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2016

Multidrug resistance is a major obstacle to effective cancer chemotherapy. New-generation
taxoids SB-T-1214 and SB-T-1216 have shown two to three orders of magnitude higher potency
than those of paclitaxel and docetaxel against multidrug-resistant cancer cell lines. A structure-
activity relationship (SAR) study has been conducted in order to test which moiety of the new-

generation taxoids account for the high potency against multidrug resistant cancer cell lines.

In order to selectively deliver new-generation taxoids into tumor cells, tumor-targeted drug
delivery systems with a smart methyl-branched disulfide linker have been developed in the
Ojima laboratory. The metabolic stability of this disulfide linker has been assessed in various
solvent systems including biologically relevant cell culture media and human blood plasma via

real-time kinetic analysis by '°F NMR.

Polyamidoamine (PAMAM) dendrimers are attractive anticancer drug delivery vehicles,
because of their well-defined architectures and biocompatible properties. Novel PAMAM
dendrimer-based tumor-targeting multifunctional conjugates have been designed, synthesized,
and characterized. Biological evaluations of these conjugates against various cancer cell lines
have been conducted via MTT cytotoxicity assays, confocal fluorescence microscopy (CFM)

imaging, and flow cytometry analysis.
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Potential binding sites of novel benzimidazole inhibitors with FtsZ proteins have been
identified via molecular docking, homology modeling, and protein alignment for antitubercular

drug discovery. Novel mechanism of action has been proposed based on the docking results.

A pharmacophore-guided docking strategy has been developed for designing novel FABP
inhibitors as anti-nociceptive and anti-inflammatory agents. Newly designed analogs have better

binding energy scores and smaller cLogP values.
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Chapter 1

Design, Synthesis, and Biological Evaluation of New-Generation Taxoids
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§ 1.1 Introduction
§ 1.1.1 Cancer and Cancer Statistics

Cancer is a collection of diseases characterized by uncontrolled growth of abnormal cells,
which are capable of invading surrounding tissues. As a genetic disease, cancer has the
capabilities to sustain chronic proliferation by controlling of mitogenic signaling, circumvent
tumor suppressor genes, resist apoptotic programmed cell death, divide with unlimited
replicative potential, develop angiogenesis, and activate local invasion as well as distant
metastasis (Figure 1.1)." In addition to these well-studied hallmarks of cancer, emerging
attributes of cancer cells, such as reprogramming of cellular energy metabolism and evading
elimination by immune cells, have been proposed to be important for the development of cancer
as well.'

Sustaining proliferative
signaling

Resisting Evading growth
cell death suppressors

Inducing Activating invasion
angiogenesis and metastasis

Enabling replicative
immortality

Figure 1.1 The hallmarks of cancer. Reprinted from Cell, /44, Hanahan, D.; Weinberg, R. A.,
Hallmarks of Cancer: The Next Generation, 646-674, Copyright (2011), with permission from
Elsevier.

Cancer is the second leading cause of death in the United States, exceeded only by heart
disease.” The lifetime risk of developing an invasive cancer is 42% for men and 38% for
women.”” It is estimated in 2016, 1,685,210 new cancer cases and 595,690 cancer deaths are
expected to occur in the United States.” Figure 1.2 shows the top 10 common cancer types for
the estimated new cancer cases and deaths by sex in 2016. Prostate (21%), lung and bronchus
(14%), and colorectal cancers (8%) account for 44% of the new cases in men; breast (29%), lung
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and bronchus (13%), and colorectal cancers (8%) account for 50% of the new cases in women.”
Lung and bronchus cancer is the leading cancer type for deaths in both men and women,
accounting for 27% and 26% respectively.”

Estimated New Cases

Males Females

Prostate 180,890 21% Breast 246,660 29%

Lung & bronchus 117,920 14% Lung & bronchus 106,470 13%

Colon & rectum 70,820 8% Colon & rectum 63,670 8%

Urinary bladder 58,950 % Uterine corpus 60,050 7%
Melanoma of the skin 46,870 6% Thyroid 49,350 6%
Non-Hodgkin lymphoma 40,170 5% Non-Hodgkin lymphoma 32,410 4%
Kidney & renal pelvis 39,650 5% Melanoma of the skin 29,510 3%
Oral cavity & pharynx 34,780 4% Leukemia 26,050 3%
Leukemia 34,090 4% Pancreas 25,400 3%

Liver & intrahepatic bile duct 28,410 3% Kidney & renal pelvis 23,050 3%
All Sites 841,390 100% All Sites 843,820 100%

Estimated Deaths

Males Females

Lung & bronchus 85,920 27% Lung & bronchus 72,160 26%

Prostate 26,120 8% Breast 40,450 14%

Colon & rectum 26,020 8% Colon & rectum 23,170 8%

Pancreas 21,450 7% Pancreas 20,330 7%

Liver & intrahepatic bile duct 18,280 6% Ovary 14,240 5%
Leukemia 14,130 4% Uterine corpus 10,470 4%

Esophagus 12,720 4% Leukemia 10,270 4%

Urinary bladder 11,820 4% Liver & intrahepatic bile duct 8,890 3%
Non-Hodgkin lymphoma 11,520 4% Non-Hodgkin lymphoma 8,630 3%
Brain & other nervous system 9,440 3% Brain & other nervous system 6,610 2%
All Sites 314,290 100% All Sites 281,400 100%

Figure 1.2 Ten leading cancer types for the estimated new cancer cases and deaths by sex,
United States, 2016. Reproduced from Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer Statistics,
2016. Ca-Cancer J Clin 2016, 66, 7-30, with permission from John Wiley & Sons.

Globally, according to the International Agency for Research on Cancer (IARC), it was
estimated 14.1 million new cancer cases and 8.2 million deaths in 2012.* Among different cancer
types, lung cancer (1.82 million), breast cancer (1.67 million), and colorectal cancer (1.36
million) are most commonly diagnosed, and lung cancer (1.6 million) is also the leading cause of
cancer deaths worldwide.”



§ 1.1.2 Paclitaxel and Taxanes

Cancer chemotherapy is one of the most common treatments for cancer. The goal of cancer
chemotherapy is to stop the growth, invasion, and metastasis of cancer cells by using highly
potent cytotoxic agents. Cancer chemotherapeutic agents could be classified into different
categories based on different criteria. For example, chemotherapeutic drugs could be grouped as
alkylating agents, antimetabolites, antibiotics, mitosis inhibitors, topoisomerases inhibitors and
others based on the mechanism of action (MOA) in a classical classification manner.’

Paclitaxel is one of the most successful chemotherapeutic agents approved by the U.S. Food
and Drug Administration (FDA). This diterpenoid natural product was first isolated from the
bark of the pacific yew tree, Taxus brevifolia, by Dr. Monroe Wall and Dr. Mansukh Wani
during a screening program initiated by National Cancer Institute (NCI) to find anticancer agents
in plants in the 1960s.° The chemical structure of paclitaxel was subsequently elucidated and
reported in 1971.” The chemical structure of paclitaxel consists of a tetracyclic baccatin III core,
with an N-benzoylphenylisoserine side chain at the C-13 position (Figure 1.3). Paclitaxel was
later developed by Bristol-Myers Squibb (BMS) under the trademark name Taxol®, and
subsequently approved by FDA for the treatment of ovarian cancer (1992), breast cancer (1994),
Kaposi’s sarcoma (1997), and non-small cell lung cancer (NSCLC) (1998).?

paclitaxel

Figure 1.3 Chemical structure of paclitaxel (Taxol®)

The mechanism of action of paclitaxel was first discovered and reported by Dr. Susan
Horwitz and her colleagues in 1979.”'° Unlike other antimitotic drugs such as vinblastine and
vincristine, which inhibit microtubule assembly, paclitaxel is a microtubule-stabilizing agent.”'*
Microtubules, composed of o- and B-tubulin heterodimers, are highly dynamic filamentous
protein polymers, and play an important role in mitosis and cell division. Paclitaxel binds to a
pocket in the second globular domain of the B-tubulin subunit of the tubulin heterodimer,
increasing the affinity for other surrounding tubulin molecules presumably by inducing a
conformation change."' As a result, dynamics of the microtubule assembly is stabilized, and
ability of chromosome to separate during mitosis is inhibited, eventually lead to apoptosis of
cells."' The mechanism of action of paclitaxel is illustrated in Figure 1.4."
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Figure 1.4 The mechanism of action of paclitaxel. Reproduced from Kingston, D. G. I. Taxol, a
molecule for all seasons. Chem Commun 2001, 10, 867-880, with permission of The Royal
Society of Chemistry.

In addition to paclitaxel, other taxanes were also developed to treat various types of cancer.
Docetaxel (Taxotere®) is a semi-synthetic analogue of paclitaxel, and was approved by FDA for
the treatment of non-small cell lung cancer (NSCLC) (1999), prostate cancer (2004), breast
cancer (2004), head and neck cancer (2006), and gastric cancer (2006)."* Recently, cabazitaxel
(Jevtana®), another taxane anticancer agent, was approved by FDA for the treatment of
hormone-refractory metastatic prostate cancer (2010).'* The chemical structures of docetaxel and
cabazitaxel are shown in Figure 1.5. A number of other taxane anticancer agents are currently
under clinical investigations.

docetaxel cabazitaxel

Figure 1.5 Chemical structures of docetaxel (left) and cabazitaxel (right)



§ 1.1.3 Semi-synthesis of Taxanes via the f-Lactam Synthon Method

After paclitaxel advanced into clinical studies in the 1980s, the supply of this natural
product became a problem. The original supply from the extracts of the bark of pacific yew tree
only produce paclitaxel in low yield, and this non-renewable process creates serious
environmental concerns about the old-growth forests in the Pacific Northwest of the United
States.'>"” In order to produce large-scale paclitaxel to meet the need of clinical studies, various
methods were explored including bioproduction of paclitaxel by plant tissue culture, total
synthesis of paclitaxel, as well as semi-synthesis of this natural product from renewable
sources.'>"

The total synthesis of paclitaxel is challenging because of this complex natural product
contains 4 fused ring systems and 11 chiral centers. In spite of such difficulties, synthetic
chemists have accomplished the total synthesis of paclitaxel over the years, first by Holton'®"
and Nicolaou'®* simultaneously in 1994, and later by Danishefsky> (1996), Wender*** (1997),
Kuwajima®® (1998), Mukaiyama®’ (1999), Takahashi*® (2006), as well as most recently by Sato-
Chida®?® and Nakada® (2015) in two formal syntheses to a Takahashi intermediate. These
synthetic efforts are intriguing and impressive in the field of organic synthesis. However, such
methods could not meet the demands of large quantities of pure paclitaxel for clinical trials due
to long steps and low yields.

On the other hand, semi-synthesis of paclitaxel via the B-lactam synthon method (B-LSM)
first developed by Ojima® and Holton™ in 1992 from 10-deacetyl-baccatin III (10-DAB III)
(Figure 1.6), a renewable source from the needles of European yew tree, is much more practical,
and eventually became the commercial way for producing paclitaxel by Bristol-Myers Squibb
(BMS).

10-deacetyl baccatin Ill (10-DAB IlI)

Figure 1.6 Chemical structure of 10-deacetyl-baccatin III (10-DAB III)

In 1981, Potier discovered that 10-deacetyl-baccatin III (10-DAB III) could be extracted
from the needles of European yew tree (Taxus bacata L.) in high yield (~ 1 g/kg of fresh leaves
at that time).”* Although 10-DAB III is far less active than paclitaxel, this discovery eventually
led to the semi-synthesis of paclitaxel commercialized. The isolation of this semi-synthesis
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precursor was later developed by an Italian company called Indena S.p.A., to provide large
115

quantities of 10-DAB III to BMS for conversion to paclitaxel.

In 1988, Greene and Potier developed the first semi-synthesis route to paclitaxel from 7-
TES-baccatin III by reacting the C-13 hydroxyl group with protected N-benzoylphenylisoserine
side chain found in paclitaxel in the presence of di-2-pyridyl carbonate (DPC) and 4-
dimethylaminopyridine (DMAP) (Figure 1.7).> This procedure, however, suffered from low
conversion even if harsh conditions, long reaction time, as well as large excess of optically pure
(2R,3S)-N-benzoyl-1-O-EE-3-phenylisoserine (EE = ethoxyethyl) were used.”>”® In addition,
considerable epimerization at the C-2° hydroxyl group from the phenylisoserine moiety during
coupling was observed.’® Therefore, a more practical and efficient semi-synthesis method was
needed to solve these problems.

O OTES W (6 eq)

1) DPC (6 eq), DMAP (2 eq)
toluene, 73 °C, 100 h
80 % at 50 % conversion
2) 0.5 % HCI/EtOH
0°C,30h
7-TES-baccatin Il 89 % paclitaxel

H

Figure 1.7 Greene-Potier’s protocol for semi-synthesis of paclitaxel

Later, in a patent application, Holton used 7-TES-baccatin III to couple with five
equivalents of enantiopure (3R,4S5)-N-benzoyl-3-O-EE-B-lactam in the presence of DMAP and
pyridine, followed by deprotection with aq. HCI to afford paclitaxel.” This protocol, however, is
still inefficient because large excess of enantiopure f-lactam (5 eq) is required and long reaction
time (> 12 h) is needed, and this B-lactam was obtained through tedious optical resolution at that
time. Ojima developed a more efficient coupling condition by employing NaH or NaHMDS or
LiHMDS as the base to generate 13-O-metalated derivatives of 7-TES-baccatin III to react with
enantiopure B-lactam, and coupling product was obtained in excellent yield within 30 min with
only slight excess of B-lactam (1.2 eq) (Figure 1.8).*> Moreover, enantiopure p-lactam was
generated by a highly efficient chiral ester-enolate imine cyclocondensation reaction developed
in the Ojima laboratory in 1990.°”*® Holton and his collaborators developed a similar process
independently using 13-O-lithiated-7-TES-baccatin III to couple with enantiopure B-lactam for
the synthesis of paclitaxel, and was adopted by BMS for commercial production.*



0] (1.2 eq)

1) LIHMDS or NaHMDS,
THF, -30 °C, 30 min
85 % to 93 %

2) 0.5 % HCI/EtOH
89 % to 92 %
7-TES-baccatin Il paclitaxel

Figure 1.8 Ojima-Holton’s protocol for semi-synthesis of paclitaxel

Semi-synthesis of docetaxel was achieved in a similar manner by reacting 7,10-diTroc-
deacetyl baccatin III (Troc = 2,2,2-trichloroethyoxycarbonyl) with (3R,4S)-N-tert-
butoxycarbonyl-3-O-EE-B-lactam under NaHMDS as the base (Figure 1.9).*° It is worth to
mention Holton’s earlier protocol using DMAP and pyridine did not work in the semi-synthesis
of docetaxel, due to the lack of reactivity of (3R,4S)-N-tert-butoxycarbonyl-3-O-EE-B-lactam, as

the electron withdrawing ability of fert-butoxycarbonyl group is much weaker than benzoyl
39,40

group.

o) A
| (1.2 eq) ©/\)L | |
y o
GE 1) NaHMDS : B
OH O O ’ HO
m/ THF, -30 °C, 30 min OH O

0] 92 %
2) Zn, AcOH, MeOH
90 %
7,10-diTroc-baccatin lll docetaxel

Figure 1.9 Ojima’s protocol for semi-synthesis of docetaxel

The Ojima-Holton protocol for semi-synthesis of paclitaxel and docetaxel was later
employed in the synthesis of numerous taxoids (taxol-like compounds), and made structure-
activity relationship (SAR) study on taxoids feasible.*®

§ 1.1.4 Asymmetric Synthesis of p-Lactam

The B-lactam ring is the core structure of several famous antibiotics such as penicillins,
cephalosporins, carbapenems, and monobactams. The first synthetic -lactam was prepared by



Dr. Hermann Staudinger in 1907 by the reaction of an imine with a ketene through a [2+2]
cycloaddition.*"*> However, the utility of B-lactams was not well recognized in medicinal
chemistry until the antibiotic properties of the first semisynthetic penicillins were discovered in

1940s.%

The synthesis of B-lactams has been extensively studied for a long time because of the
existence of the naturally occurring B-lactam antibiotics, however, their potential as synthetic
intermediates for synthesizing other types of compounds of biological interests has not been
widely recognized until the development of the “B-lactam synthon method” in the Ojima
laboratory.** One important application of the “B-lactam synthon method” is synthesis of
paclitaxel, docetaxel and new taxoid antitumor agents through the Ojima-Holton coupling of
baccatins with enantiopure p-lactams.**

For asymmetric synthesis of B-lactams, two different methods were developed for the semi-
synthesis of taxanes. The first route involves Staudinger’s ketene-imine [2+2] cycloaddition,
followed by enzymatic resolution, and the second route utilizes chiral ester-enolate imine
cyclocondensation reaction.

For Staudinger’s ketene-imine [2+2] cycloaddition, the most widely accepted mechanism is
a stepwise mechanism rather than a concerted mechanism.**
nucleophillic attack of the nitrogen atom in the imine to the sp-hybridized carbon atom of the
ketene to form a zwitterionic intermediate, and in the second step, a conrotatory electrocylic ring
closure occurs to give rise to the final B-lactam (Figure 1.10).*

The first step involves a
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Figure 1.10 Pathways for the formation of cis- and trans-p-lactam. Adapted with permission
from Jiao, L.; Liang, Y.; Xu, J. X. Origin of the relative stereoselectivity of the beta-lactam
formation in the Staudinger reaction. J Am Chem Soc 2006, 128, 6060-6069. Copyright (2006)
American Chemical Society.

The Staudinger [2+2] cycloaddition produces two stereocenters when a monosubstituted
ketene and an acyclic imine are used in the reaction, so in principle the reaction could form cis-,
trans-, or a mixture of cis- and frans- products. The relative stereoselectivity is determined by
substituent effects, electronic effects, as well as reaction conditions.”*® A suggested model is
shown in Figure 1.11. When the isomerization of the zwitterionic intermediate is not possible,
direct ring closure takes places, and the products are dominated by the substituent effects.* In
this case, E-mines lead to cis-B-lactams, and Z-imines lead to trans-p-lactams. However, when
isomerization of the zwitterionic intermediate happens, the electronic effects play a key role, and
will influence the stereochemical outcome of this reaction.*
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Figure 1.11 Suggested model for the relative stereoselectivity in Staudinger reaction. Adapted
with permission from Jiao, L.; Liang, Y.; Xu, J. X. Origin of the relative stereoselectivity of the
beta-lactam formation in the Staudinger reaction. J Am Chem Soc 2006, 128, 6060-6069.
Copyright (2006) American Chemical Society.

In the semi-synthesis of taxanes, cis-B-lactams are needed from the Staudinger reaction. The
(+)- and (-)-enantiomers could be separated by enzymatic kinetic resolution of the racemic cis-f3-
lactams.*’

The major drawback for the enzymatic kinetic resolution is the long reaction time, and
theoretical yield for this step is only 50%. Therefore, an efficient lithium chiral ester enolate-
imine cyclocondensation reaction was developed in the Ojima laboratory to generate highly
enantiomerically pure p-lactams.’*”’*® As Figure 1.12 shows, chiral enolate, which was
generated by reacting a chiral ester with Lithium diisopropylamide (LDA), could attack the
imine to form a six-memebered ring transition state, and then form the uncyclized lithiated B-
amino chiral ester.”>’’”® Subsequent ring closure give rise to the desired B-lactams in high

enantiomeric excess (ee), and regenerate the chiral auxiliary.**"*®
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Figure 1.12 Mechanism for lithium chiral ester enolate-imine cyclocondensation reaction.
Adapted from Tetrahedron, 48, Ojima, 1.; Habus, 1.; Zhao, M.; Zucco, M.; Park, Y. H.; Sun, C.
M.; Brigaud, T. New and Efficient Approaches to the Semisynthesis of Taxol and Its C-13 Side-
Chain Analogs by Means of Beta-Lactam Synthon Method, 6985-7012, Copyright (1992), with
permission from Elsevier.

Both the chiral auxiliaries and O-protecting groups provide steric influence in the transition
state of the lithium chiral ester enolate-imine cyclocondensation reaction. A screening of
different chiral auxiliaries and O-protecting groups reveals that a combination of Whitesell’s
chiral auxiliary and triisopropylsilyl (TIPS) protecting group give the optimal yield (85%
isolated yield) and enantioselectivity (> 96% ee) for the synthesis of 3-O-protected-4-subsitituted
B-lactams.*>"®

The high enantioselectivity could be attributed to the favor of forming an E-enolate
followed by a chair-like transition state, instead of a Z-enolate followed by a boat-like transition
state.”> MM2 calculations of the two enolates using the MACROMODEL program also suggests
the E-enolate is thermodynamically favored by 2.5 kcal/mol (Figure 1.13).*

12



H O
| tN\ B
. TMS THFlln--Li/
LiO"p, O - :
‘1 THF
E-enolate chair-like transition state
TIPS
YL I
Sli REN H\IK‘VX\R
H__ O T™MS TMS—1N
Ph | /IL
L5707 ol RO” "o
Li
Z-enolate a

boat-like transition state

E-enolate, (-)-E-8¢.3THF Z-enolate, (-)-Z-8¢.3THF

Figure 1.13 MM2 calculations on E- and Z-enolates by MACROMODEL. Adapted from
Tetrahedron, 48, Ojima, 1.; Habus, 1.; Zhao, M.; Zucco, M.; Park, Y. H.; Sun, C. M.; Brigaud, T.
New and Efficient Approaches to the Semisynthesis of Taxol and Its C-13 Side-Chain Analogs
by Means of Beta-Lactam Synthon Method, 6985-7012, Copyright (1992), with permission from
Elsevier.
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§ 1.1.5 Structure-Activity Relationship (SAR) Study on Taxanes

Extensive structure-activity relationship (SAR) studies on taxanes were conducted in the
laboratories of Potier, Kingston, Ojima, Bristol-Myers Squibb, and many others over the years.
The key findings in the early SAR studies are summarized below.

Variable Variable

- deletion - deletion

- small acyl group - epimerization
Variable - acylation
- aromatic, alkyl, ‘ - other modifications
heteroaromatic

Crucial
- N-H acyl group

Crucial
- oxetane ring or
cyclopropyl ring

Variable

- alkyl, alkenyl Slightly variable
- substituted aromatic, " - small acyl group
heteroaromatic Crucial

- free OH or
hydrolyzable acetyl

/Variable

- acyl group essential
- substituted aromatic,
alkenyl

Figure 1.14 Summary of key structure-activity relationships (SAR) of taxanes

The C-13 side chain is absolutely necessary for the cytotoxicity. Compounds lacking the C-
13 side chain, such as baccatin III or 10-deacetylbaccatin III (10-DAB III) are inactive.*
However, modifications on the C-13 side chain are permitted, and could give rise to more active
compounds. For example, docetaxel, which was initially prepared by Potier and his collegues,
has a fert-butoxylcarbonyl (-Boc) group on the C-3’N position of the C-13 side chain.* Phenyl
group at C-3’ position could also be replaced. A series of C-3’ isobutyl and isobutenyl analogs
with modifications at C-10 were prepared in the Ojima laboratory, and a number of them have
shown exceptional activities against drug-resistant cancer cells.”’ Acylation at the C-2” hydroxyl
group does not destroy the cytotoxicity, presumably because the acetyl group get hydrolyzed in
living cells, as 2’-acetylpaclitaxel was not able to promote microtubule assembly in a tubulin-
assembly study, in which hydrolysis is slow or nonexistent.**

The benzoyloxy group at C-2 position is necessary for the cytotoxicity. 2-
debenzoylpaclitaxel is not active.”’ However, modifications on the C-2 benzoyl group are
permitted. For example, replacement of benzyol group with substituted benzoyl group give to a
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number of analogs, which can be more cytotoxic or less cytotoxic than paclitaxel.”*™*

Interestingly, the position of substituents on the benzene ring of the substituted benzoyl group
plays a vital role for the activity. 2-p-azidobenzoylpaclitaxel is essentially inactive, while 2-m-
azidobenzoylpaclitaxel is almost an order of magnitude more active than paclitaxel.”> A
number of analogs with meta- substituents of the C-2 benzoyl group and modifications on the C-
10 and C-3’ positions developed in the Ojima laboratory have shown similar activity against both
sensitive and resistant cancer cell lines.”

The C-4 acetate group is necessary for the cytotoxicity. 4-Deacetylpaclitaxel and 4-
deacetoxypaclitaxel are both much less active than paclitaxel.”>® Some derivatives at C-4 are
more active, for example, carbonate shown in Figure 1.15 below is in clinical trial.”’

Figure 1.15 Chemical structure of a C-4 derivative of paclitaxel in clinical trial

The oxetane ring is required for the cytotoxicity. Opening of the oxetane ring eliminates the
cytotoxicity.”® Changing the oxetane ring to sulfetane ring significantly reduces the activity.”
Changing the oxetane ring to cycloproyl ring in a docetaxel analog, however, gives almost same
activity as paclitaxel.’

The hydroxyl group at C-7 position is not essential. Deoxygenation at C-7 gives 7-
deacetoxypaclitaxel, which has similar cytotoxicity as paclitaxel.’** In addition, the C-7
hydroxyl can easily epimerize via a retro-adol mechanism.*” The 7-epi-paclitaxel has essentially
same activity as paclitaxel.* Modifications of C-7 hydroxy group could give some more potent
analogs, for example, thiomethyl derivative was selected by BMS in clinical trials (Figure
1.16)."”
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Figure 1.16 Chemical structure of a C-7 derivative of paclitaxel in clinical trial

The hydroxyl group at C-10 position is not essential. Deoxygenation at C-10 gives 10-
deacetoxypaclitaxel, which has similar cytotoxicity as paclitaxel.”” Re-acylation at C-10 gives a
number of more cytotoxic anologs, and several developed in the Ojima laboratory have shown
good cytotoxicity against resistant cell line MCF7-R.>

Cabazitaxel (Figure 1.5), which has methoxy groups at both C-7 and C-10 positions as well
as the same side chain as docetaxel, was developed by Sanofi-Aventis and approved by the US
FDA for the treatment of hormone-refractory metastatic prostate cancer in 2010."* Cabazitaxel
showed activity against both docetaxel-sensitive and docetaxel-resistant cancers in preclinical
testing and initial clinical trials, because of its poor affinity for P-glycoprotein.'* Subsequent
clinical studies of cabazitaxel in combination with steroid prednisone were conducted against
patients with hormone-refractory metastatic prostate cancer who had been previously treated
with a regimen containing docetaxel, and significantly overall longer survival was achieved
compared with previous standard treatment by using mitoxantrone.'*

The C-11 — C-12 double bond in A-ring is not reactive. Hydrogenation of baccatin III gives
a product that the C-2 benzoyl group reduced to cyclohexylcarbonyl group, leaving the double
bond untouched.®* Allylic bromination, followed by reacting with different nucleophiles gives C-
18 analogs.®” However, all of these analogs are not as cytotoxic as paclitaxel.®’

A number of C-14 analogs have been prepared in the Ojima laboratory from 14p-hydroxy-
10-DAB III, which has a carbonate group linking C-1 position and C-14 position.®*®” Most of
these analogs have shown better activities than paclitaxel.’” One of the derivatives, IDN5109,
developed by Indena S.p.A. is under clinical trials as an oral active anticancer drug (Figure
1.17).%®
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Figure 1.17 Chemical structure of a C-14 derivative of docetaxel in clinical trial
§ 1.1.6 Multidrug Resistance (MDR)

Despite the success of taxane class anticancer drugs, many cancers fail to respond to such
chemotherapeutic agents by acquiring multidrug resistance (MDR). P-glycoprotein (Pgp, also
known as ABCB1), multidrug resistance associated-protein 1 (MRP1, also known as ABCC1),
and ABCG2 (BCRP) are the three common ATP-binding cassette (ABC) transporters that are
responsible for MDR.” Among them, Pgp is the most prevalent ABC transporter, acting as an
efflux pump to expel hydrophobic drugs including vinca alkaloids, anthracycline,
epipodophyllotoxins, and taxanes out of cell membrane.”” Pgp is a transmembrane protein that
utilizes ATP hydrolysis as the energy source for its biological functions. Figure 1.5 shows a
model of anticancer drug transport by Pgp. First, anticancer drug (magenta) gets into membrane
bilayer from outside of cell through partition and recognized by Pgp (cyan spheres), and then
ATP (yellow) binds to the nucleotide-binding domain (NBD) of Pgp, causing a huge
conformation change of Pgp to expel the hydrophobic drug out of the cell membrane.”"
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Figure 1.18 Model of anticancer drug transport by P-glycoprotein. From Aller, S. G.; Yu, J.;
Ward, A.; Weng, Y.; Chittaboina, S.; Zhuo, R. P.; Harrell, P. M.; Trinh, Y. T.; Zhang, Q. H.;
Urbatsch, I. L.; Chang, G. Structure of P-Glycoprotein Reveals a Molecular Basis for Poly-
Specific Drug Binding. Science 2009, 323, 1718-1722. Reprinted with permission from AAAS.

§ 1.1.7 New-Generation Taxoids

The Ojima laboratory has developed a series of highly potent new-generation taxoids based
on extensive structure-activity relationship (SAR) study of taxoids throughout the years. Selected
results are shown in Table 1.1.”

The focus of the modifications on new-generation taxoids developed in the Ojima
laboratory focused on C-2 benzoyl, C-10, and C-3’ positions, and keep the C-3’N position with z-
Boc group as found in docetaxel. As shown in Table 1.1, most of these new generation taxoids
have shown one to two orders of magnitude higher potency than those of paclitaxel and
docetaxel in sensitive cancer cell lines, as well as two to three orders of magnitude higher
potency against multidrug-resistant cancer cell lines.”?
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Table 1.1 Structure and cytotoxicity (ICsp, nM) of selected new-generation taxoids
against various cancer cell lines. Adapted from Ojima, I.; Zuniga, E. S.; Berger, W.

T.; Seitz, J. D. Tumor-targeting drug delivery of new-generation taxoids. Future Med

Chem 2012, 4, 33-50, with permission from Future Science Ltd.

R'O O oH

R3\l;lH o)
RZ;\;)J\O““‘ ;7 NO
OH oH 0 O\[(
o)
Y X
Taxoid R' R’ R’ X Y
Paclitaxel Ac Ph PhCO H H
Docetaxel H Ph t-Boc H H
SB-T-1213 EtCO i-butenyl t-Boc H H
SB-T-1214 c-PrCO i-butenyl t-Boc H H
SB-T-1216 Me,NCO i-butenyl t-Boc H H
SB-T-11033 EtCO i-Bu t-Boc MeO H
SB-T-121303 EtCO i-butenyl -Boc MeO H
SB-T-121313 EtCO i-butenyl -Boc MeO MeO
SB-T-121602 Me,NCO i-butenyl t-Boc Me H
Taxoid MCF7* NCI/ADR" LCC6-MDR® CFPAC-1° HT-29° DLD-1'
Paclitaxel 1.7 550 346 68 300
Docetaxel 1.0 723 120 - - -
SB-T-1213 0.18 4.0 - 4.6 0.37 39
SB-T-1214 0.20 39 - 0.38 0.73 38
SB-T-1216 0.13 7.4 - 0.66 0.052 5.4
SB-T-11033 0.36 0.61 0.80 - -
SB-T-121303 0.36 0.79 0.90 0.89 -
SB-T-121313 0.30 - - 0.025 0.56 -
SB-T-121602 0.08 - - 0.31 0.003 0.46

* Human mammary cancer cell line (Pgp-); ® Human ovarian cancer cell line (Pgpt); © mdrl
transduced human breast cancer cell line (Pgp+); ¢ Human pancreatic cancer cell line;

Human colon cancer cell line (Pgp-); " Human colon cancer cell line (Pgp+).

In order to test which moiety of the new-generation taxoids account for the high potency
against multidrug resistant cancer cell lines, in collaboration with Professor Jan Kovar, four new-
generation taxoids were designed, which are structural combinations of paclitaxel or docetaxel
with new-generation taxoids SB-T-1214 or SB-T-1216 (Figure 1.19). The SAR study of these
taxoids may provide useful information for the design of novel taxoids with better activities

against multidrug resistant cancel cell lines.
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Figure 1.19 Designed new-generation taxoids

§ 1.2 Synthesis and Biological Evaluation of New-Generation Taxoids
§ 1.2.1 Synthesis of Eantiopure p-Lactam

In order to make new-generation taxoids, enantiopure -lactam is an important precursor,
which could be prepared by two different routes. The first route involves synthesis of Whitesell’s
chiral auxiliary via Sharpless asymmetric dihydroxylation (AD), followed by chiral ester enolate-
imine cyclocondensation.

The synthesis of the chiral ester begins with benzyl protection of the commercially available
glycolic acid. Crude benzyl glycolate 1-1 was generated in 76% yield when using triethylamine
(TEA) as the base (Scheme 1.1).

TEA (1.2 eq)

o BnBr (0.9 eq ) Q
Ho I, - Ho M en

acetone, r.t., overnight

76 % 1
Scheme 1.1 Benzyl protection of glycolic acid

Benzyl glycolate 1-1 was then reacted with triisopropylsilyl chloride (TIPSCI) in the
presence of TEA and catalytic amount of 4-dimethylaminopyridine (DMAP). TIPS-Protected
benzyl glycolate 1-2 was then generated in quantitative yield (Scheme 1.2).
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TEA (1.2 eq)
DMAP (0.1 eq)

O
TIPSCI (1.0 eq)
HO\)J\O/Bn DCM, r.t., overnight TIPSO\)J\O/B"

11 quant. 1-2

Scheme 1.2 TIPS protection of benzyl glycolate 1-1

The benzyl group of TIPS-protected benzyl glycolate 1-2 was subsequently removed by
hydrogenolysis under hydrogen gas in the presence of 10% Pd/C to afford crude product TIPS
glycolic acid 1-3 in quantitative yield (Scheme 1.3). The crude product was directly used in the
next step without further purification, because TIPS group is not very stable under acidic
condition and may fall off if not used at once.

Ha
10 % Pd/C (2.4 % mmol

o ) o
TIPSO\)J\O,Bn EtOAG. L. 51 g TIPSO\)J\OH
1-2

quant. 1-3

Scheme 1.3 Benzyl deprotection of 1-2 by hydrogenolysis

The free carboxylic acid group in TIPS glycolic acid 1-3 was then activated by N-
hydroxysuccinimide (NHS) via 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) coupling
to give activated ester 1-4 in 74% yield (Scheme 1.4).

o)

o) EDC (1.2 eq), NHS (1.1 eq) 0 ?

~ TIPSO N

TIPSO\)J\OH DCM, r.t., overnight \)J\O

0
13 74 % 1-4

Scheme 1.4 Synthesis of activated ester 1-4 via EDC coupling

With activated ester 1-4 in hand, Whitesell’s chiral auxiliary was prepared in order to react
with activated ester to form the chiral ester. First, crude (+)-(1R,2R)-1-phenylcyclohexane-cis-
1,2-diol 1-5 was obtained in quantitative yield via Sharpless asymmetric dihydroxylation (AD)
reaction (Scheme 1.5).

K5,0s0,* 2H,0 (cat., 0.3 mol %)
(DHQ@D),PHAL (cat., 2.0 mol %)
KsFe(CN)g (3eq), Ko,CO3 (3eq
Ph 3Fe(CN)s (3eq), K,CO3 (3eq) Ph
@/ CH3SO,NH, (1eq) o
t-BuOH/H,0 (2:3), r.t., 2 days 1y

‘OH

quant. 1-5
Scheme 1.5 Synthesis of diol 1-5 via Sharpless asymmetric dihydroxylation
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In this reaction, osmium tetroxide is a stereospecific oxidant that produces the diol from the
alkene by a sym-addition. The reaction is carried out using three equvalents of potassium
ferricyanide as oxidants and catalytic amount of osmium tetroxide. This oxidation reaction can
be highly enantioselective in the presence of chiral ligands. (DHQD),PHAL, one of the most
effective ligands, which will lead to a (R,R) configuration of the product, is used in this reaction.
This ligand will not only induce high enantioselectivity, but also accelerate the reaction. The
presence of organic sulfonamide methanesulfonamide will further make this reaction more
effective by accelerating the hydrolysis of the osmate ester.

Whitesell’s chiral auxiliary 1-6 was generated by selectively reduction of the crude diol 1-5
from the previous step with Raney nickel in 69% yield after recrystallization with pentane
(Scheme 1.6). Raney nickel is extremely pyrophoric when dry, and therefore must be kept in wet
ethanol all the time. Aqueous slurry of Raney nickel is transferred into the flask with the aid of
ethanol in portions.

' Ph Ra-Ni Ph
"“OH
Y, EtOH, reflux, 4 h .,
OH OH
1-5 69 % 1-6

Scheme 1.6 Synthesis of Whitesell’s chiral auxiliary 1-6 by selectively reduction of diol 1-5

Key intermediate chiral ester 1-7 for making the P-lactams was obtained by reacting
Whitesell’s chiral auxiliary 1-6 with activated ester 1-4 in the presence of DMAP in toluene in
87% yield (Scheme 1.7). The reason for using toluene as the solvent is that the side product of
this reaction N-hydroxysuccinimide (NHS) is not very soluble in toluene, and could be easily
removed by filtration. Purity of the starting materials is very important for the completion of this
reaction in short time, and will affect the yield of this reaction to large extent. The product need
to be carefully purified by column chromatography and carefully dried on vaccum, as impurity
or moisture in the chiral ester 1-7 may lead to the failure of next key step chiral ester enolate-
imine cyclocondensation.

Ph O © Ph
O’ TIPSO\)J\O?N;? DMAP (1.1 eq) O o)
+ :
',/OH (1.2 eq) o) DCM, r.t., overnight ",O)K/OT”:’S
1-6 1-4 87 % 1-7

Scheme 1.7 Synthesis of key intermediate chiral ester 1-7

The crude imine 1-8 was generated in quantitative yield in the condensation reaction of
recrystallized p-anisidine and 3-methyl-2-butenal (Scheme 1.7). This is a condensation reaction
between an aldehyde with nitrogen nucleophile, and involves addition and elimination steps. The
product of this reaction is an imine, which is also called Schiff base. The reaction is reversible
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and the product is very reactive and unstable as it has a conjugated structure. Therefore, an
excess of drying agent sodium sulfate is used to prevent the hydrolysis of the product. The
condensation reaction must be done in the dark, as the product is prone to isomerization. The
resulting material was used immediately without further purification to prevent the product going
back to the starting material or performing isomerization.

OMe

0]
Na,SO, (2 eq)
+ — H > N
DCM, 0 °C to r.t. >J
NH2 (1.0 eq) dark, 3h

quant. 1-8

Scheme 1.8 Synthesis of imine 1-8 by condensation reaction

With the chiral ester 1-7 and imine 1-8 in hand, the chiral ester enolate-imine
cyclocondensation reaction, previously developed in the Ojima laboratory, was performed,
affording enatiopure B-lactam 1-9 in 56% yield (Scheme 1.9). The first two small-scale trials of
this reaction failed because a small amount of water existed in the chiral ester, and this reaction
is very water sensitive. The product was first purified by column chromatography, and then by
recrystallization. The yield of this step is low because uncyclized product was also obtained, and
the purification of the product was difficult.

1) LDA (1.5 eq), -78 °C

>:/: N TIPSO, {
Ph (1.2 eq)
/I/:N

O (o) 1-8
O
,,,O)K/OTIPS 2) LIHMDS (1.0 eq), -78 °C to r.t.,, THF Q
56 % OMe
1-7 1-9

Scheme 1.9 Synthesis of enantiopure B-lactam 1-9 by chiral ester enolate-imine
cyclocondensation

Further modification of the -lactam, deprotection of the p-methoxyphenyl (PMP) moiety in
the presence of ceric ammonium nitrate (CAN), gave rise to modified B-lactam 1-10 in 76%
yield (Scheme 1.10). The mechanism for the removal of the PMP group involves two single
electron transfers (SET). First, the PMP group donates a single electron to cerium (IV), forming
a radical cation intermediate. After hydrolysis of the methoxy group by water, donation of a
second electron to another CAN molecule will result in a quinone like radical, which will be then
cleaved by a second water molecule, producing the product 1-10 with quinone and methanol as
side products. Cold temperature is maintained to avoid side reactions.
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§ CAN (4 eq)
;N J;
o CH3CN/H,0 (v 1:1) NH
-4°C,3h
1-9 OMe 76 % 1-10
Scheme 1.10 CAN deprotection of p-methoxyphenyl (PMP) group

After CAN deprotection, the amine in B-lactam 1-10 was protected with #-Boc group to
yield the desired enantiopure B-lactam 1-11 in 87% yield (Scheme 1.11). This protection is in
order to have the proper N-substituted -Boc group found in new-generation taxoids SB-T-1214
and SB-T-1216. DMAP is used as the catalyst, and TEA is used to create the basic environment.
The nucleophilic nitrogen in the B-lactam ring will attack #-Boc anhydride, forming the final
desired enantiopure -lactam 1-11.

TEA (2 eq)

TIPSO, { Boc,O (1.1eq) TIPSO, {
— DMAP (0.3 eq) "
/I;NH DCM,0°Ctort. /I/:N\

O . 0] Boc
overnight

1-10 87 % 1-11
Scheme 1.11 #-Boc protection of B-lactam 1-10

The second route for preparing enantiopure B-lactam 1-11 involves Staudinger [2+2]
cycloaddition to afford racemic B-lactam intermediate, followed by enzymatic resolution to
separate the two enantiomers.

The racemic B-lactam intermediate (+/-) 1-12 was reacted with 20w% PS-Amano Lipase to
give the desired enantiomer (+) 1-12 in 48% yield, and undesired enantiomer was hydrolyzed by
the enzyme to give (-) 1-13 (Scheme 1.12). This reaction was monitored by 'H NMR. The ratio
of (+) 1-12 and (-) 1-13 should be 1:1 if the reaction went completion. After 7 days, the NMR
result indicates the ratio of (+) 1-12 and (-) 1-13 is around 10:7, so the temperature was raised
from 40 °C to 45 °C. After another 7 days, the NMR result indicates the ratio of (+) 1-12 and (-)
1-13 is 1:1. (+) 1-12 and (-) 1-13 was then separated by column chromatography to give (+) 1-12
in 48% yield. The theoretical yield for this reaction is 50%, which is a major drawback of this
synthetic route.
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\n/o’/. S < 20 w % PS-Amano Lipase \n/ox,' \4< HO —
PBS buffer, pH=7.5
O N > o N + N
o} 10 % CH5CN o o}
40 °C 7 days + 45 °C 7 days
OMe 48 % OMe OMe
(+1-) 1-12 (+) 1-12 () 1-13

Scheme 1.12 Enzymatic resolution of racemic -lactam intermediate

The enantiopure B-lactam (+) 1-12 was then hydrolyzed by sodium hydroxide to give (+) 1-
13 in 88% yield (Scheme 1.13). The enantiomeric excess (ee) of B-lactam (+) 1-13 was
confirmed by chiral HPLC, together with B-lactam () 1-13 obtained in the previous enzymatic
resolution step, and the result indicates the ee of B-lactam (+) 1-13 is 100%.

O// s\\ HO// \\\
\ff ™ : NaOH (10 eq) ™ :
O /,;’L > /,;’L

O THF : H,O (v:v=1:1) 0]
rt.,2h

OCHj, 88 % OCHj,
(+) 112 (+) 1-13

Scheme 1.13 Hydrolysis of enantiopure B-lactam (+) 1-12

Enantiopure B-lactam (+) 1-13 was then reacted with triisopropylsilyl chloride (TIPSCI) in
the presence of TEA and DMAP to give -lactam intermediate 1-9 in 90% yield (Scheme 1.14).
B-Lactam intermediate 1-9 was also generated in the first synthetic route, and could undergo
same modifications to afford desired final B-lactam 1-11 through CAN deprotection and #-Boc
protection as mentioned above.

HO, 4< TIPSCI (1.2 eq) TIPSO, «=(
N TEA (1.5 eq)
N DMAP (0.3 eq) N
@) o ©
DCM, 0°Ctor.t.
overnight

OCH;3 OCH;
90 % 19

(+) 1-13
Scheme 1.14 TIPS protection of enantiopure B-lactam (+) 1-13
§ 1.2.2 Synthesis of New-Generation Taxoids SB-T-1214 and SB-T-1216

The synthesis of new-generation taxoids SB-T-1214 and SB-T-1216 begins with
triethylsilyl (TES) protection of the C-7 alcohol of 10-DAB III in order to selectively acylate the
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C-10 position in the following step (Scheme 1.15). The structure of 10-deacetylbaccatin III
contains four alcohols at C-1, C-7, C-10 and C-13, among which C-7 alcohol is the most acidic
one and could be selectively protected with chlorotriethylsilane (TESCI). The C-1 hydroxyl is
sterically hindered by the benzoyl group at C-2 position, and does not compete with the C-7
alcohol. This was confirmed by the experiments that acylation of 10-DAB III under different
conditions gave C-7, C-10, and C-13 acylated products, leaving C-1 hydroxyl group untouched.”
The mono-TES protection of C-7 hydroxyl was carefully monitored by thin-layer
chromatography (TLC) so that multiple protections do not occur at C-10 and C-13 positions. The
reaction was done within 30 min, and desired 7-TES-10-DAB III 1-14 was obtained in 93%
yield.

TESCI (3 eq)
imidazole (4 eq)

DMF,0°C tor.t.
30 min

93 %

10-DAB IlI 1-14
Scheme 1.15 TES protection of C-7 position in 10-DAB III

After the C-7 alcohol of 10-DAB III was selectively protected, the C-10 alcohol becomes
most reactive on the baccatin core, and was selectively acylated with cyclopropanecarbonyl
chloride in the presence of LIHMDS (Scheme 1.16). This reaction was carefully monitored by
TLC so that multiple acylations do not occur. The reaction was done within 30 min at -40 °C,
and desired product 1-15 was obtained in 94% yield.

%m 1.2 eq)

LIHMDS (1.1 eq)
THF, - 40 °C, 30 min

94 %

1-14 1-15
Scheme 1.16 Acylation of C-10 position in 1-14 with cyclopropanecarbonyl chloride
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The C-10 modified baccatin core 1-15 was then used to react with the enantiopure p-lactam
1-11 via the Ojima-Holton coupling protocol. The C-13 hydroxyl group is deprotonated by
LiHMDS, and acts as a nucleophile to attack the carbonyl carbon of the B-lactam ring, the [-
lactam ring is opened and stereochemistry is maintained (Scheme 1.17). The desired product 1-
16 was obtained in 87% yield.

TIPSO, 4< Q
%O /,/jl\\l (1.2 eq) %O

1-11 NH O
N LIHMDS (1.8eq) : .
OHO OAc THF, - 40 °C, 4 h | G1es
o)
87 %

1-15 1-16
Scheme 1.17 Ojima-Holton coupling to generate 1-16

New-generation taxoid SB-T-1214 was finally generated by deprotection of the C-7 TES
protecting group and the C-2’ TIPS protecting group with HF/pyridine at the same time (Scheme
1.18). Desired taxoid SB-T-1214 was obtained in 93% yield. After recrystallization with ethyl
acetate, purity of the new-generation taxoid SB-T-1214 was confirmed by HPLC as 97.5%.

HF/pyridine
CH3CN : pyridine (v 1: 1)
0 °C to r.t., overnight
93 %

SB-T-1214
1-16 117

Scheme 1.18 HF/pyridine deprotection to generate new-generation taxoid SB-T-1214

The chemical structures of new-generation taxoid SB-T-1214 and SB-T-1216 are the same
except the C-10 position, in SB-T-1214 C-10 position is acylated with cyclopropanecarbonyl
group, whereas in in SB-T-1216 C-10 position is acylated with N, N-dimethylcarbamoyl group.
For the synthesis of new-generation taxoid SB-T-1216, after the C-7 alcohol of 10-DAB III is
selectively protected, the C-10 position was selectively acylated with N, N-dimethylcarbamoyl
chloride in the presence of LIHMDS (Scheme 1.19). The difference between these two acylation
reactions is that, compared to acylation with cyclopropanecarbonyl chloride, the Rf value of the
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C-10 N,N-dimethylcarbamoyl acylated product 1-18 is very similar to the Rf value of the starting
material 7-TES-10-DAB III 1-14. Also, this reaction is slower compared to acylation of 7-TES-
10-DAB 1III 1-14 with cyclopropanecarbonyl chloride. Therefore, this reaction need to be
carefully monitored by TLC and mass spectrometry to make sure all the starting material
converts to product. The reaction was finished within 4 hour at -40 °C, and desired product 1-18
was obtained in 95% yield.

0]
A
I

Cl (1.2eq)

LiIHMDS (1.1 eq)

THF,-40°C, 4 h

95 %

1-14 118
Scheme 1.19 Acylation of C-10 position in 1-14 with N, N-dimethylcarbamoyl chloride

The C-10 modified baccatin core 1-18 was then used to react with the enantiopure p-lactam
1-11 via the Ojima-Holton coupling protocol (Scheme 1.20). The desired product 1-19 was
obtained in 92% yield.

I
o ‘Boc (1.3 eq)

1-11
LIHMDS (1.3 eq)

THF,-40°C,4h

92 %

1-18 1-19

Scheme 1.20 Ojima-Holton coupling to generate 1-19

New-generation taxoid SB-T-1216 was finally generated by deprotection of the C-7 TES
protecting group and the C-2’ TIPS protecting group with HF/pyridine at the same time (Scheme
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1.21). Desired taxoid SB-T-1216 was obtained in 90% yield. After recrystallization with ethyl
acetate, purity of the new-generation taxoid SB-T-1216 was confirmed by HPLC as 98%.

0 1
7l\O)J\I;IH (0]

HF/pyridine & 0
CH5CN/pyridine (v 1:1) /(\5*0\ oH o OAc
0 °C to r.t., overnight OH Q::

90 %
SB-T-1216

1-19 1-20

Scheme 1.21 HF/pyridine deprotection to generate new-generation taxoid SB-T-1216
§ 1.2.3 Synthesis of New-Generation Taxoid SB-T-1211

For the synthesis of new generation taxoid SB-T-1211, two different synthetic routes were
employed. In the first route, C-7 and C-10 positions of 10-DAB III was selectively protected by
TrocCl, followed by Ojima-Holton coupling of the free C-13 hydroxy group with the enantiopure
B-lactam, then removal of the two Troc protecting groups by zinc dust and TIPS protecting group
by HF/pyridine gave final taxoid SB-T-1211. However, after deprotection, the purity of the final
compound after two column chromatography purifications is still less than 90%, and HPLC
analysis shows a major impure peak, which is hard to remove. Recrystallizations under various
conditions were also tried and were not successful. This impurity is presumably coming from the
zinc dust deprotection step. In addition, the yields for preparing SB-T-1211 in the first synthetic
route were not very good. Thus, a second synthetic route was investigated. In the second route,
7-TES-baccatin III 1-14 was used to couple with the enantiopure B-lactam via Ojima-Holton
protocol, then the acetyl group on the C-10 position of baccatin core was selectively removed by
hydrazine monohydrate, followed by deprotection of the TES and TIPS groups by HF/pyridine to
gave final taxoid SB-T-1211 in decent yield and purity.

In the first synthetic route, in order to selectively protect the C-7 and C-10 positions of the
baccatin core, 10-DAB III was treated with 2.1 eq of 2,2,2-trichloroethyl chloroformate (TrocCl)
in the presence of pyridine to give 7,10-diTroc-10-deacetylbaccatin III 1-21 in 62% yield
(Scheme 1.22). Side product 7,10,13-triTroc-10-deacetylbaccatin III was also isolated in 27%
yield under this condition. It is possible to reduce the amount of side product by shorten the
reaction time, use lower temperature, or use less amount of TrocCl.
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TrocCl (2.1 eq)

pyridine, 80 °C, 30 min

62 %

10-DAB Il 1-21
Scheme 1.22 DiTroc protection of 10-DAB III

7,10-DiTroc-10-deacetylbaccatin III 1-21 was then used to couple with eantiopure -lactam
1-11 via the Ojima-Holton coupling protocol (Scheme 1.23). Compared with previous two
coupling reactions for synthesizing SB-T-1214 and SB-T-1216, however, this reaction could not
go completion even with prolonged reaction time (up to 6 h), large excess of the base and (-
lactam (1.6 eq of each), and increased temperature (up to -20 °C). Desired taxoid 1-22 was
isolated in 72% yield, and unreacted starting material 7,10-diTroc-10-deacetylbaccatin III 1-21
was recovered (conversion 74%, conversion yield 97%).

TIPSO, :<

‘Boc (1.6 eq)
1-11

LIHMDS (1.6 eq)

THF,-40°Ct0-20°C, 6 h

72 %

1-21 1-22

Scheme 1.23 Ojima-Holton coupling to generate 1-22

After Ojima-Holton coupling to attach the C-13 side chain, Zn dust was employed to
remove both of the Troc protecting groups at C-7 and C-10 positions. This reaction was quite
messy, and after careful purification by column chromatography, desired product 1-23 was
obtained in 67% yield (Scheme 1.24).

30



Zn dust

; M “H = Y
5TIPS OHO OAc ACOH/MeOH (v:v=1:1) e OH
o 60 °C, overnight 0
67 %

1-22 1-23
Scheme 1.24 Deprotection of Troc groups by Zinc dust

Finally, removal of the TIPS protecting group by HF/pyridine gave new-generation taxoid
SB-T-1211 in 99% yield (Scheme 1.25). However, there is a major impurity (more polar than
desired product, ~10%) showed in HPLC analysis, and this impurity could not be removed by
column chromatography. Recrystallizations under various conditions were also not successful.

X . S HF/pyridine
| 5 OA g
OTIPS OHO ®AC CH4CN/pyridine (v 1:1)
0

0 °C to r.t., overnight

0,
99 % SB-T-1211

1-23 1-24
Scheme 1.25 HF/pyridine deprotection to generate SB-T-1211 in the first synthetic route

In order to synthesize SB-T-1211 with high purity and improve the yield, a second route was
investigated. First, 7-triethylsilylbaccatin III was used to couple with the enantiopure -lactam 1-
11 via the Ojima-Holton protocol. This coupling reaction proceeded very smoothly, and desired
product 1-25 was isolated in 94% yield (Scheme 1.26).

/,;‘\l (1.3 eq)

(0] Boc
1-11
LIHMDS (1.3 eq)

THF,-40°C, 4 h
94 %

1-25
Scheme 1.26 Ojima-Holton coupling to generate 1-25
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Then acetyl group on the C-10 position of the baccatin core was subsequently selectively
removed by hydrazine monohydrate at room temperature, affording desired product 1-26 in 66%
yield (Scheme 1.27).

O

hydrazine monohydrate 7I\O)J\l;lH ]

EtOH, r.t., overnight |

66 %

1-25 1-26
Scheme 1.27 Selective removal C-10 acetyl group by hydrazine monohydrate

Finally, deprotection of the C-7 TES protecting group and C-2’ TIPS protecting group by
HF/pyridine gave new-generation taxoid SB-T-1211 in 90% yield (Scheme 1.28). Purity of the
new-generation taxoid SB-T-1211 synthesized in the second route was confirmed by HPLC as
97%. This synthetic route proved to be more efficient than the first one, and the reactions during
the synthesis are cleaner and the purifications are thus much easier.

1
HF/pyridine 7|\O NH O
CH4CN : pyridine = 1: 1 (v/v) | ~
0 °C to r.t., overnight OH
90 %
SB-T-1211
1-26 1.2

Scheme 1.28 HF/pyridine deprotection to generate SB-T-1211 in the second synthetic route
§ 1.2.4 Synthesis of New-Generation Taxoid 10-Ac-docetaxel

The structure difference between 10-Ac-docetaxel and paclitaxel is the C-3’N position, z-
Boc group found in docetaxel as well as new-generation taxoids SB-T-1214 and SB-T-1216 is
used instead of benzoyl group found in paclitaxel. For the synthesis of 10-Ac-docetaxel, a
different B-lactam (3R,4S)-N-tert-butoxycarbonyl-3-O-TIPS-4-phenyl-B-lactam is used to couple
with 7-TES-baccatin III under Ojima-Holton coupling protocol, followed by deprotections to
yield 10-Ac-docetaxel.
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In order to prepare the required (3R,4S)-N-tert-butoxycarbonyl-3-O-TIPS-4-phenyl-p-
lactam, first, enantiopure [-lactam intermediate (3R,4S)-N-4-methoxyphenyl-3-hydroxyl-4-
phenyl-B-lactam was reacted with TIPSCI in the presence of TEA and catalytic amount of
DMAP to generate the TIPS protected B-lactam 1-27 in 93% yield (Scheme 1.29).

@ TIPSCI (1.5 eq) ©
DMAP (0.3 eq)
HO, TEA (2.0 eq) TIPSO, &
J;,L DCM, 0 °C to r.t., overnight /,/:‘\j
o o)
93 %

OMe OMe
1-27

Scheme 1.29 TIPS protection to generate B-lactam 1-27

Further modification of B-lactam 1-27, deprotection of the p-methoxyphenyl (PMP) moiety
in the presence of ceric ammonium nitrate (CAN), gave rise to P-lactam 1-28 in 87% yield
(Scheme 1.30).

TIPSO,C Q CAN (4 eq) TlF’SO,,' Q
/,;‘\1 Acetonitrile : HoO =1 :1 (v:v) /,/jl\\lH

o -4°C,3h o
87 %

OMe
1-27 1-28

Scheme 1.30 CAN deprotection to generate B-lactam 1-28

After CAN deprotection, the amine in f-lactam 1-28 was then protected with -Boc group
by reacting with Boc anhydride in the presence of TEA and catalytic amount of DMAP to afford
final enantiopure B-lactam (3R,4S)-N-tert-butoxycarbonyl-3-O-TIPS-4-phenyl-f-lactam 1-29 in
93% yield (Scheme 1.30).

(Boc),0 (1.1 eq)
TEA (2.0 eq)
TIPSO, DMAP (0.3 eq) TIPSO, »
! NH DCM, 0 °C to r.t., overnight /,/:L

o 93 % o Boc

1-28 1-29

Scheme 1.31 Boc protection to generate f-lactam 1-29

The 7-triethylsilylbaccatin III was subsequently used to react with the enantiopure p-lactam
1-29 via the Ojima-Holton coupling protocol. The C-13 hydroxyl group is deprotonated by
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LiHMDS, and acts as a nucleophile to attack the carbonyl carbon of the B-lactam ring, the [-
lactam ring is opened and stereochemistry is maintained. The product 1-30 was obtained in 90%
yield (Scheme 1.32).

/,;'L‘ (1.3 eq)

(0] Boc
1-29

LIHMDS (1.3 eq)

THF,-40°C, 4 h

90 %

1-30

Scheme 1.32 Ojima-Holton coupling to generate 1-30

New-generation taxoid 10-Ac-docetaxel 1-31 was then generated by deprotection of the C-7
TES protecting group and the C-2" TIPS protecting group with HF/pyridine at the same time
(Scheme 1.33). Desired product was obtained in 98% yield. Purity of the new-generation taxoid
10-Ac-docetaxel 1-31 was checked by HPLC as 97%.

A
HF/pyridine o @H Q
CH,CN/pyridine (v 1:1) ©/\5)\O
0°Ctor.t., 1day OH
98 %
10-Ac-docetaxel
1-30 1-31

Scheme 1.33 HF/pyridine deprotection to generate 10-Ac-docetaxel
§ 1.2.5 Synthesis of New-Generation Taxoid SB-T-0035

The structure difference between SB-T-0035 and paclitaxel is the C-10 position, N,N-
dimethylcarbamoyl group found in SB-T-1216 is used instead of acetyl group found in
paclitaxel. For the synthesis of SB-T-0035, a different B-lactam (3R,4S)-N-benzoyl-3-O-TIPS-4-
phenyl-B-lactam is used to couple with 7-TES-10-N,N-dimethylcarbamoyl-baccatin III 1-18
under Ojima-Holton coupling protocol, followed by deprotections to yield SB-T-0035.

The same B-lactam intermediate 1-28 used in the previous synthesis for preparing 10-Ac-
docetaxel was protected with benzoyl group by reacting with benzoyl chloride in the presence of
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TEA and catalytic amount of DMAP to afford final enantiopure B-lactam (3R,4S)-N-benzoyl-3-
O-TIPS-4-phenyl-B-lactam 1-32 in 78% yield (Scheme 1.34). The yield for this step is not so
good compared with Boc protection, because the purity of benzoyl chloride reagent used in this

step is not very good even if after fresh distillation.
TIPSO, @

Benzoyl chloride (1.1 eq)
@ TEA (2.0 eq) /,/:‘\1 o
TIPSO, R

DMAP (0.3 eq) o
DCM, 0 °C to r.t., overnight
NH
O 78 %
1-28 1-32

Scheme 1.34 Benzoyl protection to generate B-lactam 1-32

The C-10 modified baccatin core 7-TES-10-N, N-dimethylcarbamoyl-baccatin III 1-18 was
then used to react with the enantiopure B-lactam 1-32 via the Ojima-Holton coupling protocol
(Scheme 1.35). Initial trial of this coupling reaction with LIHMDS as the base under -40 °C gave
low conversion (67% isolated yield), and generated significant amount of side product 13-
benzoyl-10-N, N-dimethylcarbamoyl-7-TES-baccatin III (~ 30% in the product based on the
intergration of "H NMR), as the C-13 hydroxyl group after deprotonation could either attack the
carbonyl carbon of the f-lactam ring, or the carbonyl carbon of the benzoyl group.

It is also worth to mention that this side product has the exact same Rf value as the product
(silica TLC, developing solvents hexanes : ethyl acetate =3 : 1) , and could not be separated by
flash column chromatography at this stage. However, after the next HF/pyridine deprotection
step, the side product could be easily removed from desired product by column chromatography,
since the side product is much more nonpolar than the desired product after deprotection in the
next step. The coupling condition was eventually optimized to using NaHMDS as the base and -
30 °C as the reaction temperature, which gave better conversion (77% isolated yield), as well as
less amount of undesired side product 13-benzoyl-10-N,N-dimethylcarbamoyl-7-TES-baccatin
III (~ 18% in the product based on the integration of '"H NMR).
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/I/:N o 1-32
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(1.2 eq) O
.S
LIHMDS (1.6 eq)
or NaHMDS (1.5 eq) O

THF,-40t0-30°C,4h

67 % to 77 %

1-18

side product (could not be separated)

~ 30 % when LIHMDS was used
~ 18 % when NaHMDS was used

Scheme 1.35 Ojima-Holton coupling to generate 1-33

Then the silyl protecting groups in mixture 1-33 were deprotected by HF/pyridine (Scheme
1.36). After deprotection, side product 13-benzoyl-10-N,N-dimethylcarbamoyl-baccatin III
becomes much more nonpolar than desired product SB-T-0035, and could be easily separated by
flash column chromatography. Desired product new-generation taxoid was obtained in 60% yield
when LIHMDS was used as the base in the previous coupling step, or 76% yield when NaHMDS
was used as the base. Purity of the new-generation taxoid SB-T-0035 was confirmed by HPLC
as 97%.
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HF/pyridine

CH3CN/pyridine (v 1:1)
0 °C to r.t., overnight

60 % to 76 %

SB-T-0035
1-34

side product (could not be separated) side product (could be easily separated)
Scheme 1.36 HF/pyridine deprotection to generate SB-T-0035
§ 1.2.6 Biological Evaluation of New-Generation Taxoids

After new generation taxoids were synthesized, they were sent out to our collaborator
Professor Jan Kovar at Charles University in Czech Republic for biological testing. In a previous
study conducted by Professor Jan Kovar’s group, paclitaxel and docetaxel showed ICsy of 1.0
nM and 0.5 nM respectively against a sensitive melanoma cell line MDA-MB-435, and ICsy of
1000 nM and 300 nM respectively against a resistant ovarian cancer cell line NCI/ADR-RES."
In sharp contrast, new generation taxoid SB-T-1216 showed ICsy of 0.2 nM against sensitive
MDA-MB-435 cell line, and ICsy of 3.0 nM against resistant NCI/ADR-RES cell line.”* It is
expected that new generation taxoids, SB-T-1212N1, SB-T-0035, 10-Ac-docetaxel, and SB-T-
1211 (Figure 1.19), which have modifications at C-10, C-3’, and C-3’N positions by combining
the structures of paclitaxel, docetaxel, and SB-T-1216, would have different cytotoxicity against
sensitive and resistant cancer cell lines and may indicate which part of the modification could
contribute to the high potency of SB-T-1216 against resistant cancers.

Figure 1.20 to Figure 1.27 showed the preliminary biological evaluation results of these
new-generation taxoids together with paclitaxel and docetaxel against human breast cancer cell
lines SK-BR-3-sensitive, SK-BR-3-resistant, MCF-7-sensitive, MCF-7-resistant cancer cell
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lines. These cell lines were selected for systematic comparison of the cytotoxicity of each taxoid
against sensitive and resistant strains.

In SK-BR-3-sensitive cell line (set 1, Figure 1.20), all taxoids showed good efficacy. At
low concentration (3 nM) of the drugs, SB-T-1216 is the most cytotoxic one, but at higher
concentrations (> 30 nM), all other taxoids showed similar activities including paclitaxel,
docetaxel, and SB-T-1211. In the second set of experiments for this cell line (Figure 1.21), SB-
T-1212N1 showed the best activity at 10 nM among all the taxoids, and can almost completely
kill all the cancer cells at 30 nM, indicating the importance of the isobutenyl group at the C-3’
position of the C-13 side chain. Interestingly, SB-T-0035 also showed excellent activity at 30
nM, but only moderate activity at 10 nM.

160000 e

140000 ®30M
120000 ™ 30 nM
100000 ¥ 300 nM
80000 ® 3000 nM
60000

40000

20000

Figure 1.20 Biological evaluation of new generation taxoids against SK-BR-3-sensitive cell line
(set 1)
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Figure 1.21 Biological evaluation of new generation taxoids against SK-BR-3-sensitive cell line
(set2)

In SK-BR-3-resistant cancer cell line (Figure 1.22 and Figure 1.23), paclitaxel is
essentially inactive, even at a very high concentration (300 nM). SB-T-0035, which is the only
other taxoid has the same side chain as paclitaxel with a modification at C-10 position, behaved
better than paclitaxel but worse than other taxoids, showing C-10 modification could help
overcome drug-resistance to some extent, which is in agreement with the previous findings in
Ojima laboratory during extensive SAR studies.” Interestingly, docetaxel showed much better
activity than paclitaxel in this case. 10-Ac-Docetaxel showed even better potency. These results
indicate -Boc group at C-3’N position of the side chain could help to overcome drug-resistance.
SB-T-1212N1 also showed excellent activity in this cell line, suggesting the importance of
isobutenyl group at the C-3’ position of the C-13 side chain may play a role in overcoming drug-
resistant as well.
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Figure 1.22 Biological evaluation of new generation taxoids against SK-BR-3-resistant cell line
(set 1)
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Figure 1.23 Biological evaluation of new generation taxoids against SK-BR-3-resistant cell line
(set2)
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In MCF-7-sensitive cancer cell line (Figure 1.24 and Figure 1.25), all taxoids showed good
efficacy, including paclitaxel and docetaxel. SB-T-1216 was found to have the best potency at 3
nM, but not as good as other taxoids at 30 nM, and this trend was also observed in SK-BR-3-

sensitive cell line.
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Figure 1.24 Biological evaluation of new generation taxoids against MCF-7-sensitive cell line

(set 1)
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Figure 1.25 Biological evaluation of new generation taxoids against MCF-7-sensitive cell line
(set2)

In MCF-7-resistant cell line (Figure 1.26 and Figure 1.27), paclitaxel was again inactive,
and SB-T-0035 showed potency between paclitaxel and other taxoids, which was observed for
SK-BR-3-resistant cell line as well. SB-T-1216 showed the best potency at 30 nM among all the
taxoids. These results again suggest that C-10 modification do help overcome drug-resistant to
some extent, but most likely the combination of C-10 modification and C-13 side chain
modifications give the most potent taxoids to overcome drug-resistance, presumably because all
these positions have close interactions with the drug efflux pump P-glycoprotein.
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Figure 1.26 Biological evaluation of new generation taxoids against MCF-7 resistant cell line
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Figure 1.27 Biological evaluation of new generation taxoids against MCF-7 resistant cell line
(set2)
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§ 1.3 Summary

New-generation taxoids SB-T-1214, SB-T-1216, SB-T-1211, 10-Ac-docetaxel, and SB-T-
0035 have been synthesized in good yield and high purity via f-Lactam Synthon Method. These
taxoids have been evaluated against both drug-sensitive and drug-resistant cancer cell lines in
comparison with paclitaxel and docetaxel. The biological evaluation results suggest combination
of #-Boc group on the C-3’N-position, 2-methyl-1-propenyl group on the C-3’-position, together
with C-10 modification could contribute to the high potency of new-generation taxoids against
multi-drug resistant cell lines overexpressing P-glycoprotein.

§ 1.4 Experimental
Caution

Taxoids have been classified as highly potent cytotoxic agents. Thus, all taxoids and structurally
related compounds and derivatives must be considered as mutagens and potential reproductive
hazards for both males and females. Appropriate precautions (i.e. use of gloves, goggles, lab coat
and fume hood) must be taken while handling these compounds.

General Methods

'H NMR and C NMR spectra were measured on a Varian 300 spectrometer or a Bruker 400
MHz, 500 MHz, or 700 MHz NMR spectrometer. Melting points were measured on a Thomas-
Hoover capillary melting point apparatus and are uncorrected. Optical rotations were measured
on Perkin-Elmer Model 241 polarimeter. TLC analyses were performed on Sorbent Technologies
aluminum-backed Silica G TLC plates (Sorbent Technologies, 200 um, 20 cm x 20 cm), and
were visualized with UV light and stained with sulfuric acid-EtOH, 10% phosphomolybdic acid
(PMA)-EtOH, 10% vanillin-EtOH with 1% sulfuric acid, ninhydrin-butanol with 10% AcOH, or
DACA stain. Column chromatography was carried out on silica gel 60 (Merck; 230-400 mesh
ASTM). Chemical purity was determined with a Shimadzu L-2010A HPLC HT series HPLC
assembly, using a Kinetex PFP column (4.6 mm x 100 mm, 2.6 um) column, using
CH;CN/water as the solvent system with a flow rate of 1 mL/min.

Materials

All chemicals were purchased from Sigma Aldrich, Fisher Scientific or VWR International and
used as received or purified before use by standard methods. Dichloromethane and methanol
were dried before use by distillation over calcium hydride under nitrogen. Ether and
tetrahydrofuran were dried before use by distillation over sodium-benzophenone under nitrogen.
10-Deacetylbaccatin III (10-DAB III) was obtained from Indena, S.p.A, Italy. Reaction flasks
were dried in a 100 °C oven and allowed to cool to room temperature in a desiccator over
calcium sulfate and assembled under an inert nitrogen gas atmosphere.
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Experimental Procedures
Benzyl 2-hydroxyacetate (benzyl glycolate) (1-1)"

To a 250-mL round-bottom flask 2-hydroxyaceticacid (glycolic acid) (7.34 g, 96.5 mmol) was
dissolved in 100 mL acetone. To the mixture, triethylamine (10.6 g, 105 mmol) was added
slowly within 20 min. The reaction mixture was allowed to stir at room temperature for 30 min.
After that, benzyl bromide (15.0 g, 87.7 mmol) was added dropwise within 30 min. White
precipitate came out immediately. After stirring at room temperature overnight, the white
precipitate was removed by vaccum filtration. The filtrate was mixed with water (100 mL), and
the mixture was extracted with ethyl acetate (3 x 100 mL). The combined organic layer was
washed with brine (3 x 60 mL), and dried over anhydrous MgSO,4. The MgSO,4 was subsequently
removed by vaccum filtration, and the filtrate was concentrated in vacuo to give benzyl 2-
hydroxyacetate (benzyl glycolate) 1-1 (11.1 g, 66.8 mmol) as pale yellow oil in 76% crude yield.
'H NMR (400 MHz, CDCL): & 4.20 (s, 2H), 5.23 (s, 2H), 7.36 (m, 5H). All data are in
agreement with literature values.”

Benzyl 2-(triisopropylsiloxy)acetate (1-2)’°

To a solution of benzyl 2-hydroxyacetate (benzyl glycolate) 1-1 (11.1 g, 66.8 mmol) in DCM
(100 mL) in a 250-mL round-bottom flask, was added 4-dimethylaminopyridine (DMAP) (816
mg, 6.68 mmol) and followed by adding triethylamine (8.12 g, 80.2 mmol) dropwise. After that,
triisopropylsilyl chloride (12.9 g, 66.8 mmol) was added dropwise. White precipitate came out
slowly. The reaction mixture was allowed to stir at room temperature overnight. The white
precipitate was removed by vaccum filtration. The filtrate was mixed with water (50 mL), and
the mixture was extracted with ethyl acetate (3 x 50 mL). The combined organic layer was
washed with brine (3 x 50 mL), and dried over anhydrous MgSO,4. The MgSO,4 was subsequently
removed by vaccum filtration, and the filtrate was concentrated in vacuo to give crude benzyl 2-
((triisopropylsilyl)oxy)acetate 1-2 as pale yellow oil. The crude was further purified by column
chromatography on silica gel (gradient eluent: hexanes/ethyl acetate from 10/1 to 3/1) to give
benzyl 2-(triisopropylsiloxy)acetate 1-2 as pale yellow oil (21.5 g, 66.7 mmol) in quantitative
yield. '"H NMR (400 MHz, CDCls): § 1.08 (m, 21H), 4.36 (s, 2H), 5.18 (s, 2H), 7.34 (m, 5H). "°C
NMR (100 MHz, CDCls): 6 12.1, 18.0, 62.3, 66.6, 128.5, 128.6, 128.7, 135.8, 171.6. All data are
in agreement with literature values.”

2-(Triisopropylsiloxy)acetic acid (1-3)"®

Ethyl acetate was dried over anhydrous MgSQO,, and the MgSO4 was subsequently removed by
vaccum filtration to give dry ethyl acetate. To a 500-mL round-bottom flask, was added benzyl
2-(triisopropylsiloxy)acetate 1-2 (19.5 g, 60.4 mmol) in 200 mL dry ethyl acetate. The flask was
evacuated and flushed with nitrogen gas three times and 10% Pd/C (1.62 g, 1.52 mmol) was then
added. The flask was evacuated and flushed with nitrogen gas three times again. After that the
flask was evacuated and flushed with hydrogen gas three times, kept filled with hydrogen gas,
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and was allowed to stir at room temperature for 5 h. Hydrogen gas was consumed quickly at
first, and then was consumed slowly. The reaction was monitored by TLC. Upon completion, the
reaction mixture was filtered with the aid of Celite to remove the catalyst, and washed with dry
ethyl acetate. The filtrate was concentrated in vacuo to give crude 2-(triisopropylsiloxy)acetic
acid 1-3 (15.0 g, 64.5 mmol) as pale yellow oil (over 100%, contain solvent ethyl acetate). The
crude product was used in next step immediately without further purification. 'H NMR (400
MHz, CDCls): & 1.13 (m, 21H), 4.29 (s, 2H). All data are in agreement with literature values.”®

2,5-Dioxopyrrolidin-1-yl 2-(triisopropylsiloxy)acetate (1-4)

To a solution of crude 2-((triisopropylsilyl)oxy)acetic acid (15.0 g, 64.5 mmol) in 100 mL DCM
in a 250-mL round-bottom flask, was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
hydrochloride (EDCHCI) (13.9 g, 72.5 mmol) and N-hydroxysuccinimide (NHS) (7.65 g, 66.5
mmol). The reaction mixture was allowed to stir at room temperature overnight. The reaction
was monitored by TLC. Upon completion, the reaction mixture was quenched with saturated
ammonium chloride solution in water (50 mL), and extracted with DCM (3 x 50 mL). The
combined organic layer was washed with brine (3 x 50 mL), and dried over anhydrous MgSOs,.
The MgSO,4 was subsequently removed by vaccum filtration, and the filtrate was concentrated in
vacuo to give crude 2,5-dioxopyrrolidin-1-yl 2-(triisopropylsiloxy)acetate 1-4 as pale yellow
solid. The crude product was further purified by recrystallization with hexanes to give 2,5-
dioxopyrrolidin-1-yl 2-(triisopropylsiloxy)acetate 1-4 (13.6 g, 41.4 mmol) as white solid in 69%
yield over two steps. 'H NMR (400 MHz, CDCls): & 1.13 (m, 21H), 2.87 (s, 4H), 4.67 (s, 2H).

()-(1R,2R)-1-Phenylcyclohexane-cis-1,2-diol (1-5)’

To a 250-mL round-bottom flask was added the following reagents in the order into water (80
mL) when stirring has already started: potassium ferricyanide (62.4 g, 190 mmol), anhydrous
potassium carbonate (26.2 g, 190 mmol), methanesulfonamide (6.01 g, 63.2 mmol), potassium
osmate dihydrate (70.0 mg, 0.190 mmol), (DHQD),PHAL (985 mg, 1.26 mmol), I-
phenylcyclohexene (10.1 g, 63.8 mmol), and fert-butyl alcohol (54 mL). The slurry was stirred
vigorously for 2 days. The reaction was monitored by TLC. Upon completion, the reaction
mixture was treated with ethyl acetate with stirring to dissolve the product. The organic layer
was collected, washed with 2M KOH with vigorous shaking to remove methanesulfonamide, and
dried over anhydrous MgSO,. The MgSO, was subsequently removed by vaccum filtration, and
the filtrate was concentrated in vacuo to give crude (+)-(1R,2R)-1-phenylcyclohexane-cis-1,2-
diol 1-5 (12.2 g, 63.5 mmol) as white solid in quantitative yield. "H NMR (400 MHz, CDCl;): &
1.46 (m, 2H), 1.71 (m, 3H), 1.85 (m, 3H), 4.01 (m, 1H), 7.27 (m, 1H), 7.39 (m, 2H), 7.52 (m,
2H). All data are in agreement with literature values.”’

(-)-(1R,2S)-trans-2-Phenyl-1-cyclohexanol (1-6)”

Slurry of activated W-2 Raney nickel in wet ethanol was prepared (~180 mL settled Ra-Ni), and
was added to a 1000-mL 3-necked round-bottom flask with the aid of anhydrous ethanol in

46



portions. Crude (+)-(1R,2R)-1-phenylcyclohexane-cis-1,2-diol 1-5 (12.2 g, 63.5 mmol) from the
previous step in 60 mL anhydrous ethanol was then added. The reaction mixture was stirred
vigorously by a mechanical stirring bar, and refluxed for 4 h. The reaction was monitored by
TLC. Upon the reaction is completed, the reaction mixture was allowed to cool to room
temperature and transferred with anhydrous ethanol and filtered. The Raney nickel sludge was
transferred with water to a specific waste container. The filtrate was concentrated and extracted
with ethyl acetate (3 x 100 mL) and washed with brine (3 x 50 mL). The combined organic layer
was dried over anhydrous MgSO4. The MgSO, was subsequently removed by vaccum filtration,
and the filtrate was concentrated in vacuo to give crude (-)-(1R,2S)-trans-2-phenyl-1-
cyclohexanol 1-6 (9.93g, 56.4 mmol) as pale yellow solid in 89% yield. The crude product was
further purified by recrystallization with pentane to give (-)-(1R,2S)-trans-2-phenyl-1-
cyclohexanol 1-6 (7.72 g, 43.8 mmol) as white solid in 69% yield. '"H NMR (400 MHz, CDCls):
0 1.40 (m, 4H), 1.76 (m, 1H), 1.1.86 (m, 2H), 2.12 (m, 1H), 2.42 (m, 1H), 3.68 (m, 1H), 7.24 (m,
3H), 7.35 (m, 2H). All data are in agreement with literature values.”’

(1R,2S)-trans-2-Phenylcyclohexyl-1-triisopropylsiloxyacetate (1-7, chiral ester)*

To a solution of (-)-(1R,2S)-trans-2-phenyl-1-cyclohexanol 1-6 (6.07 g, 34.5 mmol) and DMAP
(6.32 g, 51.8 mmol) dissolved in toluene (100 mL) in a 250-mL round-bottom flask, was added
2,5-dioxopyrrolidin-1-yl 2-((triisopropylsilyl)oxy)acetate 1-4 (13.6 g, 41.4 mmol). The reaction
was stirred at room temperature under inert condition for 24 hours and monitored by TLC. Upon
completion, the reaction was quenched with saturated ammonium chloride solution in water (50
mL), and extracted with ethyl acetate (3 x 100 mL). The combined organic layer was washed
with brine (3 x 50 mL), and dried over anhydrous MgSO4. The MgSO4 was subsequently
removed by vaccum filtration, and the filtrate was concentrated in vacuo to give crude (1R,2S)-
trans-2-phenylcyclohexyl-1-triisopropylsiloxyacetate 1-7 as pale yellow oil. The crude product
was further purified by column chromatography on silica gel (gradient eluent: hexanes/ethyl
acetate from 100/1 to 40/1) to give (1R,2S)-trans-2-phenylcyclohexyl-1-triisopropylsiloxyacetate
1-7 as colorless oil (11.7 g, 30.0 mmol) in 87% yield. '"H NMR (400 MHz, CDCl;): & 1.02 (m,
21H), 1.38 (m, 4H), 1.76 (m, 3H), 2.15 (m, 1H), 2.65 (m, 1H), 3.90 (d, J = 16.6 Hz, 1H), 4.07 (d,
J=16.6 Hz, 1H), 5.09 (m, 1H), 7.22 (m, 5H). ESI-MS: 391.3 [M+H]". All data are in agreement
with literature values.’?

(E)-4-Methoxy-N-(3-methylbut-2-en-1-ylidene)aniline (1-8)%

To a solution of recrystallized p-anisidine (1.85 g, 15.0 mmol) and anhydrous Na,SO4 (4.26 g,
30.0 mmol) in DCM (75 mL) in a 250-mL round-bottom flask cooled to 0 °C by an ice bath, was
added 3-methylbut-2-enal (1.26 g, 15.0 mmol) dropwise. The reaction mixture was allowed to
stir at room temperature under inert atmosphere in dark for 3 h. The reaction was monitored via
TLC. Upon completion, the reaction mixture was filtered to remove sodium sulfate. The filtrate
was evaporated in vacuo at room temperature in dark to give crude (£)-4-methoxy-N-(3-
methylbut-2-en-1-ylidene)aniline 1-8 (2.83 g, 15.0 mmol) as pale yellow oil in quantitative yield,
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which was then used immediately in the subsequent step without further purification. 'H NMR
(400 MHz, CDCls): & 1.96 (s, 3H), 2.01 (s, 3H), 3.81 (s, 3H), 5.29 (s, 1H), 6.88 (m, 2H), 7.11
(m, 2H), 8.38 (d, T = 9.6 Hz, 1H). All data are in agreement with literature values.®’

(3R,45)-1-(4-Methoxyphenyl)-4-(2-methylprop-1-en-1-yl)-3-(triisopropylsiloxy)azetidin-2-
one (1-9)"’

To a dry 100-mL round-bottom flask under inert condition, was added dry THF (15 mL), and
cooled to -78 °C by an acetone/dry ice bath. LDA (2.0 M solution in THF/heptane/ethyl
benzene) (3.95 mL, 7.90 mmol) was then added dropwise. To the mixture, a solution of chiral
ester (1R,25)-trans-2-phenylcyclohexyl-triisopropylsilyl-oxyacetate 1-7 (2.00 g, 5.13 mmol) in
dry THF (15 mL) was added slowly within 1 h. The reaction mixture was allowed to stir at -78
°C for another 1 h. A solution of crude imine (E)-4-methoxy-N-(3-methylbut-2-en-1-
ylidene)aniline 1-8 (1.19 g, 6.31 mmol) in dry THF (15 mL) was then added very slowly within
3 h. The reaction mixture was allowed to stir at -78 °C for another 3 h. LIHMDS (1.0 M solution
in methyl fert-butyl ether) (5.13 mL) was then added dropwise. The reaction mixture was stirred
for another 1 h, and then allowed to slowly warm up to room temperature overnight. Upon the
reaction is completed, the reaction mixture was quenched with saturated NH4Cl solution in water
(30 mL), and extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed
with brine (3 x 50 mL), and dried over anhydrous MgSO4. The MgSO4 was subsequently
removed by vacuum filtration, and the filtrate was concentrated in vacuo to give crude 1-9 as
yellow oil. The crude product was further carefully purified by column chromatography on silica
gel (gradient eluent: hexanes/ethyl acetate from 50/1 to 4/1) to give (3R,4S5)-1-(4-
methoxyphenyl)-4-(2-methylprop-1-en-1-yl)-3-(triisopropylsiloxy)azetidin-2-one 1-9 as pale
yellow solid (1.16 g, 2.87 mmol) in 56% yield. '"H NMR (400 MHz, CDCl;): § 1.06 (m, 21H),
1.79 (d, J = 1.2 Hz, 3H), 1.84 (d, J = 1.2 Hz, 3H), 3.77 (s, 3H), 4.80 (dd, J = 10.0 Hz, 5.0 Hz,
1H), 5.05 (d, J = 5.0 Hz, 1H), 5.33 (m, 1H), 6.82 (m, 2H), 7.32 (m, 2H). All data are in
agreement with literature values.®’

(3R,4S5)-4-(2-Methylprop-1-en-1-yl)-3-(triisopropylsiloxy)azetidin-2-one (1-10)*’

To a 100-mL round-bottom flask (3R,4S5)-1-(4-methoxyphenyl)-4-(2-methylprop-1-en-1-yl)-3-
(triisopropylsiloxy)azetidin-2-one 1-9 (450 mg, 1.11 mmol) was dissolved in acetonitrile (30
mL) and cooled to -4 °C by a salt ice bath. To this solution was added a solution of cerium
ammonium nitrate (CAN) (2.44g, 4.46 mmol) dissolved in HO (30 mL) dropwise via an
addition funnel within 1 h. The reaction temperature of -4 °C was maintained throughout the
reaction. The reaction was monitored via TLC. Upon completion, the reaction mixture was
quenched with saturated aqueous Na,SO; solution (30 mL). The mixture was extracted with
ethyl acetate (3 x 80 mL). The combined organic layer was washed with brine (3 x 50 mL), and
dried over anhydrous MgSO4. The MgSO4 was subsequently removed by vacuum filtration, and
the filtrate was concentrated in vacuo to give crude 1-10 as brown oil. The crude product was
further purified by column chromatography on silica gel (gradient eluent: hexanes/ethyl acetate
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from 10/1 to 1/1) to give (3R,45)-4-(2-methylprop-1-en-1-yl)-3-(triisopropylsiloxy)azetidin-2-
one 1-10 as pale yellow solid (251 mg, 0.845 mmol) in 76% yield. '"H NMR (400 MHz, CDCl;):
0 1.03 (m, 21H), 1.69 (d, J = 1.6 Hz, 3H), 1.76 (d, J = 1.4 Hz, 3H), 4.44 (dd, ] = 9.6 Hz, 4.8 Hz,
1H), 5.00 (dd, J =4.7 Hz, 2.3 Hz, 1H), 5.32(m, 1H), 5.79 (br. s, 1H). All data are in agreement
with literature values.®’

(BR,45)-1-tert-Butoxycarbonyl-3-triisopropylsilyloxy-4-(2-mehyl-1-propenyl)azetidin-2-one
(1-11)¥

To (3R,45)-4-(2-methylprop-1-en-1-yl)-3-(triisopropylsiloxy)azetidin-2-one 1-10 (250 mg, 0.842
mmol) dissolved in 5 mL DCM in a 25-mL round-bottom flask, was added DMAP (31 mg, 0.25
mmmol) and triethylamine (170 mg, 1.68 mmol). The reaction mixture was cooled to 0 °C under
inert conditions, and was added di-terz-butyl dicarbonate (202 mg, 0.93 mmol). The reaction was
allowed to stir at room temperature overnight and monitored via TLC. Upon the reaction was
completed, the reaction mixture was quenched with saturated NH4Cl solution in water. The
mixture was extracted with ethyl acetate (3 x 15 mL). The combined organic layer was washed
with brine (3 x 15 mL), and dried over anhydrous MgSO4. The MgSO,; was subsequently
removed by vacuum filtration, and the filtrate was concentrated in vacuo to give crude 1-11 as
pale yellow oil. The crude product was further purified by column chromatography on silica gel
(gradient eluent: hexanes/ethyl acetate from 50/1 to 10/1) to give (3R,4S5)-1-tert-butoxycarbonyl-
3-triisopropylsilyloxy-4-(2-mehyl-1-propenyl)azetidin-2-one 1-11 as colorless oil (290 mg,
0.730 mmol) in 87% yield. "H NMR (400 MHz, CDCls): & 1.02 (m, 21H), 1.48 (s, 9H), 1.76 (d, J
= 1.2 Hz, 3H), 1.79 (d, J = 1.2 Hz, 3H), 4.75 (dd, J = 9.9 Hz, 5.7 Hz, 4H), 4.96 (d, J = 5.7 Hz,
1H), 5.26 (m, 1H). °C NMR (100 MHz, CDCL): & 12.03, 17.74, 18.47, 26.30, 28.26, 57.03,
118.64, 139.85, 148.56, 166.79. All data are in agreement with literature values.”’

Enzymatic resolution of p-lactam (+)-1-12)"

To racemic P-lactam (£)-1-(4-methoxyphenyl)-3-acetoxyl-4-(2-methylprop-1-enyl)azetidin-2-
one (1.90 g. 6.57 mmol) dissolved in CH3CN (33 mL) in a 1000-mL three-neck round-bottom
flask, was added 330 mL of PBS buffer (pH 7.5). The mixture was heated up to 40 °C in an oil
bath, and PS Amano lipase (0.381 g) was then added into the mixture. The reaction mixture was
stirred vigorously with a mechanical stirrer and the temperature was maintained at 40 °C. The
reaction was monitored by 'H NMR. After 7 days, the "H NMR result indicates the ratio of (+)-
1-(4-methoxyphenyl)-3-acetoxyl-4-(2-methylprop-1-enyl)azetidin-2-one (+)-1-12 and (-)-1-(4-
methoxyphenyl)-3-hydroxyl-4-(2-methylprop-1-enyl)azetidin-2-one (-)-1-13 is around 10:7, so
the temperature was raised from 40 °C to 45 °C. After another 7 days, the '"H NMR result
indicates the ratio of (+)-1-12 and (-)-1-13 is 1:1. The residual lipase was filtered over Celite and
washed with DCM. The filtrate was extracted using DCM (3 x 200 mL). The organic layers
were washed three times with brine, and dried over anhydrous MgSO,. The MgSO4 was
subsequently removed by vacuum filtration, and the filtrate was concentrated in vacuo. The
resulting crude was purified via column chromatography on silica gel (gradient eluent:
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hexanes/ethyl acetate from 10/1 to 1/1) to yield (+)-1-(4-methoxyphenyl)-3-acetoxyl-4-(2-
methylprop-1-enyl)azetidin-2-one (+)-1-12 as a white solid (904 mg, 3.13 mmol) in 48% yield
with 100% ee, and (-)-1-(4-methoxyphenyl)-3-hydroxyl-4-(2-methylprop-1-enyl)azetidin-2-one
(-)-1-13 as a pale yellow solid. To measure optical purity, to (+)-1-(4-methoxyphenyl)-3-
acetoxyl-4-(2-methylprop-1-enyl)azetidin-2-one (+)-1-12 (9 mg, 0.031 mmol) dissolved in THF
(0.5 mL), cooled to 0 °C, was added NaOH (12 mg, 0.30 mmol) in distilled water (0.5 mL).
After 2 h, the reaction was quenched with 1 mL saturated NH4Cl in water and extracted with
DCM (4 x 10 mL). The organic layers were collected, dried over MgSO4. The MgSO4 was
subsequently removed by vacuum filtration, and the filtrate was concentrated in vacuo to yield
(+)-1-(4-methoxyphenyl)-3-hydroxyl-4-(2-methylprop-1-enyl)azetidin-2-one (+)-1-13 as a pale
yellow solid. The (+) and (-) enantiomers of 1-(4-methoxyphenyl)-3-hydroxyl-4-(2-methylprop-
I-enyl)azetidin-2-one were dissolved in isopropanol and analyzed for optical purity using HPLC
(column: Chiracel OD-H; method: isocratic program; flow rate: 0.6 mL/min; eluent: 90%/10%
hexanes/isopropanol). The retention time of (-)-1-(4-methoxyphenyl)-3-hydroxyl-4-(2-
methylprop-1-enyl)azetidin-2-one (-)-1-13 is 20 min, and the retention time of (+)-1-(4-
methoxyphenyl)-3-hydroxyl-4-(2-methylprop-1-enyl)azetidin-2-one (+)-1-13 is 26 min. (+)-1-(4-
methoxyphenyl)-3-acetoxyl-4-(2-methylprop-1-enyl)azetidin-2-one (+)-1-12 'H NMR (500
MHz, CDCls): 8 1.79 (s, 3H), 1.82 (s, 3H), 2.11 (s, 3H), 3.78 (s, 3H), 4.96 (dd, J = 9.4 Hz, 4.8
Hz, 1H), 5.13 (d, ] = 9.4 Hz, 1H), 5.80 (d, J = 4.8 Hz, 1H), 6.85 (d, J = 8.9 Hz, 2H), 7.31 (J = 8.9
Hz, 2H). (-)-1-(4-methoxyphenyl)-3-hydroxyl-4-(2-methylprop-1-enyl)azetidin-2-one (-)-1-13
'H NMR (500 MHz, CDCl3): & 1.85 (s, 3H), 1.86 (s, 3H), 3.12 (d, ] = 7.6 Hz, 1H), 3.78 (s, 3H),
4.89 (dd, J = 8.9 Hz, 5.1 Hz, 1H), 5.03 (dd, J = 7.6 Hz, 5.1 Hz, 1H), 5.29 (m, 1H), 6.84 (m, 2H),
7.31 (m, 2H). All data are in agreement with literature values.”®

(+)-1-(4-Methoxyphenyl)-3-hydroxyl-4-(2-methylprop-1-enyl)azetidin-2-one ((+)-1-13)"

To (+)-1-(4-methoxyphenyl)-3-acetoxyl-4-(2-methylprop-1-enyl)azetidin-2-one (+)-1-12 (100
mg, 0.346 mmol; 794 mg, 2.75 mmol) dissolved in THF (3 mL; 24 mL), cooled to 0 °C, was
added NaOH (138 mg, 3.46 mmol; 1.10 g, 27.5 mmol) dissolved in distilled water (3 mL; 24
mL). After 2 h, the reaction was quenched with 10 mL saturated NH4Cl and the mixture was
extracted with CH,Cl, (4 x 30 mL). The organic layers were collected, and dried over MgSOy,
The MgSO,4 was subsequently removed by vacuum filtration, and the filtrate was concentrated in
vacuo. The resulting crude was combined and purified via column chromatography on silica gel
(gradient eluent: hexanes/ethyl acetate from 10/1 to 1/1) to yield (+)-1-(4-methoxyphenyl)-3-
hydroxyl-4-(2-methylprop-1-enyl)azetidin-2-one (+)-1-13 as a white solid (671 mg, 2.71 mmol)
in 88% combined yield. "H NMR (500 MHz, CDCl3) § 1.860 (s, 3H), 1.862 (s, 3H), 2.66 (d, J =
7.7 Hz, 1H), 3.78 (s, 3H), 4.89 (dd, J = 8.8 Hz, 5.1 Hz, 1H), 5.02 (dd, J = 7.7 Hz, 5.1 Hz, 1H),
5.26 (m, 1H), 6.85 (m, 2H), 7.31 (m, 2H). All data are in agreement with literature values.”

(+)-1-(4-Methoxyphenyl)-3-triisopropylsiloxy-4-(2-methylprop-1-enyl)azetidin-2-one (1-9)”
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To a solution of (+)-1-(4-methoxyphenyl)-3-hydroxyl-4-(2-methylprop-1-enyl)azetidin-2-one
(+)-1-13 (671 mg, 2.71 mmol) and DMAP (114 mg, 0.934 mmol) dissolved in DCM (30 mL)
cooled to 0 °C, was added TEA (476 mg, 4.70 mmol) followed by the dropwise addition of
chlorotriisopropylsilane (713 mg, 3.70 mmol). The reaction mixture was stirred at room
temperature and the reaction was monitored via TLC. After overnight, the reaction was
quenched with saturated NH4Cl (20 mL) and the mixture was extracted with ethyl acetate (3 x 50
mL). The organic layer was washed three times with brine, and dried over anhydrous MgSOs,.
The MgSO,4 was subsequently removed by vacuum filtration, and the filtrate was concentrated in
vacuo. The resulting crude was purified via column chromatography on silica gel (gradient
eluent: hexanes/ethyl acetate from 10/1 to 4/1) to yield (+)-1-(4-methoxyphenyl)-3-
triisopropylsiloxy-4-(2-methylprop-1-enyl)azetidin-2-one 1-9 as a white solid (990 mg, 2.45
mmol) in 90% yield. "H NMR (500 MHz, CDCl3) § 1.13 (m, 21H), 1.847 (s, 3H), 1.849 (s, 3H),
3.77 (s, 3H), 4.80 (dd, J = 10.0 Hz, 5.0 Hz, 1H), 5.06 (d, J = 5.0 Hz, 1H), 5.32 (m, 1H), 6.84 (m,
2H), 7.31 (m, 2H). All data are in agreement with literature values.”

10-Deacetyl-7-triethylsilylbaccatin ITI (1-14)*

To a 25-mL round-bottom flask was added 10-DAB III (500 mg, 0.917 mmol) and imidazole
(272 mg, 4.00 mmol). The flask was purged with nitrogen gas and 10 mL anhydrous DMF was
added. The mixture was dissolved and cooled to 0 °C in an ice bath. Then chlorotriethylsilane
(0.5 mL, 2.98 mmol) was added dropwise. The reaction was monitored by TLC (hexanes/ethyl
acetate = 1/1, stain with 5% sulfuric acid in ethanol). Upon completion after 30 min, the reaction
was quenched with 5 mL saturated ammonium chloride solution in H,O and diluted with 20 mL
H,0. The aqueous layer was extracted with ethyl acetate (3 x 20 mL). The combined organic
layer was washed with brine (3 x 20 mL), and dried over anhydrous MgSQO4. The MgSQO4 was
subsequently removed by vacuum filtration, and the filtrate was concentrated in vacuo to give
crude product 1-14 as colorless oil. The crude product was further purified by column
chromatography on silica gel (gradient eluent: hexanes/ethyl acetate from 4/1 to 1/1) to give 10-
deacetyl-7-triethylsilylbaccatin IIT 1-14 as white solid (562 mg, 0.853 mmol) in 93% yield. 'H
NMR (400 MHz, CDCl3): 6 0.55 (m, 6H, Si(CH>CHs)3), 0.94 (t, J = 8.0 Hz, 9H, Si(CH,CH3)3),
1.08 (s, 6H, 16-Me, 17-Me), 1.55 (s, 1H, 1-OH), 1.73 (s, 3H, 19-Me), 1.90 (m, 1H, 6-H), 2.01 (d,
J=5.0 Hz, 1H, 13-OH), 2.08 (s, 3H, 18-Me), 2.26 (m, 2H, 14-CH,), 2.28 (s, 3H, OAc), 2.47 (m,
1H, 6-H), 3.95 (d, J = 6.8 Hz, 1H, 3-H), 4.16 (d, J = 8.3 Hz, 1H, 20-H), 4.25 (d, J = 2.1 Hz, 1H,
10-OH), 4.31 (d, J = 8.3 Hz, 1H, 20-H), 4.41 (dd, J = 10.6 Hz, 6.7 Hz, 1H, 7-H), 4.87 (m, 1H,
13-H), 4.95 (dd, ] = 9.5 Hz, 1.8 Hz, 1H, 5-H), 5.17 (d, J = 2.1 Hz, 1H, 10-H), 5.60 (d, J = 7.0 Hz,
1H, 2-H), 7.47 (t, T = 7.8 Hz, 2H, Bz), 7.60 (m, 1H, Bz), 8.10 (m, 2H, Bz). *C NMR (100 MHz,
CDCl): 6 5.2,6.8,9.9, 15.2, 19.5, 22.6, 26.9, 37.3, 38.6, 42.7, 47.0, 58.0, 68.0, 73.0, 74.7, 74.8,
76.6, 78.8, 80.8, 84.3, 128.6, 129.4, 130.1, 133.6, 135.2, 141.7, 167.1, 170.8, 210.3. All data are
consisted with the reported values.”’

10-Cyclopropanecarbonyl-10-deacetyl-7-triethylsilylbaccatin III (1-15)™
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To a 50-mL round-bottom flask was added 10-deacetyl-7-triethylsilylbaccatin III 1-14 (536 mg,
0.813 mmol). The flask was purged with nitrogen gas and 16 mL freshly distilled anhydrous
THF was added. The starting material was dissolved and cooled to -40 °C in an acetone/dry ice
bath by adding small amount of dry ice into acetone, and monitored using a thermometer.
LiHMDS (0.90 mL, 0.90 mmol) was added dropwise, and then cyclopropanecarbonyl chloride
(94 pL, 0.976 mmol) was added dropwise. The reaction was monitored by TLC (DCM/MeOH =
20/1, stain with 5% sulfuric acid in ethanol). Upon completion after 30 min, the reaction was
quenched with 10 mL saturated ammonium chloride solution and then diluted with 20 mL H,O.
The aqueous layer was extracted with ethyl acetate (3 x 50 mL). The combined organic layer was
washed with brine (3 x 50 mL), and dried over anhydrous MgSO,4. The MgSO4 was subsequently
removed by vacuum filtration, and the filtrate was concentrated in vacuo to give crude product as
white solid. The crude product was further purified by column chromatography on silica gel
(gradient eluent: hexanes/ethyl acetate from 10/1 to 1/1) to give 10-cyclopropanecarbonyl-10-
deacetyl-7-triethylsilylbaccatin IIT 1-15 as white solid (556 mg, 0.765 mmol) in 94% yield. 'H
NMR (400 MHz, CDCl3): 6 0.56 (m, 6H, Si(CH>CHs)3), 0.92 (t, J = 7.9 Hz, 9H, Si(CH,CH3)3),
1.01 (m, 2H, cyclopropane), 1.05 (s, 3H, 17-Me), 1.16 (m, 2H, cyclopropane), 1.20 (s, 3H, 16-
Me), 1.61 (br. s, 1H, 1-OH), 1.68 (s, 3H, 19-Me), 1.76 (m, 1H, cyclopropane), 1.87 (m, 1H, 6-
H), 2.19 (s, 3H, 18-Me), 2.27 (m, 2H, 14-CH,), 2.28 (s, 3H, OAc), 2.52 (m, 1H, 6-H), 3.88 (d, J
=7.0 Hz, 1H, 3-H), 4.15 (d, J = 8.3 Hz, 1H, 20-H), 4.30 (d, J = 8.3 Hz, 1H, 20-H), 4.48 (dd, J =
10.5 Hz, 6.7 Hz, 1H, 7-H), 4.84 (t, ] = 7.8 Hz, 1H, 13-H), 4.96 (d, J = 8.2 Hz, 1H, 5-H), 5.64 (d,
J =7.0 Hz, 1H, 2-H), 6.46 (s, 1H, 10-H), 7.47 (t, J = 7.7 Hz, 2H, Bz), 7.60 (t, J = 7.7 Hz, 1H,
Bz), 8.10 (d, J = 7.3 Hz, 2H, Bz). *C NMR (100 MHz, CDCL;): & 5.3, 6.8, 8.6, 8.7, 10.0, 13.0,
14.9, 20.2, 22.7, 26.8, 37.3, 38.2, 42.8, 47.3, 68.0, 72.4, 74.7, 75.5, 76.5, 78.8, 80.9, 84.3, 128.6,
129.4, 130.1, 132.8, 133.6, 143.8, 167.1, 170.7, 173.2, 202.3. All data are consisted with the
reported values.>

10-Cyclopropanecarbonyl-3’-dephenyl-3’-(2-methyl-2-propenyl)-7-triethylsilyl-2°-
triisopropylsilyldocetaxel (1-16)>"

To a 50-mL round-bottom flask was added 10-cyclopropanecarbonyl-10-deacetyl-7-
triethylsilylbaccatin III 1-15 (375 mg, 0.516 mmol). The flask was purged with nitrogen gas and
20 mL freshly distilled anhydrous THF was added. The starting material was dissolved and
cooled to -40 °C in an acetone/dry ice bath by adding small amount of dry ice into acetone, and
monitored using a thermometer. LIHMDS (0.68 mL, 0.68 mmol) was added dropwise, and then
enantiopure B-lactam (3R ,AS)-1-tert-butoxycarbonyl-3-triisopropylsilyloxy-4-(2-mehyl-1-
propenyl)azetidin-2-one 1-11 (246 mg, 0.620 mmol) in 6 mL anhydrous THF was added
dropwise. The reaction was monitored by TLC (hexanes /ethyl acetate = 3/1, stain with 5%
sulfuric acid in ethanol). After two hour, there is still startimg material left in in the reaction
mixture, so another 0.5 eq. LIHMDS (0.26 mL, 0.26 mmol) was added to the reaction mixture.
Upon completion after 4 hour, the reaction was quenched with 10 mL saturated ammonium
chloride solution and then diluted with 20 mL H,O. The aqueous layer was extracted with ethyl
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acetate (3 x 50 mL). The combined organic layer was washed with brine (3 x 50 mL), and dried
over anhydrous MgSO,. The MgSO4 was subsequently removed by vacuum filtration, and the
filtrate was concentrated in vacuo to give crude product as pale yellow solid. The crude product
was further purified by column chromatography on silica gel (gradient eluent: hexanes/ethyl
acetate from 10/1 to 3/1) to give 10-cyclopropanecarbonyl-10-deacetyl-3’-dephenyl-3°-(2-
methyl-2-propenyl)-7-triethylsilylbaccatin III 1-16 as white solid (506 mg, 0.450 mmol) in 87%
yield. Unreacted 10-cyclopropanecarbonyl-10-deacetyl-7-triethylsilylbaccatin III 1-15 (31 mg,
0.043 mmol, 8%) and excess B-lactam 1-11 (36 mg, 0.091 mmol) were also obtained from
column chromatography. Conversion is 92% based on the amount of isolated unreacted starting
material 1-15. '"H NMR (400 MHz, CDCl;): & 0.56 (m, 6H, Si(CH,CH3)3), 0.92 (m, 9H,
Si(CH,CHs)3), 1.01 (m, 2H, cyclopropane), 1.04 (m, 21H, TIPS), 1.16 (m, 2H, cyclopropane),
1.19 (s, 3H, 17-Me), 1.23 (s, 3H, 16-Me), 1.34 (s, 9H, t-Bu), 1.61 (br. s, 1H, 1-OH), 1.68 (s, 3H,
19-Me), 1.73 (m, 1H, cyclopropane), 1.75 (s, 3H, isobutenyl), 1.79 (s, 3H, isobutenyl), 1.87 (m,
1H, 6-H), 2.00 (s, 3H, 18-Me), 2.36 (s, 3H, OAc), 2.38 (m, 2H, 14-CH,), 2.52 (m, 1H, 6-H),
3.84 (d,J=7.0 Hz, 1H, 3-H), 4.20 (d, J = 8.3 Hz, 1H, 20-H), 4.30 (d, J = 8.3 Hz, 1H, 20-H), 4.43
(d, J =2.8 Hz, 1H, 2’-H), 4.46 (dd, J = 10.5 Hz, 6.7 Hz, 1H, 7-H), 4.80 (m, 2H, 3°-H, 3’N-H),
4.93 (d,J=7.8 Hz, 1H, 5-H), 5.34 (d, J = 8.6 Hz, isobutenyl), 5.69 (d, J = 7.2 Hz, 1H, 2-H), 6.09
(t, J=8.3 Hz, 1H, 13-H), 6.48 (s, 1H, 10-H), 7.46 (t, ] = 7.8 Hz, 2H, Bz), 7.60 (t, ] = 7.4 Hz, 1H,
Bz), 8.10 (d, ] = 7.1 Hz, 2H, Bz). All data are consisted with the reported values.”

10-Cyclopropanecarbonyl-3’-dephenyl-3’-(2-methyl-2-propenyl)docetaxel (1-17, SB-T-
1214)%°

To a 50-mL round-bottom flask was added 10-cyclopropanecarbonyl-10-deacetyl-3’-dephenyl-
3’-(2-methyl-2-propenyl)-7-triethylsilylbaccatin III 1-16 (496 mg, 0.441 mmol). The flask was
purged with nitrogen gas. Then 11 mL acetonitrile and 11 mL pyridine were added. The starting
material was dissolved and cooled to 0 °C in an ice bath. 5.0 mL HF/pyridine was then added
dropwise. The reaction mixture was allowed to warm up to room temperature gradually. The
reaction was monitored by TLC (hexanes/ ethyl acetate = 1/1, stain with 5% sulfuric acid in
ethanol). Upon completion after overnight, the reaction was quenched with 10 mL 0.2 M citric
acid in water (3.8%). The aqueous layer was extracted with ethyl acetate (3 x 30 mL). The
combined organic layer was washed with saturated copper sulfate (3 x 30 mL) to remove
pyridine, and then washed with water (3 x 30 mL) and brine (3 x 30 mL), and dried over
anhydrous MgSO,. The MgSO, was subsequently removed by vacuum filtration, and the filtrate
was concentrated in vacuo to give crude product as white solid. The crude product was further
purified by column chromatography on silica gel (gradient eluent: hexanes/ethyl acetate from
10/1 to 1/1) to give 10-cyclopropanecarbonyl-3’-dephenyl-3’-(2-methyl-2-propenyl)docetaxel 1-
17 (SB-T-1214) as white solid (351 mg, 0.411 mmol) in 93% yield. The product was further
purified by recrystallization with ethyl acetate to give desired product SB-T-1214 (298 mg,
0.349 mmol) as white crystal in high purity (97.5% by HPLC). '"H NMR (400 MHz, CDCl;): &
1.00 (m, 2H, cyclopropane), 1.14 (m, 2H, cyclopropane), 1.16 (s, 3H, 17-Me), 1.27 (s, 3H, 16-
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Me), 1.36 (s, 9H, t-Bu), 1.65 (s, 1H, 1-OH), 1.67 (s, 3H, 19-Me), 1.77 (br. s, 6H, isobutenyl),
1.80 (m, 1H, cyclopropane), 1. 84 (m, 1H, 6-H), 1.90 (s, 3H, 18-Me), 2.36 (s, 3H, OAc), 2.48 (m,
2H, 14-CH,), 2.52 (m, 1H, 6-H), 3.44 (m, 1H, 7-OH), 3.81 (d, J = 7.0 Hz, 1H, 3-H), 4.18 (d, J =
8.4 Hz, 1H, 20-H), 4.22 (m, 1H, 2’-H), 4.30 (d, J = 8.4 Hz, 1H, 20-H), 4.41 (m, 1H, 7-H), 4.75
(m, 2H, 3°-H, 3’N-H), 4.96 (d, J = 7.8 Hz, 1H, 5-H), 5.31 (m, 1H, 4’-H), 5.66 (d, J = 7.0 Hz, 1H,
2-H), 6.18 (t, J = 8.2 Hz, 1H, 13-H), 6.30 (s, 1H, 10-H), 7.48 (t, J = 7.8 Hz, 2H, Bz), 7.61 (t,J =
7.4 Hz, 1H, Bz), 8.10 (d, ] = 7.2 Hz, 2H, Bz). >C NMR (100 MHz, CDCls): 9.2, 9.4, 9.5, 13.0,
15.0, 18.6, 22.0, 22.4, 25.7, 26.7, 28.2, 35.5, 35.6, 43.2, 45.6, 51.6, 58.6, 72.3, 72.4, 75.1, 75.4,
76.5, 77.0, 77.2, 79.2, 80.0, 81.1, 84.5, 120.6, 128.7, 129.3, 130.2, 132.9, 133.7, 138.0, 142.7,
155.5, 167.0, 170.1, 175.2, 203.9. Melting point: 159-160 °C. ap = -85° (CHCIs, ¢ = 0.26). All
data are consisted with the reported values except ap. (It was reported op = -160° in the
literature, however, ap was measured multiple times including previous SB-T-1214 sample, and
all gave similar results, so the reported value should be wrong. No melting point was given in the
reference.”

10- N,N-Dimethylcarbamoyl -10-deacetyl-7-triethylsilylbaccatin III (1-18)>

To a 25-mL round-bottom flask was added 10-deacetyl-7-triethylsilylbaccatin III 1-14 (305 mg,
0.455 mmol). The flask was purged with nitrogen gas and 9 mL freshly distilled anhydrous THF
was added. The starting material was dissolved and cooled to -40 °C in an acetone/dry ice bath
by adding small amount of dry ice into acetone, and monitored using a thermometer. LIHMDS
(0.59 mL, 0.59 mmol) was added dropwise, and then N,N-dimethylcarbamoyl chloride (54 pL,
0.592 mmol) was added dropwise. The reaction was monitored by TLC (DCM/MeOH = 20/1,
stain with 5% sulfuric acid in ethanol). Upon completion after 4 hour, the reaction was quenched
with 5 mL saturated ammonium chloride solution and then diluted with 10 mL HO. The
aqueous layer was extracted with ethyl acetate (3 x 30 mL). The combined organic layer was
washed with brine (3 x 30 mL), and dried over anhydrous MgSO,4. The MgSO4 was subsequently
removed by vacuum filtration, and the filtrate was concentrated in vacuo to give crude product as
white solid. The crude product was further purified by column chromatography on silica gel
(gradient eluent: hexanes/ethyl acetate from 10/1 to 1/1) to give 10-N,N-dimethylcarbamoyl-10-
deacetyl-7-triethylsilylbaccatin IIT 1-18 as white solid (320 mg, 0.438 mmol) in 95% yield. 'H
NMR (400 MHz, CDCl3): 6 0.58 (m, 6H, Si(CH>CHs)3), 0.92 (t, J = 8.0 Hz, 9H, Si(CH,CH3)3),
1.08 (s, 3H, 17-Me), 1.20 (s, 3H, 16-Me), 1.60 (s, 1H, 1-OH), 1.68 (s, 3H, 19-Me), 1.87 (m, 1H,
6-H), 2.24 (s, 3H, 18-Me), 2.27 (m, 2H, 14-CH,), 2.28 (s, 3H, OAc), 2.52 (m, 1H, 6-H), 2.94 (s,
3H, CON(CH3)»), 3.08 (s, 3H, CON(CH3),), 3.90 (d, J = 7.0 Hz, 1H, 3-H), 4.15 (d, ] = 8.2 Hz,
1H, 20-H), 4.30 (d, J = 8.2 Hz, 1H, 20-H), 4.48 (dd, J = 10.4 Hz, 6.7 Hz, 1H, 7-H), 4.84 (m, 1H,
13-H), 4.96 (d, J = 8.1 Hz, 1H, 5-H), 5.64 (d, J = 7.0 Hz, 1H, 2-H), 6.39 (s, 1H, 10-H), 7.47 (t,J
= 8.0 Hz, 2H, Bz), 7.60 (t, J = 7.5 Hz, 1H, Bz), 8.10 (d, ] = 7.2 Hz, 2H, Bz). >C NMR (100
MHz, CDCls): § 5.4, 6.9, 10.1, 15.0, 20.4, 22.9, 27.0, 37.4, 38.4, 42.9, 47.4, 58.6, 68.2, 72.5,
74.9, 76.8, 79.0, 81.1, 84.4, 128.7, 129.6, 130.3, 133.4, 133.7, 143.7, 155.5, 167.3, 170.9, 203 4.
ESI-MS: 730.3 [M+H]". All data are consisted with literature values.”
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10-N,N-Dimethylcarbamoyl -3’-dephenyl-3’-(2-methyl-2-propenyl)-7-triethylsilyl-2’-
triisopropylsilyldocetaxel (1-19)>"

To a 25-mL round-bottom flask was added 10-N,N-dimethylcarbamoyl-10-deacetyl-7-
triethylsilylbaccatin III 1-18 (150 mg, 0.205 mmol). The flask was purged with nitrogen gas and
6 mL freshly distilled anhydrous THF was added. The starting material was dissolved and cooled
to -40 °C in an acetone/dry ice bath by adding small amount of dry ice into acetone, and
monitored using a thermometer. LIHMDS (0.27 mL, 0.27 mmol) was added dropwise, and then
enantiopure B-lactam (3R ,AS)-1-tert-butoxycarbonyl-3-triisopropylsilyloxy-4-(2-mehyl-1-
propenyl)azetidin-2-one 1-11 (106 mg, 0.267 mmol) in 2 mL anhydrous THF was added
dropwise. The reaction was monitored by TLC (hexanes /ethyl acetate = 3/1, stain with 5%
sulfuric acid in ethanol). Upon completion after 4 hour, the reaction was quenched with 5 mL
saturated ammonium chloride solution and then diluted with 10 mL H,O. The aqueous layer was
extracted with ethyl acetate (3 x 20 mL). The combined organic layer was washed with brine (3 x
20 mL), and dried over anhydrous MgSO,. The MgSO4 was subsequently removed by vacuum
filtration, and the filtrate was concentrated in vacuo to give crude product as pale yellow solid.
The crude product was further purified by column chromatography on silica gel (gradient eluent:
hexanes/ethyl acetate from 10/1 to 3/1) to give 10-N,N-dimethylcarbamoyl-10-deacetyl-3’-
dephenyl-3’-(2-methyl-2-propenyl)-7-triethylsilylbaccatin III (1-19) as white solid (214 mg,
0.190 mmol) in 92% yield. "H NMR (400 MHz, CDCls): & 0.58 (m, 6H, Si(CH,CHj3)3), 0.92 (m,
9H, Si(CH>CHs)3), 1.10 (m, 21H, TIPS), 1.19 (s, 3H, 17-Me), 1.23 (s, 3H, 16-Me), 1.34 (s, 9H, t-
Bu), 1.68 (s, 3H, 19-Me), 1.75 (s, 3H, isobutenyl), 1.79 (s, 3H, isobutenyl), 1.88 (m, 1H, 6-H),
2.05 (s, 3H, 18-Me), 2.36 (s, 3H, OAc), 2.38 (m, 1H, 14-CH,), 2.52 (m, 1H, 6-H), 2.94 (s, 3H,
CON(CHs),), 3.06 (s, 3H, CON(CHs)»), 3.86 (d, J = 6.7 Hz, 1H, 3-H), 4.20 (d, J = 8.4 Hz, 1H,
20-H), 4.30 (d, J = 8.4 Hz, 1H, 20-H), 4.43 (d, J = 2.8 Hz, 1H, 2’-H), 4.46 (dd, J = 10.4 Hz, 6.5
Hz, 1H, 7-H), 4.78 (m, 2H, 3°’-H, 3°’N-H), 4.94 (d, J = 8.4 Hz, 1H, 5-H), 5.34 (d, J = 8.6 Hz,
isobutenyl), 5.69 (d, J = 7.0 Hz, 1H, 2-H), 6.10 (t, J = 8.3 Hz, 1H, 13-H), 6.49 (s, 1H, 10-H), 7.46
(t, J = 7.8 Hz, 2H, Bz), 7.60 (t, ] = 7.6 Hz, 1H, Bz), 8.10 (d, J = 7.4 Hz, 2H, Bz). All data are
consisted with the reported values.”

10-N,N-Dimethylcarbamoyl -3’-dephenyl-3’-(2-methyl-2-propenyl)docetaxel (1-20, SB-T-
1216)™

To a 25-mL round-bottom flask was added 10-N,N-dimethylcarbamoyl-10-deacetyl-3’-dephenyl-
3’-(2-methyl-2-propenyl)-7-triethylsilylbaccatin III 1-19 (210 mg, 0.186 mmol). The flask was
purged with nitrogen gas. Then 3 mL acetonitrile and 3 mL pyridine were added. The starting
material was dissolved and cooled to 0 °C in an ice bath. 3.0 mL HF/pyridine was then added
dropwise. The reaction mixture was allowed to warm up to room temperature gradually. The
reaction was monitored by TLC (hexanes/ ethyl acetate = 1/1, stain with 5% sulfuric acid in
ethanol). Upon completion after overnight, the reaction was quenched with 10 mL 0.2 M citric
acid in water (3.8%). The aqueous layer was extracted with ethyl acetate (3 x 15 mL). The
combined organic layer was washed with saturated copper sulfate (3 x 20 mL) to remove

55



pyridine, and then washed with water (3 x 15 mL) and brine (3 x 15 mL), and dried over
anhydrous MgSO,4. The MgSO4 was subsequently removed by vacuum filtration, and the filtrate
was concentrated in vacuo to give crude product as white solid. The crude product was further
purified by column chromatography on silica gel (gradient eluent: hexanes/ethyl acetate from
10/1 to 1/1) to give 10-N,N-dimethylcarbamoyl -3’-dephenyl-3’-(2-methyl-2-propenyl)docetaxel
1-20 (SB-T-1216) as white solid (143 mg, 0.167 mmol) in 90% yield. The product was further
purified by recrystallization with ethyl acetate to give desired product SB-T-1216 (112 mg,
0.131 mmol) as white crystal in high purity (98% by HPLC). '"H NMR (500 MHz, CDCl;): &
1.16 (s, 3H, 17-Me), 1.25 (s, 3H, 16-Me), 1.35 (s, 9H, t-Bu), 1.67 (s, 3H, 19-Me), 1.77 (s, 6H,
isobutenyl), 1. 86 (m, 1H, 6-H), 1.92 (s, 3H, 18-Me), 2.36 (s, 3H, OAc), 2.38 (m, 2H, 14-CH,),
2.56 (m, 1H, 6-H), 2.96 (s, 3H, CON(CH3),), 3.04 (s, 3H, CON(CH3),), 3.81 (d, J = 6.7 Hz, 1H,
3-H), 4.18 (d, J = 8.4 Hz, 1H, 20-H), 4.22 (m, 1H, 2°-H), 4.30 (d, J = 8.4 Hz, 1H, 20-H), 4.45 (m,
1H, 7-H), 4.75 (m, 2H, 3°-H, 3’N-H), 4.98 (d, J = 8.3 Hz, 1H, 5-H), 5.31 (m, 1H, 4’-H), 5.66 (d,
J=7.1 Hz, 1H, 2-H), 6.18 (t, J = 8.5 Hz, 1H, 13-H), 6.26 (s, 1H, 10-H), 7.48 (t, J = 7.5 Hz, 2H,
Bz), 7.61 (t, ] = 7.0 Hz, 1H, Bz), 8.10 (d, ] = 7.9 Hz, 2H, Bz). ESI-MS: 857.3 [M+H]". All data
are consisted with the reported values.™

7,10-DiTroc-10-deacetylbaccatin III (1-21)"

To a 25-mL round-bottom flask was added 10-DAB III (300 mg, 0.551 mmol). The flask was
purged with nitrogen gas and 5 mL pyridine was added. The starting material was dissolved.
Then 2,2,2-trichloroethyl chloroformate (160 pL, 1.16 mmol) was added dropwise. Then
reaction mixture was heated up to 80 °C in an oil bath. The reaction was monitored by TLC
(hexanes/ethyl acetate = 1/1, stain with 5% sulfuric acid in ethanol). Upon completion after 30
min, the reaction was quenched with 5 mL saturated ammonium chloride solution and then
diluted with 10 mL H,O. The aqueous layer was extracted with ethyl acetate (3 x 20 mL). The
combined organic layer was washed with brine (3 x 20 mL), and dried over anhydrous MgSOs,.
The MgSO,4 was subsequently removed by vacuum filtration, and the filtrate was concentrated in
vacuo to give crude product. The crude product was further purified by column chromatography
on silica gel (gradient eluent: hexanes/ethyl acetate from 10/1 to 1/1) to give 7,10-diTroc-10-
deacetylbaccatin III 1-21 as white solid (304 mg, 0.340 mmol) in 62% yield and side product
7,10,13-triTroc-10-deacetylbaccatin III as white solid (160 mg, 0.150 mmol) in 27% yield.
Product: '"H NMR (400 MHz, CDCl;): & 1.12 (s, 3H, 17-Me), 1.16 (s, 3H, 16-Me), 1.85 (s, 3H,
19-Me), 2.04 (m, 1H, 6-H), 2.11 (d, J = 5.1 Hz, 1H, 13-OH), 2.14 (s, 3H, 18-Me), 2.27 (m, 2H,
14-CHy), 2.32 (s, 3H, OAc), 2.64 (m, 1H, 6-H), 3.98 (d, J = 6.9 Hz, 1H, 3-H), 4.16 (d, J = 8.7
Hz, 1H, 20-H), 4.31 (d, J = 8.2 Hz, 1H, 20-H), 4.60 (d, J = 11.8 Hz, 1H, Troc), 4.74 (d, J = 11.8
Hz, 1H, Troc), 4.80 (d, J = 11.8 Hz, 1H, Troc), 4.88 (m, 1H, 13-H), 4.90 (d, J = 11.8 Hz, 1H,
Troc), 4.98 (d, J = 8.0 Hz, 1H, 5-H), 5.58 (dd, J = 10.6 Hz, 7.2 Hz, 1H, 7-H), 5.64 (d, J = 7.0 Hz,
1H, 2-H), 6.27 (s, 1H, 10-H), 7.48 (t, J = 7.6 Hz, 2H, Bz), 7.62 (m, 1H, Bz), 8.10 (m, 2H, Bz).
C NMR (100 MHz, CDCl;): § 10.8, 15.5, 20.2, 22.7, 26.7, 33.4, 38.5, 42.8, 47.5, 56.5, 68.1,
74.3, 76.4, 78.8, 79.9, 80.6, 83.9, 94.4, 94.4, 128.8, 129.3, 130.2, 131.1, 133.9, 146.6, 153.4,
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153.4, 167.1, 171.0, 201.3. ESI-MS: 912.0 [M+NH,]". Side product: '"H NMR (400 MHz,
CDCl3): 8 1.19 (s, 3H, 17-Me), 1.21 (s, 3H, 16-Me), 1.85 (s, 3H, 19-Me), 2.04 (m, 1H, 6-H),
2.11 (s, 3H, 18-Me), 2.38 (m, 2H, 14-CH;), 2.41 (s, 3H, OAc), 2.64 (m, 1H, 6-H), 3.98 (d, J =
6.9 Hz, 1H, 3-H), 4.13 (d, J = 8.8 Hz, 1H, 20-H), 4.34 (d, ] = 8.4 Hz, 1H, 20-H), 4.60 (d, ] =11.8
Hz, 1H, Troc), 4.74 (d, J = 11.8 Hz, 1H, Troc), 4.80 (d, J = 11.8 Hz, 1H, Troc), 4.86 (s, 2 H, 13-
Troc), 4.90 (d, J = 11.8 Hz, 1H, Troc), 4.98 (d, J = 8.2 Hz, 1H, 5-H), 5.60 (dd, J = 10.6 Hz, 7.2
Hz, 1H, 7-H), 5.67 (d, J = 7.0 Hz, 1H, 2-H), 6.01 (t, J = 7.6 Hz, 1H, 13-H), 6.28 (s, 1H, 10-H),
7.48 (t,]=7.6 Hz, 2H, Bz), 7.62 (m, 1H, Bz), 8.10 (m, 2H, Bz). ESI-MS: 1087.9 [M+NH,]". All
data are consisted with the reported values.”

7,10-DiTroc-3’-dephenyl-3’-(2-methyl-2-propenyl)-2’-triisopropylsilyldocetaxel (1-22)

To a 50-mL round-bottom flask was added 7,10-diTroc-10-deacetylbaccatin III 1-21 (296 mg,
0.331 mmol). The flask was purged with nitrogen gas and 12 mL freshly distilled anhydrous
THF was added. The starting material was dissolved and cooled to -40 °C in an acetone/dry ice
bath by adding small amount of dry ice into acetone, and monitored using a thermometer.
LiHMDS (0.43 mL, 0.43 mmol) was added dropwise, and then enantiopure -lactam (3R,45)-1-
tert-butoxycarbonyl-3-triisopropylsilyloxy-4-(2-mehyl-1-propenyl)azetidin-2-one 1-11 (171 mg,
0.430 mmol) in 3 mL anhydrous THF was added dropwise. The reaction was monitored by TLC
(hexanes/ethyl acetate = 3/1, stain with 5% sulfuric acid in ethanol). After 4 hours, there is still
starting material left in in the reaction mixture, so another 0.3 eq. LiIHMDS (0.10 mL, 0.10
mmol) and PB-lactam  (3R,4S)-1-tert-butoxycarbonyl-3-triisopropylsilyloxy-4-(2-mehyl-1-
propenyl)azetidin-2-one 1-11 (40 mg, 0.10 mmol) was added to the reaction mixture. After
another 2 hours, the reaction still did not go completion and was quenched with 5 mL saturated
ammonium chloride solution and then diluted with 10 mL H,O. The aqueous layer was extracted
with ethyl acetate (3 x 30 mL). The combined organic layer was washed with brine (3 x 30 mL),
and dried over anhydrous MgSO4. The MgSO4 was subsequently removed by vacuum filtration,
and the filtrate was concentrated in vacuo to give crude product as pale yellow solid. The crude
product was further purified by column chromatography on silica gel (gradient eluent:
hexanes/ethyl acetate from 10/1 to 1/1) to give 7,10-diTroc-3’-dephenyl-3’-(2-methyl-2-
propenyl)-2’-triisopropylsilyldocetaxel 1-22 as white solid (308 mg, 0.239 mmol) in 72% yield.
Unreacted 7,10-diTroc-10-deacetylbaccatin III 1-21 (78 mg, 0.087 mmol) was recovered from
column chromatography. Conversion is 74% based on the amount of starting material 1-21
recovered. 'H NMR (400 MHz, CDCls): & 1.11 (m, 21H, TIPS), 1.19 (s, 3H, 17-Me), 1.24 (s,
3H, 16-Me), 1.34 (s, 9H, t-Bu), 1.71 (s, 1H, 1-OH), 1.76 (s, 3H, 19-Me), 1.80 (s, 3H, isobutenyl),
1.85 (s, 3H, isobutenyl), 2.01 (s, 3H, 18-Me), 2.08 (m, 1H, 6-H), 2.37 (s, 3H, OAc), 2.41 (m, 2H,
14-CHy), 2.63 (m, 1H, 6-H), 3.95 (d, J = 7.0 Hz, 1H, 3-H), 4.21 (d, J = 8.5 Hz, 1H, 20-H), 4.33
(d, J=8.5Hz, 1H, 20-H), 4.44 (d, J = 2.5 Hz, 1H, 2’-H), 4.60 (d, J = 11.8 Hz, 1H, Troc), 4.74 (d,
J=11.8 Hz, 1H, Troc), 4.80 (d, J = 11.8 Hz, 1H, Troc), 4.84 (m, 2H, 3°’-H, 3’N-H), 4.92 (d, J =
11.8 Hz, 1H, Troc), 4.96 (d, J = 8.1 Hz, 1H, 5-H), 5.32 (d, J = 8.7 Hz, 1H, isobutenyl), 5.58 (dd,
J=10.8 Hz, 7.1 Hz, 1H, 7-H), 5.70 (d, J = 7.0 Hz, 1H, 2-H), 6.11 (t, ] = 8.9 Hz, 1H, 13-H), 6.25
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(s, 1H, 10-H), 7.47 (t, ] = 7.9 Hz, 2H, Bz), 7.62 (d, ] = 7.4 Hz, 1H, Bz), 8.10 (d, J = 7.2 Hz, 2H,
Bz). ESI-MS: 1314.3 [M+H]".

3’-Dephenyl-3’-(2-methyl-2-propenyl)-2°’-triisopropylsilyldocetaxel (1-23)

To a 50-mL round-bottom flask was added 7,10-diTroc-3’-dephenyl-3’-(2-methyl-2-propenyl)-
2’-triisopropylsilyldocetaxel 1-22 (295 mg, 0.229 mmol), and followed by adding 5 mL acetic
acid and 5 mL methanol. The starting material was dissolved. Then Zinc dust (600 mg) was
added in small portions. The reaction was monitored by TLC (hexanes/ethyl acetate = 2/1, stain
with 5% sulfuric acid in ethanol). After 2 hours, the reaction did not go completion, and another
600 mg Zinc dust was added to the reaction mixture. After another 2 hours, the reaction still did
not go completion and another 600 mg Zinc dust was added to the reaction mixture, and the
reaction mixture was allowed to stir overnight. Upon completion after overnight (TLC was
messy and showed a major polar spot and a couple of relatively nonpolar spots), the reaction was
quenched with 5 mL saturated ammonium chloride solution and then diluted with 10 mL H,O.
The aqueous layer was extracted with ethyl acetate (3 x 30 mL). The combined organic layer was
washed with brine (3 x 30 mL), and dried over anhydrous MgSO,4. The MgSO4 was subsequently
removed by vacuum filtration, and the filtrate was concentrated in vacuo to give crude product as
pale yellow solid. The crude product was further purified by column chromatography on silica
gel (gradient eluent: hexanes/ethyl acetate from 10/1 to 1/1) to give 3’-dephenyl-3’-(2-methyl-2-
propenyl)-2’-triisopropylsilyldocetaxel 1-23 as white solid (145 mg, 0.154 mmol) in 67% yield.
'H NMR (400 MHz, CDCl3): § 1.11 (m, 24H, TIPS, 17-Me), 1.23 (s, 3H, 16-Me), 1.34 (s, 9H, t-
Bu), 1.75 (s, 6H, isobutenyl), 1.80 (s, 3H, 19-Me), 1.86 (m, 1H, 6-H), 1.93 (s, 3H, 18-Me), 2.33
(m, 2H, 14-CH>), 2.36 (s, 3H, OAc), 2.60 (m, 1H, 6-H), 3.95 (d, J = 7.0 Hz, 1H, 3-H), 4.16 (d, J
= 1.7 Hz, 1H, 10-OH), 4.24 (m, 2H, 7-H, 20-H), 4.33 (d, J = 8.4 Hz, 1H, 20-H), 4.42 (d, ] =3.0
Hz, 1H, 2°-H), 4.76 (m, 1H, 3’N-H), 4.83 (m, 1H, 3’-H), 4.96 (dd, J =9.7 Hz, ] = 2.2 Hz, 1H, 5-
H), 5.20 (d, J = 1.7 Hz, 1H, 10-H), 5.32 (d, J = 8.6 Hz, 1H, 4°-H), 5.68 (d, ] = 7.3 Hz, 1H, 2-H),
6.14 (t, J = 8.4 Hz, 1H, 13-H), 7.46 (t, J = 8.0 Hz, 2H, Bz), 7.623 (m, 1H, Bz), 8.10 (d, ] = 7.1
Hz, 2H, Bz). ESI-MS: 945.2 [M+H]".

3’-Dephenyl-3’-(2-methyl-2-propenyl)-docetaxel (1-24, SB-T-1211) (Procedure 1)

To a 25-mL round-bottom flask was added 3’-dephenyl-3’-(2-methyl-2-propenyl)-2’-
triissopropylsilyldocetaxel 1-23 (144 mg, 0.153 mmol). The flask was purged with nitrogen gas.
Then 3 mL acetonitrile and 3 mL pyridine were added. The starting material was dissolved and
cooled to 0 °C in an ice bath. 2.0 mL HF/pyridine was then added dropwise. The reaction
mixture was allowed to warm up to room temperature gradually. The reaction was monitored by
TLC (hexanes/ethyl acetate = 1/2, stain with 5% sulfuric acid in ethanol). Upon completion after
overnight, the reaction was quenched with 5 mL 0.2 M citric acid in water (3.8%). The aqueous
layer was extracted with ethyl acetate (3 x 20 mL). The combined organic layer was washed with
saturated copper sulfate (3 x 20 mL) to remove pyridine, and then washed with water (3 x 20
mL) and brine (3 x 20 mL), and dried over anhydrous MgSO,. The MgSO4 was subsequently
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removed by vacuum filtration, and the filtrate was concentrated in vacuo to give crude product as
white solid. The crude product was further purified by column chromatography on silica gel
(gradient eluent: hexanes/ethyl acetate from 5/1 to 1/2) to give 3’-dephenyl-3’-(2-methyl-2-
propenyl)-docetaxel 1-24 (SB-T-1211) as white solid (119 mg, 0.151 mmol) in 99% yield. 'H
NMR (400 MHz, CDCls): 6 1.16 (s, 3H, 17-Me), 1.25 (s, 3H, 16-Me), 1.38 (s, 9H, t-Bu), 1.78 (s,
9H, 19-Me&isobutenyl), 1.86 (m, 1H, 6-H), 1.90 (s, 3H, 18-Me), 2.36 (m, 2H, 14-CH>), 2.38 (s,
3H, OAc), 2.61 (m, 1H, 6-H), 3.43 (br. s, 1H, 7-OH), 3.96 (d, J = 7.2 Hz, 1H, 3-H), 4.24 (m, 4H,
7-H, 10-OH, 20-H, 2’-H), 4.33 (d, J = 8.4 Hz, 1H, 20-H), 4.76 (m, 1H, 3’N-H), 4.82 (d, J = 8.6
Hz, 1H, 3’-H), 4.98 (d, J = 8.3 Hz, 1H, 5-H), 5.24 (d, ] = 1.4 Hz, 1H, 10-H), 5.34(d, J = 8.5 Hz,
1H, 4’-H), 5.70 (d, J = 7.0 Hz, 1H, 2-H), 6.19 (t, J = 8.0 Hz, 1H, 13-H), 7.50 (t, J = 7.9 Hz, 2H,
Bz), 7.63 (t, J = 7.4 Hz, 1H, Bz), 8.12 (d, ] = 7.2 Hz, 2H, Bz). °C NMR (100 MHz, CDCL): &
9.9, 14.5, 18.6, 20.6, 22.4, 25.7, 26.3, 28.3, 35.9, 37.0, 43.1, 46.5, 57.6, 72.0, 72.3, 73.8, 74.6,
74.9, 76.7, 78.9, 78.0, 81.0, 84.1, 128.7, 129.2, 130.1, 133.7, 135.8, 137.9, 138.8, 167.0, 170.2,
211.5. ESI-MS: 786.3 [M+H]".

10-Acetyl-3’-dephenyl-3’-(2-methyl-2-propenyl)-7-triethylsilyl-2’-triisopropylsilyldocetaxel
(1-25)

To a 50-mL round-bottom flask was added 7-triethylsilylbaccatin III (250 mg, 0.357 mmol). The
flask was purged with nitrogen gas and 15 mL freshly distilled anhydrous THF was added. The
starting material was dissolved and cooled to -40 °C in an acetone/dry ice bath by adding small
amount of dry ice into acetone, and monitored using a thermometer. LIHMDS (0.46 mL, 0.46
mmol) was added dropwise, and then enantiopure P-lactam (3R,4S)-1-tert-butoxycarbonyl-3-
triisopropylsilyloxy-4-(2-mehyl-1-propenyl)azetidin-2-one 1-11 (184 mg, 0.46 mmol) in 5 mL
anhydrous THF was added dropwise. The reaction was monitored by TLC (hexanes/ethyl acetate
= 3/1, stain with 5% sulfuric acid in ethanol). Upon completion after 4 hours, the reaction was
quenched with 10 mL saturated ammonium chloride solution and then diluted with 20 mL H,O.
The aqueous layer was extracted with ethyl acetate (3 x 50 mL). The combined organic layer was
washed with brine (3 x 50 mL), and dried over anhydrous MgSO,4. The MgSO4 was subsequently
removed by vacuum filtration, and the filtrate was concentrated in vacuo to give crude product as
pale yellow solid. The crude product was further purified by column chromatography on silica
gel (gradient eluent: hexanes/ethyl acetate from 10/1 to 3/1) to give 10-acetyl-3’-dephenyl-3°-(2-
methyl-2-propenyl)-7-triethylsilyl-2’-triisopropylsilyldocetaxel 1-25 as white solid (368 mg,
0.335 mmol) in 94% yield. '"H NMR (400 MHz, CDCls): & 0.56 (m, 6H, Si(CH,CHj3)3), 0.92 (m,
9H, Si(CH>CHs)3), 1.11 (m, 21H, TIPS), 1.19 (s, 3H, 17-Me), 1.23 (s, 3H, 16-Me), 1.34 (s, 9H, t-
Bu), 1.64 (br. s, 1H, 1-OH), 1.69 (s, 3H, 19-Me), 1.75 (s, 3H, isobutenyl), 1.79 (s, 3H,
isobutenyl), 1.87 (m, 1H, 6-H), 2.00 (s, 3H, 18-Me), 2.17 (s, 3H, 10-OAc), 2.36 (s, 3H, 4-OAc),
2.38 (m, 2H, 14-CH,), 2.52 (m, 1H, 6-H), 3.84 (d, J = 6.9 Hz, 1H, 3-H), 4.20 (d, ] = 8.4 Hz, 1H,
20-H), 4.30 (d, J = 8.4 Hz, 1H, 20-H), 4.43 (d, J = 2.9 Hz, 1H, 2°-H), 4.48 (dd, J = 10.6 Hz, 6.6
Hz, 1H, 7-H), 4.80 (m, 2H, 3°’-H, 3°’N-H), 4.93 (d, J = 7.9 Hz, 1H, 5-H), 5.34 (d, J = 8.6 Hz,
isobutenyl), 5.69 (d, J = 7.0 Hz, 1H, 2-H), 6.09 (t, J = 8.5 Hz, 1H, 13-H), 6.47 (s, 1H, 10-H), 7.46
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(t, J=7.9 Hz, 2H, Bz), 7.60 (t, J = 7.5 Hz, 1H, Bz), 8.10 (d, J = 7.1 Hz, 2H, Bz). ESI-MS: 1098.6
[M+H]".

3’-Dephenyl-3’-(2-methyl-2-propenyl)-7-triethylsilyl-2’-triisopropylsilyldocetaxel (1-26)

To a 25-mL round-bottom flask was added 10-acetyl-3’-dephenyl-3’-(2-methyl-2-propenyl)-7-
triethylsilyl-2’-triisopropylsilyldocetaxel 1-25 (200 mg, 0.182 mmol). The flask was purged with
nitrogen gas and 4 mL anhydrous EtOH was added. The starting material was dissolved.
Hydrazine monohydrate (2 mL) was then added dropwise. The reaction was monitored by ESI-
MS, because the product has similar Rf value as the starting material. Upon completion after 4
hours, the reaction was quenched with 10 mL saturated ammonium chloride solution and then
diluted with 20 mL H,O. The aqueous layer was extracted with ethyl acetate (3 x 50 mL). The
combined organic layer was washed with brine (3 x 50 mL), and dried over anhydrous MgSOs,.
The MgSO,4 was subsequently removed by vacuum filtration, and the filtrate was concentrated in
vacuo to give crude product as pale yellow solid. The crude product was further purified by
column chromatography on silica gel (gradient eluent: hexanes/ethyl acetate from 10/1 to 3/1) to
give 3’-dephenyl-3’-(2-methyl-2-propenyl)-7-triethylsilyl-2’-triisopropylsilyldocetaxel 1-26 as
white solid (128 mg, 0.121 mmol) in 66% yield. 'H NMR (400 MHz, CDCl;): 8 0.56 (m, 6H,
Si(CH>CHs)3), 0.92 (m, 9H, Si(CH>CHs)3), 1.12 (m, 21H, TIPS), 1.22 (s, 3H, 17-Me), 1.26 (s,
3H, 16-Me), 1.34 (s, 9H, t-Bu), 1.57 (s, 1H, 1-OH), 1.74 (s, 3H, 19-Me), 1.75 (s, 3H, isobutenyl),
1.79 (s, 3H, isobutenyl), 1.94 (m, 1H, 6-H), 1.93 (s, 3H, 18-Me), 2.38 (s, 3H, 4-OAc), 2.40 (m,
2H, 14-CH,), 2.46 (m, 1H, 6-H), 3.90 (d, J = 7.2 Hz, 1H, 3-H), 4.20 (d, J = 8.4 Hz, 1H, 20-H),
4.24 (d, J = 1.8 Hz, 10-OH), 4.30 (d, J = 8.4 Hz, 1H, 20-H), 4.39 (dd, J = 10.6 Hz, 6.6 Hz, 1H,
7-H), 4.43 (d, J = 3.1 Hz, 1H, 2°-H), 4.80 (m, 2H, 3’-H, 3’N-H), 4.93 (d, J = 8.1 Hz, 1H, 5-H),
5.12 (d, J = 1.8 Hz, 10-H), 5.34 (d, J = 8.3 Hz, isobutenyl), 5.65 (d, J = 7.4 Hz, 1H, 2-H), 6.16 (t,
J=8.9 Hz, 1H, 13-H), 7.46 (t, J = 7.8 Hz, 2H, Bz), 7.60 (t, ] = 7.7 Hz, 1H, Bz), 8.10 (d, ] = 7.2
Hz, 2H, Bz). ESI-MS: 1056.6 [M+H]".

3’-Dephenyl-3’-(2-methyl-2-propenyl)-docetaxel (1-24, SB-T-1211) (Procedure 2)

To a 25-mL round-bottom flask was added 3’-dephenyl-3’-(2-methyl-2-propenyl)-7-triethylsilyl-
2’-triisopropylsilyldocetaxel 1-26 (123 mg, 0.1116 mmol). The flask was purged with nitrogen
gas. Then 2 mL acetonitrile and 2 mL pyridine were added. The starting material was dissolved
and cooled to 0 °C in an ice bath. 1.0 mL HF/pyridine was then added dropwise. The reaction
mixture was allowed to warm up to room temperature gradually. The reaction was monitored by
TLC (hexanes/ethyl acetate = 1/1, stain with 5% sulfuric acid in ethanol). Upon completion after
overnight, the reaction was quenched with 5 mL 0.2 M citric acid in water (3.8%). The aqueous
layer was extracted with ethyl acetate (3 x 20 mL). The combined organic layer was washed with
saturated copper sulfate (3 x 20 mL) to remove pyridine, and then washed with water (3 x 20
mL) and brine (3 x 20 mL), and dried over anhydrous MgSO,. The MgSO4 was subsequently
removed by vacuum filtration, and the filtrate was concentrated in vacuo to give crude product as
white solid. The crude product was further purified by column chromatography on silica gel
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(gradient eluent: hexanes/ethyl acetate from 5/1 to 1/2) to give 3’-dephenyl-3’-(2-methyl-2-
propenyl)-docetaxel 1-24 (SB-T-1211) as white solid (82 mg, 0.104 mmol) in 90% yield. 'H
NMR (400 MHz, CDCls): 6 1.16 (s, 3H, 17-Me), 1.25 (s, 3H, 16-Me), 1.38 (s, 9H, t-Bu), 1.78 (s,
9H, 19-Me&isobutenyl), 1.86 (m, 1H, 6-H), 1.90 (s, 3H, 18-Me), 2.36 (m, 2H, 14-CH,), 2.38 (s,
3H, OAc), 2.61 (m, 1H, 6-H), 3.43 (br. s, 1H, 7-OH), 3.96 (d, ] = 7.2 Hz, 1H, 3-H), 4.24 (m, 4H,
7-H, 10-OH, 20-H, 2°-H), 4.33 (d, J = 8.4 Hz, 1H, 20-H), 4.76 (m, 1H, 3’N-H), 4.82 (d, J = 8.6
Hz, 1H, 3’-H), 4.98 (d, J = 8.3 Hz, 1H, 5-H), 5.24 (d, J = 1.4 Hz, 1H, 10-H), 5.34(d, J = 8.5 Hz,
1H, 4’-H), 5.70 (d, J = 7.0 Hz, 1H, 2-H), 6.19 (t, ] = 8.0 Hz, 1H, 13-H), 7.50 (t, ] = 7.9 Hz, 2H,
Bz), 7.63 (t, J = 7.4 Hz, 1H, Bz), 8.12 (d, ] = 7.2 Hz, 2H, Bz). >’C NMR (100 MHz, CDCL): §
9.9, 14.5, 18.6, 20.6, 22.4, 25.7, 26.3, 28.3, 35.9, 37.0, 43.1, 46.5, 57.6, 72.0, 72.3, 73.8, 74.6,
74.9, 76.7, 78.9, 78.0, 81.0, 84.1, 128.7, 129.2, 130.1, 133.7, 135.8, 137.9, 138.8, 167.0, 170.2,
211.5. ESI-MS: 786.3 [M+H]".

(+)-(3R,45)-1-(4-Methoxyphenyl)-3-triisopropylsilyloxy-4-phenyl-azetidin-2-one (1-27)*

To a 250-mL round-bottom flask, enantiopure P-lactam (+)-(3R,4S)-1-(4-methoxyphenyl)-3-
hydroxy-4-phenyl-azetidin-2-one (ap = +213°, CHCl;, ¢ = 0.30) (816 mg, 3.03 mmol) was
added, followed by adding 70 mL DCM. DMAP (111 mg, 0.909 mmol) and TEA (613 mg, 6.06
mmol) were then added to the reaction mixture and cooled to 0 °C. TIPSCI (876 mg, 4.55 mmol)
was then added dropwise. The reaction mixture was allowed to slowly warm up to room
temperature and stirred overnight. The reaction was monitored by TLC. Upon completion, the
reaction mixture was quenched with saturated ammonium chloride solution in water (30 mL),
and extracted with ethyl acetate (3 x 50 mL). The combined organic layer was washed with brine
(3 x 50 mL), and dried over anhydrous MgSO4. The MgSO4 was subsequently removed by
vacuum filtration, and the filtrate was concentrated in vacuo to give crude 1-27 as pale yellow
solid. The crude product was further purified by column chromatography on silica gel (gradient
eluent: hexanes/ethyl acetate from 50/1 to 10/1) to give (+)-(3R,4S5)-1-(4-methoxyphenyl)-3-
triisopropylsilyloxy-4-phenyl-azetidin-2-one 1-27 as white solid (1.20 g, 2.82 mmol) in 93%
yield. '"H NMR (400 MHz, CDCl;): § 0.95 (m, 21H), 3.73 (s, 3H), 5.14 (d, J = 5.0 Hz, 1H), 5.23
(d, J = 5.0 Hz, 1H), 6.78 (m, 2H), 7.27 (m, 2H), 7.32 (m, 5H). >*C NMR (100 MHz, CDCL): &
11.7, 17.4, 17.5, 55.4, 63.3, 77.8, 114.3, 118.7, 128.2, 128.3, 128.4, 131.0, 134.1, 156.1, 165.7.
ESI-MS: 426.2 [M+H]". Melting point: 100-102 °C. ap = +98° (CHCI3, ¢ = 0.50). All data are
consisted with the reported values.*

(+)-(3R,45)-3-Triisopropylsilyloxy-4-phenyl-azetidin-2-one (1-28)*

To a 250-mL round-bottom flask (+)-(3R,4S)-1-(4-methoxyphenyl)-3-triisopropylsilyloxy-4-
phenyl-azetidin-2-one 1-27 (600 mg, 1.41 mmol) was dissolved in acetonitrile (40 mL) and
cooled to -4 °C by a salt ice bath. To this solution was added a solution of cerium ammonium
nitrate (CAN) (3.09g, 5.64 mmol) dissolved in H;O (40 mL) dropwise via an addition funnel
within 1 h. The reaction temperature of -4 °C was maintained throughout the reaction. The
reaction was monitored via TLC. Upon completion after 3 h, the reaction mixture was quenched
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with saturated aqueous Na,SOs. The aqueous layer was extracted with ethyl acetate (3 x 50 mL).
The combined organic layer was washed with brine (3 x 50 mL), and dried over anhydrous
MgSO,4. The MgSO4 was subsequently removed by vacuum filtration, and the filtrate was
concentrated in vacuo to give crude product as brown oil. The crude product was further purified
by column chromatography on silica gel (gradient eluent: hexanes/ethyl acetate from 10/1 to 3/1)
to give (+)-(3R,45)-3-triisopropylsilyloxy-4-phenyl-azetidin-2-one 1-28 as white solid (332 mg,
1.04 mmol) in 74% yield. "H NMR (400 MHz, CDCl;): & 0.92 (m, 21H), 4.80 (d, J = 4.7 Hz,
1H), 5.17 (dd, J = 4.7 Hz, 2.6 Hz, 1H), 6.13 (br. s, 1H), 7.32 (m, 5H). °C NMR (100 MHz,
CDCls): ¢ 11.7, 17.4, 17.5, 59.6, 79.9, 128.0, 128.2, 128.2, 136.3, 169.9. ESI-MS: 320.2
[M+H]". Melting point: 78-79 °C. ap = +56° (CHCl3, ¢ = 0.27). All data are in agreement with
literature values.’”

(+)-(3R,45S)-1-tert-Butoxycarbonyl-3-triisopropylsilyloxy-4-phenyl-azetidin-2-one (1-29)*

To (+)-(3R,4S5)-3-triisopropylsilyloxy-4-phenyl-azetidin-2-one 1-28 (100 mg, 0.313 mmol)
dissolved in 3 mL DCM, was added DMAP (12 mg, 0.098 mmmol) and triethylamine (65 mg,
0.64 mmol). The reaction mixture was cooled to 0 °C under inert conditions, and was added di-
tert-butyl dicarbonate (82 mg, 0.38 mmol) in 2 mL DCM dropwise. The reaction was allowed to
stir at room temperature overnight and monitored via TLC. Upon the reaction was completed, the
reaction mixture was quenched with saturated NH4Cl solution in water, and extracted with ethyl
acetate (3 x 15 mL). The combined organic layer was washed with brine (3 x 15 mL), and dried
over anhydrous MgSO4. The MgSO4 was subsequently removed by vacuum filtration, and the
filtrate was concentrated in vacuo to give crude product as pale yellow oil. The crude product
was further purified by column chromatography on silica gel (gradient eluent: hexanes/ethyl
acetate from 20/1 to 5/1) to give (+)-(3R,45)-1-tert-butoxycarbonyl-3-triisopropylsilyloxy-4-
phenyl-azetidin-2-one 1-29 (126 mg, 0.300 mmol) as white solid in 96% yield. "H NMR (400
MHz, CDCls): 8 0.92 (m, 21H), 1.41 (s, 9H), 5.06 (d, J = 5.7 Hz, 1H), 5.15 (d, J=5.7 Hz, 1H),
7.32 (m, 5H). °C NMR (100 MHz, CDCls): § 11.6, 17.3, 17.4, 27.9, 62.4, 77.6, 83.4, 128.0,
128.1, 128.3, 133.9, 148.0, 166.4. ESI-MS: 437.3 [M+NH,]". Melting point: 59-60 °C. ap =
+85° (CHCL3, ¢ = 0.92).

7-Triethylsilyloxy-2’-triisopropylsilyloxy-3’-/N-debenzoyl-3’-N-tert-
butoxycarbonylpaclitaxel (1-30)

To a 25-mL round-bottom flask was added 7-triethylsilylbaccatin III (150 mg, 0.214 mmol) and
(1)-(3R,45)-1-tert-butoxycarbonyl-3-triisopropylsilyloxy-4-phenyl-azetidin-2-one 1-29 (117 mg,
0.278 mmol). The flask was purged with nitrogen gas and 8 mL freshly distilled anhydrous THF
was added. The starting material was dissolved and cooled to -40 °C in an acetone/dry ice bath
by adding small amount of dry ice into acetone, and monitored using a thermometer. LIHMDS
(0.28 mL, 0.28 mmol) was added dropwise. The reaction was monitored by TLC (hexanes/ethyl
acetate = 3/1, stain with 5% sulfuric acid in ethanol). Upon completion after 4 hours, the reaction
was quenched with 5 mL saturated ammonium chloride solution and diluted with 5 mL H,O. The
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aqueous layer was extracted with ethyl acetate (3 x 30 mL). The combined organic layer was
washed with brine (3 x 30 mL), and dried over anhydrous MgSO,4. The MgSO4 was subsequently
removed by vacuum filtration, and the filtrate was concentrated in vacuo to give crude product as
pale yellow solid. The crude product was further purified by column chromatography on silica
gel (gradient eluent: hexanes/ethyl acetate from 10/1 to 3/1) to give 7-triethylsilyloxy-2’-
triisopropylsilyloxy-3’-N-debenzoyl-3’-N-tert-butoxycarbonylpaclitaxel 1-30 as a white solid
(216 mg, 0.193 mmol) in 90% yield. "H NMR (400 MHz, CDCL3): & 0.59 (m, 6H, TES), 0.92 (m,
30H, TES&TIPS), 1.25 (s, 6H, C-16, C-17), 1.29 (s, 9H, tBu), 1.63 (s, 1H, 1-OH), 1.70 (s, 3H,
C-19), 1.90 (m, 1H, C-6), 2.04 (s, 3H, C-18), 2.18 (s, 3H, OAc at C-10), 2.23 (m, 1H, C-14),
2.35 (m, 1H, C-14), 2.54 (s, 3H, OAc at C-4), 2.56 (m, 1H, C-6), 3.85 (d, J = 6.9 Hz, 1H, C-3),
4.18 (d, J = 8.5 Hz, 1H, C-20), 4.30 (d, J = 8.5 Hz, 1H, C-20), 4.49 (dd, J = 10.6 Hz, ] = 6.7 Hz,
1H, C-7), 4.80 (br. s, 1H, C-2°), 4.95 (d, J = 8.2 Hz, 1H, C-5), 5.31 (m, 1H, C-3°), 5.39 (m, 1H,
NH), 5.70 (d, J = 7.1 Hz, 1H, C-2), 6.26 (br. t, J = 7.8 Hz, 1H, C-13), 6.47 (s, 1H, C-10), 7.29
(m, 3H, Ph), 7.34 (m, 2H, Ph), 7.48 (t, J = 7.8 Hz, 2H, OBz), 7.68 (t, J = 7.3 Hz, 1H, OBz), 8.12
(d, ] =7.2 Hz, 1H, OBz). ESI-MS: 1120.4 [M+H]".

3’-N-Debenzoyl-3’-N-tert-butoxycarbonylpaclitaxel (1-31, 10-Ac-docetaxel)®

To a 25-mL round-bottom flask was added 7-triethylsilyloxy-2’-triisopropylsilyloxy-3’-/N-
debenzoyl-3’-N-tert-butoxycarbonylpaclitaxel 1-30 (211 mg, 0.188 mmol). The flask was purged
with nitrogen gas. 4 mL acetonitrile and 4 mL pyridine were then added into the flask. The
starting material was dissolved and cooled to 0 °C in an ice bath. 2 mL HF/pyridine was then
added dropwise. The reaction mixture was allowed to warm up to room temperature gradually.
The reaction was monitored by TLC (hexanes/ethyl acetate = 1/1, stain with 5% sulfuric acid in
ethanol). Upon completion after overnight, the reaction was quenched with 5 mL 0.2 M citric
acid in water (3.8%). The aqueous layer was extracted with ethyl acetate (3 x 30 mL). The
combined organic layer was washed with saturated copper sulfate (3 x 30 mL) to remove
pyridine, and then washed with water (3 x 30 mL) and brine (3 x 30 mL), and dried over
anhydrous MgSO,4. The MgSO4 was subsequently removed by vacuum filtration, and the filtrate
was concentrated in vacuo to give crude product as white solid. The crude product was further
purified by column chromatography on silica gel (gradient eluent: hexanes/ethyl acetate from
10/1 to 1/1) to give 3’-N-debenzoyl-3’-N-tert-butoxycarbonylpaclitaxel 1-31 (10-Ac-docetaxel)
as white solid (149 mg, 0.175 mmol) in 93% yield. '"H NMR (400 MHz, CDCls): & 1.15 (s, 3H,
C-17), 1.27 (s, 3H, C-16), 1.34 (s, 9H, tBu), 1.68 (s, 3H, C-19), 1.85 (s, 3H, C-18), 1.88 (m, 1H,
C-6), 2.25 (s, 3H, OAc at C-10), 2.28 (m, 2H, C-14), 2.38 (s, 3H, OAc at C-4), 2.46 (br. s, 1H,
OH), 2.55 (m, 1H, C-6), 3.30 (br. s, 1H, OH), 3.80 (d, J = 7.0 Hz, 1H, C-3), 4.16 (d, ] = 8.4, 1H,
C-20),4.29 (d, J = 8.4, 1H, C-20), 4.42 (dd, J = 10.2 Hz, ] = 7.2 Hz, 1H, C-7), 4.62 (br. s, 1H, C-
2’),4.95(dd, J =9.5 Hz, J = 2.0 Hz, 1H, C-5), 5.26 (m, 1H, C-3), 5.35 (d, J = 9.3Hz, 1H, NH),
5.67 (d,J=7.0 Hz, 1H, C-2), 6.24 (br. t, J = 8.8 Hz, 1H, C-13), 6.29 (s, 1H, C-10), 7.34 (m, 5H,
Ph), 7.50 (t, J = 7.8 Hz, 2H, OBz), 7.62 (m, 1H, OBz), 8.10 (d, J = 7.2 Hz, 1H, OBz). ESI-MS:
850.3 [M+H]".
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(+)-(3R,45)-1-Benzoyl-3-triisopropylsilyloxy-4-phenyl-azetidin-2-one (1-32)*

To (+)-(3R,4S)-3-triisopropylsilyloxy-4-phenyl-azetidin-2-one (100 mg, 0.313 mmol) dissolved
in DCM (5 mL), was added DMAP (12 mg, 0.098 mmol) and triethylamine (65 mg, 0.64
mmol). The reaction mixture was cooled to 0 °C under inert conditions, and was added benzoyl
chloride (53 mg, 0.38 mmol) in 2 mL DCM dropwise. The reaction was allowed to stir at room
temperature overnight and monitored via TLC. Upon the reaction was completed, the reaction
mixture was quenched with saturated NH4Cl solution in water, and extracted with ethyl acetate
(3 x 15 mL). The combined organic layer was washed with brine (3 x 15 mL), and dried over
anhydrous MgSO,4. The MgSO4 was subsequently removed by vacuum filtration, and the filtrate
was concentrated in vacuo to give crude product as pale yellow oil. The crude product was
further purified by column chromatography on silica gel (gradient eluent: hexanes/ethyl acetate
from 10/1 to 3/1) to give (+)-(3R,4S)-1-benzoyl-3-triisopropylsilyloxy-4-phenyl-azetidin-2-one
1-32 as sticky colorless oil in 84% yield. '"H NMR (400 MHz, CDCls): 8 0.92 (m, 21H), 5.25 (d,
J=6.2 Hz, 1H), 5.43 (d, J = 6.2 Hz, 1H), 7.32 (m, 5H), 7.48 (m, 2H), 7.59 (m, 1H), 8.03 (m,
2H). °C NMR (100 MHz, CDCL): & 11.7, 17.4, 17.5, 61.2, 76.6, 128.2, 128.2, 128.4, 129.9,
132.1, 133.3, 133.8, 165.5, 166.3. ESI-MS: 424.2 [M+H]". ap = +169° (CHCl;, ¢ = 0.87).

7-Triethylsilyloxy-10-N,N-dimethylcarbamoyl-10-deacetyl-2’-triisopropylsilyloxypaclitaxel
(1-33)

To a 50-mL round-bottom flask was added 10-N,N-dimethylcarbamoyl-10-deacetyl-7-
triethylsilylbaccatin III 1-18 (180 mg, 0.247 mmol) and (+)-(3R,4S)-1-benzoyl-3-
triisopropylsilyloxy-4-phenyl-azetidin-2-one 1-32 (126 mg, 0.296 mmol). The flask was purged
with nitrogen gas and 8 mL freshly distilled anhydrous THF was added. The starting material
was dissolved and cooled to -30 °C in an acetone/dry ice bath by adding small amount of dry ice
into acetone, and monitored by a thermometer. NaHMDS (0.37 mL, 0.37 mmol) was added
dropwise. The reaction was monitored by TLC (hexanes/ethyl acetate = 3/1, stain with 5%
sulfuric acid in ethanol). After 4 hours, the reaction was quenched with 5 mL saturated
ammonium chloride solution and diluted with 5 mL H,O. The aqueous layer was extracted with
ethyl acetate (3 x 30 mL). The combined organic layer was washed with brine (3 x 30 mL), and
dried over anhydrous MgSO,. The MgSO,4 was subsequently removed by vacuum filtration, and
the filtrate was concentrated in vacuo to give crude product as pale yellow oil. The crude product
was further purified by column chromatography on silica gel (gradient eluent: hexanes/ethyl
acetate from 10/1 to 3/1) to give a mixture of product 7-triethylsilyloxy-10-N,N-
dimethylcarbamoyl-10-deacetyl-2’-triisopropylsilyloxy-paclitaxel 1-33 and side product 13-
benzoyl-10-N,N-dimethylcarbamoyl-10-deacetyl-7-triethylsilylbaccatin III 1-35 as white solid
(216 mg) in 77% yield. Mixture of product and side product: 'H NMR (400 MHz, CDCl;): &
0.62 (m, 6H, Si(CH,CH3)3), ), 0.92 (m, 22H, Si(CH>CH3); & TIPS), 1.25 (m, 6H, C-17 & C-16),
1.72 (s, 3H, C-19), 1.90 (s, 3H, C-18), 1.92 (m, 1H, C-6), 2.10 (br. s 2H, OH), 2.23 (m, 1H, C-
14), 2.34 (s, 1H, OH), 2.39 (m, 1H, C-14), 2.55 (s, 3H, OAc at C-10), 2.59 (m, 1H, C-6), 2.94 (s,
3H, CON(CH3),), 3.09 (two s, 3H, CON(CH3),), 3.90 (two d, J = 6.8 Hz, 1H, C-3), 4.22 (m, 2H,
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C-20), 4.53 (m, 1H, C-7), 4.95 (m, 1H, C-5), 5.71 (d, J = 6.9 Hz, 1H, C-2), 6.0 (m, C-13), 6.43
(two s, 1H, C-10), 7.12 (d, J = 8.8 Hz, 1H), 7.46 (m, 10H), 7.75 (d, J = 7.3 Hz, 1H), 8.04 (d, J =
7.8 Hz, 1H), 8.16 (m, 2H).

10-N,N-Dimethylcarbamoyl-10-deacetylpaclitaxel (1-34, SB-T-0035)"

To a 25-mL round-bottom flask was added 7-triethylsilyloxy-10-N,N-dimethylcarbamoyl-10-
deacetyl-2’-triisopropylsilyloxypaclitaxel 1-33 (110 mg). The flask was purged with nitrogen
gas. 3 mL acetonitrile and 3 mL pyridine were then added into the flask. The starting material
was dissolved and cooled to 0 °C in an ice bath. 2 mL HF/pyridine was then added dropwise.
The reaction mixture was allowed to warm up to room temperature gradually. The reaction was
monitored by TLC (hexanes/ethyl acetate = 1/1, stain with 5% sulfuric acid in ethanol). Upon
completion after overnight, the reaction was quenched with 5 mL 0.2 M citric acid in water
(3.8%). The aqueous layer was extracted with ethyl acetate (3 x 30 mL). The combined organic
layer was washed with saturated copper sulfate (3 x 30 mL) to remove pyridine, and then washed
with water (3 x 30 mL) and brine (3 x 30 mL), and dried over anhydrous MgSO,. The MgSO4
was subsequently removed by vacuum filtration, and the filtrate was concentrated in vacuo to
give crude product as white solid. The crude product was further purified by column
chromatography on silica gel (gradient eluent: hexanes/ethyl acetate from 10/1 to 1/1) to give
product 10-N,N-dimethylcarbamoyl-10-deacetylpaclitaxel 1-34 (SB-T-0035) as white solid (62
mg, 0.0702 mmol) in 76% yield and side product 13-benzoyl-10-N,N-dimethylcarbamoyl-10-
deacetyl-baccatin IIT 1-35 as white solid. Product: "H NMR (400 MHz, CDCls): & 1.15 (s, 3H, C-
17), 1.23 (s, 3H, C-16), 1.67 (s, 3H, C-19), 1.81 (s, 3H, C-18), 1.90 (m, 1H, C-6), 2.30 (m, 2H,
C-14), 2.38 (s, 3H, OAc at C-10), 2.53 (m, 1H, C-6), 2.96 (s, 3H, CON(CH3),), 3.04 (s, 3H,
CON(CHs3),), 3.17 (br. s, 1H, OH), 3.55 (br. s, 1H, OH), 3.79 (d, J = 6.9 Hz, 1H, C-3),4.19 (d,J
= 8.3 Hz, 1H, C-20), 4.29 (d, J = 8.3 Hz, 1H, C-20), 4.43 (dd, J = 10.8 Hz, ] = 6.7 Hz, 1H, C-7),
4.79 (d,J=2.6 Hz, 1H, C2’-H), 4.97 (d, J = 7.8 Hz, 1H, C-5), 5.66 (d, ] = 7.0 Hz, 1H, C-2), 5.79
(dd, J=9.0 Hz, ] = 2.5 Hz, 1H, C-3’), 6.24 (m, 2H, C-13 & C10), 6.99 (d, J = 8.8 Hz, 1H, C3’-
NH), 7.36 (m, 5H, Ph), 7.50 (m, 5H, C2-OBz & C3’N-OBz), 7.61 (m, 1H, C2-OBz), 7.74 (d, J =
7.2 Hz, 2 H, C3’N-OBz), J] = 8.12 (d, ] = 7.2 Hz, 2H, C2-OBz). ESI-MS: 883.3 [M+H]".Side
product: "H NMR (400 MHz, CDCl3): & 1.22 (s, 3H, C-17), 1.32 (s, 3H, C-16), 1.73 (s, 3H, C-
19), 1.92 (m, 1H, C-6), 1.96 (s, 3H, C-18), 2.21 (s, 3H, OAc at C-10), 2.27 (m, 1H, C-14), 2.36
(m, 1H, C-14), 2.60 (m, 1H, C-6), 3.00 (s, 3H, CON(CH3),), 3.09 (s, 3H, CON(CHs)»), 3.26 (d, J
=3.6 Hz, 1H, OH), 3.93 (d, J = 6.8 Hz, 1H, C-3), 4.20 (d, J = 8.4 Hz, 1H, C-20),4.29 (d,J =84
Hz, 1H, C-20), 4.55 (m, 1H, C-7), 5.00 (d, J = 7.7 Hz, 1H, C-5), 5.71 (d, J = 6.8 Hz, 1H, C-2),
6.26 (t, J = 8.4 Hz, 1H, C-13), 6.37 (s, 1H, C-10), 7.46 (t, J = 8.0 Hz, 1H, C2-OBz), 7.60 (m, 3H,
C13-OBz), 7.68 (m, 1 H, C2-OBz), J = 8.05 (d, J = 7.1 Hz, 2H, C2-OBz), 8.18 (d, J = 7.1 Hz,
2H, C13-OBz). ESI-MS: 720.2 [M+H]". All data are consisted with literature values.*
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Chapter 2

Metabolic Stability Assessment of Self-Immolative Disulfide Linkers in Tumor-Targeted

Drug Delivery Systems via '’F NMR
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§ 2.1 Introduction
§ 2.1.1 Tumor-Targeted Drug Delivery Systems (TTDDS)

The therapeutic concept of drug targeting was founded on Paul Ehrlich’s vision of “the
magic bullet” that he proclaimed at the beginning of the 20" century.' Because of severe side
effects could be potentially caused by traditional non-targeted therapeutic agents, chemotherapy
has switched into the era of “targeted therapy” recently.” Targeted cancer therapies block the
growth and spread of cancer by interfering with specific molecular targets that are associated
with cancer.’ In 1996, Druker and his colleagues identified imatinib (Gleevec®) as a selective
inhibitor of the Bcr-Abl tyrosine kinase for the treatment of chronic myelogenous leukemia
(CML) (Figure 2.1).* Bevacizumab (Avastin®) is a humanized monoclonal antibody that targets
vascular endothelial growth factor (VEGF), a key regulator of tumor angiogenesis, and has
recently been approved by the US Food and Drug Administration (FDA) for the treatment of
metastatic colorectal cancer.” Imatinib (Gleevec®) and bevacizumab (Avastin®) are just two
examples among the many targeted cancer therapies that have been approved by the US FDA,
and there are growing interests on targeted cancer therapies.

Figure 2.1 Chemical structure of imatinib (Gleevec®)

However, currently there are still limitations of targeted cancer therapies. One problem is
that targeted cancer therapies are only limited to certain types of cancer. For example, imatinib is
specifically used for the treatment of chronic myelogenous leukemia (CML). Another limitation
is that some patients may develop multidrug resistance (MDR), making such chemotherapeutic
drugs ineffective. Therefore, there is great need for conquering such limitations.

The Ojima laboratory has been working on the discovery and development of tumor-
targeted drug delivery systems (TTDDS), in which novel “guided molecular missiles” have been
generated in the fight against cancer. Typically, such tumor-targeting drug conjugates consist of
a tumor-targeting module (TTM) connected to a cytotoxic warhead directly or through a suitable
“smart” linker (Figure 2.2).”'° The tumor-targeting module (TTM) should have strong affinity
for tumor-specific receptor, thus could guide the conjugates specifically towards tumor cells
targeting the overexpressed receptors. The warhead could be linked to the TTM directly by
covalent bond, such as hydrolyzable ester bond or amide bond. However, the cytotoxic warhead
may not be efficiently released to its active form (amide bond linker) or the linker maybe too
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labile during blood circulation (ester bond linker). Therefore, a suitable cleavable linker is
preferred to connect the tumor-targeting module (TTM) and cytotoxic warhead. Ideally, such
linker should be stable during blood circulation to keep the pro-drug inactive, and could readily
be cleaved to release the active drug once the tumor-targeting conjugates got internalized into
tumor cells."

tumor-targeting module (TTM)

N

linker

l

!

warhead

Figure 2.2 A typical tumor-targeting drug conjugate. Adapted with permission from Ojima, I.
Guided molecular missiles for tumor-targeting chemotherapy-case studies using the second-
generation taxolds as warheads. Acc Chem Res 2008, 41, 108-119. Copyright (2008) American
Chemical Society.

As shown in Figure 2.3, the tumor-targeting drug conjugates could be recognized by the
overexpressed tumor-specific receptors on the surface of cell membranes, get internalized
through a receptor-mediated endocytosis process, and the disulfide linker could be cleaved by
taking advantage of the fact that the concentration of glutathione is more than 1000 times higher
in tumor cells than in blood plasma, thus eventually release the drug in its active form to its
target protein.*'
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Figure 2.3 Receptor-mediated endocytosis of tumor-targeting drug conjugates. Reprinted from
Ojima, I.; Zuniga, E. S.; Berger, W. T.; Seitz, J. D. Tumor-targeting drug delivery of new-
generation taxoids. Future Med Chem 2012, 4, 33-50, with permission from Future Science Ltd.

Monoclonal antibodies (mAb)'""?, polyunsaturated fatty acids (PUFAs)", folic acid'?,
biotin'*"'®, and hyaluronic acid have been employed as tumor-targeting modules (TTM) (Figure
2.4), and new-generation taxoids have been used as cytotoxic anticancer agents to construct the
tumor-targeting drug conjugates. In addition, functionalized single-walled carbon nanotubes
(SWNTs) have been designed as vehicles for tumor-targeted drug delivery, making mass
delivery of cytotoxic warheads possible to maximize the efficacy.'”” More recently, tumor-
targeting drug conjugates bearing dual tumor-targeting modules (TTM) or dual-cytotoxic drugs
have been synthesized for enhanced tumor-targeting efficacy and anti-tumor activity,

: 17,18
respectively.'”
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Figure 2.4 Targeting modules (TTM) employed in tumor-targeted drug delivery systems
(TTDDS). Adapted from Bioorg Med Chem, 13, Jaracz, S.; Chen, J.; Kuznetsova, L. V.; Ojima,
L. Recent advances in tumor-targeting anticancer drug conjugates, 5043-5054, Copyright (2005),

with permission from Elsevier.

§ 2.1.2 Self-Immolative Disulfide Linker

Various types of linker systems could be used to connect the tumor-targeting module
(TTM) and warhead including acid labile linker, proteolytic linker, disulfide linker, and
hydrolytic linker (Figure 2.5)."
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Figure 2.5 Linker systems employed in tumor-targeted drug delivery systems (TTDDS).
Adapted from Chen, J.; Jaracz, S.; Zhao, X.; Chen, S.; Ojima, I. Antibody-cytotoxic agent
conjugates for cancer therapy. Expert Opin Drug Deliv 2005, 2, 873-890, with permission from
Taylor & Francis.

The focus of the linker system in the Ojima laboratory is the disulfide linker, which could
be cleaved inside the tumor cells through disulfide exchange by reacting with an intracellular
thiol such as thioredoxin or glutathione, taking advantage of the fact that the concentration of
such thiol is much higher in tumor tissues (2-8 mM) than circulating human blood plasma (1-2
uM) 20

A first-generation self-immolative disulfide linker was employed in the mAb-SB-T-12136
monoclonal antibody (mAb) drug conjugates (Figrue 2.6).”'" The 10-methyldisulfanyl (MDS)-
alkanoyl analog of new-generation taxoid SB-T-1213 was connected to monoclonal antibodies
(mAbs) KS61 and KS77.”'" These immunoconjugates was designed to target the human
epidermal growth factor receptors (EGFR), which are overexpressed in several human head,
neck, lung, and breast cancers.”'' In the in vivo tumor growth inhibition assay, both of the mAb
drug conjugates showed excellent antitumor activity against against human squamous cancer
(A431) xenografts in SCID mice.”'" The drawback for the first-generation self-immolative
disulfide linker used in the mAb drug conjugates, however, is that the original taxoid warhead
was not released because of the compromised modification at C-10 position of the taxoid in
order to attach the disulfide linker, and the warhead taxoid released (SB-T-12136-SH) is 8 times
less potent than the parent taxoid (SB-T-1213).”'" Therefore, there was need to design new self-
immolative disulfide linker systems to solve this problem.
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SB-T-12136-SH SB-T-1213
Figure 2.6 Chemical structures of mAb-SB-T-12136 monoclonal antibody (mAb) drug
conjugate, SB-T-12136-SH, and SB-T-1213. Adapted with permission from Ojima, I.; Geng, X.
D.; Wu, X. Y.; Qu, C. X.; Borella, C. P.; Xie, H. S.; Wilhelm, S. D.; Leece, B. A.; Bartle, L. M_;
Goldmacher, V. S.; Chari, R. V. J. Tumor-specific novel taxoid-monoclonal antibody conjugates.
J Med Chem 2002, 45, 5620-5623. Copyright (2002) American Chemical Society.

Second-generation mechanism-based self-immolative disulfide linkers were then designed,
in which original taxoid warhead could be released by a cascade glutathione-triggered disulfide
bond cleavage and subsequent thiolactonization process (Figure 2.7).%'®
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Figure 2.7 Second-generation mechanism-based self-immolative disulfide linkers. Adapted with
permission from Ojima, I. Guided molecular missiles for tumor-targeting chemotherapy-case
studies using the second-generation taxolds as warheads. A4cc Chem Res 2008, 41, 108-119.
Copyright (2008) American Chemical Society.

The linker cleavage and subsequent drug release of the second-generation mechanism-based
self-immolative disulfide linker system was validated in vitro with a biotin-linker-coumarin
probe (Figure 2.8).'° The probe itself is non-fluorescent, but after linker cleavage, fluorescent
coumarin will be released. Epifluorescence image A of Figure 2.8 shows blue fluorescence of
released coumarin after incubation of biotin-linker-coumarin probe with GSH-OEt to trigger
self-immolative linker cleavage in L1210FR cells, and epifluorescence image B of Figure 2.8
shows no fluorescence signal observed after incubation of biotin-linker-coumarin probe without
adding GSH-OEt.'°
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Figure 2.8 Validation of the drug release of a second-generation mechanism-based self-
immolative disulfide linker in vitro with the biotin-linker-coumarin conjugate. Adapted with
permission from Chen, S. Y.; Zhao, X. R.; Chen, J. Y.; Chen, J.; Kuznetsova, L.; Wong, S. S.;
Ojima, I. Mechanism-Based Tumor-Targeting Drug Delivery System. Validation of Efficient
Vitamin Receptor-Mediated Endocytosis and Drug Release. Bioconjugate Chem 2010, 21, 979-
987. Copyright (2010) American Chemical Society.

§ 2.1.3 Drug Release Study of the Self-Immolative Disulfide Linker Systems via '’F NMR

F NMR was used to study the linker cleavage and subsequent drug release of the second-
generation mechanism-based self-immolative disulfide linker systems. Because of the absence of
fluorine in natural substances, using '’F NMR allows direct observation and monitoring of
fluorinated compounds and their metabolites in biological systems without influence from the
background signals.”’

The disulfide linker cleavage study by '’F NMR was first conducted in a model system
shown below (Figure 2.9).*** This proof of concept experiment demonstrated mechanism-based
drug release using cysteine as the trigger for thiolactonization, in which two different fluorine
signals were monitored for chemical shift changes by time-resolved '’F NMR.>*?
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Figure 2.9 A model system for the mechanism-based drug release using cysteine as the trigger
for thiolactonization. Adapted from Ojima, I. Use of fluorine in the medicinal chemistry and
chemical biology of bioactive compounds - A case study on fluorinated taxane anticancer agents.
Chembiochem 2004, 5, 628-635, with permission from John Wiley & Sons.

Then, probe 1 was designed and synthesized by Dr. Joshua Seitz. Time-resolved ’F NMR
spectra for the disulfide linker cleavage and thiolactonization process of probe 1 (2.5 mM) in
30% DMSO in D,0 beginning at 1 h after the addition of 6 equiv. of GSH at 25 °C with 15 min
intervals is shown below (Figure 2.10).> This '’F NMR experiment indicates that the "self-
immolation" of the disulfide linker proceeded in two steps, first generating the mechanistically
anticipated thiolate 3-A as detectable transient species/intermediate, and then releasing the drug
through thiolactonization processs.” It also suggests that the introduction of a fluorine para to a
disulfide linkage can stabilized the thiolate being formed, which may contribute to the fast
disulfide exchange reaction as probe 1 was almost completely cleaved within one hour.”” The
thiolactonization process, however, was slow due to reduced nucleophilicity of the thiolate in the
presence of para fluorine.”

However, because of the poor solubility and low signal intensity of the probe 1, it is not
suitable for metabolic stability assessment in biologically relevant cell culture media or human
blood plasma. An improved conjugate, probe 2, was thus designed and subsequently evaluated
by '’F NMR for linker cleavage and drug release study (Figure 2.11).
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Figure 2.10 Time-resolved '°F NMR spectra for the disulfide linker cleavage and
thiolactonization process of probe 1 (2.5 mM) in 30% DMSO in D,O beginning at 1 h after the
addition of 6 equiv. of GSH at 25 °C with 15 min intervals. Reprinted from J Fluorine Chem,
171, Seitz, J. D.; Vineberg, J. G.; Wei, L. F.; Khan, J. F.; Lichtenthal, B.; Lin, C. F.; Ojima, L.
Design, synthesis and application of fluorine-labeled taxoids as '’F NMR probes for the
metabolic stability assessment of tumor-targeted drug delivery systems, 148-161, Copyright
(2015), with permission from Elsevier.
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Figure 2.11 Designed probe 2 for metabolic stability assessment in biologically relevant media
by "’F NMR
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§ 2.2 Metabolic Stability Assessment of Tumor-Targeted Drug Delivery Systems via '°F
NMR

§ 2.2.1 Synthesis of Methyl-Branched Self-Immolative Disulfide Linker

The methyl-branched disulfide linker was synthesized via a route involving two thiol-
disulfide exchange reactions. First, intermediate 2,2’-dipyridyl disulfide 2-1 was prepared by
oxidation of 2-mercaptopyridine in the presence of potassium permanganate in 95% yield
(Scheme 2.1).

N SH KMnOy (3 eq) N SN |

Pz DCM, rt., 4 h

95 % 21

Scheme 2.1 Oxidation of 2-mercaptopyridine

For synthesizing another intermediate 2-2, y-valerolactone was activated by HBr under
reflux conditions for the nucleophilic attack by thiourea. The resulting salt in aqueous layer was
then directly hydrolyzed under basic conditions to yield desired 2-2 as a colorless oil in 40%
yield for two steps (Scheme 2.2).

. NH
O._0 1)48 % HBrin H,0 (5 eq) @)\2 o PHadjusted to 13
O
\q H,N7 s HS
S reflux, 24 h

OH
2 M G B on
HoN" 'NHp 40 % over two steps 2-2
reflux, 24 h

Scheme 2.2 Synthesis of intermediate 2-2

With intermediates 2-1 and 2-2 in hand, the first thiol-disulfide exchange reaction was
performed to afford 2-3. Large excess of 2,2’-dipyridyl disulfide 2-1 was used to push the
reaction to go to completion. It is not very easy to separate all the unreacted 2,2’-dipyridyl
disulfide from desired product by column chromatography. In the first run, pure 2-3 was
obtained after careful purification by two column chromatography, and then used in the
subsequent TIPS protection reaction to give 2-4 in 72% yield over two steps. In the second run,
2-3 together with small amount of unreacted 2,2’-dipyridyl disulfide was obtained, and used in
the subsequent TIPS protection reaction to give 2-4 in 70% yield over two steps, as unreacted 2-
1 would not affect the TIPS protection step and could be easily separated after TIPS protection
(Scheme 2.3).
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Scheme 2.3 First disulfide exchange and TIPS protection

Then, desired thiolactone 2-5 was obtained by oxidation of boronic acid moiety in the
presence of hydrogen peroxide in 83% yield (Scheme 2.4).

A OH 30 % H,0,
B EtOH, r.t ight ©
S OH , .1, overnig S

83 %

2-5
Scheme 2.4 Synthesis of thiolactone 2-5

The thiolactone 2-5 was subsequently hydrolyzed by LiOH, and acidified with aqueous HCI
to pH=2 (Scheme 2.5). Desired product 2-6 was obtained in 50% yield after purified by column
chromatography. The yield of this step is low, due to some product dimerized in the presence of
air. Once pure product was obtained, it was immediately stored under inert condition at -20 °C
fridge to avoid dimerization.

1. LIOH (6.0 eq), H,0 e
@E\F THF, 60 °C, 24 h
o
S 2.1 MHCI, pH = 2 SH
2.5 50 % 2.6

Scheme 2.5 Hydrolysis of thiolactone 2-5

The final step for making the methyl-branched disulfide linker involves a second thiol-
disulfide exchange reaction between intermediates 2-4 and 2-6 (Scheme 2.6). High concentration
of starting materials and low temperature between -10 °C to 0 °C was maintained during the
reaction to afford desired methyl-branched disulfide linker 2-8 in 91% yield. The product is
unstable and was immediately stored under inert condition at -20 °C fridge to avoid
decomposition.

N._S- o
] °
COOH N~ OTIPS s. .
2-4 (1.0 eq) S
OTIPS

SH  THF,-10°Cto 0°C, 4 h COOH

2-6 91 % 2.7
Scheme 2.6 Synthesis of methyl-branched disulfide linker 2-7 via a second thiol-disulfide
exchange
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§ 2.2.2 Effects of Solvent Systems and Drug Formulations on the Fluorine Signal Chemical
Shifts of Designed Probes

Probe BLT-S-Fs and its corresponding taxoid SB-T-12822-5 after linker cleavage and drug
release were designed (Figure 2.12), and synthesized by Dr. Jacob Vineberg and Jonathan Khan
in order to evaluate the metabolic stability of tumor-targeted drug delivery system via '°F NMR.

OHO OAc

OH
OyNH (o]
H o ocr=3
“"%-»“\/\)LN/\/K/\O/\ﬂ\/\NJK/\r OCF;
HO\ g H

Figure 2.12 Chemical structures of probe BLT-S-Fg and taxoid SB-T-12822-5

Solutol HS 15 or polysorbate 80 was used as excipient to increase the solubility of BLT-S-
Fein biological related media. Solutol HS 15 is a combination of polyglycol mono- and di-esters of 12-
hydroxystearic acid (lipophilic part), and about 30% free polyethylene glycol (hydrophilic part) (Figure
2.13). Polysorbate 80 is derived from oleic acid (lipophilic part) and polyethoxylated sorbitan
(hydrophilic part) (Figure 2.14).

HONOW

o

Figure 2.13 Chemical structure of solutol HS 15

o)
O\AQ A
(o) /\%OH
HO OH
\(\/\0 z /\% wHx+y+z=20

Figure 2.14 Chemical structure of polysorbate 80

The chemical shift differences of CF; and OCF; groups between BLT-S-F¢ and its
corresponding taxoid SB-T-12822-5 in 'F NMR spectra were evaluated in various solvents
systems. Without any excipient, °F NMR spectra of BLT-S-Fg, SB-T-12822-5 and a 1:1
mixture of the two compounds in D,O-ethanol (v/v = 60/40) showed no significant chemical
shift difference between BLT-S-Fs and its corresponding taxoid SB-T-12822-5 in terms of both
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CF; and OCF3 groups (0.019 ppm chemical shift difference of OCF; group and 0.046 ppm
chemical shift difference of CF3 group) (Figure 2.15).
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Figure
2.15 "’F NMR spectra (512 scans) showing individual chemical shifts of 200 uM BLT-S-F¢, SB-
T-12822-5, and a 1:1 mixture of the two compounds in D,O-ethanol (v/v = 60/40)

With solutol HS 15 as an excipient, it was found that using the solvent system of D,O-
ethanol-solutol HS 15 (v/v/v = 84/8/8) could solubilize the drug/drug conjugate at concentration
of 200 uM effectively. However, ’F NMR spectra of BLT-S-Fs, SB-T-12822-5 and a 1:1
mixture of the two compounds in D,O-ethanol-solutol HS 15 (v/v/v = 84/8/8) showed no
chemical shift difference between BLT-S-Fg and its corresponding taxoid SB-T-12822-5 at all in
terms of both CF3; and OCF; groups (Figure 2.16). Thus, this solvent system cannot apply for
linker cleavage study by '°F NMR.
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Figure 2.16 '’F NMR spectra (>268 scans) showing individual chemical shifts of 200 yM BLT-
S-Fs, SB-T-12822-5, and a 1:1 mixture of the two compounds in D,O-ethanol-solutol HS 15
(v/v/v =84/8/8)

With polysorbate 80 as an excipient, it was found that using the solvent system of D,O-
ethanol-polysorbate 80 (v/v/v = 96/2/2) could solubilize the drug/drug conjugate at concentration
of 200 puM effectively. '’F NMR spectra of BLT-S-F¢ and SB-T-12822-5 in D,O-ethanol-
polysorbate 80 (v/v/v = 96/2/2), and a 1:1 mixture of the two compounds in D,O-ethanol-
polysorbate 80 (v/v/v = 94/4/2) clearly showed no chemical shift difference between BLT-S-Fg
and its corresponding taxoid SB-T-12822-5 in terms of OCF; group, and 0.187 ppm chemical
shift difference in terms of CF3 group (Figure 2.17). This result demonstrated polysorbate 80 is a
suitable excipient for the metabolic stability of tumor-targeted drug delivery system via "°F
NMR. OCF; group could be used as an internal standard since there is no chemical shift
difference before or after the drug is released, and CF3 group could be used as a reporter group to
evaluate how much drug is released from the tumor-targeted drug conjugate.
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Figure 2.17 "’F NMR spectra (512 scans) showing individual chemical shifts of 200 uM BLT-S-
F¢ and SB-T-12822-5 in D,O-ethanol-polysorbate 80 (v/v/v = 96/2/2), and a 1:1 mixture of the
two compounds in D,O-ethanol-polysorbate 80 (v/v/v = 94/4/2)

Further evaluation of chemical shift differences of CF; and OCF; groups between BLT-S-
F¢ and SB-T-12822-5 with polysorbate 80 as an excipient in human blood plasma and cell
culture media showed similar results as using D,O-ethanol-polysorbate 80 (v/v/v = 94/4/2)
solvent system.

PF NMR spectra of BLT-S-Fs and SB-T-12822-5 in blood plasma-D,0-ethanol-
polysorbate 80 (v/v/v/v = 86/10/2/2), and a 1:1 mixture of the two compounds in human blood
plasma-D,O-ethanol-polysorbate 80 (v/v/v/v = 84/10/4/2) clearly showed no chemical shift
difference between BLT-S-F¢ and its corresponding taxoid SB-T-12822-5 in terms of OCF3
group, and 0.210 ppm chemical shift difference in terms of CF3 group (Figure 2.18).
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Figure 2.18 "’F NMR spectra (1024 scans) showing individual chemical shifts of 200 uM BLT-
S-Fe¢ and SB-T-12822-5 in blood plasma-D,0O-ethanol-polysorbate 80 (v/v/v/v = 86/10/2/2), and
a 1:1 mixture of the two compounds in human blood plasma-D,0O-ethanol-polysorbate 80
(v/vIviv =84/10/4/2)

F NMR spectra of BLT-S-F and SB-T-12822-5 in RPMI 1640-D,0-ethanol-polysorbate
80 (v/v/viv = 86/10/2/2), and a 1:1 mixture of the two compounds in RPMI 1640 cell culture
media-D,0-ethanol-polysorbate 80 (v/v/v/v = 84/10/4/2) clearly showed no chemical shift
difference between BLT-S-F¢ and its corresponding taxoid SB-T-12822-5 in terms of OCF3
group, and 0.206 ppm chemical shift difference in terms of CF3 group (Figure 2.19).
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Figure 2.19 "’F NMR spectra (512 scans) showing individual chemical shifts of 200 uM BLT-S-
F¢ and SB-T-12822-5 in RPMI 1640-D,0O-ethanol-polysorbate 80 (v/v/v/v = 86/10/2/2), and a
1:1 mixture of the two compounds in RPMI 1640 cell culture media-D,0O-ethanol-polysorbate 80
(v/vIviv =84/10/4/2)

§ 2.2.3 Metabolic Stability Assessment of Tumor-Targeted Drug Delivery Systems via
Time-Resolved '’F NMR

Disulfide linker cleavage of BLT-S-Fg was subsequently evaluated in human blood plasma.
F NMR spectra for the drug release of BLT-S-Fg (200 uM) in 86% blood plasma, 10% D,0,
2% ethanol, and 2% polysorbate 80 without addition of GSH at 0 h, 24 h and 48 h at 37 °C
showed less than 5% drug release within 24 h and less than 10% drug release within 48 h. This
result demonstrated the tumor-targeted drug conjugate would be stable during blood circulation
with minimal drug release before reach the tumor cells (Figure 2.20).
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Figure 2.20 '°F NMR spectra for the drug release of BLT-S-Fg (200 uM) in 86% blood plasma,
10% D,0, 2% ethanol, and 2% polysorbate 80 without addition of GSH at 0 h, 24 h and 48 h at
37 °C (2048 scans/spectrum). Adapted from J Fluorine Chem, 171, Seitz, J. D.; Vineberg, J. G.;
Wei, L. F.; Khan, J. F.; Lichtenthal, B.; Lin, C. F.; Ojima, 1. Design, synthesis and application of
fluorine-labeled taxoids as '’F NMR probes for the metabolic stability assessment of tumor-
targeted drug delivery systems, 148-161, Copyright (2015), with permission from Elsevier.

Time-resolved '’F NMR spectra for the drug release of BLT-S-Fg (200 uM) in 86% blood
plasma, 10% D0, 2% ethanol, and 2% polysorbate 80 at 30 min after the addition of 100 equiv.
of GSH with 1 h intervals for 13 h at 37 °C showed drug was almost fully released after 13.5 h.
By plotting the normalized integration values, the half-life of the disulfide linker was calculated
to be approximately 3 h. This result demonstrated the tumor-targeted drug conjugate would be
readily cleaved and release the free drug by the high concentration of glutathione inside the
tumor cells once it got internalized via receptor mediated endocytosis (Figure 2.21).
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Figure 2.21 Time-resolved '’F NMR spectra for the drug release of BLT-S-Fg (200 uM) in 86%
blood plasma, 10% D,O, 2% ethanol, and 2% polysorbate 80 at 30 min after the addition of 100
equiv. of GSH with 1 h intervals for 13 h at 37 °C (1024 scans/spectrum). Adapted from J
Fluorine Chem, 171, Seitz, J. D.; Vineberg, J. G.; Wei, L. F.; Khan, J. F.; Lichtenthal, B.; Lin, C.
F.; Ojima, I. Design, synthesis and application of fluorine-labeled taxoids as '°F NMR probes for
the metabolic stability assessment of tumor-targeted drug delivery systems, 148-161, Copyright
(2015), with permission from Elsevier.

Similarly, disulfide linker cleavage of BLT-S-Fg was evaluated in RPMI cell culture media.
Time-resolved '’F NMR spectra for the drug release of BLT-S-Fg (200 uM) in 86% RPMI-1640
cell culture media, 10% D,0, 2% ethanol, and 2% polysorbate 80 at 30 min after the addition of
100 equiv. of GSH with 1 h intervals for 12 h at 37 °C demonstrated the disulfide linker cleavage
is much slower in cell culture media than human blood plasma. More than 50% cleavage was
observed after 12.5 h (Figure 2.22).
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Figure 2.22 Time-resolved '’F NMR spectra for the drug release of BLT-S-Fg (200 uM) in 86%
RPMI-1640 cell culture media, 10% D0, 2% ethanol, and 2% polysorbate 80 at 30 min after the
addition of 100 equiv. of GSH with 1 h intervals for 12 h at 37 °C (1024 scans/spectrum)

Also, disulfide linker cleavage of BLT-S-F¢ was evaluated in D,O. YF NMR spectra for the
drug release of BLT-S-Fs (200 uM) in 96% D0, 2% ethanol, and 2% polysorbate 80 with
addition of 100 equiv. of GSH at O h, 17 h, 40 h, 72 h, 120 h and 168 h at 37 °C showed the
disulfide linker cleavage was significantly slower in D,O. Around 50% of cleavage was achieved
after 3 to 4 days (Figure 2.23). This is presumably because the presence of an excipient such as
polysorbate 80 could significantly reduce the rate of disulfide linker cleavage by protecting the
disulfide bond from exposure to GSH. However, in biological systems such as human blood
plasma, there are many proteins and other substances that may interacting with the excipient,
leading to the exposure of the disulfide bond to the attack of GSH, resulting in the smooth
cleavage of the linker system.
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Figure 2.23 "’F NMR spectra for the drug release of BLT-S-Fg (200 uM) in 96% D,0, 2%
ethanol, and 2% polysorbate 80 with addition of 100 equiv. of GSH at 0 h, 17 h, 40 h, 72 h, 120
h and 168 h at 37 °C (>512 scans/spectrum)

§ 2.3 Summary

The self-immolative methyl-branched disulfide linker in tumor-targeted drug delivery
systems has been synthesized. The stability of the disulfide linker system has been assessed in
different solvent systems including biological relevant human blood plasma and cell culture
media via '’F NMR. By using polysorbate 80 as an excipient to formulate biotin-linker-taxoid
drug conjugate BLT-S-Fg, it has been shown that the disulfide linker system is stable in human
blood plasma, and could release the taxoid warhead smoothly in the presence of 100 equiv. of
supplemental GSH (20 mM), which is comparable to the level of GSH in tumors (2-8 mM).

§ 2.4 Experimental

Caution

Taxoids have been classified as highly potent cytotoxic agents. Thus, all taxoids and structurally
related compounds and derivatives must be considered as mutagens and potential reproductive
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hazards for both males and females. Appropriate precautions (i.e. use of gloves, goggles, lab coat
and fume hood) must be taken while handling these compounds.

General Methods

'H NMR and C NMR spectra were measured on a Varian 300 spectrometer or a Bruker 400
MHz, 500 MHz, or 700 MHz NMR spectrometer. Melting points were measured on a Thomas-
Hoover capillary melting point apparatus and are uncorrected. Optical rotations were measured
on Perkin-Elmer Model 241 polarimeter. TLC analyses were performed on Sorbent Technologies
aluminum-backed Silica G TLC plates (Sorbent Technologies, 200 um, 20 cm x 20 cm), and
were visualized with UV light and stained with sulfuric acid-EtOH, 10% phosphomolybdic acid
(PMA)-EtOH, 10% vanillin-EtOH with 1% sulfuric acid, ninhydrin-butanol with 10% AcOH, or
DACA stain. Column chromatography was carried out on silica gel 60 (Merck; 230-400 mesh
ASTM). Chemical purity was determined with a Shimadzu L-2010A HPLC HT series HPLC
assembly, using a Kinetex PFP column (4.6 mm x 100 mm, 2.6 um) column, using
CH;CN/water as the solvent system with a flow rate of 1 mL/min.

Materials

All chemicals were purchased from Sigma Aldrich, Fisher Scientific or VWR International and
used as received or purified before use by standard methods. Dichloromethane and methanol
were dried before use by distillation over calcium hydride under nitrogen. Ether and
tetrahydrofuran were dried before use by distillation over sodium-benzophenone kept under
nitrogen. 10-Deacetylbaccatin III was obtained from Indena, S.p.A, Italy. Reaction flasks were
dried in a 100 ° C oven and allowed to cool to room temperature in a desiccator over calcium
sulfate and assembled under an inert nitrogen gas atmosphere.

Experimental Procedures
Chemical Synthesis
2,2’-Dipyridyl disulfide (2-1)**

To a 1000-mL round-bottom flask, 2-mercaptopyridine (5.56 g. 50.0 mmol/ 6.00 g, 54.0 mmol)
was dissolved in 500 mL DCM. Potassium permanganate (23.7 g, 150 mmol/ 24.0 g, 152 mmol)
was then added in portions. The reaction mixture turned from yellow color to dark yellow/dark
green color. The reaction was monitored by TLC (hexanes/ethyl acetate = 1/1, stain with
vanillin). Upon completion after 4 h, the reaction mixture was filtered through Celite, and the
filtrate was concentrated in vacuo to give crude product as yellow oil. The crude products from
two runs were combined, and purified by column chromatography on silica gel (gradient eluent:
hexanes/ethyl acetate from 20/1 to 4/1) to give 2,2’-dipyridyl disulfide 2-1 (10.7 g, 48.6 mmol)
as colorless crystalline solid in 93% yield. "H NMR (400 MHz, CDCl3): & 7.11 (m, 2H), 7.62 (m,
4H), 8.47 (m, 2H). ESI m/z : 220.9 [M+H]". All data are in agreement with literature values.**

96



4-Mercaptopentanoic acid (2-2)®

To a solution of y-valerolactone (2.10 g, 21.0 mmol/4.00 g, 40.0 mmol) dissolved in 48% HBr in
water (12.0 mL, 105 mmol/23.0 mL, 200 mmol) in a 100-mL round-bottom flask was added
thiourea (8.00 g, 105 mmol/15.2 g, 200 mmol). The mixture was allowed to heat up to reflux
and stirred under reflux condition for 24 h. The reaction mixture was then allowed to cool to
room temperature and diluted with water. The aqueous layer was washed with DCM (3 x 30
mL), and then washed with ethyl ether (3 x 30 mL). The aqueous layer containing the
intermediate was collected, and the pH of the aqueous layer was adjusted to 14 with 5 M
NaOH/12 M KOH. The solution turned pink color at pH=10 and then became colorless again.
Large amount of white precipitate (thiourea) came out during basification, and was removed by
vaccum filtration. The filtrate was then heat up to reflux and stirred under reflux condition for
another 24 h. Upon completion, the reaction mixture was cooled to room temperature, and the
pH was adjusted to 2 by 1 M HCI. The acidified solution was extracted with DCM (3 x 100 mL).
The organic layers were collected, and dried over anhydrous MgSO4. The MgSO4 was
subsequently removed by vacuum filtration, and the filtrate was concentrated in vacuo to give 4-
mercaptopentanoic acid 2-2 (905 mg, 6.75 mmol/1.53 g, 11.4 mmol) as a pale yellow oil with a
strong rotten egg smell in 32%/29% yield over two steps. 'H NMR (400 MHz, CDCls): & 1.36 (d,
J=6.8 Hz, 3H), 1.44 (d, J = 7.2 Hz, 1H), 1.76 (m, 1H), 1.97 (m, 1H), 2.52 (m, 2H), 2.96 (m,
1H), 11.4 (br. s, 1H). All data are in agreement with literature values.*

4-(Pyridin-2-ylthio)pentanoic acid (2-3)*°

To a solution of 4-mercaptopentanoic acid 2-2 (840 mg, 6.27 mmol/960 mg, 7.18 mmol) in
EtOH (20 mL/30 mL) in a 500-mL round-bottom flask was added 2,2’-dipyridyl disulfide (8.50
g, 37.6 mmol/9.50 g, 43.1 mmol) dissolved in EtOH (120 mL/150 mL) via an addition funnel.
The reaction mixture was allowed to heat up to reflux and stirred under reflux condition for 3 h.
The reaction was monitored by TLC. Upon completion, the reaction solvent was evaporated. The
resulting crude was purified by column chromatography on silica gel (gradient eluent:
hexanes/ethyl acetate from 10/1 to 3/1) to give 4-(pyridin-2-ylthio)pentanoic acid 2-3 (1.54 g,
6.34 mmol/2.33 g, 9.59 mmol) as pale yellow oil in > 100% yield (contains small amount of
excess 2,2’-dipyridyl disulfide). '"H NMR (400 MHz, CDCls): & 1.34 (d, J = 6.8 Hz, 3H), 1.90
(m, 2H), 2.54 (m, 2H), 3.02 (m, 1H), 7.08 (m, 1H), 7.63 (m, 1H), 7.72 (m, 1H), 8.46 (m, 1H). All
data are in agreement with literature values.*

Triisopropylsilyl 4-(pyridin-2-ylthio)pentanoate (2-4)*°

To 4-(pyridin-2-ylthio)pentanoic acid 2-3 (1.52 g, 6.27 mmol/1.74 g, 7.16 mmol) (theoretical
yield from previous step) in DCM (35 mL/40 mL) in a 100-mL round-bottom flask cooled to 0
°C in an ice bath was added triethylamine (1.80 mL, 12.5 mmol/2.00 mL, 14.3 mmol).
Chlorotriisopropylsilane (1.60 mL, 7.52 mmol/1.84 mL, 8.60 mmol) was then added dropwise.
The mixture was stirred at room temperature overnight and the reaction was monitored via TLC.
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Upon completion, the reaction solvent was evaporated and the resulting crude was purified by
column chromatography on silica gel (gradient eluent: hexanes/ethyl acetate from 50/1 to 10/1)
to give triisopropylsilyl 4-(pyridin-2-ylthio)pentanoate 2-4 (1.81 g, 4.52 mmol/2.00 g, 5.01
mmol) as pale yellow oil in 72%/70% yield over two steps. 'H NMR (400 MHz, CDCls): & 1.05
(m, 21H), 1.34 (d, J = 6.8 Hz, 3H), 1.88 (m, 1H), 1.98 (m, 1H), 2.52 (m, 2H), 3.03 (m, 1H), 7.06
(m, 1H), 7.62 (m, 1H), 7.72 (m, 1H), 8.44 (m, 1H). All data are in agreement with literature
values.*

Benzo[b]thiophen-2(3H)-one (2-5)%

To benzo[b]thiophen-2-ylboronic acid (1.08 g, 6.07 mmol) dissolved in 20 mL EtOH in a 100-
mL round-bottom flask, was added 9 mL 30% hydrogen peroxide dropwise. The reaction
mixture was allowed stir at room temperature overnight and the reaction was monitored via TLC.
Upon completion after overnight, the mixture was diluted with water (~70 mL), and extracted
with DCM (3 x 60 mL). The organic layers were combined, and dried over MgSQO4. The MgSO4
was subsequently removed by vacuum filtration, and the filtrate was concentrated in vacuo to
afford crude product as red oil. The resulting crude was further purified by column
chromatography on silica gel (gradient eluent: hexanes/ethyl acetate from 50/1 to 10/1) to give
benzo[b]thiophen-2(3H)-one 2-5 (759 mg, 5.06 mmol) as white solid in 83% yield. "H NMR
(300 MHz, CDCls): & 3.98 (s, 2H), 7.30 (m, 4H). All data are consisted with the reported
values.”’

2-(2-Mercaptophenyl)acetic acid (2-6)"°

To benzo[b]thiophen-2(3H)-one 2-5 (750 mg, 5.00 mmol) dissolved in 12 mL THF in a 100-mL
round-bottom flask warmed to 60 °C, was added a solution of LiOH (1.26 g, 30.0 mmol)
dissolved in 16 mL water dropwise via an addition funnel. The reaction mixture was allowed to
stir overnight at 60 °C and the reaction was monitored via TLC. Upon reaction completion after
overnight, the reaction mixture was cooled to room temperature and diluted with 6 mL water and
30 mL diethyl ether. The pH of the solution was adjusted to pH=2 by 1 M HCI. The aqueous
layer was extracted with DCM (3 x 50 mL). The combined organic layer was washed with brine
(3 x 50 mL), and dried over anhydrous MgSO4. The MgSO4 was subsequently removed by
vacuum filtration, and the filtrate was concentrated in vacuo to afford crude product. The
resulting crude was further purified by column chromatography on silica gel (gradient eluent:
hexanes/ethyl acetate from 10/1 to 1/1) to give 2-(2-mercaptophenyl)acetic acid 2-6 (416 mg,
2.48 mmol) as yellow solid in 50% yield. 'H NMR (400 MHz, CDCls): & 3.49 (s, 1H), 3.82 (s,
2H), 7.18 (m, 2H), 7.23 (m, 1H), 7.40 (m, 1H). All data are consisted with the reported values.'®

2-(2-((5-Oxo-5-((triisopropylsilyl)oxy)pentan-2-yl)disulfanyl)phenyl)acetic acid (2-7)%¢

To a 10-mL round-bottom flask, 2-(2-mercaptophenyl)acetic acid 2-6 (92.0 mg, 0.548 mmol)
and triisopropylsilyl 4-(pyridin-2-ylthio)pentanoate 2-4 (216 mg, 0.541 mmol) were added, the
flask was purged with nitrogen gas and the mixture was cooled to -10 °C in an acetone/dry ice
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bath by mixing acetone with small amount of dry ice. 2 mL anhydrous THF was then added into
the flask and the reaction mixture was allowed to stir between -10 °C to 0 °C by keep adding
small amount of dry ice into the acetone/dry ice bath. The reaction was monitored by TLC. Upon
completion after 4 hour, the reaction solvent was evaporated in vacuo without heat and the
resulting crude was purified immediately by column chromatography on silica gel (gradient
eluent:  hexanes/ethyl acetate from 10/1 to 3/1) to give 2-(2-((5-oxo0-5-
((triisopropylsilyl)oxy)pentan-2-yl)disulfanyl)phenyl)acetic acid 2-7 (226 mg, 0.496 mmol) as
pale yellow sticky oil in 91% yield. The oil was stored in a vial purged with nitrogen in the
fridge before use in subsequent step. 'H NMR (400 MHz, CDCls): & 1.05 (m, 21H), 1.26 (m,
3H), 1.78 (m, 1H), 2.00 (m, 1H), 2.42 (m, 2H), 2.90 (m, 1H), 3.88 (m, 2H), 7.21 (m, 2H), 7.31
(m, 1H), 7.80 (d, T = 8.1 Hz, 1H). All data are consisted with the reported values.*®

”F NMR Experiments:

F NMR experiments were performed on a Bruker Nanobay 400 MHz NMR spectrometer
operating at a '’F Larmor frequency of 376 MHz with a BBFOpLys 5 mm probe (‘H-'""F) at 25
°C or 37 °C. '"F NMR spectra were recorded using a pulse sequence of proton decoupling with a
spectral width of 15,040 Hz (40 ppm), an acquisition time of 0.8 s, and a relaxation delay of 1.0
s. The obtained spectra were analyzed with TOPSPIN 3.0 (Bruker).

Formulation studies on SB-T-12822-5 and BLT-S-F

Stock solutions of SB-T-12822-5 and BLT-S-F¢ were prepared by dissolving each compound in
ethanol to final concentrations of [10 mM]. In each experiment, an aliquot of the prepared stock
solution (10 pL) was diluted with various volumes of aqueous media (PBS, saline, human blood
plasma, RPMI cell culture media, D,0), 0-8% ethanol and/or excipient (solutol HS 15,
polysorbate 80), and 10% D,O (50 pL) to a final volume of 500 puL. Formulation studies with
excipients were performed with 500 pL sample volume in NMR tubes with D,O as the NMR
reference solvent.

Time-resolved ’F NMR for BLT-S-Fg:

For linker stability studies in human blood plasma/RPMI cell culture media, supplemental
glutathione (100 equivalents) was dissolved in [200 uM] solutions of BLT-S-F¢ with 84%
human blood plasma/RPMI cell culture meida, 10% D,0, 2% ethanol, 2% polysorbate 80 (total
500 pL). Time-resolved '’F NMR spectra representing disulfide bond cleavage and drug release
were recorded in real-time in the NMR spectrometer at 37 °C beginning 30 min following GSH
addition by measuring one spectrum every 1 h (1024 of scans/spectrum) over a 13 h period (total
of 13 spectra). The rate of drug release was monitored by measuring the integration ratio of the
C3’-CF; peaks of conjugate BLT-S-F¢ and free taxoid SB-T-12822-5. The normalized
integration ratios indicating drug release were plotted as a function of time.

Stock Solution:
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5.1 mg BLT-S-F¢ was dissolved in 312 pL EtOH to make a 10 mM BLT-S-F; stock solution.

3.0 mg SB-T-12822-5 was dissolved in 315 pL EtOH to make a 10 mM SB-T-12822-5 stock
solution.

EtOH-D,0 system:
1. 1:1 mixture

To a vial was added 10 uL BLT-S-Fg 10 mM stock solution, 10 uL SB-T-12822-5 10 mM stock
solution and 180 puL EtOH. 300 pL D,O was added to the mixture dropwise. Then the mixture
solution was transferred to a NMR tube.

2. BLT-S-Fs

To a vial was added 10 uL BLT-S-F¢ 10 mM stock solution and 190 pL. EtOH. 300 pL D,O was
added to the mixture dropwise. Then the mixture solution was transferred to a NMR tube.

3. SB-T-12822-5

To a vial was added 10 uL. SB-T-12822-5 10 mM stock solution and 190 pL. EtOH. 300 uL. D,O
was added to the mixture dropwise. Then the mixture solution was transferred to a NMR tube.

EtOH-Solutol-D,0O system:
1. 1:1 mixture

To a vial was added 10 pL. BLT-S-F6 10 mM stock solution, 10 uL. SB-T-12822-5 stock solution
and 60 pL Solutol/EtOH (v/v = 2:/1) solution. 420 pL D,O was added to the mixture dropwise.
Then the mixture solution was transferred to a NMR tube.

2. BLT-S-Fs

To a vial was added 10 pL BLT-S-F¢ 10 mM stock solution, 10 pL EtOH and 60 pL
Solutol/EtOH (v/v = 2:/1) solution. 420 uL. D,O was added to the mixture dropwise. Then the
mixture solution was transferred to a NMR tube.

3. SB-T-12822-5

To a vial was added 10 pL SB-T-12822-5 10 mM stock solution, 10 uL. EtOH and 60 uL
Solutol/EtOH (v/v = 2:/1) solution. 420 uL. D,O was added to the mixture dropwise. Then the
mixture solution was transferred to a NMR tube.

EtOH-Polysorbate 80-D,O system:

1. 1:1 mixture
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To a vial was added 10 pL BLT-S-F¢ 10 mM stock solution, 10 uL. SB-T-12822-5 stock solution
and 10 pL polysorbate 80. 470 uL. D,O was added to the mixture dropwise. Then the mixture
solution was transferred to a NMR tube.

2. BLT-S-Fs

To a vial was added 10 pL BLT-S-F¢ 10 mM stock solution and 10 pL polysorbate 80. 480 puL
D,0 was added to the mixture dropwise. Then the mixture solution was transferred to a NMR
tube

3. SB-T-12822-5

To a vial was added 10 pL SB-T-12822-5 10 mM stock solution and 10 pL polysorbate 80. 480
uL D,O was added to the mixture dropwise. Then the mixture solution was transferred to a NMR
tube.

EtOH-Polysorbate 80-D,O-GSH system:

To a vial was added 10 BLT-S-Fg 10 mM stock solution and 10 pL polysorbate 80. 3.1 mg GSH
(100 eq) dissolved in 480 puL. D,O was added to the mixture dropwise. Then the mixture solution
was transferred to a NMR tube. The NMR tube was kept in a 37 °C water bath during the
reaction while not measuring NMR.

EtOH-Polysorbate 80-D,O-Human Blood Plasma system:
1. 1:1 mixture

To a vial was added 10 uL BLT-S-Fg 10 mM stock solution, 10 uL SB-T-12822-5 10 mM stock
solution and 10 pL polysorbate 80. 50 uL. D,O was added to the mixture dropwise. 420 uL
human blood plasma was then added and mixed. Then the mixture solution was transferred to a
NMR tube.

2. BLT-S-Fs

To a vial was added 10 pL. BLT-S-Fg 10 mM stock solution and 10 pL. polysorbate 80. 50 puL
D,0 was added to the mixture dropwise. 430 pL human blood plasma was then added and
mixed. Then the mixture solution was transferred to a NMR tube. The NMR tube was kept in a
37 °C water bath during the reaction while not measuring NMR.

3. SB-T-12822-5

To a vial was added 10 pL SB-T-12822-5 10 mM stock solution and 10 pL polysorbate 80. 50
uL D,O was added to the mixture dropwise. 430 pL human blood plasma was then added and
mixed. Then the mixture solution was transferred to a NMR tube.

EtOH-Polysorbate 80-D,O-Human Blood Plasma-GSH system:
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To a vial was added 10 pL. BLT-S-F 10 mM stock solution and 10 puL. polysorbate 80. 50 puL
D,0 was added to the mixture dropwise. 3.1 mg GSH (100 eq) dissolved in 430 uL blood plasma
was added and mixed. Then the mixture solution was transferred to a NMR tube. The NMR tube
was kept in a 37 °C water bath during the reaction while not measuring NMR.

EtOH-Polysorbate 80-D,O-Human Blood Plasma-GSH Kinetic run:

To a vial was added 10 pL. BLT-S-Fg 10 mM stock solution and 10 pL. polysorbate 80. 50 puL
D,0 was added to the mixture dropwise. 3.1 mg GSH (100 eq) dissolved in 430 pL human blood
plasma was added and mixed. Then the mixture solution was transferred to a NMR tube. A quick
acquisition was done before the kinetic run to make sure everything is okay. The first kinetic
acquisition started 30 min after the sample was prepared. Each acquisition is 1024 scans

(~31min) and then relaxed for 1722 seconds (one acquisition per hour). The NMR run was at 37
°C.

EtOH-Polysorbate 80-D,O-RPMI cell culture medium system:
RPMI cell culture medium was pretreated with 10% FBS and 1% PenStrip.
1. 1:1 mixture

To a vial was added 10 uL BLT-S-Fg 10 mM stock solution, 10 uL SB-T-12822-5 10 mM stock
solution and 10 pL polysorbate 80. 50 uL. D,O was added to the mixture dropwise. 420 uL RPMI
medium was then added and mixed. Then the mixture solution was transferred to a NMR tube.

2. BLT-S-Fs

To a vial was added 10 pL. BLT-S-Fg 10 mM stock solution and 10 pL. polysorbate 80. 50 puL
D,O was added to the mixture dropwise. 430 pL RPMI medium was then added and mixed.
Then the mixture solution was transferred to a NMR tube. The NMR tube was kept in a 37 °C
water bath during the reaction while not measuring NMR.

3. SB-T-12822-5

To a vial was added 10 pL SB-T-12822-5 10 mM stock solution and 10 pL polysorbate 80. 50
uL D,O was added to the mixture dropwise. 430 pL RPMI medium was then added and mixed.
Then the mixture solution was transferred to a NMR tube.

EtOH-Polysorbate 80-D,O-RPMI cell culture medium-GSH system:

To a vial was added 10 uL. BLT-S-F¢ 10 mM stock solution and 10 pL polysorbate 80. 50 puL
D,0 was added to the mixture dropwise. 3.1 mg GSH (100 eq) dissolved in 430 uL. RPMI
medium (the color of medium changed from purple to yellow immediately when dissolving
GSH) was added and mixed. Then the mixture solution was transferred to a NMR tube. The
NMR tube was kept in a 37 °C water bath during the reation while not measuring NMR.
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Chapter 3

PAMAM Dendrimer-based Tumor-Targeted Drug Delivery Systems
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§ 3.1 Introduction

§ 3.1.1 Nanocarrier-based Drug Delivery

Nanocarriers are nanosized (diameter 1-100 nm) drug delivery vehicles, which can
carry multiple drugs, imaging agents, and/or other functional groups.'” Nanocarrier-
based drugs, such as polymer-protein conjugates and liposomes-carried drugs, first
reached clinical trials in the mid- 1980s, and were subsequently marketed in the mid-
1990s."* Table 3.1 shows selected examples of nanocarrier-based drugs on the market.'
SMANCS, a conjugate of neocarzinostatin (an antitumor protein) and poly(styrene-
comaleic acid), has a molecular size of about 90 kDa upon binding to albumin in plasma,
and it is the first polymeric drug approved for clinical use employing the enhanced
permeability and retention (EPR) effect.” Other examples include Myocet (non-PEG
coated liposome-encapsulated form of Doxorubicin), Doxil/Caelyx (PEG coated
liposome-encapsulated form of Doxorubicin), Abraxane (albumin-bound Paclitaxel) and
etc.'

Table 3.1 Selected examples of nanocarrier-based drugs on the market. Reprinted by
permission from Macmillan Publishers Ltd: Nature Nanotechnology, Peer, D.; Karp, J.
M.; Hong, S.; FaroKHzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging

platform for cancer therapy. Nat Nanotechnol 2007, 2, 751-760, copyright (2007).

Compound Commercial name Nanocarrier Indications

Styrene maleic anhydride-neocarzinostatin ~ Zinostatin/Stimalmer Polymer—protein conjugate Hepatocellular carcinoma

(SMANCS)

PEG-L-asparaginase Oncaspar Polymer—protein conjugate Acute lymphoblastic leukemia

PEG-granulocyte colony-stimulating factor ~ Neulasta/PEGfilgrastim Polymer—protein conjugate Prevention of chemotherapy-associated

(G-CSF) neutropenia

IL2 fused to diphtheria toxin Ontak (Denilelukin diftitox) Immunotoxin (fusion protein) Cutaneous T-cell lymphoma

Anti-CD33 antibody conjugated to Mylotarg Chemo-immunoconjugate Acute myelogenous leukemia

calicheamicin

Anti-CD20 conjugated to yttrium-90 or Zevalin Radio-immunoconjugate Relapsed or refractory, low-grade, follicular, or

indium-111 transformed non-Hodgkin'’s lymphoma

Anti-CD20 conjugated to iodine-131 Bexxar Radio-immunoconjugate Relapsed or refractory, low-grade, follicular, or
transformed non-Hodgkin’s lymphoma

Daunorubicin DaunoXome Liposomes Kaposi's sarcoma

Doxorubicin Myocet Liposomes Combinational therapy of recurrent breast
cancer, ovarian cancer, Kaposi’s sarcoma

Doxorubicin Doxil/Caelyx PEG-liposomes Refractory Kaposi's sarcoma, recurrent breast
cancer, ovarian cancer

Vincristine OncoTCS Liposomes Relapsed aggressive non-Hodgkin’s
lymphoma (NHL)

Paclitaxel Abraxane Albumin-bound paclitaxel nanoparticles Metastatic breast cancer

Various types of nanocarriers have been employed in caner detection and/or therapy,
including immunoconjugates, polymer-drug conjugates, carbon nanotubes, dendrimers,
gold nanoparticles, and lipid-based carriers such as liposomes and micelles (Figure
3.1a).' Functional groups, such as chemotherapeutic drugs or targeting modules, could be
either attached to the surface of the nanocarrier through covalent bonds, or entrapped
inside the nanocarriers (Figure 3.1b).!
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Figure 3.1 Examples of nanocarriers for anticancer drug delivery. Reprinted by
permission from Macmillan Publishers Ltd: Nature Nanotechnology, Peer, D.; Karp, J.
M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging

platform for cancer therapy. Nat Nanotechnol 2007, 2, 751-760, copyright (2007).

Among different types of nanocarriers, polymer-anticancer drug conjugates have
potential advantages in improved drug targeting to tumor, reduced drug toxicity, and
overcoming the mechanism of drug resistance.” Figure 3.2 shows selected examples of
polymer-anticancer drug conjugates. (N-(2-hydroxypropyl) methacrylamide) HPMA
copolymer-Gly-Phe-Leu-Gly-doxorubicin conjugate (Figure 3.2 top left), which
contains ~ 8 wt% doxorubicin drug loading, was developed by Duncan and her
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colleagues in the 1980s.>* The preclinical evaluation of this polymer drug conjugate
showed improved anti-tumor activity in vivo through the EPR-mediated tumor targeting.”
This polymer drug conjugate was subsequently evaluated in phase I and phase II clinical
trials, and showed promising activities against non-small cell lung cancer (NSCLC) as
the first synthetic polymer-drug conjugate advanced to clinical study.>>® A multivalent
receptor-targeted conjugate containing galactosamine to promote liver targeting (Figure
3.2 bottom left) was also developed in the same group to treat primarily liver cancer,
which employed both active receptor-mediated targeting and passive size-mediated
targeting.””® Polyglutamate-paclitaxel conjugate (Figure 3.2 top right) was first
developed by Li and his colleagues, and is currently is phase III study under name
Xyotax.” This highly water-soluble conjugate contains ~37 wt% drug loading with an
overall Mw of 49,000.” Paclitaxel is slowly released by hydrolysis, but largely released
through biodegradation of the glutamic acid polymer backbone by lysosomal chathepsin
B after endocytic uptake.'® Polymer combination therapy, in which different drugs could
be attached to the polymer carrier simultaneously, is another attractive way of using
polymer as drug delivery vehicle. For example, polymer drug conjugate containing both
the aromatase inhibitor aminogluthethimide and doxorubicin was developed (Figure 3.2
bottom right).”
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Figure 3.2 Examples of polymer-anticancer drug conjugates. Reprinted by permission
from Macmillan Publishers Ltd: Nature Reviews Cancer, Duncan, R. Polymer conjugates
as anticancer nanomedicines. Nat Rev Cancer 2006, 6, 688-701, copyright (2006).

§ 3.1.2 Dendrimer

Dendrimers are a class of macromolecules, which commonly have highly branched
well-defined three-dimensional architectures.'' The name dendrimer comes from the
Greek word for tree (Dendron). As shown in Figure 3.3, dendrimers usually are
constructed with three components, namely the core molecule, branches, and the surface
molecules.'? By increasing a distinct layer to a dendrimer will increase its generation,
therefore, the property and shape of a dendrimer is mainly determined by the types and
amount of branches used to grow the dendrimer. The diameter of a dendrimer increases
linearly while the number of surface groups increases exponentially, resulting in flexible
and open shapes for low generation dendrimers, and more dense three-dimensional
shapes for higher generation dendrimers.''
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Figure 3.3 Graphical representations of dendrimers from core to generation 4. Reprinted
from Bharali, D. J.; Khalil, M.; Gurbuz, M.; Simone, T. M.; Mousa, S. A. Int J Nanomed

2009, 4, 1-7, with permission from Dove Press.

The divergent method and the convergent method are the two main strategies for
synthesizing dendrimers. Schematic representations of the two methods are shown in
Figure 3.4."' In the divergent method, dendrimers grow branches or generations from a
core molecule outward to its surface. In the mid-1980s, Tomalia et al. first synthesized a
poly(amidoamine) (PAMAM) type dendrimer using this strategy.” The convergent
method, on the contrary, builds dendrimers from outside in, and was first introduced by

Hawker and Fréchet in 1990.'
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Figure 3.4 Schematic representations of divergent method and convergent method for
synthesizing dendrimers. Reproduced from Mintzer, M. A.; Grinstaff, M. W. Biomedical
applications of dendrimers: a tutorial. Chem Soc Rev 2011, 40, 173-190, with permission

of The Royal Society of Chemistry.
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In 2002, Gillies and Fréchet reported a novel “bow-tie” shape polyester dendritic
scaffold, in which one dendron has hydroxyl functionality and could be used for drug or
radiolabel attachment, while the other dendron is conjugated to multiple poly(ethylene
oxide) chains for improving the solubility."”> Molecular weight and architecture could be
controlled by changing the generation of the dendron and number of poly(ethylene oxide)
chains attached (Figure 3.5)."”

DT
e PE

Figure 3.5 Schematic representation of polyester dendrimers-poly(ethylene oxide) “bow-
tie” hybrids with tunable molecular weight and architecture. Reprinted with permission
from Gillies, E. R.; Frechet, J. M. J. Designing macromolecules for therapeutic
applications: Polyester dendrimer-poly(ethylene oxide) "bow-tie" hybrids with tunable
molecular weight and architecture. J Am Chem Soc 2002, 124, 14137-14146. Copyright
(2002) American Chemical Society.

In 2011, Weck et al. reported an interesting polyamide-based hyperbranched
multifunctional dendrimer platform, which contains nine azide termini, nine amine
termini, and fifty-four terminal acid groups.'® The authors first combined two different
dendrons into a “Janus”-type dendrimer, and then reacted with an AB¢C; type dendron to
construct the hyperbranched multifunctional dendrimer platform (Figure 3.6).'° Further
orthogonal functionalization of the multifunctional dendrimer by connecting the nine
amine groups with a near-infrared (NIR) cyanine dye gave rise to the final dendrimer
conjugate, which shows fluorescence in the NIR region, and no toxicity toward T98G
human cells.'
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Figure 3.6 Schematic representation of a well-defined polyamide-based hyperbranched
multifunctional dendrimer platform. Reprinted with permission from Ornelas, C.;
Pennell, R.; Liebes, L. F.; Weck, M. Construction of a Well-Defined Multifunctional
Dendrimer for Theranostics. Org Lett 2011, 13, 976-979. Copyright (2011) American
Chemical Society.

In addition, while our research was going on, in 2011, Hartley et al. reported a
“diblock” generation 3 (G3) cystamine core PAMAM dendrimer-based scaffold, allowing
one half-dendrimer attaching with 16 targeting structures, the other side attaching with 16
peptides or proteins, and a third structure such as fluorochrome could be incorporated
into the bifunctional linker (Figure 3.7)."
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Figure 3.7 Schematic representation of “diblock” PAMAM cystamine core dendrimer-
based conjugate for synthesis of bioactive narnoparticles. Reprinted with permission from
Gaertner, H. F.; Cerini, F.; Kamath, A.; Rochat, A. F.; Siegrist, C. A.; Menin, L.; Hartley,

O. Efficient orthogonal bioconjugation of dendrimers for synthesis of bioactive
nanoparticles. Bioconjugate Chem 2011, 22, 1103-1114. Copyright (2011) American
Chemical Society.
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§ 3.1.3 Applications of Dendrimer in Anticancer Drug Delivery

Dendrimers have been used for various applications in different fields including
biological, chemical, medical, polymer and nanotechnology.'® In term of anticancer drug
delivery, dendrimers are attractive platforms because of their unique properties including:
1) Well-defined architectures, molecular weights and functionalities; ii) anticancer drugs
could be encapsulated into the interior space of dendrimers to greatly increase the water
solubility of the drug; iii) anticancer drugs, targeting moieties and other functionality
groups could also be conjugated to the terminal groups on the surface of dendrimers to
increase the payload of the drugs, targeting efficacy of the conjugate and other biological
and physiological properties; iv) passive targeting of the conjugated could be achieved
based on size of the functionalized dendrimers by employing the enhanced permeability
and retention (EPR) effect; and v) lack of immunogenicity of certain types of dendrimers
make them safer than synthetic peptides or natural proteins.'*?°

As illustrated in Figure 3.8, dendrimers can be used as anticancer drug delivery
vehicles by employing both receptor-mediated active targeting (large amount of small
targeting molecules and cytotoxic agents could be conjugated to the surface of a
dendrimer or anticancer drugs could be encapsulated inside a dendrimer) and size-
mediated passive targeting (by taking advantage of the enhanced permeability and
retention (EPR) effect).” The multifunctional characteristics of the dendritic constructs
make them appealing platforms for anticancer drug delivery.
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Figure 3.8 Dendrimers as multi-purpose nanodevices for anticancer drug delivery and
diagnostic imaging. Reprinted from Tomalia, D. A.; Reyna, L. A.; Svenson, S.
Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic
imaging. Biochem Soc Trans 2007, 35, 61-67, with permission from Portland Press.
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A proof-of-concept example of using dendrimer as an anticancer drug delivery
platform via conjugation with chemotherapeutic drugs, targeting moieties and other
functionalities is shown below in Figure 3.9. In 2005, Baker and his coworkers reported
the synthesis of such conjugate by partial acetylation of the surface amino groups of a
generation 5 (G5) PAMAM dendrimer and surface-functionalized with fluorescein
isothiocyanate (FITC), folic acid (FA) and methotrexate (MTX) in a multistep sequential
manner.”** This conjugate has shown in vitro and in vivo cellular internalization through
the folate receptor and improved efficacy to kill tumor cells.”** A similar construct using

taxol as the warhead instead of methotrexate (MTX) was also reported by the same group
in 2006.”
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I | | \
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Fluoresceinisothiocyanate (FITC)

Figure 3.9 Schematic representation of generation 5 (G5) PAMAM dendrimer surface-
functionalized with FITC, FA and MTX. Reprinted from J Chromatogr B Analyt Technol
Biomed Life Sci, 822, Islam, M. T.; Majoros, 1. J.; Baker, J. R., Jr. HPLC analysis of
PAMAM dendrimer based multifunctional devices, 21-26, Copyright (2005), with
permission from Elsevier.

However, recently their studies suggested that possibly less than 5% of the material
contain the desired number of 4 folic acids (FA) and 5 methotrexates (MTX) in the
multifunctional dendrimer conjugate (Figure 3.10).”° When they scaled up the synthesis
for clinical trial studies, markedly less cytotoxicity in vitro and insignificant anticancer
activity in vivo was found compared to small batches of the material, presumably because
of the polydispersity of the synthesized multifunctional dendrimer conjugates.”’
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Figure 3.10 A quantitative assessment of ligand distribution of the multifunctional
dendrimer conjugate. Reprinted with permission from Mullen, D. G.; Fang, M.; Desai,
A.; Baker, J. R.; Orr, B. G.; Holl, M. M. B. A Quantitative Assessment of Nanoparticle-
Ligand Distributions: Implications for Targeted Drug and Imaging Delivery in Dendrimer
Conjugates. ACS Nano 2010, 4, 657-670. Copyright (2010) American Chemical Society.

Now they are trying to solve this problem by employing different synthetic
strategies, such as define the ratio of FA to MTX via a triazine core scaffold, or conjugate

the MTX through a serum-stable amide linker instead of a ester linkage and via copper-
free click chemistry (Figure 3.11).>"%
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Figure 3.11 Bifunctional dendrimer conjugates of folic acid and methotrexate with
defined ratio. Reprinted with permission from Zong, H.; Thomas, T. P.; Lee, K. H.;
Desai, A. M.; Li, M. H.; Kotlyar, A.; Zhang, Y.; Leroueil, P. R.; Gam, J. J.; Banaszak
Holl, M. M.; Baker, J. R., Jr. Bifunctional PAMAM dendrimer conjugates of folic acid
and methotrexate with defined ratio. Biomacromolecules 2012, 13, 982-991. Copyright
(2012) American Chemical Society.
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§ 3.1.4 Enhanced Permeability and Retention (EPR) Effect

The concept of the enhanced permeability and retention (EPR) effect was first
proposed and described by Maeda and co-workers in 1986.* Tumor growth is
angiogenesis dependent, that is to say, tumor cells are capable of building new blood
vessels for obtaining nutrients and oxygen to support their rapid growth.”® These newly
developed blood vessels are very different from those in the normal tissue, as they
usually have irregular shapes, leakages, and defective architectures.’’ As shown in
Figure 3.12, macromolecules or nanoparticles have much greater chance to enter tumor
tissue than normal tissue due to such anatomical defectiveness of neovasculature in tumor
tissues.”> Moreover, the lymphatic drainage system in tumor tissue is not well developed,
resulting poor clearance of the macromolecules or nanoparticles, therefore, such large
molecules have longer retention time in the tumor.’®> This phenomenon, was termed
enhanced permeability and retention (EPR) effect, and is widely used as the theoretical
basis for selective targeting tumors by using macromolecules or nanoparticles nowadays.
This targeting strategy employing the EPR effect is also commonly classified as passive
targeting, while targeting receptors or antigens that overexpressed on tumor cells is
named active targeting.
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Figure 3.12 Schematic representation of enhanced permeability and retention (EPR)
effect. Reprinted from Kratz, F.; Muller, 1. A.; Ryppa, C.; Warnecke, A. Prodrug
strategies in anticancer chemotherapy. Chemmedchem 2008, 3, 20-53, with permission
from John Wiley & Sons.
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§ 3.1.5 Biotin as Tumor-Targeting Module

Vitamins, such as vitamin Bj,, folic acid, biotin, and riboflavin, are essential
nutrients required by living systems.> All living cells require such vitamins for survival,
however, rapidly dividing cells such as cancer cells require substantially more vitamins
than normal cells in order to sustain enhanced proliferation.”® As a result, the receptors
involved in uptake of the vitamins are found to be overexpressed in certain cancer cells,
and could be used as therapeutic targets for delivering highly toxic anticancer drugs
specifically into these cancer cells.” The folate receptor has been extensively studied as a

tumor-specific biomarker, and biotin receptor is emerging as a potential target as well.>*”
36

Biotin (also called vitamin B7, vitamin H, or coenzyme R), as shown in Figure 3.13
below, is a water-soluble vitamin and serves a covalently bound coenzyme for five
carboxylases in including acetyl-CoA carboxylases 1 and 2, pyruvate carboxylase,
propionyl-CoA carboxylase, and 3-methylcrotonyl-CoA carboxylase.”” Biotin plays a
vital role in epigenetic regulation, fatty acid biosynthesis, energy production, as well as
metabolism of fats and amino acids.’’®

it

Hﬁ ?H OH
s o
D-(+)-biotin

Figure 3.13 Chemical structure of p-(+)-biotin

However, using biotin receptor as a potential tumor-specific target was not well
recognized until Russell-Jones and his colleagues reported the high overexpression level
of biotin receptors in a wide range of tumor cells in 2004.* The authors used Rhodamine-
labeled HPMA polymer conjugated with various targeting agents including folic acid,
vitamin By, and biotin, and evaluated the uptake levels of these conjugates.” It was
found that those cancer cells overexpressing folate or vitamin B, receptors also
overexpress biotin receptors, and moreover, certain types of cancer cells have more
overexpression level of biotin receptors than the other two receptors, such as L1210FR,
Colo-26, P815, RD995, 4T1, JC, and MMT060562 cell lines.* Therefore, biotin receptor
became a potential new target for tumor-targeted drug delivery, and was subsequently
used in the Ojima laboratory in a number of drug conjugates.”*

Table 3.2 The relative expression levels of vitamin receptors in cancer cells. Reprinted
from J Inorg Biochem, 98, Russell-Jones, G.; McTavish, K.; McEwan, J.; Rice, J.;
Nowotnik, D. Vitamin-mediated targeting as a potential mechanism to increase drug
uptake by tumours,1625-1633, Copyright (2004), with permission from Elsevier.
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0157 Balb/C Bcell lymph +/- +/- +/-
BW5147 AKR/J Lymphoma +/- +/- +/-
B16 C57/BI Melanoma - - -
LL-2 C57/Bl Lung ; _ ]
HCT-116 Balb/C-Nu  Colon - - -
L1210 DBA/2 Leukemia +/- +/- -
L1210FR DBA/2 Leukemia ++ + +++
Ov 2008 Balb/C-Nu  Ovarian +++ - ++
ID8 C57/BI Ovarian +++ - ++
Ovcar-3 Ovarian +++ - +++
Colo-26 Balb/C Colon +/- ++ it
P815 DBA/2 Mastocytoma — +/- ++ —
M109 Balb/C Lung + +++ +++
RENCA Balb/C Renal cell + Aot +++
RD995 C3H/Hel Renal cell + ++ o
4T1 Balb/C Breast + ++ +++
JC Balb/C Breast + — T+
MMTO060562 Balb/C Breast + ++ 4+

§ 3.1.6 Multivalent Binding Effect

Multivalent protein-ligand binding is frequently used by nature to achieve tight
binding when univalent binding is weak.” Various types of multivalent interactions have
been extensively studied, such as antibody-antigen interactions,***

. . 46,4 . .- . 48-50
interactions,***” and folate receptor-folic acid interactions.

protein-carbohydrate

In 2007, G5 dendrimer-based nanodevices with different numbers of folic acid
targeting moieties attached were used to assess the multivalent interactions between
folate receptors (FAR) and folic acid (FA).*® Quantitative assessments of the dissociation
constants (K4) between surface-bound folate-binding protein (FBP) and G5 dendrimer-
based nanodevices using surface plasmon resonance (SPR) indicates the binding avidity
is dramatically increased when increasing the number of folic acid (FA) attached to the
nanodevice from 0 to 4.7, however, the binding avidity does not further increase when
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more than 4.7 folic acid (FA) are attached, presumably due to saturation of the receptors

(Figure 3.14).%
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Figure 3.14 Quantitative assessments of multivalent interactions between folate-binding
protein (FBP) and G5 dendrimer-based nanodevices using surface plasmon resonance
(SPR). Reprinted from Chem Biol, 14, Hong, S.; Leroueil, P. R.; Majoros, 1. J.; Orr, B.

G.; Baker, J. R.; Holl, M. M. B. The binding avidity of a nanoparticle-based multivalent

targeted drug delivery platform, 107-115, Copyright (2007), with permission from

Elsevier.

Qualitative assessments of multivalent interactions between folate receptors (FAR)
and G5 dendrimer-based nanodevices with FAR-overexpressed KB cells using flow
cytometry gave similar trend after incubation at 37 °C for 1 hour (Figure 3.15).*® The
results indicate a multivalent binding effect for folic-acid-targeted dendritic nanodevice.
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Figure 3.15 Qualitative assessments of multivalent interactions between folate receptors
(FAR) and G5 dendrimer-based nanodevices using flow cytometry. Reprinted from Chem
Biol, 14, Hong, S.; Leroueil, P. R.; Majoros, 1. J.; Orr, B. G.; Baker, J. R.; Holl, M. M. B.
The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform,
107-115, Copyright (2007), with permission from Elsevier.
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However, to date, there are few literature reports about the multivalent binding
interactions between biotin receptors (BR) and biotin. In 2009, Palakurthi and his
coworkers reported biotinylated PAMAM dendrimers with about 2, 3, 6, and 7 biotin
molecules attached to G1, G2, G3, and G4 PAMAM dendrimers respectively, but there
was no clear comparison of the cellular uptake between these conjugates.”’

Moreover, the actual impact of different numbers of targeting ligands on the
multivalent binding avidity has been difficult to analyze, because the heterogeneous
ligand-nanodevice distributions generated by stochastic conjugation chemistries
employed in the synthesis.'®>* Therefore, there is great need to evaluate the multivalent
binding effect using structurally well-defined conjugates with exact numbers of ligands
attached.

§ 3.1.7 Theranostics

Theranostics are combination of therapeutic drugs and diagnostic imaging agents,
which could be simultaneously delivered with the same dose.” For example, therapeutics
such as chemotherapy, gene therapy, hyperthermia, photodynamic, and radiation therapy
could be used to combine with either in vitro or in vivo imaging functionalities, such as
fluorescent probes, magnetic resonance imaging (MRI) contrast agents, and/or positron
emission tomography (PET)/single photon emission computed tomography (SPECT)
imaging agents (Figure 3.16).>

MRI PET/SPECT Photodynamic

Theranostic = Dlgﬂnostlc § Therj;g?egtic —> Gene Therapy
_ \j \ g

»d

Chemotherapy

<~ \
l l Hyperthermia
NIR Fluorescence Radiation

Figure 3.16 Schematic representation of the concept of theranostic. Reprinted with
permission from Kelkar, S. S.; Reineke, T. M. Theranostics: Combining Imaging and
Therapy. Bioconjugate Chem 2011, 22, 1879-1903. Copyright (2011) American
Chemical Society.

For example, in 2014, Guo and his colleagues reported platinum (II)-gadolinium
(II1) complexes as potential theranostic agents for cancer treatment (Figure 3.17).*
These bifunctional Pd-Gd complexes could partially dissociate in cancer cells to release
the cytotoxic Pt moieties, and the Gd component and the untouched complex could be
used for in vivo MRI imaging.>* It was found that the proton relaxivity of these
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complexes is even higher than commercial MRI contrast agent Gd-DTPA, and showed
stronger signal intensity.>

Gd-DTPA Complex 1 Complex 2
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Figure 3.17 Platinum (II)-gadolinium (III) complexes as potential theranostic agents for
cancer treatment. Reprinted from Zhu, Z.; Wang, X.; Li, T.; Aime, S.; Sadler, P. J.; Guo,
Z. Platinum(II)-Gadolinium(IIT) Complexes as Potential Single-Molecular Theranostic
Agents for Cancer Treatment. Angew Chem Int Ed 2014, 53, 13225-13228, with
permission from John Wiley & Sons.

The Ojima group has been developing trifunctional theranostic agents using triazine
splitter, in which tumor-targeting module such as biotin, cytotoxic warhead new-
generation taxoid, and an imaging module such as fluorescent probe, MRI contrast agent,
or PET/SPECT imaging module could be incorporated into the same conjugate.

Theranostic vitamin-linker-taxoid conjugates bearing FITC for in vitro imaging or
'8F for in vivo PET imaging have been constructed by Dr. Jacob Vineberg, and published
in 2015 (Figure 3.18).*
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Figure 3.18 Theranostic vitamin-linker-taxoid conjugates bearing FITC for in vitro

imaging or '°F for in vivo imaging. Reprinted with permission from Vineberg, J. G.;

Wang, T.; Zuniga, E. S.; Ojima, 1. Design, Synthesis, and Biological Evaluation of

Theranostic Vitamin-Linker-Taxoid Conjugates. J Med Chem 2015, 58, 2406-2416.
Copyright (2015) American Chemical Society.

Theranostic vitamin-linker-taxoid conjugates bearing chelated radiotracer for
potential in vivo PET/SPECT/MRI imaging have been constructed by Dr. Tao Wang
(Figure 3.19).”
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Figure 3.19 Theranostic vitamin-linker-taxoid conjugates bearing chelated radiotracer for
potential in vivo PET/SPECT/MRI imaging. Adapted with permission from Wang, T.
Design, synthesis, and biological evaluation of novel taxoid-based small-molecule
theranostic PET/SPECT imaging agents and nano-scale asymmetic bow-tie dendrimer
drug conjugates towards tumor-targeted chemotheraphy (Doctoral Dissertation). Stony
Brook University, 2015.
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§ 3.2 PAMAM Dendrimer-based Tumor-Targeting Taxoid/FITC Conjugates

§ 3.2.1 Rational Design

To avoid the heterogeneous ligand distribution problem found in the traditional
dendrimer-based drug delivery, a different strategy was adopted by using PAMAM
dendrimer with a cleavable cystamine core and amine surface (Figure 3.20).”° First,
different generations of such PAMAM dendrimer could be surface fully functionalized
with one functional group, subsequently cleavage of the disulfide core by reducing agent
allows the attachment of other functionalities via a thiol-maleimido type Michael addition
though a suitable spacer.

Interior core

62 O NiNH,G3

H H :
N3 \/ﬁfo:NHz

Interior layers

Generation 0 n=4
Generation 1 n=8
Generation 2 n=16
Generation 3 n=32

Exterior surface

Figure 3.20 Chemical structure of PAMAM dendrimers with a cleavable cystamine core
and amine surface. Adapted with permission from Wang, T. Design, synthesis, and
biological evaluation of novel taxoid-based small-molecule theranostic PET/SPECT
imaging agents and nano-scale asymmetic bow-tie dendrimer drug conjugates towards
tumor-targeted chemotheraphy (Doctoral Dissertation). Stony Brook University, 2015.

Novel PAMAM dendrimer-based biotin-linker-taxoid (Figure 3.21) and biotin-
FITC (Figure 3.22) conjugates, with 4 or 16 biotins as tumor-targeting modules, were
subsequently designed. For synthesizing these conjugates, G1/G3 PAMAM dendrimer
with cleavable cystamine core was first fully functionalized with biotins, and then the
disulfide bond inside the dendrimer was cleaved and connected to a bifunctional
maleimido-alkyne spacer. After that, the functionalized G1/G3 half dendron with biotins
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on the surface and alkyne group on the tail was reacted with taxoid-linker-azide and
FITC-linker-azide via click chemistry to afford the final conjugates. The synthesized
conjugates were evaluated against biotin-receptor overexpressed cancer cell lines to study
the multivalent binding effect.
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Figure 3.21 Designed PAMAM dendrimer-based biotin-linker-taxoid conjugates
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Figure 3.22 Designed PAMAM dendrimer-based biotin-FITC conjugates
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§ 3.2.2 Synthesis of Biotin-PEGylated-G1/G3 PAMAM Dendrimers

The synthesis of biotin-PEGylated-G1/G3 PAMAM dendrimers begins with mono
protection of triethylene glycol (Scheme 3.1).°° This is a Michael addition, and
triethylene glycol is used in much excess to ensure mono protection is favored than di-
protection. Also, fert-butyl acrylate should be added very slowly to favor the mono-
protected product. Desired product fert-butyl 12-hydroxy-4,7,10-trioxadodecanoate 3-1
was obtained in 66% yield with a small amount of di-protected side product formed.

O
vok (0.5 eq)

0
+-BUOK (1 mol %)
P . oo
HO o THF, r.t., overnight OJ\/\O/\/ ~"o

66 %

31
Scheme 3.1 Mono protection of triethylene glycol

Then, the hydroxyl functional group in 3-1 was converted to azide functional group
by a two-step sequence to give tert-butyl 12-azido-4,7,10-trioxadocecanoate 3-2 in 68%
yield (Scheme 3.2).”"”® The presence of azide functional group in the product was
confirmed by IR spectrum. Before treated with sodium azide in the second step, the pH
was adjusted to 8~9 to by sodium bicarbonate to ensure hydrazoic acid, an explosive
liquid, would not be formed.

1) MsClI (1.2 eq), TEA (1.2 eq) o

(e} o ;
THF, 0 °C to r.t., overnight
e} OH (e} N
Q\OJ\/\O/\/ ~ "o 2) pH=8, NaN; (1.2 eq) O)K/\O/\/ 0T

H,0, reflux, overnight

3-1 68 % over two steps 3-2

Scheme 3.2 Conversion of hydroxyl group in 3-1 to azide group

Then azide functional group was further converted to amine group by Staudinger
reduction (Scheme 3.3).”” This reaction is a mild method of reducing an azide to an
amine. Triphenylphosphine is commonly used as the reducing agent in Staudinger
reduction, yielding triphenylphosphine oxide as the side product in addition to the amine.
Desired product fert-butyl 12-amino-4,7,10-trioxadocecanoate 3-3 was obtained in 84%
yield. Side product triphenylphosphine oxide could be removed by extracting with small
amount of toluene.

2 PPhs (3.0 eq) %
3 .
7‘\0)1\/\0/\/0\/\0/\/ N3 7‘\0)1\/\0/\/0\/\0/\/NH2

THF/H,O (v:iv =10: 3)
r.t., 3 days

32 84 % 33

Scheme 3.3 Staudinger reduction of azide to amine
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On the other hand, biotin-OSu activated ester 3-4 was obtained in 96% yield by
reacting biotin with NHS via DIC coupling (Scheme 3.4).” First, biotin reacts with the
coupling agent DIC to form a highly unstable activated intermediate, and then NHS
reacts with the intermediate to form a less labile activated ester 3-4.

0 0
PN DIC (2 eq) )\\ Q
HN™ NH OH NHS (3 eq)
H'? /S H/\/\( DMF, r.t. "? /S /\/\\<
s i 9] overnight S
96 %

3-4
Scheme 3.4 Synthesis of biotin-OSu activated ester 3-4

Then, the biotin-OSu activated ester 3-4 was used to react with the PEG derivative
tert-butyl-12-amino-4,7,10-trioxadodecanoate 3-3 to form 3-5 in 87% yield (Scheme
3.5).”

o)
o}
i o ?‘\O)K/\O/\/O\/\O/\/NHZ J(
HN
HN” “NH O\N)E 33 (1.2 eq) H?TN: o
H'? /\ H/\/\( ¥ JV
O b g DCM, r.t,, 2 days S ""/\/H(N\/éo%o
87 % o 3
3-4

Scheme 3.5 Synthesis of biotin-PEG-tert-butyl ester 3-5

Subsequently, biotin-PEG-tert-butyl ester 3-5 was deprotected by trifluoroacetic
acid (TFA) in DCM to give biotin-PEG-carboxylic acid 3-6 in 96% to 97% yield
(Scheme 3.6).’

o) o)

HHN NH HHN NH .
JV TFA:DCM (v1:4) H H
/\/\ﬂ/ \/\< /\5)1\ rt., overnlght S ’/\/\n/ \/\<O/\>)J\OH
o 3
3-6

97 %

Scheme 3.6 TFA deprotection of biotin-PEG-tert-butyl ester 3-5

In order to react with the surfaces amino groups on the PAMAM dendrimers, the
carboxylic acid group in 3-6 was reacted with NHS by DIC coupling to form activated
ester 3-7 in 79% isolated yield (Scheme 3.7).
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Scheme 3.7 Synthesis of biotin-PEG-Osu activated ester 3-7

Then, G1 PAMAM dendrimer with cystamine core was reacted with excess
activated ester 3-7 to afford biotin PEGylated G1 PAMAM dendrimer 3-8 as a white
solid in 87% yield after dialysis against methanol for 3 days (Scheme 3.8). The excess
activated ester 3-7 also reacted with methanol solution to give biotin-PEG3- methyl ester
as a side product. This methyl ester side product obtained from dialysis could be
recycled, and undergo hydrolysis to give biotin-PEG-carboxylic acid 3-6 by treating with
LiOH.

Biotin PEGylated Gl PAMAM dendrimer 3-8 (chemical formula:
C216H380N50060S10) has exact mass 4954.54, molecular weight 4958.31, and m/z 4956.55
(100%) and 4955.55 (86%). In the matrix-assisted laser desorption/ionization-time of
flight (MALDI-TOF) analysis using 2,5-dihydroxybenzoic acid (DHB) as the matrix,
mass signals of 4958.6 ([M+H]", calculated 4955.6, A = 3.0 Da), 4979.4 ([M+Na],
calculated 4977.6, A = 1.8 Da), 2480.0 ([M+2H]*", calculated 2478.3, A = 1.7 Da), and
2502.7 ([M+2Na]*", calculated 2500.3, A = 2.4 Da) were observed (Figure 3.23). The
difference between observed mass and calculated mass is presumably due to two reasons:
1) because of the low resolution of the mass signals in the MALDI-TOF spectrum for
measuring dendrimer samples, the processing method used in the experiment is centroid,
which measures the “center of mass” instead of isotopic peaks, and a result, the observed
mass is closer to the molecular weight instead of m/z; 2) the calibration of the method
was performed using external peptides standards in a linear protocol, which could not
give the best calibration agreement when measuring dendrimer samples.

ESI-MS spectra of biotin PEGylated G1 PAMAM dendrimer 3-8 before purification
by dialysis (Figure 3.24) and after dialysis (Figure 3.25) indicates that dialysis was able
to remove most of the small molecule impurities, but could not completely remove the
impurities. In the ESI-MS spectra, multiple charge states (+4, +5, and +6) of the product
were observed.
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Scheme 3.8 Synthesis of biotin PEGylated G1 PAMAM dendrimer 3-8
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Figure 3.23 MALDI-TOF spectrum of biotin PEGylated G1 PAMAM dendrimer
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Figure 3.24 ESI-MS spectrum of biotin PEGylated G1 PAMAM dendrimer before
dialysis
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Figure 3.25 ESI-MS spectrum of biotin PEGylated G1 PAMAM dendrimer after dialysis
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Similarly, G3 PAMAM dendrimer with cystamine core was reacted with excess
activated ester 3-7 to afford biotin PEGylated G3 PAMAM dendrimer 3-9 as a white
solid in > 100% yield after dialysis against methanol for 3 days (Scheme 3.9). The yield
is higher than 100% is because dialysis could not completely remove the impurities.
Biotin PEGylated G3 PAMAM dendrimer 3-9 (chemical formula: Co2H1604N2180252S34)
has exact mass 20730.99, and molecular weight 20746.01. In the MALDI-TOF analysis
using DHB as the matrix, mass signals of 20736.0 ((M+H]", calculated 20731.0, A = 5.0
Da), and 10370.4 ([M+2H]*", calculated 10366.5, A = 3.9 Da) were observed (Figure
3.26). Because the molecular weight of desired product is over 20 kDa, ESI-MS could
not give any obvious signal of the desired product.

o}
o] 3 0
3-7 (96 eq)
< HoN S-S NH2>
4 4 MeOH, r.t., 2 days

> 100 %
G3 PAMAM Dendrimer
(0] C))\\
HN NH HN NH
H o o H

PPN APAD R SN

S ¢ N S-8 NJ\/Q\O/%\/ WS
/\/1( ; N N ; \[o]/\/\

4 4

3-9

Scheme 3.9 Synthesis of biotin PEGylated G3 PAMAM dendrimer 3-9
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Figure 3.26 MALDI-TOF spectrum of biotin PEGylated G3 PAMAM dendrimer

§ 3.2.3 Synthesis of SB-T-1214-Linker-PEG-Azide and FITC-PEG-Azide Click

Ready Probes

In order to synthesize SB-T-1214-linker-PEG-azide click ready probe for
constructing the PAMAM dendrimer-based biotin-taxoid conjugate, first, SB-T-1214-
linker conjugate 3-10 was synthesized by DMAP catalyzed DIC coupling of SB-T-1214
and methyl-branched disulfide linker 2-7 (Scheme 3.10). The C-2’ hydroxyl is the most
reactive site of the taxoid and cold temperature was maintained during the reaction to
avoid multiple couplings. Desired conjugate 3-10 was obtained in 67% yield after

purification by column chromatography.

SB-T-1214

S. o)
S
OTIPS
COOH
2-7 (1.2eq)
DIC (1.2 eq)

DMAP (0.3 eq)

DCM, 0 °C to r.t., overnight

0
67 %
o}
S
TIPSO)‘\/\( S

Scheme 3.10 Synthesis of SB-T-1214-linker conjugate 3-10
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Then, TIPS protecting group on the linker moiety was removed by HF/pyridine to
give 3-11 in 64% yield (Scheme 3.11).

(o} HF/pyridine

OH O OAC CH3CN : pyridine
(viv=1:1)
0 °C to r.t., overnight
4 0,
TIPSOM 64 % )K/Y

Scheme 3.11 Removal of the TIPS protecting group in 3-10

In order to prepare the amino-PEG-azide to coupling with the acid group in 3-11,
diazide 3-12 was prepared by reacting tetraethyleneglycol with excess MsCl, followed by
reacting with excess sodium azide under basic condition to afford diazide 3-12 in 92%
crude yield over two steps (Scheme 3.12).

1) MsCl (2.25 eq), TEA (2.25 eq)
THF, 0 °C to r.t., overnight

2) pH=8, NaN3 (2.4 eq)
H,0, reflux, 24 h crude

HO\/\O/\/O\/\O/\/OH Ns\/\o/\/o\/\o/\/NB

92 % over two steps 3-12

Scheme 3.12 Synthesis of diazide 3-12

Subsequent selective mono Staudinger reduction of the azide group in 3-12 by
triphenylphosphine in the presence of phosphoric acid in a mixture of water/ethyl ether as
solvent gave rise to amino-PEG-azide 3-13 in 71% yield (Scheme 3.13). The mono
reduction was achieved because once product is formed, it goes to water layer in the acid
condition to avoid over-reduction of the other azide group. Excess diazide 3-12 could be
easily removed by a simple workup.

[0.65 M] HsPO,
\ o \. PPhs(086eq)
NN TN N3~ ~a O~ NH2
Et,O, rt., 24 h 0) (o]
312 71 % 3-13

Scheme 3.13 Mono-reduction of diazide 3-12
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Then, the carboxylic acid group in 3-11 was activated with NHS by EDC coupling,
followed by reacting with amino-PEG-azide 3-13 to afford SB-T-1214-linker-PEG-azide
click ready probe 3-14 in 61% yield over two steps (Scheme 3.14).

PN 1) EDCHCI (1.5 eq), NHS (2.0 eq) JS
N ) 0" NH O
- DCM, r.t., overnight B
e OH O :
0.0 o 2) N3\/\O/\/O\/\o/\/NH2 ‘ 0
o 3-13 (2.0eq) o
s DCM, r.t., overnight
HO s N /\PO\%\N
61 % over two steps 3 3 H
3-11 3-14

Scheme 3.14 Synthesis of SB-T-1214-linker-PEG-azide click ready probe 3-14

For synthesis of FITC-PEG-azide click ready probe, commercially available FITC
was reacted with amino-PEG-azide 3-13 in DMF to give the desire product 3-15 in 87%
yield (Scheme 3.15). The reaction was done in dark, and the product was kept in freezer
to avoid isomerization of the product.

3

HO
3-13 (1.0eq)
S
DMF, r.t., overnight
NS/\P/O\%/\NJJ\N
H H
87 %

Scheme 3.15 Synthesis of FITC-PEG-azide click ready probe 3-15

§ 3.2.4 Construct of Final Dendrimer Conjugates

In order to connect the biotin-PEGylated G1/G3 PAMAM dendrimers with click
ready SB-T-1214-linker-azide or FITC-PEG-azide probes, a bifunctional maleimido-
alkyne spacer was prepared. First, maleic anhydride was reacted with 6-aminocaproic
acid in acetic acid under reflux condition to give 6-maleimidocaproic acid 3-16 in 54%
yield (Scheme 3.16).

(1.0 eq) N">">"cooH PN
| o \ H | N COOH
acetic acid, r.t., 1 h OH reflux, overnight
(0] (0]

54 % over two steps © 3-16

Scheme 3.16 Synthesis of 6-maleimidocaproic acid 3-16
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6-maleimidocaproic acid 3-16 was subsequently activated by isobutyl chloroformate
in the presence of N-methylmorpholine to give mixed anhydride 3-17 in 95% crude yield
(Scheme 17). This product is unstable, and was directly used in the next step after
workup without further purification, as column purification would decompose the
product back to starting material.

0 Y
o Cl)J\O (1.0 eq) 0

N-methylmorpholine (1.0 eq) o__0O
E:EN/\/\/\COOH ymore - LN TJ\

THF,0°Ctort.,4h (0] 0]
e} o) crude

3-16 95 % 3-17
Scheme 3.16 Synthesis of mixed anhydride 3-17

Mixed anhydride 3-17 was then treated with propargylamine to give desired
maleimido-alkyne spacer 3-18 in 87% yield (Scheme 3.18).

HZN\

L

3-17

THF,0°C tor.t. Elé

overnight 3-18
87 %

Scheme 3.18 Synthesis of maleimido-alkyne spacer 3-18

Then, the disulfide bond inside the biotin PEGylated G1 PAMAM dendrimer was
cleaved by reducing agent TCEP, and subsequently connected to a bifunctional
maleimido-alkyne spacer to afford biotin PEGylated G1 alkyne conjugate 3-19 in 94%
yield after dialysis (Scheme 3.19). The product was further purified by prep-HPLC. The
purified product was characterized by MALDI-TOF, ESI-MS, LC-MS, and NMR. Biotin
PEGylated G1 alkyne conjugate 3-19 (chemical formula: C;;H207N27033S5) has exact
mass 2726.40, molecular weight 2728.44, and m/z 2726.40 (76.4%) and 2727.40 (100%).
In the MALDI-TOF analysis using DHB as the matrix, mass signals of 2728.7 ((M+H]’,
calculated 2727.4, A = 1.3 Da), and 2750.7 ([M+Na]’, calculated 2749.4, A = 1.3 Da)
were observed (Figure 3.27). In the ESI-MS spectrum (Figure 3.28), multiple charge
states (+2, +3, and +4) of the product were observed. In the LC-MS analysis (Figure 3.29
to Figure 3.33), it was found that desired mass of product was observed, and the purity of
the product was 99%. Interestingly, the 1% impurity has a mass of only 16 unit larger
than the desired mass, and presumably this is the product when the sulfonyl group of one
biotin was oxidized during the synthesis.
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Scheme 3.19 Synthesis of biotin PEGylated G1 alkyne conjugate 3-19
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Figure 3.27 MALDI-TOF spectrum of biotin PEGylated G1 alkyne conjugate 3-19
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Figure 3.28 ESI-MS spectrum of biotin PEGylated G1 alkyne conjugate 3-19
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Figure 3.29 LC-MS spectrum of biotin PEGylated G1 alkyne conjugate 3-19
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Figure 3.30 Expanded LC-MS spectrum of biotin PEGylated G1 alkyne conjugate 3-19
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Figure 3.31 Extracted mass spectra from TIC in LC-MS analysis of biotin PEGylated G1
alkyne conjugate 3-19
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Species Biotin-PEG-G1-Alkyne
MW MW UVv-215 |UV-215
A mass 0
expected |observed (ppm) RT | TICArea [TIC Area Area Area %
2742.3902 | 2742.388 0.8 8.25 684910 1.0%] 3.1 1.1%
2726.3953 | 2726.385 -3.7 8.52 | 68790537 99.0%|] 279.6 98.9%
69475447 282.7

Figure 3.33 Integration of peak area from TIC and UV-215 in LC-MS analysis of biotin
PEGylated G1 alkyne conjugate 3-19

Then, biotin PEGylated G1 alkyne 3-19 was reacted with FITC-PEG3-azide 3-15 via
copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) to give biotin-G1-FITC
conjugate 3-20 in 78% yield (Scheme 3.20). The product was purified by prep-HPLC,
and was characterized by MALDI-TOF, ESI-MS, LC-MS, and NMR. Biotin-G1-FITC
conjugate 3-20 (chemical formula: C;s50H236N3204:S¢) has exact mass 3333.57, molecular
weight 3336.08, and m/z 3334.57 (100%) and 3335.58 (80.6%). In the MALDI-TOF
analysis using DHB as the matrix, mass signals of 3336.0 ((M+H]", calculated 3334.6, A
= 1.4 Da), 3359.5 ([M+Na]’, calculated 3356.6, A = 2.9 Da), and 3373.9 ([M+K],
calculated 3372.6, A = 1.3 Da) were observed (Figure 3.34). Because high laser energy
was used in the MALDI-TOF experiment in order to get a decent signal intensity of the
product, a number of fragmentation peaks were also observed in the MALDI-TOF
spectrum. In the ESI-MS spectrum of the crude product before purification (Figure 3.35),
multiple charge states (+3, +4, and +5) of the product were observed. In the LC-MS
analysis after prep-HPLC purification (Figure 3.36 to Figure 3.39), it was found that
desired mass of product was observed, and the product has high purity (retention time
9.77 min) with trace amounts of impurities (retention time 9.55 and 10.46 min).
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Figure 3.34 MALDI-TOF spectrum of biotin-G1-FITC conjugate 3-20
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Figure 3.35 ESI-MS spectrum of biotin-G1-FITC conjugate 3-20
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Figure 3.36 LC-MS spectrum of biotin-G1-FITC conjugate 3-20
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Figure 3.37 Expanded LC-MS spectrum of biotin-G1-FITC conjugate 3-20
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Figure 3.38 Extracted mass spectra from TIC in LC-MS analysis of biotin-G1-FITC
conjugate 3-20
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Similarly, biotin PEGylated G1 alkyne 3-19 was reacted with SB-T-1214-linker-
PEG-azide 3-14 via CuAAC to give biotin-G1-SB-T-1214 conjugate 3-21 in 81% yield
(Scheme 3.21). The product was purified by prep-HPLC, and was characterized by
MALDI-TOF, ESI-MS, LC-MS, and NMR. Biotin-G1-SB-T-1214 conjugate 3-21
(chemical formula: C;37H296N3,053S7) has exact mass 4061.95, molecular weight
4065.02, and m/z 4062.95 (99.4%) and 4063.96 (100%). In the MALDI-TOF analysis
using DHB as the matrix, mass signals of 4065.9 ([M+H]", calculated 4063.0, A = 2.9
Da), and 4087.8 ([M+Na]", calculated 4085.0, A = 2.8 Da) were observed (Figure 3.40).
Because high laser energy was used in the MALDI-TOF experiment in order to get a
decent signal intensity of the product, a number of fragmentation peaks were also
observed in the MALDI-TOF spectrum. In the ESI-MS spectrum (Figure 3.41), multiple
charge states (+3, +4, and +5) of the product were observed. In the LC-MS analysis
(Figure 3.42 to Figure 3.46), it was found that desired mass of product was observed,
and the purity of the product was around 95%. The 5% impurity again has a mass of only
16 unit larger than the desired mass, and presumably this is the product when the sulfonyl
group of one biotin was oxidized during the synthesis.

0o Copper(ll) sulfate pentahydrate (1 eq)
Sodium ascorbate (1 eq)
DMF/H,0 (viv = 4:1)
overnight

81 %

Scheme 3.21 Synthesis of biotin-G1-SB-T-1214 conjugate 3-21 via CuAAC

149



4087.8
—_—

4065.9

4018.7
—_—

el

N

;{ 3544.2
8
71250 35223

10004

750

500

250 1

34749
O'I“‘J“J LJ Lw -

I I34IO0I C I35I00I C I36I00I C I37I00

I I38I00I C I39I00I C I4OI00I C I41IOO

m/z
Figure 3.40 MALDI-TOF spectrum of biotin-G1-SB-T-1214 conjugate 3-21
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Figure 3.41 ESI-MS spectrum of biotin-G1-SB-T-1214 conjugate 3-21
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Figure 3.42 LC-MS spectrum of biotin-G1-SB-T-1214 conjugate 3-21
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Figure 3.43 Expanded LC-MS spectrum of biotin-G1-SB-T-1214 conjugate 3-21
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Figure 3.44 Extracted mass spectra from TIC in LC-MS analysis of biotin-G1-SB-T-
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Figure 3.45 Deconvolution of extracted mass spectra from TIC in LC-MS analysis of
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Species Biotin-PEG-G1-SBT-1214
MW MW Uv-215 |uv-215
A mass
expected |observed (opm) RT TIC Area |TIC Area U Area Area %
4061.9495]4062.938| 243.4 |22.90]| 180892825 96.9%| 1275.8 | 94.4%
4078.928 22.52 5794382 3.1%| 76.2 5.6%
186687207 1352.0

Figure 3.46 Integration of peak area from TIC and UV-215 in LC-MS analysis of biotin-
G1-SB-T-1214 conjugate 3-21

For the synthesis of G3 PAMAM dendrimer conjugates, first, the disulfide bond
inside the biotin PEGylated G3 PAMAM dendrimer 3-9 was cleaved by reducing agent
TCEP and connected to the bifunctional maleimido-alkyne spacer to afford biotin
PEGylated G3 alkyne conjugate 3-22 in 86% yield after dialysis (Scheme 3.22). The
product was characterized MALDI-TOF and ESI-MS. Biotin PEGylated G3 alkyne
conjugate 3-22 (chemical formula: CaeHsi9N1110120S17) has exact mass 10614.62,
molecular weight 10622.38, and m/z 10619.64 (100%). In the MALDI-TOF analysis
using DHB as the matrix, mass signals of 10621.5 ([M+H]", calculated 10620.6 from
most abundant isotope, A = 0.9 Da), and 10643.4 ([M+Na]", calculated 10642.6 from
most abundant isotope, A = 0.8 Da) were observed (Figure 3.47). Because high laser
energy was used in the MALDI-TOF experiment in order to get a decent signal intensity
of the product, a number of fragmentation peaks were also observed in the MALDI-TOF
spectrum. In the ESI-MS spectrum (Figure 3.48), multiple charge states (+8, +9, and
+10) of the product were observed.
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Scheme 3.22 Synthesis of biotin PEGylated G3 alkyne conjugate 3-22

155



E 10643 .4
c e H
L Chemical Formula: CassHs1oMN1110126S17 sro T ar i
20001 i ﬁ? 7 iy b
1 Tiod
R S S i &
Tiovs 44
SRS ¢ A 1500
PN
$ (\ WS
I‘\‘«J{/""ﬁ‘ A
1500 Bt A
] "M¢~¢v~r’“‘} }'é“")” 1000
"_;_'s[“*:fwwyl:‘?_v‘\fhg
R R
B £ ‘/\ 500
S b
1000 By LS
_ ceadvy)
Bepormnd £ 0
ﬂ{(’ " '/‘,méoo' " Tok0 " Tdo700 T80 000 ‘k
5004
] 97248
4 8410.5 L
0 ) _L_ L,
T T T T T T T T T T T T T T T T T
6000 8000 10000 12000 14000 16000 18000 20000

Figrue 3.47 MALDI-TOF spectrum of biotin PEGylated G3 alkyne conjugate 3-22
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Figrue 3.48 ESI-MS spectrum of biotin PEGylated G3 alkyne conjugate 3-22
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Then, biotin PEGylated G3 alkyne 3-22 was reacted with FITC-PEG-azide via
CuAAC to give biotin-G3-FITC conjugate 3-23 in 52% yield (Scheme 3.23). The
product was purified by prep-HPLC, and was characterized by MALDI-TOF, ESI-MS,
HR-MS, and NMR (Figure 3.49 to Figure 3.51). Biotin-G3-FITC conjugate 3-23
(chemical formula: Ca9sHgasN;1160137S15) has exact mass 11221.79, molecular weight
11230.62, and m/z 11226.81 (100%). In the MALDI-TOF analysis using DHB as the
matrix, mass signal of 11242.0 ((M+Na]’, calculated 11244.8, A = -2.8 Da) was observed
(Figure 3.49). Because high laser energy was used in the MALDI-TOF experiment in
order to get a decent signal intensity of the product, a number of fragmentation peaks
were also observed in the MALDI-TOF spectrum. In the ESI-MS spectrum (Figure
3.50), multiple charge states (+8, and +9) of the product were observed.
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?TH H 1 QNMN\/ 3415 (2eq)
N
S ’/\/\[f \/Q\O/MH S 0 Copper(ll) sulfate pentahydrate (2 eq)
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52 %
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Scheme 3.23 Synthesis of biotin-G3-FITC conjugate 3-23 via CuAAC
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Similarly, biotin PEGylated G3 alkyne 3-22 was reacted with SB-T-1214-linker-
PEG-azide via CuAAC to give biotin-G3-SB-T-1214 conjugate 3-24 in 55% yield
(Scheme 3.24). The product was purified by prep-HPLC, and was characterized by
MALDI-TOF and ESI-MS. Biotin-G3-SB-T-1214 conjugate 3-24 (chemical formula:
Cs3sHoosN1160149S19) has exact mass 11950.17, molecular weight 11958.95, and m/z
11955.19 (100%). In the MALDI-TOF analysis using DHB as the matrix, mass signal of
11966.6 ([M+Na]’, calculated 11972.2, A = -5.6 Da) was observed (Figure 3.52).
Because high laser energy was used in the MALDI-TOF experiment in order to get a
decent signal intensity of the product, a number of fragmentation peaks were also
observed in the MALDI-TOF spectrum. In the ESI-MS spectrum (Figure 3.53), multiple
charge states (+8, and +9) of the product were observed.
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Scheme 3.24 Synthesis of biotin-G1-SB-T-1214 conjugate 3-24 via CuAAC
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Figrue 3.52 MALDI-TOF spectrum of biotin-G3-SB-T-1214 conjugate 3-24
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§ 3.2.5 Biological Evaluation of PAMAM Dendrimer-based Tumor-Targeting
Taxoid/FITC Conjugates

Cell internalization of three probes, biotin-PEG-FITC, biotin-G1-FITC conjugate,
and biotin-G3-FITC conjugates, were evaluated against three cancer cell lines IDS8
(murine ovarian carcinoma cell line), HCT116 (human colon carcinoma cell line), and
MCF7 (human breast carcinoma cell line) via confocal fluorescence microscopy (CFM)
imaging. In the first set of experiments, 5 pM of each probe was incubated with ID8 and
MCF7 cell lines at 37 °C for 1 h. In IDS8 cell line, CFM images (Figure 3.54, Figure
3.57, and Figure 3.60) clearly show internalization of three probes, however, the
fluorescence signals were not very strong. In MCF7 cell line, barely fluorescence signals
were observed. In the second set of experiments, higher concentration of each probe (10
uM) and longer incubation time (24 h) were used with HCT116 and MCF7 cell lines. In
HCT116 cell line (Figure 3.55, Figure 3.58, and Figure 3.61), CFM images show strong
fluorescence signals for all three probes, and in MCF7 cell line (Figure 3.56, Figure
3.59, and Figure 3.62), weak fluorescence signals were observed. In contrast, the control
experiments using these three cancer cell lines without adding any fluorescent probe, or
using a normal human fibroblast cell line WI-38 with adding each of the fluorescent
probe, showed no fluorescence signals in the CFM imaging. These results clearly indicate
ID8, HCT116, and MCF7 all three cancer cell lines have overexpression of biotin-
receptors, and the overexpression levels are different (HCT116/ID8 > MCF7).

Biotin-PEG-FITC

Figure 3.54 Confocal fluorescence microscopy (CFM) images of IDS cell line after
incubation with 5 uM Biotin-PEG-FITC at 37 °C for 1 h.
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Figure 3.55 Confocal fluorescence microscopy (CFM) images of HCT116 cell line after
incubation with 10 uM Biotin-PEG-FITC at 37 °C for 24 h.

A

Figure 3.56 Confocal fluorescence microscopy (CFM) images of MCF7 cell line after
incubation with 10 uM Biotin-PEG-FITC at 37 °C for 24 h.
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Biotin-G1-FITC conjugate

Figure 3.57 Confocal fluorescence microscopy (CFM) images of IDS cell line after
incubation with 5 uM Biotin-G1-FITC conjugate at 37 °C for 1 h.

Figure 3.58 Confocal fluorescence microscopy (CFM) images of HCT116 cell line after
incubation with 10 uM Biotin-G1-FITC conjugate at 37 °C for 24 h.
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Figure 3.59 Confocal fluorescence microscopy (CFM) images of MCF7 cell line after
incubation with 10 uM Biotin-G1-FITC conjugate at 37 °C for 24 h.

[o}
HN/I(

Biotin-G3-FITC conjugate

Figure 3.60 Confocal fluorescence microscopy (CFM) images of IDS cell line after
incubation with 5 pM Biotin-G3-FITC conjugate at 37 °C for 1 h.
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Figure 3.61 Confocal fluorescence microscopy (CFM) images of HCT116 cell line after
incubation with 10 uM Biotin-G3-FITC conjugate at 37 °C for 24 h.

Figure 3.62 Confocal fluorescence microscopy (CFM) images of MCF7 cell line after
incubation with 10 uM Biotin-G3-FITC conjugate at 37 °C for 24 h.

To further quantify the fluorescence intensity, flow cytometry experiments were
conducted. In the first set of experiments, 5 uM of each probe was incubated with ID§
cell line at 37 °C for 1 h (Figure 3.63). Flow cytometry analysis indicates the intensity of
fluorescence signal in the order of biotin-G3-FITC > biotin-PEG-FITC ~ biotin-G1-FITC
> control. However, due to the low concentration and short incubation time, the
fluorescence intensity was not strong enough compared with control.
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In the second set of experiments, higher concentration of each probe (10 uM) was
used with HCT116 and MCF7 cell lines at different time intervals (4 h, 8 h, 12 h, 24 h).
Figure 3.64, Figure 3.65, and Figure 3.66 clearly show a time-dependent internalization
of each probe. Fast internalization rates were observed from the beginning to 4 h, and the
internalization process slowed down and gradually reached saturation at around 12 h,
presumably due to saturation of the biotin receptors. Moreover, HCT116 cell line showed
slower internalization than MCF7 in the beginning, but stronger fluorescence intensity
after 4 h. The fluorescence intensity of HCT116 at 24 h for each probe is around two
times of MCF7 cell line, which is consistent with the CFM imaging results.

However, there was no obvious fluorescence intensity difference between the three
fluorescent probes at each time interval for both HCT116 and MCF7 cell lines (Figure
3.67 and Figure 3.68), which is unexpected and contradictory to the literature report for
the observed multivalent interactions between folate receptors and folic acids in a flow
cytometry analysis (Figure 3.15). This unexpected results could be because of the
difference between biotin receptors and folate receptors. It is also possible that at high
concentration (10 pM) and long incubation time (> 4 h), saturation of the biotin receptors
was easily achieved by three different probes, and one biotin targeting moiety may be
enough at this condition. Indeed, in the case of folate receptors and folic acids shown in
Figure 3.15, there is a clear difference at the concentration of 50 nM between different
number of folic acid targeting moieties, but the difference becomes much smaller and
even within errors at the concentration of 100 nM.
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Figure 3.63 Flow cytometry analysis of ID8 cell line after incubation with 5 pM Biotin-
PEG-FITC, Biotin-G1-FITC or Biotin-G3-FITC conjugates at 37 °C for 1 h.
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Figure 3.64 Flow cytometry analysis of HCT116 and MCF7 cell lines after incubation
with 10 uM Biotin-PEG-FITC at 37 °C at different time intervals.
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Figure 3.65 Flow cytometry analysis of HCT116 and MCF7 cell lines after incubation
with 10 uM Biotin-G1-FITC conjugate at 37 °C at different time intervals.
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Figure 3.66 Flow cytometry analysis of HCT116 and MCF7 cell lines after incubation
with 10 uM Biotin-G3-FITC conjugate at 37 °C at different time intervals.
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Figure 3.67 Flow cytometry analysis of HCT 116 cell line after incubation with 10 uM
Biotin-PEG-FITC, Biotin-G1-FITC or Biotin-G3-FITC conjugates at 37 °C at different
time intervals.

169



MCF-7

40 40

35 35

30 30

25 25

20 20

15 15

10 10

5 5

o/ N ‘ ‘ o/ NN ‘ ‘

Control Biotin-PEG3-FITC  Biotin-G1-FITC Biotin-G3-FITC Control Biotin-PEG3-FITC  Biotin-G1-FITC Biotin-G3-FITC

“ 4h N 8h

35 35

30 30

25 25

20 20

15 15

10 10

5 5

o/ NN ‘ , o NN ‘ ‘

Control Biotin-PEG3-FITC  Biotin-G1-FITC Biotin-G3-FITC Control Biotin-PEG3-FITC  Biotin-G1-FITC Biotin-G3-FITC
12h 24 h

Figure 3.68 Flow cytometry analysis of MCF7 cell line after incubation with 10 pM
Biotin-PEG-FITC, Biotin-G1-FITC or Biotin-G3-FITC conjugates at 37 °C at different
time intervals.

The results of cytotoxicity assays of SB-T-1214, BLT-s, biotin-G1-SB-T-1214, and
biotin-G3-SB-T-1214 against MCF7 and IDS8 cell lines are shown in Table 3.3 below.
All three drug conjugates were less potent than the parent taxoid SB-T-1214 in both cell
lines, which were expected, since release of the drug moiety would highly depend on the
amount of endogenous thiols inside the cancer cells. Between the three different drug
conjugates, biotin-G1-SB-T-1214 showed similar cytotoxicity as BLT-s, whereas biotin-
G3-SB-T-1214 is more potent than the other two drug conjugates, indicating an enhanced
cell internalization ability at nM range low concentrations.
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Table 3.3 Cytotoxicity (ICsp, nM) of SB-T-1214, BLT-s, Biotin-G1-SB-T-1214, and
Biotin-G3-SB-T-1214 against MCF7 and ID8 cell lines

Biotin-G1-SB-  Biotin-G3-SB-

entry SB-T-1214 BLT-s T-1214 T-1214
MCF-7 1.7+£0.3 3.5£0.6 3.1+0.7 2.1+0.5
ID8 5.1+£09 11.3+£1.2 11.9+2.4 79+22

171



§ 3.3 Asymmetric Bow-Tie Dendrimer-based (ABTD) Tumor-Targeted Drug
Delivery Systems

§ 3.3.1 Rational Design

The original design of asymmetric bow-tie dendrimer-based (ABTD) tumor-targeted
drug delivery systems was based on Dr. Yu-Han Gary Teng’s PhD research proposal in
2010, and was later extensively developed by Dr. Tao Wang. Figure 3.69 shows the
schematic representation of ABTD tumor-targeted drug delivery systems.

S
PEG } &Q
G3 PAMAM —S N S— G1 PAMAM

) 0 P
L ?ﬁo?' \; $G-? F

<4 9; e %%@
\S

PEG; = Polyethylene glycol
@ = Biotin (Targeting module) \q ﬁ/
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Figure 3.69 Schematic representation of asymmetric bow-tie dendrimer-based (ABTD)
tumor-targeted drug delivery systems. Adapted with permission from Wang, T. Design,
synthesis, and biological evaluation of novel taxoid-based small-molecule theranostic
PET/SPECT imaging agents and nano-scale asymmetic bow-tie dendrimer drug
conjugates towards tumor-targeted chemotheraphy (Doctoral Dissertation). Stony Brook
University, 2015.
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In the design ABTD conjugates (Figure 3.68), biotin (shown in blue) is used as the
tumor targeting molecule, as biotin receptors are found to be overexpressed in certain
cancer cell lines. 2“d-generation taxoid SB-T-1214 (shown in red), is used as cytotoxic
agent. New generation taxoids have shown excellent cytotoxicity against certain drug-
sensitive and drug-resistant cancer cell lines. Fluorescent probe could be used to replace
the taxoid warhead to study the internalization and release of the drug conjugate. PEG
chains (shown in yellow) are inserted between biotin and G3 PAMAM dendrimer, and
also between cytotoxic agent and G PAMAM dendrimer, for improving solubility of the
conjugate and other pharmaceutical properties. Bismaleimide crosslinkers is used for
connecting the G3 PAMAM dendrimer part and G1 PAMAM dendrimer part. The
bifunctional bismaleimide crosslinker could be replaced by a trifunctional triazine
splitter, in which a fluorescent tag (shown in green) or MRI/PET/SPECT imaging module
(shown in magenta) could be attached.

The synthetic strategy for constructing the designed multifunctional ABTD
dendrimer conjugate is shown in Figure 3.70. The conjugate takes advantage of the
primary amino groups on the surface of the dendrimer, which could be fully
functionalized by typical coupling conditions. The disulfide in the core could be
subsequently cleaved by reducing agent (zris(2-carboxyethyl)phosphine (TCEP). The
asymmetric bow-tie scaffold could be built from half G3 PAMAM cystamine core
dendrimer surface-functionalized with 16 targeting biotin molecules through PEG chains,
and half G1 PAMAM cystamine core dendrimer surface-functionalized with 4 alkyne
groups through PEG chains via a suitable bifunctional bismaleimide crosslinker. This
asymmetric bow-tie platform could conjugate with the cytotoxic agent SB-T-1214 or
fluorescent probe via click chemistry. The chemical structures of designed ABTD
conjugates are shown in Figure 3.71.
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Figure 3.70 Synthetic strategy for constructing asymmetric bow-tie dendrimer-based
(ABTD) tumor-targeted drug delivery systems. Adapted with permission from Wang, T.
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Design, synthesis, and biological evaluation of novel taxoid-based small-molecule
theranostic PET/SPECT imaging agents and nano-scale asymmetic bow-tie dendrimer
drug conjugates towards tumor-targeted chemotheraphy (Doctoral Dissertation). Stony
Brook University, 2015.
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Figure 3.71 Chemical structures of designed asymmetric bow-tie dendrimer-based
(ABTD) tumor-targeted drug delivery systems. Adapted with permission from Wang, T.
Design, synthesis, and biological evaluation of novel taxoid-based small-molecule
theranostic PET/SPECT imaging agents and nano-scale asymmetic bow-tie dendrimer
drug conjugates towards tumor-targeted chemotheraphy (Doctoral Dissertation). Stony

Brook University, 2015.

The advantages of the designed asymmetric bow-tie PAMAM dendrimer-based
multifunctional conjugate include: i) the surface of the asymmetric dendrimer could be

coupled with 16 targeting molecules and 4 cytotoxic agents within one conjugate, greatly
increasing the payload of drug and its internalization efficiency; ii) the architecture of the

conjugate and number of targeting moieties and drugs are well-defined, and ideally this
will afford consistent synthetic results and biological evaluation results; iii) accumulation

of the conjugate in tumor tissue could be achieved via both passive targeting by
employing the enhanced permeability and retention (EPR) effect and receptor-mediated
active targeting; iv) solubility of the conjugate could be significantly improved through

PEGylation.
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§ 3.3.2 Synthesis of ABTD Conjugates
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Figure 3.72 Designed ABTD conjugates. Adapted with permission from Wang, T.
Design, synthesis, and biological evaluation of novel taxoid-based small-molecule
theranostic PET/SPECT imaging agents and nano-scale asymmetic bow-tie dendrimer
drug conjugates towards tumor-targeted chemotheraphy (Doctoral Dissertation). Stony
Brook University, 2015.

For synthesis of designed ABTD conjugates shown in Figure 3.72, first, alkyne
PEGylated G1 PAMAM dendrimer was synthesized.

For the synthesis of alkyne PEGylated G1 PAMAM dendrimer, commercially
available 4-pentynoic acid was reacted with fert-butyl 12-amino-4,7,10-
trioxadocecanoate 3-3 via EDC coupling to yield amide 3-25 in 74% yield (Scheme
3.25).

o o EDC (1.2 eq) (o)
DMAP (1.2 eq) 7]\ H =
HO)J\/\ + O)LV\O%\/NHZ - o) o) \H/\/
S 3 DCM, r.t., overnight 3 O
3-3 (1.2eq) 74 %

Scheme 3.25 Synthesis of amide 3-25

Then, TFA deprotection of 3-25 afforded the free carboxylic acid 3-26 in 95% yield
(Scheme 3.26).
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Scheme 3.26 TFA deprotection of 3-25

Carboxylic acid group of 3-26 was subsequently activated by coupling with NHS via
EDC coupling to generate OSu-activated ester 3-27 in 78% yield (Scheme 3.27).

o EDC (1.2 eq)
H P NHS (1.2 eq) _
N Z 0
HO O DCM, r.t.
3 o) overnight
3-26 8% 3-27

Scheme 3.27 Synthesis of activated ester 3-27

Finally, activated ester 3-27, connecting PEG chain and alkyne functional group via
an amide bond, could be coupled to the surface amine groups of G1 dendrimer, affording
alkyne PEGylated GI PAMAM dendrimer 3-28 in 93% yield (Scheme 3.28). Alkyne
PEGylated G PAMAM dendrimer 3-28 was purified by dialysis against methanol for
three days, and characterized by MALDI-TOF and ESI-MS (Figure 3.73 and Figure
3.74).

o}
< H,N S-S NH2> 3-27 (24 eq)
4 4 MeOH, r.t., 2 days

)
G1 PAMAM Dendrimer 93 %

3-28
Scheme 3.28 Synthesis of alkyne PEGylated G1 PAMAM dendrimer 3-28
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Figure 3.73 MALDI-TOF spectrum of alkyne PEGylated G1 PAMAM dendrimer 3-28
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Figure 3.74 ESI-MS spectrum of alkyne PEGylated G1 PAMAM dendrimer 3-28
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Next, bismaleimide crosslinker 3-29 bearing PEG chain for conjugation of alkyne
PEGylated G1 PAMAM dendrimer and biotin PEGylated G3 dendrimers was
synthesized. Mixed anhydride generated in the same manner as mentioned in previous
section was used to couple with commercially available PEG-diamine to afford desired
crosslinker 3-29 in 84% yield (Scheme 3.29). The diamine was added very slowly to
make sure it reacts with excess amount of mixed anhydride during the reaction. The
reaction is very effective and most starting materials were converted to product when
finishing adding diamine. The reaction was monitored by TLC to make sure the reaction
went to completion.

(0]
0 O\)\
DI 00
(e} (¢] (0] o
o o o
(2.1 eq) ‘ N\/\)J\ /\é/\ %\/\ )J\/\/N |

HoN o) NH
’ N \/%/ ’ THF, 0 °C to r.t., overnight qi ” 9] 3 H
© (0]

84 %

3-29
Scheme 3.29 Synthesis of bismaleimide crosslinker 3-29

ABTD versatile platform biotin-G3-G1-alkyne (Figure 3.75) was then prepared by
Dr. Tao Wang using the method shown in Scheme 3.30. The biotin-G3-G1-alkyne
obtained from Dr. Tao Wang was further purified by prep-HPLC, and characterized by
ESI-MS before the final click reactions (Figure 3.76 and Figure 3.77). The purity of this
material as well as the other starting material SB-T-1214-linker-PEG-azide for the click
reaction to construct ABTD1 were both confirmed by HPLC (Figure 3.78 and Figure
3.79).

o
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HN)CgH H i 1/2 G3 [ 112 G1 H R
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Figure 3.75 Schematic representation of biotin-G3-G1-alkyne
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Figure 3.76 ESI-MS MS spectrum of biotin-G3-G1-Alkyne
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Figure 3.77 Deconvolution MS spectrum of biotin-G3-G1-Alkyne
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Figure 3.78 HPLC spectra of biotin-G3-G1-Alkyne
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Figure 3.79 HPLC spectra of SB-T-1214-linker-PEG-azide
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Then biotin-G3-Gl-alkyne was reacted with excess SB-T-1214-linker-PEG-azide
via CuAAC to afford ABTDI (Scheme 3.31). Unfortunately, attempts to characterize the
product by MALDI-TOF, ESI-MS, LC-MS, and HPLC were not successful. However,
GPC analysis of the reaction mixture and starting material clearly indicates the click
reaction went completion, since all the biotin-G3-Gl-alkyne starting material
disappeared, and the expected product, which has a larger molecular weight than the
starting material, showed up as a single peak (Figure 3.80). GPC analysis was performed
with a Shimadzu L-2010A HPLC HT series HPLC assembly, using a Waters
Ultrahydrogel 500 GPC column (7.8 mm x 300 mm, 10 um, 500 A), using CH;CN/water
as the solvent system with a flow rate of 0.5 mL/min and a UV detector at 215nm.
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Scheme 3.31 Synthesis of ABTD1 via CuAAC
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Figure 3.80 GPC analysis of ABTD1 and biotin-G3-G1-alkyne

Then, biotin-G3-G1-alkyne was reacted with excess FITC-PEG-azide via CuAAC to
afford ABTD3 (Scheme 3.32). GPC analysis of this product again showed complete
conversion of the starting material to a larger molecular weight product as a single peak
(Figure 3.81). GPC analysis was performed with a Shimadzu L-2010A HPLC HT series
HPLC assembly, using a Waters Ultrahydrogel 500 GPC column (7.8 mm X% 300 mm, 10
um, 500 A), using CH;CN/water as the solvent system with a flow rate of 0.5 mL/min
and a UV detector at 215 nm.
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Figure 3.81 GPC analysis of ABTD3 and biotin-G3-G1-alkyne
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§ 3.4 Tri-branched PAMAM Dendrimer-based Tumor-Targeting Theranostic
Conjugates

§ 3.4.1 Rational Design

The initial design of tri-branched PAMAM dendrimer-based theranostic conjugate
bearing tumor-targeting modules, cytotoxic warheads and MRI contrast agent is shown in
Figure 3.82. The strategy for constructing this conjugate is similar as synthesizing the
ABTD conjugates. The difference is using a tri-branched spacer bearing a triazine splitter
to incorporate the MRI contrast agent instead of using a bismaleimide spacer. However,
the problem found later on during the synthesis of this theranostic conjugate was that
large excess of the tri-branched spacer is needed to ensure mono thiol-maleimido type
Michael reaction proceeds when connecting the functionalized G1 and G3 dendrimers
through the spacer. This was not a big problem when constructing the ABTD conjugates,
because the bismaleimide spacer could be easily synthesized in large quantities in short
steps, and also removal of the excess spacer used in the reaction by dialysis and prep-
HPLC was not so difficult, since the property of the spacer is quite different from the
functionalized dendrimers in terms of both molecular weight and polarity. In the
synthesis of theronostic conjugate shown in Figure 3.82, however, removal the excess
tri-branched spacer from reaction mixture was found to be not a trivial task. In addition,
the tri-branched spacer is much more difficult to synthesize compared to the
bismaleimide spacer, and using excess amount (10 eq) during the reaction made the
overall synthesis inefficient.

& T iy @ S SR BUmAY ":thwvw*% Phepbbdogtoss )

Figure 3.82 Designed tri-branched PAMAM dendrimer-based theranostic conjugate
bearing tumor-targeting modules, cytotoxic warheads and MRI contrast agent.

To solve this problem, second-generation theranostic dendrimer conjugates were
designed (Figure 3.83 and Figure 3.84). The major difference is that a versatile tri-
branched platform bearing taxoid warhead(s), tumor-targeting modules, and a terminal
azide group could be constructed first, final attachment of the imaging modules through
copper-catalyzed click reaction for attaching a fluorescent probe or copper-free click
reaction for attaching a DOTA radionuclide chelator could be achieved in the late stage.
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Figure 3.83 Designed tri-branched PAMAM dendrimer-based theranostic conjugates
bearing tumor-targeting modules, cytotoxic warheads and fluorescent probe for in vitro
internalization study, or DOTA radionuclide chelator for in vivo PET/SPECT imaging.
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Figure 3.84 Designed tri-branched PAMAM dendrimer-based theranostic conjugates
bearing single taxoid warhead.

§ 3.4.2 Towards Synthesis of a Tri-branched PAMAM Dendrimer-based Tumor-
Targeting Theranostic Conjugate bearing MRI Contrast Agent

For constructing the PAMAM dendrimer-based theranostic conjugate bearing MRI
contrast agent shown in Figure 3.82, a tri-branched spacer was synthesized.

First, cyanuric chloride was used to react with 2.2 eq amino-PEG-azide to give
desired di-azide 3-33 in 51% yield (Scheme 3.33). Mono-azide was also obtained as side
product (27%), and could be easily separated by column chromatography.
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Scheme 3.33 Synthesis of diazide 3-33

For attaching the third branch, 1,4-diaminobutane was reacted with Boc anhydride
to give mono-Boc-1,4-diaminobutane 3-34 in 96% crude yield (Scheme 3.34). To ensure
minimum formation of di-Boc side product, the reaction was performed in very dilute
condition, and Boc anhydride was added very slow.

0 H
HN bcM AN
2 \/\/\NH2 + )J\ e H N \H/ j<
o 0 r.t., overnight o
(0.1 eq) 96 % 3-34

Scheme 3.34 Synthesis of mono-Boc-1,4-diaminobutane 3-34

Then, diazide 3-33 was reacted with excess mono-Boc-1,4-diaminobutane 3-34
under reflux condition in THF to give tri-branched intermediate 3-35 in 91% yield
(Scheme 3.35).

H
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HNT j< H
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3 o1 % 335

Scheme 3.35 Synthesis of tri-branched intermediate 3-35

Tri-branched intermediate 3-35 was then reacted with two equivalents of maleimido-
alkyne 3-18 via copper-catalyzed click chemistry to give tri-branched spacer 3.36 in 64%
yield (Scheme 3.36).
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Scheme 3.36 Synthesis of tri-branched spacer 3-36

Tri-branched spacer 3-36 was subjected to TFA deprotection condition to remove
the Boc protecting group, giving crude product 3-37 as a TFA salt (Scheme 3.37).
N_o
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/ XA }?

NM N MN
g AN I R S ;
3-36

HN/\/\/NH3+TFA'

A

AN
TFA (10 % v N

N\ _ 9 © A
DCM, r.t., overnight q\/M /\(\ /\6/ \a/\ *N*HWO%\E:}/\HK/\/\/E%

crude

3-37
Scheme 3.37 TFA deprotection of 3-36

Then, intermediate 3-37 was treated with excess base DIPEA to remove TFA, and
the free amine could then react with DOTA-tri-fBu-mono-NHS ester to give compound
3-38 in 65% yield over two steps (Scheme 3.38).
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Scheme 3.38 Attachment of DOTA chelator onto tri-branched spacer 3-37

Compound 3-38 was then treated with TFA to remove all three t-Bu protecting
groups on the DOTA chelating group to give compound 3-39 as a crude product (Scheme
3.39). This product was characterized by MALDI-TOF (Figure 3.85).
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Scheme 3.39 TFA deprotection of 3-38
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Figure 3.85 MALDI-TOF spectrum of compound 3-39

With tri-branched spacer bearing DOTA chelating group 3-39 in hand, chelation
with gadolinium (IIT) was attempted. In the first attempt, potassium hydroxide was used
as the base to adjust the pH to 14, and water/methanol was used as solvent. It was clearly
observed during the experiment that while the chelation was happening when adjusting
the pH, the solution turned from white-milky color to pink color. Also, excess gadolinium
(IIT) reacted with potassium hydroxide to afford gadolinium (III) hydroxide, which
showed as a white precipitate during the reaction. However, on the MALDI-TOF
spectrum, the product showed as a methanol adduct. In the second attempt, sodium
hydroxide was used as the base to adjust the pH to 7, and water was used as solvent
(Scheme 3.40). In this condition, desired product 3-40 was clearly observed on MALDI-
TOF spectrum (Figure 3.86).
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Figure 3.86 MALDI-TOF spectrum of compound 3-40

After successfully chelating tri-branched spacer with gadolinium (III), conjugation
of alkyne-PEGylated-G1 PAMAM half dendron onto this spacer was attempted. Alkyne-
PEGylated-G1 PAMAM dendrimer was first treated with excess TCEP to reduce the
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disulfide bond in the core to give the half dendron bearing free thiol. Then this thiol
intermediate was reacted with excess tri-branced spacer bearing MRI contrast agent 3-40
to give conjugate 3-41 (Scheme 3.41). The product formation was observed on MALDI-
TOF spectrum (Figure 3.87). However, purification of the product by dialysis with Mw
cut-off 2000 membrane to remove the excess tri-branched spacer bearing MRI contrast
agent 3-40 was unsuccessful. Unfortunately, the retention time of the excess tri-branched
spacer bearing MRI contrast agent 3-40 is very close to the desired product 3-41,
purification by preparative HPLC is also not practical.

Yo
oo
LNJ/W
/Gd\—TO
8 N ‘ N
HN " W Li\?
o o N)*N °© % o o
/ oy Py Ao A A
q\/\/\)LN/\(/\N/\é/ \%/\H NN r ,\.I/VN N
3-40 °
0 H _ TCEP (3 eq) o H (10eq)
VAT e T ST 2 o Ny~
] 8 » I H o] 4 MeOH : Hy0 = 1:1 (viv ), r.t., overnight
o
»—0
N\/ /\Ni\fo
[ s—=o
Ho Sy o
HN/\/\/NW loj
o] o N/KN o ® o o
4 o} LA o Z
qMHVMV R T e A GLL)) e v et
= =N o )

Scheme 3.41 Conjugation of alkyne PEGylated half G1 dendron onto tri-branched spacer

193



o

hens. bl

o}
NZ *[
()

N
N l

-—-g =0

H
AN
HN T

S 0
q\/\/\)L ’\(\“APO\%AN N N”e/o*"/v J\/\/\ﬁ? ‘@ MO«%“
Mw: 3531

s 3536.1

1578.7) 3536.1

1347.4

b bl iz

" o500 " 2000 7 250 " 3000 " 3500

Figure 3.87 MALDI-TOF spectrum of conjugate 3-41

§ 3.4.3 Towards Synthesis of Second-Generation Versatile Tri-branched PAMAM
Dendrimer-based Tumor-Targeting Theranostic Conjugates-Route 1
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Figure 3.88 Designed tri-branched PAMAM dendrimer platform bearing four taxoids
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Figure 3.89 Designed tri-branched PAMAM dendrimer platform bearing single taxoid

To solve the problem mentioned above, second-generation versatile tri-branched
PAMAM dendrimer platforms bearing either four taxoids on a half G1 dendron (Figure
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3.88) or just single taxoid warhead (Figure 3.89) were designed. A terminal azide on the
third branch could be used for final attachment of imaging module.

For the synthesis of tri-branched platform shown in Figure 3.88, two different
synthetic routes were explored.

In the first synthetic route, first, cyanuric chloride was used to react with 1 eq of
amino-PEG-azide to give mono reacted product 3-42 83% yield (Scheme 3.42).

0]
N)C\\IN Na\/ho/ﬁ\/NHz (1.0 eq) Fi/f/ \%/\Ns

| 3 _
Cl)\N/)\CI DIPEA (1.5 eq) )\ /)\
-42

THF, 0 °C to r.t., overnight

83 % 3

Scheme 3.42 Synthesis of mono-azide 3-42

Then, commercially available PEG-diamine was treated with Boc anhydride to give
mono-Boc-PEG-diamine 3-43 in 87% yield (Scheme 3.43). PEG-diamine was used in
large excess to avoid di-Boc protected side product. The desired product could be
separated from excess PEG-diamine by a simple workup, since the starting material is
highly water soluble.

(Boc),0
(0] (0]
1,4-dioxane
(8 eq) r.t., overnight
87 % 3-43

Scheme 3.43 Synthesis of mono-Boc-PEG-diamine 3-43

Then, compound 3-42 was reacted with excess amount of mono-Boc-PEG-diamine
3-43 to afford trazine intermediate 3-44 in 85% yield under reflux condition in THF
(Scheme 3.44). Large excess of mono-Boc-PEG-diamine 3-43 (5 eq) was used to push
the reaction to go completion. It was found that when only slight excess of mono-Boc-
PEG-diamine 3-43 (3 eq) was used under same condition, the conversion of this reaction
is very low (~ 50%).

Hjl\Aé/o\%AN3 HZN/\/Q\OYNHBOC I—B\l\/\é/o\%\Na
SN 3-43 (5eq) SN

Cl)\N/)\cn DIPEA (3 eq) BocHN/\/é\ &\/\ /)\ /\/é\ /g\/\NHBoc
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3-42 -
85 % 3-44

Scheme 3.44 Synthesis of triazine intermediate 3-44
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Subsequent TFA deprotection of both Boc protecting groups in 3-44 gives crude
product 3-45 as a TFA salt (Scheme 3.45).

b o

TFA (20 % v)

BOCHN/\/Q\ /3\/\ )\ )\ A/é\ /é\/\NHBoc DEM. vt overiaht TFA /\/é\ /3\/\ )\ )\ /\/%\ /VNHs

3-44 345

Scheme 3.45 TFA deprotection of 3-44

On the other hand, 6-maleimidocaproic acid was activated with NHS by EDC
coupling to give the activated ester 3-46 in 70% yield (Scheme 3.46).

(0]
EDC 1 8 eq)
OH
0 DCM r.t.
(0] overnight
3-16 70 %

Scheme 3.46 Synthesis of activated ester 3-46

After that, excess potassium carbonate was used to neutralize TFA in the crude
product 3-45, the resulting free diamine productwas directly treated with activated ester
3-46 to give tri-branched spacer 3-47 in 43% yield over two steps (Scheme 3.47).
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Scheme 3.47 Synthesis of tri-branched spacer 3-47

Gl PAMAM dendrimer was then treated with excess Boc anhydride to give Boc
protected G1 PAMAM dendrimer 3-48 in 70% yield after dialysis (Scheme 3.48). The

196



product was characterized by ESI-MS, showing the multiple charge states (+2, +3, +3) of
desired mass (Figure 3.90).

(Boc),0 (24 eq)
<H2N §-8 NH; > | BocHN S-S NHBoc
4 4  MeOH, r.t., 2 days 4 4
70 %
3
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Scheme 3.48 Synthesis Boc protected G1 PAMAM dendrimer 3-48
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Figure 3.90 ESI-MS spectrum of Boc protected G1 PAMAM dendrimer 3-48

Subsequently, Boc protected G1 PAMAM dendrimer 3-48 was treated with excess
reducing agent TCEP to cleave the disulfide bond in the core, and the half Boc protected
G1 dendron was reacted with excess tri-branched spacer 3-47 to give conjugate 3-49
(Scheme 3.49). The product was purified by dialysis, and characterized by MALD-TOF
and ESI-MS, however, it was found that dialysis could not remove the excess tri-
branched spacer 3-47, and prep-HPLC need to be used to obtain pure product (Figure
3.91 and Figure 3.92).
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Figure 3.91 MALDI-TOF spectrum of conjugate 3-49
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Figure 3.92 ESI-MS spectrum of conjugate 3-49 after dialysis

§ 3.4.4 Towards Synthesis of Second-Generation Versatile Tri-branched PAMAM
Dendrimer-based Tumor-Targeting Theranostic Conjugates-Route 2

To avoid using large excess of tri-branched spacer, a second synthetic route was
investigated. In this route, first, cyanuric acid was reacted with only one equivalent of
mono-Boc- PEG-diamine 3-43 in the presence of DIPEA to give 3-50 in 80% yield

(Scheme 3.50).
HzN/\/é\O/ﬁ\/\NHBoc
3
cl Cl
3-43 (1.0 eq) 1
N™ SN DIPEA (1.5 eq) )NI\ \)N\
| : Z /\/é\
Cl)\N/)\Cl THF, 0 °C to r.t., overnight Cl N N ) 3 NHBoc
80 % 3-50

Scheme 3.50 Synthesis of 3-50

Then, 3-50 was reacted with one equivalent of amino-PEG-azide at 50 °C to give
intermediate 3-51 in 93% yield (Scheme 3.51).
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Scheme 3.51 Synthesis of 3-51

On the other hand, mono-Boc-PEG-diamine 3-43 was treated with NsCl in the
presence of TEA to give 3-52 in 96% yield (Scheme 3.52).
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Scheme 3.52 Synthesis of Ns protected Boc-PEG-diamine

Subsequent deprotection of Boc group by TFA gave mono-Ns-PEG-diamine 3-53 as
a crude TFA salt (Scheme 3.53).
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Scheme 5.13 TFA deprotection of 3-52

Then, intermediate 3-51 was reacted with excess mono-Ns-PEG-diamine 3-53 under
reflux condition in THF, desire product 3-54 was formed, and was isolated in 47% yield
(Scheme 3.54). The yield for this step is low because the reaction could not go
completion even after reflux for two days.
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Scheme 3.54 Synthesis of tri-branched intermediate 3-54

Tri-branched intermediate 3-54 with a terminal azide group, a Boc protected amine
group, and an Ns protected amine group was then treated with thiolphenol to remove the
Ns group to give free amine 3-55 as a crude product (Scheme 3.55).
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Scheme 3.55 Removal of Ns group by thiolphenol

Free amine 3-55 was then treated with mixed anhydride 3-17 to give intermediate 3-
56 in 60% yield over two steps (Scheme 3.56).

3
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Scheme 3.56 Synthesis of intermediate 3-56

Subsequent TFA deprotection of the Boc protecting group in 3-56 give amine 3-57
as a crude TFA salt (Scheme 3.57).
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Scheme 3.57 TFA deprotection of 3-56
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In the meantime, Boc protected G1 PAMAM dendrimer 3-48 was treated with
reducing agent TCEP, and the disulfide core was cleaved and subsequently reacted with
excess amount of 6-maleimidocaproic acid 3-16 to afford conjugate 3-58 in 88% yield
over two steps (Scheme 3.58). The product was purified by dialysis, and characterized by
ESI-MS (Figure 3.93).
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Scheme 3.58 Synthesis of conjugate 3-58
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After that, crude 3-57 was treated with excess amount of DIPEA to remove TFA, and
the resulting free amine was reacted with acid 3-58 under DCC coupling condition
(Scheme 3.59). However, the reaction did not proceed, and no desired product was
observed. Attempts to activate the acid 3-58 via mixed anhydride or HBTU were also not
successful, presumably because of the extremely low solubility of acid 3-58 in common
organic solvents, and DMSO was thus used in the reactions for solubilizing it at dilute
conditions.
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2) 0
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4 o}

3-57
1) DIPEA, DCM, r.t., 1 h
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DMSO, r.t., overnight

A

qm T vaj%y o)

3-59

Scheme 3.59 Attempts towards conjugate 3-59

Attempts were also made towards conjugate 3-60, which could be served as a
versatile tri-branched platform for constructing PAMAM dendrimer based theranostic
agents bearing single taxoid warhead. Crude 3-57 was treated with excess amount of
DIPEA to remove TFA, and the resulting free amine was reacted with NHS activated
ester of SB-T-1214-linker-COOH in DCM (Scheme 3.60). The coupling did proceed
smoothly this time as confirmed by MALDI-TOF and ESI-MS (Figure 3.94 and Figure
3.95), however, the product obtained has a molecular mass which is 10 units less than the
desired product (observed Mw 2035 instead of desired Mw 2045), presumably due to
some side reaction under this condition.
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§ 3.5 Summary

PAMAM dendrimer-based biotin-taxoid/FITC tumor-targeting conjugates have been
designed, synthesized, and evaluated via MTT cytotoxicity assays, confocal fluorescence
microscopy (CFM) imaging, and flow cytometry analysis. Biological evaluations of the
dendrimer-based conjugates show excellent cell internalization via RME and high drug
delivery efficiency. No obvious multivalent binding effect was observed presumably
because of saturation of the biotin receptors at high concentration and long incubation
time.

A versatile asymmetric bow-tie PAMAM dendrimer-based (ABTD) platform has
been developed. Purification and analysis methods have been developed for dendrimer
intermediates and final conjugates.

Tri-branched theranostic dendrimer-based conjugates have been designed, and
different synthetic routes have been investigated.

§ 3.6 Experimental
Caution

Taxoids have been classified as highly potent cytotoxic agents. Thus, all taxoids and
structurally related compounds and derivatives must be considered as mutagens and
potential reproductive hazards for both males and females. Appropriate precautions (i.e.
use of gloves, goggles, lab coat and fume hood) must be taken while handling these
compounds.

General Methods

"H NMR and "C NMR spectra were measured on a Varian 300 spectrometer or a Bruker
400 MHz, 500 MHz, or 700 MHz NMR spectrometer. Melting points were measured on
a Thomas-Hoover capillary melting point apparatus and are uncorrected. Optical
rotations were measured on Perkin-Elmer Model 241 polarimeter. TLC analyses were
performed on Sorbent Technologies aluminum-backed Silica G TLC plates (Sorbent
Technologies, 200 um, 20 cm % 20 c¢m), and were visualized with UV light and stained
with sulfuric acid-EtOH, 10% phosphomolybdic acid (PMA)-EtOH, 10% vanillin-EtOH
with 1% sulfuric acid, ninhydrin-butanol with 10% AcOH, or DACA stain. Column
chromatography was carried out on silica gel 60 (Merck; 230-400 mesh ASTM).
Chemical purity was determined with a Shimadzu L-2010A HPLC HT series HPLC
assembly, using a Kinetex PFP column (4.6 mm x 100 mm, 2.6 um, 100 A), using
CH;CN/water as the solvent system with a flow rate of 1 mL/min, or a Jupiter C18
column (2.0 mm x 150 mm, 3 pum, 300 A), using CH;CN/water as the solvent system
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with a flow rate of 0.3 mL/min. GPC analysis was performed with a Shimadzu L-2010A
HPLC HT series HPLC assembly, using a Waters Ultrahydrogel 500 GPC column (7.8
mm x 300 mm, 10 pm, 500 A), using CH;CN/water as the solvent system with a flow
rate of 0.5 mL/min. LC-MS or HR-MS analysis was carried out on an Agilent LC-UV-
TOF mass spectrometer, using Jupiter C18 analytical column (2.1 x 100 mm, 2.6 um,
100 A), with 0.1% TFA in water (optima grade) as solvent A and 0.1% TFA in CH;CN
(optima grade) as solvent B, at the Institute of Chemical Biology and Drug Discovery
(ICB&DD), Stony Brook, NY. Preparative HPLC purification was performed using
Jupiter C18 semi-preparative HPLC column (10 x 250 mm, 5 um, 300 A) or Jupiter C18
preparative HPLC column (21.2 x 250, 5 pm, 300 A) on a Shimadzu CBM-10AW VP
communications bus module, Shimadzu SPD-10A VP UV-Vis detector, and Shimadzu
LC-6AD liquid chromatography assembly. Matrix-assisted laser desorption/ionization
(MALDI)-TOF analysis for determination of molecular weight was carried out using 2,
5-dihydroxybenzoic acid (DHB) as matrix at the Institute of Chemical Biology and Drug
Discovery (ICB&DD), Stony Brook, NY. DHB matrix was prepared by dissolving 10 mg
ultrapure DHB in a mixture of 500 uL CH3;CN (contain 0.1% TFA) and 500 pL
proteomics grade water (contain 0.1% TFA), and vortex vigorously. For preparing
MALDI samples, 1 pL of the sample dissolved in methanol was mixed with 10 puL of the
DHB matrix solution, and 1 pL of the mixed solution was applied onto the MALDI
sample plate, and was allowed to co-crystallize through evaporation at room temperature.

Materials

All chemicals were purchased from Sigma Aldrich, Fisher Scientific or VWR
International and used as received or purified before use by standard methods.
Dichloromethane and methanol were dried before use by distillation over calcium
hydride under nitrogen. Ether and tetrahydrofuran were dried before use by distillation
over sodium-benzophenone kept under nitrogen. 10-Deacetylbaccatin III was obtained
from Indena, S.p.A, Italy. Reaction flasks were dried in a 100 °C oven and allowed to
cool to room temperature in a desiccator over calcium sulfate and assembled under an
inert nitrogen gas atmosphere. The PAMAM dendrimers bearing cystamine cores were
purchased as methanol solution from Dendritic Nanotechnologies, Inc®. G3 cystamine-
PAPAM dendrimer, DNT-296 (MW: 7,001 g/mol) (10.1% in methanol) and G1
cystamine-PAPAM dendrimer, DNT-294 (MW: 1,522 g/mol) (20.1% in methanol), were
used as received. Biological materials including RPMI-1640 cell culture media, DPBS
buffer, fetal bovine serum, PenStrep, and TrypLE were obtained from Gibco and VWR
International, and used as received for cell-based assays.

Experimental Procedures

Chemical Synthesis
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tert-Butyl 12-hydroxy-4,7,10-trioxadodecanoate (3-1)*°

To a 250-mL round-bottom flask were added dry THF (50 mL), triethylene glycol (15.0
g, 100 mmol), and potassium fert-butoxide (115 mg, 1.0 mmol). The mixture was
allowed to stir at room temperature under inert condition. A solution of fert-butyl acrylate
(6.18 g, 48 mmol) in 50 mL dry THF was then slowly added to the mixture via an
additional funnel within 2.5 h. The reaction mixture was allowed to stir overnight, and
was monitored by TLC (stained with vanillin). Upon completion, the solvent was
evacuated, and the crude mixture was purified by column chromatography on silica gel
(gradient eluent: hexanes/ethyl acetate from 10/1 to 1/4) to give fert-butyl 12-hydroxy-
4,7,10-trioxadodecanoate 3-1 (8.81g, 31.7 mmol) as colorless oil in 66% yield. Side
product di-tert-butyl 4,7,10,13-tetraoxahexadecane-1,16-dioate (595 mg) was also
obtained as colorless oil. Product fert-butyl 12-hydroxy-4,7,10-trioxadodecanoate 3-1: 'H
NMR (500 MHz, CDCls): & 1.44 (s, 9H), 2.44 (t, J = 6.0 Hz, 1H), 2.51 (t, J = 6.6 Hz,
2H), 3.61 (m, 4H), 3.67 (m, 6H), 3.71 (t, ] = 6.6 Hz, 2H), 3.72 (m, 2H). >C NMR (125
MHz, CDCl;): 6 28.1, 36.2, 61.8, 66.9, 70.4, 70.4, 70.5, 70.7, 72.5, 80.6, 170.9. ESI-MS
m/z : 301.1 [M+Na]'. Side product di-tert-butyl 4,7,10,13-tetraoxahexadecane-1,16-
dioate: '"H NMR (300 MHz, CDCls): & 1.44 (s, 18H), 2.50 (t, J = 6.6 Hz, 4H), 3.62 (m,
12H), 3.70 (t, ] = 6.6 Hz, 4H). All data are in agreement with literature values.

tert-Butyl 12-azido-4,7,10-trioxadocecanoate (3-2)°""®

To a 50-mL round-bottom flask were added tert-butyl 12-hydroxy-4,7,10-
trioxadocecanoate 3-1 (5.45 g, 29.6 mmol), methanesulfonyl chloride (2.69 g, 23.5
mmol) and THF (20 mL). The mixture was allowed to stir at 0 °C in an ice bath. Then
triethylamine (2.38 g, 23.5 mmol) was added dropwise. White precipitate came out
immediately. The reaction mixture was allowed to slowly warm to room temperature and
stir at room temperature for 2 hours. The reaction was monitored by TLC (stained with
vanillin). Upon completion, the white precipitate was removed by vaccum filtration and
washed with ether. The filtrate was concentrated to remove solvent to afford pale yellow
oil. The resulting oil was diluted with 15 mL distilled water and cooled to 0 °C. Sodium
bicarbonate was added to adjust the pH of the mixture to 8-9. Then sodium azide (1.53 g,
23.5 mmol) was added and the resulting solution was heated up to reflux at 100 °C
overnight. The reaction was monitored by TLC (stained with vanillin). Upon completion,
the reaction mixture was extract with ethyl acetate (3 x 50 mL). The organic layer was
collected, washed with brine (3 x 30 mL), and dried over anhydrous magnesium sulfate.
The magnesium sulfate was subsequently removed by vaccum filtration, and the filtrate
was concentrated to afford crude product as pale yellow oil. Purification was down by
column chromatography on silica gel (gradient eluent: hexanes/ethyl acetate from 8/1 to
2/1) to give tert-butyl 12-azido-4,7,10-trioxadocecanoate 3-2 (4.06 g, 13.4 mmol) as
colorless oil in 68% yield. '"H NMR (500 MHz, CDCls): & 1.45 (s, 9H), 2.50 (t, ] = 6.6
Hz, 2H), 3.39 (t, J = 5.1 Hz, 2H), 3.63 (m, 10H), 3.71 (t, J = 6.6 Hz, 2H). °C NMR (125

208



MHz, CDCls): 6 28.1, 36.3, 50.7, 66.9, 70.1, 70.4, 70.6, 70.7, 70.7, 80.5, 170.9. IR: 2871
cm’ (alkyl), 2105 cm” (N3), 1732 cm™ (COOR). All data are in agreement with literature

57,58
values.””

tert-Butyl 12-amino-4,7,10-trioxadocecanoate (3-3)°’

To a 100-mL round-bottom flask were added tert-butyl 12-azido-4,7,10-
trioxadocecanoate 3-2 (1.00 g, 3.30 mmol) in THF (30 mL) and triphenylphosphine (1.73
g, 6.60 mmol). The mixture was allowed to stir at room temperature for 30 min. Then
distilled water (10 mL) was added. The resulting solution was allowed to stir at room
temperature for overnight. The reaction was monitored by TLC (stained with ninhydrin).
Upon completion, the resulting solution was concentrated in vacuo to remove THF. After
THF was removed, white precipitate (mixture of triphenylphosphine and
triphenylphosphine oxide) slowly came out and was removed by vaccum filtration and
washed with water. The filtrate was diluted with water (~300 mL), and washed with
toluene 3 x 20 mL to remove triphenylphosphine oxide. The water layer was concentrated
by rotavapor and water was further removed by freezer drier overnight to give tert-butyl
12-amino-4,7,10-trioxadocecanoate 3-3 (770 mg, 2.77 mmol) as pale yellow oil in 84%
yield. '"H NMR (500 MHz, CDCl3): & 1.38 (s, 2H), 1.45 (s, 9H), 2.50 (t, ] = 6.6 Hz, 2H),
2.86 (t,J = 5.3 Hz), 3.50 (t, J = 5.3 Hz), 3.62 (m, 8H), 3.65 (t, ] = 6.6 Hz, 2H). °C NMR
(125 MHz, CDCl3): 8 28.1, 36.3,41.9, 66.9, 70.3, 70.4, 70.5, 70.6, 73.6, 80.5, 170.9. ESI-
MS m/z : 278.1 [M+H]". All data are consisted with literature values.’’

p-(+)-Biotin-OSu (3-4)*

To a 50-mL round-bottom flask were added p-(+)-biotin (1.00 g, 4.09 mmol) and
anhydrous DMF (20 mL). The mixture was slowly heated up to 70 °C to afford a clear
solution. The mixture was then cooled down to room temperature. N-hydroxysuccinimide
(NHS) (1.41 g, 12.3 mmol) was added to the mixture and after that NN’-
diisopropylcarbodiimide (DIC) (1.03 g, 8.18 mmol) was slowly added dropwise. The
reaction mixture was allowed to stir at room temperature overnight. The reaction was
monitored by TLC (stained with DACA). Upon completion, DMF was removed by
freezer drier overnight to give crude product as a white solid. The crude product was
further purified by column chromatography on silica gel (gradient eluent: DCM/methanol
from 50/1 to 10/1) to give p-(+)-biotin-OSu 3-4 (1.35 g, 3.95 mmol) as white solid in
96% yield. "H NMR (500 MHz, DMSO-d6): & 1.43 (m, 2H), 1.50 (m, 1H), 1.63 (m, 3H),
2.570 (d, J = 12.5 Hz, 1H), 2.67 (t, J = 7.4 Hz, 2H), 2.81 (br. s, 4H), 2.84 (dd, J = 12.5
Hz, J = 5.2 Hz, 1H), 3.11 (m, 1H), 4.13 (m, 1H), 4.30 (dd, J = 7.6 Hz, ] = 5.2 Hz, 1H),
6.36 (s, 1H), 6.42 (s, 1H). All data are in agreement with literature values.”

p-(+)-Biotin-tert-butyl 12-amino-4,7,10-trioxadocecanoate (3-5)°’
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To a solution of tert-butyl 12-amino-4,7,10-trioxadocecanoate 3-3 (770 mg, 2.77 mmol)
in DCM (24 mL), was added p-(+)-biotin-OSu 3-4 (998 mg, 2.92 mmol). p-(+)-biotin-
OSu 3-4 could not be completely dissolved in the beginning, but slowly fully dissolved as
the reaction goes. The reaction mixture was allowed to stir at room temperature under
inert condition for 2 days. The reaction was monitored by TLC (stained with DACA).
Upon the reaction was completed, the solvent was evacuated and the crude was purified
by column chromatography on silica gel (gradient eluent: DCM/methanol from 50/1 to
10/1) to give p-(+)-biotin-tert-butyl 12-amino-4,7,10-trioxadocecanoate 3-5 (1.21 g, 2.41
mmol) as pale yellow solid in 87% yield. "H NMR (500 MHz, CDCls): § 1.44 (m, 11H),
1.69 (m, 4H), 2.22 (m, 2H), 2.50 (t, J = 6.6 Hz, 2H), 2.74 (d, J = 12.8 Hz, 1H), 2.91 (dd, J
=12.8 Hz, ] = 5.0 Hz, 1H), 3.14 (m, 1H), 3.42 (m, 2H), 3.56 (t, J = 5.0 Hz, 2H), 3.62 (m,
8H), 3.71 (t, J = 6.6 Hz, 2H), 4.32 (dd, J = 7.2 Hz, ] = 5.0 Hz, 1H), 4.50 (dd, J = 7.6 Hz,
5.0 Hz, 1H), 5.44 (s, 1H), 6.41 (s, 1H), 6.66 (t, J] = 5.3 Hz, 1H). All data are consisted
with literature values.”’

p-(+)-Biotin-tert-butyl 12-amino-4,7,10-trioxadocecanoic acid (3-6)°’

To a solution of p-(+)-biotin-fert-butyl 12-amino-4,7,10-trioxadocecanoate 3-5 (1.20 g,
2.39 mmol) in DCM (40 mL), was added TFA (10 mL) dropwise. The reaction mixture
was allowed to stir at room temperature overnight. Upon the reaction was completed, the
solvent was evacuated and the crude was purified by column chromatography on silica
gel (gradient eluent: DCM/methanol from 50/1 to 6/1) to give p-(+)-biotin-fert-butyl 12-
amino-4,7,10-trioxadocecanoic acid 3-6 as pale yellow solid (1.03 g, 2.30 mmol) in 97%
yield. '"H NMR (500 MHz, DMSO-d6): & 1.30 (m, 2H), 1.46 (m, 3H), 1.60 (m, 1H), 2.06
(t, J=7.4 Hz, 2H), 2.44 (t, ] = 6.3 Hz, 2H), 2.57 (d, ] = 12.4 Hz, 1H), 2.82 (dd, J = 12.4
Hz,J =5.1 Hz, 1H), 3.09 (m, 1H), 3.38 (t, J = 6.0 Hz, 2H), 3.49 (m, 8H), 3.59 (t,J = 6.3
Hz, 2H), 4.13 (m, 1H), 4.30 (dd, J = 7.5 Hz, 5.2 Hz, 1H), 6.35 (s, 1H), 6.41 (s, 1H), 7.82
(t, T =5.5 Hz, 1H). C NMR (125 MHz, DMSO-d6): & 25.7, 28.5, 28.7, 35.2, 35.6, 38.9,
55.9, 59.7, 61.5, 66.7, 69.6, 70.0, 70.1, 70.2, 70.3, 163.2, 172.6, 173.1. All data are
consisted with literature values.”’

p-(+)-Biotin-12-amino-4,7,10-trioxadocecanoic acid N-hydroxysuccinimidyl ester (3-
7)

To a solution of p-(+)-biotin-tert-butyl 12-amino-4,7,10-trioxadocecanoic acid acid 3-6
(566 mg, 1.27 mmol) in DCM (30 mL) (starting material could not fully dissolved), was
added DIC (2 eq) and NHS (3 eq). The reaction mixture was allowed to stir at room
temperature overnight. Starting material slowly dissolved as the reactions goes, and white
precipitate slowly came out (DIU). Upon the reaction was completed, the solvent was
evacuated, and the crude was purified by column chromatography on silica gel (gradient
eluent: DCM/methanol from 50/1 to 10/1) to give p-(+)-biotin-12-amino-4,7,10-
trioxadocecanoic acid N-hydroxysuccinimidyl ester 3-7 as white solid (547 mg, 1.00
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mmol) in 79% isolated yield. '"H NMR (500 MHz, CDCls): & 1.44 (m, 2H), 1.68 (m, 4H),
2.23 (m, 2H), 2.74 (d, J = 12.8 Hz, 1H), 2.85 (br.s, 4H), 2.91 (m, 1H), 3.16 (m, 1H), 3.43
(m, 2H), 3.56 (t, J = 5.1 Hz, 2H), 3.63 (m, 6H), 3.65 (s, 1H), 3.69 (s, 1H), 3.76 (t, ] = 6.4
Hz, 1H), 3.85 (t, ] = 6.4 Hz, 1H), 4.34 (t, J = 6.0 Hz, 1H), 4.51 (t, J = 6.0 Hz, 1H), 5.38
(s, 1H), 6.11 (s, 1H), 6.51 (d, J =5.7 Hz).

Biotin PEGylated G1 PAMAM Dendrimer (3-8)

To a solution of G1 dendrimer (DNT-294, 20 w% in methanol) (40 mg, 0.026 mmol) in
methanol (1 mL) was added p-(+)-biotin-12-amino-4,7,10-trioxadocecanoic acid N-
hydroxysuccinimidyl ester 3-7 (344 mg, 0.632 mmol). The reaction mixture was allowed
to stir at room temperature for two days. Upon the reaction was completed, the reaction
mixture was directly purified by dialysis against methanol (3 x 1000 mL) for three days.
Then the solvent was removed by evaporation to give biotin PEGylated G1 PAMAM
dendrimer 3-8 as a white solid (112 mg, 0.023 mmol) in 87% yield. '"H NMR (700 MHz,
MeOH-d4): 6 1.42 (m, 16H), 1.61 (m, 8H), 1.65 (m, 16H), 1.74 (m, 8H), 2.21 (t, /= 7.4
Hz, 16H), 2.45 (t, J = 6.3 Hz, 16H), 2.70 (d, J = 12.6 Hz, 8H), 2.74 (m, 16H), 2.91 (m,
12H), 3.21 (m, 8H), 3.34 (m, 16H), 3.41 (m, 32H), 3.53 (m, 32H), 3.61 (m, 64H), 3.72 (t,
J = 6.3 Hz, 16H), 430 (m, 8H), 4.49 (m, 8H). MALTI-TOF-MS: 4958.6 ([M+H]",
calculated 4955.6, A = 3.0 Da), 4979.4 ([M+Na]’, calculated 4977.6, A = 1.8 Da), 2480.0
(IM+2H]*, calculated 2478.3, A = 1.7 Da), and 2502.7 ([M+2Na]*", calculated 2500.3, A
= 2.4 Da). ESI-MS: 1240.3 [M+4H]"", 992.4 [M+5H]", 827.2 [M+6H]°".

Biotin PEGylated G3 PAMAM Dendrimer (3-9)

To a solution of G3 dendrimer (DNT-296, 20 w% in methanol) (27 mg, 0.0038 mmol) in
methanol (1 mL) was added p-(+)-biotin-12-amino-4,7,10-trioxadocecanoic acid N-
hydroxysuccinimidyl ester 3-7 (196 mg, 0.360 mmol). The reaction mixture was allowed
to stir at room temperature for two days. Upon the reaction was completed, the reaction
mixture was directly purified by dialysis against methanol (3 x 1000 mL) for three days.
Then the solvent was removed by evaporation to give biotin PEGylated G3 PAMAM
dendrimer 3-9 as a white solid (99 mg, 0.0048 mmol) in > 100% yield. '"H NMR (700
MHz, MeOH-d4): 6 1.42 (m, 64H), 1.61 (m, 32H), 1.65 (m, 64H), 1.74 (m, 32H), 2.21 (t,
J =174 Hz, 64H), 2.45 (t, J = 6.3 Hz, 64H), 2.70 (d, J = 12.6 Hz, 32H), 2.74 (m, 64H),
2.87 (br.s 64H), 2.91 (m, 32H), 3.21 (m, 32H), 3.34 (m, 64H), 3.41 (m, 128H), 3.53 (m,
128H), 3.61 (m, 256H), 3.72 (m, 64H), 4.33 (m, 32H), 4.50 (m, 32H). MALTI-TOF-MS:
20736.0 ([M+H]", calculated 20731.0, A = 5.0 Da), and 10370.4 ([M+2H]*", calculated
10366.5, A =3.9 Da).

SB-T-1214-linker-TIPS ester conjugate (3-10)*'

To a mixture of SB-T-1214 (180 mg, 0.211 mmol), methyl-branched disulfide linker 2-7
(120 mg, 0.263 mmol) and DMAP (9.6 mg, 0.079 mmol) dissolved in DCM (5 mL) and
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cooled to 0 °C in an ice bath was added DIC (33 mg, 0.026 mmol) dropwise. The
mixture was allowed to stir at 0 °C and the reaction was monitored via TLC. Upon
reaction completion after ovenright, the reaction mixture was purified immediately by
column chromatography on silica gel (gradient eluent: hexanes/ethyl acetate from 10/1 to
1/1) to give SB-T-1214-linker-TIPS ester conjugate 3-10 (183 mg, 0.142 mmol) as white
solid in 67% yield. '"H NMR (400 MHz, CDCls): § 1.00 (m, 2H), 1.05 (m, 21H), 1.13 (m,
6H), 1.26 (m, 12H), 1.34 (s, 6H), 1.67 (s, 3H), 1.72 (s, 3H), 1.74 (s, 3H), 1.77 (m, 2H),
1.86 (m, 1H), 1.90 (s, 3H), 2.37 (s, 3H), 2.40 (m, 2H), 2.55 (m, 1H), 2.58 (d, J = 3.7 Hz,
1H), 3.80 (d, J = 6.9 Hz, 1H), 4.18 (d, J = 8.4 Hz, 1H), 4.31 (d, J = 8.4 Hz, 1H), 4.44 (m,
1H), 4.79 (m, 1H), 4.94 (m, 2H), 5.07 (d, J = 8.8 Hz), 5.67 (d, J = 6.9 Hz, 1H), 6.19 (t,J =
8.2 Hz, 1H), 6.28 (s, 1H), 7.30 (m, 3H), 7.47 (t, J = 7.3 Hz, 2H), 7.60 (t, J = 7.6 Hz, 1H),
7.80 (d, J = 7.7 Hz, 1H), 8.11 (d, J = 7.4 Hz, 2H). All data are consisted with literature
values."!

SB-T-1214-linker-carboxylic acid conjugate (3-11)*

To SB-T-1214-linker-TIPS ester conjugate 3-10 (182 mg, 0.141 mmol) dissolved in a 1/1
mixture of CH3CN/pyridine [0.01 M] cooled to 0 °C was added HF/pyridine (1 mL)
dropwise. The mixture was stirred at room temperature and the reaction was monitored
via TLC. After 16 hours, the reaction was quenched with 10% citric acid (10 mL) and
extracted with ethyl acetate (3 x 15 mL). The organic layer was extracted and washed
with aqueous CuSO;4 (3 x 30 mL), then washed with brine (3 x 30 mL), and dried over
MgSO,. The MgSO4 was subsequently removed by vaccum filtration and the filtrate was
concentrated in vacuo.  The resulting crude was purified via flash column
chromatography on silica gel (gradient eluent: hexanes/ethyl acetate from 10/1 to 1/4) to
yield SB-T-1214-linker-carboxylic acid conjugate 3-11 as a white solid (102 mg, 0.0899
mmol) in 64% yield. "H NMR (500 MHz, CDCls): & 1.00 (m, 2H), 1.13 (m, 6H), 1.26 (m,
12H), 1.34 (s, 6H), 1.67 (s, 3H), 1.72 (s, 3H), 1.74 (s, 3H), 1.77 (m, 2H), 1.86 (m, 1H),
1.90 (s, 3H), 2.37 (s, 3H), 2.40 (m, 2H), 2.55 (m, 1H), 2.58 (d, J = 3.7 Hz, 1H), 3.80 (d, J
=6.9 Hz, 1H), 4.18 (d, J = 8.4 Hz, 1H), 4.31 (d, ] = 8.4 Hz, 1H), 4.44 (m, 1H), 4.79 (m,
1H), 4.94 (m, 2H), 5.07 (d, J = 8.8 Hz), 5.67 (d, J = 6.9 Hz, 1H), 6.19 (t, J = 8.2 Hz, 1H),
6.28 (d, J = 4.8Hz, 1H), 7.22 (m, 2H), 7.30 (m, 1H), 7.47 (t, J = 7.8 Hz, 2H), 7.60 (t, J =
7.4 Hz, 1H), 7.80 (t, ] = 9.5 Hz, 1H), 8.10 (d, J = 7.5 Hz, 2H). All data are consisted with
literature values.*'

PEG-diazide (3-12)%

To a 250-mL round-bottom flask was added tetraethylenenglycol (20.0 g, 103 mmol),
methanesulfonyl chloride (2.25 eq) and THF (100 mL). The mixture was allowed to stir
at 0 °C in an ice bath. Then triethylamine (2.25 eq) was added dropwise. White
precipitate came out immediately. The reaction mixture was allowed to slowly warm to
room temperature. The reaction was monitored by TLC (stained with vanillin). Upon
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completion after 5 hour, the white precipitate was removed by vaccum filtration and
washed with ether. The filtrate was concentrated to remove solvent to afford pale yellow
oil. The resulting oil was diluted with 50 mL distilled water and cooled to 0 °C. Sodium
bicarbonate was added to adjust the pH of the mixture to 8. Then sodium azide (2.4 eq)
was added and the resulting solution was heated up to reflux at 100 °C overnight. The
reaction was monitored by TLC and stained with vanillin. Upon completion, the reaction
mixture was cooled to room temperature and was extract with ether (3 x 50 mL). The
organic layer was collected, washed with brine (3 x 50 mL), and dried over anhydrous
magnesium sulfate. The magnesium sulfate was subsequently removed by vaccum
filtration and the filtrate was concentrated in vacuo to afford crude product 3-12 as pale
yellow oil (23.1 g, 95 mmol) in 92% yield. '"H NMR (400 MHz, CDCls): § 3.38 (t, J = 5.2
Hz, 4H), 3.67 (m, 12H). All data are in agreement with literature values.®

Amino-PEG-azide (3-13)%

To a 250-mL round-bottom flask was added PEG diazide 3-12 (8.54 g, 35.0 mmol) in 60
mL ether and triphenylphosphine (8.00 g, 30.5 mmol). Then phosphoric acid [0.65 M] in
80 mL water was added. The mixture was allowed to stir at room temperature for 24 h.
The reaction was monitored by TLC (stained with vanillin). Upon completion, the water
layer was separated from organic layer, treated with potassium carbanate, and extracted
with DCM (10 x 100 mL). The magnesium sulfate was subsequently removed by vaccum
filtration and the filtrate was concentrated in vacuo to afford crude product 3-13 as pale
yellow oil (5.40 g, 24.8 mmol) in 71% yield. '"H NMR (400 MHz, CDCls): & 2.98 (t, J =
5.3 Hz, 2H), 3.38 (m, 2H), 3.62 (m, 12H), 4.04 (br s, 2H). All data are in agreement with
literature values.®’

SB-T-1214-linker-PEG3-azide (3-14)

To a mixture of SB-T-1214-linker-carboxylic acid conjugate 3-11 (96 mg, 0.085 mmol)
and NHS (20 mg, 0.17 mmol) dissolved in DCM (5 mL) was added EDCHCI (24 mg,
0.13 mmol). The reaction was stirred at room temperature and monitored via TLC and
ESI-MS. After overnight, the reaction was quenched with saturated NH4Cl (10 mL). The
residue was extracted with ethyl acetate (4 x 30 mL). The organic layer was washed with
brine (2 x 30 mL), collected, and dried over MgSO,. and concentrated in vacuo. The
resulting crude was characterized by ESI-MS m/z : 1250.5 [M+H]". To this crude SB-T-
1214-linker-OSu conjugate dissolved in DCM (1 mL) was added amino-PEG3-azide 3-13
(36 mg, 0.169 mmol). The reaction was stirred at room temperature and monitored via
TLC and ESI-MS. After overnight, the reaction was quenched with saturated NH4Cl1 (10
mL). The residue was extracted with ethyl acetate (4 x 30 mL). The organic layer was
washed with brine (2 x 30 mL), collected, and dried over MgSQO4. The MgSO, was
subsequently removed by vaccum filtration and the filtrate was concentrated in vacuo.
The resulting crude was purified via flash column chromatography on silica gel (gradient
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eluent: hexanes/ethyl acetate from 10/1 to 1/2) to yield SB-T-1214-linker-PEG3-azide 3-
14 as a white solid (70 mg, 0.052 mmol) in 61% yield over two steps. 'H NMR (500
MHz, CDCls): 8 0.96 (m, 3H), 1.12 (m, 2H), 1.14 (s, 3H), 1.25 (s, 3H), 1.28 (d, J = 6.8
Hz, 3H), 1.34 (s, 9H), 1.60 (br. s 9H), 1.66 (s, 3H), 1.70 (s, 2H), 1.72 (s, 2H), 1.75 (m,
2H), 1.85 (m, 2H), 1.90 (s, 3H), 2.20 (m, 2H), 2.31 (m, 1H), 2.35 (s, 3H), 2.52 (m, 1H),
2.65 (d, J = 3.9 Hz, 1H), 2.91 (m, 1H), 3.38 (m, 3H), 3.48 (d, ] = 5.0 Hz, 4H), 3.51 (m,
2H), 3.62 (m, 2H), 3.67 (m, 6H), 3.80 (d, J = 7.0 Hz, 1H), 3.96 (dd, J = 13.7 Hz, ] = 2.6
Hz, 1H), 4.10 (d, J = 16.4 Hz, 1H), 4.18 (d, J = 8.4 Hz, 1H), 4.30 (d, J = 8.4 Hz, 1H), 4.42
(m, 1H), 4.95 (m, 3H), 5.11 (br. s, 1H), 5.67 (d, J = 7.0 Hz, 1H), 6.02 (br. s, 1H), 6.18 (t,
J=8.8 Hz, 1H), 6.29 (s, 1H), 7.24 (m, 1H), 7.28 (m, 1H), 7.32 (m, 1H), 7.47 (t, J = 7.8
Hz, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.79 (d, J = 7.6 Hz, 1H), 8.11 (d, J = 7.4 Hz, 2H). ESI-
MS m/z : 1355.9 [M+H]".

FITC-PEG3-azide (3-15)

To FITC (100 mg, 0.26 mmol) dissolved in DMF (5 mL) was added amino-PEG3-azide
3-13 (64 mg, 0.30 mmol). The reaction was stirred at room temperature and monitored
via TLC and ESI-MS. After overnight, DMF was removed by freezer-drier. The
resulting crude was purified via flash column chromatography on silica gel (gradient
eluent: DCM/methanol from 50/1 to 10/1) to yield FITC-PEG3-azide 3-15 as an orange
solid (135 mg, 0.22 mmol) in 87% yield. '"H NMR (500 MHz, DMSO-d6): & 3.31 (m, 16
H), 3.55 (s, 1H), 3.59 (s, 1H), 6.54 (d, J = 8.8 Hz, 1H), 6.60 (d, J = 8.7 Hz, 1H), 6.66 (s,
1H), 7.16 (d, J = 8.2 Hz, 1H), 7.73 (d, J = 7.9 Hz, 1H), 8.08 (s, 1H), 8.25 (s, IH), 10.25 (s,
1H), 10.12 (s, 1H). ESI-MS m/z : 608.2 [M+H]".

6-Maleimidocaproic acid (3-16)*'

To a solution of maleic anhydride (5.00 g, 51.0 mmol) dissolved in acetic acid (30 mL),
was added 6-aminocaproic acid (6.69 g, 51.0 mmol). White precipitate came out slowly.
The reaction mixture was heated up to reflux for 3 h. White precipitate slowly dissolved
during the heating process. Then the reaction mixture was concentrated and dried by
freeze drier to afford crude product as yellow solid. The crude was purified by column
chromatography on silica gel (gradient eluent: DCM/methanol from 50/1 to 10/1) to give
6-maleimidocaproic acid 2-5 (5.77 g, 27.3 mmol) as white solid in 54% yield. '"H NMR
(400 MHz, CDCls): 6 1.32 (m, 2H), 1.64 (m, 4H), 2.34 (t,J = 7.4 Hz, 2H), 3.52 (t, ] = 7.2
Hz, 2H), 6.69 (s, 2H), 11.33 (br.s, 1H). >C NMR (100 MHz, CDCl;): § 24.1, 26.1, 28.2,
33.7,37.6, 134.1, 170.9, 179.4. All data are in agreement with literature values.”'

6-Maleimidocaproic acid anhydride with 2-methylpropyl carbonate (mixed
anhydride, 3-17)

To a solution of 6-maleimidocaproic acid 3-16 (2.11 g, 10.0 mmol) dissolved in 40 mL
THF, was added N-methylmorpholine (1.02 g, 10.0 mmol), followed by adding isobutyl
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chloroformate (1.37 g, 10.0 mmol) dropwise. White precipitate came out immediately.
The reaction mixture was allowed to stir at room temperature under nitrogen for 4 h.
Then the white precipitate was removed by vaccum filtration. Water was added to the
filtrate and the mixture was extracted with ethyl acetate (3 x 100 mL). The organic layer
was combined, and dried over anhydrous MgSO4 The MgSO4 was subsequently removed
by vaccum filtration and the filtrate was concentrated in vacuo to give crude product
mixed anhydride 3-17 (2.96 g, 9.52 mmol) as pale yellow viscous oil in 95% yield. The
crude product was directly used in the next step without further purification, because the
product is very unstable and purification by column chromatography may decompose the
product. '"H NMR (400 MHz, CDCLs): & 0.96 (d, J = 6.7 Hz, 6H), 1.35 (m, 2H), 1.60 (m,
2H), 1.68 (m, 2H), 2.02 (m, 1H), 2.46 (t, J = 7.4 Hz, 2H), 3.52 (t, ] = 7.2 Hz, 2H), 4.03
(d, J=6.7 Hz, 2H), 6.68 (s, 2H).

Maleimido alkyne spacer (3-18)

To a solution of mixed anhydride 3-17 (2.96 g, 9.52 mmol) in 25 mL THF, was added
propargylamine (550 mg, 10.0 mmol) diluted with 5 mL THF dropwise at 0 °C. The
reaction mixture was allowed to warm to room temperature and stir under nitrogen
overnight. Upon completion, the reaction mixture was extracted with DCM (3 x 100 mL).
The organic layer was combined, and dried over anhydrous MgSO4. The MgSO4 was
subsequently removed by vaccum filtration and the filtrate was concentrated in vacuo to
give crude product as brown oil. The crude product was purified by column
chromatography on silica gel (gradient eluent: DCM/methanol from 50/1 to 20/1) to give
maleimido alkyne spacer 3-18 (2.05 g, 8.26 mmol) as white solid in 87% yield. 'H NMR
(400 MHz, CDCls): & 1.32 (m, 2H), 1.60 (m, 2H), 1.68 (m, 2H), 2.18 (t, J = 7.4 Hz, 2H),
2.23 (t,J =2.6 Hz, 1H), 3.52 (t, ] = 7.2 Hz, 2H), 4.04 (dd, J = 5.2 Hz, J = 2.6 Hz, 2H),
6.68 (s, 2H).

Biotin PEGylated G1 alkyne conjugate (3-19)

To a solution of biotin PEGylated G1 PAMAM dendrimer 3-8 (65 mg, 0.013 mmol) in
methanol (1 mL) was added TCEP (0.5 M) (80 uL, 0.040 mmol) dropwise. The reaction
mixture was allowed to stir at 0 °C for 20 min. Maleimido alkyne spacer 3-18 (20 mg,
0.081 mmol) was then added. The reaction mixture was allowed to stir at room
temperature for 2 days. Upon the reaction was completed, the reaction mixture was
directly purified by dialysis against methanol (3 x 1000 mL) for three days. Then the
solvent was removed by evaporation to give biotin PEGylated G1 alkyne conjugate 3-19
as white solid (67 mg, 0.025 mmol) in 94% yield. The product was further purified by
preparative HPLC before use in the next step. 'H NMR (700 MHz, DMSO-d6): & 1.20
(m, 2H), 1.27 (m, 8H), 1.46 (m, 16H), 1.60 (m, 4H), 2.06 (t, J = 7.4 Hz, 10H), 2.31 (t,J =
6.4 Hz, 8H), 2.40 (s, 1H), 2.58 (m, 8H), 2.82 (dd, J = 12.4 Hz, 5.1 Hz, 4H), 3.08 (m,
24H), 3.18 (m, 12H), 3.36 (m, 24H), 3.49 (m, 32H), 3.58 (t, ] = 6.5 Hz, 8H), 3.82 (dd, J =
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5.4 Hz, 2.5 Hz, 2H), 4.12 (m, 4H), 4.30 (m, 4H), 6.37 (s, 4H), 6.42 (s, 4H), 6.55 (br. s,
2H), 7.84 (t, J = 5.6 Hz, 4H), 8.23 (s, 4H), 8.43 (br. s, 2H), 9.43 (s, 2H), 9.58 (s, 1H).
MALTI-TOF-MS: observed Mw 2730.0 (calculated exact mass 2726.40; calculated Mw
2728.44). ESI-MS: 1364.8 [M+2H]*", 910.2 [M+3H]*", 682.9 [M+4H]*".

Biotin PEGylated G1 FITC conjugate (3-20)

To a 5 mL vial biotin PEGylated G1 alkyne conjugate 3-19 (9.0 mg, 0.0033 mmol) and
FITC-PEG;3-azide 3-15 (4.0 mg, 0.0066 mmol) were dissolved in DMF (0.8 mL). The
vial was purged with nitrogen for three times. After that, copper sulfate pentahydrate (1.7
mg, 0.0066 mmol) dissolved in water (0.1 mL) was added into the mixture under
nitrogen. Sodium ascorbate (1.4 mg, 0.0066 mmol) dissolved in water (0.1 mL) was then
added into the reaction mixture under nitrogen to afford an orange solution. The reaction
was monitored by ESI-MS. Upon the reaction was completed, the reaction mixture was
directly purified by preparative HPLC, and the solvent was removed by freezer-drier to
give biotin PEGylated G1 FITC conjugate 3-20 as an orange solid (8.6 mg, 0.0026 mmol)
in 78% yield. '"H NMR (700 MHz, DMSO-d6): § 1.20 (m, 2H), 1.27 (m, 8H), 1.46 (m,
16H), 1.60 (m, 4H), 2.06 (t, J = 7.4 Hz, 10H), 2.31 (t, J = 6.4 Hz, 8H), 2.58 (m, 8H), 2.82
(dd, J = 12.4 Hz, 5.1 Hz, 4H), 3.08 (m, 24H), 3.18 (m, 12H), 3.31 (m, 16 H), 3.36 (m,
24H), 3.49 (m, 32H), 3.58 (t, J = 6.5 Hz, 8H), 3.82 (dd, J = 5.4 Hz, 2.5 Hz, 2H), 4.12 (m,
4H), 4.30 (m, 4H), 6.37 (s, 4H), 6.42 (s, 4H), 6.55 (br. s, 3H), 6.60 (d, J = 8.7 Hz, 1H),
6.66 (s, 1H), 7.84 (t, ] = 5.6 Hz, 4H), 8.23 (s, 4H), 8.43 (br. s, 2H), 9.43 (s, 2H), 9.58 (s,
1H). 7.16 (d, ] = 8.2 Hz, 1H), 7.73 (d, J = 7.9 Hz, 1H), 8.08 (s, 1H), 8.25 (s, 1H), 9.63 (s,
2H), 9.77 (s, 1H), 10.12 (m, 3H). MALTI-TOF-MS: observed Mw 3336.0 (calculated
exact mass 3333.57; calculated Mw 3336.08). ESI-MS: 1112.7 [M+3H]*", 834.7
[M+4H]", 668.0 [M+5H]".

Biotin PEGylated G1 linker SB-T-1214 conjugate (3-21)

To a 5 mL vial biotin PEGylated G1 alkyne conjugate 3-19 (9.7 mg, 0.0036 mmol) and
SB-T-1214-linker-PEG3;-azide 3-14 (4.8 mg, 0.0036 mmol) were dissolved in DMF (0.8
mL). The vial was purged with nitrogen for three times. After that, copper sulfate
pentahydrate (0.9 mg, 0.0036 mmol) dissolved in water (0.1 mL) was added into the
mixture under nitrogen. Sodium ascorbate (0.7 mg, 0.0036 mmol) dissolved in water (0.1
mL) was then added into the reaction mixture under nitrogen to afford a colorless
solution. The reaction was monitored by ESI-MS. Upon the reaction was completed, the
reaction mixture was directly purified by preparative HPLC, and the solvent was
removed by freezer-drier to give biotin PEGylated G1 linker SB-T-1214 conjugate 3-21
as a white solid (11.8 mg, 0.0029 mmol) in 81% yield. '"H NMR (700 MHz, DMSO-d6):
0 0.88 (m, 1H), 0.96 (m, 2H), 1.03 (m, 4H), 1.18 (m, 4H), 1.29 (m, 8H), 1.39 (s, 9H),
1.45 (m, 16H), 1.60 (m, 6H), 1.72 (m, 3H), 1.82 (s, 3H), 2.06 (m, 9H), 2.30 (m, 9H), 2.58
(m, 10H), 2.65 (br. s, 3H), 2.80 (dd, J = 12.4 Hz, J = 5.1 Hz, 4H), 2.96 (m, 1H), 3.08 (m,
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16H), 3.18 (m, 12H), 3.38 (m, 20H), 3.49 (m, 36H), 3.55 (m, 2H), 3.58 (t, J = 6.5 Hz,
8H), 3.65 (d, J = 7.1 Hz), 3.78 (t, ] = 5.3 Hz, 2H), 3.97 (m, 2H), 4.03 (m, 2H), 4.08 (m,
2H), 4.13 (m, 4H), 4.26 (m, 2H), 4.31 (m, 4H), 4.48 (t, J = 5.2 Hz, 2H), 4.70 (m, 1H),
4.80 (d, J = 7.8 Hz, 1H), 4.93 (m, 2H), 5.14 (m, 1H), 5.46 (d, J = 7.1 Hz, 1H), 5.98 (s,
1H), 6.31 (s, 1H), 6.37 (m, 3H), 6.42 (m, 4H), 7.23 (m, 1H), 7.26 (m, 1H), 7.31 (m, 1H),
7.37 (m, 1H), 7.53 (t, J = 7.9 Hz, 2H), 7.66 (t, ] = 7.4Hz, 1H), 7.74 (d, J = 7.8 Hz, 1H),
7.84 (m, 4H), 7.94 (m, 3H), 8.00 (d, J = 7.6 Hz, 2H), 8.26 (m, 4H), 8.44 (s, 2H), 9.43 (s,
2H), 9.59 (s, 1H). MALTI-TOF-MS: observed Mw 4065.9 (calculated exact mass
4061.95; calculated Mw 4065.02). ESI-MS: 1356.8 [M+3H]>", 1017.0 [M+4H]"", 813.8
[M+5H]".

Biotin PEGylated G3 alkyne conjugate (3-22)

To a solution of biotin PEGylated G3 PAMAM dendrimer 3-9 (87 mg, 0.0042 mmol) in
DMF (1 mL) was added TCEP (0.5 M) (26 uL, 0.013 mmol) dropwise. The reaction
mixture was allowed to stir at 0 °C for 20 min. Maleimido alkyne spacer 3-18 (10 mg,
0.040 mmol) was then added. The reaction mixture was allowed to stir at room
temperature for 2 days. Upon the reaction was completed, the reaction mixture was
directly purified by dialysis against methanol (3 x 1000 mL) for three days. Then the
solvent was removed by evaporation to give biotin PEGylated G3 alkyne conjugate 3-22
as white solid (77 mg, 0.0072 mmol) in 86% yield. The product was further purified by
preparative HPLC before use in the next step. MALTI-TOF-MS: observed Mw 10621.5
(calculated exact mass 10614.62; calculated Mw 10622.38). ESI-MS: 1328.6 [M+8H]"",
1181.1 [M+9H]", 1063.4 [M+10H]""".

Biotin PEGylated G3 FITC conjugate (3-23)

To a 5 mL vial biotin PEGylated G3 alkyne conjugate 3-22 (24.5 mg, 0.0023 mmol) and
FITC-PEG;3-azide 3-15 (2.8 mg, 0.0046 mmol) were dissolved in DMF (0.8 mL). The
vial was purged with nitrogen for three times. After that, copper sulfate pentahydrate (1.2
mg, 0.0046 mmol) dissolved in water (0.1 mL) was added into the mixture under
nitrogen. Sodium ascorbate (0.9 mg, 0.0046 mmol) dissolved in water (0.1 mL) was then
added into the reaction mixture under nitrogen to afford an orange solution. The reaction
was monitored by ESI-MS. Upon the reaction was completed, the reaction mixture was
directly purified by preparative HPLC, and the solvent was removed by freezer-drier to
give biotin PEGylated G3 FITC conjugate 3-23 as an orange solid (13.4 mg, 0.0012
mmol) in 52% yield. MALTI-TOF-MS: observed Mw 11242.0 (calculated exact mass
11221.79; calculated Mw 11230.02). ESI-MS: 1404.8 [M+8H]*", 1247.7 [M+9H]"".

Biotin PEGylated G3 linker SB-T-1214 conjugate (3-24)

To a 5 mL vial biotin PEGylated G3 alkyne conjugate 3-22 (30.3 mg, 0.0029 mmol) and
SB-T-1214-linker-PEG3;-azide 3-14 (3.8 mg, 0.0029 mmol) were dissolved in DMF (0.8
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mL). The vial was purged with nitrogen for three times. After that, copper sulfate
pentahydrate (0.7 mg, 0.0029 mmol) dissolved in water (0.1 mL) was added into the
mixture under nitrogen. Sodium ascorbate (0.6 mg, 0.0029 mmol) dissolved in water (0.1
mL) was then added into the reaction mixture under nitrogen to afford a colorless
solution. The reaction was monitored by ESI-MS. Upon the reaction was completed, the
reaction mixture was directly purified by preparative HPLC, and the solvent was
removed by freezer-drier to give biotin PEGylated G3 linker SB-T-1214 conjugate 3-24
as a white solid (18.8 mg, 0.0016 mmol) in 55% yield. MALTI-TOF-MS: observed Mw
11966.6 (calculated exact mass 11950.17; calculated Mw 11958.95). ESI-MS: 1495.8
[M+8H]*, 1329.8 [M+9H]"".

tert-Butyl 14-0x0-4,7,10-trioxa-13-azaoctadec-17-yn-1-oate (3-25)

To a solution of 4-pentynoic acid (800 mg, 8.15 mmol), DIPEA (1.55 g, 12.0 mmol),
EDCHCI (2.30 g, 12.0 mmol) and DMAP (1.47 g, 12.0 mmol) dissolved in DCM (40
mL), was added a solution of tert-butyl 12-amino-4,7,10-trioxadocecanoate 3-3 (2.78 g,
10.0 mmol) in DCM (20 mL) dropwise. The reaction mixture was allowed to stir at room
temperature overnight. Upon the reaction was completed, the solvent was evacuated and
the crude was purified by column chromatography on silica gel (gradient eluent:
DCM/methanol from 50/1 to 20/1) to give tert-butyl 14-oxo0-4,7,10-trioxa-13-azaoctadec-
17-yn-1-oate 3-25 as pale yellow oil (2.16 g, 6.05 mmol) in 74% yield. 'H NMR (400
MHz, CDCls): 6 1.44 (s, 9H), 2.01 (t, J = 2.6 Hz, 1H), 2.41 (t, ] = 6.8 Hz, 2H), 2.2.51 (m,
4H), 3.46 (m, 2H), 3.56 (t, ] = 4.8 Hz, 2H), 3.64 (m, 8H), 3.72 (t, ] = 2.6 Hz, 2H), 6.26 (s,
1H). ESI-MS m/z : 358.2 [M+H]".

14-Oxo0-4,7,10-trioxa-13-azaoctadec-17-yn-1-oic acid (3-26)

To a solution of fert-butyl 14-ox0-4,7,10-trioxa-13-azaoctadec-17-yn-1-oate 3-25 (2.16 g,
6.05 mmol) in DCM (20 mL), was added TFA (5 mL) dropwise. The reaction mixture
was allowed to stir at room temperature overnight. Upon the reaction was completed, the
solvent was evacuated and the crude was purified by column chromatography on silica
gel (gradient eluent: DCM/methanol from 50/1 to 10/1) to give 14-ox0-4,7,10-trioxa-13-
azaoctadec-17-yn-1-oic acid 3-26 as pale yellow oil (1.73 g, 5.76 mmol) in 95% yield. 'H
NMR (400 MHz, CDCl3): 6 2.01 (t, J = 2.6 Hz, 1H), 2.45 (t, ] = 6.4 Hz, 2H), 2.53 (m,
2H), 2.63 (t, J = 6.0 Hz, 2H), 3.49 (m, 2H), 3.59 (t, J = 5.0 Hz, 2H), 3.64 (m, 8H), 3.79 (t,
J=5.9 Hz, 2H), 6.58 (br s, 1H).

2,5-Dioxopyrrolidin-1-yl 14-0x0-4,7,10-trioxa-13-azaoctadec-17-yn-1-oate (3-27)

To a solution of 14-0x0-4,7,10-trioxa-13-azaoctadec-17-yn-1-oic acid 3-26 (1.73 g, 5.76
mmol) in DCM (40 mL) was added EDCHCI (1.33 g, 6.91 mmol) and NHS (785 mg,
6.91 mmol). The reaction mixture was allowed to stir at room temperature overnight.
Upon the reaction was completed, the solvent was evacuated and the crude was purified
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by column chromatography on silica gel (gradient eluent: DCM/methanol from 50/1 to
10/1) to give 2,5-dioxopyrrolidin-1-yl 14-ox0-4,7,10-trioxa-13-azaoctadec-17-yn-1-oate
3-27 as pale yellow oil (1.78 g, 4.47 mmol) in 78% yield. "H NMR (400 MHz, CDCLs): &
2.02 (m, 1H), 2.43 (m, 2H), 2.52(m, 2H), 2.62 (m, 1H), 2.75 (s, 4H), 2.84 (m, 3H), 2.94
(m, 2H), 3.46 (m, 2H), 3.59 (m, 10H), 3.78 (m, 1H), 3.84 (m, 1H), 5.30 (s, IH). ESI-MS
m/z : 399.1 [M+H]".

Alkyne PEGylated G1 PAMAM dendrimer (3-28)

To a solution of G1 PAMAM dendrimer (DNT-294, 20 w% in methanol) (80 mg, 0.0525
mmol) in methanol (2 mL) was added a solution of 2,5-dioxopyrrolidin-1-yl 14-oxo-
4,7,10-trioxa-13-azaoctadec-17-yn-1-oate 3-27 (500 mg, 1.26 mmol) in methanol (4 mL).
The reaction mixture was allowed to stir at room temperature for three days. Upon the
reaction was completed, the reaction mixture was directly purified by dialysis against
methanol (3 x 1000 mL) for three days. Then the solvent was removed by evaporation to
give alkyne PEGylated G1 PAMAM dendrimer 3-28 as pale yellow solid (186 mg,
0.0491 mmol) in 93% yield. MALTI-TOF-MS: observed Mw 3807.8 (calculated exact
mass 3786.13; calculated Mw 3788.59). ESI-MS: 948.0 [M+4H]*", 758.6 [M+5H]"".

Bismaleimido linker (3-29)

To a solution of mixed anhydride (1.12 g, 3.96 mmol) in 20 mL THF, was added PEG-
diamine (418 mg, 1.90 mmol) diluted with 5 mL THF dropwise at 0 °C. The reaction
mixture was allowed to warm to room temperature and stir under nitrogen for overnight.
The reaction mixture was then concentrated to remove solvent and purified by column
chromatography on silica gel (gradient eluent: DCM/methanol from 50/1 to 10/1) to give
bismaleimide  crosslinker  N,N'-(((oxybis(ethane-2,1-diyl))bis(oxy))bis(propane-3,1-
diyl))bis(4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)butanamide) 3-29 (873 mg, 1.59
mmol) as white solid in 84% yield. '"H NMR (400 MHz, CDCl): & 1.78 (m, 4H), 1.93
(m, 4H), 2.15 (t, J = 7.2 Hz, 4H), 3.34 (dd, J = 6.6 Hz, ] = 12.6 Hz, 4H), 3.60 (m, 16H),
6.35 (br. s, 2H), 6.70 (s, 4H).

ABTDI1 (3-31)

To a 2 mL vial biotin-G3-G1-alkyne conjugate 3-30 (5.5 mg, 0.00043 mmol) and SB-T-
1214-linker-PEGs-azide 3-14 (12 eq) were dissolved in DMF (0.4 mL). The vial was
purged with nitrogen for three times. After that, copper sulfate pentahydrate (12 eq)
dissolved in water (0.05 mL) was added into the mixture under nitrogen. Sodium
ascorbate (12 eq) dissolved in water (0.05 mL) was then added into the reaction mixture
under nitrogen to afford a colorless solution. After overnight reaction, 200 pL of the
reaction mixture was taken out, diluted with CH3;CN/H,O (4/1) and directly characterized
by GPC.
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ABTD3 (3-32)

To a 2 mL vial biotin-G3-G1-alkyne conjugate 3-30 (3.0 mg, 0.00023 mmol) and FITC-
PEG3-azide (20 eq) were dissolved in DMF (0.4 mL). The vial was purged with nitrogen
for three times. After that, copper sulfate pentahydrate (20 eq) dissolved in water (0.05
mL) was added into the mixture under nitrogen. Sodium ascorbate (20 eq) dissolved in
water (0.05 mL) was then added into the reaction mixture under nitrogen to afford a

yellow solution. After overnight reaction, 200 uL of the reaction mixture was taken out,
diluted with CH3CN/H,O (4/1) and directly characterized by GPC.

N’,N*-Bis-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-6-chloro-1,3,5-triazin-2,4-di
amine (3-33)

To cyanuric chloride (500 mg, 2.71 mmol) dissolved in freshly distilled anhydrous THF
(15 mL) in a 50 mL round bottomed flask, was added amino-PEGs-azide 3-13 (1.30 g,
5.96 mmol) in freshly distilled anhydrous THF (10 mL) dropwise. DIPEA (700 mg, 5.42
mmol) was then slowly added dropwise. The reaction mixture was allowed to slowly
warm up to 60 °C in an oil bath and stirred overnight. Upon the reaction was completed,
the solvent was evacuated and the crude was purified by column chromatography on
silica gel (gradient eluent: DCM/methanol from 50/1 to 10/1) to give product N°,N*-Bis-
(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-6-chloro-1,3,5-triazin-2,4-diamine 3-33 as
white solid (838 mg, 1.53 mmol) in 57% yield and side product N-(2-(2-(2-(2-
azidoethoxy)ethoxy)ethoxy)ethyl)-4,6-dichloro-1,3,5-triazin-2-amine 3-42 as colorless
oil (275 mg, 0.751 mmol) in 28% yield. Product: 'H NMR (400 MHz, CDCls): & 3.40 (t,
J = 4.9 Hz, 4H), 3.64 (m, 28 H), 5.75 (br. s, 1H), 5.87 (br. s, 1H). °C NMR (100 MHz,
CDCl): 6 40.6, 40.7, 50.7, 69.4, 69.7, 70.1, 70.3, 70.5, 70.6, 70.7, 70.8. ESI-MS m/z :
548.3 [M+H]". Side product: 'H NMR (400 MHz, CDCls): & 3.40 (t, ] = 4.9 Hz, 4H),
3.70 (m, 14 H), 6.65 (br. s, 1H). °C NMR (100 MHz, CDCl;): & 41.3, 50.7, 68.9, 70.1,
70.5, 70.6, 70.7, 70.8. ESI-MS m/z : 366.0 [M+H]".

Mono-Boc-1,4-diaminobutane (3-34)

To 1,4-diaminobutane (4.41 g, 50.0 mmol) dissolved in DCM (1.25 L), was added di-
tert-butyl dicarbonate (1.09 g, 5.00 mmol) in DCM (100 mL) dropwise within 4 hours via
an additional funnel. The reaction mixture turned milky and was allowed to stir overnight
at room temperature. Upon completion, the reaction mixture was concentrated and water
was added to dissolve the white precipitate. Then the mixture was extracted with DCM (3
x 80 mL). The organic layer was collected, washed with brine (3 x 30 mL), and dried
over anhydrous magnesium sulfate. The magnesium sulfate was subsequently removed
by vaccum filtration and the filtrate was concentrated in vacuo to afford product mono-
Boc-1,4-diaminobutane 3-34 as pale yellow oil (902 mg, 4.77 mmol) in 95% yield. 'H
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NMR (400 MHz, CDCLy): & 1.42 (s, 9H), 1.48 (m, 4H), 2.70 (t, ] = 6.4 Hz, 2H), 3.11 (m,
2H), 4.69 (br. s, IH). ESI-MS m/z : 189.1 [M+H]".

tert-Butyl (4-((4,6-bis((2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)amino)-1,3,5-
triazin-2-yl)amino)butyl)carbamate (3-35)

To N’ ,N*-bis-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-6-chloro-1,3,5-triazin-2,4-di
amine 3-33 (480 mg, 0.878 mmol) dissolved in freshly distilled anhydrous THF (16 mL)
in a 50-mL round-bottom flask, was added mono-Boc-1,4-diaminobutane 3-34 (412 mg,
2.19 mmol). DIPEA (283 mg, 2.19 mmol) was then slowly added dropwise. The reaction
mixture was allowed to slowly heat up to reflux in an oil bath and stirred overnight. Upon
the reaction was completed, the solvent was removed in vacuo and the crude was purified
by column chromatography on silica gel (gradient eluent: DCM/methanol from 100/1 to
100/3) to give product fert-butyl (4-((4,6-bis((2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)
ethyl)amino)-1,3,5-triazin-2-yl)amino)butyl)carbamate 3-35 as pale yellow sticky oil
(558 mg, 0.797 mmol) in 91% yield. "H NMR (400 MHz, CDCLs): § 1.44 (s, 9H), 1.54
(m, 4H), 3.14 (m, 2H), 3.35 (m, 2H), 3.38 (t, J = 5.1 Hz, 4H), 3.64 (m, 28H), 4.83 (br. s,
1H), 5.25 (br. s, 1H). ESI-MS m/z : 700.4 [M+H]".

Tri-branched spacer (3-36)

To a solution of fert-butyl (4-((4,6-bis((2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)
ethyl)amino)-1,3,5-triazin-2-yl)amino)butyl)carbamate 3-35 (100 mg, 0.143 mmol) in
THF/H,0O (1 mL/1 mL) in a 10 mL round-bottomed flask, was added maleimido alkyne
spacer 3-18 (71 mg, 0.29 mmol), copper sulfate pentahydrate (71 mg, 0.29 mmol) and
ascorbic acid (60 mg, 0.34 mmol). The reaction mixture was allowed to stir at room
temperature under inert condition and solution shows yellow color. The reaction was
monitored by TLC and was completed after 2 h. The mixture was dried in vacuo to
remove THF, and aqueous layer was extracted with DCM (~ 5 x 30 mL). The organic
layer was combined and dried in vacuo. The crude was further purified by column
chromatography on neutral alumina gel (gradient eluent: DCM/methanol from 50/1 to
20/1) to give tri-branched spacer 3-36 as pale yellow sticky oil (117 mg, 0.0978 mmol) in
68% yield. '"H NMR (400 MHz, CDCly): § 1.26 (m, 4H), 1.41 (s, 9H), 1.60 (m, 12H),
2.15 (t, J =7.5 Hz, 4H), 3.11 (dd, J = 12 Hz, J = 5.8 Hz, 2H), 3.33 (m, 2H), 3.46 (t, J =
7.2 Hz, 4H), 3.57 (m, 24H), 3.85 (t, J = 4.4 Hz, 4H), 4.47 (m, 8H), 6.66 (s, 4H), 7.70 (s,
2H). °C NMR (100 MHz, CDCl;): & 25.0, 26.4, 27.2, 28.3, 28.4, 34.9, 36.1, 37.6, 40.5,
50.3, 53.4, 69.4, 69.8, 70.3, 70.5, 79.1, 123.3, 134.1, 144.5, 156.1, 170.8, 172.8. ESI-MS
m/z : 1196.6 [M+H]".

Compound 3-37

To a solution of tri-branched spacer 3-36 (117 mg, 0.0978 mmol) in DCM (5 mL) was
added TFA (0.5 mL) dropwise. The reaction mixture was stirred at room temperature
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overnight. Upon the reaction was completed, the reaction mixture was concentrated in
vacuo to give crude product 3-37 as pale yellow sticky oil (183 mg, contain some TFA).
ESI-MS m/z : 548.8 [M+2H]"".

Compound 3-38

To a solution of compound 3-37 (0.0978 mmol, theoretical) in DCM (5 mL), was added
DIPEA (103 mg, 0.80 mmol) dropwise. DOTA-tris-fBu-mono-NHS ester (67 mg, 0.10
mmol) was then added to the reaction mixture. The reaction mixture was stirred at room
temperature for 3 h. Upon the reaction was completed, the solvent was evacuated and the
crude was purified by column chromatography on neutral alumina gel (gradient eluent:
DCM/methanol from 50/1 to 20/1) to give product 3-38 as white sticky solid (104 mg,
0.0630 mmol) in 65% yield. "H NMR (400 MHz, CDCls):  1.26 (m, 4H), 1.43 (m, 27H),
1.60 (m, 12H), 2.20 (t, J = 7.5 Hz, 4H), 2.34 (br. m, 24 H), 3.19 (m, 2H), 3.33 (m, 2H),
3.46 (m, 6H), 3.45 (m, 8H), 3.57 (m, 24H), 3.85 (t, J = 5.1 Hz, 4H), 4.47 (m, 8H), 5.05
(br. s, 1H), 5.27 (br. s, 2H), 6.65 (s, 4H), 7.10 (br. s, 2H), 7.76 (s, 2H), 8.84 (br. s, 1H).
C NMR (100 MHz, CDCLy): & 25.1, 26.4, 27.3, 28.0, 28.3, 35.0, 36.1, 37.7, 38.9, 40.3,
50.2,53.4,55.8,56.1, 69.5, 70.1, 70.2, 70.5, 81.8, 81.9, 123.3, 134.1, 144.8, 170.8, 171.5,
172.3, 173.0. ESI-MS m/z : 826.5 [M+2H]*", 551.1 [M+3H]".

Compound 3-39

To a solution of compound 3-38 (104 mg, 0.0630 mmol) in DCM (5 mL) was added TFA
(1.5 mL) dropwise. The reaction mixture was stirred at room temperature overnight.
Upon the reaction was completed, the reaction mixture was concentrated in vacuo to give
crude product 3-39 as pale yellow sticky solid (120 mg, TFA salt). MALTI-TOF-MS:
observed Mw 1483.3 (calculated exact mass 1481.77, calculated Mw 1482.67). ESI-MS
m/z : 798.5 [M+2H]*, 532.4 [M+3H]"".

Compound 3-40

To crude 3-39 (60 mg, 0.0315 mmol theoretically) in 4 mL water (milky solution) was
added gadolinium (III) chloride hexahydrate (14.2 mg, 0.0382 mmol). 1 M NaOH
solution was slowly added via a syringe. The solution slowly turned into light pink color
after 0.20 mL 1 M NaOH solution was added (pH = 7 at this point) while some white
precipitate slowly came out (gadolinium (III) hydroxide). The mixture was allowed to stir
at room temperature overnight and the reaction was monitored by MALDI-TOF-MS.
Upon the reaction was completed, the white precipitate was filtered off, and the filtrate
was concentrated in vacuo to afford product 3-40 as a light pink solid (66 mg) in
quantitative yield. MALTI-TOF-MS: observed Mw 1636.9 (calculated exact mass
1636.67, calculated Mw 1636.89).

Conjugate 3-41
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To alkyne PEGylated G1 PAMAM dendrimer 3-28 (12 mg, 0.0032 mmol) dissolved in
MeOH (1.2 mL) was added TCEPHCI (0.5 M solution in water, 20 uL, 0.010 mmol)
dropwise. The reaction mixture was allowed to stir at room temperature for 20 min. Then
compound 3-40 in water (1.2 mL) was added dropwise. The reaction mixture was
allowed to stir at room temperature overnight. Upon the reaction was completed, the

solvent was removed by freezer-drier to give crude product 3-41 as pink solid (90 mg).
MALTI-TOF-MS: observed Mw 3536.1 (calculated Mw 3532.16).

N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4,6-dichloro-1,3,5-triazin-2-amine
(3-42)

To cyanuric chloride (366 mg, 1.99 mmol) dissolved in THF (16 mL) and cooled to 0 °C
was added DIPEA dropwise. Amino-PEGs-azide 3-13 (433 mg, 1.99 mmol) in THF (8
mL) was then added dropwise. White precipitate came out. The reaction mixture was
allowed to stir at room temperature overnight. Upon the reaction was completed, water
was added, and the mixture was extracted with ethyl acetate (3 x 50 mL). The organic
layer was collected, washed with brine (3 x 30 mL), and dried over anhydrous
magnesium sulfate. The magnesium sulfate was subsequently removed by vaccum
filtration and the filtrate was concentrated in vacuo. The resulting crude was further
purified by flash column chromatography on silica gel (gradient eluent: DCM/methanol
from 100/1 to 50/1) to afford N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4,6-
dichloro-1,3,5-triazin-2-amine 3-42 as pale yellow oil (601 mg, 1.64 mmol) in 83% yield.
'H NMR (400 MHz, CDCL3): & 3.40 (t, ] = 4.9 Hz, 2H), 3.70 (m, 14 H), 6.65 (br. s, 1H).
C NMR (100 MHz, CDCls): § 41.3, 50.7, 68.9, 70.1, 70.5, 70.6, 70.7, 165.8, 169.9,
170.8. ESI-MS m/z : 366.0 [M+H]".

Mono-Boc-PEG;-diamine (3-43)

To a solution of PEGs-diamine (1 eq) in 1,4-dioxane [0.60 M] was added a solution of
Boc anhydride (8 eq) in 1,4-dioxane [0.15 M] dropwise via an additional funnel. The
reaction mixture was allowed to stir at room temperature overnight. Upon the reaction
was completed, solvent 1,4-dioxane was removed by freezer-drier. Then water was
added, and the mixture was extracted with ethyl acetate (4 x 100 mL). The organic layer
was collected, washed with brine (3 x 30 mL), and dried over anhydrous magnesium
sulfate. The magnesium sulfate was subsequently removed by vaccum filtration and the
filtrate was concentrated in vacuo to afford product mono-Boc-PEG;-diamine 3-43 as
pale yellow oil in 87% yield. '"H NMR (400 MHz, CDCls): & 1.43 (br. s, 11H), 1.74 (m,
4H), 2.80 (m, 2H), 3.22 (m, 2H), 3.53 (m, 4H), 3.58 (m, 4H), 3.62 (m, 4H), 5.09 (s, 1H).
C NMR (100 MHz, CDCLy): & 28.5, 29.6, 33.3, 38.5, 39.7, 69.5, 69.6, 70.2, 70.3, 70.6,
70.7, 78.9, 156.1. ESI-MS m/z : 321.2 [M+H]".

Compound 3-44
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To N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-4,6-dichloro-1,3,5-triazin-2-amine 3-
42 (1 eq) dissolved in THF [0.20 M] was added DIPEA (3 eq) and mono-Boc-PEGs3-
diamine 3-43 (5 eq). The reaction mixture was allowed to heat up to reflux and stir at
reflux overnight. Upon the reaction was completed, water was added, and the mixture
was extracted with DCM (3 x 50 mL). The organic layer was collected, washed with
brine (3 x 30 mL), and dried over anhydrous magnesium sulfate. The magnesium sulfate
was subsequently removed by vaccum filtration and the filtrate was concentrated in
vacuo. The resulting crude was further purified by flash column chromatography on silica
gel (gradient eluent: DCM/methanol from 50/1 to 10/1) to afford compound 3-44 as pale
yellow oil in 85% yield. '"H NMR (400 MHz, CDCl3): & 1.43 (br. s, 18H), 1.76 (m, 8H),
3.21 (m, 4H), 3.38 (m, 4H), 3.60 (m, 40 H), 5.04 (br. s, 2H). °C NMR (100 MHz,
CDCl): 6 28.5, 29.6, 38.3, 50.7, 69.3, 69.6, 70.0, 70.1, 70.2, 70.3, 70.4, 70.5, 70.6, 70.7,
156.1. ESI-MS m/z : 934.5 [M+H] .

Compound 3-45

To compound 3-44 (200 mg, 0.214 mmol) dissolved in DCM (1.6 mL) was added TFA
(0.4 mL). The reaction mixture was allowed to stir at room temperature overnight. The
reaction was monitored by ESI-MS. Upon the reaction was completed, solvent and TFA
was evaporated in vacuo to give compound 3-45 as a yellow oil (crude TFA salt). The
crude was directly used in the next step without further purification. ESI-MS m/z : 734.5
[M+H]".

6-Maleimidocaproic acid OSu ester (3-46)

To 6-maleimidocaproic acid 3-16 (211 mg, 1.00 mmol) dissolved in DCM (10 mL) was
added EDCHCI (345 mg, 1.80 mmol) and NHS (207 mg, 1.80 mmol). The reaction
mixture was allowed to stir at room temperature for overnight. Upon the reaction was
completed, water was added, and the mixture was extracted with DCM (3 x 30 mL). The
organic layer was collected, washed with brine (3 x 30 mL), and dried over anhydrous
magnesium sulfate. The magnesium sulfate was subsequently removed by vaccum
filtration and the filtrate was concentrated in vacuo. The resulting crude was further
purified by flash column chromatography on silica gel (gradient eluent: DCM/methanol
from 50/1 to 20/1) to afford 6-maleimidocaproic acid OSu ester 3-46 as a colorless oil
(217 mg, 0.704 mmol) in 70% yield. '"H NMR (400 MHz, CDCl;): & 1.40 (m, 2H), 1.63
(m, 2H), 1.77 (m, 2H), 2.60 (t, J = 7.4 Hz, 2H), 2.83 (br. s, 4H), 3.53 (t, ] = 7.2 Hz, 2H),
6.68 (s, 2H).

Tri-branched spacer (3-47)

To tri-branched intermediate crude 3-45 in DCM (1 mL) was added excess potassium
carbonate (200 mg, 1.45 mmol) was added to neutralize TFA. 6-Maleimidocaproic acid
OSu ester 3-46 (198 mg, 0.642 mmol) was then added to the mixture. The reaction
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mixture was allowed to stir at room temperature for overnight. Upon the reaction was
completed, water was added, and the mixture was extracted with DCM (3 x 30 mL). The
organic layer was collected, washed with brine (3 x 30 mL), and dried over anhydrous
magnesium sulfate. The magnesium sulfate was subsequently removed by vaccum
filtration and the filtrate was concentrated in vacuo. The resulting crude was further
purified by flash column chromatography on silica gel (gradient eluent: DCM/methanol
from 50/1 to 10/1) to afford compound 3-47 as pale yellow oil (102 mg, 0.0912 mmol) in
43% yield. '"H NMR (400 MHz, CDCl3): & 1.29 (m, 6H), 1.62 (m, 8H), 1.75 (m, 4H),
1.82 (m, 4H), 2.12 (t, ] = 7.4 Hz, 4H), 3.34 (m, 4H), 3.39 (t, J = 5.2 Hz, 2H), 3.43 (m,
4H), 3.50 (m, 4H), 3.54 (m, 8H), 3.60 (m, 12H), 3.67 (m, 16H), 6.20 (br. s, 3H), 6.68 (s,
4H).

Boc protected G1 PAMAM dendrimer (3-48)

To G1 PAMAM dendrimer (DNT-294) (100 mg, 0.0657 mmol) in methanol (3 mL) was
added Boc anhydride (344 mg, 1.58 mmol). The reaction mixture was allowed to stir at
room temperature for two days. Upon the reaction was completed, the reaction mixture
was directly purified by dialysis against methanol (3 x 1000 mL) for three days. Then the
solvent was removed by evaporation to give Boc protected G1 PAMAM dendrimer 3-48
as a white solid (107 mg, 0.0461 mmol) in 70% yield. ESI-MS m/z : 775.0 [M+3H]*",
581.6 [M+4H]*".

Conjugate 3-49

To a solution of Boc protected G1 PAMAM dendrimer 3-48 (18 mg, 0.0078 mmol) in
methanol (1 mL) was added a solution TCEPHCI (0.5 M solution in water, 47 uL, 0.024
mmol) dropwise. Tri-branched spacer 3-47 (90 mg, 0.080 mmol) was then added to the
mixture. The reaction mixture was allowed to stir at room temperature for 2 days. Upon
the reaction was completed, the reaction mixture was directly purified by dialysis against
methanol (3 x 1000 mL) for three days. Then the solvent was removed by evaporation to
give conjugate 3-49 as pale yellow solid. MALDI-TOF-MS: observed Mw 2284.2
(calculated exact mass 2281.34; calculated Mw 2282.82). ESI-MS: 761.8 [M+3H]*".

Compound 3-50

To cyanuric chloride (309 mg, 1.68 mmol) dissolved in THF (15 mL) and cooled to 0 °C
was added DIPEA dropwise. Mono-Boc-PEGs-diamine 3-43 (537 mg, 1.68 mmol) in
THF (5 mL) was then added dropwise. White precipitate came out. The reaction mixture
was allowed to stir at room temperature overnight. Upon the reaction was completed,
water was added, and the mixture was extracted with ethyl acetate (3 x 50 mL). The
organic layer was collected, washed with brine (3 x 30 mL), dried over anhydrous
magnesium sulfate, and concentrated in vacuo. The resulting crude was further purified
by flash column chromatography with increasing amount of (hexanes : ethyl acetate) to
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afford compound 3-50 as pale yellow oil (628 mg, 1.34 mmol) in 80% yield. 'H NMR
(300 MHz, CDCl5): 6 1.43 (s, 9H), 1.77 (m, 2H), 1.87 (m, 2H), 3.22 (m, 2H), 3.56 (t, J =
6.0 Hz, 2H), 3.64 (m, 12H), 4.93 (br. s, 1H), 7.01 (br. s, 1H).

Compound 3-51

To compound 3-50 (614 mg, 1.32 mmol) in THF (8 mL) was added DIPEA (255 mg,
1.97 mmol) dropwise. Amino-PEGs;-azide 3-13 (287 mg, 1.32 mmol) in THF (2 mL) was
then added dropwise. The reaction mixture was allowed to heat up to 50 °C and stir
overnight. Upon the reaction was completed, water was added, and the mixture was
extracted with DCM (3 x 50 mL). The organic layer was collected, washed with brine (3
x 30 mL), and dried over anhydrous magnesium sulfate. The magnesium sulfate was
subsequently removed by vaccum filtration and the filtrate was concentrated in vacuo.
The resulting crude was further purified by flash column chromatography on silica gel
(gradient eluent: DCM/methanol from 50/1 to 10/1) to afford compound 3-51 as pale
yellow oil (789 mg, 1.22 mmol) in 93% yield. 'H NMR (400 MHz, CDCl;): & 1.43 (s,
9H), 1.75 (m, 2H), 1.84 (m, 2H), 3.22 (m, 2H), 3.40 (m, 2H), 3.62 (m, 24H), 4.99 (br. s,
1H), 5.81 (m, 2H). °C NMR (100 MHz, CDCl3): & 28.5, 28.8, 29.6, 40.7, 50.7, 69.5,
70.1, 70.3, 70.5, 70.6, 70.7, 156.1, 165.8, 168.6.

Compound 3-52

To mono-Boc-PEGs-diamine 3-43 (842 mg, 2.63 mmol) in DCM (12 mL) was added
NsClI (700 mg, 3.16 mmol). TEA (320 mg, 3.16 mmol) was then added dropwise. White
precipitate slowly came out. The reaction mixture was allowed to stir at room
temperature overnight. Upon the reaction was completed, water was added, and the
mixture was extracted with DCM (3 x 50 mL). The organic layer was collected, washed
with brine (3 x 30 mL), and dried over anhydrous magnesium sulfate. The magnesium
sulfate was subsequently removed by vaccum filtration and the filtrate was concentrated
in vacuo. The resulting crude was further purified by flash column chromatography on
silica gel (gradient eluent: hexanes/ethyl acetate from 3/1 to 1/4) to afford compound 3-
52 as pale yellow oil (1.28 g, 2.53 mmol) in 96% yield. "H NMR (400 MHz, CDCl;): &
1.41 (s, 9H), 1.74 (m, 4H), 3.22 (m, 4H), 3.57 (m, 8H), 3.64 (m, 2H), 4.98 (br. s, 1H),
6.02 (m, 1H), 7.71 (m, 2H), 7.81 (m, 1H), 8.10 (m, 1H). °C NMR (100 MHz, CDCl;): &
28.4,28.9, 29.0, 29.6, 38.6, 42.5, 42.6, 69.6, 69.7, 69.8, 70.2, 70.3, 70.4, 70.5, 70.6, 78.8,
125.2, 131.0, 132.6, 132.6, 133.4, 133.8, 133.9, 148.1, 156.0. ESI-MS m/z : 506.3
[M+H]".

Compound 3-53

To compound 3-52 (628 mg, 1.24 mmol) in DCM (2 mL) was added TFA (0.5 mL). The
reaction mixture was allowed to stir at room temperature overnight. The reaction was
monitored by ESI-MS. Upon the reaction was completed, solvent and TFA was
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evaporated in vacuo to give compound 3-53 as a yellow oil. The crude was directly used
in the next step without further purification. ESI-MS m/z : 406.3 [M+H]".

Compound 3-54

To compound 3-53 (1.24 mmol) in THF (5 mL) was added DIPEA (491 mg, 3.80 mmol)
to remove TFA. Compound 3-51 (260 mg, 0.400 mmol) was then added. The reaction
mixture was allowed to heat up to reflux and stir at reflux overnight. Upon the reaction
was completed, water was added, and the mixture was extracted with DCM (3 x 50 mL).
The organic layer was collected, washed with brine (3 x 30 mL), and dried over
anhydrous magnesium sulfate. The magnesium sulfate was subsequently removed by
vaccum filtration and the filtrate was concentrated in vacuo. The resulting crude was
further purified by flash column chromatography on silica gel (gradient eluent:
DCM/methanol from 50/1 to 20/1) to afford compound 3-54 as pale yellow oil (191 mg,
0.188 mmol) in 47% yield. '"H NMR (400 MHz, CDCLy): § 1.42 (s, 9H), 1.77 (m, 8H),
3.21 (m, 4H), 3.40 (m, 6H), 3.55 (m, 20H), 3.66 (m, 18H), 5.04 (br. s, 1H), 5.39 (br. s,
2H), 6.01 (br. s, 1H), 7.70 (m, 2H), 7.82 (m, 1H), 8.11 (m, 1H). ESI-MS m/z : 1019.5
[M+H]".

Compound 3-55

To compound 3-54 (182 mg, 0.179 mmol) in DMF (2 mL) was added potassium
carbonate (74 mg, 0.537 mmol) and thiophenol (39 mg, 0.358 mmol). The reaction
mixture was allowed to stir at room temperature for overnight. Upon the reaction was
completed, DMF was removed by freezer drier. The resulting crude was further purified
by flash column chromatography on neutral alumina gel (gradient eluent: DCM/methanol
from 50/1 to 6/1) to afford compound 3-55 as pale yellow oil (106 mg, 0.127 mmol) in
71% yield. ESI-MS m/z : 833.8 [M+H]".

Compound 3-56

To compound 3-55 (106 mg, 0.127 mmol) in THF (2 mL) and cooled to 0 °C was added
mixed anhydride 3-17 (44 mg, 0.140 mmol). The reaction mixture was allowed to stir at
room temperature for overnight. Upon the reaction was completed, water was added, and
the mixture was extracted with DCM (3 x 30 mL). The organic layer was collected,
washed with brine (3 x 30 mL), and dried over anhydrous magnesium sulfate. The
magnesium sulfate was subsequently removed by vaccum filtration and the filtrate was
concentrated in vacuo. The resulting crude was further purified by flash column
chromatography on silica gel (gradient eluent: DCM/methanol from 50/1 to 10/1) to
afford compound 3-56 as pale yellow oil (74 mg, 0.072 mmol) in 57% yield. 'H NMR
(400 MHz, CDCls): & 1.23 (m, 4H), 1.40 (s, 9H), 1.55 (m, 4H), 1.71 (m, 4H), 1.79 (m,
4H), 2.07 (t, J = 7.5 Hz, 2H), 3.18 (m, 2H), 3.30 (m, 2H), 3.42 (m, 6H), 3.56 (m, 36H),
3.73 (m, 1H), 3.84 (m, 1H), 3.96 (m, 1H), 4.11 (m, 1H), 4.57 (d, J = 11.0 Hz, 1H), 5.08
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(br. s, 1H), 4.29 (br. s, 2H), 4.49 (d, J = 11.0 Hz, 1H), 6.29 (br. s, 1H). ESI-MS m/z :
1026.7 [M+H]".

Compound 3-57

To compound 3-56 dissolved in DCM [0.1 M] was added TFA (20% v). The reaction
mixture was allowed to stir at room temperature overnight. The reaction was monitored
by ESI-MS. Upon the reaction was completed, solvent and TFA was evaporated in vacuo
to give compound 3-57 as a yellow oil. The crude was directly used in the next step
without further purification.

Compound 3-58

To a solution of Boc protected GI PAMAM dendrimer 3-48 (50 mg, 0.022 mmol) in
methanol (1 mL) was added a solution TCEPHCI (0.5 M solution in water, 130 uL, 0.065
mmol) dropwise. 6-Maleimidocaproic acid 3-16 (9.0 mg, 0.043 mmol) was then added to
the mixture. The reaction mixture was allowed to stir at room temperature for 2 days.
Upon the reaction was completed, the reaction mixture was directly purified by dialysis
against methanol (3 x 1000 mL) for three days. Then the solvent was removed by
evaporation to give compound 3-58 as a white solid. ESI-MS m/z : 1374.8 [M+H]", 687.5
[M+2H]*".

Cell Culture

ID8 (ovary), MCF7 (breast) and HCT116 (colon) cell lines were cultured as monolayers
on 100 mm tissue culture dishes in the RPMI-1640 cell culture medium (Gibco)
supplemented with 10% (v/v) heat-inactivated fetal bovine serum (FBS) as well as 1%
(v/v) penicillin and streptomycin (P/S) at 37 °C in a humidified atmosphere with 5%
CO,. The cells were harvested and collected by centrifugation at 950 rpm for 5 min, and
finally suspended in fresh cell culture medium containing different cell densities for
subsequent biological experiments and analysis.

Incubation of Cells with the fluorescent probes

The cell suspension at 5 x 10° cells/well was split into each well of a 6-well plate with 3
mL RPMI-1640 cell culture medium and allowed to grow for 24 h. The fluorescent probe
in DMSO was diluted in RPMI-1640 cell culture medium (3 mL) at final concentration of
10 uM for multi-binding effect study and internalization through receptor-mediated
endocytosis (RME) study, respectively, and was used to replace the medium in each well
followed by incubated at 37 °C for different periods. One well with cells was incubated
without any fluorescent probes as control for different periods. After incubation, the
medium was aspirated and the cells were washed twice with PBS, collected by
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centrifugation, and resuspended in 300 pL PBS for flow cytometry fluorescein
measurement and confocal microscopy imaging.

Flow Cytometry Fluorescent Measurements of the Cells

Flow cytometry analysis of the treated cells was performed with a flow cytometer,
FACSCalibur, operating at a 488 nm excitation wavelength and detecting emission
wavelengths with a 530/30 nm bandpass filter. At least 10,000 cells were counted for
each experiment using CellQuest 3.3 software (Becton Dickinson) and the distribution of
FITC fluorescence was analyzed using WinMDI 2.8 freeware (Joseph Trotter, Scripps
Research Institute). Propidium iodide staining was used in all experiments to rule out
dead cell count in the analysis.

Confocal Microscopy Imaging of the Treated Cells

Cells treated as described above were dropped onto an uncoated glass dish (MatTek
Corp.). Confocal fluorescence microscopy (CFM) experiments were performed using a
Zeiss LSM 510 META NLO two-photon laser scanning confocal microscope system,
operating at a 488 nm excitation wavelength and at 527 (23 nm detecting emission
wavelength using a 505-550 nm bandpass filter. Images were captured using a C-
Apochromat 63 x /1.2 water (corr.) objective or a Plan-Apochromat 100 x /1.45 oil
objective. Acquired data were analyzed using LSM 510 META software.

In Vitro Cytotoxicity Assay

The cytotoxicity of taxoids and conjugates were evaluated by means of a quantitative
colorimetric assay using a tetrazolium salt-based analysis (“MTT assay”; MTT = 3-(4,5-
dimeth-ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; Sigma Chemical Co.). The
inhibitory activity of each compound is represented by the ICsy value, which is defined as
the concentration required for inhibiting 50% of the cell growth. Cells were harvested,
collected, and resuspended in 200 pL medium at a concentration of ~0.5 x 10° cells per
well over a 96-well plate. Cells were allowed to descend to the bottom of the plates
overnight and fresh medium was added to each well upon removal of the old medium. A
drug or drug conjugate in DMSO stock solution was diluted to a series of concentrations
in the cell culture medium to prepare test solutions. These test solutions at different
concentrations ranging from 500 pM to 5 uM (100 puL each) were added to the wells in
the 96-well plate and cells were subsequently cultured for 72 h. After removing the
old medium by aspiration, 50 uL. DPBS buffer containing MTT (0.5 mg/mL) was added
to each well and incubated at 37 °C for 3 h. The resulting DPBS buffer was then removed
and as-produced insoluble violet formazan crystals were dissolved into 50 pL. 0.1 N HCI
in isopropanol to give a violet solution. The plate was allowed to shake for 8 minutes to
fully dissolve the violet formazan crystal, then the spectrophotometric absorbance
measurement of each well in the 96-well plate was run at 568 nm. The ICs, values and
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their standard errors were calculated from the viability-concentration curve using the
Four Parameter Logistic Model of Sigmaplot. The concentration of DMSO per well was
< 1% in all cases.
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Chapter 4

Identification of Potential Binding Sites of Novel Benzimidazole Inhibitors with

FtsZ Proteins via Molecular Modeling for Antitubercular Drug Discovery
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§ 4.1 Introduction
§ 4.1.1 FtsZ as the Target for Antitubercular Drug Discovery

Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis
(Mtb), is a global threat especially because of the emerging multidrug-resistant TB
(MDR-TB) and extensively drug-resistant-TB (XDR-TB)." It was reported by the World
Health Organization (WHO) that 9.6 million new cases and 1.5 million deaths of TB
occurred worldwide in 2014."

Filamentous temperature-sensitive protein Z (FtsZ), an essential bacterial cell-
division protein and tubulin homolog, is a promising target for the development of new
antitubercular agents.”” As shown in Figure 4.1, FtsZ polymerizes into head-to-tail
longitudinal filaments in the presence GTP in vivo.” These filaments self-assembles into a
ring structure at the septum of the cell, which is termed “Z-ring”.’ During cell division,
FtsZ recruits other cell division proteins to undergo Z-ring contraction by using the
energy produced by the hydrolysis of GTP into GDP.>** Therefore, inhibition of FtsZ
assembly would block cell division, and lead to bacterial death, which makes FtsZ a

highly promising therapeutic target for antitubercular drug discovery.

Cell wall

(®) Nucleotide exchange

Cytoplasm
Cell membrane

@ Depolymerization

Polymerization

Steady state
turnover

O FtsZ-GTP

(©) GTP hydrolysis g @ FtsZ-GDP

Figure 4.1 Mechanism of FtsZ inhibition. Reprinted from Kumar, K.; Awasthi, D.;
Berger, W. T.; Tonge, P. J.; Slayden, R. A.; Ojima, 1. Discovery of anti-TB agents that
target the cell-division protein FtsZ. Future Med Chem 2010, 2, 1305-1323, with
permission from Future Science Ltd.
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§ 4.1.2 Crystal Structures of FtsZ Proteins

Crystal structures of FtsZ proteins have been reported since the pioneer work
reported by Jan Lowe’s group at MRC Laboratory of Molecular Biology in 1998.° A
crystal structure of FtsZ protein from M. jannaschii at 2.8 A resolution was determined,
which has a similar three-dimensional structure as a- and B- tubulin (Figure 4.2).° The
crystal structure shows FtsZ contains two domains, a GTPase domain and a carboxy-
terminal domain, which arranged around a central helix.” Since then, a number of FtsZ
protein crystal structures from different bacterial species have been reported.®® A search
of RCSB Protein Data Bank (PDB) reveals that 82 crystal structures of FtsZ proteins
have been released to date.

Figure 4.2 First reported crystal structure of FtsZ protein from M. jannaschii. (Generated
based on PDB code 1FSZ)

However, there are only a few reports of crystal structures of FtsZ protein from the
source of Mycobacterium tuberculosis (Mtb). In 2004, Leung et al. reported the first set
of FtsZ crystal structures from Mtb, which includes MtbFtsZ in complex with GTP-
gamma-S (PDB code 1RLU), GDP (PDB code 1RQ7), and citrate (PDB code 1RQ2)
respectively (Figure 4.3).° In all three crystal structures, FtsZ protein crystallized as a
tight, laterally oriented dimer, which is different from the longitudinal polymer of off
tubulin, suggesting FtsZ not only polymerize in a head-to-tail manner to form
protofilaments, but also could assembly in the lateral direction.” In addition to these three
crystal structures, similar MtbFtsZ structures in complex with citrate (PDB code 2Q1X)
or GTP-gamma-S (PDB code 2Q1Y) were released in PDB in 2008, however, no
literature has been published for these two new crystal structures yet.
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Figure 4.3 MtbFtsZ lateral dimer crystal structure in complex with GTP-gamma-S.
(Generated based on PDB code 1RLU)

Recently in 2013, Li et al. reported an interesting new curved trimer MtbFtsZ crystal
structure in complex with GDP in head-to-tail longitudinal arrangement (Figure 4.4).*
This crystal structure shows T3 loop adopts a relaxed conformation (R state), and far
away from T7 loop in the top subunit. In contrast, in the M¢bFtsZ straight head-to-tail
model, T3 loop adopts a tension conformation (T state), and interacts with T7 loop in the
top subunit extensively.® The authors proposed a hinge-opening mechanism for the
straight-to-curved conformational change at the longitudinal interface induced by GTP
hydrolysis (Figure 4.5). This hydrolysis-dependent conformation switch between
straight and curved structures may generate the constrictive force to drive cytokinesis
(Figure 4.6).*'""
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T7 loop

Figure 4.4 MtbFtsZ curved trimer head-to-tail crystal structure in complex with GDP.
(Generated based on PDB code 4KWE)
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Figure 4.5 Hinge-opening mechanism for the straight-to-curved conformational change
at the longitudinal interface induced by GTP hydrolysis. Reprinted from Li, Y.; Hsin, J.;
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Zhao, L. Y.; Cheng, Y. W.; Shang, W. N.; Huang, K. C.; Wang, H. W.; Ye, S. FtsZ
Protofilaments Use a Hinge-Opening Mechanism for Constrictive Force Generation.
Science 2013, 341, 392-395, with permission from AAAS.

GTP
hydrolysis

Figure 4.6 Schematic representation of membrane deformation due the force produced
by hydrolysis-induced FtsZ bending. Reprinted from Li, Y.; Hsin, J.; Zhao, L. Y.; Cheng,
Y. W.; Shang, W. N.; Huang, K. C.; Wang, H. W.; Ye, S. FtsZ Protofilaments Use a
Hinge-Opening Mechanism for Constrictive Force Generation. Science 2013, 341, 392-
395, with permission from AAAS.

Although there is no straight MtbFtsZ head-to-tail form crystal structure available to
represent the longitude interface of MbFtsZ protofilament, there is MjFtsZ head-to-tail
longitude dimer crystal structure with GTP and Mg*" soaked reported by Lowe et al. in
2004 (PDB code: 1W5A).® The authors used refolded MjFtsZ to crystallize a tubulin-like
protofilament, in which N- and C- terminal domains in two consecutive subunits in the
filament forms the GTPase catalytic site.® This provides a structural basis for building
straight MtbFtsZ head-to-tail model.

§ 4.1.3 Novel Benzimidazole Inhibitors Targeting FtsZ Proteins

Series of novel trisubstituted benzimidazoles targeting FtsZ have been designed,
synthesized and evaluated in the Ojima laboratory.'*"> Many of these novel FtsZ
inhibitors exhibit excellent activities against drug-sensitive and drug-resistant
tuberculosis strains.>'*""
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As shown in Figure 4.7, early screening of libraries of 2,5,6- and 2,5,7-trisubstituted
benzimidazoles against Mth H37Rv strain at 5 pg/ml gave rise to a good number of hit
compounds.'>"* Selected lead compounds showed excellent MIC values in the range of
0.39-6.1 pg/ml.'>"* After extensive optimization, more potent compounds were obtained.
For example, one of the lead compounds SB-P17G-C2 has a MIC value 0.06 pg/ml, and
the dose-dependent inhibition of FtsZ polymerization by this compound is shown in
Figure 4.8."

O
R? R“J\NH 587 compounds 81 hit compounds
| H H [ 5  atMIC 5 pg/mL
R1 N N X N
/>—R3 | />—R3 Cell-Based Assay Against H
HN N HN Z~N Mtb H37Rv cell line
4&0 R? /J% 11 hit compounds
R o © ) MIC 0.39-6.1 pg/mL
! O n
~ N N N N
=0 O
HN N HN N
0.63 pg/mL 0.39 pg/mL

H \ 8
C’“‘ N \/N N
-0 )
HN N HN N
©/\o/l§o 3 /@o 4
3.13 pg/mL 3.13 pg/mL
ol Hg

Figure 4.7 Early lead compounds from optimization of hit benzimidazoles. Reprinted
with permission from Kumar, K.; Awasthi, D.; Lee, S. Y.; Zanardi, .; Ruzsicska, B.;
Knudson, S.; Tonge, P. J.; Slayden, R. A.; Ojima, 1. Novel Trisubstituted
Benzimidazoles, Targeting Mtb FtsZ, as a New Class of Antitubercular Agents. J Med
Chem 2011, 54, 374-381. Copyright(2011) American Chemcial Society.
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Figure 4.8 Dose-dependent inhibition of FtsZ polymerization by SB-P17G-C2.
Reproduced with permission from Awasthi, D.; Kumar, K.; Knudson, S. E.; Slayden, R.
A.; Ojima, I. SAR Studies on Trisubstituted Benzimidazoles as Inhibitors of Mtb FtsZ for
the Development of Novel Antitubercular Agents. J Med Chem 2013, 56, 9756-9770.
Copyright (2013) American Chemcial Society.

It was found that these highly potent lead compounds inhibit FtsZ polymerization
through accelerating GTPase activity.”'> However, currently the binding site(s) of FtsZ
with these highly potent antitubercular agents is still unclear. Attempts to co-crystallize
the lead compounds with MtbFtsZ protein were also not successful. Thus, computational
approaches have been employed to investigate the binding sites of these novel
benzimidazole inhibitors with MtbFtsZ for antitubercular drug discovery and possible
binding sites have been identified.

§ 4.2 Identification of Potential Binding Sites of Novel Benzimidazole Inhibitors
with FtsZ Proteins via Molecular Modeling

§ 4.2.1 Docking Study of Benzimidazole Inhibitors into MtbFtsZ Head-to-Head
Lateral Dimer Crystal Structures

Initially, AutoDock 4.2'° is used to docking selected novel trisubstituted
benzimidazoles (Figure 4.9) into MtbFtsZ head-to-head dimer crystal structure in
complex with GTP-gamma-S (PDB code 1RLU).’
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Figure 4.9 Chemical structures of selected benzimidazole inhibitors used in the initial
docking study

It was anticipated that the binding site might be close to the GTPase catalytic site,
since benzimidazole inhibitors function as accelerators of GTPase activity. However, in a
global docking search of the entire space of the protein, interestingly, the two potential
binding sites identified by AutoDock are close to the T7 loop and far away from GTP-
gamma-S. When the inhibitors were forced to dock into the space close to GTP-gamma-
S, less favored energy scores were obtained. These results are surprising in the beginning,
but after carefully examine the positions of these two potential binding sites, it was found
that these binding sites might be close to the another GTP site of the FtsZ subunit
adjacent to this FtsZ subunit in the head-to-tail longitudinal FtsZ protofilament. Indeed,
T7 loop has been known to be critical for GTPase activity of FtsZ by extensively
interacting with the T3 loop next the GTP site. These results provided a hypothesis that
benzimidazole inhibitors might bind the interface of two FtsZ subunits in the head-to-tail
FtsZ protofilament.

244



T3 loop

U
~‘ ¥, -

GTP-gamma-S
T
5

-

SB-P17G-Al15

Figure 4.10 Potential binding sites of selected benzimidazole inhibitors in the initial
docking study against IRLU by AutoDock

§ 4.2.2 Docking Study of Benzimidazole Inhibitors into MjFtsZ Head-to-Tail
Longitudinal Dimer Crystal Structure

Because FtsZ forms protofilaments in vivo by repeating its subunits in a head-to-tail
manner, it is important to study potential binding site(s) of novel benzimidazole
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inhibitors with MtbhFtsZ based on a head-to-tail crystal structure. M. jannaschii FtsZ
head-to-tail dimer crystal structure with GTP bound (PDB code 1WS5A) was then selected
for computational docking study, as no MtbFtsZ straight head-to-tail crystal structure was
available. The potential binding site by AutoDock 4.2 was found to be in the middle
interface of the two subunits, close to T7 loop and GTP (Figure 4.11).

\ T7 loop

T3 loop

Figure 4.11 Potential binding sites of selected benzimidazole inhibitors in the initial
docking study against IW5A by AutoDock

§ 4.2.3 Construction of MtbFtsZ Head-to-Tail Longitudinal Dimer Models via
Homology Modeling/Protein Alignment

Based on M. jannaschii FtsZ head-to-tail dimer GTP bound crystal structure (PDB
code 1W5A) and protein sequence of Mth-FtsZ, a homology model (Figure 4.12) was
generated using Modeller v9.11'"7, which is a program for comparative protein structure
modeling by satisfaction of spatial restraints developed in the Andrej Sali Lab. This
homology model of head-to-tail MtbFtsZ dimer (purple) showed overall good overlay
with the template MjFtsZ structure 1 W5A (cyan), however, the problem is the position of
GTP is difficult to model in this case, as the sequence of MthFtsZ only contains the
protein residues without GTP. Attempts to re-dock GTP into this homology model give a
pose quite different from the expected position, presumably due to the flexibility of the
GTP ligand compared to the large space in the interface to accommodate this nucleotide.
As aresult, the expected contacts of GTP with the protein residues were not observed.
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Figure 4.12 Homology model of head-to-tail M¢bFtsZ dimer (purple) based on template
MjFtsZ structure IW5A (cyan).

To solve this problem, protein alignment was employed using MOE (version
2015.10)'®. o-Subunit of MrbFtsZ lateral dimer crystal structures with GTPyS, GDP or
citrate bound (PDB codes 1RLU, 1RQ7, and 1RQ2) were aligned based on MjFtsZ head-
to-tail dimer crystal structure, respectively. Figure 4.13 and Figure 4.14 show the protein
alignment of MtbFtsZ with GTPyS bound (1RLU, purple) and MjFtsZ with GTP and
Mg*" soaked (1W5A, blue), which gives a rmsd of ~1.4 A in the alignment. Zoom-in
GTPase site shows good overlay of the nucleotides. Similarly, head-to-tail MtbFtsZ
dimer models with GDP bound or citrate bound were also generated in the same manner
for docking study.
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Figure 4.14 Zoom-in GTPase site of aligned MtbFtsZ and MjFtsZ structures
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§ 4.2.4 Docking Study of Benzimidazole Inhibitors into MtbFtsZ Head-to-Tail
Longitudinal Dimer Models

MtbFtsZ head-to-tail dimer model in complex with GTPyS generated by protein
alignment is shown in Figure 4.15. The head-to-tail dimer model could better represent
the longitudinal interface in MtbhFtsZ protofilament, and was used for recent docking
study.

Figure 4.15 MtbFtsZ head-to-tail dimer model in complex with GTPyS generated by
protein alignment

After MitbFtsZ head-to-tail dimer models were generated, SB-P17G-A38
(SBZ013251) and SB-P17G-A42 (SBZ013221) (Figure 4.16) were docked into them
using MOE (version 2015.10).

_N N N N
L0 o,
N F HN N
o o
F3CO FsC SB-P17G-A42

SB-P17G-A38
(SBZ013251) (SBZ013221)

Figure 4.16 Chemical structures of SB-P17G-A38 (SBZ013251) and SB-P17G-A42
(SBZ013221)
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Figure 4.17 shows the docked pose of SB-P17G-A38 with MtbFtsZ head-to-tail
dimer model with GTPyS bound (energy score -8.4897 kcal/mol). SB-P17G-A38 was
found to bind to the hydrophobic interface of two subunits, adjacent to the T7 loop in the
top subunit, and close to the GTPyS in the bottom subunit (~4.27 A). As mentioned
previously, T7 loop was found to be critical in FtsZ and tubulin polymerization and
GTPase activities. Figure 4.18 shows the 2D interaction diagram of SB-P17G-A38 with
MtbFtsZ head-to-tail dimer model with GTPyS bound, indicating Van der Waals
interactions between the inhibitor with two FtsZ subunits, and no specific hydrogen
bonding was observed.

_T7 loop

P T3 loop
SBZ013251

GTPyS

Figure 4.17 Docked pose of SB-P17G-A38 (SBZ013251) with MtbFtsZ head-to-tail
dimer model with GTPyS bound
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Figure 4.18 2D interaction diagram of SB-P17G-A38 (SBZ013251) with MtbFtsZ head-

to-tail dimer model with GTPyS bound

Similarly, SB-P17G-A42 was docked into the same MtbFtsZ head-to-tail dimer
model with GTPyS bound. Figure 4.19 shows the docked pose of SB-P17G-A42 (energy
score -8.7284 kcal/mol). SB-P17G-A42 adopted essentially the same pose as SB-P17G-
A38. Figure 4.20 shows the 2D interaction diagram of SB-P17G-A42 with MtbFtsZ
head-to-tail dimer model with GTPyS bound, indicating Van der Waals interactions
between the inhibitor with two FtsZ subunits, and no specific hydrogen bonding was

observed similar as the results for SB-P17G-A38.
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Figure 4.19 Docked pose of SB-P17G-A42 (SBZ013221) with MtbFtsZ head-to-tail
dimer model with GTPyS bound
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Figure 4.20 2D interaction diagram of SB-P17G-A42 (SBZ013221) with MtbFtsZ head-
to-tail dimer model with GTPyS bound

Subsequently, SB-P17G-A38 was docked into MtbFtsZ head-to-tail dimer model
with GDP bound. Figure 4.21 shows the docked pose of SB-P17G-A38 (energy score -
8.8896 kcal/mol). Interestingly, SB-P17G-A38 was found to bind to the same pocket, but
adopted an opposite pose as compared with the previous GTPyS model. Figure 4.22
shows the 2D interaction diagram of SB-P17G-A38 with MtbFtsZ head-to-tail dimer
model with GDP bound through Van der Waals interactions between the inhibitor with
two FtsZ subunits.
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Figure 4.21 Docked pose of SB-P17G-A38 (SBZ013251) with MtbFtsZ head-to-tail
dimer model with GDP bound
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Figure 4.22 2D interaction diagram of SB-P17G-A38 (SBZ013251) with MtbFtsZ head-
to-tail dimer model with GDP bound

After that, SB-P17G-A38 was docked into MtbFtsZ head-to-tail dimer model with
citrate bound. Figure 4.23 shows the docked pose of SB-P17G-A38 (energy score -
7.5046 kcal/mol). In the absence of nucleotide, SB-P17G-A38 was found to move closer
into the nucleotide-binding site, with a less favored binding energy score. Figure 4.24
shows the 2D interaction diagram of SB-P17G-A38 with MtbhFtsZ head-to-tail dimer
model with citrate bound. In this case, the carbonyl group forms hydrogen bond with the
backbone of Met177.

These docking results suggested that in the straight head-to-tail longitudinal
MtbFtsZ dimer models, benzimidazole inhibitors prefer to bind to the interface of two
FtsZ subunits close the T7 loop in the presence of nucleotide rather than nucleotide-free
conformation. The pose difference between GTPyS model and GDP model indicates the
benzimidazole inhibitors may bind differently in vivo in FtsZ protofilament when GTP
hydrolyzed into GDP.
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Figure 4.23 Docked pose of SB-P17G-A38 (SBZ013251) with MtbFtsZ head-to-tail
dimer model with citrate bound
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Figure 4.24 2D interaction diagram of SB-P17G-A38 (SBZ013251) with MtbFtsZ head-
to-tail dimer model with citrate bound

§ 4.2.5 Docking Study of Benzimidazole Inhibitors into MtbFtsZ Head-to-Tail
Curved Longitudinal Trimer Crystal Structure

In 2013, an interesting new M¢bFtsZ curved head-to-tail crystal structure with GDP
bound was reported (PDB code 4KWE). The authors proposed a hinge-opening
mechanism for the straight-to-curved conformational change at the longitudinal interface
induced by GTP hydrolysis (Figure 4.5).* It is hypothesized that benzimidazole
inhibitors may prefer to bind to the straight M¢bFtsZ protofilament longitudinal interface
with GTP bound, catalyzing the hydrolysis of GTP to GDP, and might be kicked out
while MtbFtsZ protofilament adopts a straight-to-curved conformation change. To test
this hypothesis computationally, SB-P17G-A38 was docked to the GDP site and T7 loop
of MtbFtsZ curved head-to-tail crystal structure respectively. Neither of these two
binding sites gave as good binding energy scores as in the straight head-to-tail models. In
the GDP site docked pose (Figure 4.25), SB-P17G-A38 is very close to GDP, the
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carbonyl group forms hydrogen bond with Argl40 (Figure 4.26), and the energy score is
-7.1755 kcal/mol. In the T7 loop docked pose (Figure 4.27), the carbonyl group of SB-
P17G-A38 forms hydrogen bond with backbone of Argl39 (Figure 4.28), and the energy
score is -7.0868 kcal/mol. These results indicate that indeed, benzimidazole inhibitors
prefer to bind to the straight MtbFtsZ protofilament longitudinal interface rather than the
curved FtsZ structure.

T3 loop

Figure 4.25 Docked pose of SB-P17G-A38 with M¢bFtsZ curved head-to-tail crystal
structure with GDP bound (GDP site)
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Figure 4.26 2D interaction diagram of SB-P17G-A38 with MtbFtsZ curved head-to-tail
crystal structure with GDP bound (GDP site)
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Figure 4.27 Docked pose of SB-P17G-A38 with M¢bFtsZ curved head-to-tail crystal
structure with GDP bound (T7 loop site)

260



O polar = » sidechain acceptor O solvent residue arene-arene

O acidic  + sidechain donor O metal complex ©H arene-H

O basic = backbone acceptor solvent contact @+ arene-cation
greasy ¢ backbone donor metal/ion contact

o, proximity ® ligand O receptor

“" contour exposure exposure

Figure 4.28 2D interaction diagram of SB-P17G-A38 with MtbFtsZ curved head-to-tail
crystal structure with GDP bound (T7 loop site)

§ 4.2.6 Proposed Mechanism of Action

Based on the docking results and the hinge-opening mechanism for FtsZ
protofilaments reported by Li et al.*, a plausible mechanism of action (MOA) of the
benzimidazole inhibitors is proposed. As shown in Figure 4.29, during bacterial cell
division, GTP binds to FtsZ monomers to promote the formation of FtsZ straight
protofilaments. However, in the presence of the benzimidazole inhibitors, which bind to
FtsZ close to T7 loop and GTP biding site and accelerate the GTP hydrolysis, FtsZ
monomers cannot form normal long straight FtsZ protofilaments. After that, GTP is
hydrolyzed to GDP, and induces a straignt-to-curve FtsZ conformation change. In the
meantime, benzimidazole inhibitors have finished their job, and get kicked out from the
binding site at FtsZ subunits interface.

261



Monomer T3 Monomer
T3 “R” State T3 “T” State T3

GTP hydrolysis
D ——————————

Pivot point_ %

Curved
longitudinal dimer

Figure 4.29 Proposed mechanism of action for benzimidazole inhibitors

§ 4.3 Summary

Potential binding site of tri-substituted benzimidazole FtsZ inhibitors has been
identified through molecular docking, homology modeling, and protein alignment for
antitubercular drug discovery. The identified potential binding site is located at the
interface of longitudinal Mtb FtsZ dimer, close to GTP and T7 loop, suggesting a novel
mechanism of action (MOA) to accelerate GTP hydrolysis and inhibit FtsZ
polymerization.
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Chapter 5

Design of Novel Fatty Acid Binding Protein (FABP) Inhibitors via Molecular

Modeling for Anti-nociceptive and Anti-inflammatory Drug Discovery
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§ 5.1 Introduction
§ 5.1.1 Fatty acid-binding proteins (FABPs)

Fatty acid-binding proteins (FABPs), which belong to a superfamily of lipid-binding
proteins, are 14-15 kDa proteins that reversibly bind hydrophobic ligands, such as
saturated and unsaturated long-chain fatty acids, with high affinity."* The primary role of
all FABPs is regulation of fatty acid uptake and intracellular transport.’ Since the initial
discovery of FABPs in 1972%, at least nine members have been identified in human
genome (FABP1-9, or liver- (L-FABP), intestine- (I-FABP), heart- (H-FABP),
adipocyte- (A-FABP), epidermal- (E-FABP), ileal- (II-FABP), brain- (B-FABP), myelin-
(M-FABP) and testis- (T-FABP)) (Table 5.1).° These different isoforms were named
after the organ in which they were first discovered or mostly predominate, however, this
classification is somewhat misleading, as no FABP is exclusively specific for a given
tissue or cell type.'” For example, B-FABP (FABP7) is not only expressed in brain, but
also in central nervous system (CNS), glial cell, retina and mammary gland.’

Table 5.1 Family members of fatty acid-binding proteins (FABPs). Reproduced from
Smathers, R. L.; Petersen, D. R. The human fatty acid-binding protein family:
evolutionary divergences and functions. Human genomics 2011, 5, 170-191, with
permission from BioMed Central.

Gene Common  Alternative Names Expression # of
Name Amino
Acids
FABP1 Liver L-FABP, hepatic FABP, Liver, intestine, pancreas, 127
FABP Z protein, heme-binding  kidney, lung, stomach
Protein
FABP2 Intestinal [-FABP, gut FABP Intestine, liver 132
FABP (gFABP)
FABP3 Heart H-FABP, O-FABP, Cardiac and skeletal muscle, 133
FABP mammary-derived brain, kidney, lung,
growth inhibitor stomach, testis, adrenal
(MDGI) gland, mammary gland,

placenta, ovary, brown
adipose tissue

FABP4 Adipocyte A-FABP, aP2 Adipocytes, macrophages, 132
FABP dendritic cells, skeletal
muscle fibres

FABP5 Epidermal E-FABP, keratinocyte-  Skin, tongue, adipocyte, 135
FABP type FABP (KFABP), macrophage, dendritic cells,
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psoriasis-associated-
FABP (PA-FABP)

mammary gland, brain,
stomach, intestine, kidney,
liver, lung, heart, skeletal
muscle, testis, retina, lens,
spleen, placenta

FABP6 Ileal [I-FABP, Ileal lipid- Ileum, ovary, adrenal gland, 128
FABP binding protein stomach
(ILLBP), intestinal bile
acid-binding protein (I-
BABP), gastrophin
FABP7 Brain B-FABP, brain lipid- Brain, central nervous 132
FABP binding protein (BLBP), system (CNS), glial cell,
MRG retina, mammary gland
FABP8 Myelin M-FABP, peripheral Peripheral nervous system, 132
FABP myelin protein 2 Schwann cell
(PMP2)
FABPY9 Testis T-FABP, testis lipid- Testis, salivary gland, 132
FABP binding protein (TLBP), mammary gland
PERF, PERF 15

Interestingly, although FABPs show only moderate amino acids sequence
homology, ranging from 20% to 70%, they share almost identical tertiary structures.® All
FABPs are composed of ten antiparallel B strands that form a B barrel, and the bound
ligand is located within the B barrel in a central internal water-filled cavity.! The ten
antiparallel B strands are organized into two five-stranded P sheets that orient nearly
orthogonally, and on one end of the barrel is capped by a small helix-loop-helix motif.’
The interior of the cavity is determined by the side chains of both hydrophobic and polar
amino acid residues, which probably determines the volume of the cavity and the binding
specificity. Internal water molecules within the cavity are assumed to contribute to the
protein stability.'

An example for demonstrating the structure of FABP in complex with long chain
fatty acid is shown below (Figure 5.1). Like the conformations of other FABPs in
complex with fatty acids, human brain fatty acid-binding protein (B-FABP or FABP7)
binds oleic acid in a U-shaped way.” One oxygen of the carboxylate group of oleic acid
(OLA) hydrogen bonds to the hydroxyl group of Tyr128 (2.8 A) and to an ordered water
molecule (3.0 A), which in turn hydrogen bonds to the side chain oxygen of Thr53 and
the guanidinium group of Argl06 (3.2 and 3.3 A, respectively). The other oxygen is
within direct hydrogen bonding distance to the guanidinium group of Argl26 (2.9 A).
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Carbon atoms of the fatty acids’ aliphatic chain form van der Waals interactions with
several residues of the protein and ordered water molecules.’

% l#;mnss

Figure 5.1 Crystal structure of oleic acid (OLA) bound to human B-FABP. Generated
based on PDB code 1FE3 with UCSF Chimera.®

§ 5.1.2 Known FABP Inhibitors

Because adipocyte/macrophage FABPs, A-FABP (FABP4) and E-FABP (FABPY),
have a central role in many aspects of metabolic diseases such as obesity, diabetes and
atherosclerosis, a series of FABPs inhibitors have been identified recently against them
(Figure 5.2 and Table 5.2), among which orally active small molecule BMS309403 (1c¢),
discovered by Sulsky et al. from Bristol Myer-Squibb (BMS) Pharmaceutical Research
Institute in 2007, has the most promising biology activity profile.>””"” This promising hit
compound has a K; value of less than 2 nM, and remarkably selectivity over muscle fatty
acid-binding protein (M-FABP) and epidermal fatty acid-binding protein (E-FABP)."?
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Figure 5.2 Representative chemical structures of known inhibitors of FABPs in
development
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Table 5.2 Binding affinities for known inhibitors of FABPs in development

Compound ICso (uM) or Ki* (uM) PDB Refs
Name A-FABP E-FABP M-FABP H-FABP I-FABP code

la 0.058* >2* >1* 12
1b 0.006* >0 % >1* 12
lc <0.002*  0.350*  0.250%* 2NNQ 12
2 1 ITOU 9
3 0.57 6.7 <0.6 >100 ITOW 10
4 0.67* 3.40% 9.07* 6.57* 3HK1 13
Sa 0.59 3.88 3FR2 14
5b 0.65 <0.4 3FR4 14
S¢ 0.45 >10 3FR5 14
6 <0.002*  <0.002* 11

X-ray crystallography studies'” suggested that BMS309403 interact with key amino
acid residues such as Ser53, Argl06, Argl26 and Thr128, within the fatty acid binding
pocket of A-FABP, accounting for its high binding affinity in vitro and selectivity for A-
FABP over other FABPs (Figure 5.3).

ARG126

TYR128

HOH634
[

ARG106

CcYs$S117

HOH664

SERS53

Figure 5.3 Crystal structure of BMS309403 bound to human A-FABP'?. Generated

based on PDB code 2NNQ with UCSF Chimera.®
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§ 5.1.3 Discovery and Development of SB-FI-26 as Lead FABP Inhibitor

Despite the fact that a number of inhibitors targeting FABPs have been reported
recently, almost all of these inhibitors were developed for targeting A-FABP (FABP4).
Our collaborator Professor Dale Deutsch and his colleagues have recently discovered that
FABPs are intracellular carriers for transporting endocannabinoid anandamide (AEA)
from outside of the cell to its breakdown enzyme fatty acid amide hydrolase (FAAH).'®
Because arachidonoyl ethanolamide (anandamide, AEA) is a naturally occurring brain
component that binds to a specific brain cannabinoid receptor (CBR1), three FABPs
which are known to be expressed in brain were examined as possible AEA carriers.'®"
Their experimental results suggest that uptake and subsequent hydrolysis of AEA are
enhanced by E-FABP (FABPS5) and B-FABP (FABP7), and reduced by inhibition of
FABPs.'® Therefore, inhibitors of these FABPs will inactivate endocannabinoid AEA,
which may lead to new treatment of a variety of disorders, including addiction, pain,
inflammation, and appetite regulation.'®"’

¢ FABP Inhibitors

AEA (Anandamide) FAAH (fatty acid amide hydrolase)
FABP (fatty acid binding protein), CB (cannabinoid receptor)

Figure 5.4 Schematic representation of anadamide inactivation FABP drug target.
Reprinted with permission from Berger, W. T.; Ralph, B. P.; Kaczocha, M.; Sun, J.;
Balius, T. E.; Rizzo, R. C.; Haj-Dahmane, S.; Ojima, I.; Deutsch, D. G. Targeting Fatty
Acid Binding Protein (FABP) Anandamide Transporters - A Novel Strategy for
Development of Anti-Inflammatory and Anti-Nociceptive Drugs. Plos One 2012, 7,
€50968.
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Previous Ojima laboratory group member Dr. William Berger performed a large
scale virtual screening with the program DOCK?’ of over one million compounds against
FABP7, and employed molecular footprint similarity (FPS) scoring®', a rescoring method
developed in Professor Robert Rizzo’s laboratory by Dr. Trent Balius, using oleic acid as
the reference molecule (Figure 5.5). Forty-eight top scoring compounds were purchased
and four of them were found to have greater than 50 % inhibition in a fluorescence

displacement assay (Figure 5.6).
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Figure 5.5 Initial hit compounds from virtual screening using footprint similarity
method. Reprinted with permission from Berger, W. T.; Ralph, B. P.; Kaczocha, M.; Sun,
J.; Balius, T. E.; Rizzo, R. C.; Haj-Dahmane, S.; Ojima, I.; Deutsch, D. G. Targeting
Fatty Acid Binding Protein (FABP) Anandamide Transporters - A Novel Strategy for
Development of Anti-Inflammatory and Anti-Nociceptive Drugs. Plos One 2012, 7,
€50968.
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Figure 5.6 Fluorescence displacement assay for purchased 48 top scoring compounds.
Reprinted with permission from Berger, W. T.; Ralph, B. P.; Kaczocha, M.; Sun, J.;
Balius, T. E.; Rizzo, R. C.; Haj-Dahmane, S.; Ojima, I.; Deutsch, D. G. Targeting Fatty
Acid Binding Protein (FABP) Anandamide Transporters - A Novel Strategy for
Development of Anti-Inflammatory and Anti-Nociceptive Drugs. Plos One 2012, 7,
€50968.

Biological evaluation of hit compounds were performed in our collaborator
Professor Dale Deutsch’s laboratory. One of the initial hit compounds purchased from
ChemDiv was found out to be y-truxillic acid 1-naphthyl mono-ester (SB-FI-49) instead
of the a- isoform (SB-FI-26), and has a K; value of 0.747 + 0.07 uM against FABP5." a-
Truxillic acid 1-naphthyl mono-ester (SB-FI-26) was subsequently synthesized, and the
K; value was determined as 0.927 + 0.08 uM against FABP5." Although SB-FI-26 was
slightly less potent than the y- isoform in the initial binding assays, the solubility is much
better and was chosen as the lead compound for further evaluation. SB-FI-26 was later
found to be a potent anti-nociceptive agent with mild anti-inflammatory activity in mice
models.'”*

§ 5.1.4 Co-crystal Structure of FABPS with SB-FI-26

Co-crystal structures of FABPS in complex with endocannabinoids AEA, 2-AG,
BMS-309403,> as well as lead compound SB-FI-26 were subsequently determined at our
collaborator Professor Huilin Li’s laboratory. The X-ray crystal structure of FABPS in
complex with SB-FI-26 reveals that the carboxylate group of SB-FI-26 forms two key
hydrogen bonds with the side chains of Argl129 and Tyr131 (Figure 5.7 and Figure 5.8).
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This provided a structural basis for computationally designing new SB-FI-26 analogs
with improved potency.

Figure 5.7 Crystal structure of FABPS5 in complex with SB-FI-26.
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Figure 5.8 2D Interaction diagram of SB-FI-26 with FABPS.

§ 5.2 Design of Novel SB-FI-26 Analogs as Potential FABP Inhibitors
§ 5.2.1 Validation of a Pharmacophore-guided Docking Strategy

Because the X-ray co-crystal structure shows that the carboxylate group of SB-FI-26
forms two key hydrogen bonds with the side chains of Argl29 and Tyr131, combined
with fact that the di-ester or di-amide analogs of SB-FI-26 synthesized later in the Ojima
laboratory are inactive, as well as the presence of similar hydrogen bonds in the natural
occurring fatty acid ligands, strongly suggests these two hydrogen bonds are important
for the activity of FABP inhibitors. Thus, these two hydrogen bond interactions were
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maintained as pharmacophores during the computational analysis of new SB-FI-26
analogs with the program MOE (Figure 5.9).>*

-~
. | /\/r,n"‘.r/\" "

< -
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> v
2 Ani&Acc

Figure 5.9 Two hydrogen bonds acceptor pharmacophores are used as a filter in the
MOE docking protocol.

To validate this docking strategy, first, SB-FI-26 was docked back into FABPS to
compare with the original X-ray crystal structure using this protocol by both rigid-
receptor and induced-fit methods (Figure 5.10 and Figure 5.11). The rigid-receptor
method shows excellent overlap of the docked pose (magenta) with co-crystal structure
ligand (green) with an rmsd of 0.7266 A. The induced-fit method gave an rmsd of 1.1140
A, which is also quite reasonable because of the flexibility of the protein receptor in this
case.
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Entry: 1/11 ~
mol: FABPS_SBFI26.complex:pdb.

Figure 5.10 Docked poses of SB-FI-26 (magenta) compared with co-crystal structure
(green) using rigid-receptor method. Rmsd: 0.7266 A.

Entry: 1/11
mol:  FABP5_SBFI26_complex.pdb

I!
7

Figure 5.11 Docked poses of SB-FI-26 (magenta) compared with co-crystal structure
(green) using induced-fit method. Rmsd: 1.1140 A.
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To further test this docking strategy, docking energy scores with experimental K;
values of a few synthesized SB-FI-26 analogs were compared, and they can correlate
very well (Table 5.3).

Table 5.3 Comparison of pharmacophore-based docking energy scores by MOE with
experimental K; values.

HO,

o o o
N o 7 oy 7
) WE, ®) 1\) o O ®
O %OH SB-FI-60 SB-FI-71 SB-FI-72
OT\\“ K
{ D -
SB-FI-26 %OH MeOQZP\OH %OH

SB-FI-50 SB-FI-01 SB-FI73
Compound Rigid Receptor Induced-fit Experimental K;
Energy Score Energy Score (pM)
(Kcal/mol) (Kcal/mol)

SB-FI-26 -9.0043 -9.1031 0.93 £0.05
SB-FI-60 -8.6507 -8.8315 1.55+0.03
SB-FI-50 -8.0667 -8.3427 1.34+0.20
SB-FI-71 -8.0846 -9.1076 >10
SB-FI-101 -8.6793 -9.1948 >10
SB-FI-72 -8.2994 -8.6119 4.11+0.57
SB-FI-73 -7.0679 -7.1707 >10
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§ 5.2.2 Computational Structural-based Design of New SB-FI-26 Analogs

Further structure analysis revealed that 5 and 6 positions of the 1-naphthyl group in
SB-FI-26 are quite exposed. Based on this, a series of new SB-FI-26 analogs with various
substitutions at the 5 or 6 position of the 1-naphathyl group have been designed, and
evaluated using a pharmacophore-guided docking strategy (Table 5.4).

Table 5.4 Docking results of new SB-FI-26 analogs

e e

0 00

Substtution (R or Rs) Reveptor (Kealimol Reveptor (Kealimol
SB-FI-26 (R; =R, = H) -9.0043

-CH; 1 -8.8692 23 -8.9297
-CH,CH; 2 -8.0851 24 -8.3457
-CH,CH,CHj 3 -8.9415 25 -9.6197
-CH(CHs), 4 -8.6468 26 -8.3183
-CF; 5 -7.7566 27 -8.5033
F 6 -8.8467 28 -8.7680
-Cl 7 -8.8142 29 -8.4908
Br 8 -7.9937 30 -8.0883
-OH 9 -8.9019 31 -8.4021
-OCH; 10 -9.0933 32 -9.1320
-OCH,CHj; 11 -8.7818 33 -9.2709
-OCF; 12 93313 34 -8.5033
-CH,OH 13 -9.0269 35 -8.1564
-CH,OCHj 14 -9.1707 36 -9.4956
-CH,0CH,CHj 15 -8.2089 37 -9.9314
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-CH,OCF3
-NHCOCH3
-NHCOCH,CH3
-NHCOCH,CH,CHj3
0O O

H
—N \n/\/o\/\o/\/o\/\o/\

_/\’l\l/\/o\/\o/\/o\/
N=N

16

17

18

19

20

21

22

-9.4002

-9.2489

-9.0212

-9.1407

-10.2759

-8.1526

-10.3944

38

39

40

41

42

43

44

-8.9880

-9.4251

-9.4553

-10.3273

-10.0460

-10.4708

-10.6337

Note: Compounds with better energy scores than parent lead compound SB-FI-26 are

shown in red.

As expected, a number of these newly designed analogs showed much better binding
than SB-FI-26, while overlapping very well with the binding pose of SB-FI-26 in the X-
ray crystallography. Moreover, new analogs with a short PEG chain exhibited much
better binding energy scores than SB-FI-26, and would increase the aqueous solubility of

the inhibitors (Figure 5.12 and Figure 5.13).

Figure 5.12 Overlay of designed analog (magenta, compound 41) with SB-FI-26 (green)
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Figure 5.13 Overlay of designed analog (magenta, compound 44) with SB-FI-26 (green)

In addition, a new analog by replacing the 1-naphthyl group with an m-triazole-
substituted phenyl group was designed, which gave similar better binding energy scores
as SB-FI-26. Modifications on this m-triazole-substituted phenyl group lead to new
analog with much better binding energy score (Figure 5.14 and Figure 5.15). Moreover,
these analogs show lower cLogP values than the parent compound SB-FI-26 (cLogP
5.79), which could potentially lead to new candidates with less hydrophobicity for anti-
nociceptive and anti-inflammatory drug discovery.

o
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Figure 5.14 Chemical structures, binding energies, and calculated cLogP values for new
analogs of SB-FI-26.
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Entry: 1/3
mol:  SBFI26_mPh_Click_regiol.pdb

Figure 5.15 Overlay of designed analog (magenta) with SB-FI-26 (green)

§ 5.3 Summary

A pharmacophore-guided docking strategy has been developed for designing FABP
inhibitors as anti-nociceptive agents. Docking energy scores have shown good correlation
with experimental K; values. New SB-FI-26 analogs have been designed using the
pharmacophore-guided docking strategy, and a number of designed new analogs showed
lower binding energy scores as well as smaller cLogP values.
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