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Abstract of the Dissertation

Efficient Iterative and Multigrid Solvers with
Applications

by

Cao Lu

Doctor of Philosophy

in

Applied Mathematics and Statistics

Stony Brook University

2016

Iterative methods are some of the most important techniques in solv-
ing large scale linear systems. Compared to direct methods, iterative
solvers have the advantage of lower storage cost and better scalability
as the problem size increases. Among the methods, multigrid solvers
and multigrid preconditioners are often the optimal choices for solv-
ing systems that arise from partial differential equations (PDEs). In
this dissertation, we introduce several efficient algorithms for various
scientific applications. Our first algorithm is a specialized geometric
multigrid solver for ill-conditioned systems from Helmholtz equations.
Such equations appear in climate models with pure Neumann bound-
ary condition and small wave numbers. In numerical linear algebra,
ill-conditioned and even singular systems are inherently hard to solve.
Many standard methods are either slow or non-convergent. We demon-
strate that our solver delivers accurate solutions with fast convergence.
The second algorithm, HyGA, is a general hybrid geometric+algebraic
multigrid framework for elliptic type PDEs. It leverages the rigor, ac-
curacy and efficiency of geometric multigrid (GMG) for hierarchical
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unstructured meshes, with the flexibility of algebraic multigrid (AMG)
at the coarsest level. We conduct numerical experiments using Pois-
son equations in both 2-D and 3-D, and demonstrate the advantage of
HyGA over classical GMG and AMG.

Besides the aforementioned algorithms, we introduce an orthogonally
projected implicit null-space method (OPINS) for saddle point systems.
The traditional null-space method is inefficient because it is expensive
to find the null-space explicitly. Some alternatives, notably constraint-
preconditioned or projected Krylov methods, are relatively efficient,
but they can suffer from numerical instability. OPINS is equivalent to
the null-space method with an orthogonal projector, without forming
the orthogonal basis of the null space explicitly. Our results show that
it is more stable than projected Krylov methods while achieving similar
efficiency.
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Chapter 1

Introduction

Since the early nineties, there has been a strongly increasing demand for efficient
methods to solve large and sparse linear systems

Ax = b. (1.0.1)

Direct methods and stationary iterative methods either have large memory require-
ment or very slow convergence. Krylov subspace methods while effective with a
good preconditioner, do not perform very well by themselves.

Nowadays multigrid methods are considered the most advanced, flexible and com-
putationally optimal tool for numerical solutions. With a carefully designed scheme,
the multigrid method either as a standalone solver or a preconditioner can achieve
linear complexity by utilizing the complementarity between smoothing and coarse-
grid correction. Currently there are two major classes of the multigrid method:
geometric multigrid (GMG) and algebraic multigrid (AMG). Compared to GMG,
AMG does not require explicit knowledge of geometry and can be applied to more
general problems involving unstructured meshes and discontinuity [15]. On the
other hand, GMG, when applicable, enjoys fast convergence and low storage cost.
Programers and users of multigrid methods often must face difficult choices among
these variants. To make matters worse, GMG algorithms are often highly problem-
dependent. Different coefficients or even different discretization methods can result
in significant changes of the algorithm.
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In this dissertation, we seek to generalize the GMG algorithms to solve more com-
plicated problems. We first introduce a specialized solver for anisotropic Helmholtz
equations on nonuniform structured grids. It utilizes a line-smoother in the direc-
tion of strong connection to smooth out errors geometrically. With a smooth error,
we then apply bi-linear interpolation with ghost cells along the boundary to trans-
fer the errors accurately. For unstructured meshes, we propose a hybrid geomet-

ric+algebraic (HyGA) multigrid framework. At a high-level, our overall approach
may be summarized as follows. Our hierarchical mesh generator starts from a good-
quality coarse unstructured mesh that is a sufficiently accurate representation of the
geometry. It iteratively refines the mesh with guaranteed mesh quality (by uniform
refinements) and geometric accuracy (by high-order boundary reconstruction [45]).
We apply GMG with a multilevel weighted-residual formulation on these hierar-
chical meshes, and employ the AMG at the coarsest level. We use a semi-iterative
method, namely the Chebyshev-Jacobi method, as the smoother at both the GMG
and AMG levels, and utilize Krylov-subspace methods as coarse-grid solvers. In
addition, we introduce a unified derivation of restriction and prolongation operators
for multilevel weighted-residual methods for linear PDEs with hierarchical basis
functions. It allows a more systematic derivation of geometric multigrid methods
for finite element methods as well as weighted least squares based methods over
unstructured meshes.

Our third main contribution is the orthogonally projected implicit null-space method

(OPINS) for saddle point systems. The standard null-space method [10] can be ef-
fective, but computing an orthonormal basis is very expensive. More recent meth-
ods such as the constraint preconditioning [61, 36] and the projected Krylov meth-
ods [37] are equivalent to the null-space method with an orthonormal basis, but
they do not require computing the basis explicitly. However these methods suffer
from rounding errors and numerical instability. OPINS is a more stable variant of
the implicit null-space methods. It uses the range-space of the constraint matrix
to compute an orthogonal projector onto the null-space. This approach is much
cheaper than computing the null-space directly especially if the number of con-
straints is small. At the same time, the explicit projection makes it more stable than
the projected Krylov methods. Another advantage of OPINS is that it can be ap-
plied to singular and compatible systems. In particular, it finds the minimum-norm
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solution in terms of the solution variables.

The dissertation is organized as follows. We first give an overview of iterative
solvers with an emphasis on the Krylov subspace methods in Chapter 2. Next, we
outline the standard multigrid methods in Chapter 3 and introduce the specialized
geometric multigrid solver for anisotropic Helmholtz equations in Chapter 4. We
propose a general hybrid geometric+algebraic multigrid framework (HyGA) for
elliptic PDEs in Chapter 5. Chapter 6 introduces the OPINS method for saddle
point systems. Chapter 7 applies the algorithms to various applications such as
climate modeling and elasticity with brittle fracture. Extension of HyGA to WLS-
based discretization methods are also explorered. Chapter 8 concludes the paper
with discussions of future work.
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Chapter 2

Overview of Iterative Methods

The methods discussed in this chapter serve as the foundation for the development
of new algorithms. We first introduce the stationary iterative methods as they are
the simplest. These methods are used as smoothers in the more powerful multigrid
methods whose details will be discussed in Chapter 3. Next we introduce some of
the most widely used methods, namely the Krylov subspace methods for symmetric
and nonsymmetric systems. These methods are more effective than the simple sta-
tionary iterative methods. Additionally their performance can be greatly improved
by preconditioning. In fact, the multigrid preconditioner is one of the best precon-
ditioners used in practice. Section 2.3 discusses some popular preconditioners and
demonstrates their effectiveness in accelerating the convergence of Krylov subspace
methods. Finally, we explore some methods for solving singular systems in Section
2.4.

2.1 Stationary Iterative Methods

Stationary iterative methods can be interpred as a fixed point iteration obtained by
matrix splitting. Let A = M−N and the system can then be written as

Mx = Nx+b. (2.1.1)
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Assuming M is invertibe, we have

xk+1 = M−1Nxk +b. (2.1.2)

This is the basic form of the stationary iterative method. Alternatively, it can be
interpreted as a preconditioned Richardson iteration. Let rk = b−Axk, then the
Richardson iteration has the following form

xk+1 = xk + rk. (2.1.3)

Left multiplying M−1on both sides of the linear system (1.0.1), the Richardson
iteration for M−1Ax = M−1b becomes

xk+1 = xk +M−1rk. (2.1.4)

It is easy to show that equations (2.1.4) and (2.1.2) are equivalent.

Different choices of splitting will lead to various schemes:

• If M = D, where D is the diagonal part of matrix A, we have the Jacobi
iteration. It is guaranteed to converge if A is diagonally dominant;

• If M = D+L where L is the lower triangular part of matrix A we have the
Gauss-Seidel iteration. It is guaranteed to converge if A is diagonally domi-
nant or symmetric positive definite;

• If M = D+ωL where 0 < ω < 2, we have SOR iteration. Its applicability
depends on ω .

These iteration schemes work for a wide range of problems, and they can often be
implemented in a matrix-free fashion. However, this comes at the price of slow
convergence and poor scalability. In particular, the ratio of the error reduction is
measured by ρ

(
M−1N

)
, which is the spectral radius of the iteration matrix. For

many PDE problems, it can be infinitely close to one as the mesh size increases.
Therefore, stationary iterative methods are not very effective in general despite their
simplicity and low cost per iteration.
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2.2 Krylov Subspace Methods

Krylov subspace (KSP) methods are widely used for solving large and sparse linear
systems. For symmetric systems, conjugate gradient (CG) [42] and MINRES [56]
are well recognized as the best KSP methods [28]. For nonsymmetric systems,
various KSP methods have been developed, such as GMRES [60], CGS [65], QMR
[30], TFQMR [29], BiCGSTAB [69], QMRCGSTAB [18], etc. Each method has
its own advantages and disadvantages. In this section, We focus on the Krylov
subspaces and the procedure in constructing the basis vectors of the subspaces,
which are often the determining factors in the overall performance of different types
of KSP methods. We defer more detailed discussions and analysis to [5, 59, 70].

Given a matrix A ∈ Rn×n and a vector v ∈ Rn, the kth Krylov subspace generated
by them, denoted by Kk(A,v), is given by

Kk(A,v) = span{v,Av,A2v, . . . ,Ak−1v}. (2.2.1)

Let x0 be some initial guess to the solution, and r0 = b−Ax0 be the initial resid-
ual vector. A Krylov subspace method incrementally finds approximate solutions
within Kk(A,v), sometimes through the aid of another Krylov subspace Kk(AT ,w),
where v and w typically depend on r0. To construct the basis of the subspace
K (A,v), two procedures are commonly used: the (restarted) Arnoldi iteration [3],
and the bi-Lanczos iteration [48, 70] (a.k.a. Lanczos biorthogonalization [59] or
tridiagonal biorthogonalization [66]).

2.2.1 The Arnoldi/Lanczos Iteration

The Arnoldi iteration is a procedure for constructing orthogonal basis of the Krylov
subspace K (A,v). Starting from a unit vector q1 = v/‖v‖, it iteratively constructs

Qk+1 = [q1 | q2 | · · · | qk | qk+1] (2.2.2)

with orthonormal columns by solving

hk+1,kqk+1 = Aqk−h1kq1−·· ·−hkkqk, (2.2.3)

6



where hi j = qT
i Aq j for j ≤ i, and hk+1,k = ‖Aqk− h1kq1− ·· · − hkkqk‖, i.e., the

norm of the right-hand side of (2.2.3). This is analogous to Gram-Schmidt orthog-
onalization. If Kk 6= Kk−1, then the columns of Qk form an orthonormal basis of
Kk(A,v), and

AQk = Qk+1H̃k , (2.2.4)

where H̃k is a (k+ 1)× k upper Hessenberg matrix, whose entries hi j are those in
(2.2.3) for i≤ j+1, and hi j = 0 for i > j+1.

The KSP method GMRES [60] is based on the Arnoldi iteration, with v = r0. At
the kth iteration, it minimizes ‖rk‖2 in Kk(A,b). Equivalently, it finds the optimal
degree-k polynomial Pk(A) such that rk = Pk(A)r0 and ‖rk‖ is minimized. The
Arnoldi iteration has a k-term recurrence, so its computational cost increases as k

increases. For this reason, one almost always need to restart the Arnoldi iteration
in practice, for example after every 30 iterations, to build a new Krylov subspace
from v = rk at restart. Unfortunately, restarts also undermine the convergence of
GMRES as the previous basis vectors are lost.

If A is symmetric, the Hessenberg matrix H̃k reduces to a tridiagonal matrix, and
the Arnoldi iteration reduces to the Lanczos iteration, which CG and MINRES are
based on. At the kth iteration, MINRES minimizes ‖rk‖2 in Kk(A,b) while CG
minimizes the energy norm ‖rk‖A =

√
rT

k Ark. Unlike Arnoldi iteration, Lanczos
iteration enjoys a three-term recurrence. Therefore CG and MINRES are able to
preserve the complete Krylov subspace, making them the optimal choices for sym-
metric systems.

2.2.2 The Bi-Lanczos Iteration

The bi-Lanczos iteration, also known as Lanczos biorthogonalization or tridiagonal

biorthogonalization, offers an alternative for constructing the basis of the Krylov
subspaces of K (A,v). Unlike Arnoldi iterations, the bi-Lanczos iterations enjoy
a three-term recurrence. However, the basis will no longer be orthogonal, and we
need to use two matrix-vector multiplications per iteration, instead of just one.

The bi-Lanczos iterations can be described as follows. Starting from the vector

7



v1 = v/‖v‖, we iteratively construct

Vk+1 = [v1 | v2 | · · · | vk | vk+1], (2.2.5)

by solving
βkvk+1 = Avk− γk−1vk−1−αkvk, (2.2.6)

analogous to (2.2.3). If Kk 6= Kk−1, then the columns of Vk form a basis of
Kk(A,v), and

AVk = Vk+1T̃k , (2.2.7)

where

T̃k =



α1 γ1

β1 α2 γ2

β2 α3
. . .

. . . . . . γk−1

βk−1 αk

βk


(2.2.8)

is a (k+1)×k tridiagonal matrix. To determine the αi and γi, we construct another
Krylov subspace K (AT ,w), whose basis is given by the column vectors of

Wk+1 = [w1 | w2 | · · · | wk | wk+1], (2.2.9)

subject to the biorthogonality condition

WT
k+1Vk+1 = VT

k+1Wk+1 = Ik+1. (2.2.10)

Since
WT

k+1AVk = WT
k+1Vk+1T̃k = T̃k , (2.2.11)

it then follows that
αk = wT

k Avk. (2.2.12)

Suppose V = Vn and W = Wn = V−T form complete basis vectors of Kn(A,v) and
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Kn(AT ,w), respectively. Let T = V−1AV and S = TT . Then,

W−1AT W = VT AT V−T = TT = S, (2.2.13)

and
AT Wk = Wk+1S̃k , (2.2.14)

where S̃k is the leading (k+1)× k submatrix of S. Therefore,

γkwk+1 = AT wk−βk−1wk−1−αkwk. (2.2.15)

Starting from v1 and w1 with vT
1 w1 = 1, and let β0 = γ0 = 1 and v0 = w0 = 0. Then,

αk is uniquely determined by (2.2.12), and βk and γk are determined by (2.2.6) and
(2.2.15) by up to scalar factors, subject to vT

k+1wk+1 = 1. A typical choice is to
scale the right-hand sides of (2.2.6) and (2.2.15) by scalars of the same modulus
[59, p. 230].

If A is symmetric and v1 =w1 = v/‖v‖, then the bi-Lanczos iteration reduces to the
classical Lanczos iteration for symmetric matrices. Therefore, it can be viewed as
a different generalization of the Lanczos iteration to nonsymmetric matrices. Un-
like the Arnoldi iteration, the cost of bi-Lanczos iteration is fixed per iteration,
which may be advantageous in some cases. Some KSP methods, in particular
BiCG [26] and QMR [30], are based on bi-Lanczos iterations. At kth iteration,
QMR minimizes the pseudonorm ‖rk‖WT

k+1
while the behavior of BiCG is more

random. A potential issue of bi-Lanczos iteration is that it suffers from breakdown

if vT
k+1wk+1 = 0 or near breakdown if vT

k+1wk+1 ≈ 0. These can be resolved by a
look-ahead strategy to build a block-tridiagonal matrix T. Fortunately, breakdowns
are rare in practice, so look-ahead is rarely implemented.

A disadvantage of the bi-Lanczos iteration is that it requires the multiplication with
AT . Although AT is in principle available in most applications, multiplication with
AT leads to additional difficulties in performance optimization and precondition-
ing. Fortunately, in bi-Lanczos iteration, Vk can be computed without forming Wk

and vice versa. This observation leads to the transpose-free variants of the KSP
methods, such as TFQMR [29], which is a transpose-free variant of QMR, and
CGS [65], which is a transpose-free variant of BiCG. Two other examples include
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Table 2.1: Comparisons of KSP methods.

Method Iteration
Matrix-Vector Prod.

Recurrence
AT A

GMRES [60] Arnoldi 0 1 k
BiCG [26]

bi-Lanczos
1 1

3
QMR [30]
CGS [65] TF

bi-Lanczos 1
0 2

TFQMR [29]
BiCGSTAB [69] TF

bi-Lanczos 2QMRCGSTAB [18]

BiCGSTAB [69], which is more stable than CGS, and QMRCGSTAB [18], which
is a hybrid of QMR and BiCGSTAB, with smoother convergence than BiCGSTAB.
These transpose-free methods enjoy three-term recurrences and require two multi-
plications with A per iteration.

2.2.3 Comparison of the Iteration Procedures

Both the Arnoldi iteration and the bi-Lanczos iteration are based on the Krylov
subspace K (A,r0). However, these iteration procedures have very different prop-
erties, which are inherited by their corresponding KSP methods, as summarized in
Table 2.1. These properties, for the most part, determine the cost per iteration of the
KSP methods. For KSP methods based on the Arnoldi iteration, at the kth iteration
the residual rk = Pk(A)r0 for some degree-k polynomial Pk, so the asymptotic
convergence rates depend on the eigenvalues and the generalized eigenvectors in
the Jordan form of A [54, 59]. For methods based on transpose-free bi-Lanczos,
in general rk = P̂k(A)r0, where P̂k is a polynomial of degree 2k. Therefore,
the convergence of these methods also depend on the eigenvalues and generalized
eigenvectors of A, but at different asymptotic rates. Typically, the reduction of er-
ror in one iteration of a bi-Lanczos-based KSP method is approximately equal to
that of two iterations in an Arnoldi-based KSP method. Since the Arnoldi iteration
requires only one matrix-vector multiplication per iteration, compared to two per
iteration for the bi-Lanczos iteration, the cost of different KSP methods are com-
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parable in terms of the number of matrix-vector multiplications. Theoretically, the
Arnoldi iteration is more robust because of its use of orthogonal basis, whereas
the bi-Lanczos iteration may break down if vT

k+1wk+1 = 0. However, the Arnoldi
iteration typically requires restarts, which can undermine convergence.

In general, if the iteration count is small compared to the average number of nonze-
ros per row, the methods based on the Arnoldi iteration may be more efficient; if
the iteration count is large, the cost of orthogonalization in Arnoldi iteration may
become higher than that of bi-Lanczos iteration. On the other hand, the apparent
disadvantages of each KSP method may be overcome by effective preconditioners:
For Arnoldi iterations, if the KSP method converges before restart is needed, then
it may be the most effective method; for bi-Lanczos iterations, if the KSP method
converges before any break down, it is typically more robust than the methods based
on restarted Arnoldi iterations.

Note that some KSP methods use a Krylov subspace other than K (A,r0). The most
notable examples are LSQR [57] and LSMR [27], which use the Krylov subspace
K (AT A,AT r0). These methods are mathematically equivalent to applying CG or
MINRES to the normal equation, respectively, but with better numerical properties.
An advantage of these methods is that they are applicable to least squares systems
without modification. However, they tend to converge slowly for square linear sys-
tems, and they require special preconditioners.

2.3 Preconditioners

The convergence of KSP methods can be improved significantly by the use of pre-
conditioners. Various preconditioners have been proposed for the Krylov subspace
methods over the past few decades. We focus on the three commonly used precon-
ditioners: SOR, incomplete LU factorization, and algebraic multigrid.

2.3.1 Left and Right Preconditioners

Roughly speaking, a preconditioner is a matrix or transformation M, whose inverse
M−1 approximates A−1, and M−1v can be computed efficiently. For nonsymmetric
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linear systems, a preconditioner may be applied either to the left or the right of A.
With a left preconditioner, one solves the modified system

M−1Ax = M−1b (2.3.1)

by utilizing the Krylov subspace K (M−1A,M−1b) instead of K (A,b). For a right
preconditioner, one solves the linear system

AM−1y = b (2.3.2)

by utilizing the Krylov subspace K (AM−1,b), and then x = M−1y. The conver-
gence of a preconditioned KSP method is then determined by the eigenvalues of
M−1A, which are the same as those of AM−1. Qualitatively, M is a good precon-
ditioner if M−1A is not too far from normal and its eigenvalues are more clustered
than those of A [66].

Although the left and right-preconditioners have similar asymptotic behavior, they
can behave drastically differently in practice. This is because the termination crite-
rion of a Krylov subspace method is typically based on the norm of the residual of
the unpreconditioned system. With a left preconditioner, the preconditioned resid-
ual ‖M−1rk‖ may differ significantly from the true residual ‖rk‖ if ‖M−1‖ is far
from 1, which unfortunately is often the case. This in turn leads to erratic behav-
ior, such as premature termination or false stagnation of the preconditioned KSP
method, unless the true residual is calculated explicitly at the cost of additional
matrix-vector multiplications. In contrast, a right preconditioner does not alter the
residual, so the stopping criteria can use the true residual with little or no extra cost.

Note that a preconditioner may also be applied to both the left and right of A,
leading to the so-called symmetric preconditioners. Such preconditioners are more
commonly used for preserving the symmetry of symmetric matrices so that CG and
MINRES can be applied. Like left preconditioners, they also alter the norm of the
residual.
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2.3.2 SOR

The SOR preconditioner is simply the iteration matrix M defined in the SOR iter-
ation. When ω = 1, the SOR reduces to Gauss-Seidel; when ω > 1 and ω < 1,
it corresponds to over-relaxation and under-relaxation, respectively. It also has a
symmetric variant, called SSOR, with the following definition

M =
1

2−ω

(
1
ω

D+L
)(

1
ω

D
)−1( 1

ω
D+L

)T

. (2.3.3)

Like their counterparts in iterative solvers, the SOR type preconditioners are simple
to implement but their convergence is usually poor. Unless a good ω is available, a
safe choice is to use the Gauss-Seidel preconditioner. One thing to note here is that
SOR type preconditioners require the diagonal entries of A to be nonzero.

2.3.3 Incomplete LU Factorization

Incomplete LU factorization (ILU) is one of the most widely used black-box pre-
conditioners. It performs an approximate factorization

A≈ LU, (2.3.4)

where L and U are far sparser than those in the true LU factorization of A. When A
is symmeric and positive definite, the factorization becomes the incomplete Cholesky
factorization. In its simplest form, ILU does not introduce any fill, so that L and
U preserve the sparsity patterns of the lower and upper triangular parts of A, re-
spectively. In this case, the diagonal entries of A must be nonzero. The ILU may
be extended to preserve relatively large fills, and to use partial pivoting. These im-
prove the stability of the factorization, but also increases the computational cost and
storage. In general, the ILU factorization is more effective than SOR type precon-
ditioners.
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2.3.4 Algebraic Multigrid

Multigrid methods, including geometric multigrid (GMG) and algebraic multigrid
(AMG), are the most sophisticated preconditioners. These methods are typically
based on stationary iterative methods, and they accelerate the convergence by con-
structing a series of coarser representations. Compared to SOR and ILU, multigrid
preconditioners are far more difficult to implement. Fortunately, AMG precondi-
tioners are easily accessible through software libraries. There are primarily two
types of AMG methods: the classical AMG and smoothed aggregation. An effi-
cient implementation of the former is available in Hyper [25], and that of the latter
is available in ML [32]. Both packages are accessible through PETSc.

Computationally, AMG is more expensive than SOR and ILU in terms of both setup
time and cost per iteration, but they are also more scalable in problem size. There-
fore, they are beneficial only if they can accelerate the convergence of KSP meth-
ods significantly, and the problem size is sufficiently large. In general, the classical
AMG is more expensive than smoothed aggregation in terms of cost per iteration,
but it tends to converge much faster. Depending on the types of the problems, the
classical AMG may outperform smoothed aggregation and vice versa.

Figure 2.1 shows the residual plots of various preconditioned nonsymmetric Krylov
subspace methods. The test matrices are generated from applying the finite element
method to 2-D and 3-D convection-diffusion equations with unstuctured meshes.
The Krylov subspace methods used are GMRES that restarts every 30 iterations,
BiCGSTAB, TFQMR and QMRCGSTAB. Regardless of the underlying solver, we
can observe that ILU is more effective than Gauss-Seidel while the ML precondi-
tioner is significantly better than the two. In addition, ML also make GMRES(30)
comparable or even faster than the methods based on bi-Lanczos iteration. The tim-
ing result shown in Figure 2.2 is consistent with the convergence behaviors. The
superior performance of the algebraic multigrid preconditioner motivates us to de-
velop more efficient geometric and hybrid multigrid preconditioners.
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Figure 2.1: Relative residuals versus numbers of matrix-vector multiplications for
Gauss-Seidel, ILU and ML preconditioners.
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Figure 2.2: Timing results for the preconditioned solvers.

2.4 Methods for Singular Systems

Singular systems are inherently more difficult to solve than nonsingular systems.
First, they are typically ill-conditioned in terms of the nonzero eigenvalues. When
a system is singular, chances are the smallest nonzero eigenvalues are close to zero,
which leads to ill-conditioning. Second, the solution does not exist if b has a com-
ponent in null

(
AT). In some applications, A is symmetric and the system can be

made compatible by projecting null(A) off b. However we do not know about
null(A) or null

(
AT) in general. In this case, we usually seek a solution x that min-

imizes the 2-norm of the residual, i.e. a least-squares solution. There are infinitely
many least-squares solution as the addition of any vector in null(A) preserves the
residual. In many applications, an additional constraint is added to ensure that the
solution has minimum norm:

min
x
‖x‖ subject to min

x
‖b−Ax‖ . (2.4.1)

Under this condition, the solution is uniquely determined. It is physically meaning-
ful as it is free of spurious motion or energy. In the literature, the minimum-norm
least-squares solution is also referred as the pseudo-inverse solution. An interest-
ing observation is that when ‖b−Ax‖ is minimized, b−Ax ∈ null

(
AT). If x has

minimum norm, x⊥ null(A), which means x ∈ range
(
AT). Therefore the pseudo-
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inverse solution also satisfies the following conditions

x ∈ range
(
AT) and AT Ax = AT b. (2.4.2)

Finding the pseudo-inverse solution is quite challenging, especially when A is large
and sparse. For direct methods, truncated SVD finds the pseudo-inverse solution
regardless of the shape of the matrix. QR with column pivoting on A is able to
find the least-squares solution. However it generally does not find the minimum-
norm solution since we only have range(A). Among the iterative methods, most
existing Krylov-subspace methods are applicable only to some sub-classes of lin-
ear systems. In particular, if A is Hermitian, then MINRES and MINRES-QLP
[19] can be applied to consistent and inconsistent systems, respectively. The reason
that they are able to find the minimum-norm solution is that the Krylov subspace
Kk(A,b) coincides with Kk(AT ,b). For nonsymmetric systems, GMRES can pro-
duce a least-squares solution for some consistent or inconsistent systems, but it may
breakdown for more general problems [58]. Other nonsymmetric Krylov-subspace
methods, including CGS, BiCG-STAB, QMR and TFQMR are unable to find the
least-squares solution as they do not minimize the 2-norm of the residual. Some
more general methods, such as LSQR [57] and LSMR [27], are mathematically
equivalent to solving the normal equation AT Ax = AT b and hence can always find
the pseudo-inverse solution. These methods are remarkably robust, but their asymp-
totic convergence rates may be slow in practice, so they are used typically as the
last resort when other methods fail to converge. More comprehensive discussions
on these methods can be found in textbooks such as [38] and [59].
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Chapter 3

Multigrid Methods

In this chapter, we review one of the most efficient iterative solvers, the multigrid
methods. These methods make not only good standalone solvers but also effective
preconditioners. They utilize stationary iterative methods such as Jacobi, Gauss-
Seidel, or SOR to smooth out high-frequency errors, and accelerate the convergence
of solution by transferring the residual and correction vectors across different lev-
els via the interpolation and restriction operators. Depending on how the compo-
nents are constructed, the multigrid methods can be further classified into geometric
multigrid (GMG) and algebraic multigrid (AMG). We will go over the some of the
key ideas behind the design of multigrid algorithms and present the data structure
for software implementations.

3.1 Principles of Multigrid Methods

For multigrid methods, one of the most frequently asked questions is why they work
so well. Before delving into details, we first present an important property about
the stationary iterative methods: the smoothing effect.

3.1.1 Smoothing Effect

As we mentioned in the previous section, stationary iterative methods have a poor
convergence rate. If we plot errors versus the number of iterations, we can see that
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Figure 3.1: After 5 Jacobi iterations on a Poisson equation, error decreases very
slowly.

errors decrease very quickly in the first several iterations, but they tend to change
little after that. The reason behind this phenomenon is what we call the smoothing
property of stationary iterative methods.

To illustrate the idea, let us apply weighted-Jacobi iteration to a 1-D Poisson equa-
tion where the iteration scheme and coefficient matrix A are given as

xm+1 =
(
I−ωD−1A

)
xm +ωD−1b, 0 6 ω 6 1 (3.1.1)

A =
1
h2


2 −1
−1 2 −1

.. ..

.. ..

−1 2

 . (3.1.2)

It can be calculated that the eigenvalues and eigenvectors of A are

λk(A) = 4sin2
(

kπ

2n

)
, 1 6 k 6 n−1 (3.1.3)

(ωk) j = sin
(

jkπ

n

)
. 1 6 k 6 n−1, 1 6 j 6 n−1 (3.1.4)

The iteration matrix Rω =
(
I−ωD−1A

)
has the same eigenvectors of A and its
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eigenvalues are

λk(Rω) = 1−2ω sin2
(

kπ

2n

)
. 1 6 k 6 n−1 (3.1.5)

With these results we can examine the effect of weighted Jacobian iteration on error
em = x−xm where x is the real solution. Subtracting x = Rωx+ωD−1b with (2.3),
we obtain

em+1 = Rωem. (3.1.6)

Using this recursive relation we can write

em = Rm
ωe0. (3.1.7)

Since the eigenvectors of Rω are given, e0 can be expressed as

e0 =
n−1

∑
k=1

ckωk. (3.1.8)

Here we can see that the error can be expanded using Fourier modes of high and
low frequencies. After m iterations, the error em becomes

em = Rm
ωe0 =

n−1

∑
k=1

λ
m
k ckωk. (3.1.9)

This expansion of em shows that after m iterations, the k th component of the initial
error has been reduced by a factor of λ m

k (Rω). By letting ω = 1
2 in (2.4) we can

observe that for n
2 6 k 6 n−1, λk(Rω)6 1

2 and this value is independent of h. On
the other hand, for small k, λk can be very close to one. Take λ1 for instance, we
have the following estimate

λ1 = 1−2ω sin2
(

π

2n

)
= 1−2ω sin2

(
π

2n

)
≈ 1− ωπ2h2

2
. (3.1.10)

This fact implies that λ1, eigenvalue associated with the smoothest mode, will al-
ways be close to 1. In addition, the smaller the grid spacing h, the closer λ1 is to 1.
Therefore after several iterations, the impact of high frequency components in the
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error is not significant and the error becomes “smooth”.

Now we present an intuitive explanation for the smoothing effect. First let us intro-
duce the idea of the residual equation. Let xm be an approximate of the real solution
x and em = x−xm. Then we have the following

Aem = A(x−xm) = b−Axm = rm, (3.1.11)

where rm = b−Axm is the residual and we call (3.1.11) the residual equation.

With this definition, let us examine the jth component of the residual. If the error
is geometrically smooth, (em) j−1, (em) j and (em) j+1 should not differ much. Then
we have

(rm) j = (Aem) j = 2(em) j− (em) j−1− (em) j+1 ≈ 0. (3.1.12)

This implies that smooth errors has small residuals. Subtracting (2.1.4) with x on
both sides, we further obtain:

em+1 = em +ωD−1rm. (3.1.13)

Since the weighted residual ωD−1rm is small, we can conclude that the error will
stay relatively unchanged.

3.1.2 Coarse-grid Correction

So far we established that many stationary iterative methods are effective in elimi-
nating oscillatory components of the error while leaving out the smooth ones. This
limitation keeps them from achieving fast convergence. On the other hand, we can
make an interesting observation about the smooth error:

If the error is smooth, can we somehow solve a smaller problem and interpolate the

solution?

In fact, the answer is yes, and this leads us to the famous correction scheme [16].
To be more specific, let A(1) = A be the coefficient matrix on the finer level Ω(1),
and A(2) be that on the coarser level Ω(2). A two-grid method can be outlined as
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follows:

Pre-smoothing: starting from the initial solution x0, run the smoother on A(1)x(1)=
b for a few iterations to obtain v(1);

Restriction: compute the residual vector r(1)=b−A(1)v(1) and r(2)=Rr(1), where
R is the restriction matrix;

Coarse-solve: construct the coarse-grid operator A(2) and solve A(2)e(2) = r(2);

Interpolation: compute the correction vector e(1) = Pe(2), where P is the interpo-

lation matrix, and update solution v(1)← v(1)+ e(1);

Post-smoothing: run the smoother on A(1)x(1) = b(1) for a few iterations with ini-
tial guess v(1).

Although only two grids are presented here, one can easily extend the scheme to
multiple grids, hence the name “multigrid”. Now we will go through the process
and explain the motivation behind each step:

Step 1: We run the smoother on the original problem. This process is usually re-
ferred to as presmoothing. Due to the smoothing effect, we expect the error
e(1) = x− v(1) to be relatively smooth. If we can approximate the residual
equation (3.1.11) on the coarse grid, e(1) will appear oscillatory due to down-
sampling, which makes the smoothers more effective. In addition, solving
the equation on Ω(2) is cheaper.

Step 2: To approximate the residual equation on the coarse grid, we first compute
the residual r(1) on Ω(1) and use a restriction operator to move it to Ω(2).

Step 3: We then construct a coarse-grid operator A(2) on Ω(2). In principle, the
coarse-grid operator should be a good approximation of A(1). A(2)e(2) = r(2)

forms the residual equation on Ω(2) and e(2) is the coarse grid version of
e(1). To solve this equation we can use direct solvers, the Krylov subspace
methods or smoothers with a zero initial guess. All approaches will benefit
from the fact that Ω(2) is smaller than Ω(1). In addition, as e(1) appears more
oscillatory on Ω(2), smoothers become more effective at reducing errors1.

1In practice, more levels are used to make the coarsest grid sufficiently small
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Step 4: Assume we have solved A(2)e(2) = r(2) accurately, we can then interpolate
e(2) to obtain e(1) and update the solution v(1) ← v(1)+ e(1). If the error is
smooth, we expect the interpolation to be relatively accurate. Therefore we
essentially solved A(1)e(1) = r(1) at a much lower cost.

Step 5: Finally with the updated solution, we may want to iterate a few steps to
further reduce errors. This process is referred as postsmoothing.

As we can see the reason why the multigrid method works so well is the complemen-

tarity between the smoothers and the coarse grid correction. Iterating on the fine
grid leaves smooth errors e(1) and they appear more oscillatory on the coarse grid
as e(2). We can then solve for e(2) effectively, and e(2) will become a good approxi-
mation of e(1) after interpolation. Finally with the correction step v(1)← v(1)+e(1),
we will obtain a solution very close to x. In other words, errors that cannot be
eliminated effectively by smoothers are removed by the coarse grid correction.

The correction scheme also introduces the essential components of the multigrid
algorithm:

1. Grid hierarchy: A hierarchy of grids (levels) with various resolutions.

2. Coarse-grid operators: Smaller problems to be solved on coarser levels.

3. Smoother: A stationary iterative method.

4. Coarse-grid solver: A solver employed at the coarsest level, and its choices
include stationary iterative methods, Krylov-subspace methods, and direct
methods.

5. Interpolation operators: Operators that transfer vectors to finer levels.

6. Restriction operators: Operators that transfer vectors to coarser levels.

With these components defined, a multigrid algorithm typically repeats the process
in a V-cycle, W-cycle or full-multigrid (FMG) cycle, as shown in Figure 3.2. In
the following sections, we will provide more details about the construction of these
components.
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Figure 3.2: Illustration of V-cycle and FMG-cycle.

3.2 Geometric Multigrid

Geometric multigrid, by its name, utilizes the geometry of the PDEs. Many clas-
sical theories, such as Fourier analysis and polynomial approximation, can be used
to aid in the construction of the multigrid components. For standard problems, it
is guaranteed that GMG achieves linear time complexity regardless of the mesh
size. The disadvantage is that the methods are often problem dependent. Different
equations or even different discretization methods for the same equation can re-
sult in significant changes of the algorithm. Nevertheless, GMG is one of the most
efficient iterative solvers if properly implemented.

Mesh Hierarchy. For structured meshes, the hierarchy is typically obtained by
coarsening the original mesh until the mesh size is sufficiently small. The coars-
ening process can be done by merging adjacent cells to form bigger cells of the
same element. For unstructured meshes, it is more difficult to aggregate cells while
maintaining the element shape and quality. A dual approach is to refine a coarse
initial mesh and solve the problem on the finest mesh [53, 44, 12]. This approach
is substantially simpler and more effective, but it is less general and requires tighter
integration with mesh generation. Figure 3.3 illustrates the process of mesh coars-
ening and refinement.

Smoother and Coarse-grid Operators. Once the hierarchy is generated, we
need to define the problems to be solved on intermediate levels. The most natu-
ral way to approximate the original problem is to rediscretize the PDEs. It is not
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Figure 3.3: Generation of mesh hierarchy for GMG.

necessary to recompute the right hand side vectors, but they can be helpful in the
initial FMG cycle. In terms of the smoothers, they should leave out errors that are
geometrically smooth. Fortunately, it is usually sufficient to use standard methods
like Jacobi and Gauss-Seidel, as long as the PDE has smooth coefficients and the
meshes are close to uniform. For anisotropic problems, we need to consider more
specialized methods, such as the line smoother in Chapter 4.

Transfer Operators. The interpolation operator is typically constructed by spa-
tial interpolation. For example, we may use linear interpolation for triangles and
bi-linear interpolation for quadrilaterals. For the case shown in Figure 3.4, the in-
terpolation formula for the coarse grid vertex p can be written as

f (x,y)≈ w1 f (q1)+w2 f (q2)+w3 f (q3)+w4 f (q4) , (3.2.1)

w1 =
1

(x2−x1)(y2−y1)
(x2− x)(y2− y)

w2 =
1

(x2−x1)(y2−y1)
(x− x1)(y2− y)

w3 =
1

(x2−x1)(y2−y1)
(x− x1)(y− y1)

w4 =
1

(x2−x1)(y2−y1)
(x2− x)(y− y1) .

(3.2.2)

We refer wi as the interpolation weights. If the grid hierarchy is generated by uni-
form refinement, the computation of weights are greatly simplified. For example,
the weights for the case shown here are simply 0.25 for each qi. Equivalently, the
weights can be computed from the finite element basis functions, in particular the
Lagrange basis functions. For a given vertex qi, its Lagrange basis function φi has
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q1(x1; y1) q2(x2; y1)

q4(x1; y2) q3(x2; y2)

p(x; y)

Figure 3.4: vertex p is enclosed by q1−q4 .

the following property

φi (q) =

1 q = qi

0 q ∈
{

q j
}
, j 6= i

. (3.2.3)

Within element {q1,q2,q3,q4}, any bi-linear polynomial can be expressed as

f ≈ φ1 f (q1)+φ2 f (q2)+φ3 f (q3)+φ4 f (q4) . (3.2.4)

A closer look at equation (3.2.2) reveals that the weights wi are exactly φi (x,y).

The restriction operator can be defined in two ways. One approach is to interpolate
from the fine grid points. The simplest example is the injection operator where the
value is interpolated from the nearest fine grid point. Alternatively, we can use the
scaled transpose of the interpolation operator, such as the full-weighting schemes
in [67, 16]. For finite element methods, the transpose of interpolation coincides
with the restriction of the basis functions. For finite difference methods, similar
principles can be applied but the transposed matrix needs to be scaled so that the
row sums are ones. More guidelines on the construction of the transfer operators
are discussed in Chapter 5.
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3.3 Algebraic Multigrid

Unlike GMG, where the geometry of problem plays a significant role, algebraic
multigrid is based entirely on the linear system. It requires neither knowledge about
the geometry nor how the PDE is solved. Due to this reason, AMG is an excellent
black-box solver, and it has been implemented in various packages [25, 32, 8].
There are two variants of AMG: classical AMG [15] and smoothed aggregation
[71]. Their differences mainly lie in the coarsening algorithm and the construction
of the interpolation operator. We will focus on the derivation of classical AMG.

Algebraic Smoothness. Like any multigrid algorithm, AMG utilizes the idea of
the complementarity between smoothers and coarse grid corrections. However, the
smoothness of the error is now measured algebraically: the error at the k+1st step
is not much smaller than that of the kth step. From equation (2.1.4), we can loosely
interpret this condition as smooth errors have small residuals, i.e.

‖M(ek+1− ek)‖= ‖rk‖ ≈ 0. (3.3.1)

With a smooth error, we need to define a way to interpolate it from the coarse grid
points, which leads us to the idea of strong influence. Since smooth errors have
small residuals, we have

Ae = r≈ 0. (3.3.2)

The ith row of the equation can be expressed as

ei ≈−
1
aii

∑
j 6=i

ai je j. (3.3.3)

Of course, we cannot compute ei directly with formula (3.3.3) since
{

e j
}

are avail-
able only from the coarse grid. However, we can expect a good approximation if
the set includes variables with large ai j, in other words,

{
e j
}

that strongly influence
ei. This observation suggests the following definition:
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Definition 1. With 0 6 θ 6 1, the variable j strongly influences the variable i if

∥∥ai j
∥∥> θ max

k 6=i
‖aik‖ . (3.3.4)

Similarly, the criterion of strong influence in smoothed aggregation is defined as∥∥ai j
∥∥> θ

√∥∥aiia j j
∥∥.

Algebraic Coarsening. Our goal is to select variables that strongly influence the
other variables as the coarse grid points. This process is referred as algebraic coars-

ening. There are various algorithms available such as the classical Ruge-Stueben
coarsening and the aggregation based coarsening. These algorithms represent the
matrix via a graph with edges connecting vertices i and j if ai j is nonzero. They
typically include the following steps

1. For each vertex, decide its strongly influenced neighbors by definition 1.

2. Loop through all vertices in a certain order and choose an unprocessed vertex
as a coarse grid point.

3. Once a coarse grid point is chosen, mark all its strongly influenced neighbors
as fine grid points.

4. Repeat steps 2 and 3 until all points are processed.

Depending on the algorithm, there may be a post processing step that improves
the distribution of the coarse grid points. Figure 3.5 illustrates a simple strategy.
We first pick vertex 1 as a coarse grid point and mark vertices 2 and 4 as its fine
grid neighbors. Then we move on to vertex 3 and mark vertex 6 as the fine grid
point. The algorithm is repeated until we reach vertex 9. Since all of its neighbors
are already processed, we mark vertex 9 as a coarse grid point and terminate the
algorithm. For more complicated strategies, we refer the reader to [41, 71] .

Multigrid Operators. Depending on the AMG variant, the interpolation operator
can be based on the classical interpolation [15] or the smoothed piece-wise constant
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Figure 3.5: Example of algebraic coarsening.

interpolation [71]. Let ei denotes the error associated with vertex i. For classical
AMG, the interpolation operator is defined by:

P(ei) =

ei if i is also in the coarse grid

∑wi je j otherwise.
. (3.3.5)

The weights
{

wi j
}

are computed by

wi j =−
ai j +∑m∈Ds

i

(
aimam j

∑k∈Ci amk

)
aii +∑n∈Dw

i
ain

, (3.3.6)

where Ds
i , Ci and Dw

i are three sets partitioned by strong influence [16]:

• Ci denotes the neighboring coarse-grid points that strongly influence i;

• Ds
i denotes the neighboring fine-grid points that strongly influence i;

• Dw
i denotes the weakly connected neighbors.

The interpolation operator is expressed as a matrix P, and the restriction operator R
is defined as PT . Unlike GMG, the coarse grid operators for AMG are constructed
algebraically by the Galerkin formulation. Let P be the interpolation operator, the
coarse grid matrix A(2) can then be written as

A(2) = PT AP. (3.3.7)
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Table 3.1: Computational times of GMG and PCG.
GMG PCG

Iter Error Time Iter Error Time
x component 4 9.1e-7

0.7 sec
44 8.9e-7

2.8 secy component 4 6.6e-7 31 9.4e-7
z component 6 7.3e-7 45 7.9e-7

This formulation is much simpler than rediscretization as it only requires matrix-
matrix multiplication with known matrices A and P. In fact the Galerkin formu-
lation is equivalent to rediscretization for some problems with finite element dis-
cretization. However A(2) is in general much denser than that obtained by redis-
cretization. Recent efforts on AMG are focused on reducing operator complexity by
truncating either the interpolation operator or the Galerkin product PT AP [22, 24].

3.4 Comparison of Iterative Solvers

One of the main motivations for the study of multigrid methods is its superior per-
formance over the standard solvers. As an example, we consider the computation
for the gradient vector flow field [74]

−µ4u(x)+ |∇ f (x)|2u(x) = |∇ f (x)|2∇ f (x), (3.4.1)

where f (x) is the edge map provided as input. We applied GMG and PCG with
SSOR to a 60× 60× 60 test image with tolerance 10−6. The results are summa-
rized in Table 3.1. It can be observed that the multigrid method is about 4 times as
fast as PCG. For larger data set, this advantage can be more significant. Other exam-
ples include the comparison of preconditioned solvers for nonsymmetric systems in
Figure 2.2. In those examples, AMG is used as a preconditioner for the Krylov sub-
space methods. Its performance is significantly better than the alternatives such as
GS and ILU.

Among the multigrid methods themselves, GMG and AMG have their own advan-
tages and disadvantages, which we summarize in Table 3.2. The main advantages of
GMG include its better convergence with smooth solution, better efficiency in terms
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Table 3.2: Advantages and disadvantages of GMG and AMG, along with the design
goals for HyGA.

geometric MG algebraic MG HyGA
memory requirement low high low
operator complexity less costly more costly less costly

matrix quality high less control high at finer levels
algorithm design hard easier intermediate
user friendliness less friendly more friendly intermediate

of computational time, and better efficiency in storage, especially with a matrix-free
implementation. However, GMG algorithms are very problem dependent. It can be
difficult to design the appropriate components for problems with anisotropic or dis-
continuous coefficients. In addition, it is hard to implement GMG to scale with
unstructured meshes as there is no effective method for geometric coarsening. The
advantages of AMG include its generality and flexibility. It can be used as a black-
box solver without any knowledge about the PDE or its geometry. A single AMG
algorithm can be applied to a wide range of problems, even ones with discontinu-
ous coefficients. However, AMG tends to be more expensive and it heavily relies
on the choice of parameters. It also tends to generate denser matrices than GMG,
so it has higher memory and computational costs. We seek to propose a hybrid
geometric+algebraic multigrid method that combines the advantages and overcome
the disadvantages of the GMG and AMG. The resulting algorithm is HyGA, which
will be discussed in Chapter 5.

3.5 Implementation

Compared to stationary iterative methods and the Krylov subspace methods, multi-
grid algorithms are more difficult to implement. Besides the original problem, the
algorithm also solves a collection of smaller systems and transfers solutions back
and forth. Therefore, we first need to define the appropriate data structure for the
necessary operations. On each level, we solve a residual equation and transfer the
solution. This requires storage of the solution vector, the right hand side vector, the
residual vector, the coarse-grid operator, the interpolation operator and possibly the
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restriction operator. We can encapsulate them into a structure variable called Grid.
In C, the Grid variable can be defined in the following fashion:

s t r u c t Gr id {
i n t ∗ r o w _ p t r ; / / c o e f f i c i e n t m a t r i x
i n t ∗ c o l _ i n d ;
do ub l e ∗ v a l s ;

i n t ∗Rrow_ptr ; / / r e s t r i c t i o n m a t r i x
i n t ∗R c o l _ i n d ;
do ub l e ∗Rva l s ;

i n t ∗ Prow_pt r ; / / p r o l o n g a t i o n m a t r i x
i n t ∗ P c o l _ i n d ;
do ub l e ∗ P v a l s ;

do ub l e ∗u ; / / S o l u t i o n v e c t o r
do ub l e ∗b ; / / RHS v e c t o r
do ub l e ∗ r ; / / R e s i d u a l v e c t o r

} ;

The operators are stored as matrices in the compressed row storage (CRS) format.
For some geometric multigrid algorithms, one may implement the transfer operators
in a matrix-free fashion. If direct methods are used as the coarse grid solver, we may
need additional data structure at the coarsest level for the factorization matrices.
Since there are multiple levels, we can use an array of Grid, named “Grids”, to
represent the whole multigrid data structure. On the finest level, we only need the
coefficient matrix and the right hand side vector of the original system. They can
be stored seperately from Grids or wrapped into a Grid variable with empty transfer
operators.

Figure 3.6 shows the workflow of the algorithm. There are two main steps: a setup
stage and the main loop. The advantage of seperating the steps is that we can use
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Figure 3.6: Multigrid workflow.

the same loop for GMG and AMG. The pseudo-codes are presented in Algorithms
1, 2 and 3. For convenience, the matrices are denoted by single letters instead of
the CRS format.

Setup. The setup for AMG is very straightforward as everything can be done by
algebraic coarsening. Since its restriction operator is the transpose of interpolaton,
there is no need to store it in Grid. There are two types of setup for GMG. One
is based on geometric coarsening for structured meshes, and the other is based on
mesh refinement. The construction of the transfer operators requires parent-child
information, which can be provided by the coarsening or refinement routines. The
coarse grid operators are computed by the rediscretization routines, which need to
be provided by users. Otherwise, one may use the Galerkin product if no other
information is available. Note that for the GMG refinement setup, the problem to
be solved is defined on the finest level. The input parameters are the original mesh,
which corresponds to the bottom level in the multigrid structure.

Main Loop. Once the setup stage is complete, the main algorithm may follow
a V-cycle, W-cycle or FMG-cycle. These cycles can be implemented via the same
codes for AMG and GMG. Algorithm 4 gives the pseudo code for the V-cycle. Each
V-cycle consists of an upward stroke and a downward stroke. In the downward
stroke, we smooth the solutions, compute the residuals, restrict the residuals to a
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Algorithm 1 AMG coarsening setup
input: A, b: the linear system

N: number of levels
θ : coarsening strength

output: Grids: multigrid structure
1: [Grids(1).A, Grids(1).P] = coarsen (A,θ )
2: for k = 2, ...,N−1
3: [Grids(k).A, Grids(k).P] = coarsen (Grids(k−1).A, θ )
4: end for

Algorithm 2 GMG coarsening setup
input: A, b: the linear system

xs: vertex coordinates
elems: element connectivity
N: number of levels

output: Grids: multigrid structure
1: [xs,elems, Grids(1).P, Grids(1).R] = coarsen (xs,elems)
2: Grids(1).A = rediscretize (xs,elems)
3: for k = 2, ...,N−1
4: [xsc, elemsc, Grids(k).P, Grids(k).R] = coarsen (xs,elems)
5: Grids(k).A = rediscretize (xs,elems)
6: end for

Algorithm 3 GMG refinement setup
input: xs: vertex coordinates

elems: element connectivity
N: number of levels

output: Grids: multigrid structure
A: coefficient matrix on the finest level
b: right hand side on the finest level

1: for k = N−1, ...,1
2: Grids(k).A = rediscretize (xs,elems)
3: [xs,elems, Grids(k).P, Grids(k).R] = refine (xs, elems)
4: end for
5: [A, b] = rediscretize (xs,elems)
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lower level and initialize the solution there to be zeroes. At the bottom level, a
coarse grid solver is applied to compute the solution with sufficient accuracy.2 In
the upward stroke, we interpolate the coarse grid solution, update the solution at
the current level and smooth it again. The cycles are repeated until the norm of the
residual is sufficiently small. FMG-cycles and W-cycles can be implemented in a
similar fashion.

Algorithm 4 Multigrid V-cycle
input: A, b: the linear system

Grids: multigrid structure
N: number of levels
tol: tolerance

output: u: the solution
1: while resnorm 6 tol
2: u= smoother (A,u,b)
3: r = b−A ·u and check norm(r)
4: Grids(1).b = Grids(1).R · r
5: Grids(1).u = 0
6: for k = 1, ...,N−2
7: [Grids(k).u] = smoother (Grids(k).A,Grids(k).u,Grids(k).b)
8: Grids(k).r = Grids(k).b−Grids(k).A ·Grids(k).u
9: Grids(k+1).b = Grids(k+1).R ·Grids(k).r

10: Grids(k+1).u = 0
11: end for
12: Grids(N−1).u=solve (Grids(N−1).A,Grids(N−1).u,Grids(N−1).b)
13: for k = N−2, ...,1
14: Grids(k).r = Grids(k+1).P ·Grids(k+1).u
15: Grids(k).u = Grids(k).u+Grids(k).r
16: [Grids(k).u] = smoother (Grids(k).A,Grids(k).u,Grids(k).b)
17: end for
18: r = Grids(1).P ·Grids(1).u
19: u = u+ r
20: u= smoother (A,u,b)
21: end while

2Although it is not necessary to apply direct solvers, one must ensure that the solution is accurate
enough. Otherwise, the multigrid convergence can deteriorate significantly.
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3.6 Performance Diagnosis

Sometimes the multigrid solvers may converge slowly or even diverge. There are
several things we can check to diagnose the problem.

Smoother. The smoother is the most likely component to cause slow convergence
or divergence. It also occupies the majority of the computational time in the main
loop. Take the Gauss-Seidel iteration for example. It converges for symmetric
and positive definite systems as well as systems with strong diagonal dominance.
For other types of problems, it is not clear whether GS converges or not. If GS
diverges, the multigrid solver diverges as well unless it is used as a preconditioner.
Another potential problem is that the smoothing effect of GS gets worse for more
complicated equations, such as the one in Chapter 4. As a result, the multigrid
solver may converge at a slower rate. A quick fix is to increase the number of pre
and post smoothing steps, particularly those at coarser levels. If the algorithm still
does not work well, we need to consider switching to another smoother.

Coarse-grid Solver. Strictly speaking, the multigrid algorithms require the solu-
tion to be computed exactly on the coarsest level. This is not necessary in practice
as a few iterations of smoothers or Krylov subspace methods are often enough.
However, when the multigrid method starts to converge slowly, we need to check
if the solution at the coarsest level is sufficiently accurate. If not, the convergence
rate of the multigrid method deteriorates significantly. An example can be found in
Chapter 4. In the worst case, we should always use a direct solver as the coarse-grid
solver.

Interpolation. The synergy between smoothers and coarse-grid corrections also
relies on the accuracy of the transfer operators. Even if the error is smooth, multi-
grid algorithms may converge slowly if the transfer operators are not accurate. For
GMG, we can check the accuracy by multiplying the operator matrix with a vector
on a coarser level. For example, if we use bi-linear interpolation, we can construct
a bi-linear function and evaluate its values at coarse-grid points. We then multiply
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the interpolation matrix with the coarse-grid vector and see whether the resulting
vector recovers the values on the fine grid exactly.

Parameters. This is more related to AMG. In AMG, there are a few parameters
that can change the behavior of the algorithm significantly. First, there are various
coarsening strategies to choose from. Some may be better than the others in some
cases. Second, there are a few parameters in the coarsening algorithm. For classical
Ruge-Stueben coarsening, there is a parameter θ that defines the threshold of strong
influence. In 2-D, a good choice is θ = 0.25. However in 3-D, it needs to be
changed to a higher value such as θ = 0.7. Third, we may want to consider different
interpolation algorithms. One of the problems with AMG is that the operators are
typically dense, which can be expensive in terms of both computational time and
storage. One may try to reduce the complexity by combining aggressive coarsening
with a more accurate interpolation matrix and vice versa.

Number of Levels. It is possible that adding more levels slows down the multi-
grid convergence. This is particularly true if the coarse-grid operator is not a good
approximation of its fine-grid counterpart. The best convergence rate of any multi-
grid algorithm is actually that of a two-grid scheme with a direct solver on the
second level. Of course, it is not practical to have only two levels. In general, we
should coarsen the mesh until the problem size on the coarsest level is manage-
able by the coarse-grid solver. If the coarse-grid solver does not affect the overall
performance much, there is no reason to coarsen the mesh further.
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Chapter 4

Geometric Multigrid for Anisotropic
Helmholtz Equations

We present a specialized geometric multigrid solver for the 2-D anisotropic Helmholtz
equation on structured grids. The general form of the equation can be expressed as:

−∇ · (K∇u)+αu = f . (4.0.1)

We consider cell-centered approximation with pure Neumann boundary condition.
The grid spacing can be non-uniform and anisotropic. It is easy to see that when
α = 0, the problem is reduced to a singular Poisson equation. When α is small, the
system is ill-conditioned. Special care must be taken when dealing with these cases
as the solutions tend to be inaccurate. In the followng sections, we will discuss
about the adaptation of the multigrid components in detail.

4.1 Line Smoother

The first change we need to make about the algorithm is the smoother. In Chapter 3,
we mentioned that standard stationary iterative methods usually work well for GMG
and AMG. For GMG, this is because the errors tend to be geometrically smooth.
However, this is no longer the case when the grid spacing is anisotropic. As an
example, let us apply standard Gauss-Seidel to a Helmholtz equation with Nx =
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(a) Initial error. (b) GS.

Figure 4.1: Initial error (left) and error of Gauss-Seidel (right).

3300, Ny = 100, dx = 4000, dy = 100 and α = 10−8. To evaluate the effectiveness
of Gauss-Seidel, we solve the following homogeneous system:

Au = 0. (4.1.1)

A comes from discretizing equation (4.0.1) with a finite difference scheme. The
initial guess is an oscillatory random vector. If the smoother works as intended,
the approximated solution uk, which coincides with ek, should be geometrically
smooth. Figure 4.1 plots the initial vector and the solution after 10 iterations. We
can see that the error is not smooth at all! Without a smooth error, the other multi-
grid components will not work well either. Fortunately, the treatment of anisotropic
problems is well studied in the literature [16, 67], and one of the solutions is to use
line smoothers.

The line smoother, or plane smoother in 3-D, is a specialized block stationary iter-
ative method for the Poisson type problem. To illustrate the idea, we express the
structure of the matrix A as

A1 B1

C1 A2 B2

C2 A3 B3

... ...

CNy−1 ANy

 . (4.1.2)
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It is a block tri-diagonal matrix. A block smoother is essentially a standard smoother
applied to these blocks. Algorithm 5 shows the details of the block Gauss-Seidel
iteration. At each iteration, we solve Ny smaller systems of the size Nx×Nx. Each
coefficient matrix Ai is tri-diagonal, and the variables within that block are up-
dated simultaneously. The right hand sides are computed by a combination of
the current values and the updated values, just like the point-wise Gauss-Seidel.
These smoothers turn out to be very effective for anisotropic problem when strongly

connected unknowns are updated together. In our previous example, the coeffi-
cients in the x direction are much smaller than those in the y direction. This indi-
cates that variables are strongly connected in the vertical direction. Therefore, we
should group variables in y unlike Algorithm 5 which processes x first. The block
smoothers in this case are also referred as y-line smoothers. Figure 4.2 shows the
errors of y-line GS and x-line GS after 10 iterations. We can see that the error of y-line
GS is indeed smooth while that of x-line GS is still oscillatory.

Algorithm 5 Block Gauss-Seidel Iteration
input: {Ai}, {Bi}, {Ci}, Nx, Ny, b
output: u

1: solve A1u1:Nx = b1:Nx−B1uNx+1:2Nx

2: for k = 2, ...,Ny−1
3: r = b(k−1)Nx+1:kNx−BkukNx+1:(k+1)Nx−Ck−1u(k−2)Nx+1:(k−1)Nx

4: solve Aku(k−1)Nx+1:kNx = r
5: end for
6: solve ANyu(Ny−1)Nx+1:NxNy

= b(Ny−1)Nx:NxNy
−CNx−1u(Ny−2)Nx+1:(Ny−1)Nx

4.2 Multigrid Setup

With smooth errors, we can then define the coarsening strategy and its correspond-
ing transfer operators. Many algorithms in the literature [16, 67] are developed for
nodal-based schemes and Dirichlet boundary conditions. The problem we are in-
terested utilizes cell-centered discretization and the Neumann boundary conditions,
which are necessary for the conservation of physical quantities. These differences
require changes in the construction of the transfer operators. In addition, unlike
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(a) y-line GS. (b) x-line GS.

Figure 4.2: Error of y-line GS (left) and error of x-line GS (right).

the common choice of the full-weighting scheme, we will see that the cell-centered
discretization provides a natural way to interpolate the fine-grid values to the coarse-
grid points.

Coarsening. For the generation of the grid hierarchy, we can apply power-two
coarsening. Figure 4.3 demonstrates two examples of such strategy. Let Nx denote
the number of cells in the x direction and Ny denote that in the y direction. In the
first example, Nx and Ny are both divisible by 2. We simply merge every two cells
in each direction into a bigger cell. In the second example, Ny is divisible by 2 but
Nx is not. In this case, we first merge every two cells in both directions until there is
only one cell in x. After that, we proceed with merge every two cells only in the y

direction. Note that it will be good to have at least two cells in each direction on the
coarsest level. If there is a large difference between Nx and Ny, one may consider
semi-coarsening, i.e. coarsening in one direction, when reaching the coarsest level
to reduce the grid size further.

Interpolation. There are three cases to consider when constructing the interpola-
tion operator. The first one is to interpolate fine grid points that lie in the interior
as shown in Figure 4.4. Since each point is surrounded by four coarse grid points
that form a rectangle, we can simply apply the bi-linear interpolation described by
formula (3.2.2). The nonstandard cases are the interpolation of boundary points
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Figure 4.3: 2-D geometric coarsening.

Figure 4.4: Interpolation of interior points.

shown in Figure 4.5. The trick here is use ghost cells. For homogeneous Neumann
boundary condition, the ghost point has the same value as its parent. Therefore, the
interpolation scheme for case (a) is linear interpolation in y and the scheme for case
(b) is piece-wise constant interpolation.

Restriction. The construction of the restriction operator includes two main cases
as illustrated in Figure 4.6. For the first case, each interior coarse grid point is
surrounded by four fine grid points. Therefore, we can simply use the bi-linear
interpolation as opposed to the full-weighting scheme. It is both accurate and cheap
in cost. The second case only occurs when Nx is not divisible by 2. Similarly if Ny

is not divisible by 2, we need to treat points near the ceiling. Since each coarse grid
point is adjacent to only two fine grid points, we can use linear interpolation.
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(a) points near edges. (b) corner points.

Figure 4.5: Interpolation of boundary points.

(a) interior points. (b) points near edges.

Figure 4.6: Restriction.

4.3 Coarse-grid Solver

Finally we need to choose the appropriate coarse-grid solver. The choice of the
coarse-grid solver usually does not introduce any problems. In fact, the multi-
grid algorithm converges nicely for many problems even with only a few iterations
of smoothers applied at the bottom level. The complication here is that the sys-
tem becomes very ill-conditioned when α is close to zero. When the system is
ill-conditioned, neither smoothers nor Krylov subspace methods are sufficient to
guarantee the accuracy of the coarse grid solution hence undermining the multigrid
convergence. Even if the algorithm does converge quickly in terms of the residuals,
the actual error may still be large due to the large condition number. To illustrate the
point, let us consider the same equation used in the previous section with Nx = 3300,
Ny = 100, dx = 2000, dy = 100 and α = 10−14. We use f = sin

(
2πx

Nx·dx

)
sin
(

2πy
Ny·dy

)
as the reference solution and generate a matching right hand side vector. We com-
pare a direct solver with 30 iterations of y-line GS in the same multigrid algorithm.
The matrix size on the coarsest level is 417. Table 4.1 shows the convergence re-
sults. The residuals and errors are measured by the relative 2-norm. Even though
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Table 4.1: Comparison of coarse-grid solvers.
Coarse-grid Solver MG Iter Residual Error
LU Factorization 4 4.2e-7 2.0e-4

y-line GS 9 8.9e-7 3.9e-1

y-line GS and LU factorization has similar residual and iteration count, their errors
are significantly different. This indicates that direct solvers are much more robust
than iterative methods for ill-conditioned systems.
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Chapter 5

HyGA:A Hybrid
Geometric+Algebraic Multigrid
Framework

Geometric multigrid methods are very efficient but the algorithms are often problem-
dependent. We have shown in Chapter 4 how to adapt the standard algorithms to
solve anisotropic problems on structured grids. In this chapter, we will generalize
the algorithm further to deal with unstructured meshes and the finite element dis-
cretization. At the same time, we seek to combine the advantages of GMG with
AMG.

With these goals in mind, we introduce a new framework of multigrid method
for solving elliptic PDEs over hierarchical unstructured meshes [51]. Figure 5.1
shows the schematic of our proposed method, which integrates various compo-
nents in a systematic fashion. At a high-level, our overall approach may be sum-
marized as follows. Our hierarchical mesh generator starts from a good-quality
coarse unstructured mesh that is sufficiently accurate representation and allows
accurate high-order reconstruction of the geometry [45]. It iteratively refines the
mesh with guaranteed mesh quality (by uniform refinements) and geometric accu-
racy (by high-order boundary reconstruction). We apply GMG with a multilevel
weighted-residual formulation on these hierarchical meshes, and employ the AMG
at the coarsest level. We use a semi-iterative method, namely the Chebyshev-Jacobi

45



0 2 4 6 8 10 12

0

2

4

6

8

10

12

nz =51

0 1 2 3 4 5 6

0

1

2

3

4

5

6

nz =22

al
ge

b
ra

ic
 M

G

Full-multigrid cycle V-cycles

mesh refinement

mesh refinement

graph coarsening

graph coarsening

ge
om

et
ri

c 
M

G

Krylov-subspace coarse-grid solvers

pr
ol

on
ga

tio
nrestriction

semi-iterative
smoothers

...

Figure 5.1: Schematic of hybrid geometric+algebraic multigrid method with semi-
iterative smoothers.

method, as the smoother at both the GMG and AMG levels, for better parallel ef-
ficiency. In this way, the framework effectively couples the rigor, accuracy and
runtime-and-memory efficiency of GMG at finer resolutions, with the flexibility
and simplicity of AMG at coarser resolutions.

5.1 Weighted Residual Formulation

The weighted residual formulation is a general numerical technique for solving
PDEs, of which both the Galerkin finite element, finite volume, and finite difference
methods can be viewed as special cases. We describe a general form of multilevel
weighted residuals for linear partial differential equations over a hierarchy of basis
functions. We will use this form to derive a geometric multigrid over hierarchical
meshes in the next section.
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5.1.1 A General Weighted Residual Formulation of Linear PDEs

For generality, let us consider an abstract but general form of linear, time-independent
partial differential equations

P u(x) = f (x), (5.1.1)

with Dirichlet or Neumann boundary conditions, where P is a linear differential
operator. In a weighted residual method,1 given a set of test functions Ψ(x) =
{ψ j(x)}, we obtain a linear equation for each ψ j as

ˆ
Ω

P u(x)ψ jdx =

ˆ
Ω

f (x)ψ jdx, (5.1.2)

and then the boundary conditions may be applied by modifying the linear system.
In general, a set of basis functions Φ(x) = {φi(x)} is used to approximate u and f ,
where Φ and Ψ do not need to be equal.

The above formulation with (5.1.1) and (5.1.2) is general, and it unifies large classes
of PDEs and of numerical methods. Examples of (5.1.1) include the Poisson equa-
tion−∆u(x) = f (x) and other linear elliptic problems. An example of (5.1.2) is the
finite element methods, where the basis and test functions are piecewise Lagrange
polynomials. When Φ = Ψ, this reduces to the Galerkin method. Another example
is the classical and the generalized finite difference methods [9], where the test func-
tions are the Dirac delta functions at each node of a mesh, and the basis functions
are piecewise polynomials (i.e., the basis functions of the polynomial interpolation
or approximation in computing the finite-difference formulae). The finite volume
methods are also examples, where the test functions are step functions, which have
value one over the control volume. This unification will allow us to derive a general
formulation of the restriction and prolongation operators for geometric multigrid
methods.

For the convenience of notation, suppose Φ and Ψ are both column vectors com-
posed of the basis functions, i.e. Φ = [φ1,φ2, . . . ,φn]

T and Ψ = [ψ1,ψ2, . . . ,ψn]
T .

Let u denote the vector of coefficients ui associated with φi in the approximation

1The term “residual” appears in two different contexts in this paper: the residual of a linear
system (b−Au) and the residual of a PDE ( f (x)−P u(x)). A “residual equation” is based on the
former, and “weighted residual” is based on the latter.
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of u, i.e., u ≈ uT Φ = ∑i uiφi, and similarly f (x) ≈ fT Φ = ∑i fiφi. Then P u =

P
(
uT Φ

)
= uT P Φ. From (5.1.2), we obtain a linear system

Au = b, (5.1.3)

where

Ai j =

ˆ
Ω

(
P φ j(x)

)
ψi(x)dx and bi =

ˆ
Ω

f (x)ψi(x)dx. (5.1.4)

For example, for the Poisson equation, we have

Ai j =

ˆ
Ω

−∆φ j(x)ψi(x)dx =

ˆ
Ω

∇φ j(x) ·∇ψi(x)dx. (5.1.5)

The matrix A is the stiffness matrix, and b is the force vector. The equation (5.1.3)
needs to be updated to incorporate the boundary conditions. The solution of (5.1.3)
gives a vector u such that the residual fT Φ−P(uT Φ) is orthogonal to the test
functions ψ j. If Φ is composed of Lagrange basis functions, such as in the finite
element methods, u and f are composed of the nodal values of u and f on a mesh,
respectively.

Remark In finite element methods, the integral in the left-hand side of (5.1.2)
is often transformed into integrals of a lower-order differential operator multiplied
(in an inner-product sense) with ∇ψ j(x). For example, in a finite element method
where ψ j vanishes along the boundary,

´
Ω
−∆u(x)ψ jdx =

´
Ω

∇u(x) ·∇ψ jdx. In
the finite volume methods, the integral in the left-hand side of (5.1.2) is transformed
into a boundary integral by utilizing Stokes’s or Green’s theorem. We omit these
details as they do not affect the derivations.

5.1.2 Weighted Residuals with Hierarchical Basis

In a multilevel context, we assume a hierarchy of basis functions Φ(k)(x), and sim-
ilarly for the test functions Ψ(k). Without loss of generality, let us consider two
levels first, and the construction will apply to adjacent levels in a multilevel setting.
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Suppose Φ(1) and Φ(2) correspond to the basis functions on the fine and coarse lev-
els, respectively, and the function space spanned by Φ(2) is a subspace of Φ(1). Let
R(1,2)

Φ
denote a restriction matrix of the function space such that

Φ
(2) = R(1,2)

Φ
Φ

(1), (5.1.6)

where R(1,2)
Φ
∈ Rn2×n1 . Similarly, let Ψ(2) = R(1,2)

Ψ
Ψ(1) with another restriction

matrix R(1,2)
Ψ

.

At the kth level, let A(k) denote the matrix A in (5.1.3). A key question is the
relationships between A(1) and A(2). To derive this, let us re-write A(k) in the form
of an integral of an outer product of Ψ(k) and P Φ(k), i.e.,

A(k) =

ˆ
Ω

Ψ
(k)
(
P Φ

(k)
)T

dx. (5.1.7)

Substituting Φ(2) = R(1,2)
Φ

Φ(1) and Ψ(2) = R(1,2)
Ψ

Ψ(1) into it, we then obtain

A(2) =

ˆ
Ω

(
R(1,2)

Ψ
Ψ

(1)
)(

P R(1,2)
Φ

Φ
(1)
)T

dx

= R(1,2)
Ψ

(ˆ
Ω

Ψ
(1)
(
P Φ

(1)
)T

dx
)(

R(1,2)
Φ

)T

= R(1,2)
Ψ

A(1)
(

R(1,2)
Φ

)T
(5.1.8)

From (5.1.8), we conclude that the restriction matrix R and the prolongation matrix
P in a two-level multigrid method for weighted residual methods should be

R = R(1,2)
Ψ

and P =
(

R(1,2)
Φ

)T
. (5.1.9)

In particular with nested meshes, for Galerkin methods, P = RT =
(

R(1,2)
Φ

)T
is an

interpolation matrix, which is a well-known result for Poisson equations [62] and
[16, Chapter 10]. In addition, it is desirable for these interpolations to have the same
order of accuracy as the numerical discretizations. For the classical and generalized
finite difference methods, P is also an interpolation matrix, but R is not equal to PT

and instead is an n2× n1 permutation matrix (an injection operator) or scaled PT ,
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because the ψ j are Dirac delta functions. For finite volume methods, R is not equal
to PT either. Instead, it corresponds to a constant interpolation from a cell to its
subcells.

We prove our result in (5.1.9) as follows. Let u(1) =
(

u(1)
)T

Φ(1) denote the ap-

proximation of u with basis Φ(1), and let b(1) denote the right-hand vector in (5.1.3).
The residual of linear system (5.1.3) with basis Φ(1) is r(1) = b(1)−A(1)u(1). Let
r(2) = R(1,2)

Ψ
r(1). The residual equation with Φ(2) is then

A(2)s(2) = R(1,2)
Ψ

r(1), (5.1.10)

where s(2) is the correction vector with Φ(2). Substituting (5.1.8) into it, we then
obtain

R(1,2)
Ψ

A(1)
(

R(1,2)
Φ

)T
s(2) = R(1,2)

Ψ
A(1)s(1) = R(1,2)

Ψ
r(1), (5.1.11)

where s(1) = Ps(2) =
(

R(1,2)
Φ

)T
s(2) is the prolongated correction vector with Φ(1).

In the functional form, (5.1.11) can be rewritten as
ˆ

Ω

Ψ
(2)
(

Φ
(1)
)T (

u(1)+ s(1)
)

dx =

ˆ
Ω

Ψ
(2) f (x)dx, (5.1.12)

i.e., s(1) gives a correction to u(1) so that the updated residual of the PDE is orthog-
onal to all the test functions in Ψ(2).

From (5.1.8) and (5.1.9), we see that the matrix A(2) is identical to the matrix
RA(1)P in a multilevel weighted-residual formulation with hierarchical basis func-
tions for any linear partial differential equation in the form of (5.1.1). This allows
us to discretize the PDE directly to obtain A(2).

5.2 Hybrid Multigrid Methods

We now present our hybrid multigrid method utilizing our results on multilevel
weighted residuals. Our hybrid multigrid method, called HyGA, combines a geo-
metric multigrid solver with a few levels of hierarchical meshes, and an algebraic

50



Figure 5.2: Illustration of refinement of triangle (left) and tetrahedron (right).

multigrid on the coarsest level. We will focus on finite element methods with linear
simplicial elements (in particular, triangles and tetrahedra in 2-D and 3-D) as well
as generalized finite differences.

5.2.1 Generation of Hierarchical Meshes

We first describe the construction of hierarchical meshes, which are needed for our
geometric multigrid based on multilevel weighted residuals.

Guaranteed-Quality Mesh Refinement.

We construct hierarchical meshes through iterative mesh refinement, instead of
mesh coarsening. In two dimensions, we start from a good-quality coarse trian-
gular mesh. To generate a finer mesh, we subdivide each triangle into four equal
sub-triangles that are similar to the original triangle, as illustrated in Figure 5.2(left).
The element quality (in terms of angles) is preserved under mesh refinement. To
generate an `-level hierarchical mesh, we repeat the refinement (`− 1) times. In
three dimensions, we start from a good-quality coarse tetrahedral mesh, and subdi-
vide each tetrahedron into eight sub-tetrahedra, as illustrated in Figure 5.2(right).
There are three different choices in the subdivisions. Any of these subdivisions will
produce eight sub-tetrahedra of the same volume, so it does not introduce very poor-
quality elements. Among these sub-tetrahedra, the four sub-tetrahedra incident on
the original corner vertices are similar to the original tetrahedra. The four interior
sub-tetrahedra may vary in shapes. We choose the subdivision that minimizes the
edge lengths, as it tends to minimize the aspect ratio, defined as the ratio of the sum
of squared edge lengths and the two-thirds root of the volume [46].
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Figure 5.3: Illustration of the treatment of curved boundary by projecting inserted
mid-edge points.

Treatment of Curved Boundaries.

One of the main reasons why unstructured meshes are useful in practice is its flex-
ibility to deal with complex geometries, especially those with curved boundaries.
When generating hierarchical meshes, we need to respect the curved boundaries.
We achieve this by projecting the newly inserted mid-edge points onto the curved
geometry, as illustrated in Figure 5.3. The projection can be done either analytically
if the geometry is known, or through a high-order reconstruction of the geometry
[45]. Note that if the mesh is too coarse at a concave region, some mesh smoothing
may be needed to avoid inverted elements (i.e., elements with negative Jacobian).
We omit this issue in this paper.

5.2.2 Prolongation and Restriction Operators

After we obtain the hierarchical meshes, the basis and test functions are determined
on each level. In Galerkin finite elements, the basis functions Φ(k) and test func-
tions Ψ(k) are the same, and they are piecewise Lagrange polynomials. Assume
the meshes are exactly nested, then the function space on a coarser mesh is strictly
a subspace of that on a finer mesh. Therefore, there is an exact restriction matrix
R(k,k+1)

Φ
of the functional space between levels k and k + 1. As we have shown

in Section 5.1.2, for Galerkin finite elements the optimal prolongation operator is

P(k) =
(

R(k,k+1)
Φ

)T
, and the optimal restriction operator is R(k) = R(k,k+1)

Φ
. With

these definitions, the matrix A(k+1) from discretizing the PDE over the (k + 1)st
grid is equivalent to R(k)A(k)P(k).

In general, computing R(k,k+1)
Φ

may be a daunting task. However for Lagrange

52



basis functions over hierarchical meshes, R(k,k+1)
Φ

is precisely the transpose of the
interpolation matrix I(k+1,k) of the nodal values from the (k+1)st level mesh to the
kth level mesh. This result may not be obvious, because as noted in [67], such nodal
interpolations may require proper scaling to produce the correct prolongation and

restriction operators. In the following, we show that R(k,k+1)
Φ

=
(

I(k+1,k)
)T

.

Without loss of generality, let k = 1, and let ũ(2) =
(

ũ(2)
)T

Φ(2) denote the approx-

imation of u with basis Φ(2). Since Φ(2) = R(1,2)
Φ

Φ(1), we have

ũ(2) =
(

ũ(2)
)T

R(1,2)
Φ

Φ
(1) =

(
ũ(1)
)T

Φ
(1), (5.2.1)

where ũ(1) =
(

R(1,2)
Φ

)T
ũ(2). At the same time, because Φ(k) are Lagrange basis

functions, we have
ũ(2) =

(
I(2,1)ũ(2)

)T
Φ

(1). (5.2.2)

Thus, I(2,1)ũ(2) =
(

R(1,2)
Φ

)T
ũ(2) for any ũ, so R(1,2)

Φ
−
(

I(2,1)
)T

= 0.

In summary, for hierarchical Lagrange basis functions, P(k) = I(k+1,k), i.e., interpo-
lation matrix of nodal values from (k+1)st level to the kth level. In addition for the

Galerkin finite element methods, R(k) =
(

I(k+1,k)
)T

. One subtle point is that after
we project the points onto curved boundaries, the element is no longer nested, so
the Lagrange basis functions are no longer strictly hierarchical. When constructing
the prolongation and restriction matrices, we treat the elements as nested (in other
words, creating the prolongation and restriction operators as if boundary projection
did not occur). This is because that for linear elements, whose geometric errors
are second order when approximating curved boundaries, this projection introduces
second-order corrections to the positions between each pair of meshes. Therefore,
the additional errors introduced by omitting the curved boundaries in the prolon-
gation and restriction operators are in the same order as the truncation errors, so it
would not affect the convergence rate.
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5.2.3 Hybrid Geometric+Algebraic Multigrid

Our preceding formulation based on hierarchical basis functions is efficient and rel-
atively easy to implement. However, it has one limitation: it requires a hierarchical
mesh. In practice, it is reasonable to assume a small number of levels (such as
two or three levels) in a hierarchical mesh, but we cannot expect to have too many
levels. This can limit the scalability of GMG with hierarchical meshes alone.

To overcome this issue, we propose to use a hybrid geometric+algebraic multgird
method, or HyGA. In this approach, we use geometric multigrid based on multi-
level weighted residuals for the finer levels with the hierarchical mesh, and use an
algebraic multigrid (AMG) method, in particular the classical AMG, for the coarser
levels. Details of the classical AMG algorithm can be found in Section 3.3.

5.3 Chebyshev Smoothers

Our preceding section focused on the prolongation and restriction operators. In
multigrid methods, another critical component is the smoother. The standard prac-
tice is to use stationary iterative methods, such as Gauss-Seidel iterations, as smoothers,
because of their good smoothing properties. However, these stationary iterative
methods tend to converge relatively slowly. The semi-iterative methods utilize poly-
nomial acceleration to improve the convergence of the stationary iterative methods
[35, 72], and thus from theoretical point of view they are appealing alternatives for
smoothers. In addition, the semi-iterative methods, especially those based on poly-
nomial accelerations of Jacobi iterations, are appealing from a practical point of
view, because they are inherently parallel. In contrast, its Gauss-Seidel counterpart
poses various difficulties especially for unstructured meshes [1].

In some previous studies such as [1], some variances of semi-iterative methods
or polynomial accelerations have been proposed as smoothers. In this work, we
propose the use of the Chebyshev-Jacobi method, or CJ for short, as a smoother.
This method possesses a number of interesting properties as a standalone solver
and as a smoother, for linear systems with both symmetric and asymmetric matrices
under some reasonable assumptions.
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5.3.1 Standalone Chebyshev-Jacobi Method

Our discussion on semi-iterative methods mostly follow [40]. For simplicity, let us
first consider the case of symmetric matrices, for which all the eigenvalues are real.
The semi-iterative method introduces a polynomial acceleration for a stationary
iterative scheme

x(n+1) = Gx(n)+k. (5.3.1)

In particular, we are interested in accelerating the Jacobi iteration, where G =

I−D−1A and D = diag(A). To improve convergence of x(n), we consider a new
sequence

{
u(n)
}

defined by the following linear combination

u(n) =
n

∑
i=0

αn,ix(n), (5.3.2)

where the αn,i are some constant coefficients. Under the assumption that A is sym-
metric, all the eigenvalues of G are real. Let {λi} denote these eigenvalues, where
λ1 and λn are the largest and smallest eigenvalues of G, respectively. In the CJ, the
acceleration scheme has the following recurrence relation

u(n+1) = ρn+1

(
γ(Gu(n)+k)+(1− γ)u(n)

)
+(1−ρn+1)u(n−1), (5.3.3)

where the parameters are given by

γ =
2

2−λ1−λn
, σ =

γ

2
(λ1−λn), and ρn+1 =


1 n = 0(
1− 1

2σ2)−1
n = 1(

1− 1
4σ2ρn

)−1
n > 2

. (5.3.4)

The above formulas follow from the three-term recurrence of Chebyshev polyno-
mials. For completeness, we summarize the derivation as follows. Let u∗ denote
the true solution of the linear system Ax = b, and e(n) = u(n)−u∗ be the error at the
nth iteration. It is easy to show that

e(n) =

(
n

∑
i=0

αn,iGi

)
e(0) = Pn (G)e(0), (5.3.5)
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where
Pn (G) = αn,0I+αn,1G+ · · ·+αn,nGn (5.3.6)

is an nth order matrix polynomial, and Pn (1) = 1. The convergence of the CJ
depends on the spectral radius ρ (Pn (G)). Note that

ρ (Pn (G))6 max
λn6x6λ1

|Pn (x)| . (5.3.7)

Thus we want to find a polynomial that its maximum absolute value over the spec-
trum of G is minimum. It can be shown that the unique optimal polynomial is given
by [40]

Pn (x) = Tn

(
2x−λ1−λn

λ1−λn

)/
Tn

(
2−λ1−λn

λ1−λn

)
, (5.3.8)

where Tn (x) is the nth order Chebyshev polynomial. Using the three-term recur-
rence of Chebyshev polynomials Tn, we then obtain (5.3.3).

Convergence of Chebyshev-Jacobi Method for Symmetric Matrices.

An important property of the CJ is that it is guaranteed to converge if all the eigen-
values of G are real and less than 1 [40], which is satisfied if the matrix A is sym-
metric positive definite. Hence, the CJ significantly robustifies the Jacobi iterations,
as it is guaranteed to converge when A is symmetric and positive definite, whereas
the Jacobi iterations may diverge in this setting.

In addition, the CJ also significantly improves the convergence rate of Jacobi itera-
tions. More precisely, it can be shown [40] that

ρ (Pn (G)) =
2rn/2

(1+ rn)
, where r =

1−
√

1−σ2

1+
√

1−σ2
, (5.3.9)

and the asymptotic rate of convergence for CJ is given by

R∞ (Pn (G)) =−1
2

logr. (5.3.10)
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In comparison, the asymptotic rate of convergence for Jacobi iterations is given by

R∞

(
Gγ

)
=− logσ , (5.3.11)

where Gγ = (1− γ)I+γG is the iteration matrix of weighted Jacobi iterations with
a weight γ defined in (5.3.4). Combining (5.3.10) and (5.3.11), it can be shown that

R∞ (Pn (G))∼
√

2R∞

(
Gγ

)
as σ → 1−. (5.3.12)

In words, the CJ in general can result in an order of magnitude improvement in the
rate of convergence compared to Jacobi iterations.

The robustness and efficiency of the CJ make it an appealing method for solving
linear systems, and they also motivate us to consider it as a smoother. However, a
subtle issue of the CJ is that it requires good estimations of extreme eigenvalues for
optimal convergence. Let λn be the smallest eigenvalue and λ

′
n be an estimate of λn.

Fortunately, as shown in [40], the estimation of the smallest eigenvalue λn does not
affect the convergence much, as long as λ

′
n ≤ λn. More specifically, if the following

condition is satisfied

0 6 λn−λ
′
n 6 0.1max{|λn| ,1}, (5.3.13)

then a non-optimal λ
′
n will cause only up to 4% increase in the number of iterations.

Therefore, we do not need a very accurate estimate for λn. However, if λ
′
n > λn,

divergence may occur.

On the other hand, when used as a standalone solver, the convergence of CJ is sen-
sitive to the estimation of the largest eigenvalue λ1. In addition, if we underestimate
λ1, the expected number of iterations would increase much more than if we over-
estimate λ1 by an equal amount, so one needs to estimate an upper bound of λ1.
Fortunately, this situation will be much less an issue when CJ is used as a smoother,
as we discuss in Section 5.3.2.
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Generalization to Asymmetric Matrices.

In PDE discretizations, the matrix A is often asymmetric, due to either complex
boundary conditions or the asymmetry in the stencils of the numerical discretiza-
tions (such as high-order finite differences or generalized finite differences). In this
case, the matrix A and in turn the iteration matrix G may have complex eigenval-
ues, and the situation is somewhat more complicated. However, the matrix A is
typically “nearly symmetric,” because the symmetry is only due to the boundary
effect or numerical discretization errors.

Assume the eigenvalues of G are bounded by the following ellipse

(x−d)2

a2 +
y2

b2 = 1, (5.3.14)

where the constants a and b are real, and

a+d < 1. (5.3.15)

If a ≥ b, c =
√

a2−b2 is also real, then the unique polynomial that minimizes the
maximum spectrum over the ellipse is given by [20]

Pn (z) = Tn

(
z−d

c

)/
Tn

(
1−d

c

)
, (5.3.16)

where Tn (z) is the Chebyshev polynomial. Using the three-term recurrence of Tn,
we obtain the acceleration scheme same as (5.3.3), except that the parameters γ and
σ are now given by

γ =
1

1−d
=

2
2− (d +a)− (d−a)

, and σ = cγ = γ

√
a2−b2. (5.3.17)

These parameters are consistent with (5.3.4) when the eigenvalues are all real,
where λ1 = d+a, λn = d−a, and c= a= (λ1−λn)/2. In addition, if the imaginary
parts of all the eigenvalues of G are small (i.e., b� a), then c≈ a, and thus

γ ≈ 2
2−Re(λ1)−Re(λn)

, and σ ≈ γ

2
(Re(λ1)−Re(λn)). (5.3.18)
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Therefore, if the matrix is nearly symmetric (more precisely if the imaginary parts
of the eigenvalues are small), we can approximate the parameters γ and σ as in the
symmetric case from the extreme eigenvalues of D−1 (A+AT)/2.

5.3.2 Chebyshev-Jacobi Method as Smoother

We now analyze the applicability of the CJ as a smoother. The key issue is the
estimation of the eigenvalues λ1 and λn and in turn γ and σ . As in the case for
standalone CJ, it is not necessary to obtain an accurate estimation of the smallest
eigenvalue λn of the iteration matrix G. In practice, we can simply apply a few
Lanczos iterations to get an estimation of the largest eigenvalue of D−1A, say t, and
then obtain λn ≈ 1− t. If A is asymmetric, instead of D−1A, it suffices to estimate
the largest eigenvalue of D−1 (A+AT)/2, whose eigenvalues are all real.

For the estimation of λ1, while it is important for the standalone CJ, it does not
need to be very accurate when CJ is used as a smoother. This is because for solving
elliptic PDEs, the smoothers only need to damp high-frequency modes. Assuming
A is symmetric, these modes typically correspond to the larger eigenvalues of D−1A
and the smaller eigenvalues of I−D−1A. Therefore, an inaccurate estimation of λ1

would not undermine the smoothing effect of CJ, as long as estimations satisfy
λ
′
n < λ

′
1 < 1, where λ

′
1 denotes the estimation of λ1. In fact, we observed that an

accurate λ1 does not produce the best smoothing effect, although it gives optimal
convergence of the standalone CJ. In our experiments, we have found that it works
well to use λ

′
1 ≈ 2/3 for 2-D problems and λ

′
1 ≈ 0.9 for 3-D problems.

5.4 Numerical Experiments

In this section, we present some numerical experimentations using HyGA with CJ,
and also assess the effectiveness of our method against some other alternatives. For
our benchmark problem, we use some sparse linear systems from finite elements or
generalized finite differences for Poisson equations with Dirichlet boundary condi-
tions. Figure 5.4 shows the test geometries for our problem, both of which have
irregular and curved boundaries and hence require unstructured meshes.
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Figure 5.4: Coarsest initial meshes for 2-D (left) and 3-D tests (right) .

We solve the linear system using the following four strategies and compare their
performances:

AMG: classical AMG.

GMG: GMG with multilevel weighted-residual formulation.

HyGA(2): GMG on first two levels and classical AMG on coarser levels.

HyGA(3): GMG on first three levels and classical AMG on coarser levels.

For all the tests, we use one cycle of full multigrid, followed by V-cycles. On the
coarsest level, conjugate gradient or GMRES is used to obtain sufficient accuracy.
In terms of smoothers, we use 2 Chebyshev-Jacobi iterations for 2-D problems and
4 for 3-D problems in GMG and HyGA. In AMG, we use Gauss-Seidel method
with the same number of iterations as it is more effective. The tolerance is 10−10

measured by the relative 2-norm of residuals.

5.4.1 Convergence Results for 2-D Finite Elements

Our first test case is the 2-D finite element discretization for the Poisson equation

∆u(x) = f (x), where f (x) =−2π
2 (sin(πx)+ sin(πy)) (5.4.1)

with homogeneous boundary conditions on three quarters of a unit disk depicted
in Figure 5.4(left). Starting from a 2-D initial mesh generated using Triangle [63],
we generated three meshes with different resolutions, by refining the initial mesh
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(a) 35,986 unknowns with 5 levels.
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(b) 144,674 unknowns with 6 levels.

Figure 5.5: Relative residual versus numbers of iterations for 2-D test cases.

in Figure 5.4(left) for three, four, and five times, to obtain hierarchical meshes with
four, five, and six levels, respectively. After each refinement, we projected the
newly inserted boundary points onto the curved boundary.

Figure 5.5 shows the convergence for the five- and six-level meshes with different
strategies. For AMG we choose strength of connection θ (c.f. Section 5.2.3) to be
0.25 as it seems to give the best performance. From these results, it can be seen that
GMG converges a bit faster than AMG. For HyGA with only two or three levels of
GMG, its convergence rate was comparable to GMG. These results indicate that the
finer levels are critical to the overall convergence of multigrid methods. Therefore,
it is advantageous to use GMG to achieve the best accuracy at finer levels. In
addition, as we observe in Section 5.4.3, GMG at the finer levels tend to produce
coarser operators and hence better efficiency. On coarser levels, the more slowly
converging but more flexible AMG suffices to ensure good overall performance
of HyGA. This alleviates the complications of further mesh coarsening of a pure
GMG and reduces the computational cost of a pure AMG while maintaining good
convergence.

5.4.2 Convergence Results for 3-D Finite Elements

Our second test case is the 3-D finite-element discretization for the Poisson equation
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(b) 2,484,807 unknowns with 5 levels.

Figure 5.6: Relative residual versus numbers of iterations for 3-D test cases.

∆u(x) = f (x), where f (x) =−3π
2 (sin(πx)+ sin(πy)+ sin(πz)) (5.4.2)

with homogeneous boundary conditions on a slotted sphere depicted in Figure 5.4.
We generated a tetrahedral mesh from the surface mesh using TetGen [64], and
then build two meshes with different resolutions by refining the initial mesh in
Figure 5.4 for three and four times, to obtain hierarchical meshes with four and
five levels, respectively. We use similar strategies and settings as for the 2-D tests.
However for AMG, the parameter θ is chosen to be 0.65 and the value decreases
in lower levels to achieve good performance. Figure 5.6 shows the convergence of
different strategies, which are qualitatively similar to the 2-D results. It can be seen
that GMG converged faster than AMG. At the same time, HyGA performed nearly
identically as GMG, while being much more flexible. Moreover, the performance
of HyGA was about the same on the 2-D and 3-D mesh, while the performance of
AMG was more sensitive to the choices of parameters.

5.4.3 Comparison of Computational Costs

In terms of computational times, Table 5.1 compares the runtimes of different strate-
gies for FEMs on a Mac Pro with two 2.4 GHz quad-core Intel Xeon processor and
24 GB of memory, running Mac OS X 10.7.5 with gcc 4.2. For all strategies, we
show only the solve time since the setup times were less significant. As a reference,
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we also show the running times of MATLAB’s built-in preconditioned conjugate
gradient (PCG) with incomplete Cholesky factorization (ichol) as the precondi-
tioner. Similar to the convergence result, the performance of hybrid schemes are
comparable to GMG with only two or three geometric levels. In addition, GMG
and HyGA are faster than AMG even when their convergence rates are close. The
reason is the higher complexity of the coarse-grid operators of the AMG, which is
evident from Figure 5.7, where we compare the operator complexities of strategies
on several levels for the 3-D 5-level mesh. From the charts we observe that GMG
produces much smaller and more sparse matrices than AMG does. The operator
complexity of HyGA is also moderate, as GMG is used on the finest levels. Since
the computational time is dominated by smoothing, which is affected by matrix
sparsity, the performances of GMG and HyGA overall are much better.

Table 5.1: Timing results (in seconds) for AMG, GMG and HyGA. For references,
times for PCG (with incomplete Cholesky preconditioner) are shown.

dim #rows in the system AMG GMG HyGA(2) HyGA(3) IC-PCG

2-D
8,906 0.12 0.04 0.08 0.04 0.21

35,986 0.37 0.14 0.25 0.17 1.27
144,674 1.43 0.61 1.14 0.79 11.1

3-D
291,684 30 5.26 6.67 5.22 9.32

2,484,807 397 58.3 85.8 61.2 186

5.4.4 Assessment of Chebyshev-Jacobi Smoother

We now assess the effectiveness of the CJ as a smoother in HyGA. We first investi-
gate the influence of parameters λ

′
n and λ

′
1, and then compare the performances of

the CJ versus lexicographic Gauss-Seidel iterations.

Influences of Parameters.

To evaluate the influence of parameters, we consider the 2-D Poisson equation with
a 5-level mesh and 3-D Poisson equation with a 4-level mesh as described in the
previous subsection. We computed a reference value for λn using MATLAB’s eigs
function with a relative tolerance of 10−5. In these test cases, λn < 0. We compare
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Figure 5.7: Number of rows and nonzeros in the coarse grid operators of different
strategies on levels 2, 3, and 4 for the 3-D 5 level mesh.

Table 5.2: Sensitivity of λ
′
n for 2-D and 3-D test cases.

λ
′
n

number of multigrid iterations
2-D 3-D

λn 14 19
1.2λn 14 21
−2 16 23

0.8λn 47 diverged

the numbers of iterations required by the multigrid method for the cases of λ
′
n equal

to the optimal value λn, a loose bound 1.2λn, and the very loose bound −2. In
addition, we also test the case where λ

′
n = 0.8λn, which violates the requirement

λ
′
n ≤ λn and hence the CJ may diverge. In all these cases, we set λ

′
1 to 2/3 for 2-D

and 0.9 for 3-D.

Table 5.2 shows the numbers of multigrid iterations of HyGA with these parameters.
It can be seen that the convergence of CJ is insensitive to λn as long as λ

′
n ≤ λn.

Even a naive loose estimate of λn ≈−2 did not affect the convergence very much.
However, when λ

′
n > λn, the convergence deteriorated significantly, and it even

diverged in our 3-D test.
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Table 5.3: Comparison of Chebyshev-Jacobi and Gauss-Seidel as smoothers. All
times are in seconds.

Tests
Chebyshev-Jacobi Gauss-Seidel
iterations time iterations time

2-D 5-level 14 0.17 9 0.11
2-D 6-level 14 0.79 10 0.50
3-D 4-level 19 5.24 21 6.08
3-D 5-level 23 61.3 24 61.6

Comparison with Gauss-Seidel Iterations.

To assess the effectiveness of the CJ method as smoother, we compare the conver-
gence of HyGA(3,`−3) with CJ versus Gauss-Seidel iterations as the smoother. In
both cases, we use the conjugate gradient method as the coarse grid solver. Table 5.3
shows the numbers of iterations as well as the run times of the methods. In both
2-D and 3-D, Gauss-Seidel works rather well as a smoother. The convergence of CJ
is a bit worse than Gauss-Seidel in the 2-D tests, but it is better than Gauss-Seidel
in 3-D when degree-4 polynomials are used. This result is remarkable, because the
CJ method is much easier to parallelize and is more scalable than Gauss-Seidel,
so it can be expected to out-perform Gauss-Seidel iterations on parallel computers.
Similar behaviors of other semi-iterative methods have been reported in [1].
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Chapter 6

OPINS: An Orthogonally Projected
Implicit Null-space Method

In this chapter, we consider a different type of linear system, the saddle-point sys-
tem. Our previous discussions about the multigrid methods can not be directly
applied here due to the unique structure of the coefficient matrix. We will instead
focus on the design of an efficient Krylov subspace method and leave the develop-
ment of multigrid preconditioners as future work.

The saddle-point system has the following form:[
A BT

B 0

][
x
y

]
=

[
f
g

]
, (6.0.1)

where A ∈ Rn×n is symmetric, B ∈ Rm×n, x, f ∈ Rn, and y,g ∈ Rm. The coefficient
matrix, denoted by K, can be symmetric and indefinite. It may be nonsingular or
singular, and often very ill-conditioned even when it is nonsingular.

This type of problems arises in many scientific applications. For example, it can be
derived from solving the following constrained optimization problem,

min
x

1
2

xT Ax− fT x subject to Bx = g, (6.0.2)

using the method of Lagrange multipliers, where A is the Hessian of the quadratic
objective function, and Bx = g defines a constraint hyperplane for the minimiza-
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tion. In this case, A is typically symmetric, x contains the optimization variables or
solution variables, and y contains the Lagrange multipliers or constraint variables.
The optimality conditions are referred as Karush-Kuhn-Tucker conditions, and the
system (6.0.1) is often called the KKT system [55], with K being the KKT matrix. In
PDE discretization, the Lagrange multipliers are often used to enforce nodal con-
ditions, such as the sliding boundary conditions and the continuity constraints at
hanging nodes [31].

Solving the saddle-point problems is particularly challenging. One may attempt to
solve it using a general-purpose solver, such as a direct solver or an iterative solver
[14, 23, 68], or the range-space method [73]. For large and sparse saddle-point
systems, a more powerful method is the null-space method [10], which solves for
x first and then y, with a Krylov subspace method as its core solver. The disad-
vantage of the null-space method is that computing an orthonormal basis can be
very expensive. Another class of methods, which we refer to as implicit null-space

methods [61, 36, 37], are equivalent to the null-space method with an orthonormal
basis of null(B), but they do not require computing the basis explicitly. However,
with rounding errors, these methods may suffer from numerical instability. The
instability may be mitigated by iterative refinements [36, 37], but with increased
computational costs.

We propose an implicit orthogonal projection method, called OPINS, which is a
more stable variant of implicit null-space methods. Specifically, we compute an
orthonormal basis for range

(
BT), which can be constructed efficiently when m� n

using a stable algorithm such as QR factorization with column pivoting (QRCP).
Let U denote the matrix composed of such an orthonormal basis. Instead of using
ZT AZ in the null-space method, we use the orthogonal projector Π⊥U ≡ I−UUT

to construct a singular but compatible linear system, with a symmetric coefficient
matrix Π⊥UAΠ⊥U . We solve this system using a solver for singular systems, such as
MINRES [56, 19] and SYMMLQ [56] for symmetric systems. We also propose
preconditioners for saddle-point systems, based on the work in [37]. The resulting
OPINS method is highly efficient when m� n, and it is stable, robust, and easy
to implement using existing Krylov-subspace method for singular systems, without
the issue of stagnation suffered by other implicit null-space methods.
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Besides being more stable, another advantage of OPINS is that it can be applied to
singular saddle-point systems, which arise in various applications. In the literature,
most methods assume the saddle-point system is nonsingular. When this assump-
tion is violated, for example when there are redundant constraints or insufficient
constraints, these methods may force the user to add artificial boundary conditions
or soft constraints to make the system nonsingular, which unfortunately may un-
dermine the physical accuracy of the solution. OPINS not only solves the singular
system but also finds the minimum norm solution in terms of x.

6.1 Background and Related Works

We briefly review some important concepts and related methods for solving saddle-
point problems. There is a large body of literature on saddle-point problems; see
[10] for a comprehensive survey up to early 2000s and the references in [37] for
more recent works. We focus our discussions on the null-space methods, since they
are the most relevant to our proposed method. For completeness, we will also briefly
discuss some other methods for saddle-point systems and singular linear systems.

6.1.1 Explicit Null-Space Methods

One of the most powerful methods for solving saddle-point systems is the null-
space method. Geometrically, for a nonsingular saddle-point problem arising from
constrained minimization, this method finds a critical point of an objective function
within a constraint hyperplane Bx = g. Algorithm 6 outlines the algorithm, where
xp ∈Rn denotes a particular solution within the constraint hyperplane. Let q denote
the rank of the constraint matrix B, and q ≤ m. The column vectors of the Z ∈
Rn×(n−q) form a basis of null(B), and BZ = 0. Step 3 finds a component xn in
null(B), i.e. a vector tangent to the constraint hyperplane, so that xn + xp is at a
critical point. After determining x, the final step finds the Lagrange multipliers y in
range(B).
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Algorithm 6 Null-Space Method
input: A, B, f, g, tolerance for the iterative solver (if used)
output: x, y (optional)

1: solve Bxp = g
2: compute Z, composed of basis vectors of null(B)
3: solve ZT AZv = ZT (f−Axp)
4: xn← Zv and x← xp +xn
5: y← B+T (f−Ax)

In the algorithm, step 3 is the most critical, which solves the equation

ZT AZv = ZT (f−Axp) , (6.1.1)

within null(B). We refer to (6.1.1) as the null-space equation, and denote its coeffi-
cient matrix by N̂. This matrix is (n−q)×(n−q), which is smaller than the original
matrix K. When A is symmetric and positive semidefinite and null(A)∩null(B) =
{0}, N̂ is SPD [10], and (6.1.1) can be solved efficiently using preconditioned con-
jugate gradient (CG). However, if N̂ is symmetric but indefinite or is nonsymmet-
ric, then an alternative iterative solver, such MINRES, SYMMLQ [56], or GMRES
[60], can be used; see textbooks such as [59] for details of these iterative solvers.

In the traditional null-space method, the matrix Z is constructed explicitly. We refer
to such an approach as the explicit null-space method. In exact arithmetic, it is not
necessary for Z to be orthonormal. If B has full rank, then there exists an n× n

permutation matrix P such as BP = [B1 | B2], where B1 is an m×m nonsingular
matrix, and B2 is m× (n−m). Then, one could simply choose Z to be [33]

Z = P

[
−B−1

1 B2

I

]
, (6.1.2)

where I is the (n−m)× (n−m) identity matrix. However, if the columns of Z are
too far from being orthonormal, ZT AZ may be ill-conditioned, which in turn can
cause slow convergence for iterative solvers or large errors in the resulting solu-
tion. Therefore, it is desirable for Z to be orthonormal or nearly orthonormal, so
that ZT AZ approximately preserves the condition number of A. If the dimension
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of null(B) is high, i.e., when m� n, Z is typically quite dense. Determining an or-
thonormal Z requires the full QR factorization of BT , which takes O(n3) operations.
Therefore, explicit null-space methods are impractical for large-scale applications.

6.1.2 Implicit Null-Space Methods

For saddle-point systems where m � n, it is desirable to avoid constructing an
orthonormal basis of null(B) explicitly. One such approach is to use a Krylov sub-
space method with a constraint preconditioner [36, 47], which has the form

M =

[
G BT

B 0

]
, (6.1.3)

where G is an approximation of A. This preconditioner is indefinite, and it was
shown in [61] that it provides optimal bounds for the maximum eigenvalues among
similar indefinite preconditioners. Since the preconditioner is indefinite, it is not
obvious whether we can use it as a preconditioner for methods such as CG or
MINRES, which typically require symmetric positive-definite preconditioners. As
shown in [36, 37], one can apply the preconditioner to the modified saddle-point
system [

A BT

B 0

][
xn

y

]
=

[
f−Axp

0

]
, (6.1.4)

with preconditioned CG and MINRES. The vector xn in (6.1.4) is the same as that
from step 4 in Algorithm 6, but the vector y computed from (6.1.4) may be inaccu-
rate, so one may need to solve for y separately once x is obtained. In exact arith-
metic, the Krylov subspace method with this constraint preconditioner is equivalent
to the projected Krylov method in [37]. Because of this equivalence, we will use
the names projected Krylov methods and Krylov subspace methods with constraint

preconditioning interchangeably in this paper, although these methods somewhat
differ in their implementation details.

The projected Krylov method is closely related to the preconditioned null-space
method on the null-space equation (6.1.1) with an orthonormal Z. The stability of
the method requires the computed xn to be exactly in null(B) at each step. However,
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the rounding errors can quickly introduce a nonnegligible component in range(BT ),
which can cause the method to break down [36, 37]. To mitigate this issue, the
constraint preconditioner must be applied “exactly,” by solving the preconditioned
system with a direct method followed by one or more steps of iterative refinement
per iteration [36, 37]. The iterative refinement introduces extra cost, and there is no
guarantee that it would recover orthogonality between xn and range(B) to machine
precision, so the projected Krylov method may still stagnate. Besides its poten-
tial instability, the projected Krylov methods typically assume the KKT system is
nonsingular [37]. It is desirable to develop a more stable version of the implicit
null-space method that can also be applied to singular KKT systems.

6.1.3 Other Methods for Saddle-Point Systems

Besides the null-space methods, another class of methods for saddle-point problems
is the range-space method [73]. It first obtains y by solving the system

(
BA−1BT)y = BA−1f−g, (6.1.5)

where the coefficient matrix is the Schur complement, and then computes x by
solving

Ax = f−BT y. (6.1.6)

The range-space method can be attractive if a factorization of A is available. How-
ever, computing the Schur complement is expensive if A is large and sparse, and
the method is not directly applicable if A is singular.

The null-space and range-space methods both leverage the special structures of the
saddle-point systems. In some cases, one may attempt to solve the whole system
(6.0.1) directly using a factorization-based method, such as LDLT decomposition
for symmetric systems [68]. These methods are prohibitively expensive for large-
scale problems. In addition, since the solution variables x and constraint variables
y have different physical meanings, the entries in A and B may have very different
scales. As a result, K may be arbitrarily ill-conditioned, and these methods may
break down or produce inaccurate solutions due to poor scaling. Another class of
method is iterative solvers with preconditioners [11]. The constraint preconditioner
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is a special case, which is equivalent to an implicit null-space method, with some
optimality properties among similar indefinite preconditioners [4, 61]. Some other
preconditioners include the block diagonal [23], block triangular [14], and multigrid
[2]. These methods do not distinguish between x and y, so they may have more
difficulties when K is singular or ill-conditioned.

6.1.4 Methods for Singular Saddle-Point Systems

The methods we discussed above typically assume nonsingular saddle-point sys-
tems. For general singular saddle-point problems, one may resort to truncated SVD
[34] or rank-revealing QR, which are computationally expensive. One may also
apply an iterative solver for singular systems, such as MINRES and SYMMLQ
[56] for compatible symmetric systems, and MINRES-QLP [19] for incompatible
symmetric systems. Without preconditioners, these methods can find the minimum-
norm solution of compatible singular systems when they are applicable. However,
they do not distinguish between x and y in the solver. As a result, these methods
minimize ‖x‖2+‖y‖2, which may substantially differ from the minimum-norm so-
lution of x, especially when K is ill-conditioned. OPINS will overcome this issue
by leveraging the iterative solvers in the implicit null-space method in a stable and
efficient fashion, and in turn offer an effective method for solving singular saddle-
point systems.

6.2 Orthogonally Projected Null-space Method

In this section, we introduce the Orthogonally Projected Implicit Null-Space Method,
or OPINS, for solving saddle-point systems (6.0.1). Similar to the other implicit
null-space methods, OPINS does not require the explicit construction of the basis
of null(B), and it is particularly effective when m� n. However, unlike previous
null-space methods, OPINS enforces orthogonality explicitly and hence enjoys bet-
ter stability. It is also applicable to singular saddle-point systems. In the following
subsections, we present the OPINS method, its derivation, and the analysis of its
cost and stability.
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6.2.1 Algorithm Description

A core idea of OPINS is to use the orthogonal projector onto null(B), constructed
from an orthonormal basis of range(BT ). Let U denote the matrix composed of an
orthonormal basis of range(BT ), which can be computed using truncated SVD or
QR with column pivoting (QRCP) [17, 34]. Since U is orthonormal, ΠU ≡ UUT is
the unique orthogonal projector onto range(BT ), and

Π
⊥
U ≡ I−ΠU = I−UUT (6.2.1)

is its complementary orthogonal projector onto null(B). Note that Π⊥U = ΠZ, where
Z is composed of an orthonormal basis of null(B). Let q = rank(B). Using this
projector, OPINS replaces the (n−q)× (n−q) null-space equation ((6.1.1)) in the
null space method with the n×n singular system

Π
⊥
UAΠ

⊥
Uw = Π

⊥
U (f−Axp) , (6.2.2)

and then solves it using a solver for singular systems. We refer to the above equation
as the projected null-space (PNS) equation, and denote its coefficient matrix as N.

Algorithm 7 outlines the complete OPINS algorithm, which applies to nonsingular
or compatible singular systems. The first two steps find an orthonormal basis of BT

using QRCP, where P is an m×m permutation matrix, so that the diagonal values
of R are sorted in descending order. Q ∈ Rn×m is orthonormal, and R ∈ Rm×m is
upper triangular. For stability, QRCP should be computed based on Householder
QR factorization [34]. If B is rank deficient, its rank can be estimated from the
magnitude of the diagonal entries in R, or more robustly using a condition-number
estimator [34]. The first q columns of Q form an orthonormal basis of range

(
BT).

With QRCP, both xp in step 3 and y in step 6 can also be solved efficiently. When
B is rank deficient, so is R. We use R−T

1:q,1:q and R−1
1:q,1:q to denote the forward and

back substitutions on R1:q,1:q.

The key step of the algorithm is the solution of the PNS equation (6.2.2) in step 4,
which is singular. As we will show in Section 6.2.2, (6.2.2) is compatible under the
assumption that (6.0.1) is compatible in terms of f, i.e., f ∈ range(A)+ range(BT ).
Therefore, we can solve it using a Krylov subspace method for compatible singu-
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Algorithm 7 OPINS: Orthogonally Projected Implicit Null-Space Method
input: A, B, f, g, tolerances for rank estimation and iterative solver
output: x, y (optional)

1: BT P = QR {QR factorization with column pivoting}
2: U←Q1:q, where q is rank(B) estimated from QRCP
3: xp← B+g = UR−T

1:q,1:q
(
PT g

)
1:q

4: solve Π⊥UAΠ⊥Uw = Π⊥U (f−Axp) using iterative singular solver
5: x← xp +xn, where xn = Π⊥Uw
6: y← B+T (f−Ax) = P:,1:qR−1

1:q,1:qUT (f−Ax)

lar systems, as we discuss in more detail in Subsection 6.2.2. A key operation in
these methods is the multiplication of the coefficient matrix with a vector. For the
multiplication with Π⊥U with any vector v ∈ Rn,

Π
⊥
Uv = v−U

(
UT v

)
, (6.2.3)

which can be computed stably and efficiently. Note that U is not stored explicitly
either, but as a collection of Householder reflection vectors in QRCP.

6.2.2 Detailed Derivation of OPINS

The derivation of OPINS is similar to that of the null-space method. For complete-
ness, we will start with the derivation of the explicit null-space method, and then
extend it to derive OPINS. We will also discuss the solution techniques of the PNS
equation.

Null-Space Method for Singular and Nonsingular Systems

Let x∗ = xn + xp, where xp ∈ range(BT ) is a particular solution and xn = Zv is a
component in null(B). Our goal is to find xn. Substituting the expression into the
equation yields

A(Zv+xp)+BT = f. (6.2.4)

We can multiply both sides with ZT and obtain
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ZT A(xn +xp) = ZT f, (6.2.5)

or equivalently,
ZT AZv = ZT (f−Axp) . (6.2.6)

This is the null-space equation (6.1.1). If f ∈ range(A)+ range(BT ), then the null-
space equation (6.1.1) is compatible.

In the above derivation, Z does not need to be orthonormal. However, if Z is far
from being orthonormal, the system (6.1.1) may have a large condition number,
which may affect the convergence of the iterative solvers and the accuracy of the
numerical solution.

OPINS for Singular and Nonsingular Systems

To derive OPINS, now assume Z is orthonormal. We further multiply Z to both
sides of the null-space equation and then obtain

ZZT AZv = ZZT (f−Axp) . (6.2.7)

In addition, we rewrite xn = Zv as the orthogonal projection of a vector w ∈ Rn

onto null(B), i.e.,
Zv = ZZT w. (6.2.8)

Substituting it into (6.2.7), we have

ZZT AZZT w = ZZT (f−Axp) , (6.2.9)

which is equivalent to (6.2.2) in step 4 of Algorithm 7.

The above transformation may seem counter-intuitive, as we intentionally con-
structed a singular system (6.2.2), which is larger than the null-space equation
(6.1.1). However, (6.2.2) has three key properties: First, it uses an orthogonal
projector to ensure that xn is exactly in null(B), and hence it overcomes the insta-
bility associated with the projected Krylov methods. Second, since ΠZ = ZZT =

I−UUT = Π⊥U , we can compute the projection by finding U, which is much more
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efficient than finding Z when q≤m� n. Third, since (6.2.2) is always singular, and
QRCP in step 1 supports rank-deficient B, we can apply OPINS to a saddle-point
system regardless of whether A, B, or ZT AZ is singular.

Solution of Orthogonally Projected Null-Space Equation

Since the PNS system (6.1.1) has an infinite number of solutions, a natural question
is which solution of the system suffices in producing the minimum-norm solution
in terms of x. In the following, we will address the question first for systems with a
nonsingular null-space equation, followed by more general singular systems.

Theorem 2. Given a saddle-point system (6.0.1) where the null-space equation

(6.1.1) is nonsingular and the solution to (6.0.1) is unique in terms of x, then the

solution of (6.2.2) recovers this unique x.

Proof. Consider the alternative form of the PNS equation in (6.2.9). The system is
compatible, so we can always find a solution w ∈Rn for the equality to hold. Since
ZT Z = I, left-multiplying ZT on both sides of (6.2.9), we obtain

ZT AZZT w = ZT (f−Axp) . (6.2.10)

Since system (6.1.1) is nonsingular, ZT w recovers the unique solution for v, and in
turn recovers the unique xn and x.

Note that nonsingular (6.1.1) includes the cases where the saddle-point system
(6.0.1) is nonsingular. However, it does not necessarily imply that (6.0.1) is non-
singular, because B may be rank-deficient. An implication of Theorem 2 is that we
have the flexibility of solving (6.1.1) with any solver even if (6.0.1) is singular.

For a general singular saddle-point system, the situation is more complicated. As-
sume (6.0.1) is compatible in terms of f, the following theorem indicates that OPINS
finds the minimum-norm solution of x.

Theorem 3. Given a saddle-point system (6.0.1) compatible in terms of f, i.e., f ∈
range(A) + range(BT ); if x is the minimum-norm solution of the PNS equation

(6.2.2), then ‖x‖ is minimized among all the solutions x = xn + xp that satisfy the

constraint Bx = g.
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Proof. Note that x = xp + xn, where xp ∈ range(BT ) and xn ∈ null(B), so ‖x‖2 =

‖xp‖2+‖xn‖2. In step 3 of QRCP, xp is the minimum-norm solution in range(BT ).
Therefore, we only need to show that ‖xn‖ is minimized in null(B), where xn = Zv.
This is satisfied if ‖v‖ is minimized among the exact solutions to the null-space
equation (6.1.1), i.e.,

ZT AZv = ZT (f−Axp). (6.2.11)

Since Z is orthonormal, ‖xn‖= ‖v‖. In OPINS, if w is an exact solution to (6.2.2),

ZZT AZZT w = ZZT (f−Axp). (6.2.12)

Since ZT Z = I, by left-multiplying ZT on both sides, we have

ZT AZZT w = ZT (f−Axp), (6.2.13)

so v = ZT w is an exact solution of the null-space equation (6.1.1). Note that ‖v‖=
‖ZT w‖ ≤ ‖ZT‖‖w‖ = ‖w‖, and it is an equality if w ∈ range(Z) = null(B), i.e.,
w = ZZT w = xn. Therefore, the minimum-norm solution of w in (6.2.2) minimizes
‖xn‖.

Note that Theorem 3 is more general than Theorem 2, as it includes Theorem 3 as
a special case. Finally, regarding the y component in (6.1.1), the values of y are not
important for many applications. However, if desired, we can obtain y by solving
BT y = (f−Ax) using QRCP. In general, ‖y‖ may not be minimized if B is rank
deficient, but the norm is typically small.

6.2.3 Efficiency of OPINS

We now analyze the computational cost of OPINS. There are two components that
are relatively more expensive. The first is the QRCP in step 1, which takes O(4

3m2n)

operations when using Householder transformation. When m� n, this operation is
far more efficient than finding an orthonormal basis of null(B). After obtaining the
QR factorization, steps 3, 5, and 6 all take O(mn) operations. In addition, if B is
sparse, Q and R are in general also sparse, leading to even more cost savings. The
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other one is the solution of the singular system (6.2.2). When A is large and sparse,
it is not advisable to use truncated SVD or rank-revealing QR factorization for this
system. Instead, we apply a Krylov-subspace method for singular systems. Within
each iteration of these methods, the dominating operation is matrix-vector multipli-
cations, which cost O(N +nq), where N denote the total number of nonzeros in A.
The convergence of these methods depend on the nonzero eigenvalues [39]. The
following proposition correlates the eigenvalues of the coefficient matrices N̂ and
N in (6.1.1) and (6.2.2), respectively.

Proposition 4. Given a saddle-point system (6.0.1), the PNS matrix in (6.2.2) has

the same nonzero eigenvalues as the null-space system (6.1.1) with an orthonormal

Z.

Proof. Let N̂ = ZT AZ and N = Z
(
ZT AZ

)
ZT = ZN̂ZT . If λ̂ is a nonzero eigen-

value of N̂, and x̂ is a corresponding eigenvalue, then

N(Zx̂) =
(
ZN̂ZT)(Zx̂) = ZN̂x̂ = λ̂Zx̂, (6.2.14)

so λ̂ and Zx̂ form a pair of eigenvalue and eigenvector of N. Conversely, if λ a
nonzero eigenvalue of N and x is its corresponding eigenvalue, then

N̂(ZT x) =
(
ZT Z

)(
ZT AZ

)
ZT x = ZT Nx = λZT x. (6.2.15)

Therefore, N and N̂ have the same nonzero eigenvalues.

Based on the above proposition, the convergence rate of the Krylov subspace method
on the PNS equation (6.2.2) is asymptotically the same as that on the null-space
equation (6.1.1) with an orthonormal Z. To accelerate the convergence of these
methods, it is desirable to use preconditioners, which we discuss next.

6.3 Preconditioners

In OPINS, the most time consuming step is typically the iterative solver for the
PNS equation (6.2.2) in step 4. To speed up its computation, it is critical to use
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preconditioners. In this section, we present some principles for constructing effec-
tive preconditioners for PNS equations, based on the recent work on the projected
Krylov methods [37].

Let N = Π⊥UAΠ⊥U . The general idea of preconditioning is to find a matrix M that
approximates the coefficient matrix N, or M+ that approximates the pseudoinverse
N+. The latter form is more convenient for solving the PNS systems. Algorithm 8
outlines the pseudocode of the preconditioned OPINS with a left preconditioner.
The preconditioning routine takes an operator M to evaluate M+b for any b ∈ Rn.
Note that for symmetric systems, most preconditioned Krylov-subspace methods
would apply the preconditioners symmetrically. Specifically, suppose M+ has a
symmetric factorization M+ = LLT , then these methods solve the equation

LT
Π
⊥
UAΠ

⊥
ULw̃ = LT

Π
⊥
U (f−Axp) (6.3.1)

in the preconditioned method, and then computes w = Lw̃. Typically, the algo-
rithm is constructed such that the explicit factorization M+ = LLT is not needed.
We omit the details of such preconditioned Krylov-subspace methods; interested
readers may refer to [5, 59].

Algorithm 8 Preconditioned OPINS
input: A, B, f, g, G, tolerances for rank estimation and iterative solver
output: x, y (optional)

1: do first three steps of Algorithm 7
2: solve M+Π⊥UAΠ⊥Uw = M+Π⊥U (f−Axp) using a preconditioned Krylov-

subspace method
3: do the last two steps of Algorithm 7.

In this section, we will focus on the construction of M or M+. A straightforward
choice of M is the approximation of A. Possible candidates include SSOR-type
preconditioners, incomplete factorization, and multigrid methods. We propose to
approximate N+ with M+ = PG = Z

(
ZT GZ

)−1 ZT , where G is an approximation
of A and ZT GZ is nonsingular. We refer to this preconditioner as the projected

preconditioner. As we shall show later, for nonsingular systems it is equivalent to
the constraint preconditioner in the projected Krylov methods [37, 47].

For symmetric systems, most preconditioned Krylov subspace methods require the
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preconditioner to be symmetric. Hence, we require that G is symmetric and ZT GZ
is SPD. Therefore, PG is symmetric and positive semi-definite. The following
proposition states that OPINS with the projected preconditioner is equivalent to
applying ZT GZ as a preconditioner in solving the corresponding null-space equa-
tion.

Proposition 5. Assume ZT GZ is SPD and the saddle-point system is symmetric.

OPINS with the projected preconditioner is equivalent to applying ZT GZ as the

preconditioner for solving the null-space equation in the null-space method.

Proof. If ZT GZ is SPD, then so is
(
ZT GZ

)−1, which has a Cholesky factorization

(
ZT GZ

)−1
= LGLT

G. (6.3.2)

Then PG = Z
(
ZT GZ

)−1 ZT has a symmetric factorization

PG = LLT = ZLG(ZLG)
T = ZLGLT

GZT , (6.3.3)

where L = ZLG. If PG is applied symmetrically, the preconditioned OPINS would
solve the equation

LT
GZT︸ ︷︷ ︸
LT

ZZT AZZT︸ ︷︷ ︸
N

ZLG︸︷︷︸
L

w̃ = LT
GZT︸ ︷︷ ︸
LT

ZZT (f−Axp) , (6.3.4)

where ZT Z = I and w = LGw̃. Therefore, it is equivalent to solving

LT
G ZT AZ︸ ︷︷ ︸

N̂

LGw̃ = LT
GZT (f−Axp) , (6.3.5)

which is equivalent to applying ZT GZ as a symmetric preconditioner to (6.1.1).

As shown in [47], the eigenvalues of the constraint-preconditioned null-space equa-
tion are well clustered if G is a good approximation of A. Due to the above equiv-
alence, the projected preconditioner is a good choice for OPINS. Note that if the
system is singular, applying the preconditioner symmetrically may alter the null
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space of the coefficient matrix. Therefore, additional care must be taken to find the
minimum-norm solution.

The remaining task is to find a way to provide PG as an operator for efficient com-
putation of s = PGb for any b ∈ Rn. Note that s is the solution to the following
modified but simpler saddle-point system[

G U
UT 0

][
s
t

]
=

[
b
0

]
, (6.3.6)

where U is composed of an orthonormal basis of range(BT ). Because from the
null-space method, we have

s = Z
(
ZT GZ

)−1 ZT b = PGb. (6.3.7)

This implies that PG can be given as an operator through the solution of (6.3.6).
(6.1.3) is similar to the procedure for evaluating the constraint preconditioner in
the projected Krylov method [37], for which the off-diagonal entries are BT and B
instead of U and UT . By replacing BT by U, (6.1.3) can be solved more efficiently,
and it is also applicable if B is rank deficient.

If G is a simple matrix or operator, such as the preconditioner based on SSOR
or incomplete factorization, we can solve (6.1.3) efficiently by using the range-
space method, given by (6.1.5) and (6.1.6), especially when m� n. Algorithm 9
outlines the procedure for computing PGb using the range-space method, where U
is composed of an orthonormal basis of BT .

Algorithm 9 Operator PG for Projected Preconditioner
input: G, U, b
output: s = PGb

1: solve Gr = b
2: solve (UT G−1U)t = UT r
3: solve Gs = b−Ut
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Table 6.1: Summary of test problems.
problem len(x) len(y) rank(K) nnz(K) source
3d-var 3240 3 3243 18360 climate modeling [43]

sherman5 3312 20 3332 153273 nonsymmetric problem from [13]
mosarqp1 2500 700 3200 9434 quadratic programming [52]
fracture 780 92 786 10464 2-D nonlinear elasticity [7]
can_61 61 20 81 2997 symmetric problem from [13]
random 100 20 120 14000 random nonsingular matrix
random-s 100 20 90 14000 random singular matrix

6.4 Numerical Experiments

In this section, we evaluate OPINS with various test problems. The experiments are
mainly focused on symmetric nonsingular systems. For singular systems, please
refer to Section 7.1. Some results of nonsymmetric systems are also included in
Section 6.4.1. We start by evaluating the performance of OPINS with and without
preconditioners, to demonstrate the importance of preconditioners and the effective-
ness of the projected preconditioner. We then compare OPINS against some present
state-of-the-art methods for symmetric nonsingular and singular systems. We use a
few test problems, as summarized in Table 6.1 arising from constrained minimiza-
tion, finite element analysis, climate modeling, and random matrices. Among these
problems, the first six are sparse, and Figure 6.1 shows the sparsity patterns for
some of their KKT matrices. If the right-hand sides were unavailable, we generate
them by multiplying the matrix with a random vector. For all problems, we set the
convergence tolerance to 10−10 for the residual in iterative methods, and set the
tolerance for QRCP to 10−12.

In terms of error measures, different methods use different convergence criteria
internally. For a direct comparison, we present the convergence results in two dif-
ference measures. The first is the residual of x within the null space of B, i.e.,

r := ΠZ (f−Axp)−ΠZAxn, (6.4.1)

where xp is the particular solution in range(BT ) and xn is the corresponding solution
in null(B). To make the metric scale independent, we measure the residual relative
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(a) 3d-var (b) fracture (c) sherman5

Figure 6.1: Sparsity patterns of KKT matrices in 3d-var, fracture and sherman5.

to the right-hand side of (6.1.1), i.e.,

relative residual in x := ‖r‖/
∥∥ΠZ (f−Axp)

∥∥ . (6.4.2)

When comparing OPINS with methods that solve for x and y simultaneously, such
as preconditioned Krylov methods, we calculate the residual in x by computing U
using QR factorization. For a more complete comparison, in addition to the above
error metric, we also compute the residual for the whole system (6.0.1) relative to
the right-hand side in terms of both x and y.

6.4.1 Effectiveness of Preconditioners

For Krylov subspace methods, the preconditioners have significant impact on the
convergence rate. First let us consider symmetric systems. The core solver in
OPINS is based on MINRES, so we assess the effectiveness of OPINS with a
straightforward preconditioner as well as the projected preconditioner as described
in Section 2.3. For simplicity, we choose G as the Jacobi preconditioner for both
preconditioners, and denote them as OPINS-J and OPINS-P, respectively.

We solve the test case 3d-var with unpreconditioned OPINS, OPINS-J and OPINS-
P. Figure 6.2(a) shows the convergence results measured in terms of the x resid-
ual. For 3d-var, the block A is nearly diagonal and is strongly diagonal dominant,
so both preconditioners worked well and performed significantly better than un-
preconditioned OPINS. Between the preconditioners, the projected preconditioner
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Figure 6.2: Convergence history of relative residual in x of OPINS versus precon-
ditioned OPINS for 3d-var and sherman5.

performed better than the Jacobi preconditioner for MINRES alone, because the
projected preconditioner provides a better approximation to the whole matrix. This
indicates that the projected preconditioner is effective for accelerating OPINS, if G
is a good approximation of A.

To demonstrate the applicability to nonsymmetric systems, we solve the problem
sherman5 from the matrix market database [13]. A comes from an oil reservoir
simulation and B is a random matrix. Since the system is nonsymmetric, we choose
G as the ILU factorization of A for both preconditioners, and denote the two strate-
gies as OPINS-ILU and OPINS-P, respectively. The inner solver is GMRES with
the number of restarts set to 50. Figure 6.2(b) shows the convergence results for
the three approaches. The results show that OPINS indeed works for nonsymmetric
systems. Similar to the symmetric case, OPINS-P is faster than OPINS-ILU while
both are much faster than unpreconditioned OPINS.

6.4.2 Assessment for Symmetric Nonsingular Systems

We now perform a more in-depth assessment of OPINS for symmetric nonsingular
systems. Since unpreconditioned OPINS is not effective for nonsingular systems,
we only consider OPINS-J and OPINS-P. We compare them against other Krylov
subspace methods, including PMINRES and PCG with constraint preconditioners,
which are equivalent to implicit null-space methods and are effective choices for the
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Figure 6.3: Convergence history of relative residuals in x for OPINS and projected
Krylov methods for 3d-var and random.

Table 6.2: Relative residual in [x,y] upon convergence for OPINS and after conver-
gence, stagnation, or excessive numbers of iterations of projected Krylov methods.

Problem OPINS-J OPINS-P PMINRES PCG PGMRES(50)
3d-var 7.8×10−13 2.5×10−10 2.5×10−10 2.5×10−10 1.3×10−11

mosarqp1 2.1×10−11 3.9×10−11 1.3×10−10 1.3×10−10 5.4×10−11

random 1.2×10−12 1.2×10−12 3.5×10−4 breakdown 1.5×10−4

saddle-point systems that we are considering. As a reference, we also consider the
preconditioned GMRES with the constraint preconditioner applied to the original
system (6.0.1). The number of restarts is set to 50. We calculated the error for
GMRES only after the solver has converged, so only one data point is available for
it.

We solve three test problems, mosarqp1, 3d-var and random. Figure 6.3(a) and (b)
show the convergence of the residual in terms of x for 3d-var and random. In 3d-

var, all methods perform well with OPINS-P being similar to PMINRES. In terms
of solution accuracy, all strategies give accurate [x,y] as shown in Table 6.2.

In the random test, the A block is a 100× 100 symmetric, nonsingular and indefi-
nite matrix. B is a randomly generated 20× 100 dense matrix with full rank. Fig-
ure 6.3(b) shows the x errors of different strategies. In this example, A is no longer
positive definite, and PCG breaks at the initial iterations. Compared to PGMRES,
OPINS and PMINRES converged much faster both in terms of x and in terms of
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[x,y]. One reason is that OPINS and PMINRES are symmetric methods that can
take advantage of a complete Krylov subspace basis. On the other hand, the x
residual of PMINRES will stagnate around 10−8. This is due to the instability of
the algorithm as mentioned in [37]; see Subsection 6.4.3 for a more detailed anal-
ysis and comparison. Due to its stability and faster convergence, OPINS delivered
the most accurate solution among all the methods both in terms of x and in terms of
[x,y].

6.4.3 Stability of OPINS versus PMINRES

In this section, we study the stability of OPINS and PMINRES. The difference
between PCG and PMINRES with a constraint preconditioner mainly lies in the
underlying solver. Since MINRES is more robust than CG, we restrict our attention
to PMINRES. In our previous discussion, PMINRES and OPINS with the projected
preconditioner are both equivalent to a preconditioned null-space method. However
PMINRES may stagnate for some problems, as shown in Figure 6.3 (b).

To further illustrate this, we consider the random test used in Subsection 6.4.2.
OPINS with the two preconditioners are applied here. PMINRES uses the con-
straint preconditioner with G chosen as the diagonal part of A. To examine the sta-
bility of PMINRES, we consider PMINRES+IR(0) and PMINRES+IR(1), which
denote no iterative refinement and one step of iterative refinement, respectively.
The constraint preconditioner is solved by factorization. Figure 6.4(a) shows the
convergence of various strategies. It can be observed that OPINS-J, OPINS-P and
PMINRES+IR(1) have similar convergence behaviors. On the other hand, PMIN-
RES failed to converge to the desired tolerance if no iterative refinement is applied.
Another example is the fracture problem. This system is singular, but the projected
MINRES is also applicable. We set G to be the identity matrix in the constraint
preconditioner. No preconditioner is used in OPINS. From Figure 6.4(b), we can
see that OPINS is similar to the more stable PMINRES+IR(1), while the residual
of PMINRES+IR(0) oscillates.

In addition, OPINS is more stable compared to PMINRES with iterative refine-
ment, because the latter may still stagnate. We consider the example can_61 from
the matrix market database [13]. The matrix is set as the A part of the saddle-point
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Figure 6.4: Comparison of OPINS and projected MINRES with/without iterative
refinement for random and fracture.

system. B is a randomly generated 20× 61 dense matrix with full rank. In this
example, we include an additional strategy, PMINRES+IR(2) which uses two steps
of iterative refinement per iteration. Figure 6.5(a) displays the residuals of the five
strategies. Both OPINS-J and OPINS-P converged to the specified accuracy. How-
ever, PMINRES+IR(0) and PMINRES+IR(1) both stagnated early. Even additional
iterative refinement could not increase the accuracy further as PMINRES+IR(2)
still stagnated.

One reason for the stagnation of PMINRES is that xn in the constraint precondi-
tioner may deviate from null(B) during the iteration. Eventually the large residual
in Bxn may cause MINRES to stagnate [37]. This is evident in Figure 6.5(b), where
we plot ‖Bxn‖ and

∥∥BΠ⊥Uw
∥∥ for PMINRES and OPINS. For PMINRES with and

without iterative refinement, ‖Bxn‖ grew, and the growth of non null-space com-
ponent was significant even with two steps of iterative refinement. In contrast,
this norm stayed at close to machine precision for OPINS throughout the computa-
tion, because OPINS explicitly projects the solution onto null(B). For this reason,
OPINS is more stable than PMINRES.
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Figure 6.5: Comparison of OPINS and projected MINRES with/without iterative
refinement for can_61, for which iterative refinement could not improve accuracy
for projected MINRES due to loss of orthogonality.

88



Chapter 7

Applications

In this chapter, we apply the proposed solvers to various computational models
such as elasticity with brittle fracture [50] and climate modeling. We also extend
the HyGA framework to support weighted least squares based discretization tech-
niques, such as the generalised finite difference method (GFD) [9] and the adapted

extended-stencil finite element method (AES-FEM) [21].

7.1 Elasticity with Brittle Fracture

As a continuation of Chapter 6, we consider the application of OPINS to a finite
element based brittle fracture model [50]. The model uses a quasi-static updated
Lagrangian description of the elastic process [6]. For any solid body of some ma-
terial, denoted at time τ as τV , the material is in energetic equilibrium when the
principle of virtual work is satisfied, namely that the body is in a minimum energy
configuration. The principle of virtual work for a body at some future time t +∆t

can be written as ˆ
t+∆tV

t+∆t
τi jδt+∆tei j

t+∆tdv = t+∆tR, (7.1.1)

where t+∆tτi j is the Cauchy stress tensor of the material, t+∆tei j is the linear varia-
tion of linear strain tensor at time t +∆t, and t+∆tR is the total sum external virtual
work due to surface tractions and body forces.

Since the configuration of the body at time t + ∆t is unknown, 7.1.1 cannot be
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solved directly and instead must be rewritten in term of some previously known
configuration. In the updated Lagrangian formulation, 7.1.1 may be rewritten in
terms of the material body in its current configuration at time t,

ˆ
tV

tCi jrs tεrsδtεi j
tdv+

ˆ
tV

t
τi jδtηi j

tdv = t+∆tR−
ˆ

tV

t
τi jδtei j

tdv, (7.1.2)

which is a nonlinear equation in the incremental nodal displacements ui.

Equation 7.1.1 is nonlinear in general, and one needs to perform an iterative scheme
to determine a solution at each step. We choose to use the modified Newton-
Raphson scheme of [6] to iteratively determine the solution of 7.1.1. When some
part of the brittle material exceeds its critical strain, we split overstrained nodes and
generate new edges to introduce cracks. Lagrange multipliers are used to accom-
modate several types of Dirichlet boundary conditions and constraints used to avoid
element penetration. The resulting linear system is a KKT system of the form 6.0.1.

In this system, A represents the global stiffness matrix. The constraint matrix B
is used to enforce various boundary conditions, such as sliding boundary condi-
tions and contact constraints. Due to the cracks opening along edges, some pieces
are isolated completely from the main body. This introduces additional singularity
to A such that null(A)∩ null(B) 6= {0}. In addition, B contains redundant con-
straints, and it is rank-deficient. We apply OPINS without preconditioners to solve
the problem. PMINRES, PCG and PGMRES with the constraint preconditioner are
also applied as comparisons. For PMINRES, PCG and PGMRES, G is set to be the
identity in the constraint preconditioner. Since B is rank-deficient, an extra step of
QR factorization is used to remove linearly dependent rows.

Convergence Comparison

Figure 7.1 shows the convergence of strategies. It can be seen that OPINS con-
verges monotonically to the desired accuracy while the errors of PMINRES and
PCG oscillate. In particular, the error of PCG starts to grow after a certain number
of iterations. This shows that CG is not as robust as MINRES for solving singular
systems. In terms of the overall residual, OPINS has around 10−9 while the resid-
uals of PCG and PMINRES stay around 1. The reason why PCG and PMINRES
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Figure 7.1: Convergence history of relative residual in x for OPINS and Krylov
methods for singular system from fracture.

have large overall errors is that they do not necessarily minimize the error of [x,y].
To get a more accurate y, we need to solve the least-squares problem BT y = f−Ax
once convergence in x is reached. On the other hand, the residual of GMRES is
about 10−6. However the converged solution is incorrect, since ‖g−Bx‖ is around
1. Overall OPINS is more stable and accurate than the other approaches.

Solution Norm

To illustrate the minimum norm property of OPINS, we compare OPINS with trun-
cated SVD. The x and y components are measured by 2-norm. The relative 2-norm
of the residuals are provided as references. In the fracture system, large Lamè pa-
rameters are used in calculating element stresses. As a result, there is a 1010 gap
between the scaling of A and B which makes the system very ill-conditioned. The
conditioning will be improved if we scale A and f by 10−10. After the operation, x
should remain unchanged while y will be scaled by 10−10 accordingly. We apply
OPINS and truncated SVD (TSVD) to both scaled and unscaled systems, where
the tolerance for TSVD was 10−12. As shown in Table 7.1, OPINS is stable with
and without scaling. Its x component stays unchanged, and it has the same norm
as the TSVD solution on the scaled system. Without scaling, TSVD produced a
wrong solution that is far away from the constraint hyperplane. This is evident
from Table 7.2, where ‖g−Bx‖ is very large for TSVD. In contrast, OPINS finds
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Table 7.1: Norms of solutions of OPINS versus truncated SVD.

Test Problems
OPINS TSVD

‖x‖ ‖y‖ ‖x‖ ‖y‖
fracture 1.53×10−4 1.79×107 2.86×10−5 4.25×10−11

scaled fracture 1.53×10−4 1.79×10−3 1.53×10−4 1.54×10−3

random-s 5.56 2.41 5.56 2.41

Table 7.2: Errors of solutions of OPINS versus truncated SVD.

Test Problems
OPINS TSVD

‖g−Bx‖ ‖r‖ ‖g−Bx‖ ‖r‖
fracture 1.0×10−17 1.2×10−9 1.1 1.9×10−10

scaled fracture 8.6×10−18 5.6×10−10 1.1×10−14 1.3×10−13

random-s 3.7×10−16 2.1×10−13 2.3×10−14 4.6×10−15

the minimum-norm x independently of the scaling. Therefore, it is advantageous to
solve x and y separately over solving them together, and it is not advisable to use
any linear solver, including TSVD or GMRES, as black box solvers for saddle-point
problems.

In terms of the y component, the solution of OPINS has a slightly larger norm than
the TSVD solution for the scaled system. This is due to the rank deficiency of B.
For the case where B has full rank, we consider a random system. A is a 100×100
dense and semi-definite matrix with rank = 50. B is a randomly generated 20×100
dense matrix with full rank. By construction, the system is singular with rank equal
to 90. Since A is semi-definite and B has full rank, we can expect both x and y
components of the OPINS solution to have minimum norms, which is evident in
Table 7.1.

7.2 Climate Modeling

Our second model problem is a 2-D anisotropic Helmholtz equation in cloud mod-
eling. The original 3-D equation can be expressed as

∂ 2P
∂x2 +µ

∂

∂y
µ

∂P
∂y

+µ
2 ∂ 2P

∂ z2 = µ
2F, (7.2.1)
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with homogeneous Neumann boundary conditions. Due to the large problem size,
it can be time consuming to solve the PDE directly. Noticing that the step size in
x is usually uniform, we can apply FFT in the x direction and decompose the 3-D
problem into a collection of 2-D equations of the following form

µ
∂

∂y
µ

∂P
∂y

+µ
2 ∂ 2P

∂ z2 −αP = F̃ . (7.2.2)

We refer to the equation as Anisotropic Helmholtz equation, or AHE.

In the above equation, each slice corresponds to a different x value. The x direction
corresponds to longitude, y corresponds to latitude, and z corresponds to altitude.
The parameter µ depends only on y, so it does not change with respect to x. The
parameter α depends only on x, so it is a constant in the Helmholtz equation corre-
sponding to different x. The right-hand side F̃ may vary depending on x. In general,
α ≥ 0. When α = 0, the Helmholtz equation reduces to a Poisson equation with
pure Neumann boundary conditions, which does not have a unique solution. For
simplicity, we only consider the case where α 6= 0.

We discretize the PDE using a cell-centered finite-difference scheme on a structured
grid. The 3-D grid is structured, and the spacing between the slices, i.e., the edge
length in the x direction, is uniform. In addition, the yz grid is the same across all
slices. Within each slice, the number of cells in the y and z directions are Ny and
Nz, respectively. The cell sizes may vary along y and z directions. The edge lengths
can be provided by two vectors dy ∈RNy and dz ∈RNz , respectively. In general, the
problem is anisotropic, with dz 6 dy, and sometimes dz� dy.

GMG Solver

To solve the problem, we employ the GMG solver in Chapter 4. Taking advantage
of the fact that the yz grid is the same across all slices, we can setup the GMG
data structure only once for α = 0 and reuse it for all other α values. This can
greatly reduce the total computational time, particularly if GMG converges quickly
for each α . Note that there is no simple way to reuse the data structure in AMG.
Even if we store the structure for α = 0, each different α modifies the coefficient
matrix which in turn changes the multigrid operators.
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Figure 7.2: Example nonuniform structured mesh for the climate model.

To demonstrate the effectiveness of the solver, we compare it against the precondi-
tioned GMRES in PETSc. Hypre is used as the preconditioner as it delivers better
performance than the other alternatives. The tests are performed in serial on a lap-
top with a dual-core 2.53GHz intel i5 CPU and 4gb memory. PETSc is built in
optimized mode with gcc 4.6.3 and option -O3. We consider three test cases. Fig-
ure 7.2 illustrates an example of the computational mesh. The first two problems
are manufactured using f = sin

(
2πy

Ny·dy

)
sin
(

2πz
Nz·dz

)
as the analytical solution. The

third test is constructed from the real data set. Table 7.3 shows the timing results
measured in seconds. We can see that GMG is much faster than Hypre in all the test
cases and its rate of convergence stays consistent. If one considers solving multiple
αs on the same grid, the advantage of GMG is even greater.

Table 7.3: Timing comparison of AMG and GMG. The results are measured in
seconds.

(Ny,Nz,α)
GMG Hypre

iter solve (secs) iter solve (secs)
(2071,41,1e−8) 3 0.07 4 0.24

(3300,100,1e−14) 4 0.40 29 4.32
(1024,34,2e−14) 5 0.03 9 0.12
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7.3 HyGA for WLS-based Discretization Methods

Finally, we adapt HyGA to support two weighted least squares based discretiza-
tion methods: GFD and AES-FEM. GFD extends the classical finite differences to
unstructured meshes with high-order accuracy [9]. The GFD methods can be de-
rived based on a weighted least squares (WLS) formulation locally over a weighted
stencil at each point, which generalizes the classical interpolation-based finite dif-
ferences. It has been shown that the WLS can deliver the same order of accuracy as
the interpolation-based approximations, while delivering better stability, flexibility,
and robustness for multivariate approximations over irregular unstructured meshes.

Similar to GFD, the adaptive extended stencil finite element method (AES-FEM)
[21] is proposed to overcome the dependence of the element shape quality. Its
better stability comes from the fact that it uses local WLS approximations as the
basis function. Although AES-FEM has different basis functions, it preserves the
theoretical framework of FEM and thus shares the same multigrid algorithm. As
such, we will mainly focus on GFD in the following section.

HyGA for GFD

The multi-level weighted-residual formulation in Section 5.1 is applicable to GFD.
As described in Section 5.1.2, the prolongation operator P for GFD is an interpola-
tion matrix, but the restriction operator R is its scaled transpose with unit row sums,
because the test functions ψ j are Dirac delta functions. Applying these operators
to adjacent grids in a multilevel method, we then obtain a geometric multigrid for
GFD, where the coefficient matrices at all levels are obtained from re-discretizations
with GFD. Coupling with algebraic multigrid at the coarser levels, we then obtain
HyGA for GFD.

We applied HyGA to GFD using the same FEM meshes for the 2-D geometry in
Figure 5.4(left). One thing to note here is that the matrix is nonsymmetric. As
in the previous test case, we use 2 iterations of presmoothing and post smoothing
iterations. For the parameters in CJ, we chose λ

′
1 to be 2/3 as in the FEM case. We

obtained λ
′
n by estimating the largest eigenvalue of D−1 (A+AT)/2. The resulting

estimation turned out to be very accurate. For example, for the 2-D 5-level mesh, the

95



smallest real part of λn is ≈−0.746, while the estimated λ
′
n is 1−1.747 =−0.747,

whose accuracy is more than sufficient. Figure 7.3 shows the convergence results
for GFD. We can see that HyGA converges nicely.
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Figure 7.3: Relative residual versus numbers of iterations for 2-D GFD tests.
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Chapter 8

Conclusions and Future Work

In this dissertation, we considered efficient iterative and multigrid solvers for linear
systems. Multigrid methods, in particular the geometric multigrid methods, are the
optimal choices for many application problems. We demonstrated that geometric
multigrid methods, when applicable, can be much faster than the alternatives, which
include AMG standalone solvers and AMG preconditioners. The AMG precondi-
tioners, in turn, are better than SSOR and ILU. One limitation of GMG is that the
algorithm is very problem dependent and it is hard to generalize to unstructured
meshes.

For 2-D anisotropic Helmholtz equation, we presented an effective GMG solver
with line-smoother and bi-linear interpolation. Line-smoothers are essential for
smoothing out errors geometrically while bi-linear interpolation with ghost cells
is a natural approach to construct the transfer operators. To generalize GMG fur-
ther, we introduced a hybrid geometric+algebraic multigrid framework, HyGA, with
semi-iterative smoothers. This approach is motivated by a new trend of large-scale
parallel mesh generation through mesh refinements. The HyGA multigrid solver
utilizes a few levels of geometric multigrid on these hierarchical meshes for ac-
curacy and efficiency, along with algebraic multigrid on the coarse-levels for sim-
plicity and robustness. We presented a unified derivation of the prolongation and
restriction operators on the GMG levels for weighted-residual methods with hier-
archical basis functions, including finite elements and general WLS-based methods
with hierarchical unstructured meshes. The semi-iterative smoother, Chebyshev-

97



Jacobi method exhibits nice convergence properties and it can be parallelized easily.
Our numerical experiments demonstrated the advantages of our proposed hybrid
technique compared to the classical GMG and AMG methods.

Our third contribution is the orthogonally projected implicit null-space method
(OPINS) for symmetric saddle point systems. The systems can be nonsingular or
singular but compatible. Instead of finding the null space of the constraint matrix
explicitly, OPINS uses an orthonormal basis of its orthogonal complementary sub-
space to reduce the saddle-point system to a singular but compatible system. We
showed that OPINS is equivalent to a null-space method with an orthonormal basis
for nonsingular systems. In addition, it can solve singular systems and produce the
minimum-norm solution, which is desirable for many applications. Because of its
use of orthogonal projections, OPINS is more stable than other implicit null-space
methods, such as the projected Krylov methods.

Future Work

This work opens up several directions for future work. For OPINS, an immedi-
ate question is how to apply the multigrid preconditioner. Since OPINS uses the
Krylov subspace method as the core solver, its performance can be accelerated sig-
nificantly if we can find a way to apply multigrid. One possible approach is to apply
the multigrid method on the (1,1) block and use it directly as a preconditioner to
the projected null-space equation. However this approach may not be very effec-
tive as it does not directly approximate the coefficient matrix. A more effective
preconditioner is the projected Krylov preconditioner. Yet combing multigrid with
the projected Krylov preconditioner is challenging since multigrid is an implicit
operator. More studies on this area are needed.

On the multigrid side, we can work on the parallelization of the algorithm. One
of our long term goals is to develop a parallel multigrid package which includes a
framework for geometric multgrid method as well as HyGA. We can continue our
efforts in the integration with PETSc, but similar work has been done in [49]. Al-
ternatively we can consider shared-memory implementation with OpenMP, CUDA
or OpenACC. At the moment, there is a lack of good multi-threaded linear solvers.
We believe a multi-threaded GMG and HyGA would be a good contribution to the
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scientific computing community.

Finally there are some open questions about efficient solvers for singular systems.
For symmetric systems, MINRES and MINRES-QLP with a multigrid precondi-
tioner have the potential to deliver good performance. However, the preconditioner
has to be applied symmetrically, which alters both the residual and the norm of
the solution. Nonsymmetric methods such as GMRES, when applicable, may work
with a one-sided preconditioner. The downside is that they are often based on the
Krylov subspace Kk(A,b), which is the wrong space for the minimum-norm solu-
tion. With a right preconditioner, the pseudo-inverse solution can be recovered by
projecting off the null-space component if the null-space is known. Unfortunately,
finding the null-space is hard in general. We hope to design a method that is based
on Kk(AT ,b) with similar efficiency as GMRES.
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