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Abstract of the Dissertation

Multi-source Image Integration Towards Solar Forecast

by

Zhenzhou Peng

Doctor of Philosophy

in

Computer Engineering

Stony Brook University

2016

Accurate prediction of solar energy in short-term and mid-term horizons

becomes increasingly important for harvesting solar energy and improving its

viability in comparing with fossil fuels. Because clouds are the primary cause

of large fluctuations in solar radiation, estimating cloud movements and cor-

relating cloud activities and the variability of solar irradiance are the essential

components in short-term or mid-term solar predictions and play a vital role in

the subsequent mitigation in responding to potential solar power fluctuations.

However cloud detecting and tracking is very challenging due to the volatility

and complexity of clouds and expensive meteorological instruments or remote

sensing technologies (e.g., satellite imagery) that often have insufficient resolu-
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tions and limited availability. Ground-based sky imager offers higher temporal

and spatio-resolution than does satellite. However it has a small field of view

and lacks of spatial information of clouds, and solar forecast systems utilizing

this type of imager are still inefficient and ineffective in cloud identification,

motion tracking and as well as short-term irradiance prediction.

To fully address the problems of cloud detection and tracking and construct

robust solar forecast system, we focus on three major thrusts: robust cloud mo-

tion tracking, multi-camera integration, and multi-channel satellite utilization.

First, to improve the accuracy and robustness of cloud motion estimation, we

designed a hybrid cloud tracking model to incorporate the strength of multiple

classic techniques of motion estimation. This new model employ block-wise

motion estimation, extracts the dominant motion patterns via histogram statis-

tics. Furthermore, it estimates a dense motion field at a pixel level via cus-

tomized motion filters and a refined objective function. Compared with state-

of-the-art methods, our new model achieved at least 30% and 10% reductions to

the errors of motion estimation respectively in simulated and real cloud datasets.

Second, to overcome the limitations of ground-based sky images, we imple-

mented a system to integrate multiple sky imagers. The system utilizes a novel

method of identifying and tracking clouds in three-dimensional space and con-

structs an innovative pipeline for forecasting surface solar irradiance based on

the image features from clouds. As a result, it robustly detected clouds in mul-

tiple layers and outperformed state-of-the-art methods by at least 26% accuracy

improvement. Third, to extend the forecast horizons, we devised a mid-term

forecast system that integrates the multi-channels of geostationary satellite im-

ages and adopts the optical flow approach to estimate cloud motions from noisy

satellite images and better subsequent extraction of local cloud features. It em-

ploys a robust regression model to combine multiple features together to elim-

inate outliers and reduce prediction error. The resulting system demonstrates

significant improvements over the baseline model in predicting solar irradiance.
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Chapter 1

Introduction

Solar energy is one of the most promising renewable energy solutions, i.e., it

is quieter and subjected to fewer installation restrictions, incurs lower main-

tenance cost, and has longer life time than other alternatives. Because of in-

novative solar technologies in photovoltaics (PV) plants and the increasingly

competitive prices, solar-based electricity generators gain more interests in en-

ergy market than ever before. An ever-growing number of distributed roof-top

solar panels and utility-scale solar plants and their associated energy storage in

smart-grids or micro-grid operate in a high temporal- and spatio-resolution, and

so engenders a pressing need for forecasting solar intermittency over a series

of timescales. As cloud is the leading factor in ramp events of solar irradi-

ance, existing solar forecast systems attempt to utilize various types of images

to measure and track cloud information. However, clouds have complex vari-

ability and conditions, current image-based cloud tracking and solar forecasting

are ineffective in representing true cloud movements and accurately predicting

variations in solar irradiance.

To tackle these research challenges and improve the accuracy of solar fore-

casts in various temporal/spatial resolutions, we focus on building and enhanc-

ing image-based solar forecast system that can integrate multi-source images.

In this thesis, we investigate and design a new motion estimation framework to
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accommodate cloud tracking models and to detect motion field in various im-

ages. To enlarge the field of view (FOV) beyond the maximum range of individ-

ual camera and improve robustness of image-based solar forecast, we introduce

a new multi-camera network and tracked clouds in a three-dimensional space.

Furthermore, we design an innovative mid-term solar forecast system that is

based on multi-channel satellite images and takes advantage a much larger FOV

than that of any ground-based solution.

1.1 Research Motivations

Fossil fuels are still dominating the global energy sector. They are non-renewable

and depletable eventually. Over-consumption of fossil fuel emits an excessive

amount of air pollution and green house gases, and causes serious environmen-

tal issues and global warming. With these concerns with fossil fuels,renewable

energy sources, on the other hand, became necessary for sustainable Earth and

reached a 22.8% of market share in the global electricity sector [1]. In recent

years, solar energy underwent the most rapid growth and gained the largest in-

crease in renewable energy market. Solar energy has been the most abundant

and cleanest energy solution. Since the invention of first modern solar cell in

1954 [2], two techniques, i.e., photovoltaic (PV) systems and concentrated solar

power, have developed rapidly, and become increasingly cost-effective. In to-

day’s energy market, unsubsidized solar PV-generated electricity becomes even

more competitive than fossil fuels and other energy sources in a growing num-

ber of locations around the World. Therefore solar PV starts to play a substantial

role in global electricity market. This trend is confirmed by the fact that roof-

top and utility-scale PV systems have been installed across the country at an

unprecedented rate. Figure1-1 shows that U.S. market added a capacity of 7260

megawatt (MW) from the annual solar PV installation, and reached a total of

27.4 gigawatt (GW) solar capacity.
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Figure 1-1: Annual U.S. Solar PV Installation, 2000-2015 (Figure 1.1 in Solar
Market Insight 2015 Q4 [3]).

1.1.1 Emerging Market of Solar Energy

There are a variety of approaches to harvest solar energy in city and urban en-

vironments. Small scale applications for rooftops of residential and commercial

buildings include solar thermal collectors and PV generators that integrate so-

lar generated power into home electrical system or power grid for heating and

illumination. Utility scale installation in scale solar power plants consists of

thousands of PV arrays that convert sunlight directly to electric current or re-

flection mirrors that concentrate sunlight to boil fluid and turn the turbines of

generators, and increases the capacity of energy market. To integrate the ca-

pacity of solar power plants into the traditional utility grids or compensate its

volatility with operating reserves and energy storage, plant and grid operators

often make their operation plans in advance, for example, minutes, hours and

days ahead.

1.1.2 Intermittency in Solar Power Production

High variability and uncertainty of solar radiation compromise the reliability

of solar energy production and slow down the pace of adopting solar power by

utility companies [4]. The output of a solar power system varies significantly
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between its ceiling and floor capacities in a matter of minutes or even seconds.

Therefore, intermittency of solar power has become the biggest concern in en-

abling high penetrations of solar photovoltaics into the power grid and affected

the stability and capacity of the power grid and its spinning reserve. In re-

cent years, the emerging market of smart grid has also been driving the need

of cost-effective management of power intermittency. Balancing the supply de-

mand ratio and minimizing the operation cost of electric grid with the presence

of sizable solar energy is critical to maximize the throughput of power genera-

tion and guarantee the quality of service for end customers. Depending on their

particular solar applications, gird operators are concerned with foreseeing the

fluctuations of PV production and designing responding strategies for various

scenarios and in a variety of time resolutions.

Short-term solar irradiance fluctuations, usually in a sub-hour scale, lead to

the same fluctuation in effected solar power plants. If left unmitigated, their

unstable power output can subsequently cause voltage flicker and large voltage

variations, and even trip automated line equipment that are attached to distribu-

tion feeders. The larger the solar generator’s capacity is, the more maintenance

and repair cost it incurs to the power utility. This type of intermittency often

requires costly ancillary services to ramp up or spin down within a short time

window. Long-term solar irradiance fluctuations and their causal affects to the

variations of solar power are the key issue for the unit commitment by a large-

scale power generator. To mitigate the long-term intermittency of solar power

generation of a utility scale, plant operators must access to supplementary power

sources when over-committing its production, and curtail solar energy when

under-committing.

Among many disadvantages of solar energy, short-term variability within

several minutes is the worst concern to grid operators in many regions. For

example, Figure 1-2 shows a one-day worth of ramp events in term of change in

Global Horizontal Irradiance (GHI) at Long Island Solar Farm (LISF) in 2014.
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Figure 1-2: GHI Drop at Long Island Solar Farm (LISF).

Figure 1-3: Annual report of GHI drop events at LISF.

The ground-level GHI reading frequently declined by more than 80% within 5

minutes. Such an intermittency of GHI occurs during one third of days in a year.

Figure 1-3 presents the histogram of ramp events measured by the changes in

GHI.

1.1.3 Need of Solar Forecasting

As the intermittency of solar resources is the biggest hurdle in solar energy uti-

lization, recently, independent service operators and utility companies urgently

need a cost-effective solution to manage, control, and mitigate the variability

during solar power production. This is essential to the electricity value chain

to balance supply-demand interaction, reduce the cost of operating electricity

grids, and maximize the benefits of solar powers. Multiple decisions, such as,

to charge and discharge energy storage, to dispatch spinning reserves, to in-

corporate production into in smart grids, and to mitigate the instability of solar

power, require to accurately estimate solar variability in various timescales. As

a result, solar forecasting plays an essential role to operating grids to accommo-
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date power interrupts while maximizing the efficiency of PV system for peak

demand. Accurate estimation of solar irradiance is an important aspect of opti-

mizing the management strategy of solar power plants and achieving an optimal

match between energy production and real-time consumption, and as a result,

enables a smarter and more dynamic power grid than the current one.

Even all participants in electricity value chain show considerable interests

in solar forecasting, there is no industrial standard available. Numerous ad-hoc

solutions were developed to address diverse technical requirements of forecast

outputs, quality and timescales. We borrow the classification mechanism used

by atmospheric research to group Solar forecast systems into four categories

according to their spatial scales: microscale, mesoscale, macroscale and megas-

cale, and three classes based on their different forecast horizons in the time

dimension: short-, mid-, and long-term [5] [6]. Each of them is useful for a

specific application of utilizing solar energy.

Short-term forecast system predicts solar activities minutes ahead in a lo-

cal scale, is important for a number of applications, for example, smart storage

in microgrids, roof-top solar panels, and power grids, and provides the future

knowledge of shaded/nonshaded areas in large-scale PV system for maximizing

power. New advances in solar forecasting research include high spatial resolu-

tion and improved accuracy, and help assess the variability in a low cost and

predict short-term ramp events in real-time or near real-time. Mid-term forecast

targets at a larger area (meso- and macro-scale) than does short-term one, and

has the time range between 20 minutes and up to 6 hours. This type of forecast is

also useful to cover large-scale PV system and predict the load variations caused

by solar resource intermittency. The mid-term information can be integrated into

a strategy system to balance load requirements and supply, i.e., ramping up spin-

ning reserves to compensate the generation slack, and curtailing solar energy to

shed excessive supply in a hybrid grid. Recently, “nowcasting” is often used to

represent the combination of microscale and mesoscale forecasts, and referred
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as short-range predictions between minutes and up to six hours [7]. Long-term

forecast leverages the numerical weather prediction (NWP) model and handles

low-resolution data in a macroscale or larger. It focuses on assessing long-term

solar variability, and serves the day-ahead energy market. Unit commitment

under volatile production of renewable energy requires. Accurate hours and

days-ahead predictions are indispensable to the unit commitment of unstable

solar energy that is greatly affected by environment [8] and help integrate solar

power into modern power grids, balance heterogeneous power sources, design

efficient storage systems, and make optimal purchase decision.

1.1.4 Image-based Solar Forecast

Cloud is the primary source of large fluctuations in solar radiation at commer-

cial solar farms. The main interaction between cloud and radiation in visible

spectrum is scattering that can rapidly change gross irradiance as measured by

surface radiation sensors. Cloud-induced solar irradiance variability has become

one of the biggest concerns in power grid as the market share of solar energy has

ramped up steadily in recent years, a.k.a, solar energy penetration. To predict so-

lar irradiance ramps essentially depends on cloud observations and predictions

of various cloud characteristics, e.g. cloud cover, sun-occlusion effects, cloud

movements and cloud changes. Consequently, the capability to predict the pres-

ences of clouds and extract their relevant features is critical for estimating the

variation in solar energy and thereby for mitigating the effects of the output fluc-

tuations in utility-scale PV power plants. To accurately determine the properties

of local clouds, it is common to utilize measurements from ground-based in-

struments, such as cloud radar and LIDAR. However, because of their high cost

and limited availability, these tools are not widely used for localized, short-term

forecasts. Although ground-based reference sensor network is able to predict

very-short term solar forecast [9], additional hardware support is needed for
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tracking over a large region with longer time horizons. With the advent of inex-

pensive digital cameras and satellite imaging techniques, clouds are visualized

and located for inferring their optical properties and estimating their movements

in a short time window. For local scale applications of short-term prediction,

digital cameras deployed at ground level provide real-time or near real-time

image streams to capture the movement of clouds and optical properties that

are within the camera field of view. Whereas for the large scale applications,

such as solar farm, satellite images are useful to monitor the cloud condition

of a certain region and track cloud motion hours-ahead. Equipped with various

types of cloud tracking device, we can monitor and track clouds across different

timescales and extract various non-intuitive information, including height and

velocity [10] [11].

1.2 Research Challenges

Using various imaging techniques is a promising technique to represent and vi-

sualize clouds’ properties, e.g. optical depth and velocity with a rich set of

image features at pixel level, and ultimately track clouds. However to regress

cloud images (as regression inputs) to high-accuracy solar forecast (as regres-

sion outputs) is not a trivial task. In addition to the physical limitations, such as

camera’s field of view and resolutions, there are challenges with image-based

approaches that must handle the complexity of cloud physics, extract relevant

features, and create models for cloud activities.

1.2.1 Cloud Detection In Image

Cloud tracking and property extraction is well studied in climate and atmo-

spheric research. Due to the limitation of availability and cost of meteorological

devices, the majority of research outcome can not be directly applied to solar

forecast. Many inexpensive image-based cloud observation systems were de-
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veloped to address the well recognized requirements of collecting and assessing

cloud characteristics. However, challenges are encountered even for a simple

task of identifying clouds at the pixel level of an image. Because clouds have

distinct properties, such as different optical depths and brightness variations,

cloud images have various distributions in RGB channels and a wide range of

brightnesses in different sky scenes or image frames. In particular, certain opti-

cally thin clouds may have similar textures and colors to those of the background

sky pixels, whereas some clouds may appear both dark and white within the

same sky image. Therefore, it is difficult to identify a fixed threshold to separate

clouds from sky. For instance, cirrus clouds are barely distinguishable from the

clear-sky background in TSI images [12]. Moreover, under different weather

conditions and at different solar angles, the clouds presented on a bitmap image

may appear to have various brightnesses and a large range of intensities. There-

fore, a robust methodology is required to assess sophisticated image-based fea-

tures to capture the pixel-wise differences or the regional textural differences

between cloudy and clear regions.

Most of prior works try to detect cloud pixels by utilizing thresholds of

prominent features, e.g. RGB or red-blue-ratio (RBR), at pixel level to sepa-

rate clouds from clear sky regions [13, 14]. However the threshold-based meth-

ods are not robust enough for the cases with variations of lighting condition

even in the same scene. To extract the accurate threshold to detect cloud pixels,

training samples need to be selected manually to cover various sky scenes and

cloud/weather conditions. Even with the design of smart adaptive method to de-

termine a flexible threshold [15], accuracy is often compromised in the extreme

cases that in fact are common in daily observations. It is very challenging to

automate the threshold-based method and serve the purpose of cloud detection

under different cases.
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1.2.2 Vertical Distribution of Clouds

To research on cloud-induced variations of solar irradiance, clouds must be

clearly identified in various types of images, and more importantly located in

three dimensional space to provide faithful spatial correlation with ground-based

measurements. However, due to various vertical distribution, clouds generally

have different layers with base height ranging from hundreds of meters to sev-

eral kilometers. More importantly, multiple layers of clouds have textural dis-

tinctness and various wind field. Therefore, sun-occlusions effects are challeng-

ing to be tracked due to various layers and multiple movements. It is critical

to estimation of ramps of solar irradiance especially when multiple layers of

clouds co-influence the solar energy reception. For a large-scale application,

such as solar array or power grid network, multi-layer clouds, especially the

overlapping areas, lead to instability of production that are difficult to track.

The core aspect of multi-layer cloud identification is to determine various

cloud motions and the cloud height on images. To achieve this goal, the cloud

layers on a single image source are normally determined based on the smooth

layers in motion segmentation [16] that is often inaccurate and erroneous in

non-rigid tracking. With integration of multiple image sources, we can apply

different mechanism for layers determination with a higher accuracy than that

of the smooth layers of motion segmentation. With multiple sky cameras, clouds

can be reconstructed and identified in a 3-dimensional space. Combined with

multiple satellite channels, each of which has different spectral sensitivity, we

can explore to use cloud textural patterns to separate vertical layers.

1.2.3 Complex Cloud Types and Movement

Though cloud motions can be derived from weather forecast models several

days or hours ahead, the spatial and temporal resolution of the result is low and

can not be assimilated directly into solar forecast system to capture irradiance
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ramps. With the advance of visualization techniques, movement of clouds can

be detected in various types of images, e.g. visual channel of satellite imager and

sky cameras at ground level. Aided by vertical distributions of clouds, we can

design algorithms to accurately convert pixel-wise motion vector to real cloud

movements in spatial domain and use the results for the short-term prediction

of sun-occlusion events. However, due to the complexity of clouds and non-

rigidity of their movements, cloud motion tracking is a challenging problem

that has not been fully addressed.

The first issue is the variations of clouds’ type and color in a stream of cloud

images. It is extremely difficult to treat clouds as objects and detect their shifts

and transformations between frames based on image segmentation [17] because

observed clouds have various shapes and classifications. Even for the same type

of clouds, with different weather, lighting conditions or viewing angle, they may

acquire distinct color representations in cloud images and are hard to be iden-

tified as “relevant” to each other. Even the traditional motion tracking methods

can incorporate image segmentation, object detection, and edge information re-

trieval, they tend to generate inconsistent results and need to be tuned carefully

for different images and cloud conditions. In practice, tracking models are cus-

tomized and vary with different cameras in use and resolutions in field of view.

None of prior approaches took cloud information into account and adjusted au-

tomatically for different conditions.

Another factor that impairs the accuracy of cloud tracking is the deformation

and arbitrary shape change of clouds. Even many techniques were proposed

based on computer vision research, existing models tend to over-simplify the

tracking problem and assume constancy among clouds and their velocity over

time [18]. These methods work well for scatter clouds that only have translative

shift, and involve moderate shape changes and vertical shifts. However, when

dealing with the complex cases, such as significant cloud deformations and mul-

tiple layers of different motions, they suffered the loss of accuracy [19,20]. Even
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with the assistance of post-processing techniques, e.g. clustering and anomaly

detection, they only attained limited improvement [12, 21].

1.2.4 Multi-source Data with Various Temporal and Spatial

Scales

Long-term solar forecasting model takes advantage of the best numerical weather

prediction and integrates big data from various types of observations and mea-

surements. With the emerging need of cloud prediction in other time horizons,

to determine the properties of clouds and estimate cloud movements in various

temporal and spatial resolutions has become increasingly pervasive in recent

studies.

Ground-based instruments, measurement stations, and remote sensing tech-

niques can improve solar irradiance forecast. However, common meteorologi-

cal instruments such as radar and LIDAR, because of their high cost and limited

availability, are not widely utilized for localized and short-term forecasts. Al-

though solar radiation is able to be predicted based upon ground-based reference

sensor network with a rich set of sensor information [9], additional instruments

still needs to be incorporated for tracking over a large region.

With the advent of inexpensive digital cameras, several types of imagers, e.g.

total sky imager (TSI), whole-sky imagers, have become widely used as cost-

effective tracking device for visualizing clouds and estimating cloud movements

in a short time window. However these imagers have limited field of view and

image resolutions, they only faithful acquire a sky view within several kilome-

ters in radius and fit very short-term solar forecasts of up to fifteen minutes.

The field of view of an individual camera is insufficient for large scale solar

farms consisting of millions of PV panels. Even with multiple imagers that are

distributed in several locations, their enlarged FOV still has constraints because

individual cameras can not straightforwardly provide clouds’ spatial informa-
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tion, such as base height and vertical layers.

Contrasting to traditional sky imagers, many new systems have enlarged

view range and provide detailed cloud patterns. One pervasive approach is to

replace the existing cameras of sky imagers with a high definition (HD) web

camera to obtain real-time video stream and high-resolution sky snapshots. The

HD fish-eye camera not only has a widened view angle to effectively monitor

clouds that are far away, but also enhances cloud features with clearer contours

and shapes and richer textural patterns than those of traditional ones. However

constrained by required computational power and real-time processing speed,

existing works only consider a small number of frames with reduced resolution

and field of view. None of existing forecast systems integrates multiple imagers

synchronously.

Furthermore, to obtain a view of clouds in meso- and global-scale and fore-

cast solar energy with hours ahead time horizon, we resort to satellite imager

system. Prior approaches often rely on only the visible channel of satellite im-

ager to generate cloud motion field and forecast solar energy. These single-

channel methods, nevertheless, have high error rate due to the variant cloud

shape and inconsistent cloud motion. It is also difficult to identify cloud and/or

obtain its thickness only from the visible channel because it has coarse spatial

resolution (1km x 1km per pixel) and fails to distinguish cloud types. In other

words, cloud is even smaller than the pixel (grid) size of a satellite image, or the

visible channel shows only a limited spectrum of clouds, and does not recog-

nize the remaining ones. Though utilizing multiple channels of satellite imagers

appears in previous studies, none of them attempted to combine data of various

resolutions and assign weights to different spectrum channels for the purpose of

robust cloud tracking and solar forecasts.
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1.2.5 Solar Irradiance Modeling

Ultimately, we need to create a regression model that consists of a function in

spatial and temporal dimensions, takes in significant features from cloud im-

age and regresses toward the targeted solar irradiance changes or solar energy

fluctuations as measured by ground-based Pyranometer or solar inverter and net

meters. The most difficult task in this mechanism lies in a proper extraction of

spectral and textural feature from clouds. In most cases, cloud objects appear to

have volatile shape and various luminance patterns in their images. Moreover,

different cloud types are distinct in terms of solar irradiance absorption and re-

flection. Consequently, more efforts are needed to determine potential effective

cloud features from image, especially around the region that potentially blocks

the Sun. Due to the instability that is caused by noisy pixels and luminance

variation in images, the method needs to correctly distinguish local features and

consider the smoothness of global features.

1.3 Research Contributions

Herein we propose an image-based solar forecast architecture that contains five

components (See Figure 1-4). This architecture is adaptive to various types of

images from multiple heterogeneous sources, such as ground-based imagers and

satellite channels, and provides both short-term and mid-term solar forecasts

corresponding to inputs. The first component in our reference implementation

is cloud identification module that detects cloud pixel from input images. It is

followed by a cloud motion tracking module that estimates cloud motion vectors

based on the image processing model and the physics model. Subsequently, a

layer determination model categorizes clouds and extracts the layer information

at the pixel level. The fourth and fifth components focus on cloud prediction,

feature extractions, solar irradiance regression. Prominent image features, such

as cloud optical properties, along with detected motion vectors that are obtained
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by our intelligent optimization algorithms, serve as key ingredients to the last

two modules that apply machine learning methods to choose important features

and regress to our prediction targets.

This architecture entails three objectives of this thesis work: Cloud detection

and motion tracking, short-term forecast based on multi-TSI network, and mid-

term forecast via multi-channel satellite image integration.

Figure 1-4: Image-based Solar Forecast System

1.3.1 Cloud Identification and Motion Tracking

To fully address the problem of tracking cloud motions and provide accurate

prediction of sun-occlusion effect is essential to short-term solar forecast. In

this dissertation, we first investigate previous works on cloud motion estima-

tion based on sky images and summarize them into several categories. After

analyzing the advantages and disadvantages of classic models, we then pro-

posed a hybrid model to integrate previous approaches to form a robust motion

tracking framework. It builds on top of block-matching technique to mitigate

image noise and uses the global pattern of motion vectors to refine the field of

cloud motion and remove outliers from detected motion vectors. In this new

model, we designed a novel energy-like function with a penalty term to encour-

age clouds to follow the major trend of movements and at the same time allow
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small motion perturbation to track shape deformation. To better optimize the

tracking results, we iteratively solve the objective function and incorporate cus-

tomized motion filters to improve the robustness when facing the outliers. At

last, to better compare the new model with state-of-the-art methods, we collect

images from various sites/image sources and build a simulation framework to

synthesize cloud image with clouds’ shape deformation and movements. The

comparison results on both real and synthetic images confirmed that the hybrid

model acquires the best performance of motion estimation and is adaptive to

track cloud deformations.

1.3.2 Framework of Multiple Imager Integration

To enlarge the field of view of sky imagery and enable the extraction of three-

dimensional information of clouds, in this dissertation, we deployed three cam-

eras at various locations to obtain synchronous image streams of clouds from

different view angles. We subsequently designed a short-term forecast frame-

work to detect clouds’ motion and layers from these image streams, and build

solar irradiance models of using image-based features.

Different from prior studies, we proposed a supervised classifier to iden-

tify cloud pixels and devised local correction algorithm that utilizes three syn-

chronous multiple TSIs to correct each TSI’s bias or abnormal exposures. In

order to improve the accuracy of motion estimation, we segmented cloud image

based on cloud distribution and used 9-frame to estimate the base height and

movement of clouds robustly in 3D space. To better accommodate the block

matching algorithm for 3D tracking, we designed a new similarity function in-

corporating temporal and spatial correlation. Afterward, to integrate individual

block into various layers, we developed a clustering-based technique to catego-

rize block-wise tracking results into multiple cloud layers, each of which forms

a major wind field. With the spatial information from multiple 2D images, we
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were able to use sky images to generate image-based features at corresponding

pixels, and investigated various regression-based models to undertake the short-

term solar irradiance forecast. Within the framework of multi-TSI network,

our proposed solar forecasting system has the ability of detecting and tracking

clouds, predicting relevant image-based features, and as a result extend the fore-

cast horizons from five minutes (the optimal prediction regime for a single TSI)

to 15 minutes.

1.3.3 Multi-spectral Satellite Image Integration

Ground-based cameras have limited prediction horizon of up to half an hour

for the East Coast of United States. To extend forecast horizons from sub hour

to up to several hours as required by large-scale solar applications, we utilized

satellite images to track clouds and model the changes in ground-level irradi-

ance. Existing satellite-based cloud observation and solar forecasting systems

mainly focus on single channel, e.g. visible channel or infrared channel, when

extracting cloud properties and optical characteristics. In this dissertation, we

present a mid-term solar forecast system that combines multi-channel satellite

images for cloud tracking and feature extraction. To solve the challenges of

satellite imagery, such as image noise and inaccurate timestamp, we designed

a preprocessing pipeline to filter out outliers in its multi-channel dataset. Fur-

thermore, we adopted an optical flow framework to recursively detect pixel-wise

motion vectors following a coarse-to-fine scheme and attain robust motion track-

ing, which is distinct from prior works. Similar to the ground-based prediction

system, we combines the motion field and image features from satellite image,

and adopt regression-based models for mid-term prediction. To enhance the

accuracy of forecast models, we incorporated the persistent model into our sys-

tem and consequently generate hours-ahead forecasts of ground-level irradiance.

Compared with state-of-the-art satellite-based system, our model performs sig-
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nificantly better in detecting cloud motion vectors and forewarning ramp events.

1.4 Significance and Broader Impacts

Solar energy is distinct from conventional power in many aspects: generation,

transition and commitment. With its growing penetration into national grid that

was built for conventional power, accurate forecast of the true solar produc-

tion level plays an essential role in ensuring the stable operation of power grid,

and benefits all participants in the electricity value chain: solar power produc-

ers, utilities and independent system operator (ISO). This research will not only

greatly improve the accuracy of solar forecast of various time scales, but also

yield substantial benefits to many areas such as remote sensing, image-based

cloud researches, and more importantly, other forms of renewable energy. (1)

The intelligent integration of multi-source images can be applied in different

research fields, for example, the framework of multiple ground-based imagers

is beneficial to cloud modeling and atmospheric research, and supplies a cost-

efficient alternative to the expensive LIDAR for observing clouds in 3D space.

Furthermore, our framework supports the incorporation of heterogeneous im-

ages with different timescales and resolutions, i.e. ground-based and satellite

images, and offers a great potential to explore many other hybrid models for un-

derstanding, modeling, and integrating renewable energy [7]. (2) Our research

addresses the challenging problems in image-based solar forecast and proposes

a generalized cost-effective architecture to modularize cloud detection/tracking

and predict ramp events. Such an architecture can be extended to many solar

forecast systems with various time scale and multiple image sources, and more

importantly, is ideal to be incorporated into a parallel-computing system to effi-

ciently and effectively undertake real-time solar forecasts for utility-scale solar

system, e.g. Long Island Solar Farm (LISF). Consequently, our research en-

hances the efficiency, reliability, safety, and competitiveness of solar energy and
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is valuable to the electricity value chain by helping build an elastic and adaptive

energy pricing and commitment system.

1.5 Dissertation Overview

Figure 1-5: Structure of this dissertation.

This thesis starts with the introductory chapter that presents the overall mo-

tivations, challenges and our contributions and research significances in solar

forecast. Chapter 2 introduces different types of sky imagery and presents a

literature review on state-of-the-art methods on image-based cloud tracking and

solar forecasting. The rest chapters in this dissertation focus on data integra-

tion in image-based solar forecast system. As shown in Figure 1-5, Chapter 3

provides the systematic studies in cloud identification and motion tracking in

sky images and comprehensively evaluates classic models using both simula-

tion data and the real images collected from various sites and/or sky cameras.

In Chapter 4, we present a framework of local sensor network that is based

on multiple cameras and utilizes spatial-temporal correlation between different

cameras and/or consecutive timestamps. A new methodology is designed to

derive 3D cloud information, detect multi-layer clouds using customized clus-

tering algorithm, and at last, discuss feature extraction and robust regression

models for the purpose of short-term forecast. Chapter 5 describes mid-term
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forecast that incorporates the images from multiple spectrums of geostationary

satellites. Furthermore, in this chapter, we detail a customized framework that

preprocesses erroneous satellite image and ground measurements, undertakes

cloud tracking in mesoscale, and extracts prominent features for robust forecast

models. Lastly, Chapter 6 concludes our current work on utilizing multi-source

image for short-term and mid-term solar forecast and proposes future works on

data integration and modeling that are relevant to renewable energy.
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Chapter 2

Background and Related Works

Image-based solar prediction system is widely adopted to capture the cloud ac-

tivities that cause solar irradiance ramps and thereby accurately forecast the

ramp events and intermittency in solar production. Their success attributes to

cloud imaging with digital cameras that was proven to be effective in optical

property extraction, cloud classification and motion estimation. In this chapter,

we first present two types of imaging techniques (ground-based and satellite-

based) that are widely applied in solar forecasting system, and survey various

applications in the field of cloud property extraction from these two types of

images. We then investigate several image-based motion tracking models that

are pervasive in exploring complex cloud movements. Lastly, we introduce the

classification of image-based solar forecast systems based on their temporal and

spatial scales, and subsequently provide a literature review of solar forecast sys-

tems and applications in each class.
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2.1 Ground-based Sky Camera

2.1.1 Hardware Development

To accurately determine the properties of clouds at local scale and within short

time frame, it is common to utilize measurements from ground-based instru-

ments, such as cloud radar and LIDAR. However, because of their high cost

and limited availability, these tools are not widely used for solar forecasts of

localized applications. Kleissl, et al. developed a cloud tracking system that

only relies on sensor techniques, indirectly tracks clouds with a ground-based

reference sensor network or the output of solar PV inverter in the format of time

series data, and therefore requires no additional instruments [9]. This track-

ing system does not scale spatially. Additional hardware support is needed for

tracking over a large region. An alternative is to use sky imager to photograph

local view of sky and infer the irradiance properties of clouds and estimate their

movements in a short time window [22].

One of the earliest sky cameras is Whole Sky Imager (WSI) [23]. It is de-

veloped to provide images of the whole sky dome in daytime for the purpose of

cloud characterization, in particular thin cloud determination and starlight cloud

decision, irradiance distribution analysis [24] [25]. However, due to the hard-

ware cost and the resolution limitation within their effective FOV, WSI and its

variants are not widely deployed for solar forecast in smart grids. Recent tech-

nology advances of digital security cameras, accompanied by their rapid price

reduction rendered sky imagers cost-effective and high-resolution in their field

of view.

Total Sky Imager (TSI) is the most pervasive sky camera for short-term solar

forecast [26] [27]. It serves as a cost-effective alternative to identify the sophis-

ticated correlation and causality among the real time information about cloud

identification, location, speed, direction, and optical properties and the antici-

pated decrease or increase in power output at a specific centralized generating
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(a) Overview (b) Raw Image of TSI
(c) Undistorted View

Figure 2-1: Total Sky Imager (TSI)

site. TSI has been proved to be effective to provide continuous observations

of clouds for short-term solar forecasts in minutes ahead [28]. As shown in

2-1, TSI adopts a built-in downward-facing camera and a dome-shape mirror

to reflect sunlight from all angles above the ground level. A raw sky image is

generated with a distorted view due to TSI’s reflection mirror and difficult for

tracking algorithms to obtain motion vectors. To ease the complexity of calcula-

tion in a non-linear dome space, we need to preprocess raw sky images, convert

them into planar view via undistortion model and thereafter mask out obstacles

that are inside the FOV of sky imager, but need to be marked as irrelevant pix-

els. To avoid excessive direct sunlights from overburning sensitive CCDs, TSI

has a shadow band in its reflection mirror to block sun flare. Using TSI to cap-

ture clouds over short horizons has several shortcomings that might constraint

TSI’s ability and efficacy to detect and track clouds. TSI has one significant

disadvantage where it adjusts the imaging settings in response to the overall

scene brightness. Therefore, the raw TSI images captured under different light-

ing conditions lack inter-image consistency and often cannot faithfully represent

the real view. Another issue with TSI is its built-in camera acquires only low-

resolution images of up to 640 x 480. Moreover, because the TSI images are

generated by reflections from a dome-shaped mirror, they typically suffer from

the presence of ground obstacles within the FOV. More importantly, the shadow

23



band occludes approximately 14% of the total view [29], the camera-supporting

arm are visible in the raw images and both need to be removed from images

during the preprocessing step. A promising alternative approach to TSI is an

inexpensive high-definition digital camera that is designed to overcome these

issues on image quality. This approach was used successfully for short-term

solar forecasts [30].

(a) HD Sky Camera (b) TSI

(c) (d) (e) (f)

Figure 2-2: Comparison of HD Sky Camera and TSI.

To enhance the quality of image of traditional sky imagers, researchers cur-

rently adopted new sky cameras with improved built-in camera to provide a

better FOV and as well as HD resolution [31] [32]. Figure 2-2 shows that in

contrast to TSI, the image quality of a HD sky camera significantly improves.

Especially for the objects that are far away and have low zenith view angle,

the HD camera still produces a clear image with less distortion than does the

standard one. Therefore, HD camera is a promising tool for local scale cloud

observation and tracking. However, HD images usually incur longer latency on

processing and tracking than regular TSI images. Real-time prediction from HD

images with stringent latency requirement necessitates the optimization of both

algorithm design and parallel computation.
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The majority of existing sky cameras/imagers are designed to image a hemi-

spheric view of the sky. Their built-in cameras are either oriented upward, for

direct image acquisition, or, downward, to capture the reflections from a spher-

ical mirror [23] [27] [30] [29]. Other sky cameras also exist for various forms

of cloud observations. One example is to use a laptop camera to collect image

and track clouds in a mobile station. Another interesting example is to orient

multiple sky cameras in low elevation angles to capture incoming clouds from

horizon and extend the effective range of cloud tracking. Figure 2-3 shows a

four-camera system that significantly increases the field of view and helps to

observe far-away clouds. Combined with regular fish-eye cameras, this system

can provide a much longer forecast horizon than TSI.

Figure 2-3: Four camera system with tilted view angle.

2.1.2 Cloud Observation based on Sky Imagery

Cloud observation via a ground-based sky camera plays an important role in

recording and studying various weather phenomena. In recent years, different

types of sky cameras have been developed and well utilized for automatic cloud

observation and solar irradiance modelling [33]. In contrast to traditional mea-

surements in meteorology, ground-based sky cameras directly record the local-

ized view of sky as perceived by human eyes in their real-time image streams,

demonstrate great potential in the field of cloud tracking and solar forecast.

Compared with satellite imaging system and ground-based reference sensors,

Sky imager is a promising tool for visualizing and tracking clouds in real time

at local scales [26] [27] [34]. Recent work [30] shows that cloud coverage pre-
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diction with HD camera has a small error rate of around 6% within one minute

range and about 30% for 20 minutes interval.

The details of various cloud properties, such as optical depth, opaqueness

and thickness,can be extracted from analyzing the red-green-blue (RGB) chan-

nels in sky images [35] [36] [37]. In addition to utilizing original RGB channels,

Souza-Echer et al. proposed cloud detections in the hue-saturation-luminance

(HSL) color space [38]. In our earlier work, we extracted generalized features

from transformed luminance images [11]. Other approaches used the state-of-

the-art classification methods, such as k-nearest neighbor(kNN) algorithms and

binary decision tree, to determine cloud types based on the extracted textural

features from sky imagery [39] [40]. Recent works [41] [42] [36] [43] have fo-

cused on exploring additional image characteristics or applying adaptive thresh-

olds to improve the accuracy of classifying cloud types and identifying cloud

pixels. In particular, the reported accuracy of the seven-type cloud classification

ranged from 78% to 95% [43].

Sky imagery is also an effective tool for extracting rich cloud information

via image processing techniques recording the movements of individual cloud,

and demonstrates these superior capabilities that no other imaging system has.

Based on the temporal correlations between consecutive frames of sky images,

cloud movement can be obtained as motion vectors at the pixel level. One com-

mon approach adopted by previous researchers is to divide sky images into small

regions/blocks and thereafter apply classic image processing models to obtain

block-wise motion vectors [44] [45]. Kleissl et al. initially utilized the normal-

ized cross-correlation method (CCM) to detect the velocity of regional cloud

motion in sky images [46]. To improve the accuracy of cloud motion tracking,

Huang et al. chose two different block sizes for block matching and under-

took refined tracking based on the small block size within the range of the large

block [21] [47]. To mitigate cloud deformation and motion perturbation, Huang

et al. [48] explored an approach based on multi-frame motion back-tracking.
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The cloud motion vector was then estimated based on the extrapolation of the

known motion trend. In contrast to block-wise movement, the motions of clouds

can also be represented in a scale smaller than block, e.g., individual pixels.

Some well-known computer vision techniques, such as Optical flow (OF)

motion tracking, can be applied to estimate pixel-wise cloud motion. The OF

method has the advantages of identifying the tiny difference between relevant

pixels that are invisible to other methods and was successful in estimating even

small movements of clouds [49]. By incorporating a deformation model, OF-

based methods can capture large-scale cloud motions between consecutive frames

based on image registration techniques [50]. In general, block-wise cloud track-

ing, as discussed in several previous works [10] [51], is an extension of the

pixel-wise methodology. These two approaches fit different tracking conditions

and are complementary to each other: on the one hand, block-based approach

integrates the properties within a cloud block to mitigate the noise and misrepre-

sentations of color in original images; on the other hand, the pixel-wise approach

focuses on typical movements that occur at the pixel or sub-pixel scales.

Recently, sky imagery has been widely used in solar irradiance studies to

predict the presence of clouds based on temporal correlations between frames.

The core idea of this approach is predicting the cloud properties in and around

the path between a radiation sensor and the Sun based on previously observed

clouds and then estimating and regressing the cloud-induced fluctuations in ir-

radiance based on both the predicted and observed properties [46]. By rep-

resenting irradiance as a function of the features extracted from sky images,

solar prediction can then be transformed into a problem of predicting future

images and accurately resolving their corresponding cloud features [28] [11].

This methodology, as expected, relies on the ability to detect clouds and track

their motion. To minimize the influence of erroneous motions, Huang et al. [48]

added statistical features to the final irradiance forecast model. To further im-

prove the accuracy of short-term solar forecasting, recent works have incorpo-
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rated machine learning techniques into both cloud tracking and irradiance mod-

eling [52] [47] [53].

2.2 Geostationary Satellite Imager System

Ground-based Sky cameras are effective to provide informative local measure-

ments of clouds, however, have the limitation of application scale and as well as

forecast horizons, i.e. several kilometers and up to thirty minutes ahead. There-

fore, sky camera is usually deployed for certain point of interest, e.g. an indi-

vidual Pyranometer or solar panel. For large scale of distributed solar panels,

multiple cameras are needed which is costly and hard to validate the correctness

of positioning sky cameras [11].

Remote sensing technique is complementary to the ground-based solution,

extends the forecast horizon to mid-term, and provides a much larger field of

view than that of TSI. Different from ground-based measurements, satellite

captures the reflected radiation from the Earth and measures planetary albedo

with its built-in radiometers. Satellite images, especially the composition im-

ages from multiple channels of geostationary satellites, are commonly adopted

to estimate ground-level irradiance with both physical and statistical models

[54] [55] [56] [57] [58]. Similarly, the approach for ground-based cameras is

also applied to analyze the temporal correlations between consecutive frames

of satellite imagery, and thereby becomes a promising tool to predict mid-term

solar variations in a global scale [59] [60].

Existing approaches utilized visible channel of geostationary satellite (GOES)

to study the solar irradiance and as well as track clouding [61] [10]. The satel-

lite pixel-to-irradiance conversion error can be as low as 12-13% compared with

ground measurements [62]. Therefore several state-of-the-art models are devel-

oped to obtain satellite-derived radiation data [63] [64].
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2.3 Cloud Motion Tracking

Many motion-tracking techniques have been proposed to detect the motion of

objects in terms of the pixel-wise movement across different images. However,

only a few of them can be used to track cloud motion because of its non-rigid

shape and formation. In general, the cloud motion vectors are important to

numerical weather prediction models, and usually are obtained from satellite

images [65] [66] [67] [68]. With the advent of inexpensive digital cameras and

the emerging need for solar forecast with the fine granularity that is beyond

the spatio-temporal resolution of satellite images, recent researches focused on

using these ground-based cameras to track the very short-term motions of clouds

[49] [48] [46]. These methods fall into three main categories based on the scale

and tracking criterion of the motions.

2.3.1 Optical Flow Based Motion Tracking Methods

In the field of computer vision, motion tracking is usually resolved by estimating

the Optical Flow (OF), i.e., the pixel-wise distribution of prominent velocities

and directions of brightness/texture patterns on an image. In general, an OF

method can obtain dense motion vectors at the granularity of a pixel, and was

proven to be quite effective in detecting cloud motions in satellite images [68].

Horn and Schunck (HS) [69] and Lucas and Kanade (LK) [70] proposed the

original approaches of optical flow. The HS model formulates optical flow as

an optimization problem assuming that motions have global smoothness. The

advantage of this model is that it can propagate information over a large dis-

tance within the image and fill texture-less regions, e.g. thin clouds, with the

motions extracted from the boundaries. Consequently, it is widely incorporated

into other variational models and customized for estimating cloud motions [19].

Another state-of-the-art methodology, i.e., LK, is to constrain motions and pre-

serve local smoothness, i.e., satisfying the gradient constraint among neighbor-
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ing pixels or in a pre-defined region. In particular for sky imagery, the LK

method allows us to identify the dominant motion vector within cloud/sky re-

gions, and therefore, is less sensitive to image noise. Wood-bradley et al [49]

adopted the LK methodology to estimate cloud motion on images captured by

a laptop camera. Instead of using the brightness intensity or the greyscale im-

age, they converted the original image to the scale of blue-red difference to

emphasize its prominent edges and corners. Subsequently, Wood-bradley et al

extracted the prominent features at the points of interest with a large gradient

of intensity for calculating optical flow and then manually removed the noisy

features to refine the tracking result.

Many variants of the classic models of LK and HS were developed to im-

prove the quality of optical flow. It is beyond the scope of this thesis to review

the entire literature, and to search for appropriate techniques for the purpose of

cloud tracking. Hence, we focus on several typical models that can effectively

address the problem of cloud tracking. Chow et al [71] utilized a well-known

global smoothing method in optical flow to detect the clouds’ motions on the

basis of a new sky imager system (USI [29]). They also adopted the robust

estimation framework that originally appeared in [72]. Compared with their

previous work on estimating the block-wise motion [46], the robust optical-flow

approach, BA (short for Black and Anandan), is claimed to achieve more than

a 19% improvement in cloud forecasting. Most optical flow models, includ-

ing BA, adopted a coarse-to-fine warping scheme for constructing a multi-scale

image pyramid and iteratively looping through the layers of images for stable

outputs of optical flow. However in practice, the coarse-to-fine heuristic quite

often does not perform well, particularly for the large movement of objects be-

tween two frames. The resulting optical flow fails to faithfully represent the real

motion [73]. As fast-moving clouds are common in our observations, we there-

fore looked into the large-displacement optical flow (LDOF [73]) and compared

it with other classic models.

30



2.3.2 Block-wise Motion Tracking Methods

A block-matching method tries to search for the best-matching blocks from

two consecutive images that maximize the pre-defined criterion of similarity.

Typically, the criterion of similarity in block-matching techniques is based on

cross-correlation or least-square errors, and helps us to find the disparity vector

between the same reference block across two images within a constrained win-

dow. Different from the OF methodology that assumes constancy in brightness

at the pixel level, block-matching techniques assume that the reference block

retains textural constancy over time.

Block-matching methods long have been in existence for cloud tracking

in satellite imagery [65] [74] [67]. Most used cross-correlation to find the

maximum correspondence of regions/blocks between two consecutive image

frames [18]. In 2011, Chow el al. [46] adopted cross-correlation as the match-

ing criterion to detect sparse cloud motion vectors (CMVs) in the images of TSI

440A, dividing the original TSI image into the blocks of identical size. As a

TSI generates an image from the reflection of dome-shaped mirror, the regular

blocks in a raw image are distorted and not uniform in real-space. Therefore,

the image distortion compromises the accuracy of the detected motion vectors,

especially around the boundary of an image. To resolve this issue, Huang et

al. [21] [48] proposed preprocessing TSI images and transforming the origi-

nal distorted view to a planar view. Thereafter, they located the best-matching

blocks based on the Normalized Cross-Correlation (NCC) value, and utilized a

refining threshold to remove the low accuracy matches, i.e., the low NCC value.

To mitigate the deformation in cloud and predict the variation in block-wise

motion, Huang et al. [48] investigated a multi-frame motion vector tracking and

back-tracking and extrapolated the future movement with the detected motion

trend. However, these approaches are not computationally efficient and can not

take advantage of the cloud’s information. To address these issues, we pro-
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posed a new method, termed “cloud-block matching” (CBM), to dynamically

determine cloud blocks in sky images [12], estimate the motion vectors only in

the blocks of cloud pixels, and thereby assure its efficiency and efficacy via an

intelligent clustering.

2.3.3 Miscellaneous Other Approaches

In contrast to those two types of tracking, other tracking approaches may use

image registration techniques to attain disparity vectors, viz., object motion,

between two consecutive frames. For example, phase correlation is a fast noise-

resilient approach that estimates the translative offset between two similar frames

or sub-frames in the frequency domain [75]. The phase-correlation method,

as shown in the prior work [21], can not discriminate multiple movements

within the same sub-frame region. More importantly, compared with the block-

matching technique, the phase correlation technique incurs a higher error rate

and is less accurate when no obvious cloud texture is available in the designated

regions.

To better address the dynamics of cloud motion, and track the deformation

over time, Bernecker et al., [50] [76] proposed using a non-rigid image registra-

tion. They used the well-studied diffusion model that is developed by Thirions

Demons et al., [77], based on the optical flow method to detect a combined

motion vector field with both global translative motions and local variations ob-

tained from the diffusion model. Many new deformation models, such as the

flow and curvature models [78], follow the Demons’ method and are widely

used in the medical image registration.

In addition, the Particle Image Velocimetry (PIV) methodology is used to

estimate cloud motions as a velocity field. Chu [52] and Marquez [79] adopted

the MPIV software that was developed by Mori and Chang [80] to detect the

block-wise cloud velocity field in TSI images. Here, MPIV partitions an im-
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age into reference blocks and searches for the best matching one based on the

correspondence criterion of the Minimum Quadratic Difference (MDQ) or the

cross-correlation coefficient within a nearby window. Afterward, MPIV applies

the post-process steps of filtering and interpolation to smooth out the output

velocity vectors. However, MPIV does not perform well when an image has

discontinuities, such as the artifacts of shadowband and the camera’s support-

ing arm in the TSI. To improve the accuracy and aggregate the sparse motion

vectors of MPIV, Chu et al., [52] proposed using a k-means clustering to extract

two majority motion clusters to differentiate stationary clouds and/or clear sky

from fast-moving clouds.

In 2012, Huang et al., introduced a hybrid method that incorporates the sta-

ble local descriptor or local feature in estimating cloud motions [47]. On the

top of the block-wise motion, Huang et al., used the Partially Intensity Invari-

ant Feature Descriptor (PIIFD) [81] to adjust the motion vectors so to enhance

the robustness to geometric and photometric variations. Similar to LK optical

flow motion tracking, Huang’s method can determine sparse motion vectors at

those points with a large gradient of intensity and correct erroneous block-wise

motions.

2.3.4 Block-matching v.s. Optical Flow

Block-wise motion estimation has the ability to utilize regional information,

therefore is resistant to pixel-wise noise especially when the image is of low

quality. Compared to variational methods, block-matching methods that are

built upon the foundation of the cross-correlation correspondence or square

errors within a reference window, are more robust to intra-frame brightness

changes and color variations. If the underlying motions consist of only trans-

lation changes without any shearing and scaling, block-matching usually works

really well.
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However, accurate block-wise motion estimation requires a good segmenta-

tion in sky images to ensure that each reference block can faithfully represent

an unique piece of cloud. In practice, as non-rigid clouds can have a variety of

shapes and positions in image, the effectiveness of block segmentation is incon-

sistent. Especially for traditional block-matching methods or block-based tech-

niques, e.g. BM and MPIV, blocks are predefined regardless of image color and

textural feature. Consequently, the effectiveness of block segmentation varies

with various distribution of cloud pixels and block sizes in image. Even with

dynamic block allocation on the basis of cloud mask [11], the performance of lo-

cating the best match would be significantly compromised when multiple pieces

of cloud reside in the same block.

Another issue of block-wise motion tracking is that the performance is very

sensitive to the block size. If the reference block is too large, it may contain

several unrelated areas, such as stationary background which reduces the overall

variation inside the block, and even generate undesired bias w.r.t. the cross-

correlation score. When a block is too small, the local noise may dominate the

best-match result. Therefore for different types of image sources and sky scenes,

the block size must be carefully tuned [21] to acquire stable performance.

Moreover, the block-matching methods are inadequate to discriminate vari-

ations of motion inside the block unit. Particularly in sky imagery, block-

matching methods cannot take the deformation or change of clouds over time

into account. To compensate this drawback, prior works either divided images

into very small blocks based on a hierarchical scheme [48] or applied inter-

polation to motion field based on overlapping blocks [80]. These approaches,

however, acquired limited improvement and did not address the problem ade-

quately.

Optical Flow (OF) methods address the motion tracking problem at a lower

level than the block matching methods doe and try to extract pixel-wise mo-

tion through variational models that employ energy-like objective function, and
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assume the consistency of spatial and temporal derivatives for their internal op-

timizations. Compared with block-wise approaches, the advantage of OF meth-

ods is the ability of accurately representing complex rigid motions such as rota-

tion and scaling.

As the variational approach is sensitive to local noise, OF methods either

add global regularization terms to smooth the dense motion field (as the HS

model does) or estimate motion in a region/object (e.g. LK) to mitigate the noisy

pixels and utilize structural information. However, their motion tracking results

may be biased towards the input values acquired during the initialization in the

variational settings. As described in [73], the solution often falls into a local

minima that has the smallest motion because the majority of the OF approaches

initialize the motion field as “zero”.

(a) λ = 1, iter# = 600 (b) λ = 11, iter# = 600 (c) λ = 16, iter# = 4600

Figure 2-4: HS optical flow tracking with different parameter settings, λ :
smooth factor, and iter#: number of iterations. Dense optical flows are denoted
as blue arrows in the above images. (a) shows the example of outliers, (b) a large
λ filters out noisy flows and velocities, and (c) however, a large λ potentially
causes the problem of oversmoothing real cloud regions.

Another potential problem of applying the OF methods to detect cloud mo-

tions is the sensitivity to outliers and the associated parameter λ for global

smoothness and outlier control. Figure 2-4 shows the results under different

parameters when applying the OF methods (e.g. HS) to track the cloud mo-

tions in TSI images. The corner cases in this example, such as noisy pixels or

artifacts, led to erroneous estimations of large velocity in Figure 2-4a. When
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a large λ is applied to remove outliers in the iterative motion estimation, the

optical flow may potentially oversmooth the areas around the cloud boundaries

or corners that should have attained clear motion field segmentations. As we

observed in Figure 2-4c, sky pixels near the cloud regions are falsely smoothed

to acquire continuous motion vectors, as opposed to the ground truth of static

motion field. As a result, when applying the OF methods for cloud tracking, we

must carefully tune and customize the parameters to find the best-fit configura-

tion for various scenes and sky images.

2.4 Solar Forecast Systems

2.4.1 Forecast Horizons

Figure 2-5: The categories of Solar forecasts and their input data sources.

We reuse the classification mechanism of atmospheric research to divide

image-based solar forecasts into four spatial categories based on their targeted

scale: microscale, mesoscale, macroscale and megascale, and three temporal

classes for different forecasting horizons: short-, mid-, and long-term (See Fig-

ure 2-5). Each solar forecasting system has its own optimal temporal and spatial

scales, consists of various core methods along its prediction pipeline that have
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different input data and output forecasts.

Short-term forecast is often referred the prediction of solar variation from

“seconds” to “minutes” (≤ 15min) ahead. It usually covers micro-grid of one

kilometer or less, and ideally serves distributed solar panels and a small section

of PV system. This type of approach often utilizes local observations or mea-

surements, e.g. ground-based sky cameras or distributed radiation sensors as

input and predicts the direct normal irradiance (DNI) or GHI as output in the

aforementioned time range. With the help of localized cloud observations and

irradiance changes, short-term forecast, in general, attains the best prediction

accuracy in this time regime. The targeted applications of short-term forecast

include, risk assessments of frequent ramp events during solar power genera-

tion, power quality assurance and control of micro grids containing renewable

energy, minimization of spinning and battery reserves, and avoidance of fre-

quent start-up and stop operations on spinning reserves. As operating schedules

of PV system and solar panels get closer to real-time response, short-term fore-

cast has been gaining significant interests from the participating members along

the electricity value chain. On one hand, ISOs can evaluate, fine-tune dynamic

operational schedules, and maximize the efficacy of solar power on the basis

of accurate prediction of solar outputs given estimated shading/unshading sec-

tion in their PV systems. One the other hand, short-term forecast is essential to

optimize the schedule of associated storage systems or ramp-absorbing ultraca-

pacitors [82]. It helps to mitigate the short-term irradiance ramps, as a result,

enables grid operators to reduce the cost of counteracting voltage fluctuations

via operating dynamic inverter or a secondary power source [83].

Mid-term forecast usually covers solar irradiance (e.g. GHI) between fif-

teen minutes and up to six hours ahead [84]. Mid-term forecast system has a

large FOV and often deals with mesoscale or macroscale grids with the spa-

tial resolutions ranging from several kilometers to up to hundreds of kilometers.

Therefore, the appropriate input data for this type system is satellite imagery
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generated from the radiometers in a satellite system that usually have a broad

view as big as continent or the whole planet. The mid-term prediction is im-

portant for optimizing the operations of stand-alone solar systems and hybrid

grids that contain high penetration of intermittent solar energy. The accurate

forecasts of hours ahead are highly valued by utility companies, ISOs and solar

power producers for core grid-wide operations and revenue-generating trans-

action agreements. Especially for hybrid grids, hours-ahead forecast of ramp

events is crucial to load-following forecast, for instance, when cloudy condi-

tion is predicted to trigger a drop in solar production, grid operators increase

the output from secondary power generation units to cater the load and stabilize

production in the utility-scale.

Long-term solar forecast targets at the future production trend between hours

or days ahead. Because most of clouds change significantly within this time

regime and any solution solely on image-based observation loses its efficacy

for such a long time window, we have to resort to the data-driven simulation

model, a.k.a., NWP models, to generate low-resolution outputs of solar irradi-

ance in the global scale (≥ 100 km). Even with a coarse resolution, long-term

solar forecast system plays a vital role as well in modern PV systems and hybrid

grids. Firstly, the accurate hours- or days-ahead prediction is useful to estimate

solar power production and more importantly, understand the long-term pattens

of production load from various solar resources. Secondly, a robust long-term

solar forecast system is useful for the assessment of unit commitment by utility-

scale solar plant and subsequently supplies the plant with reliability evaluation

to determine if and when the additional generation is needed. Therefore armed

with this advanced knowledge, economic consideration can be integrated into

the capacity expansion for obtaining the maximal profit by electric power in-

dustry. Thirdly, long-term forecast can also serve as the basis of the scheduling

system for utility companies to optimize their transactions in electricity market.

The accurate solar production load estimation is extremely useful for energy
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service providers and grid operators to balance supply and demand of energy

and to assure the reliable grid operation.

2.4.2 Literature Survey in Short-term Forecast System

Because of the increasing need of fast, proactive and smart grid operations in

response to various events, short-term forecast gains attentions in modern grids

due to its proven ability to improve PV system’s power output with the knowl-

edge of potential shading/unshading events in advance. Based on the categories

of solar irradiance forecast in [85], the short-term forecast often relies on sensor

network or ground-based sky imagers to extract temporal information and apply

stochastic/machine learning methods to learn from extracted input information,

and regress to output irradiance.

Sensor network consists of solar irradiance measurement sensors or output

meters that are strategically deployed to cover particular areas and locations.

It is useful and cost-efficient to forecast potential rise/drop of solar irradiance

within the sub-minute range and helps better control ramp-absorbing ultraca-

pacitors [82]. The core idea is to derive cloud information, such as velocity

and direction, based on spatio-temporal analysis of available sensor data. In

particular, this type of approach first collects series of readings from well ar-

ranged radiation sensors and meters, performs temporal correlation and causal-

ity analysis between any pair of spatially distributed sensors, then associates the

same irradiance ramp event with a sequence of sensors, and ultimately calcu-

lates the actual cloud velocity and direction based on the learned time span for a

ramp event traveling across a sequence of sensors whose locations are known as

prior [9] [86] [87]. Limited by the scale of fixed radiation sensors, this type of

approach usually requires that distributed sensors be close to enough. Without

validation by the real overview of sky, its performance may be compromised

when the measurements from radiation sensors are not highly correlated in a
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certain time window due to complex cloud conditions.

The majority of recent research efforts utilize images collected from ground-

based sky cameras. Sky imagery was proven to be effective in predicting the

presence of clouds based on the temporal correlation between frames. The core

idea of this approach is predicting the cloud properties in and around the path be-

tween the radiation sensor and the Sun based on previously observed clouds and

then estimating the cloud-induced fluctuations in irradiance based on these pre-

dicted properties [46]. By representing irradiance as a function of the features

extracted from sky images, solar prediction can then be transformed into the

problem of predicting future images using persistent motion vectors [28] [11]

or by solving the advectiondiffusion equation [88].

Most skycam-based forecasts cover the time range from half minute to up

to 15 minutes due to the limitation of FOV and image resolution. A recently

study shows that the forecast error of one sky camera (i.e. TSI) ranges from 18

to 24% for different forecast horizons [30]. Within such a short time window,

the persistent model [89] performs extremely well, and therefore any new solar

forecast needs to minimize errors in motion tracking and irradiance modelling

in order to deliver a better performance than the persistent model.

To better learn the uncertainty of detected cloud motions from sky images,

Huang et al., [48] introduced statistical features to the final irradiance forecast

model. Being aware of the instability of motion tracking, one recent effort eval-

uated the uncertainty of motion vectors in designated areas, and further assimi-

lated the uncertainty values as a new type of feature into a stochastic model, and

as a result, improved irradiance forecast [90]. To further improve the accuracy

of short-term solar forecast, recent works have incorporated various machine

learning techniques into both cloud tracking and irradiance modeling [52] [53].

Considering the drawbacks of single camera device, we proposed to integrate

multiple image streams from several spatially distributed cameras to reduce the

observation error and track clouds with spatio-temporal correlations [11]. Be-
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cause these new solar forecast systems are image-based, the quality of image

feature extraction has significantly impact to the intermediate tracking results

and final outputs. In details, they use obtained motion vectors to generate pre-

dicted cloud “images”, extract multiple features for these “images”, and input

them to a chosen regression model for the final output [91].

2.4.3 Literature Survey in Mid-term Forecast System

Nearly all mid-term forecast system rely on satellite images as input to pre-

dict the variations of solar irradiance. Though a plethora of research efforts

investigated satellite-based models to derive accurate surface irradiance using

statistical or physical methods [92] [93], their results, nevertheless, can not be

directly used for solar forecast. To integrate the satellite model into forecast, an

image-based cloud tracking scheme is also necessary for predicting cloud infor-

mation in advance. Previous approaches applied block-wise cross-correlation

for matching clouds and generating cloud motion vectors [65] [94]. These

matching technique often assumes invariant cloud texture and constant cloud

movements [95] [96]. However, this assumption is often violated in reality,

which renders the most challenging problem in these studies. In fact, cloud

condition spanning several hours apart is often volatile because of cloud for-

mation, movement, deformation and disappearance. The situation is further

complicated by the unstable performance of motion tracking algorithms when

they are applied to satellite images. Instead of using direct motion tracking

algorithm, many recent works tried to regress multiple satellite frames of pre-

vious time stamps to the frame in the future, and then integrated other sources

of information, e.g., ground radar measurement, into prediction. We term this

type of approach “no-motion method”. Here the ground radar based predic-

tion model adopts the continuous data stream of radiation fluctuation pattern to

improve its performance [97]. But those no-motion methods tend to generate
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low-precision outcomes and offer only forecasts with a short time horizon. Be-

cause real cloud tracking is not involved, the forecasting model is essentially

stochastic, and therefore has a limited prediction range between several minutes

and up to two hours [98].

Satellite models were originally designed for correlating cloud coverage

with Global Horizontal Irradiance (GHI) [93] [99]. Lately, this original idea

still appeared in some recent works, for example, two separate efforts studied

the linear relationship between Direct Normal Irradiance (DNI) and satellite

visible channel [100] [61]. These models used the term “Cloud Index” (CI) to

represent the optical density derived from satellite data [101]. CI is widely used

for measuring solar absorption by clouds, and determined by the cloud fraction

or coverage at a particular ground location as observed by satellite. By using

multiple empirical clear sky models, the local solar energy distribution is de-

rived from satellite images [102] [103] [104] [105]. Some recent work refined

this model by adding extra parameters/factors, such as terrain factor [96]. To

improve the accuracy of cloud index in satellite image for various cloud types

and under different lightning conditions, several research efforts proposed to in-

tegrate multi-spectral data to attain robust cloud identification, classification and

snow detection [106] [107].

A large number of previous works in mid-term forecast investigated new

techniques to improve the model performance and identify complex cloud move-

ments in satellite images [108] [109] [10]. In contrast to the cloud-motion based

approach, several recent studies on solar forecasting proposed some new ideas

of exploring the established techniques of other fields, such as statistical ap-

proach [110] and Artificial Neural Network (ANN) [111]. In particular, some

state-of-the-art models does not even require meteorological data [112] and only

relies on analyzing time series of irradiance to derive predicted values [113].

A recent work shows that the vector autoregressive (VAR) model on ground-

based observations significantly lowered the root mean square error of forecast
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by 35% [114].

Although satellite images were applied to days-ahead solar irradiance fore-

cast [60], given the orbit property of a satellites, the methods based on satellite

images usually are optimal for mid-term forecasts that have the temporal resolu-

tion between half hour to six hours and the spatial resolution of several kilome-

ters [59]. The forecast model of many satellite approaches is essentially a linear

regression between detected cloud coverage and solar irradiance. However, it

turns out that the simple linear relation derived from cloud coverage is not ca-

pable to capture and describe variation under cloudy condition. Therefore, a

customized constant must be used as an estimation compensation to reduce lin-

ear biased influence [64]. Furthermore, satellite image models can be combined

with other types of forecast models in a hybrid system. As a result, the hybrid

approach is adaptive over various forecast horizons while attaining reasonable

performance over its individual component models [79] [7].

2.4.4 Literature Survey in Long-term Forecast System

In general, long-term forecasts rely on macroscale model and assimilate low-

resolution data for improving model. They usually apply various classic nu-

merical methods to a large grid, and foresees the availability of solar power in

a continental or global scale. The method is often built on top of a big data

analysis engine that integrates various types of measurements. Long-term solar

forecast based on numerical prediction model (NWP) requires knowledge about

the initial state of the global atmosphere and the physical laws which govern the

evolution of the atmosphere [85]. The solar radiation of each grid cell is already

one of many numerical outputs of NWP model [115]. Current solar forecast sys-

tems utilize various well-known NWP models, including Global Forecast Sys-

tem (GFS) and Weather Research and Forecasting (WRF) model [116] [117].
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Chapter 3

Cloud Detection and Tracking in

Sky Imagery

Cloud is the primary factor to cause solar irradiance fluctuations and becomes

the focus of many solar forecast systems. In this chapter, we discuss a new

method to identify cloud pixels and tracking cloud movement from a stream

of images and then evaluate its efficacy using different types of images taken

by various sky cameras. We detail our pipeline for assimilating cloud informa-

tion and tracking complex cloud motions. Firstly, we summarize traditional

threshold-based approaches and analyze their weaknesses, and then propose

to apply a supervised classifier to determine clouds from images at the pixel

level. Thereafter, we aggregate detected cloud pixels into regions/blocks for

estimating block-wise motions and extracting spatial information. Because mo-

tion tracking plays a vital role for forecast quality, we thoroughly investigate

several state-of-the-art motion tracking models that are already adopted or have

great potential for detecting and tracking cloud motions. Based on the analy-

sis of classic models and techniques, we design a hybrid model to obtain the

advantages of block matching and optical flow. Finally, we evaluate the new

hybrid model in different types of images, including synthetic image sequences

and real image streams from multiple HD sky imager deployed at various sites.

44



3.1 Cloud Detection

3.1.1 Cloud Pixel Identification

To extract cloud information in image, pixels of cloud need to be identified

and differentiated from others e.g. clear sky pixels. However as clouds may

have distinct color and patterns in image, it has been a challenging problem

in image-based research. Moreover, under different weather conditions and at

different solar angles, the clouds presented on a bitmap image may appear to

have various brightness and a large range of intensities. Therefore, we require

a robust methodology to assess sophisticated image-based features to capture

the pixel-wise differences or the regional textural differences between cloudy

and clear regions. From the perspective of image processing, it may appear

that we could first sharpen edges and boundaries using various derivative image

filters and then apply image segmentation methods to separate clouds from clear

pixels based on their boundary pixels, and thereby identifying cloud segments.

However, these methods often fail to segment clouds from the background due

to the poorly-defined edges of clouds in sky images. With the resolution and

image quality limitations, a single pixel in a sky image may contain both cloud

and clear sky. Consequently, a section of visually rigid cloud can appear non-

rigid and blurry in sky imagery.

Furthermore, cloud detection in sky imagery can be difficult as sky imagers

face certain instrument-specific challenges in their practical deployment in the

field and in testing. Because the sky camera adjusts its lens aperture and shutter

speed in response to the amount of incident illumination, the output images can

potentially suffer from variations in exposure, and may appear either brighter or

darker than the ground-truth image that accurately represents the real lighting

conditions.

To accurately detect cloud pixels, previous studies of sky images have relied

on cloud properties and have utilized the prominent features at the pixel level to
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identify hybrid thresholds for the RGB channels or the red-blue ratio (RBR) in

cloud images [13] [35]. The threshold-based method presented in [35] is able to

accurately identify opaque clouds in images acquired by the Whole Sky Imager

(WSI). However, it is less effective for many low-quality commodity cameras,

such as TSI and webcam. These cameras lack spectral and neutral filters and

adjust their lens apertures for different lighting conditions, which incurs large

variations in the brightness of the images and requires non-trivial calibrations

in deployment. Under this circumstances, threshold-based methods require cus-

tomized parameter settings for various sky scenes. Another type of approach

to the analysis of cloud properties is based on supervised classification methods

that utilize various features extracted from sky images and find patterns from the

training dataset. In earlier works, traditional classification techniques, such as

k-nearest neighbor (kNN) algorithms, binary decision tree, and neural network

classifiers [39] [40] [42] [118], have been widely used for cloud type classifica-

tion in sky imagery. To detect clouds at the pixel level, a supervised technique

can be successfully applied to train the adaptive threshold for the classification

of image pixels into several opacity categories based on the RBR channel [36].

In this paper, we detail how to use a binary classifier to identify cloud ver-

sus clear-sky pixels in sky imagery. The training datasets for the classifier are

generated by manually labeling cloud/sky pixels in TSI images. This process

requires a considerable amount of human effort and more importantly, may in-

troduce uncertainties and errors into the training datasets that could significantly

impact the accuracy of traditional classifiers.

3.1.2 Cloud Detection Pipeline

To overcome the aforementioned challenges, we propose an outlier-aware clas-

sifier to train manually labeled pixels in sky images. Moreover, because of the

many instrument-specific abnormal cases that can be generated from individ-
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Figure 3-1: Pipeline for cloud detection using an SVM classifier and multi-
source correction.

ual TSIs, such as, overexposed or underexposed images, we design a classifier-

based pipeline to utilize all three TSIs for multi-source image correction to en-

hance the overall accuracy of cloud detection. We also present a technique for

aggregating cloud pixels into cloud blocks (Figure 3-1).

To minimize the influence of possible outliers in the training dataset, we

chose a Support Vector Machine (SVM) [119] as a pixel-wise classifier and

trained it using two-layer cross-validation [120] to reduce overfitting. An SVM

constructs a max-margin hyperplane to reduce the effect caused by outliers and

offers the advantage of being able to handle known outlier patterns. In particu-

lar, uncertainties and errors introduced during the manual annotation of training

images are taken into account during SVM optimization. Figure 3-1 shows an

example of the training and testing process for a cloud classifier. To better de-

scribe the characteristics of cloud pixels, six features are extracted from the

sky images and normalized for use as the SVM training dataset: R, G, B and

RBR which are spectral characteristics extracted from the RGB color space,

and two features based on the neighboring pixels which are used to mitigate

the impact of variations in illumination. In detail, we convert the sky images

from the original RGB color space to the relative luminance space based on the

algorithm presented in [121] and then apply the Laplacian of Gaussian(LoG)

spatial filter [122] to compute the 2nd derivative in luminance space within a
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fixed-size window (7x7 is used). The LoG value reflects the rapid changes in

the illuminance channel in a certain region and is useful for detecting sharp

edges. The final feature used for cloud detection is the standard deviation of the

luminance channel within a small region around each pixel (7x7 is used), rep-

resenting the pixel’s average difference from its neighbors. Our implementation

uses the SVM package libsvm [123] with linear kernel.

Furthermore, we explore the possibility of multi-source abnormality correc-

tion using synchronized images from all three TSIs. Because the three TSIs are

located reasonably close to each other, we can reasonably assume that their color

representations have statistically similar range with regard to the RGB channels.

In other words, cloudy/clear pixels in these three digitized color channels should

have similar histograms across the different TSIs. Therefore, if one TSI expe-

riences an exposure issue or abnormal brightness in the RGB color space, we

can correct it by equalizing the histograms of its RGB channels to those of the

two normal TSIs. We first generate the cloud masks for all TSIs using the SVM

classifier and compute the histograms of the RGB channels for cloud and sky

pixels separately. By calculating the Euclidean distances between the histogram

vectors of the three TSIs, we can identify a device as abnormal if its image his-

togram is significantly different from those of the other two devices. We then

apply the histogram equalization add-on to the output image from the abnor-

mal TSI to adjust its RGB scale for cloud and sky pixels. The corrected result

can be used for the next round of cloud mask generation. In practice, we iter-

ate this procedure three times to extract the cloud mask and equalize the RGB

histograms of the TSI images (Figure 3-1).

To evaluate the performance of the proposed supervised classifier and the

multi-source correction algorithm, we selected various test cases from daily ob-

servations corresponding to different atmospheric conditions and cloud types

and then compared the results with our manually annotated images. In this pa-

per, we adopt two evaluation metrics to measure the error in cloud classification:
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Figure 3-2: Cloud detection results (row 3) compared to manual annotation (row
2) under different weather/cloud conditions. Left to Right in row 1: Scattered
cloud, cloudy, overcast, multi-layer, and multi-layer with thin cloud. ACcld and
ACsky represent the accuracy of the classification results for cloud pixels and sky
pixels respectively.
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Figure 3-3: Results of cloud detection (row 3) compared to manual annotation
(row 2) in the presence of device-specific bias or luminance variations. Left to
Right in row 1: red-dominant, green-dominant, overexposed, underexposed, and
a different image source.

ACcld =
Ncld,cld

Ncld,cld +Nsky,cld
,ACsky =

Nsky,sky

Nsky,sky +Ncld,sky
(3.1)

where ACcld and ACsky are the accuracy of cloud and sky pixel classification,

respectively. Ncld,cld and Nsky,sky denote the pixel counts of correct cloud and

sky classifications, respectively, whereas Nsky,cld and Ncld,sky indicate the total

numbers of sky and cloud pixels, respectively, that are falsely recognized by our

detector. In Figure 3-2, we show the distinctive patterns of examples of scat-

tered clouds, cloudy conditions, overcast conditions, and two multi-layer cases.

Compared with the manual classification masks, our pipeline based on the SVM

classifier can accurately detect clouds (with an accuracy of more than 83.2%),

except in the case of multi-layered clouds near the sun’s position and very thin

clouds. The image area near the Sun (“sunspot”) has a higher brightness and is

difficult to characterize based exclusively on static textural information. There-

fore, the classifier often falsely labels clear-sky pixels as clouds in that region.
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Table 3.1: Overall confusion matrix for the cloud detection pipeline applied
to the images shown in Figures 3-2 and 3-3. Left to Right in the Table: ACcld
followed 1−ACcld in the first row and 1−ACsky, followed by ACsky in the second
row. All values are in [%].

Cloud Detection Pipeline
Manual Cloud Sky
Cloud 96.6% 3.4%
Sky 10.3% 89.7%

To validate the cloud detection performance of our method in the case of de-

vice errors or variations in exposure, we selected four abnormal images of types

that are commonly observed in the field: red-color dominant, green-color dom-

inant, overexposed, and underexposed (the first four cases in Figure 3-3). The

accuracy of cloud pixel classification in these cases is 86.1% or higher. We also

applied our classifier to another type of sky imagery configured with a different

field of view and color scales (the last case in Figure 3-3), which confirmed that

our classification algorithm is practical and effective. The classification accu-

racies for cloud and sky pixels in this case are 96.2% and 91.0%, respectively.

The overall clout detection performance in all selected cases is evaluated in the

confusion matrix presented in Table 3.1. We observed our pipeline accurately

(96.6%) recognizes cloud pixels.

3.2 Cloud Block Aggregation

The cloud pixel distribution detected by supervised classifier is often utilized to

aggregate into regions/blocks for motion vector discovery [11]. The core idea

is to divide the cloud mask into individual regions. If the texture inside is not

“good” w.r.t. similarity criterion defined in motion tracking, the region is often

divided or merged with its neighbors to include more information [12]. It sig-

nificantly helps to improve the effectiveness of the best-match finding in block-

wise motion detection and as well as reduce the complexity of computation by
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removing non-cloud pixels during calculation.

3.3 Classic Motion Estimation Models

In this section, we investigate seven classic models that effectively track cloud

motions in sky images, detail their implementation, and explore the appropriate

parameter settings guided by state-of-the-art works.

3.3.1 HS Optical Flow

The original HS formulation, proposed in [69], enforces two constraints: The in-

tensity conservation, and the global smoothness among optical flows, and min-

imize the following energy function:

E(u,v) = ∑
x,y
(u · Ix + v · Iy + It)2 +λ (‖Ou‖2 +‖Ov‖2) (3.2)

where u and v are the movement in the x and y direction respectively at each

position (x,y). Ou and Ov are the gradients of u and v, and can be approximated

by subtracting the value at the point (x,y) from a weighted average of the values

at its neighboring pixels [69]. The iterative algorithm of HS uses the regulariza-

tion weight, λ , to control global smoothness. To achieve optimal performance,

we need to tune the smoothness parameter λ carefully for different applications.

Even though the heuristic solution of HS long has been deemed inaccurate, it

still achieves surprisingly good results with a proper optimization and parameter

tuning [124].

3.3.2 LK Optical Flow

The LK methodology [70] relies only on the local information from a small

window surrounding the point of interest. Essentially, it is a local approach, and
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can faithfully extract the motion vectors at the points that have prominent fea-

tures, such as corner points and edges [49]. The energy-like objective function

is defined as follows:

E(u,v) = ∑
x,y

g(x,y)(u · Ix + v · Iy + It)2
(3.3)

where g(x,y) is the weight function to determine the region wherein optical

flow is constrained. The Gaussian function is a common example of g(x,y) [125].

Eq. 3.3 assumes that all pixels within the region share an identical movement.

We used the least-square estimator to resolve the optimization of the objective

function. During our experiment, we used the Matlab implementation of LK

that entails a coarse-to-fine framework [126]. We adopted the same settings

following [49], converted the original sky images to the scale of blue-red dif-

ference, and then used a three-level image pyramid to iteratively extract LK

(iter# = 3). g(x,y) serves as a mask function and represents a region of 15 x

15 pixels. However, in contrast to the original work in [49], our approach gen-

erates a dense flow field for all pixels, instead of only for those positions with

prominent features.

3.3.3 BA Optical Flow

In 1996, Black and Anandan introduced non-convex robust penalty functions

into the objective of optical flow to replace the original square-error term [72].

Their method, denoted as BA, has been widely applied for various purposes,

such as tracking objects and estimating motions in the field of computer vi-

sion [127]. In contrast to previous optical flow approaches, BA formulates the

energy terms with a series of non-quadratic robust penalty functions Ψ(x2) for

both the data term, Ecolor, and the regularization term for smoothness, Esmooth:
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E(u,v) = Ecolor(u,v)+λEsmooth(u,v)

= ∑
x,y

ΨD((u · Ix + v · Iy + It)2)+λ ·ΨS(‖Ou‖2 +‖Ov‖2)
(3.4)

where ΨD and ΨS respectively are the selected robust functions for data and

the smoothness penalty. ΨD and ΨS often are chosen to be the same, e.g. the

Lorentzian penalty Ψ(x2) = log(1+ x2

2σ2 ) in [128], or the quadratic penalty term

Ψ(x2) = x2 in the HS method. Because Chow et al. [71] already demonstrated

a good performance in tracking cloud motion by utilizing Eq. 3.4, we evaluate

a well-known implementation of BA method developed by Sun et al. [127] and

set λ = 0.1 based on the experiments in [71]. We also choose the Lorentzian

penalty with σ = 0.03 as the robust function ΨD and ΨS. In contrast to the orig-

inal work of BA, this new implementation explores the most recent techniques,

including preprocessing, filtering, and interpolating methods. Consequently, it

significantly improves the accuracy of motion estimation and eliminates noise

in the flow field.

3.3.4 Large Displacement Optical Flow (LDOF)

Existing optical flow methods often have difficulties in handling small but fast-

moving objects. To overcome this shortcoming, Brox and Malik introduced a

new model to track large displacements [73]. Their method, denoted as LDOF,

formulates the tracking problem with additional energy terms, and, more im-

portantly, incorporates one extra descriptor that regularizes the objective. The

idea is similar to the block-wise pipeline designed by Huang et al. [47] and

Wood-Bradley’s LK model [49], each of which generates sparse motion vectors

based on local or prominent feature matching. Compared with the pixel-to-pixel

match used only in those aforementioned approaches, descriptor matching re-

lies on rich local descriptors, such as SIFT and HOG, and is useful for tracking

the motions of structures and objects. Hence, this technique was applied suc-
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cessfully to estimate arbitrarily large displacements between frames [73] or effi-

ciently correct erroneous motion vectors [47]. The objective function of LDOF

that is used to estimate pixel-wise motions consists of the following five energy

terms:

E(u,v) = Ecolor(u,v)+λEsmooth(u,v)+ γEgrad(u,v)

+βEmatch(u,v,u1,v1)+Edesc(u1,v1)
(3.5)

Note that different from Ecolor term in Eq. 3.4, which adopts a linearized

form and thereby favors the estimation of motion field with small displacements,

Ecolor in Eq. 3.5 involves no linearization so to retain the capability of tracking

a large displacement of (u,v). This is important in estimating cloud motions be-

cause fast cloud movements that appear as large displacements between frames

are common in sky imagery. Ecolor between the first frame I1 and next one, I2 is

defined as follows:

Ecolor(u,v) = ∑
x,y

Ψ(‖I2(x+u,y+ v)− I1(x,y)‖2) (3.6)

Esmooth is identical to the second penalty term in Eq. 3.4 while Egrad(u,v) is

the supplementary constraint that assumes the constancy of intensity gradient at

corresponding points on two frames:

Egrad(u,v) = ∑
x,y

Ψ(‖OI2(x+u,y+ v)−OI1(x,y)‖2) (3.7)

The remaining two terms, Ematch and Edesc, are the energy terms related to

the sparse descriptor matching. γ , λ and β are the parameters that need to be

manually tuned based on the various sky images. To improve the performance

of motion tracking, Brox and Malik investigated three different methods of de-

scriptor matching: SIFT, histograms of oriented gradients (HOG) and geometric

blur (GB). The results show that the HOG method generates the smallest num-

ber of mismatches in various dataset. Following their experiments, we applied
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LDOF with HOG descriptor matching and a Gaussian filter with σ = 0.8 for

cloud tracking in sky images. Moreover, we optimized the parameter setting of

LDOF based on the model’s performance on a training dataset of sky images.

In summary, the combined parameter setting consists of λ = 30, β = 300, γ = 5.

3.3.5 Hierarchical Block Matching (BM)

In 2011, Huang et al.(BM [21]) proposed a two-layer hierarchy of image blocks

on greyscale TSI images to guarantee an appropriate granularity for meaningful

block matching, i.e., containing sufficient information for the matching calcu-

lation, whilst capturing detailed cloud movements. Accordingly, Huang et al.

first preprocessed TSI images, divided them into blocks, denoted as reference

or inner blocks that, in general, are small enough to contain only uniform move-

ments. However, small (inner) blocks usually do not have adequate variation

in image intensity, so that any block-matching for them may yield inaccurate

results. Thereby, instead of using reference block directly, Huang et al. em-

ployed a bigger block (outer block) co-centered with each inner block to search

for the best match across images. In addition, to refine the matching results and

mitigate the influence of artifacts on TSI image, they undertook post-processing

to the matching results and applied two thresholds to discard the blocks that

have only all black/invalid pixels and/or low matching score. In this paper, we

adopted the BM method with the same parameter settings outlined in [21].

3.3.6 Cloud-Block Matching (CBM)

To incorporate actual cloud information into block matching, we designed the

CBM method outlined in our prior work [12] to dynamically determine and

match actual cloud blocks. We applied the Support Vector Machine (SVM [119])

to generate a cloud classifier to separate cloud and sky pixels on the basis of

manually annotated images. It utilizes multiple image features to categorize
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image pixels into two classes (cloud/sky). Once the cloud mask is extracted

from a TSI image, a connected component detection algorithm [129] is applied

to the mask to generate the cloud regions that are separated from sky pixels.

We assumed that each individual region is a piece of cloud with uniform mo-

tion inside, and drew a minimum bonding rectangle for each region to represent

the initial cloud block. Lastly, we applied a split-and-merge scheme to divide

large blocks or merge small ones, so to ensure that the output of cloud blocks

is suitable for the subsequent block-matching computation. Similar to BM, the

matching criterion of CBM is also based the NCC score. In the actual imple-

mentation, we specified the range of output block size between 10 x 10 to 80 x

80. The initial blocks that are outside the size range will be divided or merged.

3.3.7 Particle Image Velocimetry in Matlab (MPIV)

MPIV is a Particle Image Velocimetry (PIV) software package to analyze con-

secutive frames and obtain velocity vectors [80]. It generates motion vectors

via a hierarchical search, and more importantly, post-processes the generated

motion vectors with various de-noising techniques, such as a median filter, an

iterative search, and/or motion interpolations. As a result, MPIV is widely

adopted for detecting motions in various types of images, in particular, track-

ing clouds successfully in the images from satellites, or ground-based sky cam-

eras [52, 79, 130]. In this paper, we used it to generate velocity fields of clouds

across various sky imagers, and compare the results with other state-of-the-art

models. Based on the parameter settings in [79] to obtain cloud motions in the

TSI images, we chose a 32 x 32 pixels processing window and set the overlap-

ping ratio of the search window as 0.5. In addition, we selected the Minimum

Quadratic Difference (MDQ) as the matching criterion and set the recursion

mode as two to iterate the entire process twice so to enhance the accuracy of the

motion vectors.
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3.4 New Hybrid Model

To address the aforementioned issues of optical flow and block-matching, we

propose a new hybrid approach that integrates the block-matching method and

the variational OF model, and uses the former method to guide/refine the latter

one. This new model encompasses three main steps: (1) Extracting cloud mask,

generating cloud blocks via bottom-up merging and detecting block-wise mo-

tions, (2) Identifying dominant motion patterns from detected motion vectors,

and, (3) Estimating optical flow using our new formulation and refining based

on multiple motion filters.

3.4.1 Cloud Block Generation and Matching

Figure 3-4: Pipeline of QCBM.

Because the block’s size and position play a vital role in tracking clouds,

we devise a more effective algorithm for block generation and matching than

prior approaches, i.e., the Quadtree-based Cloud Block-matching (QCBM), so

to take into consideration the cloud distribution in sky images. Here, a Quadtree

recursively decomposes images into four equal-sized square sub-images until

the criterion of homogeneity is met, or the minimum block size is reached, and

consequently represents an image in a top-down hierarchy with different reso-

lutions [131]. Such a representation can efficiently divide an image into 2-D

homogeneous (similar color, texture, or structure) regions/blocks, and ease the
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Figure 3-5: Execution time of block-matching algorithms for different image
resolutions. CF indicates the cloud fraction of a sky image.

subsequent tracking process.

However, regions of low homogeneity, e.g., edges of clouds in the image,

require excessive decompositions to meet the stopping criterion. As a result,

a top-down decomposition usually generates cloud blocks that are too small

to preserve meaningful textural information for motion tracking. To overcome

this, we introduce a bottom-up scheme to the Quadtree construction that starts

from all nodes at a pre-defined level in the Quadtree, identifies all cloud blocks

containing cloud pixels more than the threshold CF (the fraction of cloud pixels

in a block based on the cloud mask obtained in prior steps), selectively fills all

pixels as clouds in these nodes, and iteratively merges homogeneous blocks.

Figure 3-4 shows the steps of the QCBM generation and matching. For sim-

plicity in implementation, we pad the sky image to be square with the size of the

power of 2. To ensure the quality of block-matching, we limit the dimension of

the generated cloud blocks to be in a range of (2L×2L,2L+1×2L+1, ...,2L+K×

2L+K), where 2L is the minimum size allowed in generating cloud blocks. Un-

der this new approach, there are only K + 1 different sizes of cloud blocks. To

ensure the quality of segmentation near the cloud’s boundary, we first start at

one layer lower than the finest level, i.e., 2L−1, to fill the cloud mask if the cloud
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fraction inside is beyond CF . During the iterative merging step from the level

of 2L in our bottom-up scheme, we check the four children/subblocks of each

node: if no less than T children are cloud blocks, all four child nodes are elim-

inated, and the parent node becomes a new (bigger) cloud block, which will

be filled with cloud pixels and participates subsequent merging, until the level

2L+K is reached. Lastly, the Quadtree contains different sizes of cloud blocks

for matching, as shown in Figure 3-6f. We then find the best match for each

cloud block to find its block-wise movement to the next frame.

To obtain the optimal matching quality based on the correlation criterion,

we choose three layers starting from the minimum block size 16× 16 for sky

imagery (L = 4, K = 2), and then we set CF = 0.2, T = 3 to fill and merge the

lower level blocks. Figure 3-6 presents the result of the original block generation

by the QCBM, based on the example in [12]. Figure 3-6c shows the cloud

blocks with the starting size of 8×8 filled with the original cloud mask in Figure

3-6b, whereas Figures 3-6d- 3-6f present the iterative merging results of cloud

blocks with a size from 16×16 to 64×64. We observe that compared with the

blocks generated by CBM (Figure 3-6a), the blocks by the bottom-up scheme in

QCBM (Figure 3-6f) have cleaner segmentation around the boundary of clouds

and do not contain overlapping regions.

More importantly, this QCBM is computationally more efficient. We imple-

mented QCBM, BM, and CBM in Matlab and ran them on a laptop. Figure 3-5

shows the average running time of three different block-matching algorithms

under different image resolutions and cloud fractions. As the QCBM does not

involve the “dividing and conquer” scheme in CBM, and eliminates most clear

sky pixels during the block generation in contrast to BM, its execution speed is

significantly faster than the others. Especially when an image is large with high

resolution, QCBM only incurs a marginal increase in the execution time, and

always completes the matching process within 10 seconds. Though the QCBM

segments an image into more cloud regions when the fraction of cloud in the
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(a) Fig. 6(d) in [12] (b) SVM Cloud Mask (c) 8x8 Filling

(d) 16x16 cloud blocks (e) 32x32 merged blocks (f) 64x64 merged blocks

Figure 3-6: Quadtree block generation using the example shown in Figure 6
in [12] with L = 4, K = 2, CF = 0.2 and T = 3.

image increases, the computational speed for its bottom-up scheme does not

increase significantly and still is faster compared with CBM.

3.4.2 Dominant Cloud Motion Patterns

To suppress image noise and neglect falsely estimated motion vectors, we pro-

pose to identify the dominant patterns of cloud motions and use them to refine

the entire motion field. First, appropriate image preprocessing is necessary to

undistort the TSI images ensure that the majority of cloud motions obtained

from undistorted image are simple and translative. Subsequently, we can apply

a straightforward clustering (e.g. k-means) to effectively group them, to find

dominant patterns, and to remove abnormal ones [132] [12].

However, the clustering approach does not take into consideration the weight

of each motion vector, i.e., the size of actual cloud block, and thereby, might
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miss some dominant vectors. In this paper, we utilize the histogram statistics

presented in [133] to extract the N most frequent cloud motions in a sky im-

age, and use them to correct and refine the results of estimated motions. To

accurately determine the significant motion modes for cloud pixels and exclude

the small-scale motions caused by image noise or sky pixels, we only consider

those obvious motion vectors that have adequate velocity between two consec-

utive frames (‖u‖2 +‖v‖2 > 1). Thereby, stationary sky pixels or slow-moving

clouds are ignored in calculating dominant motions.

In our implementation, we first produce a dense motion field based on the

motion vectors detected in previous block matching. Each cloud pixel acquires

the associated motion vector from the cloud block on which it resides. There-

after, we create a 10× 10 2-D histogram for the motion vectors of all cloud

pixels. This design considers the size of a cloud block, and a large block has

many pixels, each of which contributes to the count, viz., the weight of the

shared block-wise motion vectors to the histogram. Then we picked the N

most-frequent motion modes, and grouped the pixel-wise motion vectors into

N groups. For each motion group, we selected the median motion vector as the

dominant motion pattern, and thereby, generated a collection of dominant mo-

tion vectors (Ω = {(ui,vi)|i = 1,2, ...N}). Finally, we refine all non-zero mo-

tion vectors by resetting their values to the closest dominant motion vectors:

(ũ, ṽ) = argmin
(ui,vi)

(‖u−ui‖2 + ‖v− vi‖2) where (ui,vi) ∈ Ω. Here, we use (ũ, ṽ)

as the reference vector to guide the refinement of optical flow in the next section.

3.4.3 Context-Aware Variational Model and Its Refinement

The original OF models lack of the contextual information and are agnostic to

the existing domain knowledge, and consequently, they often assign erroneous

flow vectors to cloud pixels and are sensitive to noises in images. To cope with

those issues and utilize the information of motion layers and cloud distribu-
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Figure 3-7: Minimization of new variational model.

tion, we proposed a new OF model. First, we revise the energy-like objective

to assimilate the aforementioned dominant motion patterns, and to use them to

create a context for calculating the optical flow at each cloud pixel. However,

a motion field obtained only from the straightforward process of energy mini-

mization still suffers those issues. The general practice in many prior works is

to apply post-processing techniques, such as median filtering [134] or signal-

noise-ratio threshold [80] to mitigate the impact of image noise and remove the

outliers. Therefore, we also follow the practice and apply three filters thereafter

to further assimilate cloud information, utilize dominant motion patterns, and

remove noise in the motion field. Given the facts that one iteration is not suffi-

cient to correct the motion-field and the reference vector still needs to be refined

to absorb new information and thereby to closely represent the current motion

field, we design an iterative algorithm to generate and optimize the dense flow

field and to update the subsequent reference motion vectors. This design rec-

ognizes that the vectors detected by the BM and the OF models are actually

inter-dependent. For the optimal results, they should be integrated into the same

framework to ensure them to mutually enhance each other.

Inspired by the two-stage (assimilation and updating) alternative minimiza-

tion framework in [127], we propose a new OF model based on a four-step

optimization pipeline that iteratively generates a dense flow field, as shown in

Figure 3-7. In this four-step framework, we iteratively solved and refined the

OF result via introducing the auxiliary motion field (û, v̂) to: (1) estimate the

flow field (u,v) so that it is nearly identical to (û, v̂), and (2) calculate the best

(û, v̂) using three motion filters on the current tracking result (u,v).
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The first step of the pipeline in Figure 3-7 is to formulate the OF objective

E(u,v) to be a summation of four energy terms as follows:

E(u,v) = Ecolor(u,v)+λEsmooth(u,v)+

γEgrad(u,v)+βEmotion(u,v, û, v̂)
(3.8)

where Ecolor and Egrad are defined in Eqs. 3.6 and 3.7. Esmooth is identical to

the second term in BA (Eq. 3.4). Here, we add a new energy term Emotion so to

encourage the optical flow to be identical to the reference/auxiliary motion field

(û, v̂), whilst allowing a small perturbation from it, and meanwhile penalizing

any large deviation. Emotion is defined as follows:

Emotion(u,v, û, v̂) = ∑
x,y

ρ(‖u− û‖2 +‖v− v̂‖2) (3.9)

The motion perturbation presented in [132] can track non-rigid transforma-

tion and deformation on the local scale. By setting the initial reference motions

to be the dominant motion patterns, i.e., (û0, v̂0) = (ũ, ṽ), for each pixel, we con-

strain clouds to move along the major trend (wind direction) while permitting a

small deviation to capture the local deformation and the changing shape of the

clouds.

Optimizing Eq. 3.8, however, is a non-trivial task since the original problem

is not linear. Its minimization requires a two-step linearization based upon the

corresponding Euler-Lagrange equations, and successive over-relaxation (SOR)

[135]. The details of discretization and implementation are given in [73] and

[136].

However, the motion field obtained by minimizing the energy-like objective

still contains anomalies that do not match the real cloud movements. The gen-

eral practice in many previous efforts was to apply post-processing techniques,

e.g. median filters. In the pipeline in Figure 3-7, we use three different fil-

ters (sky filter, dominant motion filter, and weighted median filter) thereafter
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for assimilating cloud information, utilizing dominant motion patterns, and de-

noising the motion field.

Sky Filter processes the clear sky pixels that are identified by velocity

threshold. We assume that the clear sky regions in images do not move be-

tween consecutive frames, and set the motions of all sky pixels that acquire a

small-scale motion (i.e. u2 + v2 ≤ T 2
sky) in the previous step to be zero in both

the x and y directions. It eliminates the small motion vectors caused by image

noise and avoids accumulating errors in the iterative minimization step. It is

noteworthy that instead of considering all clear sky pixels, we filter out only the

ones with a small movement based on the threshold criterion Tsky because cloud

pixels in thin clouds or the images containing a high level of image noise have

a high probability of being falsely categorized into the class of clear sky. Con-

sequently, relying on cloud mask only potentially neglects these special cases,

and accidentally removes the prominent motions of these mis-classified pixels.

A Dominant Motion Filter is designed to identify the outliers with refer-

ence to the dominant motion patterns. If a motion vector at position (x,y) has

significant deviations from all dominant motion patterns (Ω), then we identify

it as an outlier, i.e., if a motion vector meets the following condition, we will

remove it.

{
(ux,y,vx,y)|(ux,y−ui)

2 +(vx,y− vi)
2 > ε

2,∀(ui,vi) ∈Ω
}

(3.10)

This filter significantly helps to refine the motion field for the next round of

minimization and to update the reference motion field.

A Weighted Median Filter is widely adopted to smooth and de-noise the

motion field in the post-processing step [127]. Our model employs this filter to

update reference (auxiliary) motion field (û, v̂). The weighted median filter can

be calculated as follows:
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min
ûx,y,v̂x,y

∫
(x′,y′)∈Γ(x,y)

wx′,y′
x,y (

∣∣ûx,y−ux′,y′
∣∣+ ∣∣v̂x,y− vx′,y′

∣∣) (3.11)

where Γ(x,y) is the set of (x,y)’s neighborhood pixels (x′,y′) within a pre-

defined window (e.g. 5 x 5) centered at (x,y). wx′,y′
x,y stands for the weight of the

affinity (similarity) between two pixels. In our implementation, we approximate

its calculation with the color difference in an image:

wx′,y′
x,y = e−

‖F(x,y)−F(x′,y′)‖2

2σ2 (3.12)

where F represents the color image with the R, G, B channels. To compute

w efficiently between each pair of pixels, we adopt the joint-histogram weighted

median filter (JointWMF [137]) to reduce the execution time of updating (û, v̂).

Compared with the weighted median calculation in [127], the JointWMF sig-

nificantly speeds up the running time by more than 10 times and at the same

time preserves the quality of estimation [137]. Afterward, we pass the updated

(û, v̂) for the next round of the iterative minimization of E(u,v). We iterate the

process three times to produce the final output of the dense optical flow field.

3.5 Experiments

To validate the effectiveness of our proposed model, we propose establishing a

comprehensive simulation framework to incorporate translative cloud motions,

cloud deformation, and various levels of noises into the synthetic sky images.

Then, we can evaluate our model under these circumstances with the known

ground truth. Furthermore, we will apply our model to real images collected

from various imaging systems and validate its performance in real-world appli-

cations.
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Figure 3-8: Framework of synthesizing two-frame sequence of sky images.

3.5.1 Simulated Dataset of Cloud Images

To evaluate the robustness of tracking models, we generated three different two-

frame sequences of synthetic images from a cloud template (foreground) and a

real sky image (background), each of which represents image noises or a differ-

ent type of cloud motion, i.e., deformation or scaling, as shown in Figure 3-8.

We first overlaid the template on the background image to create the first syn-

thesized frame. Then, we employed different transformation models or injected

image noise to generate a new template, and subsequently applied a translative

motion vector to synthesize the second frame. Consequently, the ground-truth

motion field is a combination of the template translation and the motion pertur-

bations originating from the deformation or scaling models. We detail the three

types of simulations as follows:

1) Simulation with a deformation model. Inspired by prior work [77] that

simulated the changes in the Magnetic Resonance Image of brain (MRI) by a

2-D synthetic deformation model applied on a template, we utilized the same

model of image distortion to resemble the changes in shape and deformation

of clouds during their movements between two consecutive frames; we also

adopted their spatial sinusoidal functions with the same settings to the deforma-
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Table 3.2: Overview of seven sky image datasets.

Dataset Instrument Range image# Rate Resraw Res FOV
BNL1 TSI 880 2013-05-07 ∼ 2013-06-25 562 10s 480x640 500x500 120◦

BNL2 TSI 880 2013-05-07 ∼ 2013-06-25 562 10s 480x640 500x500 120◦

BNL3 TSI 880 2013-05-07 ∼ 2013-06-25 562 10s 480x640 500x500 120◦

SGPC1 TSI 440A 2012-04-01 ∼ 2012-06-15 1680 30s 480x640 500x500 120◦

TWPC1 TSI 440A 2010-08-25 ∼ 2010-11-01 1654 30s 480x640 500x500 120◦

HD-SI IP-cam 2014-10-01 ∼ 2014-11-01 434 10s 1920x1920 1000x1000 140◦

HD-TSI IP-cam 2014-09-01 ∼ 2014-10-01 434 10s 2592x1920 1000x1000 140◦

tion parameters of amplitude (A) and spatial period (S).

2) Simulation with scaling. We utilized an image re-sizing tool to simulate

the cloud’s shrinking and expansion. The size of the new template is the scale

ratio (SR) multiplied by its original size. In our experiment, we set SR in the

range between (0.9∼ 1.2) with a step size equal to 0.1.

3) Simulation with different levels of noises. Following the idea proposed

in [51] that added the Gaussian noise to the images of carotid arteries, we

also injected the same type of random noise into the R,G,B channels of our

synthetic image sequences. In this simulated dataset, the signal-to-noise ratio

(SNR) ranged between 20 to 50.

3.5.2 Real Sky Imagery Datasets

In this paper, we use seven types of sky images that were collected from different

locations, and/or different types of sky cameras (See Table 3.2 for details). The

first three datasets, denoted as BNL1, BNL2, and BNL3, were obtained from a

small network of three TSIs deployed in the Long Island Solar Farm (LISF) at

Brookhaven National Laboratory. These TSIs have an identical configuration,

and are placed close to each other so to acquire the overlapping views for the

purpose of tracking the micro-scale cloud motions. To cover the representative

conditions of various types of weather and clouds, we chose 562 timestamps

from May/07/2013 to June/25/2013 that are synchronized among all three TSI

datasets. We converted the raw TSI images (480 x 640) into their planar views
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(a) TSI Original (b) HD-TSI Original (c) HD-SI Original

(d) preprocessed (e) preprocessed (f) preprocessed

Figure 3-9: Raw image and preprocessed view of TSI, HD-TSI, and HD-SI.

to eliminate distortion in the images and cropped the resulting planar images

with a resolution of 500 x 500 pixels, and a pre-defined Field of View (FOV) of

about 120◦ to remove low-quality regions. Lastly, we masked out the irrelevant

pixels in the areas with artifacts, such as the camera supporting arm, the shadow

band, the out-of-FOV areas, and ground obstacles, as illustrated in Figures 3-9a

and 3-9d.

The fourth and fifth dataset are from the TSIs in different locations: SGPC1

represents the dataset that consists of a pair of two image frames collected daily

every 30 minutes between 10:00AM to 16:00PM (local time) from April/15 to

June/01/2012 from the central facility of the Southern Great Plains; TWPC1 is

collected from the Tropical Western Pacific site in Manus Island. Similar to

SGPC1, TWPC1 comprises the pairs of consecutive frames every 30 minutes

daily from August/25 to November/01/2010. We also preprocessed the raw TSI

images of these two datasets with the same method to correct distortions, and the

same mask with a FOV of 120◦. These two datasets ensured that our proposed
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model of estimating cloud motions has sufficient coverage for various cloud-

and weather-conditions in different geographical locations.

The remaining two datasets were obtained from the high-definition cam-

eras deployed at Brookhaven National Laboratory. The first dataset, HD-TSI, is

from a high definition TSI in which we replaced the built-in camera by a secu-

rity camera with a high-resolution of 2592 x 1920 pixels, (Figure 3-9b). After

preprocessing, we generated a planar view of 1000×1000, with a FOV of about

140◦ (Figure 3-9e). The other HD-image dataset, HD-SI, was obtained from a

security camera that faced upward to take pictures of local sky regions directly

via its fish eye lens (Figure 3-9c). After preprocessing, we also retained the im-

ages with a resolution of 1000 x 1000 and the same FOV of about 140◦ (Figure

3-9f). These two datasets helped us to validate whether our model is scalable to

different types of cameras and large images.

3.5.3 Evaluation Metrics

We adopted five metrics to quantitatively evaluate the performance of our pro-

posed model of estimating cloud motions and to compare it with several repre-

sentative models. Here, we denote the estimated motion as W(x,y) = (u,v) and

the ground-truth motion as W G
x,y = (ug,vg). Because a dense motion field is our

focus, we will evaluate the average performance of motion tracking on all P

pixels where P is the total number of pixels in images.

1) Optical-Flow Color Map. We propose using a color map to visualize a

dense motion field, a common approach adopted by computer vision. With it,

pixel-level motion vectors are normalized and represented by different colors

based on their magnitude and orientation. In this paper we normalize all motion

vectors to be within a square ranging between (-15,-15) to (15,15), and thereafter

assign each pixel a color code from the motion color map in Figure 3-10.

2) Average angular error (AAE). The AAE measures the errors that arise
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Figure 3-10: Color coding scheme for the motion vectors in the range between
(-15,-15) to (15,15).

from the angular deviation of an estimated motion vector from the correspond-

ing ground-truth orientation, and is calculated via the following equation:

AAE =
1
P ∑

(x,y)
arccos(

W(x,y) ◦W G
(x,y)

‖W(x,y)‖‖W G
(x,y)‖

) (3.13)

3) Standard deviation of angular error (STDANG). STDANG denotes the

standard deviation of the angular errors and is defined as follows:

ST DANG =

√√√√ 1
P ∑

(x,y)
(arccos(

W(x,y) ◦W G
(x,y)

‖W(x,y)‖‖W G
(x,y)‖

)−AAE)2 (3.14)

4) Average end-point error (AEPE). This evaluates the average deviation of

motion vectors from the ground-truth vector.

AEPE =
1
P ∑

(x,y)
‖(W(x,y)−W G

(x,y))‖ (3.15)

5) Mean Absolute Error (MAE). The MAE is used to calculate the mean

absolution error between the ground-truth image (Ig), and the predicted one.

Here, the predicted image (IPredict) is subsequent to the current image frame in

the same sequence and is generated by applying the estimated motion vectors

to all pixels thereby mapping those from the current image frame to the next

frame. We generally use the MAE score to evaluate the performance of motion

estimation [47] when the ground-truth for motions does not exist.
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MAE =
1
P ∑

(x,y)

∣∣IPredict(x,y)− Ig(x,y)
∣∣ (3.16)

3.5.4 Experiments on the Sequence of Simulated Image Frames

(a) Deformation (A = 2, S = 64)

(b) Scaling (SR = 1.2)

(c) Image Noise (SNR = 20)

Figure 3-11: The color map of the results of all tracking models on three types
of synthetic images. Left to right: Ground-truth motion, BM, CBM, MPIV,
LDOF, and Hybrid.

We applied seven classic models and our proposed hybrid model to estimate

cloud motions in the three types of simulated image-sequences. Figure 3-11
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Table 3.3: The AAE, STDANG, and MEPE scores of the motion-tracking mod-
els on simulated images with various deformation settings.

A=1,S=16 A=3,S=32 A=5,S=32
AAE STDANG MEPE AAE STDANG MEPE AAE STDANG MEPE

BM 1.771 11.61 0.162 1.692 11.16 0.175 1.705 10.99 0.186
MPIV 0.956 7.710 0.057 0.985 7.829 0.071 1.262 8.934 0.101
CBM 0.368 4.967 0.038 0.501 5.499 0.063 0.660 6.583 0.088
HS 1.573 8.048 0.075 1.551 7.947 0.076 1.572 8.380 0.089
LK 5.277 16.91 0.267 5.456 17.28 0.299 5.761 18.08 0.360

LDOF 0.628 6.671 0.043 0.516 5.393 0.041 0.547 5.401 0.061
BA 0.488 5.587 0.038 0.584 5.500 0.054 0.802 7.061 0.074

Hybrid 0.218 3.852 0.021 0.324 4.435 0.035 0.494 5.655 0.058

Table 3.4: AAE, STDANG, and MEPE scores of motion tracking models on
simulated images with three levels of Gaussian noise.

SNR=20 SNR=30 SNR=40
AAE STDANG MEPE AAE STDANG MEPE AAE STDANG MEPE

BM 1.813 12.03 0.216 2.355 13.77 0.278 3.271 15.05 0.279
MPIV 0.707 6.582 0.044 0.772 6.427 0.043 1.771 8.710 0.073
CBM 4.097 17.75 0.339 5.003 20.22 1.891 1.034 8.968 0.185
HS 0.637 6.104 0.055 0.715 6.617 0.056 0.799 6.977 0.058
LK 31.17 34.14 1.303 23.95 32.74 1.048 15.51 28.56 0.662

LDOF 33.14 38.04 2.374 2.032 11.95 0.120 1.052 9.026 0.080
BA 16.67 29.28 0.707 6.050 19.33 0.254 1.331 10.09 0.092

Hybrid 0.233 4.225 0.027 0.231 4.224 0.024 0.231 4.241 0.023

shows the output motion fields in the format of color map that correspond to the

ground-truth, BA, CBM, MPIV, LDOF, and Hybrid respectively. The first row

of images in Figure 3-11 indicates the detected motions of all pixels in the entire

simulated image whilst the second row is the zoom-in view of the motions of the

cloud region (bordered in red). From Figures 3-11a, 3-11b, we observed that our

hybrid model can accurately detect the deformations of clouds and generate the

best motion color map, in particular, in the areas around the edges, to closely

resemble the ground-truth, when compared with other models. As shown in

these two figures, even though CBM can estimate the major trend of motions

based on its intelligent detection of big blocks of clouds, nevertheless it neglects

the underlying deformations in shape within each block, and fails to capture the

local variations in the area of clouds. Consequently, its color map appears to be

in a solid color with the obvious artifacts arising from the decomposition of a

73



cloud block.

Figure 3-11c shows the third case of noises in images. Here, each image

is corrupted with the Gaussian noise at a level of SNR = 20. We observed that

because of the existence of these noises, most models fail to recover shape of the

cloud and produce falsely estimated motions for those stationary pixels. With

the help of the filters and the dominant patterns of motion, our proposed hybrid

model preserves a reasonable segmentation between the motion fields of a cloud

region and the area of clear sky, whilst incurring only a much smaller number

of outliers in the area of clear sky than do the remaining models.

Tables 3.3 and 3.4 show the performance number of all the models with

regard to two different deformation settings and multiple levels of noise. We

conclude that the Hybrid model consistently outperforms other models in most

cases in terms of three different metrics, i.e., AAE, STDANG, and MEPE. For

the most difficult case of simulating deformation (i.e. A = 5, S = 32), Hybrid

retains the lowest level of errors in terms of AAE and MEPE and the second to

the lowest in terms of STDANG, which is only 5% higher than the best score

obtained by the LDOF model.

3.5.5 Experiments on TSI and High Definition (HD) Images

To validate the accuracy of detected motion vectors, we applied the resulting

motion field between two consecutive frames (t-1 and t) to predict the next frame

(t+1) and to compare it with the true image. In Figure 3-12, the first row lists

the raw data of three frames at time t − 1, t, t + 1 (ground-truth) and a motion

mask to remove outliers and calculate the MAE score. The second row presents

the motion fields of BM, MPIV, BA, and Hybrid respectively. The third row

shows the predicted images using detected motions and image interpolation.

The fourth row displays the color maps of the difference between the predicted

images by the four models and the ground-truth frame at time t+1. We observed
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Figure 3-12: Using the estimated motion fields to predict the next image frame
at time t +1.
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(a) Scatter (b) Green (c) Fast (d) Multi (e) Deform1 (f) Deform2

Figure 3-13: Six cases selected from the TSI datasets. (a) Scattered clouds;
(b) Images from BNL1 dominated by a green color; (c) Fast-moving clouds in
dataset BNL3; (d) Multi-layer clouds; (e) and (f) Images from two different TSI
sites (SGPC1 and TWPC1), both showing fast motion of clouds and deforma-
tion in their shape.

that our Hybrid model can generate stable motion vectors near the boundary of

each piece of cloud. In contrast to other models, Hybrid is able to capture the

small changes of clouds and produce less MAE errors in texture-rich regions.

In our experiment, we selected eight representative cases to encompass var-

ious cloud conditions that appeared in different sites and sky imagers. The

first six of them shown in Figure 3-13 are in TSI datasets: Figure 3-13a shows

the condition of scattered clouds whose boundaries are clearly segmented. All

pieces of cloud have negligible deformations and identical motion vectors. Fig-

ure 3-13b shows an abnormal image with a different color scale by an artifact

of the camera’s setting and dominated by green. Figure 3-13c contains fast-

moving clouds with a velocity of approximate (u,v) = (−17,2). Figure 3-13d

comprises two layers of clouds, each with different motion vectors: the first one

has (u,v) = (6,1) whereas the other has (u,v) = (11,−6). This example targets

at evaluating each model’s capability to determine the multiple layers of cloud

motion. Figure 3-13e and Figure 3-13f, respectively, come from the dataset of

SGPC1 and TWPC1. The clouds in these two examples move quickly between

the frames, and more importantly, involve local deformations, such as cloud

dissipation and changing shape. The average translative movement in the first
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Table 3.5: MAE score of models of eight selected cases

Scatter Green Fast Multi Deform1 Deform2 Fig. 3-9e Fig. 3-9f
BM 19.6 23.5 39.4 33.9 54.9 54.5 13.1 19.6

MPIV 7.8 19.1 29.0 15.6 34.8 44.4 16.9 18.6
BA 3.7 11.4 18.2 6.4 20.3 25.1 12.4 10.7

Manual 3.0 8.0 15.0 4.0 18.0 22.0 8.8 7.3
Hybrid 3.3 8.2 15.4 4.6 18.5 22.5 9.3 8.8

example is close to (−25,−19), and the average motion during half a minute in

the second one is about (−39,10). The remaining two cases are from the HD

datasets presented in Figure 3-9e and 3-9f.

Because there is no existing ground truth for cloud motions in a real-world

application of sky image, we manually generate one from images, and use it as

the ground-truth for evaluating models. First, we manually annotate clouds in

these selected images and estimate their average translative movement across

two frames (the first and second rows of images in Figure 3-13) for each piece

of cloud. Then, we generate the color maps from the manually annotated ground

truth (termed Manual) and the results of the motion estimation models, includ-

ing BM, MPIV, BA, LODF, and Hybrid (Figure 3-14). Lastly, we apply the

resulting motion field to the first image frame so to predict the subsequent frame

and calculate the MAE score between the predicted frame and the second frame

(Table 3.5). We observed that Hybrid attains the best approximation to the man-

ually annotated color map. More importantly, Hybrid is robust in all of the eight

representative cases and has the fewest MAE errors among the five models.

Table 3.6 summarizes the MAE score of all the motion estimation models

over different real image datasets. It shows that the Hybrid model outperforms

the remaining classic models for the TSI and HD imager datasets. Compared

with the best-performing block matching approach, CBM, and the most accu-

rate OF method, LDOF, our proposed hybrid approach further cuts down the

overall error rate by more than 30% and 15%, respectively.
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(a) Manual (b) BM (c) mpiv (d) LDOF (e) BA (f) new

Figure 3-14: Color map on eight selected cases.
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Table 3.6: MAE score of motion tracking models on seven real images

BNL1 BNL2 BNL3 TWP SGP HD-SI HD-TSI Overall
BM 20.4 18.0 24.1 34.6 39.0 18.8 15.7 24.4

MPIV 20.3 15.3 23.6 26.1 27.5 19.6 15.0 21.1
CBM 7.9 5.0 8.7 11.9 15.6 13.4 5.8 9.8
HS 13.5 7.8 11.1 17.8 16.3 18.8 10.9 13.7
LK 42.9 38.4 48.4 51.9 56.1 40.2 39.9 45.4
BA 9.8 6.6 10.9 11.6 11.5 12.5 7.6 10.1

LDOF 7.9 5.0 7.0 11.1 9.8 9.3 5.7 8.0
Hybrid 6.2 4.2 4.7 9.8 8.8 8.7 5.3 6.8

3.5.6 Experiment Findings and Discussion

The experiment analysis on cloud pixel identification shows that the proposed

cloud detection pipeline was robust under various cloud/lighting conditions and

obtained an overall accuracy of 96.6% for detecting clouds. It verifies that the

image features extracted at local region, i.e., LOF and STD, are effective for

gathering neighbor information and defining the edges of cloud area. This re-

sult further validated that our multi-source pipeline design, in particular, the

incorporation of images streams from multiple cameras synchronized with each

other and the following histogram equalization to eliminate artifacts of individ-

ual cameras, not only improves the accuracy of the cloud classifier, but also

increases the stability of cloud detection over various complex cases involving

anomaly. When we tested our pipeline on a different type of imager, a Webcam

in Figure 3-3, the cloud detection pipeline still identified the majority of cloud

pixels where ACcld = 96.2%.

Furthermore, we experimented on cloud motion tracking with various image

datasets, and confirmed that our new model is computationally efficient in cloud

block matching and in general, more than five times faster than state-of-the-art

BM methods. It coincides with the fact that our QCBM module effectively seg-

ments cloud regions into a hierarchy and optimizes the number of generated

cloud blocks starting from a low level and via a bottom-up merging scheme. By

comparing our hybrid model with state-of-the-art models over synthetic image

79



datasets, we confirmed that the auxiliary motion energy term enhanced the hy-

brid model with resilience to noise and capability of tracking complex shape de-

formations that are absent from both the OF models and block-matching meth-

ods. Consequently, the hybrid model generated motion color maps with a much

better accuracy than all other tracking algorithms selected for comparison. As

we expected, the OF methods experienced significant performance degradation

for fast-changing clouds in certain selected cases. It agreed with the obser-

vation that traditional OF approaches are ineffective with regard to detecting

large movements and sensitive to the initialization settings [73]. To solve this

problem, our hybrid model utilizes dominant motion layers and a four-step min-

imization framework. In our experiment, we generated color maps to represent

and visualize the motion vector field, and found that the motion layers and cus-

tomized filters in our hybrid model help significantly reduce abnormal motion

vectors, especially around the edges of cloud regions.

Our experiment also demonstrated that motion vector clusters and succeed-

ing cloud classification based on the clustering results further improved cloud

movement detection. It also confirmed the robustness of a well-designed weight

median filter in the alternating minimization algorithm [127]. In summary, the

experiment results vetted each element of our minimization pipeline, and col-

lectively, the four-step alternating minimization effectively ensures the perfor-

mance of de-noising and minimizes the outliers in the resultant motion field.

3.6 Summary

In this chapter, we focus on the problem of cloud detection and tracking in

different types of sky images. We discuss our investigation of state-of-the-art

motion estimation methods for tracking and predicting motion of clouds, and

quantitatively analyze classic models of both block matching and optical flow

using various sky imagers and synthetic images. By taking advantage of all
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prior models, we propose a new hybrid model to employ cloud mask and Quad-

tree in block-wise motion-tracking, to extract the dominant motion patterns via

histogram statistics, and to estimate a dense motion field at pixel level via cus-

tomized motion filters and objective function.

To validate the effectiveness of our model for cloud motion estimation, we

not only collected various types of real images from different sites, but also syn-

thesized three image-sequences to simulate the shape-changing clouds and im-

age corruption with random noise. The results show that compared with classic

models, our new model can accurately capture cloud deformation and is resilient

to image noise. It consistently produces the best color map and greatly reduces

the angular error (AAE) by at least 30% in all simulated image sequences. In

terms of real images, the new model consistently extracted clear motions of

clouds under various conditions (e.g., multiple layers and fast-moving clouds)

and lessened MAE by at least 10% for both TSI and HD image datasets.
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Chapter 4

Multi-TSI Integration

In this chapter, we present our research on multi-camera integration for 3D cloud

tracking and solar forecasting. A single TSI does not supply three-dimensional

spatial information of cloud that is necessary for regional forecast. To resolve

this problem and extract the necessary spatial information of clouds, we propose

to use a three-TSI network in which each camera has overlapping FOV with the

other two and observes cloud simultaneously. Based on the real-time streams

of multiple synchronized sky views from three TSIs, we investigate the spatio-

temporal correlations among nine frames (3×3 along the temporal axis t−2, t−

1, t, and the spatial axis: Cam1, Cam2, Cam3) and thereby determine cloud base

height and motion vectors at each time stamp. Afterward, we apply clustering

algorithm to group cloud motions into cloud layers and anomaly detection to de-

noise motion field. Once the estimated cloud movements are obtained, we can

predict cloud presence in the future. Subsequently, we design multiple machine

learning methods and choose effective input image features for short-term solar

forecast.
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4.1 Introduction

As single imager has limited FOV and is unable to detect clouds’ vertical dis-

tribution, prior studies cannot accurately predict sun-occlusion effects and are

often relying on other instruments (e.g. LIDAR) to provide additional infor-

mation such as cloud base height. To solve this issue, we propose to use syn-

chronous multi-camera network to observe clouds from different view angles,

and consequently track clouds in 3D space. In detail, we propose employing a

novel system to identify the primary cloud layers and extract the effective image

features that are relevant to forecasting the surface radiation. Our contributions

are summarized as follow:

1. New Cloud Detection Methodology: We propose an effective cloud

detection pipeline for classifying cloud pixels and utilizing multiple TSIs to

correct erroneous TSI images or compensate for abnormal exposure.

2. Multiple-Source Cloud Tracking: In contrast to the related work de-

scribed in this section, we design a novel tracking algorithm to incorporate the

spatial and temporal correlations between clouds among multiple TSIs and time

frames.

3. Multi-layer Recognition: We develop a clustering-based technique to

integrate the results of individual block-wise tracking into multiple cloud layers,

each of which forms a major wind field.

4. Feature Selection: Instead of tracking a single cloud pixel, we use sky

images to generate both global features at the image level as well as local vari-

ations within a small pixel 7 x 7 window.

5. New Regression-based Irradiance Forecast Models: We propose four

regression-based solar irradiance models that utilize the predicted features of

cloud pixels, and compare these models with the persistent model and its variant

based on Support Vector Regression.

6. High Accuracy in Field Studies and Validation: We confirm, in our
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preliminary analysis, that the proposed system for detecting and tracking clouds

and predicting their relevant features can accurately forecast solar radiation for

up to 15 minutes.

4.2 Multi-TSI Network Setup

4.2.1 Instruments

(a) T SI1 (b) T SI2 (c) T SI3

(d) Google Maps View

Figure 4-1: (a), (b), and (c) are the preprocessed views of the three TSIs. (d) is
the Google Maps view of the three TSIs from left to right (camera icons) and the
25 solar radiation sensors (red). The distance between T SI1 and T SI2 is 2477
meters, and that between T SI2 and T SI3 is 956 meters.

The data used in this paper were obtained from the Long Island Solar Farm
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Figure 4-2: Procedure for preprocessing the TSI images. The original image
is undistorted from the original dome space to the planar space via coordi-
nate transformation. The output image is cropped based on a pre-defined FOV
range and masked to remove irrelevant areas, such as the supporting arm and
the shadow band.

(LISF), a 32-megawatt solar photovoltaic power plant built by a collaboration

between BP Solar, the Long Island Power Authority (LIPA), and the Depart-

ment of Energy. The LISF, located at the Brookhaven National Laboratory, is

currently the largest solar photovoltaic power plant in the Eastern United States.

The cloud tracking system (Figure 4-1) consists of a network of three total sky

imagers (T SI1, T SI2, and T SI3). Their positions are triangulated to ensure good

coverage of the sky above the solar farm. T SI1 collects sky images of a region

near the solar farm. T SI2 is deployed in the middle of the farm to ensure suffi-

cient overlap of its views with those of the other two TSIs. T SI3 is located in the

northern area of the solar farm. We installed all three TSIs at the same altitude

and tuned their orientations to ensure that their camera-supporting arms point

north. Consequently, the supporting arm in each TSI images overlaps with the

vertical(y) axis on the image which is aligned toward the north.

All TSIs uploaded real-time video streams with a raw resolution of 640x480,

and at a streaming rate of 10 seconds per frame to a centralized database server.
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We then applied preprocessing techniques, as illustrated in Figure 4-2, to undis-

tort the raw images and remove unrelated artifacts, i.e., the shadow band and

supporting arm. The primary advantage of preprocessing the images, as de-

scribed in our previous work [21], is that the planar view obtained from the

coordinate transformation of the raw images is more effective for estimating

cloud motions. In this study, we projected the original coordinates to a flat

plane with a given resolution (500x500 pixels) and cropped the planar image

using a pre-defined view angle range (zenith range 0◦−60◦) to ensure an FOV

of approximately 120◦. In addition, because the camera-supporting arm may

not be exactly aligned with the vertical direction in a TSI image, we adjusted

the orientation in the preprocessing step by rotating the images by several de-

grees. To simplify the coordinates transformations between different TSIs, we

unified the conditions and specifications of all TSI devices. Because each TSI

has an identical FOV and resolution, all the preprocessed images reside on the

same projection plane, wherein pixels are distributed evenly. Finally, we applied

a pre-calculated mask to remove irrelevant areas, such as the supporting arm and

shadow band. The preprocessed image was then generated, with all irrelevant

pixels being set to black (Figures 4-1a, 4-1b, and 4-1c).

We deployed 25 pyranometers in the LISF, as shown in Figure 4-1d, to mea-

sure the surface solar irradiance. These sensors measure the global horizontal

irradiance (GHI) in real time. The measurements which are recorded every 10

seconds, are synchronized with the TSI observation. The variations in zenith

and the diurnal and seasonal patterns are also recorded in the raw GHI measure-

ments, and therefore bias our subsequent irradiance forecasting models. To mit-

igate this potential bias, we normalized each radiation value to a clear-sky index

kt during model training and testing. Letting GHIt be the raw GHI measured at

time t and GHIt
clear be the corresponding clear-sky estimate, the clear-sky index

kt is calculated as follows:
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kt =
GHIt

GHIt
clear

(4.1)

where kt nominally ranges from 0 to 1. However, its maximum value can

be greater than one due to the cloud enhancement caused by diffuse sunlight.

The estimated clear-sky value GHIt
clear at time t is obtained from the regression

curve that best fits the distribution of historical observations [10].

4.2.2 Assumptions of Consistency of Projected Images Across

TSIs

The vertical height and horizontal expansion of clouds vary considerably among

different types of clouds. Therefore, the projected size of a cloud observed by

ground-based cameras depends strongly on the cloud type, the location of each

camera, the field of view, and the solar zenith angle. With no loss of generality,

we assume that the dimensions of the projected views of the cloud base in im-

ages from multiple TSIs are identical to ensure the suitability and mathematical

correctness of the following calculations. In practice, our cloud tracking system

does not enforce these strong assumptions; however, it is sufficiently robust to

tolerate the differences between projected images while still being able to iden-

tify the same object in different images based on the values of the temporal and

spatial correlations.

4.2.3 Consistency of Motion and Displacement Vectors

In this section, we assume that the motion vectors are consistent in spatial rep-

resentation across all TSIs and that the displacement vector di, j,t is uniquely

mapped to the cloud base height ht . The pixel coordinates, (xi,yi), for T SIi

can be transformed into a coordinate system relative to the center of the camera

(xci,yci). The azimuth and zenith angles (Ai and Zi) at this point are represented
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using the image coordinates as follows:

rxi = xi− xci , ryi = yci− yi (4.2)

Zi = arctan

√
(rx2

i + ry2
i )× tanθi

Ri
(4.3)

Ai = arctan
rxi

ryi
(4.4)

θi and Ri are pre-defined parameters in preprocessing to control FOV of the

undistorted image for T SIi. θi stands for the max zenith angle of FOV while

Ri is the radius of visible scope at pixel level. Given the base height h, we can

recover the 3-D spatial coordinates (sxi,syi,szi) relative to T SIi by

sxi = h× tanZi× sinAi (4.5)

syi = h× tanZi× cosAi (4.6)

szi = h (4.7)

Then, mapping from the image coordinates to the spatial coordinates can be

expressed as follows:

sxi =
h× tanθi

Ri
× (xi− xci) (4.8)

syi =
h× tanθi

Ri
× (yci− yi) (4.9)

If the geo-difference between T SI j to T SIi is defined as (Di, j,x,Di, j,y), then

the same object in spatial coordinates system relative to T SI j can be acquired
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through the following equation:

sx j = sxi +Di, j,x , sy j = syi +Di, j,y , sz j = szi (4.10)

Combine Equation 4.8, 4.9 and 4.10, we can derive image coordinates (x j,

y j) to be:

x j =
R j× tanθi

Ri× tanθ j
× (xi− xci)+

R j×Di, j,x

h× tanθ j
+ xc j (4.11)

y j = yc j−
R j× tanθi

Ri× tanθ j
× (yci− yi)−

R j×Di, j,y

h× tanθ j
(4.12)

Since the preprocessing of undistorting images uses the same scale and view

range for all TSIs, from Equation 4.11 and 4.12, we derive the following:

∆xi = ∆x j , ∆yi = ∆y j , when θi = θ j , Ri = R j (4.13)

where ∆xi and ∆yi stand for the offset (distance) between pixel c = (xi,yi)

and pixel c′ = (xi
′,yi
′) along the x and y direction respectively in an image of

T SIi. Based on our assumptions and Equation 4.13, its projections on multiple

TSIs have an identical size. Moreover, its pixel-wise motion is also the same

since it stands for the same scale of movements on the image plane.

To retrieve the cloud base height, we define the mathematical term di, j,t as

the pixel-wise displacement vector between two blocks in different TSI images

(T SIi and T SI j). In detail, di, j,t = (di, j,t
x ,di, j,t

y ) as the displacement vector in x

and y directions in image at timestamp t. Based on the result in Equation 4.13,

we acquire the height-to-displacement mapping as follows:

di, j,t
x = x j− xi = xc j− xci +

R jDi, j,x

ht× tanθ j
(4.14)

di, j,t
y = y j− yi = yc j− yci−

R jDi, j,y

ht× tanθ j
(4.15)
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Therefore, the cloud base height, ht , can be represented by the displacements

in both the x and y directions respectively:

ht =
Di, j,xR j

(di, j,x + xci− xc j) tanθ j
(4.16)

ht =
Di, j,yR j

(−di, j,x− yci + yc j) tanθ j
(4.17)

Equation 4.16 and 4.17 should have the same output. Otherwise the dis-

placement vector is invalid since it does not satisfy the spatial representation.

4.3 Cloud Detection and Block Generation

In order to separate clouds from clear sky pixels, a SVM-based classifier, as in-

troduced in previous chapter, is adopted to divide all pixels within field of view

into two categories: sky and cloud. Tracking clouds at a very small scale, for ex-

ample at a pixel level could be sensitive to noise and the changes in luminance.

Hence, we aggregate cloud pixels that generated in prior into cloud blocks. Each

cloud block is used as a unit of cloud tracking. The block-matching algorithm,

as shown in Huang’s work [47], is to find the best match for a certain block so

as to estimate the motion during this time period. The state-of-art block match-

ing has been proved to have stable performance in cloud motion estimation if

a proper block size was selected. Similarly in our approach, we restrict the

range of block size to between 10 x 10 to 80 x 80. This guarantees that each

cloud block has adequate textural variability and at the same time includes less

unrelated pixels.

To aggregate cloud pixels into blocks of an appropriate size, we first ap-

ply the connected-component detection algorithm [129] to determine the re-

gions that are distinct from clear sky. As shown in Figure 4-3c), each compo-

nent marked with a given color has a high likelihood of belonging to the same
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piece of cloud. For each component, we draw a minimum bounding rectangle

box/block to enclose its cloud pixels. However, these bounding blocks may not

be of a suitable size for cloud tracking because of the arbitrary size and shape

of the connected components. Therefore, we apply the iterative rectangle split-

and-merge algorithm to all components to ensure that the final cloud blocks have

acceptable dimensions in accordance with the pre-defined range (i.e., 10x10 to

80x80). As shown in Figure 4-3d, the final output is a sequence of cloud blocks

derived from connected components, each of which is treated as a unit region

for calculating the temporal and spatial correlations of its internal cloud pixels.

4.4 Cloud Base Height and Motion

Using the generated cloud blocks, the basic concept of cloud tracking is to re-

cover the 3D coordinates for each block and estimate their motions. Figure 4-4

shows an overview of three-TSI tracking. A piece of cloud at a certain level

can be projected into/visualized as three different cloud blocks on the projec-

tion planes of the three difference TSIs. Because of the geometric difference

among the three TSI devices on the ground, the pixel coordinates of each cloud

block are distinct. Therefore, these cloud blocks can be combined to recover

their 3D coordinates. Theoretically, a pair of TSIs should suffice to recover the

cloud base height (CBH) using a stereography approach [138] [139] [140]. In

our system, we utilize the redundant information from the three-TSI network to

increase the robustness of cloud tracking.

To retrieve the CBH, we define the mathematical term di, j,t as the pixel-

wise displacement vector between two blocks in different TSI images (T SIi and

T SI j). If I represents the image matrix of an undistorted image and c = (x,y) is

the center of a cloud block, then the displacement of T SIi → T SI j at time t is

expressed as di, j,t = (dx,dy) and satisfies the following:
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(a) Original (b) Cloud Mask

(c) Component Map (d) Cloud Blocks

Figure 4-3: Generating cloud blocks from a cloud mask. (a) Original image. (b)
The cloud mask generated from the original image; (c) The output components
detected by applying connected components detection are illustrated in different
colors. Using a “split and merge” technique, the final cloud blocks are generated
as shown in red in (d).

.
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Figure 4-4: Overview of three-TSI tracking.

It
i (c) = It

j(c+di, j,t) (4.18)

If ht denotes the CBH detected at time t, based on computational geometry,

then there exists a unique mapping f that can be used to calculate ht from the

displacement vector (see Appendix 4.2.3):

ht = fi, j(di, j,t) (4.19)

Conversely, if ht is calculated from one displacement vector, then all other

displacement vectors can be calculated by mapping the derived 3D coordinates

back to the projection plane. We define this procedure as a fixed series of trans-

formations g, which are determined only by the locations of the TSI (see Ap-

pendix 4.2.3).

di, j,t = gi, j(ht), i, j ∈ S = {1,2,3} (4.20)

To track the cloud movement over time, we define another similar term, the

motion vector, to describe the pixel-wise shift of a cloud block between consec-

utive frames. We adopted the traditional Optical Flow (OF) estimation [141] to

define the motion vector from the time frame t to the next frame t + 1 for T SIi
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as vt = (vt
x,v

t
y). Assuming consistent brightness, the motion vector satisfies the

following equation:

It
i (c) = It+1

i (c+vt) = It+1
i (x+ vt

x,y+ vt
y) (4.21)

Given the definition of the motion and displacement vectors, we simplify the

cloud tracking task by adopting two assumptions: a). clouds exhibit only pla-

nar movement, without any vertical motion, and b). the velocity and direction

remain constant within our forecasting time window. Moreover, as mentioned

in Section 4.2.1, all undistorted images reside on the same projection plane,

with the identical fields of view and spatial resolutions. Therefore, to ensure

the uniformity of the TSI images and the consistency of the cloud movements

without any loss of generality, we make several additional assumptions about

our three-TSI system. First, a cloud block and its counterparts in other TSI im-

ages have the same dimensions, without scaling or shearing. Figure 4-4 shows

that the cloud blocks obtained from different TSIs to represent the same piece

of cloud must be identical in size on the same plane. Second, the mapping from

the displacement vector to the CBH is independent of time because the mapping

functions f and g are fixed and determined only by the locations of the TSIs (see

Appendix 4.2.3). Third, a cloud block maintains a consistent size over a short

time. Because a piece of cloud is assumed to exhibit only planar movement,

all its cloud blocks residing on the projection plane must be of the same size at

different timestamps. Finally, the fourth assumption is that a cloud block reg-

istered by one TSI and its counterparts at the other TSIs have the same motion

vector. More importantly, the scale and direction of the motion are consistent, as

based on the previous assumption (see Appendix 4.2.3). We note that our cloud

tracking system does not enforce these strong assumptions in practice; however,

it remains sufficiently robust to tolerate the differences between the projected

images and still identify the same object from different images based on their
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temporal and spatial correlations.

Based on these assumptions, we designed a novel tracking system utiliz-

ing all three TSI devices (S = {1,2,3}) for a series of consecutive timestamps

(T = {t, t + 1, t + 2}). In total, nine images are used to extract two types of

shift vectors at the pixel level: 1) the displacement vectors between TSI views

to calculate CBH, and, 2) the motion vectors between consecutive frames from

one TSI (planar motion). An intuitive example is illustrated in Figure 4-5. Af-

ter identifying a cloud block segment in an image from T SIi at time t, our goal

is to find its “best” matches in the other eight images, and use these matches

to explicitly calculate its motion and displacement vectors. On one hand, the

motion vectors of the nine cloud blocks should be identical to vt because they

represent the same cloud with steady movements. Hence, we simplify the track-

ing problem by setting vt = vt+1 during block matching. Moreover, we assume

that the cloud base height remains consistent within a short tracking window.

As a result, the estimated CBH derived from the “best” matches must satisfy

ht+1 = ht , which is also essentially equivalent to di, j,t+1 = di, j,t . To identify

the best estimates of vt and di, j,t , the next step is to define a criterion to match

multiple cloud blocks in different images.

4.5 Cloud Tracking Similarity Function

For this system, we have designed an algorithm to simultaneously incorporate

both spatial and temporal correlations to improve the accuracy of the block-

matching methodology. We proposed formulating the tracking problem as the

maximization of a similarity function in which these two types of correlation

are summed. In detail, this function consists of two components: 1) the sum

of the similarity among different time frames for each TSI, and 2). the sum of

similarity between any pair of TSIs at a given timestamp. Given a cloud block

centered at c on T SI1 at time t, the similarity function, ϕ can be calculated
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Figure 4-5: Matching cloud blocks in nine images. The cloud block of interest
is indicated in yellow, red, and green boxes on the T SI1, T SI2, T SI3 images,
respectively. The movement of the cloud block that is detected between two
consecutive frames is indicated by a dotted arrow and labeled as v. The dis-
placement vector between a pair of TSIs at the same timestamp is represented
by a solid arrow and labeled as d.
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by summing all similarity values, and the motion vector and one displacement

vector are denoted by vt and d1,2,t respectively. The formula are as follows:

ϕ(vt ,d1,2,t ,c, t,S) = ∑
i, j∈S,i 6= j,t∈T

NCC(It
i , I

t
j,c,d

i, j,t)

+ ∑
i∈S,t ′>t,t ′∈T

NCC(It
i , I

t ′
i ,c,(t

′− t)∗vt)
(4.22)

di, j,t = gi, j( f1,2(d1,2,t)) (4.23)

Here the two functions fi, j and gi, j can be obtained: fi, j is one of Equations

4.16 and 4.17 while gi, j is chosen from Equations 4.14 and 4.15. Therefore

we conclude that given a pair of displacement vector di, j,t , ht is uniquely de-

termined by fi, j. More importantly, the mapping function series, f and g, are

time-independent as introduced in Section 4.2.3.

Note that we include only the displacement vector from T SI1 to T SI2 in the

similarity calculation. The displacement vectors between any pair of TSIs can

be derived similarly using Equation 4.23. Here, NCC essentially represents the

normalized cross correlation between two image blocks of the same size and

dimensions, and it is chosen as the criterion for matching image blocks [129].

The formula for NCC is expressed as follows:

NCC(I,J,c,u) =

1
p ∑

k=(i, j)

(
I(c+k)−µ(I,c)

)(
J(c+u+k)−µ(J,c+u)

)
σ(I,c)σ(J,c+u)

(4.24)

where I and J are the grayscale image matrices converted from the undis-

torted images. Each pixel value lies in the range (0,255). Furthermore, u is

a motion or displacement vector. Assuming that the block size is (m,n), then

i ∈ {−m/2,−m/2+ 1, ...,0, ...,m/2} and j ∈ {−n/2,−n/2+ 1, ...,0, ...,n/2}

are the pixel indices of the cloud block, p = m×n is a normalization constant,
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µ is a mean function, and σ is a standard deviation function of the image block.

NCC is widely used in motion estimation because of its simplicity and robust-

ness to noise and changes in intensity.

Given the definition of the similarity function ϕ , our goal is to search for

a combination of (d1,2,t , vt) that optimizes its value. The most straightforward

method is searching all combinations and finding the (d1,2,t
m ,vt

m) that maximizes

the ϕ score:

(d1,2,t
m ,vt

m) = argmax
d1,2,t ,vt

ϕ(vt ,d1,2,t ,c, t,S) (4.25)

However, the maximum of ϕ is only the correct result if a) the cloud block

is located in the middle of the FOV and visible in all nine images; b) the image

quality is sufficient to accurately display the cloud texture within the block; and,

c) the cloud inside the block and its counterparts in the images from the other

TSIs have similar shape and size, even from different angles of view. In general,

several difficulties prevent us from attaining the optimal solution to maximize

ϕ , as described below. In the previous work of [48], the block tracking near

the image boundary was found to be inaccurate because of the loss of informa-

tion. Only the blocks that are at least a certain distance from the boundary can

possibly be matched using NCC value. Moreover, because cloud blocks have

various sizes and textures, the tracking performance achieved by applying NCC

may vary. In practice, even for cloud blocks that are distributed on the same

layer and exhibit identical movement, their optimal solutions to Equation 4.25

which should be identical may be similar, but no identical. Another difficulty

encountered in cloud-block tracking using TSI images is that some informa-

tion is missing due to artifacts from the TSI. Blank pixels (marked as black in

the TSI images) significantly impact block-matching since the maximization of

NCC always favors blocks with lower loss of information. Furthermore, noisy

pixels or variations in image brightness may cause instabilities in calculating

98



Figure 4-6: Overview of cloud-block tracking and the determination of multi-
layer wind fields.

the NCC score and thereby influence the cloud-tracking performance based on

Equation 4.25. Consequently, the maximum value of ϕ does not always guar-

antee the best matches among nine images. In practice, we use (d1,2,t
m ,vt

m) only

as a reference solution for determining the layer information.

As discussed in the previous section, static features are not effective for

differentiating cloud pixels near the sunspot. We propose incorporating the dy-

namic information from cloud tracking to enhance cloud detection in the sunspot

region. To mitigate the influence of false-positive pixels around the sunspot, we

apply a pre-defined sunspot mask (window) and acquire the motion vector vt
m

by solving Equation 4.25 for each cloud block within this range. If the mag-

nitude of vt
m for a cloud block is close to 0, then in the subsequent cloud-layer

determination step, we convert the relevant cloud pixels within this block into

clear-sky pixels.

4.6 Multi-layer Detection and View Stitching

To locate the best match and find the optimal solution of the similarity function

ϕ , we introduce clustering and multi-layer aggregation during cloud tracking

to utilize all cloud blocks in the visible range. Instead of considering only the
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maximum of ϕ , we propose tracking all possible (d1,2,t ,vt) combinations as

potential solutions. In practice, we store a combination for a cloud block only

if each NCC score in the ϕ calculation is above a certain threshold (here, we

use 0.5). Therefore, a single block may have multiple motion and displacement

vectors. Our goal is to obtain L, a collection of multiple potential (d1,2,t ,vt)

combinations detected for all cloud blocks:

L = {(d1,2,t ,vt)|NCC∗ ≥ 0.5,c ∈ C} (4.26)

Note that NCC∗ refers to any NCC calculation listed in the ϕ equation. C

denotes the set of all cloud blocks detected in the cloud detection pipeline.

Based on L, we apply the k-means clustering [142] technique to generate

layers of clouds. In our system, two layers at most are considered and aggre-

gated. Hence, binary clustering is used to split L into two categories. If we

use the clustering result to represent cloud layers, then the centroid of a cluster,

(d1,2,t ,vt), represents the primary height and motion of this layer. Thereafter,

we can group all cloud blocks into two layers/clusters based on the Euclidean

distance between the reference solution (d1,2,t
m ,vt

m) and the centroids. The en-

tire cloud block set C is then divided into two layers, C1 and C2, each of which

contains multiple cloud blocks that should have similar motions and heights. To

generate more accurate and robust information concerning cloud layers, we as-

sume that cloud blocks on the same layer possess only one major planar motion

vector and one CBH. Similar to the form of the centroid in clustering, we define

the wind field (WF), (d1,2,t ,vt), as the unique combination of the displacement

and motion vector corresponding to a given cloud layer. We calculate this com-

bination of vectors by maximizing the summation of ϕ over all cloud blocks on

the same layer:

WFi = argmax
d1,2,t ,vt

∑
c∈Ci

ϕ(vt ,d1,2,t ,c, t,S) (4.27)
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If two wind fields extracted from two clusters are sufficiently similar to each

other, then we treat them as a single cloud layer in which c can be drawn from

the entire cloud block set C. Similarly, the single wind field can be expressed as

follows:

WFsingle = argmax
d1,2,t ,vt

∑
c∈C

ϕ(vt ,d1,2,t ,c, t,S) (4.28)

When the Euclidean distance between two motion vectors is less than two

pixels, or their height difference is less than 500 meters, we consider these two

wind fields to belong to a single layer. To further improve tracking performance

and reduce computational complexity, all generated wind fields are stored as

historical layers. When searching for a reasonable solution set, this historical

reference is used to refine the possible range of motion vectors and height lev-

els. This approach accelerates the search procedure and increases the system’s

robustness in coping with noise.

An example with two (layers of) wind fields detected is shown in Figures 4-

7 and 4-8. Nine images in three consecutive frames from timestamp t to t + 2

are used to extract potential solutions. In Figure 4-8, the displacement vec-

tors of T SI2 → T SI3 and T SI2 → T SI1 are shown in blue and green respec-

tively, whereas the cloud motions are shown in red. Figures 4-8a-4-8c confirm

that to maximize ϕ for each individual block does not always guarantee find-

ing the best matches. We observe that cloud blocks near the shadow band and

supporting arm (black area) exhibit obvious errors due to the information loss

caused by blank pixels. However, after clustering and aggregating, the cloud

blocks can be categorized into two layers, WF1 = (1201m,10px,−6px) and

WF2 = (4184m,7px,−2px). As shown in Figure 4-8d- 4-8f, these two lay-

ers are indicated by red and green boxes, respectively, and offer more stable

estimations of displacement and motion than do the individual cloud blocks.

We also present another example of a single WF detected from the nine in-
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(a) T SI1t (b) T SI2t (c) T SI3t

(d) T SI1t+1 (e) T SI2t+1 (f) T SI3t+1

(g) T SI1t+2 (h) T SI2t+2 (i) T SI3t+2

Figure 4-7: Example of cloud tracking on nine images.

put images shown in Figure 4-5. In Figures 4-9a- 4-9c, several combinations of

height and motion that achieve the maximum value of ϕ are deemed outliers and

marked with green rectangles. Running the clustering algorithm identified two

wind fields: WF1 = (4357m,8px,8px), and WF2 = (2098m,8px,9px). How-

ever, these two layers are very similar to each other given their similar motion

vectors. Thus, we aggregated all blocks into one layer, as indicated by the red

boxes in Figure 4-9d- 4-9f. The output WFsingle is then represented as a single

tuple (2130m,8px,9px) which is less sensitive to the boundary or noisy cases.

After determining the cloud layers, multiple TSI views can be stitched to-
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gether block by block. We select T SI2 as the origin/center of this combined view

because it is located in the middle. The pixels of a cloud block from T SI1 and

T SI3 can then be mapped to T SI2’s coordinate system through pixel-wise shifts

of the forms T SI1→ T SI2 and T SI3→ T SI2 which are identical to the extracted

displacement vectors d1,2,t and d1,3,t. Thus, given the estimated heights of the

cloud layers, all cloud blocks from T SI1 and T SI3 are placed and stitched into

the aggregated view from all three TSIs. An example of such a stitched view

wherein all blocks belong to a single layer is shown in Figure 4-9g. For a case

with more than one layer, the stitched view is generated by stitching layers one

by one, i.e., from a higher altitude layer to a lower one, because low-altitude

clouds can overlay those at higher altitudes. Consequently, the output view

should be similar to Figure 4-8g. The black areas where gaps still exist are

marked as blank, and we fill them in with the default sky color for visualization.

The default value is calculated by averaging all clear-sky pixels across multiple

TSI views.

4.7 Short-term Solar Forecast

In this section, we describe the methods for extracting image features and the

different irradiance models used to forecast solar irradiance. First, given the

locations of the 25 pyranometers, we need to identify the relevant pixels on the

TSI images that are correlated with the surface irradiance fluctuations at these

locations. Since the clouds located between the sun and the solar panels are the

primary cause of ramps in irradiance, the basic concept of irradiance forecasting

is to predict whether clouds will block the sunlight at a specified time. As shown

in Figure 4-4, the device’s projection on the sky image corresponds to the inter-

section of the projected plane (i.e., the image plane) with a line drawn from the

sun to the pyranometer. If a cloud is located in the path of the sunlight traveling

to the pyranometer, then its projected position on the image plane must overlap
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with the device’s projection. Furthermore, we define the corresponding pixel at

the projected position in the stitched view of the three TSIs as a “sun-blocking”

pixel. Because this pixel is correlated with the amount of direct sunlight cast on

a pyranometer, our goal is then to extract the image features of this pixel which

will subsequently serve as the input to the irradiance model. As shown in Fig-

ure 4-4, the position of the sun-blocking pixel depends on the angle of the Sun,

the geolocation of the pyranometer, and the height of the cloud that is blocking

the direct sunlight. Using these inputs, we can easily calculate the sun-blocking

pixel for each of the 25 pyranometers, as shown in Figure 4-10a and 4-10b.

To predict which pixels will become sun-blocking pixels in the future, we

apply a backtracking method to the current stitched view. In this processing step,

the backtracking is guided by the motion vectors detected at previous times-

tamps: given that the cloud motion in a particular layer is vt where t is the

current timestamp, the pixel ĉt that will potentially become a sun-blocking pixel

ct+N in the Nth future time frame (at time t +N) is then calculated by moving

ct+N in the direction opposite to the motion vector ĉt ← ct+N − vt×N. Here,

we assume that the motion vector remains unchanged between t and t +N and

that the pixel at ĉt will become ct+N and block the sunlight after N time frames,

provided that it contains a cloud at that time. If multiple layers of clouds move

to this pixel location, then the lower-altitude cloud pixel is preferred because it

will block the higher-altitude one.

As expected, the effectiveness identification of the sun-blocking pixel re-

quires an accurate estimation of the motion vectors of each layer. Any error in

this information will further accumulate in subsequent steps. To mitigate this ef-

fect, we have devised two strategies to be implemented in the feature extraction

step. First, instead of focusing on a single sun-blocking pixel, we considered the

7x7 sun-blocking window surrounding this pixel. This enables us to reduce the

risk of false prediction, and more importantly, to include more features from the

neighboring pixels. Second, we use 23 significant features to describe the spec-
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tral variation inside the window at the current time, t and the predicted time,

t +N. Among these features, nine are the average, minimum, and maximum

values of the RGB channels of the window surrounding ct , which describe the

spectral properties of the current observation. Similarly, we choose nine addi-

tional features from the sub-blocking window centered at ĉt , which represent

the estimated properties. The remaining five features, are the RBR of ct (RBRt)

and ĉt ( ˆRBRt), the cloud fraction at time t, and the ground-truth irradiance val-

ues at the current time t (kt) and one-minute earlier, at t− 6 (kt−6). The RBR

at both timestamps are used because this quantity shows a noticeable spectral

difference between cloud and sky [27]. The cloud fraction represents the over-

all cloud conditions. The two remaining features, the ground-truth irradiance

values at t and t− 6, enhance the performance for a short forecasting window

because they incorporate persistent observations. Here, the forecasting problem

is formulated as k̂t+N = f (xt), where k̂t+N represents the predicted irradiance at

t +N and xt is the vector of the 23 extracted features.

To examine the predictive capabilities of the selected features, we explore

four different irradiance models that use a subset or all of these features to gen-

erate a regular linear regression or more complicated non-linear relationships

f (xt): 1) linear RBR delta, 2) an ordinary linear regression model, 3) Support

Vector Regression (SVR) [143] based on a linear kernel, and 4) SVR with a

non-linear kernel. For comparison, we use the persistent model as the baseline

model, i.e., the radiation shift, RShi f t, which directly uses the current obser-

vation as the forecasting result. In addition, we introduce one regression model

that depends only on multiple irradiance values and is used to further validate

image features for prediction capability in our comparison studies.

k̂t+N = kt (4.29)

First, we simply extend the persistent model by incorporating a linear regu-
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larization term based on the information from the sun-blocking pixel. Our pre-

liminary study of motion vectors [48] indicates that the RBR of a sun-blocking

pixel is a useful indicator of the cloud transmittance at this pixel. The linear

RBR delta model, denoted by linearδ , is as follows:

k̂t+N = kt +C · ( ˆRBRt−RBRt) (4.30)

where C is a negative coefficient. We then generalize the model linearδ to

an ordinary linear regression model (linearall) over all attributes in xt :

k̂t+N = w ·xt +b (4.31)

where w is the weight vector, and b is the intercept. However, the ordinary

model is sensitive to noise or outliers and suffers from the overfitting problem.

To overcome these shortcomings, we apply the Support Vector Regression

(SVR) [144], an extension of the SVM approach, for regression. Given a linear

kernel, viz, SV Rlinear, the radiation estimation still follows the ordinary form

given in Equation 4.31, but the w,b pair is obtained by solving the classic SVR

optimization problem:

min
w,b,ξ ,ξ ∗

1
2
‖w‖2 +C

n

∑
i=1

(ξi +ξ
∗
i ) (4.32)

subject to

(w ·xt +b)− kt+N ≤ ε +ξt ,ξt ≥ 0,∀t

(w ·xt +b)− kt+N ≥−ε−ξ
∗
t ,ξ

∗
t ≥ 0,∀t

(4.33)

where ε is the regression margin, ξt and ξ ∗t are the slack variables, and C

is a regularization parameter. By incorporating different kernels, we can extend

the SVR to model a non-linear relationship by projecting the current attributes

into high-dimensional transformed spaces, for example, Fourier space. To this

end, we use the Radial Basis Function (RBF) kernel, SV Rrb f , with σ as the RBF
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smoothing parameter:

k̂t+N = κ(w′,xt)+b

= e−
‖w′−xt‖2

2σ2 +b
(4.34)

For both the linear and non-linear SVR models, certain parameters, such as,

the regularization weight C, the error tolerance range ε and the RBF smoothness

factor σ , must be tuned to achieve the optimal performance. For our experiment,

we selected the optimal parameters from within certain ranges. Here, C is taken

from C = [−1024,1024], ε from ε = [0.001,0.6], and σ from σ = [10−4,104].

The average values of the 25 solar sensors for SV Rlinear are set as follows:

Cavr = 35,εavr = 0.01. In the case of SV Rrb f , Cavr = 19, εavr = 0.003, and

σavr = 0.2291. We trained the linearall and linearδ models by minimizing their

least-square errors. The persistent model RShi f t requires no training.

4.8 Experiments

4.8.1 Experimental Dataset

We chose the period from May 13, 2013, to June 03, 2013, encompassing vari-

ous weather conditions, to evaluate the performance of 1-min- to 15-min-ahead

3D cloud tracking and irradiance forecasting. To guarantee consistent cloud

visibility and zenith angle, we filtered out records whose timestamps are not be-

tween 9:00AM and 16:00PM Eastern Standard Time (EST). Our experimental

dataset contains 9963x3 images from three TSIs that collect data simultane-

ously and the synchronized 9963x25 GHI records from 25 ground-based pyra-

nometers. Furthermore, we divided the full dataset into four categories based on

weather and cloud conditions: single-layer clouds (Ds), multi-layer clouds (Dm),

overcast or extremely cloudy (Do), and a mixture thereof (Dmix). Ds corresponds

to a typical low-altitude cloud that is commonly observed on the East Coast of
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the United States. This type of low cloud typically appears in a single layer and

remains in the field of view of a TSI for several minutes at most. Given its quick

movement in and out of the FOV of a TSI, Ds is an ideal dataset for demon-

strating the capability of the new tracking system to capture rapid cloud motion

and evolution. Dm is a collection of cases wherein multiple layers of clouds

were observed within the FOV of all TSIs. Hence, the tracking and forecasting

performance with respect to Dm is expected to reflect the ability of the sys-

tem to categorize and track multiple wind fields. Do corresponds to cloudy and

overcast cases. Based on our observations, the textural patterns of the images

acquired in extremely cloudy conditions are not obvious and are hence difficult

to utilize for block-matching and the extraction of image features. Therefore,

we designed Do to demonstrate the sensitivity of this new tracking system when

applied to TSI images with less obvious patterns. Dmix contains the remaining

cases, including sunny, partially cloudy, and thin-layer conditions. The cloud

tracking and irradiance forecasting performance with respect to Dmix reflects

the system’s average performance for a mixture of cloud conditions. Table 4.1

describes the details of all subsets.

4.8.2 Evaluation Metrics and Validation Method

As discussed in Section 4.7, the prediction of the sun-blocking pixels for the

25 pyranometers is performed based on cloud movements in a particular cloud

layer. When a cloud moves too rapidly, or the forecasting interval is too long,

one or more positions may be outside of the FOV of our TSI. In this case, we

cannot extract any features for modeling and predicting irradiance. To quantify

the tracking capability for sun-blocking pixels within our stitched view, we de-

fine a metric named the Successful Tracking Index (ST I), i.e., the percentage

of data instances in the designated dataset for which all 25 sun-blocking pixels

can be included in the FOV of the stitched image for a particular forecasting
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horizon. The ST I is calculated as follows:

ST I =
N−Noo f

N
(4.35)

Here, N is the total size of the dataset, while Noo f represents the number of

records for which one or more sun-blocking pixels lie outside the field of view.

We also use the mean absolute error (MAE) and root-mean-square-error

(RMSE) as evaluation metrics. In our experiment, the MAE measures the aver-

age accuracy of cloud tracking, whereas the RMSE assigns greater penalties to

large errors, such as falsely estimation of a cloud’s presence. To avoid bias

and control the over-fitting problem, we introduce the cross-validation tech-

nique [120] into the modeling and evaluate the forecasting performance across

all 25 stations. In the cross-validation, the original dataset is evenly divided

into several independent subsets, and the average performance of the predic-

tive model measured across these subsets. In this experiment, five-fold cross-

validation (Ncv = 5) is applied, the five folds (four for training and one for

testing) randomly generated. Additionally, since 25 simultaneous, location-

dependent ground measurements are available (s = 1,2, ...25), we can verify

a forecast by comparing it with the observations from a different measurement

station, s, at time t. Hence, the final error metrics can be formulated as the

average performance of all five-fold tests across all 25 stations as follows:

MAE =
1

Ncv

Ncv

∑
i=1

1
Ni

∑
s,t

∣∣kt
s− k̂t

s
∣∣ (4.36)

RMSE =
1

Ncv

Ncv

∑
i=1

√
1
Ni

∑
s,t
(kt

s− k̂t
s)

2 (4.37)

Here, Ni is the size of the test fold, i, generated in the cross-validation. The

MAE and RMSE score are calculated based on the normalized GHI values.

To evaluate the effectiveness of the image features extracted from our multi-
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layer cloud detection and tracking system, we created a new reference model,

SV Rk, for comparison. This model also uses SVR with only radiation observa-

tions as inputs and excludes all image-based features, in contrast to our proposed

forecast model SV Rrb f . In greater detail, SV Rrb f and SV Rk share the same radial

basis function as their SVR kernel and use identical parameter settings for both

training and testing. The difference is that SV Rk uses only the l (here, we choose

l = 6) most recent radiation values, i.e., kt−5,kt−4...kt , as inputs. We apply both

SV Rrb f and SV Rk to generate real-time irradiance predictions to validate the

effectiveness of the image features in producing short-term solar forecasts.

4.8.3 Model Performance

Figure 4-12 shows the 1-15 minute ST I scores of the entire dataset (bars) and the

four subsets (lines). We observe that the ST I scores for Ds and Dm decrease dra-

matically beginning with the nine-minute forecast, whereas the performance for

the other two subsets remain relatively stable between one and fifteen minutes.

Consequently, the success ratio for the entire dataset, overall, also decreases

as the time horizon increases. The ST I decreases for longer forecast horizons

(longer than ten minutes) because of fast-moving clouds. According to our ob-

servations from the TSI images, on the East Coast of United States, these clouds

are mostly distributed in a single layer with a cloud base height below 3000 me-

ters. They often have a high velocity, as detected at the pixel level, and exhibit

rapid formation/dissipation within a 10-minute window. Thus, given the limited

visible range and TSI resolution, 3D cloud tracking can capture the majority of

low-layer clouds for only up to nine minutes. Beginning at the 10-minute hori-

zon, low clouds are highly likely to move out of the field of our stitched view.

This cloud property, combined with the physical limitations of the tracking TSIs

is consistent with the significant decrease in the ST I of Ds at the nine-minute

horizon, reaching almost 0 at the ten-minute horizon. Similarly, the ST I of Dm
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decreases after nine minutes. However, since more than one layer is present in

Dm, the tracking results benefit from partial estimations from the higher layers

which tend to be more stable and have slower pixel-wise motion vectors. For

Do and Dmix, most cases correspond to high-layer clouds or mixed conditions

and are therefore suitable for ten-minute forecasts and beyond.

We evaluated the irradiance forecasting performance over the entire dataset

based on the metrics of the MAE and RMSE scores, and the results are presented

in Tables 4.2 and 4.3. We excluded the out-of-FOV data points and only trained

and tested the irradiance models based on the remaining available data subset.

During model training, we discovered that when ST I is low, the models tend to

overfit the data. One reason for this behavior is that an excess of out-of-FOV

records leads to a lack of observations in the training folds. For instance, if we

train the model using Ds for forecast horizons longer than ten minutes, we barely

have enough training records to generate the forecasting model. Another reason

is that we may introduce bias into the forecasting models. Since rapid-changing

cases, such as those with low-altitude clouds, are excluded for long forecasting

horizons, the forecasting models will place more weight on the “easy” cases,

such as those corresponding to sunny and overcast conditions. Hence, if too

many records in an experimental dataset are out of the FOV, or the ST I value

is below a certain threshold (here, 60%), we mark the result with an asterisk to

indicate a partial forecast and a potential overfitting problem. When all records

are out of the FOV (ST I = 0), we denote this scenario with ’-’, indicating that

no forecasting result is available (see Table 4.3).

In Figures 4-11a and 4-11b, we evaluate the effectiveness of the four fore-

casting models by comparing them with the persistent model for one- to fifteen-

minute forecasts. To ensure that the sun-blocking pixels are contained within the

stitched view for the majority of the training and test cases over the full forecast

horizons, we use the experimental dataset Dmix which has the most stable ST I

values (Figure 4-12). Figures 4-11a and 4-11b show that linearδ consistently
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acquires less large forecast errors in comparison with the persistent model (as

measured by RMSE), but exhibits the worst performance in terms of average

accuracy of irradiance forecast (as measured by MAE), confirming that tracking

a single sun-blocking pixel leads to a high risk of deviating from its real position

and thereby falsely predicting the presence of clouds. By virtue of our proposed

feature extraction in the sun-blocking window, this problem is mitigated in the

other three models which consistently provide better results in both metrics. In

comparison to linearall which was trained using least-square errors, the linear

SVR approach, SV Rlinear, tends to be more robust in terms of average errors

(MAE); however, it is very sensitive to large errors (RMSE). The proposed non-

linear model, SV Rrb f , effectively addresses this problem by mapping non-linear

relations to linear ones in a higher dimensional space. As is evident from these

two figures, SV Rrb f effectively reduces the occurrence of large errors and out-

performs the other four models in terms of the RMSE and MAE metrics.

We also analyzed the performance of SV Rrb f on the entire dataset and com-

pared it with RShi f t across all 25 ground measurements. Figure 4-13 shows

the percentage of reduction in MAE achieved using SV Rrb f . The blue shaded

regions represent the upper and lower improvement bounds for all 25 pyranome-

ters, whereas the mean improvements are plotted as blue dots with standard de-

viation bars. We observe that beyond a nine-minute horizon, the uncertainty

in performance improvement, as indicated by the upper and lower bounds, in-

creases with the increase in forecasting horizon. This is expected because many

data points are out-of-FOV for the Ds and Dm subsets, which affects the relia-

bility beyond the nine-minute horizon. Moreover, several successful cases that

remain stable even beyond the nine-minute forecast are ”easy” ones, such as

sunny and overcast conditions. Therefore, the persistent model RShi f t can take

advantage of these cases to minimize error and is thus difficult to outperform. In

the same plot, we observe that both the difference between the upper and lower

bounds and the standard deviation increase as the time horizon increases. We
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observe that despite the expected uncertainties arising for a long-term forecast,

the SV Rrb f model is nevertheless significantly superior to the persistent model,

achieving at least a 26% improvement.

To apply this study to real-time forecasting, we averaged the SV Rrb f pa-

rameters over the entire dataset and constructed the radiation-only model SV Rk

to generate 5-, 10-, and 15-minute forecasts for May 14, 2013. Figure 4-14

compares the forecasting results of SV Rrb f and SV Rk with the real measure-

ments from the deployed pyranometers. In the individual figures, the normal-

ized GHI predictions are converted back to real values using Equation 4.1. To be

consistent with the irradiance plots in Figure 4-14, the root-mean-square errors

(RMSE) in the caption are calculated directly from ground-truth measurements

(real GHI values) without normalization. The gray/dark areas in these figures

represent gaps with no prediction which include the cases corresponding to the

low zenith angles during the early morning and late afternoon as well as the pe-

riods in which sun-blocking pixels were out of the FOV. The results show that

the five-minute forecasts generated using SV Rrb f achieve good accuracy and

capture most radiation ramps. Meanwhile, the number of detected ramps de-

creases for ten-minute and fifteen-minute forecasts because of the instability of

the motion vectors and the occurrence of clouds that may reside outside the field

of the stitched view. Moreover, because SV Rk only relies on radiation features,

we observe that it exhibits a behavior similar to that of the persistent model,

often failing to detect radiation fluctuations and generating false alarms based

on previous irradiance trends. For a longer forecasting horizon, such as 10 or

15 minutes, the forecasting accuracy of SV Rk decreases rapidly, and the model

cannot faithfully predict irradiance ramp events. Compared with SV Rk, SV Rrb f

incorporates multiple features derived from predicted cloud movements and sky

images and consequently, introduces fewer forecasting errors and captures more

ramp events.
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4.8.4 Experiment Findings and Discussion

Early experiments [48] on cloud tracking and short-term solar forecasting demon-

strated that our early system based on a single TSI worked well for prediction of

less than two minutes, quickly deteriorated when the prediction time horizon in-

creased beyond two minutes, and eventually failed to outperform the persistent

model. In contrast, our new forecast system using multiple TSIs not only en-

larges its FOV for cloud observation, but also enriches cloud tracking with new

critical features, a.k.a., cloud base height and motion layers. Compared with

the single-TSI approach [48], our multi-TSI method is able to reduce prediction

errors by more than 30% for one and two-minutes horizons in the same geo-

graphical location. More importantly, multi-TSI approach effectively expands

the forecast horizon for fast-moving and low-altitude clouds and provides ac-

curate fifteen-minute prediction for the majority of cloud conditions in the East

Coast of Unite States where clouds tend to be active and volatile.

Furthermore, our experiment showed that the errors and uncertainty of mo-

tion estimation and prediction using TSI images accumulate over time and even-

tually result in a large deviation from real observations. This is the reason why

many TSI-based approaches can not outperform a naive persistent model. We

did not continue our comparison between the single-TSI approach and multiple-

TSI approaches beyond two minutes because the single-TSI approach did not

work for the complex cloud environment in the East Coast within this predic-

tion regime. With the robust spatio-temporal correlations over nine frames,

multi-TSI approach mitigates these issues during motion tracking and mini-

mizes tracking errors via a multi-layer clustering that is possible only with 3-D

spatial information. Based on thorough experimental evaluations, we confirmed

that multi-TSI network indeed demonstrates superior stability and robustness in

short-term solar irradiance forecast. Moreover, because our integration frame-

work is modularized and cost-efficient, it was already deployed in a large utility-
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scale solar farm, e.g., LISF, to meet the requirements of real-time data process-

ing and short-term solar forecasting.

4.9 Summary

In this paper, we proposed a novel 3D cloud detection and tracking system using

computational geometry and machine learning techniques. By taking advantage

of redundant information from the overlapping views of multiple cameras, this

system can not only identify clouds at the pixel level, but also determine their

base heights and the wind fields of multiple cloud layers. This information can

be used to stitch multiple TSI views together to generate an expanded cloud

view that is larger than that obtained from a single camera, thereby increasing

the forecast horizon. More importantly, based on the predicted layers and the

stitched view, we investigated the use of image-based features and irradiance

models to effectively capture short-term fluctuations in solar irradiance.

To verify the effectiveness of our tracking system, we organized our ex-

perimental data into four categories based on cloud conditions and tested the

system over 25 ground sites equipped with pyranometers. The results showed

that our new cloud tracking system provided reliable fifteen-minute forecasts for

all 25 ground stations under most cloud conditions. Even for low-altitude and

fast-moving clouds, this system can obtain reasonable estimates for up to nine

minutes ahead. Furthermore, in our cloud tracking system, all four proposed

irradiance models considerably reduced the prediction errors for forecasts of

up to fifteen minutes ahead. Compared with the persistent model, both linear

and non-linear models based on the extracted sky-image features significantly

offered significantly improved accuracy with respect to the MAE and RMSE

metrics.

In the future, we will explore new techniques for overcoming limitation in

the FOVs of observations and introduce more useful features into the forecasting
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models. Although the stereo stitching of sky images from multiple TSI sources

enlarges the visible range, it can only expand the forecasting range to a certain

degree. A possible solution to this problem is to explore the statistical properties

that can be derived from feature information in the cloud detection and tracking

steps and to perform statistical estimations of the out-of-FOV cases. Moreover,

our experiment demonstrated that individual image-scale features are prone to

error accumulation over time. We will explore additional features from sky

images and other sources, such as, LIDAR, temperature, and past predictions

from the model itself, to improve its robustness and reduce forecasting errors.
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(a) Max. ϕ at T SI1t
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(b) Max. ϕ at T SI2t (c) Max. ϕ at T SI3t

(d) Aggregation at T SI1t (e) Aggregation at T SI2t (f) Aggregation at T SI3t

(g) Two-layer stitched view

Figure 4-8: Determination of two cloud layers corresponding to the images
shown in Figure 4-7. (a), (b), and (c) show the matching results for (d1,2,t

m ,vt
m).

The estimated heights are labeled in (b). (d), (e), and (f) are marked with blocks
indicating the two wind fields (red and green). The arrows in the images from
TSI1 and TSI3 represent motions, whereas the arrows in the images correspond-
ing to TSI2 represent the T SI2→ T SI1 (green) and T SI2→ T SI3 (blue) displace-
ment vectors.
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(b) Max. ϕ at T SI2t (c) Max. ϕ at T SI3t

(d) Single WF at T SI1t (e) Single WF at T SI2t (f) Single WF at T SI3t

(g) Single-layer stitched view based on T SI2t

Figure 4-9: The single layer detected from the nine images shown in Figure 4-5.
(a), (b), and (c) show the tracking results for (d1,2,t

m ,vt
m). The regions marked

with green boxes in (b) display obvious bias due to the boundary effect. (d), (e),
and (f) show the single-layer field, (ht ,vt

x,vt
x) = (2130 m, 8 px, 9 px) marked in

red.

118



(a) h=1000 at 2:00PM (b) h=3000 at 9:00AM

Figure 4-10: Examples of the locations of the sun-blocking pixels (blue crosses)
for the 25 pyranometers in the stitched multi-TSI view.

Table 4.1: Descriptions of four subsets with various cloud and weather condi-
tions. image#: number of TSI images, k#: number of GHI measurements, c f :
estimated range of cloud fractions in the sky images, c fσ : mean and standard
deviation of the cloud fraction, k: range of the clear-sky index. kσ : the mean and
standard deviation of k, exp: observed (ab)normal condition of the TSI images,
CBHest : cloud height range, vest : cloud motion in image, WF#: number of cloud
layers, zenith: solar zenith range, condition: cloud conditions.

Subset Ds Dm Do Dmix
image# 2517x3 2520x3 2406x3 2520x3

k# 2517x25 2520x25 2406x25 2520x25
cf [0.07,0.94] [0.03,0.94] [0.94,0.95] [0,0.95]

c fσ 0.71±0.25 0.70±0.27 0.94±0.01 0.50±0.35
k [0.11,1] [0.06,1] [0.17,1] [0.11,1]

kσ 0.46.±0.22 0.57±0.27 0.63±0.21 0.81±0.23
exp normal underexposed normal green-dominant
WF# 1 2 2 2

CBHest(m) [1590,2960] [1890, 4420] [6020,15730] [440 12330]
vest(px/min) [36,60] [6,36] [0,54] [0,60]

zenith [40◦,57◦] [42◦,58◦] [41◦,56◦] [41◦,57◦]
condition low,scattered multi-layer overcast mixture
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Table 4.2: MAE and RMSE metrics for 1-minute and 5-minute irradiance fore-
casts. The subscript of each score indicates the subset type used to train and test
the model. The subscript “avg” indicates the average performance on the entire
dataset.

Dataset Rshi f t linearδ linearall SV Rlinear SV RRBF
1 m 5 m 1 m 5 m 1 m 5 m 1 m 5 m 1 m 5 m

MAEs 0.16 0.20 0.14 0.20 0.11 0.16 0.10 0.16 0.09 0.14
MAEm 0.16 0.19 0.14 0.19 0.11 0.15 0.10 0.14 0.08 0.13
MAEo 0.04 0.08 0.04 0.08 0.03 0.07 0.03 0.07 0.03 0.06

MAEmix 0.11 0.16 0.12 0.17 0.09 0.13 0.07 0.12 0.06 0.09
MAEavg 0.12 0.17 0.12 0.17 0.10 0.16 0.09 0.15 0.07 0.12
RMSEs 0.23 0.27 0.20 0.26 0.15 0.20 0.15 0.20 0.14 0.18
RMSEm 0.26 0.29 0.21 0.28 0.15 0.20 0.15 0.21 0.14 0.20
RMSEo 0.06 0.11 0.06 0.11 0.05 0.09 0.05 0.09 0.04 0.08

RMSEmix 0.23 0.29 0.22 0.26 0.15 0.20 0.17 0.21 0.13 0.18
RMSEavg 0.23 0.27 0.21 0.26 0.15 0.21 0.17 0.22 0.13 0.19

Table 4.3: MAE and RMSE metrics for 10-minute and 15-minute irradiance
forecasts. ‘-’ indicates that no forecast output is available due to cloud track-
ing failure. ‘*’ indicates an incomplete dataset that has a low ST I value or an
average performance influenced by incomplete/empty subsets.

Dataset Rshi f t linearδ linearall SV Rlinear SV RRBF
10 m 15 m 10 m 15 m 10 m 15 m 10 m 15 m 10 m 15 m

MAEs 0.27* - 0.25* - 0.24* - 0.16* - 0.13* -
MAEm 0.20 0.21* 0.20 0.21* 0.16 0.18* 0.15 0.17* 0.13 0.15*
MAEo 0.09 0.11 0.09 0.11 0.08 0.10 0.08 0.09 0.07 0.08

MAEmix 0.18 0.19 0.20 0.20 0.14 0.16 0.12 0.13 0.09 0.11
MAEavg 0.17* 0.17* 0.18* 0.17* 0.17* 0.16* 0.15* 0.15* 0.12* 0.11*
RMSEs 0.33* - 0.30* - 0.36* - 0.21* - 0.18* -
RMSEm 0.30 0.30* 0.29 0.30* 0.21 0.23* 0.22 0.24* 0.21 0.23*
RMSEo 0.12 0.15 0.12 0.15 0.11 0.12 0.11 0.13 0.10 0.11

RMSEmix 0.31 0.32 0.30 0.31 0.21 0.22 0.23 0.24 0.20 0.21
RMSEavg 0.29* 0.29* 0.28* 0.28* 0.22* 0.22* 0.23* 0.23* 0.21* 0.20*
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(a) Average MAE scores for five folds

(b) Average RMSE scores for five folds

Figure 4-11: MAE and RMSE scores for irradiance predictions on the data sub-
set Dmix over a time range from one to fifteen minutes.
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Figure 4-12: Successful Tracking Index (STI) values for the datasets in the 1-15
minute forecasting range. Overall represents the results for the entire dataset,
which contains all four independent subsets.

Figure 4-13: Improvements in the MAE ratio achieved by the non-linear SV Rrb f
model in comparison with the persistent model on all available data. The
Min/Max bounds represent the range of the percentage improvement values for
all 25 stations. The average performance is denoted by the plotted line, which
includes standard deviation bars on either side.
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(a) 5-minute forecasts with RMSErb f = 145.3 and RMSEk = 213.5.

(b) 10-minute forecasts with RMSErb f = 171.3 and RMSEk = 223.6.

(c) 15-minute forecasts with RMSErb f = 177.5 and RMSEk = 241.0.

Figure 4-14: Real forecasts based on our new prediction system using SV Rrb f
and SV Rk. Gray/dark areas with a flat ”0” or no forecast value represent data
points that are out-of-FOV or correspond to a low zenith angle. RMSErb f and
RMSEk are the root-mean-square errors of SV Rrb f and SV Rk compared with the
real GHI values.
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Chapter 5

Satellite Image Integration

To predict solar irradiance variability in mesoscale grids and distributed PV

system is beyond the capacity of the aforementioned ground-based imaging

solutions. In the chapter, we focus on mid-term forecast and introduce our

satellite-based framework that predicts solar irradiance between 30 minutes to

five hours. Our available image datasets from Geostationary Operational En-

vironmental Satellite (GOES) have erroneous data, missing values or delayed

images. To better address these problems and improve prediction accuracy, we

focus our effort in the following tasks: 1) Constructing a reliable pipeline to

preprocess satellite imagery along with ground-based measurements, such as

pyranometer data, for training and validation, 2) Estimating cloud motion using

the optical flow framework (OF), and 3) Extracting prominent features from the

multi-channel satellite dataset and selecting robust regression model to make

predictions. In this chapter, we also include systematic evaluations and compar-

ison between our proposed mid-term model and a baseline model and confirm

that the satellite-based solution indeed attains significant improvements over the

baseline model for cloud motion estimation and ultimately irradiance prediction.
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5.1 Introduction

Cloud tracking and solar forecast on satellite image is not an easy task. Exist-

ing models usually focus on visible channel of satellite imager system as it has

higher resolution and a good representation for clouds w.r.t visible spectrum.

However, relying on visible channel may incur erroneous results in cloud de-

tection and irradiance prediction. The first issue comes from the uncertainties

of the cloud. Due to variant cloud shape and unstable motion, cloud tracking

and modeling is of higher error rate especially in long time case. An irradiance

model must be robust enough to noise and take instability into account during

model construction. Second, it is difficult to identify cloud and/or obtain the

thickness of cloud only from the visible channels of satellite due to the large

spatial resolution (1km x 1km per pixel) and limited observable cloud types.

In other words, cloud could be smaller than the grid size or the visible channel

shows only a limited spectrum of clouds, resulting in that not all cloud types can

be shown on in the visible channels.

Consequently, we try to solve the challenges by adopting new technologies

to mitigate the influence of image noise and integrate multiple features to im-

provement the robustness of cloud tracking and as well as solar prediction mod-

els. In detail, we propose to use a framework of optical flow for better motion

estimation and adopt Support Vector Regression (SVR) training and modeling

the exacting clouds features and incorporate diverse evidence (multiple chan-

nel, previous timestamp radiation) to cope with limited information of visible

satellite channel. More specifically, our contributions are:

1. Evaluation of motion estimation methods for satellite Most of previous

works used the block-wise cross correlation [66], [65]. But in the case

of satellite images, block-wise motion is unable to track small changes

of both cloud shape and motion field. Therefore we propose to use the

Optical Flow (OF) motion estimation algorithm which is based on the
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gradient of grey-scale change. Compared with traditional algorithms such

as HBM, it is more sensitive to small area change and robust even with

shape distortion.

2. Robust regression analysis for irradiance prediction Most previous

works used a variant of the linear regression model [64]. However, this

approach is quite sensitive to noise or outliers. We propose Support Vector

Regression (SVR) which has several advantages over the ordinary linear

regression models. First, SVR ignores outlier points, thereby reducing in-

fluence of noise from cloud motion tracking. Second, it can easily model

linear and non-linear relations by choosing different kernels, and have

better modeling capabilities with a limited number of features. We also

provide a simple approach to properly normalize solar irradiance level

to remove diurnal and seasonal affects, so that the subsequent regression

analysis could be simpler.

3. Combining multiple evidences To overcome the limitations of the visible

channel, we incorporate other four available channels from satellite im-

ager system to sense the radiant in the different spectrum range. Second,

we added the radiation level of the previous timestamp as an additional

feature to SVR model have better context information.

4. Systematic evaluation of whole pipeline We did systematic cross vali-

dations on 6 months data, and evaluated 1) the effects of different cloud

motion estimation algorithms, 2) the different irradiation modeling per-

formance from the ground truth cloud image to irradiation level, 3) the

effects of the integrated system from the motion estimation to irradiation

prediction of up to five hours, and 4) the effects of diverse evidences re-

lated to irradiation prediction.
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(a) Channel 1 (Visible) (b) Channel 2 (c) Channel 3

(d) Channel 4 (e) Channel 6

Figure 5-1: Multi-channel view: Visible channel fails to capture clouds in the
left-bottom box but other channels do not show clouds on right-top box

5.2 Satellite Multi-channel Imagery

5.2.1 Geostationary Satellite Imagery

Satellite images are widely adopted for cloud detection, classification and mo-

tion estimation [109] [145]. However most of prior works focused on visible

channel. Though some of them proposed to use other spectral channels to iden-

tify clouds [107] and model the irradiance at ground-level [106], the utilization

of multiple channels of images for solar forecast is not addressed. With the ad-

vance of satellite imaging system, the satellite is able to obtain generated image

from radiometer every 15 minutes with high resolution.

In our work, we collected the images from geostationary satellite for cloud

observation, motion tracking, and the following solar forecast. Though other

satellites such as POES series are able to provide higher resolution, geostation-
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ary satellite is better for all-time stable cloud observation and accurate cloud

movement estimation. In detail, we collected 15min-per-frame images from

GOES project [146]. As shown in the Figure 5-1, five spectral channels are

synchronously collected for the eastern coast of U.S. It is seen that from vis-

ible channel is able to present detailed texture of clouds in red (right-up) box

however fails to capture the clouds within green (left-bottom) box. With differ-

ent spectrum sensitivity, other four channels on the contrary are able to observe

clouds in the green box. Therefore, we integrate all five channels together in

our satellite-based solar forecast system to extract cloud features and build irra-

diance models.

5.2.2 Data Preprocessing

Due to the limitation of remote sensing techniques, we have to use all available

evidences to reduce abnormalities brought from satellite data. Therefore we

expand preprocessing work to multi-channel instead of just visible channel of

satellite. From the dataset collected by GOES project [146], we found several

frequent error patterns: 1) black rasters of multi-spectral images due to failure

of sensing or raw data processing, 2) luminance variation, especially on visible

channel, and 3) missing channel data. We used empirical filters such as mean

filter to fill out black raster lines and bad-frame filter to remove low quality or

missed frames. We normalized the brightness according to solar zenith angle.

The overview of data preprocessing is shown in Figure 5-2a.

Another key step in preprocessing pipeline in the Figure 5-2b is handling

radiation data measured by Pyranometer. There are two concerns: 1) radiation

level normalization from bell shape curve to uniform level to avoid daily and

seasonal effects and 2) different temporal resolution resolving between satel-

lite (30 minutes) and Pyranometer (one second). In previous works, clear sky

irradiance is calculated by clear sky models which are based on atmospheric
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(a) Satellite Preprocessing

(b) Irradiance Preprocessing

Figure 5-2: Data Preprocessing Framework

parameters such as O2, CO2, Ozone, water vapour and aerosol optical thick-

ness [64]. However, such models are sensitive to the location and ask additional

input variables. To address this concern, we propose to use polynomial regres-

sion to generate the monthly clear sky radiation curve shown in Figure 5-3. Then

we calculate normalized radiation at t using the average of [t−N, t+N] minutes

radiation divided by the average of clear sky values. Normalization using aver-

age over 2N minutes minimizes the influence of temporal resolution mismatch

and smoothes out short-term local irradiance fluctuation.

5.3 Motion Estimation

The sequence of satellite images provide motion information of cloud field and

allow us to predict distribution in near future. For this, the motion estimation

algorithms play a crucial role for irradiance forecasting. In image processing
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Figure 5-3: Irradiance normalization and clear sky profile on March 1st, 2012

and multimedia field, a well studied approach is Hierarchical Block Match-

ing(HBM) which is on the basis of similarity check among blocks. It is widely

used in video coding and compressing as its properties of fast speed and high

compressing ratio. As to accuracy, the performance lies on region size and fea-

ture matching which assumes consistence of image segmentation. For satellite

image case, cloud variation should be considered in smaller scale instead of

blocks. Therefore we propose to use pixel-wise approach.

Optical flow (OF) motion estimation is a branch of methodologies that uti-

lize the gradient of image. Under the assumption of constant illuminance, dis-

placement of pixels will be estimated following gradient change. The imple-

mentation of OF idea has a lot of variations as gradient of image is defined dif-

ferently. In our approach, we choose Lucas-Kanade Optical Flow(LKOF) [147]

as the tracking method. For robustness, we implement a pipeline which builds

the pyramid of image. The framework of pipeline is presented in Figure 5-5.

In general, visible channel image is firstly scaled to different resolution

levels to build pyramid of image (i.e. 1000x1000 and 500x500). For each

level, motion vectors are computed in turn, following gradient starting from

pre-knowledge of motion. The start motion vectors are the output of motion
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Figure 5-4: Motion estimation result comparison against ground truth images
(MAE) : OF is much better than HBM with longer prediction time

from last level in pyramid. When the last level completes motion vector extrac-

tion, we utilize this as pre-knowledge of motion on original size. Then the final

motion vector is found by seeking for local minima following the gradient recur-

sively. As image prediction based on the pixel-wise motion vector will generate

“black hole” due to moving of pixels. we apply mean filter on the OF pipeline

output to be our OFmean method so as to reduce information loss.

Intuitively, OF pipeline and HBM outputs can be compared using predicted

images. As is shown in Figure 5-6, in one hour image sequences, OF method

is much more robust in terms of tiny texture changes and clouds diminishing.

HBM is suffering over-estimated problems as in dash-block case and more in-

formation loss such in dot-block case. In terms of whole image deviation from

ground truth, the HBM Mean Absolute Error(MAE) in grayscale is much more

than Optical Flow approach, especially when prediction time is over 3 hours

(Figure 5-4). In addition to pixel-based or image quality based evaluation, we

evaluate irradiance prediction performance using two approaches compared to

ground measured solar radiation.
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Figure 5-5: Optical flow motion estimation pipeline

5.4 Mid-term Prediction Models

Given the satellite images, we may model irradiance from the cloud properties

at a point of our interest on the ground. Our goal is to find a method that 1)

utilizes multiple evidences such as multi-channel features and previous times-

tamp irradiance and 2) is robust to the noise coming up from preprocessing and

motion estimation. In this Section, we will investigate the simplest Cloud Index

(CI), Linear Regression (LR, ALR) and Support Vector Regression (SVR).

Cloud Index (CI) Cloud Index (CI) [64] is a widely used estimation model

on the basis of linear relation between single channel (visible channel) with

radiation. CI for a sample time point i is defined as:

CIi =
xi−boundmin

boundmax−boundmin
(5.1)

where xi ∈ [0,255] is a visible channel value and boundmin and boundmax are

minimum and maximum observed x value. In other words, CIi is a normalized

cloud level between zero and one. Given CIi, the irradiance is calculated:

yi = w · (1−CIi)+b (5.2)

where w is the maximum radiation level which is one in our case due to irradi-

ance normalization and b is called the compensation value which is learned by

the training data. Cloud Index model is just the observed visual channel output
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(a) current frame (b) 1 hour later frame

(c) HBM (d) OF

Figure 5-6: Image Estimation of 1 hour later from (a). With reference to ground-
truth frame (b), (d) captures more texture changes in red window and is more
robust to noise in green window than (c).

to be rescaled to the radiation level with the compensation value to correct bias.

There are couple of problems of this simple method. First of all, CI model will

suffer from illuminance changes with solar zenith angle. Due to this problem,

we preprocessed the satellite image to be normalized with zenith angle for all of

our model input. Second, we can only fit the bias term, so that it can not be fitted

well with the data. Third, CI model used only single channel, which means we

can not combine the other available evidences.

Linear Regression (LR, ALR) The straight forward extension of CI model

is Linear Regression (LR) and Aggregate Linear Regression (ALR) using mul-

133



tiple channels as extra evidence.

yi = w ·xi +b (5.3)

where w∈Rd is a row weight vector and xi ∈Rd is a column vector for the input,

and b is the intercept. The advantages over CI model are that LR models may

include multiple evidence as linear relationship and both w and b are learned

from the training data to be better fitted. But LR is susceptible to the noise

because of the least square objective function to find optimal w.

min
w,b

∑
i
(w ·xi +b− yi)

2 (5.4)

If there are outlier points, then w will be overfitted.

Support Vector Regression (SVR) To avoid such overfitting from noisy

data, we propose to use Support Vector Regression (SVR) as our solution.

The basic idea of SVR is the regression error to be within ε . If it can not

be learned within ε bound, the slack variables allow us to fit the model out of

ε bound but the slack variable has to be minimized with C regularization term,

Equation 4.32. Since it bounds errors to be within ε , it is much more robust

and it is easy to extend non-linear relationship using kernel trick, which projects

data into high dimensional space, so that we could model non-linear relationship

with linear model [144]. We used RBF (Radial Basis Function) kernel:

k(w′,x) = φ(w′) ·φ(x) = e−
‖w′−x‖2

2σ2 (5.5)

where σ is a tuning parameter for the smoothness of RBF kernel.

For ALR and SVR, we considered not only visible channel but also the re-

maining four channels and the previous timestamp irradiance value as the con-

text information. By combining multiple channels, we can overcome the limita-

tions of visible channel and have better cloud distribution information from the
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other channels. We will evaluate the different evident effects in the next Section.

5.5 Experiment Results

5.5.1 Dataset

We collected satellite dataset from April 1st 2012 to November 1st 2012, cov-

ering partial spring, full summer, and most autumn. The radiation data is from

Pyranometer on-site measurement from Brookhaven National Laboratory. For

both satellite images and Pyranometer measurements, the raw input data has

been preprocessed by removing data points which have 1) any bad-frame of

multi-channels 2) failure of ground radiation sensor 3) multi-channel timestamp

mismatch and 4) low solar angles. In total, we extract daytime dataset which

has 8477 frames for each channel and radiation timestamp continuously. Each

radiation data point is a result of normalization and average value in range of 15

minutes. The detailed information of dataset is summarized in Table 5.1.

Table 5.1: Satellite dataset

Dimension size temporal resolution spatial resolution
Channel 1 8477 15min,30min 1km x 1km
Channel 2,3,4,6 8477 15min,30min 4km x 4km
radiation 8477 15min NA

5.5.2 Parameter Tuning and Evaluation Metrics

For whole dataset, we used five-fold cross validation to split training and test-

ing and used five-fold cross validation again to tune model parameters within

training data. In our experiment, Mean Square Error (MSE) and Mean Abso-

lute Error (MAE) are used to evaluate the predicted model accuracy. They are

defined as:
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Figure 5-7: MSE Plot of 5-fold cross validation. SVR models show less
amounts of errors than non-SVR models in general.

MAE =
1
N ∑

i
|ŷi− yi| (5.6)

MSE =
1
N ∑

i
(ŷi− yi)

2 (5.7)

where ŷi is the predicted radiation level, and yi ∈ [0,1] is the ground truth radi-

ation level. Note that the radiation level is normalized by clear sky irradiance

value.

5.5.3 Model Comparison

We evaluate the irradiance modeling power using ground truth images. As we

described, we compare CI, LR with single channel, ALR which is LR with multi-

channel, SV RLi - SVR with multi-channel and linear kernel, SV RRBF - SVR with

multi-channel and RBF kernel, SV RLi rad - SV RLi with the previous timestamp

radiation level, SV RRBF rad - SV RRBF with the previous timestamp radiation

level.

First of all, Figure 5-7 and 5-8 shows that CI is worse than LR, which con-
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Figure 5-8: MAE Plot of 5-fold cross validation. SVR models show less
amounts of errors especially combined with previous radiation feature.

firms that the weight coefficient learning help to learn better model. Second,

multi-channel data significantly decrease error rates (LR vs ALR) and the pre-

vious timestamp radiation level is helpful to decrease error rates as well. SV R

models are better than non-SVR models and non-linear kernel SVR models are

even better. Since SV RRBF rad showed the best performance, we will use it for

motion estimation analysis.

5.5.4 Motion Estimation Evaluation

To evaluate motion estimation in the context of radiation forecast applications,

the motion estimation output of HBM and OFmean are compared as the input to

SVR models. We evaluated them from 0.5 to 5 hours of SV RRBF rad forecast

results. As a reference, we also add no motion estimation as our baseline (0

hour image as motion estimated image) and the original OF which has no mean

filter. The MAE score is shown in Figure 5-9. No motion estimation shows

obviously the worst prediction quality but HBM shows slightly improvements

over the baseline. Both OF and OFmean shows significantly better prediction
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Figure 5-9: Motion estimation analysis using SV RRBF rad model (MAE). Both
OFmean and OF show less amounts of errors than HBM in 5 hours prediction

quality and the mean filter is helpful across different forecast time. It confirms

that OF with mean filter is the best choice for satellite motion estimation and we

will use OFmean as our motion estimation method for next analysis.

5.5.5 Irradiance Prediction Evaluation

We analyze whether our model estimation results (without any forecast) are

still hold or not. In other words, we investigate the noise effects of the motion

estimation on the irradiance prediction problem.

Since there are more errors due to motion estimation, LR or ALR shows even

worse results than CI (Figure 5-10) after four or five hours, which is different

from the model estimation results and expected as we discussed in previous

section. However, the multi-channel of ALR is still helpful to get much less

error rates than LR. In case of SVR, SV RLi is the worst among SVR models but

with the additional radiation feature, it shows the best performance on or after

three hours, which is also different from the model estimation results. RBF

kernel with the radiation feature is still the best results under two hours but as
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Figure 5-10: MAE score of 7 forecasting models using OFmean.

we have more and more errors from the motion estimation, it is not as robust

as SV RLi rad . If we have an easy day for motion estimation, SV RRBF rad can

be a good choice even after three hours but if it is difficult to do good motion

estimation and/or longer time forecasting, then SV RLi rad will be our choice.

5.5.6 Experiments Findings and Discussion

We introduced two types of error metrics (MAE and MSE) in real data exper-

iments and quantitative model evaluation. Our evaluation results demonstrated

that by integrating multiple satellite channels, such as infrared and moisture,

our system improves the accuracy of cloud tracking and consistently enhances

the overall performance of all regression-based prediction models (ALR, SV RLi,

SV RRBF , SV RLi rad , and SV RRBF rad). However, the cost of integrating multiple

channels is not negligible. We must choose a proper preprocessing technique for

satellite data and irradiance measurements to ensure the optimal performance.

More importantly, a cost-effective solution for motion tracking and estimation

is required to handle such a large scale continental cloud system as obtained

from GOES. The block-matching (BM) method produced promising results in
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ground-based sky imagers, but it is not appropriate for satellites. Compared

with the BM method, the optical flow model indeed lowered the MAE error

by at least 20% for mid-term solar forecast. Therefore, we chose the optical

flow method because in general it was more efficient and effective in processing

multi-channel satellite data than other alternatives.

Furthermore, we also noticed some persistent features, such as historical

irradiance values, can improve prediction performance. We undertook some

experiments to compare the models with or without persistent features, and un-

covered that the mixture models with persistent features always perform much

better than those without. Especially for a short forecasting horizon, the mix-

ture models accomplished impressive reduction in error rates. However, once

we increased the forecasting horizon, we observed that the “weights” of persis-

tent features faded and the mixture models tended to perform similarly to those

without the contribution of persistent features. This observation coincides with

the fact that the persistent model is effective for a short time range and deterio-

rates rapidly with an increasing forecasting range.

5.6 Summary

In this chapter, a new mid-term forecast system is developed with innovations

on both modeling and predicting aspect. To construct a robust model, we inves-

tigate five channels of geostationary satellite, estimated robust cloud motion at

pixel level, and extract cloud information for SVR modeling and forecasting.

In cloud motion estimation, we evaluated both block-wise and optical meth-

ods and generate the best optical model that outperforms others in both image

analysis and solar forecast evaluation. To choose and compare the best satel-

lite models, we systematically evaluate CI, LR, and SVR methods in various

forecast horizons, covering both linear and non-linear approaches. In hours’

forecasting, we find that SVR related models significantly improve the predic-
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tion accuracy than non-SVR approaches. Although noise from cloud prediction

increase exponentially with time, the SVR with non-linear kernel and the previ-

ous radiation level still show the best results up to two hours but the SVR with

linear kernel and the previous radiation level could be a good candidate after

three or more hour prediction ranges. The accuracy improvement is more than

50% in 30 minutes prediction and 10% in 5 hours prediction than the baseline

satellite model.
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Chapter 6

Conclusion and Future work

This chapter summarizes our accomplishments and explores the future research

directions in image processing and solar forecast. By utilizing new imaging

techniques, our work demonstrate great potentials in designing and implement-

ing image-based solar forecast. To achieve the optimal performance, we make

contributes to several critical components in the end-to-end prediction pipeline,

i.e., image-based cloud tracking, feature extraction, and machine learning based

regression. Furthermore, we propose to integrate multiple image datasets into

solar forecast system to cover a wide range of forecast including short-term and

mid-term.

6.1 Conclusion

The advances in imaging technologies and the growing interests in solar en-

ergy give rise to a pressing need of designing a reliable image-based solar fore-

cast that extracts cloud spatio-temporal information from images and thereby

regresses from high-quality cloud features to irradiance values. To cater this

need and build an end-to-end solution for reliable predictions with a wide time

range between minutes and hours ahead, we make a series of endeavors in im-

age preprocessing, motion tracking, multi-camera integration, and multi-layer
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determination based on various types of input images. Our salient contributions

include:

1. We developed a reliable cloud detection pipeline that is based on a super-

vised classier and applies the histogram equalization technique to correct

abnormal images due to camera artifacts or wrong configuration. Our re-

search significantly improved the accuracy of cloud mask extraction under

various cloud, weather, and lighting conditions.

2. On the basis of prior works on cloud tracking in sky imagery, we designed

a hybrid cloud motion tracking model to combine block matching and

optical flow. This new model is adaptive to complex cloud activities and

has its advantages in determining local deformations of clouds, extracting

cloud layers with dominant motion patterns, and denoising the resulting

motion field with customized motion filters.

3. We proposed a comprehensive framework that simulates multiple types

of cloud activities (i.e., translative movements, deformation, shrink and

expansion), and generates synthetic image sequences containing various

cloud activities and multiple levels of Gaussian noise. The simulation

framework was used to evaluate multiple motion tracking models under

different scenarios, e.g., cloud deformations and corrupted cloud images.

4. We devised a short-term solar forecast system utilizing multiple ground-

based sky cameras. The system includes several innovations, i.e., emulat-

ing human eyes to detect the depth of far-field objects, intelligently incor-

porating cloud observations from multiple view angles, applying spatio-

temporal correlations to track clouds across multiple cameras and times-

tamps, and utilizing a stereoscopy calculation to obtain the 3-D spatial

coordinates of a cloud. In addition, our system detect multi-layer mo-

tions via clustering, which is only possible because of 3-D cloud infor-
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mation. Furthermore, we investigated robust feature extraction and ir-

radiance models. Compared with a single-camera model, our proposed

system has a significantly larger field of view, enables 3D cloud track-

ing, and obtains better forecast results. We implemented an end-to-end

pipeline that integrates these new capabilities and provides real produc-

tion forecast for Long Island Solar Farm (LISF).

5. We implemented a mid-term solar irradiance forecast using the multi-

spectral images of geostationary satellite. Different from prior works that

only make use of visible channel, we adopted five channels of satellite to

extract cloud information of different spectrums. To minimize input noise,

we designed a preprocessing step to normalize irradiance measurements

and select high-quality satellite images. As a result, our system entails

several robust irradiance models and thereby significantly improves the

performance of hours-ahead prediction.

6.2 Future Work

6.2.1 Image Processing

The performance of solar forecast hinges on the quality of sky and satellite im-

ages. One future direction is in the field of image processing, i.e., raw image

noise removal, accurate cloud mask detection, textural features extractions. In

this thesis work, we already utilized supervised classifier to identify cloud at

a pixel level. This approach is sensitive to image noise. Semi-supervised and

unsupervised learning methods have great potential in identifying cloud pixels

in sky and satellite images. Even object detection for sky images is still chal-

lenging,several object detection algorithms, including sparse coding and optical

flow recognition, are promising in tracking cloud movement and reconstructing

three-dimensional cloud images.
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6.2.2 Robust Motion Estimation

The majority of short-term and mid-term forecasts assume that the movement of

cloud pixel and object is time-invariant and previously detected motion vectors

are simply used for predicting the future location of clouds. Consequently, any

deviation from real cloud motion leads to falsely predicted sun-occlusions and

errors in solar power forecasts. Furthermore, this type of error accumulates with

the forecast time horizon. To better represent real cloud movements, we must

treat cloud motion as a function of time that follows the trend of prior motions

and is governed by cloud physics, instead of a persistent value from historical

data. Existing image-based motion vectors are prone to error and can not be di-

rectly translated to cloud movements in real space. A promising research direc-

tion is to integrate more ground-based observations into motion estimation, e.g.,

wind profiler, LIDAR, to eliminate outliers and reconstruct three-dimensional

motions.

6.2.3 Feature Mining

The image features extracted from cloud images are critical to the performance

of all types of solar prediction models. In our current studies, we exploited 23

prominent features from sky images and six features from the different channels

of satellite. In future, we plan to extract textural and spectral features, e.g., out-

put of Garbor filter on images, to describe the characteristics of sun-occlusion

clouds. Previous works [148] already demonstrated the efficacy of certain statis-

tical features. We will derive similar statistical properties during cloud detection

and tracking, and evaluate their potentials in tracking clouds that are out-of-FOV

and extending the forecast horizon that currently is constrained by the physical

limitation of tracking device.
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6.2.4 Solar Forecast Model

Another potential research direction is to improve the models that output ir-

radiance values based on input feature values. In addition to the regression-

based models used in this thesis, we will investigate neural network models,

such as artificial neural network (ANN) [149] and deep neural network (DNN)

[150] [151] [152] for directly predicting the output of solar power plants.

6.2.5 Integration of Heterogeneous Data Sources

To mitigate the limitation of localized view of TSI and low resolution of a satel-

lite system, we will explore available meteorology data sources. Furthermore,

one potential approach is to create an ensemble of multiple state-of-art models

of different forecast categories. For instance, weather prediction model (NWP)

helps categorize cloud distribution in a long time range. We can integrate the

NWP results into our two models and use the long term information of cloud

distribution to refine our cloud motion detection and forecast. We will also take

advantage of other measurements from ground devices, for example, ground-

level thermometer to measure the ambient temperature of PV panels that serves

as a good index and efficiency indicator for current gross solar energy recep-

tion, LIDAR and RADAR that provide detailed measurements of cloud vertical

distribution and atmospheric parameters.
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