̇
. (2.18)

In more conventional terms, we are picking out the plane with x1 = x2 = 0. Introducing
complex coordinates z := x3 + ix4, z̄ := x3 − ix4, the two-dimensional conformal symmetry
generators in sl(2)× sl(2|2) can be expressed in terms of the four-dimensional ones as

L−1 = P++̇ , L+1 = K+̇+ , 2L0 = H +M ,

L̄−1 = P−−̇ , L̄+1 = K−̇− , 2L̄0 = H−M .
(2.19)

The fermionic generators of sl(2) × sl(2|2) are obviously all anti-holomorphic, and upon
embedding are identified with four-dimensional supercharges according to

QI = QI
− , Q̃I = Q̃I−̇ , SI = S−

I , S̃I = S̃I−̇ , (2.20)

where I = 1, 2 is an sl(2)R index. Finally, the sl(2|2) superalgebra has a central element Z,
which upon embedding is given in terms of four-dimensional symmetry generators as

Z = r +M⊥ , (2.21)

where r is the generator of U(1)r.
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Amongst the supercharges listed in (2.20), one finds a variety of nilpotent operators. Any
such operator will necessarily commute with the generators L±1 and L0 in (2.19) since all
of the supercharges do so. The requirement of ◗ -exact anti-holomorphic Möbius transfor-
mations is harder to satisfy. In fact, up to similarity transformation using generators of the
bosonic symmetry algebra, there are only two possible choices:

◗ 1 := Q1 + S̃2 , ◗ 2 := S1 − Q̃2 ,

◗
†
1 := S1 + Q̃2 , ◗

†
2 := Q1 − S̃2 .

(2.22)

Interestingly, ◗ 1 and ◗ 2 give rise to the same ◗ -exact generators of an anti-holomorphic

ŝl(2) algebra,

{◗ 1 , Q̃1} = {◗ 2 ,−Q2} = L̄−1 +R− =: L̂−1 ,

{◗ 1 ,S2} = {◗ 2 , S̃1} = L̄+1 −R+ =: L̂+1 ,

{◗ 1 , ◗
†
1} = {◗ 2 , ◗

†
2} = 2(L̄0 −R) =: 2L̂0 .

(2.23)

In addition, the central element of sl(2|2) is exact with respect to both supercharges,

{◗ 1 , ◗ 2} = −Z . (2.24)

Note that while ŝl(2) does act on the plane by anti-holomorphic conformal transformations,
it is not simply a subalgebra of the original global conformal algebra. Rather, it is an sl(2)R
twist of sl(2).6 Because the relevant real forms of the sl(2) conformal algebra and sl(2)R
are different, the generators of ŝl(2) do not enjoy any reasonable hermiticity properties when
acting on the Hilbert space of the four-dimensional theory. In particular, we can immediately
see that L̂†

±1 6= L̂∓1. This would complicate matters considerably if our intention was to study
operators that transform in nontrivial representations of this twisted algebra. Fortunately,
our plan is precisely the opposite: chiral algebras can appear after passing to ◗ -cohomology,
at which point all of the objects of interest will effectively be invariant under the action of

ŝl(2). Consequently, reality/hermiticity conditions will play no role in the structure of the
“physical” operators/observables defined at the level of cohomology.

2.2.3 The cohomology classes of local operators

Our next task is to study the properties of operators that define non-trivial ◗ i-cohomology
classes. For the purposes of the present work, we are restricting our attention to local
operators in four dimensions; the inclusion of non-local operators, such as line or surface

6In light of this, we may understand the absence of a similar construction using the sl(2|1) × sl(2|1)
algebra as a consequence of there being no sl(2)R with which to twist. Similarly, our construction does not
extend to N = 1 superconformal theories since they only have an abelian R-symmetry.
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operators, is an interesting extension that will be addressed in future work.
We begin by identifying the requirements for an operator inserted at the origin to define

a nontrivial ◗ i-cohomology class. In particular, we will derive the conditions under which
an operator O(x) obeys

{◗ i,O(0)] = 0 , O(0) 6= {◗ i,O′(0)] , (2.25)

for i = 1 or i = 2. Because both ◗ i commute with L̂0 and Z, we lose no generality in
restricting to definite eigenspaces of these charges. A standard cohomological argument
then implies that since L̂0 and Z are actually ◗ i-exact, an operator satisfying (2.25) must
lie in the zero eigenspace of both charges. In terms of four-dimensional quantum numbers,
this means that such an operator must obey7

1
2
(E − (j1 + j2))−R = 0 , r + (j1 − j2) = 0 , (2.26)

where E is the conformal dimension/eigenvalue of H, j1 and j2 are sl(2)1 and sl(2)2 Lorentz

quantum numbers/eigenvalues ofM +
+ andM+̇

+̇
, and R is the sl(2)R charge/eigenvalue of

R. As long as the four-dimensional SCFT is unitary, the last line of (2.23) implies that

any operator with zero eigenvalue under L̂0 must be annihilated by ◗ i and ◗
†
i for both

i = 1 and i = 2. The relations in (2.26) therefore characterize the harmonic representatives
of ◗ i-cohomology classes of operators at the origin, and we see that the two supercharges
actually define the same cohomology. Notably, these relations are known to characterize the
operators that contribute to the Schur (and Macdonald) limits of the superconformal index
in four dimensions [13], suggesting that the cohomology will be non-empty in any nontrivial
N = 2 SCFT. We will refer to the class of local operators obeying (2.26) as the Schur
operators of the SCFT. We will have more to say about the features of these operators in
§2.3.

Note that in contrast to the case of ordinary chiral operators in a supersymmetric theory,
which are annihilated by a given Poincaré supercharge regardless of the insertion point, for
operators to be annihilated by the ◗ i when inserted away from the origin requires that they
acquire a more intricate dependence on their position in R4. This is a consequence of the fact
that the translation generators do not commute with the superconformal charges S−

1 and

S̃2−̇ appearing in the definitions of the ◗ i. Indeed, there is no way to define the translation
of a Schur operator from the origin to a point outside of the (z, z̄) plane so that it continues
to represent a ◗ i-cohomology class. Within the plane, though, we can accomplish this task

using the ◗ i-exact, twisted ŝl(2) of the previous subsection. In particular, because the twisted

anti-holomorphic translation generator L̂−1 is a ◗ i anti-commutator and the holomorphic

7In fact, the second relation in (2.26) follows from the first as a consequence of unitarity and the four-
dimensional superconformal algebra (see §2.3.1). We list it separately here since it is an algebraically inde-
pendent constraint at the level of the quantum numbers.
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translation generator L−1 is ◗ i-closed, we can define the twisted-translated operators

O(z, z̄) = ezL−1+z̄L̂−1 O(0) e−zL−1−z̄L̂−1 , (2.27)

where O(0) is a Schur operator. One way of thinking about this prescription for the transla-
tion of local operators is as the consequence of introducing a constant, complex background
gauge field for the sl(2)R symmetry that is proportional to the sl(2) raising operator. By con-
struction, the twisted-translated operator is ◗ i closed for both i = 1, 2, and the cohomology
class of this operator is well-defined and depends on the insertion point holomorphically,

[O(z, z̄)]◗ =⇒ O(z) . (2.28)

What does such an operator look like in terms of a more standard basis of local operators at
the point (z, z̄)? To answer this, we must first note that Schur operators at the origin occupy
the highest-weight states of their respective sl(2)R representation (this fact will be explained
in greater detail in §2.3). If we denote the whole spin k representation of sl(2)R as OI1I2···I2k

with Ii = 1, 2, then the Schur operator at the origin is O11···1(0), and the twisted-translated
operator at any other point is defined as

O(z, z̄) := uI1(z̄) · · · uI2k(z̄) OI1...I2k(z, z̄) , uI(z̄) := (1, z̄) . (2.29)

At any given point (z, z̄), this is a particular complex-linear combination of the different
elements of the sl(2)R representation of the corresponding Schur operator. The precise
combination depends on the insertion point as indicated. What we have discovered is that
the correlation functions of these operators are determined at the level of their ◗ i-cohomology
classes, and are therefore meromorphic functions of the insertion points.8

2.2.4 A chiral operator product expansion

The most efficient language for describing chiral algebras is that of the operator product
expansion. Let us therefore study the structure of the operator product expansion of the
twisted-translated Schur operators in order to see the emergence of meromorphic OPEs
befitting a chiral algebra.

Consider two operators: O1(z, z̄) is the twisted translation of a Schur operator from the
origin to (z, z̄), and O2(0, 0) is a Schur operator inserted at the origin. Given the general
expression for the twisted-translated operator given in (2.29), the OPE of these two operators

8For N = 4 SYM, a similar contraction of the SU(4)R indices with position-dependent vectors was
studied in [44]. The twists considered in that paper are different, and do not give rise to meromorphic
operators and chiral algebras.
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should take the form

O1(z, z̄)O2(0) =
∑

k

λ12k
z̄R1+R2−Rk

zh1+h2−hk z̄h̄1+h̄2−h̄k
Ok(0) , (2.30)

where the z̄R1+R2−Rk in the numerator comes from the explicit factors of z̄ appearing in (2.29),
and Rk is the R-charge of the operator Ok. This form of the OPE is so far a consequence
of two-dimensional conformal invariance and conservation of R-charge under multiplication.
We have introduced the two-dimensional quantum numbers h and h̄, which are expressible
in terms of four-dimensional quantum numbers as

h =
E + (j1 + j2)

2
, h̄ =

E − (j1 + j2)

2
. (2.31)

Though the OPE does not look meromorphic yet, we are already well on our way. The left
hand side of (2.30) is ◗ i-closed for any (z, z̄), with the z̄ dependence being ◗ i-exact. As a
result, each individual term on the right hand side must be ◗ i-closed, and the sum should be
reorganized into two groups. The first group will consist of the terms in which the operator
Ok(0) is a Schur operator, while the second will consist of the remaining terms, for which
the operator Ok(0) is ◗ i-exact. Recalling that the quantum numbers of Schur operators
obey h̄ = R, we immediately see that for those terms in the OPE the z̄ dependence cancels
between the denominator and the numerator, thus providing the desired meromorphicity
result:

O1(z, z̄)O2(0, 0) =
∑

kSchur

λ12k
zh1+h2−hk

Ok(0) + {◗ , . . . ] . (2.32)

From the four-dimensional construction, we expect this OPE to be single-valued, which
implies that h1 + h2 − hk should be an integer. Indeed, this integrality follows from the fact
that h is a sum of SU(2) Cartans after applying SU(2) selection rules. Clearly, in passing
to ◗ i-cohomology classes the OPE stays well-defined and the ◗ i-exact piece can be set to
zero. Thus at the level of cohomology, the twisted-translated operators can be reinterpreted
as two-dimensional meromorphic operators with interesting singular OPEs.

It may be instructive to see how this meromorphic OPE plays out in a simple example.
An extremely simple case, to which we shall return in §2.3, is that of free hypermultiplets
in four dimensions. The scalar squarks Q and Q̃ of the hypermultiplet are Schur operators,
and the corresponding twisted-translated operators take the form

q(z) := [Q(z, z̄) + z̄Q̃∗(z, z̄)]◗ , q̃(z) := [Q̃(z, z̄)− z̄Q∗(z, z̄)]◗ . (2.33)

The singular OPE of these twisted operators can be easily worked out using the free OPE
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in four dimensions; we have

q(z)q(w) ∼ regular , q̃(z)q̃(w) ∼ regular ,

q(z)q̃(w) ∼ 1

z − w , q̃(z)q(w) ∼ − 1

z − w .
(2.34)

This is example is in some respects deceptively simple, in that the terms appearing in the
singular part of the OPE are meromorphic on the nose. In more complicated theories,
there will be cohomologically trivial terms appearing in the singular part of the OPE, and
meromorphicity will depend on a more detailed knowledge of the action of the nilpotent
supercharges.

Let us briefly point out one difference between the structure observed here and that of
a more conventional cohomological subalgebra. The chiral ring in the free hypermultiplet
theory is generated by the operators q(x) and q̃(x). Because these operators both have
R = 1/2, there can be no nonzero correlation functions in the chiral ring. The existence
of nontrivial correlation functions in the chiral algebra described here follows precisely from
the presence of subleading terms in the z̄ expansion (2.33) with SU(2)R quantum numbers
of opposite sign relative to the leading term.

Having established existence of nontrivial ◗-cohomology classes with meromorphic OPEs
and correlators, we now take some time to develop the dictionary between four-dimensional
SCFT structures and their two-dimensional counterparts.

2.3 The SCFT/chiral algebra correspondence

For any four-dimensional N = 2 superconformal field theory, we have identified a subsector
of operators whose correlation functions are meromorphic when they are restricted to be
coplanar. This sector thus defines a map from four-dimensional SCFTs to two-dimensional
chiral algebras:

χ : 4d SCFT −→ 2d Chiral Algebra.

The aim of this section is to elaborate on the structure of this correspondence, focusing
primarily on its more universal aspects. We begin with a short preview of some of the more
prominent features of the correspondence.

Our first main result is the generic enhancement of the global sl(2) conformal symmetry
algebra to a full fledged Virasoro algebra. In other words, for any SCFT T , we find that
χ[ T ] contains a meromorphic stress tensor. The two-dimensional central charge turns out
to have a simple relationship to the four-dimensional conformal anomaly coefficient,

c2d = −12c4d .

In particular, this implies that when T is unitary (which we always take to be the case),
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χ[ T ] is necessarily non-unitary. In a similar vein, we find that global symmetries of T are
always enhanced into affine symmetries of χ[ T ], and the respective central charges of these
flavor symmetries enjoy another simple relationship,

k2d = −
1

2
k4d .

It is often helpful to think of a chiral algebra in terms of its generators. In the chiral
algebra sense of the word, generators are those operators that cannot be expressed as the
conformally normal-ordered products of derivatives of other operators. While we do not
find a complete characterization of the generators of our chiral algebras, we do identify
certain operators in four dimensions whose corresponding chiral operator will necessarily be
generators. In particular, operators that are N = 1 chiral and satisfy the Schur shortening
condition form a ring which is a consistent truncation of the N = 1 chiral ring, to which
we refer as the Hall-Littlewood (HL) chiral ring. We find that every generator of the HL
chiral ring necessarily leads to a generator of the associated chiral algebra. There may
be additional generators of the chiral algebra beyond the stress tensor and the operators
associated to generators of the HL chiral ring. We will find such additional generators in the
example of §2.5.4.

For the special case of free SCFTs we completely characterize the associated chiral al-
gebras. Unsurprisingly, free SCFTs give rise to free chiral algebras. In particular, free
hypermultiplets correspond to the chiral algebra of dimension 1/2 symplectic bosons, while
free vector multiplets correspond to the small algebra of a (b, c) ghost system of dimension
(1, 0).

Finally, we describe the two-dimensional counterpart of gauging a flavor symmetry G
in some general SCFT TG. Assuming that the chiral algebra associated to the ungauged
SCFT is known, the prescription to find the chiral algebra of the new theory is as follows.
The direct product of the original chiral algebra χ[ TG ] with a (b, c) system in the adjoint
representation of G admits a nilpotent BRST operator precisely when the beta function for
the four-dimensional gauge coupling vanishes. The chiral algebra of the gauged theory is
then obtained by restricting to the BRST coholomogy. We find that this BRST operator
precisely captures the one-loop correction to a certain four-dimensional supercharge, so that
restricting to its cohomology is equivalent to the requirement that one should only retain
those states that remain in their original short representations once one-loop corrections are
taken into account.

2.3.1 Schur operators

As a first order of business, we pursue a more concrete characterization of the four-dimen-
sional operators whose correlation functions are captured by the chiral algebra. Let us first
reiterate the basic facts about these operators that were derived in §2.2. The chiral algebra
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computes correlation functions of operators that define nontrivial cohomology classes of the
nilpotent supercharges ◗ i. Such operators are obtained by twisted translations (2.29) of
Schur operators from the origin to an arbitrary point (z, z̄) on the plane. A Schur operator
is any operator that satisfies

[L̂0,O] = 0 ⇐⇒ 1
2
(E − (j1 + j2))−R = 0 , (2.35)

[Z,O] = 0 ⇐⇒ r + j1 − j2 = 0 . (2.36)

If T is unitary, then these conditions can be equivalently formulated as the requirement that
when inserted at the origin, an operator is annihilated by the two Poincaré and the two
conformal supercharges that enter in the definition of the ◗ i, i.e.,

[Q 1
−,O(0)] = [Q̃ 2−̇,O(0)] = [S−

1 ,O(0)] = [S̃2−̇,O(0)] = 0 . (2.37)

This follows from the hermiticity conditions Q1†
− := S−

1 and Q†
2−̇

:= S̃2−̇ in conjunction with
the relevant anticommutators from Appendix A,

{Q1
− ,Q1†

− } = L̂0 −
1

2
Z , {Q̃2−̇ , Q̃†

2−̇
} = L̂0 +

1

2
Z . (2.38)

It follows immediately that the state O(0)|0〉 is annihilated by all four supercharges if and
only if its quantum numbers obey (2.35) and (2.36). Actually, (2.38) implies the additional
inequality

L̂0 >
|Z|
2

, (2.39)

from which we may conclude that imposing only (2.35) is a necessary and sufficient condi-
tion to define a Schur operator. We further note that Schur operators are necessarily the
highest-weight states of their respective SU(2)R representations, and so carry the maximum
eigenvalue R of the Cartan generator. If this were not the case, states with greater R would
have negative L̂0 eigenvalues, in contradiction with unitarity. Similarly, Schur operators are
necessarily the highest weight states of their SU(2)1×SU(2)2 Lorentz symmetry representa-
tion, carrying the largest eigenvalues for j1 and j2. The index structure of a Schur operator
is therefore of the form O1...1

+···+ +̇...+̇
.

From the definition of L0 in (2.19) and (2.35) we find that the holomorphic dimension h
of a Schur operator is non-zero and fixed in terms of its quantum numbers,

h = 1
2
(E + j1 + j2) = R + j1 + j2 . (2.40)

This is always a half integer, since R, j1 and j2 are all SU(2) Cartans. It follows from
(2.36) and (2.40), in conjunction with the non-negativity of j1 and j2, that the holomor-
phic dimension of a Schur operator is bounded from below in terms of its four-dimensional
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Multiplet OSchur h r Lagrangian “letters”

B̂R Ψ11...1 R 0 Q, Q̃

DR(0,j2) Q̃1
+̇
Ψ11...1

+̇...+̇
R + j2 + 1 j2 +

1
2

Q, Q̃, λ̃1
+̇

D̄R(j1,0) Q1
+Ψ

11...1
+···+ R + j1 + 1 −j1 − 1

2
Q, Q̃, λ1+

ĈR(j1,j2) Q1
+Q̃1

+̇
Ψ11...1

+···+ +̇...+̇
R + j1 + j2 + 2 j2 − j1 Dn

++̇
Q, Dn

++̇
Q̃, Dn

++̇
λ1+,

Dn
++̇
λ̃1
+̇

Table 2.1: This table summarizes the manner in which Schur operators fit into short mul-
tiplets of the N = 2 superconformal algebra. For each supermultiplet, we denote by Ψ the
superconformal primary. There is then a single conformal primary Schur operator OSchur,
which in general is obtained by the action of some Poincaré supercharges on Ψ. We list
the holomorphic dimension h and U(1)r charge r of OSchur in terms of the quantum num-
bers (R, j1, j2) that label the shortened multiplet (left-most column). We also indicate the
schematic form that OSchur can take in a Lagrangian theory by enumerating the elementary
“letters” from which the operator may be built. We denote by Q and Q̃ the complex scalar
fields of a hypermultiplet, by λIα and λ̃Iα̇ the left- and right-moving fermions of a vector
multiplet, and by Dαα̇ the gauge-covariant derivatives.

R-charges,
h = R + j1 + j2 > R + |j1 − j2| = R + |r| . (2.41)

The inequality is saturated if and only if j1 or j2 is zero.

Supermultiplets of Schur type

Schur operators belong to shortened representations of the N = 2 superconformal algebra.
The complete list of possible shortening conditions is reviewed in Appendix B. In the nota-
tions of [52], the superconformal multiplets that contain Schur operators are the following,

B̂R , DR(0,j2) , D̄R(j1,0) , ĈR(j1,j2) . (2.42)

For the purpose of enumeration, it is sufficient to focus on those Schur operators that are
conformal primaries. Given such a primary Schur operator, there is a tower of descendant
Schur operators that are obtained by the action L−1 = P++̇ = −∂++̇. It turns out that each
of the supermultiplets listed in (2.42) contains exactly one conformal primary Schur operator.
In the case of B̂R, this is also the superconformal primary of the multiplet, whereas in the
other cases it is a superconformal descendant. This representation-theoretic information is
summarized in Table 2.1, where we also provide the schematic form taken by each type of
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operator in a Lagrangian theory.
The shortening conditions obeyed by the Schur operators make crucial use of the extended

N = 2 supersymmetry. Indeed, the hallmark of a Schur operator is that it is annihilated
by two Poincaré supercharges of opposite chiralities (Q1

− and Q̃2−̇ in our conventions). This
defines a consistent shortening condition because the supercharges have the same SU(2)R
weight, and thus anticommute with each other. No analogous shortening condition exists in
an N = 1 supersymmetric theory, because the anticommutator of opposite-chirality super-
charges necessarily yields a momentum operator, which annihilates only the identity.

Although the most general Schur operators, which are those belonging to ĈR(j1,j2) mul-

tiplets, may seem somewhat exotic, the Schur operators of type B̂R, DR(0,j2) and D̄R(j1,0)

are relatively familiar. Indeed, they can be understood as special cases of conventional
N = 1 chiral or anti-chiral operators. Let us focus for the moment on the N = 1 Poincaré
subalgebra that contains the supercharges

Q2
α , Q̃2α̇ . (2.43)

We then ask what subset of Schur operators are also elements of the chiral ring for thisN = 1
subalgebra. In particular, such operators will be annihilated by both spinorial components
of the anti-chiral supercharge Q̃2α̇, α̇ = ±̇. These operators have j2 = 0, and a quick glance
at Table 2.1 tells us that they are Schur operators of types B̂R and D̄R(j1,0). These operators

saturate the inequality (2.41), with r = −j1 < 0 for D̄R(j1,0) and r = 0 for the B̂R. As
these are precisely the operators that contribute to the Hall-Littlewood (HL) limit of the
superconformal index, we refer to them as Hall-Littlewood operators. They form a ring, the
Hall-Littlewood chiral ring, which is a consistent truncation of the full N = 1 chiral ring.

In a Lagrangian theory, the B̂R type Schur operators are gauge-invariant combinations of
Q and Q̃, the complex hypermultiplet scalars that are bottom components of N = 1 chiral
superfields (we are suppressing color and flavor indices). Schur operators of type D̄R(j1,0)

are obtained by further allowing as possible letters the gauginos λ1+, which are the bottom
components of the field strength chiral superfield W+. In the full N = 1 chiral ring, one
also has the other Lorentz component W− of the field strength, as well as the N = 1 chiral
superfield belonging to the N = 2 vector multiplet. Operators that contain those letters are,
however, not a part of the HL chiral ring.

In complete analogy, we may also define a Hall-Littlewood anti-chiral ring, which contains
the Schur operators of type B̂R and DR(0,j2). These operators are annihilated by chiral
supercharges Q1

α, α = ±, and are thus N = 1 anti-chiral with respect to the N = 1
subalgebra that is orthogonal to (2.43). Schur operators of type B̂R belong to both HL

rings – these are half-BPS operators that are annihilated by both Q1
α and Q̃2α̇. They form

a further truncation of the N = 1 chiral ring to the Higgs chiral ring, and their vacuum
expectation values parametrize the Higgs branch of the theory. We note that in Lagrangian
theories that are represented by acyclic quiver diagrams, all D-type multiplets recombine
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and are lifted from the N = 1 chiral ring at one-loop order [13]. In such cases, the HL chiral
ring will coincide with the more restricted Higgs branch chiral ring.

Let us now look in greater detail at some Schur-type shortened multiplets of particular
physical interest:

• Ĉ0(0,0): Stress-tensor multiplet. The superconformal primary is a scalar operator of
dimension two that is a singlet under the SU(2)R × U(1)r. The SU(2)R and U(1)r
conserved currents, the supercurrents, and the stress tensor all lie in this multiplet.
The Schur operator is the highest weight component of the SU(2)R current: J11

++̇
of

the SU(2)R.

• Ĉ0(j1,j2): Higher-spin currents multiplets. These generalize the stress-tensor multiplet
and contain conserved currents of spin higher than two. If any such multiplets are
present, the SCFT must contain a decoupled free sector [53]. Requiring the absence
of these higher spin multiplets will lead to interesting unitarity bounds for the central
charge of interacting SCFTs in §2.4.

• B̂ 1
2
: This is the superconformal multiplet of free hypermultiplets.

• B̂1: Flavor-current multiplet. The superconformal primary is the “moment map” op-
erator MIJ , which is a scalar operator of dimension two that is an SU(2)R triplet,
is U(1)r neutral, and transforms in the adjoint representation of the flavor group GF .
The highest weight state of the moment map –M11 – is the Schur operator. The claim
to fame of B̂1 multiplets is that they harbor the conserved currents JFαα̇ that gener-
ate the continuous “flavor” symmetry group GF of the SCFT, that is, the symmetry
group that commutes with the superconformal group. Because B̂1 multiplets do not
appear in any of the recombination rules for short multiplets listed in Appendix B, it
is absolutely protected: JFαα̇ remains conserved on the entire conformal manifold of the
SCFT.9

• D0(0,0) ⊕ D̄0(0,0): This is the superconformal multiplet of free N = 2 vector multiplets.

• D 1
2
(0,0) ⊕ D̄ 1

2
(0,0): “Extra” supercurrent multiplets. The top components of these mul-

tiplets are spin 3/2 conserved currents of dimension ∆ = 7/2 (Jαα̇β̇ and Jαβα̇). They
generate additional supersymmetry transformations beyond the N = 2 superalge-
bra in question. In particular, in the N = 2 description of an N = 4 SCFT, one
finds two copies of each of these multiplets transforming as a doublet of the “flavor”
SU(2)F ⊂ SU(4)R that commutes with SU(2)R × U(1)r ⊂ SU(4)R. The Schur opera-
tors have ∆ = 5/2, and have index structure O11

+̇
and O11

+ . In N = 4 supersymmetric

9The only other supermultiplet that contains a global flavor symmetry current is Ĉ0( 1
2
, 1
2
). However, that

multiplet also contains higher-spin currents, thus showing that the only points on a conformal manifold at
which the flavor symmetry enhances are the points where the SCFT develops a free decoupled subsector.
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Yang-Mills theory, these are the operators Tr q1i λ̃
1
+̇
and Tr q1i λ

1
+, where i = 1, 2 is the

SU(2)F index.

2.3.2 Notable elements of the chiral algebra

Armed with a working knowledge of the relevant four-dimensional operators, we now proceed
to derive some universal entries in the 4d/2d dictionary. We first recall from §2.2.3 the
process by which a meromorphic operator in two dimensions is obtained from an appropriate
protected operator in four dimensions. Starting with a Schur operator in four dimensions,
we obtain a two-dimensional chiral operator via the following series of specializations:

O1···1
+···++̇···+̇

(x) Schur operator

O(z, z̄) ∼= uI1(z̄) · · · uI2R(z̄)O(I1···I2R)(z, z̄) Twisted-translated Schur operator

[O(z, z̄)]◗ Chiral cohomology class

O(z) Two-dimensional chiral operator

In general we will refer to this associated chiral operator via the following notation:

O(z) = χ[O1···1
+···++̇···+̇] ,

where sometimes we will be lax about the argument of the χ map and allow O1···1
+···++̇···+̇

to be

replaced by the more generic form of the operator OI1···I2R
α1···α2j1

α̇1···α̇2j2
. Our first task will be to

understand the chiral operators that are related to certain characteristic Schur operators of
a four-dimensional theory. In doing so we will discover some interesting and generic features
of this correspondence.

Virasoro enhancement of the sl(2) symmetry

The holomorphic sl(2) algebra generated by {L−1, L0, L1} is a manifest symmetry of the
chiral algebra. Remarkably, this global conformal symmetry is enhanced to the full Virasoro
algebra. The Virasoro algebra is generated by the modes Ln, n ∈ Z, of a holomorphic
stress tensor of dimension two T (z). Surveying Table 2.1, we find a suitable candidate that
is present in any theory T : the Schur operator belonging to stress tensor multiplet Ĉ0(0,0).
One should note that the Schur operator in this multiplet is not the four-dimensional stress
tensor, but rather the component J11

++̇
of the SU(2)R current JIJ

αα̇ .
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The corresponding twisted-translated operator is defined as follows,

JR(z, z̄) := uI(z̄) uJ (z̄) J
IJ
++̇

(z, z̄) . (2.44)

Per the discussion of §2.2, we identify the cohomology class [JR(z, z̄)]◗ i
with a dimension

two meromorphic operator in the chiral algebra χ[ T ],

TJ (z) := κ [JR(z, z̄)]◗ i
. (2.45)

We provisionally include the subscript J as a reminder of the definition (2.45); we still need
to establish that the OPEs of TJ (z) with itself and with other operators in the chiral algebra
take the standard forms appropriate to a two-dimensional stress tensor. With this in mind,
we have also included a normalization factor κ, to be fixed momentarily in order to recover
the canonical TT OPE.

The two- and three-point functions of the R-symmetry current with itself are fixed by
N = 2 superconformal invariance in terms of a single parameter c4d, which is one of the two
conformal anomaly coefficients (the other being a4d). Starting from the OPE of two SU(2)R
currents [54],

JIJ
µ (x)JKL

ν (0) ∼ 3c4d
4π4

ǫK(IǫJ )Lx
2gµν − 2xµxν

x8
+

2i

π2

xµxνx · J (K(IǫJ )L)

x6
+ · · · , (2.46)

we find the following OPE of twisted-translated Schur operators,

JR(z, z̄)JR(0, 0) ∼ − 3c4d
2π4z4

− 1

π2

JR(0, 0)
z2

− 1

π2
z̄
uIuJ J

IJ
−−̇

(0)

z3
+

i

π2
z̄
J21
++̇

(0)

z2
+

i

π2
z̄2
J21
−−̇

(0)

z3
+ · · · . (2.47)

Because the last three terms have non-zero L̂0 eigenvalue, they are guaranteed to be ◗ i-exact.
Upon setting κ = −2π2, we find the following meromorphic OPE for TJ ,

10

TJ (z) TJ (0) ∼
−6 c4d
z4

+
2 TJ (0)

z2
+
∂TJ (0)

z
. (2.48)

Happily, we recognize in (2.48) the familiar two-dimensional TT OPE with central charge
c2d given by

c2d = −12 c4d . (2.49)

10The term corresponding to the simple pole does not immediately follow from the OPE given in (2.47).
In particular, though the presence of ∂TJ (0) is guaranteed as a consequence of the double pole, we may worry
that an additional quasiprimary (in the two-dimensional sense) may also appear. Such a quasiprimary O
would have to be a boson of holomorphic dimension h = 3 and have nonzero three point function 〈TJ TJO〉.
This is forbidden by Bose symmetry.
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This is the first major entry in our dictionary. Note that unitarity of the four-dimensional
theory requires c4d > 0, so the chiral algebra will have negative central charge and will
therefore necessarily be non-unitary.

It is not immediately clear from the arguments presented thus far that TJ (z) will have
the correct OPE with operators of the chiral algebra. In other words, the assertion that
TJ acts as the stress tensor of the chiral algebra means that the “geometric” sl(2) gen-
erators {L−1, L0, L+1} defined by the embedding (2.19) of the two-dimensional conformal
algebra into the four-dimensional one should coincide in cohomology with the generators
{LJ

−1, L
J
0 , L

J
+1} defined by the mode expansion of TJ (z). It would be sufficient to verify that

this is the case for quasiprimary operators, by which we mean operators O(z) that, when
inserted at the origin, are annihilated by the holomorphic special conformal generator

[L+1,O(0)] = 0 . (2.50)

In our construction, such an O(z) arises as the cohomology class of a twisted-translated
primary Schur operator. The assertion is then that in the chiral algebra (i.e., up to ◗ i-exact
terms), the TJ OPEs take the form

TJ (z)O(0) ∼ · · ·+
0

z3
+
h O(0)
z2

+
∂O(0)
z

, (2.51)

where h is the holomorphic dimension of O and the dots indicate possible poles of order four
or higher. Though we have not been able to find a general proof, we believe (2.51) to be a
universal consequence of superconformal Ward identities. It is thanks to the relation for the
conformal dimension h = R+ j1+ j2 that the SU(2)R current can reproduce the appropriate
scaling dimension, and the absence of additional operators should be excluded by selection
rules for three-point functions of Schur-type superconformal multiplets. In practice, we have
been able to give an abstract argument that this OPE holds only for the case where O is a
scalar operator. For non-scalar operators in the abstract setting, we leave the structure of
these OPEs as a conjecture. Later in this section, the OPE (2.51) will be shown to hold in
full generality in the theories of free hypermultiplets and free vector multiplets. The abstract
claim would follow if the most general solution of the requisite Ward identity is expressible
as a linear combination of structures corresponding to free field models, which is empirically
the case in all analogous situations with which the authors are familiar.

Affine enhancement of the flavor symmetry

We next turn to the role played by the flavor symmetries of T in the associated chiral
algebra. When T enjoys a flavor symmetry GF , the corresponding conserved current Jαα̇
is an element of a B̂1 supermultiplet, which additionally contains as its Schur primary the
moment map operatorM11 described in the list at the end of §2.3.1. We expect the presence
of GF symmetry to make itself known via the chiral operator associated to the moment
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map. Following the now-familiar procedure, we define a ◗ i-closed operator M(z, z̄) via
twisted translations of the Schur moment-map operator from the origin, and identify the
corresponding cohomology class as a meromorphic operator in the chiral algebra,

M(z, z̄) := uI(z̄)uJ (z̄)M
IJ (z, z̄) , J(z) := κ[M(z, z̄)]◗ i

. (2.52)

The normalization constant κ will be determined momentarily. The meromorphic operator
J(z) has holomorphic dimension h = 1. We have suppressed flavor indices up to this point,
but these operators all transform in the adjoint representation of the flavor symmetry group,
and so we actually find dimGF dimension one currents JA(z) in the chiral algebra. It is
natural to suspect that these operators will behave as affine currents for the flavor symmetry.
Indeed, a little calculation bears out this expectation. First, recall that the central charge k4d
of the flavor symmetry is defined in terms of the self-OPE of the conserved flavor symmetry
current as follows,

JAµ (x) J
B
ν (0) ∼

3k4d
4π4

δAB
x2gµν − 2xµxν

x8
+

2

π2

xµxνf
ABCx · JC(0)
x6

+ · · · . (2.53)

Here A,B,C = 1, . . . , dimGF are adjoint flavor indices, and we are using normalizations
such that long roots of a Lie algebra have length

√
2 as in [54]. In the same conventions, the

OPE of two moment maps reads

MA IJ (x)MB KL(0) ∼ − 3k4d
48π4

ǫK(IǫJ )LδAB

x4
−
√
2

4π2

fABCMC (I(KǫL)J )

x2
+ · · · . (2.54)

The OPE for the corresponding twisted-translated operators follows directly,

MA(z, z̄)MB(0, 0) ∼ − 3k4d
48π4

δAB

z2
+

√
2

4π2
i
fABCMC(0, 0)

z
+

√
2

4π2
fABCMC 21(0)

z̄

z
+· · · , (2.55)

where the last term is ◗ i-exact. Setting κ = 2
√
2π2, we recognize the canonical current

algebra OPE,11

JA(z)JB(w) ∼ k2d
δAB

(z − w)2 +
∑

C

ifABC
JC(w)

z − w , (2.56)

where the two-dimensional affine level k2d is related to the four-dimensional flavor central
charge k4d by

k2d = −
k4d
2

. (2.57)

11In two dimensions it is standard to define a convention-independent affine level k2d as k2d := 2k̃2d

θ2 ,

where k̃2d is the level when the length of the long roots are normalized to be θ. In our conventions θ2 = 2
and so k̃2d = k2d.
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This is the second important entry in the dictionary.

The Hall-Littlewood chiral ring and chiral algebra generators

An interesting problem that will be of particular concern in §2.5 is that of giving a simple
description of the chiral algebra χ[ T ] associated to a given T in terms of a set of generating
currents. Generators of a chiral algebra are by definition those sl(2) primary operators
{Oj} for which the normal ordered products of their descendants, i.e., operators of the form
∂n1O1∂

n2O2 . . . ∂
nkOk, span the whole algebra.12 When the chiral algebra has only a finite

number of generators, it is customary to refer to it as a W-algebra.
While we have given a clear set of rules that identifies the spectrum of the chiral algebra

given the spectrum of the four-dimensional theory T , these rules have little to say about
the question of what operators are generators of χ[ T ]. There turns out to be a subset of
generators that is always relatively easy to identify. Recall from §2.3.1 that the HL chiral
and anti-chiral rings are consistent truncations of the N = 1 chiral and anti-chiral rings
of T , respectively. As such, they are commutative rings, and it is often possible to give
them presentations in terms of generators and relations. What we show now is that the
meromorphic operators associated to the generators of the HL chiral and antichiral rings are
in fact generators of χ[ T ] in the chiral algebra sense.

Given the shortening conditions they obey, one finds that the chiral algebra operators
associated to HL operators have holomorphic dimension h = R + |r|. In order to establish
the claim made above, we will show that an HL operator can never arise as a normal ordered
product of other operators that are not themselves of HL type. Let O1(z, z̄) and O2(z, z̄) be
two generic twisted-translated Schur operators, and let us assume that their OPE contains
an HL operator OHL

3 ,

O1(z, z̄)O2(0, 0) ∼
1

zh1+h2−h3
OHL

3 (0, 0) + . . . (2.59)

By assumption, h3 = R3 + |r3|, while (2.41) implies that h1 > R1 + |r1|, h2 > R2 + |r2|. The
U(1)r charge is conserved, so r3 = r1+r2 and |r3| 6 |r1|+|r2|. Furthermore, SU(2)R selection
rules imply the triangular inequality R3 6 R1 +R2. Combining these (in)equalities, we find
that h3 6 h1+h2, which implies that an HL operator may only appear on the right hand side
as a singular term (if h3 < h1+h2) or as the leading non-singular term (if h3 = h1+h2). The
latter possibility requires that O1 and O2 saturate the respective bounds (2.41) for h1 and
h2, which is to say that they themselves must be HL operators. This argument establishes

12We are adopting the normal ordering conventions of [55], in which a sequence of chiral operators
represents left-nesting of conformally normal-ordered products:

O1O2 · · · On−1On := (O1(O2(· · · (On−1On)))) . (2.58)

The algebra of operators so-defined is non-commutative and non-associative.
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that HL operators cannot be generated as normal ordered products of non-HL operators,
and so the generators of the HL chiral and antichiral rings must necessarily be generators of
the chiral algebra.

The Hall-Littlewood chiral ring and Virasoro primaries

A further interesting feature of the HL chiral ring operators is that their corresponding
meromorphic operators are always Virasoro primaries. For the generators of the HL chiral
ring, this is already clear since the generators of any chiral algebra that includes a stress
tensor are necessarily primaries of the Virasoro subalgebra. For other HL operators, though,
this is a useful result that will help organize our thinking about some of the examples studied
in §2.5.

The statement follows from a relatively straightforward analysis of the OPE of the mero-
morphic stress tensor with an arbitrary HL operator. In particular, let O1(z) be the mero-
morphic operator associated to an HL operator in four dimensions. The quantum numbers
of O1 obey the HL relation

h1 = R1 + |r1| . (2.60)

Now the crucial observation from which our result follows is this: from a four-dimensional
perspective, the meromorphic stress tensor is a z̄-dependent linear combination of operators
with r = 0 and R = 0,±1. Consequently, in the OPE of the meromorphic stress tensor with
O1(0), the only operators that may appear will have R = R1 ± 1 or R = R1 and r = r1.
With what power of z can such an operator appear in the OPE? A Schur operator Oγ(0)
with R = R1 + γ andM = |r1|+ 2min(j1, j2) will appear in the OPE as

T (z)O1(0) ⊃
Oγ(0)

z2+R1+|r1|−R−M
=

Oγ(0)
z2−γ−2min(j1,j2)

. (2.61)

This is at most a pole of order three (when γ = −1 and j1 = 0 or j2 = 0), but such a pole
cannot appear because HL operators are always sl(2) primaries – thus the most singular term
possible is a pole of order two. This is precisely the property that characterizes Virasoro
primary operators, and so we have our result.

2.3.3 The chiral algebras of free theories

The simplest N = 2 SCFTs are the theories of a free hypermultiplet and that of a free vector
multiplet. For these special cases, we give a complete description of the associated chiral
algebras. These chiral algebras are useful as the building blocks of interacting Lagrangian
theories, some of which are discussed in §2.4. We describe in turn the cases of hypermultiplets
and vector multiplets.
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Free hypermultiplets

Let us consider the field theory of a single free hypermultiplet. The hypermultiplet itself lies
in the short supermultiplet B 1

2
, in which the primary Schur operators are the scalars Q and

Q̃. These are the highest weight states in a pair of SU(2)R doublets,

QI =


 Q

Q̃∗


 , Q̃I =


 Q̃

−Q∗


 . (2.62)

The single free hypermultiplet enjoys an SU(2)F flavor symmetry, under which QI and Q̃I

transform as a doublet. To work covariantly in terms of this SU(2)F , we can introduce the
following tensor,

QI
Î
:=


 Q Q̃

Q̃∗ −Q∗


 , (2.63)

where Î = 1, 2 is the newly minted SU(2)F index.
The Schur operators in this free theory are all the “words” that can be constructed

out of the “letters” {Q, Q̃, ∂++̇}. As there are no singularities in the products of (∂++̇

derivatives of) Q and Q̃, the operator associated to any given word is well-defined and
the Schur operators in this theory form a commutative ring. The set of all meromorphic
operators in the free hypermultiplet chiral algebra are therefore precisely the ◗ i cohomology
classes of the twisted-translated versions of these words. This chiral algebra is itself a free
chiral theory in two dimensions. Let us see how this works.

The twisted-translated operators and the associated meromorphic operators for the hy-
permultiplet scalars themselves are defined as follows,

QÎ(z, z̄) := uI(z̄)Q
I
Î
(z, z̄) , qÎ(z) := [QÎ(z, z̄)]◗ i

. (2.64)

The relation to the operators defined in §2.2.4 is qÎ(z) = (q(z), q̃(z)). This is an SU(2)F
doublet of dimension 1/2 meromorphic fields, the OPE of which can be computed using the
free-field OPE in four dimensions and the definition of the twisted translated operators in
(2.64),

qÎ(z) qĴ (w) ∼
εÎĴ
z − w . (2.65)

It is reasonably easy to see that the entire spectrum of the chiral algebra of four-dimensional
hypermultiplets is obtained by taking normal ordered products of the qÎ(z) and their de-
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scendants. In particular, one can show that the following diagram commutes,13

{Oi ,Oj} OiOj

{[Oi] , [Oj]} : [Oi][Oj] :

×4d

◗ i ◗ i

×::

, (2.66)

where the top row represents multiplication in the ring of Schur operators, the bottom
row represents creation/annihilation normal ordered products of chiral vertex operators,
and the vertical arrows represent the identification of a Schur operator with its meromorphic
counterpart in the chiral algebra. It follows that the meromorphic operator associated to any
given word in (∂++̇derivatives of) Q and Q̃ is simply the corresponding creation/annihilation
normal ordered product of (holomorphic derivatives of) q and q̃.

The chiral algebra of the free hypermultiplet is thus none other than the free symplectic
boson algebra (cf. [56]). This simple example serves to illustrate some of the general points
made in the previous subsections. The symplectic boson theory has a canonical stress tensor,

T (z) =
1

2
εÎĴ qÎ∂qĴ (z) , (2.67)

and it is easy to check that the modes {L+1, L0, L−1} appearing in Laurent expansion of
(2.67) reproduce the action of the holomorphic sl(2) symmetry inherited from four dimen-
sions. Thus the holomorphic sl(2) is indeed enhanced to Virasoro symmetry. Moreover, we
observe that given the form of the SU(2)R current in four dimensions

J IJ
µ (x) ∼ εÎĴQ

(I

Î
∂µQ

J )

Ĵ
(x) , (2.68)

The corresponding meromorphic operator TJ (z) will be equivalent to the canonical stress
tensor,

T (z) = TJ (z) . (2.69)

From the TT OPE we read off the central charge c2d = −1. Recalling that the conformal
anomaly coefficient of a free hypermultiplet is c4d = 1/12, this result is in agreement the
universal relation c2d = −12c4d. The symplectic boson theory is like the theory of a complex
free fermion (which of course has c2d = 1), but with opposite statistics, hence the opposite
value of the central charge.

Finally we mention a minor generalization of the above story for hypermultiplets. Gauge
theories with N = 2 supersymmetry are often described in terms of half-hypermultiplets
instead of whole hypermultiplets. The generalization of the chiral algebra to the half-

13We will see when we come to consider interacting theories in §2.5 that product structures on Schur
operators do not always translate so simply into those of the chiral algebra.
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hypermultiplet conventions is straightforward. Let us consider half-hypermultiplets trans-
forming in a pseudo-real representation R of some symmetry group G (at the moment we
are working at zero coupling, so G is just a global symmetry group). The corresponding
chiral algebra will be generated by dimR meromorphic fields,

qi , i = 1, . . . , dimR , (2.70)

and the singular OPE of these operators will be given by

qi(z)qj(w) ∼
Ωij

z − w . (2.71)

Here Ωij is the anti-linear involution that maps the representation R to its conjugate and
squares to minus one. The description of the single full hypermultiplet in (2.65) actually fits
into this framework with G = SU(2)F .

Free vector multiplet

The other key ingredient in Lagrangian SCFTs is the theory of free vector multiplets. Free
vectors lie in the short supermultiplet D̄0(0,0) and its conjugate D0(0,0), whose superconformal
primaries are the complex scalar φ and its conjugate φ̄, respectively. The primary Schur op-
erators in these multiplets are the fermions λ1+ and λ̃1

+̇
, and as in the case of hypermultiplets,

the entire set of Schur operators in this theory is comprised of the words built out of the
letters λ1+, λ̃

1
+̇
, and ∂++̇.

The twisted-translated operators associated to the vector multiplet fermions are defined
as follows,

λ(z, z̄) := uI(z̄)λ
I
+(z, z̄) , λ̃(z, z̄) := uI(z̄)λ̃

I
+̇(z, z̄) , (2.72)

and the ◗ i-cohomology classes of these operators are Grassmann-odd, holomorphic fields of
dimension h = 1,

λ(z) := [λ(z, z̄)]◗ i
, λ̃(z) := [λ̃(z, z̄)]◗ i

. (2.73)

Using the four-dimensional free field OPEs, it is easy to derive the OPEs of these holomorphic
fields. They are again the OPEs of a free chiral algebra:

λ̃(z)λ(0) ∼ 1

z2
, λ(z)λ̃(0) ∼ − 1

z2
. (2.74)

Indeed, the free-field form of these OPEs leads to an analogous commutative diagram to
(2.66), which ensures that all the meromorphic operators in this theory are generated by
λ(z) and λ̃(z) in the chiral algebra sense. We can recognize this chiral algebra as the (b, c)
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ghost system of weight (1, 0),14

λ̃ := b(z) , λ(z) := ∂c(z) . (2.75)

In making this identification, we have introduced an extra spurious mode – the zero mode
c0 of c(z) – which is of absent in the algebra generated by λ(z) and λ̃(z). Thus, the more
precise statement is that the chiral algebra associated to the vector multiplet is the so-called
“small algebra” of the (b, c) system, which is by definition the algebra generated by b(z) and
∂c(z) (cf. [57, 58]). In other words, the Fock space of the small algebra is the subspace of
the (b, c) Fock space that does not contain c0, or equivalently, the subspace annihilated by
b0,

Fsmall := {ψ ∈ Fbc | b0ψ = 0} . (2.76)

The small algebra enjoys a global SL(2,R) symmetry under which λ(z) and λ̃(z) transform
as a doublet. We can make this symmetry manifest by introducing the notation ρα with
α = ±, where ρ+ := λ̃ and ρ− := λ. Note that the Cartan generator of this symmetry acts
as the U(1)r charge. In the language of the small algebra, the OPE can be put in a covariant
form,

ρα(z) ρβ(0) ∼ εαβ

z2
. (2.77)

As in the hypermultiplet case, the action of the {L+1, L0, L−1} modes of the canonical
ghost stress tensor can easily be seen to match the action of the geometric sl(2) action
inherited from the four-dimensional conformal algebra. Furthermore, given the SU(2)R
current of the free vector theory,

J IJ
αα̇ (x) ∼ λ(Iα λ̃

J )
α̇ (x) , (2.78)

we see that the canonical stress tensor coincides precisely with the dimension two current
TJ obtained from the R-symmetry current by the usual map,

T (z) = −1

2
εαβρ

αρβ(z) = TJ (z) . (2.79)

The central charge of the (b, c) ghost system/small algebra is c2d = −2, which can be seen
to agree with the relation (2.49) upon recalling that c4d =

1
6
for a free vector multiplet.

2.3.4 Gauging prescription

The natural next step is to consider interacting SCFTs. Lagrangian N = 2 SCFTs can
be described using hypermultiplets and vector multiplets as elementary building blocks (see

14Recall that the derivative of a dimension zero conformal primary field – c(z) in this case – is again a
conformal primary.
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[11] for a recent classification of all possibilities). In particular, such an SCFT consists of
vector multiplets transforming in the adjoint representation of a semisimple gauge group
G = G1 × G2 · · · × Gk, along with a collection of (half)hypermultiplets transforming in
some representation R of the gauge group such that the one-loop beta functions for all
gauge couplings vanish. Supersymmetry ensures that the theory remains conformal at the
full quantum level. The building blocks of the corresponding chiral algebra are a collection
of symplectic bosons {q , q̃} in the representation R, and a collection of (b , c) ghost small
algebras in the adjoint representation of G. When the gauge couplings are strictly zero, the
chiral algebra is simply obtained by imposing the Gauss law constraint, i.e., by restricting
to the gauge-invariant operators of the free chiral algebra of symplectic bosons and ghosts.
Our next step will be to determine what happens as we turn on the gauge couplings.

In fact, as Lagrangian theories are a small subset of all possible N = 2 SCFTs, it is
worthwhile to put the discussion in a more general context. Given a general superconformal
field theory T with GF flavor symmetry, a new SCFT is obtained by gauging a subgroup
G ⊂ GF provided the gauge coupling beta function vanishes. We will denote the gauged
theory with a nonzero gauge coupling g as TG.15 Though T may be strongly coupled,
the gauging procedure can be described in semi-Lagrangian language. By assumption, T
possesses a conserved flavor symmetry current JAαα̇, where A = 1, . . . dim G, which by N = 2
supersymmetry is the top component of the moment map supermultiplet B̂1. The gauged
theory TG is described by minimally coupling an N = 2 vector multiplet to B̂1. Of particular
importance is the addition to the action, in N = 1 notation, of the superpotential coupling

g

∫
d2θΦAM11,A + h.c. , (2.80)

where Φ is the N = 1 chiral superfield in the N = 2 vector multiplet, and M11 is the N = 1
chiral superfield whose bottom component is the complex moment mapM11; both transform
in the adjoint representation of G.

Let us assume that the chiral algebra χ[T ] is known. It will suffice to work abstractly, in
the sense that the only features of χ[T ] that we will use follow directly from the existence
of the global G symmetry. In particular, there will be an affine current JA(z) at level
k2d = −1

2
k4d (cf. §2.3.2). As we mentioned above, at zero gauge coupling the chiral algebra

of the gauged theory is obtained by imposing the Gauss law constraint on the tensor product
algebra of χ[T ] with the G-ghost small algebra (ρ+, ρ−). In fact, it will be more useful to
introduce the full (b, c) system and restrict to the small algebra by imposing the auxiliary
condition bA0 ψ = 0 for any state ψ.

15More precisely, there is one independent gauge coupling for each simple factor of the gauge group. To
avoid clutter we focus on the procedure for gauging one simple factor at the time, so G will taken to be a
simple group in what follows.
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The affine current associated to the G symmetry in the ghost sector is

JAgh := −i fABC (cBbC) . (2.81)

The Gauss law, or gauge-invariance, constraint requires that all physical states should have
vanishing total gauge charge, which is measured by the zero mode of the total gauge sym-
metry current,

JAtot(z) := JA(z) + JAgh(z) . (2.82)

Symbolically, we can therefore define the chiral algebra at zero gauge coupling as follows:

χ[T (0)
G ] = {ψ ∈ χ[T ]⊗ (bA, cA) | bA0 ψ = JAtot 0ψ = 0} . (2.83)

We are now ready to address the problem of identifying the chiral algebra for TG with g 6= 0.

BRST reduction of the chiral algebra

On general grounds, we expect that the chiral algebra of the interacting gauge theory will
contain fewer operators than the non-interacting version, because some of the short multi-
plets containing Schur operators that are present at zero coupling will recombine into long
multiplets and acquire anomalous dimensions. Ideally, we would like to describe this phe-
nomenon using only the general algebraic ingredients that we have introduced so far. A
crucial hint comes from phrasing the condition of conformal invariance of the gauge theory
more abstractly. The vanishing of the one-loop beta function amounts to the requirement
that in the ungauged theory, the flavor symmetry central charge is given by

k4d = 4h∨ , (2.84)

where h∨ is the dual Coxeter number of the gauge group. This means that in two-dimensional
language, the corresponding symmetry in χ[T ] must have its affine level given by

k2d = −2h∨ . (2.85)

The affine level of the ghost-sector flavor currents Jgh is easily calculated to be 2h∨, so the
requirement of conformal invariance translates into the condition that the level of the total
affine current JAtot be zero. Precisely in this case, it is possible to construct a nilpotent BRST
operator in the chiral algebra. Imitating a construction familiar from coset conformal field
theory [59], we define

QBRST :=

∮
dz

2πi
jBRST(z) , jBRST := cA

[
JA +

1

2
JAgh

]
. (2.86)
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Our contention is that the chiral algebra corresponding to the gauged theory at finite coupling
is obtained by passing to the cohomology of QBRST relative to the ghost zero modes bA0 ,

16

χ[TG] = H∗
BRST[ψ ∈ χ[T ]⊗ (bA, cA)

∣∣ bA0 ψ = 0] . (2.87)

Apart from its elegance, there are compelling physical arguments behind this claim. We will
show that states of the chiral algebra that define nontrivial cohomology classes of QBRST

correspond to the four-dimensional Schur states that survive in the interacting theory. By
construction, all states of χ[T (0)

G ] are annihilated by the four supercharges in (2.37). As
we turn on the gauge coupling, those supercharges receive quantum corrections, and only a
subset of states remains supersymmetric. We will see that QBRST precisely implements the
O(g) correction to one of the Poincaré supercharges, which will justify our conjecture under
the assumption that higher order corrections do not remove any additional states.

A preliminary remark is that the Gauss law constraint is imposed automatically. Because

{bA0 , QBRST} = JAtot 0 , (2.88)

states in the small algebra that are QBRST-closed are automatically gauge invariant. Conse-
quently, we have the simpler expression,

χ[TG] = H∗
BRST[χ[T (0)

G ]] . (2.89)

We can rewrite QBRST and separate out the ghost zero modes,

QBRST = cA0 J
A
tot 0 + bA0X

A +Q− , (2.90)

where we have defined

XA := − i
2
fABC

(∑

n 6=0

: cB−nc
C
n : −cB0 cC0

)
, (2.91)

while Q− anticommutes with both cA0 and bA0 and can thus be expressed purely in terms of
(ρ+A, ρ−A),

Q− :=
∑

n 6=0

1

n
: ρ−A−nJ

A
n : +

i

2
fABC

∑

n 6=0
m 6=0
m 6=n

1

nm
: ρ−A−nρ

−B
m ρ+Cn−m : . (2.92)

The operator Q− fails to be nilpotent by a term proportional to JAtot 0, so it is nilpotent when

16In other terms, the BRST cohomology is being defined entirely in the small algebra: two QBRST-closed
states belong to the same cohomology class if and only if they differ by an exact state QBRSTλ, where λ is
also in the small algebra.
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acting on gauge-invariant states. It follows that (2.88) can be equivalently written as

χ[TG] = H∗
Q− [ψ ∈ χ[T ]⊗ (ρ+A, ρ−A) ,with JAtot 0ψ = 0] . (2.93)

This is the form of our conjecture that makes more immediate contact with four-dimensional
physics. We will show that the action of Q− precisely matches to the action of Q̃(1)

2−̇
, the

O(g) term in the expansion of the supercharge Q̃2−̇,

Q̃2−̇ = Q̃(0)

2−̇
+ g Q̃(1)

2−̇
+O(g2) . (2.94)

In fact, Q− is the lowest component of an SL(2,R) doublet of operators Qα, with

Q+ :=
∑

n 6=0

1

n
: ρ+A−nJ

A
n : +

i

2
fABC

∑

n 6=0
m 6=0
m 6=n

1

mn
: ρ+A−nρ

+B
m ρ−Cn−m : . (2.95)

In complete analogy, the action of Q+ will be shown to be isomorphic to that of Q1(1)
− ,

the O(g) term in the expansion of Q1
−. The two Poincaré supercharges Q1

− and Q̃2−̇ play a
completely symmetric role in the definition of Schur operators. The fact that QBRST contains
Q− rather than Q+ is a consequence of our choice (2.75), which treated λ and λ̃ in a slightly
asymmetric fashion.

Fortunately, to leading order in the gauge coupling the action of the relevant super-
charges takes a universal form in the subspace of operators that obey the tree-level Schur
condition. Such operators are obtained by forming gauge-invariant combinations of more
elementary building blocks, namely the conformal primaries of the “matter” SCFT T , the
gauge-covariant derivative D++̇, and the gauginos λ̃1

+̇
and λ1+. The supersymmetry variation

of a gauge-invariant “word” is found by using the Leibniz rule to act on each elementary
“letter”.17 It is then sufficient to specify the SUSY variations of the letters:

1. Q1
− and Q̃2−̇ (anti)commute with the conformal primary operators in the matter sector
T .

2. For the gauge-covariant derivative D++̇ := ∂++̇ + gA++̇,

[Q1
−, D++̇] = gλ̃1+̇ , [Q̃2−̇, D++̇] = gλ1+ , (2.96)

where we have just used the tree-level variation of the gauge field, times the explicit
factor of g.

17For the special case of N = 2 superconformal QCD, a very explicit description of the action of Q1(1)
− in

the subsector of tree-level Schur operators can be found in Section 5 of [60].
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3. Finally the variations of the gauginos can be deduced from the non-linear classical
equations of motions of the vector multiplet, minimally coupled to the moment map
supermultiplet B̂1,

{Q̃2−̇, λ̃
1
+̇} = {Q1

−, λ
1
+} = F 11 = gM11 (2.97)

{Q̃2−̇, λ
1
+} = {Q1

−, λ̃
1
+̇} = 0 ,

where F 11 is the highest-weight of the SU(2)R triplet of auxiliary fields in the N = 2
vector multiplet.18

If a Schur operator in the free theory is to retain its Schur status at O(g), then when inserted
at the origin it must be annihilated by the one-loop corrections to the four relevant super-
charges, {Q̃(1)

2−̇
, (Q̃(1)

2−̇
)†,Q1(1)

− , (Q1(1)
− )†}. Equivalently, it must define a nontrivial cohomology

class with respect to Q̃(1)

2−̇
and Q1(1)

− . Conveniently, the recombination rules for shortened
multiplets of Schur type (cf. Appendix B) are such that in any such recombination, the
Schur operators of T (0) are lifted in quartets that are related by the action of these two
supercharges in the manner indicated in the following diagram:

ĈR+ 1
2
(j1−

1
2
,j2)

ĈR(j1,j2) ĈR+1(j1−
1
2
,j2−

1
2
)

ĈR+ 1
2
(j1,j2−

1
2
)

Q̃
(1)

2−̇Q
1(1)
−

Q̃
(1)

2−̇ Q
1(1)
−

(2.98)

In the diagram, we are labeling Schur operators by the name of the supermultiplet to which
they belong.19 Consequently, if an operator remains in the cohomology of either supercharge,
it necessarily remains in the cohomology of both, and so stays a Schur operator at one-loop
order. For example, if an operator becomes Q1(1)

− exact then it is either at the right or at the

top of the diagram and it follows that it is either Q̃(1)

2−̇
exact or not Q̃(1)

2−̇
closed, respectively.

The other cases can be treated analogously.
Under the 4d/2d identifications

Q̃(1)

2−̇
→ Q− , Q1(1)

− → Q+ , D++̇ → ∂ , λ1+ → ρ− , λ̃1+̇ → ρ+ , (2.99)

18In an N = 1 description of the N = 2 vector multiplet, F 11 = F̄ , where F is the top component of
chiral superfield φ, whose superpotential coupling with the moment map is given in (2.80).

19To include all possible recombinations, we must formally allow j1 and j2 to take the value − 1
2 as well,

and re-interpret a Ĉ multiplet with negative spins as a B̂, D or D̄ multiplet, according to the rules:
ĈR(j1,−

1
2
) := D̄R+ 1

2
(j1,0), ĈR(− 1

2
,j2)

:= DR+ 1
2
(0,j2), ĈR(− 1

2
,− 1

2
) := B̂R+1.
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one easily checks that (2.92) and (2.95) have precisely the right form to reproduce the action
of the O(g) correction to the four-dimensional supercharges. Thus, the BRST cohomology
specified in (2.87) is just the right thing to project out states whose corresponding Schur
operators are lifted at one-loop order.

It is of some interest to note that this story of one-loop corrections to the spectrum of
Schur operators admits a simple truncation to the case of HL chiral ring operators. The
tree-level HL operators will be gauge-invariant combinations of the HL operators of T and
the gaugino λ1+. The operators that are lifted from the spectrum at one-loop will be those

that are related by the corrected supercharge Q̃(1)

2−̇
, whose action in this sector is completely

determined by (2.97). The problem of finding the HL operators in the spectrum of the
interacting theory thus becomes a miniature “HL-cohomology” problem. In examples, it is
sometimes useful to solve this problem as a first step in order to determine some important
operators that will necessarily make an appearance in the chiral algebra.

Finally, a caveat is in order. We have assumed that the Schur operators that persist
at infinitesimal coupling will remain protected at any finite value of the coupling. In some
concrete cases, it can be demonstrated that no further recombination of shortened multiplets
is possible. Moreover, in the examples of §2.5 we will propose simple economical descriptions
for the chiral algebras defined by this cohomological recipe, and demonstrate that they have
the symmetries expected at finite coupling from S-duality, giving strong evidence for our
proposal, at least in those examples.

Non-renormalization of three-point couplings

So far, we have studied how the spectrum of operators is modified when the coupling is
turned on, but we have said nothing about the OPE coefficients of the remaining physical
operators in the gauged theory. Our implicit assumption has been that the OPE coefficients
of operators that remain protected at finite coupling are actually independent of the coupling.
From a two-dimensional perspective, it seems unlikely that the OPE coefficients could change
due to the extremely rigid structure of chiral algebras, and we expect a corresponding non-
renormalization statement to hold in four dimensions. Indeed, such a non-renormalization
theorem directly follows from the methods and results of [61]. Let us consider the four-point
function of three Schur-type operators and of the exactly marginal operator Oτ responsible
for changing the complexified gauge coupling,

〈OI1
1 (x1)OI2

2 (x2)OI3
3 (x3)Oτ (x4) 〉 , (2.100)

where I = (I(1) . . . I(k)) with I(i) = 1, 2 are SU(2)R multi-indices and we have suppressed
Lorentz indices. Non-renormalization of the appropriate three-point function of Schur-type
operators will follow at once if we can argue that the above four-point function vanishes for
any x4 when x1,2,3 all lie on the plane. By a conformal transformation, we can always take
the fourth operator to lie on the same plane, and then focus on the SU(1, 1|2) subalgebra of
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SU(2, 2|2) defined by the embedding (2.20). The Schur-type operators are chiral primaries
of this subalgebra. The marginal operator Oτ , being the top component of an Ē2 multi-
plet of SU(2, 2|2), is of the form Oτ = {Q1, [Q2, . . . ]} where QI := QI

− are supercharges of
SU(1, 1|2).20 All the properties exploited in [61] to show the vanishing of the four-point func-
tion (2.100) are satisfied. The authors of [61] interpreted this result as a non-renormalization
theorem for three-point functions of chiral primaries of two-dimensional (0, 4) theories, but
exactly the same argument applies to our case as well.

We close this section by pointing out a curious aspect of the gauging prescription given
here. Given a chiral CFT χ[T ] with affine G symmetry, one can introduce a two-dimensional
vector field Az̄ and gauge G. Following standard arguments (for example, see [59, 62]), a
change of variables in the path integral eliminates the gauge field in favor of an extra G
current algebra at level −(2h∨ + k2d) and an adjoint-valued (b, c) ghost system. One must
also impose invariance under the standard BRST operator associated to the gauge symmetry.
In our case, 2h∨ + k2d = 0 so the extra current algebra is trivial, and the BRST operator
associated to the two-dimensional gauging takes precisely the form of (2.86). In some sense,
we have found that “4d gauging = 2d gauging”. We find it plausible that a localization-style
argument may shed light on this correspondence.

2.4 Consequences for four-dimensional physics

The chiral symmetry algebras that we have uncovered have extensive consequences for the
spectrum and structure constants of any N = 2 SCFT. To give a simple example, Vira-
soro symmetry implies that any Higgs branch half-BPS supermultiplet B̂R is accompanied
by an entire module of semi-short ĈR′(j,j) multiplets with R′ = R − 1, R,R + 1. In the
four-dimensional theory, the descendant operators arise by taking repeated normal ordered
products with certain components of the SU(2)R current, but the chiral algebra perspective
makes this structure much more transparent.

In this section we elaborate on the relationship between the observables associated to the
chiral algebra (i.e., its correlation functions and torus partition function) and those of the
parent four-dimensional theory. We first point out that the superconformal Ward identities
for four-point functions of B̂R operators [42, 43] are a simple consequence of our cohomological
construction. This new perspective makes it clear that analogous Ward identities must hold
for four-point functions of general Schur operators. The presence of meromorphic functions
in the solution of the Ward identities of [39, 42, 43] was one of the initial clues that led to
our work. We now have a neat conceptual interpretation for them: they are nothing but the
correlation functions of the associated chiral algebra. By exploiting the relationship between
the two-dimensional and four-dimensional perspectives we are able to derive new unitarity

20Similarly, the conjugate operator Ōτ is the top component of an E2 and can be written as {Q̃1, [Q̃2, . . . ]}.
An entirely analogous argument holds for the four-point function containing Ōτ .
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bounds that must be satisfied by the conformal and flavor anomalies of a general interacting
N = 2 SCFT. Finally, we delineate the relationship between the torus partition function of
the chiral algebra and the superconformal index of the parent four-dimensional theory.

2.4.1 Conformal twisting and superconformal Ward identities

By construction, for a given SCFT T , the correlation functions of χ[T ] are equal to certain
correlation functions of physical operators in T restricted to lie on the plane. From the
four-dimensional point of view these are somewhat unnatural correlators to study, as they
have explicit space-time dependence built into the operators. On the other hand, each
correlation function of χ[T ] is canonically associated to a family of more natural correlation
functions of T that are obtained by replacing the twisted-translated operators with the
corresponding untwisted operators at the same points in R2.

Let us consider such a correlator now. For simplicity, we specialize to a four-point
function, in which case there is actually no loss of generality in restricting the operators to
be coplanar. We denote the untwisted operators as OI(z, z̄), with SU(2)R multi-indices I =
(I(1), . . . , I(k)) where I(i) = 1, 2. The components of the multi-index are symmetrized; the
operator transforms in the spin k/2 representation of SU(2)R. Recall that in our conventions,
the Schur operator in this SU(2)R multiplet is the highest-weight state O1...1(z, z̄). We
represent the four-point function of such operators as

FI1I2I3I4(zi, z̄i) = 〈 OI1
1 (z1, z̄1)OI2

2 (z2, z̄2)OI3
3 (z3, z̄3)OI4

4 (z4, z̄4) 〉 . (2.101)

This is actually a collection of four-point functions labelled by the different possible as-
signments for the R-symmetry indices. The full collection of four-point functions can be
conveniently packaged by introducing two-component SU(2)R vectors u(yi) = (1, yi) and
defining contracted operators that depend on the auxiliary variable y as follows [42, 43]

Oi(zi, z̄i; yi) = uI1(yi) · · · uIki (yi)O
(I1···Iki )

i (zi, z̄i) . (2.102)

A single function of xi and yi can be defined that encodes the full content of the collection
of correlation functions in (2.101),

F(zi, z̄i; yi) = 〈 O1(z1, z̄1; y1)O2(z2, z̄2; y2)O3(z3, z̄3; y3)O4(z4, z̄4; y4) 〉 . (2.103)

Charge conservation ensures that this function is homogeneous in the auxiliary yi with weight
1
2

∑
ki, and the correlation function for a given choice of external R-symmetry indices can

be read off by selecting the coefficient of the appropriate monomial in the yi variables.
This repackaging makes it simple to state the relationship with correlation functions of

χ[T ]. The twisted chiral operators defined in §2.2.2 are the specialization of the repackaged
operators in (2.102) to yi = z̄i. So if the related four-point function of meromorphic operators
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Oi(z) = χ[Oi(z, z̄)] is defined as

f(z1, z2, z3, z4) = 〈O1(z1)O2(z2)O3(z3)O4(z4)〉 , (2.104)

then the correlation functions are related according to

f(zi) = F(zi, z̄i; yi)
∣∣
yi→z̄i

. (2.105)

The fact that the left-hand side of this equation is a meromorphic function of the operator
insertion points is a consequence of the cohomological arguments of the previous sections, but
it is also precisely the final form of the superconformal Ward identities for such a correlation
function [27, 39–43].

This is a rather wonderful result: the entirety of the constraints imposed by supercon-
formal Ward identities on the four-point function of half-BPS operators are captured by the
existence of the twist of §2.2.2. It is worth noting that while the Ward identities of [42] were
derived specifically for half-BPS operators in B̂R multiplets, here we see that the same type
of Ward identities holds more generally for any Schur-type operators.

2.4.2 Four-dimensional unitarity and central charge bounds

The natural inner product on the Hilbert space of the radially quantized four-dimensional
theory T does not survive the passage to ◗ cohomology. This is an immediate consequence
of the fact that ◗ is not hermitian. Hence, unitarity in four dimensions does not imply
unitarity in the chiral algebra. In fact, we have seen that a unitary theory T always gives
rise to a chiral algebra χ[T ] with negative central charge, which is necessarily non-unitary.
Nevertheless, there is an interesting interplay between the structure of the chiral algebra and
four-dimensional unitarity. This leads to new unitarity bounds for the anomaly coefficients
of any four-dimensional SCFT. In this section, we explore an elementary example that pro-
vides us with such bounds. It is possible that more extensive analysis could lead to further
constraints; we leave such an analysis for future study.

The origin of nontrivial consistency conditions can be found in the fact that, as summa-
rized in (2.105), the meromorphic correlator f(zi) can be computed in two different ways
that must agree. The first computation is the two-dimensional one: once the singular OPEs
of the meromorphic operators appearing in the correlator are known, the full correlation
function is completely fixed by meromorphy. The meromorphic correlator further admits a
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unique decomposition into sl(2) conformal blocks,21 leading to an expression of the form

f(zi) =

(
z24
z14

)h12(z14
z13

)h34 1

zh1+h212 zh3+h434

∞∑

ℓ=0

(−1)ℓ aℓ gℓ(z) , (2.106)

gℓ(z) := (−1
2
z)ℓ−1z 2F1(ℓ, ℓ; 2ℓ; z) ,

where we have adopted the standard notation zij := zi − zj and z := z12z34
z13z24

. Additionally, hi
is the holomorphic scaling dimension of the i’th operator, and we have defined hij = hi−hj.

The second computation is the four-dimensional one. The correlator in (2.101) admits
a decomposition into su(2, 2|2) superconformal blocks that each represent the contribution
of a given superconformal multiplet to the four-point function. The contribution of each
superconformal block to the meromorphic part of the amplitude defined by (2.105) is fixed
up to the three-point coefficients. Thus for a given theory T , the spectrum and three-point
coefficients of BPS operators appearing in the conformal block expansion of a given correla-
tion function can be determined directly from the correlation functions of χ[T ]. Non-trivial
constraints arise when we require that the three-point coefficients determined in this manner
be consistent with unitarity.

Let us now turn to a specific example to study in detail. We consider the four-point
function of superconformal primary operators in B̂1 multiplets. As was explained in §2.3,
these multiplets contain the spin one conserved currents that generate the global (non-R)
symmetry of the theory, and the superconformal primaries are scalar moment map operators
MA. Consequently the results derived from this example will be relevant to any theory with
non-trivial flavor symmetry. The moment map operators have dimension two and transform
in the adjoint representations of both the flavor group GF and SU(2)R. The four-point
function of such operators can be expanded in channels corresponding to each irreducible
representation R of GF in which the exchanged operators in the conformal block expansion
may transform,

〈MA(z1, z̄1; y1)M
B(z2, z̄2; y2)M

C(z3, z̄3; y3)M
D(z4, z̄4; y4)〉 =

∑

R∈⊗2adj

PABCD
R FR(zi, z̄i; yi) ,

(2.107)
where PABCD

R is the projector onto the irreducible representation denoted by R. The pro-
jectors for the various groups can be obtained following the procedures described in [63].

Per the discussion of §2.3.2, the chiral operators JA = χ[MA] are affine currents, and the
mermorphic correlators that emerge in the limit yi → z̄i are equal to the four-point functions

21The result could also be expanded in Virasoro conformal blocks, but this is less natural for comparison
to four-dimensional quantities.
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in the corresponding chiral algebra,

z212z
2
34〈JA(z1)JB(z2)JC(z3)JD(z4)〉 = fABCD(z) =

∑

R

PABCD
R fR(z) . (2.108)

Each such function can be examined independently as a potential source of nontrivial consis-
tency conditions. In §2.3 we found that the level of the affine Lie algebra symmetry generated
by these currents is k2d = −1

2
k4d, so this meromorphic four-point function is completely fixed

in terms of the structure constants of the associated non-affine Lie algebra and the flavor
central charge,22

fABCD(z) = δABδCD+z2δACδBD+
z2

(1− z)2 δ
ADδCB− z

k2d
fACEfBDE− z

k2d(z − 1)
fADEfBCE .

(2.109)
This correlator can be decomposed into GF channels, each of which can be expanded in
sl(2) conformal blocks as in (2.106). For example, for the singlet channel R = 1, the above
correlator gives

fR=1 = dimGF + z2
(
1 +

1

(1− z)2
)
+

4z2h∨

k2d(z − 1)

= dimGF −
∑

ℓ=0,2,···

2ℓ(ℓ+ 1)(ℓ!)2 (2(ℓ+ 1)(ℓ+ 2)k2d − 8h∨)

k2d(2ℓ+ 1)!
gℓ+2(z) ,

(2.110)

where h∨ is the dual Coxeter number.
This operator product expansion can be compared with that of the full four-point function

in four dimensions. The superconformal block decomposition of such a four-point function
has been worked out in [41]. In particular, operators that can potentially appear in the
intermediate channel must belong to one of the following superconformal multiplets:

• A∆(j,j): Long multiplets that are SU(2)R singlets with j1 = j2 = j.

• Ĉ0(j,j): Semishort multiplets with j1 = j2 = j that contain conserved currents of spin
2j + 2.

• Ĉ1(j,j): Semishort multiplets with j1 = j2 = j.

• B̂1: Half-BPS multiplets containing Higgs branch moment map operators.

• B̂2: Half-BPS multiplets containing Higgs branch chiral ring operators of dimension
four.

22Here we have rescaled the currents in such a way that the identity operator appears with unit normal-
ization in the current-current OPE.
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• I: The identity operator.

The contribution of each such multiplet to the full four-point function is fixed up to a single
coefficient corresponding to the three-point coupling (squared), and unitarity requires that
this coefficient be real and positive. The contribution of each multiplet to the meromorphic
functions fR(z) appearing in the superconformal Ward identities has also been determined
in [41]. The results are summarized as follows:

A∆( ℓ
2
, ℓ
2
) : 0 ,

Ĉ0( ℓ
2
, ℓ
2
) : λ2

Ĉ
0( ℓ2 , ℓ2 )

gℓ+2(z) ,

Ĉ1( ℓ
2
, ℓ
2
) : −2λ2

Ĉ
1( ℓ2 , ℓ2 )

gℓ+3(z) ,

B̂1 : λ2
B̂1
g1(z) ,

B̂2 : −2λ2
B̂2
g2(z) ,

Id : λ2Id .

(2.111)

The coefficient λ2• of each contribution is required by unitarity to be non-negative.
Some of the coefficients appearing in (2.111) can be completely fixed by symmetry. For

example, the identity operator can only appear in the singlet channel fR=1(z), where the
corresponding coefficient is necessarily given by

λ2Id = dimGF . (2.112)

The multiplet Ĉ0(0,0) contains a spin two conserved current, i.e., the stress tensor. There
can only be one such multiplet, and it contributes to the meromorphic part of the four
point function only in the singlet channel. The three-point coupling is fixed in terms of the
four-dimensional central charge. In particular, one finds that in fR=1(z),

λ2
Ĉ0(0,0)

=
dimGF

3c4d
. (2.113)

Finally, multiplets of type B̂1 can contributes only to the adjoint channel, and the corre-
sponding three-point coupling in fadj(z) is fixed to be

λ2
B̂1

=
4h∨

k4d
. (2.114)

As far as we know, these are the only contributions to this four-point function that are fixed
by symmetry in terms of anomaly coefficients. Additionally, the multiplets Ĉ0( ℓ

2
, ℓ
2
) for ℓ 6= 0

necessarily contain conserved currents of spin greater than two, and so are expected to be
absent in interacting theories [53]. We will take this to be the case in the following analysis.
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GF h∨ dimGF GF h∨ dimGF

SU(N) N N2 − 1 E6 12 78

SO(N) N − 2 N(N−1)
2

E7 18 133

USp(2N) N + 1 N(2N + 1) E8 30 248

G2 4 14 F4 9 52

Table 2.2: Dual Coxeter number and dimensions for simple Lie groups.

We can determine the three-point coefficients in, say, the R = 1 channel by comparing
with the expansion of the χ[T ] four-point function in (2.110). In particular, we find

λ2Id = dimGF ,

λ2
Ĉ0(0,0)

− 2λ2
B̂2

=
8h∨

k4d
− 4 ,

λ2
Ĉ
1( ℓ2 , ℓ2 )

=
2ℓ+1(ℓ+ 2)((ℓ+ 1)!)2

k4d(2ℓ+ 3)!
((ℓ+ 2)(ℓ+ 3)k4d − 4h∨) ,

(2.115)

where in the last line only odd ℓ may appear. The second line of (2.115), after substituting
the contribution of the stress tensor multiplet from (2.113), implies a nontrivial bound that
must be satisfied in order for the contribution of the B̂2 multiplet to be consistent with
unitarity,

dimGF

c4d
>

24h∨

k4d
− 12 . (2.116)

For reference, the dimensions and dual Coxeter numbers of the semi-simple Lie algebras are
displayed in Table 2.2. Similarly, the positivity of the last line in (2.115) for ℓ = 1 implies
the bound

k4d >
h∨

3
. (2.117)

The same analysis can be performed for the functions fR6=1(zi). In these channels there
will be no contribution from the stress tensor multiplet, so the resulting bounds make refer-
ence only to the anomaly coefficient k4d, as in (2.117). A priori, an independent bound may
be obtained for each representation R appearing in the tensor product of two copies of the
adjoint. For example, in the adjoint channel itself, there can be contributions from B̂1 and
Ĉ1( ℓ

2
, ℓ
2
) multiplets with even ℓ. Unitarity then imposes a bound on k4d that turns out to be

equivalent to that of (2.117). Stronger bounds can be found by considering other choices of
R, the possible values of which will depend on the particular choice of simple Lie algebra we
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GF Bound Representation

SU(N) N > 3 k4d > N N2 − 1symm

SO(N) N = 4, . . . , 8 k4d > 4 1
24
N(N− 1)(N− 2)(N− 3)

SO(N) N > 8 k4d > N − 4 1
2
(N+ 2)(N− 1)

USp(2N) N > 3 k4d > N + 2 1
2
(2N+ 1)(2N− 2)

G2 k4d >
10
3

27

F4 k4d > 5 324

E6 k4d > 6 650

E7 k4d > 8 1539

E8 k4d > 12 3875

Table 2.3: Unitarity bounds for the anomaly coefficient k4d arising from positivity of the B̂2
three-point function in non-singlet channels.

consider. In general, we find that for a given choice of GF , the strongest bound comes from
requiring positivity of the contributions of B̂2 multiplets in a single channel. The bounds
from other channels are then automatically satisfied when the strongest bound is imposed.
These strongest bounds are displayed in Table 2.3, where we also indicate the representation
R ∈ ⊗2adj that leads to the bound in question. It should be noted that for the special case
GF = SO(8), the same strongest bound is obtained from multiple channels. The represen-
tation appearing in the third line of Table 2.3 is in fact decomposable as 70 = 35s ⊕ 35c,
and the degeneracy in the bounds can be understood as a consequence of SO(8) triality.
For GF = SU(2) one finds no additional bounds to the ones given in (2.116) and in (2.117).
Finally, we can see that the bound (2.117) arising from positivity of the Ĉ1( 1

2
, 1
2
) multiplet in

the singlet channel is made obsolete by bounds arising from other channels for all choices of
GF listed in the table.

2.4.3 Saturation of unitarity bounds

Given the existence of these unitarity bounds, it is incumbent upon us to consider the
question of whether the bounds are saturated in any known superconformal models. To
understand what sort of theory might saturate the bounds, it helps to identify any physical
properties that a theory will necessarily possess if it saturates a bound. When the inequalities
in (2.116) or Table 2.3 are saturated, it means precisely that there is no B̂2 multiplet in the
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GF A1 A2 D4 E6 E7 E8 F4 G2

h∨ 2 3 6 12 18 30 9 4

k4d
8
3

3 4 6 8 12 5 10
3

c4d
1
2

2
3

7
6

13
6

19
6

31
6

5
3

5
6

Table 2.4: Central charges for N = 2 SCFTs with Higgs branches given by one-instanton
moduli spaces for GF instantons. Models corresponding to the right-most two columns are
not known to exist, but must satisfy these conditions for their central charges if they do.

corresponding representation of GF contributing to the four-point function in question. The
absence of such an operator is intimately connected with a well-known feature of theories
with N = 2 supersymmetry in four dimensions. Recalling that the Schur operators in the B̂R
multiplets are Higgs branch chiral ring operators, the absence of a B̂2 multiplet contributing
to the four-point function of B̂1 multiplets in the R channel amounts to a relation in the
Higgs branch chiral ring of the form

(M ⊗M)
∣∣
R
= 0 , (2.118)

where M is the moment map operator and the tensor product is taken in the chiral ring.
There exists an interesting set of theories for which precisely such relations are known to

hold. These are the superconformal field theories that arise on a single D3 brane probing a
codimension one singularity in F -theory on which the dilaton is constant [12, 64–68]. There
are seven such singularities, labelled H0, H1, H2, D4, E6, E7, E8, for which the corresponding
SCFT has global symmetry given by the corresponding group (with Hi → Ai). The Higgs
branch of each such theory is isomorphic to the minimal nilpotent orbit of the flavor group
GF . These minimal nilpotent orbits admit a simple description: they are generated by
a complex, adjoint-valued moment map M , subject to a set of relations that defined the
so-called “Joseph ideal” (see [69] for a nice discussion),

(M ⊗M)
∣∣
I2

= 0 , Sym2(adj) = (2 adj)⊕ I2 , (2.119)

where (2 adj) is the representation with Dynkin indices twice those of the adjoint represen-
tation.

This leads to an interesting set of conclusions. For one, these theories must saturate
some of the B̂2-type bounds listed above. In particular, this allows us to predict the value of
c4d and k4d for these theories as a direct consequence of the Higgs branch relations. These
predictions are listed in Table 2.4. Indeed, these anomaly coefficients have been computed
by other means and the results agree [70]. On the other hand, an N = 2 superconformal
theory with GF symmetry can have as its Higgs branch the one-instanton moduli space
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of GF instantons only if the B̂2 bound for all representations in I2 can be simultaneously
saturated. It is not hard to verify that the list of cases for which this can be true includes the
cases described above in F-theory, along with GF = F4 and GF = G2. Theories with Higgs
branches isomorphic to the one-instanton F4 and G2 moduli spaces appear to be absent from
the literature, and it is tempting to speculate that such theories should nonetheless exist and
have as their central charges the values listed in the right-most two columns of Table 2.4.

Finally, it is interesting to rephrase the above discussion purely in the language of the
chiral algebra χ[T ]. From this perspective, there is a marked difference between the bound
(2.116) for the singlet sector and those of Table 2.3 for non-singlets. In a theory saturating
the non-singlet bounds, the coefficient of a conformal block is actually set to zero in the OPE
of 2.106. This should be considered in contrast to a theory that saturates the singlet bound,
in which case all of the sl(2) conformal blocks are present with nonzero coefficients. It follows
that saturation of a non-singlet bound is equivalent to the presence of a null state in the
chiral algebra. In particular, because the bounds in question appear in the B̂1 four-point
function, such null states can be understood entirely in terms of the affine Lie subalgebra
of the chiral algebra. This interpretation can be verified directly by studying an affine Lie
algebra with the level listed in Table 2.3.

The bound (2.116), on the other hand, does not imply the presence of a null state in
the chiral algebra. Instead, a theory χ[T ] that saturates the singlet bound should have
the property that the only sl(2) primary of dimension two that appears in the OPE of two
affine currents is identically equal to the chiral vertex operator that arises from the Ĉ0(0,0)
multiplet in four dimensions, i.e., it should be the two-dimensional stress tensor. We thus
identify saturation of the singlet bound with the property that the Sugawara construction
gives the true stress tensor of the chiral algebra,

T2d =
1

k2d + h∨
(JaJa) . (2.120)

Sure enough, if the bound (2.116) is saturated, then we can rewrite the bound as an equation
for the central charge

c2d =
k2d dimGF

k2d + h∨
. (2.121)

This is precisely the central charge associated with the Sugawara construction for the stress
tensor of an affine Lie algebra.

Finally, we mention a number of additional theories that saturate some of the unitarity
bounds derived here. In particular, though the rank one theory corresponding to the H0

singularity has no flavor symmetry, it will have an extra SU(2) symmetry for rank larger
than one (as will all the other rank > 1 theories). In particular, for the case of rank two
the flavor central charge corresponding to this extra SU(2) is 17

5
and the central charge is

c4d = 17
12

[70]. This theory therefore saturates the bound (2.116). Additionally, we have
found a number of theories that saturate bounds appearing in Table 2.3. In particular, the
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new rank one SCFTs found in [71] with flavor symmetry USp(10)7 and USp(6)5 × SU(2)8,
where k4d is indicated as a subscript for each group, saturate the bounds on k4d for the USp
factors. However for these theories the central charge bound is not saturated. The following
theories described in [72] also saturate bounds on k4d: S5 with flavor symmetry SU(10)10
(but not the rest of the SN series), the R0,N series with flavor symmetry SU(2)6×SU(2N)2N ,
and the R2,N series with SO(2N + 4)2N × U(1) flavor symmetry.

2.4.4 Torus partition function and the superconformal index

Just as correlators of the chiral algebra are related to certain supersymmetric correlators of
the parent four-dimensional theory, it will not come as a surprise that the torus partition
function of the chiral algebra is related to a certain four-dimensional supersymmetric index –
indeed, to the Schur limit of the superconformal index, as foreshadowed in our terminology.

We should first identify which quantum numbers can be meaningfully assigned to chiral
algebra operators. Of the various Cartan generators of the four-dimensional superconformal
algebra, only the holomorphic dimension L0 and the transverse spin M⊥ = j1 − j2 (which
is equal to −r for Schur operators) survive as independent conserved charges of the chiral
algebra. The torus partition function therefore takes the form23

Z(x, q) := TrxM
⊥

qL0 . (2.122)

As usual, the trace is over the Hilbert space in radial quantization, or equivalently over the
local operators of the chiral algebra.

Specializing to x = −1, and noting that by the four-dimensional spin-statistics connection
implies (−1)j1−j2 = (−1)F , where F is the fermion number, we find a weighted Witten index,

I(q) := Z(−1, q) = Tr (−1)F qL0 = Tr (−1)F qE−R . (2.123)

We recognize this as the trace formula that defines the Schur limit of the superconformal in-
dex [13], cf. Appendix B.24 We should check that in the two-dimensional and four-dimensional
interpretations of this formula the trace can be taken over the same space of states. Strictly
speaking, in the four-dimensional interpretation the trace is over the entire Hilbert space
of the radially quantized theory. However, the point of the Schur index is that only states
obeying the Schur condition can conceivably contribute – the contributions of all other states
cancel pairwise. As the states of the chiral algebra are in one-to-one correspondence with
Schur states, the chiral algebra index (2.123) is indeed equivalent to the Schur index.

23To avoid clutter, we have omitted the obvious refinement by flavor fugacities. If the theory is invariant
under some global symmetry group GF , we may refine the trace formula by

∏
i a

fi
i , where the fi are Cartan

generators of GF and ai the associated fugacities.
24It was observed in [73] that the Schur index has interesting modular properties under the action of

SL(2,Z) on the superconformal and flavor fugacities. The identification of the Schur index with a two-
dimensional index may serve to shed some light on these observations.
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The index is a cruder observable than the partition function, but because it is invariant
under exactly marginal deformations, it is generally easier to evaluate. In practice, to evalu-
ate the index of a Lagrangian SCFT, one enumerates all gauge-invariant states that can be
formed by combining the elementary “letters” that obey the Schur condition, see Table 2.1.
This combinatorial exercise is efficiently solved with the help of a matrix integral, where the
integration over the gauge group enforces the projection onto gauge singlets. Examples of
this prescription will be seen in the following section. By this procedure, one enumerates all
gauge-invariant states that obey the tree-level Schur condition; there will be cancellations in
the index corresponding to the recombinations of Schur multiplets into long multiplets that
are a priori allowed by representation theory.

There is an entirely isomorphic computation in the associated chiral algebra. The “let-
ters” obeying the tree-level Schur condition are nothing but the states of the symplectic
bosons and the ghost small algebra (in the appropriate representations), and one is again
instructed to project onto gauge singlets. To reiterate, to evaluate the index we do not really
need to compute the cohomology of Q−, which defines the states of the chiral algebra of the
interacting gauge theory, cf. (2.93). We can simply let the trace run over the redundant set
of states of the free theory. By contrast, the trace in the partition function (2.122) must
be taken over only the states of the chiral algebra for the interacting theory, which are the
cohomology classes of Q−.

At the risk of being overly formal, we may point out that the physical state space of
the chiral algebra (which for gauge theories is defined by the cohomological problem (2.93)),
acts as a categorification of the Schur index. Once this vector space and the action of the
charges are known, we can perform the more refined counting (2.122). In physical terms,
the categorification contains extra information relative to the Schur index in that it knows
about sets of short multiplets that are kinematically allowed to recombine but do not. In
addition, there may be multiplets that cannot recombine but nonetheless make accidentally
cancelling contributions to the index, and these are also seen in the categorification. Of
course, the chiral algebra structure goes well beyond categorification – it is a rich algebraic
system that also encodes the OPE coefficients of the Schur operators, and is subject to
non-trivial associativity constraints.

It should be noted that as a graded vector space, we also have a categorification of the
Macdonald limit of the superconformal index. Recall that the states contributing to the
Macdonald index are really the same as the states that contribute to the Schur index, but
their counting is refined by an extra fugacity t/q associated to the charge r+R (for t = q we
recover the Schur index). Since each state in the vector space defined by the chiral algebra
corresponds to a Schur operator, the additional grading by r + R is perfectly well-defined.
However, there is no obvious chiral algebra interpretation of the Macdonald limit of the
superconformal index, because the additional grading is incompatible with the chiral algebra
structure. More precisely, while L0 and r are conserved charges for the twisted-translated
operators (2.29), r+R is not, since away from the origin the operators are linear combinations
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of operators with different R eigenvalues. In particular r +R is not preserved by the OPE.

2.5 Examples and conjectures

In this section we consider a number of illustrative examples in which the four-dimensional
superconformal field theory T admits a weakly coupled Lagrangian description. In such
cases, the chiral algebra χ[T ] can be defined via the BRST procedure of §2.3, which at the
very least allows for a level-by-level analysis of the physical states/operators in the algebra.

We can also consider the problem of giving an economical description of the chiral algebra
in terms of a set of generators and their singular OPEs. A natural question is whether this
set is finite, or in other words whether the chiral algebra is aW-algebra. The results of §2.3.2
suggest a very general ansatz for a possible W-algebra structure: the generators should be
the operators associated to HL chiral ring generators in four dimensions, and possibly in
addition the stress tensor. In each of the first three examples, our results are compatible
with this guess, and we formulate concrete conjectures for the precise definition of each chiral
algebra as a W-algebra. In the final example, we find a counterexample to this simplistic
picture. Namely, we find a theory for which the chiral algebra contains at least one additional
generator beyond those included in our basic ansatz.

For the first example, we turn to perhaps the most familiar N = 2 superconformal gauge
theory.

2.5.1 SU(2) superconformal QCD

The theory of interest is the SU(2) gauge theory with four fundamental hypermultiplets.
Many aspects of this theory that are relevant to the structure of the associated chiral alge-
bra have been analyzed in, e.g., [74]. The field content is an SU(2) vector multiplet and four
fundamental hypermultiplets. Because the fundamental representation of SU(2) is pseudo-
real, the obvious U(4) global symmetry is enhanced to SO(8), with the four fundamental
hypermultiplets being reinterpreted as eight half-hypermultiplets. In N = 1 notation we
then have an adjoint-valued N = 1 field strength superfield WA

α , an adjoint-valued chiral
multiplet ΦB, and fundamental chiral multiplets Qi

a transforming in the 8v of SO(8). Here
a, b = 1, 2 are vector color indices that can be raised and lowered with epsilon tensors,
A,B = 1, 2, 3 are adjoint color indices, and i = 1, . . . , 8 are SO(8) vector indices. By a com-
mon abuse of notation, we use the same symbol for the scalar squarks in the matter chiral
multiplets as for the superfields, whereas the gauginos in the vector multiplet are denoted
λAα and λ̃Aα̇. In terms of the N = 1 superfields listed above, the Lagrangian density takes
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the form

L = Im

[
τ

∫
d2 θd2θ̄ Tr

(
Φ†eVΦ +Q†

ie
VQi

)
+ τ

∫
d2θ

(
1
2
TrWαW

α +
√
2Qi

aΦ
a
bQ

ib
)]

,

(2.124)
Where τ = θ/2π + 4πi/g2YM is the complexified gauge coupling. The central charge of the

SU(2) color symmetry acting on the hypermultiplets is k
SU(2)
4d = 8, which satisfies condition

(2.84) for τ to be an exactly marginal coupling. The central charge for the SO(8) flavor
symmetry and the conformal anomaly c4d can also be read off directly from the field content,

k
SO(8)
4d = 4 , c4d =

7

6
. (2.125)

Although this description is sufficient to set up a BRST cohomology problem that defines
the chiral algebra in the manner of §2.3, it is useful to first review some of the features of this
theory that we expect to see reflected in the two-dimensional analysis. We have seen that a
special role is played in the chiral algebra by the HL chiral ring, the elements of which are the
superconformal primary operators in B̂ and D-type multiplets. In this example, these are the
lowest components of N = 1 chiral superfields that are gauge-invariant polynomials in Qi

a

and WA
α . As this theory is represented by an acyclic quiver diagram, all D-type multiplets

recombine and the HL chiral ring is identically the Higgs chiral ring.
In purely gauge invariant terms, the Higgs branch chiral ring is generated by a single

dimension two operator in the adjoint of SO(8),

M [ij] = Qi
aQ

aj . (2.126)

This is the moment map for the action of SO(8) on the Higgs branch.25 There are additional
relations that make the structure of the Higgs branch more interesting. Already at tree-level,
there are relations that follow automatically from the underlying description in terms of
squarks. When organized in representations of SO(8), the of generators of these relations
are as follows,

M ⊗M
∣∣
35s

= 0 , M ⊗M
∣∣
35c

= 0 . (2.127)

On the other hand, there are F -term relations as a consequence of the superpotential in
(2.124). They are absent in the theory with strictly zero gauge coupling, and encode the
fact that certain operators that are present in the chiral ring of the free theory recombine
and are lifted from the protected part of the spectrum when the coupling is turned on. The
generators of F -term relations, again organized according to SO(8) representation, are as

25It is a special feature of this theory (in contrast to, say, the Nf = 2Nc theories with Nc > 2 that will
be considered next) that the generators of the Higgs branch chiral ring all have dimension two. In general,
there will be higher-dimensional baryonic generators that are not directly related to the global symmetry
currents of the theory.
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follows,
M ⊗M

∣∣
35v

= 0 , M ⊗M
∣∣
1
= 0 . (2.128)

One immediately recognizes the complete set of relations in (2.127) and (2.128) as defining
the SO(8) Joseph ideal described in §2.4. Indeed, for the particular case of GF = SO(8) we
have I2 = 1⊕ 35v ⊕ 35s ⊕ 35c. The Higgs branch of this theory is known to be isomorphic
to the SO(8) one-instanton moduli space, and the central charges (2.125) do in fact saturate
the appropriate unitarity bounds outlined in §2.4.

As a final comment, let us recall that the gauge coupling appearing in the Lagrangian
(2.124) is exactly marginal and parameterizes a one-complex-dimensional conformal mani-
fold. S-duality acts by SL(2,Z) transformations on τ , and the conformal manifold is identi-
fied with the familiar fundamental domain of SL(2,Z) in the upper half plane. In the various
weak-coupling limits the theory can always be described using the same SU(2) gauge theory,
but in comparing one such limit to another, the duality transformations act by triality on the
SO(8) flavor symmetry. Consequently, though a given Lagrangian description of this theory
(and of the chiral algebra in the next subsection) singles out a certain triality frame, the
protected spectrum of the theory, and so in particular the chiral algebra, should be triality
invariant.

BRST construction of the associated chiral algebra

The chiral algebra can now be constructed using the procedure of §2.3. We first define the
chiral algebra χ[ Tfree ] of the free theory. Each half-hypermultiplet gives rise to a pair of
commuting, dimension 1/2 currents, whose OPE is that of symplectic bosons

qia(z) := χ[Qi
a ] , qia(z) q

j
b(w) ∼

δijǫab
z − w . (2.129)

Meanwhile, the vector multiplet contributes a set of adjoint-valued (b, c) ghosts of dimension
(1, 0) with the standard OPE,

bA(z) := χ[ λ̃A] , ∂cB(z) := χ[λB] , bA(z)cB(w) ∼ δAB

z − w . (2.130)

The generators of the SU(2) gauge symmetry in the matter sector arise from the moment
maps in the free theory, while in the ghost system they take the canonical form described in
§2.3,

JA(TA)ba = qiaq
ib , JAgh = −ifABC(cB bC) . (2.131)

The chiral algebra of the free theory is then given by the gauge-invariant part of the tensor
product of the symplectic boson and small algebra Fock spaces,

χ[Tfree] = {ψ ∈ F(qia, ρA+, ρA−) | JAtot,0ψ = 0} . (2.132)
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The current algebra generated by the JAmat has level k
SU(2)
2d = −4 = −2h∨, which ensures

the existence of a nilpotent BRST differential. The BRST current and differential are then
constructed in terms of these currents,

JBRST = cA
(
JA +

1

2
JAgh

)
, QBRST =

∮
dz

2πi
JBRST(z) . (2.133)

The chiral algebra of the interacting theory is now the BRST cohomology

χ[ T ] = H∗
BRST [χ[Tfree]] . (2.134)

We now perform a basic analysis of this cohomology. Already at this rudimentary level, we
will find that a substantial amount of four-dimensional physics is packaged elegantly into
the chiral algebra framework.

Enumerating physical states

It is a straightforward exercise to enumerate the physical operators up to any given dimension
and to compute the singular terms in their OPEs. This is made easier with computer
assistance – we have made extensive use of K. Thielemans’ Mathematica package [55]. We
now describe this enumeration in detail for operators of dimension one and two in the chiral
algebra. In this example, the material we have reviewed above is already enough to predict
the results of this enumeration. We will nevertheless find it instructive to explore in some
detail how the inevitable spectrum comes about.

We begin at dimension one. Dimension one currents in the chiral algebra can only origi-
nate in D0(0,0) and B̂1 multiplets (cf. Table 2.1). The former contain free vector multiplets,
and so are not gauge invariant. Thus the physical spectrum at dimension one should be
isomorphic to the spectrum of B̂1 multiplets. Sure enough, the complete list dimension-one
operators in χ[ Tfree ] is the following,

J [ij] = qiaq
ja , (2.135)

and these operators are the chiral counterparts of the SO(8) moment maps, i.e.,

J [ij] = χ[M [ij]] . (2.136)

Direct computation further verifies that these operators exhaust the nontrivial BRST coho-
mology at dimension one. It is also straightforward to determine the singular terms in the
OPEs of these currents,

J [ij](z)J [kl](0) ∼ −2(δ
ikδjl − δilδjk)
z2

+
if

[ij][kl]
[mn] J

[mn](0)

z
. (2.137)
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This is just an so(8) affine Lie algebra at level k2d = −2, which confirms the general prediction
of §2.3 that flavor symmetries are affinized in the chiral algebra, subject to the relation
k2d = −1

2
k4d.

Moving on, the four-dimensional multiplets that can give rise to two-dimensional quasi-
primary currents of dimension two are Ĉ0(0,0), B̂2, D0(0,1), and D 1

2
(0, 1

2
) multiplets (along with

the conjugates of the last two). In addition, conformal descendants of dimension two can
arise from holomorphic derivatives of the dimension one operators. Since no D-type mul-
tiplets appear in this theory, the only quasi-primaries at dimension two will correspond to
Higgs branch operators and the two-dimensional stress tensor.

The latter descends from the four-dimensional SU(2)R current. That current being bilin-
ear in the free fields of the noninteracting theory, the corresponding two-dimensional operator
can be obtained by simply replacing the four-dimensional fields with their chiral counterparts
and conformally normal ordering,

T2d =
1
2
qia∂q

ia − bA∂cA . (2.138)

Alternatively, this is just the canonical stress tensor for the combined system of free sym-
plectic bosons and ghosts. Given the multiplicities of matter and ghost fields, the two-
dimensional central charge is easily determined to be c2d = −14.

The remaining BRST-invariant currents of dimension two can be constructed as normal
ordered products and derivatives of the so(8) affine currents,

∂J [ij] , (J ⊗ J)
∣∣
1,35,35,35,300

. (2.139)

The singlet term in the tensor product above, once appropriately normalized, is the Sugawara
stress tensor of the so(8) affine Lie algebra,

T so(8)
sug = 1

8
(J [ij]J [ij]) . (2.140)

The Sugawara central charge is determined by the usual formula,

csug =
k2d dimGF

k2d + h∨
= −14 . (2.141)

This matches the value for the canonical stress-tensor. This comes as no surprise, since the
central charges of this theory saturate the unitarity bound (2.116), which implies that the
canonical stress tensor should be equivalent to the Sugawara stress tensor. Indeed, (2.138)
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and (2.139) constitute an overcomplete list, and we in fact have the following relations,

J ⊗ J
∣∣
1

= T2d + {QBRST, q
i
aq
ibbab} , (2.142a)

J ⊗ J
∣∣
35v

= {QBRST, q
(i
a q

j)bbab} , (2.142b)

J ⊗ J
∣∣
35c

= 0 , (2.142c)

J ⊗ J
∣∣
35s

= 0 , (2.142d)

The relations appearing here can be traced back to different aspects of the four-dimensional
physics. Relations (2.142a) and (2.142b) are the two-dimensional avatars of the F -term
relations in (2.128). Note that the first relation appears differently in this two-dimensional
context due to the presence of the two-dimensional stress tensor on the right hand side. This
is a remnant of the more complicated structure of normal ordering in the chiral algebra as
compared to the chiral ring. Relations (2.142c) and (2.142d) are the tree-level relations. In
the context of the chiral algebra, they can be seen as a simple consequence of Bose symmetry
and normal ordering without making any reference to the BRST differential. This perfectly
mirrors of the nature of tree-level relations in four dimensions.

A W-algebra conjecture

Although the cohomological description of the chiral algebra is sufficient to compute the
physical operators to any given level, it would be ideal to have a characterization entirely in
terms of physical operators – for example, we may hope for a description as aW algebra. We
have seen that the physical dimension two currents are all generated by the affine currents
of dimension one, i.e., the physical states enumerated so far all lie in the vacuum module of
the so(8) affine Lie algebra at level k = −2. What’s more, these operators exhaust the list
of operators that are guaranteed to be generators of the chiral algebra according to §2.3. We
are thus led to a natural conjecture:

Conjecture 1. When T is N = 2 SU(2) SQCD with four fundamental flavors, then χ[ T ]
is isomorphic to the so(8) affine Lie algebra at level k2d = −2.

This is a mathematically well-posed conjecture, since the cohomological characterization
of the chiral algebra is entirely concrete. It seems plausible that a more sophisticated ap-
proach to the cohomological problem could lead to a proof of the conjecture. We will be
satisfied in the present work to test it indirectly.
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level SO(8) representations and their multiplicities

0 1

1 28

2 1, 28, 300

3 1, 2× 28, 300, 350, 1925

4 2× 1, 3× 28, 35v, 35s, 35c, 3× 300, 350, 1925, 4096, 8918

5 2× 1, 6× 28, 35v, 35s, 35c, 4× 300, 3× 350, 567v, 567s, 567c, 3× 1925,

2× 4096, 8918, 25725, 32928′

Table 2.5: The operator content of the chiral algebra up to level 5.

The superconformal index and affine characters

Conjecture 1 can be tested at the level of the indices of these theories. In particular, we have
the following conjectural relationship

ISchur(q;~a) = Trχ[Tfree](−1)F qL0

4∏

i=1

aµii = Trso(8)−2(−1)F qL0

4∏

i=1

aµii . (2.143)

The shorthand ~a = (a1, a2, a3, a4) denotes the SO(8) fugacities. Of course, the affine Lie
algebra has only bosonic states, so the factor of (−1)F is immaterial. In particular this ob-
servation implies that if Conjecture 1 is correct, then all possible recombinations of tree-level
Schur operators occur already at one loop.

On the one hand, the Schur limit of the superconformal index for this theory can be
computed directly to fairly high orders in the q expansion by starting with the defining
matrix integral,

ISchur(q;~a) =
∮

[db]P.E.

[( √
q

1− q

)
χ8
SO(8)(~a)χ

2
SU(2)(b) +

( −2q
1− q

)
χ3
SU(2)(b)

]
, (2.144)

and expanding the exponential. Here
∮
[db] denotes integration over the fugacity for the

gauge group with the Haar measure.
On the other hand, the vacuum character of the so(8) affine Lie algebra at level k = −2

can be computed once the spectrum of null primaries is known. Said spectrum can be
determined with the aid of the Kazhdan-Lusztig polynomials, as we review in Appendix C.
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Ultimately, both the character and the index are expanded in the form

1 +
∞∑

i=1

qn

(∑

R

dRχ
R(~a)

)
,

where the dR are positive integer multiplicities. At a given power of q, there are only a finite
number of non-zero dR. Up to O(q5), the resulting degeneracies have been computed in both
manners and agree. They are displayed in Table 2.5.

2.5.2 SU(N) superconformal QCD with N > 3

We next consider the generalization of the previous example to the case of SU(N) supercon-
formal QCD with N > 3. In these theories, the Higgs branch has generators of dimension
greater than two, thus guaranteeing the existence of nonlinear W-symmetry generators in
the chiral algebra. The cohomological construction of the corresponding chiral algebra is
analogous to the SU(2) case, mutatis mutandi. We will not repeat the description here in
any detail. We first provide a brief outline of the relevant four-dimensional physics of these
models, and then perform a systematic analysis of the physical operators of low dimension
in the associated chiral algebra.

As in the SU(2) theory, there is a Lagrangian description of these models in terms of the
N = 1 chiral superfields

WA
α , ΦB , Qi

a , Q̃b
j , (2.145)

where a, b = 1, . . . , N are vector color indices, A,B = 1, . . . , N2− 1 are adjoint color indices,
and i, j = 1, . . . , Nf with Nf = 2N are vector flavor indices. The central charge is fixed by

the field content to c4d =
2N2−1

6
.

For our purposes, the principal difference between the N > 3 theories and the N = 2
case is in the structure of the Higgs branch chiral ring. In the higher rank theories, the
hypermultiplets transform in a complex representation of the gauge group, so the global
symmetry is not enhanced and we have GF = SU(Nf )× U(1). The moment map operators

for the global symmetry reside in mesonic B̂1 multiplets, which can be separated into SU(Nf )
and U(1) parts,

M i
j := Q̃a

jQ
i
a =⇒ µ :=M i

i , µ i
j :=M i

j −
1

Nf

µ δ i
j . (2.146)

The level of the non-Abelian part of the global symmetry is k
SU(Nf )

4d = 2N . The baryons
are of dimension N and no longer generate any additional global symmetries. Rather, they
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transform in the N -fold antisymmetric tensor representations of the flavor symmetry:

Bi1...iN := Qi1
a1
· · ·QiN

aN
ǫa1...aN ,

B̃i1...iN := Q̃a1
i1
· · · Q̃aN

iN
ǫa1...aN .

(2.147)

The mesons and baryons satisfy a set of polynomial relations. Following [74], we introduce
notation where “·” denotes contraction of an upper and a lower index and “∗” denotes the
contraction of flavor indices with the completely antisymmetric tensor in Nf indices. The
relations are then given by

(∗B)B̃ = ∗(MN) , M · ∗B = M · ∗B̃ = 0 ,

M ′ · B = B̃ ·M ′ = 0 , M ·M ′ = 0 ,
(2.148)

where (M ′) j
i :=M j

i − 1
N
µδji = µ j

i − 1
2N
µδji . Additionally, all quantities antisymmetrized in

more than N flavor indices must vanish.
This completes the description of the Hall-Littlewood chiral ring, since again this theory

admits a linear quiver description, so there are no D-type multiplets after turning on inter-
actions. The final representation of canonical interest is the Ĉ0(0,0) multiplet, which again
contributes an important Schur operator in the form of the R = 1 component of the SU(2)R
current:

J R=1
++̇ ∼ 1

2

(
Qi
a∂++̇Q̃

a
i − Q̃a

i ∂++̇Q
i
a

)
+ λA+λ̃+̇A . (2.149)

Like the SU(2) theory, these models all have one-complex-dimensional conformal mani-
folds with interesting behaviors at the boundary points, where S-dual descriptions become
appropriate. In contrast to the SU(2) theory, these S-dual descriptions are not the same
as the original description, and rather involve intrinsically strongly-coupled non-Lagrangian
sectors. While such dualities imply interesting structures for the associated chiral algebras,
their dependence on non-Lagrangian theories takes us outside the scope of the current ex-
amples. This is discussed in much greater detail in [75].

Physical operators of low dimension

The nontrivial BRST cohomology classes of the chiral algebra can be computed by hand for
small values of the dimension. The physical operators of dimension one again correspond
to the moment map operators of the global symmetry, which in this case includes only the
mesonic chiral ring operators,

J ji := qaiq̃
aj − 1

Nf

δji qakq̃
ak = χ[µji ] , (2.150)

J := qakq̃
ak = χ[µ] . (2.151)
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The singular OPEs of these currents are given by

J ji (z)J
l
k(0) ∼ − N(δliδ

j
k − trace)

z2
+

δliJ
j
k(z)− δjkJ li(z)

z
,

J(z)J(0) ∼ − 2N2

z2
.

(2.152)

This is an su(Nf )× u(1) affine Lie algebra at level k2d = −N .
At dimension two, we first consider the operators that are invariant under the flavor

symmetry. As expected, there is a canonical stress tensor,

T :=
1

2

(
qai∂q̃

ai − q̃ai∂qai
)
− bab∂cba = χ[J 1

++̇] , (2.153)

whose self-OPE fixes the two-dimensional central charge,

c2d = 2− 4N2 . (2.154)

Additionally, the algebra generated by the affine su(Nf )× u(1) currents (2.150) contains
a dimension two singlet that is the Sugawara stress tensor of the current algebra,

Tsug :=
1

Nf

(
J ji J

i
j −

1

Nf

JJ

)
. (2.155)

The corresponding Sugawara central charge is also equal to 2 − 4N2, which suggests that
the two stress tensors T and T sug may be equivalent operators as they were in the N = 2
theory. Indeed, we expect this to be the case since the central charges in this theory again
saturate the unitarity bound (2.116). A short computation verifies that their difference is
BRST exact,

T − Tsug =
1

Nf

{QBRST, qaiq̃
bjbab} . (2.156)

A complete basis for the physical flavor singlets of dimension two is given by T , JJ , and ∂J .
The remaining physical operators of dimension two are charged under U(Nf ). An over-

complete basis of such operators is given by flavored current bilinears J ji J
l
k and J ji J , in

addition to derivatives of the currents ∂J ji . These operators are not all independent. For
example, the usual rules of conformal normal ordering imply that

J ji J
l
k − J lkJ ji = δli∂J

j
k − δjk∂J li , (2.157)

so the antisymmetric normal ordered product of two SU(Nf ) currents is a combination of
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descendants. For the symmetrized normal ordered product there exists another relation:

1

2
(Jki J

j
k + J jkJ

k
i ) = δji

(
1

N2
f

JJ + T

)
− {QBRST, qαiq̃

βjbαβ} . (2.158)

In group-theoretic terms, the relations amount to the statement that the parts of the sym-
metric product of two currents that transform in the singlet and adjoint representations do
not correspond to independent operators.

It is worth jumping ahead to the case of dimension N/2, where we find operators that
correspond to the baryonic chiral ring generators (2.147):

bi1i2...iNc
:= εα1α2...αNcqα1i1qα2i2 . . . qαNc iNc

= χ[Bi1i2···iN ] ,

b̃i1i2...iNc := εα1α2...αNc
q̃α1i1 q̃α2i2 . . . q̃αNc iNc = χ[B̃i1i2···iN ] .

(2.159)

These are Virasoro primaries of dimension Nf/4. The only non-trivial OPE that is not
entirely fixed by symmetry is the b× b̃ OPE. For Nc = 3, for example, it is given by

bi1i2i3(z)b̃
j1j2j3(0) ∼

36 δ
[j1
[i1
δ
j2
i2
δ
j3]
i3]

z3
−

36 δ
[j1
[i1
δ
j2
i2
J
j3]
i3]
(0)

z2
+

18 δ
[j1
[i1
J
j2
i2
J
j3]
i3]
(0)− 18 δ

[j1
[i1
δ
j2
i2
∂J

j3]
i3]
(0)

z
,

(2.160)
where square brackets denote antisymmetrization with weight one.

Relation to the Higgs branch chiral ring

Again, certain features of the Higgs branch chiral ring arise organically from the chiral
algebra. According to the general discussion in §2.3.2, the dimension two operators in the
chiral algebra should in particular contain the image of the Schur operators in B̂2 multiplets,
which in the theories under consideration simply correspond to the product of two of the
mesonic operators µ and µji subject to the final relation in (2.148). Furthermore, these Schur
operators necessarily become Virasoro primary operators in the chiral algebra.

From amongst the BRST cohomology classes at level two – spanned by T , JJ , J ji J , the
symmetrized combination J ji J

l
k + J lkJ

j
i modulo relation (2.158), and derivatives of level one

currents – we find exactly three Virasoro primary operators:

X := JJ −
N2
f

N2
f − 2

T ,

X j
i := J ji J ,

X jl
ik :=

1

2
(J ji J

l
k + J lkJ

j
i )−

Nf

N2
f − 2

(
δliδ

j
k −

1

Nf

δji δ
l
k

)
T ,

(2.161)
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which are subject to the additional constraints,

X jl
ik = X lj

ki , X il
ik = 0 , X jk

ij =
1

N2
f

δki X + {QBRST, . . .} . (2.162)

We see that we should identify X = χ[µµ ], X j
i = χ[µµji ] and X jl

ik = χ[µjiµ
l
k ]. The first

two relations in (2.162) then reflect the natural symmetry properties of the original Schur
operator, whilst the last equation precisely reproduces the final equation in (2.148).

We note that the definitions (2.161) somewhat obscure the relationship to four-dimen-
sional physics because of the conformal normal ordering used to define the products of
interacting fields. The same dimension two operators take a completely natural form in
terms of creation/annihilation normal ordered products of symplectic bosons,

X = : qαiq̃
αiqβj q̃

βj : ,

X j
i = : qαiq̃

αjqβkq̃
βk : ,

X jl
ik = : qαiq̃

αjqβkq̃
βl : ,

(2.163)

and this description also nicely illustrates the commutative diagram of §2.3.3.
Finally, at the level of Virasoro representations, the OPEs of the dimension one currents

can now be summarized by the following fusion rules,

J ji × J lk → −N(δliδ
j
k − trace)1+ (δliJ

j
k − δjkJ li) + X jl

ik + . . . ,

J ji × J → X j
i + . . . ,

J × J → − 2N2
1+ X + . . . ,

(2.164)

where we have omitted operators of dimension higher than two. We see that the product
structure of the Higgs branch chiral ring is reproduced precisely by the O(1) terms in these
fusion rules.26

A W-algebra conjecture

The chiral algebra is not as simple in this case as it was for the SU(2) theory, since the
generators b and b̃ are higher-spinW-symmetry generators rather than simple affine currents.
Nevertheless, there is a natural guess as to how to describe this more involved theory as aW
algebra. It is useful to think of the operator content of the algebra in terms of representations
of the affine u(Nf ) current algebra. From the analysis of levels one and two, we know that
there is the vacuum representation – which in particular contains the affine currents and
the stress tensor – and the “baryonic” representations, for which the highest weight state is

26We may similarly speculate that the Poisson bracket is encoded in the terms of the OPE that correspond
to simple poles, but we have not checked this in detail.
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given by the baryon or anti-baryon of (2.159). Other representations of the affine Lie algebra
can only come from multi-baryon states or from new generators of dimension greater than
two, where we have not performed a detailed analysis of the cohomology.

In four dimensions the mesons and the baryons are the complete set of generators for
the Hall-Littlewood chiral ring. The most obvious conjecture is then that the corresponding
two-dimensional operators generate the entire W-algebra:

Conjecture 2. When T is N = 2 SU(N) superconformal QCD for with 2N flavors for
N > 2, then χ[T ] is isomorphic to the W algebra generated by affine u(Nf ) currents at
level ksu(Nf ) = −N along with baryonic generators b and b̃ with the OPE (2.160) (or its
generalizations to N > 4).

Because no additional generators make an appearance in the singular OPEs of the affine
currents and baryons, it is guaranteed to be the case that the W algebra we have just
described forms a chiral subalgebra of χ[T ]. Our conjecture is that this is in fact the whole
thing. If true, this conjecture would imply that the Schur index for the Nf = 2N theories
decomposes into characters of affine u(2N)−N with highest weights given by the vacuum or
by one or more baryons.

Superconformal Index

We can provide support for this conjecture by comparing with the superconformal index.
The Schur index of the theory is given by the following contour integral,

ISchur(q; c,~a) =
∫
[d~b]P.E.

[ √
q

1− q
(
c χNf

SU(Nf )
(~a)χN

SU(N)(
~b) + c−1 χNf

SU(Nf )
(~a−1)χN

SU(N)(
~b−1)

)

+

( −2q
1− q

)
χN2−1
SU(N)(

~b)

]
, (2.165)

where c is the U(1) fugacity and ~a = (a1, a2, . . . , aNf−1) denotes SU(Nf ) fugacities. For
N = 3, the first few orders are given by

ISchur(q; c,~a) =1 +
(
1 + χ35

SU(6)(~a)
)
q + (c3 + c−3)χ20

SU(6)(~a)q
3/2

+
((
χ
sym2(35)
SU(6) (~a)− χ35

SU(6)(~a)
)
+ 2χ35

SU(6)(~a) + 2
)
q2

+ (c3 + c−3)
(
2χ20

SU(6)(~a)

+
(
χ35⊗20
SU(6) (~a)− χ20

SU(6)(~a)− χ70
SU(6)(~a)− χ70

SU(6)(~a)
))

q5/2 + . . . , (2.166)

where we have explicitly indicated the presence of relations by listing them with a minus
sign. The dimension two relations in the chiral algebra were elaborated upon in the previous
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subsection. At level 5/2, we can similarly determine the Virasoro primaries

Yijk = Jbijk + ∂bijk, Ỹ ijk = Jb̃ijk − ∂b̃ijk (2.167)

Y j
i,klm =

1

2

(
J j
i bklm + bklmJ

j
i −

1

6
δji ∂bklm + δj[k∂b|i|lm]

)
(2.168)

Ỹ j,klm
i =

1

2

(
J j
i b̃

klm + b̃klmJ j
i +

1

6
δji ∂b̃

klm − δ[ki ∂b̃|j|lm]

)
, (2.169)

subject to the constraints

ǫiklmnp
(
Y j
i,mnp +

1

6
δjiYmnp

)
= 0, Y j

i,jlm −
1

6
Yilm = {QBRST, . . .} (2.170)

ǫjklmnp

(
Ỹ j,mnp
i +

1

6
δji Ỹ

mnp

)
= 0, Ỹ j,kli

i − 1

6
Ỹ jkl = {QBRST, . . .} , (2.171)

which again encode precisely the Higgs branch relations.
At level three, we have checked agreement between the Schur index and the cohomology

generated by the SU(6) × U(1) currents and the baryons by explicitly computing the null
states.

2.5.3 N = 4 supersymmetric Yang-Mills theory

The theories considered in the previous two subsections all shared the special quality of
admitting descriptions as linear quiver gauge theories, which meant that D-type multiplets
played no role in the analysis. We now turn to a case where this simplification no longer
holds, and so there will necessarily be generators outside of the Higgs chiral ring. The theory
in question is N = 4 supersymmetric Yang-Mills theory with gauge group SU(N). For our
purposes, this is anN = 2 theory with an SU(N) vector multiplet and a single adjoint-valued
hypermultiplet. In N = 1 notation, we have the following chiral superfields,

WA
α , ΦA , QA

i , (2.172)

where A = 1, . . . N2 − 1 an SU(N) adjoint index and i = 1, 2 is an SU(2)F vector index.
The flavor symmetry SU(2)F is the commutant of SU(2)R × U(1)r ⊂ SU(4)R, and so is an
R-symmetry with respect to the full superalgebra. The central charges of the theory are
given by

k
SU(2)
4d = N2 − 1 , c4d =

(N2 − 1)

4
. (2.173)

The Higgs branch chiral ring has N − 1 generators. In terms of the N × N matrices
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Qi := QA
i t

A, these are given by

TrQ(i1 · · ·Qik) , k = 1, . . . , N − 1 , (2.174)

subject to trace relations. In this theory, the Hall-Littlewood chiral ring contains additional
D-type multiplets that are not described by the Higgs chiral ring. More specifically, for
SU(N) gauge group there are an additional N − 1 HL generators given by

TrQ(i1 · · ·Qik)λ̃
1
+̇ , k = 1, . . . , N − 1 . (2.175)

There are corresponding generators of the HL anti-chiral ring that lie in D multiplets and
take the same form with λ̃1

+̇
replaced by λ1+. Finally, the Schur component of the SU(2)R

current, which will give rise to the stress tensor in two-dimensions, is given in terms of
four-dimensional fields by

J R=1
++̇ ∼ 1

2
TrQi∂++̇Qjε

ij − Tr λ̃+̇λ+ . (2.176)

Cohomological description of the associated chiral algebra

The free chiral algebra follows the same pattern as the previous examples. The two dimen-
sional counterparts of the hypermultiplet scalars and gauginos can be introduced as usual,

qAi (z) := χ[QA
i ] , bA(z) := χ[λ̃A] , ∂cA(z) := χ[λA] . (2.177)

The free chiral algebra has the free OPEs,

qAi (z)q
B
j (0) ∼

εijδ
AB

z
, bA(z)cB(0) ∼ δAB

z
.

The stress tensor is given by the usual canonical expression

T =
1

2
qAi ∂q

B
j εij − bA∂cA , (2.178)

which has a central charge of c2d = −3(N2 − 1). The SU(2)F currents are given by

Jij = −
1

2
qAi q

A
j , (2.179)

and satisfy a current algebra at level k2d = −N2−1
2

. The current algebra contains a Sugawara
stress tensor of the usual form,

TSug(z) =
1

N2 − 5
JijJkl ε

ikεjl , (2.180)
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with central charge equal to 3(N2−1)
N2−5

. Note that precisely for N = 2 and for no other value of
N , the Sugawara central charge matches with the true central charge. As we will see, this is
again a consequence of the two stress tensors being equivalent in BRST cohomology.

The SU(N) currents for the matter and ghost sectors are given by

JA =
i

2
fABCqBi q

C
j εij , JAgh = −ifABCcBbC . (2.181)

The levels for the corresponding current algebras are −2N and 2N , respectively. The BRST
current is constructed as usual,

JBRST = cA
(
JASU(N) +

1

2
JAgh

)
, (2.182)

and its zero mode defines the nilpotent BRST operator QBRST.

Low-lying physical states

Let us first consider the case of SU(2) gauge group. In this case the difference between the
Sugawara stress tensor and the canonical stress tensor is BRST exact,

T − TSug ∼ {QBRST , fABCqAi q
B
j b

C εij} . (2.183)

Based on the description of the HL chiral ring generators, we expect that amongst the
physical states should be an SU(2)F triplet of affine currents and an SU(2)F doublet of
dimension 3/2 fermionic generators. Up to dimension two, the cohomology is generated by
precisely these operators,

Jij = −1

2
(qAi q

A
j ) = χ[TrQiQj] ,

Gi :=
√
2(qAi b

A) = χ[TrQiλ̃+] ,

G̃i :=−
√
2(qAi ∂c

A) = χ[TrQiλ+] .

(2.184)
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The OPEs of these generators can be computed directly,

Jij(z)Jkl(w) ∼ −
N2 − 1

2

εl(iεj)k
(z − w)2 +

2ε(k(iJj)l)
z − w , (2.185)

Jij(z)Gk(w) ∼
1
2
(εkiGj(w) + εkjGi(w))

z − w , (2.186)

Jij(z)G̃k(w) ∼
1
2
(εkiG̃j(w) + εkjG̃i(w))

z − w , (2.187)

Gi(z)Gj(w) ∼ 0 , (2.188)

G̃i(z)G̃j(w) ∼ 0 , (2.189)

Gi(z)G̃j(w) ∼ −
2(N2 − 1)εij
(z − w)3 +

4Jij(w)

(z − w)2 +
2εijT (w) + 2∂Jij(w)

z − w , (2.190)

where N = 2 and the symmetrization in the indices i, j and k, l has weight one. The value of
N has been left unspecified in (2.185) because the OPEs will continue to hold for higher rank
gauge groups. For the same reason, T (z) has been included separately, though for N = 2 it
not a distinct generator, but rather is identified with the Sugawara stress tensor.

The operator product algebra in (2.185) can be immediately recognized to be the “small”
N = 4 superconformal algebra with central charge c2d = −3(N2 − 1) [76]. It is natural that
there should be supersymmetry acting in the chiral algebra, since the holomorphic sl(2)
that commutes with the supercharges ◗ i is in enhanced to a holomorphic sl(2 | 2) when
the four-dimensional theory is N = 4 supersymmetric. However, like the case of the global
conformal algebra being generated not by the four-dimensional stress tensor but by the chiral
operator associated to the SU(2)R current, here the enhanced supersymmetry in the chiral
algebra is generated not by the four-dimensional supercurrents, but by the Schur operators
that lie in the same D 1

2
(0,0) and D 1

2
(0,0) multiplets with them. Those are the Schur operators

that are transmuted into the two-dimensional supercurrents Gi and G̃i.
In SU(3) theory there are additional generators arising from the additional HL generators.

Sure enough, direct computation produces the following list of new generators of dimension
less than or equal to 5/2:

Bijk := Tr qiqjqk = χ[TrQiQjQk] ,

Bij := Tr qiqjb = χ[TrQiQjλ̃+] ,

B̃ij := Tr qiqj∂c = χ[TrQiQjλ+̇] ,

Bi := 3Tr qib∂c+ Tr ∂qjq
jqi= χ[3TrQiλ̃+λ+̇ + Tr ∂++̇QjQ

jQi] .

(2.191)

Precisely for the SU(3) case, the operator Bi is in fact equivalent to a composite operator,

Bi ∼ εjj
′

εkk
′

JjkBij′k′ . (2.192)
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This is a consequence of a chiral ring relation for this value of N which sets εjj
′

εkk
′

TrQjQk

TrQiQj′Qk′ to zero. This will not be the case for higher rank gauge groups, and Bi will be
an authentic generator of the algebra.

A super W-algebra conjecture

Because the chiral algebras of N = 4 SYM theories are supersymmetric, we can introduce
a more restrictive notion of generators for these algebras. More precisely, we would like
to identify those operators that generate the chiral algebra under the operations of normal
ordered products and superderivatives, or the action of sl(2 | 2). In other words, we allow
not just L1 descendants, but also Gi,− 1

2
and G̃i,− 1

2
descendants.

The last three generators in (2.191) are superdescendants of Bijk, so we have really only
found one additional super-generator in the SU(3) theory. In general, HL operators will be
grouped by N = 4 supersymmetry into multiplets comprised of a single B̂-type operator, an
SU(2)F doublet of D-type operators, and an SU(2)F doublet worth of D̄-type operators.

For a general simple gauge group, the natural guess is that the chiral algebra is generated
by the small N = 4 superconformal algebra along with additional chiral primary operators
arising from the Higgs chiral ring generators. Our conjecture is then the following:

Conjecture 3. The chiral algebra for N = 4 SYM theory with gauge group G is isomor-
phic to an N = 4 super W-algebra with rank(G) generators given by chiral primaries of
dimensions di

2
, where di are the degrees of the Casimir invariants of G.

We now perform some tests of this conjecture at the level of the superconformal index.

The superconformal index

Conjecture 3 can be tested up to any given level by comparing the index of the chiral algebra
defined in the conjecture with the superconformal index of N = 4 SYM in the Schur limit.
For gauge group SU(N), the Schur index is given by a contour integral,

ISchur(q; a) =
∮

[d~b]P.E.

[( √
q

1− q

)
χ2(a)χN2−1(~b) +

( −2q
1− q

)
χN2−1(~b)

]
, (2.193)

where a is an SU(2)F flavor fugacity. For SU(2) gauge group, expanding the integrand in
powers of q and integrating gives the following result up to O(q4), where we have collected
terms into SU(2)F characters χR(a),

ISchur(q; a) =1 + χ3(a)q − 2χ2(a)q3/2 +
(
χ1(a) + χ3(a) + χ5(a)

)
q2

− 2
(
χ2(a) + χ4(a)

)
q5/2 +

(
χ1(a) + 3χ3(a) + χ5(a) + χ7(a)

)
q3

−
(
4χ2(a) + 4χ4(a) + 2χ6(a)

)
q7/2

+
(
3χ1(a) + 7χ3(a) + 4χ5(a) + χ7(a) + χ9(a)

)
q4 + . . . . (2.194)
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SU(2)c

Figure 2.1: Weak coupling limits of the genus two class S theory.

We can compare this result with the index of the W-algebra appearing in the conjecture (in
this case, just the small superconformal algebra with the appropriate value of the central
charge) by enumerating the states of the chiral algebra and then finding and subtracting the
null states at each level. We have checked up to level four, and the results match exactly.

The same comparison can be done for the SU(3) case, where the Schur index to O(q3) is
given by

ISchur(q; a) =1 + χ3(a)q +
(
χ4(a)− 2χ2(a)

)
q3/2 +

(
2χ1(a) + χ5(a)− χ3(a)

)
q2

+
(
χ6(a)− 3χ2(a)

)
q5/2 +

(
5χ1(a) + χ3(a) + 2χ7(a)− 3χ5(a)

)
q3 + . . . .

(2.195)

Up to level three the nulls were computed and they agree with the index. Note that in this
case there are cancellations in the index of the chiral algebra, since there are bosonic and
fermionic states appearing at the same level.

2.5.4 Class S at genus two

At this point, the reader may be starting to get the impression that the chiral algebra of any
four-dimensional theory be entirely determined by the structure of its various chiral rings.
The purpose of this next example is to show that such a simplistic picture is untenable.

Our example is the rank one class S theory associated to an unpunctured genus two
Riemann surface [17, 18]. The theory admits two inequivalent weak-coupling limits, or
S-duality frames, corresponding to the two generalized quiver constructions illustrated in
Fig. 2.1. We will focus on the first case, which is sometimes called the dumbbell quiver. The
gauge groups are denoted SU(2)1 for the left loop, SU(2)2 for central line, and SU(2)3 for
the right loop. The fields of the theory are two sets of half-hypermultiplets transforming in
the trifundamental representation of SU(2)3 and three SU(2) vector multiplets. In N = 1
notation, we denote these by

Qa1b1a2 , Sa3b3a2 , W
(ν)
α Aν

, Φ
(ν)
Bν

, (2.196)
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where ν = 1, 2, 3 indexes the three SU(2) gauge groups, aν , bν are fundamental indices of
SU(2)ν , and Aν , Bν are adjoint indices of SU(2)ν . It is convenient to rearrange the fields
Qa1b1a2 and Sa3b3a2 in terms of irreducible representations of the gauge groups. In particular,
we can define

QA1a2 :=−iQa1b1a2(TJ)
a1b1 , Qa2 :=

1√
2
εa1b1Qa1b1a2 ,

SA3a2 := −iSa3b3a2(TJ)a3b3 , Sa2 :=
1√
2
εa3b3Sa3b3a2 .

(2.197)

Finally, we introduce the fields

φa2 =
1√
2
(Qa2 + iSa2) , φ̄a2 =

1√
2
(Qa2 − iSa2) . (2.198)

The theory has a U(1)F flavor symmetry that is not completely obvious given the usual
structure of flavor symmetries in class S theories. The fields φ and φ̄ have charges +1 and
−1 respectively under the flavor symmetry, and the remaining fields are neutral.

The BRST cohomology problem for this theory can be set up as in the previous sections.
In fact, the analysis may be somewhat simplified by leveraging the N = 4 analysis of the
previous section. In particular, each loop in the quiver corresponds to a small N = 4 super-
conformal algebra along with a decoupled SU(2) doublet of symplectic bosons. The genus
two theory is obtained by gauging the diagonal subgroup of the SU(2) flavor symmetries
for each side. Nevertheless, the resulting cohomology problem is substantially more intricate
than those of the previous examples, and we will not describe the level-by-level analysis.

Instead, we will take an indirect approach to understand the spectrum of generators of
this chiral algebra at low levels. In particular, by analyzing various superconformal indices
of this theory and comparing with the structure of the HL chiral ring, we will be able to
prove that the full chiral algebra must have generators in addition to those related to HL
chiral ring generators and the stress tensor. More precisely, by studying the spectrum up
to dimension three, we find that there must be additional generators that arise from Ĉ1(0,0)
multiplets in four dimensions.

The Higgs branch chiral ring for this theory has been analyzed in [77]. It has three
generators: a U(1)F neutral operator of dimension two, which is actually the moment map
for U(1)F ,

M = −ǫa2a′2φa2φ̄a′2 , (2.199)
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and two operators of dimension four,

O1 = 2 φa2φa′2 ǫ
a2b2ǫa

′
2b

′
2 QA1b2QB1b′2

δA1B1 . (2.200)

O2 = 2 φ̄a2φ̄a′2 ǫ
a2b2ǫa

′
2b

′
2 QA1b2QB1b′2

δA1B1 , (2.201)

that have charges +2 and −2 under the flavor symmetry. These generators satisfy a flavor
neutral relation of dimension eight:

O1O2 =M4 . (2.202)

It will be helpful for us to write down the Hilbert series [77] for this theory, refined by the
U(1)F flavor symmetry:

g(τ, a) =
1− t4

(1− t)(1− a2t2)(1− a−2t2)
= 1 + t+

(
a2 + a−2 + 1

)
t2 +

(
a2 + a−2 + 1

)
t3 + . . . ,

(2.203)
where a is the U(1)F fugacity, and t is the fugacity for the dimension of the operator.
The generalized quiver for this theory has closed loops, so there will be additional elements
of the HL chiral ring coming from D-type multiplets. The HL index for this theory can be
computed by standard methods, and is given by

IHL(t; a) = 1 + t+ (a2 + a−2 − 2a− 2a−1 + 1)t2 + (a2 + a−2 − 2a− 2a−1 + 2)t3 + . . . .
(2.204)

By subtracting off the contributions of the Higgs chiral ring operators (obtained from (2.203)),
we can find the contributions of just the D-type multiplets. In turn, we can extract the struc-
ture of the D-type generators.27 All told, at dimension two there are two D1(0,0) multiplets
with U(1)F charge +1 and two with charge −1, and at dimension three there is a single
D 3

2
(0, 1

2
) multiplet that is U(1)F neutral. The two-dimensional counterparts of these opera-

tors can be defined in an explicit calculation of the BRST cohomology.

Up to dimension three, we have now determined all of the generators of the HL chiral
ring. The question is whether these operators (along with the conjugates of the D-type
operators), in addition to the two-dimensional stress tensor, are sufficient to explain the full
spectrum of the chiral algebra (up to dimension three). The generators are listed in the
three blocks of Table 2.6, together with their contribution to the Macdonald index and the
quantum numbers of the corresponding Schur operators.

The Macdonald limit of the superconformal index of this theory is obtained from the

27We have checked by a computation of the HL cohomology that the HL index captures faithfully the
complete spectrum of D-type multiplets up to dimension three.
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Multiplet Index contribution h U(1)r U(1)F

B̂1 t
1−q

1 0 0

B̂2 t2a2

1−q
2 0 +2

B̂2 t2/a2

1−q
2 0 −2

2×D1 (0,0) −2 t2a
1−q

2 1
2

+1

2× D̄1 (0,0) −2 tqa
1−q

2 −1
2

+1

2×D1 (0,0) −2 t2/a
1−q

2 1
2

−1
2× D̄1 (0,0) −2 tq/a

1−q
2 −1

2
−1

D 3
2
(0, 1

2
)

t3

1−q
3 1 0

D̄ 3
2
( 1
2
,0)

tq2

1−q
3 −1 0

Ĉ0(0,0) tq
1−q

2 0 0

3× Ĉ1(0,0) 3 t2q
1−q

3 0 0

Table 2.6: Chiral algebra generators for the genus two theory with h 6 3. The first columns
lists the name and multiplicity of the four dimensional multiplets giving rise to the gener-
ators. The second column lists the contribution of each multiplet to the Macdonald super-
conformal index, including the flavor fugacity. The last columns list the two-dimensional
quantum numbers of the generators. The first block of the table consists of Higgs chiral ring
generators, the second the remaining HL chiral and anti-chiral ring generators, the third
the two-dimensional stress tensor, and the last block the extra generators deduced from the
superconformal index.

following contour integral,

IMD(q, t; a) =

∮
[db1][db2][db3]P.E.

[ √
t

1− q
[(
χ3(b1)χ

2(b3) + χ3(b2)χ
2(b3)

)

+(a+ a−1)χ2(b3)
]
+

(−t− q
1− q

)(
χ3(b1) + χ3(b2) + χ3(b3)

)]
, (2.205)

and the expansion including all operators up to dimension three is as follows,

IMD(q, t;a) = 1 + t+ (a2 + a−2 − 2a− 2a−1 + 1)t2 + (−2a− 2a−1 + 2)qt+ (2.206)

+(a2 + a−2 − 2(a+ a−1) + 2)t3 + (3− 2(a+ a−1))q2t

+ (a2 + a−2 − 4(a+ a−1) + 5)t2q + . . . .
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We find that not all of the terms in this expansion can be accounted for by enumerating
normal ordered products of generators and their descendants. In particular, from the list
of known generators, the only operators that could contribute as t2q to the index (with no
flavor fugacity) are the normal-ordered product of a B̂1 and a Ĉ0(0,0) and the derivative of

the normal-ordered product of two B̂1 operators. This leaves a contribution of 3t2q remains
to be explained. We can thus conclude that there are at least three new operators, and they
must all must correspond to Ĉ1,(0,0) multiplets that are uncharged under the flavor symmetry.
We have included these as the last entry in Table 2.6. The argument presented above shows
that at least these three multiplets must be present, however it does not take into account
possible cancellations in the index, which could hide even more additional generators.

2.6 Beyond Lagrangian theories

Although the discussion of the previous section focused on theories admitting Lagrangian
descriptions, the correspondence between N = 2 SCFTs and chiral algebras is of course
much more general. In particular, the vast landscape of superconformal theories of class S,
most of which are non-Lagrangian in nature, will be mapped to an intricate and interesting
class of chiral algebras. The purpose of this section is to draw a sketch of the class of chiral
algebras defined by this map. Most of the features discussed here follow from the general
structure of class S and the correspondence with chiral algebras. We do however include
a few specific claims that will be left unsubstantiated here, but which are explained in the
more complete analysis of [75]. To begin, we offer a quick reminder of the salient features of
N = 2 SCFTs of class S.

2.6.1 A review of class S in four dimensions

Class S theories [17, 18] are those that arise from compactification of any of the N = (2, 0)
six-dimensional superconformal theories on a Riemann surface C, known as the UV curve,
possibly with the inclusion of real codimension two defect operators at points of C.28 We will
be interested in the case of superconformal theories of class S, which means that the mass
parameters associated to defect operators will all be set to zero. The conformal manifold of
a theory of class S is equal to the complex structure moduli space of the UV curve, with
boundaries at which the curve degenerates corresponding to physical limits in which a gauge
coupling goes to zero and a free vector multiplet decouples from the rest of the spectrum.

For our purposes, the most useful way to think about these theories is in terms of a set of
four-dimensional “building block” theories associated to three-punctured spheres, or trinions
[17]. Such a theory can be denoted T

(ρ1,ρ2,ρ3)
g , where g is the lie algebra of the underlying

28We restrict to the case of regular defects in all that follows. These are defects that are specified by an
embedding ρ : su(2) → g, where g is the simply laced Lie algebra that labels the six-dimensional theory.
Such a defect supports a flavor symmetry equal to the centralizer of the embedded su(2) subalgebra of g.
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six-dimensional theory, and the ρi label the defects at the three punctures. When all three
embeddings are trivial, the theory is sometimes simply denoted Tg (or TN for the case that
g = AN−1). These building blocks can be assembled into more complex theories in a manner
that is represented by a generalized quiver diagram such as those displayed in §2.5.4. The
shape of the generalized quiver is necessarily a tropical limit of the corresponding UV curve,
with different tropical limits corresponding to different S-duality frames of the same theory.

A number of known features of the building block theories can be used to predict the
structure of the associated chiral algebras. In the interest of simplifying the discussion, we
shall henceforth restrict to the case where g = AN−1. The maximal building block (that is,
the one with the largest flavor symmetry group) is then the TN theory mentioned above. We
begin by reviewing its properties.

Generically, TN has SU(N)1 × SU(N)2 × SU(N)3 flavor symmetry, and central charges
[78, 79]

c4d =
N3

6
− N2

4
− N

12
+

1

6
, k

SU(N)
4d = 2N = 2h∨ . (2.207)

WhenN = 2, this is just the theory of free trifundamental half-hypermultiplets that appeared
in the example of §2.5.4, so the associated chiral algebra is already known. In the special
case of the T3 theory, the global symmetry is enhanced to E6 and this is the classic theory
of [12]. In that case, the four-dimensional level for the E6 symmetry is kE6

4d = 6.
The generators of the Higgs branch chiral ring are known for these theories. There are

always dimension two moment maps µi=1,2,3 that transform in the adjoint of SU(N)i and
obey the relation

Trµk1 = Trµk2 = Trµk3 , k = 2, . . . , N . (2.208)

These are supplemented by generators Q(k) of dimension k(N − k) for k = 1, . . . , N − 1,
which transform in the (∧k,∧k,∧k) representation of SU(N)1 × SU(N)2 × SU(N)3, where
∧k denotes the k-fold antisymmetric tensor representation. For N = 2 the only operator
of this type is Q(1), which is the free hypermultiplet itself. The moment maps are actually
composites of this basic operator. For the N = 3 case the operators are Q(1) and Q(2),
which are the additional moment maps of E6. For higher values of N , these are genuine new
generators of the Higgs branch chiral ring, all with dimension greater than two. Some of the
relations amongst these higher generators and the moment maps have been derived in [80],
though we do not list them here. In the case of the E6 theory, the full set of Higgs branch
relations are precisely those that define the Joseph ideal for the E6 one-instanton moduli
space.

The trinion theories with reduced punctures (i.e., with nontrivial defining embeddings
ρi) can be thought of as arising by coupling the theory with a maximal puncture to a certain
superconformal tail and then turning on specific Higgs branch vacuum expectation values
[81, 82]. Though we do not write down the explicit formulae, the central charges for these
theories can be computed for any choice of defining representations [72]. Important special
cases are the trinions for which the theory that results from reducing the punctures of the
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non-Lagrangian TN theory is described in terms of free fields. A canonical example is the
theory where ρ1 and ρ2 are trivial, but ρ3 is the subregular embedding of su(2) into su(N).
In this case puncture three is known as a minimal punctures, and the resulting trinion theory
is that of N free hypermultiplets.

Finally, we mention that index considerations suggest that there are no D-type multiplets
for these theories, in which case the HL chiral ring is just the Higgs chiral ring [13, 80].

2.6.2 An outline of class S chiral algebras

We now turn to the class of chiral algebras that form the image of the class S SCFTs under
the map χ. In parallel with the full four-dimensional story, there will be a set of basic
building block chiral algebras corresponding to the sphere with three maximal punctures.
These will be the chiral algebras χ[TN ]. General aspects of the chiral algebra correspondence
allow us to predict a number of properties of these theories. The two-dimensional central
charge is fixed by the usual proportionality with the four-dimensional conformal anomaly,

c2d = −2N3 + 3N2 +N − 2 . (2.209)

Additionally, these chiral algebras have ŝu(n)3k affine symmetry with

k2d = −h∨ . (2.210)

It is interesting to note that this is precisely the level that is relevant for the connection
between two-dimensional vertex algebras and the geometric Langlands program (see, e.g.,
[83]). In addition to the generating currents of the affine flavor symmetry, the chiral algebra
will have additional generators χ[Q(k)] of holomorphic dimension h = 1

2
k(N−k) transforming

in the appropriate representations of the flavor symmetries.
For the case of the T3 theory, the Higgs chiral ring generators are just the E6 moment

maps. The relations are generated by the E6 Joseph ideal, and correspondingly the central
charges of this theory saturate the appropriate unitarity bounds of §2.4.2. In particular, this
means that the stress tensor is not an independent generator, but rather is equivalent to the
Sugawara stress tensor of the E6 current algebra (see §2.4.3). Given our prior experience in
§2.5.1, it is natural to make a preliminary conjecture concerning the description of the T3
chiral algebra:

Conjecture 4. The chiral algebra for the rank one E6 theory, also known as T3, is isomorphic
to the E6 affine Lie algebra at level k2d = −3.

It is difficult to directly address this conjecture, since we do not have the free-field realiza-
tion of this chiral algebra that was present for Lagrangian theories. Nevertheless, a variety
of indirect checks have been performed and are presented in [75].

The chiral algebras associated to more general punctured Riemann surfaces can be real-
ized in a procedure that parallels the gluing construction in four dimensions. In particular,
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for a given generalized quiver construction we start with a number of copies of χ[TN ] along
with SU(N) ghost small algebras, and then perform the BRST reduction associated to four-
dimensional gauging to define the chiral algebra. Because the chiral algebra that is associated
to a given four-dimensional theory is independent of the exactly marginal couplings, the chi-
ral algebras associated to a given UV curve will not depend on the complex structure moduli
of the curve, and in particular will not depend on the choice of generalized quiver within a
given topological class. Thus, there will be a generalized topological quantum field theory
that associates a chiral algebra to any appropriately decorated Riemann surface. This is
very much in the spirit of [84] and [85], where the superconformal index and the symplec-
tic holomorphic variety of the Higgs branch, respectively, were used to define a generalized
TQFT via class S. Associativity of the gluing imposes highly nontrivial requirements on the
chiral algebra of the elementary TN building block. There are three a priori inequivalent
gauging procedures of two TN theories that must lead to the unique theory associated to
the four-punctured sphere. From the 2d perspective, the BRST complexes associated to the
different gaugings must give the same cohomology. In the simple case of T2, this follows at
once from Conjecture 1, as the ŝo(8) current algebra is manifestly independent of the choice
of gluing.

Having focused thus far on the case of maximal punctures, we should also consider chiral
algebras χ[T

(ρ1,ρ2,ρ3)
N ] associated to the non-maximal theories. The task of reducing the

rank of a puncture can be accomplished directly within the two-dimensional chiral algebra
setting. We propose that the chiral algebra for the theory T

(ρ1,ρ2,ρ3)
N is determined by quantum

Drinfeld-Sokolov (DS) reduction of the TN theory with respect to the three embeddings. In
the canonical setting, quantum DS reduction is an operation that is performed on an affine
Lie algebra in order to produce a different W-algebra as the cohomology of an appropriate
BRST operator. In the present setting, the reduction is performed on a theory with an
affine Lie subalgebra, so one may think of this as quantum DS reduction with modules.
The generalization is conceptually straightforward, but somewhat involved technically. This
proposal passes several checks, most notably that the central charges of the reduced theory
precisely reproduce the expected answers. The behavior of the class S chiral algebras under
the reduction of punctures imposes additional powerful constraints on the form of these
two-dimensional theories. In particular, complete reduction of a puncture (corresponding to
choosing a maximal embedding ρ) must lead to the chiral algebra for the theory with one
fewer puncture. Similarly, reducing one maximal puncture in χ[TN ] to a minimal punctures
must lead to the free hypermultiplet chiral algebra. A detailed discussion will be presented
in [75].

The connection between reducing the rank of a puncture and quantum DS reduction
has made previous appearances in the context of the AGT correspondence [86, 87], and the
fact that the same procedure is used here suggests a deeper connection between the chiral
algebras defined here and those that appear in the AGT correspondence.
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2.7 Open questions

We have outlined the main features of a new surprising correspondence between the four-
dimensional N = 2 superconformal field theories and chiral algebras. It should be apparent
that there is a great deal more to learn about this rich structure. There are many aspects
that should be clarified further, and many natural directions in which the construction could
be generalized. We will simply provide a concise list of what we consider to be the most
salient open questions, some of which are currently under investigation.

• For the Lagrangian examples considered in §2.5, as well as the class S examples
sketched in §2.6, we have made specific conjectures for the description of the resulting
chiral algebras as W-algebras. We hope that some of these conjectures can be proved
by more advanced homological-algebraic techniques.

• A detailed analysis of the B̂1 four-point function that compared 4d and 2d perspectives
led to powerful new unitarity bounds that must be obeyed in any interacting N = 2
SCFT with flavor symmetry. It is likely that applying the same methods to more
general correlators will lead to further unitarity constraints.

• A better understanding of the implications of four-dimensional unitarity may help
clarify what sort of chiral algebra can be associated to a four-dimensional theory. A
sharp characterization of the class of chiral algebras that descend from four-dimensional
SCFTs could prove invaluable, both as a source of structural insights and as a possible
first step towards a classification program for N = 2 SCFTs.

• We have seen that the four-dimensional operators that play a role in the chiral algebra
are closely related to the ones that contribute to the Schur and Macdonald limits of
the superconformal index. While the Schur limit has been interpreted in §2.4.4 as an
index of the chiral algebra, the additional grading that appears in the Macdonald index
is not natural in the framework that we have developed. It would be interesting if the
additional refinement of the Macdonald index could be captured by a deformation of
the chiral algebra structure, perhaps along the lines of [88].

• It seems inevitable that extended operators will ultimately find a place in our construc-
tion. We expect that codimension-two defects orthogonal to the chiral algebra plane
will play the role of vertex operators transforming as non-trivial modules of the chiral
algebra. One could also apply the tools developed here to study protected operators
that live on conformal defects that fill the chiral algebra plane.

• As it was presented here, the definition of a protected chiral algebra appears to use
extended superconformal symmetry in an essential way. Nevertheless, one wonders
whether some aspects of this structure may survive away from conformality, perhaps
after putting the theory on a nontrivial geometry.
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• A related question is whether some aspects of our construction for Lagrangian theories
may be accessible to the techniques of supersymmetric localization. The chiral alge-
bra itself may emerge after an appropriate localization of the four-dimensional path
integral.

• In many examples, the structure of the 4d Higgs branch appears to play a dominant
role in determining the structure of the associated chiral algebra. It is an interesting
question whether there is a sense in which the chiral algebra is an intrinsic property of
the Higgs branch, possibly with some additional structure added as decoration.

• The structure that we have utilized in this article does not admit a direct generalization
to odd space-time dimensions. However, a philosophically similar approach leads to
a correspondence between three-dimensional N = 4 superconformal field theories and
one-dimensional topological field theories. The topological field theory captures twisted
correlators of three-dimensional BPS operators whose positions are constrained to a
line. We hope to return to investigate this structure in the future.

• The cohomological approach to chiral algebras that was successfully pursued in this
article can be repeated in two-dimensional theories with at least N = (0, 4) super-
conformal symmetry and six-dimensional theories with N = (2, 0) superconformal
symmetry [28]. As it was in the four-dimensional case, correlation functions of the
six-dimensional chiral algebra should provide the jumping off point for a numerical
bootstrap analysis of the elusive (2, 0) theories.

• Combining the extension of this story to six dimensions with the inclusion of defect op-
erators has the potential to provide a direct explanation for the AGT relation between
conformal field theory in two-dimensions and N = 2 supersymmetric field theories in
four dimensions.
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Chapter 3

Chiral Algebras for Trinion Theories

The contents of this chapter appear in [2]: “Chiral Algebras for Trinion Theories”,
M. Lemos and W. Peelaers,
arXiv:1411.3252 [hep-th], JHEP 1502, 113 (2015)
DOI: 10.1007/JHEP02(2015)113

3.1 Introduction and conclusions

In chapter 2 and Ref. [28] it was shown that even-dimensional extended superconformal field
theories (SCFTs)1 contain a protected subsector that is isomorphic to a two-dimensional
chiral algebra. This subsector is obtained by restricting operators to be coplanar and treating
them at the level of cohomology with respect to a particular nilpotent supercharge, obtained
as a combination of a supercharge and a superconformal charge of the theory. In showing
the existence of the chiral algebra one relies only on the symmetries of the theory and there
is no need to have a Lagrangian description — a fact that was used to study the chiral
algebras associated with the six-dimensional (2, 0)-theory in [28] and with those obtained
from four-dimensional theories of class S in [75]. In this chapter we will focus on the chiral
algebras associated with the so-called trinion or Tn theories of class S.

Chiral algebras of class S, i.e., the collection of chiral algebras associated with four-
dimensional theories of class S [17, 18], were argued to take the form of a generalized topo-
logical quantum field theory (TQFT) in [75]. Within this TQFT, gluing, the operation
associated to four-dimensional exactly marginal gauging, is achieved by solving a BRST co-
homology problem, and partially closing a puncture is implemented via a quantum Drinfeld-
Sokolov reduction. Furthermore, just as the isolated, strongly interacting Tn theories, i.e.,
the theories whose UV-curve is a sphere with three punctures of maximal type, are the basic
building blocks of class S theories, so are their associated chiral algebras the basic building

1More precisely N = (2, 0) in d = 6, N ≥ 2 in d = 4, and “small” N = (0, 4) and N = (4, 4) in d = 2.
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blocks of said TQFT. Characterizing the Tn chiral algebras is thus a prerequisite for an in
principle complete understanding of chiral algebras of class S.

However, while the existence of a chiral algebra inside a generic N = 2 SCFT can be
argued in general terms, a complete characterization of its generators is currently lacking.2

As for a partial characterization, it was argued in 2 that one is guaranteed to have at
least generators in one-to-one correspondence with the Higgs branch chiral ring generators.3

In particular, the Tn Higgs branch chiral ring contains as generators three moment map
operators, one for each factor in the Tn flavor symmetry algebra

⊗3
i=1 su(n)i, and it was

shown in 2 that their corresponding chiral algebra generators are three affine currents with
affine levels k2d,i determined in terms of the four-dimensional flavor central charges k4d,i as

k2d,i = −k4d,i
2
. These central charges are equal for the three factors, k4d,i = 2n, and thus the

affine current algebras ŝu(n) have critical level k2d ≡ k2d,i = −n. The remaining generators
of the Tn Higgs branch chiral ring give rise to additional generators of the chiral algebra,
which must be primaries of the affine Kac-Moody (AKM) algebras.

It was also shown in chapter 2 that the existence of a four-dimensional stress tensor implies
that the chiral algebra must contain a meromorphic stress tensor. Therefore the global sl(2)
conformal algebra enhances to a Virasoro algebra, with the central charge fixed in terms of
the four-dimensional c-anomaly coefficient by c2d = −12c4d. However, the stress tensor is not
necessarily a new generator of the chiral algebra, as it could be a composite operator (i.e.,
obtained from normal-ordered products of the generators and of their derivatives). Since the
AKM current algebras are at the critical level, they do not admit a normalizable Sugawara
stress tensor, and therefore the stress tensor can only be a composite if additional dimension
two singlet composites can be constructed. This is only possible (and in fact happens) for
n = 2 and 3.

In the first part of this chapter we perform a detailed study of the graded partition
function of the Tn chiral algebra, which can be computed thanks to its equality to the
so-called Schur limit of the N = 2 superconformal index [13, 46], and which shows that the
collection of generators listed so far is not complete for n > 4 (see section 3.2). Motivated
by this analysis, we conjecture the complete set of generators to be as follows:

Conjecture 5 (Tn chiral algebra). The Tn chiral algebra χ(Tn) is generated by

• The set of operators, H, arising from the Higgs branch chiral ring:

→ Three ŝu(n) affine currents J1, J2, J3, at the critical level k2d = −n, one for each
factor in the flavor symmetry group of the theory,

2For Lagrangian theories, this problem can (in principle) be circumvented by explicitly constructing the
full chiral algebra from the basic known chiral algebras associated with the free hypermultiplet and vector
multiplet.

3More generally, in the terminology of 2, all generators of the so-called Hall-Littlewood chiral ring give
rise to generators of the chiral algebra. For class S theories with acyclic generalized quivers, such as the Tn

theories, the Hall-Littlewood chiral ring equals the Higgs branch chiral ring.
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→ Generators W (k), k = 1, , . . . , n− 1 in the (∧k,∧k,∧k) representation of⊗3
j=1 su(n)j, where ∧k denotes the k−index antisymmetric representation of

su(n). These generators have dimensions k(n−k)
2

,

• Operators Oi, i = 1, . . . n− 1, of dimension hi = i+1 and singlets under
⊗3

j=1 su(n)j,
with the dimension 2 operator corresponding to the stress tensor T of central charge
c2d = −2n3 + 3n2 + n− 2,

modulo possible relations which set some of the operators listed above equal to composites of
the remaining generators.

In other words, if one were to start with all generators of the above conjecture, one would
find that some of them could be involved in null relations with composite operators, thereby
being redundant. For example, in the chiral algebra associated with T2, i.e., the theory
of eight free half-hypermultiplets, the affine currents and the stress tensor can be written
as composites of the dimension 1

2
generator W (1). For the case of T3, which corresponds

to the E6 theory of [12], convincing evidence was provided in [75] that its chiral algebra
χ(T3) is fully generated by operators originating from the Higgs branch chiral ring. The
stress tensor can be written as a composite and also, although not explicitly constructed in
[75], the dimension three singlet operator is accounted for as a composite. For n > 3, as
argued above, the stress tensor cannot be a composite of generators in H, but the remaining
dimension 3, . . . , n singlet generators could still be. In the case of the T4 chiral algebra the
dimensions three and four singlet generators are redundant, as will be shown in section 3.3.

Our aim in the second part of this chapter is to verify Conjecture 5 for T4, in which case
the chiral algebra is generated by the operators in H and the stress tensor, by explicitly
constructing an associative algebra with these generators. Our approach to bootstrap this
problem is to write down the most general operator product expansions (OPEs) between the
generators, and to demand associativity of the operator product algebra by imposing the
Jacobi-identities. Since chiral algebras are very rigid, one can hope that these constraints
are sufficiently stringent to completely fix the operator algebra, as was famously shown to
be the case for the first time for the W3 algebra in [89] (see for example [49] for a review of
other cases). We indeed find that the OPEs are completely and uniquely fixed. The analysis
of the Jacobi-identities becomes technically involved in several instances, and as a result
we can only claim that the conditions analyzed are necessary for an associative operator
product algebra. However we believe that the remaining Jacobi-identities provide redundant
constraints. As an interesting by-product of the explicit T4 chiral algebra, we can compute
four-dimensional Higgs branch chiral ring relations, which appear as null relations in the chi-
ral algebra setting. Some of these relations are already known in the literature, (e.g., [80, 90]),
and recovering them here provides a further check of the chiral algebra, while others are new.

As mentioned, four-dimensional Higgs branch chiral ring relations can be obtained from
null relations in the chiral algebra. The explicit construction of χ(T4) we present here thus
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provides a new, conceptually clear method to obtain all Higgs branch chiral ring relations for
the T4 theory. It seems plausible that once their structure is understood, they can be gener-
alized to arbitrary Tn. In this chapter we obtain all χ(T4) null relations of dimension smaller
than four, already uncovering new Higgs branch chiral ring relations, but the procedure can
be taken further. For example, it would be possible to verify the recently proposed null
relation of [91], as well as uncover further unknown ones. Furthermore, as will be elaborated
upon in the next sections, our interpretation of the χ(Tn) chiral algebra partition function
also predicts the existence of certain types of null relations, facilitating the task of explicitly
computing them in the chiral algebra setting.

Further checks of the χ(T4) chiral algebra could be performed by partially closing punc-
tures (via a quantum Drinfeld-Sokolov (qDS) reduction (see [75])) to obtain the free hyper-
multiplet, the E7 theory of [67], or more generally the other fixtures of [72]. For example,
the chiral algebra associated with the E7 theory is conjectured to be described by an affine
ê7 current algebra at level k2d = −4 and it is easy to convince oneself that the qDS procedure
associated with the relevant su(2) embedding will indeed result in dimension one currents
corresponding to the decomposition of the e7 adjoint representation. As shown in [75], to
complete the reduction argument, certain null relations need to exist in order to remove
redundant generators in the reduced algebra. Such null relations are expected to descend
from those of χ(T4).

The construction of χ(T4) here made use of the constraints arising from associativity of
the operator algebra. It would also be interesting to study if the theory space bootstrap, as
introduced in [75], which imposes instead associativity of the TQFT structure, might result
in a complementary route to construct the chiral algebra. In particular with an eye towards a
construction of χ(Tn), for n > 4, an alternative (or a combined) approach might prove useful.

The organization of this chapter is as follows. In section 3.2 we analyze the partition
function of χ(Tn) employing its equality to the superconformal index of Tn theories, and
show how it motivates Conjecture 5, as well as some other expectations about the chiral
algebra. In section 3.3 we present the explicit construction of the T4 chiral algebra and give
explicit expressions for various null relations. We also show how our expectations deduced
from the superconformal index are realized for T4. The readers interested only in the explicit
construction of χ(T4) can safely skip section 3.2 as section 3.3 is mostly independent from it.
Appendix D contains some technical details on the relation between critical affine characters
and the superconformal index, and in appendix E we collect all singular OPEs defining the
chiral algebra χ(T4).

3.2 Tn indexology

In this section we analyze the partition function of the Tn chiral algebra, which gives insights
into its generators and relations. By writing the partition function in a suggestive way we
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can justify Conjecture 5 and infer some properties of the structure of the chiral algebra, such
as its null relations.

As shown in 2, the graded partition function of the chiral algebra χ(Tn) equals the
so-called Schur limit of the superconformal index of the Tn theory [13, 46]. We work under
the assumption that all generators are bosonic and thus the grading is immaterial. In
appendix D we show that the index can be written in a way suggestive of its interpretation
as a two-dimensional partition function as

Zχ(Tn)(q;xi) =
∑

Rλ

q〈λ,ρ〉CRλ
(q)

3∏

i=1

chRλ
(q,xi) . (3.1)

Here xi denote flavor fugacities conjugate to the Cartan generators of the su(n)i flavor
symmetry associated with each of the three punctures, and the sum runs over all irreducible
su(n) representations Rλ of highest weight λ. The summand contains the product of three
copies — one for each puncture — of chRλ

(q,x), the character of the critical irreducible

highest weight representation of the affine current algebra ŝu(n)−n with highest weight λ̂,
whose restriction to su(n) is the highest weight λ [92].4 Furthermore, ρ is the Weyl vector
and 〈·, ·〉 denotes the Killing inner product. Finally, the structure constants CRλ

(q) can be
written as

CRλ
(q) = P.E.

[
2
n−1∑

j=1

qdj

1− q + 2
n−1∑

j=1

(n− j) qj − 2
n∑

j=2

∑

1≤i<j

qℓi−ℓj+j−i

]
, (3.2)

where ℓi=1,...,n denote the lengths of rows of the Young tableau describing representation Rλ

with ℓn = 0, dj are the degrees of invariants, i.e. dj = j + 1 for su(n), and finally P.E.
denotes the standard plethystic exponential

P.E. [f(x)] = exp

(
∞∑

m=1

f(xm)

m

)
. (3.3)

Let us provide some preliminary interpretative comments:

• We have obtained an expression for the partition function (3.1) that is manifestly
organized in terms of modules of the direct product of the three critical affine cur-

rent algebras
⊗3

i=1
̂(su(n)i)−n. Indeed, the factor q〈λ,ρ〉

∏3
i=1 chRλ

(q,xi) in (3.1) cap-
tures threefold AKM primaries of dimension 〈λ, ρ〉, transforming in representations
(Rλ,Rλ,Rλ), including for example all the W (k), and all of their AKM descendants.

• The role of the structure constants is to encode additional operators beyond those
captured by the threefold AKM modules. In particular, in the term Rλ=0 in the sum

4Our notation here and in appendix D follows that of [93].
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over representations, the structure constant CRλ=0
(q) = P.E.

[
2
∑n−1

j=1
qdj

1−q

]
encodes two

sets of additional operators of dimensions dj = j + 1, for j = 1, . . . , n − 1, (and their
sl(2) descendants) acting on the vacuum module. These operators can either be new
generators, or obtained as singlet composites of the generators captured by the AKM
modules, which themselves are not present in the modules. Let us now describe these
two sets:

1. The fact that the three AKM current algebras are at the critical level implies
that all the Casimir operators Tr(J1)k, Tr(J2)k, Tr(J3)k with k = 2, 3, . . . , n are
null within their respective AKM algebra, and therefore that their action is not
included in the affine modules. However, these operators do not remain null in
the full chiral algebra, as it contains a stress tensor as well. In fact, null relations
set all Casimirs equal Tr(J1)k = Tr(J2)k = Tr(J3)k.5 These n − 1 Casimirs
correspond to the first set of operators reinstated by the structure constants.

2. The second set of operators motivates our conjecture that there can be extra
generators Oi with precisely dimensions hi = di = i+ 1.

A more detailed discussion of these statements, and the interpretation of the two remaining
factors in (3.2) is given in the remainder of this section. Readers not interested in this
technical analysis can safely skip the remainder of this section.

The AKM modules
Ignoring for a moment the structure constants, each term in the sum over representations

Rλ of (3.1) captures the states in the direct product of three critical affine modules with
primary transforming in representation (Rλ,Rλ,Rλ). The dimension of the threefold AKM
primary is implemented by the factor q〈λ,ρ〉, yielding

h(Rλ,Rλ,Rλ) = 〈λ, ρ〉 =
n−1∑

i=1

n− (2i− 1)

2
ℓi . (3.4)

These pairings of dimension and representations include all the threefold AKM primary
generators W (k), k = 1, . . . , n − 1 in Conjecture 5. (Note that the currents themselves are
AKM descendants of the identity operator and appear in the vacuum module.) We expect
that the remaining threefold AKM primaries in the sum over Rλ all arise from combinations
of normal-ordered products of generators in H (the set of generators originating from the
Higgs branch chiral ring generators), and do not give rise to additional generators. It is
clear that for each representation (Rλ,Rλ,Rλ) one can write down a composite operator of

5The existence of these null relations follows directly from the existence of relations on the Higgs branch
chiral ring setting the Casimir operators formed out of the moment map operators of the three flavor
symmetries equal [80]. The corresponding chiral algebra null relations will be recovered in the next section.
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the W (k), transforming in such representation, and with the appropriate dimension. Then,
it seems plausible that such operator can always be made into a threefold AKM primary
by — if necessary — adding composites of the remaining operators in H. We have checked
this statement in a few low-dimensional examples for T4 (see equation (3.15) for an explicit
example). All in all, the AKMmodules capture the generatorsW (k), as well as other threefold
AKM primaries obtained as their normal-ordered product, and all of their AKM descendants.

The structure constants
The structure constants (3.2) encode additional operators on top of those captured by the

AKM modules already described. Let us start by analyzing the factor

P.E.

[
2
n−1∑

j=1

qdj

1− q

]
. (3.5)

When inserted in (3.1), it encodes two sets of operators of dimensions dj and their sl(2)
descendants (taken into account by the denominator 1

1−q
), normal-ordered with all operators

in any given AKM module (Rλ,Rλ,Rλ). As described before, one set adds back the Casimir
operators Tr(J1)k = Tr(J2)k = Tr(J3)k of the AKM algebras,6 and the second set motivates
the claim that there can be additional generators Oi=1,...,n−1 of dimensions hi = di = i +
1.7 However, one should bear in mind that in some cases one can construct (non-null)
non-AKM-descendant singlet operators as composites of the W (k) of dimensions h equal to
one of these dimensions. Since the only singlet operator in the sum over AKM modules,
which is not an AKM descendant, corresponds to the identity operator, such operators must
be accounted for by (3.5). This leaves two possibilities: it is either equal (or set equal by a
null relation) to a composite of smaller dimensional Oi operators and/or of Casimirs, and
consequently taken into account by the plethystic exponentiation in (3.5). Or it must take
the place of the would-be generator O of dimension h. In other words, if one were to include
O, one would find a null relation between this would-be generator and the composite of
W (k). As was mentioned before, the simplest example is the stress tensor T ≡ O1, which
for T2 and T3 is a composite, but for Tn≥4 must be a new generator. In the next section
we will show that for T4 the generators of dimension three and four are absent, as the type
of composites described above exist. However for n ≥ 5 it is not possible to write such a
composite of dimension three, and O2 must be a generator.

6Both the Casimirs and the Casimirs normal-ordered with threefold AKM primaries are new threefold
AKM primaries, since they were null if one were to consider each AKM current algebra in isolation.

7For readers familiar with the classification of four-dimensional superconformal multiplets of [52], these
generators arise from four-dimensional operators in the Ĉ multiplets.
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We now turn to the next factor in the structure constants (3.2)

P.E.

[
2
n−1∑

k=1

(n− k) qk
]
. (3.6)

Recalling that at the critical level the stress tensor is not obtained from the Sugawara
construction, the critical modules do not contain derivatives8 of the threefold AKM primaries,
although the full chiral algebra must. Similarly, the action of the modes (Oi)−1, i = 2, . . . , n−
1, (Oi)−2, i = 2, . . . , n− 1, (Oi)−3, i = 3, . . . , n− 1, . . . of the remaining singlet operators of
the chiral algebra are not yet included. The number of modes we have to take into account
at grade k is precisely given by n − k, and these modes are added by one of the factors in
(3.6). The other factor adds back similar modes of the Casimir operators of the AKM current
algebras, an explicit example of which will be given in the next section (see (3.14)). It is
clear that these modes cannot be added for all representations: for example, they cannot be
added when considering the vacuum, since it is killed by all of them. Similarly, (and here we
restrict to n > 2) the only grade one modes acting on any of theW (k) that do not kill it must
be the ones which correspond to either acting on it with a derivative, or normal-ordering it
with a current, since these are the only ways one can write a dimension k(n−k)

2
+1 composite

in representation (∧k,∧k,∧k).9 These facts are taken into account by the factor

P.E.

[
−2

n∑

j=2

∑

1≤i<j

qℓi−ℓj+j−i

]
, (3.7)

which must subtract such relations, as well as other possible relations specific of each re-
presentation. Indeed, it is for example easy to verify that (3.6) and (3.7) cancel each other
for the vacuum module. For representations (∧k,∧k,∧k) only two q terms survive in the
plethystic exponential in the product of (3.6) and (3.7), which means that we are left with
two grade one modes. One might have expected four grade one modes: one corresponding
to acting with a derivative and three to normal-ordering with the three currents, but, as
we will see in the next section, normal-ordering the three currents with W (k) (making an
operator in representation (∧k,∧k,∧k)) results in equal operators up to nulls (see equations
(3.11) and (3.14)).

As a final observation we note that the sum in (3.1) only runs over flavor symmetry
representations of the type (Rλ,Rλ,Rλ), and the structure constants (3.2) cannot alter
flavor symmetry information. Therefore the partition function predicts that any operator
transforming in a representation (Rλ1 ,Rλ2 ,Rλ3) with not all equal λi cannot be a three-

8i.e., the action of the mode L−1. As is common practice we use the mode expansion O(z) =∑n
On

zn+h

of an operator O of dimension h, and Ln denotes the modes of the stress tensor T .
9Note that the normal-ordered product (JW (k)) in representation (∧k,∧k,∧k) is absent in the critical

module.
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fold AKM primary. More precisely, if we encounter an operator in unequal representations
(Rλ1 ,Rλ2 ,Rλ3) it must either be an AKM descendant, or obtained from one via the oper-
ators taken into account by the structure constants (namely by the action of any operators
contributing to (3.5) and (3.6)). We will get back to this point in the next section (around
example (3.12)).

3.3 The T4 chiral algebra

For the chiral algebra associated with the T4 theory, Conjecture 5 states that the collection

of generators G contains three ŝu(4) affine currents at the critical level k2d = −4, which
we denote by (J1)

b1
a1
, (J2)

b2
a2
, (J3)

b3
a3
, two dimension 3

2
generators, W (1) and W (3), in the

tri-fundamental and tri-antifundamental representations of the flavor symmetry group re-
spectively, which we rename Wa1a2a3 and W̃

b1b2b3 , and one dimension two generator, W (2), in
the 6×6×6 representation which we denote explicitly as V[a1b1][a2b2][a3b3]. Here ai, bi, ci, . . . =
1, 2, 3, 4 are (anti)fundamental indices corresponding to the flavor symmetry factor su(4)i=1,2,3.
Moreover, we must add the stress tensor T as an independent generator, with central charge
c2d = −78, but we claim that the dimension three and four singlets operators can be ob-
tained as composites. As will be shown later the dimension three operator is argued to be
a Virasoro primary involving WW̃ |sing, where |sing means we take the singlet combination,
while the dimension four generator is a Virasoro primary combination involving V V |sing. We
summarize the conjectured generators in Table 3.1.

generator G hG RG

(J1)a1b1 1 (15,1,1)

(J2)a2b2 1 (1,15,1)

(J3)a3b3 1 (1, 1,15)

T 2 (1,1,1)

Wa1a2a3
3
2

(4,4,4)

W̃ a1a2a3 3
2

(4̄,4̄,4̄)

V[a1b1][a2b2][a3b3] 2 (6,6,6)

Table 3.1: T4 generators G, their dimension hG and their su(4)3 representation RG.

As mentioned before, our strategy for finding the T4 chiral algebra is a concrete imple-
mentation of the conformal bootstrap program. We start by writing down the most general
OPEs for this set of generators consistent with the symmetries of the theory, and in particu-
lar we impose that the three different flavor symmetry groups appear on equal footing. This
of course implies that the three flavor currents have the same affine level, simply denoted by
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k2d. The OPEs of all the generators with the stress tensor are naturally fixed to be those of
Virasoro primaries with the respective dimensions. Moreover, all generators listed in Table
3.1, with the exception of the stress tensor10, are affine Kac-Moody primaries of the three
current algebras, transforming in the indicated representation. Therefore their OPEs with
the currents are also completely fixed. In the self-OPEs of the AKM currents and the stress
tensor, we could fix the affine level and the central charge to the values corresponding to the
χ(T4) chiral algebra, k2d = −4 and c2d = −78. Instead we leave them as free parameters and
try to fix them the same way as any other OPE coefficient. For the remaining OPEs we write
all possible operators allowed by the symmetries of the theory with arbitrary coefficients.
Our expectation is that this chiral algebra is unique, and that by imposing associativity one
can fix all the OPE coefficients, including k2d and c2d. This indeed turns out to be true.
Some of the resulting OPEs are quite long so we collect them all in appendix E.11

The next step is to fix all the arbitrary coefficients by imposing Jacobi-identities, imple-
menting in this way the requirement that the operator algebra is associative. Concretely, we
impose on any combination of three generators A,B,C the Jacobi-identities (see, e.g., [94])

[A(z) [B(w)C(u)]]− [B(w) [A(z)C(u)]]− [[A(z)B(w))]C(u)] = 0 , (3.8)

for |w− u| < |z− u|, where [A(z)B(w)] denotes taking the singular part of the OPE of A(z)
and B(w), and where we already took into account that our generators are bosonic and no
extra signs are needed. It is important to note that the Jacobi-identities do not need to be
exactly zero, but they can be proportional to null operators. Since null operators decouple,
associativity of the algebra is not spoiled. For analyzing the Jacobi-identities we make use of
the Mathematica package described in [55]. Even so, the analysis is quite cumbersome due
to the large number of fields appearing in the OPEs and the necessity of removing null rela-
tions, especially so for the Jacobi-identities involving the generator V . These null relations
are not known a priori, therefore part of the task consists of obtaining all null operators at
each dimension and in a given representation of the flavor symmetry. Due to these technical
limitations we have only found necessary conditions for the Jacobi-identities to be satisfied,
not sufficient ones. Nevertheless these conditions turn out to fix completely all the OPE co-
efficients, including the level and the central charge of the theory, meaning the chiral algebra
with this particular set of generators is unique. After all coefficients are fixed, the remaining
Jacobi-identities analyzed serve as a test on the consistency of our chiral algebra. We have
checked a large enough set of Jacobi-identities to be convinced that the remaining ones will
not give any additional constraints. If that is the case we have found an associative operator

10It is clear that the stress tensor cannot be an AKM primary, as the OPE between a dimension one
operator (the current) and the stress tensor must have necessarily a 1

z2 pole. It is also not an AKM
descendant, since at the critical level it cannot be given by the Sugawara construction.

11In there and in what follows we adopt the standard conventions for the normal-ordering of operators
such that O1O2 . . .Oℓ−1Oℓ = (O1 (O2 . . . (Oℓ−1Oℓ) ...)).
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algebra with the same set of generators and the same central charges as conjectured for the
T4 chiral algebra. A further check that the chiral algebra we constructed corresponds indeed
to the T4 chiral algebra can be performed by comparing the partition function of the former
to the one of the latter (which is nothing else than the superconformal index of T4). Whereas
in section 3.2 we have exploited the index to motivate our claim about the full set of gener-
ators of the T4 chiral algebra, in what follows we perform a partial check of the equality of
the actual partition function of the constructed chiral algebra with the index by comparing
the null states of the chiral algebra to the ones predicted by the superconformal index up to
dimension 7

2
. Even if there were generators that we have missed in this analysis, the facts

that the generators in our chiral algebra must be present, and that the chiral algebra we
constructed is closed (assuming we have solved all constraints from the Jacobi-identities),
imply that we have found a closed subalgebra of the full T4 chiral algebra.

h mult. R h mult. R
2 2 (1,1,1) 7

2
10 (4,4,4), (4̄,4̄,4̄)

5
2

2 (4,4,4), (4̄,4̄,4̄) 2 (36,4,4), (3̄6,4̄,4̄) , and perms.

3 4 (1,1,1) 1 (20,20,4), (2̄0,2̄0,4̄) , and perms.

2 (6,6,6) 3 (20,4,4), (2̄0,4̄,4̄) , and perms.

1 (6,6,10), and perms.

3 (15,1,1), and perms.

1 (15,15,1), and perms.

Table 3.2: Quantum numbers and multiplicities of T4 null operators up to dimension 7
2
.

For practical purposes, it is useful to rewrite the partition function of the Tn chiral algebra
(3.1) alternatively as

Zχ(Tn)(q;xi) = P.E.

[
1

1− q
∑

generators G

qhGχ
su(n)3

RG
(xi)

]
−
∑

nulls N

qhNχ
su(n)3

RN
(xi) , (3.9)

in terms of a piece that describes the generators G of dimensions hG transforming in repre-
sentations RG of the su(n)3 flavor symmetry and their sl(2) descendants, and a term that
subtracts off explicitly the null operators N , of dimension hN and in representation RN . By
comparing the expansion in powers of q of (3.1) with that of (3.9) (and under the assumption
that the full list of generators is as in Table 3.1) we can predict how many nulls to expect
in each representation and at each dimension. In Table 3.2 we summarize the resulting
quantum numbers of the low-lying null operators N . We have explicitly constructed the null
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operators corresponding to the entries in Table 3.2; the full list is given in Tables 3.3 and
3.4, where we have defined Si to be the quadratic Casimir Si = (J i)biai(J

i)aibi .

hN RN Null relations

2 (1,1,1) (J1)b1a1(J
1)a1b1 = (J2)b2a2(J

2)a2b2 = (J3)b3a3(J
3)a3b3

5/2 (4,4,4) (J1)b1a1Wb1a2a3 = (J2)b2a2Wa1b2a3 = (J3)b3a3Wa1a2b3

3 (1,1,1) (J1)b1a1(J
1)c1b1(J

1)a1c1 = (J2)b2a2(J
2)c2b2(J

2)a2c2 = (J3)b3a3(J
3)c3b3(J

3)a3c3

∂
(
(J1)b1a1(J

1)a1b1
)
= ∂

(
(J2)b2a2(J

2)a2b2
)
= ∂

(
(J3)b3a3(J

3)a3b3
)

3 (6,6,6) (J1)c1[a1V[b1]c1][a2b2][a3b3] = (J2)c2[a2V[a1b1][b2]c2][a3b3] = (J3)c3[a3V[a1b1][a2b2][b3]c3]

3 (10,6,6) W(a1[a2[a3Wb1)b2]b3] = −1
4
J c1(a1V[|c1|b1)][a2b2][a3b3]

3 (15,1,1) (J1)b1a1(J
1)d1c1 (J

1)c1d1 = (J1)b1a1(J
2)b2a2(J

2)a2b2 = (J1)b1a1(J
3)b3a3(J

3)a3b3

(Wa1a2a3W̃
b1a2a3 − trace) = 1

16
(J1)b1a1(J

3)b3a3(J
3)a3b3 +

1
16
(J1)b1a1T

+
[
((J1)c1a1∂(J

1)b1c1 − trace) + ((J1)b1c1∂(J
1)c1a1 − trace)

]

−1
4
((J1)c1a1(J

1)d1c1 (J
1)b1d1 − trace)

3 (15,15,1) (Wa1a2a3W̃
b1b2a3 − traces) = 1

4

[
(J1)b1a1∂(J

2)b2a2 + (J2)b2a2∂(J
1)b1a1
]

− 1
16

[
((J1)b1a1(J

2)c2a2(J
2)b2c2 − trace) + ((J2)b2a2(J

1)c1a1(J
1)b1c1 − trace)

]

Table 3.3: Explicit null relations up to dimension three, which can be uplifted to four-
dimensional Higgs branch chiral ring relations. Representations which are not real give rise
to a similar null in the complex conjugate representation, and representations which are not
equal in the three flavor groups give rise to similar null relations with permutations of the fla-
vor group indices. Note that these, together with Table 3.4, are in one-to-one correspondence
to the null relations subtracted from the index given in Table 3.2.

Null relations in the two-dimensional chiral algebra can be uplifted to four-dimensional
Higgs branch chiral ring relations, a partial list of which is given in [80], by setting to zero
all derivatives and generators not coming from the Higgs branch chiral ring (in particular
the stress tensor and the other singlet generators, if present as independent generators). The
nulls of Tables 3.3 and 3.4 allow one to recover the low-dimensional Higgs branch chiral ring
relations in [80], and to find additional ones. Let us give a few illustrative examples.
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hN RN Null relations

7/2 (20,4,4) 8W̃ f1b2b3V[d1(e1][a2b2][a3b3] ǫ|f1|a1)b1c1

= 9(J1)f1[a1(J
1)g1b1W(c1]a2a3 ǫd1)e1f1g1 − 2(J1)f1[d1(J

3)b3a3W(e1]a2b3 ǫ|f1|a1)b1c1

+3∂(J1)f1[d1W(e1]a2a3 ǫ|f1|a1)b1c1 + 6∂
(
(J1)f1[d1W(e1]a2a3

)
ǫ|f1|a1)b1c1

(J1)f1[d1(J
2)b2a2W(e1]b2a3 ǫ|f1|a1)b1c1 = (J1)f1[d1(J

3)b3a3W(e1]a2b3 ǫ|f1|a1)b1c1

= (J1)f1[d1(J
1)g1(e1]W|g1|a2a3 ǫ|f1|a1)b1c1

7/2 (20,20,4) W̃ f1f2b3V[d1(e1][d2(e2][a3b3] ǫ|f1|a1)b1c1 ǫ|f2|a2)b2c2

= −1
2
(J1)f1[d1(J

2)f2[d2W(e1](e2]a3 ǫ|f1|a1)b1c1 ǫ|f2|a2)b2c2

7/2 (36,4,4) (J1)b1(a1(J
2)b2a2Wc1b2a3 ǫd1)b1e1f1 = (J1)b1(a1(J

3)b3a3Wc1a2b3 ǫd1)b1e1f1 =

(J1)b1(a1(J
1)h1c1W|h1|a2a3 ǫd1)b1e1f1

7/2 (4,4,4) S1Wa1a2a3 = S2Wa1a2a3 = S3Wa1a2a3

8W̃ b1b2b3V[b1a1][b2a2][b3a3] = 2(J1)b1a1(J
3)b3a3Wb1a2b3 + 9TWa1a2a3

+15∂
(
(J3)b3a3Wa1a2b3

)
− 9

2
∂2Wa1a2a3 − 3

2
S1Wa1a2a3

−9
(
(J1)b1a1∂Wb1a2a3 + (J2)b2a2∂Wa1b2a3 + (J3)b3a3∂Wa1a2b3

)

(J1)b1a1(J
2)b2a2Wb1b2a3 = (J1)b1a1(J

3)b3a3Wb1a2b3 = (J2)b2a2(J
3)b3a3Wa1b2b3

= (J1)b1a1(J
1)c1b1Wc1a2a3 = (J2)b2a2(J

2)c2b2Wa1c2a3 = (J3)b3a3(J
3)c3b3Wa1a2c3

∂
[
(J1)b1a1Wb1a2a3

]
= ∂

[
(J2)b2a2Wa1b2a3

]
= ∂

[
(J3)b3a3Wa1a2b3

]

Table 3.4: Explicit null relations at dimension 7/2, which can be uplifted to four-dimensional
Higgs branch chiral ring relations. Representations which are not real give rise to a similar
null in the complex conjugate representation, and representations which are not equal in the
three flavor groups give rise to similar null relations with permutations of the flavor group
indices. Note that these, together with Table 3.3, are in one-to-one correspondence to the
null relations subtracted from the index given in Table 3.2.

A simple calculation shows that the null relations

Tr(J1)2 = Tr(J2)2 = Tr(J3)2 , (3.10)
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hold true. Each of these operators separately is null within its respective critical current
algebra, but thanks to the presence of the stress tensor T in the full chiral algebra, one finds
that only their differences are null. Similarly, we have explicitly recovered the analogous
relation for the third order Casimir operators. These null relations are just two instances of
the general null relations setting equal the Casimir operators of the three current algebras,
which are similarly valid for general Tn. The corresponding Higgs branch chiral ring relations
on the moment map operators are well-known (see for example [80]).

Another nice set of null relations is obtained by acting with a current on the generators
W (k):

(J1)b1a1Wb1a2a3 = (J2)b2a2Wa1b2a3 = (J3)b3a3Wa1a2b3 ,

(J1)a1b1 W̃
b1a2a3 = (J2)a2b2 W̃

a1b2a3 = (J3)a3b3 W̃
a1a2b3 ,

(J1)c1[a1V[b1]c1][a2b2][a3b3] = (J2)c2[a2V[a1b1][b2]c2][a3b3] = (J3)c3[a3V[a1b1][a2b2][b3]c3] . (3.11)

Null relations of this type are expected to be valid in general Tn as well, and extend the
ones listed in [80] for W (1),W (n−1). Some of the null relations presented in Tables 3.3 and
3.4 are direct consequences of these nulls, obtained by either acting with derivatives or
normal-ordering them with other operators, but others are new. For example, the last two
nulls given in Table 3.3 are not obtained from previous nulls, and they give rise to known
Higgs branch chiral ring relations (they precisely turn into the relations given in equation
(2.7) of [80] after setting all derivatives and the stress tensor to zero, and taking into account
the different normalizations of the two- and four-dimensional operators). All null relations
involving the generator V in Tables 3.3 and 3.4 give rise to new Higgs branch chiral ring
relations.

As mentioned, when computing Jacobi-identities one might find that some of them are not
zero on the nose, but end up being proportional to null states. In practice this happens quite
often, and we find that consistency of the Jacobi-identities relies precisely on the existence
of some of these nulls. For example, when examining the Jacobi-identities involving W , W̃
and V , one encounters the following null relation:

W(a1[a2[a3Wb1)b2]b3] = −
1

4
J c1(a1V[|c1|b1)][a2b2][a3b3] , (3.12)

which only exists at k2d = −4.
We can now check a prediction made in section 3.2, namely that any operator transform-

ing in a representation (Rλ1 ,Rλ2 ,Rλ3) for not all equal Rλi must be an AKM descendant (or
be obtained from an AKM descendant by acting on it with the operators which contribute to
the structure constants). The operatorW(a1[a2[a3Wb1)b2]b3] would seem to contradict this state-
ment, since it transforms in the representation (10,6,6), and it clearly cannot be obtained
from an AKM descendant. Fortunately, there is no contradiction with the superconformal
index as this operator is set equal to an AKM descendant by the null relation (3.12). More
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generally, we have verified in several cases that threefold AKM primaries either appear in
representations of the type (Rλ,Rλ,Rλ), or are null. Moreover we have checked that all
operators in representations which are not of the type (Rλ,Rλ,Rλ) are either AKM descen-
dants or obtained from them by acting with the operators which contribute to the structure
constants, such as a derivative, or normal-ordering it with the stress tensor. A direct con-
sequence of this interpretation of the partition function is that we can predict the existence
of certain types of relations: whenever we can write an operator in a representation not of
the type (Rλ,Rλ,Rλ) which is neither a descendant nor obtained from one in the manner
described above, there has to be a null relation involving it. Since null operators are three-
fold AKM primary, obtaining AKM primaries in said representation provides a faster way
to write down the null combinations than to diagonalize norm matrices.

Finally we must point out that there exist operators that are not AKM descendants and
can never take part in an AKM primary combination. We already encountered such an
example, namely the stress tensor: since it is not of Sugawara type it cannot be an AKM
descendant, and the requirement that the AKM currents are Virasoro primaries implies that
it also is not an AKM primary. Since the only other dimension two singlets are given by the
quadratic Casimir operators, which have zero OPEs with the currents, one concludes that
it is impossible to make an AKM primary combination involving the stress tensor. Another
example of an operator which cannot be involved in any AKM primary combination is
(WW̃ )|sing.. We expect that the existence of this operator, as well as (V V )|sing. is precisely
the reason why the T4 chiral algebra does not require (Virasoro primary) singlet generators
of dimension three and four to close. Although these operators are not Virasoro primaries
on their own, they take part in Virasoro primary combinations, of dimensions three and
four respectively, which are not AKM primaries. Note that by being neither AKM primaries
nor descendants, their contribution to the partition function is necessarily encrypted in the
structure constant. As explained in section 3.2, their contribution is indeed captured by the

P.E.
[
q3+q4

1−q

]
factor in the T4 structure constant (see (3.2)).

Looking at these operators it is natural to ask if the stress tensor and the Virasoro pri-
mary singlet operators obtained from (WW̃ )|sing. and (V V )|sing. form a closed subalgebra.
If such an algebra closes, it must correspond to the W4 algebra, which is the unique (up to
the choice of central charge) closed algebra with such a set of generators [95, 96]. In prin-
ciple this could be checked using our explicit construction; however, it is computationally
challenging and we have not pursued it. More generally, one could wonder whether the set
of operators Oi in Conjecture 5 could form a closed subalgebra, which then should be a
Wn = W(2, 3, . . . , n) algebra with central charge c2d = −2n3 + 3n2 + n − 2. In particular,
one should also be able to test this statement for χ(T3) using the explicit construction of
[75], in which case one would obtain the W3 algebra of [89].

In section 3.2 we argued that the structure constant factor of (3.6) would add negative
modes of the current algebra Casimir operators. Now we can give an explicit example: the
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operator (J1)b1a1Wb1a2a3 , which precisely at the critical level becomes an AKM primary, and
thus is not included in the critical module of Wa1a2a3 . Taking the OPE of S1 with Wa1a2a3

we find

S1(z)Wa1a2a3(0) ∼
15

4

Wa1a2a3

z2
+ 2

(J1)
b1
a1
Wb1a2a3

z
,

⇐⇒
[
(S1)m, (Wa1a2a3)n

]
=

15(m+ 1)

4
(Wa1a2a3)m+n + 2

(
(J1)

b1
a1
Wb1a2a3

)
m+n

, (3.13)

where (O)n denote the modes of operator O, which in the case of
(
(J1)

b1
a1
Wb1a2a3

)
m+n

corre-

spond to the modes of the normal-ordered product. Acting with the (S1)−1 mode of S1 on
the AKM primary yields

(S1)−1|Wa1a2a3〉 = (S1)−1(Wa1a2a3)− 3
2
|0〉 = 2

(
(J1)

b1
a1
Wb1a2a3

)
− 5

2

|0〉 , (3.14)

which exactly adds (J1)b1a1Wb1a2a3 .
12

When analyzing the superconformal index we also argued that threefold AKM primaries
in the sum over AKM modules, that do not correspond to generators W (k) must be obtained
by normal-ordered products of generators of Higgs branch chiral ring origin. We can now
give explicit examples. Let us start by considering representation (15,15,15), for which the
corresponding primary must have dimension three. As described in the previous section we
can always write down a composite operator with the right quantum numbers, in this case it
is WW̃ |(15,15,15). Even though this operator is not a threefold AKM primary, the following
combination is:

WW̃ |(15,15,15) +
1

64
(J1)(J2)(J3) , (3.15)

and it is precisely this combination that is accounted for by the R = 15 term in (3.1). Other
examples at dimension three correspond to (10,10,10) (and its conjugate), in which case

the threefold AKM primary is simply WW |(10,10,10) (and W̃W̃ |(10,10,10)).

12Recalling that the first null relation in (3.11), sets equal (J1)b1a1
Wb1a2a3

= (J2)b2a2
Wa1b2a3

=
(J3)b3a3

Wa1a2b3 , this term and L−1|Wa1a2a3
〉 (which produces ∂Wa1a2a3

) account for all the powers of q in the
structure constants, since for the fundamental representation only 2q survives in the plethystic exponential
after combining (3.6) and (3.7). It can be shown that the OPEs of higher dimensional Casimirs with Wa1a2a3

do not produce anything new.
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Chapter 4

The N = 2 superconformal bootstrap

The contents of this chapter appear in [3]: “The N = 2 superconformal bootstrap”
C. Beem, M. Lemos, P. Liendo, L. Rastelli and B. C. van Rees,
arXiv:1412.7541 [hep-th]

4.1 Introduction

In this work we initiate the conformal bootstrap program for four-dimensional conformal
field theories with N = 2 supersymmetry. These theories are extraordinarily rich, both
physically and mathematically, and have been studied intensively from many viewpoints.
Nevertheless, we feel that a coherent picture is still missing. We hope that the generality
of the conformal bootstrap framework will allow such a picture to be developed. We also
feel the time is ripe for such an investigation – the recent explosion of results for N = 2
superconformal field theories (SCFTs) calls out for a more systematic approach, while the
methods first introduced in [6] have reinvigorated the conformal bootstrap [31, 32, 97–101]
with a powerful and flexible toolkit for studying conformal field theories with a great deal
of generality.

The first examples of N = 2 superconformal field theories (SCFTs) were relatively simple
gauge theories with matter representations chosen so that the beta functions for all gauge
couplings would vanish. Since then, the library of known theories has grown in size, with the
new additions including many Lagrangian models [11], but remarkably also many theories
that appear to admit no such description. In particular, the class S construction of [17, 18]
gives rise to an enormous landscape of theories, most of which resist description by conven-
tional Lagrangian field theoretic techniques. Despite this abundance, the current catalogue
seems fairly structured, and one may reasonably suspect that a complete classification of
N = 2 superconformal field theories (SCFTs) will ultimately be possible. The development
of the N = 2 superconformal bootstrap seems an indispensable step towards this ambitious
goal.
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Our first task is to introduce an abstract operator-algebraic language for N = 2 SCFTs.
In this reformulation, we retain only the vector space of local operators (organized into
representations of the superconformal algebra), and the algebraic structure on this vector
space defined by the operator product expansion. From this viewpoint, we can see that a
theory is free (or contains a free factor) if its operator spectrum includes higher spin currents;
we can see that a theory has a Higgs branch of vacua if its operator algebra includes an
appropriate chiral ring that is the coordinate ring of an affine algebraic variety; and so
on and so forth. Representation theory of the N = 2 superconformal algebra proves an
invaluable tool, as its shortened representations neatly encode different facets of the physics.
This algebraic viewpoint is remarkably rich, and we have have dedicated the next section to
its extensive presentation.

Once equipped with the proper language, we can make an informed decision on where
and how to employ numerical bootstrap methods. We explain that there are three classes of
four-point functions that should be the starting point for any systematic exploration of this
type: the stress-tensor four-point function; the moment map four-point function; and the
four-point function of N = 2 chiral operators. In the present work, we report on numerical
investigations into specific examples of the latter two classes. The requisite superconformal
block expansion for the first correlator, which is the most universal, is not yet available, so
this case is left for future work. The moment map four-point function is related to the flavor
symmetry of the theory, and we focus on the cases of su(2) and e6. The su(2) case is clearly
the simplest and is a natural starting point, while e6 case is interesting because exceptional
flavor symmetries cannot appear in any Lagrangian field theory, and e6 is (among others)
the simplest case after su(2). On the other hand, the four point function of N = 2 chiral
operators gives us access to a very different aspect of the physics, namely the Coulomb
branch chiral ring.

There are two broad types of questions that we can hope to address by bootstrap meth-
ods. First of all, we can constrain the space of consistent N = 2 SCFTs. There are a
number of universal structures that appear throughout the N = 2 catalogue that cannot be
satisfactorily explained in the abstract bootstrap language. Are Coulomb branch chiral rings
always freely generated? Are central charges bounded from below by those of free theories,
or are there exotic theories with even lower central charges? Is every N = 2 conformal
manifold parametrized by gauge couplings? As we will see, these questions can sometimes
be connected with the constraints of crossing symmetry, and then numerical analysis can
provide (partial) answers.

Our second motivation is to learn more about specific N = 2 SCFTs. There are many
cases where supersymmetry can tell us a lot about an N = 2 SCFT even when we have
no Lagrangian description. In many examples we know, e.g., the central charges (including
flavor central charges), the spectrum of protected operators, and some OPE coefficients
associated with protected operators. This partial knowledge can be used as input for a
numerical bootstrap analysis. Optimistically, we may hope that this protected data and
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the constraints of crossing symmetry are enough to determine the theory uniquely. The
bootstrap may then allow us to effectively solve the theory along the lines of what has been
done for the three dimensional Ising CFT [7, 33, 102]. Because the bootstrap is completely
nonperturbative in nature, it is a natural tool for studying intrinsically strongly coupled
(non-Lagrangian) theories. In fact, when it comes to studying unprotected operators in a
non-Lagrangian theory, the bootstrap is really the only game in town.

The detailed organization of the chapter can be found in the table of contents. In the first
part (sections 2-4) we develop the algebraic viewpoint and the details of the superconformal
block expansion for the two classes of correlators that we consider, while in the second part
(sections 5-8) we present our numerical investigations. Several appendices complement the
main text with technical and reference material.

4.2 The N = 2 superconformal bootstrap program

In the bootstrap approach to conformal field theories, one adopts an abstract viewpoint
that takes the algebra of local operators as the primary object. On the other hand, the
majority of conventional wisdom and communal intuition about N = 2 field theories arises
from a Lagrangian – or at least quasi-Lagrangian – perspective. This leads to something
of a disconnect. The bootstrap perspective is likely to be unfamiliar to many experts in
supersymmetric field theory, while amongst readers with a background in the conformal
bootstrap the additional structure that follows from N = 2 supersymmetry may not be well
known. In this section we will try to bridge this divide.

4.2.1 The insufficiency of Lagrangians

Let us recall some aspects of Lagrangian N = 2 field theories, which provide a historical
foundation of the subject and help to guide our thinking even for the non-Lagrangian theories
discussed below. The building blocks of an N = 2 four-dimensional Lagrangian are vector
multiplets, transforming in the adjoint representation of a gauge group G, and hypermulti-
plets (the matter content), transforming in some representation R of G.1 For the theory to
be microscopically well-defined, the gauge group should contain no abelian factors,2 so we
can take G to be semi-simple,

G = G1 ×G2 × · · ·Gn . (4.1)

1More generally, for appropriate choices of gauge group one can allow for “half-hypermultiplets”, i.e.,
N = 1 chiral multiplets, transforming in pseudo-real representations of G. See, e.g., [11] for a recent
discussion.

2An exception is when no hypermultiplet is charged under the abelian factors, in which case there are
decoupled copies of the free vector multiplet SCFT in the theory.
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To each simple factor Gi is associated a complexified gauge coupling τi ∈ C, Im τi > 0,
and for each choice of (G,R, {τi}) there is a unique, classically conformally invariant N = 2
Lagrangian. For the quantum theory to be conformally invariant, the matter content must
be chosen so that the one loop beta functions for the gauge couplings vanish. Thanks to
N = 2 supersymmetry, this is also a sufficient condition at the full quantum level.

The classification of the pairs (G,R) that lead to N = 2 SCFTs can therefore be reduced
to a purely combinatorial problem, whose complete solution has been described recently
in [11]. The simplest examples are N = 2 superconformal QCD, which has gauge group
G = SU(Nc) and Nf = 2Nc hypermultiplets in the fundamental representation, and N = 4
super Yang-Mills theory (which can be regarded as an N = 2 SCFT), for which G is any
simple group and the hypermultiplets transform in the adjoint representation.

The conformal manifold of a CFT is the space of theories that can be realized by de-
forming a given CFT by exactly marginal operators. In a slight abuse of terminology we
often refer to the conformal manifold of an N = 2 SCFT as the (not necessarily proper)
submanifold of the full conformal manifold where in addition the full N = 2 supersymmetry
is preserved. For a Lagrangian theory this submanifold coincides with the space of gauge
couplings {τi}, up to the discrete identifications induced by generalized S-dualities.3 The
conformal manifold comes endowed with a metric – the Zamolodchikov metric – which is
Kähler and with respect to which the weak coupling points (where some τi → ∞ in some
S-duality frame) are at infinite distance as measured from the interior. Thus the conformal
manifold of any N = 2 Lagrangian SCFT is non-compact with boundaries where gauge
couplings are turned off.

Lagrangian theories also always possess nontrivial moduli spaces of supersymmetric
vacua. The simplest parts of the moduli space are the Coulomb branch and the Higgs
branch. The Coulomb branch consists of vacua where the complex scalar fields ϕi in the vec-
tor multiplets acquire nonzero vacuum expectation values (vevs), while the complex scalars
(q, q̃) in the hypermultiplets are set to zero – this branch is characterized by the fact that
SU(2)R is unbroken, while U(1)r is broken. Alternatively, on the Higgs branch only the hy-
permultiplet scalars get nonzero vevs, and this branch is characterized by SU(2)R breaking
with U(1)r preserved. There can also be mixed branches where the entire R-symmetry is
broken, though we will not have much to say about mixed branches in this work.

The best way to parametrize these moduli spaces is by the vevs of gauge-invariant com-
binations of the elementary fields. The Coulomb branch is parametrized by the vevs of
operators of the form {Trϕk}. These operators form a freely generated ring, called the
Coulomb branch chiral ring, with generators in one-to-one correspondence with the Casimir
invariants of the gauge group. Similarly, the Higgs branch can be parametrized by the vevs of
gauge invariant composites of the hypermultiplet scalars. These operators also form a finitely
generated ring, the Higgs branch chiral ring. The Higgs branch chiral ring is generally not

3Because the action of S-duality can have fixed points in the space of gauge couplings, the conformal
manifold may have orbifold points, so it may not really be a manifold.

103



freely related, but rather has relations so that the Higgs branch acquires a description as
an affine complex algebraic variety. Alternatively, the Higgs branch can be expressed as a
Hyperkähler quotient [103].

Isolated SCFTs and quasi-Lagrangian theories

Lagrangian SCFTs make up only small subset of all SCFTs. A wealth of strongly coupled
N = 2 SCFTs with no marginal deformations are known to exist – by virtue of being isolated,
they cannot have a conventional Lagrangian description. One particularly elegant way to
find such isolated theories is through generalized S-dualities of the kind discussed in [54]. By
taking a Lagrangian theory and dialing a marginal coupling all the way to infinite strength,
one may recover a weakly gauged dual description which involves one or more isolated SCFTs
and a set of vector multiplets to accomplish the gauging. In this dual description the gauging
procedure is described in what we may call a quasi-Lagrangian fashion: the isolated SCFT
is treated as a non-Lagrangian black box with a certain flavor symmetry, which is allowed to
talk to the vector multiplets through minimal coupling of the conserved flavor current of the
isolated SCFT to the gauge field. The one-loop beta function for each simple gauge group
factor is given by

β = −h∨ + 4k , (4.2)

where h∨ is the dual Coxeter number of the group and k the flavor central charge, defined from
the two-point function of the conserved flavor current. This determines a simple condition
for when non-Lagrangian theories can be. (Of course, this expression for β applies also to the
Lagrangian case, where the flavor current is a composite operator made of the hypermultiplet
fields.)

The web of generalized S-dualities for large classes of theories can be elegantly described
through the class S constructions of [17, 18]. These theories arise from twisted compactifica-
tions of the six-dimensional (2, 0) theories on a punctured Riemann surface, with additional
discrete data specified at each puncture. The marginal deformations of the four-dimensional
theory correspond to the moduli of the Riemann surface, and weakly gauged theories arise if
the Riemann surface degenerates. In this picture the isolated theories correspond to three-
punctured spheres which have no continuous moduli. They do, however, depend on the
discrete data at the three punctures as well as on a choice of g ∈ {An, Dn, En} for the six-
dimensional ancestor theory. In this way several infinite classes of isolated theories can be
constructed. A few of these theories turn out to be equal to theories of free hypermultiplets,
but most cases do not admit a Lagrangian description.

Another large class of isolated theories are the Argyres-Douglas fixed points [104] which
describe the infrared physics at special points on the Coulomb branch of another N = 2
theory. At these distinguished points several BPS particles with mutually non-local charges
become simultaneously massless, which precludes any Lagrangian description of the infrared
theory. Alternatively, many Argyres-Douglas fixed points can be constructed in class S by
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allowing for irregular singularities on the UV curve [105]. Argyres-Douglas theories have also
recently been used as building blocks in a quasi-Lagrangian set-up [106].

In order to describe the currently known landscape ofN = 2 SCFTs, then, it is clearly not
sufficient to only consider Lagrangians with hypermultiplets and vector multiplets. We can
certainly accommodate any theory in a framework which takes as fundamental the spectrum
and algebra of local operators. This is the basic starting point for the bootstrap approach
that we take in this chapter. The remainder of this section is dedicated to the development
of such a framework.

4.2.2 The bootstrap philosophy

In the bootstrap approach, we take a (super)conformal field theory to be characterized by its
local operator algebra.4 The aim is then to understand the constraints imposed upon such
algebras by (super)conformal invariance, associativity, and unitarity. This approach dates
back to the foundational papers of [31, 32, 97–101]. See, e.g., [6, 107] for modern expositions.
We will briefly recall the general logic, while placing particular emphasis on the role played
by short representations of the conformal algebra. In the next subsection we describe the
special features that arise in the N = 2 superconformal case.

The local operators {Oi(x)} of a CFT form a vector space that is endowed with a product
that gives it something like an associative algebra structure. The product for local operators
is known as the Operator Product Expansion (OPE), and takes the schematic form

O1(x)O2(y) =
∑

k

c12k(x− y)Ok(y) . (4.3)

Any correlation function of separated local operators in flat spacetime Rd can be evaluated by
successive applications of the OPE, which is an absolutely convergent expansion. The OPE
follows as a straightforward consequence of the state/operator correspondence.5 To each local
operator is associated a state, obtained by acting on the vacuum with the operator inserted
at the origin,

O(x)→ |O〉 := O(0)|0〉 , (4.4)

and conversely each state defines a unique local operator,

|ψ〉 → Oψ(x) . (4.5)

As customary, we will use the language of operators or states interchangeably.

4In adopting this perspective, we are therefore willfully ignoring the complications associated with in-
cluding non-local observables – such as Wilson line operators in conformal gauge theory – and non-trivial
spacetime geometries.

5See [108] for a recent discussion.
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To completely specify a CFT at the level of correlators of local operators, it is there-
fore sufficient to list the set of local operators (that is, the set of their quantum numbers)
and the structure constants appearing in their OPEs. Conformal invariance streamlines
the presentation of this information. First, it allows the local operators to be assembled
into conformal families, each of which transforms as a highest weight representation of the
conformal algebra so(d, 2). The highest weight state, known as the conformal primary, is
annihilated by all raising operators in the conformal algebra, notably the special conformal
generators Kµ. Specializing to the four-dimensional case, a representation R[∆, j1, j2] of
so(4, 2) ∼= su(2, 2) is labelled by the quantum numbers of the primary, namely its confor-
mal dimension ∆ and its Lorentz spins (j1, j2). If the theory enjoys an additional global
symmetry GF , then the local operators can be further organized into GF representations,
labelled by some flavor symmetry quantum numbers f , and the full representations are then
denoted as R[∆, j1, j2; f ]. Conformal symmetry also restricts the spacetime dependence of
the functions cijk(x) appearing in the OPE (4.3). In particular, the functions cijk(x) are
uniquely determined in terms of the quantum numbers of the representations Ri, Rj, and
Rk and the coefficients λsijk that parametrize their three-point functions.6 All told, the data
that fully specify the local theory amount to a countably infinite list

{ai, λsijk} , ai := (∆, j1, j2, f)i . (4.6)

These data are constrained by the requirements that the theory be unitary and that the OPE
be associative. The hypothesis underlying the conformal bootstrap is that these constraints
are so powerful that they can completely determine the local data given some minimal
physical input. In practice, one expects that the input will include the global symmetry of
the theory and some simple spectral assumptions such as the number of relevant operators.

Unitarity and shortening

We first recall the constraints imposed by unitarity. Non-trivial7 unitary representations of
so(4, 2) are required to satisfy the following unitarity bounds,

∆ > j1 + j2 + 2 for j1j2 6= 0 ,

∆ > j2 + 1 for j1 = 0 , (4.7)

∆ > j1 + 1 for j2 = 0 .

6In the simplest case of three spacetime scalars (with no additional flavor charges), the three-point
function is completely fixed up to a single overall coefficient λijk. In general there are multiple parameters
λs
ijk, s = 1, . . .mult(ijk), where the (finite) multiplicity mult(ijk) is given by the number of independent

conformally covariant tensor structures that can be built from the three reps Ri,j,k.
7We use the qualification “non-trivial” to exclude the vacuum representation, which consists of a single

state with ∆ = j1 = j2 = 0.

106



Generic representations are denoted as A∆,j1,j2 . Non-generic, or short, representations occur
when the norm of a conformal descendant state in the Verma module built over some confor-
mal primary is rendered null by a conspiracy of quantum numbers. This happens precisely
when the unitarity bounds are saturated, leading the following list of short representations:

Cj1,j2 : ∆ = j1 + j2 + 2 ,

BLj1 : ∆ = j1 + 1 , j2 = 0 ,

BRj2 : ∆ = j2 + 1 , j1 = 0 ,

B : ∆ = 1 , j1 = j2 = 0 .

(4.8)

All of these representations have null states at level one with the exception of B, which has
a null state at level two.

The presence of short representations in the spectrum of a CFT is connected to the
existence of free fields and symmetries in the theory. In particular, the primaries of B-type
representations are decoupled free fields, and as such are not of much interest when studying
interacting CFTs. For example, the primary of a B representation is a free scalar field φ(x).
Modding out by the null state at level two imposes the operator constraint

P µPµφ = �φ(x) = 0 , (4.9)

which is nothing but the free scalar equation of motion. Similarly, B⋆1
2

multiplets have as their

primaries free Weyl fermions; the null state level one imposes the free equation of motion

BL1
2

: ∂αα̇ψα(x) = 0 ,

BR1
2

: ∂αα̇ψ̃α̇(x) = 0 .
(4.10)

On the other hand, C-type representations have various conserved currents as their pri-
maries; their level-one null state is the consequence of a conservation equation,

∂α1α̇1Jα1···α2j1
α̇1···α̇2j2

(x) = 0 . (4.11)

Conserved currents with spin j1 + j2 > 2 are higher-spin currents, which are a hallmark of
free CFTs [53, 109]. For the purposes of the bootstrap, we will usually impose by hand that
no such multiplets appear. Conserved currents with (j1, j2) = (1, 1

2
) and (j1, j2) = (1

2
, 1)

give rise to an enhancement of the conformal algebra to a superconformal algebra – when
these operators are present one should therefore be taking full advantage of the power of
superconformal symmetry.

Thus, amongst the short representations of so(4, 2), those which may be present in an
interacting non-supersymmetric CFT are C1,1 and C 1

2
, 1
2
. In the former case, the conformal

primary is the stress tensor Tµν . In the latter case, the conformal primary is a conserved
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current Jµ, so the presence of such multiplets portend the existence of continuous global
symmetries.

Locality in the operator algebra

An important remark is in order. When characterizing CFTs by their local operator algebra,
certain ingredients which are usually automatically present in a Lagrangian context are no
longer necessarily compulsory. For example, one need not assume that the local algebra
includes a stress tensor at all. Indeed, there are interesting local algebras, such as the
algebra of local operators supported on conformal defects in a higher-dimensional CFT, in
which the stress tensor is not present. The presence of a stress tensor is clearly connected
with the notion of locality in the CFT, and we will take the existence of a unique stress
tensor (that is, the existence of a unique conformal representation of type C1,1) as part of
the definition of a local CFT.

Similarly, in the Lagrangian context a continuous global symmetry implies the existence
of a conserved current in the operator spectrum. We will assume the validity of this claim
even in the non-Lagrangian context:

Conjecture 6 (CFT Noether “theorem”). In a local CFT, to any continuous global sym-
metry is associated a conserved current in the operator algebra that generates the symmetry.

Clarifying the conceptual status of this “theorem” is an important open problem. On
one hand, one may take it as part of the definition of what it means for a CFT to be local, in
which case this is a tautology. Alternatively, it is possible that the theorem may be derived
from general principles in a suitable axiomatic framework.8 Whatever the case may be, the
proof of such a statement is of interest in part due to its reinterpretation via AdS/CFT,
which is the statement that there are no continuous global symmetries in AdS quantum
gravity.

Canonical data

The data associated to short representations of the conformal algebra carries particular phys-
ical significance. The three-point function of the stress tensor depends on three parameters,
two of which can be identified with the two coefficients appearing in the conformal anomaly,
conventionally denoted by a and c. The a coefficient gives a measure of the degrees of free-
dom of the theory and serves as a height function in theory space: for two CFTs connected
by RG flow, aUV > aIR [47, 48]. However, since a can only be extracted from the stress

8It is unclear whether the axioms for the algebra of local operators should be sufficient for this purpose.
It is possible that the existence of a conserved current could follow from the assumptions that the operator
algebra is invariant under a continuous symmetry and that there is a stress tensor. Alternatively, the
framework may need to be enlarged, perhaps allowing for correlation functions in non-trivial geometries,
subject to suitable locality assumptions.
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tensor three-point function, it is rather difficult to access by bootstrap methods – one would
generally need to consider correlation functions involving external stress tensors, which are
very complicated [110]. By contrast, if one uses the canonical normalization for the stress
tensor, its two-point function is proportional to c. The c coefficient will then appear in any
four-point function containing an intermediate stress tensor, making its presence ubiquitous
in the bootstrap literature. Using “conformal collider” observables, it was argued in [111]
that in a general unitarity CFT the ratio of conformal anomaly coefficients must obey the
bounds9

1

3
6
a

c
6

31

18
. (4.12)

The lower bound is saturated by the free scalar CFT, the upper bound by the free vector
CFT. There is strong evidence that these free CFTs are the only theories saturating the
bounds [113].

Similarly, the two-point function of canonically normalized currents depends on a param-
eter k often called the flavor central charge that can be identified with an ’t Hooft anomaly
for the corresponding global symmetry [114, 115]. This parameter appears in the OPE of
conserved currents as follows,

JAµ (x)J
B
ν (0) ∼

3k

4π4
δAB

x2gµν − 2xµxν
x8

+
2

π2

xµxνf
AB

Cx · JC(0)
x6

+ . . . . (4.13)

Like the c central charge, the flavor central charge makes frequent appearances in the boot-
strap because it controls the contribution of the conserved current in a correlation function
of charged operators.

In a sense, the data associated to the spectrum of conserved currents and stress tensors
and their associated anomaly coefficients is the most basic data associated to a conformal
field theory. We designate this data as the canonical data for the CFT. It is natural to
organize an exploration of the space of conformal field theories in terms of these parameters,
and if one wants to study a particular theory in detail this data is an obvious starting point.
This has not always been the approach in the existing bootstrap literature thus far, but that
is at least in part because the natural observables through which to pursue such a strategy
would be the four point functions of conserved currents and stress tensors. At a technical
level, these are much more complex observables than the correlators of spacetime scalars.

The numerical bootstrap approach

Intuitively, associativity of the operator algebra is a tremendous constraint. However, aside
from the case of two-dimensional CFTs where the global conformal symmetry algebra en-

9The argument uses positivity of energy correlators in a unitarity theory, which is a reasonable physical
assumption (see also [112]). It would be interested to recover the HM bounds by conformal bootstrap
methods. This will likely have to await for the complete conformal block analysis of the stress tensor
four-point function, a challenging technical problem.
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hances to two copies of the infinite-dimensional Virasoro algebra, it seems very difficult to
extract useful information from these conditions. The way forward was shown in [6], where
the focus was shifted away from trying to solve the associativity problem and towards ob-
taining constraints for, e.g., the spectrum of local operators or their OPE coefficients in a
unitary CFT. The prototypical bounds that can be obtained in this way are uppers bound
for the dimension of lowest-lying operator of a given spin, or a lower bound on the c central
charge of a theory, all given some input about the spectrum of scalar operators.

In order to test associativity it suffices to investigate four-point functions in a given CFT,
where the OPE can be taken in three essentially inequivalent ways by fusing different pairs of
operators together. For each choice one finds a representation of the four-point function as a
sum over conformal blocks [107], with one block for each conformal multiplet that appears in
both OPEs. The statement that these three decompositions have to sum to exactly the same
result is known as crossing symmetry. It was shown in [6] that useful bounds can be extracted
already from the requirement of crossing symmetry for a single four-point function involving
four identical scalar operators. Such an analysis is conspicuously tractable – as opposed to
trying to solve all of the infinitely many crossing symmetry constraints simultaneously, we
simply find the conditions that follow from a finite subset of those constraints. The structure
of four-point functions and their OPE decompositions are severely constrained by conformal
symmetry – see, e.g., [107] for an introductory exposition.

The work of [6] has been extended in numerous directions, and bounds have been ob-
tained in theories with and without supersymmetry and in various spacetime dimensions.
Further numerical bootstrap results can be found for example in [7, 33–37, 102, 116–136].
An essential ingredient in the numerical analysis is the (super)conformal block decomposi-
tion of a four-point functions. These structure have been investigated in various cases in,
e.g., [108, 110, 137–149]. In related work, [150–153] obtained nontrivial constraints for the
operator spectrum by considering in particular the OPE in the limit where operators become
lightlike separated.

4.2.3 Operator algebras of N = 2 SCFTs

The superconformal case follows largely the same conceptual blueprint as the non-supersym-
metric case, where we replace the conformal algebra so(4, 2) with the superconformal algebra
is su(2, 2|2). The maximal bosonic subalgebra is just the conformal algebra so(4, 2) ≡ su(2, 2)
times the R-symmetry algebra SU(2)R × U(1)r. Additionally there are sixteen fermionic
generators – eight Poincaré supercharges and eight conformal supercharges – denoted as
{QI

α, Q̃Iα̇, SαJ , S̃J α̇} where I = 1, 2, α = ±, and α̇ = ±̇ are SU(2)R, su(2)1, and su(2)2
indices, respectively.

The spectrum of local operators can be organized in highest weight representations of
su(2, 2|2) whose highest weight states, known as superconformal primaries, are annihilated
by all lowering operators of the superconformal algebra – in particular, by all the conformal
supercharges S. These representations are labelled by the quantum numbers [∆, j1, j2, R, r]
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of the superconformal primary; the additional labels R and r that extend the ordinary
conformal case are the eigenvalues of the Cartan generators of SU(2)R and U(1)r. We will
also consider theories that are invariant under additional flavor symmetry gF (a semi-simple
Lie algebra commuting with su(2, 2|2)), which introduces additional flavor quantum numbers
f . In summary, the local data for an N = 2 SCFT are

{ai, λsijk} , ai := [∆, j1, j2, R, r; f ]i . (4.14)

In analogy with the conformal case, the coefficients λsijk encode the information needed to
completely reconstruct the superspace three-point function10 〈Ri(x1, θ1)Rj(x2, θ2)Rk(x3, θ3)〉.

Unitarity and shortening

The unitary representation theory of the N = 2 superconformal algebra is more elaborate
than that of the ordinary conformal algebra. The unitarity bounds are now given by

∆ > ∆i , ji 6= 0 ,

∆ = ∆i−2 or ∆ >∆i , ji = 0 ,
(4.15)

where we have defined

∆1 := 2 + 2j1 + 2R + r , ∆2 := 2 + 2j2 + 2R− r . (4.16)

The unitary representations of su(2, 2|2) have been classified in [14, 52, 154]. Short repre-
sentations occur when one or more of these bounds are saturated, and the different ways in
which this can happen correspond to different combinations of Poincaré supercharges that
can annihilate the highest weight state of the representation. There are again two types
of shortening conditions, the B type and the C type. Each type now has four incarnations
corresponding to the choice of chirality (left or right-moving) and the choice of SU(2)R
component:

BI : QI
α|ψ〉 = 0 , α = 1, 2 , (4.17)

B̄I : Q̃Iα̇|ψ〉 = 0 , α̇ = 1, 2 , (4.18)

CI :

{
ǫαβQI

α|ψ〉β = 0 , j1 6= 0 ,

ǫαβQI
αQI

β|ψ〉 = 0 , j1 = 0 ,
(4.19)

10In the conformal case, the λs
ijk can be extracted from the three-point function of the conformal primaries,

because descendant operators are simply derivatives of the primaries and their three-point functions contain
no extra information. In general this is no longer the case with superconformal symmetry: knowledge of the
three-point functions of the superconformal primaries does not always suffice. But at an abstract level there
is no difference: what matters are superconformally covariant structures that can be built from the three
representations.
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C̄I :

{
ǫα̇β̇Q̃Iα̇|ψ〉β = 0 , j2 6= 0 ,

ǫα̇β̇Q̃Iα̇Q̃Iβ̇|ψ〉 = 0 , j2 = 0 .
(4.20)

Some authors refer to B-type conditions as shortening conditions, and to C-type conditions as
semi -shortening conditions, to highlight the fact that a B-type condition is twice as strong.
We refer to Appendix B for a tabulation of all allowed combinations of (semi-)shortening
conditions and for naming conventions for the resulting representations.

Because of the proliferation of short representations in the N = 2 context, there is
potentially much more “canonical data” than in the non-supersymmetric case. Indeed, these
many short representations are closely related to various nice features theories with N =
2 supersymmetry. Here we focus primarily on three classes of short representations that
have particularly straightforward connections to familiar physical characteristics of N = 2
theories. These representations have the distinction of obeying the maximum number of
shortening or semi-shortening conditions that can simultaneously be imposed (two and four,
respectively). In the notations of [52], they are:

• Er: Half-BPS multiplets “of Coulomb type”. These obey two B-type shortening condi-
tions of the same chirality: B1 ∩ B2. In other terms, they are N = 2 chiral multiplets,
annihilated by the action of all left-handed supercharges.11

• B̂R: Half-BPS multiplets “of Higgs type”. These obey two B-type shortening condi-
tions of opposite chirality: B1 ∩ B̄2. These types of operators are sometimes called
“Grassmann-analytic”.

• Ĉ0(j1,j2): The stress tensor multiplet (the special case j1 = j2 = 0) and its higher spin
generalizations. These obey the maximal set of semi-shortening conditions: C1 ∩ C2 ∩
C̄1 ∩ C̄2.

The CFT data associated to these representations encodes some of the most basic physical
information about an N = 2 SCFT. We now look at each in more detail, starting from the
third and most universal class, which contains the stress tensor multiplet.

Stress tensor data

The maximally semi-short multiplets Ĉ0(j1,j2) contain conserved tensors of spin 2 + j1 + j2.
For j1 + j2 > 0, such multiplets are not allowed in an interacting CFT, and we will always
impose their absence from the double OPE of the four-point functions under consideration.

The Ĉ0(0,0) representation includes a conserved tensor of spin two, which we identify as
the stress tensor of the theory. By definition, a local N = 2 SCFT will contain exactly one

11We are focusing on the scalar Er multiplets – Er := Er(0,0) in the notations of Table B.1. Representation
theory allows for N = 2 chiral multiplets Er(0,j2) with j2 6= 0, but such exotic multiplets do not occur in any
known N = 2 SCFT. See [155] for a recent discussion.
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Ĉ0(0,0) multiplet.12 We will usually assume that the theories that we study are local, but

we’ll also briefly explore non-local theories, which have no stress tensor and thus no Ĉ0(0,0)
multiplet.

The superconformal primary of Ĉ0(0,0) is a scalar operator of dimension two that is invari-
ant under all R-symmetry transformations. The other bosonic primaries in the multiplet are
the conserved currents for SU(2)R×U(1)r and the stress tensor itself. An analysis in N = 2
superspace [156] reveals that three-point function of Ĉ0(0,0) multiplets involves two indepen-
dent structures, whose coefficients can be parametrized in terms of the a and c anomalies.
The N = 2 version of the Hofman-Maldacena bounds reads

1

2
6
a

c
6

5

4
. (4.21)

The lower bound is saturated by the free hypermultiplet theory, and the upper bound by
the free vector multiplet theory. By a generalization of the analysis of [113], one should be
able to argue that these are the only N = 2 SCFTs saturating the bounds.

In this work we will not study the four-point function of the stress tensor multiplet,
because the requisite superconformal block expansion has not yet been worked out. We will,
however, have indirect access to the c anomaly coefficient. As in the non-supersymmetric
case, if one chooses the canonical normalization for the stress tensor then two-point function
of Ĉ0(0,0) multiplets will depend on c only. The c coefficient will make an appearance in all

four point functions that we study, since Ĉ0(0,0) appears in their double OPE.

Coulomb and Higgs branches

As indicated by our choice of terminology, the two types of half-BPS multiplets – Er and
B̂R – are closely related to the Coulomb and Higgs branches of the moduli space of vacua,
respectively. In Lagrangian theories, the superconformal primaries in the Er multiplets are
the gauge-invariant composites of vector multiplet scalars that parameterize the Coulomb
branch, and the superconformal primaries in the B̂R multiplets are the gauge-invariant com-
posites of hypermultiplet scalars that parameterize the Higgs branch.

We should call attention to the fact that a satisfactory understanding of the phenomenon
of spontaneous conformal symmetry breaking has not yet been developed in the language of
CFT operator algebras. In principle, the local data should contain all necessary information
to describe the phases of the theory where conformal symmetry is spontaneously broken.
A method to extract this information is, however, presently not known. Even the basic
question of whether a given CFT possesses nontrivial vacua remains out of reach. Since all
known examples of vacuum manifolds in CFTs occur in supersymmetric theories, one might

12A caveat to this definition of locality is that in the tensor product of two local theories there will be
two stress tensor multiplets. For the purposes of the conceptual discussion here we restrict our attention to
theories that are not factorizable in this manner – we might call such theories simple.
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speculate that supersymmetry is a necessary condition for spontaneous conformal symmetry
breaking.

We are now ready to look in more detail at the CFT data encoded in the two classes of
BPS multiplets.

Coulomb branch data

We will refer to the data associated to Er multiplets as Coulomb branch data. By passing to
the cohomology of the left-handed Poincaré supercharges, one finds a commutative ring of
operators known as the Coulomb branch chiral ring, the elements of which can be identified
with the superconformal primaries of Er multiplets. In all known examples, this ring is
exceedingly simple, and it is natural to formulate a conjecture that the ring is always as
simple as it is in the examples:13

Conjecture 7 (Free generation of the Coulomb chiral ring). In any N = 2 SCFT, the
Coulomb branch chiral ring is freely generated.

This conjecture can in principle be translated into a statement about the OPE coefficients
of the Er multiplets. For instance, a simple consequence is that no Er superconformal primary
can square to zero in the chiral ring, so an E2r operator must appear with nonzero coefficient
in the OPE of the Er with itself. Precisely this kind of statement can be tested by numerical
bootstrap methods, as we will describe in Section 4.7.

The number of generators of the Coulomb branch chiral ring is usually referred to as the
rank of the theory. The set {r1, . . . rrank} of U(1)r charges of these chiral ring generators is
one of the most basic invariants of an N = 2 SCFT. Unitarity implies r > 1, with r = 1
only in the case of the free vector multiplet, so we will always assume r > 1. In Lagrangian
SCFTs, the ri are all integers, but there are several non-Lagrangian models that possess Er
multiplets with interesting fractional values of r. We are not aware of any examples where
U(1)r charges take irrational values.

It is widely believed that the Coulomb branch of the moduli space of any N = 2 SCFT
is parameterized by assigning independent vevs to each of the Coulomb branch chiral ring
generators. We will generally operate under the assumption that this statement is true,
which amounts to assuming the validity of the following conjecture.

Conjecture 8 (Geometrization of the Coulomb chiral ring). The Coulomb chiral ring is
isomorphic to the holomorphic coordinate ring on the Coulomb branch.

We note that the union of Conjecture 7 and Conjecture 8 implies that the Coulomb
branch of any N = 2 SCFT just Cr, with r the rank of the theory.

13To the best of our knowledge, this conjecture was first explicitly stated in the literature by Yuji
Tachikawa in [10].
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At present we are not sure how one might establish Conjecture 8 using bootstrap meth-
ods due to the obstacle of spontaneous conformal symmetry breaking discussed above. How-
ever, once one has found their way onto the Coulomb branch, the powerful technology of
Seiberg-Witten (SW) theory becomes applicable. The effective action for the low-energy
U(1)rank gauge theory on the Coulomb branch is characterized by geometric data (in the
simplest cases, this is the SW curve, more generally it is some abelian variety). There are
well-developed techniques to determine the SW geometry, which apply to most Lagrangian
examples and to several non-Lagrangian cases as well. In turn, the SW geometry determines
a wealth of physical information, such as the spectrum of massive BPS states. Unfortunately,
how to translate this information into CFT data remains an unsolved problem.14

In [158], Shapere and Tachikawa (ST) proved a remarkable formula that relates the a
and c central charges to the generating r-charges {r1, . . . rrank},

2a− c = 1

4

rank∑

i=1

(2ri − 1) . (4.22)

The ST sum rule holds in all known examples, and it is tempting to conjecture that it is
a general property of all N = 2 SCFTs. The derivation of [158] requires that the SCFTs
in question be realized at a point on the moduli space a Lagrangian theory. The result can
then be extended to all SCFTs connected to that class of theories by generalized S-dualities.
In particular, this includes a large subset of theories of class S.

According to the ST sum rule, a theory with zero rank necessarily has a/c = 1/2, which
is the value saturating the lower HM bound. As remarked above, there are strong reasons to
believe that the only SCFT saturating this bound is the free hypermultiplet theory. However,
since the whole logic of [158] relies on the existence of a Coulomb branch, this reasoning is
circular. An interacting SCFT of zero rank would be rather exotic, but we do not know how
to rule it out with present methods.

The special case of the E2 multiplet is particularly significant. The top component of the
multiplet, obtained by acting with four right-moving supercharges on the superconformal
primary,15 O4 ∼ Q̃4E2 is a scalar operator of dimension four. This operator provides an
exactly marginal deformation of the SCFT that preserves the full N = 2 supersymmetry.
(By CPT symmetry, there is also a complex conjugate operator O4 ∼ Q4Ē−2). The converse
is also true: any N = 2 supersymmetric exactly marginal operator O4 must be the top
component of an E2 multiplet. It follows that the number of E2 multiplets is equal to the
(complex) dimension of the conformal manifold of the theory. In a Lagrangian theory, there is
an E2 multiplet for each simple factor of the gauge group, and the exactly marginal operator

14See however [157] for a relation between the spectrum of BPS states on the Coulomb branch and a
certain partition function (evaluated at the conformal point), which appears to be closely related to the
superconformal index.

15In an abuse of notation, we are denoting the superconformal primary with the same symbol E2 that
represents the whole multiplet.
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O4 ∼ Tr(F 2 + iF̃ 2) (where F is the Yang-Mills field strength) is dual to the complexified
gauge coupling.

Another true feature of all Lagrangian SCFTs (and many non-Lagrangian ones in class
S) is that they can be constructed by taking isolated building blocks with no marginal
deformations (such as hypermultiplets in the Lagrangian case, or TN theories in the class
S case) and gauging global symmetry groups for which the beta function will vanish. A
natural conjecture is that this feature is indeed universal:

Conjecture 9 (Decomposability). Any N = 2 SCFT with an n-dimensional conformal
manifold can be constructed by gauging n simple factors in the global symmetry group of a
collection of isolated N = 2 SCFTs.

Of course such a decomposition need not be unique – the existence of inequivalent de-
compositions of the same theory is what is often called “generalized S-duality”. Note that
the validity of this conjecture would imply the absence of compact conformal manifolds for
N = 2 SCFTs.16

Higgs branch data

In a similar vein, the B̂R multiplets are expected to encode the information about the Higgs
branch of the theory. The B̂R superconformal primaries, which are also SU(2)R highest
weights, form the Higgs branch chiral ring. In all known examples this ring describe by a
finite set of generators obeying polynomial relations. The algebraic variety defined by this
ring is then expected to coincide with the Higgs branch of vacua. This expectation can be
formalized as follows:

Conjecture 10 (Geometrization of the Higgs chiral ring). In any N = 2 SCFT, the Higgs
branch chiral ring is isomorphic to the holomorphic coordinate ring on the Higgs branch of
vacua.

The Higgs branch of vacua is hyperkähler, so there are actually a CP1 worth of holo-
morphic coordinate rings on it depending on the choice of complex structure. The choice of
complex structure corresponds to a choice of Cartan element in SU(2)R, so we have implicitly
made the choice already.

In this chapter we will focus on the simplest non-trivial17 case of these multiplets, the
B̂1 multiplet. This multiplet plays a distinguished role, because it encodes the information
about the continuous global symmetries of the theory. Indeed, the multiplet contains a
conserved current,

Jαα̇ = ǫJKQI
αQ̃J α̇φIK , (4.23)

16In the N = 1 case the existence of compact conformal manifolds has recently been established in [159].
The methods used there cannot easily be generalized to the N = 2 case.

17B̂ 1
2
describes a free hypermultiplet.
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where φIJ is the operator of lowest dimension in the B̂1 multiplet. It is an SU(2)R triplet and
is often referred to as the moment map operator. (The superconformal primary is the highest
SU(2)R weight φ11.) The current Jαα̇ generates a continuous symmetry global symmetry,
and is thus necessarily in the adjoint representation of some Lie group GF . Vice versa, if
the theory enjoys a continuous global symmetry, it follows from Conjecture 6 that the CFT
contains an associated conserved current Jαα̇, and one can show that in an interacting N = 2
SCFT such a current must necessarily belong to a B̂1 multiplet. Indeed, one can survey the
list of superconformal representations and identify all the ones that contain conserved spin
one currents that are also SU(2)R × U(1)r singlets. The list is very short: B̂1 and Ĉ0( 1

2
, 1
2
).

The latter multiplet has a conserved current as its superconformal primary, but also contains
conserved spin three conserved current among its descendants, so by our usual criterion it is
not allowed in an interacting SCFT. What’s more, B̂1 representations cannot combine with
other short representations to form long representations, so the B̂1 content of a theory is
an invariant on the conformal manifold, except for possible enhancements in singular limits
where some free subsector decouples (such as the zero coupling limit of a gauge theory) and
Ĉ0( 1

2
, 1
2
) multiplets may split off from long multiplets hitting the unitarity bound.

As we have already mentioned in the context of exactly marginal gauging of SCFTs, to
each simple non-abelian factor of the global symmetry group is associated a flavor central
charge k, defined from the OPE coefficient of the conserved current with itself (4.13). Thus
the most basic data associated to the B̂1 representations in an SCFT are the global symmetry
group GF = G1 × . . . Gk and the corresponding flavor central charges.

Chiral algebra data

It was recognized in chapter 2 (see also [75] and chapter 3) that the local operator algebra of
any N = 2 SCFT admits a closed subsector isomorphic to a two-dimensional chiral algebra.
The operators that play a role in the chiral algebra are the so-called Schur operators, which
(by definition) obey the conditions18

∆− (j1 + j2)− 2R = 0 , j2 − j1 − r = 0 . (4.24)

Schur operators are found in the following short representations,

B̂R , DR(0,j2) , D̄R(j1,0) , ĈR(j1,j2) . (4.25)

One should in particular note the absence of the Er multiplets from this structure. Each
supermultiplet in this list contains precisely one Schur operator: for the B̂R multiplets, the
Schur operator is the superconformal primary itself, while for the other multiplets in (4.25) it

18In fact one can show that the first condition implies the second in a unitary theory.
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is a superconformal descendant.19 When inserted on a fixed plane R2 ⊂ R4, parametrized by
the complex coordinate z and its conjugate z̄, and appropriately twisted (the twist identifies
the right-moving global conformal algebra sl(2) acting on z̄ with the complexification of
su(2)R algebra), Schur operators have meromorphic correlation functions. The rationale
behind this construction is that twisted Schur operators are closed under the action of a
certain nilpotent supercharge, ◗ := Q1

−+ S̃1
−̇
, and they have well-defined meromorphic OPEs

at the level of ◗ cohomology. This is precisely the structure that defines a two-dimensional
chiral algebra.

We refer the reader to 2 for a comprehensive explanation of this construction. Here we
mainly wish to emphasize that the chiral algebra data (i.e., the Schur operators and their
three-point functions) are a very natural generalization of the Higgs data. Since they are
subject to associativity conditions expressed by meromorphic equations, the chiral algebra
data can be often determined exactly given some minimum physical input.

The simplest example, and the one that will play a role in this chapter, is the case of
moment maps. Moment maps transform in the adjoint representation of the flavor symmetry
group, and in the associated chiral algebra they correspond to affine Kac-Moody currents,
where the level k2d of the affine current algebra is related to the four-dimensional flavor
central charge k by the universal relation

k2d = −
k

2
. (4.26)

The four-point function of affine currents completely determined by meromorphy and cross-
ing symmetry. In the present context, it admits a reinterpretation as a certain meromorphic
piece of the full moment map four-point function. Crucially, this meromorphic piece con-
tains the complete information about the contribution of short representations to the double
OPE of the four-point function.20 All in all, combining the constraints of four-dimensional
unitarity with the ability to solve exactly for the contributions of short representations leads
to novel unitarity bounds for the level k and the trace anomaly coefficient c that are valid
in any interacting N = 2 SCFT. These bounds will play a significant role in the analysis of
Section 4.6.

4.2.4 A first look at the landscape: theories of low rank

The ultimate triumph of the N = 2 bootstrap program would be the classification of N = 2
SCFTs. If the decomposability conjecture of Section 4.2.3 holds true, then this problem is

19For example, the Schur operator in a Ĉ0(0,0) multiplet is a single component of the SU(2)R conserved
current.

20To be able to uniquely reconstruct the contribution of the short representations from the meromorphic
function, one must make the now-familiar assumption that the theory does not contain higher-spin conserved
currents.
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reduced to the enumeration of elementary building block theories with no conformal manifold.
Still, this is completely out of reach at present, and any attempt at a direct attack on the
classification problem would be premature. We are still very much in an exploratory phase.

To organize our explorations we may characterize theories by their rank – i.e., the di-
mension of their Coulomb branch or the number of generators in the Coulomb branch chiral
ring. Theories with low rank by and large have smaller values for their central charges than
their higher-rank counterparts, so this may be a reasonable measure of the complexity of a
theory. From the bootstrap point of view, theories with small central charges are attractive
as targets for numerical study.

The rank zero case is probably trivial. The simplest conjecture is that the only N = 2
SCFT with no Coulomb branch is the free hypermultiplet theory. This would be compatible
with the universal validity of the Shapere-Tachikawa bound.

For rank one, we can start by reviewing the list of established theories. This survey
will prove useful in our efforts to interpret the numerical bootstrap results reported in later
sections. The classic rank one theories are the SCFTs that arise on a single D3 brane probing
an F -theory singularity with constant dilaton [12, 64–68]. There are seven such singularities,
denoted by H0, H1, H2, D4, E6, E7, E8. With the exception of the theory associated to
the D4 singularity, which is an SU(2) gauge theory with Nf = 4 fundamental flavors, these
theories are all isolated non-Lagrangian SCFTs. They have an alternative realization is in
class S, where they are associated to punctured spheres with certain special punctures – see,
e.g., [17, 79, 105, 160, 161].

Basic properties of these rank one SCFTs are summarized in Table 4.1. Their flavor
symmetry algebra h is given by the Lie algebra of the same name (with Hi → Ai; the
H0 theory has no flavor symmetry). From the F -theory realization it is manifest that the
Higgs branch of each theory is the one-instanton moduli space for the corresponding flavor
symmetry group. As algebraic varieties, these Higgs branches are generated by the h moment
maps subject to a set of quadratic relations known as the Joseph relations. Relatedly, the
flavor central charge k and the c anomaly saturate the unitarity bounds derived in 2. It was
argued in Section 4 of chapter 2 that this is strong evidence that the protected chiral algebra
is the affine Lie algebra ĥk2d at level k2d = −k

2
.21

Another well-known rank one N = 2 SCFT is N = 4 super Yang-Mills theory with
gauge group SU(2). Regarded as an N = 2 theory, it has flavor symmetry h = su(2), the
commutant of SU(2)R × U(1)r in the full SU(4) R-symmetry. There are three more recent
additions to the list of rank one theories. They were initially discovered in [71] by considering
the strong coupling limit of Lagrangian theories and then given a class S re-interpretation
in [162, 163]. In these theories the Coulomb branch is generated by an Er multiplet with
r = 3 , 4 , 6. These are the same values as in the E6, E7 and E8 theories in Table 4.1, but the

21We mention in passing, as this will play a role later, that each of these theories admits a rank N
generalization, physically realized on the worldvolume of N parallel D3 branes probing the same F -theory
singularity. The Higgs branches of the higher rank theories are the moduli spaces of rank-N h-instantons,
with global symmetry h⊗ su(2) for N > 2.
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flavor symmetries for these new theories are smaller. Given the serendipitous discovery of
these “new” rank one theories, one may rightly view with suspicion the claim that the list
of known rank one theories is complete. How could we find out?

A systematic study of rank one N = 2 SCFTs has been undertaken by Argyres and
collaborators [164, 165] using Seiberg-Witten technology.22 Let us give a quick informal
summary of this approach. The Coulomb branch chiral ring of a rank one theory is by
definition generated by a single operator Er0 . Assuming the validity of Conjecture 7, this
operator should not be nilpotent, and further assuming Conjecture 8, its vacuum expectation
value

u := 〈Er0〉 , (4.27)

parametrizes the Coulomb branch of vacua. For u 6= 0, the theory admits a low-energy
description in terms of an effective U(1) gauge theory, whose data are encoded in a family
of elliptic curves [168, 169],

y2 = x3 + f(u,mi)x+ g(u,mi) , (4.28)

and in a meromorphic one form λSW(u,mi), subject to certain consistency conditions. The
complex parameters {mi} are mass parameters, dual to the Cartan generators of the flavor
symmetry algebra h of the theory. For zero masses, the curve must take a scale invariant
form, i.e., it must transform homogeneously if one rescales x, y and u with the appropriate
weights. The scaling weight of u is nothing but the conformal dimension ∆ = r0 of Er0 . The
possible scale-invariant curves are then given by a subset of Kodaira’s classification of stable
degenerations of elliptic curves depending holomorphically on a single complex parameter.
There turn out to be seven cases, and they are the same as the F -theory singularities with
constant dilaton. Starting from the scale-invariant curve, one can construct its mass defor-
mations (which must be compatible with the existence of the meromorphic one-form λSW),
and infer the flavor symmetry algebra h. It turns out that for a given scale invariant curve
there can be numerous inequivalent mass deformations [164, 165]. The “canonical” rank one
theories of Table 4.1 correspond to the maximal mass deformation, but submaximal deforma-
tions with smaller flavor symmetry are also possible. An example of this phenomenon that
we have already implicitly encountered is the submaximal deformation of the D4 singularity,
with h = su(2) ⊂ so(8), which corresponds to N = 4 SYM with gauge group SU(2). The
“new” rank one theories of [71, 162] are recognized as submaximal deformations of the E6,
E7 and E8 Kodaira singularities, but several other possibilities also appear to be consistent23

[165]. In the absence of an independent physical construction (in class S or otherwise), it
is a priori unclear whether the mere existence of a Seiberg-Witten geometry guarantees the
existence of a full fledged SCFT. The bootstrap approach should be able to shed light on this
question, at the very least by providing some consistency checks of the candidate models.

22The rank two case is considerably more involved [166, 167].
23We are grateful to P. Argyres for sharing some of the results of [165] with us prior to publication.
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G H0 H1 H2 D4 E6 E7 E8

h – su(2) su(3) so(8) e6 e7 e8

h∨ – 2 3 6 12 18 30

k 12
5

8
3

3 4 6 8 12

c 11
30

1
2

2
3

7
6

13
6

19
6

31
6

a 43
120

11
24

7
12

23
24

41
24

59
24

95
24

r0
6
5

4
3

3
2

2 3 4 6

Table 4.1: Properties of rank one SCFTs associated to maximal mass deformations of the
Kodaira singularities [54, 70, 170]. We list the name of the singularity, the flavor symmetry
algebra h and its dual Coxeter number h∨, the flavor central charge k, the c and a anomaly
coefficients, and the U(1)r charge r0 of the Coulomb branch chiral ring generator.

In summary, even for rank one the situation is not completely settled. There are several
established theories and a growing list of possible additional models. A complete elucidation
of the rank one case should be a benchmark for our understanding of the N = 2 landscape.

4.3 The moment map four-point function

As our first observable of interest we take the four-point function of moment map operators.
As explained in the previous section, these are the superconformal primaries for represen-
tations containing conserved currents for global symmetries (the B̂1 multiplets). This is in
some sense the paradigmatic observable by means of which we can investigate SCFTs with
flavor symmetries. The moment map operators are spacetime scalars of conformal dimen-
sion two, and they transform in the adjoint representation of SU(2)R while being neutral
with respect to U(1)r. Like the conserved currents in the same multiplet, they transform
in the adjoint representation of the flavor symmetry group GF . We denote these operators
φA(IJ )(x), where I,J = 1, 2 are fundamental indices for SU(2)R and A = 1, . . . , dimGF is
an adjoint index for GF .

The purpose of the present section is to describe the structure of this correlation function
and to formulate its (super)conformal block decomposition. Let us briefly outline the general
trajectory of this analysis. The four-point function of moment map operators can initially
be organized to reflect the constraints of conformal symmetry, SU(2)R symmetry, and GF

flavor symmetry. In practice this means decomposing the general correlator into a number
of functions of conformal cross ratios that encode the contributions of operators with fixed
transformation properties under SU(2)R and GF in the conformal block expansion. These
functions are further constrained by superconformal Ward identities [41] (see also [42, 43]).
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The ultimate result of these Ward identities is that the functions corresponding to different
SU(2)R channels are not independent, but rather the full four-point function is algebraically
determined in terms of a set of meromorphic functions fi(z) and unconstrained functions
Gi(z, z̄), where the index i runs over the irreps that appear in the tensor product of two
copies of the adjoint representation of GF ,

Adj(GF )⊗ Adj(GF ) =:
n⊕

i=1

Ri(GF ) . (4.29)

The meromorphic functions are identical to the four-point functions of affine currents in two
dimensions 2, and are completely determined by the flavor central charge. The unconstrained
functions Gi(z, z̄) are best considered in a superconformal partial wave expansion. They can
be split into two parts which we call Gshorti (z, z̄) and G longi (z, z̄). The former functions encode
the contributions of protected operators appearing in the OPE of two moment maps, and
under mild assumptions24 they can be completely determined in terms of the central charges
k and c by reading off the relevant CFT data from the (now fixed) meromorphic functions.
The latter functions encode the spectrum and OPE coefficients of unprotected operators,
about which we generally have scant knowledge. The point of the numerical analysis of
Section 4.6 will be to constrain the CFT data encoded in the functions G longi (z, z̄) using
crossing symmetry.

4.3.1 Structure of the four-point function

The appearance of the four-point function in question can be cleaned up a bit by introduc-
ing some auxiliary structure. Following [43], we eliminate the explicit SU(2)R indices on
φA(IJ )(xi) in favor of complex polarization vectors tI in terms of which we define

ϕA(t, x) := φA(IJ )(x)t
ItJ . (4.30)

With these conventions, conformal symmetry and R-symmetry demand that the four-point
function of moment map operators be of the form

〈ϕA(t1, x1)ϕB(t2, x2)ϕC(t3, x3)ϕD(t4, x4)〉 =
(t1 · t2)2(t3 · t4)2

x412x
4
34

GABCD(u, v;w) , (4.31)

where u and v are (standard) conformally invariant cross-ratios,

u :=
x212x

2
34

x224x
2
13

=: zz̄ , v :=
x214x

2
23

x224x
2
13

=: (1− z)(1− z̄) , (4.32)

24The assumption in question is that there are no higher spin conserved currents appearing in the con-
formal block decomposition. This is expected to hold true for any interacting theory.
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w is the unique SU(2)R−invariant “cross-ratio” of the auxiliary variables,

w :=
(t1 · t2) (t3 · t4)
(t1 · t3) (t2 · t4)

, (4.33)

and we have defined the contraction ti · tj := ǫIJ t
I
i t

J
j .

The flavor symmetry of the correlator can be captured by introducing a complete basis
PABCD
i of invariant tensors. We can always choose this basis such that the label i runs

over the various irreducible representations Ri of GF that appear in the tensor product
of two copies of the adjoint representation of GF , with the PABCD

i projectors onto this
representation. We may then write

GABCD(u, v;w) =
∑

i∈Adj⊗Adj

Gi(u, v;w)P
ABCD
i , (4.34)

and the projectors themselves satisfy

PABCD
i PDCEF

j = δijP
ABEF
i , PABBA

i = dim(Ri) . (4.35)

For each representation Ri one can decompose the corresponding Gi(u, v;w) into three
terms corresponding to the three SU(2)R channels. In terms of the auxiliary variable w we
find

Gi(u, v;w) =
2∑

R=0

ai,R(u, v)PR(y) , (4.36)

where we have defined y = 2
w
− 1, and the PR(y) are Legendre polynomials

P0(y) = 1 , P1(y) = y , P2(y) =
1

2

(
3y2 − 1

)
. (4.37)

Each of the ai,R(u, v) has a conventional conformal block decomposition that encodes the
exchanged conformal families in the appropriate flavor and R-symmetry representations.
These conformal blocks are actually grouped together in superconformal blocks, as we will
explain further below.

The consequences of superconformal covariance for this four-point function have been
analyzed in detail in [41–43]. Because supersymmetry transformations commute with flavor
symmetries, the superconformal Ward identities apply to eachGi(u, v;w) independently. The
end result of the analysis in those papers is neatly encapsulated in the following specialization
condition,

Gi(u, v;w)
∣∣
w=z̄

= fi(z) , Gi(u, v;w)
∣∣
w=z

= fi(z̄) , (4.38)

where it is the same meromorphic function fi appearing in both expressions. We note here
that this condition can also be seen to follow from the existence of the superconformal twist
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introduced in 2. In terms of these meromorphic functions, one then finds that the the
Gi(u, v;w) take the following form [43],

Gi(u, v;w) =
z(w − z̄)fi(z̄)− z̄(w − z)fi(z)

w(z − z̄) +
(
1− z

w

)(
1− z̄

w

)
Gi(u, v) . (4.39)

Upon decomposing this expression in the basis of Legendre polynomials of y, one recovers
expressions for the various R-symmetry channels in terms of fi and Gi,

ai,2(u, v) =
uGi(u, v)

6
, (4.40)

ai,1(u, v) =
u(fi(z)− fi(z̄))

2(z − z̄) − (1− v)Gi(u, v)
2

,

ai,0(u, v) = Gi(u, v)
(
v + 1

2
− u

6

)
− u

2(z − z̄)

(
(2− z)fi(z)

z
− (2− z̄)fi(z̄)

z̄

)
.

We see that (for a given flavor symmetry channel) the functions ai,R(u, v) are not indepen-
dent; instead they are all determined in terms of the meromorphic function fi(z) and a single
unconstrained function Gi(u, v).

Constraints of crossing symmetry

As a consequence of Bose symmetry, the four-point function must be invariant under ar-
bitrary permutations of the four inserted operators. For the functions Gi(u, v; y), these
permutations lead to the following relations,

(x1, t1)←→ (x2, t2) =⇒ Gi

(
u

v
,
1

v
;−y

)
= (−1)symm(i)Gi(u, v; y) , (4.41)

(x1, t1)←→ (x3, t3) =⇒ 1− 2y + y2

4
Gi

(
v, u;

y + 3

y − 1

)
=
v2

u2
Gj(u, v; y)F

j
i . (4.42)

The first of these is called the braiding relation, while we refer to the second as the crossing
symmetry equation. We have introduced the notation symm(i) which is equal to zero or one
if representation i appears in the symmetric or antisymmetric tensor product of two copies
of the adjoint, respectively. The matrix F j

i relates the projectors in one channel with the
projectors in the crossed channel:

PABCD
i = PCBAD

j F j
i , (4.43)

and is related to “Wigner’s 6j-coefficients” (see, e.g., [63]). In the cases considered in the
present work this matrix satisfies F j

i F
k
j = δ ki .

The corresponding constraints for the functions fi(z) and Gi(u, v) are obtained from (4.41)
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and (4.42) by using the solution for Gi(u, v; y) from (4.39) and reading off the constraints
term by term in a y-expansion. This exercise was already worked out without the flavor
symmetry structure in [43]. Upon including flavor symmetry indices we find two sets of
relations involving only the meromorphic functions,

fi(z) = (−1)symm(i)fi

(
z

z − 1

)
, z2fi(1− z) = (1− z)2fj(z)F j

i , (4.44)

one braiding equation involving only the two-variable functions,

Gi(u, v) = (−1)symm(i) 1

v
Gi
(
u

v
,
1

v

)
. (4.45)

There is one additional non-trivial crossing symmetry relation for the unconstrained function,

(z − z̄)(1− z)2(1− z̄)2F i
j Gj(u, v) + z2z̄2(z̄ − z)Gi(v, u)

+zz̄
(
z(z̄ − 1)fi(1− z)− z̄(z − 1)fi(1− z̄)

)
= 0 . (4.46)

This is the equation that we will investigate numerically. Before doing so we have to first
compute its superconformal block decomposition and solve the other crossing symmetry
equations, in particular the last equation in (4.44). We will discuss these two topics in the
next two subsections.

Fixing the meromorphic functions

By meromorphicity, the single-variable functions fi(z) are fixed completely by the structure
of their singularities. The only physically allowable singularities occur when two of the
inserted operators collide, i.e., at z = 0, z = 1, and z → ∞. The equations in (4.44) relate
the singularities at these three points, so it suffices to specify the singular behavior of fi(z)
near, say, z = 0. This simple crossing symmetry problem is reminiscent of what arises in
the study of two-dimensional meromorphic conformal field theories. Indeed, a compelling
physical picture that explains the relationship between this crossing symmetry problem and
the two dimensional case has been presented in 2. There it was shown that the functions
fi(z) are precisely equal to the four-point functions of an extended chiral algebra that can be
isolated by working at the level of cohomology relative to a particular nilpotent supercharge.
Indeed, the equations (4.44) are exactly the crossing equations one encounters in studying
chiral algebra four-point functions.

In 2 it was found that the moment maps φA(IJ )(x) are related to dimension one affine cur-
rents in the corresponding chiral algebra. These affine currents generate an affine Kac-Moody
(AKM) algebra ĜF . The level k2d of this AKM algebra is related to the four-dimensional
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flavor central charge k as

k2d = −
k

2
. (4.47)

Many more details about these chiral algebras can be found in 2 (see also [28, 75]). For
our purposes here we need only know that the chiral algebra completely determines the
one-variable part of the four-point function fABCD(z) to be the four-point function of affine
currents, which for any group GF takes the form:

fABCD(z) = δABδCD+z2δACδBD+
z2δADδCB

(1− z)2 +
2z

k
fACEfBDE+

2z

k(z − 1)
fADEfBCD . (4.48)

Note that the normalization here is such that the current has a canonical two-point function,
so the level k appears in the denominator in this expression.

4.3.2 Superconformal partial wave expansion

So far we have understood the functional form of the four-point function as follows from
su(2, 2|2) symmetry and an analysis of the associated chiral algebra. The next step is to
consider the superconformal partial wave expansion of the correlator.

The supersymmetric OPE of a B̂1 representation with itself has been studied in [171].
The approach taken in that paper was to analyze all possible three-point functions of two
B̂1 representations with a third a priori generic representation in harmonic superspace. The
result can be summarized in the following “fusion rule”,

B̂1 × B̂1 ∼ 1+ B̂1 + B̂2 + Ĉ0(j,j) + Ĉ1(j,j) +A∆
0,0(j,j) . (4.49)

This fusion rule can be further refined by taking into account flavor symmetry representa-
tions, which lead to some additional constraints. For example, long multiplets can appear in
all possible flavor symmetry representations but the stress tensor multiplet Ĉ0(0,0) can only
appear as a flavor singlet. The precise selection rules are summarized in Table F.2.

Each superconformal multiplet X in flavor representation i that appears on the right-hand
side of (4.49) must contribute a finite number of conventional conformal blocks to each of
the three functions ai,R(u, v) with 0 6 R 6 2. We denote these contributions as aXi R(u, v).
For this particular four-point function the coefficients of the conventional conformal blocks
are all related by the superconformal Ward identities [41], and we end up with just a single
undetermined OPE coefficient (squared) for each superconformal block. This leads to the
decomposition:

GABCD(u, v; y) =
∑

i

PABCD
i

∑

X in rep i

(−1)symm(i)λ2i X

(
2∑

R=0

PR(y)a
X
i R(u, v)

)
(4.50)
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where the term in parentheses is the superconformal block. The factor of (−1)symm(i) follows
from reflection positivity. In a unitary theory the λi X are real and their square is therefore
always positive.

The complete set of superconformal blocks for this four-point function was obtained in
[41]. It is most naturally given in terms of the functions Gi(u, v) and fi(z) introduced above,
which is presented in Table 4.2, where ℓ = 2j1 = 2j2 = 2j since all the multiplets appearing
in this OPE have j1 = j2. In the table G

(ℓ)
∆ (u, v) denotes the four-dimensional conformal

Multiplet Contribution to GXi (u, v) Contribution to fX
i (z) Restrictions

Id. 0 1

A∆
0,0j,j) 6u

∆−ℓ
2 G

(ℓ)
∆+2(u, v) 0 ∆ > ℓ+ 2

Ĉ0(j,j) 0 2g2j+2(z) j > 0

B̂1 0 2g1(z)

Ĉ1(j,j) 6uG
(ℓ+1)
ℓ+5 (u, v) −12g2j+3(z) j > 0

B̂2 6uG
(0)
4 (u, v) −12g2(z)

Table 4.2: Superconformal blocks for the Er0 four point function in the 2̂ channel.

block which is given by (F.1) in our conventions, and

gℓ =
(
−z
2

)ℓ−1

z2F1(ℓ, ℓ; 2ℓ; z) (4.51)

is a two-dimensional conformal block in a chiral algebra, as we discuss in more detail be-
low. Through (4.40), the contribution of each superconformal multiplet to the ai,R(u, v) is
obtained from the contribution of said multiplet to Gi(u, v) and fi(z). This is worked out in
detail in Appendix F.1.

From inspection of Table 4.2 it follows that the decomposition into superconformal blocks
of a given four-point function can be ambiguous. For example, a long multiplet at the
unitarity bound ∆ = ℓ + 2 contributes in exactly the same manner as a combination of
two short multiplets. These ambiguities can be understood from the fact that these two
multiplets can recombine to form a long multiplet according to25

A∆=2j+2
0,0(j,j) ≃ Ĉ0(j,j) ⊕ Ĉ 1

2
(j− 1

2
,j) ⊕ Ĉ 1

2
(j,j− 1

2
) ⊕ Ĉ1(j− 1

2
,j− 1

2
) . (4.52)

25Appendix B provides an overview of all the recombination rules for the unitary irreps of su(2, 2|2).
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Only the first and last multiplet are allowed in the OPE of two scalars. For the case j = 0 we
can use Ĉ1(j− 1

2
,j− 1

2
) = B̂2 and we get ≃ Ĉ0(0,0) + B̂2 on the right-hand side. These ambiguities

will be fixed below.
The braiding relations (4.45) together with Table 4.2 correlate the allowed spins of mul-

tiplet Xi to symm(i): only even/odd spins appear in Gi(u, v) for a representation appearing
in the symmetric/antisymmetric tensor product, respectively. This follows from the braid-

ing relations from the individual conformal blocks, G
(ℓ)
∆ (u, v) = (−1)ℓv−∆−ℓ

2 G
(ℓ)
∆ (u

v
, 1
v
). As

an example, for flavor singlets the spin of these operators is always even and for the flavor
adjoint multiplets these spins are always odd.

While the meromorphic functions fi(z) receive contributions only from short multiplets,
the two-variable functions Gi(u, v) include contributions from both long and short multiplets.
It is then useful to split the two-variable functions into the long and short contributions
appearing in a given channel,

Gi(u, v) = Gshorti (u, v) + G longi (u, v) , (4.53)

where we have

Gshorti (u, v)= 6λ2
i B̂2
uG

(0)
4 (u, v) +

∑

ℓ=0,1,...

6λ2
i Ĉ1(j,j)

(−1)ℓuG(ℓ+1)
ℓ+5 (u, v) ,

G longi (u, v) =
∑

∆>ℓ+2,ℓ

6λ2iA∆
ℓ
(−1)ℓu∆−ℓ

2 G
(ℓ)
∆+2(u, v) .

(4.54)

In the next subsection we will show that the coefficients of the short superconformal blocks
– and therefore the complete functional form of Gshorti (u, v) – are completely fixed from the
chiral algebra correlator (4.48). All the undetermined information in the four-point function
is then contained in G longi (u, v). These are the functions that will be analyzed numerically
in Section 4.6.

Fixing the short multiplets

Because the meromorphic functions fi(z) are completely determined by crossing symmetry
(or alternatively by analyzing the associated chiral algebra), their decomposition in chiral
blocks of the form (4.51) is determined. We can thus write

fi(z) =
∑

ℓ>−2

bi, ℓ(−1)ℓgℓ+2(z) , (4.55)

with known coefficients bi, ℓ. Upon examining the contributions of general supermultiplets
to fi(z) in Table 4.2, we see that the chiral OPE coefficients are related to four-dimensional
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OPE coefficients of the short multiplets as follows,

b1,−2 = λ21, Id ,

bi,−1 = 2λ2
i, B̂1

, (4.56)

bi, 0 = 2λ2
i, Ĉ0(0,0)

− 12λ2
i, B̂2

,

bi, ℓ = 2λ2
i, Ĉ0(j,j)

− 12λ2
i, Ĉ

1(j− 1
2 ,j− 1

2 )

, ℓ = 2j > 1 .

Note that in the first line, the identity operator can only appear in the flavor singlet channel
i = 1. If we now further assume that the theory has (a) no higher spin currents, and (b) a
unique stress tensor, then one can actually fix the OPE coefficients of all short multiplets.
Indeed, the first assumption implies the absence of any Ĉ0(j,j) multiplets with j > 1, so in
particular

λ2
i, Ĉ0(j,j)

= 0 for ℓ = 2j > 1 . (4.57)

Our second assumption implies that there is a unique multiplet of type Ĉ0(0,0), which is a
flavor singlet, and whose OPE coefficient is fixed in terms of the c central charge according
to

λ2
i, Ĉ0(0,0)

=
dimGF

6c
δi,1 , (4.58)

where dimGF is the dimension of GF . This numerical value follows from conformal Ward
identities upon imposing appropriate normalization conventions which we spell out below.

With these additional conditions, we see that (4.56) completely determines the OPE
coefficients λ2

i, B̂1
, λ2

i, B̂2
, and λ2

i, Ĉ1(j,j)
, in addition to the coefficient of the identity λ21, Id which

is merely an overall normalization. The remaining undetermined variables in the four-point
function are the spectrum of long multiplets A∆

ℓ and the corresponding OPE coefficients
λ2
i,A∆

ℓ

. This demonstrates how the chiral algebra leads to a clear distinction between the

contributions of the short multiplets, which we can solve analytically, and the contribution
of the long multiplets, which we can determine only numerically.

The precise values of the coefficient bi, ℓ can be read off from (4.48) after decomposing it
in the different flavor symmetry channels, using the projectors PABCD

i . The form of these
projectors generally depends on GF , see for example [63] for many examples. For the singlet
and adjoint representation the projectors always have the same universal form, so we can
discuss the corresponding decomposition in full generality.

The projector onto the singlet channel is always given by PABCD
1 = 1

dimGF
δABδCD, where

the normalization is chosen such that the trace of the projector corresponds to the dimension
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of the representation. The projection of (4.48) in the singlet channel then yields:

f1(z) = dimGF + z2
(
1 +

1

(1− z)2
)
+

2ψ2z2h∨

k(z − 1)

= dimGF −
∑

ℓ=0,2,···

2ℓ(ℓ+ 1)(ℓ!)2 (2(ℓ+ 1)(ℓ+ 2)k − 4ψ2 h∨)

k(2ℓ+ 1)!
gℓ+2(z) ,

(4.59)

where h∨ is the dual Coxeter number of GF , and ψ
2 the length squared of the longest root.

In a similar vein, the adjoint projector is fixed to be PABCD
Adj. = 1

ψ2h∨
fABEfEDC , which traces

to dimGF , and so we find that for any flavor group:

fAdj.(z) = −
(z − 2)z

(
h∨ψ2z
k
− h∨ψ2

k
+ z2

)

(z − 1)2

= −2ψ2h∨

k
g1(z) +

∑

ℓ=1,3,···

2ℓ(ℓ+ 1)(ℓ!)2
(
2(ℓ+ 1)(ℓ+ 2)− 2h∨ψ2

k

)

(2ℓ+ 1)!
gℓ+2(z) .

(4.60)

Equations (4.59) and (4.60) determine an infinite number of coefficients bi ℓ. It is worthwhile
to analyze the coefficients of the first few low-lying operators in more detail.

Let us begin with the identity operator, which only appears in the singlet channel. From
equations (4.56) and (4.59) we find

λ21, Id = dimGF . (4.61)

The explicit factor dimGF cancels against the same factor in the projector and therefore the
operator is unit normalized, so

〈φA(t1, x1)φB(t2, x2)〉 =
(t1 · t2)δAB
|x1 − x2|4

(4.62)

in our conventions.
Next we consider the ℓ = −1 term in (4.55). This block corresponds to the B̂1 multiplet

and therefore appears only in the adjoint flavor channel. From (4.56) and (4.60) we obtain
that

λ2
B̂1

=
ψ2h∨

k
. (4.63)

In Table F.1 in Appendix F we expanded the superconformal block into a sum of conventional
conformal blocks, and with the given coefficient we find the correct contribution of the flavor
current conformal block for a four-point function of adjoint fields, see, e.g., [34, 35].

At the next order in (4.55) we find the coefficients bi,0 which according to (4.56) get
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contributions from Ĉ0(0,0) and B̂2 multiplets. As we mentioned above, the former multiplet
contains the stress tensor and we can fix its coefficient in terms of the central charge. In a
general CFT, the contribution of the stress tensor conformal block to the four-point function
of a scalar of dimension 2 is, e.g., [34, 35]

x412x
4
34〈φ(x1)φ(x2)φ(x3)φ(x4)〉 ∼

4

90c
uG

(2)
4 . (4.64)

According to the third entry in Table F.1 this conformal block appears in the superconformal
block with a factor of 4

15
. After adding an additional factor dimGF in order to cancel

the corresponding factor in the singlet projector we recover (4.58). Using this equation in
conjunction with (4.56) and the expression of b1, 0 that can be read off from (4.59), we find
that for any flavor group

λ2
1, B̂2

=
1

12

(
dimGF

3c
− 4ψ2h∨

k
+ 4

)
. (4.65)

This coefficient must be positive for unitarity theories, and so we obtain a constraint on the
allowed values of k and c for a given flavor group GF :

dimGF

c
>

12ψ2h∨

k
− 12 . (4.66)

This is one of the unitary bounds obtained in 2. Its saturation corresponds to the absence of
the B̂2 multiplet in the singlet representation, which implies a relation in the Higgs branch
chiral ring of these theories.

Finally, from the last line of (4.56) we see that for j > 1 the two multiplets contributing
to the meromorphic function are Ĉ0(j,j) and Ĉ1(j− 1

2
,j− 1

2
). As we already mentioned before, the

Ĉ0(j,j) multiplets contain conserved currents of spin higher than two and are not expected
to be present in an interacting theory and we can set the corresponding OPE coefficients to
zero. In the singlet channel this for example directly leads to

λ2
1, Ĉ1(0,0)

=
2

5

(
2− ψ2h∨

3k

)
, (4.67)

whose positivity implies another bound of 2,

k >
ψ2h∨

6
. (4.68)

This bound can also be found by using similar arguments in the adjoint channel.
In what follows we will fix the normalization of the longest root to be ψ2 = 2.
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4.3.3 su(2) global symmetry

The first special case of the above structure that we will investigate is the case of global
symmetry algebra su(2). This is quantitatively the simplest case because it is the unique
simple algebra for which only three irreducible representations appear in the tensor product
of two copies of the adjoint representation – in particular, we have

3⊗ 3 = 1⊕ 3⊕ 5 . (4.69)

Interesting examples of N = 2 superconformal theories with su(2) flavor symmetry are the
theory of a single D3 brane probing an H1 singularity in F-theory as well as the theories
of any number n > 1 of D3 branes probing any of the F-theory singularities listed above.
(Recall also that the theory of a single free hypermultiplet is invariant under an su(2)F flavor
symmetry.)

The projectors onto each of the representations in (4.69) are easy to compute, see,
e.g., [63],

PABCD
1 =

1

3
δABδCD ,

PABCD
3 =

1

2

(
δADδCB − δACδBD

)
,

PABCD
5 =

1

2

(
δADδCB + δACδBD

)
− PABCD

1 ,

where A = 1 . . . 3 is an adjoint index. From [63] the F matrix can be computed as

F j
i =

1

dim(j)
PBDCA
i PABDC

j , (4.70)

where dim(j) = PABBA
j . We will arrange the rows and columns of F such that i, j = 1, 2, 3

correspond to the 1, 3, 5 channels respectively. The F matrix for su(2) is then,

F =




1
3

1
3

1
3

1 1
2
−1

2

5
3
−5

6
1
6


 . (4.71)
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We can now use equation (4.48) and compute the fi(z) functions,

f1(z) =
3− 6z + (5− 8

k
)z2 − (2− 8

k
)z3 + z4

(1− z)2 ,

f3(z) =
− 8
k
z + 12

k
z2 + (2− 4

k
)z3 − z4

(1− z)2 , (4.72)

f5(z) =
(2 + 4

k
)(z2 − z3) + z4

(1− z)2 .

We have chosen conventions in which the flavor central charge of the free hypermultiplet is
k = 1.

As described in the previous subsection, we can use this expression to solve for the bi, ℓ
coefficients in the expansion (4.55). By demanding that the stress tensor is unique and
that the theory does not contain higher spin currents we find the OPE coefficients of all the
semishort multiplets. After performing the infinite sums in the Gshorti (u, v) we will be left with
a crossing equation involving only long operators. The final expressions for Gshorti (u, v) are
given in (F.9). The singlet and quintuplet channels are symmetric and so they involve only
even spins in the expansion of fi(z) and Gi(u, v), while the triplet channel is antisymmetric
and contains only odd spins.

4.3.4 e6 global symmetry

As a second case we consider theories with global symmetry e6. This flavor symmetry group
also arises in the F -theory singularities described above. From the point of view of the
crossing symmetry relations, this is actually the second simplest case because five irreducible
representations appear in the square of the adjoint representation,

78⊗ 78 = 1⊕ 650⊕ 2430⊕ 78⊕ 2925 , (4.73)

whereas for all other simple groups (aside from su(2)) there are five or more representations.
The projection tensors for e6 can be found in [63], in terms of which the F matrix can be
computed using (4.70):

F =




1
78

1
78

1
78

1
78

1
78

25
3
− 7

24
5
24

25
12

−1
6

405
13

81
104

29
104

−135
52
− 9

26

1 1
4
− 1

12
1
2

0

75
2
−3

4
− 5

12
0 1

2




. (4.74)
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The indices of the above matrix F j
i run over the ordered set of irreps i, j ∈ {1,650,2430,

78,2925}.
Positivity of the coefficient of the B̂2 multiplet in the 650 representation requires

k > 6 , (4.75)

with saturation of the bound occurring when the coefficient of B̂2 goes to zero. The absence
of this multiplet corresponds to a relation in the Higgs branch chiral ring 2. The only known
theory with k = 6 is the rank one E6 theory.

As before we now compute the fi(z) functions, which are given in (F.10). Once again we
can use these expressions to solve for the coefficients of the short multiplets and to perform
the infinite sums in Gshorti (u, v), the final results are given in (F.11). We note that the
channels 1, 650 and 2430 appear in the symmetric tensor product, while channels 78 and
2925 appear in the antisymmetric tensor product. As such the former will only include even
spins and the latter only odd spins.

4.4 The Er four-point function

Our second observable of interest is the four-point function of N = 2 chiral operators, i.e.,
the superconformal primaries of Er0 multiplets. These multiplets were introduced in Section
4.2 as being connected to the Coulomb data of a theory. We recall that these superconformal
primaries are spacetime scalars with non-zero U(1)r charge r0 that are neutral with respect
to SU(2)R and that have conformal dimension ∆ = r0. We will denote the operator of
interest as φr0 , with the conjugate anti-chiral operator being φ̄−r0 . Unitarity requires ∆ > 1.
In principle, one would like to focus on generators of the Coulomb branch chiral ring. Our
methods are such that it is not easy to distinguish between generators and composites.
However, if we take r0 6 2, then unitarity dictates that φr0 must be a chiral ring generator.

We will be investigating the four-point function of a single chiral operator and its conju-
gate, 〈

φr0(x1)φ̄−r0(x2)φr0(x3)φ̄−r0(x4)
〉
. (4.76)

The general procedure is now analogous to that of the previous section. We should determine
what operators can be exchanged in each channel and find the corresponding superconformal
blocks. In contrast to the previous section, here we are dealing with operators that are
invariant under any flavor symmetries in the theory but that are nontrivially charged under
U(1)r. Although this is an R-symmetry, the role it plays in this correlator will be largely
that of a SO(2) flavor symmetry, with some minor differences that we discuss below. After
obtaining the superconformal blocks in all channels we have to work out the constraints
imposed by crossing symmetry. The Er multiplets are not involved with the chiral algebra
data of a theory. This means that unlike the previous section, we are not able to fix the
coefficients of all the short and semi-short multiplets being exchanged. Of all the short and
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φr0

φr0
φ−r0

φ−r0

(a) Chiral OPE channel.

φr0

φr0
φ−r0

φ−r0

(b) Nonchiral OPE channel.

Figure 4.1: The two inequivalent OPE channels for the Er four-point function.

semi-short multiplets appearing in the partial wave expansion, the only coefficient we are
able to fix is that of the stress tensor, which must appear in the φr0 × φ̄−r0 OPE. This gives
us a handle on the central charge c of the theory, which together with the dimension of the
external operators ∆ = r0 are the two parameters we can tune. We can therefore in principle
derive bounds or other constraints as a function of the pair (r0, c), but we will sometimes
leave the central charge arbitrary in order to obtain bounds that are universally valid for all
central charges, or alternatively in order to bound c itself.

Another short operator of special interest is the superconformal primary φ2r0 of the E2r0
multiplet, which appears in the φr0×φr0 OPE as part of the Coulomb branch chiral ring. The
corresponding conformal block appears with a nontrivial coefficient that is not protected by
supersymmetry. As we will see this multiplet is isolated and thus we will be able to bound
this coefficient both from below and from above. In this way we will also be able to probe
relations on the Coulomb branch chiral ring of the type φr0φr0 ∼ 0.

Finally, let us note that exactly marginal deformations of an N = 2 SCFT that pre-
serve the full N = 2 superconformal invariance lie in E2 multiplets. More specifically, the
deforming operators are obtained by acting with all four anti-chiral supercharges Q̃Iα̇ on the
superconformal primary of those multiplets. Theories with E2 multiplets in their spectrum
therefore necessarily lie on a conformal manifold of positive dimension. As we will review
below, the coefficient of the E4 multiplet in the OPE of two E2 multiplets is related to the
curvature of the Zamolodchikov metric on this conformal manifold. This curvature is thus a
natural target for numerical investigation.

4.4.1 Structure of the four-point function

In contrast to the case of moment maps, there are now two qualitatively different OPE
channels to consider depending on whether we take the non-chiral OPE φr0(x1) × φ̄−r0(x2)
or the chiral OPE φr0(x1) × φr0(x2) (see Fig. 4.1). We now describe the various selection
rules for superconformal representations appearing in these two channels, as well as the
corresponding superconformal blocks.
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The φr0(x1)× φ̄−r0(x2) channel

We begin with the selection rules for the non-chiral OPE. The problem simplifies due to
the fact that an operator O(x3) can participate in a non-zero three-point function 〈φr0(x1)
φ̄−r0(x2)O(x3)〉 only if the superconformal primary of the multiplet to which it belongs also
participates in such a non-vanishing three-point function. A sketch of the derivation of this
result can be found in Appendix F.2.1.

Selection rules for the U(1)r and SU(2)R require that any such operator O(x3) be an
SU(2)R singlet and have rO = 0. To appear in the OPE of two scalars they must also have
j1 = j2 = j. Taken together, these conditions imply the following selection rule:

Er0 × Ē−r0 ∼ 1+ Ĉ0,(j,j) +A∆
0,0(j,j) . (4.77)

Note that the structure of the OPE we present here is only for the superconformal primaries
of the Er0 and Ē−r0 multiplets, despite our abuse of notation in using the name of the full
multiplet on the left-hand side of the above equation. The superconformal blocks for these
multiplets have been computed in [146]. They are given by the general formula

Gsc∆,ℓ(z, z̄) :=
(zz̄)

1
2
(∆−ℓ)

z − z̄

((
−z
2

)ℓ
z 2F1

(
1

2
(∆ + ℓ) ,

1

2
(∆ + ℓ+ 4) ;∆ + ℓ+ 2; z)

)
(4.78)

2F1

(
1

2
(∆− ℓ− 2) ,

1

2
(∆− ℓ+ 2) ;∆− ℓ; z̄)

)
− z ↔ z̄

)
,

with ∆ and ℓ = 2j denoting the dimension and spin of the superconformal primary of each
multiplet. The spin can be either even or odd. Note that the superconformal blocks for the
Ĉ0(j,j) representations are simply the specialization of (4.78) to the case ∆ = ℓ+2, while the
block for the identity operator is just a constant as usual. These superconformal blocks can
of course be written as a finite sum of conventional conformal blocks – we provide such a
decomposition in Appendix F.2.3.

The φr0(x1)× φr0(x2) OPE

We now turn to the chiral OPE. In this case only SU(2)R singlets with rO = 2r and j1 =
j2 = j are allowed, and the spin ℓ = 2j is required to be even because we are considering the
OPE of two identical scalars. The complete selection rules for this channel are worked out in
Appendix F.2.2, where it is shown that one conformal family per superconformal multiplet
can contribute, implying the superconformal blocks are then equal to the standard conformal
blocks corresponding to that family. The complete list of superconformal multiplets that can
appear in this OPE is derived in the aforementioned appendix. All told we find the following
selection rules, where for simplicity we momentarily assume that r0 > 1,

Er0 × Er0 ∼ A0,2r0−2(j,j) + E2r0 + C0,2r0−1(j,j+1) + B1,2r0−1(0,0) + C 1
2
,2r0−

3
2
(j,j+ 1

2
) . (4.79)
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Once again we note that these selection rules only necessarily hold true for the superconformal
primaries of the Er0 multiplets. The corresponding superconformal blocks for these multiplets
are given in Table 4.3. The blocks for certain additional short multiplets that are allowed
when r0 = 1, are presented in the second part of the table. Note that the C 1

2
,2r0−

3
2
(j,j+ 1

2
)

Multiplet Contribution to Gî=2̂(u, v) Restrictions

A0,2r0−2(j,j) u
∆−ℓ
2 G

(ℓ=2j)
∆ (u, v) ∆ > 2 + 2r0 + ℓ

E2r0 ur0 G
(0)
2r0

(u, v)

C0,2r0−1(j,j+1) ur0 G
(ℓ=2j+2)
2r0+ℓ

(u, v) ℓ > 2

B1,2r0−1(0,0) ur0+1G
(0)
2r0+2(u, v)

C 1
2
,2r0−

3
2
(j,j+ 1

2
) ur0+1G

(ℓ=2j+1)
2r0+ℓ+2 (u, v) ℓ > 2

Ĉ 1
2
(j,j+ 1

2
) u2G

(ℓ)
∆=ℓ+4 ℓ > 2; r0 = 1

Ĉ0(j,j+1) uG
(ℓ)
∆=ℓ+2 ℓ > 2; r0 = 1

D1(0,0) u2G
(ℓ=0)
∆=4 r0 = 1

Table 4.3: Superconformal blocks for the Er0 four point function in the chiral channel.

and B1,2r0−1(0,0) classes of short representations lie at the unitarity bound for long multiplets,
and their superconformal blocks are simply the specializations of the long multiplet block
to appropriate values of ∆ and ℓ. The E2r0 and C0,2r0−1(j,j+1) representations, on the other
hand, are separated from the continuous spectrum of long multiplets by a gap. The two
short multiplets that are available only when r0 = 1 contribute with the same blocks as
some of the other blocks appearing in Table 4.3.

4.4.2 Crossing symmetry

To formulate the crossing symmetry condition for this correlator we will treat U(1)r as an
SO(2) global symmetry – this is similar to the approach used in [35] to study the four-point
function of chiral operators in N = 1 SCFTs. In this approach, the fields φr0 and φ̄−r0 are
combined in the fundamental representation of SO(2) with charge |r0|, which we denote as
2|r0|. This representation has the following tensor product with itself,

2|r0| ⊗ 2|r0| =
(
1⊕ 2|2r0|

)
symm.

⊕ 1antisymm. , (4.80)
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where the subscripts denote which representations appear in the symmetrized tensor product
and which appear in the antisymmetrized tensor product. The crossing symmetry discussion
of Section 4.3.1 is now directly applicable, with the crossing matrix F j

i given by




1
2

1
2

1
2

1 0 −1
1
2
−1

2
1
2


 , (4.81)

where the ordering of the rows and columns is the same as in (4.80). The crossing equation
then takes the form

(z − z̄)((1− z)(1− z̄))r0F i
j Gj(z, z̄) + (z̄ − z)(zz̄)r0Gi(1− z, 1− z̄) = 0 , (4.82)

where each Gi(z, z̄) can be expanded in the blocks relevant for the SO(2) channel i. As
usual, the braiding relation requires that only operators of even spin appear in the symmetric
channels while only operators of odd spin appear in the antisymmetric channel.

In more conventional terms, the symmetric traceless channel 2|2r0| encodes the operators
appearing in the φr0 × φr0 OPE. This channel can therefore be expanded entirely in terms

of the conformal blocks G
(ℓ)
∆ given in Table 4.3 with even spins. The singlet channels, on

the other hand, describe the φr0 × φ̄−r0 OPE, with the symmetric channel getting all the
even spin conformal block contributions and the antisymmetric channel getting the odd spin
ones. The blocks in these latter two channels are related by supersymmetry because the
U(1)r symmetry is part of the superconformal algebra, and conformal families from the
same superconformal multiplet appear in both channels. To wit, in the symmetric singlet
channel we have contributions from the superconformal primaries appearing in (4.77) with
even spin, together with their even spin superconformal descendants, and the even spin
superconformal descendants of odd spin superconformal primaries. For the antisymmetric
channel the opposite takes place. We have therefore broken the superconformal blocks (4.78)
apart, splitting them by the parity of the spin, with each channel enjoying a “partial”
superconformal block.

This splitting of superconformal blocks can be ameliorated by a change of basis. Let us
define

G1̂,3̂ := G1 ± G3 , G2̂ := G2 . (4.83)

All conformal blocks arising from the same superconformal multiplet are now grouped to-
gether, with each superconformal multiplet from the singlet channels appearing twice: once
each in G1̂ and G3̂. The channels 1̂ and 3̂ are almost identical – the only difference is an
extra minus sign for all the odd spin conformal blocks in G3̂ due to the extra minus sign in
(4.83). There are two ways to insert this minus sign. The first option is to decompose the
superconformal block (4.78) into ordinary conformal blocks and insert extra factors of (−1)ℓ
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in front of every block. However the second option is more efficient. We recall that ordinary
conformal blocks satisfy the following braiding relation:

(
z

z − 1

z̄

z̄ − 1

)∆−ℓ
2

G
(ℓ)
∆

(
z

z − 1
,

z̄

z̄ − 1

)
= (−1)ℓ(zz̄)∆−ℓ

2 G
(ℓ)
∆ (z, z̄) . (4.84)

We can thus insert the necessary factors of (−1)ℓ by substituting z → z
z−1

and z̄ → z̄
z̄−1

in
the superconformal block (4.78). We thus find that a supermultiplet in the singlet channel
contributes to the four-point function as follows,

Gî=1(z, z̄) ∼ Gsc∆,ℓ(z, z̄) , Gî=3(z, z̄) ∼ Gsc∆,ℓ
(

z

z − 1
,

z̄

z̄ − 1

)
, (4.85)

with the same OPE coefficient appearing in both channels. The operators contributing to
the doublet channel still contribute to G2̂(z, z̄) as before.

The relevant crossing equation is now the same as in (4.82) but with î and ĵ replacing i
and j, and with the flavor matrix F j

i replaced by

F ĵ

î
=




1 0 0

0 0 2

0 1
2

0


 . (4.86)

This is the same as the crossing equation that was previously derived for chiral operators
in N = 1 SCFTs [35]. This matrix squares to one, which is relevant to the numerical
implementation described in the next section.

When ∆ = ℓ = 0 in the î = 1̂, 3̂ channels we get the contribution of the identity operator,
which we set equal to two. This fixes the normalization of the external operators to be one as
is conventional (the factor of two arises from the projector onto the singlet, similarly to the
discussion in the previous section). The contribution of the stress tensor is contained in the
superconformal block (4.78) with ∆ = 2 and ℓ = 0. When expanded in ordinary conformal
blocks, the contribution is given by

G Ĉ0,(0,0)i=1 (z, z̄) = uG
(0)
2 (u, v)− u

2
G

(1)
3 (u, v) +

2u

30
G

(2)
4 (u, v) . (4.87)

The coefficient of this block can be fixed in terms of the central charge c as was done in the
previous section. Namely, fixing the coefficient of uG

(2)
4 (u, v) requires that this superconfor-

mal block should appear with coefficient
r20
3c

(again, a factor of two comes from the projector
onto the singlet). The “braided” superconformal block appears with the same coefficient.
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Free theory expansion

A simple illustration of the superconformal block decomposition procedure is the explicit
analysis of free field theory. Namely we consider the theory of a free vector multiplet, and
we study the four-point function of the chiral scalar which has r0 = 1. Decomposing the free
field correlator in terms of the superconformal blocks described above we find the following
channel expansions,

Gi=1̂(z, z̄) =
∞∑

ℓ=0

(ℓ+ 2)(ℓ!)2(−2)ℓ
(2ℓ+ 1)(2ℓ)!

Gscℓ+2,ℓ(z, z̄) ,

Gi=2̂(z, z̄) =
∞∑

ℓ=0

(
(−1)ℓ + 1

)
(ℓ!)2(−2)ℓ

(2ℓ)!
uG

(ℓ)
ℓ+2(u, v) ,

Gi=3̂(z, z̄) =
∞∑

ℓ=0

(ℓ+ 2)(ℓ!)2(−2)ℓ
(2ℓ+ 1)(2ℓ)!

Gscℓ+2,ℓ

(
z

z − 1
,

z̄

z̄ − 1

)
. (4.88)

We can immediately verify that the only difference between channel 1̂ and 3̂ is the replace-
ment z → z

z−1
and z̄ → z̄

z̄−1
. We can also ferret out the stress tensor block Gsc2,0(z, z̄) and see

that it appears with coefficient two. This suggests a central charge of 1
6
, which is correct for

the theory of a free vector multiplet. For future reference, we also note that the E2 block,
which is the uG

(0)
2 term in the 2̂ channel, comes with coefficient two.

4.5 Operator bounds from crossing symmetry

The output from the previous two sections was a collection of crossing symmetry equations
and their (super)conformal block decompositions. In this section we describe the numerical
methods by which these equations can be used to extract useful information about N = 2
SCFTs. We follow the approach of [35], where the original numerical analysis of [6] was
recast as a semidefinite programming problem.

Each of the nontrivial crossing symmetry equations can be put into the general form

Hi(z, z̄) + F j
i Hj(1− z, 1− z̄) = 0 . (4.89)

Here and below, summation over repeated indices is always implied. The functions Hi(z, z̄)
can always be written as

Hi(z, z̄) = Gi(z, z̄)− ai(z, z̄) , (4.90)

where the ai(z, z̄) are some known functions that have been fixed analytically, and the Gi(z, z̄)
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have a decomposition of the form

Gi(z, z̄) =
∑

ki

λ2kiG̃
(ℓki )

∆ki
(z, z̄) . (4.91)

The coefficients λ2ki are real, positive numbers, and the G̃
(ℓ)
∆ (z, z̄) are roughly the super-

conformal blocks, the precise form of which depends on the crossing symmetry equation in
question.26 The sum is over all operators that appear in the i’th channel, and the matrix F j

i

is related to Wigner’s 6j symbol for the relevant global symmetry group and in particular is
involutory: F j

i F
k
j = δ ki , for the cases considered here.

As in [6], we will analyze these equations by considering the action of certain linear
functionals upon them. We may introduce one linear functional φi for each channel i. The
functionals that we consider are defined by taking linear combinations of various numbers
of derivatives of the function and evaluating at the symmetric point z = z̄ = 1/2, i.e.,

φi[fi(z, z̄)] =
∑

m,n

αimn∂
m
z ∂

n
z̄ fi(z, z̄)

∣∣
z=z̄= 1

2

. (4.92)

The matrices 1
2
(δ ji ± F j

i ) are projectors onto the positive and negative eigenspaces of

F j
i , so we can split the coefficients into even and odd parts, αimn = αimn,++αimn,−, satisfying

1

2
αj±(δ

i
j ± F i

j ) = αi± ,
1

2
αj±(δ

i
j ∓ F i

j ) = 0 . (4.93)

Upon acting with our functionals on both sides of (4.89), we find the following equation,

∑

m,n

(αimn,+ + αimn,−)
(
δ ji + (−1)m+nF j

i

)
∂mz ∂

n
z̄Hj(z, z̄)

∣∣
z=z̄= 1

2

= 0 . (4.94)

Only those terms with m+ n even in φi+ and those with m+ n odd in φi− have a nontrivial
action on the crossing symmetry equation (4.89). Without loss of generality, we can therefore
set the other terms to zero. With this choice now implicit, the action of the functional on
the crossing symmetry equation can be succinctly written as

0 = φi
[
Hi(z, z̄) + F j

i Hj(1− z, 1− z̄)
]

= 2
∑

m,n

(
αimn,+ + αimn,−

)
∂mz ∂

n
z̄Hi(z, z̄)

∣∣
z=z̄= 1

2

= 2φi [Hi(z, z̄)] .

(4.95)

26These G̃ functions are not exactly the superconformal blocks of the previous sections, but rather they
include simple prefactors that have been absorbed in their definition. This is not particularly important for
the discussion here.
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The nontrivial relations between the different global symmetry channels have been com-
pletely accounted for by the eigenvector constraints (4.93), which are simple algebraic con-
straints that are easily solved in any given case.

By construction, all the functions appearing in this relation are symmetric under the
exchange of z and z̄, so we lose nothing by restricting the coefficients of the functionals
to obey m 6 n. We obtain a finite-dimensional functional space by introducing a cutoff
Λ ∈ N, and demanding that m + n 6 Λ. For each i, we then find (1 + ⌊Λ

2
⌋)(2 + ⌊Λ−1

2
⌋)

independent derivative combinations. The total number of independent coefficients αimn,± is
then determined by multiplying the number of derivative combinations with m+ n even by
the number of positive eigenvalues of F j

i and the number of derivative combinations with
m+ n odd by the number of negative eigenvalues and then taking the sum. Quantitatively,
if the total number of channels is c and F j

i has b positive eigenvalues, then the dimension
of the space of functionals is given by

dimΛ,c,b =
c

2

(
1 +

⌊
Λ− 1

2

⌋)(
2 +

⌊
Λ− 1

2

⌋)
+
b

2

(
1 + (−1)Λ

)(
1 +

⌊
Λ

2

⌋)
. (4.96)

This is the dimension of the space in which we will be performing a numerical search, and is
therefore an important measure of the complexity of the numerical problem. For large Λ the
dimension behaves approximately like c/2 times the total number of derivative combinations.

The numerical results presented in subsequent sections are the results of two different
strategies. The aim of the first strategy is to provide an upper bound for the lowest dimension
operator in a given channel and with a given spin that may appear in a solution of crossing
symmetry. For instance, we may want to find an upper bound ∆⋆

0 for the dimension of the
first scalar operator in channel î. Such a bound follows immediately from the existence of a
functional possessing the following properties:

φj
[
G̃

(ℓ)
∆ (z, z̄)

]
> 0 , ∀ (∆, ℓ) in channel j 6= î ,

φî
[
G̃

(ℓ)
∆ (z, z̄)

]
> 0 , ∀ (∆, ℓ) in channel î with ℓ > 0 ,

φî
[
G̃

(0)
∆ (z, z̄)

]
> 0 , ∀ ∆ > ∆⋆

0 in channel î ,
∑

i

φi [ai(z, z̄)] 6 0 .

(4.97)

It is implicit in this description that the functional need not be positive for scaling dimensions
below the unitarity bound, since such operators cannot be present in the type of solution
of crossing symmetry that we are aiming to constrain. The optimal bound that can be
obtained by this method at a given cutoff will then be the minimal value of ∆⋆

0 for which
such a functional exists.

The aim of the second strategy is to provide an upper bound for value of a particular
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OPE coefficient, say λ2k
î
which multiplies the block corresponding to an operator with di-

mension ∆k
î
and spin ℓk

î
in channel î. Such a bound follows from performing the following

optimization over the space of functionals:

φj
[
G̃

(ℓ)

∆ (z, z̄)

]
> 0, ∀(∆, ℓ) in all channels j ,

φî
[
G̃

(ℓk
î
)

∆k
î

(z, z̄)

]
= 1 ,

minimize
∑

i

φi [ai(z, z̄)] .

(4.98)

If the minimum is positive and equal to, say, M , then we obtain an upper bound

λ2k
î
6M . (4.99)

If, on the other hand, the minimum turns out to be negative then we are effectively back
to the previous case and there can be no solution to crossing symmetry. In our analysis,
we often apply this minimization procedure to the block corresponding to the stress tensor
multiplet. The OPE coefficient for that block is inversely proportional to the c central charge,
so an upper bound on the OPE coefficient translates to a lower bound for c.

Finally, there are some cases where the quantum numbers (∆k
î
, ℓk

î
) of an operator of

interest are isolated, in the sense that the corresponding conformal block is not continuously
connected to the set of blocks for which the functional is required to be positive in (4.98). This
is common in supersymmetric CFTs because of the various distinguished short multiplets
whose scaling dimensions lie strictly below the unitarity bound for generic representations
with the same Lorentz and R-symmetry quantum numbers. In such cases we can flip the
sign on the second line of (4.98) and instead require

φî[G̃
(ℓk

î
)

∆k
î

(z, z̄)] = −1 . (4.100)

In such a case, a negative value for M provides a lower bound on the corresponding OPE
coefficient,

λ2k
î
> −M . (4.101)

Here the result of the optimization is only meaningful ifM 6 0. because unitarity constrains
the coefficient is nonnegative.

In each of the cases just described, the search for functionals of appropriate type can be
reduced to a semidefinite programming problem [35]. We review this story in Appendices G
and H, where we also offer additional details about our particular numerical implementation.
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4.6 Results for the moment map four-point function

The four-point function of moment map operators depends on a choice of global symmetry
GF , the associated flavor central charge k, and the trace anomaly coefficient c. Under mild
assumptions, the contributions of all short multiplets that appear in the conformal block
decomposition are completely determined by those parameters. For each such triple (GF , k, c)
there is then a corresponding crossing symmetry relation for the CFT data associated to long
multiplets that can be subjected to numerical analysis.

We have restricted our attention to flavor symmetries su(2) and e6. From the perspective
of the bootstrap equations, these are the least complicated of all simple algebras because
the number of irreps appearing the tensor product of two copies of the adjoint is the lowest
(three for su(2) and five for e6). Moreover, since every non-abelian semi-simple Lie algebra
has su(2) as a subalgebra, the su(2) bounds are in a sense universal and must hold for any
N = 2 superconformal field theory with a non-abelian flavor symmetry.

Below we will first discuss how in certain regions of the (c, k) plane the crossing symmetry
equations can never be satisfied by a unitary theory, irrespective of the precise spectrum of
long multiplets. Recall that certain combinations of c and k are already excluded by the
unitarity bounds that follow from the chiral algebra 2. We will show that the numerical
analysis carves out an even smaller region. Within the allowed region in the (c, k) plane we
then obtain bounds on operators in various Lorentz and flavor symmetry representations.
We finally focus on values of c and k that correspond to known theories and compute more
detailed bounds for the scaling dimensions of unprotected operators.

4.6.1 su(2) global symmetry

Before presenting the results of the numerical analysis, it is useful to review our expectations
based on our present knowledge of N = 2 theories with su(2) flavor symmetry. Let us
consider the projection of the landscape of such SCFTs to the plane spanned by the two
central charges c and k. Every point on this plane then falls into one of three categories.
First, there are points where a solution to crossing symmetry cannot exist because it would
violate a known unitarity bound. Second, there are points where a solution to crossing
symmetry is guaranteed to exist because it can in principle be constructed from known
theories. All the other points then fall in the third category where we do not a priori know
if a solution exists. These three regions are charted in Fig. 4.2 and we discuss each of them
below.

Besides positivity of c and k, there are additional unitarity bounds that originate from
the chiral algebra construction of 2. For GF = su(2) these bounds are given by

k >
2

3
, k >

16c

1 + 4c
. (4.102)
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Figure 4.2: The (c, k) plane for theories with an su(2) flavor symmetry. The red region on
the right is excluded by analytic unitarity bounds, whereas we are guaranteed to have valid
solutions to the crossing symmetry constraints in the blue region. The curves connect points
corresponding to theories related to F-theory singularities of different rank, which increases
with c. We show the (c, k) values corresponding the su(2)L flavor symmetry of all F-theory
singularities with rank N > 2, and also to su(2) flavor symmetry of the rank N > 1 H1

theory. The “new” rank one theory is one of the theories obtained in [71]. It has a product
flavor symmetry with one factor being su(2), which is the one whose value of k is shown
in the plot. The vertical dotted line corresponds to the value of k for the codimension two
defect of the six-dimensional (2, 0) theory of type A1, which effectively has c→∞.
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We refer to these bounds as the analytic bounds, and the regions that they exclude in the
(c, k) plane are shaded in red in our plots.

Theories that saturate the analytic bounds have some special properties. For example, if
the second of the analytic bounds is saturated then there can be no B̂2 multiplet contributing
to the moment map four point function in the singlet channel, which implies a relation in
the Higgs branch chiral ring. Examples of theories with this feature are the theory of a
free hypermultiplet with (c, k) = ( 1

12
, 1) and the rank one Argyres-Douglas theory with

(c, k) = (1
2
, 8
3
), which is the rightmost point of type H1 in Fig. 4.2. Notice that the two

bounds in (4.102) intersect at (c, k) = ( 1
20
, 2
3
). The equivalent intersection point for e6 flavor

symmetry corresponds precisely to the Minahan-Nemeschansky theory [67]. It is natural to
ask if a theory might exist at the intersection point for su(2) flavor symmetry.

The second region contains all pairs (c, k) that correspond to a known N = 2 SCFT. The
region is however not limited to just those points, because we can take linear combinations
of known solutions as well: the sum of two solutions to crossing symmetry, with relative
weights that sum to one, is again a good solution to crossing symmetry (at the level of a
single four-point function). Since the central charges appear in four-point functions only
through OPE coefficients that are proportional to 1/c or 1/k, a solution constructed in this
way has effective central charges

1

ceff
=
α

c1
+

1− α
c2

,
1

keff
=

α

k1
+

1− α
k2

, (4.103)

in terms of central charges (ci, ki) of the two original solutions and a weight factor 0 6 α 6 1.
In the (1

c
, 1
k
) plane, the values of c and k that can be realized as linear combinations in this

way span the convex hull of all points corresponding to known theories. This region is
shaded in blue in Fig. 4.2. It is effectively spanned by three points: the free hypermultiplet
at (c, k) = ( 1

12
, 1), the generalized free field theory solution where c and k are both infinity,

and the four-point function on a codimension two defect in the six-dimensional (2, 0) theory
of type A1 where c is infinite and k = 4. We will discuss these three points in more detail
below. We have computed the values of c and k for many other known theories but were not
able to find any instance corresponding to a point outside the blue region in Fig. 4.2.

We should emphasize that taking linear combinations of solutions to crossing symmetry
is not the same thing as taking correlation functions of operators in the tensor product of
two theories. In particular, there is no guarantee that a linear combination of solutions can
be realized in a complete N = 2 SCFT. We can however be sure that our kind of numerical
analysis will not rule out any points corresponding to linear combinations of solutions. A
more sophisticated bootstrap analysis might exclude them, but we leave this direction for
future work.

Plotting the entire set of known N = 2 superconformal theories with at least su(2) flavor
symmetry is a daunting task, so we have opted to show only a subset. In Fig. 4.2 we show in
particular the location of the theories that describe the low-energy behavior of N D3 branes
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probing F-theory singularities. As we discussed in Section 4.2.4, there are seven types of
these singularities and they are denoted by the corresponding global symmetry group of the
SCFT: H0, H1, H2, D4, E6, E7, E8 (with Hi → Ai). The theories with N > 1 have an
additional su(2)L flavor symmetry.

The full set of central charges of these theories was calculated in [70] as a function of N
using holography. Let us denote by k the flavor central charge of the global symmetry group
indicated by the name of the theory, and by kL the level of the additional su(2)L for the
theories with rank greater than one. Then the relevant central charges are given by

c =
1

2
N2r0 +

3

4
N(r0 − 1)− 1

12
,

k = 2Nr0 ,

kL= N2r0 −N(r0 − 1)− 1 , N > 2 ,

(4.104)

where the vale of r0 for each of the seven types is given in Table 4.1. The resulting values of
c and k for these theories are plotted in Fig. 4.2.

Our plan for the remainder of this subsection can now be formulated as follows. We will
first focus on the unshaded, third region in Fig. 4.2. Could there be theories hidden in this
region, or some of these points be excluded? We will see that the latter is true, and we
can numerically obtain a universal lower bound on c for each value of k. For the remaining
allowed region, which includes the entire blue region in Fig. 4.2, we find upper bounds for the
dimension of several unprotected operators as a function of c and k. The numerical analysis
necessary to generate these bounds was computationally rather demanding because of the
two-dimensional parameter space, which limited the value of Λ for which the computation
was feasible to a maximum of Λ = 18. For restricted values of c and k that are of particular
interest, we generated superior bounds by going as high as Λ = 22. In particular, we chose to
study the H0 and H1 curves shown in Fig. 4.2. We also studied the point at k = 4 and c =∞,
which corresponds to an interesting defect SCFT. Bounds for the e6 curve are postponed
until the next subsection for the purposes of comparison to bounds extracted from the e6
moment map four-point function.

Constraints on c and k

To constrain the (c, k) plane we employed the second numerical method described in the
previous section. For a given value of k we normalize the functional by demanding that it
evaluate to one on the contribution of protected operators to (4.46) that are proportional
to the inverse central charge 1/c. We then minimize its value when acting on the remaining
protected contribution to crossing. The upper bound that we obtain in this way for 1/c then
corresponds to a lower bound on the central charge.27

27Bounds obtained in this way for the central charge, and more generally for OPE coefficients, have been
studied in the literature starting with [34, 118, 119].
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Figure 4.3: Bounds for the central charge c of a theory with su(2) flavor symmetry as a
function of the flavor central charge k. These bounds are a consequence of crossing symmetry
for the B̂1 four-point function. The red regions on the right are excluded by the analytic
bounds (4.102), and the gray region at the bottom is the numerically excluded region. The
gray and black lines correspond to the numerical bounds, shown for Λ = 10, 14, . . . , 30, with
the strongest bound (black line) corresponding to Λ = 30. The curves are interpolations
through the data points shown in the figure. The red dot denotes the free hypermultiplet
theory.
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Figure 4.4: Minimum allowed value of c for a theory with su(2) flavor symmetry and k = 1
as a function of the (inverse of) the maximum number of derivatives. The red dots are our
data points, and the blue curves are possible extrapolations to infinite Λ intended to guide
the eye. The dashed line corresponds to the central charge of the free hypermultiplet c = 1

12
.

The results of this program are shown in Fig. 4.3. The numerically excluded region is
shaded in gray. This result was obtained with Λ = 30, i.e., by taking at most 30 derivatives
in the z or z̄ directions. Bounds for smaller Λ are indicated with gray curves. One interesting
and very general lesson to be drawn from Fig. 4.3 is that the analytic and the numerical
bounds complement each other, and the most stringent constraints can only be obtained
by using both methods. For example, the numerical analysis eliminates the possibility of a
unitary SCFT existing at the intersection point (c, k) = ( 1

20
, 2
3
) of the two analytic bounds

given in (4.102). We also find that for all values of k, there exists a universal lower bound
on the central charge,

c > 0.055 , (4.105)

for any N = 2 SCFT with a non-abelian flavor symmetry. For comparison we may note that
for a free hypermultiplet c = 1/12 = 0.0833 . . .. From Fig. 4.3 it seems that there may in fact
be a solution to crossing symmetry with roughly this minimum value of the central charge,
because the global minimum of the exclusion curve at 1/k ≃ 0.68 seems rather stable against
increasing Λ. We are however not aware of any N = 2 SCFT (with or without non-abelian
flavor symmetry) with such a low central charge.

A feature of these our numerical bounds that we will be repeated both here and in the next
section is that they are non-optimal, meaning that they display substantial dependence on
Λ for the values of the cutoff considered. This is in contrast with, e.g., the three-dimensional
investigations in [33]. In that paper the bounds converge much faster and on the scales that
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we consider here they are essentially constant at Λ = 22.28 Notice that with Λ = 30 and
three flavor symmetry channels we have a functional with 392 components, which surpasses
even the 231 components used in the precision work on the three-dimensional Ising model
[102]. Apparently this crossing symmetry problem is numerically more expensive. We cannot
currently offer a good explanation as to why this is the case.

A natural way to deal with the relatively poor convergence is to extrapolate our results
from finite to infinite Λ.29 In this way we can generate a rough guess of where the best possible
bound may lie. Fig. 4.4 shows an example of such an extrapolation. The minimum allowed
value of c for k = 1 is plotted as a function of the cutoff Λ, and a possible extrapolation to
infinite cutoff is sketched. The dashed line in the figure corresponds to the central charge
which saturates the analytic bound at k = 1 (corresponding to the free hypermultiplet with
c = 1

12
). It seems plausible that in the Λ→∞ limit the numerical bounds will intersect the

analytic bound at this point.

Dimension bounds for su(2)

We now focus on the allowed region in the (c, k) plane and generate bounds for the dimension
of the first unprotected operator appearing in the B̂1×B̂1 OPE. In the tensor product of two
copies of the adjoint representation of su(2) one finds three irreps: the singlet, triplet, and
quintuplet. We will report on bounds for the dimension of the first unprotected operator of
lowest spin in each of these channels.

Singlet channel

In Fig. 4.5 we present the upper bound for the scaling dimension ∆ of the first unprotected
scalar operator in the singlet channel, for all allowed values of the central charges. The values
shown are an interpolation through a total of 572 data points, distributed on a square grid
with finer resolution near the edges. The cutoff for this analysis is Λ = 18. The surface so
obtained appears smooth and monotonic, with the bound getting stronger when approaching
the wall that represents the analytic bound or and at large central charge.

The bounds shown in Fig. 4.5 are completely universal – any four-dimensional N = 2
SCFT with at least su(2) flavor symmetry corresponds to a point somewhere inside the
allowed region. We will discuss several examples of such theories below, but as a zeroth-order
check we confirm that our bounds are consistent with some elementary solutions to crossing
symmetry.

At the infinite point (1/c, 1/k) = (0, 0) the stress tensor and the flavor current decouple,
their OPE coefficients being λT ∼ 1

c
and λJ ∼ 1

k
respectively. A well-known solution to

crossing symmetry for which these operators are absent is generalized free field theory, for

28In [33] the cutoff is defined differently – Λ = 22 here corresponds to nmax = 11 there.
29We do not currently have theoretical control of the dependence of the numerical bounds on Λ, but we

hope the apparent smoothness of the numerical results is enough to justify such extrapolations.
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Figure 4.5: Upper bounds for the dimension of the first unprotected singlet scalar operator
in theories with su(2) flavor symmetry, as a function of 1/k and 1/c. The cutoff used for this
plot was Λ = 18. The two- and a three-dimensional plots are generated with the same data
set. The gray and light red surfaces in the figure are the excluded regions from Fig. 4.3, and
the vertical red wall is added help visualize the constraints imposed by the analytic bounds.
The black dot is the generalized field theory solution to crossing.

which the four-point function is a sum of disconnected pieces,

〈φ1(x1) . . . φ4(x4)〉 = 〈φ1(x1)φ2(x2)〉〈φ3(x3)φ4(x4)〉+ two permutations . (4.106)

Specializing this solution to the four-point function of moment map operators, we find that
the first operator in the conformal block decomposition has dimension four. As is indicated
in Fig. 4.5, the generalized free field solution is consistent with the numerical upper bound
which gives ∆ 6 4.47 at this point. The numerical bound is similarly consistent with the
theory of a free hypermultiplet with (c, k) = ( 1

12
, 1), since the first unprotected singlet scalar

in the corresponding four-point function again has dimension four and numerically we have
∆ 6 4.38. Finally, we can take a linear combination of the two solution with positive weights
that sum to one. This results in a valid solution to crossing symmetry along the straight line
in Fig. 4.5 that runs from the origin to the free-field point, with a first unprotected singlet
scalar operator that always has dimension four. Again, this is consistent with the numerical
bound which is greater than four everywhere above this line. Much like the bound on c
sketched in Fig. 4.4, we expect these bounds to decrease substantially as Λ is increased, and
to converge to four along this line as Λ →∞. An extrapolation in Λ for (1/c, 1/k) = (0, 0)
(not shown) bolsters this intuition. Similar extrapolation experiments suggest that the bound
should end up below 4 for all values in the (c, k) plane between the analytic bound and the
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Figure 4.6: Upper bounds for the dimension of the first unprotected spin one multiplet in
the triplet channel of a theory with su(2) flavor symmetry, for all allowed values of c and
k, presented both as a three-dimensional plot and as a density plot. The gray and light red
surfaces in the figure are the excluded regions from Fig. 4.3. These bounds were obtained
with Λ = 18 and 547 data points in the (c, k) plane.

interpolating solution of the previous paragraph.
Although we have presented the two results in Figs. 4.3 and 4.5 as independent results,

they are in fact related. Indeed, the bound on the first scalar operator drops sharply to the
unitarity bound when we venture inside the numerically excluded region of Fig. 4.3. Such
a drop indicates that there does not exist any spectrum that is simultaneously consistent
with unitarity and crossing, and delineating the region where this happens is another way
to obtain the numerically excluded region in Fig. 4.3. The c-minimization approach used
to generate Fig. 4.3 is much more efficient, and could consequently be performed at higher
values of Λ.

Triplet and quintuplet channels

We now present numerical results for the triplet and quintuplet channels. The triplet appears
in the antisymmetric combination of two adjoints, so only odd spins can be exchanged. In
this case we bound the dimension of the first unprotected spin one operator appearing in
the B̂1 × B̂1 OPE. This bound is shown in Fig. 4.6 for the allowed range of c and k. Note
that the unitarity bound for a spin one multiplet is ∆ > 3. The numerical upper bound is
again represented by a smooth surface, with weaker bounds appearing at larger values of k.
In the limit where both c and k go to infinity the bound is close to 5, which is the value for
generalized free field theory.
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Figure 4.7: Upper bounds for the dimension of the first unprotected scalar in the quintuplet
channel of a theory with su(2) flavor symmetry, for all allowed values of c and k, presented
both as a three-dimensional plot and as a density plot. The gray and light red surfaces in
the figure are the excluded regions from Fig. 4.3. This plot was obtained with Λ = 18 and
398 data points in the (c, k) plane.

The quintuplet channel is again symmetric, so the exchanged operators will have even
spin as they did in the singlet channel. We have generated upper bounds for the dimension
of the first scalar operator. These are shown in Fig. 4.7 as a three-dimensional plot and a
density plot. The behavior of the bounds when approaching the minimum allowed values
of c and k is different from the other two channels – in this case the bound drops smoothly
to the unitarity bound at ∆ = 2. As either c or k are increased the bound gets weaker,
and when they both go to infinity the bound is near ∆ = 4, which is the correct value in
generalized free field theory.

We note that the triplet and quintuplet bounds approach the unitarity bound near the
minimum of the exclusion curve of Fig. 4.3 at 1/k ≃ 0.68. This is a strong indication
that the solution to crossing symmetry at that point has higher spin currents, which we
would generally associate to a free theory. Because the central charge is not that of a free
hypermultiplet, one may suspect that this point is not related to a physical theory.

Bounds for theories of interest

In the previous subsections we discussed bounds on operator dimensions for the entire (c, k)
plane that were obtained with a cutoff Λ = 18. We will now turn to a discussion of stronger
bounds, obtained with Λ = 22, which we computed only for specific values of c and k that
correspond to theories of interest. In this subsection we present operator dimension bounds
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along the curves in the (c, k) plane that correspond to the H0 and H1 theories shown in
Fig. 4.2. In the next subsection we will discuss the defect theory at infinite c and k = 4 that
corresponds to the dotted line in Fig. 4.2.

For the H0 theories with N > 2 the only flavor symmetry is su(2)L. We can trace the
results shown in Fig. 4.5 along the H0 curve in Fig. 4.2 to recover upper bounds for the
dimension of the first unprotected scalar singlet in these theories. This slice is displayed in
Fig. 4.8. The H1 theories with N > 2 have two independent su(2) symmetries with different
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Figure 4.8: Upper bounds for the first unprotected scalar in the theories of type H0 as a
function of the inverse rank. The bounds are extracted from the four-point function of the
su(2)L flavor symmetry moment map and are valid only for N > 2. The different lines
correspond to cutoff values Λ = 10, 14, . . . , 22, with the strongest bound shown as the black
line.

flavor central charges. We derived bounds for the two different cases by following the two
different curved labelled H1 in Fig. 4.2. Both of the singlet scalar bounds so obtained are
shown in Fig. 4.9.

In all of our plots corresponding to lines of interesting theories, we have shown the
progression of the bounds as a function of the cutoff. This gives a feeling for how close to the
optimal bound we have gotten – information that is absent from the plots of the previous
section where all the results came from analyses with Λ = 18 was shown. In general, there
seems to be some distance yet to go before the bounds will have effectively converged. In
particular, in the infinite-rank limit N → ∞ the stress tensor and flavor current decouple
from the OPE expansion and the bounds should reach the generalized free field theory value
∆ = 4. The difference between the Λ = 22 bounds at large N and the generalized free field
theory value offer a simple proxy for how far we have yet to go.

Despite slow convergence, we may naively extrapolate our bounds to generate estimates
for their optimal values. In particular, for the rank one H1 theory there is a single su(2)
flavor factor and we might expect that the bound generated by studying the corresponding
four-point function of moment maps to be saturated by this theory. Extrapolation for this
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value of c and k leads to a conjectural optimal bound in the range of 3.2− 3.4. Moving on
to the rank two case, there are now two independent bounds extracted from the two su(2)
flavor symmetries. These two bounds could conceivably apply to the same operator. In other
words, the same unprotected scalar singlet has no particular reason not to appear in both
moment map four-point functions. However, the two bounds appear to be unrelated. The
su(2)L bound dominates at low ranks, while the ordinary su(2) bound dominates for higher
ranks.

Similar bounds to those derived here can be obtained for the triplet and the quintuplet
channels by the same methods, though we have not done so here.

Bounds for defect SCFTs

An interesting aspect of the analytic bound (4.102) is that as c→∞ the bound on k stays
finite and we have k > 4 = 2h∨. The limit where c → ∞ and k remains finite should
correspond to a theory without a stress tensor but with conserved global symmetry current.
This kind of physics can be found on certain defects or interfaces in higher-dimensional
theories where the global symmetry is confined to the defect but energy can leak into the
bulk. There is in fact a natural set of defects that preserves N = 2 superconformal invariance
in four dimensions, namely the codimension two defects in the six-dimensional (2, 0) SCFTs
(see, e.g., [172] and references therein). For a (2, 0) theory of type g ∈ {An, Dn, En}, the
possible defects are labelled by an embedding ρ : sl(2)→ g. The degrees of freedom localized
on the defect carry a flavor symmetry h which is the commutant of the image of ρ. When ρ
is trivial, the flavor symmetry is just g and the corresponding flavor central charge is then
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Figure 4.9: Bounds for the dimension of the first unprotected spin zero multiplet in the singlet
channel for the H1 theories, as a function of the inverse of the rank of the theories. The
left plot comes from studying the four-point function of the ordinary su(2) flavor symmetry
moment map and is valid for all N > 1. The right plot comes from the four-point function
of the su(2)L flavor symmetry moment map and valid only for N > 2. The different lines
correspond to Λ = 10, 14, . . . , 22, with the strongest bound shown as the black line.
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Figure 4.10: Bound on the first unprotected scalar in the singlet channel for a theory with
k = 4 and infinite central charge, as a function of the cutoff. The red dots correspond to
derivatives 10 to 22 in steps of four, and the black dots to the remaining values of Λ ranging
from 10 to 20.

given by k = 2h∨. The bounds that we obtain at the point k = 2h∨ with c = ∞ therefore
constrain the spectrum of unprotected operators living on such a surface operator. Since we
consider su(2) flavor symmetry, this bound is valid for the defects of the (2, 0) theory of type
A1.

In Fig. 4.10 we show the upper bound for scalar singlets in the defect theory as a function
of the inverse cutoff. The best bound is given by 2.99, and naive extrapolation suggests a
relatively low value for the optimal bound somewhere between 2.5 and 2.9. It is natural to
suspect that this is indeed the value of the first unprotected singlet scalar on the defect.

We notice that the bound in Fig. 4.10 displays a step-like behavior whenever Λ− 2 is a
multiple of four, corresponding to the red dots in the figure. Given our lack of theoretical
control over the behavior of the bound as a function of the cutoff, we cannot currently offer
any theoretical explanation for this quasi-periodicity. It however suggests an extrapolation
scheme based on a restricted data set where Λ increases in steps of four. This is what was
done in generating Fig. 4.4.

4.6.2 e6 global symmetry

Our second investigation focuses on theories with e6 global symmetry. Let us again begin
by making a rough sketch of the landscape of such theories as seen by the moment map
four-point function. We show such a sketch in Fig. 4.11. There are analytic bounds for
the central charges of theories with e6 global symmetry arising from the chiral algebra of 2.
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Figure 4.11: An overview of the of known theories with e6 flavor symmetry, shown here as
points in the plane spanned by their c and k central charges. The red region is excluded by
analytic central charge bounds. The vertical dotted line designates the value k = 6 with is
the value of the central charge for the maximal defect SCFT in the six-dimensional (2, 0)
theory of type e. The blue wedges with vertices at each of the e6 theories are the region of
the plane for which solutions of crossing symmetry can be realized as linear combinations of
the four-point function for the theory at the vertex and those of generalized free field theory
and the defect theory.

These are given by

k > 6 , k >
48c

13 + 2c
. (4.107)

The region excluded by these bounds is shown in red in Fig. 4.11. We have also plotted
several known families of theories whose flavor symmetry contains an e6 factor, namely
the theories originating from F -theory singularities of type en for n = 6, 7, 8 and for all
ranks. The existence of these theories gives a collection of solutions to crossing symmetry
with various values of c and k. By taking linear combinations of these solutions, one can
find solutions of crossing symmetry with (c, k) values anywhere inside the blue region in
Fig. 4.11. In particular, for each irreducible solution there is a wedge corresponding to linear
combinations of that solution with the generalized free field theory solution and the defect
solution at k = 6 and c→∞. These wedges are shown for the e6 theories.

For the purposes of numerical analysis, the fact that there are now five irreps in the
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Figure 4.12: Bound on the central charge c of a theory with e6 flavor symmetry as a function
of the flavor central charge k, obtained from the B̂1 four-point function. The shaded red
regions on the right are the analytic bounds given in (4.107), and the shaded gray region
at the bottom is the numerically excluded region. The gray and black lines correspond to
the numerical bounds, shown for 10 to 26 derivatives in steps of four, with the strongest
bound (black line) corresponding to 26 derivatives. The red dot at the intersection of the
two analytic bound corresponds to the rank one e6 theory [12].

tensor product of two copies of the adjoint representations makes the search space larger
than the su(2) case for a given value of Λ. As such, the maximum value of Λ that we were
able to reach is lower and the su(2) case.

Constraints on c and k

We have obtained numerical lower bounds on c as a function of k following the same approach
as in the su(2) case. Here we considered a maximum cutoff of Λ = 26. The lower bound
is displayed in Fig. 4.12 as a function of the (inverse) flavor current central charge. The
regions shaded in red are again the ones ruled out by the analytic bounds (4.107). We see
that independent of k, any N = 2 SCFT with at least e6 flavor symmetry has

c > 0.83 . (4.108)
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In contrast to the case of su(2) global symmetry, for e6 there is a theory living at the
intersection of the two analytic bounds. This is the rank one e6 theory of Minahan and
Nemeschansky. One may wonder whether there is another theory with k = 6 but with a
lower value of c. In Fig. 4.13 we show the lower bound on c for k = 6 derived from the
moment map four-point function as a function of Λ. Though the bounds still seem to be
improving, it appears unlikely that the optimal bound will reach the value c = 13

6
(the value

of the rank one e6 theory). Instead, our best estimate for the optimal value of the central
charge bound is somewhere between 1.1 and 1.2. We are not aware of a theory with such a
low central charge and (at least) e6 flavor symmetry. It would be interesting to determine
whether the solution to crossing symmetry being approximated here contains higher spin
currents.

Dimension bounds in the singlet channel

Bounds for the first unprotected scalar in the singlet channel as a function of the (inverse)
central charges are shown in Fig. 4.14. The range of central charges allowed by unitarity
is limited by (4.107). Our plot therefore starts at k = 6, and the vertical red wall delimits
the region allowed by the second bound in (4.107). The gray region in Fig. 4.14 for low
values of the central charge represents central charges excluded by the numerical bounds of
the previous section. As both central charges go to infinity we expect the bound to go to
the generalized free field theory value of ∆ = 4, which we denoted with a black dot in the
figure. This point is consistent with the numerical bounds, and naive extrapolation of the
numerical results (not shown) suggests convergence towards ∆ = 4.
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Figure 4.13: Lower bounds on c for a theory with e6 flavor symmetry and k = 6 as a function
the inverse cutoff Λ. The red dots correspond to derivatives 10, 14, . . . , 26, while the black
dots show the remaining even values of Λ ranging from 10 to 24. The dashed line at c = 13

6

marks the central charge of the rank one e6 theory.
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Figure 4.14: Upper bounds for the dimension of the first unprotected scalar in the singlet
channel of a theory with e6 flavor symmetry as a function of the inverse of the central charges.
These bounds were generated with Λ = 16. The vertical red wall corresponds to the second
analytic unitarity bounds in (4.107), with the excluded region being the top right corner.
The plot starts at 1

k
= 1

6
, where the first analytic unitarity bound is saturated.

Bounds for theories of interest

We now specialize to the values in the (c, k) plane that correspond to the theories of D3
branes probing F-theory singularities with e6 flavor symmetry. The central charges for these
theories, shown in orange in Fig. 4.11, are given by [70]

c =
3

4
N2 +

3

2
N − 1

12
,

k = 6N ,
(4.109)

where N is the rank of the theory. All theories with rank N > 2 have an extra su(2)L flavor
symmetry, with kL = 3N2 − 2N − 1.

We derived upper bounds for the dimensions of the first unprotected operators of lowest
spin in each of the flavor symmetry channels appearing in the tensor product of two adjoints.
For the case of symmetric representations (singlet, 650, 2430) we therefore obtain a bound
for spin zero operators, and for antisymmetric representations (78, 2925) we bound spin
one operators. These bounds are displayed in Fig. 4.15. They are still far from optimal, but
serve to give us a feeling for the general shape of things. It would be interesting to improve
our numerical search power to the point where these bounds would converge.

We should compare the singlet bounds in Fig. 4.15a for rank N > 2 to the bounds obta-
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(b) 78, spin 1
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(c) 650, scalar
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(d) 2925, spin 1
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(e) 2430, scalar

Figure 4.15: Bound for the dimension of the first unprotected spin zero multiplet in the
singlet, 78, 650, 2925 and 2430 channels for the theories with flavor symmetry e6 arising
from F-theory singularities, as a function of the inverse of the rank of the theories. The
different cutoffs are Λ = 10, 12, . . . , 16, with the strongest bound given by the black line.
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Figure 4.16: Upper bounds for the dimension of the first unprotected scalar in the singlet
channel of the su(2)L moment map correlator for the e6 theories, as a function of the inverse
of the rank of the theories. The cutoff is increased from 10 to 22 in steps of four, with the
strongest bound given by the black line.

ined from the su(2)L flavor symmetry of those theories. In principle the same unprotected
operators may contribute to the four-point functions of both sets of moment maps, so if
the bounds recovered from both correlators are related to these rank N theories then they
should agree to some extent. These bounds are shown in Fig. 4.16. The two sets of bounds
appear to have nothing in common. It is hard to say whether this is a feature of the space
of solutions to crossing symmetry or a consequence of inadequate numerical power.

The rank one theory

We performed a higher precision analysis at the point k = 6 and c = 13
6
, which are the

central charges of the e6 Minahan-Nemeschansky theory. It is plausible that this theory is
the unique theory with these central charges and e6 flavor symmetry. What’s more, because
of the location of these central charges in a corner of the allowed region of the (c, k) plane,
there can be no pollution at this point by solutions of crossing symmetry that are linear
combinations of other irreducible solutions. This gives us some room to be optimistic that
the numerical bounds at this point will converge to physical values that correspond to the
scaling dimensions of operators in this theory.

As a first example we may consider again the bound on the first unprotected singlet scalar.
We have plotted this bound as a function of the cutoff in Fig. 4.17. Naive extrapolation
suggests an optimal value in the neighborhood of ∆ ≃ 4.4 for the first scalar singlet.

We can also explore simultaneous bounds for various channels by searching for functionals
with ∆⋆

Ri
greater than the unitarity bound for several choices of flavor symmetry channel

Ri. We performed such an analysis for these central charges to derive simultaneous bounds
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Figure 4.17: Upper bounds for the first unprotected scalar singlet in the rank one e6 theory as
a function of the inverse cutoff. The points where Λ−2 is a multiple of four are shown in red.
For the best bound shown, the dimension of the search space in the associated semidefinite
program was 366.

for the first scalars in the 1, 650, and 2430 channels. The numerics were performed with
Λ = 12, and the results are shown in Fig. 4.18 in the from of an exclusion plot in the
three-dimensional space spanned by the scaling dimensions (∆1,∆650,∆2430) of the first
operator in those channels. The usual superconformal unitarity bounds constrain us to be
in the octant where all these three dimensions are greater than two, but within this octant
we have numerically carved out a further excluded region where one or more of the three
operator dimensions is too high to satisfy the crossing symmetry equations.
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Figure 4.18: Three-dimensional exclusion plot in the octant spanned by the scaling dimen-
sions of the first unprotected scalar in the R = 1,650,2430 representations of e6 with k = 6
and c = 13

6
. The cutoff used while generating these bounds was Λ = 12.
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Bounds for defect SCFTs

We can again consider the limit where we send c → ∞ with k at the analytic bound,
which gives k = 24 in this case. In this limit we expect to recover information about the
theory living on the codimension two defect corresponding to the trivial embedding in the
six-dimensional (2, 0) theory of type e6. A nontrivial bound for the first unprotected scalar
in the singlet channel is given in Fig. 4.19 as a function of the cutoff. Once again we observe
some quasi-periodic behavior where the bounds have a sharper jump at every fourth step
in the cutoff. By naive extrapolation of the bound we arrive at a rough estimate that the
optimal upper bound should be between ∆ = 3 and ∆ = 3.2.
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Figure 4.19: Bound on the first unprotected scalar in the singlet channel for a theory with
k = 24 and infinite central charge as a function of the cutoff. Red dots correspond to cutoff
values Λ = 10, 14, . . . , 22, while black dots show the remaining cutoff values ranging from
Λ = 10 to Λ = 20.

4.7 Results for the Er four-point function

We now turn to the numerical results obtained for the four-point function of the Coulomb
branch operators Er0 . Unlike in the previous section we can vary the dimension of these
operators, which we recall is given in terms of their U(1)r charge r0 by ∆ext = r0. Unitar-
ity requires r0 > 1. We will consider four-point functions where all operators have equal
dimension. A second parameter is again the c central charge which appears in front of the
conformal block of the stress tensor multiplet. We will therefore be able to obtain bounds
as a function of r0 and c.
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4.7.1 Central charge bounds

Our first bound is again a lower bound for the c central charge, now as a function of the
dimension r0 of the Coulomb branch operators. Assuming the moduli space/chiral ring
correspondence for the Coulomb branch, the Shapere-Tachikawa relation provides an analytic
lower bound for c. More precisely this bound is obtained combining the ST sum rule (4.22)
and the Hofman-Maldacena upper bound (4.21) on a

c
. If the Coulomb branch, which is

assumed to be freely generated, has dimension N with generators of dimension {r1, . . . , rN},
then we the following bound holds,

c >
1

6

N∑

i=1

(2ri − 1) . (4.110)

The fact that only the dimensions of generators of the Coulomb branch chiral ring appear
in this expression is important. For example, Coulomb branch operators of dimension r0 >
3c + 1

2
are certainly allowed by this bound, they just cannot be generators. On the other

hand, a theory that has any Coulomb branch at all must have c > 1
6
, since the dimension

of a Coulomb branch generator cannot be smaller than one. Moreover if c = 1
6
then the

Coulomb branch must have a single generator of dimension r0 = 1, so will necessarily be the
theory of a single free vector multiplet.

In setting up the bootstrap for this correlator, there is no straightforward way to insist
that the Coulomb branch operators be generators (or that they not be generators, for that
matter). Of course, any such operator with r0 < 2 will necessarily a generator because it
cannot be a product of two operators with dimensions above the unitarity bound. For r0 > 2
if we assume that we are dealing with a generator, in which case the following analytic bound
will be obeyed:

c >
1

6
(2r0 − 1) . (4.111)

Notice that if we drop the generator assumption and consider four-point functions of oper-
ators that are not generators, then only the weaker bound c > 1

6
applies for r0 > 2. This

bound is in fact saturated at any r0 ∈ N by the operators of the Coulomb branch chiral ring
of the free vector multiplet.

In Fig. 4.20 we show the results of a numerical c-minimization procedure as a function
of r0. The analytic bound (4.111) is superimposed in red. For large values of r0 the analytic
bound always dominates over the numerical one, but for r0 . 1.4 the numerical bound is
dominant. Nevertheless, we would like to stress that the analytic bound is contingent upon
the validity of the Coulomb branch version of the moduli space/chiral ring correspondence.
If there are exceptions to this rule, then the analytic bounds will not hold, whereas the
numerical bounds will still necessarily hold true.

As r0 approaches one the bound drops sharply towards c = 1
6
, the central charge of the

free vector. Though it is not clear from the figure, c = 1
6
is not ruled out for r0 = 1, where
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Figure 4.20: Lower bounds for the central charge c of a theory with Coulomb branch operator
Er0 as a function of its dimension r0. The straight red line is the analytic bound for the case
when Er0 is a Coulomb branch generator, given in (4.111), with the excluded region lying
to the right of the line. The shaded gray region is the numerically excluded region, and the
gray and black lines correspond to bounds obtained with Λ = 10, 14, 18, 22, with larger Λ
giving the stronger bounds. The red dot denotes the free vector multiplet, and the black dot
the rank one H0 theory.

convergence with Λ is very fast.30 Away from r0 = 1, convergence as a function of Λ is
slower, and the bounds presented here are clearly still quite suboptimal. One interesting
question is whether the bound at r0 =

6
5
might converge to the c > 11

30
, with the rank one H0

theory lying at the boundary. Using our methods, this would require a substantial increase
in Λ. Similarly, at r0 = 2 it seems possible that the bound may converge to the free vector
value c = 1

6
.

4.7.2 Dimension bounds for non-chiral channel

In the allowed region of the (r0, c) plane we can bound the dimension of the first unprotected,
R-symmetry singlet, scalar operator appearing in the Er0 Ē−r0 OPE. Unitarity requires that
such an operator have ∆ > 2. When ∆ = 2 the long multiplet sits at the unitarity bound

30A similar phenomenon was observed in the context of central charge minimization in N = 1 SCFTs
[35].
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and decomposes into the stress tensor multiplet along with other short multiplets whose
OPE coefficients vanish. In order to study local theories we should therefore add the su-
perconformal block with ∆ = 2 to the problem by hand and then impose a gap so that the
subsequent scalar operator has dimension strictly greater than two.

This situation presents two natural options. First, we can leave the coefficient of the
stress tensor block unfixed and simply require that the functional be positive when acting
upon it. This approach leads to upper bounds for ∆⋆

0 that are valid for any value of c.
Alternatively, we can fix the coefficient of the stress tensor block by hand and in doing so
fix the value of the central charge. We can then extract bounds on ∆⋆

0 as a function of c.
Let us make a brief comment about the free vector theory. When r0 = 1 we know

that there exists solution with c = 1/6, and in this solution there is no other scalar singlet
block after the stress tensor multiplet at ∆ = 2. Thus at this point in the (r0, c) plane our
numerical procedure will never produce a nontrivial bound for the next operator, since any
such bound arise from a functional that would rule out the free field solution.31 To avoid this
singular point in our searches we have studied regions of the (r0, c) plane with r0 > 1.001.

Arbitrary central charge

The results of the first strategy are displayed in Fig. 4.21. We find an upper bound on the
dimension of the first scalar singlet as a function of r0 > 1.001, with the bound at a given r0
being valid for arbitrary values of c. Note that because there is no restriction on the value of
c in this approach, there may be approximate solutions to crossing symmetry that influence
this plot for which the value of c has been ruled out by (4.111). Indeed, we will find below
that excluded central charge values are responsible for the local maximum at r0 slightly less
than two. For higher values of r0, it seems plausible that the bounds will converge to the
generalized free field theory solution indicated in the figure with a dashed line. The results
for fixed values of the central charge will shed light on the features of this bound, so we
postpone further discussion its shape to the next subsection.

The analogous chiral/anti-chiral OPE for N = 1 SCFTs was considered in [35]. They
exclusion curve obtained in that work for the dimension of the first unprotected scalar
operator exhibited an interesting “kink”. However, in that case a gap larger than two was
being imposed, so any theory associated to the kink could not come from an N = 2 theory
with a stress tensor multiplet.

Fixed central charge

We turn next to operator dimension bounds for fixed central charge. The results for fixed
Λ take the form of a function ∆∗

0(r0, c) that is well defined for all points in the (r, c0) plane
that were not excluded by the numerical bounds of Section 4.7.1. This is displayed as a

31If for r0 = 1 we do not to include the stress tensor block by hand, then the resulting bound on the first
operator dimension would come be very close to two.
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Figure 4.21: Bound on the first scalar in the Er0 × Ē−r0 OPE as a function of r0 for arbitrary
central charge. The lines correspond to Λ = 8, 10, . . . , 20, with the strongest bound being
the black line. The excluded region is shaded. The dashed line corresponds to generalized
free field theory solution, for which ∆ = 2r0.

three-dimensional exclusion plot in Fig. 4.22, which corresponds to Λ = 18. The red line
in Fig. 4.22 corresponds to the analytic bound (4.111), but since it may not hold in all
circumstances we have extracted bounds even for points in the plane that violate it.

This exclusion surface was determined in a slightly unconventional manner. Rather than
fixing c and r0 and performing boolean searches to obtain a dimension bound, we fixed r0
and imposed a gap in the scalar singlet channel and searched for upper and lower bounds on
c consistent with that gap.32 In this way we were able to find bounds for the whole of the
plane with only a single numerical search required for each data point.

By taking constant central charge slices of this surface, a feature which is not apparent
in Fig. 4.22 comes into view. Several such slices are superimposed in Fig. 4.23, where we
the dimension bound is shown as a function of r0 for various values of the central charge
(including infinity). The results that are shown correspond to Λ = 20. Together with these

32Obtaining a lower bound for an OPE coefficient is possible as long as there is a gap between the
superconformal block under consideration and the next operator, so this method can be used precisely for
bounding the first scalar operator.
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Figure 4.22: Bound on the first scalar in the Er0 × Ē−r0 OPE as a function of the central
charge c and dimension of the external operators r0. These bounds are for Λ = 18, and
are obtained by imposing a gap and minimizing/maximizing the central charge value after
imposing a gap in the spectrum. The gray area in the figure is a copy of the excluded region
from Fig. 4.20. The red line corresponds to the bound (4.111), and the excluded region, if
Er0 is to be a generator, is the one with smaller central charge.

bounds there is a blue dashed straight line at ∆ = 2r0 corresponding to the generalized free
field theory solution, and a thick dashed black line showing to the Λ = 20 dimension bound
for arbitrary central charge. Since the latter line is the best possible bound without fixing
the central charge, it envelopes all the lines for fixed c.

Although Fig. 4.23 could have been obtained by interpolating between the data points
that define the three-dimensional plane in Fig. 4.22, we chose to revert to performing separate
boolean searches for each point as this yields more precise results. As in the results reported
in the previous sections, these boolean searches were performed by fixing the stress tensor
coefficient in terms of c, imposing a gap in the spectrum and finding whether a functional
exists as described in Section 4.5.

These bounds clearly have two qualitatively different regimes, depending on whether r0 is
greater or less than two. For r0 > 2 the bound gets weaker (increases) as the central charge
is increased. The weakest bound is just the c =∞ line, and it coincides with the bound with
unspecified central charge. In this region convergence is relatively slow, and so it is hard
to guess where the bound will end up as the cutoff is lifted. Of course we cannot exclude
known solutions, so for c =∞ the bound will not be able to cross the generalized free field
theory line. More trivially, for c = 1

6
the bound will have to allow the points r0 = 2n, ∆ = 4
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Figure 4.23: Bound on the first unprotected scalar in the Er0 Ē−r0 OPE as a function of r0 for
several different values of the central charge, obtained with Λ = 20. The dashed blue line
corresponds to the generalized free field theory solution ∆ = 2r0, the thick dashed black line
is the same as in Fig. 4.21, and the red line segment is the bound obtained for the central
charge which saturates (4.111). If the central charge of a theory is known then it must
correspond to a point below the curve corresponding to that central charge. If the central
charge is not known and the theory has a freely generated Coulomb branch, then equation
(4.111) together with our numerics dictate that the theory must lie below both the black
line and below the red line segment. If we do not know either c or whether the Coulomb
branch is freely generated then the theory must still lie below the black curve.

for n ∈ N.
The point r0 = 2 is particularly interesting. Here the lines for all central charges converge

at a value that is close to, and seems to be approaching, ∆ = 4. The absence of a stronger
bound can be explained by the existence of a one-parameter family of four-point functions
– constructed by taking a linear combination of the free field solution and the generalized
free field solution – which can realize any c > 1/6 and for which the first scalar operator
always has dimension four. However, recall that theories with a chiral operator with r0 = 2
necessarily have a conformal manifold. If these bounds converge to ∆ = 4, then it would
follow that at any point on any conformal manifold there must be a relevant, unprotected
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operator with nonzero coefficient in the chiral/anti-chiral OPE. It would be interesting to
check this at low order(s) in perturbation theory.

For r0 < 2 the picture is reversed. The bound for infinite central charge still appears to
be approaching the generalized free field theory value, but the bounds now grow stronger
(decrease) as a function of the central charges. The solution to crossing symmetry along
the black line corresponds to the lowest allowed value of the central charge consistent with
crossing, which is precisely the bound shown in Fig. 4.20. For example, the c = 1/6 line ends
on the black curve at the same value of r0 where 4.20 begins to exclude the value c = 1/6,
and for even smaller r0 and fixed c there is no unitary solution anymore.

If Er0 is a Coulomb branch generator the central charge cannot be arbitrarily small, and in
particular must satisfy (4.111). This renders part of the black curve with r0 < 2 unphysical,
since it corresponds to solutions with a central charge that violates (4.111). We can correct
this by assuming the central charge to be at least 1

6
(2r0 − 1). We then obtain a correction

to the black curve that is shown in Fig. 4.23 as a red dashed line. Any unitary N = 2
SCFT with a freely generated Coulomb branch must now lie below both the black curve
and, because of (4.111), also below the red line segment. This improvement removes the
local maximum from Fig. 4.21.

4.7.3 E2r OPE coefficient bounds

In the chiral OPE channel it is natural to look for constraints on the (squared) OPE coefficient
λ2E2r0 of the E2r0 multiplet. The conformal block associated to the exchange of this multiplet is

given by G
(0)
2r0

(z, z̄), while the next multiplet appearing in the chiral channel has G
(0)
2r0+2(z, z̄)

as its conformal block. Thus the E2r0 contribution is isolated, and we can look for both upper
and lower bounds on its coefficient. These bounds are displayed in Fig. 4.24 for Λ = 22.
Physical theories must lie between the two blue/red sheets. The vertical “wall” corresponds
to c = 1

6
(2r0 − 1).

As a sanity check, we can compare these numerical bounds to some known theories. The
free vector multiplet gives a solution to crossing symmetry with r0 = 1 and c = 1

6
, and from

the decomposition (4.88) we can see that λ2E2r0 = 2. This ends up being consistent with the
numerical bounds, since at this point both the lower and upper bound are very close to two.
Similarly, for infinite c we find the generalized free field solution with an OPE coefficient
that is also equal to two - again consistent with the numerical bounds.

It is interesting to observe that the lower bound on this OPE coefficient is strictly positive
in a large region of the (r0, c) plane. In this region, these bounds rigorously exclude the
possibility of Coulomb branch chiral ring relations of the form Er0Er0 ∼ 0. The region of the
plane where the lower bound is positive is displayed in Fig. 4.25. It is clear that the bound
will improve substantially more at larger Λ.

In interpreting Figs. 4.24, 4.25 there is an important subtlety. In obtaining these bounds
we have fixed c to a given value, which corresponds to inserting the superconformal stress
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Figure 4.24: Upper and lower bounds on the OPE coefficient squared of E2r0 as a function
of r0 and 1

c
, corresponding to a cutoff Λ = 22. The vertical red “wall” corresponds to the

bound (4.111), and the excluded region if Er0 is a Coulomb branch generator is the one with
smaller central charge.

tensor block with a fixed coefficient in the appropriate channel. However we have also
allowed for arbitrary superconformal blocks for long multiplets in the same channel, both at
and above the unitarity bound. A long block at the unitarity bound however reduces exactly
to the stress tensor block and can therefore mimic the effect of the stress tensor. Since the
coefficient of the stress tensor block is proportional to 1/c, the bounds obtained for a given
value of c are also valid for all smaller central charges. In other words, when increasing c the
bounds can never improve - instead they either worsen or stay constant. In future searches
this issue could be circumvented by imposing a gap in the scalar channel.
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Figure 4.25: Region where the lower bound on the OPE coefficient squared of E2r0 is strictly
positive as a function of r0 and 1

c
, for Λ varying from 10 to 22 in steps of four. The shading

indicates the OPE coefficient squared is positive in that region. The red line corresponds to
the unitarity bound (4.111), and the excluded region (if Er0 is a Coulomb branch generator)
is to the right of the line. Note that these results are approximate, as this plot is obtained
by an interpolation procedure from results like those shown in Fig. 4.24. The slight wiggles
in the lines are likely due to small errors introduced by this procedure.

OPE coefficient bounds and the Zamolodchikov metric

The slice r0 = 2 of Fig. 4.24 is of special interest because of its relation to the curvature of
the Zamolodchikov metric on the conformal manifold [173, 174]. Namely, consider an N = 2
SCFT with a moduli space M of exactly marginal deformations. The different marginal
deformations at a given point onM are the top components of E2 multiplets (and their com-
plex conjugates) whose superconformal primary we will denote as φa, a = 1, . . . , dimC(M).
The Zamolodchikov metric gab̄ on M is determined by the two-point functions of these
primaries,33

〈φa(x)φ̄b̄(0)〉 =
gab̄
x4

. (4.112)

Unit normalizing these operators corresponds to choosing local holomorphic coordinates on
M such that gab̄ = δab̄ at the point of interest. In these coordinates, the only non-vanishing
four-point function involving the φa and their complex conjugates is given by

〈φa(x1)φb(x2)φ̄c̄(x3)φ̄d̄(x4)〉 . (4.113)

33In [174] this is the “metric” written as gab̄, which differs from the actual metric Gab̄ studied in that by
a factor 192.
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The OPE of φa(x1) and φb(x2) is regular and correspondingly the first conformal block in the
chiral channel for this four-point function is a dimension four scalar that is the superconformal
primary of an E4 multiplet. According to Eqn. (3.13) of [173], the coefficient for this
superconformal block is given by

µE4 abc̄d̄ = −Rac̄bd̄ + δac̄δbd̄ + δbc̄δad̄ . (4.114)

where Rac̄bd̄ is the Riemann curvature tensor (in the aforementioned distinguished coordi-
nates) of the Zamolodchikov metric onM.34

We have obtained upper and lower bounds for the OPE coefficient in the particular
four-point function with identical operators, a = b = c = d. In that case we have

λ2E4 = µE3 aaāā = 2−Raāaā . (4.115)

When dimC(M) = 1, this expression simplifies to

λ2E4 = 2− 1

2
R , (4.116)

with R the Ricci scalar of gaā. The bounds for λ2E4 can therefore be interpreted as bounds
for the scalar curvature of one-dimensional conformal manifolds.

The r0 = 2 slice of Fig. 4.24 is shown in Fig. 4.26, with the excluded regions shaded in
gray. The bounds for lower values of Λ are also shown to indicate the cutoff-dependence.
Inside the allowed region we highlighted several points and loci that correspond to known
theories. The computation of λ2E4 for these theories is reviewed in Appendix I.

Even at infinite Λ, the the upper and lower bounds will not be able to penetrate beyond
the dashed blue lines. The reason for this is as follows. In the theory of n free vector
multiplets one finds a chiral four-point function with r0 = 2 for which

λ2E4 = 2 +
2

3c
,

1

c
< 6 . (4.117)

This is the lower dashed line in Fig. 4.26. The upper horizontal dashed line, on the other
hand, is simply given by λ2E4 = 6, which is the value for the solution corresponding to a single
free vector multiplet at c = 1/6. The numerical upper bound cannot pass this line because
of the aforementioned fact that by design the bound is a non-increasing function of 1/c.

From the dependence of the bounds on Λ it seems natural to expect that they will
eventually converge to the dashed blue lines. If this were to happen, then the purely diagonal

34Recall that the Zamolodchikov metric is Kähler and therefore Rac̄bd̄ is symmetric under exchange of a
and b (as well as exchange of c̄ and d̄). This is required by the braiding relation of the four-point function.
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Figure 4.26: Upper and lower bounds on λ2E4 as a function of the central charge c. Shaded
regions are excluded by our numerics, with Λ ranging from 10 to 22 in steps of four (the upper
bound for Λ = 10 is outside the plotted region). The dotted lines are the best possible value
of the bounds as dictated by the free vector multiplet solution, and it seems likely that our
bounds will converge to these values. We highlighted the known values of the coefficients
for N = 4 SYM theories (which are protected), the N = 2 SCQCD theories with gauge
group SU(Nc) and Nf = 2Nc fundamental flavors (tree level values only), and finally the
special case of SU(2) SCQCD which we call the so(8) theory. The line in the latter case
shows the range of values that λ2E4 takes as a function of the exactly marginal coupling, cf.
the computation in Appendix I. The individual dots in the colored lines correspond to gauge
groups SU(N) (with N > 2), plus the U(1) theory at c = 1/4 for N = 4 SYM.

components of the Riemann tensor would have to obey the following bound:

− 4 6 Raāaā 6 −
2

3c
. (4.118)

In particular, for theories with one-dimensional conformal manifolds crossing symmetry ap-
pears to dictate that their scalar curvature is always negative. To see if this is also true for
higher-dimensional moduli spaces a bound for Raābb̄ will be necessary. We plan to investigate
the corresponding four-point function in the near future.
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4.8 Conclusions

The abstract operator viewpoint offers a unified language for the description of both La-
grangian and non-Lagrangian CFTs. It has also become the entry point for powerful nu-
merical studies in the style of [6]. In this chapter we have advocated for the utility of this
viewpoint in studying N = 2 superconformal field theories. We have highlighted the inter-
play between superconformal representation theory and interesting physics in these theories,
and we identified three types of distinguished representations of particular physical interest.
Our numerical investigations focused on the four-point functions of two types of multiplets,
B̂1 and Er. The result was a plethora of numerical unitarity bounds for N = 2 SCFTs
involving central charges, operator dimensions, and OPE coefficients.

Our results reveal a number of interesting details about N = 2 superconformal field
theories, some of which are new numerical bounds for its observables and some of which
make contact with other known facts. For example, we have rigorously established that
Coulomb branch chiral operators Er with sufficiently low values of r cannot satisfy a certain
type of chiral ring relations, and that theories with su(2) flavor symmetry must have at
least one flavor singlet multiplet of type Ĉ1,ℓ=1 and one flavor triplet multiplet of type Ĉ1,ℓ=0.
The latter follows from our numerical exclusion of theories with k = 2/3 for which these
multiples decouple from the B̂1 × B̂1 OPE. Similarly, if our extrapolations are on track
then we should be able to rule out one complex dimensional conformal manifolds like a
smooth two-sphere, for which the Euler characteristic is not compatible with the sign of the
curvature of the Zamolodchikov metric. In the future it would be very interesting to look for
analytic arguments for some of these statements and to understand if the connection with
associativity of the operator algebra can be made analytically tractable. More generally, the
combination of both analytic and numerical methods appears to be the most promising way
to constrain and explore the landscape of N = 2 superconformal field theories.

Throughout this work, we have observed a strong dependence on the cutoff Λ that de-
termines the size of the numerical problem being investigated. In other words, the bounds
derived here – though valid – do not appear to be close to their optimal value. This is not
for lack of trying: the strength of our numerical methods is completely on par with (and in
some cases exceeds) the state of the art in almost all of the present literature. The strong
cutoff dependence therefore appears to be an intrinsic property of bounds extracted from
our specific four-point functions. In the near future we are hopeful that better numerical
software tailored to the problem at hand will allow for searches with much greater reach and
higher precision. Even then, however, it is not clear that the bounds presented here should
be expected converge to some limiting value. For example, if the extrapolation shown in
Fig. 4.4 is more or less correct, then a cutoff Λ of order O(100) will be necessary to reach a
value of the lower bound that is within a few percent of the asymptotic value. The corre-
sponding search space dimension would have to be a factor ten higher than the ones used in
this work. Until such methods become computationally feasible, we are stuck with the sorts
of extrapolation presented in this work if we want a rough guess for the limiting value of a
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bound.
With additional work and the development of improved numerical methods, we see a

number attractive directions for future work.

Additional correlation functions

An obvious and interesting avenue is to analyze a more diverse collection of four-point
functions. The four-point functions of B̂1 multiplets with a flavor symmetry algebra other
than su(2) or e(6) is a natural choice that would involve very little groundwork on top of
what we have reported here. Perhaps the most important extension will be to study the
four-point functions of operators in the stress-tensor multiplet. In this case there are several
natural candidates.

Recall that the superconformal primary of this multiplet is a dimension two scalar, and
among its descendants we find the R-symmetry currents and the stress tensor. The first step
towards bootstrapping any operators in this multiplet is to determine the corresponding se-
lection rules and superconformal blocks, and this prerequisite has not yet been fulfilled. This
analysis seems quite complicated for the four-point function of the stress tensor multiplet in
superspace, but should be tractable for just the four-point function of the superconformal
primary. An interesting case of intermediate complexity is the four-point function of SU(2)R
currents, for which the chiral algebra data fixes a large number of OPE coefficients. From ei-
ther of these four-point functions one may obtain bounds on the a anomaly coefficient, which
is a piece of data that was conspicuously absent from the four-point functions considered in
this chapter.

Multiple correlation functions

The bounds reported here are valid and must be obeyed by physical theories, but they were
derived as a consequence of crossing symmetry for individual correlators. In an honest CFT,
crossing symmetry must hold in all possible correlators. The simultaneous investigation of
multiple correlators in a single numerical program is then a natural next step. The pioneering
work of this type was [7], where three-dimensional non-supersymmetric CFTs were studied.
With minimal additional assumptions, the mixed correlator approach has the potential to
rule out spurious solutions to single-correlator crossing symmetry that have no place in a
consistent SCFT. In an optimistic scenario, this would also rule out (presumably spurious)
linear combinations of solutions that may saturate the single-correlator bounds for large Λ.
In the N = 2 setting one should consider all mixed four-point functions containing a given
subset of Coulomb or Higgs branch chiral ring generators. For the Higgs branch chiral ring,
the structure of many relevant four-point functions and superconformal blocks have already
been worked out in [42, 43].

177



Theory-specific analysis

In this exploratory work we have taken as general an approach as possible to the N = 2
superconformal bootstrap program. In particular, we have avoided making assumptions
that might not be shared by all theories. A complementary strategy is to try to specify
a particular theory of interest and “zoom in” on that theory in the space of SCFTs. By
including as much information as possible about a theory of interest, one hopes to effectively
isolate the corresponding solution to crossing symmetry at a boundary of the numerically
allowed region. On can then begin to solve that theory at the level of the spectrum of local
operators and OPE coefficients.

The numerical results obtained here do not offer much guidance in choosing between
known N = 2 theories, mostly because of the absence of “kinks” in the bounds. Some
natural candidates still present themselves upon further thought. A particularly elegant
theory that we think deserves further study is SU(2) SCQCD with Nf = 4. For this theory
the exact OPE coefficients derived in [173] make it possible to use the exactly marginal
coupling constant τ as an input variable, at least for the four-point function of Er multiplets.
This opens the way towards exploring the contours of a nontrivial conformal manifold by
deriving coupling constant-dependent bounds. This was not possible in the work of [36]
on N = 4 SYM because in that case the known OPE coefficients are constant on the
conformal manifold. The SU(2) SCQCD also enjoys an so(8) flavor symmetry, and it would
be interesting to compare bounds for the corresponding B̂1 multiplet with those of the Er
multiplets. More precisely, in [36] it was conjectured that for certain N = 4 SYM theories
the coupling-independent bounds were saturated at self-dual values of the coupling. If one
can achieve reasonable convergence, it may be possible to check the equivalent conjecture
for this theory.

Perhaps the most obvious candidate for targeted bootstrap analysis is the e6 theory of
Minahan and Nemeschansky [12], which lies at the intersection of two lines where analytic
bounds derived from the two-dimensional chiral algebra are saturated. The current numerical
analysis does not appear to be extremely constraining, but we expect the more refined
strategies that we have mentioned to yield stronger results.
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Chapter 5

The (2, 0) superconformal bootstrap

The contents of this chapter will appear in [4]: “The (2, 0) superconformal bootstrap”
C. Beem, M. Lemos, L. Rastelli and B. C. van Rees.

5.1 Introduction and conclusions

In this chapter we present preliminary results on the superconformal bootstrap program for
the maximally supersymmetric theory in six dimensions. The analysis follows very similarly
to the one of the previous chapter.

In the spirit of section 4.2 we want to organize the operators in representations of the
six-dimensional superconformal algebra osp(8⋆|4), whose maximal bosonic subalgebra is the
conformal algebra times the R-symmetry algebra (so(5)R). The classification of these rep-
resentations has been done in [21, 154, 175, 176] and reviewed and summarized in [28].
Here we simply summarize the the multiplets relevant for our purposes, following their no-
tation for the series of multiplet names. We also denote between square brackets the Dynkin
labels, [d1, d2], of the so(5)R representation1 of the superconformal primary of the multi-
plet. Moreover since we are considering the OPE of scalar operators, only operators in the
symmetric-traceless representations can appear (with Dynkin labels [0, ℓ, 0] of su⋆(4)) and
we refer to the spin ℓ of the operators. Short multiplets obey one of the following shortening
conditions, which fixes their dimensions in terms of the remaining quantum numbers:

A : ∆ = 6 + ℓ+ 2(d1 + d2) , ℓ > 0 ,

B : ∆ = 4 + ℓ+ 2(d1 + d2) , ℓ > 0 ,

C : ∆ = 2 + 2(d1 + d2) , ℓ = 0 ,

D : ∆ = 2(d1 + d2) , ℓ = 0 . (5.1)

1We use so(5)R conventions for the Dynkin labels, so the 5 has Dynkin labels [1, 0]. We note that the
order of our Dynkin labels is reversed with respect to [42].

179



The multiplets of the D series are 1
4
BPS, or 1

2
BPS if the second Dynkin labels of the super-

conformal primary is zero. All in all we specify the superconformal multiplets by their names
which encode which shortening condition the multiplets obey [28], together with the spin
and so(5)R representation of the superconformal primary. Long multiplets, which obey no
shortening condition, are denoted by L, with the dimension, spin and so(5)R representation
of the superconformal primary being indicated. Unitarity requires their dimension to obey

L : ∆ > 6 + ℓ+ 2(d1 + d2) , ℓ > 0 . (5.2)

The free theory in six dimensions and withN = (2, 0) consists of the free tensor multiplet.
This is a short multiplet, D[1, 0], which has as the superconformal primary a dimension two
scalar φI , where I is a 5 index of so(5)R. Its superconformal descendants consist of two
Weyl fermions, and a two-form with self-dual field strength. The stress tensor of the theory
belongs to a multiplet D[2, 0] whose superconformal primary is a dimension four scalar in
the 14 of so(5)R. In terms of free fields it is given by ΦIJ = φ(IφJ) − 1

5
δIJφKφK . This

expression is for the theory of a free abelian tensor multiplet, but if one wants an interacting
theory there is no such description. However that should not prevent us from applying the
bootstrap program.

We take the SCFT to be defined by its local operator algebra and consider an operator
which is guaranteed to be present in the theory: the stress tensor, or rather the supercon-
formal primary of the multiplet it belongs to, ΦIJ .

We start by analysing in section 5.2 the four-point function of the superconformal primary
of the stress tensor multiplet, and its superconformal partial wave expansion in section 5.3.
As before superconformal Ward identities strongly constrain the form of this four-point
function, with all five channels corresponding to the various so(5)R representations appearing
in the OPE of these operators being determined simply by two functions h(z) and a(z, z̄).
The crossing equations then split into two sets, one only involving the former function,
which can be solved exactly, while the other involves both functions and must be approached
numerically. The crossing equation for the meromorphic function h(z) can be solved exactly
in terms of the central charge c.2 Just as before, to obtain this solution we must assume
there are no higher spin currents (that is conserved currents of spin larger than two, which
in six dimensions have twist four). The situation is different here in respect to the previous
chapter because the multiplets containing higher spin currents (B[0, 0]ℓ) are separated from
the rest of the multiplets by a gap. Therefore they cannot be mimicked by a long multiplet
at the unitarity bound, and the assumptions of the absence of higher spin currents implies we
are excluding by hand the free theory. Another major difference with respect to the previous
chapter is that this time not all OPE coefficients of protected operators can be fixed from
this meromorphic h(z) function. As such when setting up the numerical bootstrap we will
be looking not only for bounds on the dimensions of unprotected operators, but also on the

2In six dimensions there are four different anomaly coefficients. What we call the c central charge
corresponds to the one appearing in the stress tensor two point function.
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OPE coefficients of protected operators, whose dimensions are fixed, but OPE coefficients
we do not know. All the numerical analysis is done in section 5.4, where we also obtain lower
bounds on the central charge c of interacting theories. We normalized the central charges
such that it is one for the free theory, and as such the theory of type g will have central
charges [28, 177, 178]

cg = 4dgh
∨
g + rg , (5.3)

where dg, h
∨
g and rg are respectively the dimension, dual Coxeter number and rank of g.

In the large c limit the four-point we are studying has been computed, using supergravity
on AdS7 × S4 [26, 27], and our bounds appear to be saturated by this solution.

As announced in the introduction we find evidence that the A1 theory is the unique
theory with central charge c = 25, and that this is the lowest possible central charge for
an interacting theory. Taking this conjecture as a working assumption, we take a first step
towards the bootstrapping of the A1 theory, obtaining bounds on its operator dimensions and
OPE coefficients that we expect to be saturated by the actual physical theory. A feature that
keeps plaguing our results is the slow convergence of the bounds obtained as the truncation
of the crossing equations is increased. However we will see that if the right assumptions are
made regarding the A1 theory our bounds converge faster, providing hope that this theory
is within reach of the numerical bootstrap.

Throughout the numerical analysis we will make the case that our bounds are saturated
by the physical solutions both as c → ∞ and at c = 25. It is then plausible that for the
central charges corresponding to the remaining theories our bounds are also saturated by
physical theories, and not polluted by some spurious solution to this crossing equation.

If that is not the case then one might need to consider more than one correlator to
approach the remaining theories, and attempt to remove spurious solutions in this way. A
very natural set of correlators to take would be the generators of the 1

2
-BPS chiral ring,

to which the stress tensor multiplet belongs to. For the theory of type g these are in
correspondence with the Casimirs of g: they are D[ni, 0], with ni the degree of the ith Casimir
of g (see, e.g., [28, 179–181]). It might even be the case that by taking the appropriate set
of generators of the 1

2
BPS chiral ring one can find similar uniqueness statements for the

remaining theories.

5.2 The four-point function of stress tensor multiplets

As explained in the previous section, we are interested in studying the four-point function
of the stress tensor multiplet superconformal primary. These are 1

2
-BPS scalar operators of

dimension four, transforming in the 14 of the so(5)R. We denote them as ΦIJ(x) = Φ{IJ}(x)
with I, J fundamental so(5)R indices, and the brackets meaning it is a symmetric traceless
representation. A convenient way to deal with the so(5)R indices is to contract them with
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auxiliary vectors Y I and define

Φ(x, Y ) := ΦIJ(x)YIYJ . (5.4)

The symmetric tracelessness constraint then translates into

Y IYI = 0 . (5.5)

For example, in this language the two-point function of Φ(x, Y ) takes the form

〈Φ(x1, Y1)Φ(x2, Y2)〉 =
4(Y1 · Y2)2

x812
, (5.6)

where the normalization is useful later. Following [42] one can take the five-dimensional null
vector and solve the null constraint using

Y I = (yi,
1

2
(1− yiyi),

i

2
(1 + yiyi)) , (5.7)

with yi a three-dimensional vector. We may then write

〈Φ(x1, y1)Φ(x2, y2)〉 =
y412
x812

, (5.8)

where, as common for the purposes of the conformal bootstrap we normalize the two-point
function to one, which was the reason we added the factor of four in (5.6).

5.2.1 Structure of the four-point function

Let us now examine the four-point function of Φ(x, y) in more detail. Using the conformal
Ward identities one finds that this correlator can be written as [42]

〈Φ(x1, y1)Φ(x2, y2)Φ(x3, y3)Φ(x4, y4)〉 =
y412y

4
34

x812x
8
34

G(z, z̄;α, ᾱ) , (5.9)

where z and z̄ are related to the standard cross-ratios

u :=
x212x

2
34

x213x
2
24

=: zz̄ , v :=
x214x

2
23

x213x
2
24

=: (1− z)(1− z̄) , (5.10)

and in a similar spirit α and ᾱ are related to “cross-ratios” in the auxiliary variables Y I

through
1

αᾱ
:=

y212y
2
34

y213y
2
24

,
(α− 1)(ᾱ− 1)

αᾱ
:=

y214y
2
23

y213y
2
24

. (5.11)
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Although it is not manifest in this notation, the dependence of the full correlator on the
Y I is of course polynomial by construction. This polynomial dependence encodes, in an
index free way, the various so(5)R representations appearing in the tensor product of two
14. The dependence of the function G(z, z̄;α, ᾱ) on α ᾱ is therefore very constrained,
as it must admit a decomposition in functions of u and v that capture the contributions
of operators in a fixed so(5)R representation. Furthermore, each of these channels is not
completely unconstrained, as the R-symmetry is part of the superconformal algebra, and
therefore constrained by superconformal invariance.

The constraints of superconformal invariance have been analyzed thoroughly in [42]. The
end result is conveniently summarized as

G(z, z̄;α, ᾱ) = u4∆2(zα− 1)(zᾱ− 1)(z̄α− 1)(z̄ᾱ− 1)a(z, z̄) + z2z̄2H(2)
1 (z, z̄;α, ᾱ) . (5.12)

Let us explain the notation. First of all the operator ∆2 is given by

∆2f(z, z̄) := D2uf(z, z̄) :=

(
∂2

∂z∂z̄
− 2

z − z̄

(
∂

∂z
− ∂

∂z̄

))
zz̄f(z, z̄) , (5.13)

where we also defined an operator D2. There are no further constraints on the function
a(z, z̄) from the superconformal Ward identities whereas the function H(2)

1 (z, z̄;α, ᾱ) takes
the form [42]

H(2)
1 (z, z̄;α, ᾱ) = D2

(zα− 1)(zᾱ− 1)h(z)− (z̄α− 1)(z̄ᾱ− 1)h(z̄)

z − z̄ , (5.14)

for some single-variable function h(·) whose form is not directly constrained by the super-
conformal Ward identities.

We note that in this language the twist that leads to the chiral algebra obtained in [28]
corresponds to (up to a proportionality constant) setting y12 = z̄12 where (z, z̄) are the
complex coordinates of the two-plane to which the operators are constrained. (Equivalently
in terms of the cross-ratios we set α = ᾱ = 1/z̄). We then obtain

〈Φ̂(z1)Φ̂(z2)〉 =
1

z412
, (5.15)

so the twisted operator Φ̂(z) has dimension two. Similarly the four-point function becomes

〈Φ̂(z1)Φ̂(z2)Φ̂(z3)Φ̂(z4)〉 =
−z2h′(z)
z412z

4
34

. (5.16)

As expected, the dependence on the two-variable function a(z, z̄) completely drops out and
we see that the chiral correlator is precisely defined in terms of the derivative h′(z) of the
single-variable function introduced above.

183



5.2.2 Constraints from crossing symmetry

The full correlation function is invariant under permutations of the four operators. By
interchanging the first and the second operator in (5.9) we find the constraint

G(z, z̄;α, ᾱ) = G

(
z

z − 1
,

z̄

z̄ − 1
; 1− α, 1− ᾱ

)
, (5.17)

whereas interchanging the first and the third operator gives

G(z, z̄;α, ᾱ) =
z4z̄4(α− 1)2(ᾱ− 1)2

(1− z)4(1− z̄)4 G

(
1− z, 1− z̄; α

α− 1
,

ᾱ

ᾱ− 1

)
. (5.18)

Using equations (5.12) and (5.14) we want to re-write the crossing symmetry constraints
above in terms of a(z, z̄) and h(z). We do so by analyzing the equation term by term in α and
ᾱ. Similarly to [3, 36] we find that each of the above equations gives rise to an independent
crossing symmetry constraints for the chiral part of the correlator, namely

h′(z) =
1

(z − 1)2
h′
(

z

z − 1

)
=

z2

(z − 1)2
h′(1− z) . (5.19)

With G(z) = −z2h′(z) this can be rewritten as

G(z) = G

(
z

z − 1

)
=

(
z

z − 1

)4

G(1− z) . (5.20)

This is nothing more than the familiar two-dimensional crossing symmetry equations for
a four-point function of a chiral operator of dimension two, and the decoupling of these
equations is a direct consequence of the chiral algebra obtained in [28]. We will in addition
assume that G(z) is meromorphic in z and admits a regular Taylor series expansion around
z = 0 with integer powers. If we assume that, which we will see in the next section that
follows from the superconformal partial wave decomposition,

G(z) = β1 + β2z + β3z
2 + β4z

3 + . . . , (5.21)

then the crossing symmetry constraints determine that β2 = 0, β4 = β3, and that

G(z) = β1

(
1 + z4 +

z4

(1− z)4
)
+ β3

(
z2 + z3 +

z4

(1− z)2 +
z4

1− z

)
, (5.22)

184



which implies that

h(z) = −β1
(
z3

3
− 1

z − 1
− 1

(z − 1)2
− 1

3(z − 1)3
− 1

z

)
− β3

(
z − 1

z − 1
+ log(1− z)

)
+ β5 .

(5.23)

Here β5 is an integration constant which does not affect H(2)
1 (z, z̄;α, ᾱ), and thus we can

choose it to any convenient value.
The remaining crossing symmetry equations obtained from (5.17) give the following two

equations for the unprotected function:

a(z, z̄)− 1

(z − 1)5(z̄ − 1)5
a

(
z

z − 1
,

z̄

z̄ − 1

)
= 0 ,

zz̄a (z, z̄)− (z − 1) (z̄ − 1) a (1− z, 1− z̄) = 1

(z − z̄)3
(
h (1− z̄)− h(1− z)

(z − 1) (z̄ − 1)
+
h (z̄)− h(z)

zz̄

)
.

(5.24)

As we will see the constraint from the first equation is easily solved, while the latter is the
final crossing symmetry equation that we will analyze numerically in this chapter.

5.3 Superconformal block decomposition

To investigate the crossing equation (5.24) we must understand which operators appear in the
self-OPE of Φ(x, Y ), and how each of them contributes to G(z, z̄;α, ᾱ) (and through (5.12)
how each of them contributes to the unknown function a(z, z̄) and to h(z)). Furthermore,
since we have solved exactly for h(z), knowing how each operator contributes to it will
allow us to recover (under some assumptions) the OPE coefficients of an infinite series of
multiplets.

5.3.1 Superconformal partial wave expansion

In the OPE of Φ(x, Y ) with itself we may encounter the following irreducible R-symmetry
representations:

([2, 0]⊗ [2, 0])s = [0, 0]⊕ [2, 0]⊕ [4, 0]⊕ [0, 4] ,

([2, 0]⊗ [2, 0])a = [0, 2]⊕ [2, 2] ,
(5.25)

where the first/second line contain the representations appearing in the symmetric/antisym-
metric tensor product.
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The conformal block decomposition of G(z, z̄;α, ᾱ) then takes the following form

G(z, z̄;α, ᾱ) =
∑

r∈R

(
Y r(α, ᾱ)

∑

kr

λ2krG
(ℓkr )
∆kr

(z, z̄)

)
, (5.26)

with r ∈ R = {[0, 0], [2, 0], [4, 0], [0, 4], [0, 2], [2, 2]} the set of so(5)R representations, kr label-
ing the different operators with representation r appearing in the OPE, and (λkr ,∆kr , ℓkr)
denote the OPE coefficient, scaling dimension and spin of the operator, respectively. Finally
Y r(α, α′) are harmonic functions that encode the corresponding so(5)R tensor structure,
that is, they are obtained from projectors onto representation r, after contracting with (5.7).

The exact form of these functions is given in (J.2). The functions G(ℓ)∆ (z, z̄) are the usual
conformal blocks in six dimensions for a correlation function of identical scalars given by
G(ℓ)∆ (∆12,∆34; z, z̄) in (J.1) with ∆12 = ∆34 = 0.

Because of (2, 0) supersymmetry the blocks in (5.26) corresponding to operators in the
same supermultiplet are grouped together into what we may call superblocks. The super-
conformal block expansion then becomes

G(z, z̄;α, ᾱ) =
∑

X

λ2X

(∑

r∈R

Y r(α, ᾱ)AX
r (z, z̄)

)
, (5.27)

where the sum runs over superconformal multiplets X , with only one unknown OPE coef-
ficient squared λ2X per superconformal multiplet. The constraint on G(z, z̄;α, ᾱ) from the
superconformal Ward identities, whose solution is given in Eq. (5.12), translates into a con-
straint on the AX

r (z, z̄). As such each AX
r (z, z̄) is fixed in terms of the contributions of

multiplet X to a(z, z̄) and h(z). The explicit form of Ar(z, z̄) in terms of a(z, z̄) and h(z)
is given in Eq. (J.3), and can be obtained by decomposing (5.12) in the projectors Y r(α, ᾱ)
given in (J.2). Furthermore, each AX

r (z, z̄) admits an expansion in six-dimensional confor-

mal blocks G(ℓkr )∆kr
corresponding to the different operators kr, in so(5)R representation r, that

make up the X multiplet. The AX
r (z, z̄) are what we call superconformal blocks. To fully

specify the superconformal blocks one then has to specify how each superconformal multiplet
contributes to the a(z, z̄) and h(z).

5.3.2 Superconformal blocks

Through analyzing the constraints of superconformal symmetry on three point functions it
was determined in [26, 182–184] that seven different types of superconformal multiplets, plus
the identity, can make an appearance in the OPE of stress tensor multiplets:

D[2, 0]×D[2, 0] ∼ 1+D[2, 0]+D[4, 0]+D[0, 4]+B[2, 0]ℓ+B[0, 2]ℓ+B[0, 0]ℓ+L[0, 0]∆,ℓ . (5.28)
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In here we have already imposed Bose symmetry, as we are considering the OPE of two
identical operators, thereby removing some of the multiplets listed in [26, 182–184] which
did not have the right spin parity to appear in this OPE. The superblocks corresponding to
all these multiplets can however all be obtained from two basic elements, which we call the
atomic contribution to a(z, z̄) or to h(z). These two functions take the form

aat∆,ℓ(z, z̄) =
4

z6z̄6(∆− ℓ− 2)(∆ + ℓ+ 2)
G(ℓ)∆+4(0,−2; z, z̄) ,

hatβ (z) =
zβ−1

1− βF [β − 1, β; 2β, z] ,

(5.29)

where G(ℓ)∆ (∆1 − ∆2,∆3 − ∆4; z, z̄) is the conformal block in a correlation function of four
operators with unequal scaling dimensions ∆i given in (J.1). The functions Ar(z, z̄) (obtained
from (J.3)) corresponding to each of these building blocks admits a decomposition in a finite
number of conformal blocks and with positive coefficients. For aat∆,ℓ(z, z̄) this leads to the
following primary operator content3

[0 0] [0 2] [2 0] [0 4] [2 2] [4 0]

(∆)ℓ (∆ + 1)ℓ−1 (∆ + 2)ℓ−2 (∆ + 2)ℓ (∆ + 3)ℓ−1 (∆ + 4)ℓ

(∆ + 2)ℓ−2 (∆ + 1)ℓ+1 (∆ + 2)ℓ (∆ + 4)ℓ−2 (∆ + 3)ℓ+1

(∆ + 2)ℓ (∆ + 3)ℓ−3 (∆ + 2)ℓ+2 (∆ + 4)ℓ (∆ + 5)ℓ−1

(∆ + 2)ℓ+2 (∆ + 3)ℓ−1 (∆ + 4)ℓ−2 (∆ + 4)ℓ+2 (∆ + 5)ℓ+1

(∆ + 4)ℓ−4 (∆ + 3)ℓ+1 (∆ + 4)ℓ (∆ + 6)ℓ

(∆ + 4)ℓ−2 (∆ + 3)ℓ+3 (∆ + 4)ℓ+2

(∆ + 4)ℓ (∆ + 5)ℓ−3 (∆ + 6)ℓ−2

(∆ + 4)ℓ+2 (∆ + 5)ℓ−1 (∆ + 6)ℓ

(∆ + 4)ℓ+4 (∆ + 5)ℓ+1 (∆ + 6)ℓ+2

(∆ + 6)ℓ−2 (∆ + 5)ℓ+3

(∆ + 6)ℓ (∆ + 7)ℓ−1

(∆ + 6)ℓ+2 (∆ + 7)ℓ+1

(∆ + 8)ℓ

(5.30)

3This is the operator content for ℓ ≥ 4 and ∆ > 6 + ℓ. For smaller values of ℓ, or ∆ = 6 + ℓ several
entries disappear from the list.
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whilst for hatβ (z) the same analysis yields

[0 0] [0 2] [2 0]

(ℓ + 4)ℓ (ℓ + 5)ℓ+1 (ℓ + 6)ℓ+2

(ℓ + 6)ℓ+2 (ℓ + 7)ℓ+3

(ℓ + 8)ℓ+4

(5.31)

where β = ℓ + 4. These tables justify our claim that these are indeed the smallest possible
(‘atomic’) contributions, since for each of the atomic cases there exists an R symmetry
channel with only one conformal block. The function hatβ (z) also corresponds to a single
block in the chiral algebra correlator G(z), since

Gat
β (z) = −z2∂zhatβ (z) = zβF [β, β; 2β; z] , (5.32)

which is precisely the familiar form of a chiral sl(2) conformal block in two dimensions.
We now proceed to determine the contribution of all supermultiplets in (5.28) to a(z, z̄)

and h(z), which are all linear combinations and/or specializations of aat(z, z̄) and hat(z). The
results are listed in table 5.1. We also see that the assumption made when obtaining (5.22),
namely that it admits a regular Taylor series expansion around z = 0 with integer powers,
simply follows from the behavior of Gat

β (z) and the contributions of the various multiplets
given in 5.1.

atomic type ∆ ℓ comments

aat∆,ℓ(z, z̄) L[0, 0] ∆ ℓ generic long multiplet, ∆ > ℓ+ 6

aatℓ+6,ℓ(z, z̄) B[0, 2] ℓ+ 7 ℓ− 1 ℓ > 0

aat6,0(z, z̄) D[0, 4] 8 0

hatℓ+4(z) B[0, 0] ℓ+ 4 ℓ higher spin currents, ℓ ≥ 0

hat2 (z) D[2, 0] 4 0 stress tensor multiplet

hat0 (z) = 1 1 0 0 identity

aatℓ+4,ℓ(z, z̄) + 2−ℓhatℓ+4(z) B[2, 0] ℓ+ 6 ℓ− 2 ℓ > 0

aat4,0(z, z̄) + hat4 (z) D[4, 0] 8 0

Table 5.1: Superconformal blocks contribution from all superconformal multiplets appearing
in the OPE of two stress tensor multiplets. The contributions are determined from the atomic
building blocks. Bose symmetry requires that ℓ is an even integer.
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We start by noticing that the list of conformal primaries given in (5.30) is nothing but
the set of conformal primaries that can appear in the OPE of two Φ(x, Y ) belonging to a
superconformal multiplet L[0, 0] whose superconformal primary has dimension ∆ > ℓ + 6
and spin ℓ > 0. When ∆ = ℓ + 6 the list given in (5.30) is decreased, and in particular
the dimension ∆ spin ℓ operator in channel [0, 0] which corresponds to the superconformal
primary of L[0, 0] disappears.4 In this case for ℓ > 0 the list corresponds instead the multiplet
B[0, 2]ℓ−1 with the superconformal primary appearing in channel [0, 2] and with dimension ℓ+
7 and spin ℓ−1. For ℓ = 0 there are even fewer entries in the table, and it corresponds to the
shorter multiplet D[0, 4] whose superconformal primary appears in [0, 4] and has dimension
eight and spin zero. Similarly the list of operators given in (5.31) corresponds precisely to
the conformal primaries belonging to the B[0, 0]ℓ>0 (or D[2, 0] if ℓ = −2). Naturally the
identity must contribute only in the R-symmetry singlet channel and its block is 1. Finally
demanding that the operator content of the Ar(z, z̄) decomposition in conformal corresponds
to the two remaining multiplets of B[2, 0]ℓ and D[4, 0] we find that they must contribute to
a(z, z̄) and h(z) in the manner listed in table 5.1.

It now follows from properties of the conformal block (J.1) and (5.29) that the first
crossing equation in (5.24) is trivially satisfied if one already imposed Bose symmetry in the
OPE, i.e., that only aat∆,ℓ(z, z̄) with ℓ an even integer make an appearance.

Finally we note that the multiplets B[0, 0] contain twist four operators of spin larger
than two, which are conserved in six dimensions. These higher-spin conserved currents are
expected to be absent in interacting CFTs [53, 109]. From the last two rows in the table we
see that they can indeed be avoided by pairing up each hatℓ+4(z) with an aatℓ+4,ℓ(z, z̄) for ℓ ≥ 0.
The latter term corresponds to a long multiplet below the unitarity bound and consequently
the coefficients of the conformal blocks are not all positive. For the given value of the relative
coefficient these non-unitary contributions in aatℓ+4,ℓ(z, z̄) are however precisely cancelled by
the higher spin currents in hatℓ+4(z) and we recover the given unitary multiplets with positive
coefficients.5

5.3.3 Solving for the short multiplet contributions

The function h(z) is explicitly known (Eq. (5.23)), and therefore so is its decomposition into
an infinite sum of blocks hatβ (z).

Let us start by fixing the two integration constants β1 and β3 in (5.23). One of them
corresponds to a normalization, which we will fix by demanding that the identity contributes
to the correlator as 1, and the other can be fixed in terms of the OPE coefficient of the D[2, 0]
multiplet, which is related to the central charge of the theory. The three-point function of

4Unitarity requires ∆ > ℓ + 6 for a long multiplet. A long multiplet hits the unitary bound ∆ =
ℓ + 6 it decomposes into two short multiplets (see, e.g., [176] for the decomposition rules). However, the
superconformal block for only one of these two appears, which is the one we recover here.

5This is reminiscent of N = 4, see [36].
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two identical scalars O of dimension ∆ and the stress tensor is given by [185]

〈Tµν(x1)O(x1)O(x2)〉 =
d∆

Sd(d− 1)

1

xd12x
2∆−d)
23 xd31

(
x223

x212x
2
13

ZµZν −
1

d
ηµν

)
, (5.33)

Zµ ≡
x13 µ
x213
− x12 µ

x212
, (5.34)

where d = 6 is the number of dimensions and CT is defined as the two point function of the
stress tensor by

〈Tµν(x)Tαβ(0)〉 =
CT
x2d
Iµνρσ(x) , (5.35)

Iµνρσ(x) =
1

2

(
Iµρ(x)Iνσ(x) + Iµσ(x)Iνρ(x)−

1

d
δµνδρσ

)
, Iµν(x) = δµν − 2

xµxν
x2

,

in conventions where CT = 84
π6 for the free tensor multiplet [186].6 We define a central charge

c such that a free tensor has c = 1 by CT =: 84
π6 c. This choice for c is the same as in [28]

where it was found the chiral algebra central charge is c2d = c. In these conventions the
AN−1 theories have c = 4N3 − 3N − 1.

Combining (5.33) and (5.35) we can fix the coefficient of the stress tensor conformal
block (in the conventions of (J.1)), and consequently that of the D[2, 0] multiplet in terms
of c, by making use of the decomposition of the Ar(z, z̄) in conformal blocks. All in all the
coefficients in (5.23) are fixed to be β1 = 1 and β3 =

8
c
.7

We can now expand h(z) in its atomic contributions (5.29) finding

h(z) = hat0 (z) +
∞∑

ℓ=−2 ,ℓeven

bℓ h
at
ℓ+4(z) , (5.36)

bℓ =
(ℓ+ 1)(ℓ+ 3)(ℓ+ 2)2 ℓ

2
!
(
ℓ
2
+ 2
)
!!
(
ℓ
2
+ 3
)
!!(ℓ+ 5)!!

18(ℓ+ 2)!!(2ℓ+ 5)!!

+
8

c

(
2−

ℓ
2
−1(ℓ(ℓ+ 7) + 11)(ℓ+ 3)!!Γ

(
ℓ
2
+ 2
))

(2ℓ+ 5)!!
,

where b−2 can be obtained by taking the limit of the above expression which gives b−2 =
8
c
.

For this decomposition we have to set the integration constant in (5.23) to be β5 = β1/3+β3,

6In six dimensions there are three c-type anomaly coefficients, appearing as the coefficients of the three
Weyl invariants in six dimensions, and one a-type one appearing as the coefficient of the Euler density. The
CT central charge appearing in our correlation function is related to the c3 anomaly coefficient of [187].

7Note that plugging this solution in (5.22) we find exactly the two-dimensional stress tensor four-point
function with c2d = c, after multiplying G(z) by an overall prefactor which corresponds to normalizing the
twisted operator Φ̂(z) to have the usual stress tensor normalization.
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but as discussed this does not affect the four-point function.
From table 5.1 we see that, if we demand the absence of higher-spin conserved currents

(the B[0, 0] multiplets), this decomposition fixes uniquely the OPE coefficients of the B[2, 0]
and D[4, 0] multiplets (the OPE coefficient of D[2, 0] was used to fix h(z)), in terms of the
central charge c. The coefficients of the B[0, 2] and D[0, 4] multiplets are however not fixed
in this way, as they do not contribute to h(z).8

From Tab. 5.1 we can work out the contribution of the B[2, 0] and D[4, 0] multiplets to
a(z, z̄) to be

ashort(z, zb) =
∞∑

ℓ=−2 ,ℓeven

2ℓ+2bℓ+2 a
at
ℓ+6,ℓ+2(z, z̄) . (5.37)

This means that in the crossing equation (5.24) we can split

a(z, z̄) = ashort(z, zb) + aunfixed(z, z̄) , (5.38)

where we fix explicitly the contributions coming form the B[2, 0] and D[4, 0] multiplets. The
function aunfixed(z, z̄) will then have a block decomposition

aunfixed(z, z̄) =
∑

∆>ℓ+6,
ℓ>0 ,ℓeven

λ2∆,ℓ a
at
∆,ℓ(z, z̄) , (5.39)

which includes both the long multiplets and the B[0, 2] and D[0, 4] short multiplets, whose di-
mensions are protected but OPE coefficients unknown. The spectrum of long multiplets and
the OPE coefficients in the above equation will be the subject of our numerical investigations
in the following sections.

5.4 Numerics

The numerical investigation of the crossing equation (5.24) is performed as described in
section 4.5 of the previous chapter, and as such we do not repeat the procedure here, but
simply point out the two differences.

We take the same basis for functionals as before, given in Eq. (4.92), except this time to
obtain a finite dimensional subspace we truncate this space as

φ[f(z, z̄)] =

m,n6Λ∑

m,n

αmn∂
m
z ∂

n
z̄ f(z, z̄)

∣∣
z=z̄= 1

2

, (5.40)

instead of taking m + n 6 Λ as before. Once again, from the symmetry of the problem we

8In other words, these multiplets do not contain any ◗-chiral operators, and are not captured by the
chiral algebra of [28].

191



only need to take m 6 n. For practical reasons we multiply the crossing equation (5.24)
by (z − z̄)3, and we see that only derivative combinations with m + n even give a non-zero
result.

Since this time we have a single crossing equation we do not resort to semidefinite pro-
gramming as in the previous chapter, and instead use simply linear programming. This is the
approach taken in the original paper [6] and in many papers that followed. A main difference
with respect to semi-definite programming is that the search of a functional cannot be done
with a continuous parameter (the dimensions ∆), and as such we discretize it. We have
checked that the specific discretization chosen here does not significantly affect the bounds.
As before we must truncate the number of spins considered, in the plots presented here we
have taken ℓmax = Λ + 20, and checked that this truncation does not affect significantly
the results. To find the functionals described in detail in section 4.5 we used the IBM ILOG

CPLEX optimizer, interfaced with Mathematica.

5.5 Results

∆
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Figure 5.1: Schematic representation of the spectrum of operators appearing in the stress
tensor four-point function in a (2, 0) theory without higher spin currents. The diagram
on the left displays the protected multiplets whose OPE coefficients are predetermined by
the chiral algebra. Displayed on the right are multiplets whose OPE coefficients are not
predetermined. These multiplets can be either short (D[0, 4] and B[0, 2]) or long (L[0, 0]),
and in the latter case their scaling dimensions are also not predetermined.

In Figure 5.1 we present a reminder of the superconformal multiplets that appear in
the stress tensor four-point function. The diagram does not include higher spin current
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multiplets which we will assume to be absent throughout this section. For the multiplets
appearing in the left diagram everything is fixed by the superconformal Ward identities and
the chiral algebra in terms of the c central charge of the theory. For the multiplets in the
right diagram the following parameters are undetermined:

• the OPE coefficients λ2D[0,4] and λ
2
B[0,2] of the short multiplets;

• the scaling dimensions ∆ℓ, ∆
′
ℓ, . . . and OPE coefficients λℓ, λ

′
ℓ, . . . of all the long (L[0, 0])

multiplets.

In subsections 5.5.2-5.5.4 we present numerical results which constrain a subset of these
parameters. These constraints will in all cases depend on the c central charge of the theory,
which (as we explained previously) enters the crossing symmetry equation via the coeffi-
cients of the predetermined multiplets. We will however begin in subsection 5.5.1 with the
investigation of a more elementary question:

• are all values of c consistent with crossing symmetry, unitarity, and the absence of
higher spin currents?

As we explain below, the negative answer to this question has profound implications for the
A1 theory.

5.5.1 Central charge bounds

Let us start by asking which values of the c central charge are allowed in unitary theories.
The numerical methods explained in the preceding section allowed us to obtain a lower bound
for c. Our best numerical result can be summarized as the following

Fact. Every consistent, unitary and local six-dimensional (2, 0) superconformal theory with-
out higher spin currents has c > 15.37.

This bound was obtained with Λ = 22 in the conventions of section 5.4. It is most
interesting to study the behavior of the bound as a function of Λ. This is shown in Fig. 5.2,
which contains in addition to the value quoted above also several data points with smaller
values of Λ. From the figure it is clear that the lower bound is most likely to improve
upon further increasing Λ, which would however require more numerical resources. We also
observe that the points obtained so far approximately follow a straight line, and an ordinary
least-squares fit would predict that the bound converges to c ≃ 25 as Λ → ∞. This is our
first indication that the numerical analysis of crossing symmetry is more than a mathematical
exercise: the value c = 25 is precisely the value corresponding to the A1 theory, i.e. the
theory describing the physics of two M5 branes.

Our extrapolation is admittedly rather optimistic. There is currently no precise theory
that parametrizes how any of the bounds presented in this chapter depend on Λ, neither in
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Figure 5.2: Bound on the central charge c as a function of the inverse of Λ, which is a
good proxy for the numerical cost of the result. Central charges below the data points are
excluded. The dotted line shows a linear extrapolation, which indicates that with infinite
numerical power the lower bound might converge to c ≃ 25. This is precisely the value for
the A1 theory as indicated by the horizontal line.

the asymptotic regime nor for finite Λ. It is thus far from guaranteed that the behavior will
remain (approximately) linear for very large Λ as we assumed in the extrapolation shown in
Fig. 5.2. Nevertheless, we would like to venture the following

Speculation. The lower bound on c converges exactly to 25 as Λ→∞.

Let us now explain that the validity of this speculation would have some important
physical consequences. The numerical problem of finding a lower bound on c has a dual
formulation where one finds a solution to the truncated crossing symmetry equations rather
than a functional. Solving this dual problem is equivalent to proving that a functional does
not exist and vice versa. As mentioned in [34, 123] and used extensively in [102], at the
lowest possible value of c this dual solution is unique, and in all known cases it appears to
converge to a complete crossing symmetric four-point function. In our case, this uniqueness
implies the following corollary of our speculation.

Corollary. There is a unique crossing symmetric four-point function of the stress tensor
multiplet in a unitary six-dimensional (2, 0) superconformal theory with c = 25 and without
higher spin currents. Therefore, at the level of this correlation function, the A1 theory can
be completely bootstrapped.

Notice that the determination of a single correlation function is no small feat: it contains
information about infinitely many scaling dimension of unprotected operators (in this case
the R symmetry singlet operators of even spin) and OPE coefficients of all the multiplets
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appearing in the right diagram in Fig. 5.1. There would then be exceedingly little room
for the other crossing symmetry equations to exhibit any freedom whatsoever, and in this
scenario the full A1 theory is likely to be nothing more than the unique solution of the crossing
symmetry equations at c = 25. In subsection 5.5.4 we will investigate the possibilities for
bootstrapping the A1 theory in more detail, and discuss what we can learn about this theory
with finite numerical precision.

5.5.2 Bounds on OPE coefficients

For the allowed values of the central charge we would like to further constrain the dynamical
information appearing in the four-point function. In this section we present bounds on the
OPE coefficients of the short multiplets (D[0, 4] and B[0, 2], with ℓ = 1, 3, . . .) that were
not predetermined by the chiral algebra. We would in particular like to see whether these
multiplets are necessarily present in physical theories. The conjectured form of the 1

4
-BPS

partition function of the An theories [181] implies that the D[0, 4] multiplet is present for
the theories with n > 1 but absent in the A1 case. In the following we will see how these
expectations are consistent with the numerical bounds. In addition, it turns out that the
investigation of these OPE coefficients also answers the question of why the central charge
bounds of the previous subsection were possible, and we can pinpoint what goes wrong with
the crossing symmetry equations as we go below the minimum allowed value of c.

D[0, 4] OPE coefficient bounds

In Fig. 5.3 we constrain the value of the (squared) OPE coefficient of the D[0, 4] multiplet
as a function of the central charge. Unitarity trivially requires λ2D[0,4] > 0, and the upper
bound shown in the figure was obtained numerically. Altogether the OPE coefficient is thus
required to live in the unshaded region of Fig. 5.3, and we have added a few vertical lines
to indicate the allowed range in specific theories. The red and purple lines correspond to
the lowest central charge theories of type An and Dn respectively, where the central charges
are given in Eq. (5.3). The black dots are our strongest bounds, and the grey dots represent
bounds obtained with lower values of Λ.

Before proceeding with the interpretation of these results, we would like to point out that
the numerical bounds shown here and in the following subsections are not entirely smooth
for Λ > 18. Instead, we find several outlier points which we ascribe to the fact that machine
precision is barely sufficient to obtain bounds with these values of Λ. However these “failed
searches” occur rather infrequently and the tendency of the bounds as a function of c is still
clearly distinguishable. We therefore decided to include all the values up to and including
Λ = 22 in our plots.

The most interesting regions in Fig. 5.3 are the two extremes, corresponding respectively
to very small and very large central charges. Let us start by analyzing the former. The
leftmost plot of Fig. 5.3 demonstrates that the upper bound crosses zero for small values of

195



0.00 0.02 0.04 0.06 0.08
-0.5

0.0

0.5

1.0

1.5

1�c

ΛD@0,4D
2

0.000 0.005 0.010 0.015 0.020
1.0

1.2

1.4

1.6

1.8

1�c

ΛD@0,4D
2

Figure 5.3: Upper bound on the OPE coefficient squared of the D[0, 4] multiplet as a function
of the inverse central charge c for increasing number of derivatives Λ = 18, . . . , 22, with the
strongest bound shown in black. The shaded region is excluded by the numerics and unitarity
(λ2D[0,4] > 0). The red and purple lines correspond to the lowest central charge theories of
type An and Dn respectively. The vertical dashed lines denote the minimum allowed central
charge cmin obtained in Fig. 5.2 for the corresponding value of Λ. The smooth curves are
interpolations through the data points shown in the figure. The right plot shows a zoom
for large central charges, with the dashed green line corresponding to the prediction from
supergravity.

the central charge, and we added dashed vertical lines at the crossing points for different
values of Λ. To the right of these crossing points the upper bound is negative, effectively
forbidding a consistent solution to the crossing symmetry equations. These crossing points
therefore translate into a lower bounds for c, which by general consistency arguments are
necessarily equal to the bounds shown previously in Fig. 5.2. We therefore rediscover the
cmin results from the previous subsection, but the vanishing of λ2D[0,4] at the bound is an
additional insight into why the values of cmin are special.

As discussed above, the conjectured structure of the 1
4
-BPS partition function implies

that the D[0, 4] multiplet is completely absent in the A1 theory. It therefore most certainly
cannot appear in the four-point function, which corroborates nicely with both the vanishing
OPE coefficient at cmin as well as with the speculation that cmin → 25 as Λ → ∞. The
extrapolation in Fig. 5.2, the vanishing coefficient in Fig. 5.3, and the conjectured 1

4
-BPS

partition function are therefore all consistent with the same physical picture. Notice that
without the extrapolation to Λ → ∞ we have a rigorous bound 0 6 λ2D[0,4] 6 0.843 for the
A1 theory corresponding to the rightmost red interval in Fig. 5.3.

We now turn to the large central charge limit, focusing on the the right plot of Fig. 5.3
which shows a zoom for large central charges. In this plot we added a dashed green line
showing the OPE coefficient expected from supergravity at c = ∞ and the first 1/c correc-
tion. These OPE coefficients were computed in [184] using the using the four-point function
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obtained from supergravity on AdS7×S4 [26, 184]. For the D[0, 4] short multiplet, it should
be, in our conventions, 16

9
− 340

63N3 , with c ∼ 4N3 for the AN series. From Fig. 5.3 we observe
that the supergravity solution lies below our upper bound, which is an important consistency
test of our numerics. It is in fact rather striking that the two results are so close, and for
infinite Λ the numerical result may well coincide with the supergravity result at very large c.
In our opinion this provides another strong indication that the numerical analysis can indeed
“mine” the crossing symmetry constraints and recover the physics of the (2, 0) theories.9

For intermediate values of c one expects the D[0, 4] multiplets to be present for all c > 25.
This is consistent with our bounds, which we expect to remain strictly positive in this region.
More generally one may expect that the Λ → ∞ extrapolation of our bounds will again be
saturated by the known (2, 0) theories, simply because these are the only known solutions
to crossing symmetry that would prevent the bounds from decreasing even further. Notice
that this would in particular imply that the deviations of our bound from the straight-line
behavior at large central charges, i.e. the order 1/c2 corrections to the bound, should be
matched to M-theoretic corrections of eleven-dimensional supergravity.

B[0, 2] OPE coefficient bounds

In this subsection we present upper bounds on the OPE coefficients of several B[0, 2] mul-
tiplets. As indicated in the diagram in Fig. 5.1 these appear for all odd spins ℓ, and we
will investigate the lowest lying multiplets with ℓ = 1 and ℓ = 3. The results are shown in
Figs. 5.4 and 5.5. As before, we will discuss in succession the bounds at small and at large
central charge.

Let us begin with the bounds near cmin which are shown in the left two plots in Figs. 5.4
and 5.5 . Overall consistency of the bounds implies that they have to be zero when c <
cmin, but the way they approach zero is rather different: the ℓ = 1 bound tends to zero
sharply but relatively smoothly, whereas the ℓ = 3 bound displays genuine step function
behavior. This is indicative of the following subtlety concerning the so-called “extremal”
solution to crossing symmetry at cmin. As we discussed above, this solution is unique but at
the same time only approximate given our finite numerical precision. For the case ℓ = 3, the
step function behavior indicates that the corresponding multiplet is actually present in the
extremal solution, with a coefficient that is given by its value at the kink. The current value
is therefore approximately 19.25, but it is expected to decrease somewhat as Λ increases.
The ℓ = 1 bound, on the other hand, is strictly speaking equal to zero at cmin and therefore
the corresponding multiplet does not appear in the extremal solution. The bound however
increases rather sharply as we move away from cmin until a value of around 10, and judging
from the left plot of Fig. 5.4 it may well develop the same step function behavior as observed
for ℓ = 3 upon further increasing Λ. In that case the absence of the ℓ = 1 multiplet is purely
a numerical artefact and it will appear, perhaps in an almost discontinuous fashion, with a

9A similar match between supergravity results and numerical bounds, including 1/c corrections, was
observed in [36] for the N = 4 SYM theories.
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Figure 5.4: Upper bound on the OPE coefficient squared of the B[0, 2] multiplet with ℓ = 1
as a function of the inverse central charge c. The different curves correspond to different
values of Λ = 18, . . . , 22, with the black curve representing the strongest bound. The red and
purple lines correspond to the lowest central charge theories of type An and Dn respectively.
On the right we provide a zoomed in version for very large central charges. The dashed green
line corresponds to the supergravity limit.

coefficient of approximately 10 in the extremal solution as Λ→∞. The large central charge
behavior is shown in the plots on the right of Figs. 5.4 and 5.5. The dashed lines indicate the
supergravity results [184], which in our conventions are given by 120

11
− 39

11N3 and 256
13
− 8832

5005N3

for ℓ = 1 and ℓ = 3, respectively. The convergence of the numerical bounds towards the
supergravity results is excellent for these multiplets, confirming once more that at least for
very large central charges the bounds are sensitive to the physics of the actual (2, 0) theories.

Summary

We end this subsection with a brief summary of the main conclusions related to the OPE
coefficient bounds. First of all, the vanishing of the upper bound on the D[0, 4] multiplet at
cmin provides additional support for the speculation of subsection 5.5.1. The upper bounds
for the B[0, 2] multiplets with low spins are also consistent with this conjecture, although we
would have preferred to see an even sharper transition in the left of Fig. 5.4. This behavior
is however likely to improve as Λ increases. For large central charges we find excellent
agreement with supergravity, including the 1/c corrections. For intermediate central charges
it is natural to conjecture that the bounds are saturated by the actual (2, 0) theories, so
the upper red dots in Figs. 5.3, 5.4 and 5.5 ought to be close to the physical values in the
corresponding theories. It would be very interesting if these results could be verified through
other means.
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Figure 5.5: Upper bound on the OPE coefficient squared of the B[0, 2] multiplet with ℓ = 3
(bottom) as a function of the inverse central charge c. The different curves correspond to
different values of Λ = 18, . . . , 22, with the black curve representing the strongest bound.
The red and purple lines correspond to the lowest central charge theories of type An and
Dn respectively. On the right we provide a zoomed in version for very large central charges.
The dashed green line corresponds to the supergravity limit.

5.5.3 Bounds on scaling dimensions

In the previous subsection we have discussed upper bounds on the OPE coefficients of the
short multiplets. In this subsection we turn our attention to the long multiplets. As indi-
cated on the right diagram of Fig. 5.1, for the four-point function under consideration these
multiplets are necessarily of type L[0, 0] and their superconformal primary has even spin.
We will be solely concerned with the scaling dimensions ∆ of these multiplets, and leave an
investigation of their OPE coefficients to a future study.

Scalar operators

In Fig. 5.6 we present upper bounds on the dimension ∆0 of the first unprotected scalar
operator. We recall that unitarity of the corresponding representation of the superconformal
algebra requires that ∆0 ≥ 6. As in the previous subsection, the plots on the left provide
an overview for a large range of central charges, and the plots on the right give a zoomed in
version of the same bound for very large central charge. The black dots again correspond to
the best possible bound, obtained with Λ = 22, and the shaded area is excluded. The grey
dots represent weaker bounds obtained with lower values of Λ. We inserted red, purple and
blue vertical lines at those values of c corresponding to known (2, 0) theories (the ones with
lowest central charge of type An, Dn and En respectively), and the dashed green line in the
plot on the right corresponds to the supergravity solution discussed in [184]. Notice that
below the value cmin discussed above there is no solution to crossing symmetry whatsoever.
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Figure 5.6: Upper bound for the dimension of the first unprotected scalar operator. The
different curves correspond to different values of Λ = 18, . . . , 22, with the black curve repre-
senting the strongest bound, and the shaded region is excluded by the numerics. The vertical
red, purple and blue lines correspond to the lowest central charge theories of type An, Dn

and En respectively. The plot on the right displays is a zoomed in result for very large c,
with the green dashed line corresponding to the known supergravity solution.

It is then no longer meaningful to ask about upper bounds, and for this reason we find a
sharp cutoff on the left of Fig. 5.6.

With our current precision we see that the upper bound is approximately 7.08 for the
A1 theory at c = 25 and then increases monotonically until approximately 8.11 at infinite
central charge.10 The latter value is very close to the mean field solution at ∆0 = 8, to
which it presumably would converge with higher Λ. The leading 1/c behavior obtained from
supergravity does not appear to very closely follow the bound. Although the supergravity
result is not excluded by our bound, and therefore at a technical level everything is consistent,
the mismatch is nevertheless a little surprising. Indeed, the large c behavior shown in
Figs. 5.3, 5.4 and 5.5, and also in Figs. 5.7 and 5.8 below, appear to imply that the bounds
will in fact be saturated by the supergravity result. This is also the most natural option from
a physical perspective because we do not expect any other theories to exist at very large
central charge. It would be interesting to see if the agreement improves upon increasing Λ.

As we emphasized before, for intermediate values of c we have upper bounds for ∆0

that are valid for all the physical (2, 0) theories. It is again natural to assume that these
bounds will be saturated by the actual theories and in this way the bounds actually offer
a (very rough) estimate of the actual scaling dimensions. In this way we may for example
say that the (A2, A3, A4) theories have unprotected L[0, 0] scalar multiplets with primaries
of dimensions ∆0 . (7.7, 7.9, 8.0), respectively. (For the A1 theory we provide a more refined

10As discussed in 4 this monotonicity is a generic property of the kind of bounds studied here.
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estimate below.) We emphasize that these are the first estimates of unprotected operator
dimensions in the (2, 0) theories, and it would be very interesting if they could be verified
through other means.

Spinning operators
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Figure 5.7: Upper bound for the dimension of the first unprotected spin two operator.
The different curves correspond to different values of Λ = 18, . . . , 22, with the black curve
representing the strongest bound, and the shaded region is excluded by the numerics. The
vertical red, purple and blue lines correspond to the lowest central charge theories of type
An, Dn and En respectively. The plot on the right is a zoomed in result for very large c,
with the green dashed line corresponding to the known supergravity solution. The third plot
is a zoom for the small central charge region, where the red line marks the central charge
corresponding to the A1 theory.

Figs. 5.7 and 5.8 present upper bound on the first unprotected spin 2 and spin 4 operators
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of type L[0, 0] in the (2, 0) theories. The structure of these plots is the same as before, and we
again would expect these bounds to be saturated by physical theories. This is exemplified at
very large c where the bound agrees very well with mean field theory and the 1/c correction
obtained from supergravity.

In Fig. 5.7 we also provide a zoomed in version of the spin 2 bound for relatively small
central charges. In constrast to the scalar and the spin 4 bounds we do not observe step
function behavior at cmin, but rather a more gradual decrease of the bound towards the
unitarity bound. We recall that the B[0, 2] block of spin 1 masquerades itself as an L[0, 0]
block of spin 2 at the unitarity bound ∆2 = 8, so the non-step function behavior in Fig. 5.7
is presumably related to that in the left of Fig. 5.4.
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Figure 5.8: Upper bound for the dimension of the first unprotected spin four operator.
The different curves correspond to different values of Λ = 18, . . . , 22, with the black curve
representing the strongest bound, and the shaded region is excluded by the numerics. The
vertical red, purple and blue lines correspond to the lowest central charge theories of type
An, Dn and En respectively. The plot on the right is a zoomed in result for very large c,
with the green dashed line corresponding to the known supergravity solution.

Although we have not performed a more detailed investigation, the following provides a
likely explanation of the behavior in the spin 2 channel.11 Suppose that the approximate
solution to crossing symmetry obtained at cmin with finite Λ has a small bias: instead of
a B[0, 2] block it has an L[0, 0] block which sits just above the unitarity bound. As in the
scalar and spin 4 channel, the presence of such a block would technically imply step function
behavior of the bound at cmin, but since the block appears only slightly above the unitarity
bound the step can be quite small and we would not observe it in Fig. 5.7. This long block
is very similar to the B[0, 2] short block of spin 1, and therefore effectively replaces it in the
approximate solution to crossing symmetry. In this way the upper bound on the B[0, 2] OPE

11This paragraph is rather technical. The noninitiated reader may wish to skip to its last sentence.
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coefficient at cmin can consistently be zero, which is precisely what is observed in the left
figure of Fig. 5.4. Of course we expect the bias to disappear in the limit where Λ→∞. In the
current scenario this happens through a decrease of the dimension of the L[0, 0] block towards
the unitarity bound, where it degenerates into a B[0, 2] block. At this point we would find
a step function at cmin in 5.7, and indeed the transition already appears to become sharper
for higher Λ. Similarly, the bound in Fig. 5.4 at cmin will have to transition towards the
dimension of the first unprotected operator, and therefore also become infinitely sharp in the
limit of large Λ. In summary, then, the relative smoothness of these particular transition at
cmin is likely a numerical artefact and we expect to recover genuine step function behavior
as Λ→∞.

Combining spins

So far we have restricted to bounding the dimension of a single long multiplet of a given
spin at a time, and we have motivated that each of these bound individually is saturated
by a physical theory. In particular for c → ∞ we have seen that the spin two and four
dimensions bounds agree very well with the expected dimensions from supergravity, while
the spin zero had a small mismatch. However if the bounds are in fact saturated by physical
theories then we should be able to impose all these gaps simultaneously in more two or
more spins. We begin by imposing bounds simultaneously on two spins as it makes the
features more apparent. This is shown in Figs. 5.9 for theories with c = ∞, and with
central charges corresponding to the A1 and A2 theories and with Λ = 22. Unitarity of
the superconformal algebra representations requires (∆0,∆2,∆4) > (4, 6, 8), and the bounds
obtained from imposing a single gap at a time restrict the allowed dimensions to be inside
the squares delimited by the dashed lines (which simply correspond to the bounds obtained
in the previous section). As we impose gaps simultaneously in two channels we numerically
carve out part of this square, and the dimensions must now be below the dots shown in
Fig. 5.9 for the various central charges.

For c =∞, the bounds on ∆2 and ∆4 show a very small dependence on the gap imposed
in the other channels, which were precisely the ones that agreed very well with the expect
result from generalized free field theory, shown by the green lines in the plots. On the other
hand the spin zero bound shows a slight dependence on the gap imposed ∆2 bringing it close
to the generalized free field theory value. It would be interesting to see if this is a feature
of working at finite Λ, and if with Λ → ∞ the allowed region would take the shape of a
rectangle. If that is the case, then even if we are limited to finite Λ we can get a better
estimate of the dimensions by imposing simultaneous bounds. Similarly we would expect
that it is the dimensions corresponding to the corner of the allowed regions shown in Fig. 5.9
that are saturated by the other known physical theories. We note that the bounds presented
here are obtained in the presence of the D[0, 4] short multiplet, which we expect to be present
in all theories with the exception of the A1 theory. The A1 results reveal a much stronger
strong dependence of ∆0 on ∆2, and are the focus of our discussion in the next subsection.
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Figure 5.9: Bounds on the spin 0, 2, 4 superconformal primary dimensions when a gap is
imposed in one of the other channels for a cutoff of Λ = 22. These bounds are for the central
charges corresponding to the A1 and A2 theories and to the generalized free field theory limit
c = ∞, and are obtained with the addition of the short multiplet D[0, 4]. The dashed lines
show the bounds on (∆0,∆2,∆4) from imposing a single gap at a time, and the full green
lines the dimensions expected from the known generalized free field theory. The allowed
region corresponds to the inside of the “rectangles” delimited by the dots.

5.5.4 Bootstrapping the A1 theory

We now turn to the A1 theory. Picking up on the previous subsection we start by examining
what happens when imposing multiple gaps. In Fig. 5.9 we imposed simultaneous gaps
in two out of the three lowest spin operators, now we impose on all three of them. As
we have motivated we expect that the minimum allowed central charge with Λ = ∞ is
c = 25, implying that the theory corresponding to this central charge is unique. As such,
the maximum gap we can impose in all three channels simultaneously will correspond to
the (∆0,∆2,∆4) values of the physical theory, and we expect the allowed region in the
space of these three dimensions should form a cube. Since we are working with a maximum
Λ = 22 and the bounds have not converged yet, the shape of the allowed region is cuboid,
but not a cube with completely straight faces, as can be anticipated from Figs. 5.9. The
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Figure 5.10: Simultaneous bounds on the spin 0, 2, 4 superconformal primary dimensions for
a cutoff of Λ = 22. These bounds are for the central charge corresponding to the A1 theory
(c = 25), and are obtained with (left) and without (right) the addition of the short multiplet
D[0, 4]. The allowed region is inside of the region delimited by the yellow surface.

allowed region obtained by imposing simultaneous gaps in (∆0,∆2,∆4) (in the presence of
the D[0, 4] multiplet) is shown in the left side of Fig. 5.10. Indeed the shape of the allowed
region resembles a cube but with faces tilted and round edges.

However, as we have discussed in detail in subsection 5.5.2, although we expect the
D[0, 4] short multiplet to be absent for the A1 theory, the numerical bootstrap allows for its
presence at finite Λ, as shown in Fig. 5.3. As such we should obtain bounds by imposing
by hand the absence of the D[0, 4] multiplet. The resulting bounds are shown in the right
side of Fig. 5.10. Naturally since we expect that with Λ→∞ the numerical bootstrap will
show that this multiplet is absent at c = 25, in the same limit the “cubes” on the left and
right side of 5.10 should be converging to the same final bound. Requiring the absence of
the D[0, 4] multiplet is then just a trick to overcome the slow convergence of our numerical
results, trying to obtain bounds closer to their Λ→∞ values. As expected the bounds get
stronger once the D[0, 4] multiplet is removed, and the allowed region looks much more like
a cube indicating that indeed we might be obtaining results closer to the Λ→∞ limit.

Slices of this cube, corresponding to imposing gaps on two channels at a time are shown
in Fig. 5.11 where we have also added bounds for increasing smaller values of the cutoff Λ
to provide an idea of how far our bounds are from convergence. The bound on the spin
ℓ = 0 dimension is stronger and it no longer shows any dependence on the gap imposed for
ℓ = 2 contrasting Fig. 5.9. We note that since no gap is imposed in ∆0, the final plot in
5.11 is just the same as the final plot of Fig. 5.9. This is a consequence of allowing for scalar
operators of all dimensions starting at the unitary bound, because a scalar long multiplet
approaching the unitarity bound mimics precisely the D[0, 4] short operator. This bound on
∆2 does show some dependence on ∆4, and from the discussion above we are led to believe
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Figure 5.11: Bounds on the spin 0, 2, 4 superconformal primary dimensions when a gap is
imposed in one of the other channels for a cutoff of Λ = 14, . . . , 22. These bounds are for
the central charge corresponding to the A1 theory (c = 25), and are obtained without the
addition of the short multiplet D[0, 4].

the corner position provides a better estimate for ∆2.

Bounds on the lowest dimensional scalar operator

We can now go back and see what impact the removal of the D[0, 4] short multiplet will have
on the dimension bounds obtained in the previous subsections. Again, if we are imposing a
single gap at a time this will only affect the bounds on the scalar sector.

In Fig. 5.12 we show the bounds on the dimension of the first unprotected spin zero long
multiplet, without the D[0, 4] short. At c = cmin the bound coincides with the one shown in
Fig. 5.6, but for c > cmin the bound without D[0, 4] is stronger, and as c increases it moves
closer to the unitarity bound ∆ = 6. In fact extrapolation of these bounds for the central
charge corresponding to the A2 theory suggests that with ∆ → ∞ the bound will be at
∆ ≈ 6. This means that only for small enough central charges can we get away without the
D[0, 4] multiplet.
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Figure 5.12: Bound on the first spin 0 superconformal primary long dimension as a function
of the inverse central charge c, without adding the D[0, 4] short multiplet, for increasing
number of derivatives Λ = 14, 15, . . . 22. The vertical red lines correspond to the lowest
central charge of type An (2, 0) theories.

It is worth noticing however, that the bound in Fig. 5.12 appears to be converging much
better than the one in Fig. 5.6. This means that the trick of requiring the absence of the
D[0, 4] multiplet does indeed help overcome the slow convergence, and we can obtain bounds
on the operator dimensions of the A1 theory which are close to the optimal values as Λ→∞.
Moreover if our claim that cmin → 25 as Λ → ∞ is correct, the theory at c = 25 is indeed
unique, and the bounds we obtain are more than just bounds – they correspond to the actual
dimensions of operators of the A1 theory.

An extrapolation of ∆0 is shown in blue in Fig. 5.13. Of course we expect that as Λ→∞
the absence of D[0, 4] will follow from the numerical results, just like it happens at cmin for
finite Λ, and therefore the value of the bound at c = 25 from 5.6 should also converge to the
same limit as the curve in blue. This extrapolation is shown in red in Fig. 5.13. Alternatively
we can analyze the bound at cmin as the number of derivatives is increased, which should
converge to the same value as the previous ones. This is shown in black in Fig. 5.13, and it
seems consistent with the limits obtained from the points in blue (without the D[0, 4] short
multiplet). In particular both bounds seem to converge to ∆0 ∼ 6.4. The extrapolation from
the points with the short multiplet does not agree as well with the other two extrapolations,
which perhaps is not surprising since it seems to be the bound which is converging slower.
In light of the simultaneous bounds shown in Fig. 5.9 we see that a better estimate would
come from the corner position when imposing simultaneously gaps in spin zero and two. We
claim this is again just a consequence of working with a finite Λ, and that there is in fact a
unique solution to the crossing equations at c = 25 which will be recovered numerically if we
can go to high enough Λ. Nevertheless at finite Λ the bounds we find are always valid and
are obeyed by any (2, 0) SCFT with c = 25: we can say that if no assumption is made about

207



cmin

c=25 without D@0,4D

c=25 with D@0,4D

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
6.0

6.5

7.0

7.5

8.0

8.5

9.0

1�L

D0

Figure 5.13: Bound on the first spin 0 superconformal primary long dimension as a function
of the inverse of the cutoff Λ for the minimum central charge allowed numerically, cmin,
for that cutoff (black) and for c = 25 both with (red) and without (blue) the D[0, 4] short
multiplet.

the presence of the D[0, 4] operator, there must exist an operator of dimension smaller or
equal to the bound one can read off from the red curve in Fig. 5.13.

Bounds on the second lowest dimensional scalar operator

We can then explore what happens if we have a theory with an operator whose dimension
does not saturate the bound (which as we have seen appears to overestimate by a lot the
dimension of the actual operator present in the A1 theory) but lies somewhere below it.
Denoting the bound on spin zero operators at c = 25, allowing for the presence of the short
multiplet D[0, 4], by ∆⋆, we assume there exists an operator with dimension ∆0, varying
between the unitarity bound and ∆⋆. Then we ask what is the upper bound on the second
smallest dimensional operator with spin zero ∆′

0. This is shown in Fig. 5.14. We observe
that the bound starts from (∆0,∆

′
0) = (6,∆⋆) and it increases sharply until a “kink”, after

which the increase is not as prominent, becoming approximately linear in ∆′
0. The position

of the “kink” precisely corresponds to ∆0 being equal to the dimension bound obtained in the
absence of D[0, 4] shown in Fig. 5.12. As the number of derivatives is increased we observe
that the endpoint of the plot ∆0 = ∆⋆ is moving towards the position of the kink, as we
should expect from Figs. 5.13, since the bound with and without the short multiplet D[0, 4]
appears to converge to similar values. Just as in the aforementioned plots convergence seems
to the faster for the bound in the absence of the short: the position of the “kink” seems to
be converging faster than the end-point ∆⋆. If the position of the “kink” gives indeed ∆0

for the A1 theory, then the bound on ∆′
0 at the “kink” gives a bound on the second scalar

in the theory, and seems to be converging reasonably well.
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Figure 5.14: Bound on the dimension of the second scalar superconformal primary dimension
∆′

0, as a function of the dimension of the dimension of the first scalar superconformal primary
∆0 for c = 25 (left) and c = cmin (right). The dimension ∆0 is allowed to vary from the
unitarity bound to the bound obtained in in Fig. 5.6 allowing for the short operator D[0, 4].
The cutoff is increased from Λ = 14 to 22. The sharp step-like jump in the figure on the
right illustrates the uniqueness of solution to the truncated crossing symmetry equations at
cmin.

It also seems that the increase in ∆′
0 to the left of the “kink” is becoming more accen-

tuated, and it seems plausible that with infinitely many derivatives it will give rise to a
step-like behavior. This is exactly what would be expected if there were a unique solution
to crossing symmetry at c = 25 – the one with an operator whose dimension is given by the
position of the “kink”. Our expectation is that the shape of the bound will converge to the
one obtained at finite Λ at c = cmin(Λ), which is shown on the right side of Fig. 5.14.12 There
since there is a unique solution to our truncated set of crossing equations the first operator
should have dimension exactly ∆⋆. This explains what is observed on the right side of 5.14:
if we assume there exists an operator of smaller ∆0 < ∆⋆ then we find ∆′

0 = ∆⋆, showing
that the operator of dimension ∆⋆ must in fact be present.

To provide further evidence that we will in fact find uniqueness at c = 25 let us now
bound the OPE coefficient of a long with dimension 6 ≤ ∆0 ≤ ∆⋆. This is shown on the left
side of Fig. 5.15, and the OPE coefficient peaks around the position of the kink. If there
were a unique solution to the crossing equations the upper bound on the OPE coefficient
squared should be zero, except when ∆0 corresponds to the dimension of the operator in the
unique solution. We do not see such a sharp behavior, but once again it is plausible that
with Λ→∞ that will be the case.

12The bound shown is actually at c = cmin + 0.01, since at cmin a functional is always found, even if no
bound is imposed, whose zeros give us the dimensions of the operators present in the unique solution to the
truncated crossing equation. This therefore makes it hard to obtain bounds on operator dimensions.
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Figure 5.15: Left: Bound on the OPE coefficient (squared) of a scalar operator of dimension
∆0, varying from the unitarity bound to the dimension bound obtained in Fig. 5.6 (allowing
for the short operator D[0, 4]) at c = 25. Right: Lower and upper bound on the OPE
coefficient squared of the D[0, 4] multiplet as a function of the dimension of the dimension
of the first scalar superconformal primary ∆0 and for c = 25. The cutoff is increased from
Λ = 14 to 22. The excluded values of the OPE coefficient correspond to the shaded region.

The fact that the position of the “kink” coincides with the bound obtained in the absence
of D[0, 4] can be understood by bounding the OPE coefficient of this multiplet after imposing
different gaps ∆0. The short multiplet D[0, 4] is exactly at the spin zero L[0, 0] multiplet
unitarity bound, therefore if a gap is imposed in this channel, the short multiplet block
becomes isolated. If this is the case we can impose also a lower bound on its OPE coefficient
squared by requiring the functional to be −1 on aat6,0(z, z̄). We can then ask the question
of what is the lower bound on this OPE coefficient as a function of the gap imposed in the
ℓ = 0 channel, which can be combined with the upper bound for each gap. The resulting
bounds for central charge c = 25 are shown on the right side of Fig. 5.15, where the excluded
values of the OPE coefficient squared are shaded. We see that the OPE coefficient is allowed
to be zero precisely for dimensions smaller or equal than that of the “kink” position. (Note
that for dimensions smaller than the “kink” the obtained numerical bound is negative, and
as such it is no longer relevant, as unitarity requires λ2D[0,4] ≥ 0.) Moreover as the number
of derivatives is increased it seems that the upper bound is converging to a small number,
which could plausibly be zero.

Bounds on the second lowest dimensional spinning operators

Finally let us explore the dimensions of the second operators of spin two and four. This
is shown in Fig. 5.16 where we assume there to exist an operator of dimension ∆2,4 in the
allowed range and bound the dimension of the second operator ∆′

2,4. For spin two the bound
for ∆2 = 8 starts off at ∆′

2 = ∆⋆
2, and increases for larger ∆2. There is a “kink”-like feature
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for a small value of ∆2 which is most likely an artefact of working at finite Λ, similarly to
what was observed in Fig. 5.7. The spin four bounds appear to be closer to the optimal
result with Λ → ∞, as the bounds appear to have converged. We see that as long as ∆4 is
smaller than its maximum allowed value of ∆⋆

4, the second operator ∆′
4 takes a dimension

close to ∆⋆
4, then when ∆4 approaches ∆

⋆
4 the value of ∆

′
4 grows sharply, resembling the plot

on the right of Fig. 5.14. This provides further justification of the claim that the optimal
bound will resemble the one observed at cmin, providing further evidence to our uniqueness
claim.
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Figure 5.16: Bound on the dimension of the second spin ℓ = 2, 4 superconformal primary
dimension ∆′

2,4, as a function of the dimension of the dimension of the first spin ℓ = 2, 4
superconformal primary ∆2,4 for c = 25. The cutoff is increased from Λ = 14 to 22.

Summary

The results presented in this section are all consistent and seem to support the conjecture
that there is a unique solution to crossing symmetry at c = 25. Moreover, while limited by
working at a finite Λ, by making the right assumptions about the theory we want to study,
namely that the is no D[0, 4] operator in the A1 theory, we seem to obtain bounds that
converge faster. In this way, we are able to obtain what should correspond to the physical
value of the dimension of the first spin zero operator in the A1 theory. Another way to
overcome the fact that we are constrained to work at finite Λ is to impose simultaneous
bounds. In this spirit we have seen that even if the the D[0, 4] multiplet is allowed to be
present, the corner position of the cube shown on the left side of Fig. 5.10 provides with a
better estimate of the spin zero operator dimension. In a similar way the corner of the cube
shown in the right side of Fig. 5.10 should give a bound close to the actual dimensions of
the A1 theory. This could help overcome the slow convergence of the spin two dimension
bounds. Finally the spin four dimension bounds seem to be converging faster, hinting already
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at features expected at Λ =∞ coming as a consequence of uniqueness. In this way we expect
that the bound obtain for the spin four operator is close to the actual value of the A1 theory.
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Appendix A

Superconformal algebras

This appendix lists useful superconformal algebras that are used in the body of chapter 2. We
adopt the convention of working in terms of the complexified version of symmetry algebras.
We adopt bases for the complexified algebras such that the restriction to the real form that
is relevant for physics in Lorentzian signature is the most natural. In general, the structures
described in chapter 2 are insensitive to the spacetime signature of the four-dimensional
theory, with the caveat that we will assume that the theories in question, when Wick rotated
to Lorentzian signature, are unitary.

A.1 The four-dimensional superconformal algebra

The spacetime symmetry algebra for N = 2 superconformal field theories in four dimensions
is the superalgebra sl(4 | 2). The maximal bosonic subalgebra is so(6,C)× sl(2)R×C∗. The
so(6,C) conformal algebra, in a spinorial basis with α, α̇ = 1, 2, is given by

[M β
α ,M δ

γ ] = δ β
γ M δ

α − δ δ
αM β

γ ,

[Mα̇
β̇
,Mγ̇

δ̇
] = δα̇δMγ̇

β̇
− δγ̇

β̇
Mα̇

δ̇
,

[M β
α ,Pγγ̇] = δ β

γ Pαγ̇ − 1
2
δ β
α Pγγ̇ ,

[Mα̇
β̇
,Pγγ̇] = δα̇γ̇Pγβ̇ − 1

2
δα̇
β̇
Pγγ̇ ,

[M β
α ,Kγ̇γ] = − δ γ

α Kγ̇β + 1
2
δ β
α Kγ̇γ ,

[Mα̇
β̇
,Kγ̇γ] = − δγ̇

β̇
Kα̇γ + 1

2
δα̇
β̇
Kγ̇γ ,

[H,Pαα̇] = Pαα̇ ,
[H,Kα̇α] = −Kα̇α ,
[Kα̇α,Pββ̇] = δ α

β δα̇
β̇
H + δ α

β Mα̇
β̇
+ δα̇

β̇
M α

β .

(A.1)
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The sl(2)R algebra has a Chevalley basis of generators R± and R, where

[R+,R−] = 2R , [R,R±] = ±R± . (A.2)

In Lorentz signature where the appropriate real form of this algebra is su(2)R, these gener-
ators will obey hermiticity conditions (R+)† = R−, R† = R. The generator of the Abelian
factor C∗ is denoted by r and is central in the bosonic part of the algebra. It is also convenient
to introduce the basis RI

J , with

R1
2 = R+ , R2

1 = R− , R1
1 =

1

2
r +R , R2

2 =
1

2
r −R , (A.3)

where we follow the conventions of [52] for r, and which obey the commutation relations

[RI
J ,RK

L] = δKJRI
L − δILRK

J . (A.4)

There are sixteen fermionic generators in this superconformal algebra – eight Poincaré
supercharges and eight conformal supercharges – denoted {QI

α, Q̃Iα̇, SαJ , S̃J α̇}. The nonva-
nishing commutators amongst them are as follows,

{QI
α, Q̃J α̇} = δIJPαα̇ ,

{S̃Iα̇, S α
J } = δIJKα̇α ,

{QI
α, S β

J } = 1
2
δIJ δ

β
α H + δIJM β

α − δ β
α RI

J ,

{S̃Iα̇, Q̃J β̇} = 1
2
δIJ δ

α̇
β̇
H + δIJMα̇

β̇
+ δα̇

β̇
RI

J .

(A.5)

Finally, the commutators of the supercharges with the bosonic symmetry generators are the
following:

[M β
α ,QI

γ ] = δ β
γ QI

α − 1
2
δ β
α QI

γ ,

[Mα̇
β̇
, Q̃Iδ̇] = δα̇

δ̇
Q̃Iβ̇ − 1

2
δα̇
β̇
Q̃Iδ̇ ,

[M β
α ,S γ

I ] = − δ γ
α S β

I + 1
2
δ β
α S γ

I ,

[Mα̇
β̇
, S̃Iγ̇] = − δγ̇

β̇
S̃Iα̇ + 1

2
δα̇
β̇
S̃Iγ̇ ,

[H,QI
α] = 1

2
QI
α ,

[H, Q̃Iα̇] = 1
2
Q̃Iα̇ ,

[H,S α
I ] = − 1

2
S α
I ,

[H, S̃Iα̇] = − 1
2
S̃Iα̇ ,

(A.6)
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[RI
J ,QK

α ] = δ K
J QI

α −
1

4
δIJQK

α ,

[RI
J , Q̃Kα̇] = − δ I

K Q̃J α̇ +
1

4
δIJ Q̃Kα̇ ,

[Kα̇α,QI
β] = δ α

β S̃Iα̇ ,

[Kα̇α, Q̃Iβ̇] = δ α̇

β̇
S α
I ,

[Pαα̇,S β
I ] = − δ β

α Q̃Iα̇ ,

[Pαα̇, S̃Iβ̇] = − δ β̇
α̇ QI

α .

A.2 The two-dimensional superconformal algebra

The second superalgebra of interest is sl(2|2), which corresponds to the right-moving part
of the global superconformal algebra in N = (0, 4) SCFTs in two dimensions. The maximal
bosonic subgroup is sl(2)×sl(2)R, with generators {L0, L±1} for sl(2) and {R±,R} for sl(2)R.
The non-vanishing bosonic commutation relations are given by

[R,R±] = ±R± , [R+,R−] = 2R ,

[L̄0, L̄±1] = ∓L̄±1 , [L̄1, L̄−1] = 2L̄0 .

There are additionally right-moving Poincaré supercharges QI , Q̃J and right-moving su-
perconformal charges SJ , S̃I . The commutation relations amongst the fermionic generators
are given by

{QI , Q̃J } = δIJ L̄−1 ,

{S̃I ,SJ } = δIJ L̄+1 ,

{QI ,SJ } = δIJ L̄0 −RI
J −

1

2
δIJZ ,

{Q̃J , S̃I} = δIJ L̄0 +RI
J +

1

2
δIJZ ,

where RI
J are defined as in (A.3), but with r set to zero. Here Z is a central element,

the removal of which gives the algebra psl(2|2). The additional commutators of bosonic
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symmetry generators with the supercharges are given by

[L̄−1 , S̃I ] = −QI ,

[L̄−1 ,SI ] = −Q̃I ,

[L̄+1 , Q̃I ] = SI ,
[L̄+1 ,QI ] = S̃I ,

[L̄0 , S̃I ] = −1
2
S̃I ,

[L̄0 ,SI ] = −1
2
SI ,

[L̄0 , Q̃I ] =
1
2
Q̃I ,

[L̄0 ,QI ] = 1
2
QI .

(A.7)
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Appendix B

Unitary representations of the N = 2
superconformal algebra

The representation theory of the four-dimensional N = 2 superconformal algebra plays
a central role in this dissertation. The classification of short representations of the four-
dimensional N = 2 superconformal algebra [14, 52, 154] plays a major role in the structure
of the chiral algebras described in chapter 2.1 It also plays a central role in our choice of
strategy and in the structure of the partial wave analysis of four-point functions of chapter
4. This appendix provides a review of the classification of unitary irreducible representations
of su(2, 2|2) (cf. [14, 52, 154]), as well as of the various indices that can be defined on any
representation of the algebra that are insensitive to the recombination of collections of short
multiplets into generic long multiplets.

Unitary representations of su(2, 2|2) are highest weight representations and are labelled
by quantum numbers (∆, j1, j2, r, R) of the highest weight state also called the superconformal
primary of the representation. A generic representation – also called a long representation –
is obtained by the action of the eight Poincaré supercharges as well as the momentum gen-
erators and SU(2)R lowering operators on the highest weight state. Short representations
occur when a superconformal descendant state in what would otherwise be a long represen-
tation is rendered null by a conspiracy of quantum numbers. The unitarity bounds for a
superconformal primary operator are given by

∆ > ∆i , ji 6= 0 ,

∆ = ∆i−2 or ∆ >∆i , ji = 0 ,
(B.1)

1Note that in this appendix we use ∆ instead of the E used in chapter 2 to denote the conformal
dimension of operators.
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where we have defined

∆1 := 2 + 2j1 + 2R + r , ∆2 := 2 + 2j2 + 2R− r . (B.2)

Short representations occur when one or more of these bounds are saturated. The different
ways in which this can happen correspond to different combinations of Poincaré supercharges
that will annihilate the superconformal primary state in the representation.

There are two types of shortening conditions, each of which has four incarnations corre-
sponding to an SU(2)R doublet’s worth of conditions for each supercharge chirality:

BI : QI
α|ψ〉 = 0 , α = 1, 2 , (B.3)

B̄I : Q̃Iα̇|ψ〉 = 0 , α̇ = 1, 2 , (B.4)

CI :

{
ǫαβQI

α|ψ〉β = 0 , j1 6= 0 ,

ǫαβQI
αQI

β|ψ〉 = 0 , j1 = 0 ,
(B.5)

C̄I :

{
ǫα̇β̇Q̃Iα̇|ψ〉β̇ = 0 , j2 6= 0 ,

ǫα̇β̇Q̃Iα̇Q̃Iβ̇|ψ〉 = 0 , j2 = 0 .
(B.6)

The different admissible combinations of shortening conditions that can be simultaneously
realized by a single unitary representation are summarized in Table B.1, where we also list
the relations that must be satisfied by the quantum numbers of the superconformal primary
in such a representation. We also list two common notations used to designate the different
representations – one from [52] (DO) and the other from [14] (KMMR).2

In the limit where the dimension of a long representation approaches a unitarity bound,
it becomes decomposable into a collection of short representations. This fact is often referred
to as the existence of recombination rules for short representations into a long representation
at the unitarity bound. The generic recombination rules are as follows,

A∆→2R+r+2+2j1
R,r(j1,j2)

≃ CR,r(j1,j2) ⊕ CR+ 1
2
,r+ 1

2
(j1−

1
2
,j2)

,

A∆→2R−r+2+2j2
R,r(j1,j2)

≃ C̄R,r(j1,j2) ⊕ C̄R+ 1
2
,r− 1

2
(j1,j2−

1
2
) , (B.7)

A∆→2R+j1+j2+2
R,j1−j2(j1,j2)

≃ ĈR(j1,j2) ⊕ ĈR+ 1
2
(j1−

1
2
,j2)
⊕ ĈR+ 1

2
(j1,j2−

1
2
) ⊕ ĈR+1(j1−

1
2
,j2−

1
2
) .

In special cases the quantum numbers of the long multiplet at threshold are such that some
Lorentz quantum numbers in (B.7) would be negative and unphysical. In these cases the

2We are adopting the the R-charge conventions of [52].
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Shortening Quantum Number Relations DO KMMR

∅ ∆ > max(∆1,∆2) A∆
R,r(j1,j2)

aa∆,j1,j2,r,R

B1 ∆ = 2R + r j1 = 0 BR,r(0,j2) ba0,j2,r,R

B̄2 ∆ = 2R− r j2 = 0 B̄R,r(j1,0) abj1,0,r,R

B1 ∩ B2 ∆ = r R = 0 Er(0,j2) ba0,j2,r,0

B̄1 ∩ B̄2 ∆ = −r R = 0 Ēr(j1,0) abj1,0,r,0

B1 ∩ B̄2 ∆ = 2R j1 = j2 = r = 0 B̂R bb0,0,0,R

C1 ∆ = 2 + 2j1 + 2R + r CR,r(j1,j2) caj1,j2,r,R

C̄2 ∆ = 2 + 2j2 + 2R− r C̄R,r(j1,j2) acj1,j2,r,R

C1 ∩ C2 ∆ = 2 + 2j1 + r R = 0 C0,r(j1,j2) caj1,j2,r,0

C̄1 ∩ C̄2 ∆ = 2 + 2j2 − r R = 0 C̄0,r(j1,j2) acj1,j2,r,0

C1 ∩ C̄2 ∆ = 2 + 2R + j1 + j2 r = j2 − j1 ĈR(j1,j2) ccj1,j2,j2−j1,R

B1 ∩ C̄2 ∆ = 1 + 2R + j2 r = j2 + 1 DR(0,j2) bc0,j2,j2+1,R

B̄2 ∩ C1 ∆ = 1 + 2R + j1 −r = j1 + 1 D̄R(j1,0) cbj1,0,−j1−1,R

B1 ∩ B2 ∩ C̄2 ∆ = r = 1 + j2 r = j2 + 1 R = 0 D0(0,j2) bc0,j2,j2+1,0

C1 ∩ B̄1 ∩ B̄2 ∆ = −r = 1 + j1 −r = j1 + 1 R = 0 D̄0(j1,0) cbj1,0,−j1−1,0

Table B.1: Summary of unitary irreducible representations of the N = 2 superconformal
algebra.

following exceptional recombination rules apply,

A2R+r+2
R,r(0,j2)

≃ CR,r(0,j2) ⊕ BR+1,r+ 1
2
(0,j2)

,

A2R−r+2
R,r(j1,0)

≃ C̄R,r(j1,0) ⊕ B̄R+1,r− 1
2
(j1,0)

,

A2R+j2+2
R,−j2(0,j2)

≃ ĈR(0,j2) ⊕DR+1(0,j2) ⊕ ĈR+ 1
2
(0,j2−

1
2
) ⊕DR+ 3

2
(0,j2−

1
2
) , (B.8)

A2R+j1+2
R,j1(j1,0)

≃ ĈR(j1,0) ⊕ ĈR+ 1
2
(j1−

1
2
,0) ⊕ D̄R+1(j1,0) ⊕ D̄R+ 3

2
(j1−

1
2
,0) ,

A2R+2
R,0(0,0) ≃ ĈR(0,0) ⊕DR+1(0,0) ⊕ D̄R+1(0,0) ⊕ B̂R+2 .

The last three recombinations involve multiplets that make an appearance in the associated
chiral algebra described in this work. The recombinations that play a role in the analyses
of chapter 4 are the last recombinations in (B.7) and (B.8). This is relevant for the partial
wave analysis of the moment map four-point function in Section 4.3.1. Note that the E , Ē ,
B̂ 1

2
, B̂1, B̂ 3

2
, D0, D̄0, D 1

2
and D̄ 1

2
multiplets can never recombine, along with B 1

2
,r(0,j2)

and
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B̄ 1
2
,r(j1,0)

.

There exist a variety of trace formulas [13, 14] that can be defined on the Hilbert space
of an N = 2 SCFT such that the result receives contributions only from states that lie in
short representations of the superconformal algebra, with the contributions being such that
the indices are insensitive to recombinations. The indices are defined and named as follows:

Superconformal Index : TrH(−1)Fp
1
2
(∆+2j1−2R−r)q

1
2
(E−2j1−2R−r)tR+r, (B.9)

Macdonald : TrHM
(−1)F q 1

2
(∆−2j1−2R−r)tR+r , (B.10)

Schur : TrH(−1)F q∆−R , (B.11)

Hall-Littlewood : TrHHL
(−1)F τ 2∆−2R , (B.12)

Coulomb : TrHC
(−1)Fσ 1

2
(∆+2j1−2R−r)ρ

1
2
(∆−2j1−2R−r) . (B.13)

The specialized Hilbert spaces appearing in the trace formulas above are defined as follows,

HM := {ψ ∈ H
∣∣ ∆+ 2j1 − 2R− r = 0} , (B.14)

HHL := {ψ ∈ H
∣∣ ∆− 2R− r = 0 , j1 = 0} , (B.15)

HC := {ψ ∈ H
∣∣ ∆+ 2j1 + r = 0} . (B.16)

The different indices are sensitive to different superconformal multiplets. In particular, the
Coulomb index counts only E and D0 type multiplets. These can be thought of as N = 1
chiral ring operators that are SU(2)R singlets. Similarly, the Hall-Littlewood index counts
only B̂R and DR multiplets, which can be thought of as the consistent truncation of the
N = 1 chiral ring to operators that are neutral under U(1)r. The Schur and Macdonald
indices count only the operators that are involved in the chiral algebras of chapter 2: B̂R,
ĈR, D, and D̄ multiplets. The full index receives contributions from all of the multiplets
appearing in Table B.1.
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Appendix C

Kazhdan-Lusztig polynomials and
affine characters

Computing the characters of irreducible modules of an affine Lie algebra at a negative integer
level is a nontrivial task. For low levels, the multiplicity and norms of states can be found by
hand using the mode expansion of the affine currents JA(z), but this computation quickly
becomes rather involved. Fortunately there exists another method to compute these charac-
ters, based on the work of Kazhdan and Lusztig [188], which (with the aid of a computer)
can produce results to very high order. In this appendix we give a brief introduction to this
method. The interested reader is referred to, e.g., [189, 190] for more details.

A generic method to obtain an irreducible representation of any (affine) Lie algebra is to
start with the Verma module M built on a certain highest weight state ψh.w., and then to
subtract away all the null states in this module with the correct multiplicities. Let us recall
that according to the Poincaré-Birkhoff-Witt theorem, the Verma module is spanned by all
the states of the form

(E−α1,1)n1,1(E−α1,2)n1,2 . . . (E−α1,m1)n1,m1 . . . (E−α2,1)n2,1 . . . (E−αN ,mN )nN,mNψh.w. , (C.1)

with nonnegative integer coefficients ni,j. Here the E
−α,kα are the negative roots with weight

−α, and the auxiliary index kα ∈ {1, . . . ,mα} is only necessary when the multiplicity mα

of the given weight is greater than one. The ordering of the roots in the above equation is
arbitrary but fixed. If the highest weight state ψh.w. has weight µ then the state defined as
above has weight

µ− α1(n1,1 + n1,2 + . . .+ n1,m1)− α2(n2,1 + . . .)− . . .− αN(. . .+ nN,mN
) , (C.2)

and with a moment’s thought one sees that the character Mµ of the Verma module is given
by

charMµ = eµ
∏

α>0

(1− e−α)−mult(α) . (C.3)
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This is the Kostant partition function. The product is taken over the set of all the positive
roots, which is infinite for an affine Lie algebra.

For a given affine Lie algebra there are special values of the highest weights for which the
Verma module becomes reducible due to the existence of null states. We need to subtract
all these null states to recover the irreducible module. Since any descendant of a null state is
also null, the null states are themselves organized into Verma modules and we can subtract
away entire modules at a time. This procedure is further complicated by the existence of
“nulls of nulls”, i.e., null states inside the Verma module that we are subtracting. In general,
this leads to a rather intricate pattern of subtractions. It follows that the character of the
irreducible module with highest weight λ, which we denote as Lλ, can be obtained from a
possibly infinite sum of the form

charLλ =
∑

µ6λ

mλ,µcharMµ , (C.4)

where the integers mλ,µ are not of definite sign and reflect the aforementioned pattern of
null states. Of course mλ,λ = 1. The vectors labeled by µ in the above sum are called the
primitive null vectors of the Verma module Mλ.

This leaves us with the task of determining the weights µ that appear in (C.4) along
with their associated multiplicities mλ,µ. The first task is accomplished by noting that these
weights are necessarily annihilated by all raising operators, and therefore must be highest
weight states in themselves. The quadratic Casimir operator of an affine Lie algebra acts
simply on highest weight states with weight µ as multiplication by |µ + ρ|2, where ρ is
the Weyl vector with unit Dynkin labels. On the other hand, the eigenvalue should be an
invariant of the full representation, which means that the only states µ that can appear in
(C.4) have to satisfy

|µ+ ρ|2 = |λ+ ρ|2 . (C.5)

Notice that so far we have made no distinction between unitary representations, where the
highest weight λ is dominant integral (i.e., its Dynkin labels are nonnegative integers),
and non-unitary representations like the ones in which we are interested. This distinction
becomes crucial in the computation of the multiplicities mλ,µ.

For the irreducible representations associated to dominant integral weights, the weight
multiplicities are invariant under the action of the Weyl group, and correspondingly charLλ
is invariant under the action of the Weyl group on the fugacities. On the other hand, the
Kostant partition function is essentially odd under this action (cf. [189]),

w(e−ρ−µcharMµ) = sign(w)e−ρ−µcharMµ , (C.6)

where the sign of an element w in the Weyl group is simply given by −1 raised to the power
of the number of generators used to express w. One can easily convince oneself that the

236



multiplicities mλ,µ therefore necessarily satisfy

mλ,µ = sign(w)mλ,w·µ , (C.7)

where w · µ := w(µ + ρ) − ρ is the shifted action of the Weyl group on the weight µ. All
the multiplicities mλ,µ for weights µ on the same shifted Weyl orbit are therefore related by
factors of sign(w), and it suffices to know only one multiplicity on each orbit. Happily, if the
highest weight λ is dominant integral, then it lies on the shifted Weyl orbit of any primitive
null vector. This essentially follows from the fact that there is a unique dominant integral
weight on every shifted Weyl orbit, and from (C.5) it can be shown that this has to be λ.
So, using that mλ,λ = 1, we find that all the weights appearing in (C.4) are given by the
shifted Weyl orbit of λ and have multiplicities equal to sign(w). In summary, then,

charLλ =

∑
w∈W sign(w)ew(ρ+λ)−ρ∏
α>0(1− e−α)mult(α)

, (C.8)

which is the famous Weyl-Kac character formula.
Let us return to the case where the λ is not dominant integral. This is the case that

interests us: indeed, for so(8)−2 the vacuum representation has Dynkin labels [−2 0 0 0 0]
and the zeroth Dynkin label is not positive.1 For non-dominant integral weights the above
derivation already fails at the very first step: the weight multiplicities in the irreducible
representation are not invariant under the action of the Weyl group. This is most easily seen
by taking the infinite irreducible representation of su(2) whose highest weight is negative. In
this case the single Weyl reflection maps the highest weight, which of course has multiplicity
one, to a positive weight, which has multiplicity zero. The derivation of the coefficients mλ,µ

now becomes considerably more involved. Since we find qualitative differences depending
on the sign of k + h∨, we will in the remainder of this appendix focus on the relevant case
k + h∨ > 0.

For the non-unitary representations considered here it is still true that all the primitive
null vectors lie on the shifted Weyl orbit of the highest weight λ, and for k + h∨ > 0 there
is still a unique dominant weight Λ on the same orbit such that Λ + ρ has nonnegative
Dynkin labels. For example, for the vacuum module of so(8)−2 the dominant weight has
Dynkin labels [0 0−1 0 0] which happens to be related to [−2 0 0 0 0] by a single elementary
reflection. All the weights in (C.4), including λ itself, can thus be written as µ = w · Λ for
some Weyl element w. We can therefore alternatively try to label these weights with the
corresponding element of the Weyl group w instead of µ. We will see that such a relabeling
has great benefits, but first we need to mention two important subtleties.

The first subtlety concerns the fact that we may restrict ourselves to elementary reflec-
tions of the Weyl group for which the corresponding Dynkin label in Λ is integral, since it

1Recall that the zeroth Dynkin label for a weight vector in an affine Lie algebra ĝ is given by k − (λ, θ)
with λ the part of the weight vector corresponding to the original Lie algebra g and θ the highest root of g.
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is only in those cases that null states can possibly appear. These reflections generate a sub-
group of the Weyl group that we will denote asWΛ. In the case of so(8)−2 the weights are all
integral and WΛ = W . The second subtlety is the possibility of the existence of a subgroup
W 0

Λ of WΛ that leaves Λ invariant. This happens precisely when some of the Dynkin labels
of Λ + ρ are zero - in our case there is a single such zero. It is clear that the weights µ can
then at best be uniquely labeled by elements of the coset WΛ/W

0
Λ.

It is now a deep result that the multiplicities mλ,µ depend on the dominant integral
weight Λ only through the corresponding elements w and w′ of the coset WΛ/W

0
Λ. We may

therefore replace
mλ,µ → mw,w′ , (C.9)

where λ = w · Λ, µ = w′ · Λ and w and w′ are elements of the coset. The celebrated
Kazhdan-Lusztig conjecture tells us that the precise form of these multiplicities is given by

mw,w′ = Q̃w,w′(1) . (C.10)

where the Kazhdan-Lusztig polynomial Q̃w,w′(q) is a single-variable polynomial depending
on two elements w and w′ of the cosetWΛ/W

0
Λ. These polynomials are determined via rather

intricate recursion relations that are explained in detail in [190]. For k+h∨ > 0 and integral
weights, which is the case that interests us here, the Kazhdan-Lusztig conjecture was proven
in [191, 192].

For the computations mentioned in the main text, we have implemented the recursive
definitions of the Kazhdan-Lusztig polynomials on cosets given in [190] in Mathematica.
Equations (C.3), (C.4), and (C.10) then allow us to compute all the states in the irreducible
vacuum character of so(8)−2 up to level five. The results are shown in Table 2.5.
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Appendix D

Affine critical characters and the
Schur index

We show how to re-write the superconformal index [14] in the so-called Schur limit [13, 46] in
terms of characters of affine Kac-Moody modules at the critical level. The superconformal
index of class S theories was computed in [13, 46, 82, 84], and the characters of affine
Kac-Moody algebras at the critical level in [92]. Here we just collect the final expressions
and refer the readers to the original work for details.

Our conventions for affine Lie algebras follow those of [93], and here we simply review
some notation needed to write the characters. We denote the affine Lie algebra obtained by
adding an imaginary root δ to a finite Lie algebra g (of rank r) by ĝ. The Cartan subalgebra
of ĝ (g) is denoted by ĥ (h), and the positive roots of ĝ (g) by ∆̂+ (∆+). We also denote the
real positive roots of the affine Lie algebra, that is positive roots not of the form nδ, by ∆̂re

+ .
The character of a critical irreducible highest weight representation Rλ with highest weight
λ̂, whose restriction to the finite Lie algebra λ is by definition an integral dominant weight
is given in [92]. It reads 1

chRλ
=

∑
w∈W ǫ(w)ew(λ+ρ)−ρ∏

α∈∆+
(1− q〈λ+ρ,α∨〉)

∏
α̂∈∆̂re

+
(1− e−α̂) , (D.1)

where W is the Weyl group of g, ǫ(w) is the signature of w, q = e−δ, ρ denotes the Weyl
vector, 〈·, ·〉 denotes the Killing inner product and α∨ is the coroot associated to α.

1Here we used that for a critical highest weight λ̂ + ρ̂ = λ + ρ, and normalized the character to match
the standard conventions for a partition function.
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The Schur limit of the superconformal index of a Tn theory is given by [13, 46]

ITn(q;xi) =
∑

Rλ

∏3
i=1KΛ(q;xi) χRλ

(xi)

KΛt(q) dimqRλ

, (D.2)

with

KΛt(q) = P.E.

[
n−1∑

j=1

qdj

1− q

]
, KΛ(q;x) = P.E.

[
q χadj.(x)

1− q

]
. (D.3)

Here xi denotes flavor fugacities conjugate to the Cartan generators of the su(n)i flavor
group associated with each of the three punctures, Λ and Λt are respectively the trivial and
principal embeddings of su(2) →֒ su(n), and dj are the degrees of invariants. Furthermore,
dimqRλ is the q-deformed dimension of the representation Rλ, i.e.,

dimqRλ =
∏

α∈∆+

[〈λ+ ρ, α〉]q
[〈ρ, α〉]q

, where [x]q =
q−

x
2 − q x

2

q−
1
2 − q 1

2

. (D.4)

As shown in [28], if λ = 0 is the highest weight of the vacuum module

chRλ=0
=
KΛ(q;xi)

KΛt(q)
. (D.5)

The expectation is that the full index for Tn can be re-written as a sum of characters of
critical modules2. Re-writing (D.1) to make manifest the vacuum module we find

chRλ
= chRλ=0

∏

α∈∆+

(
1− q〈ρ,α∨〉

1− q〈λ+ρ,α∨〉

)∑
w∈W ǫ(w)ew(λ+ρ)−ρ∑
w∈W ǫ(w)ew(ρ)−ρ

, (D.6)

where we recognize the last term as the character of the representation with highest weight
λ of g,

χλ(x) =

∑
w∈W ǫ(w)ew(λ+ρ)∑
w∈W ǫ(w)ew(ρ)

. (D.7)

After factoring out a q−〈λ,ρ〉, the middle factor can be written in terms of the q-deformed

2Along similar lines, one can rewrite the Schur limit of the superconformal index of the TSO(2n) theory

[5, 193] in terms of critical affine ŝo(2n) characters.
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dimension (D.4) of the same representation:

∏

α∈∆+

(
1− q〈ρ,α∨〉

1− q〈λ+ρ,α∨〉

)
=
∏

α∈∆+

q−〈λ,α∨〉/2
∏

α∈∆+

(
q−〈ρ,α∨〉/2 − q〈ρ,α∨〉/2

q−〈λ+ρ,α∨〉/2 − q〈λ+ρ,α∨〉/2

)
= q−〈λ,ρ〉 1

dimqRλ

,

(D.8)
where we used that α∨ = α, for su(n), to identify ρ in the last step. In total we thus find

chRλ
=

P.E.
[
q χadj.(x)

1−q

]
χλ(x)

q〈λ,ρ〉P.E.
[∑n−1

j=1
qdj

1−q

]
dimqRλ

. (D.9)

Using this result in the expression for the superconformal index (D.2) we obtain (3.1). To
obtain (3.2) we also note that the denominator of (D.9) can be rewritten as

q〈λ,ρ〉 P.E.

[
n−1∑

j=1

qdj

1− q

]
dimqRλ = P.E.



n−1∑

j=1

qdj

1− q +
∑

α∈∆+

q〈ρ,α〉 −
∑

α∈∆+

q〈λ+ρ,α〉




= P.E.

[
n−1∑

j=1

qdj

1− q +
n−1∑

j=1

(n− j) qj −
n∑

j=2

∑

1≤i<j

qℓi−ℓj+j−i

]
.

(D.10)
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Appendix E

The T4 OPEs

In this appendix we give all the OPEs between the generators of the T4 chiral algebra. Here
all OPE coefficients (including the central charges) are already set to the values required
by the Jacobi-identities, as described in Section 3.3. Since all generators are both Virasoro
and AKM primaries, with the exception of the stress tensor which is neither and the AKM
currents which are not AKM primaries, all singular OPEs involving the affine currents and
the stress tensor are completely fixed by flavor symmetries and Virasoro symmetry, up to the
flavor central charges (k2d)i=1,2,3 = −4 and the Virasoro central charge c2d = −78 appearing
in the most singular term in their respective self-OPEs. Different AKM currents are taken
to have zero singular OPE. As discussed in Section 3.3 we consistently treat the three flavor
symmetries on equal footing, in particular we require k2d ≡ (k2d)1 = (k2d)2 = (k2d)3 . We
recall that also the precise values of c2d and k2d central charges are a result of imposing the
Jacobi-identities.

The singular OPEs of the W, W̃ generators among themselves were found to be

Wa1a2a3(z) Wb1b2b3(0) ∼
1

2 z
V[a1b1][a2b2][a3b3] ,

W̃ a1a2a3(z) W̃ b1b2b3(0) ∼ 1

2 z

1

8
ǫa1b1c1d1ǫa2b2c2d2ǫa3b3c3d3V[c1d1][c2d2][c3d3] ,

Wa1a2a3(z) W̃
b1b2b3(0) ∼ 1

z3
δb1a1δ

b2
a2
δb3a3 −

1

4 z2
(
δb1a1δ

b2
a2
(J3)b3a3 + perms.

)

− 1

4 z

(
δb1a1δ

b2
a2
∂(J3)b3a3 + perms.

)
+

1

16 z

(
δb1a1(J

2)b2a2(J
3)b3a3 + perms.

)

+
1

z
δb1a1δ

b2
a2
δb3a3

(
− 1

16
T − 1

96

(
(J1)α1

β1
(J1)β1α1

+ 2 more
))

+
1

16 z

(
δb1a1δ

b2
a2
(J3)α3

a3
(J3)b3α3

+ perms.
)
,

where we have fixed the normalization of W and W̃ to convenient values. In all these OPEs
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“+2 more” means we must add the same term for the remaining two currents, and “+perms.”
that all independent permutations of the previous term must be added. We also found the
OPEs between the W, W̃ and V generators to be

Wa1a2a3(z) V[b1c1][b2c2][b3c3](0) ∼
1

8
ǫa1b1c1d1ǫa2b2c2d2ǫa3b3c3d3

(
− 3

z2
W̃ d1d2d3 − 1

z
∂W̃ d1d2d3

)

− 1

8
ǫa1b1c1d1ǫa2b2c2d2ǫa3b3c3d3

1

3 z

(
(J1)d1α1

W̃ α1d2d3 + perms.
)

− 1

8 z

(
ǫα1b1c1d1ǫa2b2c2d2ǫa3b3c3d3(J

1)d1a1W̃
α1d2d3 + perms.

)
,

W̃ a1a2a3(z) V[b1c1][b2c2][b3c3](0) ∼ δa1[b1δ
a2
[b2
δa3[b3

(
3

z2
Wc1]c2]c3] +

1

z
∂Wc1]c2]c3]

)

+
1

3 z
δa1[b1δ

a2
[b2
δa3[b3

(
(J1)α1

c1]
Wα1c2]c3] + perms.

)

+
1

z

(
δa2[b2δ

a3
[b3
(J1)a1[b1Wc1]c2]c3] + perms.

)
.

Finally, the singular V V OPE reads

V[a1b1][a2b2][a3b3](z)V
[c1d1][c2d2][c3d3](0)

∼ δ[c1a1 δ
d1]
b1
δ[c2a2 δ

d2]
b2
δ[c3a3 δ

d3]
b3

(
6

z4
− 1

2 z2
T − 1

4 z
∂T − 1

24 z2
(
(J1)α1

β1
(J1)β1α1

+ 2 more
)

− 19

480 z
∂
(
(J1)α1

β1
(J1)β1α1

+ 2 more
)
− 37

20 z
Wα1β1γ1W̃

α1β1γ1

+
1

40 z

(
(J1)β1α1

(J1)γ1β1(J
1)α1
γ1

+ 2 more
))

+ δ[c2a2 δ
d2]
b2
δ[c3a3 δ

d3]
b3

(
− 3

16 z
δ
[d1
[b1
(J1)

|γ1
a1]
(J1)β1|γ1

(J1)
c1]
β1

+
33

80 z
(J1)β1[a1(J

1)
[d1
|β1|

(J1)
c1]
b1]

− 43

80 z2
∂
(
(J1)

[d1
[a1
(J1)

c1]
b1]

)
− 3

2 z3
(J1)

[c1
[a1
δ
d1]
b1]

+
1

40 z3
T (J1)

[c1
[a1
δ
d1]
b1]

− 11

120 z

(
(J1)α1

β1
(J1)β1α1

+ 2 more
)
(J1)

[c1
[a1
δ
d1]
b1]
− 5

4 z2
∂(J1)

[c1
[a1
δ
d1]
b1]

+
1

4 z2
(J1)α1

[a1
(J1)

[c1
|α1|
δ
d1]
b1]

+
17

40 z
∂(J1)α1

[a1
(J1)

[c1
|α1|
δ
d1]
b1]

− 23

80 z
∂2(J1)

[c1
[a1
δ
d1]
b1]
− 1

4 z
(J1)

[d1
[a1
(J1)

c1]
b1]

+
7

40 z
(J1)α1

[a1
∂(J1)

[c1
|α1|
δ
d1]
b1]

)

+ permutations[1, 2, 3]
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+ δ[c3a3 δ
d3]
b3

(
1

4 z
δ
[d2
[b2
(J2)

c2]
a2]
(J1)

[d1
[a1
(J1)

c1]
b1]

+
3

4 z2
δ
[d2
[b2
(J2)

c2]
a2]
(J1)

[c1
[a1
δ
d1]
b1]
+

+
13

4 z
δ
[d2
[b2
(J2)

c2]
a2]
∂(J1)

[c1
[a1
δ
d1]
b1]
− 3

4 z
δ
[d2
[b2
(J2)

c2]
a2]
(J1)α1

[a1
(J1)

c1]
|α1|
δd1b1]

)

+ permutations[1, 2, 3]

+
19

5 z

(
δ[c2a2 δ

d2]
b2
δ[c3a3 δ

d3]
b3
δ
[d1
[b1
Wa1]β2γ3W̃

c1]β2γ3 + δ[c3a3 δ
d3]
b3
δ[c1a1 δ

d1]
b1
δ
[d2
[b2
Wβ1a2]γ3W̃

β1c2]γ3

+δ[c1a1 δ
d1]
b1
δ[c2a2 δ

d2]
b2
δ
[d3
[b3
Wβ1γ2a3]W̃

β1γ2c3]
)

− 4

z

(
δ[c3a3 δ

d3]
b3
δ
[d1
[b1
δ
[d2
[b2
Wa1]a2]γ3W̃

c1]c2]γ3 + δ[c1a1 δ
d1]
b1
δ
[d2
[b2
δ
[d3
[b3
Wγ1a2]a3]W̃

γ1c2]c3]

+δ[c2a2 δ
d2]
b2
δ
[d3
[b3
δ
[d1
[b1
Wa1]γ2a3]W̃

c1]γ2c3]
)

− 1

z
δ
[d1
[b1
δ
[d2
[b2
δ
[d3
[b3
(J1)

c1]
a1]
(J2)

c2]
a2]
(J3)

c3]
a3]
− 16

z
δ
[d1
[b1
δ
[d2
[b2
δ
[d3
[b3
Wa1]a2]a3]W̃

c1]c2]c3] ,

where the norm of V was also fixed, and for convenience we defined V [c1d1][c2d2][c3d3] through
V[a1b1][a2b2][a3b3] =

1
8
ǫa1b1c1d1ǫa2b2c2d2ǫa3b3c3d3V

[c1d1][c2d2][c3d3]. Here “permutations[1, 2, 3]” means
we must repeat the previous term with all possible permutations of the flavor groups indices.
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Appendix F

Superconformal block decompositions
for four-dimensional N = 2 theories

This appendix contains a number of technical details pertaining to the superconformal block
decompositions of correlators investigated in chapter 2. The conventional conformal blocks of
four-dimensional non-supersymmetric CFT make repeated appearances here, and for those
we adopt the conventions of [41]. Namely, the conformal block associated to the exchange
of an so(4, 2) conformal family whose primary has dimension ∆ and spin ℓ in the four-point

function of degenerate scalars is given by u
1
2
(∆−ℓ)G

(ℓ)
∆ (u, v), where

G
(ℓ)
∆ (u, v) :=

1

z − z̄

((
−z
2

)ℓ
z 2F1

(
1

2
(∆ + ℓ) ,

1

2
(∆ + ℓ) ;∆ + ℓ; z)

)

× 2F1

(
1

2
(∆− ℓ− 2) ,

1

2
(∆− ℓ− 2) ;∆− ℓ− 2; z̄)

)
− z ↔ z̄

)
.

(F.1)

Here, as in the main text, we will only ever need to consider operators with j1 = j2 =: j, for
which the spin ℓ is defined as ℓ := 2j.

F.1 Superconformal blocks for the B̂1 four-point func-

tion

The superconformal blocks relevant to the partial wave decomposition of the B̂1 four-point
function were derived in the beautiful work of [41]. In this subsection we summarize those
results. As our starting point we take the selection rule for operators appearing in the OPE
of two moment map operators. These selection rules were determined in [171] via an analysis
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of three-point functions in harmonic superspace.1 The results can be schematically presented
as follows

B̂1 × B̂1 ∼ 1 + B̂1 + B̂2 + Ĉ0(j,j) + Ĉ1(j,j) + A∆
0,0(j,j) . (F.2)

Below we outline the contribution of each of these multiplets in the superconformal partial
wave expansion of a moment map four-point function. We do so in two ways. First, we
describe the contribution of such a multiplet to the functions Gi(z, z̄) and fi(z) that appear
in the solution of the superconformal Ward identities described in Section 4.3.1. This is the
form of the superconformal blocks for the numerical analysis of crossing symmetry described
in Section 4.6. In order to make the structure of these contributions more transparent, we
also list the contribution of each multiplet to the functions aR,i(u, v) associated with a fixed
SU(2)R channel. Since these expressions are rather lengthy, we have collected them in Table
F.1.

We start with the case of long multiplets. For these multiplets only the two-variable
functions Gi(u, v) are non-zero (the fi(z) is protected and only receives contributions from
short and semi-short multiplets). In the long multiplets listed in (F.2), there is a unique
conformal primary in the 5 of SU(2)R that can appear in the OPE. This determines the
contribution of a long multiplet to a2,i(u, v), which in turn via (4.40) fixes the contribution
of long multiplets as follows

A∆
0,0(j,j) in Ri :

{
Gi(u, v) = 6u

∆−ℓ
2 G

(ℓ)
∆+2(u, v) ,

fi(z) = 0 .
(F.3)

The full conformal block expansion in the three R-symmetry channels can now be determined
by inserting (F.3) back into (4.40) and making use of various identities for hypergeometric
functions [41]. The full expansion in terms of conventional conformal blocks is given in Table
F.1.

Next we turn to the Ĉ0(j,j) and B̂1 multiplets. These multiplets do not include any
operators that can contribute in the R = 2 channel, from which it follows that for these
multiplets Gi(u, v) = 0. In the R = 1 channel, each of these multiplets contributes exactly
one conformal primary of dimension ℓ+ 3 and spin ℓ+ 1 (dimension 2 and spin 0 in the B̂1
case). This allows the values of the single-variable functions for these multiplets to be fixed

1These selection rules can also be understood as following a few simple criteria. Namely, a conformal
primary can only have a non-zero three point function with two moment map operators if the superconformal
primary of the same multiplet does as well. Ordinary Lorentz symmetry and R-symmetry selection rules
then constrain the possible superconformal multiplets appearing in the OPE. A further constraint comes
from the fact that any R-symmetry quintuplet appearing in the OPE comes from the product of two Higgs
branch chiral ring operators, and so must itself be annihilated by the action of Q1

α and Q̃2α̇.
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from (4.40), and we find

Ĉ0(j,j) in Ri :

{
Gi(u, v) = 0 ,

fi(z) = 2g2j+2(z) .
(F.4)

B̂1 in Ri :

{
Gi(u, v) = 0 ,

fi(z) = 2g1(z) .
(F.5)

Again, the contributions of these multiplets to the individual SU(2)R channels is determined
by (4.40), and the subsequent decomposition into conventional conformal blocks follows
from identities for hypergeometric functions. The result is displayed in Table F.1. (Another
operator that contributes only to fi(z) is the identity operator, which only arises in the
R = 0 channel and contributes to fi(z) as a constant.)

The superconformal blocks for the remaining two multiplets can be understood by study-
ing the behavior of a generic long multiplet as it approaches the unitarity bound ∆ = 2+ ℓ.
At the unitarity bound, the representation becomes reducible and decomposes according to
the relevant rules in (B.7) and (B.8) specialized to the case R = 0,

A∆=2j+2
0,0(j,j) ≃ Ĉ0(j,j) ⊕ Ĉ 1

2
(j− 1

2
,j) ⊕ Ĉ 1

2
(j,j− 1

2
) ⊕ Ĉ1(j− 1

2
,j− 1

2
) ,

A∆=2j+2
0,0(0,0) ≃ Ĉ0(0,0) ⊕D1(0,0) ⊕ D̄1(0,0) ⊕ B̂2 .

(F.6)

In each case, only the first and last multiplet are allowed in the four-point function by the
selection rules. This simplifies the task of finding superconformal blocks for Ĉ1(j,j) and B̂2
multiplets. Namely, by subtracting six copies of the Ĉ0(j,j) block from the long superconformal

block with ∆ = 2 + ℓ one obtains the superconformal block for a Ĉ1(j− 1
2
,j− 1

2
) with j > 1

2
.

Similarly, subtracting six copies of the Ĉ0(0,0) block from the long superconformal block with

∆ = 2 yields the superconformal block for the B̂2 representation. The result is that these
multiplets contribute both to fi(z) and to Gi(u, v) as follows,

Ĉ1(j,j) in Ri :

{
Gi(u, v) = 6uG

(ℓ+1)
ℓ+5 (u, v) ,

fi(z) = −12g2j+3(z) ,
(F.7)

B̂2 in Ri :

{
Gi(u, v) = 6uG

(0)
4 (u, v) ,

fi(z) = −12g2(z) .
(F.8)

The decomposition in the three SU(2)R channels of all these superconformal blocks are again
displayed in Table F.1.

Finally, there are a few extra selection rules having to do with the representation Ri of
the flavor symmetry group in which the various multiplets can appear. For example, B̂1
multiplets are those containing the conserved flavor symmetry currents, so they necessarily
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Multiplet Contribution to aR,i(u, v)

in Ri

a0,i(u, v) = 1
3
uG

(1)
3 (u, v)

B̂1 a1,i(u, v) = uG
(0)
2 (u, v)

a2,i(u, v) = 0

a0,i(u, v) = 1
30
u3G

(0)
6 (u, v)

B̂2 a1,i(u, v) = 2
5
u2G

(1)
5 (u, v)

a2,i(u, v) = u2G
(0)
4 (u, v)

a0,i(u, v) = uG
(ℓ)
ℓ+2(u, v) +

(ℓ+2)2

(2ℓ+3)(2ℓ+5)
uG

(ℓ+2)
ℓ+4 (u, v)

Ĉ0(j,j) a1,i(u, v) = uG
(ℓ+1)
ℓ+3 (u, v)

a2,i(u, v) = 0

a0,i(u, v) = 1
2
u2G

(ℓ+1)
ℓ+5 (u, v) + 1

8
u3G

(ℓ−1)
ℓ+5 (u, v) + (ℓ+3)2

8(2ℓ+5)(2ℓ+7)
u3G

(ℓ+1)
ℓ+7 (u, v)

Ĉ1(j,j) a1,i(u, v) = 3
2
u2G

(ℓ)
ℓ+4(u, v) +

3
24
u3G

(ℓ)
ℓ+6(u, v) +

3(ℓ+3)2

2(2ℓ+5)(2ℓ+7)
u2G

(ℓ+2)
ℓ+6 (u, v)

a2,i(u, v) = u2G
(ℓ+1)
ℓ+5 (u, v)

a0,i(u, v) = u
∆−ℓ
2

(
6G

(ℓ)
∆ (u, v) + 3(∆+ℓ+2)2

2(∆+ℓ+1)(∆+ℓ+3)
G

(ℓ+2)
∆+2 (u, v)

+ 3(∆−ℓ)2

32(∆−ℓ−1)(∆−ℓ+1)
u2G

(ℓ−2)
∆+2 (u, v) +

1
2
uG

(ℓ)
∆+2(u, v)

+ 3(∆+ℓ+2)2(∆−ℓ)2

128(∆+ℓ+1)(∆+ℓ+3)(∆−ℓ−1)(∆−ℓ+1)
u2G

(ℓ)
∆+4(u, v)

)

A∆
0,0(j,j) a1,i(u, v) = 3u

∆−ℓ
2

(
2G

(ℓ+1)
∆+1 (u, v) +

1
2
G

(ℓ−1)
∆+1 (u, v)

+ (∆+ℓ+2)2

8(∆+ℓ+1)(∆+ℓ+3)
uG

(ℓ+1)
∆+3 (u, v) +

(∆−ℓ)2

32(∆−ℓ−1)(∆−ℓ+1)
u2G

(ℓ−1)
∆+3 (u, v)

)

a2,i(u, v) = u
∆+2−ℓ

2 Gℓ
∆+2(u, v)

Table F.1: Superconformal blocks for the different su(2, 2|2) representations appearing in
the OPE of two moment map operators.

appear only in the adjoint representation R = Adj. In a theory with a unique stress tensor,
there will be only one Ĉ0(0,0) multiplet, so it will necessarily transform in the singlet represen-
tation R = 1. In general, one may take tensor products of multiple SCFTs and violate this
kind of selection rule. We will call a theory that is not decomposable as the tensor product
of several theories simple. The complete set of flavor symmetry selection rules for simple
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Multiplet Possible Ri in simple theories

B̂1 R = Adj.

B̂2 R ∈ Sym2(Adj.)

Ĉ0(j,j) R = 1 for ℓ = 0.

None for ℓ > 1.

Ĉ1(j,j) R ∈ ∧2(Adj.) for ℓ even.

R ∈ Sym2(Adj.) for ℓ odd.

A∆
0,0(j,j) R ∈ Sym2(Adj.) for ℓ even.

R ∈ ∧2(Adj.) for ℓ odd.

Table F.2: Flavor symmetry selection rules for multiplets appearing in the B̂1 × B̂1 OPE in
simple theories.

theories are displayed in Table F.2.

Protected contributions to the crossing symmetry equation

Here we collect the contributions to the crossing symmetry equation (4.46) coming from
short multiplets and that are completely fixed following the discussion in Section 4.3.2.

su(2) global symmetry

For the global symmetry su(2) the single variable functions fi(z) are shown in (4.72). From
these single variable functions, the spectrum and OPE coefficients of short multiplets con-
tributing to the four-point function can be determined in the manner described in Section
4.3.2. The contributions of these short multiplets to the two-variable functions Gi(z, z̄) are
then given by infinite sums of the type displayed on the second line in (4.54). Performing
the sums yields the following expressions,

Gshort1 (z, z̄) =
log(1− z̄) (k(6− z(z(c((z − 2)z + 2)− 6) + 12))− 8c(z − 1)z2)

ck(z − z̄)(z − 1)2

+
log(1− z) (k(z̄(z̄(c((z̄ − 2)z̄ + 2)− 6) + 12)− 6) + 8c(z̄ − 1)z̄2)

ck(z − z̄)(z̄ − 1)2

−6 log(1− z) log(1− z̄)
czz̄

, (F.9)
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Gshort3 (z, z̄) =
(z − 2)z(z(kz + 4)− 4) log(1− z̄)

k(z − z̄)(z − 1)2
− (z̄ − 2)z̄(z̄(kz̄ + 4)− 4) log(1− z)

k(z − z̄)(z̄ − 1)2
,

Gshort5 (z, z̄) =
z̄2(kz̄2 − 2(2 + k)(z̄ − 1)) log(1− z)

k(z̄ − 1)2(z − z̄) − z2(kz2 − 2(2 + k)(z − 1)) log(1− z̄)
k(z − 1)2(z − z̄) .

These expressions are part of the input to the “known” part of the amplitude denoted as
ai(z, z̄) in (4.90).

e6 global symmetry

For e6 global symmetry, the single-variable functions fi(z), obtained by acting with the
appropriate projectors on (4.48), are given by

f1(z) =
k(z(z((z − 2)z + 80)− 156) + 78) + 48(z − 1)z2

k(z − 1)2
,

f650(z) =
z2(k((z − 2)z + 2) + 12(z − 1))

k(z − 1)2
,

f2430(z) =
z2(k((z − 2)z + 2)− 4z + 4)

k(z − 1)2
, (F.10)

f78(z) = −(z − 2)z(z(kz + 24)− 24)

k(z − 1)2
,

f2925(z) = −(z − 2)z3

(z − 1)2
.

The functions Gshorti (z, z̄) are again computed by fixing the OPE coefficients for all short
multiplets as described in Section 4.3.2 and performing the infinite sums like in (4.54). We
find:

Gshort1 (z, z̄) =
log(1− z̄) (k(156− z(z(c((z − 2)z + 2)− 156) + 312))− 48c(z − 1)z2)

ck(z − z̄)(z − 1)2

+
log(1− z) (k(z̄(z̄(c((z̄ − 2)z̄ + 2)− 156) + 312)− 156) + 48c(z̄ − 1)z̄2)

ck(z − z̄)(z̄ − 1)2

− 156 log(1− z) log(1− z̄)
czz̄

,

Gshort650 (z, z̄) =
z̄2(kz̄2 + 2(k − 6)(1− z̄)) log(1− z)

k(z̄ − 1)2(z − z̄) − z2(kz2 + 2(k − 6)(1− z)) log(1− z̄)
k(z − 1)2(z − z̄) ,

Gshort2430(z, z̄) =
z̄2(k((z̄ − 2)z̄ + 2)− 4z̄ + 4) log(1− z)

k(z̄ − 1)2(z − z̄)
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− z2(k((z − 2)z + 2)− 4z + 4) log(1− z̄)
k(z − 1)2(z − z̄) ,

Gshort78 (z, z̄) =
(z − 2)z(z(kz + 24)− 24) log(1− z̄)

k(z − z̄)(z − 1)2
− (z̄ − 2)z̄(z̄(kz̄ + 24)− 24) log(1− z)

k(z − z̄)(z̄ − 1)2
,

Gshort2925(z, z̄) =
(z − 2)z3 log(1− z̄)
(z − z̄)(z − 1)2

− (z̄ − 2)z̄3 log(1− z)
(z − z̄)(z̄ − 1)2

. (F.11)

F.2 Superconformal blocks for the Er four-point func-

tion

In the case of the four-point function of N = 2 chiral operators described in Section 4.4,
there are two qualitatively different sets of superconformal blocks corresponding to the chiral
channel and the non-chiral channel for the double OPE (see Fig. 4.1). In the first part of
this appendix, we sketch the arguments that lead to the superconformal selection rules for
these two OPE channels. It is explained in Section 4.4 that, for the purposes of crossing
symmetry, it is useful to change basis and introduce three channels 1̂, 2̂, and 3̂. In the second
part of this appendix, we present the superconformal blocks for these different channels.

F.2.1 Selection rules in the non-chiral channel

The set of representations that may appear in an Er0 × Ē−r0 OPE can be determined by
means of a simple selection rule. Without loss of generality, we may focus on conformal
primary operators. Then let us consider an operator O(x) that is a conformal primary but a
descendant of a superconformal primary O′(x). The selection rule that we will derive below
can then be summarized as follows,

〈
φ(x1)φ̄(x2)O(x3)

〉
6= 0 =⇒

〈
φ(x1)φ̄(x2)O′(x3)

〉
6= 0 . (F.12)

In other words, for any operator that is a super-descendant to have a nonvanishing three-point
function with an N = 2 chiral primary and its conjugate, the superconformal primary for
that operator must also have such a nonvanishing three-point function.

This selection rule follows from a direct application of superconformal Ward identities.
The relevant Ward identities have been derived in [61], and they take the following form,

ψα(x3)
〈
φ(x1)φ̄(x2)

[
QI
α,O

}
(x3)

〉
+ ∂αα̇ψ

α(x3)
〈
φ(x1)φ̄(x2)

[
S̃I,α̇,O

}
(x3)

〉
= 0 . (F.13)

As in [61], the commutators appearing in the above expression should be interpreted as
meaning that the relevant commutator has been computed at the origin and the resulting
operator has been translated to the appropriate insertion point. An analogous identity holds
with Q̃I,α̇ and SαI . Now if O(x3) is a superconformal primary operator itself, then the
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second term in (F.13) vanishes, from which it follows that operators of the form
[
QI
α,O(x)

}

cannot appear in the φ × φ̄ OPE. If instead we take O(x) =
[
Q̃J ,β̇,O′(x)

}
, with O′ being

a superconformal primary, then some algebraic manipulations lead to the following form of
the Ward identity,2

ψα(x3)〈φ(x1)φ̄(x2)
{
QI
α,
[
Q̃J ,β̇,O′K1,...Kn

α1...α2j α̇1...α̇2j

]}
(x3)〉 =

− ∂αα̇ψ
α(x3)

(
δIJ

(
j〈φ(x1)φ̄(x2)O′K1,...Kn

α1...α2j β̇(α̇1...α̇2j−1
(x3)〉δα̇α̇2j)

+
(
∆−j+r−n

2

)
δα̇
β̇
〈φ(x1)φ̄(x2)O′K1,...Kn

α1...α2j α̇1...α̇2j
(x3)〉

)

+ δα̇
β̇
δ
(K1

J 〈φ(x1)φ̄(x2)O
′K2,...Kn),I
α1...α2j α̇1...α̇2j

(x3)〉
)
. (F.14)

where r and ∆ are the U(1)r charge and dimension ofO′. It follows from this identity that the

three-point function including the superconformal descendant
{
QI
α,
[
Q̃J ,β̇,O′K1,...Kn

α1...α2j1
α̇1...α̇2j2

]}

is fixed in terms of the three point function of the superconformal primary. Similar results
can be derived for all higher descendants ofO′(x) using (F.13) plus the corresponding relation
involving the conjugate supercharges. All told, we are left with the selection rule given above
in (F.12).

Given these selection rules, the possible superconformal representations that may appear
in the φ × φ̄ OPE are severely restricted. Namely, only representations for which the su-
perconformal primary has R = r = 0 and j := j1 = j2 may appear. A brief survey of the
representations in Appendix B leads to the following list,

Er0(0,0) × Ē−r0(0,0) ∼ 1 + Ĉ0(j,j) + A∆
0,0(j,j) . (F.15)

We should note that this selection rule has only been derived here for the superconformal
primaries of the Er0(0,0) and Ē−r0(0,0) multiplets.

F.2.2 Selection rules in the chiral channel

The selection rules for the chiral OPE can be determined by a generalization of arguments of
[34], where the analogous problem for N = 1 SCFTs was considered. Suppose an operator
O(x) appears in the φr0×φr0 OPE. Ordinary non-supersymmetric selection rules imply that
O must be an SU(2)R singlet with rO = 2r0 and j := j1 = j2 ∈ Z. There are then additional
constraints that come from the supersymmetry properties of the chiral operators that are
being multiplied. Namely, we observe that for any x, we have

[QI
α, φr0(x)] = 0 , [S̃I,α̇, φr0(x)] = 0 . (F.16)

2In this calculation we have assumed that O′(x3) is bosonic. A similar calculation leading to the same
conclusion holds in the fermionic case.
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The first condition is simply a part of the definition of the Er multiplet. The latter is
automatic when x = 0 because φr0 is the superconformal primary in its representation. For
x 6= 0, we note the following relation from the N = 2 superconformal algebra,

[Pαα̇, S̃I,β̇] = δβ̇α̇QI
α . (F.17)

It follows that when φr0 is translated away from the origin, its variation under the action of

S̃I,α̇ is proportional to its variation under the action of a chiral supercharge, which vanishes.
Thus we see that φr0(x1) × φr0(x2) itself is invariant under the action of QI

α and S̃I,α̇,
and so must be any operator appearing in the corresponding OPE,

[QI
α,O(x)] = 0 , [S̃I,α̇,O(x)] = 0 . (F.18)

The only superconformal primary operator that can appear in the chiral OPE is therefore
that of an E2r multiplet, and its superconformal descendants are excluded from appearing.
Any other operator that appears must be a superconformal descendant obtained by acting
on a given superconformal primary with all possible supercharges QI

α that do not annihilate
it. Thus only one conformal family per superconformal multiplet can contribute, and the
superconformal blocks in this channel will be equal to the conventional conformal blocks for
that family.

Upon consulting the catalogue of N = 2 superconformal multiplets reviewed in Ap-
pendix B, it is straightforward to identify the multiplets that fit the bill. (For simplicity,
we temporarily assume that r0 > 1.) To illustrate the procedure, let us consider the case
of long multiplets. The above argument implies that a long multiplet may only contribute
to this OPE via a descendant of the schematic form O = Q4O′, where O′ is a supercon-
formal primary. This descendant must be an SU(2)R singlet with rO = rO′ + 2 = 2r0 and
spin ℓO = 2j = ℓO′ . The relevant long multiplet is therefore of type A0,2r0−2(j,j). Unitarity
requires that the dimension of the superconformal primary satisfies ∆O′ > 2r0 + ℓ, so the
contributing descendant will have ∆O > 2r0 + ℓ+ 2.

Similar reasoning leads to the complete list of short multiplets that may contribute to
the OPE, with the final selection rule taking the form

Er0(0,0)×Er0(0,0) ∼ E2r0(0,0)+C0,2r0−1(j,j+1)+B1,2r0−1(0,0)+C 1
2
,2r0−

3
2
(j,j+ 1

2
)+A0,2r0−2(j,j) . (F.19)

We note that again, this derivation applies only to the OPE for superconformal primaries of
the Er0(0,0) multiplets. For r0 = 1 we can find additional short multiplets of types

D1(0,0) Ĉ 1
2
(j,j+ 1

2
), Ĉ0(j,j+1) . (F.20)

The second of these multiplets contains higher spin conserved currents, as is to be expected
since the chiral operator with r0 = 1 is a free scalar field.
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F.2.3 Superconformal blocks in the non-chiral channel

The superconformal blocks for the various representations appearing in the non-chiral chan-
nel have been determined in [146]. In the language of Section 4.4, these are the supercon-
formal blocks in the 1̂ channel. They are as follows,

GId
1̂
(z, z̄) := 1 ,

G Ĉ,ℓ
1̂
(z, z̄) :=

zz̄

z − z̄
((
− z

2

)ℓ
z 2F1 (ℓ+ 1, ℓ+ 3; 2ℓ+ 4; z))− z ↔ z̄

)
, (F.21)

G∆,ℓ
1̂

(z, z̄) :=
(zz̄)

∆−ℓ
2

z − z̄
((
− z

2

)ℓ
z 2F1

(
1
2
(∆ + ℓ) , 1

2
(∆ + ℓ+ 4) ;∆ + ℓ+ 2; z)

)

× 2F1

(
1
2
(∆− ℓ− 2) , 1

2
(∆− ℓ+ 2) ;∆− ℓ; z̄)

)
− z ↔ z̄

)
,

Note that the superconformal block for the Ĉ0(j,j) representation is just the specialization
of the superconformal block for a long multiplet to the case ∆ = ℓ + 2. This is to be
expected based on the recombination rules of Appendix B. The superconformal block for a
long multiplet can be decomposed into ordinary conformal blocks, which makes manifest the
collection of conformal families from this multiplet that contribute to the four-point function:

G∆,ℓ
i=1̂

(z, z̄) = u
∆−ℓ
2 G

(ℓ)
∆ (u, v) +

(
1

2(∆−ℓ)
− 1

4

)
u

∆−ℓ+2
2 G

(ℓ−1)
∆+1 (u, v)− (∆+ℓ)

(∆+ℓ+2)
u

∆−ℓ
2 G

(ℓ+1)
∆+1 (u, v)

+ (∆+ℓ)2

4(∆+ℓ+1)(∆+ℓ+3)
u

∆−ℓ
2 G

(ℓ+2)
∆+2 (u, v) +

(∆−ℓ−2)(∆+ℓ)
4(∆−ℓ)(∆+ℓ+2)

u
∆−ℓ+2

2 G
(ℓ)
∆+2(u, v)

+ (∆−ℓ−2)2

64((∆−ℓ)2−1)
u

∆−ℓ+4
2 G

(ℓ−2)
∆+2 (u, v)− (∆−ℓ−2)2(∆+ℓ)

64(∆−ℓ−1)(∆−ℓ+1)(∆+ℓ+2)
u

∆−ℓ+4
2 G

(ℓ−1)
∆+3 (u, v)

− (∆−ℓ−2)(∆+ℓ)2

16(∆−ℓ)(∆+ℓ+1)(∆+ℓ+3)
u

∆−ℓ+2
2 G

(ℓ+1)
∆+3 (u, v)

+ (∆−ℓ−2)2(∆+ℓ)2

256(∆−ℓ−1)(∆−ℓ+1)(∆+ℓ+1)(∆+ℓ+3)
u

∆−ℓ+4
2 G

(ℓ)
∆+4(u, v) .

(F.22)

The same multiplets contributing to the non-chiral channel also contribute to the 3̂ channel
via the “braided” version of the above superconformal blocks. The braided version is obtained
by replacing each G

(ℓ)
∆ by (−1)ℓG(ℓ)

∆ in (F.22).

F.2.4 Superconformal blocks in the chiral channel

Because the supermultiplets appearing in the chiral channel contribute a single conformal
family to the four point function, the superconformal blocks in the chiral channel (or 2̂
channel in the language of Section 4.4) are just the conventional conformal blocks appropriate
to those conformal families. Table F.3 displays the corresponding block for each allowed
supermultiplet.

The fourth and fifth lines in Table F.3 correspond to short representations that lie at
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Multiplet Contribution to Gî=2̂(u, v) Restrictions

A0,2r0−2(j,j) u
∆−ℓ
2 G

(ℓ=2j)
∆ (u, v) ∆ > 2 + 2r0 + ℓ

E2r0 ur0 G
(0)
2r0

(u, v)

C0,2r0−1(j,j+1) ur0 G
(ℓ=2j+2)
2r0+ℓ

(u, v) ℓ > 2

B1,2r0−1(0,0) ur0+1G
(0)
2r0+2(u, v)

C 1
2
,2r0−

3
2
(j,j+ 1

2
) ur0+1G

(ℓ=2j+1)
2r0+ℓ+2 (u, v) ℓ > 2

Ĉ 1
2
(j,j+ 1

2
) u2G

(ℓ=2j+1)
∆=ℓ+4 ℓ > 2; r0 = 1

Ĉ0(j,j+1) uG
(ℓ)
∆=ℓ+2 ℓ > 2; r0 = 1

D1(0,0) u2G
(ℓ=0)
∆=42 r0 = 1

Table F.3: Superconformal blocks for the Er0 four point function in the 2̂ channel.

the unitarity bound for long multiplets. Accordingly, their superconformal blocks are simply
the specializations of the long multiplet block to appropriate values of ∆ and ℓ. On the
other hand, the first two classes of short representations are separated from the continuous
spectrum of long multiplets by a gap. The last two representations are only present when
we relax our assumption that there are no higher spin conserved currents or free fields in the
theory.
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Appendix G

Semidefinite programming and
polynomial inequalities

This appendix is devoted to a review of the methods of [35], whereby the search for a linear
functional of the type described in Section 4.5 can be recast as a semidefinite program. The
principal observation that leads to this reformulation is that, up to a universal prefactor,
any derivative of a conformal block for fixed ℓ can be arbitrarily well approximated by a
polynomial in the conformal dimension ∆, that is

∂mz ∂
n
z̄G

(ℓ)
∆ (z, z̄)|z=z̄= 1

2
≈ χ(∆, ℓ)P (ℓ)

m,n(∆) . (G.1)

Here χ(∆, ℓ) may be complicated, but it is positive for all physical values of ∆ and ℓ and

is independent of the choice of derivative. On the other hand, P (ℓ)
m,n(∆) is a finite order

polynomial in ∆. For the superconformal blocks appearing in chapter 2, the details of this
polynomial approximation are explained below in Appendix H.

With the aid of this approximation, we consider the action of a linear functional on
smooth functions of z and z̄ of the form

φ[F (z, z̄)] =
Λ∑

m,n=0

am,n∂
m
z ∂

n
z̄ F (z, z̄)

∣∣
z=z̄= 1

2

. (G.2)

Up to the positive prefactor described above, the action of this functional on a conformal
block is now given by a finite order polynomial in the conformal dimension,

φ[G
(ℓ)
∆ (z, z̄)] = χ(∆, ℓ)

Λ∑

m,n=0

am,nP (ℓ)
m,n(∆) =: χ(∆, ℓ)Pℓ(∆) . (G.3)

The numerical problem in question (see Section 4.5) is thus transformed into a search in the
space of am,n ∈ R such that the polynomial Pℓ(∆) > 0 for ∆ > ∆⋆

ℓ for each ℓ. Note that
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the range of values of ∆ for which the polynomial must be positive is always bounded from
below, either by the unitarity bound or by the chosen value ∆⋆

ℓ .
A polynomial in ∆ that is positive for all ∆ > ∆⋆ can always be decomposed as follows,

P(∆) = P (∆) + (∆−∆∗)Q(∆) , (G.4)

where P (∆) and Q(∆) are polynomials that are positive for all real ∆. Furthermore, in

terms of the monomial vector ~∆ := (1,∆,∆2, . . . ,∆N), such non-negative polynomials can
always be written as

P (∆) = ~∆tP ~∆ , Q(∆) = ~∆tQ~∆ , (G.5)

where P and Q are positive semidefinite matrices, which is notated as P,Q � 0. We should
emphasize that the matrices P and Q are not completely fixed in terms of P (∆) and Q(∆).
There is a redundancy to which we will return shortly.

The action of the functional on conformal blocks will therefore be non-negative above
some dimension ∆⋆

ℓ in the spin ℓ channel if and only if there exist two positive semidefinite
matrices, P (ℓ), Q(ℓ) � 0 such that

am,nP
(ℓ)
m,n(∆) = ~∆tP (ℓ)~∆+ (∆−∆∗

ℓ)~∆
tQ(ℓ)~∆ . (G.6)

In words, we are demanding that the left- and right-hand sides of (G.6) be the same polyno-
mial in ∆, which amounts to linear relations between the coefficients of P (ℓ) and Q(ℓ) and the
am,n. Such an equation must hold for each ℓ appearing in the crossing symmetry equation,
and if there are multiple flavor symmetry channels then there will be such an equation for
each channel. The problem is thus reduced to the search for a set of positive semidefinite
matrices whose entries satisfy certain linear constraints. This is a prototypical instance of a
semidefinite program, the basic theory of which we review next.

Semidefinite programming

A semidefinite program (SDP) is an optimization problem wherein the goal is to minimize
a linear objective function over the intersection of the cone of positive semidefinite matrices
with an affine space. Such a problem can be described in terms of a vector of real variables
xi as follows,

minimize
xi

(xic
i)

such that X := xiF
i − F 0 � 0 ,

(G.7)

where ci is a fixed cost vector that defines the objective function, and F i and F 0 are some
fixed square matrices.

This semidefinite program has a dual problem that is defined as the search for a positive
semi-definite matrix Y that maximizes an appropriate objective function and satisfies certain
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linear constraints,
maximize

Y
Tr(F 0 · Y )

such that Y � 0 ,

Tr(F i · Y ) = ci .

(G.8)

The original problem written in (G.7) – called the primal problem – and the dual problem
of (G.8) are not generally guaranteed to be equivalent. Indeed, given a solution xi to the
primal problem and a solution Y to the dual problem, a measure of the inequivalence of the
solutions is the duality gap:

xic
i − Tr(F 0 · Y ) = xiTr(F

i · Y )− Tr(F 0 · Y ) = Tr(X · Y ) > 0 , (G.9)

where the last line holds because both matrices are positive semidefinite.
The absence of a duality gap, and the existence of an optimal solution to the primal

(dual) problem, is guaranteed if the dual (primal) problem is bounded from above (below)
and has a strictly feasible solution, i.e., there exists a matrix Y ≻ 0 (X ≻ 0) satisfying the
relevant constraints. This is called Slater’s condition.

G.1 A toy model for polynomial inequalities

To demonstrate the application of semidefinite programming techniques to the type of cross-
ing symmetry problem being considered in chapter 2, let us consider a simplified model in
which the notation is less burdensome. Namely, consider the problem of studying the space
of solutions to a “crossing symmetry” equation of the form

∑

k

λ2kG∆k
(z) = c(z) , (G.10)

where ∆k are allowed to vary over the entire real line. We will assume that the functions
G∆(z) and their derivatives can be well approximated by polynomials in ∆, so we have

∂izG∆(z)
∣∣∣
z=1/2

≈
2N∑

α=0

piα∆
α =: P̂ i(∆) , (G.11)

where we have assumed that for a given range of values of i, each such polynomial has degree
less than or equal to some fixed even number 2N .1

1For the sake of comparison, we note that in the actual crossing symmetry equations encountered in
this work we have an additional z̄ coordinate, as well as sums over spins and possibly flavor symmetry
channels. Also the values of ∆k are bounded below in a given channel by unitarity bounds. However, these
complications do not conceptually change this discussion.
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G.1.1 The primal problem: ruling out solutions

To constrain the space of solutions to such a problem, we consider acting with a linear
functional φ on both sides of the equality and check for contradictions. The problem can be
formalized as follows,

minimize
φ

φ[c(z)]

such that φ[G∆(z)] > 0 ∀ ∆ .
(G.12)

If the minimum turns out to be negative then our toy problem has no solution. Taking
φ[f(z)] :=

∑n
i=0 ai∂

i
zf(z)

∣∣
z=1/2

, we can reformulate the optimization problem as follows

minimize
ai

aici

such that aiP̂
i(∆) > 0 ∀∆ .

(G.13)

where we have defined
ci := ∂izc(z)

∣∣
z= 1

2

. (G.14)

In terms of the vector ~∆ = (1,∆,∆2, . . .∆N)t, the second line of (G.13) requires the existence
of a symmetric, positive semidefinite matrix P̂ such that

P̂ (∆) = ~∆tP ~∆ with P � 0 . (G.15)

This allows us to reformulate the polynomial inequalities as a semidefinite program.
We begin by introducing two sets of matrices in terms of which the problem is naturally

reformulated. For N > 1, the matrix P is not completely fixed by (G.15) because there are
only 2N +1 components in P̂ (∆) whereas P has (N +1)(N +2)/2 independent components.
This redundancy in P can be parametrized by matrices Q satisfying

~∆tQ~∆ = 0 ∀∆ . (G.16)

Examples of such matrices Q are the 3× 3 matrices with (−1, 2,−1) on the cross-diagonal,
or the 4 × 4 matrix with (1,−1,−1, 1) on the cross-diagonal. All other matrices Q take a
similar form, and the first set of matrices we must introduce is a complete basis for such Q.
We denote the elements of this basis as Qî.

The second set of matrices are in one-to-one correspondence with the polynomials P̂ i(∆).
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They take the form:

P i :=




pi0
1
2
pi1 0 0 . . .

1
2
pi1 pi2

1
2
pi3 0 . . .

0 1
2
pi3 pi4

1
2
pi5 . . .

0 0 1
2
pi5 pi6 . . .

...
...

...
...

. . .




. (G.17)

By construction these matrices satisfy the condition

P̂ i(∆) = ~∆tP i~∆ . (G.18)

Armed with these matrices we can write down the most general matrix that, upon con-
traction from both sides with ~∆, gives the requisite polynomial:

aiP̂
i(∆) = ~∆t

(
aiP

i + bîQ
î
)
~∆ , (G.19)

where the bî are arbitrary real parameters. The optimization (G.13) can now be rephrased
as

minimize
ai,bî

aici

such that aiP
i + bîQ

î � 0 ,
(G.20)

which we recognize to be precisely a semidefinite program of the form given in (G.7), with

xi ∼ (ai, bî) , F i ∼ (P i, Qî) , F 0 = 0 . (G.21)

The constraints in (G.20) are invariant under an overall rescaling of the (ai, bî), so the optimal
value is either zero or negative infinity. To render the primal formulation bounded we can
introduce an additional normalization constraint

Tr(P ) = aiTr(P
i) + bîTr(Q

î) = 1 . (G.22)

This condition is always enforceable because a nonzero, positive semidefinite matrix has
strictly positive trace. Although other normalization conditions are possible, we will see
that (G.22) is particularly natural from the perspective of the dual problem. In practice, we
can simply solve the additional constraint for, say, a1 to end up with a bounded variation of
(G.20).
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G.1.2 The dual problem: constructing solutions

Let us now address the dual problem to (G.20) with the additional constraint (G.22). After
a little rewriting, the problem is as follows:

maximize
λ,Y

− λ

such that Y + λI � 0 ,

Tr(P i · Y ) = ci ∀ i,
Tr(Qî · Y ) = 0 ∀ î .

(G.23)

This is a well-known form of a feasibility problem, which is the search for a matrix Y � 0
subject to linear constraints. If the optimal value of λ comes out non-positive then such
a matrix Y exists (i.e., there is a feasible solution), otherwise it does not. In standard
applications the reason for introducing a variable λ multiplying the identity matrix I is
to ensure that a strictly feasible solution will always exist, because for λγ0 the matrix
Y + λI ≻ 0. Its appearance in (G.23) is a consequence of the trace constraint (G.22) in the
primal problem.

Whereas the primal problem amounted to the search for functionals that certify the
absence of solutions to crossing symmetry, dual problem is related to constructing solutions
to crossing symmetry [102]. Let us observe how this works for these semidefinite programs.

We first solve the constraints Tr(Qî · Y ) = 0. The most general solution is given by

Y = yαYα , α = 0, . . . , 2N, (G.24)

with arbitrary coefficients yα and with matrices Yα defined as

Y0 =




1 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .




, Y1 =




0 1 0 0 · · ·
1 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .




,
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Y2 =




0 0 1 0 · · ·
0 1 0 0 · · ·
1 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .




, · · · . (G.25)

Now let us choose tuples (λ2k,∆k) so that yα =
∑

k λ
2
k(∆k)

α. We then have Y =
∑

k λ
2
k
~∆k
~∆t
k

and the additional constraints of the form Tr(P i · Y ) = ci become

∑

k

λ2kP̂
i(∆k) = ci . (G.26)

This is precisely the crossing symmetry equation (G.10) after truncating to a finite number
of derivatives.

Finally, let us comment on the duality gap and the interpretation of solutions to this
problem. The freedom to set λ to a large positive number ensures that the above formulation
of the dual problem is strictly feasible. It is, however, not obviously bounded. From the
formulation of the problem it is clear that this is related to the existence of solutions to
crossing symmetry where c(z) = 0. More precisely, the problem is unbounded if there is a

positive semidefinite matrix Y that satisfies Tr(P i ·Y ) = 0 and Tr(Qî ·Y ) = 0 for all i and î.
In the absence of such solutions the problem is bounded, Slater’s condition is satisfied, and
there is no duality gap, so for the optimal values we find that −λ = aici. This equation makes
intuitive sense. Indeed, suppose the dual formulation does not find a solution to crossing
symmetry. This happens when −λ = aici < 0 and therefore the primal formulation indeed
provides a functional that proves that such a solution cannot exist. Similarly, suppose we
do find a matrix Y � 0 satisfying all the above constraints. In that case −λ = aici > 0, so
no functional can be found in the primal problem.

Extremal functionals

In the applications of this framework to study interesting physical theories, there are often
additional parameters in the problem such as assumed gaps in the spectrum for certain
spins. In such cases we are usually interested in finding the boundary in the space of such
parameters between regions where crossing symmetry can and cannot be satisfied. Precisely
at the boundary −λ = aici = 0. This turns out to imply that the corresponding solution
to crossing symmetry is completely determined by the zeroes of the extremal functional
[34, 123]. This is because the absence of a duality gap implies Tr(X · Y ) = 0 which together
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with the above assumption on the form of Y leads to

aiP
i(∆k) = 0 . (G.27)

The solution to crossing symmetry encoded in Y therefore involves precisely those values
of ∆ for which the extremal functional vanishes. This observation leads to the following
algorithm for finding the solution to crossing symmetry: one first lists the ∆k for which the
~∆t
kX

~∆k = 0, and then finding the λ2k reduces to solving the linear problem yα =
∑

k λ
2
k(∆k)

α.
Note that we require both the X and the Y matrix here.

G.2 Notes on implementation

In this work we have utilized the dual formulation of the semidefinite program associated to
crossing symmetry. We first solved all the linear constraints analogous to those appearing
in (G.23), leading to a smaller set of independent parameters that we denote zα̂ and corre-
sponding matrices Zα̂. The nonzero ci lead to an inhomogeneous term that we may call Z0̂.
The complete semidefinite program is then as above with

xi ⇒ (zα̂, λ) , F i ⇒ (Z α̂, I) , F 0 ⇒ Z0̂ , (G.28)

and a cost vector such that only λ is extremized. Since we were unable to rigorously show
that the dual problem was bounded in all cases, we added an additional constraint λ > 0.
In the primal problem this additional constraint transforms the trace equality (G.22) into
the inequality Tr(P ) 6 1. With this condition the optimal value will be zero if a solution
exists and no functional is found, or strictly negative if the opposite happens.

We used SDPA and SDPA-GMP solvers [194, 195], which use an interior point method
that simultaneously optimizes both the primal and dual problems, and that terminates when
the duality gap is below a certain (small) threshold. This requires a strictly feasible solution
to both the primal and the dual problem, and our formulation of the problem ensures that
such strictly feasible solutions exist. Furthermore, we found that a normalization of the
form given in (G.22) improves numerical stability compared to other normalizations such
as, e.g., aici = 1. We ascribe this difference to the fact that aici naturally tends to zero
in physically interesting regions, and so setting it to one as a normalization leads to large
numbers elsewhere.2

In order to achieve maximal numerical stability we ‘renormalized’ many of the numbers
fed into the problem. For example, the polynomials P i(∆) can be redefined by multiplying
with an overall (positive) constant, by affine redefinitions of ∆, and by choosing a different
basis for the space of derivatives. Altogether these reparametrizations give us the freedom

2Our normalization is not suitable for obtaining bounds on OPE coefficients. In that case we need to
normalize the functional as described in Section 4.5.
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Parameter Value

maxIteration 1000

epsilonStar 10−12

lambdaStar 108

omegaStar 106

lowerBound −1030

upperBound 1030

betaStar 0.1

betaBar 0.3

gammaStar 0.9

epsilonDash 10−12

precision 200

Table G.1: Parameters used for the SDPA and SDPA-GMP solvers. The ‘precision’ variable
is only relevant for the SDPA-GMP solver.

to transform the problem according to

P i(∆)→M i
jP

j(a∆+ b) , ci →M i
jc
j . (G.29)

We chooseM i
j , a, and b so as to minimize the potential for numerical inaccuracies. Numerical

stability can be further improved by rescaling the normalization condition Tr(X) = 1 to
Tr(X) = µ for a positive real µ. (In the dual problem µ becomes the cost vector, so this
parameter is introduced through the optimization of µλ instead of λ.) In order to avoid
large numerical differences between the primal and the dual formulation, we choose µ large
so that X, which is a matrix of size O(103), can have O(1) entries on its diagonal.

In previous implementations of the numerical bootstrap as a semidefinite program [35],
it was necessary to employ the arbitrary precision solver SDPA-GMP to avoid numerical
instabilities. The setup described above, with Slater’s condition satisfied and coefficients
that are suitably renormalized, has allowed us to use the double precision SDPA program
for low and intermediate values of Λ. Since working at machine precision is significantly
faster than working at arbitrary precision, we were able to explore a much greater range of
the parameter space given our computational resources. We still found it necessary to switch
to SDPA-GMP for higher values of Λ, with the exact transition value somewhat dependent
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on the problem at hand. For example, we had to switch at Λ = 16 for the bounds on theories
with e6 flavor symmetry shown in Section 4.6, but were able to obtain reliable results with
double precision numerics up to Λ = 22 for some of the bounds on theories with su(2) flavor
symmetry. Typical settings for the parameters of both the SDPA and SDPA-GMP solvers
can be found in Table G.1.
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Appendix H

Polynomial approximations and
four-dimensional conformal blocks

The semidefinite programming approach to the numerical bootstrap depends on our ability
to approximate conformal blocks of fixed spin ℓ and varying conformal dimension ∆ by
polynomials in ∆ [35, 125]. This appendix includes a brief review of these approximations
and some details relevant to the special cases of interest. The goal is to express the conformal
blocks and their derivatives in a factorized form, with one factor being a function that can
be well approximated by a polynomial in ∆, and the other a non-polynomial term that is
strictly positive and independent of the choice of derivative. We denote the polynomial in
∆ by P (ℓ)

m,n(∆) and the non-polynomial term by χ(∆, ℓ), so the approximation takes the
following form,

∂mz ∂
n
z̄G

(ℓ)
∆ (z, z̄)|z=z̄= 1

2
≈ χ(∆, ℓ)P (ℓ)

m,n(∆) . (H.1)

The starting point for this approximation scheme is a recursion relation for derivatives of
the hypergeometric functions appearing in conformal blocks,

[
d2

dz2
+

1− a− b
z − 1

d

dz
+
β2 − β + abz

z2(z − 1)

] (
zβ 2F1 (β − a, β − b, 2β, z)

)
= 0 . (H.2)

This recursion relation follows immediately from the fact that the 2F1 hypergeometric func-
tion is a solution to Euler’s differential equation. Using this relation, any derivative of the
above hypergeometric function at fixed z can be expressed as the sum of the zeroth and first
order derivatives of the same hypergeometric function, each with some polynomial in β as
a prefactor. Thus the only non-polynomial feature of any derivative of the hypergeometric
function can be expressed in terms of the value of the hypergeometric function itself and
that of its first derivative.

To approximate conventional conformal blocks we follow exactly the same steps as in
[35]. From (F.1) any derivative of a conformal block ∂mz ∂

n
z̄G

(ℓ)
∆ (z, z̄) can be rewritten, by

recursive use of (H.2) with a = b = 0, in terms of the hypergeometric functions and their
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first derivatives. These functions encode all of the non-polynomial dependence on ∆. We
can then pull out factors out of the blocks such that the leftover expression can be well
approximated by polynomials. To start we factor out the following term

1

ββ̄

(
∂

∂z
zβ2F1(β, β, 2β, z)

) ∣∣∣∣
z= 1

2

(
∂

∂z
zβ̄2F1(β̄, β̄, 2β̄, z)

) ∣∣∣∣
z= 1

2

. (H.3)

Here we have β = ∆+ℓ
2
, β̄ = ∆−ℓ−2

2
. This is positive for all β > −1, and so it is positive

for any conformal block appearing in a unitary theory. After factoring out this positive
non-polynomial term, the remaining non-polynomial dependence is isolated in the following
ratio (and a similar one for β → β̄),

Kβ =
βzβ2F1(β, β, 2β, z)
∂
∂z
zβ2F1(β, β, 2β, z)

∣∣∣∣∣
z= 1

2

≃ 1√
2

M∏

j=0

(β − rj)
(β − sj)

≡ NM(β)

DM(β)
. (H.4)

The coefficient rj is the j–th zero of 2F1(β, β, 2β, z) and the coefficient sj the j–th zero of
∂
∂z
zβ2F1(β, β, 2β, z).

1 The rational function NM (β)
DM (β)

is an approximation of Kβ obtained by
restricting to the firstM zeroes of both the numerator and denominator. The approximation
becomes arbitrarily good as M is increased, and converges very quickly, as described in [35].

The last step is to multiply by D(β)D(β̄), which is strictly positive for the same range
of β and β̄. In this way we have factored out all of the nonpolynomial dependence of
∂mz ∂

n
z̄G

(ℓ)
∆ (z, z̄), which defines χ(∆, ℓ) in (H.1), and are left with a polynomial in ∆, P (ℓ)

m,n(∆),
whose degree is controlled by the number of terms M kept in the approximation (H.4).
Exactly this approximation is used for the blocks in the 2̂ channel for the Er correlator, and
for all the blocks in the B̂1 correlator (with a shift ∆→ ∆+ 4).

For superconformal blocks in the 1̂ channel given in (4.78) the procedure is analogous.
This time we use (H.2), where now a = 1 and b = −1, to write all of the block derivatives in
terms of the zeroth and second derivatives of the hypergeometric function. In this case we
define β = ∆+ℓ+2

2
and β̄ = ∆−ℓ

2
. The first step is again to factor out

(
1

β(β − 1)

∂2

∂z2
zβ2F1(β, β, 2β, z)

) ∣∣∣∣
z= 1

2

(
1

β̄(β̄ − 1)

∂2

∂z2
zβ2F1(β̄, β̄, 2β̄, z)

) ∣∣∣∣
z= 1

2

, (H.6)

which is positive for all possible values of β and β̄ occurring in the relevant OPE (β, β̄ >

1In practice we compute the zeros of the latter by making use of the following identity, which relates it
to another hypergeometric function

dn

dzn
[
zβ−a+n−1

2F1 (β − a, β − b, 2β, z)
]
= (β − a)n z

β−a−1
2F1 (β − a+ n, β − b, 2β, z) , (H.5)

where in this case we want to use n = 1, and we have a = 0.
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1). The remaining nonpolynomial dependence is then encoded by ratios of hypergeometric
functions and their second derivatives. As it happens, an application of various identities
for hypergeometric functions (cf. [196]) allows us to express this nonpolynomial quantity in
terms of the same function Kβ, so we utilize the same approximation of (H.4) and find

2F1

(
β − 1, β + 1, 2β, 1

2

)

2F1

(
β + 1, β + 1, 2β, 1

2

) =
1 + 4(β − 1)Kβ

4 + 8(β − 1)Kβ

≃ DM(β) + 4(β − 1)NM(β)

4DM(β) + 8(β − 1)NM(β)
. (H.7)

Here we used (H.5) to relate the second derivative of the hypergeometric function to a dif-
ferent hypergeometric function. A similar ratio appears for the β̄ dependent hypergeometric
functions, which we approximate in the same way. After approximating Kβ by (H.4) we can
again factor out another strictly positive denominator (4DM(β)+8(β−1)NM(β))(4DM(β̄)+
8(β̄ − 1)NM(β̄)) for the same range of β, β̄.

The approximation for the braided superconformal block goes in the same way. (We will
now ignore the β̄ dependence since it is simply obtained by β → β̄ in the discussion below.)
We start by noting that braiding the block has the following effect on the hypergeometric
functions [196]

2F1

(
β − 1, β + 1, 2β,

z

z − 1

)
= (1− z)β−1

2F1 (β − 1, β − 1, 2β, z) . (H.8)

The next step is now to write all derivatives in terms of the zeroth and second derivatives of
the hypergeometric function by means of (H.2) with a = 1, b = 1. We can then again factor
out any nonnegative and nonpolynomial terms, beginning with zβ2F1(β−1, β−1, 2β, 1

2
)(β−

1)β which is strictly positive for β > 1. The residual non-polynomial dependence is then
given by

2F1

(
β − 1, β + 1, 2β, 1

2

)

2F1

(
β − 1, β − 1, 2β, 1

2

) = 4
2F1

(
β − 1, β + 1, 2β, 1

2

)

2F1

(
β + 1, β + 1, 2β, 1

2

) ≃ 4
DM(β) + 4(β − 1)NM(β)

4DM(β) + 8(β − 1)NM(β)
,

(H.9)
where we have rewritten, through (H.5), the second derivative of the hypergeometric func-
tion as zβ−2

2F1 (β − 1, β + 1, 2β, 1/2), and used several hypergeometric identities. For the
relevant range of β the denominator in the above equation is strictly positive, and it is the
final term to be factored out.

The ratio rj/sj tends to one extremely fast, and we observed that truncating the product
in (H.4) at M = 4 was already accurate enough for all Λ 6 22. For 22 < Λ 6 30 we found
that M = 5 was sufficient. In a number of cases we repeated the numerical analysis with
M = 6 and verified that there was no change in the results.
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Appendix I

Exact OPE coefficients for the N = 2
chiral ring

The OPE coefficients of Coulomb branch chiral ring operators in four-dimensional N = 2
SCFTs satisfy four-dimensional tt⋆ equations [173, 174]. In this appendix we limit our
attention to the case of theories with a conformal manifold that has one complex dimension,
i.e., theories with just a single E2 multiplet. In such cases there is a close connection between
the chiral ring OPE coefficients and the Zamolodchikov metric on the conformal manifold.
After diagonalization of the fields, the OPE of the (unit normalized) chiral operators takes
the form

E2(x)E2(0) = λE4E4(0) + . . . , (I.1)

and we are interested in the squared OPE coefficient λ2E4 . Precisely this coefficient is part of
a solvable subsector of the tt∗ equations and it takes the form

λ2E4 = 2 +
∂τ∂τ̄ log(gτ τ̄ )

gτ τ̄
= 2− 1

2
R[gτ τ̄ ] , (I.2)

where gτ τ̄ is the only nonvanishing component of the Zamolodchikov metric on the conformal
manifold.1 On the right-hand side we recognize the expression for the scalar curvature of the
Zamolodchikov metric. The bounds reported in Section 4.7 for λ2E4 therefore provide lower
and upper bounds on this curvature.

Let us consider a few examples, starting with the theory of n free vector multiplets. The
superconformal primary of the flavor singlet E2 multiplet in this theory is ϕaϕa(x), with ϕ(x)
the scalar operator in the vector multiplet. We can compute λ2E4 directly by performing Wick
contractions, whereupon we find

n free vector multiplets: λ2E4 = 2 + 4
n
= 2 + 2

3c
. (I.3)

1In the notations of [174], this is the metric written as gij̄ . This differs from the true Zamolodchikov
metric Gij̄ by a factor of 192.
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In the last equality we have used the precise value of the central charge in this theory:
c = n/6. In any N = 2 superconformal gauge theory with gauge group G, the tree-level
value for this OPE coefficient takes the same form,

tree level gauge theory: λ2E4 = 2 + 4
dim(G)

> 2 + 2
3c
. (I.4)

The inequality is a consequence of the fact that the central charge of a superconformal gauge
theory is always greater than that of the vector multiplets alone.

In N = 4 supersymmetric Yang-Mills theory, the central charge is c = 1
4
dim(G). In this

special case, extended supersymmetry prevents the OPE coefficient in question from being
renormalized. Consequently the exact value (for all values of the complex gauge coupling)
is given by the tree-level result,

N = 4 super Yang-Mills: λ2E4 = 2 + 1
c
. (I.5)

In many N = 2 SCFTs, this OPE coefficient is made accessible by the relation between
the Kähler metric on the conformal manifold and the S4 partition function [197],

gij̄ = ∂i∂k̄ log(ZS4) . (I.6)

It is frequently the case that the partition function ZS4 can be computed exactly using
supersymmetric localization [198]. As an example, consider N = 2 SCQCD with Nf = 4
flavors (sometimes referred to in the text as the so(8) theory). The Nekrasov instanton
partition function that features in the localization result is related to four-point Virasoro
conformal blocks [86]. These in turn are efficiently computed using the recursion relations
developed in [199]. Altogether, one ultimately finds the following expression for the S4

partition function,

logZS4(q) = log

(∫ ∞

−∞

da a2|16q|2a2
∣∣∣∣
G(1 + 2ia)2

G(1 + ia)8

∣∣∣∣
2

H(a, q)H(a, q̄)

)
+ f(τ) + f(τ̄) , (I.7)

where the functions f(τ) are Kähler transformations that drop out in the computation of
the curvature, and G(z) is Barnes’ G-function.2 The function H(a, q) has been defined in
[199] by means of a somewhat intricate recursion relation that we will not review here. It
is a building block of the Virasoro four-point conformal block with c = 25, all four external
dimensions equal to one, and internal dimension equal to 1 + a2. The first few terms in its
series expansion take the form

H(a, q) = 1 +
12 (a2 + 2) q2

(4a2 + 9)2
+

18 (32a6 + 308a4 + 955a2 + 940) q4

(4a2 + 9)2 (4a2 + 25)2
+ · · · . (I.8)

2This function is implemented in Mathematica as BarnesG[z].
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Figure I.1: The value of λ2E4 for N = 2 SQCD with Nf = 4 flavors. The coupling is shown
as a function of the exactly marginal complexified gauge coupling τ = θ

2π
+ 4πi

g2
, and the

fundamental domain for the action of SL(2,Z)-duality on the coupling plane is outlined in
red.

One should note that the parameter q is qIR which is not the same parameter as the parameter
qUV used in [198] and in [173, 174].3 The relation between the two is given in [86], and also
in [199],

qIR = exp(iπτIR) = exp

(
−πK(1− qUV)

K(qUV)

)
. (I.9)

Here K(m) is the complete elliptic integral of the first kind.4 The explicit form of this trans-
formation is in fact not particularly relevant for our purposes because the scalar curvature
is a diffeomorphism invariant. But it is τIR that is valued in the fundamental domain for
the action of SL(2,Z) on the upper half plane. Namely, under S- and T -transformations we
have

T : τIR → −1/τIR , qUV → 1− qUV , (I.10)

S : τIR → τIR + 1 , qUV →
qUV

qUV − 1
. (I.11)

The transformations of qUV describe the action of crossing symmetry on the Liouville four-
point function.

The value of the OPE coefficient λ2E4(τ) can be computed numerically to arbitrary accu-
racy at any value of the coupling. The free-field value is given by λ2E4(τ =∞) = 10/3. The

3An early discussion of this point can be found in [200].
4This function is implemented in Mathematica as EllipticK[m].
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OPE coefficient decreases monotonically as a function of the gauge coupling and becomes
stationary at the self-dual points. To get reasonable accuracy we need to expand H(q) to
order q8, resulting in the following stationary values:

λ2E4(τ = i) = 2.8983769 . . . λ2E4(τ = eiπ/3) = 2.8940994 . . . (I.12)

This OPE coefficient is plotted in Fig. I.1. The stationary point at τ = i is a saddle point,
while the global minimum occurs at τ = eiπ/3, so the range for this OPE coefficient is given
by

2.8940994 . . . 6 λ2E4(τ) 6
10

3
. (I.13)

This is the range of values that appear in Fig. 4.26 of Section 4.7.
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Appendix J

Superconformal blocks for
six-dimensional (2, 0) theories

In this appendix we collect results relevant for the decomposition in superconformal blocks
of the stress tensor multiplet four-point function.

The six-dimensional conformal blocks for the decomposition of a four-point function of
scalar operators with conformal dimension ∆i, i = 1, . . . , 4, G(ℓ)∆ (∆12 := ∆1 − ∆2,∆34 :=
∆3 −∆4; z, z̄), are given by [138, 201]:

G(ℓ)∆ (∆12,∆34; z, z̄) = F00 −
ℓ+ 3

ℓ+ 1
F−11 +

(∆− 4)(ℓ+ 3)

16(∆− 2)(ℓ+ 1)(∆− ℓ−∆34 − 4)

(∆− ℓ−∆12 − 4)(∆− ℓ+∆12 − 4)(∆− ℓ+∆34 − 4)

(∆− ℓ− 5)(∆− ℓ− 4)2(∆− ℓ− 3)
F02

− ∆− 4

∆− 2

(∆ + ℓ−∆12)(∆ + ℓ+∆12)(∆ + ℓ+∆34)(∆ + ℓ−∆34)

16(∆ + ℓ− 1)(∆ + ℓ)2(∆ + ℓ+ 1)
F11

+
2(∆− 4)(ℓ+ 3)∆12∆34

(∆ + ℓ)(∆ + ℓ− 2)(∆ + ℓ− 4)(∆ + ℓ− 6)
F01 , (J.1)

where

Fnm(z, z̄) =
(zz̄)

∆−ℓ
2

(z − z̄)3
((
−z
2

)ℓ
zn+3z̄m

2F1

(
∆+ ℓ−∆12

2
+ n,

∆+ ℓ+∆34

2
+ n,∆+ ℓ+ 2n, z

)

2F1

(
∆− ℓ−∆12

2
− 3 +m,

∆− ℓ+∆34

2
− 3 +m,∆− ℓ− 6 + 2m, z̄

)

− (z ←→ z̄)) .
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The projectors onto the various so(5)R symmetry irreducible representation appearing in
the decomposition of the four-point function (5.26) are given by [42, 43]

Y [4,0](α, ᾱ) = σ2 + τ 2 + 4στ − 8(σ + τ)

9
+

8

63
,

Y [2,2](α, ᾱ) = σ2 − τ 2 − 4(σ − τ)
7

,

Y [0,4](α, ᾱ) = σ2 + τ 2 − 2στ − 2(σ + τ)

3
+

1

6
,

Y [0,2](α, ᾱ) = σ − τ ,
Y [2,0](α, ᾱ) = σ + τ − 2

5
,

Y [0,0](α, ᾱ) = 1 , (J.2)

where σ = αᾱ and τ = (α− 1)(ᾱ− 1).
The superconformal blocks for the D[2, 0] four-point function decomposition are obtained

in [42]. We quote here the results relevant for our purposes. As discussed before, for each
so(5)R channel the superconformal blocks can be obtained from two functions a(z, z̄) and
h(z), through

A[4,0](z, z̄) =
1

6
u4∆2

[
u2a(z, z̄)

]
,

A[2,2](z, z̄) =
1

2
u4∆2 [u(v − 1)a(z, z̄)] ,

A[0,4](z, z̄) =
1

6
u4∆2 [u(3(v + 1)− u)a(z, z̄)] ,

A[0,2](z, z̄) =
1

2
u4∆2

[
(v − 1)

(
(v + 1)− 3

7
u

)
a(z, z̄)

]

−u2
(
(z − 2)zh′(z) + (z̄ − 2)z̄h′(z̄)

2(z − z̄)2 + (z + z̄ − zz̄)h(z)− h(z̄)
(z − z̄)3

)
,

A[2,0](z, z̄) =
1

2
u4∆2

[(
(v − 1)2 − 1

3
u(v + 1) +

2

27
u2
)
a(z, z̄)

]

+u2
(
zz̄
h(z)− h(z̄)
(z − z̄)3 − z2h′(z) + z̄2h′(z̄)

2(z − z̄)2
)
,

A[0,0](z, z̄) =
1

4
u4∆2

[(
(v + 1)2 − 1

5
(v − 1)2 − 3

5
u(v + 1) +

3

35
u2
)
a(z, z̄)

]

−u2 (5(1− z) + z2)h′(z) + (5(1− z̄) + z̄2)h′(z̄)

5(z − z̄)2

274



+u2 (2zz̄ + 5(1− z) + 5(1− z̄)) h(z)− h(z̄)
5(z − z̄)3 . (J.3)

Each A[i,j](z, z̄) admits a decomposition in a finite number of conformal blocks, given in
Eq. (J.1) with ∆i = 4, with positive coefficients. As explained in section 5.3, the relative
coefficients between conformal primaries belonging to the same superconformal multiplets
are fixed, and there is only one unfixed OPE coefficient per superconformal multiplet. This
is apparent from the form of (J.3), where we see we only need to specify how each supercon-
formal multiplet contributes to a(z, z̄) and h(z). This information is summarized in table
5.1. To go from the contribution of each superconformal multiplet to a(z, z̄) and h(z) to a
finite sum over conformal blocks, which includes acting with the differential operator ∆2, one
can make use of the recurrence relations given in appendix D of [42], which were corrected
in [133].
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