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 The purpose of this study is to develop a statistical model to predict the risk 

for developing disease. In order to enrich our general understanding of schizophrenia 

disorder, several clustering techniques are used as a preliminary study. Schizophrenia 

is a heterogeneous decease with great variability in symptoms, cognition, biology and 

course of illness. Some of this variability may be explained by latent subgroups that 

differ in etiology and key features. Individuals with paternal age related 

schizophrenia (PARS) may represent such a subgroup as evidence suggests a distinct 
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symptom profile. Using K-means and hierarchical clustering on a large sample of 

schizophrenia patients, this study examines demographic, clinical and the 

distinctiveness of latent PARS subgroups. 

 Despite the wide use of K-means clustering, there remain several issues about 

how best to implement it. One of the main problems in K-means clustering is how to 

determine the number of clusters in a data set. We propose to develop a method for 

choosing the optimal number of clusters. The performance of the proposed method is 

compared to other existing methods by simulation experiments. In this study, the 

performance of several classification models with the same schizophrenia data set is 

evaluated. Four predictive classification models including Random Forest (RF), 

Support Vector Machines (SVM), Linear Discriminant Analysis and Adaboost are 

trained and their performances are compared. These models are then used to predict a 

patient who might have more risk of developing schizophrenia. For RF and SVM, 

adjusted decision threshold is used for a fair comparison.  

 One of the most critical factors in medical diagnosis is individual’s condition 

to a given disease which varies from one to another. It is difficult to make appropriate 

medical decision about treatment that works on every patient. This study focuses on 

to develop a statistical method to classify the data into these two groups: ones that 

have a risk at potential disease and others who don’t. The successful completion of 
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this study will lead to dramatic improvement in the medical diagnosis which will help 

the development of decision support system and personalized treatments that focus on 

specific patient needs. 
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Chapter 1 

Introduction  

 Statistical pattern recognition or machine learning has been an active 

research area that applies statistical techniques for studying pattern and regularity 

of data. There are two main branches of pattern recognition: supervised learning 

and unsupervised learning approaches. The former is known as classification. 

 Given a set of data, unsupervised learning analyzes the data where there is 

no label. The main purpose of unsupervised learning is to find some intrinsic 

structure or particular input patterns in the data. Clustering, density estimation and 

learning latent variable models are common unsupervised learning methods.  

 Supervised learning searches an inferred function, which is called the 

classifier, from the training data. The classifier is a learning mapping function 

between input variables and a labeled output variable. The resulting classifier is 

then used to classify or predict the output for other unlabeled data. There are 

several approaches for supervised learning such as k-nearest neighbor (k-NN), 

logistic regression, decision trees, support vector machines (SVM), artificial 

neural networks (ANN), bagging, boosting and random forest (RF). 
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 Cluster analysis seeks to partition a set of observations into subsets or 

clusters, so  that the objects within each cluster are more closely related to one 

another and different from the objects in other groups. In general, the clustering 

algorithms are classified into two types: hierarchical (tree based method) and non-

hierarchical (partitioning method) algorithms. To determine appropriate clustering 

algorithms is a critical factor to the effective use of cluster analysis.  

 K-means clustering is a partitioning method often used in data mining and 

machine learning (Huang, 1998; Wagstaff et al., 2001). It aims to partition by 

minimizing the average squared distance between n observations and a cluster 

centroid, such that each observation is assigned to the cluster with the nearest 

mean (Hand and Heard, 2005).  

 Hierarchical clustering techniques are also widely used to find patterns in 

multi-dimensional data sets. There are two basic strategies in hierarchical 

clustering, agglomerative and divisive. Agglomerative clustering begins with 

every observation as an individual cluster in which each step it builds a tree-like 

structure that merges the closest pair of clusters until only one cluster remains.  

This requires a choice of a proximity measure. Most statistical packages use an 

agglomerative method and the most popular agglomerative methods are (1) single 

linkage (nearest neighbor approach), (2) complete linkage (furthest neighbor), (3) 

average linkage, (4) Ward’s method, and (5) Centroid method (Legendre and 
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Legendre, 1998). All these methods differ in the definition of the distance 

measure. Most of the time, the distance is based on Euclidean distance in the 

sample axes. Although numerous approaches have been developed to decide the 

number of clusters in a data set, there is no widely used standard criterion. One of 

the simplest techniques is the elbow method (Thorndike, 1953) which involves 

graphing the percentage of variance explained on the y-axis and the number of 

clusters on the x-axis. There have also been several approaches to choosing the 

number of groups including Gaussian-model-based approaches using an 

information criterion by Akaike (1974), the Bayesian Information Criterion (BIC) 

proposed by Schwartz (1978), or the Deviance information criterion (DIC) 

introduced by Spiegelhalter (2002). Those methods tend to be model based and 

hence require strong parametric assumptions (Catherine and Gareth, 2003). There 

is another nonparametric method for determining the number of clusters  based on 

distortion theory which is called the jump method. The distortion is defined as the 

variance of the distance measures within clusters. This is also known as the 

average Mahalanobis distance per dimension. The distortion curve is generated by 

plotting the computed distortion versus K. The largest jump in this plot indicates 

the optimal number of clusters.  

 Besides the methods that we mentioned, other widely used methods will 

be introduced and compared. In this study, improvement of elbow method for 

choosing the optimal number of clusters is proposed, and the performance of the 
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new method is evaluated. It was shown that the proposed method performs better 

than other methods in the simulation studies.  

 Pattern analysis has been used to improve  performance  in many fields of 

practical applications including, but not limited to, the financial industry, medical 

science, computer science and engineering. In this study, a number of pattern 

analysis techniques are applied to schizophrenia patient data through the 

psychiatric clinical assessment. In order to explain variability in schizophrenia 

symptoms by a distinct subgroup, we used clustering technique which is one of 

the prominent unsupervised learning approaches. Separately, another analysis is 

conducted with the same data set using several widely used supervised learning 

approaches. Several models are examined and their performances are compared. 

The aim is identifying people at risk of developing schizophrenia.  

 Schizophrenia is characterized by significant heterogeneity in symptoms, 

course of illness, and clinical profiles (Tsuang et al., 1990). This heterogeneity 

complicates the interpretation of research findings and inhibits the discovery of 

novel treatments for the disorder. Some of the variability in symptoms and illness 

features among schizophrenia patients may be explained by the presence of latent 

subgroups that differ in etiology and key neurobiological underpinnings. 

Identifying these subgroups is important to set the stage for targeted person-

specific pharmacological and/or psychological treatments (Jindal et al., 2005). 
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 Advanced paternal age has been associated with the risk for schizophrenia 

in cohort studies in Israel (Malaspina et al., 2001; Brown et al., 2002), Denmark, 

(Byrne et al., 2003), Sweden (Zammit et al., 2003; Sipos et al., 2004), Japan 

(Tsuchiya et al., 2005), and the United States (Torrey et al., 2009). In the Israeli 

study, a quarter of the risk for schizophrenia was attributable to paternal age and 

the risk in offspring of fathers aged over 50 at birth was three-fold that of children 

whose fathers were younger than 25 at birth (Malaspina et al., 2001). Clinical 

studies have suggested that paternal-age-related schizophrenia (PARS) may be a 

specific variant of the disease, as symptom and cognitive profiles, regional 

cerebral metabolism, sex effects, and heart rate variability have been shown to 

differ from those of other cases (Malaspina, 2001; Malaspina et al., 2001; 2002a; 

2005; Rosenfield et al., 2010; Antonius et al., 2011). If these studies are 

confirmed, then PARS may account for a substantial portion of the disease in 

clinical treatment.  

 Currently, however, it is not clear whether PARS explains any of the 

heterogeneity of schizophrenia. To explore this, we have chosen to use an 

approach based on clustering analysis in order to generate new hypotheses related 

to PARS. Two different types of cluster algorithms have been used in our analysis: 

K-means and hierarchical clustering.  
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 In the second study, we applied various supervised learning models in 

order to classify data into two or more groups as needed for practical applications 

in schizophrenia research. Several studies have attempted to apply machine 

learning models to healthcare data in order to predict common disease risks. One 

of these studies indicated that data mining approach is highly effective for 

predicting patients who are likely to be at high-risk in the future (Moturu et al., 

2007). They used AdaBoost, LogitBoost, Logistic Regression, Logistic Model 

Trees and SVM. SVM was used to detect a person with diabetes and pre-diabetes 

(Yu et al., 2010). In cancer research, machine learning approaches have been used 

(Zhang et al., 2009). They compared ensemble learning approaches with other 

classification methods in the classification of breast cancer metastasis. Another 

recent research suggested that machine learning techniques can potentially 

identify patients at high risk (Wu et al., 2010). They compared the performance of 

Boosting, SVM and logistic regression for predicting heart failure more than 6 

months before clinical diagnosis. 

 Classification methods are widely used in many applications like risk 

management, medical diagnosis, decision making and the area of marketing and 

sales. In statistics, classification is a procedure in which individual items are 

placed into groups based on quantitative information about one or more 

characteristics inherent in the items and based on a training set of previously 

labeled items. These classification tools are supervised learning methods where 
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the algorithm learns from a training set and establishes a prediction rule to classify 

new samples using statistical approaches for class prediction. 

 Suppose that we have clinical characteristics of a patient. Classification 

methods can make a medical diagnostic decision based on the clinical data and 

enable appropriate medical treatment for the patient. Various classification 

models were applied and their performance was compared. A successful 

completion of this study will lead to improvement in prediction of potential 

schizophrenia patients among seemingly healthy subjects. There are various 

algorithms of classification and some of widely used methods are summarized 

below.  

 In classification, the k-nearest neighbor (k-NN) algorithm, originally 

proposed by Fix and Hodges is one of the fundamental and simplest non-

parametric techniques (Fix and Hodges, 1952). The k-NN classifies the dataset by 

finding k nearest neighbors from the training dataset. k is a user defined constant, 

typically a small positive integer. For example, in the case of k=1, any training 

data point is simply assigned to the single class of its nearest neighbor.  The value 

of k is found by performing cross-validation. To break ties it is best to use an odd 

value of k. The closest neighbor is defined in terms of a distance measure such as 

the Euclidean Distance measure. Classification of the given object is made by 

taking majority voting of its neighbors. Common drawback of majority vote 
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might be occurred when the distribution of the data set is skewed. One way to 

overcome the drawback is to assign weights according to relevance of a given 

object.   

 Linear Discriminant Analysis (LDA) is a well-known classification 

technique that separates samples of distinct groups. LDA was formulated by R.A. 

Fisher (Fisher, 1936). The primary purpose of LDA is to reduce the dimension of 

dataset by projecting the samples onto a lower dimensional space. LDA is closely 

related to PCA (Principal Component Analysis). Both algorithms are linear 

techniques, which reduce the dimension of the data. Unlike PCA which explains 

the uncertainties or variations of data, LDA tries to separate classes. The LDA 

algorithm is seeking a linear combination of the variables that maximizes the ratio 

of the between-class variance to the within-class variance. For example, if the 

feature space has two dimensions, LDA generates a projection to a line such that 

classes are well separated. If there are three features, the separator will be a plane. 

When the number of features is more than three, the separator becomes a 

hyperplane. However, its main limitation is that LDA assumes normally 

distributed data. If the distributions are not Gaussian, LDA may not work well as 

a classifier. Rao extended standard LDA to multiclass LDA in the case of more 

than two predetermined classes (Rao, 1948). Rao used unweighted covariance 

matrix of group means for the best separation of groups in multivariate space. 

Furthermore, a number of alternative LDA techniques have been proposed in 



9 
 

order to overcome the limitations of heteroscedastic data such as NDA, aPAC and 

minimum Bayes error method.      

 McCulloch and Pitts introduced the first conceptual model of artificial 

neural networks (ANN) which is inspired by a biological neural system 

(McCulloch and Pitts, 1943). ANN is typically organized in different layers. The 

first layer is made up of hundreds of single input neurons or nodes. Each input 

layer is transformed to hidden layers via weighted connections. A complex ANN 

system may have several hidden layers. These hidden layers are linked to the 

output layers. If there is no hidden layer in the network, ANN reduces to a linear 

regression model. If there are one or more hidden layers in the network, then 

ANN is a non-linear generalization of the linear regression model. An ANN is 

represented as an adaptive learning system. Given the inputs, ANN learns by 

changing its weight to produce required outputs. ANN has been applied to various 

research areas that deal with complexity of data such as classification, function 

approximation, robotics and data processing.  

 Logistic regression is a special type of ordinary linear regression where the 

dependent variable is binary (Cox, 1958). Since the dependent variable is binary, 

logistic regression assumes a Bernoulli distribution of data.  In logistic regression, 

the probability or odds of the outcome is predicted The range of the outcome 

measure is bounded between 0 and 1. In order to conduct linear regression 
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approach, logistic regression transforms information of the binary outcome 

variable to an unbounded continuous variable through the logit transformation, 

which is called the link function or the sigmoid function. To learn the parameters, 

the logistic regression model uses maximum likelihood estimation. The Bernoulli 

distribution is a member the exponential family of probability distributions, and 

maximum likelihood estimates are typically derived from Newton-Raphson 

method. After a logistic regression model has been fitted, a global test of 

goodness of fit of the model is conducted by using the deviance or pseudo-R�. 

The significance of each coefficient can be tested by Wald or likelihood ratio test. 

It is used mainly for binary responses, although there are extensions for 

multinomial responses as well. Logistic regression or logit regression was 

originally developed by Cox.  

 The Support Vector Machine (SVM: Cortes and Vapnik, 1995) is a widely 

used classification model in data mining and pattern recognition. The standard 

SVM is a binary classifier which does not directly provide probability estimates. 

SVM provides a classification mechanism based on finding a hyperplane which 

divides the data space with a maximum margin (the distance between the 

hyperplane and the nearest point). The data points holding this hyperplane are 

defined as support vectors. This is known as the canonical hyperplane. If such a 

maximal margin hyperplane exists, the linear classifier is defined as the maximum 

margin classifier, which is also known as perceptron. However, there might not  
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exist a hyperplane that can separate all data points. In that case, SVM can use a 

soft margin that minimizes training error. If the data are not linearly separable in 

the original feature space, they are transformed by applying the kernel trick to a 

higher dimensional space, where the data become linearly separable. The kernel is 

a similarity function which operates high dimensional space by computing inner 

products of all pairs of data. There are commonly used kernels in SVM such as 

linear, polynomial, Gaussian radial basis function and hyperbolic tangent.  

 The decision tree is a commonly used tree-like structure model which is a 

decision support tool which maps an object into possible target classes. The tree 

consists of root nodes, branches which represent the outcome of the test, and 

leaves. In a decision tree, each internal node is a test on some attribute value and 

each leaf node holds a class label. Each leaf node assigns a classification or 

probability distribution over the class. The decision tree is generated based on the 

splitting criteria and tree pruning of the data. First, the tree is constructed by 

recursive splitting (partitioning) of the entire training example. . When the subset 

node belongs to the same class, the splitting is completed. Tree pruning is the 

inverse of splitting that is performed in order to identify and remove branches that 

reflect noise or outliers. The pruning process is conducted to improve accuracy 

and prevent overfitting. The quality of splits in a decision tree is measured by the 

Gini index which is one of the most frequently used indices that measure the 

degree of impurity. Many decision tree implementations have been developed 
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such as ID3, C4.5, CART, CHAID and MARS. Of these, CART (Classification 

and Regression Tree) is a widely used data mining technique (Brieman et al, 

1984).  

 Attempting to obtain  better performance of classification algorithms, an 

ensemble learning approach has been developed. Ensemble learning is the process 

that trains the multiple learning models and then combines the predictions of these 

base classifiers. According to Biau et al., the ensemble technique combines 

multiple statistical models to make predictions, which is well known to be a more 

accurate method than an individual tree model (Biau et al., 2007). Ensemble 

methods have been studied in various ways of combining base classifiers 

including parallel combining, stacked combining and weak combining. Of these 

approaches, weak combining is commonly used ensemble approach which 

conducts classification on a same training set and combines same type of 

classifiers. Bagging (bootstrap aggregating), boosting, random space and RF are 

widely used combining algorithms in many scientific researches.  

 Bagging (bootstrap aggregating: Breiman, 1996) is a commonly used 

ensemble algorithm in classification or regression. Bootstrap is a sampling 

technique that generates random samples with replacement. Given the entire 

training data set, bagging randomly generates new training data sets by bootstrap 

samples of the data. Each training data set is used to generate a classifier. The 
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result is then given as a combination of individual classifiers by taking a simple 

majority vote of their decisions. For any given instance, the class chosen by a 

majority of classifiers is the decision of the ensemble. 

 Boosting (Schapire, 1990) generates multiple base classifiers to form a 

stronger classifier (Kearns, 1988). In boosting, the base classifiers are weak 

learners which are slightly better than random guessing. The base classifier is a 

tree with only one split (stump). In the training process, the weights are adjusted 

by the misclassification rate. Thus a higher weight is assigned to those 

observations that have been misclassified more often. Boosting creates three weak 

classifiers. The first classier is trained on a random subset of the available training 

data. The second classifier is trained on a training data only half of which is 

correctly classified by the first classier, and the other half is misclassified. The 

third classier is trained with instances on which the first classifier and the second 

classifier disagree. These three classifiers are combined by majority voting. There 

exist various boosting approaches including AdaBoost, LogitBoost, LPBoost and 

BrownBoost. The main difference of these boosting approaches is the methods to 

give weight on the training data. Among these approaches, AdaBoost is one of the 

most widely used algorithms in machine learning. AdaBoost is a shorter term of 

Adaptive Boosting (Freund and Schapire, 1996). AdaBoost constructs a strong 

classifier as linear combination of weak learners by selecting their weight. These 

weights are updated iteratively and AdaBoost defines a new distribution of 
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weights over the training data. At each iteration, classifiers are trained by giving 

adjusted weights and these classifiers are combined by weighted majority voting. 

AdaBoost selects only known features in the training process so that it is fast, 

simple and easy to program.  

 Random Forest (RF: Breiman, 2001) is a classification method with an 

ensemble of multiple decision trees. In RF, the bagging algorithm uses bootstrap 

samples to build base trees. Each bootstrap sample is formed by random sampling, 

with replacement, of the same size as the original data. At each node of a tree, � 

variables are selected at random (� < �, where � is the number of variables in 

the data) in each node and the best split on these values is used to split the node. 

The largest possible tree is grown without pruning. The final classification yielded 

by RF is the class having the most votes across all trees. At each bootstrap 

iteration, approximately one third of the cases are left and not used in the 

construction of the tree. These out-of-bag cases can be used to calculate the 

generalized error rate or the variable importance measure.  

 RF estimates the variable importance to find which independent variables 

are important in the classification (Van der Laan, 2006). The measure of variable 

importance is based on the mean decreased accuracy on the out-of-bag 

observations. The mean decreased accuracy is the prediction accuracy calculated 

on the out-of-bag data for the variable which is permuted when all the others 
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remain the same. After permuting one variable, the prediction accuracy is 

calculated and compared with the accuracy for the original data. This process is 

repeated for all the variables. A higher reduction of the accuracy indicates a 

greater importance of the variable. 

 In this study, we compared widely used supervised learning techniques 

and suggested  how classification models can utilize potential schizophrenia risk 

among the people who is in the control group. We compared the performance of 

well-known classification methods including RF, LDA, AdaBoost and SVM in 

classifying the schizophrenia data. The models were used to classify the data into 

different response groups and their accuracy, sensitivity, specificity, positive 

predictive value (PPV) and negative predictive value (NPV) were compared. We 

then used these methods to predict the risk for developing schizophrenia. We may 

encounter imbalance between sensitivity and specificity if the data set is 

unbalanced. Among the classifiers we considered, RF and SVM were the most 

sensitive to class imbalance (Blagus and Lusa, 2010). Since the data set we used 

in this paper is quite unbalanced, we enhanced the RF and SVM models by 

adjusting the decision threshold. According to our results, RF outperforms other 

methods for classifying patients  in terms of overall accuracy and the area under 

the ROC curve (AUC). In addition, we found that RF and SVM with adjusted 

decision threshold show a substantial improvement in balance between sensitivity 

and specificity over RF and SVM without a threshold adjustment, respectively.  
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Chapter 2 

Clustering Analysis 

 

2.1 K-Means Cluster Analysis 

2.1.1 Determining the Number of Clusters  

 Although K-means clustering technique is a very powerful statistical tool 

in many applications, it also has some limitations. One of the main problems in K-

means clustering is how to determine the number of clusters in a data set.  We 

propose to develop a method for choosing the optimal number of clusters based 

on the elbow method. We generated K-means clustering and found optimal � with 

the 5 methods using the schizophrenia data. 
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A. Elbow difference 

 In the graph, a large reduction in WSS indicates an appropriate number of 

clusters, hence the term "elbow criterion”. In some case, however, the graph may 

have several incremental points indicating that more than one natural set of 

clusters fit data (Aldenderfer and Blashfield, 1984). The location of the elbow in 

the resulting plot suggests a suitable number of clusters for the K-means.  

 Figure 1 depicts the graphical representation of WSS over different 

number of clusters, and the values of WSS for � = 1 through � = 15 are listed in 

Table 1. The table also provides WSS, difference of WSS and difference in 

differences of WSS between clusters. In Figure 1, WSS decreases rapidly in � 

from 1 to 2 and from 2 to 3. However, WSS decreases slowly after � = 3. Table 1 

shows that the largest difference in difference of WSS between clusters is 2142.58 

between  � = 2 and � = 3. Therefore, � = 3 is the optimal number of clusters 

under this criterion.  
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B. Proposed elbow ratio 

As an alternative approach, we propose a method named elbow ratio for 

identifying a rapid change in the difference of WSS by examining the reduction 

rate of the change in WSS. Suppose that we have the difference of WSS between 

clusters. Then the ratio of two differences of WSS is,   

Ratio of the differences in WSS between two clusters =  ! = "! "!#$ 

where "! = %&&!#$ − %&&! 

 

 The optimal number of clusters is then the value of � with minimum  ! . 
 Determining the elbow point in the curve by elbow difference may not 

always be the best measure. For example, the Elbow difference method fails to 

detect the best location of the elbow in some cases. Suppose that the data points 

are  %&&$ = 19,727,   %&&� = 15,733,  %&&, = 12,259,  %&&- = 10,691,
%&&0 = 10,079 for � = 1, 2, 3, 4, 5. Then we have "$ = 3,994, "� = 3,474,
", = 1,568, "- = 612 and the differences of difference in WSS are 3994 −
3474 = 520, 3474 − 1568 = 1906, 1568 − 612 = 956 . Since 1906 is the 

largest gap change in the difference of WSS, the elbow point in the curve should 

be 3 if the elbow difference method is used. On the other hand, the ratio of the 
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differences in WSS, which will be explained in details below, is 3474/3994 =
0.870, 1568/3474 = 0.451, 612/1568 = 0.390.   Since 0.390 is the smallest 

among these three ratios, based on the elbow ratio, � = 4 is the elbow point based 

on the Elbow ratio method. Since the elbow difference method is affected by the 

order of magnitude, a rapid change in the difference in WSS is not recognized if 

the order of magnitude is small even if the elbow has the lowest angle in the 

figure. However, the Elbow ratio method can recognize it regardless of the order 

of magnitude.   

 For the given schizophrenia data, Table 2 shows that, WSS decreases 

rapidly for � = 1 to 3. The corresponding values for ratio of the difference  ! 

also decrease from 0.73 to 0.45 and  ! reaches the minimum value of 0.45 when 

� = 3. Based on the Elbow ratio criterion, � = 3 is the optimal number of clusters. 
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Figure 1: WSS plot over the number of clusters 
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Table 1: Optimal � based on the Elbow difference approach.  

 

#Clusters WSS 

Difference of WSS 

between clusters 

=4� 

Difference in 

differences of WSS 

=4�#5 − 4� 

1 27609.7 
  

2 22319.43 5290.27 1403.49 

3 18432.65 3886.78 2142.58 

4 16688.45 1744.2 -104.31 

5 14839.94 1848.51 474.32 

6 13465.75 1374.19 277.96 

7 12369.52 1096.23 463.41 

8 11736.7 632.82 321.03 

9 11424.91 311.79 -250.72 

10 10862.4 562.51 -39.31 

11 10260.58 601.82 262.898 

12 9921.658 338.922 -141.869 

13 9440.867 480.791 182.507 

14 9142.583 298.284 44.01 

15 8888.309 254.274  
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Table 2: Optimal � based on the Elbow ratio approach. 

 

#Clusters WSS 

Difference of 

WSS between 

two clusters=4� 

Ratio of WSS 

between two 

clusters=4�/4�#5 

1 27609.7 
  

2 22319.43 5290.27 0.734704 

3 18432.65 3886.78 0.448752 

4 16688.45 1744.2 1.059804 

5 14839.94 1848.51 0.743404 

6 13465.75 1374.19 0.797728 

7 12369.52 1096.23 0.577269 

8 11736.7 632.82 0.492699 

9 11424.91 311.79 1.804131 

10 10862.4 562.51 1.069883 

11 10260.58 601.82 0.563162 

12 9921.658 338.922 1.418589 

13 9440.867 480.791 0.620403 

14 9142.583 298.284 0.852456 

15 8888.309 254.274  
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C. Average silhouette method  

 The average silhouette method computes the average distance of 

observations within clusters of data in order to represent an evaluation of 

clustering validity. Each data point i  has its own average distance from all the 

other data points within the same cluster. This is the dissimilarity of data point 

6(8) . Let :(8)  be the minimum average distance to a cluster which does not 

contain the object i. In other word, :(8)  is defined as the lowest average 

dissimilarity of i to any other cluster. Then the silhouette coefficient ;(8) is  

 

;(8) =
<=
>
=?1 − 6(8):(8)     8@ 6(8) < : (8)

0                  8@ 6(8) = :(8):(8)6(8) − 1      8@ 6(8) > :(8)
            

 

where − 1 ≤ ;(8) ≤ 1 

 If the value ;(8) is close to 1, it means that a sample has been assigned in 

an appropriate cluster, while the value ;(8) near negative one indicates that a 

sample has been assigned to the wrong cluster. Thus the average silhouette 

method is used to determine the appropriate number of clusters in K-means 
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clustering. The silhouette computes the silhouette coefficient for different values 

of �. The optimal number of clusters � is the one that maximizes the silhouette 

coefficient over a range of possible values for � (Kaufman and Rousseeuw, 1990). 

Table 4 shows the silhouette coefficients over different values of �. The result 

indicates that the silhouette coefficient is highest when � = 3 suggesting that the 

optimal number of clusters is 3. The Figure 2 also shows that the silhouette 

coefficient curve has a local peak at � = 3, which then provides the estimated 

optimal number of k as three.  
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Table 3: Silhouette coefficients over the number of clusters. 

 

#Clusters 1 2 3 4 5 6 7 

silhouette 

coefficient 
0.1709 0.1796 0.1938 0.1570 0.1564 0.1707 0.1601 

#Clusters 8 9 10 11 12 13 14 

silhouette 

coefficient 
0.1662 0.1511 0.1466 0.1462 0.1319 0.1329 0.1386 
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Figure 2: Silhouette coefficient plot over the number of clusters 
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D. Gap statistic 

 The gap statistic is another approach for estimating the optimal number of 

clusters in a set of data (Tibshirani, 2001). The strategy of the algorithm is to 

compare the total within cluster dispersion with their expected value. Application 

of the gap method is a powerful procedure in determining the number of clusters 

on both K-means and hierarchical clustering method.   

For each data point 8, let CDDE be the distance  betweenobservation 8′ and i. Let 

"G be the sum of the pairwise distance for all points within cluster r. 

Here CDDE can be interpreted as the squared Euclidean distance.  

For a fixed value of �, define %! as  

%! = H 12IG "G 
!

GJ$
 

 where    "G  =  ∑ CDDE     6IC       CDDE = ∑ ( LDM  − LDEM)�M  

 In order to calculate the gap statistic, the expected value of mean 

dispersion %!*is computed by the reference dataset which is generated using an 

appropriate null distribution. The gap statistic is defined as:  

N6OP(�) =  P∗RSTU(%!∗)V − STU(%!) 
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The optimal number of clusters � is the smallest � such that  

N6OP(�) ≥ N6OP(� + 1) − ;!Y$ 

where ;!Y$ is the standard error.  

 The result of gap statistic approach for different number of clusters is 

provided in Table 4 and Figure 3. In Table 4, the gap statistic is the lowest when 

� = 3. However, the difference in gap statistic and standard error with � = 4 is 

greater than the gap statistic of � = 3 . Thus the optimal �  based on the gap 

statistic is 6.  

 

 

 

 

 

 

 

 

 



29 
 

Table 4: Gap statistics over the number of clusters. 

 

#Clusters logW E(logW) 

Gap= 

E(logW)- 

logW 

SE 

1 6.4785 6.8570 0.3785 0.0168 

2 6.3672 6.7301 0.3629 0.0168 

3 6.2913 6.6384 0.3471 0.0185 

4 6.1919 6.5682 0.3763 0.0164 

5 6.1526 6.5157 0.3631 0.0153 

6 6.1186 6.4681 0.3496 0.0155 

7 6.0778 6.4307 0.3529 0.0157 

8 6.0446 6.4007 0.3562 0.0157 

9 6.0196 6.3732 0.3536 0.0149 

10 5.9848 6.3488 0.3640 0.0146 

11 5.9673 6.3257 0.3584 0.0132 

12 5.9454 6.3042 0.3588 0.0147 

13 5.9181 6.2845 0.3664 0.0146 

14 5.9039 6.2638 0.3599 0.0145 

15 5.8824 6.2453 0.3629 0.0150 
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Figure 3: Gap statistic plot over the number of clusters. 
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E. Bayesian Information Criterion (BIC) 

 In implementing mixture models for clustering, there are two approaches: 

One approach is an iterative relocation approach through the expectation 

maximization (EM) algorithm for maximum likelihood estimation (Celeux and 

Govaert, 1995). However, if the number of clusters is increasing in the mixture 

model, then the dimensionality of the model is also increasing and it causes an 

increase in its likelihood and possible over fitting. In order to avoid such a 

problem, a BIC criterion is applied that does not depend on the likelihood.  

The formula of BIC is defined as 

BIC = −2 ∗ ln(likelihood) + ln(N) ∗ k 

     where � is degree of freedom of the parameters and _ is the number of 

observations.  

 This is the value of the maximized log likelihood measure with a penalty. 

The package mclust in R with all default settings was used to evaluate BIC.  

Mclust uses a model option that is represented by an identifier for 

parameterization of the covariance matrix. The identifier is the geometric 

characteristic of the models including three letters: E for equal variance, V for 

varying variance and I for the coordinate axes. For example, EEV denotes a 

model in which the volumes of all clusters are equal (E), the shapes are equal (E) 
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and the orientation is varying (V). There are 10 combinations of volume, shape 

and orientation included in mclust package. Among the available models, the 

model with the highest BIC value is taken as the best model. Figure 4 shows the 

BIC values of 10 different models over the number of clusters and EEV is 

estimated as the best model since it takes the largest BIC value when � =  3. 

Table 5 provides the results of BIC to see the highest value over the number of 

clusters.   
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Table 5: BIC value of the model EEV over the number of clusters.  

 

#Clusters 1 2 3 4 5 6 7 

BIC -9428 -9482 -9340 -9583 -9428 -9804 -10215 

#Clusters 8 9 10 11 12 13 14 

BIC -10614 -11030 -11444 -11852 -12189 -12500 -12696 
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Figure 4: BIC plot over the number of clusters. 

 

 

1: EII = equal volume, VII = unequal volume, EEI = equal volume and shape, VEI = unequal volume 
and equal shape, EEE = equal volume, shape, and orientation, EVI = equal volume and varying 
shape, VVI = varying volume and shape, EEV = equal volume, shape and varying orientation, VEV 
= varying volume, equal shape and varying orientation, VVV = varying volume, shape, and 
orientation. 
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2.1.2 Comparison of the methods for estimation of 

k 

 

 First, the data set was randomly divided into two groups with a ratio of 2:1 

for finding optimal �. The two-thirds of the data are chosen as a training set and 

the remaining subset is used as a test data set. The K-means clustering is trained 

on the training data in order to find the optimal number of �  by 5 different 

methods (Elbow Difference, Elbow Ratio, Average silhouette method, Gap 

statistic, and Bayesian Information Criterion). One hundred repetitions of K-

means clustering were conducted. In each of the repetitions, the same training and 

test set pair was used to evaluate the performance of 5 methods. The optimal � 

obtained for each method was then tested on the test data. Table 6 shows the 

frequency that the same optimal � obtained in the training set was obtained in the 

test set. The percentage of the same optimal � in the test set as in the training set 

is provided in Table 7.  

 The result in the training set indicates that all of the five methods detect 

k=3 as the dominant optimal number of clusters. The BIC method estimated the 

number of clusters as 3 for 94 times. On the other hand, the Gap method 

determined k as 3 for only 77 times. In Table 7, BIC method reveals the highest 
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percentage of finding the same optimal k in the test set as in the training set. The 

original elbow difference method as well as the proposed elbow ratio method give 

similar estimating results in finding the  optimal number of clusters.   
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Table 6: Frequency of finding the same optimal � in the test set as in the training 

set. The frequency for the training set and the number in parentheses is the 

frequency in the test set. 

 

� 
Elbow 

Diff 
Elbow 
Ratio 

Silhouette Gap BIC 

2 13 (0) 3 (0) 7 (1) 12 (1) 0 (0) 

3 85 (75) 86 (75) 85 (61) 77 (63) 94 (78) 

4 2 (0) 11 (1) 1 (0) 11 (1) 5 (1) 

5 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

6 0 (0) 0 (0) 0 (0) 0 (0) 1 (0) 
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Table 7: Percentage of finding the same optimal � in the test set as in the training 

set.   

 

Method Frequency 

Elbow Diff 75% 

Elbow Ratio 76% 

Silhouette 62% 

Gap 65% 

BIC 79% 
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2.1.3 Simulation Study 

 A simulation study was conducted to examine the performance of the five 

different methods for finding optimal number of clusters. We generated 15 

variables and 120 subjects. Two simulation experiments were conducted. Each 

variable was divided into three classes of sizes 40 each. The first 10 variables 

were randomly generated from a normal distribution with different means and 

variance `� of 1 or a uniform distribution with different means and variance of 

0.75. The remaining 5 variables were generated from a normal distribution with 

mean 1 and variance 1. 

 

A. Simulation Experiment 1    

 Figure 5 displays the data design for the simulation experiment. Among 

the first 10 variables, the first 2 variables were generated from N (1, 1), for 40 

samples in class 1, N (3, 1) for 40 samples in class 2 and N (5, 1) for 40 samples 

in class 3. The next 2 variables were generated from N (3, 1) for class 1, N (5, 1) 

for class 2 and N (1, 1) for class 3. The next 2 variables were generated from N (5, 

1) for class 1, N (3, 1) for class 2 and N (1, 1) for class 3. Next 2 variables were 

generated from U (0, 3) for class 1, U (2, 5) for class 2 and U (4, 7) for class 3. 
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The remaining 2 variables were generated from U (4, 7) for class 1, U (2, 5) for 

class 2 and U (0, 3) for class 3. The remaining 5 variables were generated from N 

(1, 1). For each simulated data set, the optimal number of � was estimated by 5 

different methods. The entire process was repeated by generating 100 simulation 

data from the above design. The correct number of clusters should be k = 3. The 

estimated optimal number of � is provided in Table 8.  

 We generated simulated data sets from 5 different models that contain 

clear cluster structure with known number of clusters. The efficiency of the 

methods is measured by the frequency of the data sets for which the number of 

clusters is correctly estimated. Overall, the simulation study shows that all of the 5 

methods appeared to be efficient in estimating the optimal number of clusters. The 

methods selected 3 clusters from 85 to 96 times. Among the 5 methods, Elbow 

Ratio and BIC performed the best. The BIC model selected k =3 clusters 96 times, 

while Elbow Ratio selected 93 times. However, the BIC had a wider range of k 

than Elbow Ratio. In terms of consistency, Elbow Ratio performed better than 

BIC. The mean of k in Elbow ratio (2.99) was the closest to 3 among the 5 

methods. The standard deviation of k in Elbow Ratio was far less than that of the 

other 4 methods. The estimated k in Elbow Ratio ranged from 2 to 4, while it 

ranged from 3 to 7 in BIC. 
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Figure 5: Data design for simulation experiment 1.  
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Table 8: Frequency of the optimal � in the simulated data set 

 

� 
Elbow 

Diff 
Elbow 
Ratio 

Silhouette Gap BIC 

2 7 4 9 3 0 

3 85 93 87 90 96 

4 6 3 3 5 2 

5 2 0 1 0 1 

6 0 0 0 2 0 

7 0 0 0 0 1 

mean 3.03 2.99 2.96 3.06 3.08 

sd 0.4596 0.2657 0.4000 0.4221 0.4645 
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B. Simulation Experiment 2 

 In the second simulation experiment, the means in the three clusters were 

more close to each other than those of the first experiment. Among the first 10 

variables, the first 2 variables were generated from N (1.5, 1), for 40 

samples in class 1, N (3, 1) for 40 samples in class 2 and N (4.5, 1) for 

40 samples in class 3. Next 2 variables were generated from N (3, 1) for 

class 1, N (4.5, 1) for class 2 and N (1.5, 1) for class 3. Next 2 variables 

were generated from N (4.5, 1) for class 1, N (3, 1) for class 2 and N (1.5, 

1) for class 3. Next 2 variables were generated from U (0, 3) for class 1, 

U (1.5, 4.5) for class 2 and U (3, 6) for class 3. The remaining 2 

variables were generated from U (3, 6) for class 1, U (1.5, 4.5) for class 

2 and U (0, 3) for class 3. The remaining 5 variables were generated 

from N (1, 1).  

 Figure 6 shows the data design for this simulation experiment 2. 

All five methods showed lower accuracy than simulation experiment 1 

in determining the number of clusters, as expected. The results had the 

same pattern as in experiment 1.  BIC chose k = 3 slightly more (73) 

frequently than Elbow Ratio (71), but it was less consistent in selecting 

k than Elbow Ratio. In this experiment, the Elbow method showed 
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better performance than the other three methods. Between the two 

Elbow methods, Elbow Ratio performed better. As in Experiment 1, the 

mean of k (3.07) was the closest to 3 for the Elbow Ratio than for the 

other methods.  The difference was more than 10% in Silhoutte (mean 

3.31), Gap (mean 3.35) and BIC (3.36).  The standard deviation in 

Elbow Ratio was the smallest (0.5366), while it was over 0.80 in those 

three methods. The standard deviations of   k in the Elbow methods 

were far less than that in the other 3 methods. The estimated k in the 

Elbow methods ranged from 2 to 4, while it ranged from 2 to 7 in BIC. 
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Figure 6: Data design for simulation experiment 2.  
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Table 9: Frequency of the optimal � in the simulated data set 

 

� 
Elbow 

Diff 
Elbow 
Ratio 

Silhouett
e 

Gap BIC 

2 10 11 8 7 3 

3 63 71 67 68 73 

4 27 18 14 15 11 

5 0 0 9 3 12 

6 0 0 1 7 0 

7 0 0 1 0 1 

8 0 0 0 0 0 

mean 3.17 3.07 3.31 3.35 3.36 

sd 0.5870  0.5366  0.8610  0.9252  0.8105  
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2.1.4 Exhaustive search of k 

 Following MacQueen’s (1967) K-means methodology, we used an 

algorithm in which each item is assigned to the cluster having the nearest centroid 

(mean). This nonhierarchical method initially takes the number of components of 

the population equal to the final required number of clusters. The final required 

number of clusters is chosen such that the points in different clusters are mutually 

farthest apart. Next, it examines each component in the population and assigns it 

to one of the clusters depending on the minimum distance. The centroid's position 

is recalculated every time a component is added to the cluster and this continues 

until all the components are grouped into the final required number of clusters. 

The process is composed of the following three steps: 1) partition the items into 

initial clusters; 2) proceed through the list of items, assigning an item to the 

cluster whose centroid is nearest (we used Euclidean distance as the measure of 

distance). Then, recalculate the centroid for the cluster receiving the new item and 

for the cluster losing the item; 3) repeat Step 2 until no more reassignment takes 

place. In this study, we ran numerous analyses with various values of K (from 

K=2 to K=12 for the above described two sets of variables), with the goal of 

finding clusters with high concentrations of PARS subjects. 
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A. Application 

 To understand the characteristics of schizophrenia related to the paternal 

age, we conducted a clustering analysis (Lee et al., 2011). For our analyses we 

were interested in a set of core factors consisting of demographic, clinical and 

cognitive variables. Thus, we included in our analyses only cases that had the 

following variables: age of onset of psychosis, sex, family history of 

schizophrenia, age of the father at the case’s birth (paternal age), diagnosis, 

severity of psychopathological symptoms, and neuropsychological function.  

 This study relies on cases with 284 schizophrenia or schizo-affective 

disorder patients recruited at the New York State Psychiatric Institute (NYSPI) 

Schizophrenia Research Unit (SRU) in 1992-2007. The study was approved by 

the Institutional Review Board at NYSPI and all patients provided written 

informed consent. For our analyses we were interested in a set of core factors 

consisting of demographic, clinical and cognitive variables. Thus, we included in 

our analyses only cases on whom we had the following variables: age of onset of 

psychosis, sex, family history of schizophrenia, age of the father at the case’s 

birth (paternal age), diagnosis, severity of psychopathological symptoms, and 

neuropsychological function. We operationally defined PARS as the absence of 

any family history of schizophrenia among first- and second-degree relatives and 

for cases whose fathers’ age at birth was >35 years; all other cases were 
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considered non-PARS (based on Malaspina et al., 2002). All cases were taking 

medication at the time of assessment. 

 Diagnosis was obtained using the Diagnostic Interview for Genetic Studies 

(DIGS; Nurnberger et al., 1994).  In addition to these measures, we included 

symptoms (Positive and Negative Syndrome Scale; PANSS), cognitive tests 

(Wechsler Adult Intelligence Scale—Revised; WAIS-R) and olfaction (University 

of Pennsylvania Smell Identification Test; UPSIT). The Wechsler Adult 

Intelligence Scale--Revised (WAIS-R; Wechsler, 1981) was used to obtain the 

following neuropsychological factors: full scale intelligence quotient (FIQ), 

verbal IQ (VIQ) and performance IQ (PIQ), as well as the verbal subtests 

(arithmetic, digit span, information, vocabulary, comprehension, similarities) and 

the performance subtests (object assembly, picture arrangement, picture 

completion, digit symbol, and block design). We also obtained a verbal-

performance differential score (VIQ-PIQ). The UPSIT is a standardized, multiple-

choice, scratch-and-sniff test with the maximum score of 40 (perfect identification) 

that is found to be stable and reliably measured in schizophrenia patients 

(Malaspina et al., 1994). 

 The descriptive data for the demographic, clinical and neuropsychological 

variables are presented in Tables 10 and 11. The above described the K-means 
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clustering algorithm was run using various combinations of variables in order to 

identify latent subgroups of PARS.   

 The clusters were generated using the following core variables: age of 

onset of psychosis, sex (males = 0; females = 1), family history (no family history 

of schizophrenia = 0; family history of schizophrenia = 1) and paternal age (age of 

the father at the case’s birth). Together with these variables we added one of two 

sets of variables, or a combination of them. These two sets of variables were: the 

WAIS-R FIQ, PIQ, VIQ, VIQ-PIQ and the verbal and performance subtests; and 

the PANSS scores from the standard model (positive, negative and general 

psychopathology subscale scores).  
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 B. Results 

 Two of our K-means clustering analyses produced clusters with high 

PARS concentration. We defined PARS as not having any family history of 

schizophrenia among first and second-degree relatives and fathers’ age at birth 

≥35 years (PARS = 1; non-PARS = 0). Each of these two clustering analyses 

generated seven clusters (K=7) and yielded some prominent features related to the 

PARS subjects. The first analysis included the 11 WAIS-R subtests in addition to 

the four core demographic variables (age of onset of psychosis, sex, paternal age, 

family history of schizophrenia). The second analysis included the VIQ-PIQ 

variable and the PANSS factors from the standard model (positive, negative and 

general psychopathology symptoms) together with the same four core 

demographic variables used in the first analysis.  

 For each variable included in the clustering analysis, we conducted a two-

sample t-test for continuous variables and a chi-square test for categorical 

variables for a comparison between a specific cluster and the rest of the data. The 

data are expressed as the mean ± standard error of the mean. The means (and 

standard deviation; SD) are presented in Tables 3 and 4. A two-sided test is used 

for all the analyses. 
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 Table 12 shows the first analysis, which included 136 cases, 34 (25.0%) of 

which were PARS. Among the clusters, Cluster 3 (N=24) contained 20 PARS 

cases (83%). From Figure 7, this cluster had a higher average differential score 

between VIQ and PIQ (VIQ-PIQ) than the rest of the sample (12.9±2.3 vs. 

6.3±1.0, p=0.009). Also, the mean paternal and maternal ages were relatively high 

at 41 and 33 years, respectively as shown in Figure 8. 
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Figure 7: First cluster analysis: scatter diagram for VIQ-PIQ variable according to 

PARS and cluster. 
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Figure 8: First cluster analysis: scatter diagram for maternal age and paternal age 

according to PARS and cluster. 

 

 

 

 

 

 

MOMAGE vs. DADAGE by PARS & Cluster analysis 

PARS

0 1

M
 O

 M
 A
 G

 E
 

15

25

35

45

15

25

35

45

15

25

35

45

15

25

35

45

15

25

35

45

15

25

35

45

15

25

35

45

1 
2 

3 
4 

5 
6 

7 

 C
lu

s
te

r a
n

a
ly

s
is

 1
  

  

15 20 25 30 35 40 45 50 55 15 20 25 30 35 40 45 50 55

DADAGE 



55 
 

 Although less relevant to our main focus on PARS, Table 12 displays 

some other significant results. Compared to the rest of the data, Cluster 1 had 

more familial cases (p=0.004), lower average UPSIT score (p=0.039), higher 

proportion of deficit syndrome cases (p=0.009), lower neuropsychological scores 

(p<0.0001), and higher PANSS (standard model) subscale scores (all p<0.005). 

Cluster 2 showed higher scores on block design, object assembly and digit symbol 

scores (p=0.003, 0.013 and 0.001, respectively) compared to the rest of the data. 

Cluster 4 and Cluster 5 demonstrated higher FIQ, VIQ, PIQ and most of the 

WAIS-R subtest scores than the rest of the data. The standard model PANSS 

subscales were lower in Cluster 5 than the rest of the data (all p<0.05), but no 

difference was observed in Cluster 4. Clusters 5 and 6 consisted of only males 

with early age onset of psychosis and these cases had higher PIQ scores than VIQ 

scores 

 The second analysis yielded 123 cases of which 30 (24.4%) were PARS. 

This analysis is shown in Table 13 Cluster 2 produced the highest proportion of 

PARS with 10 out of 14 cases (71%; these were all sporadic patients). Inspection 

of the data revealed that the majority of the cases in this cluster were also in 

cluster 3 in the first analysis discussed above. Interestingly, compared to the other 

clusters, the cluster 2 cases were mostly females (93% vs. 35% females, p<0.0001) 

with earlier age of onset of psychosis (17.2±1.7 vs. 22.4±0.6, p=0.006) as shown 

in Figure 9. The mean paternal age was higher in the Cluster 2 group (39.3; 
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SD=8.8) than the rest of the data. None of the Cluster 2 cases had the deficit 

syndrome, and the neuropsychological scores and the PANSS scores for this 

group were not significantly different from those in the other groups.  
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Figure 9: Second cluster analysis: scatter diagram for gender and age onset of 

psychosis according to PARS and cluster. 
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 From the other significant results in Table 13, Cluster 1 had a higher 

proportion of males (p=0.001), more schizophrenia than schizo-affective cases 

(p=0.018), lower mean UPSIT score (p=0.006), higher proportion of deficit 

syndrome cases (p<0.0001), lower main WAIS-R scores (FIQ: p=0.025; PIQ: 

p=0.030; VIQ: p=0.031), lower standard scale PANSS positive symptoms 

(p=0.0005), and higher standard scale PANSS negative symptoms (p<0.0001) 

compared to the rest of the data. Cluster 3 contained 100% male cases with a 

larger difference between VIQ and PIQ scores than the rest of the data (p<0.0001). 

This is due to the low mean PIQ score, which is the lowest among the 7 clusters 

(p=0.019). Cluster 4 demonstrated lower paternal age (p=0.003), higher FIQ, VIQ 

and PIQ scores (all p≤0.02), and lower standard PANSS negative and general 

psychopathology scores (p<0.0001) than the rest of the data.  

 Additionally, this is the only group with lower mean VIQ than PIQ. 

Cluster 5 consisted of 100% females with a later onset of psychosis (p<0.0001), 

higher UPSIT score (p=0.007), more familial cases (p=0.0003), and lower 

standard PANSS symptom subscales (all p<0.01) than the rest of the data. Cluster 

6 had a higher proportion of females than the rest of the data (p=0.0005). Cluster 

7 showed earlier onset of psychosis (p=0.008), higher proportion of males 

(p=0.018), more familial cases (p=0.003), and lower FIQ (p=0.010) and VIQ 

(p=0.001) than the rest of the data. Both Cluster 6 and Cluster 7 had no deficit 
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syndrome cases, and they had higher PANSS standard positive and general 

symptoms scales (p<0.0001) than the rest of the data.  

 It should be noted that in the first cluster analysis, the 34 PARS cases were 

distributed as follows: Cluster 1 (N=5), Cluster 2 (3), Cluster 3 (20), Cluster 4 (2), 

Cluster 5 (2), Cluster 6 (1) and Cluster 7 (1). In the second cluster analysis, the 30 

PARS patients were distributed as follows: Cluster 1 (N=1), Cluster 2 (10), 

Cluster 3 (9), Cluster 4 (3), Cluster 5 (3), Cluster 6 (2) and Cluster 7 (2). 

Additionally, the 20 PARS cases in the Cluster 3 group of the first analysis were 

10 males and 10 females. Among these, three cases were excluded in the second 

analysis due to missing PANSS scores. Of the remaining 17 PARS cases, most 

belong to Cluster 2 and Cluster 3, depending on their sex. Cluster 3 contained six 

male cases, whereas five females and one male were in Cluster 2. The remaining 

five PARS cases were distributed as follows: Cluster 1 (one male), Cluster 5 (two 

females) and Cluster 6 (two females). 

 Due to missing data points on some of the core measures, certain cases 

were only captured in the first clustering analysis (N=16; 8 males and 8 females), 

and some cases were only captured in the second analysis (N=3; 2 males and 1 

female). 120 (70 males; 50 females) of the cases were captured in both clustering 

analyses. See supplementary data for the descriptive data for the cases that 
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overlap (are both in analysis 1 and 2) and for the cases that are either only in 

analysis 1 or 2. 

 Our first cluster analysis, which considered demographic variables and 

neuropsychological test score variables, showed a cluster containing 83% PARS 

cases. It was characterized by relatively high paternal age (mean age = 41 years). 

The mean maternal age (33 years) was also relatively high in this cluster group. 

Interestingly, the cases in this group demonstrated a significant difference 

between the WAIS-R verbal and performance intelligence, with verbal 

functioning being on average 12.97 points better.  

 The verbal versus performance IQ decrement is notable. The result is 

driven by better performance on all the verbal subtasks (arithmetic, digit span, 

information, vocabulary, comprehension, similarities) compared to the 

performance subtasks (object assembly, picture arrangement, picture completion, 

digit symbol, block design). This result supports previous findings in other 

populations showing a strong relationship between older fathers and human 

intelligence (Auroux et al., 1989; Malaspina et al., 2005). These data also 

replicate previous findings from the same population (Malaspina et al., 2002b), 

despite using a different method of analysis, suggesting reductions in non-verbal 

intelligence compared to verbal intelligence in cases with older paternal age. The 

fact that paternal age has a larger effect on performance intelligence than verbal 
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intelligence may be of interest. Future research that examines intelligence together 

with other cognitive and neurological symptoms would be valuable in further 

determining the distinctiveness of PARS as a subgroup of schizophrenia. 

 Our second k-means cluster analysis, which included the VIQ-PIQ 

discrepancy score, the PANSS standard subscale scores and the same 

demographic variables, revealed a cluster consisting of 71% PARS cases. This 

cluster had a significantly higher concentration of females and demonstrated an 

earlier age of psychosis onset. These findings show that later paternal age may 

have a particularly strong influence on the symptoms and clinical characteristics 

of female PARS cases in comparison with other female cases. A high risk of 

schizophrenia for females of older fathers was recently reported by Perrin et al 

(2010). Females of an affected sister born to fathers 35 years and older had a 

fourfold greater risk of schizophrenia than females with an affected sister born to 

fathers <35 years at time of birth. By contrast the risk of schizophrenia in males 

with an affected brother was only doubled for older versus younger fathers. They 

proposed that paternally expressed genes on the X chromosome could play a role 

in the risk associated with females of an affected sister born to older fathers. 

 A non-significant discrepancy (6.21 points) between the verbal and 

performance intelligence was evident in the high-concentration PARS group in 

the second analysis. The reduction in discrepancy from the first analysis may not 
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be surprising as we included the VIQ-PIQ discrepancy score as a factor in the 

second cluster analysis. The reduction may also be partly explained by gender 

separation in this cluster. As discussed above, 12 of the PARS cases from Cluster 

3 in the first analysis were sorted into Cluster 2 (five females and one male) and 

Cluster 3 (six males) in the second analysis. The mean VIQ-PIQ of these 12 

subjects was 11.8, and it was reduced in Cluster 2 (mean VIQ-PIQ of the six 

patients was 6.17), while it was increased in Cluster 3 (mean VIQ-PIQ of the six 

patients was 17.5). The PANSS scores revealed similar results as found in the first 

cluster analysis.  

 In summary, 284 cases with schizophrenia or schizo-affective disorder 

were included and the clusters were generated using different combinations of 

demographic, symptom and cognitive variables based on PARS relevance (high 

concentration of PARS cases grouping in the same cluster). The result of analyses 

indicated that some of the variability in schizophrenia symptoms can be explained 

by PARS cases that tend to “cluster” in groups with particular characteristics. Of 

particular note, a subgroup of largely female cases was identified as having 

separate features in association with later paternal age. This finding supports 

PARS as a distinct subgroup. 
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Table 10: K-means clustering: Descriptive statistics of nominal variables in 

Cluster 1 and Cluster 2 

  Cluster 1 Cluster 2 

Sex (male/female) 78/58 72/51 

Diagnosis (schizophrenia/schizo-affective 

disorder) 
103/33 92/31 

Family history of schizophrenia (yes/no) 41/95 40/83 

PARS (yes/no) 34/102 30/93 

Deficits Syndrome (yes/no) 15/102 13/93 
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Table 11: K-means clustering:  Demographic, clinical, neuropsychological and olfaction data in 

Cluster1 and Cluster 2 

   
Cluster 

1 
  

Cluster 

2 
 

  N Mean SD N Mean SD 

Age of onset of psychosis In years 136 21.90 6.62 123 21.77 6.70 

Maternal age at the case’s 

birth 
In years 129 28.39 5.95 117 28.36 5.86 

Paternal age at the case’s 

birth 
In years 136 32.49 7.40 123 33.00 7.42 

PANSS1 Total 122 52.52 13.53 123 52.23 13.26 

PANSS standard model Positive symptoms 123 12.72 5.58 123 12.55 5.48 

 Negative symptoms 122 13.94 5.59 123 13.96 5.56 

 
General psychopathology 

symptoms 
123 25.89 6.83 123 25.74 6.72 

PANSS 5-factor model Positive symptoms 123 9.89 4.52 123 9.72 4.44 

 Negative symptoms 123 16.74 6.40 123 16.73 6.41 

 Activation 123 8.37 3.13 123 8.46 3.22 

 Dysphoric mood 123 8.98 3.57 123 8.96 3.50 

 Autistic preoccupation 123 10.34 3.48 123 10.23 3.32 

WAIS-R2 Full scale intelligence (FIQ) 134 90.34 13.79 123 90.23 14.96 

 Verbal intelligence (VIQ) 134 94.13 14.70 123 93.97 14.72 

 Performance intelligence (PIQ) 134 86.73 15.42 123 86.74 15.68 

 VIQ-PIQ 134 7.40 11.09 123 7.23 11.15 

WAIS-R, Verbal subtests Arithmetic 136 8.13 2.87 123 8.11 2.79 

 Digit span 136 8.88 2.93 123 8.80 2.94 

 Information 136 9.49 3.29 123 9.47 3.24 

 Vocabulary 136 9.40 3.39 123 9.30 3.43 

 Comprehension 136 8.26 3.26 123 8.26 3.34 

 Similarities 136 8.90 2.90 123 8.98 2.95 

WAIS-R, Performance 

subtests 
Object assembly 136 7.69 3.31 120 7.72 3.40 

 Picture Arrangement 136 7.60 2.93 123 7.59 2.96 

 Picture completion 136 7.34 3.20 123 7.43 3.28 

 Digit symbol 136 6.74 2.58 122 6.80 2.70 

 Block design 136 8.29 3.30 122 8.29 3.33 

Smell Identification 

(UPSIT3) 
Total 69 32.01 4.75 66 32.21 4.70 

1: PANSS: Positive and Negative Syndrome Scale (Kay et al., 1989); 2: WAIS-R: Wechsler Adult 

Intelligence Scale--Revised (Wechsler, 1981); 3: UPSIT: University of Pennsylvania Smell Identification 

Test (Doty et al., 1984) 
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Table 12: First k-means cluster analysis1: means (and standard deviations) of the 
demographic, clinical, neuropsychological and olfaction variables according to 
cluster. 

 
Cluste

r 
N Age onset Sex Diagnosis 

Maternal 
age 

Paternal 
age 

PARS 
Family 
history 

UPSIT 
Deficit 

syndrome 

1 
3
4 

20.12  0.35  0.79  28.12  32.53  0.15  0.50  30.11  2.73  

  (6.03) (0.49) (0.41) (6.57) (7.17) (0.36) (0.51) (5.24) (0.45) 

2 
1
9 

20.11  0.53  0.74  27.08  29.86  0.16  0.05  34.17  2.94  

  (5.18) (0.51) (0.45) (3.86) (4.43) (0.37) (0.23) (4.55) (0.25) 

3 
2
4 

22.63  0.50  0.71  33.23  41.47  0.83  0.13  32.56  2.89  

    (8.02) (0.51) (0.46) (6.36) (6.46) (0.38) (0.34) (4.93) (0.32) 

4 
1
3 

24.08  0.62  0.69  29.13  31.87  0.15  0.38  33.25  2.92  

  (3.93) (0.51) (0.48) (4.31) (5.68) (0.38) (0.51) (3.41) (0.28) 

5 
1
5 

19.80  0.00  0.73  26.60  30.93  0.13  0.20  30.00  2.92  

  (5.88) (0.00) (0.46) (4.61) (5.98) (0.35) (0.41) (5.83) (0.28) 

6 2 17.00  0.00  1.00  29.00  32.50  0.50  0.00  31.00  3.00  

  (1.41) (0.00) (0.00) . (6.36) (0.71) (0.00) . (0.00) 

7 
2
9 

25.03  0.55  0.79  25.95  27.82  0.03  0.41  32.67  2.92  

  (7.15) (0.51) (0.41) (5.11) (5.04) (0.19) (0.50) (3.64) (0.28) 

 

 

 

 

 

PANSS 
positive 
sympto

ms 

PANSS 
negative 
sympto

ms 

PANSS 
general 
sympto

ms 

PANSS-
5, 

negative 
sympto

ms 

PANSS-
5, 

positive 
sympto

ms 

PANSS-
5, 

activatio
n 

PANSS-
5, 

dysphori
c mood 

PANSS-
5, 

autistic 
preoccu

p. 

PIQ VIQ VIQ-PIQ 

1 15.16  17.84  28.84  20.56  11.31  10.22  9.34  12.63  71.32  76.62  5.29  

 (6.95) (5.13) (7.13) (6.20) (5.08) (4.05) (3.53) (3.23) (6.13) (6.98) (7.67) 

2 12.56  12.75  25.75  16.44  10.13  7.88  9.69  10.00  92.00  98.89  6.89  

 (4.59) (6.89) (6.16) (9.64) (3.86) (2.16) (3.93) (2.61) (7.23) (7.27) (10.21) 

3 12.36  13.27  25.50  16.05  9.50  7.82  8.82  10.18  83.35  96.22  12.87  

 (5.23) (5.29) (6.92) (5.52) (4.32) (2.15) (3.40) (3.46) (5.97) (6.32) (10.42) 

4 10.50  11.67  23.75  14.17  8.67  7.42  9.67  9.17  104.77  119.54  14.77  

 (3.83) (4.23) (5.40) (4.67) (3.65) (1.68) (4.19) (2.95) (8.02) (8.20) (11.81) 

5 9.85  11.00  20.08  13.77  7.38  7.00  6.54  7.54  106.40  102.13  -4.27  

 (2.97) (4.28) (3.43) (4.78) (2.79) (1.68) (2.03) (1.76) (8.20) (7.52) (10.49) 

6 13.50  12.50  23.00  14.00  10.50  7.00  8.50  10.00  142.50  126.50  -16.00  

 (0.71) (2.12) (2.83) (0.00) (0.71) (1.41) (0.71) (5.66) (14.85) (12.02) (2.83) 

7 12.54  13.04  26.81  15.69  10.08  8.12  9.19  9.85  81.75  92.04  10.29  

 (5.60) (4.66) (7.08) (4.67) (5.16) (3.44) (3.75) (3.67) (5.82) (6.22) (8.61) 

 

 

 

 

 

 



66 
 

 

 Info 
Picture 
comp 

Digit 
span 

Picture 
arrang 

Vocab 
Block 
design 

Arith 
Object 

assembl
y 

Comp 
Digit 

symbol 
Similaritie

s 

1 5.91  5.21  6.41  5.15  5.62  5.21  5.59  4.91  4.74  4.53  5.68  

 (2.47) (2.28) (2.27) (1.56) (1.84) (1.45) (1.92) (2.02) (1.78) (1.54) (1.51) 

2 10.74  7.47  10.05  8.68  10.58  10.37  8.79  9.42  9.42  8.53  9.63  

 (2.00) (1.87) (2.12) (1.63) (2.43) (2.39) (2.90) (2.78) (2.36) (2.37) (1.89) 

3 9.67  6.42  9.21  7.25  9.79  7.42  9.42  7.17  8.50  6.63  9.13  

 (2.35) (2.15) (2.17) (2.01) (2.17) (2.06) (2.19) (2.97) (2.13) (1.88) (2.03) 

4 14.15  11.15  10.85  11.23  14.54  10.62  11.08  10.00  14.00  9.08  13.69  

 (1.46) (2.97) (2.30) (2.24) (2.26) (1.50) (1.61) (2.65) (2.24) (2.84) (1.70) 

5 11.40  11.60  11.93  10.47  10.40  12.40  9.13  10.87  9.53  8.53  10.07  

 (1.92) (1.50) (3.13) (1.77) (2.47) (2.38) (2.50) (2.85) (1.85) (2.50) (1.49) 

6 13.00  15.00  12.50  14.50  14.00  19.00  13.50  16.50  11.50  9.50  15.00  

 (2.83) (4.24) (0.71) (4.95) (2.83) (0.00) (3.54) (0.71) (3.54) (0.71) (2.83) 

7 9.41  6.07  8.03  6.45  9.59  7.34  7.38  6.97  8.00  6.07  8.86  

 (2.31) (1.75) (2.13) (2.31) (2.34) (1.84) (2.13) (1.74) (1.71) (1.67) (1.55) 

 
1: Variables used in generating the clusters: age of onset of psychosis, sex, paternal age, family history of 
schizophrenia, WAIS-R verbal subtests (arithmetic, digit span, information, vocabulary, comprehension, 
similarities) and WAIS-R performance subtests (object assembly, picture arrangement, picture completion, digit 
symbol, block design). 
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Table 13: Second k-means cluster analysis1: means (and standard deviations) of 
the demographic, clinical, neuropsychological and olfaction variables according 
to cluster.  

 
Cluste

r 
N 

Age 
onset 

Sex Diagnosis 
Maternal 

age 
Paternal 

age 
PARS 

Family 
history 

UPSIT 
Deficit 

syndrome 

1 21 21.24  0.10  0.95  27.28  30.41  0.05  0.52  29.44  2.47  

  (5.84) (0.30) (0.22) (5.25) (4.74) (0.22) (0.51) (3.85) (0.51) 

2 14 17.21  0.93  0.57  29.18  39.32  0.71  0.00  35.40  3.00  

    (4.68) (0.27) (0.51) (6.78) (8.83) (0.47) (0.00) (2.70) (0.00) 

3 22 19.82  0.00  0.73  29.74  34.05  0.41  0.05  31.00  2.90  

  (4.68) (0.00) (0.46) (6.33) (7.24) (0.50) (0.21) (7.95) (0.30) 

4 21 21.33  0.24  0.81  26.75  28.70  0.14  0.19  32.90  3.00  

  (5.16) (0.44) (0.40) (4.65) (5.21) (0.36) (0.40) (2.88) (0.00) 

5 19 29.95  1.00  0.74  29.16  35.18  0.16  0.68  35.31  2.88  

  (7.41) (0.00) (0.45) (5.86) (7.80) (0.37) (0.48) (2.93) (0.33) 

6 11 25.00  0.91  0.55  29.97  31.95  0.18  0.09  31.67  3.00  

  (5.71) (0.30) (0.52) (4.04) (4.08) (0.40) (0.30) (4.23) (0.00) 

7 15 17.53  0.13  0.73  26.83  33.25  0.13  0.67  31.50  3.00  

  (3.38) (0.35) (0.46) (7.32) (9.02) (0.35) (0.49) (4.66) (0.00) 

 

 

 

 

 

PANSS 
positive 

symptom
s 

PANSS 
negative 
symptom

s 

PANSS 
general 

symptom
s 

PANSS-
5, 

negative 
symptom

s 

PANSS-
5, 

positive 
symptom

s 

PANSS-
5, 

activatio
n 

PANSS-
5, 

dysphori
c mood 

PANSS-
5, 

autistic 
preoccu

p. 

PIQ VIQ 
VIQ-
PIQ 

1 8.86  23.19  27.19  26.29  6.33  9.52  7.62  10.24  80.00  87.67  7.67  

 (1.85) (4.03) (4.73) (6.34) (1.74) (2.11) (3.46) (2.62) (12.84) (15.13) (7.36) 

2 13.43  13.29  25.21  16.43  10.29  8.14  9.14  10.29  84.00  90.21  6.21  

 (4.16) (4.30) (4.17) (5.09) (3.71) (2.63) (3.03) (2.70) (8.73) (13.24) (8.59) 

3 10.50  12.00  23.55  14.55  8.18  6.95  8.68  9.50  79.68  97.00  17.32  

 (3.38) (2.81) (4.87) (3.46) (2.94) (1.46) (3.30) (2.54) (9.62) (11.84) (9.55) 

4 10.90  9.71  20.57  11.90  8.71  7.19  7.33  8.43  105.33  100.76  -4.57  

 (2.98) (1.98) (3.67) (2.17) (3.00) (1.54) (2.80) (2.46) (17.79) (13.55) (8.92) 

5 9.42  10.53  21.95  13.11  7.95  6.74  8.37  8.58  88.74  99.32  10.58  

 (3.13) (3.08) (4.78) (3.35) (3.15) (1.45) (3.44) (2.48) (14.37) (15.43) (9.25) 

6 20.45  13.18  35.91  16.91  16.18  10.55  13.55  13.27  85.18  98.27  13.09  

 (5.47) (2.48) (6.59) (3.83) (4.05) (4.93) (3.27) (4.17) (12.25) (15.34) (7.06) 

7 20.40  15.40  32.00  18.07  15.07  11.93  10.73  13.60  81.67  82.40  0.73  

 (4.10) (3.81) (6.07) (5.24) (3.77) (4.80) (1.87) (3.42) (12.81) (9.93) (9.16) 
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 Info 
Picture 
comp 

Digit 
span 

Picture 
arrang 

Vocab 
Block 
design 

Arith 
Object 

assembl
y 

Comp 
Digit 

symbol 
Similaritie

s 

1 7.90  6.52  8.24  6.95  7.86  6.76  7.62  6.65  6.90  5.90  7.29  
 (3.92) (2.86) (3.03) (2.69) (3.20) (2.51) (3.17) (3.70) (3.21) (2.21) (2.72) 
2 8.29  6.79  8.07  7.79  9.07  7.57  7.79  7.93  7.93  7.71  8.36  
 (3.29) (2.04) (3.17) (2.19) (2.87) (2.38) (2.69) (3.36) (2.50) (3.02) (2.65) 
3 10.14  6.18  9.32  6.32  9.59  7.68  8.86  6.59  8.59  5.18  9.50  
 (2.53) (2.56) (2.93) (2.28) (3.14) (3.08) (2.64) (2.56) (3.49) (1.56) (2.24) 
4 10.48  10.76  10.90  9.81  10.10  11.95  9.33  10.45  9.33  8.86  10.38  
 (2.48) (3.36) (2.74) (2.86) (2.76) (3.46) (2.56) (3.55) (2.78) (2.90) (2.75) 
5 10.21  7.74  8.47  8.26  11.32  8.05  8.53  7.37  10.32  7.63  10.05  
 (3.29) (3.45) (2.20) (3.25) (3.23) (3.27) (2.52) (3.15) (3.84) (2.54) (3.01) 
6 11.00  6.45  8.73  7.55  11.09  8.00  7.36  7.91  9.00  6.36  10.18  
 (3.16) (2.73) (3.26) (3.47) (4.21) (2.79) (3.11) (3.24) (2.32) (2.01) (3.16) 
7 8.33  6.80  7.07  6.27  6.13  7.29  6.33  7.21  5.33  5.86  7.00  
 (2.99) (3.08) (2.02) (2.63) (2.36) (2.40) (2.02) (2.78) (2.13) (2.60) (2.56) 

 
1: Variables used in generating the clusters: age of onset of psychosis, sex, paternal age, family history of 
schizophrenia, VIQ-PIQ, PANSS subscales (standard model: positive, negative and general psychopathology 
subscale scores). 
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2.2 Hierarchical Cluster Analysis 

2.2.1 Methods 

 Hierarchical methods start with the individual observation, and these initial objects 

are merged according to their similarity (distance matrix) until the observations become one 

cluster. A dendrogram displaying the result of clustering is given in Figure 11.  Among the 

various linkage criteria for determining the distance between clusters, average linkage 

methods were used for generating clusters in this study. Other distance measures will be 

tested in our future work. Average linkage treats the distance between two clusters given 

below as the average distance between elements of each cluster.  

Distance between two clusters A and B = 
$

|e|×|g| ∑ ∑ C(L, h)i∈ℬl∈m  

where, |A| is the cardinality of the cluster A which is the number of elements of the set A 

|B| is the cardinality of the cluster B which is the number of elements of the set B 

 Unlike K-means clustering, there are criteria for finding an optimal number of 

clusters for hierarchical clustering.  The pseudo F, pseudo n� statistics along with CCC 

(Cubic Clustering Criterion) are used for determining the number of clusters.  It has been 

recommended to look for consensus among these statistics.  We look for local peaks of the 

pseudo F combined with a small value of the pseudo n�  statistic and a larger pseudo n�  for 

the next cluster fusion.  A high CCC value is preferred.  
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2.2.2 Application 

 The goal of this study is to identify a readily usable biomarker associated with core 

features of PARS for use in treatment studies. This sample included 114 psychiatric cases 

diagnosed with schizophrenia (n=60), schizoaffective disorder (n=19), bipolar disorder 

(n=20) or major depressive disorder (MDD; n=14) recruited from a large urban state 

psychiatric facility from 1992 to 2007. Additionally, 51 controls with no history of mental 

illness were recruited from the community; one participant had missing diagnostic 

information. All participants signed informed consent forms and research procedures were 

approved by the local Institutional Review Board. Among them, only 10 patients were from 

the PARS group. The data contain demographic information, Neuropsychological Test 

Scores, PANSS scales, odor detection score and global assessment of function scores 

(GAF).  We have here used hierarchical cluster analysis with the average linkage method to 

predict association of odor acuity and symptoms of schizophrenia subgroups. Other 

statistical analysis such as regression and correlation were also used to support our findings. 

 In the cluster analysis, 2 demographic measures with UPSIT (smell identification 

test score), MNTHRES (Mean OLF Threshold) and neuropsychological domains are used 

to generate the clusters. As we highlighted in Figure 11, Cluster 13 shows relatively high 

pseudo F, large jump in pseudo n�   statistic and positive CCC number. Based on the 

criterion, 13 clusters have been chosen for detecting characteristics among the 

schizophrenia patients. Our choice of cluster 13 is also represented as the vertical line 
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through the 3 different plots in Figure 10 and the horizontal line separates the tree chart in 

Figure 11.   
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Table 14: Hierarchical clustering:  Cluster criterions for the number of clusters. 

 

   NCL  Cluster Joined   FREQ SPRSQ  RSQ  ERSQ   CCC    PSF   PST2   Dist 

15 CL24 CL55 6 0.0047 0.836 0.827 1.35 33.8 4 0.5011 

14 CL19 11023 9 0.0031 0.833 0.82 1.9 36 2.1 0.5025 

13 CL16 CL35 41 0.0097 0.823 0.813 1.48 36.8 5.4 0.5388 

12 CL17 CL14 46 0.0168 0.806 0.805 0.16 36.3 9.5 0.5444 

11 CL13 CL15 47 0.0112 0.795 0.796 -0.21 37.6 5.6 0.5503 

10 CL32 10024 3 0.0034 0.791 0.787 0.56 41.3 2.3 0.5629 

9 CL12 5593 47 0.0038 0.788 0.777 1.38 45.9 1.8 0.5631 

8 CL11 CL18 50 0.0089 0.779 0.765 1.59 50.3 4.1 0.5881 

7 1014 CL26 3 0.0039 0.775 0.752 2.42 57.9 2.4 0.6009 

6 CL9 CL10 50 0.0094 0.765 0.737 2.68 66.6 4.3 0.6152 

5 CL8 CL33 53 0.0119 0.753 0.72 2.78 78.7 5.2 0.6297 

4 CL6 CL7 53 0.0112 0.742 0.698 1.81 99.9 4.8 0.6571 

3 CL4 11018 54 0.0068 0.736 0.657 3.16 146 2.7 0.7069 

2 CL3 1001 55 0.0092 0.726 0.55 7.47 281 3.6 0.799 

1 CL5 CL2 108 0.7263 0 0 0 . 281 1.3079 

 

 

1: NCL: Number of cluster used in the clustering analysis. FREQ: frequency, SPRSQ: semi partial R square, 

RSQ: R square, ERSQ: expected value of R square, CCC: cubic clustering criterion, PSF: pseudo F, PST2:  

pseudo T square statistics and Dist: distance between two clusters. 
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Figure 10: Graphical view of CCC, pseudo F and pseudo T-square statistics for the number 

of clusters.   
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Figure 11: Tree chart for hierarchical clustering 

    

 

 

 

 

 

 

 

 

 

 

 

Cluster Analysis Tree Chart

_
H
E
I
G
H
T
_

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Name

O
B
5

O
B
1
2

O
B
1
9

O
B
2
4

O
B
2
6

O
B
2
7

O
B
3
1

O
B
3
2

O
B
3
3

O
B
3
4

O
B
3
7

O
B
3
9

O
B
4
0

O
B
4
3

O
B
4
5

O
B
5
0

O
B
5
1

O
B
5
2

O
B
5
3

O
B
5
6

O
B
6
1

O
B
6
4

O
B
6
5

O
B
6
6

O
B
6
8

O
B
6
9

O
B
7
4

O
B
7
6

O
B
7
9

O
B
8
1

O
B
8
6

O
B
9
2

O
B
9
6

O
B
9
7

O
B
1
0
0

O
B
1
0
2

O
B
1
0
4

O
B
1
0
6

O
B
1
0
8

O
B
1
1
1

O
B
1
1
2

O
B
1
1
6

O
B
1
1
7

O
B
1
1
9

O
B
1
2
0

O
B
1
2
1

O
B
1
2
6

O
B
1
2
9

O
B
1
3
0

O
B
1
3
8

O
B
1
4
6

O
B
1
4
8

O
B
1
5
3

O
B
1
5
4

O
B
1
5
8

O
B
1
6
1

O
B
1
6
3

O
B
1

O
B
1
4

O
B
4
9

O
B
7
5

O
B
1
5

O
B
6
0

O
B
3
5

O
B
4
6

O
B
1
4
9

O
B
5
9

O
B
9
1

O
B
1
0
7

O
B
1
5
9

O
B
1
3
5

O
B
5
7

O
B
9
4

O
B
1
0
3

O
B
7
2

O
B
1
1
3

O
B
2

O
B
1
5
5

O
B
4
1

O
B
7
1

O
B
7

O
B
1
1

O
B
1
2
8

O
B
1
4
5

O
B
4
2

O
B
1
0
5

O
B
1
2
3

O
B
7
0

O
B
7
3

O
B
9
8

O
B
1
4
3

O
B
9
5

O
B
1
6
2

O
B
1
6
0

O
B
9
0

O
B
9
9

O
B
1
5
2

O
B
1
5
6

O
B
1
3

O
B
5
8

O
B
4
7

O
B
4
4

O
B
1
5
7

O
B
1
1
5

O
B
9
3

O
B
1
1
8

O
B
1
2
2

O
B
5
4

O
B
8
7

O
B
1
0
1

O
B
3

O
B
1
3
3

O
B
2
0

O
B
1
0
9

O
B
1
8

O
B
4
8

O
B
3
0

O
B
8
0

O
B
1
3
2

O
B
2
1

O
B
8
3

O
B
3
8

O
B
6
3

O
B
1
4
7

O
B
2
8

O
B
8
9

O
B
9

O
B
1
6
4

O
B
2
2

O
B
2
3

O
B
8
2

O
B
1
4
1

O
B
1
0

O
B
2
9

O
B
1
7

O
B
2
5

O
B
1
1
0

O
B
4

O
B
8
8

O
B
1
2
4

O
B
6

O
B
1
5
0

O
B
7
8

O
B
1
2
5

O
B
1
4
4

O
B
1
6
5

O
B
1
3
4

O
B
8
5

O
B
1
2
7

O
B
1
5
1

O
B
1
1
4

O
B
1
3
9

O
B
1
3
7

O
B
1
4
0

O
B
1
4
2

O
B
1
3
6

O
B
5
5

O
B
3
6

O
B
6
2

O
B
7
7

O
B
1
6

O
B
6
7

O
B
8
4

O
B
1
3
1

O
B
8



75 
 

2.2.3 Results 

 Table 15 shows the cluster analysis with the 13 clusters, which includes 73 

psychotic cases (65.2%), 16 schizo-affective, 37 schizophrenia, 11 bipolar and 9 MDD 

cases. It is interesting to see that Cluster 1 only contains male patients with large proportion 

of schizophrenia cases and Cluster 2 contains only female cases. The average of the core 

factors is provided in Table 16. Patients in Cluster 1 were mostly schizophrenia and schizo-

affective patients with high positive symptom scale (Mean: 12.83, SD: 5.56) and high 

difference in GAF score. These patients also show extremely low scores in all Wechsler 

Adult Intelligence Scale (WAIS). Cluster 2 contains only female patients with 63% bipolar 

and more than half of MDD cases. These patients have shown high negative symptom 

scores (NTOT) and high GAF current scores (Mean: 37.64, SD: 15.98). Perhaps 

analogously, we found increased acuity predicted more depression but better work function, 

whereas lesser odor detection acuity was associated with mania, social fear and avoidance 

(Hardy, in press). In this cluster, POI (Perceptual organization index) score is relatively 

higher whereas WMI (Working memory index) score is lower than overall cases. 

 We found that the sensitivity for odor detection (acuity) decreases as paternal age 

advances in both male and female controls (r=-.40, n=37, p=.01); whereas it conversely 

increases in schizophrenia (r= .243, n=57, p= .067).  We next looked at the association of 

odor acuity with course and symptoms in schizophrenia, finding that lesser acuity predicted 

declining function, assessed as changes in global assessment of function scores (GAF) 

between the current interview and previous month (r=-.432, n=50, p=. 002).  We explored 
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the symptoms in the PANSS to examine which features explained the association between 

acuity and functional decline. Backward elimination from a full regression model showed 

increased positive symptoms predicted the relationship between less acuity and greater 

GAF decline.  

 

Descriptive Statistics (N=165)                         

Variable N Mean SD 

Age 165 35.1 11.0 

Onset 103 22.5 7.3 

Mom age 122 27.8 6.4 

Dad age 115 31.4 6.9 

MNTHRES 128 4.5 1.5 

UPSIT 144 32.0 4.4 

PTOT 136 10.4 5.6 

NTOT 138 11.7 5.5 

GTOT 138 23.9 8.8 

GAF_CUR 66 35.7 14.5 

GAF_PAS 67 46.0 12.5 

VIQ 132 102.6 15.6 

PIQ 132 96.1 15.7 

VIQ-PIQ 132 6.4 12.3 

VCI 133 105.2 16.2 

POI 132 96.8 15.8 

WMI 133 98.2 15.0 

PSI 131 95.1 14.7 
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Table 15: Hierarchical clustering: frequency table of DIAGALL and gender by cluster.  

DIAGALL by CLUSTER 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 total 

Schizo-

aff 
7 6 0 1 0 0 0 0 1 1 0 0 0 16 

Schizo 17 9 1 2 3 0 1 2 0 0 1 0 1 37 

Bipolar 1 7 1 1 0 1 0 0 0 0 0 0 0 11 

MDD 1 5 1 1 0 0 1 0 0 0 0 0 0 9 

total 26 27 3 5 3 1 2 2 1 1 1 0 1 73 

 
 

SEX by CLUSTER 
 

Freque

ncy 
1 2 3 4 5 6 7 8 9 10 11 12 13 

tota

l 

Male 26 0 3 0 0 0 2 2 1 1 1 0 1 37 

Female 0 27 0 5 3 1 0 0 0 0 0 0 0 36 

total 26 27 3 5 3 1 2 2 1 1 1 0 1 73 
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Table 16: Hierarchical clustering: means (and standard deviations) of the demographic, 

clinical, neuropsychological and olfaction variables according to cluster. 

 

 

 

 

 

CLUST

ER  
AGE 

MOM

AGE 

DADA

GE 

ONSE

T 

MNT

HRES 
UPSIT PTOT NTOT GTOT 

GAF_

CUR 

GAF_

PAS 

1 

N 26 17 17 22 26 26 24 24 24 20 20 

MEAN 39.42 26.33 29.87 22.95 3.78 32.04 12.83 12.92 25.58 30.15 46.45 

STD 10.20 7.56 7.53 5.35 0.99 3.47 5.56 4.39 7.08 14.44 12.11 

2 

N 27 20 17 26 27 27 25 25 25 14 14 

MEAN 37.24 25.82 30.57 22.35 4.57 33.37 9.56 13.20 26.20 37.64 45.93 

STD 10.28 6.39 7.59 8.74 1.01 2.94 3.62 5.59 6.06 15.98 13.31 

3 

N 3 2 2 2 3 3 3 3 3 1 1 

MEAN 27.54 31.34 34.34 17.50 4.67 31.33 8.67 12.00 23.33 60.00 60.00 

STD 3.06 0.95 3.29 0.71 0.45 4.04 1.53 3.61 4.73 
  

4 

N 5 4 5 4 5 5 4 4 4 3 3 

MEAN 36.41 23.34 27.87 27.25 4.08 31.40 11.50 9.50 21.75 25.33 44.33 

STD 10.21 5.27 9.11 11.32 1.64 2.61 3.32 3.11 6.65 4.51 15.04 

5 

N 3 3 3 3 3 3 3 3 3 1 1 

MEAN 27.74 28.97 36.49 20.67 9.10 33.00 7.67 11.00 21.33 45.00 25.00 

STD 5.03 5.54 7.46 2.31 0.78 4.36 1.15 0.00 3.21 
  

6 

N 1 1 1 1 1 1 1 1 1 0 0 

MEAN 23.00 27.24 31.39 19.00 3.58 26.00 7.00 9.00 20.00 
  

STD 
           

7 

N 2 1 1 2 2 2 2 2 2 2 2 

MEAN 47.83 21.13 30.69 27.50 5.71 26.50 14.50 18.50 35.00 39.00 43.00 

STD 12.98 
  

12.02 0.30 4.95 10.61 2.12 16.97 1.41 7.07 

8 

N 2 0 1 2 2 2 2 2 2 0 1 

MEAN 35.58 
 

37.00 21.50 5.38 33.50 10.50 10.50 21.50 
 

50.00 

STD 14.60 
  

4.95 0.86 3.54 4.95 4.95 4.95 
  

9 

N 1 1 1 1 1 1 1 1 1 0 0 

MEAN 38.69 26.18 41.49 22.00 7.73 23.00 12.00 15.00 28.00 
  

STD 
           

10 

N 1 0 0 1 1 1 1 1 1 1 1 

MEAN 21.72 
  

21.00 4.35 29.00 12.00 18.00 27.00 25.00 32.00 

STD 
           

11 

N 1 1 1 1 1 1 1 1 1 1 1 

MEAN 23.00 31.00 40.00 18.00 2.00 21.00 18.00 7.00 22.00 40.00 61.00 

STD 
           

12 

N 
           

MEAN 
           

STD 
           

13 

N 1 1 0 1 1 1 0 0 0 1 1 

MEAN 48.00 18.00 
 

25.00 2.50 11.00 
   

21.00 55.00 

STD 
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CLUSTE

R 
viq piq viqp Fsiq vci poi wmi psi 

1 

26 26 26 26 26 26 26 26 

93.08 87.62 5.46 89.88 95.19 90.58 90.88 86.00 

15.28 11.28 11.45 13.36 16.22 11.14 13.26 11.19 

2 

27 27 27 27 27 27 27 27 

101.56 98.85 2.70 100.41 106.15 99.41 94.78 95.04 

14.58 13.50 12.52 13.39 15.61 12.83 10.99 14.41 

3 

3 3 3 3 3 3 3 3 

111.67 118.67 -7.00 115.67 106.67 113.33 123.33 109.00 

8.50 15.53 17.06 9.29 4.93 15.63 11.68 11.36 

4 

5 5 5 5 5 5 5 5 

99.20 77.40 21.80 88.60 107.80 73.40 82.80 78.60 

18.43 17.10 3.03 19.11 17.98 9.66 16.30 6.95 

5 

3 3 3 3 3 3 3 3 

105.00 103.00 2.00 104.33 111.00 105.33 96.33 102.00 

5.00 11.53 8.54 7.51 5.20 10.97 8.02 15.59 

6 

1 1 1 1 1 1 1 1 

107.00 99.00 8.00 104.00 109.00 95.00 102.00 128.00 

        

7 

2 2 2 2 2 2 2 2 

115.50 107.00 8.50 113.00 111.50 116.00 124.50 92.50 

12.02 2.83 9.19 8.49 9.19 2.83 7.78 9.19 

8 

2 2 2 2 2 2 2 2 

134.00 139.00 -5.00 139.50 140.50 141.50 113.50 106.00 

1.41 19.80 18.38 9.19 6.36 12.02 7.78 0.00 

9 

1 1 1 1 1 1 1 1 

100.00 119.00 -19.00 108.00 103.00 123.00 97.00 108.00 

        

10 

1 1 1 1 1 1 1 1 

75.00 80.00 -5.00 76.00 72.00 84.00 78.00 63.00 

        

11 

1 1 1 1 1 1 1 1 

130.00 121.00 9.00 128.00 131.00 133.00 113.00 108.00 

        

12         
        
        

13 

1 1 1 1 1 1 1 1 

79.00 72.00 7.00 74.00 84.00 72.00 82.00 76.00 
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Chapter 3  

Classification Analysis 

3.1 Methods  

RF 

 RF models consisting of 500 trees were used. The analysis was performed 

with the R statistical software package RandomForest (Liaw and Wiener, 2002) 

using all the default settings. We used two different decision thresholds, 0.5 and 

0.69 (114/165, the proportion of patients in the data), to improve the balance 

between sensitivity and specificity (Ahn et al., 2007). 

SVM 

 R package e1071 was used with all default settings. We considered both the 

radial basis and linear kernels, but only the linear basis kernel was reported because it 

showed a higher accuracy. The adjusted decision threshold was also used in SVM 

with linear kernel.   
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LDA, AdaBoost 

 A package MASS in R was employed for LDA in the comparison. We used 

the default options. Among various boosting algorithms, AdaBoost was adopted 

using the R package adabag with all default settings. The number of boosting 

iterations was set as the default of mfinal=100.  

Decision Threshold 

 When a data set has highly unbalanced class sizes, the classification result 

tends to be biased toward the majority class. In order to resolve this problem, we 

assigned an adjusted decision threshold by using the proportion of the sizes of the 

majority class as the decision threshold (see Ahn et al., 2007). For the schizophrenia 

data, the decision threshold becomes the proportion of patients (114/165). This 

threshold is applied to RF and SVM model in hope for improved balance between 

sensitivity and specificity.  

 The efficiency of these models on these data was evaluated by overall 

accuracy, sensitivity, specificity, PPV and NPV. Overall accuracy was obtained by 

the total number of correct predictions divided by the total number of predictions. 

Sensitivity measures the proportion of positive predictions among actual positives 
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and specificity is the proportion of negative predictions among actual negatives. PPV 

is the proportion of true positives among the positive predictions and NPV is the 

proportion of true negatives among the negative predictions. In our study, patients 

with disease are regarded as people in the positive class, and the control group is 

regarded as the negative class. In this study, we conducted 20 repetitions of 10-fold 

cross-validation using the same random data sets for different models. For cross-

validation, 10-fold cross-validation is widely used although computation power 

allows using more folds (Kohavi 1995).  

 McNemar’s test was used for comparison of the significance of difference in 

prediction measures between two models. We also used the area under the ROC 

curve (AUC) to compare the performance of the classification algorithms. The ROC 

curve is a graphical plot which represents a trade-off between sensitivity and 

specificity for every possible cut off.  
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3.2 Example 

3.2.1 Participants 

 This study is based on cases with schizophrenia, schizo-affective, bipolar or 

major depressive disorder (MDD) recruited at the New York State Psychiatric 

Institute (NYSPI) Schizophrenia Research Unit (SRU) from 1992 to 2007. The data 

contain 165 human subjects. Among them, 51 were healthy controls, 19 were schizo-

affective, 60 were schizophrenia patients, 20 were bipolar patients and 14 were MDD 

patients. We had one missing observation. The data set contains demographic 

information, neuropsychological test scores, PANSS (Positive and Negative 

Syndrome: Kay et al., 1987) scales and global assessment function of current and past 

scores. A summary of the data is given in Table 17. In our analysis, the missing 

observations were imputed by the mean for continuous variables and mode for 

categorical variables. 
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3.2.2 Measures 

The following variables are included in the data: 

DIAGALL: Diagnosis, 5 categories  

BRAGE_M: Mother’s age at birth  

BRAGE_F: Father’s age at birth 

SEX: male, female 

FAMHXANY: Family history of schizophrenia 

MNTHRES:  Mean Olfactory Threshold 

UPSIT: University of Pennsylvania Smell Identification Test 

VIQ: Verbal IQ 

PIQ: Performance IQ 

FSIQ: Full Scale Intelligence Quotient 

VCI, POI, WMI, PSI, WSINFS, WSPIXCS, WSDSS, WSPIXAS, WSVOCS, 

WSBDS, WSARITHS, WSOBASSS, WSCOMPS, WSDS YMS, WSSIMILS, 

WSMATRS, WSLETNMS, WSSYMSES, WSSYMBS: verbal subtests (arithmetic, 

digit span, information, vocabulary, comprehension, similarities) and the performance 

subtests (object assembly, picture arrangement, picture completion, digit symbol, 

block design) 

PTOT: Positive Syndrome Scale 

NTOT: Negative Syndrome Scale 

GTOT: General Syndrome Scale  

GAF-CUR:  Global Assessment Function, current 

GAF-PAS:  Global Assessment Function, past  
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Table 17: Classification: Descriptive statistics of the NYSPI data 

Overall (N=165) 

 Age Onset BAG

E_M 

BAG

E_F 

MNTH-

RES 

UPSIT FSIQ PTOT NTOT GTOT GAF-

CUR 

GAF-

PAS 

N 165 103 122 115 128 144 132 136 138 138 59 61 

µ 35.1 22.5 27.8 31.4 4.5 32.0 100.6 10.4 11.7 23.9 37.3 46.0 

SD 11.0 7.3 6.4 6.9 1.5 4.4 17.6 5.6 5.5 8.8 16.1 12.5 

 

Diagnosis (DIAGALL, N=164):  control (0), schizo-affective (1), schizo (2), bipolar 

(3), MDD (4) 

  Ons

et 

AGE_

M 

AGE_

F 

MNTH-

RES 

UPSIT FSIQ PTOT NTOT GTOT GAF-

CUR 

GAF-

PAS 

 

0 

N 0 40 37 41 44 37  40 41 41 0 0 

µ   29.2 32.2 4.5 33.0 106.0  7.0 7.6 16.8   

SD   6.3 6.7 1.2 4.0 13.0  0.0 1.6 1.7   

 

1 

N 17 11 10 17 17 17 15 15 15 12 12 

µ 22.1 24.3 27.1 4.3 31.9 95.6 12.4 13.7 27.4 32.3 39.8 

SD 7.7 5.0 7.2 1.3 4.1 19.7 4.4 4.9 8.1 9.6 8.7 

 

2 

N 58 46 46 46 54 50 57 57 57 32 34 

µ 23.2 27.8 32.6 4.4 31.0 96.7 12.9 13.6 26.5 31.0 43.7 

SD 6.1 6.5 6.3 1.9 5.1 20.1 7.0 5.8 10.0 12.0 10.4 

 

3 

N 16 16 15 12 16 18 12 13 13 9 9 

µ 21.2 27.1 30.7 4.6 32.9 100.4 8.4 11.9 25.8 55.2 56.3 

SD 8.0 7.6 8.1 0.9 3.2 13.9 1.7 5.8 4.2 14.3 12.8 

 

4 

N 12 9 7 12 12 10 12 12 12 6 6 

µ 21.6 26.7 27.1 4.5 31.8 109.0 9.8 14.1 29.1 54.5 55.8 

SD 10.8 4.7 5.9 1.0 2.9 15.7 4.6 5.9 9.0 17.9 16.9 

 

 



86 
 

3.2.3 Variables Included in the Analysis 

 In our analysis, the missing observations were imputed by the mean for 

continuous variables and mode for categorical variables. 

In this study, we compared the performance of RF, SVM, LDA and AdaBoost with 

each of different response variables. The response variable was divided into two 

groups: schizophrenia patients and the healthy control group. We then used different 

symptoms of the patients as a response variable. The sets of different responses are as 

follows:  

1) Control=0, Patient=1 

2) Schizophrenia=0, other patients=1 (Schizo-affective, Bipolar & MDD) 

3) Schizophrenia & Schizo-affective=0 Bipolar & MDD=1 

 Predictor variables included in the full model were Paternal age, Maternal age, 

Family history, Mean OLF Threshold, SEX, UPSIT, VIQ, PIQ, FSIQ, VCI, POI, 

WMI, PSI, WSINFS, WSPIXCS, WSDSS, WSPIXAS, WSVOCS, WSBDS, 

WSARITHS, WSOBASSS, WSCOMPS, WSDSYMS, WSSIMILS, WSMATRS, 

WSLETNMS, WSSYMSES, WSSYMBS, PTOT, NTOT, GTOT, GAF_CUR and 

GAF_PAS.  
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3.3 Evaluation of the Methods 

 Table 18 summarizes the results from each model for classifying the data into 

patients and the control group. We also compared the results with the decision 

threshold of 0.5 and the results with the threshold of 0.69 (the proportion of patients 

in the data). P-values of the McNemar’s test for the difference in overall accuracy 

between RF and other methods are given in Table 18.   

 Based on the results in Table 18, RF shows the highest overall accuracy of 

0.856. For RF, the overall accuracy with 0.69 threshold (0.856) was improved from 

the accuracy of 0.837 with 0.5 threshold. The variable importance ranking obtained 

by RF (see Table 21) indicates that the PANSS score is important in classifying the 

data into patients and control. When the decision threshold was 0.5, both RF and 

SVM gave high sensitivity (0.89 for RF and 0.87 for SVM), but they showed very 

low specificity. When the decision threshold of RF and SVM was changed from 0.5 

to 0.69, the overall accuracy improved and the sensitivity and specificity became 

more balanced. Accuracy of LDA, on the other hand, was the lowest among all 

classifiers. AdaBoost performed well in terms of accuracy, but it showed imbalance 

between sensitivity and specificity. Figure 12 shows ROC of different models. ROC 

of RF with 0.69 threshold was above the ROC of the other models indicating that it 
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performed better than the other models. RF with 0.69 threshold had the highest AUC 

of 89% than the other models as shown in Table 18.  

 Table 19 shows the performance of the classification models in classifying the 

patients into schizophrenia and other symptoms (Schizo-affective, Bipolar and MDD). 

The overall prediction accuracy of RF was 0.72, which was the best among the 4 

models. RF appeared to perform well in all other measures as well. The overall 

prediction accuracies of LDA, AdaBoost and SVM were below 0.7 in this analysis. 

The overall accuracy of RF was compared to that of the other models. The result 

indicates that the overall accuracy obtained by RF was significantly higher than that 

of SVM and LDA. Family history of schizophrenia was highly ranked in RF variable 

importance ranking. The current global assessment function score also played an 

important role in classifying the schizophrenia and the other group (see Table 22). 

Figure 13 shows ROC of each model for the classification shown in Table 19. ROC 

for RF and AdaBoost were very close (AUC was 74.8% for RF and 74.1% for 

AdaBoost). LDA and SVM also showed similar patterns in ROC.   

 We then divided the patients differently into two groups: one group consisted 

of schizophrenia and schizo-affective patents, and the other group consisted of 

bipolar and MDD cases (Table 20). In overall accuracy, both SVM and RF showed 

better performance than the other models. The RF variable importance ranking (Table 
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23) again showed that family history of schizophrenia is an important factor in this 

analysis. LDA had the lowest accuracy among all the models. The differences in 

overall accuracy between SVM and the other models were significant (p-values less 

than 0.05). AUC obtained for SVM was 76.2% (see the ROC curve in Figure 14).   

 In the next analysis, we performed a multi-class classification with RF, SVM, 

AdaBoost and LDA. First, the response was divided into three levels which were 

control, schizophrenia and other diseases. Next, we conducted a classification into 

five classes by dividing the other disease group into schizo-affective, bipolar and 

MDD. Table 24 provides the results of the three-way classification and Table 25 

shows the results of the five-way classification. Based on the average of 20 

repetitions of 10-fold cross-validation, the overall accuracy of RF performed the best 

in the three-way classification. For the five-way classification, AdaBoost achieved 

the highest prediction accuracy. Overall, our results indicate that multi-way 

classifications did not perform well compared to a binary classification.  
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Table 18: Performance (SD in parentheses) of classification algorithms into patients 

and control. Twenty repetitions of 10-fold CV were used for each method.  

 

Models Accuracy P-value* Sensitivity Specificity PPV NPV AUC 

RF 
0.837 

(0.014)  
 

0.894  

(0.010)  

0.710  

(0.036)  

0.875 

(0.014)  

0.751  

(0.020)  
0.874  

RF w/0.69th 
0.856  

(0.009)  
0.083 

0.854  

(0.012)  

0.861  

(0.028)  

0.932  

(0.013)  

0.726  

(0.015)  
0.890  

SVM 
0.816 

(0.018)  
0.052 

0.870  

(0.019)  

0.693  

(0.030)  

0.864  

(0.013)  

0.706  

(0.034)  
0.833  

SVM 
w/0.69th 

0.799  

(0.018)  
<0.001* 

0.803  

(0.019)  

0.789  

(0.040)  

0.895  

(0.018)  

0.642  

(0.025)  
0.835  

LDA 
0.773 

(0.015)  
<0.001* 

0.833  

(0.012)  

0.637 

(0.038)  

0.837  

(0.015) 

0.631  

(0.022) 
0.822  

AdaBoost 
0.812  

(0.016)  
0.031 

0.877  

(0.020)  

0.669  

(0.034) 

0.856 

(0.013)  

0.709  

(0.033)  
0.829  

*P-values of the McNemar test for the difference in overall accuracy between RF and the 

given method  
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Table 19: Performance (SD in parentheses) of classification algorithms into 

schizophrenia and other symptoms. Twenty repetitions of 10-fold CV were used for 

each method.  

 

Models Accuracy 
P-

value* 
Sensitivity Specificity PPV NPV AUC 

RF 
0.724 

(0.017) 
 

0.745 

(0.018) 

0.701 

(0.041) 

0.743 

(0.022) 

0.710 

(0.013) 
0.748 

SVM 
0.674 

(0.019) 
<0.001* 

0.643 

(0.025) 

0.701 

(0.028) 

0.656 

(0.023) 

0.690 

(0.017) 
0.697 

LDA 
0.674 

(0.027) 
<0.001* 

0.652 

(0.035) 

0.693 

(0.035) 

0.653 

(0.032) 

0.693 

(0.025) 
0.691 

AdaBoost 
0.696 

(0.027) 
0.0176 

0.794 

(0.057) 

0.609 

(0.092) 

0.646 

(0.035) 

0.775 

(0.034) 
0.747 

*P-values of the McNemar test for the difference in overall accuracy between RF and the 

given method  
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Table 20: Performance (SD in parentheses) of classification algorithms into 

(Schizophrenia & Schizo-affective) and (Bipolar & MDD). Twenty repetitions of 10-

fold CV were used for each method.  

 

Models 
Accurac

y 
P-value* 

Sensitivit

y 

Specificit

y 
PPV NPV AUC 

RF 
0.720 

(0.018) 
0.0046 

0.738 

(0.023) 

0.701 

(0.035) 

0.743 

(0.022) 

0.706 

(0.017) 

0.74

4 

SVM 
0.749 

(0.027) 
 

0.760 

(0.039) 

0.738 

(0.038) 

0.720 

(0.030) 

0.778 

(0.030) 

0.76

2 

LDA 
0.665 

(0.028) 
<0.001* 

0.650 

(0.048) 

0.678 

(0.036) 

0.641 

(0.029) 

0.688 

(0.030) 

0.72

7 

AdaBoost 
0.681 

(0.026) 
<0.001* 

0.716 

(0.063) 

0.649 

(0.081) 

0.647 

(0.039) 

0.724 

(0.029) 

0.71

8 

*P-values of the McNemar test for the difference in overall accuracy between SVM and the 

given method  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



93 
 

Table 21: Variable importance ranking for the RF result shown in Table 18 

 

Rank Variable Mean Decrease 

Accuracy 

Rank Variable Mean Decrease 

Accuracy 

1 GTOT 0.05674 18 wsbds 0.00110 

2 PTOT 0.03881 19 wsinfs 0.00088 

3 NTOT 0.03298 20 vci 0.00076 

4 FAMHXANY 0.01507 21 wspixas  0.00062 

5 wsdsyms 0.00711 22 wsmatrs 0.00049 

6 psi 0.00686 23 upsittot 0.00028 

7 wsariths 0.00399 24 BRAGE_F 0.00016 

8 viq 0.00277 25 wspixcs 0.00016 

9 piq 0.00249 26 wssimils 0.00009 

10 wssymses 0.00245 27 wsobasss 0.00001 

11 wmi 0.00223 28 wssymbs -0.00010 

12 poi 0.00162 29 BRAGE_M -0.00026 

13 wsvocs 0.00157 30 wsdss -0.00052 

14 fsiq 0.00152 31 MNTHRES_A -0.00185 

15 SEX 0.00150 32 wspixas 0.00062 

16 wscomps 0.00131 33 wsmatrs 0.00049 

17 wsletnms 0.00116    
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Table 22: Variable importance ranking for the RF result shown in Table 19 

 

Rank Variable Mean Decrease 

Accuracy 

Rank Variable Mean Decrease 

Accuracy 

1 FAMHXANY 0.03086 18 viq 0.0027 

2 GAF_CUR 0.00989 19 wsariths 0.002 

3 fsiq 0.00776 20 wssymbs 0.00144 

4 BRAGE_F 0.00756 21 poi 0.00105 

5 vci 0.00672 22 NTOT 0.00089 

6 MNTHRES_A 0.00635 23 wssimils 0.00078 

7 GTOT 0.00603 24 wspixas 0.00063 

8 wsletnms 0.00538 25 wssymses 0.00026 

9 piq 0.00452 26 upsittot 0.00022 

10 wsinfs 0.00436 27 wsdss -0.00003 

11 wsdsyms 0.00415 28 wscomps -0.00034 

12 GAF_PAS 0.0038 29 wsobasss -0.00044 

13 wmi 0.00356 30 wsmatrs -0.00078 

14 psi 0.00341 31 wsbds -0.00092 

15 PTOT 0.00324 32 SEX -0.00098 

16 wsvocs 0.00301 33 BRAGE_M -0.00108 

17 wspixcs 0.00284    
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Table 23: Variable importance ranking for the RF result shown in Table 20 

 

Rank Variable Mean Decrease 

Accuracy 

Rank Variable Mean Decrease 

Accuracy 

1 FAMHXANY 0.02986 18 wssimils 0.00205 

2 BRAGE_F 0.01105 19 wspixcs 0.0019 

3 wsvocs 0.01083 20 wsbds 0.00176 

4 fsiq 0.00976 21 wssymbs 0.00152 

5 GAF_CUR 0.00869 22 poi 0.0013 

6 wsletnms 0.00637 23 NTOT 0.0013 

7 vci 0.00402 24 wscomps 0.00127 

8 wmi 0.004 25 wsariths 0.00107 

9 GTOT 0.00393 26 wsdss 0.00037 

10 GAF_PAS 0.00337 27 wssymses 0.00024 

11 MNTHRES_A 0.00328 28 SEX -0.0002 

12 piq 0.00319 29 upsittot -0.00021 

13 viq 0.00299 30 wspixas -0.00045 

14 psi 0.00292 31 wsmatrs -0.00091 

15 wsinfs 0.00262 32 wsobasss -0.00202 

16 PTOT 0.00261 33 BRAGE_M -0.00254 

17 wsdsyms 0.00256    
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Table 24: Performance of classification algorithms into control, Schizophrenia and 

other diseases. Twenty repetitions of 10-fold CV were used for each method.  

 

Models Accuracy SD Min Max 

RF 0.6484 0.0149 0.6181 0.6667 

SVM 0.6387 0.0181 0.6181 0.6727 

LDA 0.606 0.0178 0.5757 0.6424 

AdaBoost 0.6336 0.0248 0.5939 0.6787 
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Table 25: Performance of classification algorithms into control, Schizophrenia, 

Schizo-affective, Bipolar and MDD. Twenty repetitions of 10-fold CV were used for 

each method.  

 

Models Accuracy SD Min Max 

RF 0.5642 0.0112 0.5454 0.5878 

SVM 0.5457 0.0131 0.5333 0.5757 

LDA 0.5018 0.0168 0.4787 0.5272 

AdaBoost 0.5909 0.0132 0.5636 0.6121 
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Figure 12: ROC curve: classification algorithms into patients and control 
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Figure 13: ROC curve: classification algorithms into Schizophrenia and other 

symptoms. 
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Figure 14: ROC curve: classification algorithms into (Schizophrenia & Schizo-

affective) and (Bipolar & MDD) 

 

 

 

 



101 
 

3.4 Prediction of Potential Schizophrenia Cases 

 In order to detect the risk of developing schizophrenia, RF, SVM, LDA and 

AdaBoost were used to predict the occurrence of schizophrenia among the 51 

subjects in the healthy control group. In this analysis, the data were divided into 

training and test sets. First, the control group was randomly divided into 3 groups: G1, 

G2 and G3. In the first analysis, G1 and G2 plus the 113 patients formed the learning 

set and G3 served as the test set. In the second analysis, G1 and G3 plus the 113 

patients formed the learning set and G2 served as the test set. In the last analysis, G2 

and G3 plus the 113 patients were in the learning set and G1 served as the test set.  

 Table 29 provides a list of subjects who were predicted as patients. Among 

the 51 controls, RF predicted 6 subjects, SVM and LDA predicted 7 subjects, and 

AdaBoost predicted 9 subjects as potential patients. The subjects who were predicted 

as potential schizophrenia patients by different models were not the same, but there 

was an overlap of prediction across the models. For example, the person with ID 

11003 was classified as patient by all four methods.   

 In the next analysis, we used the same procedure as above, but used the four 

classification models to distinctively predict two different groups: schizophrenia or 

the other symptoms. RF predicted that 4 people potentially have a disease. Among 
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them, the model predicted 3 of them might have schizophrenia and one person might 

have other disease. The results show that the majority of the subjects at risk of the 

disease in this RF analysis were also predicted as potential patients in the previous 

analysis. LDA predicted 5 people as potential schizophrenia patients and one person 

as a patient of other disease. AdaBoost predicted 8 subjects and SVM predicted 4 

subjects as potential schizophrenia patients and no other subject as a patient of other 

disease.    

 Finally, the 51 subjects in the control group were used to predict patients of 

one of the 4 different diseases and the result is shown in Table 31. In this analysis, 

SVM predicted the same 4 subjects predicted in the previous analysis as potential 

schizophrenia patients. Unlike the prediction of potential schizophrenia patients done 

in the beginning of this section, the predictions of SVM and RF were very different. 

RF classified the person with ID 11051 who was predicted as a patient with other 

disease in the previous analysis as a potential patient of bipolar disease. LDA also 

predicted the person with ID 11043 who was predicted as a patient with other disease 

in the previous analysis as a potential patient of bipolar disease. LDA classified two 

people as potential bipolar patients and additional 3 people as potential schizophrenia 

patients. AdaBoost predicted 7 people as potential schizophrenia patients. All four 

models predicted the person with ID 11053 as a potential schizophrenia patient.  
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Table 26: Variable importance ranking for the prediction of schizophrenia among 

controls  

Rank Variable Mean  

Decrease 

Accuracy 

Rank Variable Mean  

Decrease 

Accuracy 

1 GTOT 0.05442 17 BRAGE_M 0.00123 

2 PTOT 0.04126 18 wspixcs 0.00083 

3 NTOT 0.03239 19 poi 0.00082 

4 FAMHXANY 0.0122 20 wscomps 0.0007 

5 psi 0.00698 21 wsletnms 0.00059 

6 wsdsyms 0.00468 22 wsinfs 0.00048 

7 wsariths 0.00438 23 wsvocs 0.00037 

8 wssymses 0.00413 24 wspixas 0.00033 

9 piq 0.00332 25 wssimils 0.00025 

10 viq 0.00324 26 wsmatrs 0.00007 

11 wmi 0.00309 27 wsdss -0.00035 

12 fsiq 0.00287 28 wsobasss -0.0005 

13 vci 0.00216 29 wssymbs -0.00096 

14 upsittot 0.00211 30 BRAGE_F -0.0014 

15 wsbds 0.00177 31 MNTHRES_A -0.00144 

16 SEX 0.00158 
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Table 27: Variable importance ranking for the prediction of schizophrenia 

(schizophrenia vs. other diseases) among controls 

Rank Variable Mean 

Decrease 

Accuracy 

Rank Variable Mean 

Decrease 

Accuracy 

1 GTOT 0.04597 17 wspixcs 0.00212 

2 PTOT 0.04316 18 wscomps 0.00189 

3 NTOT 0.03862 19 BRAGE_F 0.00166 

4 FAMHXANY 0.01143 20 wssymbs 0.00163 

5 psi 0.00781 21 viq 0.00138 

6 wsdsyms 0.00759 22 wmi 0.00136 

7 wsvocs 0.00729 23 wsbds 0.00118 

8 fsiq 0.00497 24 SEX 0.00104 

9 vci 0.00455 25 wssimils 0.00101 

10 wsinfs 0.00447 26 MNTHRES_A 0.00093 

11 wssymses 0.00389 27 wspixas 0.00033 

12 wsariths 0.00357 28 wsobasss 0.00012 

13 piq 0.00319 29 wsmatrs 0.00005 

14 upsittot 0.00254 30 wsdss -0.00069 

15 wsletnms 0.00237 31 BRAGE_M -0.001 

16 poi 0.00215 
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Table 28: Variable importance ranking for the prediction of schizophrenia 

(schizophrenia, schizo-affective, bipolar and MDD) among controls 

Rank Variable Mean 

Decrease 

Accuracy 

Rank Variable Mean 

Decrease 

Accuracy 

1 PTOT 0.04972 17 poi 0.00234 

2 GTOT 0.04491 18 wspixcs 0.00234 

3 NTOT 0.04422 19 wsariths 0.00234 

4 FAMHXANY 0.01266 20 wsbds 0.0023 

5 wsdsyms 0.00982 21 Vci 0.00183 

6 psi 0.00776 22 SEX 0.0018 

7 piq 0.00611 23 Wspixas 0.00109 

8 wsinfs 0.00561 24 Wsmatrs 0.00108 

9 wscomps 0.00427 25 BRAGE_F 0.00104 

10 wsvocs 0.00401 26 Wmi 0.00091 

11 wssymses 0.00381 27 Upsittot 0.00036 

12 fsiq 0.00347 28 MNTHRES_A 0.00008 

13 wssimils 0.00314 29 Wssymbs 0.00002 

14 viq 0.00275 30 Wsdss -0.00058 

15 wsobasss 0.00272 31 BRAGE_M -0.00248 

16 wsletnms 0.00251 
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Table 29: Subjects in the control group who were predicted as potential patients by 

the classification methods 

 

 Scizophrenia vs control 

id RF SVM LDA Ada 

11001 
  

O O 

11002 
 

O O O 

11003 O O O O 

11019 
 

O O 
 

11020   O  

11021 O O 
  

11026    O 

11033 
 

O 
 

O 

11040 
   

O 

11043 
 

O O 
 

11046 O 
  

O 

11048 O 
  

O 

11051 O 
  

O 

11053 O O O 
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Table 30: Subjects in the control group who were predicted as potential schizophrenia 

(schizophrenia vs. other diseases). 

 

 Schizophrenia vsother vs control 

id RF SVM LDA Ada 

11001 
 

scz 
  

11002 
   

scz 

11003 
  

scz 
 

11019 
  

scz 
 

11020   scz scz 

11021 scz 
   

11026    scz 

11028 
 

scz 
  

11033 scz 
  

scz 

11040 
   

scz 

11043 
 

scz other scz 

11046 scz 
   

11051 other 
 

scz scz 

11053 
 

scz scz scz 
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Table 31: Subjects in the control group who were predicted as potential schizophrenia 

(schizophrenia, schizo-affective, bipolar and MDD). 

 

 Five classes 

id RF SVM LDA Ada 

11001 
 

scz 
 

scz 

11002 
 

scz 
 

scz 

11003 
  

scz 
 

11020   scz scz 

11021 scz 
   

11028 
  

bip 
 

11040 scz 
  

scz 

11043 
 

scz bip scz 

11048 
   

scz 

11051 bip 
   

11053 scz scz scz scz 
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Chapter 4 

Discussion and Conclusion 

 In contrast to other clustering methods (e.g., hierarchical clustering) there is 

no standard way to find the optimal number of clusters. Thus we proposed Elbow 

Ratio method for finding an optimal number of k in the K-means cluster analysis. In 

the first simulation study, Elbow Ratio and BIC showed better performance than 

other methods in determining the optimal number of clusters. In terms of consistency, 

Elbow Ratio showed better performance than BIC. In the second simulation study, 

the accuracy of all five methods was lower than the first experiment. However as in 

experiment 1, Elbow Ratio performed the best in estimating the number of clusters.  

 The process of our two cluster analysis and classification aim at the same goal, 

that is, of developing predictive model. In order to make a good prediction when 

solving almost any type of complicated problem, it is important to enrich our 

understanding of the general phenomena, and the hidden facts among the data for 

long term development. We defined PARS subgroup and explored the heterogeneous 

nature of schizophrenia symptoms. The results of clustering provide further evidence 
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that the genetic and neurobiological underpinnings of schizophrenia associated with 

the illness risk attributable to later paternal age may be different than that of other 

cases. Our prior findings of clustering in regards to importance of later paternal age 

are also confirmed through the variable importance ranking for the RF result. The RF 

utilized the variables paternal age and family history of schizophrenia as important 

predictor variables. 

 This study employed cluster analyses to examine if specific illness features of 

schizophrenia are associated with later paternal age. We identified PARS cases that 

clustered in groups with particular characteristics. One group was characterized by a 

greater differential between verbal and performance intelligence, and the other group 

showed a high concentration of female cases and significant early onset of psychosis. 

 In two different k-means clustering analyses we demonstrated, for perhaps the 

first time, that some of the variability in schizophrenia symptoms can be explained by 

PARS cases that tend to “cluster” in groups with particular characteristics. Of 

particular note, a subgroup of largely female cases was identified as having separate 

features in association with later paternal age. This finding supports PARS as a 

distinct subgroup. K-means clustering analysis may be a useful statistical method to 

examine the relationships between etiological and other symptoms in schizophrenia; 

to explore latent subgroups with distinct features. By overcoming the heterogeneity in 
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schizophrenia, we may advance our understanding of the decease and lay the 

groundwork for the development of new treatments. 

 In hierarchical clustering, Cluster 1 only contains male patients with large 

proportion of schizophrenia cases, which was characterized by relatively high 

positive symptom scale and extremely low scores in Wechsler Adult Intelligence 

Scale (WAIS). We found that a cluster consisting of only female cases, of which 63% 

were bipolar and high negative symptom scores (NTOT) and high GAF current 

scores. The result revealed that the sensitivity of odor detection increases as paternal 

age advances in schizophrenia cases. 

 The strengths of this study include the use of a statistical method that is 

particularly germane for resolving the heterogeneity of schizophrenia. The clustering 

model requires variability in numerous factors to generate separate independent 

clusters that share common attributes. Moreover, cluster analysis assures minimal 

variation within the clusters, but maximum variation between the clusters, creating 

more homogeneous subgroups. Our results showed that etiological data and clinical 

information can both be considered in the procedures. 

 Next, we considered the issue of developing predictive model by employing 

several classification models. Classification is an important supervised learning 
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method that builds predictive model based on the prior knowledge learned from the 

training data set. Currently, disease risk prediction has played an important role in 

health care research and clinical practice. Attempting prediction of disease risk has 

been recently studied by various machine learning techniques.  

 In this study, we evaluated the performance of 4 different classification 

models such as RF, SVM, LDA and Adaboost to predict occurrence of schizophrenia 

or other mental diseases. Chen et al. (2004) noted that most of the classification 

algorithms tend to be biased for unbalanced data because they focus on minimizing 

the overall error rate. Classifying unbalanced data set can be improved by adjusting 

the decision threshold. Our results showed that both RF and SVM with adjusted 

decision threshold improved the balance of sensitivity and specificity. Among these 

four models, RF consistently performed well in overall accuracy and AUC. Both 

SVM and AdaBoost showed higher performance than LDA in classification into 

patients and control.  

 We further examined the potential risk of schizophrenia or other diseases 

among the subjects in the control group. We hypothesized that the person who was 

predicted as a patient frequently might have more risk of developing schizophrenia or 

other mental disorders in the future. According to our study, there was an overlap of 
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prediction across the models, and some of the subjects were predicted as a potential 

patient by all four models.  

 In conclusion, we have attempted to explain and compare the performance of 

different classification models that are being applied to schizophrenia prediction. 

Specifically, we predicted the potential risk of individuals to develop schizophrenia 

by generating different classification models. We believe that the predictive rule 

produced by our process can be an effective channel to predict potential 

schizophrenia patients among seemingly healthy individuals. Overall, our studies 

may be particularly helpful in the development of appropriate clinical treatment, early 

diagnosis and will enable individuals to prepare their potential disease risk. A follow 

up study is needed to test and verify the result obtained in this study. 
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Chapter 5  

Future Study 

� In this study, we studied only well separated data sets in the simulation 

experiments. We are planning to apply our proposed method to data set 

containing more complicated cluster structure. In addition to this, we will 

work on the different data design to compare the performance of Elbow Ratio 

method. Since the optimal number of cluster can vary from data set to data 

set, various types of data design would help find the characteristic of Elbow 

Ratio method. 

� It should be noted that our total PARS sample size for the clustering analysis 

was relatively small. In the first analysis we had a total of 34 PARS cases, 

with 20 PARS cases belonging to the high PARS concentration cluster. The 

second analysis only included 30 PARS cases, with 10 cases being in the 

high PARS concentration cluster. The hierarchical clustering also contained 

only 10 patients from the PARS group. Future studies that screen for higher 

inclusion rates of PARS cases may be successful in recruiting larger PARS 
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samples. Such studies may also want to include variables not examined here 

but found to be of etiological significance. 

� For the future work, we will study other widely used classification methods 

and compare their performance with the four classification methods used in 

this study.  It is expected to develop our predictive rule produced by this 

study.  We may also consider various ensemble methods. 
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