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Abstract of the Thesis

Fused Convolutional Neural Network Accelerators

by

Manoj Alwani

Master of Science

in

Computer Science

Stony Brook University

2015

Deep convolutional neural networks (CNNs) are rapidly becoming the domi-
nant approach to computer vision and a major component of many other pervasive
machine learning tasks, such as speech recognition, natural language processing,
and fraud detection. As research and development of CNNs progresses, the size of
the networks grows, leading to large increases in the computation and bandwidth
required to evaluate these networks. Typical CNNs in use today already exceed
the capabilities of general-purpose CPUs, resulting in rapid adoption and active
research of CNN hardware accelerators such as GPUs, FPGAs, and ASICs. In
this work, we develop a novel CNN accelerator architecture and design method-
ology that breaks away from the commonly accepted practice of processing the
networks layer by layer. By modifying the order in which the original input data
are brought on chip, changing it to a pyramid-shaped multi-layer sliding window,
our architecture enables effective on-chip caching during CNN evaluation. The
caching in turn reduces the off-chip memory bandwidth requirements, which is a
primary bottleneck in many CNN environments.
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Chapter 1

Introduction

Deep learning is a branch of machine learning which process the data in multiple
layers to model high level abstraction of data and increase prediction accuracy.
There are various deep learning architectures such as Convolution neural network,
deep belief networks and recurrent neural networks which are applied to fields
like Computer Vision, Natural Language Processing and bioinformatics where
they have achieved state-of-the-art results on various task. In these architectures,
Convolution Neural Networks have got lot of attention because they are inspired
by living creatures vision system and have been applied in the various fields using
the same architecture.

Deep convolutional neural networks (CNNs) have revolutionized the accuracy
of recognition in computer vision. More broadly, this is part of a trend—using
CNNs with many layers—that has been instrumental to rapid progress on accuracy
in natural language processing, information retrieval, and speech recognition.

Underlying the accuracy improvements of CNNs are massive increases in
computation. With each newly developed network, as the accuracy of recogni-
tion increases, the number of computations required to evaluate the network also
grows. Already, general-purpose CPUs have become a limiter for modern CNNs
because of the lack of computational parallelism. As a result, there has been sig-
nificant interest in developing and adapting hardware accelerators for CNNs [17]
such as GPUs [10], FPGAs [26, 33, 23, 7], and ASICs [8].

Although the CNN computation is mathematically simple, the sheer volume of
operations precludes a dataflow implementation even for a single layer. Each con-
volution layer requires iterative use of the available compute units. Research into
the design of CNN accelerators has therefore concentrated on developing a CNN
“building block” that iteratively evaluates the network. A number of methodolo-
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gies have been developed for optimizing the architecture of such CNN accelerator
building blocks, concentrating either on specific constraints [23] or evaluating the
design space of compute units and memory bandwidth [33].

Traditional implementations of CNNs (both hardware and software) evaluate
the network by following its structure, one layer at a time. This approach pro-
duces a large amount of hidden layer data (the layer between input and output are
called hidden layers) that are gradually streamed out to memory as the computa-
tion progresses. Upon completing a layer, the hidden layer data are streamed back
as an input to the same compute units, repeating the process until all layers have
been evaluated. As the size of CNNs grows, the amount of hidden layer data that
must be shuttled between the compute units and memory increases and the sys-
tem becomes memory-bandwidth bound, limiting further performance gains even
if more compute resources are available.

We observe that an additional dimension exists for CNN accelerator archi-
tectures that focuses on the dataflow across convolutional layers. Rather than
processing each CNN layer to completion before proceeding to the next layer, it
is possible to restructure the computation such that multiple convolutional layers
are computed together as the input is brought on chip, obviating the need to store
or retrieve the intermediate data from off-chip memory. This accelerator organi-
zation is made possible by the nature of CNNs. That is, each point in a hidden
layer output of the network depends on a well-defined region of the initial input
to the network.

In this work, we develop a novel CNN accelerator architecture and design
methodology that breaks away from the commonly accepted practice. By modi-
fying the order in which the original input data are brought on chip, changing it to
a pyramid-shaped multi-layer sliding window, our architecture enables effective
on-chip caching during CNN evaluation. The caching in turn reduces the off-chip
memory bandwidth requirements which is a primary bottleneck in many CNN
environments. Our architecture promotes energy-efficiency by minimizing data
movement and improves performance in bandwidth-limited scenarios.

We validate our approach by implementing the proposed CNN architecture on
a Xilinx Virtex-7 FPGA. Using analytic modeling and our FPGA prototype, we
demonstrate:

• Recompute and reuse model to fuse multiple layers of network for compu-
tation which saves external memory access of fused layers.

• Benefits of reuse model over recompute model.
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• Applicability of our approach/mathematical model.

• We have shown that our approach gets 1.62x increase in computation to
communication ratio over the state-of-the-art design and saves 2.17MB of
off-chip data transfer by caching the computations using 55.86KB of on-
chip buffer.

The rest of this thesis is organized as follows. In Chapter 2 we provide the
relevant background on CNNs and their implementation on FPGA. In Chapter 3
we have explained our method in detail and compared our method with state of
the art approach. In Chapter 4 we have explained our evaluation tool which can
take any network and explore all the possible solutions of layer fusion. In Chapter
5 we summarize the related work and in Chapter 6 we conclude."
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Chapter 2

Background on CNNs

A convolutional neural network (CNN) performs feature extraction using a se-
ries of convolutional layers, typically followed by one or more dense (“fully con-
nected”) neural network layers and finally a classification layer. Figure 2.1 shows
an example of one convolutional layer. Each layer takes as input a feature map
(consisting of N channels of R×C values), and convolves it with M ×N differ-
ent K ×K filters (whose weights were previously determined through a learning
algorithm such as back propagation). The convolution is performed by sliding
filters across the input feature map with a stride of S. (Where a filter moves S
locations at each step.) At each location, a filter’s values are multiplied with the
overlapping values of the feature map. The resulting products are summed to-
gether, contributing to one value in the output feature map (which consists of M
channels of two-dimensional values of dimensions (R−K

S
+ 1)× (C−K

S
+ 1)).

Typically, the output feature map then undergoes a non-linear operation such
as rectification (e.g., ReLU [20]), optionally followed by a subsampling operation
(e.g., pooling).The nonlinear and subsampling operations are small, operating lo-
cally on a single channel of the feature map; these typically require a very small
percentage of the overall computation. The filter weights of the convolution lay-
ers are trained using back propagation algorithm. Figure 2.2 [20] shows a CNN
which won the ImageNet 2012 contest. This network contains 5 convolution lay-
ers and 3 pooling layers, which are followed by 3 dense fully connected layers and
classification layer. The classification layer has 1000 elements which shows like-
lihood of 1000 categories. Each convolution layer in this network is followed by
ReLU non-linearity. As shown in the Figure 2.2, layer 1 in the network receives 3
input features of size 224×224 and generates 96 feature maps as output of 55×55
size. Layer 1 is a convolution layer with kernel size 11 ×11 and stride 4. The out-
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Figure 2.1: Example of convolution layer operations. There are N input feature
maps, M output feature maps and M ×N filters each of size K ×K

put of layer 1 is partitioned in two sets each of size 48 feature maps. These 2 sets
are then trained parallel in two different GPUs which makes training of these net-
works faster. The network again merge the inputs after second pooling and then
again partition the output in two sets. Table 2.1 which shows parameters of all
the convolution layers of this network. The training of this network take six days
on GPUs and time is higher for networks with deeper layers. This network got
benchmark results and got more than 10% higher accuracy than traditional vision
based approach which sparked the interest in the implementation of deeper CNN.
Current networks use more than 30 convolution layers in the CNN to increase the
recognition accuracy.

Figure 2.2: AlexNet Network [20] which won ImageNet 2012 competition
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Table 2.1: Convolution layers parameters
Layer 1 2 3 4 5

input channels 3 48 256 192 192
output channels 48 128 192 192 128

output rows 55 27 13 13 13
output cols 55 27 13 13 13
Kernel size 11 5 3 3 3

Stride 4 1 1 1 1
Sets 2 2 2 2 2

The training of CNNs are usually done on GPU because GPUs provides large
amount of parallelism and huge data transfer rates but the power requirement of
GPUs is high which make them unsuitable for embedded platforms.

2.1 Applications to Deep Learning
Deep learning is a branch of machine learning which process the data in multiple
layers to model high level abstraction of data. There are various deep learning
architectures such as Convolution neural network, deep belief networks and re-
current neural networks which are applied to fields like Computer Vision, Natural
Language Processing and bioinformatics where they have achieved state-of-the-
art results on various task. In these architectures, Convolution Neural Networks
have got lot of attention because they are inspired by living creatures vision sys-
tem. Some the applications of CNN are mentioned below:

Image Recognition: CNNs are often used for image recognition. They have
achieved an error 0.23 % on digit recognition task [11] which is the lowest error
rate achieved on that dataset. They are also used for object classification and
detection. For example, the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) is a benchmark in object classification and detection, with millions of
images and hundreds of object classes. In the ILSVRC 2014, almost every highly
ranked team used CNN as their basic framework. The winner GoogLeNet [30]
applied CNN with more than 30 layers and achieved the performance which are
close to human accuracy. The CNN are also being used for video analysis [19]
and face detection [16].

Natural Language processing: CNNs are also being applied to natural lan-
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guage processing [13] to detect part-of-speech tags, semantic role labels and lan-
guage modeling. In [13], resercher have shown how a single architecture can be
used to do different tasks in Natural Language Processing.

Gaming: CNNs are also being used in games in which CNNs are trained by
supervised learning from database of human professional games [12] and also
been used with re-inforcement learning to learn the games itself [22].

Drug Discovery: CNNs also becomes famous recently as they have used in
finding the treatment of ebola virus [32]. Not only ebola they are also used for
predicting the treatment of multiple sclerosis and identifying the type the brain
and breast cancer.

2.2 FPGA Implementation
As computation requirement of CNNs are large, training these networks take lot
of time even on GPUs. The massive amount of parallelism provided by GPUs
and huge data transfer rates make them ideal candidate for training and testing of
these networks but GPUs consume lot of power in training and testing which make
them far from ideal for embedded systems. As a result, a number of researcher
have proposed implementation of CNNs on FPGA and ASIC platforms [33, 8, 7].
The FPGA based accelerator have got of attention in the recent years because they
are highly energy efficient, provide good performance and give reconfiguration
options. All of these techniques focus their attention of optimizing convolution
layer as it is the most computational and bandwidth demanding layer of CNN.
They consider convolution layer of CNN as a deep nested loop and apply loop
transformation and tiling to increase performance of convolution. Code 2.1 shows
psuedo code of convolution layer. For simplification this code is not taking bias
addition in account.

Listing 2.1: Pseudocode for Convolution Layer

f o r (m=0; m < M; m++) / / o u t p u t f e a t u r e map
f o r ( n =0; n< N; n ++) / / i n p u t f e a t u r e map

f o r ( row =0; row < R ; row ++) / / Rows
f o r ( c o l =0 ; c o l < C ; c o l ++) / / Cols

f o r ( kx =0; kx < K; kx ++) / / Ke rn e l l oop X
f o r ( ky =0; ky < K; ky ++) / / Ke rn e l l oop Y
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o u t p u t [m] [ row ] [ c o l ] += f i l t e r [m] [ n ] [ kx ] [ ky ]
∗ i n p u t [ n ] [ S∗ row+kx ] [ S∗ c o l +ky ] ;

All the FPGA based method apply different transformation on code 2.1 to
optimize convolution engine. In [15, 14] researchers have optimized their filtering
module and unroll the kx and ky loop in code 2.1. They have implemented this
design for automotive robotics. This kind of design uses very less resources and
very efficient in filtering but this design uses fixed hardware for all the kernels
which make them underutilized for small kernel sizes.

In [28] have optimized their kernel loops (kx, ky) as mentioned in [15] and
also use parallelism with in feature map (m, n).

In [8] researcher have proposed ASIC based accelerator for ubiquitous ma-
chine learning and optimized different modules of neural networks (pooling, con-
volution etc.) in way so that they minimize the external data access. They have
also applied loop tiling techniques in convolution and pooling layers to increase
data locality and reduces external memory accesses.

In [23] they target communication of convolution engine with external mem-
ory. In this paper they use onchip buffers to maximize the data reuse and reduce
the bandwidth requirement. But they don’t target to maximize their computational
performance.

In [33] researcher have proposed roofline model to maximize the computation
and increase the bandwidth. They apply parallelism with in feature maps(M, N)
and also across layer size(R, C). We have compared our proposed method as [33]
address both computation and bandwidth issue of CNN. In our approach, we have
not only optimized our convolution engine but also we fuse different layers of
CNN which reduce the bandwidth requirement by huge amount.
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Chapter 3

Cross-Layer Optimization

Convolution layer of CNN is most computation and bandwidth demanding layer.
The sheer volume of operations precludes a dataflow implementation even for a
single layer. Because of large amount of operations convolution layer requires
iterative use of available compute units in the system. Research into the design of
CNN accelerators has therefore concentrated on optimizing convolution layer that
efficiently use the available compute units iteratively with minimum amount of
external memory access. These techniques process the network using traditional
layer-by-layer approach and don’t focus on minimizing the external memory ac-
cess of hidden layer data which is loaded to and fro from external memory when
we move from one layer to another layer. In this chapter, we show that for deeper
networks hidden layer data is too large for earlier layer of networks and efficient
technique is needed to minimize external data access for these layers. We then
present a new approach that fuses multiple layers which can minimize external
data access for these layers. We implement a proof-of-concet accelerator using
our approach using a high level synthesis tool (Vivado) and compare and contrast
it with the state-of-the-art accelerator.

3.1 The Cost of Data Transfer
Existing techniques construct accelerators consisting of the multipliers and adders
needed to perform the convolution, as well as the on-chip memory buffers to hold
data and filter weights. The accelerators are used iteratively, performing one layer
of computation at a time. For each layer, input feature maps and filter weights are
brought from off-chip DRAM into local buffers, the convolutions are performed,
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and data is written back into DRAM. The large volume of data comprising the fea-
ture maps can stress an accelerator’s memory system and become the bottleneck.
This has inspired efforts to optimize the memory accesses patterns for this layer-
by-layer approach. For example [23] and [33] use loop transformations with the
goal of balancing resources between arithmetic structures, on-chip memories, and
memory bandwidth.

Importantly, although a number of approaches have focused on effectively
managing on-chip memory and off-chip bandwidth while evaluating a convolu-
tional layer, existing approaches forego the possibility of restructuring the com-
putation across layers to minimize bandwidth usage. Because prior approaches
consider each convolutional layer separately, they start with the assumption that
every layer must bring its entire input feature map from off-chip DRAM and must
write the output feature map back when the computation finishes. This transfer
of feature map data to and from external memory is costly in terms of memory
bandwidth and energy [23].

As deep learning algorithms continue to advance, the amount of feature map
data moving between layers grows and represents an increasingly large amount
of the data movement associated with the whole algorithm. For example, 25%
of the overall data used in convolutional layers of AlexNet [20] (2012) were fea-
ture map data (with the rest being the filter weights); in VGG [29] (2014) and
GoogLeNet [30] (2014), this value has increased to over 50%.

To illustrate this, Figure 3.1 shows the size (in MB) of the feature maps (in-
put and output) and the filter weights of each of the convolutional layers of the
VGG-E network [29]. The height of each bar represents the amount of data that
must be transferred to and from DRAM (feature maps and weights) when an ac-
celerator iteratively evaluates the layers. In the early layers, the size of the input
and output feature maps dominates. For example, the first convolutional layer
requires 0.6MB of input and 7KB of weights; it produces a 12.8MB output fea-
ture map. This 12.8MB feature map is then used as the input of the following
layer (along with 147KB of weights). Performing the evaluation of network one
layer at a time requires storing the entire 12.8MB feature map to DRAM only to
immediately read it back as the input of the following layer, and repeating this
back-and-forth data shuffling for every subsequent layer.

This work identifies a key opportunity in restructuring the CNN evaluation by
considering the dimension of fusing the computation of adjacent layers, largely
eliminating the off-chip feature map data transfer. We develop an accelerator
architecture that maximizes data reuse by foregoing the prevalent assumption that
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Figure 3.1: Input, output and weight size for different layers of VGG. This data
assumes that the pooling layers are merged into their prior convolution layer, e.g.
“Conv 4” contains one convolutional and one pooling layer.

all intermediate feature maps must be stored in off-chip memory. Our design
primarily targets the early layers of the networks, whose data transfers consist
predominantly of the feature map data. In our approach, only the input feature
map of the first of the fused layers is brought on chip. As this initial feature map
is read from memory, we compute the intermediate values of all of the fused layers
that depend on the data region being read and we do not write any intermediate
values out to off-chip memory. Only the output feature map of the last of the fused
layers need be retained in its entirety. This last output feature map is either written
to off-chip memory or simply retained in on on-chip cache (in case the last of the
fused layers is one of the latter layers whose output feature maps are small enough
to fit entirely on chip).

It is important to note that the dataflow of the convolution operation requires
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Figure 3.2: Example of back-mapping and overlapped computation

that each value in the output feature map of a layer depends on a larger region
of the previous level. This fan-in pattern implies that, as the number of fused
convolutional layers increases, the number of output values that can be computed
by using the input region decreases. Figure 3.2 demonstrates the layer fusion
process with an example. Here, we describe the operation on a 5 × 5 tile of the
input layer (indicated with the black dashed outline). The first layer convolves this
tile with a 3× 3 filter, producing the 3× 3 square shown in Hidden Layer 1 (also
indicated with the black dashed outline). The second layer convolves this 3 × 3
square with another 3× 3 filter, producing a single point (black circle) in Hidden
Layer 2.

To reason about this process, we can use a “back-mapping” technique in which
we start from a single value of an output layer and trace its dependencies to find
the region of the input feature map that it depends on. If the layers are visualized
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spatially, this process creates a computation pyramid across multiple layers of
feature maps. Once the black input tile is loaded on chip, we compute the entire
pyramid of intermediate values without transferring any additional feature map
data to or from off-chip memory. When we reach the tip of the pyramid, only the
tip of the pyramid needs to be retained as the output of the computation.

After finishing the computation of a pyramid, it is not necessary to load an
entire new input tile (pyramid base) to continue. Instead, it is possible to load
only one new column of the input tile (while discarding the left-most column of
the old tile). We show the new input feature map data that must be loaded with the
column of blue circles. The new input tile is indicated with red dashed outlines,
forming a new red pyramid. At this time, the red pyramid can be evaluated in the
same way, yielding one value in the Hidden Layer 2 output feature map.

Critically, some intermediate values (represented by green dots) in Hidden
Layer 1 are needed for computing both the blue and red outputs of Hidden Layer
2. In other words, because their pyramids overlap, a number of intermediate val-
ues are used to compute each output value. There are two possible approaches to
handle this situation. The CNN accelerator can either recompute the values each
time they are needed or cache and reuse the intermediate results while computing
the next pyramid. Recomputing the values obviously adds extra arithmetic opera-
tions, but has the advantage of simplicity; each pyramid’s internal dataflow is the
same. Caching the intermediate results saves this extra computation, but requires
extra on-chip buffering and makes the computation for each pyramid irregular be-
cause some pyramids must perform more computation than others. Section 3.2
presents a framework for exploring the degrees of freedom available to fused-
layer CNN accelerators, including whether it is better to cache the intermediate
results or to recompute the values for each pyramid.

3.2 Cross-Layer Design Optimization
This section presents a technique for evaluating the costs and benefits of the fused-
layer architecture described in Section 3.1. Given a set of layers to fuse, we start
from the final layer and work backwards to find the dimensions of the pyramid.
Based on the pyramid dimensions, we evaluate the costs in terms of needed storage
and arithmetic operations, as well as the benefit in the amount of off-chip data
transfer avoided.

The following equations allow us to calculate the dimensions of the pyramid,
based on the structure of each stage. Let the size of the pyramid at the output of a
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given layer be N ×R× C (by construction, if this is the final layer of a pyramid,
then N×R×C = N×1×1, a single value for all N channels.) Here N is number
of channels in that layer, R is number of rows for feature map and C is number of
columns for feature map. If this layer is a convolutional layer with M channels,
we compute the pyramid size at this layer’s input as M ×R′ × C ′, according to:

R′ = S ·R +K − S

C ′ = S · C +K − S
(3.1)

where the convolutional kernel is of size K ×K, and it is applied with stride S.
If instead the layer performs pooling and not convolution, we use (3.1), but

where K ×K is the size of the pooling window and S is its stride. (Because the
pooling operation is performed localized over small tiles, we always fuse the pool-
ing layer into the previous convolutional layer, as it saves bandwidth at virtually
no cost.)

Following this procedure, we can start from the output of a pyramid, and cal-
culate the dimensions of that pyramid at each level (i.e., the values at each level
upon which this output depends). Based on this knowledge, we can model how
the recompute and reuse models behave and compare them. First, the recompute
model simply treats each successive pyramid as an independent computation, and
redundantly calculates any intermediate values that the pyramid may share with its
neighbors. (For example, when computing the two pyramids shown in Figure 3.2,
the green circles in Hidden Layer 1 will need to be recomputed under this model.)
To evaluate the costs of recomputation, we can simply find the dimensions of a
pyramid for one value in the pyramid’s output layer. Then, we move the output
value one location over and find the dimension and locations of its pyramid. By
calculating all the locations where these pyramids overlap (e.g. the green circles
in Figure 3.2), we can calculate the number of computations that must be repeated
under the recompute model.

The recompute model treats every pyramid’s computation as an independent
operation. However, we can see that as a pyramid shifts from one location to the
next, a portion of the computation needed for the new location’s output was also
performed for the previous output location. The reuse model aims to exploit this
fact by storing the relevant portions of a pyramid’s computation to be used in the
following pyramid. For example, in Figure 3.2 we see six values in hidden layer
1 that are first computed by the black pyramid, and reused for red pyramid. By
storing these values in on-chip memory, the red pyramid can simply reuse them
while computing its own values. In Figure 3.2 for simplifications we assume that
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input and output for each layer has only one channel and in real network each
layer can have different number of channels.

At first glance, it may appear that this operation is roughly equivalent to what
is done in the recomputation model: these six points are either recomputed or
stored. However, it’s important to remember that each of those values required a
relatively large amount of operations to compute: each green values was the result
of one step of the convolution of the previous layer and a 3× 3 kernel. Therefore
each point required 9 multiplications and 8 additions to compute. We also to have
to recompute the same values again when we go to the next row of the output
feature map. So, under the reuse model, we store six values for this layer and can
use for next pyramid in the same row or the pyramids in the next row, while the
recompute model would need to repeat 6 · (9+8) = 102 arithmetic operations for
each new pyramid (in the same row and in the next row). This example suggests
that the recompute method may be much less efficient than the reuse model. In
Section 3.2.1 we will evaluate this question and show that this is indeed true.

Based on the structure of a convolutional layer, and the sizes and locations of
the pyramids at that layer’s output, we can compute the amount of storage that
must be added at that layer under the reuse model. If the size of the pyramid at
the output of a given layer is N × R × C, and this layer convolves a filter of size
K×K with stride S, then the reuse model will require storage of N×R×(K−S)
elements on the right side of the tile (to be reused by the pyramids on the right)
and N × (K − S) × C elements at the bottom (to be reused by pyramids in the
next rows). Once these computations are stored these are used by all the pyramids
which overlap with this region.

As the number of layers fused using this approach increases, the additional
costs (the amount of extra on-chip memory required or the amount of redundant
computation performed) increases. Thus, there is a trade-off between the costs
incurred and the benefits: the amount of DRAM transfer saved. We can consider
the approach where all layers are fused into one single pyramid as an extreme:
increasing costs by the largest amount to save the most bandwidth. However, we
can also choose other trade-off points, where we decompose the layers using more
than one pyramid. For example, Figure 3.3 shows two examples: on the left, all
layers are fused into a single pyramid, so there will be the lowest possible memory
transfer requirement (where only the input data from layer 1 and the final output
values need to be loaded/stored from DRAM), but the input tile and intermediate
values will need to be large enough to reach all the way to layer 4. On the right, we
see another possibility, where we decompose into two pyramids. This system will
have higher off-chip memory transfer requirements, because layer 1’s output will
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be stored, and then read-back to compute the pyramid for layers 2–4. However
the benefit of this multi-pyramid example is that the on-chip memory requirement
will be reduced, as the input tile and intermediate results will shrink in size. In
this way, we obtain a space of tradeoffs: at one extreme, all layers are placed in
a single pyramid. In the other extreme, if each layer gets its own pyramid, the
system is simply processing in the typical layer-by-layer technique that doesn’t
reuse data between layers. When we explore over ways to partition a network, we
consider all possible locations to start and stop pyramids, by evaluating the above
model for each set of possibilities.

As we are fusing multiple layers using pyramids we store weights of the all
layers on chip before starting the computation so that we don’t have to load these
weights again and again from external memory for each pyramid. This makes
fusion based approach applicable for only earlier layers of networks because for
later layers of network weight size becomes too large and it can’t be fit on chip. As
the main contribution of our approach is to minimize intermediate data transfer, it
make sense to use this approach only for earlier layer of networks where feature
map size is too large and requires huge bandwidth to transfer data to and fro from
external memory. For the later layers, when intermediate layer data is small it can
be fit on chip and there is no requirement to use fusion based approach. In the
rest of this thesis, we assume that weights for all the layer we are merging in the
pyramid are available on chip for pyramid computations.

3.2.1 Recomputing vs. Storing
Based on the model above, the first subject to address is the relative merit of the
reuse and recompute models: is it better to store intermediate results or to recom-
pute them? For example, in Figure 3.2 the six green values in the first hidden
layer can be either reused or recomputed. As mentioned above, each of these val-
ues requires 17 arithmetic operations to compute; furthermore, if recomputation
is performed, the recomputation must take place when the pyramid moves from
left to right, and also again when the pyramid moves down to the next row. In the
reuse model, once the value is stored we can use it again in all subsequent times
it is needed, including in the following row.

To evaluate the relative efficiency of the two models, we compared them on
real-world networks. The results showed that a relatively small amount of storage
can allow reuse to replace a relatively large amount of recomputation. For ex-
ample, when fusing the first two layers of AlexNet, the recompute model would
need to perform an extra 678 million multiplications and 668 million extra addi-

16



Figure 3.3: Example of single pyramid and multi-pyramid approach

tions, a 80.46% increase in the overall number of arithmetic operations. On the
other hand, the results show that the reuse model only requires 55.86 KB of added
on-chip storage.

Further experimentation shows that as the network depth increases (that is, we
consider fusing more layers), the difference between the two methods grows more
extreme. For example, if we fuse all 19 convolution and pooling layers of VGG-
E [29], this would require 470 million extra multiplications and 418 million extra
additions in convolution layers, a 95% increase in the overall arithmetic operation
count in the recompute model; meanwhile, we can use 1.4 MB of intermediate
storage, and avoid needing to transfer any intermediate feature map data. For
these reasons, in the remainder of this work, we focus solely on the reuse model.
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3.3 Methodology
This section describes the architecture of our fused-layer CNN accelerator. First,
we give a high-level view of our accelerator. Then, we describe how we represent
this architecture in a flexible parameterized way using high-level synthesis and
then compare our approach with the state of the art technique.

3.3.1 CNN Accelerator Architecture

Figure 3.4: Accelerator Design with fused N layers.
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Figure 3.4 shows our accelerator design on FPGA. Data are first loaded from
external memory and stored in on-chip buffers. These on-chip buffers are then
used to feed each layer. Each layer of this network represents a layer inside a
pyramid and it is composed of two parts as shown by dotted black box in the fig-
ure. In the first part, it reuses the computations done by the previous pyramids
and store these computations in the input buffer along with new computations of
the this pyramid. In the second part layer do the computation on this new input
buffer using that layers computation engine. Each layers computation engine is
optimized to do computations in parallel. For example, Figure 3.5 shows opti-
mized engine for convolution layer which is doing computations using it’s parallel
computation units. The computation engine of convolution layer do parallel mul-
tiply and accumulate units which are fed by on-chip memories of weights and
input buffer of the pyramid. It also generates output in parallel which is stored in
the on-chip buffer which acts a input for next layer of pyramid. As shown in the
Figure 3.4 our accelerator runs a loop across all the layers to do computation for
all the pyramids in the network.

3.3.2 HLS-Based Accelerator Specification
We have implemented our accelerator design in Vivado HLS (v2015.3). Vivado
HLS allows implementing accelerator with C/C++ language and provides HLS
defined pragmas which can be used to refine accelerator designs. It also allows to
export the RTL as a Vivado’s IP core.

We started our implementation using the layer-by-layer approach as men-
tioned in [33] and got the same results. They have implemented their approach
only for convolution layers and they don’t do non-linear and pooling operations.
We implemented optimized pooling and non-linear modules so that layer fusion
can be applied. Listing 3.1 describes a psuedo code for fused accelerator. We
first perform back-mapping to get parameters of all the layers of the pyramid. Af-
ter getting the parameters it applies each layer’s operations in two components.
In the first component it calls Reuse Engine (ReUseComputation function) for
each layer to reuse computations of previous pyramids and in the second com-
ponent it applies the operations of each layer. These components are shown in
Figure 3.4 inside black box.

Our accelerator design is divided into three components. The first compo-
nent is Reuse Engine which reuse the computations from previous pyramids and
store these computations from Reuse buffers to the input buffer of current pyra-
mid. It also store the new computations from the current pyramids in the Reuse
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buffers which are used by next pyramids. The second component of our accel-
erator design is Computation Engine. This computation engine is convolution
engine for convolution layer and pooling engine for pooling layer. We have ex-
plained our convolution engine below as this the most computation demanding
layer in CNN. The third component of our accelerator design is Pipelined Pyra-
mids which pipeline the computations of pyramids so that each pyramid can run
as soon as the resources are available. These components are explained in the
following sections.

Listing 3.1: Pseudocode for Fused Layer CNN Accelerator
ComputePyramid ( Inpu tP , ou tpu tP , rowP , co lP ) {

BackMapping ( rowP , co lP ) ;
ReUseComputat ion ( i n p u t 1 , Inpu tP , ReuseMemoryLeft1 , ReuseMemoryTop1 , o t h e r A r g u m e n t s ) ;
Layer1Computa t ion ( inpu tP , o u t p u t 1 , o t h e r A r g u m e n t s ) ;
ReUseComputat ion ( i n p u t 2 , o u t p u t 1 , ReuseMemoryLeft2 , ReuseMemoryTop2 , o t h e r A r g u m e n t s ) ;
Layer2Computa t ion ( i n p u t , o u t p u t 2 , o t h e r A r g u m e n t s ) ;
ReUseComputat ion ( inputN , outputN −1, ReuseMemoryLeftN , ReuseMemoryTopN , o t h e r A r g u m e n t s ) ;
LayerNComputa t ion ( inputN , o u t p u t , o t h e r A r g u m e n t s ) ;
W r i t e O u t p u t ( ou tpu tP , o t h e r A r g u m e n t s ) ;

}

Reuse Engine

Reuse engine is our main module which is used to read previous pyramids com-
putation from reuse buffer and write new computations. Listing 3.3 shows pseudo
code of our Reuse engine. The code first uses row and col values to check po-
sition of pyramid in network. If the row and col values are zero then this is the
first pyramid of the network and it just uses NewData. This is like the black
pyramid in Figure 3.2. If the pyramid is in the first row (row = 0) then it reuses
computations from ReuseMemoryLeft buffer and new data is used from New-
Data. This corresponds to the red pyramid in Figure 3.2, with green pixels stored
in ReuseMemoryLeft buffer and blue pixels are new data. If the pyramid is in
the first column (col = 0) then it reuses computations from ReuseMemoryTop.
If the pyramid is in the middle then this pyramid reuse the computations from
both ReuseMemoryLeft and ReuseMemoryTop. In all three reuse cases, the
layer uses already done computations form reuse buffers and new computations
are loaded from NewData. Reuses buffers are accessed through load and store
modules, which are described in Listing 3.2.

Listing 3.2: Pseudocode for load and store recomputations
LoadData ( o u t p u t , ReuseBuf fe r , R , C , o f f s e t Y , o f f s e t X ) {

Load d a t a o f t i l e s i z e RXC from R e u s e B u f f e r a t o f f s e t ( o f f s e t Y , o f f s e t X )
}

S t o r e D a t a ( ReuseBuf fe r , i n p u t , R , C , o f f s e t Y , o f f s e t X ) {
S t o r e d a t a o f t i l e s i z e RXC i n R e u s e B u f f e r from i n p u t a t o f f s e t ( o f f s e t Y , o f f s e t X )

}
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Listing 3.3: Pseudocode for reading and writing Reuse computations
ReadWri teComputa t ion ( NewData , o u t p u t , ReuseMemoryLeft , ReuseMemoryTop , row , co l , K, S , TileX , Ti leY ) {

/ / Read from Reuse memory
i f ( row == 0 && c o l == 0)

Load ( o u t p u t , NewData , TileX , TileY , 0 , 0 ) ;

e l s e i f ( row == 0)
{

Load ( o u t p u t , ReuseMemoryLeft , TileY , K−S , 0 , 0 ) ;
Load ( o u t p u t , NewData , TileY , TileX−(K−S ) , 0 , K−S ) ;

}
e l s e i f ( c o l == 0)
{

Load ( o u t p u t , ReuseMemoryTop , K−S , TileX , 0 , 0 ) ;
Load ( o u t p u t , NewData , TileY , TileX−(K−S ) , K−S , 0 ) ;

}
e l s e
{

Load ( o u t p u t , ReuseMemoryLeft , TileY , K−S , 0 , 0 ) ;
Load ( o u t p u t , ReuseMemoryTop , K−S , TileX , 0 , 0 ) ;
Load ( o u t p u t , NewData , TileY−(K−S ) , TileY−(K−S ) , K−S , K−S ) ;

}

/ / W r i t e t o Reuse Memory
s t o r e ( ReuseMemoryLeft , o u t p u t , TileY , K−S , 0 , ( Ti leX − (K−S ) ) ;
s t o r e ( ReuseMemoryTop , o u t p u t , TileY , K−S , 0 , ( Ti leX − (K−S ) ) ;
}

Convolution Engine

Listing 3.4 shows psuedo code for our convolution Engine. The convolutional
layer uses filters of size K×K. The output buffer and input buffer have M and N
channels, respectively. Filters and biases are stored on-chip and are reused across
pyramids. We have fused non-linear layer ReLU inside our convolutional layer so
that we don’t have to allocate separate on-chip buffer for these layers.

Listing 3.4: Pseudocode for Fused Layer Convolution Engine
f o r (m = 0 ; m < M; m += TM)

f o r ( n = 0 ; n < N; n += TN)
/ / i n p u t i s i n p u t t o t h i s l a y e r pyramid
/ / o u t p u t i s r e s u l t s o f t h i s l a y e r ’ s pyramid

/ / C o n v o l u t i o n Layer
f o r ( r = 0 ; r < R ; r += 1 )

f o r ( c = 0 ; c < C ; c += 1 )
f o r ( kx= 0 ; kx< K; kx += 1 )

f o r ( ky= 0 ; ky< K; ky += 1 )

f o r ( u1 = 0 ; u1 < TM; u1 += 1) { / / u n r o l l e d by HLS t o o l
i f ( n ==0) o u t p u t [m+u1 ] [ r ] [ c ]= b i a s [m+u1 ] ;
f o r ( u2 = 0 ; u2 < TN; u2 += 1) / / u n r o l l e d by HLS t o o l

o u t p u t [m+u1 ] [ r ] [ c ] += f i l t e r [m+u1 ] [ n+u2 ] [ kx ] [ ky ] ∗ i n p u t [ n+u2 ] [ S∗ r +kx ] [ S∗c+ky ] ;
/ / ReLU Layer
i f ( kx==K−1 && ky==K−1 && o u t p u t [m+u1 ] [ r ] [ c ] < 0)

o u t p u t [m+u1 ] [ r ] [ c ] = 0 ;
}

To use FPGA resources in parallel, we instruct the HLS tool to unroll the
loops in our C++ code. This directs the tool to create a kind-of SIMD design
and create parallel copies for all the indices of the loop. Each parallel unit in
this loop unrolled design performs input/output operations according to the loop
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indices. We used nested unroll loops in our code to perform more operations in
parallel. Code 3.4 shows our UNROLL directive which create TM * TN parallel
copies of hardware to do multiply and accumulate operation. The outer unroll
loop add bias to the output and also do ReLU operation. This parallel hardware is
SIMD accelerator which takes different values of input and filters and do multiply
and accumulation in parallel. It also add bias and do ReLU operation on output.
Figure 3.5 shows our convolution engine design for TM = 2 and TN = 3. As
shown in Figure 3.5 there are two parallel computations units (Red and Green),
which takes three inputs in single cycle and generate two outputs. One of the
limitations of the UNROLL directive is that it can only be applied when loop
bound is fixed. As the computations in our layer fusion approach are irregular
the tile size of pyramid changes from one pyramid to one another pyramid so
unrolling (R, C) in code 3.4 is not possible. We can unroll the filter loops but the
maximum number of filter values are limited. For example, in AlexNet biggest
filter size is 11× 11 unrolling them creates only 121 parallel units while in VGG
the biggest filter size is only 3 × 3 so if we unroll these loops we under utilize
the available resources. To properly utilize the hardware resources, we unroll the
input and output loop. The input/output loop size (M and N) are fixed for any
convolution layer but these values can be very big for some layer and allocation
of M ×N resources is not possible some times. To overcome this limitation, we
traverse these loops using constant Tile factors TM and TN as shown in code 3.4.
Constant tile factor creates TM × TN parallel copies of the hardware and we
iterate over the available hardware again and again to complete computations for
current layer.

The parallel compute units in convolution engine are feeded by input and fil-
ters values which are stored in on-chip buffers inside FPGA as shown in Figure
3.5 . These on-chip buffers are called block RAM (BRAM) in FPGA terminology.
It is not possible to feed all the parallel units in single cycle because each BRAM
has only two read and write ports. To feed all the computation units parallel, we
partition the input BRAM in TN units which provides port to each of this parti-
tioned BRAM and make it possible to access TN values of input buffer in single
cycle. We also do TM partitions of our output BRAM and TM×TN partition of
our filter BRAM for the same purpose. In Code 3.4 input, output and filter are our
partitioned BRAM’s. We have used the PIPELINE directive in our convolution
engine code which feeds all the computation units in single cycle.

Our convolution engine looks same as mentioned in [33] but they apply their
convolution engine for fixed input, filter and output size which is decided by their
roofline model. They also load input and filter BRAM from external memory
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Figure 3.5: convolution Engine Design with unroll factor TM = 2 and TN = 3

before starting their convolution engine operations. In our case, our input size
changes according to position of pyramid in network and we access external mem-
ory only once to store all the filter values in on-chip buffer which are used again
and again for all the pyramids calculations. This reduce the external memory
accesses by huge amount.

They also use fixed unroll factors TM = 64 and TN = 7 for their convolution
engine and use the same convolution engine for all the layers which makes their
convolution engine underutilized for layers which have outputs channels less then
64 and inputs channels less then 7. For example, in AlexNet network their con-
volution engine was underutilized for first convolution layer which has 48 output
channels and 3 input channels. In our design, we give different resources (differ-
ent unroll factors) to different convolution layers of the network according to their
input and output channel size which minimize this under-utilization. The unroll
factors for each of our convolution layer is decided by 3.2. The L in 3.2 refers to
total number of layers in the network.
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L∑
i=1

TMi × TNi <= available DSP Resources (3.2)

We have also fused bias addition and ReLU layer computation in our convo-
lution engine which is not proposed in their design. ReLU fusion saves a lot of
on-chip storage because we don’t have to allocate on-chip buffer for ReLU layer
operations.

Pipelined Pyramids

Figure 3.4 shows our accelerator design in which for loop is applied to run dif-
ferent pyramids in the network one-by-one. For each pyramid accelerator goes
through each layer one-by-one and utilize that layer resources. When the pyra-
mid completes the computations of any layer L it get the output of that layer and
moves to layer L+1 and frees the resources of layer L which are not utilized until
this pyramids complete it’s all the remaining layer and next pyramid comes up to
layer L. For example, if we have N layers and any pyramid using the resources
of layer 1 and moves to layer 2, then resources of layer 1 becomes idle until the
pyramids completes it’s next N − 1 layer computations and next pyramid starts
it’s computation. This shows that our resources are idle for most of the time.

To overcome this limitation, we use dataflow optimization provided by HLS.
Dataflow optimization pipeline the pyramid computations and run the next pyra-
mid as soon as the resources are available to run it. For example, if any pyramid
use the resources of layer 1 and moves to layer 2, then resources of layer 1 be-
comes available and next pyramid start using it. The dataflow optimization creates
a ping-pong buffers between any two layers of our accelerator so that any two lay-
ers of accelerator don’t read and write from the same buffer.

Figure 3.6 shows the pipelined pyramids for N layer Network. As shown in
the Figure pyramid 2 starts using Layer 1 as soon as pyramid 1 leaves resources
allocated for Layer 1 and same applies to other layers. This pipeline make sure
that our resources become busy all the time.
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Figure 3.6: Pipelining applied to fused CNN accelerator

3.4 Results

3.4.1 FPGA Evaluation
In order to demonstrate our fused-layer CNN accelerator and compare it to an
existing carefully-optimized FPGA implementation, we used the HLS method-
ology from Section 3.3.2 to implement a fused accelerator for initial layers of
AlexNet [20], which is the network studied in [33].

3.4.2 FPGA Implementation
Based on the exploration tool described in Section 4.1, we choose to fuse the first
two convolutional layers of the network; these are the layers with the largest fea-
ture map size and consume most of the feature map bandwidth. We configure our
on-chip resources to roughly match the resources used in [33]. (The acutal costs
are later evaluated in Section 3.4.4.) Additionally, we include nonlinearities after
each convolutional layer that [33] omit but are critical to real-world CNN algo-
rithms: a rectified linear operation (which performs function f(x) = max(x, 0)
on each output value), and a 3 × 3 pooling layer (with stride 2) that keeps the
largest value in each 3× 3 region of the output.

We implement the fused-layer CNN acclerator using a NetFPGA-SUME field-
programmable gate array (FPGA) development board. The NetFPGA-SUME
contains a Xilinx Virtex-7 XC7V690T FFG1761-3 FPGA, and two 4GB DDR3
SODIMMs (1700 mbps) with 64 bit buses.

After creating the accelerator IP using Vivado HLS 2015.2, we integrated the
accelerator into a basic system using Vivado IP integrator 2015.3. The system
includes a 32-bit MicroBlaze processor with on-chip memory (used for control),
a timer (for run-time measurement), a UART, and a DDR3 controller, connected
to off-chip DRAM. All the components in the system are interconnected using an
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Resource Used Available Utilization %
LUT 327,996 433,200 75.71
FF 43,000 174,200 24.68

BRAM 967.5 1,470 65.82
DSP 2,336 3,600 64.78

Table 3.1: FPGA Resource Utilization

32 bit DSP LUT FF
Fixed Point (adder) 2 0 0

Fixed Point (multiplier) 2 0 0
Floating point (adder) 2 214 227

Floating Point (multiplier) 3 135 128

Table 3.2: FPGA Occupation Comparison

AXI4 interconnect. To measure the accelerator’s runtime, the MicroBlaze reads
the current timestamp from the timer, starts the accelerator’s computation, waits
for the accelerator to finish processing, and then records the timestamp. The Mi-
croBlaze, memory controller, UART, and timer run at 200 MHz, while the HLS-
generated logic runs at 100 MHz.

3.4.3 Resource Utilization
Table 3.1 shows the resource utilization of our accelerator. The placement and
routing is completed with vivado tool set. As shown in the table, our resources
are not fully utilized for XC7V690T board and it shows that we can fuse more
layers in the networks. We have only utilized 65.82% of DSP units and 65.83%
of BRAM which shows that we can fuse some more layers on this board.

Table 3.2 shows occupation of DSP resources for each multiplier and adder in
the network.

3.4.4 Comparison to Related Work
To compare our convolution engine performance with [33] we run our simulation
on VCX707 board after limiting our resources to match their design. We have lim-
ited our unroll factors of first layer to TM1 = 48 and TN1 = 3 and second layer
to TM2 = 64 and TN2 = 5 so that we can meet the DSP resources used by [33].
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Table 3.3: Resource usage of convolution layer 1 and 2
Resource DSP LUT FF

Convolution 1 726 58311 70332
Convolution 2 1610 136514 157847

Total 2336 194825 228179
Method [33] 2240 186251 205704

We derived unroll factors for each layer using equation 3.2. For any convolution
layer with unroll factor TM and TN , total number of multiplier and adder used
by layer are TM × TN . As we know from Table 3.2 that each floating point
multiplieruses 3 DSP units and each floating point adder uses 2 DSP units so total
DSP units used for multiply and accumulate are 5×TM×TN . As we are adding
bias in our convolution engine which requires TN adder and 2 timesTN DSP
units. Equation 3.3 shows total DSP units for convolution layers. The number of
flip flop and LUT used by any convolution layer can also be calculated using the
similar way.

Total DSP Units = 5× TM × TN + 2× TN (3.3)

Table 3.3 shows our resource utilization for convolution layers. As shown
in the table, we have used total 2332 DSP units for our two fused convolution
layers while [33] have used 2240 units. We have used slightly higher number
of DSP resources because our fused accelerator is doing two convolutions layers
in one pyramid and our convolution engine is fused with bias addition and ReLU
operations. Method [33] is doing only one convolution layer at one point of time
because of layer-by-layer approach and they use same resources when they move
from one convolution layer to next. The number in this table are generated by
vivado HLS after synthesis step and it matches with our estimation in equation 3.3.

Table 3.4 shows resource utilization for our complete fused accelerator (with
two convolution and two pooling layers) on VCX707 board and compare it method
[33]. As shown our fused accelerator completely utilize all the resources of this
board and fuse 2 convolution and 2 pooling layers of AlexNet. Our numbers for
FF and LUT is slightly higher because we are also doing pooling in our acceler-
ator while method [33] only do convolution with these resources. Our BRAM
utilization is 14% higher then [33] because we are using BRAM’s for pooling
layer and to store computations.
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Table 3.4: Resource usage of fused accelerator on VCX707
Resource Available Method [33] utilization Proposed Method utilization

DSP 2800 2240 2336
BRAM 2060 1024 1320

FF 303600 205704 277450
LUT 607200 186251 331536

3.4.5 Model for computation and communication
As we are using almost same resources as mentioned by [33]. To show that our
method method saves more bandwidth as compared to their approach we have
calculated Computation to Communication (CTC) Ratio using equation 3.4. CTC
ratio gives estimate of how much computation is done for each external memory
byte access. As we are doing our computations in pyramids we calculate CTC
ratio for pyramid using equation 3.5.

CTC =
total number of operation for all layers

total bytes of external data access
(3.4)

CTC pyramid =
total number of operations inside pyramid

total bytes of external data access by pyramid
(3.5)

We found that [33] can achieve maximum of 83.08 Flop/byte CTC ratio for
first convolution layer and maximum 162.61 Flop/byte CTC ratio for second con-
volution layer. As our tile size changes from one pyramid to another pyramid
we get maximum of 261.19 Flop/byte CTC. It shows that our technique achieves
1.61x higher CTC ratio and able to do 1.61 times more computation for each ex-
ternal data access.

As our CTC ratio is high from their methods it shows that we do more compu-
tation for each external byte access. As the number of computations done by both
the models are fixed we do very less external data access which saves bandwidth.
Using our technique we save 2.08 MB of external memory access as compared
to layer-by-layer approach with the same number of computations done by both
the networks. We only take 55.88 KB of extra on-chip storage to store redundant
computations.
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Chapter 4

Opportunities for Cross-Layer
Optimization

In order to evaluate how fusing layers with the reuse model affects the on-chip
storage and off-chip bandwidth requirements of real-world CNNs, this section de-
scribes a tool to evaluate the technique on CNN structures, and presents a tradeoff
evaluation study using it. Using this tool, we can evaluate how we can use mutiple
pyramids to fuse different layers of the pyramids.

4.1 Exploration Tool
Based on the back-mapping technique described in last chapter, we have con-
structed a tool for exploring the tradeoffs in fused-layer CNN accelerator de-
sign. In order to enable the tool to easily evaluate different CNN networks (e.g.,
AlexNet or VGG), we built it using the Lua scripting language as part of the
Torch machine learning framework [3], a popular system among those working
with deep learning algorithms. Our tool is able to read in a Torch description of
a convolutional network and analyze the costs (in terms of added on-chip mem-
ory capacity or added arithmetic operations) and benefits (off-chip data accesses
saved) for all possible pyramids and combinations of pyramids within the system.
The system is able to quickly enumerate and evaluate all possible options; even
for a large network like VGG, it is able to search through the design space in just
a few minutes on a single CPU.

We have implemented our back-mapping technique in this tool to evaluate
recompute and reuse models. Given a set of layers to fuse, we start from the
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final layer and work backwards to find the dimensions of the pyramid. Based on
the pyramid dimensions, we evaluate the costs in terms of needed storage and
arithmetic operations, as well as the benefit in the amount of off-chip data transfer
avoided.

The following equations allow us to calculate the dimensions of the pyramid,
based on the structure of each stage. Let the size of the pyramid at the output of a
given layer be N ×R× C (by construction, if this is the final layer of a pyramid,
then N×R×C = N×1×1, a single value for all N channels.) Here N is number
of channels in that layer, R is number of rows for feature map and C is number of
columns for feature map. If this layer is a convolutional layer with M channels,
we compute the pyramid size at this layer’s input as M ×R′ × C ′, according to:

R′ = S ·R +K − S

C ′ = S · C +K − S
(4.1)

where the convolutional kernel is of size K ×K, and it is applied with stride S.
If instead the layer performs pooling and not convolution, we use (4.1), but

where K ×K is the size of the pooling window and S is its stride.
Following this procedure, we can start from the output of a pyramid, and cal-

culate the dimensions of that pyramid at each level (i.e., the values at each level
upon which this output depends). Based on this knowledge, we can model how
the recompute and reuse models behave and compare them. By calculating all
the locations where these pyramids overlap, we can calculate the number of com-
putations that must be repeated under the recompute model. The reuse model aims
to exploit this fact by storing the relevant portions of a pyramid’s computation at
each layer to be used in the following pyramid at that layer. The reuse model will
require storage of N × R × (K − S) elements on the right side of the tile (to be
reused by the pyramids on the right) and N× (K−S)×C elements at the bottom
(to be reused by pyramids in the next rows). Once these computations are stored
these are used by all the pyramids which overlap with this region. Using this tool
we analyzed that recompute model is not a ideal model for deeper networks as
mentioned in last chapter. We have also used this tool to explore all the possible
ways to apply layer fusion using reuse model as mentioned in section 4.2.

In Section 4.2, we will provide examples of using this tool to analyze the
opportunities for fused-layer acceleration in two real-world CNNs.

30



4.2 Tradeoff Evaluation
This section presents an exploration of the effects of applying layer fusion to real-
world CNN algorithms. Using the evaluation tool described in Section 4.1, we
determine the costs (in terms of additional on-chip buffers needed) and benefits
(in terms of off-chip communication saved) for all possible groupings of fused
layers.

For any given network, there are a number of ways which one may choose
to fuse layers into distinct groups. If we have a network with ` layers, we have
2`−1 possible ways to fuse these layers (including the extreme cases where all
layers are fused into one layer, and where no layers are fused). For example,
if a network has three layers, we can choose to group the layers in groups of
(1, 1, 1), (2, 1), (1, 2), or (3). Although we typically expect that the best solutions
involve fusing pooling layers with the convolutional layers preceding them, for
the purposes of this analysis, we treat them as independent layers, which may or
may not be merged; this allows the optimization steps to consider their effects for
us.

For each network we enumerate all possibilities, and for each we compute how
much data must be transferred to and from DRAM. Figure 4.1 and 4.2 show these
results for VGG and AlexNet, respectively. For VGG, we consider fusing the first
11 layers (8 convolutional and 3 pooling), giving 1024 possible combinations.
Each point on the graphs represents one possible configuration; the x-axis value
indicates the on-chip storage required for that configuration, and the y-axis indi-
cates its data transfer requirement. The best points are those closest to the origin,
representing an ideal of very low bandwidth and storage costs. One can observe
that most of the configurations are sub-optimal—they are dominated by designs
that are better on both axis while being equivalent or better on the other. On each
graph, a solid black line connects the Pareto optimal designs (those which are not
dominated by any other).

These Pareto optimal points represent the set of tradeoffs that a designer may
want to consider, although the extremes may still offer unattractive results. For
example, the point labeled A in Figure 4.1 has the lowest on-chip storage cost;
it represents a layer-by-layer design (with some pooling layers fused, which do
not increase the on-chip cost). The point labeled C represents another extreme,
where all 11 layers considered have been fused into one. This point has minimum
bandwidth cost: the only feature maps it must transfer are the input and the final
output. This requires transferring only 1.37 MB of data, but it requires 701 KB of
on-chip memory to buffer intermediate results. This is 6.2x more on-chip memory
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Figure 4.1: Tradeoffs of layer fusion of VGG network

than the layer-by-layer approach requires, but it yields a 53.6x reduction in DRAM
traffic required for the feature maps.

In reality, the middle points may offer the most attractive choices for designers
to choose from. For example, the point labeled B represents a system that creates
four pyramids, each of which fuses two convolutional layers (with pooling layers
where appropriate). This configuration requires 17.1MB of data to be transferred
to/from DRAM, but it requires only 232 KB of on-chip storage. Relative to the
layer-by-layer approach (A), design B requires only 2.04x more on-chip memory
than the minimum (A), but it reduces the required off-chip memory transfer by
4.31x.

The AlexNet CNN has five convolutional layers and three pooling layers; thus
there are 128 possible combinations of different ways to fuse layers. Similar to
VGG, point labeled A in Figure 4.2 has a lowest on-chip storage cost; it represents
layer-by-layer design. Point labeled B has highest on-chip storage cost and it fuse
all the layers in one pyramid. The point labeled B represents a system that creates
two pyramids, the first pyramid fuses first two convolution and pooling layers and
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Figure 4.2: Tradeoffs for layer fusion of AlexNet network

next pyramid fuses remaining layers. We have used point B for our accelerator
design in the previous chapter.

These results show that layer fusion is able to save a large amount of memory
bandwidth at a modest increase in on-chip memory cost.

4.3 Evaluation of pyramid pipelining
As mentioned in the section 3.3.2, we pipeline the pyramids in the network so
that we can utilize the available resources all the time. If any stage of the pipeline
takes more execution cycles than the other stages, then the slow stage becomes
the bottleneck for the whole pipeline. To overcome this problem, we allocate the
FPGA resources to different convolution layers in a way such that all the layers in
the pipeline take almost the same number of execution cycles.

As shown in pseudo code 2.1, each convolution layer computations depends
on the number of output feature map channels (M), number of input feature map
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channels (N), output feature map size (R, C), and kernel size (K). As we are us-
ing pyramids for computation, our feature map size depends on the base of the
pyramid at each layer. We unroll the convolution layer loops for the number of
output/input feature map channels (M, N) and output map size (R, C) with dif-
ferent unroll factors (TM , TN, TR, TC) for all the convolution layers, finding the
combination of unroll factors at each layer that takes the same execution cycles
for all the layers. This approach produces a balanced pipeline for the network.
We do not unroll the kernel loop because networks such as GoogLeNet [30] use
kernel size 1 × 1 (to increase the depth of network), which doesn’t provide any
degree of freedom for unrolling the loops.

In our approach, we allocate separate resources to each convolution layers be-
cause each convolution layer has different parameters (M, N, R, C) and allocating
separate resources makes them more optimized. It is also possible to design only
one convolution module with maximum unroll factors to utilize all the available
DSP resources and use this module for all the convolution layers as mentioned
in [33]. But using fixed unroll factors for all layers underutilize the resources for
layers where unroll factors are higher than loop limits. For example, [33] use fix
unroll factors TM = 64 and TN = 7 to design their convolution module and
use this module iteratively for all the layers of AlexNet network. This module is
underutilize for first layer of network where number of output channels (M) are
48 and number of input channels (N) are 3.

Our exploration tool exhaustively searches all possible unroll factors for all the
convolution layers in the pipeline by which we can get same executation cycles for
all the layers. For each valid combination of layer fusion described in section 4.2,
the tool explores the optimized solution to determine a balanced pipeline. Fig-
ure 4.3 shows the analysis for the VGG network (fusing the first eight layers). It
uses three sets of pyramids to fuse eight convolution layers. The X axis in the
plot shows the total DSP resources used by all fused layers of pyramids and the
Y axis shows the execution cycles for all the layers. Each point in the plot shows
one combination in which all layers execute in approximately the same number
of execution cycles. The optimal solution for an FPGA is the one that takes the
minimum execution cycles and utilizes all of the available DSP resources. This
figure shows the scenario where we have unlimited DSP units and try to find out
the unroll factor combinations by which we can get same execution cycles. The
right most point in the figure shows the point where all the layers are fully unrolled
and execute in single cycle.

To find the optimal solutions for any FPGA, we take the point on the X axis
that matches the available DSP resources; all solutions left of that point are valid
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Figure 4.3: Different combinations for VGG

combinations for that FPGA. We can also put a constraint in our tool to find a
solution for any particular FPGA. For example, Figure 4.4 shows the output of
the tool for first two convolution layers of AlexNet on XC7V690T board which
has 3600 DSP units available. The optimal solution for this FPGA is the one
that takes the minimum execution cycles and utilizes all of the available DSP
resources. This solution is the rightmost point in the plot, utilizing around 3600
DSP units and taking approximately 1200 cycles for each of the two layers.

In our approach, we unroll all the convolution layers such that all layers get the
same execution cycles. It is possible that these convolution layers are in different
set of pyramids. For example, if we have five layers 1-2-3-4-5, and first set of
pyramids are fusing the first three layers (1-2-3) and the second set of pyramids
is fusing the next two layers (4-5). In this case, the second set of pyramids (4-5)
can start their computation when the first set of pyramids (1-2-3) are done with
their computation and write their output in the external memory (which is loaded
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Figure 4.4: Different combinations for AlexNet

by next set of pyramids as input, albeit the order in which data are stored differs
from the order in which they are loaded, requiring the round trip through external
memory). It is possible that while unrolling the loops, 60 % of DSP resource are
allocated to the first set of pyramids and 40 % to next set. In this case, when
we are doing computation for the first set (1-2-3), we are only utilizing 60 % of
the available resources, under-utilizing the available resources of the FPGA. But
this is ideal solution for scenario when we are doing computations for more than
one image. In this case, the first set of pyramids start computation on the second
image as soon as they finish their computation on the first image, and this scenario
utilizes 100 % of available resources of FPGA at all times.

These results show that we can explore all the possible combinations for layer
fusion in any network. We explore all the combinations in which layer fusion
can be applied and consider all the resource partitioning among layers to yield a
balanced pipelined design.

36



Chapter 5

Related Work

CNNs have got a lot of success in recent years and researcher have mapped this
model in different programming languages and different platforms. There are lot
of software implementation available today for CNNs and these are now used
even used by many companies for their artificial intelligence applications. To
advance the progress in the direction of deep learning researchers have provided
their open source platform for everyone which has sparked the growth in this
direction. For example following are famous framework/libraries available today
for CNNs implementation.

TensorFlow [2] — Google recently provided their open source machine learn-
ing library in C++ and Python with APIs for both. It provides parallelization with
CPUs and GPUs.

Caffe [18] — Caffe has been the most popular library for convolutional neural
networks. It is created by the Berkeley Vision and Learning Center (BVLC). It is
developed in C++, and has Python and MATLAB wrappers. It supports both CPU
and GPU and easily switching between them.

Torch [3] — An open source software library written in C and lua. It is cur-
rently used and developed by Facebook AI research, Twitter, Google Deep Mind
and Element Inc.

Theano [5, 6] — Theano is written in Python and compatible with popular
numpy library. Theano allows user to write neural networks using symbolic math-
ematical expressions which are automatically compiled to CUDA code. Theano
is primarily developed by a machine learning group at the Université de Montréal.

MatConvnet [31] — Matconvnet is matlab implementations of CNNs and it
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uses GPU routines for fast implementation of CNN layers.

OpenNN [1] — An open source C++ library which provides parallelization
with CPUs.

Veles [4] — Neural network training management software from Samsung
which is written in python and use CUDA and OpenCL for fast implementation
of Neural Networks.

5.1 Convolutional Neural Networks on GPUs
General-purpose CPUs have become a limiter for modern CNNs because of the
lack of computational parallelism. Most of the implementations mentioned above
use GPU’s to train neural networks because GPU’s provide massive parallelism
and high data transfer rates. We have used torch for our research, which is written
in lua scripting language. Constructing new network and training them is easier
in torch and it also provides tools to visualize the trained networks. We have used
torch for our exploration framework as mentioned in chapter 4. Similar to our
accelerator, torch provides option to save on-chip storage of non-linear and apply
non-linear operation along with convolution layers. Torch also uses GPU routines
to train their networks fast. Torch, Caffe, Theano and other libraries which imple-
ment CNN’s on GPU use the routine provided by NVIDIA. NVIDIA provides a
new library called cuDNN [10] which provides faster routines dedicated for deep
learning and currently used by almost all the libraries. Even after using GPU’s
massive parallelism training deeper networks takes several days and it consumes
lot of power and energy. It is not possible to use GPU’s for embedded systems
because of their energy requirement. There are some efforts has been made in
direction of fusing pooling layer with convolution layer to save external memory
access by hidden layers. In [24] author has proposed to fuse the pooling with
convolution and trained the convolution neural network. But this approach is only
applicable when convolution layer is followed by pooling layer. In our approach,
we fuse multiple layers and it can be any layer (pooling, convolution or padding).

5.2 CNNs on FPGAs
Because of GPU’s high power requirement a lot of research has been done to
develop dedicated accelerator on FPGA for embedded systems. As convolution
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layer of CNN’s is most computation and bandwidth demanding, many researcher
have focused on optimizing convolution layer of CNN’s. It has been admitted
by recent works [23, 33] that data transfer should be primary concern to achieve
efficient processing and they have optimized their convolution layer to minimize
external memory accesses. Work [23, 25] target to reduce the communication
of convolution engine with external memory. In this approach they use onchip
buffers to maximize the data reuse and reduce the bandwidth requirement. But
they don’t target to maximize their computational performance and also don’t fo-
cus on reducing the communication of hidden layer data with external memory.
In our approach, we not only maximize our computational performance but also
reduce the external memory accesses by both convolution layers and hidden lay-
ers.

In [33] researchers have proposed roofline model to maximize computation
and reduce the bandwidth requirement. They apply parallelism with in feature
maps and also across layer size to fully utilize the available resources on FPGA
board and use on-chip buffers to reuse the loaded data as much as possible and
minimize the communication of convolution layer with external memory. This
methods also similar to previous methods focus on minimizing the external mem-
ory access of convolution layer and don’t focus on minimize communication of
hidden layer data with external memory. They have also designed a single convo-
lution engine which utilize all the available resources on FPGA for doing compu-
tation and use this engine for all the convolution layers. As this convolution engine
uses fixed hardware it is underutilized for layers which require fewer resources for
their computation. In our method, we allocate the resources to each convolution
layers according to their requirement which makes our approach more compu-
tationally optimized and we also apply layer fusion to reduce external memory
access of hidden layers which makes our approach more bandwidth optimized.

In [15, 14] researchers have proposed systolic implementation and optimized
their filtering module. They have used their design for automotive robotics.This
kind of design uses very less resources and very efficient in filtering but this design
uses fixed hardware for all the kernels which make them underutilized for small
kernel sizes. Our method is different from their approach as our optimization does
not depends on kernel size.

Implementation in work [28] have also used systolic implementation to op-
timized their filtering module and they have also used parallelism within feature
maps to maximize resource utilization. In their implementation they don’t use on-
chip buffers to increase data utilization. As a result, their approach requires very
high external memory bandwidth to feed their parallel compute units. Similar to
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their approach, we also use parallelism within our feature maps (unroll factors) to
increase resource utilization but we use on-chip buffers to reuse data and minimize
the external memory access which reduce the bandwidth requirement.

5.3 CNNs on ASICs
Researcher’s have also focused on dedicated hardware implementation on ASIC
platform. Implementations [8, 9, 21] are three ASIC representations from the
same group. The earliest approach in [8] researcher have proposed a method for
ubiquitous machine learning and optimized different modules of neural networks
(pooling, convolution etc.) in way so that they minimize the external data access.
They have used loop tiling techniques to increase data locality which reduces ex-
ternal memory accesses. In [21] they have proposed an generalized machine
learning accelerator which can be used for several machine learning techniques.
In this approach they have optimized different computational primitives used by
different algorithms and focused on data reuse and data locality to reduce external
memory access. Both of these methods don’t focus on reducing the external mem-
ory accesses for hidden layers and transfer data to and fro from external memory
when they move from one layer to another layer. In our approach, we have also
designed dedicated modules (computation engines) for different layers of CNN
but we also use layer merging to reduce the external memory accesses.

In [9] they have proposed a method for optimizing layers which have less
hidden layers data and high filter weights data like fully connected layers and
convolution layers with private kernels. They have shown that for these layers
filter weights data size is too large and moving it to and fro in external memory
consumes lot of energy so they proposed a solution to store the whole weights
data in the on-chip memory and move hidden layer data to and fro from exter-
nal memory. The drawback of this method is that it requires a lot of on-chip
storage to store this huge amount of filter weights. If we have large amount of on-
chip storage then we can also store hidden layer data in on-chip memory because
this data is only fraction of filter weight size. As we have shown in our analy-
sis in section 3.1 that for deeper layers of networks filter weight data is large as
compared to hidden layer data and this problem aggravates for networks which
are very deep like VGG-E [29] and GoogLeNet [30]. For these networks filters
weight can range from few MB to GB and we can’t store this filter weight data
on-chip. Our approach is similar to their approach as we also store filter weights
in on-chip memory but we use this approach for earlier layers of networks where
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filter weights are very small. For later layers as shown in section 3.1 hidden layer
data can stay on-chip as it is very small as compared to filter weights. The major
difference in our approach and their is that we focus on reducing external memory
access for earlier layers of network where hidden layer data is too large and they
focus on reducing external memory access for later layers where filter weight size
is large but compared to their approach we use only small amount of cache to
minimize external memory access.

In [27], authors have proposed a generalized convolution engine which can
be used for various computer vision and computational photography algorithms
which have convolution like data-flow patterns. Similar to our convolution module
which fuse bias addition and ReLU operation they also fuse multiple arithmetic
operation with-in their convolution engine to reduce memory storage requirements
but they don’t fuse multiple layers together like our approach. Moreover, their
accelerator can only be used for algorithms which do 1D or 2D convolution and
they haven’t shown their applicability for algorithms which use 3D convolution
like CNN.
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Chapter 6

Conclusions

In this thesis, we develop a novel CNN accelerator architecture and design method-
ology that breaks away from the commonly accepted practice of processing net-
work layer by layer. By modifying the order in which the original input data are
brought on chip, changing it to a pyramid-shaped multi-layer sliding window, our
architecture enables to fuse multiple layers of CNN and save the external mem-
ory accesses of the hidden layers. We proposed the recompute model and the
reuse model to fuse multiple layers of computation and showed the benefits of
the reuse model over the recompute model. The reuse model uses on-chip buffers
to reduce the off-chip memory bandwidth requirements, whereas the recompute
model recomputes the needed intermediate values from the input data. We showed
that caching a limited number of values in the reuse model reduces the off-chip
memory bandwidth requirements, which is a primary bottleneck in many CNN
environments. Furthermore, we implemented a tool which evaluate any CNN and
propose how layer fusion can be applied to reduce external memory accesses.
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