

SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy

The official electronic file of this thesis or dissertation is maintained by the University
Libraries on behalf of The Graduate School at Stony Brook University.

©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr...

Planning with Transaction Logic

A Dissertation presented

by

Reza Basseda

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

December 2015

Stony Brook University

The Graduate School

Reza Basseda

We, the dissertation committe for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation

Professor Michael Kifer - Dissertation Advisor
Department of Computer Science

Professor Scott D. Stoller - Chairperson of Defense
Department of Computer Science

Professor Emeritus David S. Warren
Department of Computer Science

Professor Yanhong A. Liu
Department of Computer Science

Professor Neng-Fa Zhou - External
Department of Computer and Information Science,

City University of New York

This dissertation is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

ii

Abstract of the Dissertation

Planning with Transaction Logic

by

Reza Basseda

Doctor of Philosophy

in

Computer Science

Stony Brook University

2015

Automated planning has been the subject of intensive research and is at the
core of several areas of AI, including intelligent agents and robotics. In this dis-
sertation, we argue that Transaction Logic is a natural specification, experimen-
tation, prototyping, and potentially implementation language for planning algo-
rithms. This enables one to see further afield and thus discover better and more
general solutions than using one-of-a-kind formalisms that have been tradition-
ally dominating this field. Specifically, we take the well-known STRIPS planning
strategy and show that Transaction Logic lets one specify this strategy and several
of its far-reaching extensions easily and concisely. In addition, we demonstrate the
power of our approach by applying it to a fundamentally different (from STRIPS)
planning strategy, called GraphPlan.

To summarize, this dissertation introduces a novel planning formalism based
on Transaction Logic and validates it by applying it to some existing planning
strategies and developing new ones as follows: (1) we propose a non-linear ex-
tension to STRIPS planning and prove its completeness; (2) we introduce fast-
STRIPS—a modification of our non-linear STRIPS extension, which is also com-
plete and yields speedups of orders of magnitude; (3) we extend STRIPS with
regression analysis, which is again complete and significantly improves perfor-
mance; (4) we extend STRIPS to enable it to solve planning problems with nega-
tive derived atoms; (5) to illustrate the versatility of our formalism, we also applied
it to GraphPlan— a planning strategy that bears no resemblance to STRIPS.

iii

Dedication Page

To my parents, Nasser Basseda and Esmat Hessan.
Without their patience, support, and most of all love,

the completion of this dissertation would not have been possible.

And to my sisters, Nargess and Zahra.
For their endless love and encouragement.

And to my teachers.
For the education they provided to me.

iv

Contents

1 Introduction 1

2 Overview of STRIPS and T R 5
2.1 Extended STRIPS-style Planning 5
2.2 Compatibility with PDDL . 8
2.3 Overview of Transaction Logic 9

3 STRIPS Planning Using T R 18
3.1 The T R-STRIPS Planner . 18
3.2 The fSTRIPS Planner . 31

4 Planning With Regression Analysis 34
4.1 Regression Analysis . 34
4.2 The STRIPSR Planner . 38

5 Planning Problems With Negative Intensional Literals 59
5.1 Negative Intensional Literals . 59
5.2 The STRIPSneg Planner . 60

6 The T R∗GraphPlan Planner 66

7 Experiments 72

8 Discussion 77
8.1 Related Works . 77

v

8.2 Conclusion . 78

vi

List of Figures

2.1 An example of state change. 7
2.2 State change in BlocksWorld example. 12
2.3 State changes by T R rules in Example 2. 14

3.1 Initial state and goal condition of Example 3. 21
3.2 State changes by T R planning rules in Example 4. 29

6.1 The first three levels of planning graph of Example 7. 69

vii

List of Tables

7.1 Results of different goal sizes (number of literals in the goals) for
the movie store case. The initial state is fixed and has 6 extensional
atoms. 73

7.2 Results of different goal sizes (number of literals in the goals) for
the health-care case. The initial state is fixed and has 6 extensional
atoms. 73

7.3 Results of different sizes (number of facts) in initial states for the
movie store case. The planning goal is fixed: 6 extensional literals
in the ”movie store” case and 3 extensional literals in the ”health
care” case. 74

7.4 Results of different sizes (number of facts) in initial states for the
health care case. The planning goal is fixed: 6 extensional literals
in the ”movie store” case and 3 extensional literals in the ”health
care” case. 74

7.5 Results of different goal sizes (number of literals in the goals) to
show the effect of regression analysis. The initial state is fixed and
has 15 extensional atoms. 75

7.6 Results of different sizes (number of facts) in initial states. The
planning goal is fixed: 6 extensional literals. 75

7.7 Results for the Blocks World test case. 76

viii

Preface

This Ph.D. dissertation contains the result of research undertaken at the De-
partment of Computer Science of Stony Brook University.

My journey towards this dissertation started in December 2012, when my ad-
viser recommended me to read a paper about Analysis of State Modifying Access
Control Policies [12]. A few weeks afterward, in one of our department’s events,
I was fortunate to have a short conversation about that topic with Professor Scott
Stoller, who also provided me with papers on Analysis of Administrative Policies
[48], which is a related topic. After having a discussion about analysis of such
policies, Professor Kifer advised me to generalize and reformulate this analysis
as a classical planning problem. The generalization and reformulation, together
with my background knowledge about Transaction Logic, led me to the current
research direction, Planning with Transaction Logic.

The extended abstract of this dissertation has appeared in [8]. Part of Chapter 3
has been also published in [11]. A material from Chapters 3, 4, and 5 will be also
submitted for publication in a journal paper next year. Part of my work on planning
with Transaction Logic is not included in this dissertation. But it can be found in
[10, 9].

Reza Basseda
Stony Brook, NY

November 2015

ix

Acknowledgements

First of all, I would like to praise God the most merciful, for giving me pa-
tience, self-power and ability to accomplish this work. I praise God, the almighty
for providing me this opportunity and granting me the capability to proceed suc-
cessfully in achieving all my goals. I would also like to express my sincere thanks
and appreciation to all who helped me during the past years.

The last six years have been a challenging trip, with both ups and downs.
Fortunately, I was not alone on this road, but accompanied by a great adviser,
Professor Michael Kifer, who was always willing to coach, help, and motivate
me. For this, I would like to kindly thank him. The door to Professor Kifer’s office
was always open whenever I ran into a trouble spot or had a question about my
research or writing. He was always there to listen and to give his best advice. He
is responsible for involving me in this research topic in the first place. He taught
me how to ask questions, express my ideas, and write a scientific statement. He
showed me different ways to approach a research problem and the need to be
persistent to accomplish any academic goals. I believe that I am tremendously
fortunate and blessed to have worked with him. I will never find words to tell
what I owe to him. But, I would sincerely like to say him ”thank you.”

I would also like to thank the rest of my dissertation committee: Professor
Scott Stoller, who introduced administrative policies to me, and played an im-
portant role in directing me to this area of research, Professor David Warren, for
everything I learned about Prolog from his classes and our research meetings,
Professor Yanhong Liu, for invaluable lessons about research in programming lan-
guages, and Professor Neng-fa Zhou, who gave insightful comments and reviewed
my work.

I also owe a special thank you to Dr. Paul Fodor, who was a constant help,
source of encouragement, and positivity for me during the implementation phase
of this research work. He continually reminded me to stay focused, and cheerfully
supported me whenever I expressed feelings of doubt or uncertainty. I would also
like to sincerely thank all my teachers at Stony Brook University, including Pro-
fessor Radu Grosu for teaching a great and interesting course on algorithms, Pro-
fessor Ker-I Ko for introducing me to the theory of computation, Professor Anita
Wasilewska for great lessons into logic for computer science, Professor Samir
Das for teaching a great course on computer networks, Professor Klaus Mueller

x

for infusing his in-depth knowledge and interest in visualization into me, and Pro-
fessor Himanshu Gupta for refreshing my knowledge in his database course. I
am also thankful of Professor Rezaul Chowdhury, my teacher in supercomputing
and parallel programming graduate courses, who also was my co-adviser for a
short period of time. I also wish to thank Professor I.V. Ramakrishnan and C.R.
Ramakrishnan, my teachers in artificial intelligence and programming languages
graduate courses, who also sat on my Research Proficiency Exam committee. By
working with all these top professional people, I have gained more knowledge to
pursue my career and become more confident at my research.

Many thanks to Maryam Bahojb Imani and Najmehalsadat Miramirkhani whose
editing suggestions and precise sense of language contributed to the final copy.
Maryam provided decisive and energetic support during the write-up stage. Na-
jmehalsadat also provided a lot of useful comments on my defense presentation
and dissertation. The loyal assistance of Koosha Mirhosseini, Ali Aleyasin, and
especially Alireza Abedi, enabled me to bypass the more persistent obstacles to
dissertation completion. Also thanks to Tiantian Gao for his assistance and will-
ingness to discuss ideas at their initial stage. I am really grateful for all support
by the present and former members of the Web-Scale Knowledge Representa-
tion Lab: Senlin Liang, Polina Kuznetsova, and Hui Wan, for engendering an at-
mosphere of intellectual vitality, exchange, and collegiality in our lab. I am also
grateful to Dr. Steven Greenspan, Steven Lee, and Michael Cohen from CA Inc.,
and Dr. Peng Xu, Dr. Klaus Macherey, and Dr. Wolfgang Macherey from Google
Inc. for all of their support during the time when I was research assistant at CA
and software engineering intern at Google. I would also like to thank all the stu-
dent members of programming languages group: Kazim Tuncay Tekle, Jonathan
Brandvein, Spyros Hadjichristodoulou, and Bo Lin. Listening to and participating
in their discussions on various matters provided me with an opportunity to engage
in intellectual discourse beyond my disciplinary boundaries.

My acknowledgement will never be complete without the special mention of
my fellows in Computer Science Graduate Student Council: Hau Chan, Abhishek
Murthy, and William Jannen. They not only helped me run as the president of
the council, but also have taught me the group culture and have lived by example
to make me understand the hard facts of life. Abhishek was a wonderful friend
throughout grad school and most of my dissertation endeavors. Not only did he
provide me with intellectual support, but he also kept me encouraged along the
way. William kept me entertained, inspired, and motivated to keep on plugging
away at my goals even when our research workload seemed completely over-
whelming. I would like to acknowledge the chairman of the computer science

xi

department, Distinguished Professor Arie Kaufman, for all his support and moti-
vation during the time I was serving as the president of the council and the repre-
sentative of computer science graduate students in Graduate Student Organization.
By collaborating with all of these colleagues, I have obtained more invaluable ex-
periences to enhance my career growth and skills.

I would like to acknowledge my other friends for their moral support and mo-
tivation, which drives me to give my best. Roozbeh Ebrahimi Soorchaei, Navid
Hamed Azimi, Mohammadali Bankehsaz, Rami Al-Rfou’, Kota Yamaguchi, Sim-
ing Li, Mohammad Tanvir Irfan, Arun Nampally, Muhammad Asiful Islam, An-
drey Gorlin, Golnaz Ghasemiesfeh, Zhongyuan Xu, Puneet Gupta, Md. Ariful
Islam, Behzad Farshid, Hossein Ebrahiminejad, Hoda Ehsan, Jesmin Jahan Tithi,
Pramod Ganapathi, Sumeet Bajaj, Seyed Ahmad Javadi, Kazem Shirinzad, Saad
Nadeem, Michael Ortega, Seyed Mohammad Halimi, Jianfu Chen, Mostafa Haghir
Chehreghani, Noopur Motiyani, Rohit Mathew, Prankur Gupta, Zafar Ayyub Qazi,
Wai-Kit Sze, Andrea Fodor, Niranjan Sudhir Hasabnis, Dilip Nijagal Simha, Ric-
cardo Pelizzi, Prasad Narasimhan, Charilaos Papadopoulos, Ievgeniia Gutenko,
Mariola Szenk, Travis Kruse, Max Katz,... the list is endless ... thanks to one and
all. My special gratitude to all of them for being with me in thicks and thins of
life. I find myself lucky to have friends like them in my life.

I would also like to extend my gratitude to the systems and administrative staff
at the department including Brian Tria, Cynthia Scalzo, Kathy Germana, Stella
Mannino, and Betty Knitweiss.

Above all, a special thanks to my family. Words cannot express how grateful
I am to my father and mother for all of the sacrifices that they have made on
my behalf. Their prayers for me were what sustained me this far. I thank my
parents, Nasser Basseda, and Esmat Hessan, for giving me life in the first place,
for educating me at early steps, for unconditional support and encouragement to
pursue my interests, even when the interests went beyond boundaries of language,
field and geography. My sister, Zahra, for sharing her research experience which
helped me to write this dissertation. And also for listening to my complaints and
frustrations, but always believing in me. My older sister, Nargess, for sharing her
life experiences with me, which boosted my confidence to pursue my dreams.
Hence, I would not have accomplished my goals without my family’s endless
support, encouragement, and cheers.

xii

Chapter 1

Introduction

The classical automated planning refers generally to planning for restricted state-
transition systems. Given a restricted state-transition system, an initial state, and
a set of goal conditions, the classical planning problem is to find a sequence of
actions whose execution started at initial state results in a state satisfying the goal
conditions. The classical problem of automated planning has been used in a wide
range of applications such as robotics, multi-agent systems, and more. Due to
this wide range of applications, automated planning has become one of the most
important research areas in Artificial Intelligence (AI).

The history of classical planning in AI dates back to the early 1970s when the
first planning system, STanford Research Institute Problem Solver (STRIPS), was
introduced by Fikes and Nilsson [32]. STRIPS problem solving system not only
introduced the STRIPS planning algorithm, but also established a representation
language called classical planning problem language [32, 78], extended further
by Planning Domain Definition Language (PDDL) standards [34]. Based on the
search structures and algorithms, planning techniques to solve classical planning
problems can be grouped in two categories: classical and neoclassical [72].

In classical planning techniques, every node of the search space represents a
partial plan. When the planning solutions are considered a total order sequence of
actions, a divide-and-conquer planning technique, called linear planning, can be
applied to solve a planning problem [80, 79]. However, this approach is not com-
plete for non-serializable sub-goal problems [85, 65, 64, 51]. State space planners
are instances of linear planning and are further developed using different heuris-
tics [69, 18, 50, 49]. On the other hand, in non-linear planning, planning solutions
are constructed from partial order solutions. Plan space planners are well-known
instances of non-linear planning that are successful in addressing the incomplete-

1

ness problem [80]. TWEAK is an example of partial order planners that also ac-
counts for the proof of completeness and decidability of different planning prob-
lems. Partial order planning approach has also been used in several other planners
[68, 75] as well.

In neoclassical planning techniques, every node of the search space can be
viewed as a set of several partial plans. GraphPlan is an example of these tech-
niques introducing a very powerful search space called planning graph [16]. The
performance of GraphPlan is better than other neoclassical planning techniques.
There are also several research works that study classical planning as satisfiabil-
ity problem [58][44][30]. BLACKBOX is one the most recent planners based on
both graph-based technique and propositional logical satisfiability. In the AIPS
planning competition 2001, BLACKBOX was able to compete with other plan-
ners. Planning as a constraint satisfaction problem (CSP) is another example of
neoclassical planning techniques [84][31].

Besides planning as satisfiability and CSP, a number of deductive planning
frameworks have been proposed over the years. Situation calculus is one of the
first logic based approaches applied for solving a classical planning problem [46].
Linear connection proof method [13][14][15], equational horn logic [52], and lin-
ear logic [56][26] are well-known examples of logic-based deduction methods ap-
plied for solving classical planning problems. Answer set programming is another,
more recent logic based technique to solve planning problems [28][29][66][40][37].
The representation of planning domains and problems in answer set programs
is similar to that of situation calculus [36]. Picat is another logic programming
framework that simulates the forward state space search planning algorithm. Its
novel customized tabling technique makes it an efficient logic-based system for
solving planning problems [7][88][6][87].

There are several reasons that make logical deduction suitable for a classi-
cal planner: (1) Logic-based deduction used in planning can be cast as a formal
framework that eases proving different planning properties such as completeness
and termination. (2) Logic-based systems naturally provide a declarative language
that simplifies the specification of planning problems. (3) Logical deduction is
usually an essential component of intelligent knowledge representation systems.
Therefore, applying logical deduction in classical planning makes the integration
of planners with such systems simpler. Despite these benefits of using logical de-
duction in planning, many of the above mentioned deductive planning techniques
are not getting as much attention as algorithms specifically provided for planning
problems. One can enumerate a couple of reasons for this state of affairs:

2

• Many of the above approaches invent one-of-a-kind theories that are suit-
able only for the particular problem at hand. This makes such approaches
not scalable as they require great intellectual effort for each new domain.

• These works generally show how they can represent and encode classical
planning actions and rely on a theorem prover of some sort to find plans.
Therefore, the planning techniques embedded in such planners are typically
simple state space planning (e.g. forward state space search) that has a very
large search space. Thus, they do not exploit heuristics and techniques de-
veloped for different classical and neoclassical planning technique with the
purpose of reducing the search space.

In this dissertation, we show that a general logical theory, specifically Trans-
action Logic (or T R) [24, 23, 22], addresses the above mentioned issues and also
provides multiple advantages for specifying, generalizing, and solving planning
problems. Transaction Logic is an extension of classical logic with dedicated sup-
port for specifying and reasoning about actions, including sequential and parallel
execution, atomicity of transactions, and more.

Our contention is that precisely because planning techniques are cast here as
purely logical problems in a suitable general logic, a number of otherwise non-
trivial extensions become low-hanging fruits and we get them almost for free. For
instance, we will show that STRIPS-based planners can be naturally extended with
intensional rules and derived predicates.

We validate approach by applying it to two classes of planning algorithms:
STRIPS-based planners and GraphPlan, the former being classical and the latter
neoclassical. Specifically, our contributions are as follows:

1. We use Concurrent Transaction Logic to introduce a novel non-linear STRIPS-
based planning algorithm, which, unlike the original linear STRIPS planner
[32], is proven to be complete.

2. After inspecting the logic rules of our non-linear STRIPS-based planning
algorithm, we introduce certain heuristics that reduce the search space. Our
experiments show that these heuristics yield significant speedups.

3. We further enhance our STRIPS-based planner with regression analysis and
show that this also yields significant speedup.

4. We extend the STRIPS planning algorithm with negative derived literals.
This can simplify the specification of certain planning problem and, more

3

interestingly, can reduce the number of states to be searched thus improving
the performance.

5. Finally, we apply our techniques to a completely different class of planners,
the neoclassical GraphPlan algorithm. The heuristic underlying GraphPlan
differs from STRIPS significantly and the ability to handle this different
class of algorithms testifies to the versatility of our approach.

6. We show that, our basic version of the non-linear STRIPS planner as well as
our extensions of this algorithm are both sound complete. Our GraphPlan
simulation is sound and, we believe, is also complete.

We believe that our GraphPlan-based planner can also be extended with inten-
sional rules and negative derived predicates, which will be the part of future work.
Likewise, in our future work we would like to explore incorporating other aspects
found in the planning literature, like parallelization of plans and plans with loops
[56, 55, 82].

This dissertation is organized as follows. Chapter 2 introduces the STRIPS
planning framework and its extension in support of action ramification and pro-
vides the necessary background on Transaction Logic. Chapter 3 casts STRIPS as
a problem of posing a transactional query in Transaction Logic and shows that
executing this query using the T R’s proof theory makes for a sound and com-
plete STRIPS planning algorithm. It also proposes the fSTRIPS planning strategy
and shows that the T R’s proof theory also yields a complete planning algorithm.
Chapter 4 introduces the regression of literals through STRIPS actions and pro-
poses a regression analysis method for T R. It then introduces STRIPSR, an exten-
sion of our STRIPS-based planning algorithm with regression analysis, which has
a “smarter” search strategy. Chapter 5 extends STRIPS with negative derived liter-
als and proposes the STRIPSneg planner for this planning domain. Chapter 6 pro-
vides a T R-based representation of the GraphPlan planning algorithm. In Chap-
ter 7, we present our experiments that compare the performance of the different
algorithms and Chapter 8 concludes the dissertation.

4

Chapter 2

Overview of STRIPS and T R

In this chapter, we first formally review the basics of STRIPS planning and show
how this formalism is related to Planning Domain Definition Language, PDDL.
Then we briefly overview some components of T R used in our planning tech-
nique.

2.1 Extended STRIPS-style Planning
To review the formal definitions of STRIPS planning, we first remind the reader
a number of standard concepts in logic. Then we introduce the STRIPS planning
problem.

We assume denumerable sets of variables V , constants C, and predicate sym-
bols P—all three sets being pairwise disjoint. The set of predicates, P , is further
partitioned into extensional (Pext) and intensional (Pint) predicates. In STRIPS,
actions update the state of a system by adding or deleting statements about predi-
cates. In the original STRIPS, all predicates were extensional, and the addition of
intentional predicates is a major enhancement, which allows us to deal with the
so-called ramification problem [43], i.e., with indirect consequences of actions.

Atomic formulas (or just atoms) have the form p(t1, ..., tn), were p ∈ P and
each ti is either a constant or a variable. Extending the logical signature with
function symbols is straightforward in our framework, but we avoid doing this
here in order to save space.

An atom is extensional if p ∈ Pext and intensional if p ∈ Pint. A literal is
either an atom or a negated extensional atom of the form ¬p(t1, ..., tn). Negated
intensional atoms are not supported by the formalisms in Chapters 3 and 4—only

5

negated extensional literals were allowed. In Chapter 5, we extend our framework
to allow negated intensional atoms and propose a novel extension of STRIPS plan-
ning for such domains.

Extensional predicates represent database facts: they can be directly manipu-
lated (inserted or deleted) by actions. Intensional predicate symbols are used for
atomic statements defined by rules—they are not affected by actions directly. In-
stead, actions make extensional facts true or false and this indirectly affects the
dependent intensional atoms. These indirect effects are known as action ramifica-
tions in the literature.

A fact is a ground (i.e., variable-free) extensional atom. A set S of literals is
consistent if there is no atom, atm, such that both atm and ¬atm are in S.

A rule is a statement of the form head ← body where head is an intensional
atom and body is a conjunction of literals. A ground instance of a rule, R, is
any rule obtained from R by a substitution of variables with constants from C
such that different occurrences of the same variable are always substituted with
the same constant. Given a set S of literals and a ground rule of the form atm ←
`1 ∧ · · · ∧ `m, the rule is true in S if either atm ∈ S or {`1, . . . , `m} 6⊆ S. A
(possibly non-ground) rule is true in S if all of its ground instances are true in S.

Definition 1 (State). Given a set R of rules, a state is a consistent set S = Sext ∪
Sint of literals such that

1. For each fact atm, either atm ∈ Sext or ¬atm ∈ Sext.

2. Every rule of R is true in S. 2

Definition 2 (STRIPS action). A STRIPS action is a triple of the form
α = 〈pα(X1, ..., Xn), P reα, Eα〉, where

• pα(X1, ..., Xn) is an intensional atom in whichX1, ..., Xn are variables and
pα ∈ Pint is a predicate that is reserved to represent the action α and can
be used for no other purpose;

• Preα, called the precondition of α, is a set of literals that may include
extensional as well as intensional literals;

• Eα, called the effect of α, is a consistent set that may contain extensional
literals only;

• The variables in Preα and Eα must occur in {X1, ..., Xn}.1 2

1Requiring the variables of Preα to occur in {X1, ..., Xn} is not essential for us: we can easily
extend our framework and consider the extra variables to be existentially quantified.

6

(a) S (b) S′

Figure 2.1: An example of state change.

Note that the literals in Preα can be both extensional and intensional, while
the literals in Eα can be extensional only.

Definition 3 (Execution of a STRIPS action). A STRIPS action α is executable in
a state S if there is a substitution θ : V −→ C such that θ(Preα) ⊆ S. A result
of the execution of α with respect to θ is the state, denoted θ(α)(S), defined as
(S \ ¬θ(Eα))∪ θ(Eα), where ¬E = {¬` | ` ∈ E}. In other words, θ(α)(S) is S
with all effects of θ(α) applied. When α is ground, we simply write α(S). 2

Note that S′ is well-defined since θ(Eα) is unique and consistent. Observe also
that, if α has variables, the result of an execution, S′, may depend on the chosen
substitution θ.

The following simple example illustrates the above definition. We follow the
standard logic programming convention whereby lowercase symbols represent
constants and predicate symbols. The uppercase symbols denote variables that
are implicitly universally quantified outside of the rules.

Example 1. Consider a world consisting of just two blocks and the action pickup =
〈pickup(X, Y), {clear(X)}, {¬on(X, Y), clear(Y)}〉. Consider also the state S =
{clear(a),¬clear(b), on(a, b),¬on(b, a)}. Then the result of the execution of
pickup at state S with respect to the substitution {X → a, Y → b} is S′ =
{clear(a), clear(b),¬on(a, b),¬on(b, a)}, shown in Figure 2.1. It is also easy to
see that pickup cannot be executed at S with respect to any substitution of the
form {X → b, Y → ...}. 2

Definition 4 (Planning problem). A planning problem 〈R,A, G,S〉 consists of a
set of rules R, a set of STRIPS actions A, a set of literals G, called the goal of the
planning problem, and an initial state S. A sequence of actions σ = α1, . . . , αn is
a planning solution (or simply a plan) for the planning problem if:

7

• α1, . . . , αn ∈ A; and

• there is a sequence of states S0,S1, . . . ,Sn such that

– S = S0 and G ⊆ Sn (i.e., G is satisfied in the final state);

– for each 0 < i ≤ n, αi is executable in state Si−1 and the result of that
execution (for some substitution) is the state Si.

In this case we will also say that S0,S1, . . . ,Sn is an execution of σ. 2

Definition 5 (Non-redundant plan). Given a planing problem 〈R,A, G,S〉 and a
sequence of actions σ = α1, . . . , αn, we call σ a non-redundant plan for 〈R,A, G,S〉
if and only if:

• σ is a planning solution for 〈R,A, G,S〉;

• None of σ’s sub-sequences is a planning solution for the given planning
problem.

In other words, removing any action from σ either makes the sequence non-
executable at S or G is not satisfied after the execution. 2

2.2 Compatibility with PDDL
PDDL is a standard language intended to express planning domains [42] in AIPS
planning competitions [4]. A planning domain consists of domain predicates, pos-
sible actions, the structure of compound actions, and the effects of actions. To ex-
press a planning domain and a planning problems, PDDL supports several syntac-
tic features such as basic STRIPS-style actions, conditional effects, universal quan-
tifications in the effects, ADL features [74], domain axioms, safety constraints,
hierarchical actions, and more. Clearly, the formalism in Section 2.1 also supports
the basic STRIPS-style actions and domain axioms. Although, it is simple to ex-
tend this formalism to include other features, we intend to keep our formalism
as simple as possible. Such simplicity makes our later discussed soundness and
completeness proofs straightforward and understandable. We will also extend this
formalism in the following chapters due to the requirements of further develop-
ments. For instance, we will add equality built-ins in Chapter 4.

8

It is easy to show that T R is expressive enough to represent and encode
most of the features provided by different extensions of PDDL. The following
list briefly shows the ability of T R to express some of these main features.

• ADL features [70, 42]: in PDDL, actions can have a first order formula in
their precondition. The effect of an action can also include universal quan-
tifications over fluents. T R can use Lloyd-Topor transformation to support
first order formula (including universal and existential quantifiers and dis-
junction) in the precondition of actions. It also can simulate universal quan-
tifications over fluents in the effects of actions.

• Numerical extensions [34]: in PDDL, one can associate actions, objects, and
plans with numerical values and use these values in numerical expressions
to compute different planning metrics. This syntactical feature also needs
PDDL to include numerical operators. Since T R can express and encode
numerical operators and expressions as a part of its model theory, it can
easily have this feature.

• Temporal extensions and durative actions [34, 38, 71, 81]: PDDL is able to
express discretised and continuous actions [34]. T R is also able to repre-
sent discretised and continuous actions because the notion of time can be
encoded in T R’s transactions.

• Plan and solution preferences and constraints [47, 41]: In a planning prob-
lem, it is possible that only a subset of goals can be achieved because of the
conflict between goals. In this situation, the ability to distinguish the impor-
tance of different goals is essential. PDDL provides such ability to express
such preferences among goals and planning solutions. T R augmented with
defeasible reasoning also can easily provide this feature.

The compatibility of our formalism in Section 2.1 with PDDL makes it easy to
migrate standard AIPS planning competition benchmarks to our T R frameworks.
Such compatibility allows us to develop a simple translator that maps STRIPS
planning problems specified in PDDL and planning algorithms to T R [10].

2.3 Overview of Transaction Logic
To make this dissertation self-contained, we provide a brief introduction to the
parts of Transaction Logic that are needed for the understanding of this disserta-
tion. For further details, the reader is referred to [21, 23, 24, 19, 22].

9

T R is a faithful extension of the first-order predicate calculus and so all of
that syntax carries over. In this dissertation, we focus on rules, however, so we
will be dealing exclusively with that subset of the syntax from now on. The most
important new connectives that Transaction Logic brings in are:

1. Serial conjunction (⊗): Like the classical conjunction, serial conjunction
is a binary associative connective, but it is not commutative. Informally, the
formula φ⊗ψ is understood as a composite action that denotes an execution
of φ followed by an execution of ψ.

2. Concurrent conjunction (|): Concurrent conjunction is a binary associative
and commutative connective. Informally, φ|ψ says that φ and ψ can execute
in an interleaved fashion. For instance, (α1 ⊗ α2)|(β1 ⊗ β2) can execute as
α1, β1, α2, β2, or as α1, β1, β2, α2, or as α1, α2, β1, β2, while (α1 ⊗ α2) ⊗
(β1 ⊗ β2) can execute only as α1, α2, β1, β2.

3. Isolation operator (�): It specifies that the formula in its scope must be
executed without interleaving with other, concurrent subgoals. For instance,
(α1⊗α2)|�(γ1⊗γ2)|(β1⊗β2) means that the middle part of the transaction
cannot interleave with the α-part of β-part. For instance, α1, β1, α2, γ1, γ2, β2
is a valid execution, but α1, β1, γ1, α2, γ2, β2 is not.

When φ and ψ are regular first-order formulas, both φ⊗ ψ and φ|ψ reduce to the
usual first-order conjunction, φ∧ ψ. The logic also has other connectives but they
are beyond the scope of this dissertation.

In addition, T R has a general, extensible mechanism of elementary updates
or elementary actions, which have the important effect of taking the infamous
frame problem out of many considerations in this logic (see [23, 24, 21, 77, 20]).
Here we will use only the following two types of elementary actions, which are
specifically designed on complete STRIPS states (Definition 1): +p(t1, . . . , tn)
and −p(t1, . . . , tn), where p denotes an extensional predicate symbol of appropri-
ate arity and t1, ..., tn are terms.

Given a state S and a ground elementary action α = +p(a1, . . . , an), an
execution of α at state S deletes the literal ¬p(a1, . . . , an) and adds the literal
p(a1, . . . , an). Similarly, executing−p(a1, . . . , an) results in a state that is exactly
like S, but p(a1, . . . , an) is deleted and ¬p(a1, . . . , an) added. In some cases (e.g.,
if p(a1, . . . , an) ∈ S), the action +p(a1, . . . , an) has no effect, and similarly for
−p(a1, . . . , an).

A concurrent Horn rule is a statement of the form h ← φ where h is an
atomic formula and φ is a concurrent serial goal, which is defined as follows:

10

Definition 6 (Concurrent serial goal). A concurrent serial goal is any formula of
the form:

• An atomic formula; or

• φ1 ⊗ · · · ⊗ φn where each φi is a concurrent serial goal, and n ≥ 1; or

• φ1| . . . |φn where each φi is a concurrent serial goal, and n ≥ 1; or

• �φ where φ is a concurrent serial goal.

2

The informal meaning of such a rule is that h is a complex action and one way
to execute h is to execute φ.

Thus, we now have regular first-order as well as concurrent-Horn rules. For
simplicity (although this is not required by T R), we assume that the sets of in-
tentional predicates that can appear in the heads of regular rules and those in the
heads of concurrent Horn rules are disjoint. Thus, we now have the following
types of atomic statements:

• Extensional atoms.

• Intentional atoms: The atoms that appear in the heads of regular rules. These
two categories of atoms populate database states and will be collectively
called fluents.
We will now allow any fluent (extensional or intensional) to be negated in
the body of a concurrent Horn rule of the form h ← φ, extending Defini-
tion 6.

• Elementary actions: +p, −p, where p is an extensional atom.

• Complex actions: These are the atoms that appear at the head of the concur-
rent Horn rules. Complex and elementary actions will be collectively called
actions.

As remarked earlier, for fluents f ⊗ g and f |g are equivalent to f ∧ g and, to
emphasize this point, we will often write f ∧ g for fluents even if they occur in
the bodies of concurrent Horn rules. Note that a concurrent Horn rule all of whose
body literals are fluents is essentially a regular rule, since all the ⊗-connectives
and |-connectives can be replaced with ∧. Therefore, one can view the regular
rules as a special case of concurrent Horn rules.

11

(a) D0 (b) D1

(c) D2 (d) D3

Figure 2.2: State change in BlocksWorld example.

The following example illustrates the above concepts.

move(X, Y) ← (on(X,Z) ∧ clear(X) ∧ clear(Y) ∧ ¬tooHeavy(X))
⊗− on(X,Z)⊗+on(X, Y)⊗−clear(Y).

tooHeavy(X) ← weight(X,W) ∧ limit(L) ∧W > L.
?− move(b,X)⊗move(Y, b).

Here on, clear, tooHeavy, weight, and limit are fluents and the rest of atoms rep-
resent actions. The predicate tooHeavy is an intentional fluent, while on, clear,
and weight are extensional fluents. The actions +on(...), −clear(...), −on(...),
and +clear(...) are elementary and the intentional predicate move represents a
complex action. This example illustrates several features of Transaction Logic.
The first rule is a concurrent Horn rule defining of a complex action of moving
a block from one place to another. The second rule defines the intensional fluent
tooHeavy, which is used in the definition of move (under the scope of default
negation). As the second rule does not include any action, it is a regular rule.

The last statement above is a request to execute a composite action, which is
analogous to a query in logic programming. The request is to find some block, X ,
and move block b from its current position to the top of X and then find some

12

other block, Y , and move it on top of b. Traditional logic programming offers
no logical semantics for updates, so if after placing b on top of X the second
operation (move(Y, b)) fails (say, all available blocks are too heavy), the effects
of the first operation will persist and the underlying database becomes corrupted.
In contrast, Transaction Logic gives update operators the logical semantics of an
atomic database transaction. This means that if any part of the transaction fails,
the effect is as if nothing was done at all. For example, if the second action in our
example fails, all actions are “backtracked over” and the underlying database state
remains unchanged.

Consider the execution of move(b,X) ⊗move(Y, b) in D0, a state shown in
Figure 2.2(a), where {weight(a, 10), weight(b, 20), weight(c, 30), limit(25)} ⊆
D0. In traditional logic programming, substitution of X with a causes a state
change from D0 to D1, at which point move(Y, b) fails since block c is too heavy
to be moved on top of b. Then, the underlying database remains in D1 and a
wrong answer will be returned. In contrast, in Transaction Logic, if the state of
database changes from D0 to D1 due to the substitution of X with a, the failure
of move(Y, b) causes backtracking through the update move(b, a). On a retry, the
right answer will be returned through the execution of move(b, c) ⊗move(a, b),
which causes state changes from D0 to D2 and from D2 to D3.

This semantics is given in purely model-theoretic terms and here we will only
give an informal overview. The truth of any action in T R is determined over
sequences of states—execution paths—which makes it possible to think of truth
assignments in T R’s models as executions. If an action, φ, defined by a set of
serial rules, P, evaluates to true over a sequence of states D0, . . . ,Dn, we say that
it can execute at state D0 by passing through the states D1, ..., Dn−1, ending in the
final state Dn. This is captured by the notion of executional entailment, which is
written as follows:

P,D0 . . .Dn |= φ (2.1)

The next example further illustrates T R by showing a definition of a recursive
action.

Example 2 (Pyramid building). The following rules define a complex operation
of stacking blocks to build a pyramid. It uses some of the already familiar fluents
and actions from the previous example. In addition, it defines the actions pickup,

13

(a) D0 (b) D1

(c) D2 (d) D3 (e) D4

Figure 2.3: State changes by T R rules in Example 2.

putdown, and a recursive action stack.

stack(0, AnyBlock)← .
stack(N,X)← N > 0⊗move(Y,X)⊗ stack(N − 1, Y)⊗ on(Y,X).
move(X, Y)← X 6= Y ⊗ pickup(X)⊗ putdown(X, Y).
pickup(X)← clear(X)⊗ on(X, Y)⊗−on(X, Y)⊗+clear(Y).
pickup(X)← clear(X)⊗ on(X, table)⊗−on(X, table).
putdown(X, Y)← clear(Y)⊗ ¬on(X,Z1)⊗ ¬on(Z2, X)⊗

−clear(Y)⊗+on(X, Y).
(2.2)

The first rule says that stacking zero blocks on top of X is a no-op. The second
rule says that, for bigger pyramids, stackingN blocks on top ofX involves moving
some other block, Y , onX and then stackingN−1 blocks on Y . To make sure that
the planner did not remove Y from X while building the pyramid on Y , we are
verifying that on(Y,X) continues to hold at the end. The remaining rules are self-
explanatory. Indeed, P,D0D1D2D3D4 |= stack(3, table), where D0, . . . ,D4 are
states shown in Figure 2.3. 2

An inference system for concurrent-Horn T R is described in [22]. The in-
ference system is analogous to the well-known SLD resolution proof strategy for

14

Horn clauses plus some T R-specific inference rules and axioms. The aim of such
inference system is to prove statements of the form P,D · · · ` φ, called sequents.
Here P is a set of concurrent Horn rules and φ is a concurrent serial goal (see
Definition 6). A proof of a sequent of this form is interpreted as a proof that action
φ defined by the rules in P can be successfully executed starting at state D.

An inference succeeds if it finds an execution for the transaction φ, i.e., a
sequence of database states D1, . . . , Dn such that P,DD1 . . .Dn � φ. Here we
will use the following inference system, which we present in a simplified form—
only the version for ground facts and rules. The inference rules can be read either
top-to-bottom (if top is proved then bottom is proved) or bottom-to-top (to prove
bottom first prove top).

Definition 7 (T R inference System). Let P be a set of concurrent Horn rules and
D, D1, D2 denote states.

• Axiom: P,D · · · ` (), where () is an empty clause (which is true at every
state).

• Inference Rules

1. Applying transaction definition: Suppose t← body is a rule in P.

P,D · · · ` φ[body]

P,D · · · ` φ[t]
(I1)

where φ[body] is a concurrent serial goal that contains body as a
subformula and φ[t] is φ[body] with body replaced with t.

2. Querying the database: If D |= t then

P,D · · · ` left | middle | right
P,D · · · ` left | t⊗middle | right

(I2)

where left, right, middle are concurrent serial goals each of which
can be empty.

3. Performing elementary updates: If the elementary update t changes
the state D1 into the state D2 then

P,D2 · · · ` left | middle | right
P,D1 · · · ` left | t⊗middle | right

(I3)

where left, right, middle are concurrent serial goals each of which
can be empty.

15

4. Executing atomic transactions:

P,D · · · ` α⊗ (left | right)
P,D · · · ` left | �α | right

(I4)

where left, right, and α are concurrent serial goals and left, right
can be empty. 2

A proof of a sequent, seqn, is a series of sequents, seq1, seq2, . . . , seqn−1,
seqn, where each seqi is either an axiom-sequent or is derived from earlier se-
quents by one of the above inference rules. This inference system has been proven
sound and complete with respect to the model theory of T R [22]. This means that
if φ is a concurrent serial goal, the executional entailment P,D0D1 . . .Dn |= φ
holds if and only if there is a proof of P,D0 · · · ` φ over the execution path
D0,D1, . . . ,Dn. In this case, we will also say that such a proof derives
P,D0D1 . . .Dn ` φ.

Let the sequence of sequents seq1, seq2, . . . , seqn−1, seqn be a proof of seqn.
It is non-redundant if none of its sub-sequences is a proof of seqn.

Lemma 1 (Linearity of proofs). Let seq1, . . . , seqn be a non-redundant proof of
seqn. Then each seqi is either an axiom-sequent or is derived from seqi−1 by one
of the inference rules in Definition 7.

Proof. Assume, to the contrary, that some sequent seqi is derived from some seqj ,
where j < i − 1. Suppose that i is the largest sequent number with such a prop-
erty. Then seqi−1 can be removed from seq1, . . . , seqn and the shorter sequence
will still be a proof of seqn. This is because seqi−1 is not needed to derive seqi
(since seqi is derivable from seqj), and all the sequents after seqi are derivable
from their immediately preceding sequents. Thus, the above proof is redundant, a
contradiction.

The following argument will be used multiple times in the proofs, so we make
a separate lemma out of it.

Lemma 2 (Concurrent attachment of queries). Suppose there is a derivation for
P,D0 · · ·Dn ` φ1, and also derivations for P,Dn ` φi, where 2 ≤ i ≤ n,
such that the latter use only the T R inference rules (I1) and (I2). Then there is a
derivation of P,D0 · · ·Dn ` φ1| · · · |φn.

16

Proof. Suppose P,Dn ` (), . . . ,P,Dn ` ψ′ is a derivation for P,Dn ` ψ′ that
uses only the rules (I1) and (I2), i.e., ψ′ is a query and the database state does
not change during the derivation. Let also P,D0 · · · ` (), . . . ,P,Dn · · · ` ψ
be a derivation for P,D0 · · ·Dn ` ψ. Then the following is a derivation for
P,D0 · · ·Dn ` ψ|ψ′:

P,D0 · · · ` (), . . . , P,Dn · · · ` ψ,
P,Dn · · · ` ψ|(), . . . , P,Dn · · · ` ψ|ψ′

The lemma now follows by applying the above step repeatedly, where first ψ = φ1

and ψ′ = φ2; then ψ = φ1|φ2 and ψ′ = φ3; then ψ = φ1|φ2|φ3 and ψ′ = φ4;
etc.

17

Chapter 3

STRIPS Planning Using T R

In this chapter, we first introduce our T R-STRIPS planner. Using and example,
we also briefly illustrate how T R inference system, introduced in Section 2.3,
uses T R planning rules to synthesize a plan. Then we will show that how some
slight changes in the proposed planner can result in a much faster planner called
fSTRIPS.

3.1 The T R-STRIPS Planner
The informal idea of using T R as a planning formalism and an encoding of
STRIPS as a set of T R rules first appeared in an unpublished report [21]. The
encoding was incomplete and it did not include ramification and intensional pred-
icates. We extend the original method with intentional predicates, make it com-
plete, and formulate and prove the completeness of the resulting planner.

Definition 8 (Enforcement operator). Let G be a set of extensional literals. We
define Enf(G) = {+p | p ∈ G} ∪ {−p | ¬p ∈ G}. In other words, Enf(G) is the
set of elementary updates that makes G true. 2

Next we introduce a natural correspondence between STRIPS actions and T R
rules.

Definition 9 (Actions as T R rules). Let α = 〈pα(X), P reα, Eα〉 be a STRIPS
action. We define its corresponding T R rule, tr(α), to be a rule of the form

pα(X)← (∧`∈Preα`) ⊗ (⊗u∈Enf(Eα)u). (3.1)

2

18

Note that in (3.1) the actual order of action execution in the last component,
⊗u∈Enf(Eα)u, is immaterial, since all such executions happen to lead to the same
state.

We now define a set of T R clauses that simulate the well-known STRIPS
planning algorithm and extend this algorithm to handle intentional predicates and
rules. The reader familiar with the STRIPS planner should not fail to notice that, in
essence, these rules are a natural (and much more concise and general) verbaliza-
tion of the classical STRIPS algorithm [32]. However—importantly—unlike the
original STRIPS, these rules constitute a complete planner when evaluated with
the T R proof theory.

Definition 10 (T R planning rules). Let Π = 〈R,A, G,S〉 be a planning problem
(see Definition 4). We define a set of T R rules, P(Π), which provides a sound and
complete solution to the planning problem. P(Π) has three disjoint parts, PR, PA,
and PG, described below.

• The PR part: for each rule p(X)← p1(X1) ∧ · · · ∧ pn(Xn) in R, PR has a
rule of the form

achievep(X)← ‖ni=1achievepi(X i). (P1)

Rule (P1) is an extension to the classical STRIPS planning algorithm and
is intended to capture intentional predicates and ramification of actions; it
is the only major aspect of our T R-based rendering of STRIPS that was not
present in the original in one way or another.

• The part PA = Pactions ∪ Patoms ∪ Pachieves is constructed out of the actions
in A as follows:

– Pactions: for each α ∈ A, Pactions has a rule of the form

pα(X)← (∧`∈Preα`) ⊗ (⊗u∈Enf(Eα)u). (P2)

This is the T R rule that corresponds to the action α, introduced in
Definition 9.

– Patoms = Pachieved ∪ Penforced has two disjoint parts as follows:

– Pachieved: for each extensional predicate p ∈ Pext, Pachieved has
the rules

achievep(X)← p(X).
achieve¬p(X)← ¬p(X).

(P3)

19

These rules say that if an extensional literal is true in a state then
that literal has already been achieved as a goal.

– Penforced: for each action α = 〈pα(X), P reα, Eα〉 in A and each
e(Y) ∈ Eα, Penforced has the following rule:

achievee(Y)← executepα(X). (P4)

This rule says that one way to achieve a goal that occurs in the
effects of an action is to execute that action.

– Pachieves: for each action α = 〈pα(X), P reα, Eα〉 in A, Pachieves has
the following rule:

executepα(X)← (‖`∈Preαachieve`)⊗�pα(X). (P5)

This means that to execute an action, one must first achieve the pre-
condition of the action and then perform the state changes prescribed
by the action.

• PG: Let G = {g1, ..., gk}. Then PG has a rule of the form:

achieveG ← (‖ki=1achievegi)⊗ (∧ki=1gi). (P6)

2

Given a set R of rules, a set A of STRIPS actions, an initial state S, and a goal
G, Definition 10 gives a set of T R rules that specify a planning strategy for that
problem. To find a solution for that planning problem, one simply needs to place
the request

?− achieveG . (3.2)

at a desired initial state and use the T R’s inference system of Section 2.3 to find
a proof. The inference system in question is sound and complete for concurrent
Horn clauses, and the rules in Definition 10 satisfy that requirement.

Example 3 (Planning rules for register exchange). Consider the classical problem
of swapping two registers in a computer from [73]. The reason this problem is
interesting is because it is the simplest problem where the original STRIPS is
incomplete. Example 4 explains why and how our complete T R-based planner
handles the issue.

20

(a) Initial State (b) Goal condition

Figure 3.1: Initial state and goal condition of Example 3.

Consider two memory registers, x and y, with initial contents a and b, respec-
tively. The goal is to find a plan to exchange the contents of these registers with the
help of an auxiliary register, z. Let the extensional predicate value(Reg, V al) rep-
resent the content of a register. Then the initial state of the system is {value(x, a),
value(y, b), value(z, t)}, shown in Figure 3.1(a). Suppose the only available ac-
tion is copy = 〈copy(Src,Dest, V), {value(Src, V), value(Dest, V ′)},
{¬value(Dest, V ′), value(Dest, V)}〉, which copies the value V of the source
register, Src, to the destination registerDest. The old value ofDest is erased and
the value of Src is written over. The planning goal isG = {value(x, b), value(y, a)},
shown in Figure 3.1(b). Per Definition 10, the planning rules for this problem are
as follows.
Due to case (P2):

copy(Src,Dest, V) ← value(Src, V) ⊗ value(Dest, V ′) ⊗
−value(Dest, V ′) ⊗+value(Dest, V).

(3.3)

Due to (P3), (P4), and (P5):

achievevalue(R, V)← value(R, V).
achieve¬value(R, V)← ¬value(R, V).

(3.4)

achievevalue(Dest, V)← executecopy(Src,Dest, V). (3.5)

executecopy(Src,Dest, V) ← (achievevalue(Src, V) |
achievevalue(Dest, V

′)) ⊗
copy(Src,Dest, V).

(3.6)

Due to (P6):

achieveG ← (achievevalue(x, b) | achievevalue(y, a))
⊗ (value(x, b) ∧ value(y, a)).

(3.7)

21

Case (P1) of Definition 10 does not contribute rules in this example because the
planning problem does not involve intensional fluents. 2

As mentioned before, a solution plan for a STRIPS planning problem is a se-
quence of actions leading to a state that satisfies the planning goal. Such a se-
quence can be extracted by picking out the atoms of the form pα from a successful
derivation branch generated by the T R inference system. Since each pα uniquely
corresponds to a STRIPS action, this provides us with the requisite sequence of
actions that constitutes a plan.

Suppose seq0, . . . , seqm is a deduction by the T R inference system. Let i1, . . . ,
in be exactly those indexes in that deduction where the inference rule (I1) was ap-
plied to some sequent using a rule of the form tr(αir) introduced in Definition 9.
We will call αi1 , . . . , αin the pivoting sequence of actions. The corresponding piv-
oting sequence of states Di1 , . . . ,Din is a sequence where each Dir , 1 ≤ r ≤ n,
is the state at which αir is applied. We will prove that the pivoting sequence of
actions is a solution to the planning problem.

Lemma 3 (Execution of STRIPS actions). Let α = 〈pα(X), P reα, Eα〉 ∈ A be an
action. Then:

1. If α is applied in state D in STRIPS and the system transitions to state D′,
then {tr(α)},D . . .D′ ` pα(X).

2. If {tr(α)},D . . .D′ ` pα(X) then applying the action α in D in STRIPS is
possible and it transitions the system to state D′.

Proof. For the first claim, applying α in state D in STRIPS amounts to an exe-
cution of a sequence of inserts and deletes specified in Eα. By construction of
tr(α), this is exactly what happens when one executes pα(X), i.e., derives it via
the inference rule (I1) with the help of the planning rule tr(α).

Conversely, if {tr(α)},D . . .D′ ` pα(X) then, by construction of tr(α), the
condition ∧`∈Preα ` must be satisfied in D. A derivation of pα(X) using the plan-
ning rule tr(α) amounts to an execution of a the sequence of inserts and deletes
specified in Eα, transitioning to state D′. This means that α is applicable in
STRIPS in state D and applying α in D leads to the same state D′.

All lemmas and theorems in this section assume that Π = 〈R,A, G,D0〉 is a
STRIPS planning problem and that P(Π) is the corresponding set of T R planning
rules as in Definition 10.

22

Lemma 4 (Execution of transactions of the form pα). Let seq0, . . . , seqm be a
derivation of P(Π),D0 . . .Dm ` achieveG, and α1, . . . , αn (resp., Di1 , . . . ,Din)
be a pivoting sequence of actions (resp., states). Then D0 = Di1 ,
P(Π),Dir . . .Dir+1 ` pαr , for each r (pαr is the transaction associated with αr—
see Definition 9) such that 1 ≤ r ≤ n, and Din+1 = Dm.

Proof. We divide the proof in three parts, which together yield the desired result:

• P(Π),D0 · · · ` pα1 .

• P(Π),Din . . .Dm ` pαn .

• P(Π),Dir . . .Dir+1 ` pαr for each r such that 1 ≤ r ≤ n.

An easy examination of the inference rules and the T R planning rules with
which these inference rules work shows that the only T R planning rules that
directly cause the execution of an elementary T R transactions (and thus change
the underlying states) are the rules of the form tr(α). Thus every elementary T R
update in the derivation of P(Π),D0 . . .Dm ` achieveG is associated with some
tr(α) and with a pivoting action α. By Definition 10, the only T R planning rules
that call the heads of tr(α)s are the rules of the form (P5). Because of the isolation
operator� in (P5), there can be no interleaving between the execution of pαs (that
is, once a pα starts, the body of tr(α) will be executed without interleaving with
any other update).

By the definition of pivoting sequence of actions and states, we have
P(Π),Di1 · · · ` pα1 where Di1 is the pivoting state of α1. We need to show that
Di1 = D0. Assume, to the contrary, that the state Di1 strictly follows state D0.
Then there must be at least one elementary T R update e /∈ Eα1 that was executed
by the inference rule (I3) at state D0. Since, as noted above, every elementary T R
update corresponds to a pivoting action, there must have been some other pivoting
action α′ that was executed before α1. This contradicts the assumption that α1 is
the first pivoting action. Thus, Di1 = D0.

Suppose P(Π),Din . . .Din+1 ` pαin . We will show that Din+1 = Dm. If Din+1

strictly precedes Dm, there must be some elementary T R update e /∈ Eαn that was
executed by the inference rule (I3) at state Din+1 . As every elementary T R update
is associated with a pivoting action, there must have been another pivoting action
α′ that was executed after αn. This contradicts the assumption that αn is the last
pivoting action. Thus, Din+1 = Dm.

By the definition of pivoting actions and states, we have P(Π),Dij · · · ` pαij
where 1 ≤ j ≤ n. We need to show that P(Π),Dij . . .Dij+1

` pαij . Assume, to

23

the contrary, that P(Π),Dij . . .D
′
ij
` pαij and D′ij 6= Dij+1

. Recall that pαij+1

cannot start before pαij has finished due to the� operator. Therefore the state D′ij
precedes Dij+1

and there must have been an elementary T R update e /∈ Eαj that
was executed by the inference rule (I3) at state D′ij . Since every elementary T R
update in that derivation corresponds to a pivoting action, there must have been
another pivoting action α′ that was executed after αj and before αj+1. This con-
tradicts the assumption that αj+1 is the pivoting action that immediately follows
αi. Thus D′ij = Dij+1

, which concludes the proof.

Lemmas 3 and 4 play key roles in proving the soundness of our STRIPS-
inspired T R planning strategy.

Theorem 1 (Soundness of T R planning). Any pivoting sequence of actions in
the derivation of P(Π),D0 . . .Dm ` achieveG is a solution plan.1

Proof. Consider a derivation of P(Π),D0 . . .Dm ` achieveG. Suppose αi1 , . . . ,
αin is the pivoting sequence of actions for this derivation and Di1 , . . . ,Din is the
corresponding pivoting sequence of states. Let Din+1 be Dm. By the construction
of achieveG, we know that Dm |= G. Due to the soundness of the T R inference
rules, we also know that P(Π),D0 . . .Dm |= achieveG. By Lemma 4 and by the
soundness of the inference system, P(Π),Dir . . .Dir+1 |= pαr , for each 1 ≤ r ≤
n. By Lemma 3, executing αr in state Dir in STRIPS takes the system to state
Dir+1 . This means that after the execution of the STRIPS sequence α1, . . . , αn,
one gets to state Din+1 , which satisfies achieveG and thus G. The proof concludes
by recalling that Di1 = D0 (by Lemma 4) and Dm = Din+1 (by definition).

Completeness of a planning strategy means that, for any STRIPS planning
problem, if there is a solution, the planner will find at least one plan. A stronger
statement about completeness is called comprehensive completeness: if there is
a non-redundant solution for a STRIPS planning problem, the planner will find
exactly that plan.

Lemma 5 (Achieved literals for T R planning). Let Π = 〈R,A, G, 〉,2 be a plan-
ning problem and P(Π) be the set of T R planning rules in Definition 10. Then,
for every literal ` and every state S, the following holds: P(Π),S |= ` if and only
if P(Π),S ` achieve`.

Proof. We have two cases:
1Sequents of the form P(Π),D0 . . .Dm ` ... were defined at the very end of Section 2.3.
2In Π = 〈R,A, G, 〉, denotes that the initial state of Π is immaterial.

24

1. ` is extensional. Suppose P(Π),S |= `. Then due to the first planning rule in
(P3), the sequent P(Π),S ` achieve` is derivable via the inference rules (I1)
and (I2). To prove the only if part, suppose P(Π),S ` achieve`. To derive
P(Π),S ` achieve`, two types of rules in P(Π) can be used: achieve` ← `
and achieve` ← executepα , where ` ∈ E(α). In the first case, P(Π),S ` `
must be established as part of the proof of P(Π),S ` achieve`, and thus
P(Π),S |= ` must hold.

In the second case, the derivation of P(Π),S ` achieve` implies that no
state change has taken place, so it must be the case that E(α) ⊆ S. There-
fore, ` ∈ S and thus also P(Π),S |= `.

2. ` is intensional. Note that rules from R are the only rules in P(Π) that have
intensional literals in their heads. Therefore, P(Π),S |= ` implies that there
must be at least one derivation of ` formed by a set of ground instance rules
from R that are true in S, i.e., R,S ` `. By construction of T R’s planning
rules, each rule of the form p(X) ← ∧ni=1pi(X i) in R has a corresponding
rule of the form achievep(X) ← ‖ni=1achievepi(X i) in P(Π). Therefore,
any derivation of R,S ` ` has a corresponding derivation for P(Π),S `
achieve`. To prove the only if part, suppose P(Π),S ` achieve`. Since
rules of the form achievep(X) ← ‖ni=1achievepi(X i) are the only ones
in P(Π) that can be used to derive P(Π),S ` achieve`, there must be at
least one derivation of achieve` formed by a set of such rules. Again, using
above mentioned correspondence, the derivation of P(Π),S ` achieve` can
be used to construct a derivation for P(Π),S ` `. Thus P(Π),S |= `.

Lemma 6 (Plans of length zero). Let Π = 〈R,A, G,D〉 be a planning problem
that has a solution plan of length zero. Then the T R inference system can generate
a derivation for P(Π),D ` achieveG whose pivoting sequence is empty.

Proof. If Π has a plan of length zero then G ⊆ D. By Lemma 5, P(Π),D `
‖g∈Gachieveg, from which we readily get P(Π),D ` achieveG. Since this deriva-
tion does not involve the planning rules tr(α), it has an empty pivoting sequence.

Lemma 7 (Plans of length > 1: the inductive step). Suppose that, if a STRIPS
planning problem Π′ = 〈R,A, G′,D0〉 has a non-redundant plan σ′ of length
k ≤ n, then it has a T R-derivation for the sequent P(Π),D0 . . .Df ′ ` achieveG′

25

whose pivoting sequence is σ′ and Df ′ is the final state of the execution of σ′

starting at D0.
Then, for any planning problem Π = 〈R,A, G,D0〉 that has a non-redundant

plan σ of length n+ 1, there is a T R-derivation for P(Π),D0 . . .Df ` achieveG
whose pivoting sequence is σ and Df is the final state of the execution of σ starting
at D0.

Proof. Let σ = α1, . . . , αn, αn+1 and σ′ = α1, . . . , αn and Df , Df ′ be as in
the statement of the lemma. Consider the planning problem Π′ = 〈R,A, G′,D0〉
where G′ = (Df ′ ∩ G) ∪ Preαn+1 (to remind: Preαn+1 is the precondition of
αn+1). We will show that σ′ is a non-redundant plan of length n for Π′. Since αn+1

is executable at Df ′ , we conclude that Preαn+1 ⊆ Df ′ . Since, clearly, Df ′ ∩G ⊆
Df ′ , we obtain G′ ⊆ Df ′ and thus σ′ is a plan for Π′. It is a non-redundant plan
for Π′ because if ς were a subsequence of σ′ and also a plan for Π′ then αn+1

would have been executable in the final state of ς (since Preαn+1 ⊆ G′) and thus
〈ς, αn+1〉 would have been a plan for Π. Since 〈ς, αn+1〉 is a subsequence of σ,
this would contradict the non-redundancy assumption about σ.

Since σ′ = α1 . . . αn is a non-redundant n-plan for Π′, the assumption of the
lemma says that there is a T R-derivation for a sequent of the form
P(Π′),D0 . . .Df ′ ` achieveG′ with σ′ as the pivoting sequence. Therefore, with
the help of the planning rule (P6), we also get a derivation for P(Π′),D0 . . .Df ′ `
(‖g∈G′ achieveg) ⊗ (∧g∈G′ g). A prefix of that derivation (with the same pivoting
sequence) gives us P(Π′),D0 . . .Df ′ ` (‖g∈G′ achieveg). Since Preαn+1 ⊆ Df ′ ,
there must be a derivation for P(Π′),Df ′ . . .Df ` pαn+1 . Concatenating these two
derivations yields a T R-derivation for P(Π′),D0 . . .Df ′ . . .Df ` (‖g∈G′ achieveg)
⊗ pαn+1 and then P(Π′),D0 . . .Df ′ . . .Df ` (‖g∈G′ achieveg) ⊗ �pαn+1 . This
concatenation adds αn+1 to the pivoting sequence σ′, turning it into σ. Recall
that P(Π′) has (P5), a rule of the form executepαn+1

← (‖g∈Preαn+1
achieveg) ⊗

�pαn+1 , so the inference rule (I1) using (P5) yields a sequent of the form
P(Π′),D0 . . .Df ` (‖g∈(G′\Preαn+1)

achieveg) |executepαn+1
, which can be rewrit-

ten as
P(Π′),D0 . . .Df ` (‖g∈G′′ achieveg) | executepαn+1

(3.8)

where G′′ = (G ∩Df ′) \ Preαn+1 .
Since σ is a non-redundant plan for Π, it follows that G \ Df ′ 6= ∅: if not,

α1, . . . , αn would have been a plan for Π (starting at D0 and ending at Df ′),
contrary to non-redundancy of σ.

Let % ∈ G\Df ′ . Since P(Π′),Df ′ . . .Df ` pαn+1 , by Lemma 3, Df is the final
state of the execution of αn+1 at Df ′ . Therefore, Df is the result of execution of σ

26

starting at D0. Clearly, G ⊆ Df , as σ is a plan for the planning problem Π. Since
% ∈ G ⊆ Df , we conclude that P(Π),Df |= % and, by Lemma 5, P(Π),Df `
achieve%. On the other hand, since % 6∈ Df ′ , we have P(Π),Df ′ 0 achieve%.

Next we will show that P(Π′),D0 . . .Df ` (‖g∈G′′ achieveg) | achieve%. There
are two cases:

1. % is extensional: Then % ∈ Eαn+1 . If not, recall that % /∈ Df ′ and since
Df is the state obtained by executing αn+1 at Df ′ , it would follow that
% /∈ Df . Therefore, assuming % /∈ Eαn+1 contradicts the earlier conclu-
sion that P(Π),Df |= %. Thus, % ∈ Eαn+1 and, by Definition 10, P(Π)
has a rule achieve% ← executepαn+1

. Applying the inference rule (I1)
to the sequent (3.8) using achieve% ← executepαn+1

yields the sequent
P(Π′),D0 . . .Df ` (‖g∈G′′ achieveg) | achieve%.

2. % is intensional: Consider a derivation of P(Π),Df ` achieve% . Note that
the planning rules (P1) reproduced below

achievep(X)← ‖ni=1achievepi(X i) (3.9)

are the only ones in P(Π) that can be used in the derivation of P(Π),Df `
achieve% via the inference rule (I1), and there is no other way to derive
that sequent except the rules (I1) and (I2). Consider a non-redundant such
derivation seq0, ..., seqm, where seq0 is an axiom and seqm is P(Π),Df `
achieve%. By Lemma 1, each seqi (except seq0) was derived from seqi−1 via
the inference rules (I1) and (I2), where the latter can use only the planning
rules (3.9). This derivation must have a sequent of the form P(Π),Df `
achieveh, obtained via the T R inference rule (I1) using a planning rule of
the form achieveh(X)← . . . |achieve%′(X%′) in (3.9), where %′ is an exten-
sional literal such that %′ ∈ Eαn+1 . If there were no such %′, we could have
used the same derivation to show that P(Π),Df ′ |= %, contrary to the ear-
lier conclusion that P(Π),Df ′ 0 achieve%. Since %′ ∈ Eαn+1 , Definition 10
says that P(Π) has a rule of the form achieve%′(X) ← executepαn+1

(X).
An application of the T R inference rule (I1) to the sequent (3.8) using
achieve%′(X)← executepαn+1

(X) then yields

P(Π′),D0 . . .Df ` (‖g∈G′′ achieveg) | achieve%′ . (3.10)

Now, rerun the inference steps for the aforesaid derivation seq0, ..., seqm
starting with the sequent (3.10) instead of seq0 and omitting the step that

27

introduces the literal achieve%′ to the goal on the right-hand side of the se-
quents. This step can be omitted because achieve%′ already exists in (3.10).
The result of such a derivation is the sequent P(Π′),D0 . . .Df `
(‖g∈G′′ achieveg) | achieve%.

Let L = G \ (G′′ ∪ {%}). Clearly, L ⊆ Df since the entire G is already in Df .
Therefore, by Lemmas 5 and 2, starting with P(Π′),D0 . . .Df ` (‖g∈G′′ achieveg) |
achieve%, one can derive P(Π′),D0 . . .Df ` (‖g∈G′′ achieveg) | achieve% |
(‖g∈L achieveg), which is simply P(Π′),D0 . . .Df ` (‖g∈G achieveg). SinceG ⊆
Df , the inference rule (I2) also gives us P(Π′),D0 . . .Df ` (‖g∈G achieveg) ⊗
(∧g∈G g). Finally, P(Π) differs from P(Π′) only in the form of the rule (P6). In
case of P(Π), that rule has exactly the form that lets one apply the inference rule
(I1) to get P(Π),D0 . . .Df ` achieveG.

Theorem 2 (Completeness of T R planning). If there is a plan that achieves the
goal G from the initial state D0 then the T R-based STRIPS planner will find a
plan.

Proof. By induction on the length of the plan. Lemma 6 proves the base case of
the induction and Lemma 7 establishes the inductive step.

Theorem 2 establishes the completeness of the planner that is comprised of
the T R proof theory and the rules that express the original STRIPS strategy.

Recall that the classical STRIPS planner described in [32, 73] was incomplete.
The next example illustrates the reason for this incompleteness and contrasts the
situation to the T R-based planner.

Example 4 (Register exchange, continued). Consider the register exchange prob-
lem of Example 3. The original STRIPS planner fails to find a plan if, in the initial
state, the auxiliary register z has the value t distinct from a and b [73]. We will
now illustrate how the T R based planner deals with this case. Let P be the set
of T R rules (3.3-3.6) that constitute the planner for the T R-based planner for
this problem. Given the planning goal G = {value(x, b), value(y, a)} and the
initial state D0, where {value(x, a), value(y, b)} ⊆ D0, we will show how the
T R inference system constructs a derivation (and thus a plan) for the sequent
P,D0 · · ·Dn ` achieveG for some Dn such that {value(x, b), value(y, a)} ⊆
Dn.

Consider the sequent P,D0 · · · ` achieveG that corresponds to the query
(3.2). Applying the inference rule (I1) to that sequent using the rule (3.7), we get:

28

(a) D0 (b) D1 (c) D2 (d) D3

(e) D4 (f) D5 (g) D6

Figure 3.2: State changes by T R planning rules in Example 4.

P,D0 · · · ` (achievevalue(x, b)|achievevalue(y, a))
⊗ (value(x, b) ∧ value(y, a))

Applying the inference rule (I1) twice to the resulting sequent using the rules (3.5–
3.6) with appropriate substitutions result in:

P,D0 · · · ` (((achievevalue(z, b)|achievevalue(x, a))⊗ copy(z, x, b))
|achievevalue(y, a))

⊗ (value(x, b) ∧ value(y, a))

Applying the inference rule (I1) once more and again using the rules (3.5–3.6) we
get:

P,D0 · · · ` (((((achievevalue(y, b) | achievevalue(z, t))⊗ copy(y, z, b))
| achievevalue(x, a))⊗ copy(z, x, b))
| achievevalue(y, a))⊗ (value(x, b) ∧ value(y, a))

One more application of the inference rule (I1) but this time in conjunction with
(3.4) yields:

P,D0 · · · ` (((((value(y, b) | achievevalue(z, t))⊗ copy(y, z, b))
|achievevalue(x, a))⊗ copy(z, x, b))
| achievevalue(y, a))⊗ (value(x, b) ∧ value(y, a))

29

Since value(y, b) ∈ D0, we can eliminate it by an application of the inference
rule (I2). Then, another application of the inference rule (I1) using (3.4), followed
by an application of the inference rule (I2), yields:

P,D0 · · · ` (((copy(y, z, b) | achievevalue(x, a))⊗ copy(z, x, b))
| achievevalue(y, a))⊗ (value(x, b) ∧ value(y, a))

Then we can replace the first copy using its definition (3.3) due to the inference
rule (I1). Then, a couple of applications of the inference rule (I2) yields

P,D0 · · · ` ((((− value(z, t)⊗+value(z, b)) | achievevalue(x, a))
⊗ copy(z, x, b)) | achievevalue(y, a))

⊗ (value(x, b) ∧ value(y, a))

Applying the inference rule (I3) twice to the primitive updates at the front first
yields

P,D1 · · · ` (((+ value(z, b) | achievevalue(x, a)) ⊗ copy(z, x, b))
| achievevalue(y, a))⊗ (value(x, b) ∧ value(y, a))

and then

P,D2 · · · ` ((achievevalue(x, a)⊗ copy(z, x, b)) | achievevalue(y, a))⊗
(value(x, b) ∧ value(y, a))

where D1 is D0 with value(z, t) (where t denotes the old value of z) deleted
and D2 is D1 with value(z, b) added. Then, an application of inference rule (I1)
using 3.4 followed by an application of inference rule (I2) yields

P,D2 · · · ` (copy(z, x, b)|achievevalue(y, a))⊗
(value(x, b) ∧ value(y, a))

Now we can use the inference rule (I4) to explore the subgoal achievevalue(y, a).
Namely, we can expand this subgoal with the inference rule (I1) three times, first
using (3.5–3.6) and then using (3.4), obtaining

P,D2 · · · ` (copy(z, x, b)
|((value(x, a) | achievevalue(y, b))⊗ copy(x, y, a)))
⊗ (value(x, b) ∧ value(y, a))

Since value(x, a) is true in D2, it can be removed. Then, an application of the in-
ference rule (I1) using (3.4) can replace achievevalue(y, b) with value(y, b), which

30

can be eliminated by the inference rule (I2) because value(y, b) is also true in D2.
Then we get

P,D2 · · · ` (copy(z, x, b) | copy(x, y, a))
⊗ (value(x, b) ∧ value(y, a))

Finally, the two copy’s can be replaced by their definition (3.3) and then the re-
maining +value(...) and −value(...) can be executed using the inference rule
(I3). This will advance the database (via three intermediate states) to state D6

containing {value(x, b), value(y, a), value(z, b)} in which both value(x, b) and
value(y, a) are true. Therefore, the inference rule (I2) can be used to derive the
T R axiom P,D6 · · · ` (), thus concluding the proof. The pivoting sequence of ac-
tions in this proof is 〈copy(y, z, b), copy(x, y, a), copy(z, x, b)〉, which constitutes
the desired plan. 2

3.2 The fSTRIPS Planner
In this section, we introduce fSTRIPS — a modification of the previously intro-
duced STRIPS transform, which represents to a new planning strategy, which we
call fast STRIPS. We show that although the new strategy explores a smaller search
space, it is still sound and complete. Chapter 7 shows that fSTRIPS can be orders
of magnitude faster than STRIPS.

Definition 11 (T R planning rules for fSTRIPS). Let Π = 〈R,A, G,S〉 be a
STRIPS planning problem as in Definition 4 and P(Π) is as in Definition 10. We
define Pf (Π) to be exactly as P(Π) except for the Penforced part. For Pf (Π), we
redefine Pfenforced (the replacement of Penforced) as follows:

For each action α = 〈pα(X), P reα, Eα〉 in A and each e(Y) ∈ Eα, Pfenforced
has the following rule:

achievee(Y)← ¬e(Y)⊗ executepα(X). (P7)

This rule says that an action, α, should be attempted only if it helps to achieve
the currently pursued, unsatisfied goal. 2

The other key aspect of fSTRIPS is that it uses a modified (general, unrelated to
planning) proof theory for T R, which relies on tabling, a technique analogous to
[86]. This theory was introduced in [33] and was shown to be sound and complete.
Here we use it for two reasons. First, it terminates if the number of base fluents
is finite. Second, it has the property that it will not attempt to construct plans that

31

have extraneous loops and thus will not attempt to large and unnecessary parts of
the search space.

To construct a plan, as before, we can extract a pivoting sequence of actions
with respect to fSTRIPS and show that the new pivoting sequence of actions is still
a solution plan.

Similarly to Section 3.1, we assume till the end of this section that Π =
〈R,A, G,D0〉 is a STRIPS planning problem, that P(Π) is the set of planning
rules in Definition 10, and that Pf (Π) is the set of planning rules as specified in
Definition 11.

Theorem 3 (Soundness of fSTRIPS). Any pivoting sequence of actions in the
derivation of Pf (Π),D0 . . .Df ′ ` achieveG is a solution plan.

Proof. Since Lemmas 3 and 4 hold for fSTRIPS, the proof of this theorem is
almost identical to that of Theorem 1.

Theorem 4 (Completeness of fSTRIPS). If there is a non-redundant plan that
achieves the goal G from the initial state D0 then the T R-based fSTRIPS planner
will find that plan.

Proof. In order to prove the completeness of fSTRIPS, we need to show that Lem-
mas 6 and 7 are held if P(Π) is replaced with Pf (Π). Since both of those lemmas
are using Lemma 5 in their proofs, we also need to show that we can replace P(Π)
with Pf (Π) in Lemma 5 as well. The proof of Lemma 5 carries over almost with-
out change for the new situation, since the only difference is that the rules of the
forms achievee(Y)← executepα(X) and executepα(X)← (‖`∈Preαachieve`)⊗
�pα(X) are replaced with the rules of the form achievee(Y)← executepα(X, e(Y))
and executepα(X, e(Y))← (‖`∈Preαachieve`)⊗¬e(Y)⊗�pα(X), respectively.
Replacing P(Π) with Pf (Π) does not require any changes in the proof of Lemma 6.

To reestablish Lemma 7 with Pf (Π), in addition to the substitutions of the
rules of the forms achievee(Y) ← executepα(X) and executepα(X) ←
(‖`∈Preαachieve`) ⊗ �pα(X) with their correspondent rules in Pf (Π), we need
another simple change. Consider the part in the proof where concatenating the
derivations for P(Π′),D0 . . .Df ′ ` (‖g∈G′ achieveg) and P(Π′),Df ′ . . .Df `
pαn+1 results in a T R-derivation for P(Π′),D0 . . .Df ′ . . .Df ` (‖g∈G′ achieveg)⊗
�pαn+1 . Further in that proof, we show that there must be an extensional literal %
(or %′ in case % is intensional) such that % ∈ G \Df ′ . Since % /∈ Df ′ , applying the
inference rule (I2) using ¬% derives P(Π′),Df ′ ` ¬%. Therefore, concatenating
the derivations for P(Π′),D0 . . .Df ′ ` (‖g∈G′ achieveg), P(Π′),Df ′ ` ¬%, and

32

P(Π′),Df ′ . . .Df ` pαn+1 yields a T R-derivation for P(Π′),D0 . . .Df ′ . . .Df `
(‖g∈G′ achieveg)⊗ ¬% ⊗�pαn+1 . The rest of the proof is almost identical to that
of Section 3.1.

Since the proof of theorem 2 is just an inductive argument based on Lemmas
6 and 7, it carries through fSTRIPS as well.

Theorem 5 (fSTRIPS finds no more plans than STRIPS). Any plan found by the
fSTRIPS planner will also be found by the STRIPS planner.

Proof. Suppose seq′0, . . . , seq
′
m is a deduction of achieveG by the T R inference

system using Pf (Π). By Definition 11, the sequent seq′i produced by an applica-
tion of the inference rule (I1) using a rule of the form executepα(X, e(Y)) ←
¬e(Y) ⊗ �pα(X) will have the form Pf (Π),D · · · ` (∃)(left | (¬e(Y) ⊗ �
pα(X)) | right). One can show that D |= (∃)(¬e(Y)), so we can derive the se-
quent seq′i+1 of the form Pf (Π),D · · · ` (∃)(left | � pα(X) | right). Therefore,
by eliminating the sequent seq′i and those like it from the proof seq′0, . . . , seq

′
m we

will get a proof of achieveG using P(Π).

In other words, the STRIPS strategy may generate more plans than fSTRIPS.
The plans that are not generated by fSTRIPS are those that contain actions whose
effects were not immediately required at the time of the action selection. This has
the effect of ignoring longer plans when shorter plans are already found. The up-
shot of all this is that STRIPS has a larger search space to explore, and this explains
the inferior performance of STRIPS compared to fSTRIPS, as the experiments in
the next section show.

33

Chapter 4

Planning With Regression Analysis

In this chapter, first we give a brief introduction of the concept of regression anal-
ysis in a STRIPS planning problem. Second, we extend the T R-based STRIPS
planner in Section 3.1 with regression analysis.

4.1 Regression Analysis
In this section, first we give a formal definition of the regression of literals through
STRIPS actions. Then, we show how one can compute the regression of a literal
through an action.

Definition 12 (Regression of a STRIPS action). Consider a STRIPS action
α = 〈p(X), P re, E〉 and a consistent set of fluentsL. The regression ofL through
α, denoted R(α,L), is a set of actions such that, for every β ∈ R(α,L) of the form
β = 〈p(X), P reβ, E〉, where Preβ ⊇ Pre is a minimal (with respect to $) set
of fluents satisfying the following condition: For every state S and substitution
θ such that θ(α)(S) exists, if S |= θ(Preβ) ∧ θ(L), then θ(α)(S) |= θ(L) (So
θ(α)(S) = θ(β)(S)). In other words, β has the same effects as α, its precondition
may be more restrictive, and performing β preserves the set of literals L.
Each action in R(α,L) will also be called a regression of L via α. 2

Next, we will show how regression can be computed. In the following we
use an identity operator, =, which will be treated as an immutable extensional
predicate, i.e., a predicate defined by a non-changeable set of facts: For any state
S and a pair of constants or ground fluents ` and `′, (` = `′) ∈ S if and only if `

34

and `′ are identical. Similarly, nonidentity is defined as follows: ` 6= `′ ∈ S if and
only if `, `′ are distinct.

The next example illustrates Definition 12. Consider a STRIPS action
copy = 〈copy(Src,Dest, V), {value(Src, V), value(Dest, V ′)},
{¬value(Dest, V ′), value(Dest, V)}〉 from Example 3 in Section 3.1. Clearly,
for every state S and substitution θ such that θ(copy)(S) exists, if
S |= θ(value(Src, V)), then θ(α)(S) |= θ(value(Src, V)). Therefore, copy ∈
R(copy, value(Src, V)). This example is a special case of the following property
of regression, which directly follows from the definitions: if ` is an extensional
literal and α = 〈p(X), P re, E〉 is a STRIPS action,

• R(α, `) = ∅ if and only if, for every ground substitution, ¬θ(`) ∈ θ(E).

• R(α, `) = {α} if and only if, for every ground substitution ¬θ(`) /∈ θ(E).

The following proposition and lemmas present a method to compute regres-
sion. The method is complete for extensional literals; for intentional literals, it
may find some, but possibly not all, regressions.

Proposition 1 (Regression of sets of literals). Given a set of literals L = L1 ∪
L2 and a STRIPS action α = 〈p(X), P reα, Eα〉, let β1 ∈ R(α,L1) and β2 ∈
R(α,L2), where β1 = 〈p(X), P reβ1 , Eα〉 and β2 = 〈p(X), P reβ2 , Eα〉. Then
there is some β = 〈p(X), P reβ, Eα〉 ∈ R(α,L) such that Preβ ⊆ Preβ1∪Preβ2 .

Proof. From the assumptions, it follows that for every state S and substitution θ
such that θ(α)(S) exists, if S |= θ(Preβ1∪Preβ2)∧θ(L), then θ(α)(S) |= θ(L).

To find a minimal subset of Preβ1 ∪ Preβ2 satisfying the regression property,
one can repeatedly remove elements from Preβ1 ∪ Preβ2 and check if the regres-
sion property still holds. When no removable elements remain, we get a desired
set Preβ .

Lemma 8 (Regression of extensional literals). Consider an extensional literal `
and a STRIPS action α = 〈p(X), P re, E〉 where α and ` do not share variables.
Let Preβ = Pre ∪ { ` 6= e |¬e ∈ E ∧ ∃θ s.t. θ(e) = θ(`) }.
Then β ∈ R(α, `), where β = 〈p(X), P reβ, E〉.

Proof. Let S be a state and a substitution θ is such that θ(α)(S) exists. Clearly,
if S |= θ(Preβ), there is no ¬e ∈ E such that θ(e) = θ(`). Therefore, if S |=
θ(Preβ) ∧ θ(`), then θ(α)(S) |= `.

We need to show that Preβ is a minimal set of literals satisfying the above
property. Assume, to the contrary, that there is some Preβ′ , Pre ⊆ Preβ′ $

35

Preβ , such that for every state S and substitution θ, if θ(α)(S) exists and S |=
θ(Preβ′) ∧ θ(`), then θ(α)(S) |= θ(`). Since Preβ′ ⊂ Preβ , there must be
(` 6= e) ∈ Preβ \ Preβ′ . Let θ1 be a substitution such that θ1(e) = θ1(`). In that
case, for every S such that θ1(α)(S) exists, we have that S |= θ1(Preβ′) ∧ θ1(`)
but θ1(α)(S) 2 θ1(`), since θ1(¬`) = θ1(¬e) ∈ θ1(E). This contradicts the
assumption about Preβ′ . Thus, Preβ′ does not exist and Preβ is a minimal set of
fluents satisfying the regression condition for `, so β ∈ R(α, `).

To illustrate the lemma, consider a ground extensional literal value(r, c) and
the STRIPS action copy = 〈copy(S,D, V), P recopy, Ecppy〉, where Precopy =
{value(S, V), value(D, V ′)} and Ecopy = {¬value(D, V ′), value(D, V)}. Then
β ∈ R(copy, value(r, c)), where β = 〈copy(S,D, V), P reβ, Ecopy〉 and Preβ =
Precopy ∪ {value(r, c) 6= value(D, V ′)}.

Lemma 9 (Regression of intensional literals). Consider a set of rules R, an in-
tensional literal `, and a STRIPS action α = 〈p(X), P re, E〉, where α and `
do not share variables. Let L be a minimal set of extensional literals such that
R∪L∪{← `} has an SLD-refutation [67]. Then for every β ∈ R(α,L) of the form
β = 〈p(X), P reβ, E〉, there is Lβ ⊆ Preβ∪L such that 〈p(X), Lβ, E〉 ∈ R(α, `).

Proof. By Definition 12, for every state S and substitution θ such that θ(α)(S)
exists, if S |= θ(Preβ) ∧ θ(L), then θ(α)(S) |= θ(L). Due to the soundness of
SLD-refutation [67], if S |= θ(Preβ) ∧ θ(L) then S |= θ(`); and if θ(α)(S) |=
θ(L) then θ(α)(S) |= θ(`). Therefore, for every state S and substitution θ such
that θ(α)(S) exists, if S |= θ(Preβ) ∧ θ(L) ∧ θ(`), then θ(α)(S) |= θ(`).
Therefore, Preβ ∪ L satisfies the conditions for regressing ` through α except,
possibly, minimality. To get the minimality, we can start removing elements from
this set, as in Proposition 8, until a minimal set is reached.

Definition 13 (Perfect regression). Given a set of literals L, a STRIPS action α,
and a substitution θ, β ∈ R(α,L) is called a perfect regression of L through
α with respect to θ if, for every state S such that θ(α)(S) exists, θ(β) is also
executable at S. 2

In Definition 13, β is simply called a perfect regression of L through α if α
and L are ground. Next lemma shows that, given a ground action α and a set of
literal L, Proposition 1 and Lemmas 8 and 9 are always able to find the perfect
regression of L through α.

36

Lemma 10 (Perfect regression of ground literals). Given a ground set of literals L
and a ground STRIPS action α = 〈pα, P re, E〉, let S be a state such that Pre ⊆ S
and α(S) |= L. Then, there exists β = 〈pβ, P reβ, E〉, a perfect regression of L
through α such that Preβ \ Pre is a set of literals of the form ` = e or ` 6= e.

Proof. By Proposition 1 and Lemmas 8 and 9, one can find β = 〈pβ, P reβ, E〉 ∈
R(α,L) such that Preβ \ Pre is a set of literals of the form ` = e or ` 6= e. We
need to show that at least one of those regression actions exists and it is executable
at every state.

To show that such β exists, we will show how Lemmas 8 and 9 construct such
action. Since Pre ∈ S, to show that β is also executable at every state, we need
to show that identity and nonidentity literals in Preβ \ Pre are always true. Due
to Lemmas 8 and 9, Preβ \ Pre is formed based on L and α as follows:

For every ` ∈ L, we have two cases:

1. ` is extensional. By Lemma 8, Preβ \ Pre contains a set of literals of the
form ` 6= e, where ¬e ∈ E. By construction of such ground nonidentity
literal, it is independent of S and it only depends on ground literals ` and e.
Then, one can show that such literal is true in every state. If not, ` /∈ α(S),
a contrary to the original assumption that α(S) |= `.

2. ` is intensional. By completeness of SLD-refutation [67], since α(S) |= `,
there must be a minimal set of extensional literals LM ⊆ α(S) such that
R∪LM∪{← `} has an SLD-refutation [67]. Then, by Lemmas 8 and 9, one
can show that Preβ \Pre contains a set of literals of the form `′ 6= e, where
`′ ∈ LM and ¬e ∈ E. By construction of such ground nonidentity literals,
they are independent of S, i.e. they depend on LM and E. Clearly, such
literals are true. If not, LM * α(S), a contrary to the original assumption
that there was a SLD-refutation for R ∪ LM ∪ {← `} in S.

Since all of the literals in Preβ \ Pre are independent of S and they are always
true, for every state S′, β is executable at S′ if Pre ⊆ S′. Thus β is a perfect
regression of L through α.

From now on, we assume that the set of actions A is regression deterministic
and closed under regression.

37

4.2 The STRIPSR Planner
Regression analysis of literals has been shown to be a potential enhancement for
planning strategies [2]. A planning strategy can use such analysis to protect goal
literals that are already achieved during its execution such that further actions
taken by the planning strategy cannot remove those literals [73][45]. This section
shows how we use T R to lay the ground work of regression analysis for STRIPS
planning strategy.

In this section, to track achieved goal literals, we introduce a built-in binary
predicate of the form lock(`, n), where ` is a literal, such that for any planning
problem Π = 〈R,A, G,D0〉 and every ground literal `, we have lock(`, 0) ∈ D0

but lock(`, k) /∈ D0 if k > 0. The counter in lock(`, n) indicates the number of
concurrent transactions that consider ` as an already achieved goal. In other words,
for every state S and literal `, if lock(`, n) ∈ S and n > 0, then ` is assumed to
be an already achieved goal in S.

In what follows, we will be using the unary protect and unprotect transac-
tions, defined by (4.1) and (4.2), to protect and unprotect planning goals. The first
transaction gets a literal and if it is achieved, increases its associated counter to be
protected from “unachieving”; the second transaction decreases the counter when
it no longer needs the protection by the current transaction.

protect(p(X))← �(p(X) ⊗ lock(p(X), N) ⊗
− lock(p(X), N) ⊗ + lock(p(X), N + 1)).

(4.1)

unprotect(p(X))← �(lock(p(X), N) ⊗ − lock(p(X), N) ⊗
+ lock(p(X), N − 1)).

(4.2)

Clearly, both of these transactions will always succeed. We also assume
regress to be a built-in binary predicate such that, for every state S and a set
of literals L = {` | lock(`, k) ∈ S, k > 0}, if there exists a perfect regression
of L through α, then regress(pα(X), pα′(X)) ∈ S, for some perfect regression
α′ ∈ R(α,L).

Definition 14 (T R planning rules for STRIPSR). Let Π = 〈R,A, G,S〉 be a
STRIPS planning problem (see Definition 4). Similar to P(Π) (see Definition 10),
we define Pr(Π) to be a set of T R rules, which will be shown to provide a sound
and complete solution to the STRIPS planning problem. Pr(Π) has three disjoint
parts, PrR, PrA, and PrG, as follows:

38

• The PrR part: for each rule p(X)← p1(X1) ∧ · · · ∧ pn(Xn) in R, PrR has a
rule of the form

achieverp(X)← (‖ni=1achieve
r
pi

(X i)) ⊗
�(⊗ni=1 unprotect(pi(X i)) ⊗ protect(p(X))).

(P8)
This rule is virtually identical to Rule (P1) in Definition 10.

• The part PrA = Practions ∪ Pratoms ∪ Prachieves has three subparts, as follows:

– Practions: for each α ∈ A, Practions has a rule of the form

pα(X)← (∧`∈Preα`) ⊗ (⊗u∈Enf(Eα)u). (P9)

This rule is identical to Rule (P2) in Definition 10.

– Pratoms = Prachieved ∪Prconstraints ∪Prenforced has three disjoint subparts
as follows:

– Prachieved: for each extensional predicate p ∈ Pext, Prachieved has
the rules

achieverp(X) ← protect(p(X)).

achiever¬p(X) ← protect(¬p(X)).
(P10)

These rules are similar to the rules in (P3), but we add protec-
tion to p(X) (resp., ¬p(X)), which are the goals considered to be
achieved. Note that protect(p(X)) also checks if p(X) is true in
the current state.

– Prconstraints: for each identity or nonidentity literal `c, i.e. a literal
of the form ` = `′ or ` 6= `′, Prconstraints has a rule

achiever`c ← `c. (P11)

This rule say that if an identity or nonidentity literal is true in a
state then that literal has already been achieved as a goal.

– Prenforced: for each action α = 〈pα(X), P reα, Eα〉 in A and each
e(Y) ∈ Eα, Prenforced has the following rule:

achievere(Y)← executerpα(X, e(Y)). (P12)

This rule is similar to (P4).

39

– Prachieves: for each action α = 〈pα(X), P reα, Eα〉 in A and each
e(Y) ∈ Eα, Prachieves has the following rule:

executerpα(X, e(Y))← (‖`∈Preαachiever`)⊗
�(unprotect(Preα) ⊗

regress(pα(X), pα′(X)) ⊗
pα′(X) ⊗
protect(e(Y))).

(P13)

The above rule means that to execute an action, one must first achieve
the precondition of the action, then remove the precondition of the
action from the list of already achieved protected goals. Moreover,
before taking the action α to achieve e(Y), it chooses α′ that is a
regression of already achieved goals through α. Then, it protects the
newly achieved goal in the set of effects of α, and finally perform the
state changes prescribed by the action.

• PrG: Let G = {g1, ..., gk}. Then PrG has a rule of the form:

achieverG ← ‖ki=1achieve
r
gi
⊗ (∧ki=1gi). (P14)

2

Regression analysis enhances the T R planning rules of Definition 10 with a
search mechanism that intuitively makes more sense: it avoids seemingly useless
work whereby planning goals might be achieved in the interim only to be un-
achieved later. We will again use the register exchange example of Section 3.1 to
illustrate how T R-based planning with regression works.

Example 5 (Planning rules of STRIPSR for register exchange). Recall the regis-
ter exchange problem of Example 3. Per Definition 14, the planning rules with
regression analysis for this problem are as follows.

As explained in Lemma 8, given a non-ground extensional literal
value(Reg, V ′′), β ∈ R(α, value(Reg, V ′′)), a regression of value(Reg, V ′′)
through the STRIPS action α = copy(Src,Dest, V), can be computed as follows:

β = 〈 copy(Src,Dest, V),
{value(Src, V), value(Dest, V ′), value(Reg, V ′′),
(value(Reg, V ′′) 6= value(Dest, V ′))},
{¬value(Dest, V ′), value(Dest, V)}〉

(4.3)

40

Due to case (P9):

copy(Src,Dest, V) ← value(Src, V) ⊗ value(Dest, V ′) ⊗
−value(Dest, V ′) ⊗+value(Dest, V).

copyβ(Src,Dest, V) ← value(Src, V) ⊗
value(Dest, V ′) ⊗ value(Reg, V ′′) ⊗
(value(r, c) 6= value(Dest, V ′)) ⊗
−value(Dest, V ′) ⊗+value(Dest, V).

(4.4)

Due to (P10), (P12), and (P13):

achievervalue(R, V)← protect(value(R, V)).
achiever¬value(R, V)← protect(¬value(R, V)).

(4.5)

achievervalue (Dest, V)←
executercopy(Src,Dest, V).

(4.6)

Due to (P11):

achiever`c1 ← value(R1, V1) = value(R2, V2).

achiever`c2 ← value(R1, V1) 6= value(R2, V2).
(4.7)

where `c1 = value(r, c) = value(R, V) and `c2 = value(r, c) 6= value(R, V).
Due to (P13):

executercopy(Src,Dest, V)←
(achievervalue(Src, V) | achievervalue(Dect, V ′)) ⊗
� (unprotect({value(Src, V), value(Dest, V ′)}) ⊗

regress(copy(Src,Dest, V), copy′(Src,Dest, V)) ⊗
copy′(Src,Dest, V) ⊗
protect(value(Dest, V))).

(4.8)
where copy′(Src,Dest, V)) is the regression of copy(Src,Dest, V)) through the
set of already achieved goals in the current state.
Due to (P14):

achieverG ← (achievervalue(x, b) | achievervalue(y, a))
⊗ (value(x, b) ∧ value(y, a)).

(4.9)

Case (P8) of Definition 14 does not add any rule in this example because the
planning problem does not involve intensional fluents. 2

41

To construct a plan, as before, we can extract a pivoting sequence of actions
with respect to STRIPSR and show that the new pivoting sequence of actions is
still a solution plan. It is easy to show that Lemma 3 is still valid under STRIPSR.
We will also show that Lemma 4 can be extended to accommodate STRIPSR.

We assume till the end of this section Π = 〈R,A, G,D0〉will denote a STRIPS
planning problem and Pr(Π) will be the set of planning rules defined in Defini-
tion 14. We also introduce notation to conveniently separate the lock(...)-facts in
every state D. Thus Dlock will stand for the set of all the lock(...)-facts in D, while
D—-lock will denote the rest of the literals in D.

Proposition 2 (Reduction of states in a T R derivation). If there is a derivation
for Pr(Π),Di . . .Dj ` pα(X), then the following holds:

1. Dlock
i = Dlock

j ; and

2. For every Dk and Dl such that D—-lock
k = D—-lock

i , D—-lock
l = D—-lock

j , and Dlock
k =

Dlock
l , one can derive Pr(Π),Dk . . .Dl ` pα(X).

Proof. By Lemma 3, the derivation of Pr(Π),Di . . .Dj ` pα(X) shows that the
execution of pα(X) changes the state from Di to Dj . Since, for every
α = 〈pα(X), P reα, Eα〉 ∈ A, Preα and Eα do not have lock(,)-literals, the
execution of pα(X) does not affect these literals. Therefore, Dlock

i = Dlock
j and

one can simply derive Pr(Π),D—-lock
k . . .D—-lock

l ` pα(X) using the same derivation
steps of Pr(Π),Di . . .Dj ` pα(X). Similarly, one can show that the same T R
derivation holds even if a set of lock(,)-literals, is added to all of the states
in the derivation of Pr(Π),D—-lock

k . . .D—-lock
l ` pα(X). Hence Pr(Π),Dk . . .Dl `

pα(X).

Lemma 11 (Execution of transactions of the form pα in STRIPSR). Let seq0, . . . ,
seqm be a derivation of Pr(Π),D0 . . .Dm ` achieveG, and let α1, . . . , αn (resp.,
Di1 , . . . ,Din) be a pivoting sequence of actions (resp., states). Then for each r
(1 ≤ r ≤ n) there are ir, ir+1 such that D—-lock

0 = D—-lock
i1

, D—-lock
in+1

= D—-lock
m , and

P(Π),D—-lock
ir . . .D—-lock

ir+1
` pαr . (Recall that pαr is the transaction associated with

αr—see Definition 9.)

Proof. Similar to Lemma 4, we divide the proof in three parts, namely, proving:

• Pr(Π),D—-lock
0 · · · ` pα1 ,

• Pr(Π),D—-lock
in . . .D—-lock

m ` pαn , and

42

• Pr(Π),D—-lock
ir . . .D—-lock

ir+1
` pαr , for each r (1 ≤ r < n).

Examination of the T R planning rules in Definition 14 shows that there are two
groups of such rules that directly cause the execution of an elementary transitions
(and thus change the underlying states): the rules of the form tr(α) and the rules
defining protect and unprotect transactions in (4.1). Thus every elementary T R
update in the derivation of Pr(Π),D0 . . .Dm ` achieveG is caused by either a
tr(α), or one of the rules of the form protect(`) ← · · · or unprotect(`) ← · · ·
in (4.1) and (4.2). By Definition 14, the only T R planning rules that call the
heads of those transactions are the rules of the form (P10) and (P13). Because of
the isolation operators � in (4.1), (4.2), and (P13), there can be no interleaving
between the execution of pαs, protects, and unprotects. Clearly, the rules of the
form protect(`) ← · · · and unprotect(`) ← · · · can only cause T R elementary
updates of the form + lock(`, n) or − lock(`, n). Therefore, for any 0 ≤ j < m,
if D—-lock

j 6= D—-lock
j+1, the state change must have been caused by a rule tr(α), i.e., by

execution of a pivoting action α.
By the definition of pivoting sequence of actions and states, we have

Pr(Π),Di1 · · · ` pα1 where Di1 is the pivoting state of α1. We need to show that
D—-lock
i1

= D—-lock
0 . Assume, to the contrary, that for some 0 ≤ j < i1, D—-lock

0 = D—-lock
j

and D—-lock
j 6= D—-lock

i1
. Then there must be at least one elementary T R update

e /∈ Eα1 that was executed by the inference rule (I3) at state Dj . Since, as noted
above, every elementary T R update corresponds to a pivoting action, there must
have been some other pivoting action α′ that was executed before α1. This contra-
dicts the assumption that α1 is the first pivoting action. Thus, D—-lock

i1
= D—-lock

0 and,
by Proposition 2, Pr(Π),D—-lock

0 · · · ` pα1 .
Suppose Pr(Π),Din . . .Din+1 ` pαn . We need to show that D—-lock

in+1
= D—-lock

m .
Assume, to the contrary, that D—-lock

in+1
6= D—-lock

m . Let in+1 ≤ j < m such that
D—-lock
j 6= D—-lock

in+1
and D—-lock

j = D—-lock
m . Then, there must be some elementary T R

update e /∈ Eαn that was executed by the inference rule (I3) at state Din+1 . As
every elementary T R update is associated with a pivoting action, there must have
been a pivoting action α′ that was executed after αn—contrary to the assumption
that αn is the last pivoting action. Thus D—-lock

in+1
= D—-lock

m and, by Proposition 2,
Pr(Π),D—-lock

in . . .D—-lock
m ` pαn .

By the definition of pivoting actions and states, we have Pr(Π),Dij · · · ` pαj
where 1 ≤ j ≤ n, and by Proposition 2, we have Pr(Π),D—-lock

ij
· · · ` pαj . We

need to show that P(Π),D—-lock
ij

. . .D—-lock
ij+1

` pαj . Assume, to the contrary, that
P(Π),D—-lock

ij
. . .D—-lock

k ` pαj and D—-lock
k 6= D—-lock

ij+1
. Due to the isolation operator

in (P13), pαj+1
cannot start before pαj has finished. Therefore, the state D—-lock

k pre-

43

cedes D—-lock
ij+1

. Thus, there must have been an elementary T R update e /∈ Eαj that
was executed by the inference rule (I3) at state Dk, i.e., after αj finished and
before αj+1 started. Since every elementary T R update in that derivation corre-
sponds to a pivoting action, this means that there must have been another pivoting
action α′ that was executed after αj and before αj+1 — contrary to the assumption
that αj+1 follows immediately after αj . Thus D—-lock

k = D—-lock
ij+1

, which concludes the
proof.

Theorem 6 (Soundness of STRIPSR). Any pivoting sequence of actions in the
derivation of Pr(Π),D0 . . .Dm ` achieverG is a solution plan.

Proof. Given a derivation of Pr(Π),D0 . . .Dm ` achieverG, let αi1 , . . . , αin be
the pivoting sequence of actions for this derivation and Di1 , . . . ,Din be its cor-
responding pivoting sequence of states. Let Din+1 be Dm. By the construction
of achieverG, we know that Dm |= G. Since G does not contain any literal of the
form lock(,), D—-lock

m |= G. Due to the soundness of the T R inference system, we
also know that Pr(Π),D0 . . .Dm |= achieverG. By Lemma 11 and by the sound-
ness of the inference system, Pr(Π),D—-lock

ir . . .D—-lock
ir+1
|= pαr , where 1 ≤ r ≤ n. By

Lemma 3, executing αr in state D—-lock
ir in STRIPS takes the system to state D—-lock

ir+1
.

This means that after the execution of the STRIPS sequence α1, . . . , αn, one gets
to state D—-lock

in+1
, which satisfies achieveG and thus G. The proof concludes by re-

calling that D—-lock
i1

= D—-lock
0 (by Lemma 11) and Dm = Din+1 (by definition).

Lemma 12 (Extending derivations with a protect transaction). Given a planning
problem Π = 〈R,A, G,D〉, let seq1 . . . seqm be a non-redundant derivation where
seqm = Pr(Π),D . . .Df ` φ | ψ. If ` ∈ Df , one can extend such derivation to
derive Pr(Π),D . . .Df ′ ` (φ ⊗ protect(`)) | ψ, where D—-lock

f ′ = D—-lock
f and if

lock(`, n) ∈ Df then lock(`, n+ 1) ∈ Df ′ .

Proof. Consider the sequent Pr(Π),D . . .Df ` φ | ψ. Since ` ∈ Df , applica-
tions of the inference rule (I2) using ` and lock(`, n) results in Pr(Π),D . . .Df `
(φ⊗ � (`⊗ lock(`, n)))) | ψ. Then, applying the inference rule (I3) twice to the
elementary updates −lock(`, n) and +lock(`, n+ 1), one can get:

Pr(Π),D . . .Df ′ ` (φ ⊗ � (` ⊗
lock(`, n) ⊗
− lock(`, n) ⊗
+ lock(`, n+ 1))) | ψ

(4.10)

Note that the last two derivation steps increase the counter in lock(`, n) in Df ′ to
n + 1, but D—-lock

f ′ = D—-lock
f . Finally, Pr(Π),D . . .Df ′ ` (φ ⊗ protect(`)) | ψ is

derivable via the inference rule (I1) using a rule of the form (4.1).

44

Lemma 13 (Extending derivations with unprotect transactions). Given a plan-
ning problem Π = 〈R,A, G,D〉, let L = {`1, . . . , `n} be a set of literals and
seq1 . . . seqm be a non-redundant derivation where seqm = Pr(Π),D . . .Df `
φ | ψ. Such derivation can be extended to derive Pr(Π),D . . .Df ′ ` (φ ⊗ �
unprotect(L)) | ψ where D—-lock

f ′ = D—-lock
f and, for each ` ∈ L, if lock(`, n) ∈ Df

then lock(`, n− 1) ∈ Df ′ .

Proof. Let `i ∈ L. Applying the inference rule (I2) using lock(`i, n) in
Pr(Π),D . . .Df ` φ |ψ, one can get Pr(Π),D . . .Df ` (φ⊗�(lock(`i, n)))) |ψ.
Then, a couple of applications of the inference rule (I3) using the elementary up-
dates −lock(`i, n) and +lock(`i, n− 1) results in:

Pr(Π),D . . .Df ′i
` (φ ⊗ � (lock(`i, n) ⊗

− lock(`i, n) ⊗
+ lock(`i, n− 1))) | ψ

(4.11)

Clearly, the counter in lock(`, n) is decreased from Df to Df ′ while D—-lock
f ′i

=

D—-lock
f . Then, an application of the inference rule (I1) using a rule of the form (4.2)

results in Pr(Π),D . . .Df ′i
` (φ ⊗ unprotect(`i)) | ψ. Repeating the above

derivation steps for every 1 ≤ i ≤ n results in Pr(Π),D . . .Df ′n ` (φ ⊗ �
unprotect(L)) | ψ where Df ′n = Df ′ and D—-lock

f ′ = D—-lock
f .

The following lemmas are analogous to Lemmas 5, 6, and 7; it will be used to
prove the completeness of the STRIPSR planner of Definition 14.

Lemma 14 (Achieved literals for T R planning with regression). Let
Π = 〈R,A, G, 〉 be a planning problem and Pr(Π) be the set of T R planning
rules of Definition 14. For every literal ` and every state D, if Pr(Π),D |= `, then
there must be Df such that Pr(Π),D . . .Df ` achiever` , where D—-lock = D—-lock

f

and Dlock
f is exactly like Dlock except if lock(`, n) ∈ Dlock then lock(`, n + 1) ∈

Dlock
f .

Proof. We have two cases:

1. ` is extensional. By Lemma 12, Pr(Π),D . . .Df ` protect(`), where
D—-lock = D—-lock

f and Dlock
f is exactly same as Dlock except the counter in

lock(`, n) is increased by one from Dlock to Dlock
f . Then, Pr(Π),D . . .Df `

achieve` is derivable via an application of inference rule (I1) using planning
rule of the form (P10).

45

2. ` is intensional. First, we need to show how planning rules of the form (P8)
can be used in a derivation. Then, we will show how to derive Pr(Π),D . . .
Df ` achiever` for some Df . Let h ← b1 ∧ · · · ∧ bn be a ground in-
stance of a rule from R and Bh = {b1, . . . , bn}. By definition of ground
instances of rules, if for some Dm we have R,Dm ` Bh then R,Dm ` h
is derivable. By construction of Pr(Π), it has a planning rule of the form
achieveh ← ‖bi∈Bhachievebi ⊗�(unprotect(Bh)⊗ protect(h)). Suppose
Pr(Π),D . . .Dm ` ‖bi∈Bhachievebi | rest is a derivable sequent via T R’s
inference rules. Then, by Lemma 13, we can derive

Pr(Π),D . . .Dm . . .DfBh
` ‖bi∈Bhachievebi ⊗
�unprotect(Bh) | rest

where D—-lock
m = D—-lock

fBh
and, for every bi ∈ Bh, the counter in lock(bi, n) is

changed to lock(bi, n−1) from Dlock
m to Dlock

fBh
. Then, by Lemma 12, we get:

Pr(Π),D . . .Dm . . .DfBh
. . .Dfh ` ‖bi∈Bhachievebi ⊗

�(unprotect(Bh)⊗ protect(h)) |
rest

where D—-lock
fBh

= D—-lock
fh

and lock(h, n) is changed to lock(h, n + 1) from
Dlock
fBh

to D—-lock
fh

. Therefore, D—-lock
m = D—-lock

fh
and Dlock

fh
is like Dlock

m except
the counter in lock(h, n) is increased by one from Dlock

m to Dlock
fh

and, for
every bi ∈ Bh, the counter in lock(bi, n) is decreased by one going from
Dlock
m to Dlock

fh
. These derivation steps show how an application of a rule

of the form p(X) ← ∧ni=1pi(X i) can correspond to an application of a
T R planning rule of the form achievep(X) ← ‖ni=1achievepi(X i) ⊗ �
(⊗ni=1unprotect(pi(Xi))⊗ protect(p(X))). Recall that rules from R are the
only rules in Pr(Π) that have intensional literals in their heads. Therefore,
Pr(Π),D |= ` implies that there must be at least one derivation of ` formed
by a set of ground instances of rules from R that are true in D, i.e., R,D ` `.
Due to the correspondence between rules in R and planning rules of the
form (P8), any derivation of R,D ` ` has a corresponding derivation for
Pr(Π),D . . .Df ` achieve` where D—-lock = D—-lock

f .

Next, we will prove that the counter in lock(`, n) is increased by one going
from Dlock to Dlock

f and the rest of the literals of Dlock are not changed
going from Dlock to Dlock

f . Recall that protect(`) is the only transaction that

46

can increment the lock count n in lock(`, n), while unprotect(`) is the only
transaction that can decrement n in lock(`, n).

Let seq0, . . . , seqn be a non-redundant derivation of Pr(Π),D . . .Df `
achiever` . For each literal `i, let A(`i), P (`i), and U(`i) denote the num-
ber of sequents (among seq0, . . . , seqn) that are derived by applying the
T R inference rule (I1) using a planning rule whose head is achieve(`i),
protect(`i), and unprotect(`i), respectively.

Literals of the form protect(`i) appear in the body of planning
rules (P8) and (P10), or in the body of a planning rule of the form (P13),
which in turn is called by a rule of the form (P12). Therefore, for every
seqi derived by an application of inference rule (I1) using a rule of the form
protect(`i) ← . . . , there is a sequent seqj such that i < j and seqj is
derived by an application of inference rule (I1) using a rule of the form
achieve`i ← Thus, A(`i) ≥ P (`i). On the other hand, all of the rules
of the form achieve`i ← . . . in Pr(Π) call protect(`i) in their bodies.
Then, one can show that for every seqj derived by an application of infer-
ence rule (I1) using a rule of the form achieve`i ← . . . , there is a sequent
seqi such that i < j and seqi is derived by an application of inference
rule (I1) using a rule of the form protect(`i) ← Then, A(`i) ≤ P (`i),
which together with the above implies A(`i) = P (`i).

Likewise, by the construction of T R planning rules, achieve`i appears
either in the body of a planning rule of the form (P8) or (P13), or is called
in the body of a rule of the form (P14). Clearly, the rule of the form (P14)
is not used in this derivation. In the body of planning rules of the form (P8)
and (P13), calling achieve`i is always followed by a call to unprotect(`i).
There are two cases to consider:

(a) `i 6= `: Every achieve`i is called in the body of planning rules of the
form (P8) or (P13), that is always followed by a call to unprotect(`i).
Thus A(`i) = U(`i). Since A(`i) = P (`i), protect(`i) and
unprotect(`i) are called the same number of times and thus, the counter
in lock(`i, n) is not increased from D to Df .

(b) `i = `: Clearly, achieve` appears only once in seqm. If not, seq0, . . . ,
seqm would be a redundant derivation. Then, protect(`) is never fol-
lowed by an unprotect(`). Therefore, the counter in lock(`i, n) is in-
creased by one from D to Df .

47

Lemma 15 (Plans of length zero with regression analysis). Let Π = 〈R,A, G,D〉
be a planning problem that has a solution plan of length zero. Then the T R in-
ference system can generate a derivation for Pr(Π),D . . .Df ` achieverG whose
pivoting sequence is empty, D—-lock = D—-lock

f , and, for every g ∈ G, lock(g, 1) ∈
Dlock
f while, for every g /∈ G, lock(g, 0) ∈ Dlock

f .

Proof. If Π has a plan of length zero then G ⊆ D. By Lemma 14, Pr(Π),D . . .
Df ` ‖g∈Gachieverg, where D—-lock = D—-lock

f and, for every g ∈ G, lock(g, 1) ∈
Dlock
f while for every g /∈ G, lock(g, 0) ∈ Dlock

f . This gives us Pr(Π),D . . .Df `
achieverG. Since this derivation does not involve the planning rules tr(α), it has
an empty pivoting sequence.

Lemma 16 (Plans of length > 1 with regression analysis: the inductive step).
Suppose that, if a STRIPS planning problem Π′ = 〈R,A, G′,D0〉 has a non-
redundant plan σ′ of length k ≤ n, then it has a T R-derivation for the sequent
Pr(Π′),D0 . . .Df ′ ` achieverG′ such that

• the pivoting sequence of this derivation is σ′;

• D—-lock
f ′ = S—-lock

f ′ , where Sf ′ is the final state of the execution of σ′ starting at
D0;

• for every g ∈ G′, lock(g, 1) ∈ Dlock
f ′ ; and

• for every g /∈ G′, lock(g, 0) ∈ Dlock
f ′ .

Then, for any planning problem Π = 〈R,A, G,D0〉 that has a non-redundant plan
σ of length n+1, there must be a T R-derivation for Pr(Π),D0 . . .Df ` achieverG
such that

• the pivoting sequence of that derivation is σ;

• D—-lock
f = S—-lock

f , where Sf is the final state of the execution of σ starting at
D0;

• for every g ∈ G, lock(g, 1) ∈ Dlock
f ; and

• for every g /∈ G, lock(g, 0) ∈ Dlock
f .

48

Proof. We will show that any non-redundant STRIPS plan is also an STRIPSR

plan. The proof mimics Lemma 7, but is slightly more complex because we need
to keep track of the lock-facts.

Let σ = α1, . . . , αn, αn+1 and σ′ = α1, . . . , αn. Suppose Sf and Sf ′ are the
final state of the executions of σ and σ′ starting at D0, as in the statement of the
lemma. Consider the set of literals G′ = (Sf ′ ∩ G) ∪ Preαn+1 where Preαn+1

is the precondition of αn+1. Consider the planning problem Π′ = 〈R,A, G′,D0〉.
We will show that σ′ is a non-redundant plan of length n for Π′. Since αn+1 is
executable at Sf ′ , it follows that Preαn+1 ⊆ Sf ′ . As Sf ′∩G ⊆ Sf ′ , we obtainG′ ⊆
Sf ′ and thus σ′ is a plan for Π′. It is a non-redundant plan for Π′ because if ς were
a subsequence of σ′ and also a plan for Π′ then αn+1 would have been executable
in the final state of ς (since Preαn+1 ⊆ G′) and thus 〈ς, αn+1〉 would have been
a plan for Π. Since 〈ς, αn+1〉 is a subsequence of σ, this would contradict the
non-redundancy assumption about σ.

Since σ′ = α1 . . . αn is a non-redundant plan of length n for Π′, the as-
sumption of the lemma guarantees a T R-derivation for a sequent of the form
Pr(Π′),D0 . . .Df ′ ` achieverG′ where D—-lock

f ′ = S—-lock
f ′ and the pivoting sequence

of that derivation is σ′. Therefore, with the help of the planning rule (P14), we also
derive Pr(Π′),D0 . . .Df ′ ` (‖g∈G′ achieverg)⊗ (∧g∈G′ g). A prefix of that deriva-
tion (with the same pivoting sequence) derives Pr(Π′),D0 . . .Df ′ `
(‖g∈G′ achieverg). Due to the assumption about Dlock

f ′ , for every ` ∈ Preαn+1 ,
lock(`, 1) ∈ Df ′ . By Lemma 13, we get:

Pr(Π′),D0 . . .Df ′ . . .Dfu ` (‖g∈G′′ achieverg) |
(‖`∈Preαn+1

achiever`) ⊗
�unprotect(Preαn+1)

(4.12)

where D—-lock
f ′ = D—-lock

fu
,G′′ = G′ \Preαn+1 , and, for every ` ∈ Preαn+1 , the counter

in lock(`, n) is decreased by one going from Df ′ to Dfu . Thus, for every g ∈ G′′
we have lock(g, 1) ∈ Dfu and for every g /∈ G′′, lock(g, 0) ∈ Dfu . By definition,
G′′ is the set of already achieved goals in Dfu . SinceG′ = (Sf ′∩G)∪Preαn+1 and
G′′ = G′ \ Preαn+1 , then G′′ ⊆ Sf ′ ∩G. Clearly, G′′ and αn+1 are ground. Then,
since αn+1 is executable at Sf ′ and G′′ ⊆ G ⊆ Sf , by Lemma 10, there exists
α′n+1 ∈ R(αn+1, G

′′), which is a perfect regression of G′′ through αn+1. Then,
the goal regress(pαn+1(X), pα′

n+1
(X)) succeeds at state Dfu . Now, applying the

49

inference rule (I2) using regress(pαn+1(X), pα′
n+1

(X)) to (4.12), we get:

Pr(Π′),D0 . . .Df ′ . . .Dfu ` (‖g∈G′′ achieverg) |
(‖`∈Preαn+1

achiever`) ⊗
�(unprotect(Preαn+1) ⊗
regress(pαn+1(X), pα′

n+1
(X)))

(4.13)

Since Sf is the final state of the execution of αn+1 at Sf ′ and α′n+1 is a perfect
regression of G′′ through αn+1, it follows that α′n+1 is also executable at Sf ′ and
α′n+1(Sf ′) = Sf . Therefore, by Lemma 3, Pr(Π′),Sf ′ . . .Sf ` pα′

n+1
. Moreover,

by Proposition 2, Slockf ′ = Slockf . Clearly, S—-lock
f ′ = D—-lock

fu
because D—-lock

f ′ = S—-lock
f ′ and

D—-lock
f ′ = D—-lock

fu
. Let Dfue = S—-lock

f ∪Dlock
fu

. Then, by Proposition 2, one can derive
Pr(Π′),Dfu . . .Dfue ` pαn+1 . Appending this latter derivation to the derivation
of (4.13), we get

Pr(Π′),D0 . . .Df ′ . . .Dfu . . . Dfue `
(‖g∈G′′ achieverg) |
(‖`∈Preαn+1

achiever`) ⊗
�(unprotect(Preαn+1) ⊗
regress(pαn+1(X), pα′

n+1
(X)) ⊗

pα′
n+1

(X))

(4.14)

where Dlock
fu

= Dlock
fue

and D—-lock
fue

is the result of the execution of α′n+1 at D—-lock
fu

.
Consider the setG\Sf ′ . Clearly,G\Sf ′ 6= ∅ for otherwise α1, . . . , αn would have
been a plan for Π (starting at D0 and ending at Sf ′), contrary to non-redundancy
of σ. Let % ∈ G \ Sf ′ . Recall that G ⊆ Sf and thus % ∈ G ⊆ Sf . Therefore,
for any state S (including Dfue) such that S—-lock = S—-lock

f , we have Pr(Π),S |= %.
Moreover, since % /∈ Sf ′ , for every state S such that S—-lock = S—-lock

f ′ (including Df ′

and Dfu), Pr(Π),S 2 %.
Next we will show that Pr(Π′),D0 . . .Dfue . . .Dfuep ` (‖g∈G′′ achieveg) |

achieve% for some Dfuep such that D—-lock
fuep

= S—-lock
f and the counter in lock(%, n)

is increased by one going from Dfue to Dfuep . There are two cases:

1. % is extensional: By Lemma 12, one can derive

Pr(Π′),D0 . . .Df ′ . . . Dfu . . .Dfue . . .Dfuep `
(‖g∈G′′ achieverg) |
(‖`∈Preαn+1

achiever`) ⊗
�(unprotect(Preαn+1) ⊗
regress(pαn+1(X), pα′

n+1
(X)) ⊗

pα′
n+1

(X) ⊗ protect(%))

(4.15)

50

where D—-lock
fue

= D—-lock
fuep

and the counter in lock(%, n) is increased by one from
Dfue to Dfuep . Since % is an extensional literal, it must be that % ∈ Eαn+1 . If
not, since Dfue is the state obtained by executing α′n+1 at Dfu and % /∈ Dfu ,
it would follow that % /∈ Dfue , which means % /∈ Sf . Therefore, assuming
% /∈ Eαn+1 contradicts the earlier conclusion that Pr(Π′),Sf |= %. Thus,
% ∈ Eαn+1 and, by construction of T R planning rules, Pr(Π′) has a rule of
the form (P13), which can be used to derive

Pr(Π′),D0 . . .Df ′ . . .Dfu . . . Dfue . . .Dfuep `
(‖g∈G′′ achieverg) |
executerpα′n+1

(%)
(4.16)

Moreover, by Definition 14, Pr(Π′) has a rule achiever% ← executerpαn+1
(%).

Applying the inference rule (I1) to the sequent (4.16) using achiever% ←
executerpαn+1

(%) yields the sequent Pr(Π′),D0 . . .Dfuep ` (‖g∈G′′ achieverg)

| achiever%.

2. % is intensional: Since % ∈ Sf , by Lemma 14, there must be a derivation
of Pr(Π′),Sf . . .S′f ` achieve%. Consider a non-redundant such derivation
seq0, ..., seqm, where seq0 is an axiom and seqm is Pr(Π′),Sf . . .S′f `
achiever%. By Lemma 1, each seqi (except seq0) was derived from seqi−1.
As shown in Lemma 14, such derivation is produced from a derivation of
R,Sf |= % using planning rules of the form

achieverp(X)← (‖ni=1achieve
r
pi

(X i)) ⊗
�(⊗ni=1 unprotect(pi(X i)) ⊗

protect(p(X))).

(4.17)

This derivation must have a sequent of the form Pr(Π),Sf . . .S
′
f ` achieverh,

obtained via the T R inference rule (I1) and a planning rule of the form
achieverh(X)← . . . |achiever`(X`)⊗, where ` is an extensional literal
such that ` ∈ Eαn+1 and ` /∈ Sf ′ . If there were no such `, we could have
used the above derivation to show that Pr(Π),Sf ′ |= %, contrary to the ear-
lier conclusion that Pr(Π),Sf ′ 2 %. Thus, from (4.14) and Lemma 12, one

51

can derive

Pr(Π′),D0 . . .Df ′ . . . Dfu . . .Dfue . . .Dfuep`
`

(‖g∈G′′ achieverg) |
(‖`∈Preαn+1

achiever`) ⊗
�(unprotect(Preαn+1) ⊗
regress(pαn+1(X), pα′

n+1
(X)) ⊗

pα′
n+1

(X) ⊗ protect(`))

(4.18)

where D—-lock
fue

= D—-lock
fuep`

and the counter in lock(`, n) is increased by one from
Dfue to Dfuep`

. By Definition 14, Pr(Π′) has a rule of the form (P13) whose
head is executerpαn+1

(X, `). This rule can be used by the T R inference
rule (I1) to derive:

Pr(Π′),D0 . . .Df ′ . . .Dfu . . . Dfue . . .Dfuep`
`

(‖g∈G′′ achieverg) |
executerpαn+1

(X, `).
(4.19)

Since ` ∈ Eαn+1 , Definition 14 says that Pr(Π′) has a rule of the form
achiever` ← executerpαn+1

(X, `). An application of the T R inference rule (I1)

to the sequent (4.19) using achiever` ← executerpαn+1
(X, `) then yields

P(Π′),D0 . . .Dfuep`
` (‖g∈G′′ achieverg) | achiever` . (4.20)

Now, rerun the inference steps for the aforesaid derivation seq0, ..., seqm
starting with the sequent (4.20) instead of seq0 and omit the step that intro-
duces the literal achiever` to the goal on the right-hand side of the sequents.
This step can be omitted because achiever` already exists in (4.20). By
Lemma 14, the result of such a derivation is the sequent Pr(Π′),D0 . . .Dfuep

` (‖g∈G′′ achieverg) | achiever% where D—-lock
fuep`

= D—-lock
fuep

and lock(`, n`),
lock(%, n%) in D—-lock

fuep`
become lock(`, n` − 1) and lock(%, n% + 1) in Dfuep ,

respectively. Therefore, D—-lock
fue

= D—-lock
fuep

and the counter in lock(%, n) is in-
creased by one going from Dfue to Dfuep , while the counter in lock(`, n) is
not changed.

Let L = G \ (G′′ ∪ {%}). Clearly, L ⊆ D—-lock
fuep

since the entire G is as-
sumed to be in S—-lock

f and S—-lock
f = D—-lock

fuep
. Therefore, by Lemma 14, starting with

Pr(Π′),D0 . . .Dfuep ` (‖g∈G′′ achieverg) | achiever%, one can derive the sequent

Pr(Π′),D0 . . .Dfuep . . .Df ` (‖g∈G′′ achieverg) | achiever% | (‖g∈L achieverg)

52

which is simply Pr(Π′),D0 . . .Df ` (‖g∈G achieverg). Here Df is chosen so that
S—-lock = D—-lock

fuep
= D—-lock

f and, by Lemma 14, for every ` ∈ L, the counter in
lock(`, n) is increased by one going from Dfuep to Df . Therefore, for every g ∈ G,
lock(g, 1) ∈ Dlock

f and for every g /∈ G, lock(g, 0) ∈ Dlock
f . Since G ⊆ Df , the

inference rule (I2) also gives us Pr(Π′),D0 . . .Df ` (‖g∈G achieverg)⊗ (∧g∈G g).
Finally, Pr(Π) differs from Pr(Π′) only in the form of the rule (P14). In case of
Pr(Π), that rule has exactly the form that lets one apply the inference rule (I1) to
get Pr(Π),D0 . . .Df ` achieverG.

Theorem 7 (Completeness of STRIPSR). If there is a non-redundant plan that
achieves the goalG from the initial state D0 then the T R-based STRIPSR planner
will find a plan.

Proof. By induction on the length of the plan. Lemma 15 proves the base case
of the induction and Lemma 16 establishes the inductive step.

The following example shows how the inference rules of T R inference system
in Definition 7 are applied to the planning rules in Example 5 to construct a plan.
This example also illustrates why planning rules in Example 5 are more efficient
than those in Example 3.

Example 6 (Register exchange with regression analysis, continued). Consider the
register exchange problem in Example 3. Let Pr be the set of T R rules (4.4-4.8)
that constitute the planner for the T R-based planner with regression analysis for
this problem. Given the planning goal G = {value(x, b), value(y, a)} and the
initial state D0, where {value(x, a), value(y, b)} ⊆ D0, we will show how the in-
ference system in Definition 7 constructs a derivation (and thus a plan) for the se-
quent Pr,D0 · · ·Dn ` achieverG for some Dn such that {value(x, b), value(y, a)}
⊆ Dn.

Consider the sequent Pr,D0 · · · ` achieverG that corresponds to the query
(3.2). Applying the inference rule (I1) to that sequent using the rule (4.9), we get:

P,D0 · · · ` (achievervalue(x, b) | achievervalue(y, a))
⊗ (value(x, b) ∧ value(y, a)).

Applying the inference rule (I1) to the resulting sequent using the rule (4.6) with
appropriate substitutions, we get:

P,D0 · · · ` (executecopy(z, x, b) | achievervalue(y, a))
⊗ (value(x, b) ∧ value(y, a)).

53

from which, via an application of the inference rule (I1) using the rule (4.8), we
get:

P,D0 · · · ` (((achievervalue(z, b) | achievervalue(x, a)) ⊗
� (unprotect({value(z, b), value(x, a)}) ⊗

regress(copy(z, x, b), copy′(z, x, b)) ⊗
copy′(z, x, b) ⊗ protect(value(x, b)))) |
achievervalue(y, a))

⊗ (value(x, b) ∧ value(y, a)).

Then, three applications of the inference rule (I1) using the rules (4.6), (4.8), and (4.5)
with appropriate substitutions results in:

P,D0 · · · ` (((((protect(value(y, b)) | achievervalue(z, t)) ⊗
� (unprotect({value(y, b), value(z, t)}) ⊗

regress(copy(y, z, b), copy′(y, z, b)) ⊗
copy′(y, z, b) ⊗ protect(value(z, b)))) |
achievervalue(x, a)) ⊗

� (unprotect({value(z, b), value(x, a)}) ⊗
regress(copy(z, x, b), copy′(z, x, b)) ⊗
copy′(z, x, b) ⊗ protect(value(x, b)))) |
achievervalue(y, a))

⊗ (value(x, b) ∧ value(y, a)).

from which, by Lemma 12, we get

P,D1 · · · ` ((((achievervalue(z, t) ⊗
� (unprotect({value(y, b), value(z, t)}) ⊗

regress(copy(y, z, b), copy′(y, z, b)) ⊗
copy′(y, z, b) ⊗ protect(value(z, b)))) |
achievervalue(x, a)) ⊗

� (unprotect({value(z, b), value(x, a)}) ⊗
regress(copy(z, x, b), copy′(z, x, b)) ⊗
copy′(z, x, b) ⊗ protect(value(x, b)))) |
achievervalue(y, a))

⊗ (value(x, b) ∧ value(y, a)).

where D—-lock
0 = D—-lock

1 and lock(value(y, b), 0) is changed to lock(value(y, b), 1)
from Dlock

0 to Dlock
1 . In order to highlight the role of regression and clarify the

difference between executions of rules in Examples 3 and 5, we use inference rule

54

(I4) at this point. Then an application of the inference rule (I1) to the resulting
sequent using the rule (4.6) with appropriate substitutions results in:

P,D1 · · · ` ((((achievervalue(z, t) ⊗
� (unprotect({value(y, b), value(z, t)}) ⊗

regress(copy(y, z, b), copy′(y, z, b)) ⊗
copy′(y, z, b) ⊗ protect(value(z, b)))) |
achievervalue(x, a)) ⊗

� (unprotect({value(z, b), value(x, a)}) ⊗
regress(copy(z, x, b), copy′(z, x, b)) ⊗
copy′(z, x, b) ⊗ protect(value(x, b)))) |
executercopy(x, y, a))

⊗ (value(x, b) ∧ value(y, a)).

Then, applying the inference rule (I1) twice using the rules (P13) and (4.5), we
get:

P,D1 · · · ` ((((achievervalue(z, t) ⊗
� (unprotect({value(y, b), value(z, t)}) ⊗

regress(copy(y, z, b), copy′(y, z, b)) ⊗
copy′(y, z, b) ⊗ protect(value(z, b)))) |
achievervalue(x, a)) ⊗

� (unprotect({value(z, b), value(x, a)}) ⊗
regress(copy(z, x, b), copy′(z, x, b)) ⊗
copy′(z, x, b) ⊗ protect(value(x, b)))) |

((protect(value(x, a)) | achievervalue(y, b)) ⊗
� (unprotect({value(x, a), value(y, b)}) ⊗

regress(copy(x, y, a), copy′(x, y, a)) ⊗
copy′(x, y, a) ⊗ protect(value(y, a)))))

⊗ (value(x, b) ∧ value(y, a)).

55

from which, by Lemma 12, we get:

P,D2 · · · ` ((((achievervalue(z, t) ⊗
� (unprotect({value(y, b), value(z, t)}) ⊗

regress(copy(y, z, b), copy′(y, z, b)) ⊗
copy′(y, z, b) ⊗ protect(value(z, b)))) |
achievervalue(x, a)) ⊗

� (unprotect({value(z, b), value(x, a)}) ⊗
regress(copy(z, x, b), copy′(z, x, b)) ⊗
copy′(z, x, b) ⊗ protect(value(x, b)))) |

(achievervalue(y, b) ⊗
� (unprotect({value(x, a), value(y, b)}) ⊗

regress(copy(x, y, a), copy′(x, y, a)) ⊗
copy′(x, y, a) ⊗ protect(value(y, a)))))

⊗ (value(x, b) ∧ value(y, a)).

where D—-lock
1 = D—-lock

2 and lock(value(x, a), 0) is changed to lock(value(x, a), 1)
from Dlock

1 to Dlock
2 . Applying the inference rule (I1) once more and again using

the rules (4.5), we get:

P,D2 · · · ` ((((achievervalue(z, t) ⊗
� (unprotect({value(y, b), value(z, t)}) ⊗

regress(copy(y, z, b), copy′(y, z, b)) ⊗
copy′(y, z, b) ⊗ protect(value(z, b)))) |
achievervalue(x, a)) ⊗

� (unprotect({value(z, b), value(x, a)}) ⊗
regress(copy(z, x, b), copy′(z, x, b)) ⊗
copy′(z, x, b) ⊗ protect(value(x, b)))) |

(protect(value(y, b)) ⊗
� (unprotect({value(x, a), value(y, b)}) ⊗

regress(copy(x, y, a), copy′(x, y, a)) ⊗
copy′(x, y, a) ⊗ protect(value(y, a)))))

⊗ (value(x, b) ∧ value(y, a)).

56

Then, by Lemma 12, we get:

P,D3 · · · ` ((((achievervalue(z, t) ⊗
� (unprotect({value(y, b), value(z, t)}) ⊗

regress(copy(y, z, b), copy′(y, z, b)) ⊗
copy′(y, z, b) ⊗ protect(value(z, b)))) |
achievervalue(x, a)) ⊗

� (unprotect({value(z, b), value(x, a)}) ⊗
regress(copy(z, x, b), copy′(z, x, b)) ⊗
copy′(z, x, b) ⊗ protect(value(x, b)))) |
� (unprotect({value(x, a), value(y, b)}) ⊗

regress(copy(x, y, a), copy′(x, y, a)) ⊗
copy′(x, y, a) ⊗ protect(value(y, a))))

⊗ (value(x, b) ∧ value(y, a)).

where D—-lock
2 = D—-lock

3 and lock(value(y, b), 1) is changed to lock(value(y, b), 2)
from Dlock

2 to Dlock
3 . Then, by Lemma 13, we get:

P,D5 · · · ` ((((achievervalue(z, t) ⊗
� (unprotect({value(y, b), value(z, t)}) ⊗

regress(copy(y, z, b), copy′(y, z, b)) ⊗
copy′(y, z, b) ⊗ protect(value(z, b)))) |
achievervalue(x, a)) ⊗

� (unprotect({value(z, b), value(x, a)}) ⊗
regress(copy(z, x, b), copy′(z, x, b)) ⊗
copy′(z, x, b) ⊗ protect(value(x, b)))) |
� (regress(copy(x, y, a), copy′(x, y, a)) ⊗

copy′(x, y, a) ⊗ protect(value(y, a))))
⊗ (value(x, b) ∧ value(y, a)).

where D—-lock
3 = D—-lock

5 . Moreover, lock(value(x, a), 1) and lock(value(y, b), 2) is
changed to lock(value(x, a), 0) and lock(value(y, b), 1) from Dlock

3 to Dlock
5 . Note

that
regress(copy(x, y, a), copy′(x, y, a)) cannot bind copy′(x, y, a) to any action be-
cause currently value(y, b) is an achieved goal and R(copy(x, y, a), value(y, b)) =
∅. Then regress(copy(x, y, a), copy′(x, y, a)) fails at this point. One can continue
the rest of inference as shown in Example 4. Clearly, with similar application
of inference rule in Example 4, the inference can proceed without failure and
backtracking because of the lack of regression analysis and regress(copy(x, y, a),

57

copy′(x, y, a)). Therefore, the failure and backtracking could be postponed which
increases the execution time of planning algorithm. This simple example illus-
trates how regression analysis can provide a more efficient planning algorithm.
2

In this chapter, we showed how a modification of the T R-based STRIPS
planner in Section 3.1 results in a more efficient planner. Chapter 7 shows that
STRIPSR can be two orders of magnitude faster than STRIPS.

58

Chapter 5

Planning Problems With Negative
Intensional Literals

Recall from Chapter 2 that a literal is either an atom or a negated extensional atom,
which excludes negated intensional atoms. In this chapter, we first extend the plan-
ning context with the negated intensional atoms. Then, we introduce STRIPSneg,
which is an extension of STRIPS planner in Section 3.1 with respect to negative
intensional literals. We also prove the soundness and completeness of the new
strategy with respect to the semantics of negative intensional literals.

5.1 Negative Intensional Literals
Consider an intensional atom of the form p(t1, ..., tn), where p ∈ Pint. An in-
tensional literal of the form naf p(t1, ..., tn) is called a default negation of in-
tensional literal. Such negation is understood not in the first-order sense, but as
negation-as-failure. These negated literals can appear in rule bodies only, not in
rule heads.

Another form of negation is explicit negation, where explicit negation of an
intensional literal is an atom of the form ¬p(t1, ..., tn). These literals are under-
stood as new positive predicates and correspond to the notion of classical negation
introduced in [39]. For the semantics of the planning states that allow both default
and explicit negation, we use well-founded semantics with explicit negation as
defined in [3]. This semantics implies that, for every intensional atom of the form
p(t1, ..., tn), the following holds:

¬p(t1, ..., tn) |= naf p(t1, ..., tn) (5.1)

59

Moreover, we assume that the background theory contains a rule of the form

¬p(t1, ..., tn)← naf p(t1, ..., tn) (5.2)

This makes ¬p(t1, ..., tn) equivalent to naf p(t1, ..., tn) in every well-founded
model. Therefore, we can replace every occurrence of naf p with ¬p and in the
sequel we will only deal with negative literals of the latter form. We now modify
the definition of planning states accordingly.

Definition 15 (State – with negative intensional literals). Given a set R of rules
(possibly with negated literals in the bodies) and a set of extensional literals Sext,
a state is a set of literals S = Sext ∪ Sint such that

1. S is the well-founded model of R ∪ Sext.

2. For every literal `, either ` ∈ S or ¬` ∈ S. 2

Since a state is a model of R, every rule of R is true in S. In addition to the
above, we assume that negative literals can appear in facts and in rule bodies of
R, but not in the rule heads in R.

5.2 The STRIPSneg Planner
In this section, first we extend T R-based STRIPS planner introduced in Sec-
tion 3.1 to achieve negative intensional literals. Then, we prove the soundness
and completeness of the extended planner with respect to the semantics of the set
of rules that defines intensional atoms.

Definition 16 (T R planning rules for STRIPSneg). Let Π = 〈R,A, G,S〉 be a
STRIPS planning problem and P(Π) be a set of T R planning rules, as in Defini-
tion 10. We define Pneg(Π) to be exactly as P(Π) except for the PR part. Namely,
PnegR —the replacement of PR— has two disjoint parts, Pnegpositive and Pnegnegative, and
is constructed as follows:

• The Pnegpositive part: for each rule p(X) ← p1(X1) ∧ · · · ∧ pn(Xn) in R,
Pnegpositive has a rule of the form

achievep(X)← ‖ni=1achievepi(X i). (P15)

This rule is identical to Rule (P1) in Definition 10.

60

• Pnegnegative = Pnegrules ∪ Pnegliterals has two disjoint parts as follows:

– Pnegrules: For each positive intensional literal `, let r1, . . . , rk ∈ R be all
the rules that have ` in their heads. For each such rule ri of the form
p(X)← p1(X1) ∧ · · · ∧ pn(Xn), Pnegrules has n rules of the form

achievedisable ri(X)← achieve¬pj(Xj). (P16)

where ri is a new predicate. These rules say that, to disable rule ri we
need to achieve the negation of one of ri’s body literals.

– Pnegliterals: for each intensional predicate p ∈ Pint, Pnegliterals has a rule of
the form:

achieve¬p(X)← ‖ni=1achievedisable ri(X). (P17)

where {r1, . . . , rn} ⊆ R are all the rules that have p(X) in their
heads. This rule says that, to achieve a negative intensional literal
¬p(X), all of the rules that can possibly make p(X) true must be dis-
abled. 2

To construct a plan, we extract a pivoting sequence of actions with respect to
STRIPSneg, as before, and show that this sequence of actions is a solution plan. The
following lemma shows that Lemma 4 is still valid under STRIPSneg. Similarly to
Section 3.1, we assume till the end of this section that Π = 〈R,A, G,D0〉 is a
STRIPS planning problem, P(Π) is the set of planning rules in Definition 10, and
Pneg(Π) is the set of planning rules from Definition 16.

Lemma 17 (Execution of transactions of the form pα in STRIPSneg). Let seq0, . . . ,
seqm be a derivation of Pneg(Π),D0 . . .Dm ` achieveG, and α1, . . . , αn (resp.,
Di1 , . . . ,Din) be a pivoting sequence of actions (resp., states). Then:

• D0 = Di1

• Pneg(Π),Dir . . .Dir+1 ` pαr , where r = 1, ..., n
(recall that pαr is the T R transaction associated with action αr—see Defi-
nition 9)

• Din+1 = Dm.

Proof. Since none of the rules added to STRIPS by STRIPSneg

(rules (P17) and (P16)) have an elementary update in their bodies, the proof is
identical to that of Lemma 4, where P(Π) is replaced with Pneg(Π).

61

Theorem 8 (Soundness of STRIPSneg). Any pivoting sequence of actions in the
derivation of Pneg(Π),D0 . . .Df ′ ` achieveG is a solution plan.

Proof. Since Lemmas 3 and 4 hold for STRIPSneg, the proof of this theorem is
almost identical to that of Theorem 1.

Definition 17 (Ground-non-recursive set of rules). A set of rules R is said to be
ground-non-recursive if and only if the set ground(R) of ground instances of R
is non-recursive (viewed as propositional rules). In other words, there is a partial
order on the ground literals of ground(R) such that

1. ` < ¬` for any positive literal ` in ground(R); and

2. For every rule `← · · · ∧ `′ ∧ · · · ∈ ground(R), we have `′ < `. 2

It is easy to see that any ground-non-recursive set of rules is locally stratified
[76]. From now on, we deal only with planning problems Π = 〈R,A, G,S〉 where
R is ground-non-recursive. With this assumption, we will be able to show that our
planner for STRIPSneg is not only sound but also complete.

Definition 18 (Negation-eliminated form of rules). The negation-eliminated form
N (R) of a set of rules R is defined as follows:

– For each positive intensional literal `, let r1, . . . , rk ∈ R be the set of all
rules that have ` in the rule heads. Then, for each such `,N (R) has the rule

¬`← ∧ni=1disable ri. (5.3)

where ¬` and disable ri are new positive literals and propositions, respec-
tively.

– For every rule ri ∈ R of the form `← `1 ∧ · · · ∧ `n, ri ∈ N (R) and N (R)
has n rules of the form:

disable ri ← ¬`j. (5.4)

where 1 ≤ j ≤ n. 2

Recall that, by assumption, R does not have negative literals in the rule heads.
However, N (R) reintroduces such rules in (5.3).

62

Lemma 18 (Soundness of negation elimination). Consider a set of rules R and
a set of ground extensional literals Sext. Let ` be a ground positive intensional
literal that appears in the head of some rules in R. Then, the following holds:

• N (R),Sext |= ` if and only if R,Sext |= `.

• N (R),Sext |= ¬` if and only if R,Sext 2 `.

Proof. Consider a total order of ground literals of ground(R) obtained a topo-
logical sort of the partial order of Definition 17. The induction is on the number
of elements in that total order.

For any literal `i, let s(`i) be the index of `i in the aforesaid total order. Sup-
pose ` appears in the head of the ground rule instances R1,...,Rm from R and let
Body(Ri) denote the set of ground literals in the body of Ri. In each part of the
inductive proof, first we show that N (R),Sext |= ` if and only if R,Sext |= `.
Then, we will prove that N (R),Sext |= ¬` if and only if R,Sext 2 `.

Base case: s(`) = 1. By definition of our order, each Body(Ri) contains only
extensional literals. Since, by construction of N (R), {R1, . . . , Rm} ⊆
ground(N (R)) and R1,...,Rm are the only ground rule instances in both R and
N (R) that have ` in the rule heads, then N (R),Sext |= ` if and only if R,Sext |=
`.

By definition of negative intensional literals, R,Sext 2 ` entails that, for
1 ≤ i ≤ m, there must be at least a ground extensional literal b ∈ Body(Ri) such
that ¬b ∈ Sext. If not, R,Sext |= ` as Ri is assumed to be true. Since ¬b ∈ Sext,
by a rule of the form disable Ri ← ¬b, we have N (R),Sext |= disable Ri. But
then, ¬`← ∧ni=1disable Ri implies N (R),Sext |= ¬`.

For the other direction, let N (R),Sext |= ¬`. Note that ¬` occurs only in
the head of the rule ¬` ← ∧ni=1disable Ri in N (R), so then we must have
N (R),Sext |= disable Ri, where i = 1, ...,m. Since s(`) = 1, Body(Ri) con-
tains only extensional literals. By construction of N (R), the rules of the form
disable Ri ← ¬bi are the only rules that have disable Ri in their heads, where
bi ∈ Body(Ri). Thus, there must be an extensional literal bi ∈ Body(Ri) such
that ¬bi ∈ Sext. Otherwise, N (R),Sext 2 disable Ri. Therefore, the bodies of
all Ri’s are false and thus R,Sext 2 `.

Inductive case: s(`) = n + 1 and we assume that, for every ground pos-
itive intensional literal `j such that s(`j) ≤ n, R,Sext |= `j if and only if
N (R),Sext |= `j , and N (R),Sext |= ¬`j if and only if R,Sext 2 `j .

For every b ∈ Body(Ri), where 1 ≤ i ≤ m, by Definition 17, we have
s(b) < s(`) = n + 1. By the inductive assumption, R,Sext |= b if and only if

63

N (R),Sext |= b. Since, by construction ofN (R), {R1, . . . , Rm} ⊆ ground(N (R))
and R1,...,Rm are the only ground rule instances in both R and N (R) that have `
in the rule heads, it follows that N (R),Sext |= ` if and only if R,Sext |= `.

If R,Sext 2 `, then, for 1 ≤ i ≤ m, there must be a literal b ∈ Body(Ri) such
that R,Sext 2 b. If not, R,Sext |= ` as Ri is assumed to be true. By the definition
of the order, s(b) < s(`) = n+1. So, by the inductive assumption, N (R),Sext |=
¬b. Since, by construction of N (R), there is a rule of the form disable Ri ←
¬b, we have N (R),Sext |= disable Ri. Then, ¬` ← ∧ni=1disable Ri entails
N (R),Sext |= ¬`.

For the other direction, consider the rule of the form ¬` ← ∧ni=1disable Ri.
Again, this is the only rule that has¬` in its head. Thus, to have N (R),Sext |= ¬`,
we must have N (R),Sext |= disable Ri for each i = 1, ...m. Since disable Ri

appears only in the heads of the rules of the form disable Ri ← ¬bi, where bi ∈
Body(Ri), to have N (R),Sext |= disable Ri, there must be a literal bi such that
N (R),Sext |= ¬bi. Since bi ∈ Body(Ri), as before, we must have s(b) < s(`) =
n + 1 and, by the inductive assumption, N (R),Sext |= ¬bi entails R,Sext 2 bi.
Since, none of the rules R1,...,Rm entails R,Sext |= `, and thus R,Sext 2 `.
Lemma 19 (Transforming negation eliminated form into planning rules). Given a
planning problem Π = 〈R,A, G,D0〉, let Πneg = 〈N (R),A, G,D0〉 . Let P(Πneg)
and Pneg(Π) be the sets of T R planning rules in Definition 10 and Definition 16,
respectively. Then, P(Πneg) = Pneg(Π).

Proof. An examination of the T R planning rules in Definitions 10 and 16 shows
that P(Π) and Pneg(Π) are identical, except the planning rules obtained from R,
i.e., the rules by (P15), (P16), and (P17). Likewise, besides the rules added to
R by Definition 18, Π and Πneg are identical. Consequently, the planning rules
obtained from R are the only difference between P(Π) and P(Πneg). To prove that
P(Πneg) = Pneg(Π), we just need to show that the T R planning rules obtained
from R in P(Πneg) and Pneg(Π) are identical.

Let h be a positive intensional literal that appears in the head of rules r1, . . . ,
rm ∈ R, where each ri has the form h ← `i1 ∧ · · · ∧ `ini . Corresponding to
each such rule, Definition 18 introduces a rule of the form ¬` ← ∧ni=1disable ri
to N (R), where disable r1, . . . , disable rm are new positive intensional literals.
Therefore, P(Πneg) has a planning rule of the form

achieve¬h ← ‖mi=1achievedisable ri (5.5)

Also, by (5.3), for each rule ri, N (R) has the following rules:

disable ri ← ¬`ij . (5.6)

64

where 1 ≤ j ≤ inj . By construction of P(Πneg), each of these gives rise to to a
planning rule of the form

achievedisable ri ← achieve¬`ij . (5.7)

By (P17), Pneg(Π) has the rule (5.5), and by (P16), it has also the rules (5.7).
Thus, P(Πneg) = Pneg(Π).

Theorem 9 (Completeness of STRIPSneg). Consider a planning problem Π =
〈R,A, G,D0〉, where R is a set of ground-non-recursive rules and let Pneg(Π) be
the set of T R planning rules in Definition (16). If there is a plan to achieve the
goal G from the initial state D0, then, using Pneg(Π), the T R inference system
will find that plan.

Proof. Let σ be a non-redundant plan of Π. We need to show that there is a T R
derivation of Pneg(Π),D0 · · · ` achieveG whose pivoting sequence of actions is
σ. Consider a planning problem Πneg = 〈N (R),A, G,D0〉 and let P(Πneg) be
the set of T R planning rules in Definition 10. Clearly, σ is also a non-redundant
plan of Πneg. Then, by Theorem 2, there is a T R derivation for P(Πneg),D0 · · · `
achieveG whose pivoting sequence of actions is σ. By Lemma 18, in every state
appearing in the T R derivation of P(Πneg),D0 · · · ` achieveG, we can replace
every literal of the form ¬` with ¬`, where ` is a positive intensional literal.
By Lemma 19, we also have P(Πneg) = Pneg(Π). Thus, if we replace P(Πneg)
in the derivation of P(Πneg),D0 · · · ` achieveG, we will get a derivation for
Pneg(Π),D0 · · · ` achieveG with the same pivoting sequence of actions.

65

Chapter 6

The T R∗GraphPlan Planner

In this chapter, we encode the GraphPlan planning algorithm [16]—one of the
leading neoclassical planners—as a set of T R planning rules. Since GraphPlan
algorithm uses a planning graph to guide its search mechanism, we will first ex-
plain the planning graph. Then, we explain T R∗GraphPlan planning algorithm,
which is the representation of the well-known GraphPlan planning algorithm [16]
in T R. Since, in the original GraphPlan, all predicates were extensional, we also
disallow the intensional atoms and rules in the specifications of planning prob-
lems. Extending T R∗GraphPlan with rules is a subject for future work. Thus,
from now on, in every planning problem Π = 〈R,A, G,S〉, the set of planning
rules R will be replaced with ∅.

Similar to GraphPlan, T R∗GraphPlan is a two-step planning algorithm whose
main contribution is using compact reachability graph to reduce the search space.
In the first step, GraphPlan builds a graph, called the planning graph which re-
flects the relationship between possible actions in different steps of a solution plan.
The graph is of polynomial size and can be built in polynomial time in the size of
the input. Since building such graphs is fairly straightforward in logic program-
ming, we omit this step in order to avoid distraction.

To simplify the development of planning graph, for every literal `, GraphPlan
introduces a neutral action no op` = 〈no op`, {`}, {`}〉, called no-op of ` and
assumes that no op` ∈ A for every literal `. The construction of planning graph
relies on the existence of these no-op actions.

Definition 19 (Planning graph). Given a planning problem Π = 〈∅,A, G,S〉 (see
Definition 4), a planning graph for Π expanded to level i, denoted G(Π, i), is an
undirected graph whose nodes are literals, labeled with 0, 1, 2, ..., i, and actions,

66

labeled with 1, 2, ..., i. Let Lj denote the set of all of the literals labeled with j,
where 0 ≤ j ≤ i, and Ak be the set of all of the actions labeled with k, where 1 ≤
k ≤ i. Then, G(Π, i) forms a sequence of levels of nodes 〈L0, A1, L1 . . . , Ai, Li〉,
where L0 = S and, for every 1 ≤ j ≤ i, Lj and Aj are constructed as follows:

• For every α ∈ A, if Preα ⊆ Lj−1, then α ∈ Aj , represented by a fact of
the form gact(α, j). Moreover, there is a precondition edge between ` ∈
Lj−1 and α ∈ Aj , represented by a fact of the form gpre(`, α, j), if and
only if ` ∈ Preα.

• Lj =
⋃
α∈Aj

Eα, where Eα denotes the effects of α. Every node ` ∈ Lj is

represented by a fact of the form glit(α, j). In addition, there is an effect
edge between α ∈ Aj and ` ∈ Lj , represented by a fact of the form
geff (α, `, j), if and only if ` ∈ Eα. Observe that Lj−1 ⊆ Lj because Aj
also contains no-op actions.

• Every level also contains mutex edges that are constructed as follows:

– For every α, β ∈ Aj , Aj contains a mutex edge between α and β,
represented by the fact of the form gmut(α, β, j), if one of the following
conditions holds:

∗ ` ∈ Preα and ¬` ∈ Eβ , for some `;
∗ ` ∈ Preβ and ¬` ∈ Eα, for some `;
∗ ` ∈ Eα and ¬` ∈ Eβ , for some `;
∗ `1 ∈ Preα, `2 ∈ Preβ and gmut(`1, `2, j − 1), for some `1, `2.

– For every `1, `2 ∈ Lj , Lj also has a mutex edge between `1 and `2,
represented by the fact of the form gmut(`1, `2, j), if any of the follow-
ing holds:

∗ `1 = ¬`2;
∗ For every pair of actions α, β ∈ Aj it is the case that: `1 ∈ Eα

and `2 ∈ Eβ , the fact gmut(α, β, j) holds, and there is no γ ∈ Aj
such that {`1, `2} ⊆ Eγ . Both, α and β can be no-op actions.
Without no-op actions, the above condition would have produced
false mutexes, pairs of literals that should not be considered mu-
texes.

2

67

Given a planning problem, GraphPlan finds a sequence of sets of actions as
a solution plan. For example, it might output 〈σ1, σ2, σ3〉, where σ1 = {α1, α2},
σ2 = {α3, α4}, and σ3 = {α5, α6, α7}. Such sequence represents sequences start-
ing with α1 and α2 in any order, followed by α3 and α4 in any order, followed
by α5, α6, and α7 in any order. To extract such a sequence of sets out of the
planning graph in Definition 19, GraphPlan proposes the concept of independent
sets of actions. For instance, α3 and α4 are independent actions as they can ap-
pear in any order after α1 and α2 in the above solution plan. Mutex edges in a
planning graph reflect the independence between actions (resp. literals) to guide
GraphPlan’s search procedure and reduce the search space. As shown in [17],
planning graph is finite. The following example illustrates Definition 19.

Example 7 (Planning graph for register exchange). Recall the register exchange
problem of Example 3 in Chapter 3. Consider a subset of that problem where
there are two memory registers, x and y, with initial contents a and b, respec-
tively. Let the extensional predicate v(Reg, V al) represent the content of a reg-
ister and suppose the only available action is cp = 〈cp(S,D, V), {v(S, V)},
{¬v(D, V ′), v(D, V)}〉, which copies the value V of the source register, S, to the
destination register D. The planning graph for this problem has seven levels. The
first three levels of the graph have been shown in Figure 6.1 while the subsequent
levels are too big to be included in this dissertation. 2

The GraphPlan’s search procedure looks for a solution plan in a planning
graph by proceeding back from some level Li that includes all goal-literals and
the goal is mutex-free, i.e.,

G ⊆ Li and for every pair g1, g2 ∈ G, gmut(g1, g2, i) /∈ Li (6.1)

The search procedure then looks for a set σi ⊆ Ai of nonmutex actions that
achieve literals of G. The preconditions of the actions in σi thus become the new
goal for level i − 1 and so on. In fact, at each level j, the search procedure looks
for a set of independent actions from Aj that achieve a set of nonmutex to-be-
achieved literals in level j. Failure to achieve the currently active goal at some
level j causes backtracking and selection of other subsets of Aj+1. If level 0 is
successfully reached, then the corresponding sequence 〈σ1, . . . , σi〉 is a solution
plan [72].

Next, we introduce a set of T R rules, T R∗GraphPlan, that simulate the search
mechanism of GraphPlan. At each level, to track the literals that are expected to
be achieved, we introduce a built-in extensional predicate of the form achieve`(j),
which indicates that ` ∈ Lj is expected to be achieved by T R∗GraphPlan.

68

Figure 6.1: The first three levels of planning graph of Example 7.

69

Definition 20 (T R∗GraphPlan rules). Given a planning problem Π = 〈∅,A, G,S〉
(see Definition 4), let G(Π, i) be a planning graph of Π (see Definition 19). We de-
fine a set of T R rules, Pg(Π), which provides a solution to Π. Pg(Π) has three
parts, PgM , PgA, and PgG described below.

• The PgM part contains the following rules:

plan(0)← .
plan(I)← choose act(I) ⊗ naf incomplete(I) ⊗ plan(I − 1).
plan(I)← choose act(I) ⊗ incomplete(I) ⊗ plan(I).

(P18)
These rules construct a sequence of sets of independent actions based on

the provided planning graph.

• The PgA = Pgincomplete ∪ Pgchoose has two disjoint parts as follows:

– Pgincomplete: for every literal `, Pgincomplete has a rule of the form

incomplete(I)← achieve`(I). (P19)

This rule says that T R∗GraphPlan has not completed planning at
level I because there is an `, that is yet-to-be-achieved at level I .

– Pgchoose has a rule of the form

choose act(I)← achieve`(I) ⊗ geff (α, `, I) ⊗
naf (chosen(β, I) ∧ gmut(α, β, I)) ⊗
(⊗e∈Eα − achievee(I)) ⊗
(⊗p∈Preα + achievep(I − 1)) ⊗
+chosen(α, I).

(P20)
This rule is a natural verbalization of the mechanism of choosing

actions in GraphPlan algorithm [17]. This rule says that if there is
a yet-to-be-achieved literal ` in level I , T R∗GraphPlan chooses the
action α from the I-th level of the planning graph such that ` ∈ Eα
and α is not conflicting with any other previously chosen action. Then,
it removes all of the to-be-achieved literals in level I that appear in
Eα and adds Preα to the to-be-achieved literals in level I−1. Finally,
it marks α as a chosen action in the I-th level.

• PgG = Pgstart ∪ Pgsearch has two disjoint parts as follows:

70

– Pgstart is a rule of the form

start level(I)← (∧g∈G glit(g, I)) ∧
(∧g1,g2∈G ¬gmut(g1, g2, I)).

(P21)

This rule checks if the I-th level of a planning graph can be considered
as the starting point for planning (cf. the earlier condition (6.1) of
GraphPlan).

– Pgsearch is a rule of the form

graphP lanG ← start level(I) ⊗
(⊗g∈G + achieveg(I)) ⊗ plan(I).

(P22)

This rule starts the backward search for a plan from the I-th level of
the planning graph.

2

Given a set A of STRIPS actions, an initial state S, and a goal G, Definition 19
gives a set of facts that specify a planning graph for that problem. Using that
planning graph and the goal G, Definition 20 produces a set of T R rules that
specify GraphPlan planning strategy for that planning problem. To find a solution
for that problem, one simply needs to place the request

?− graphP lanG . (6.2)

at the state formed by the set of facts of the planning graph and use the T R’s
inference system of Section 2.3.

As mentioned before, GraphPlan outputs a sequence of sets of independent
actions that can be used to produce a solution plan for the given planning prob-
lem. Such a sequence can be extracted by picking out the atoms of the form
chosen(α, j), where 1 ≤ j ≤ i, from a successful derivation branch generated
by the T R inference system.

Suppose seq0, . . . , seqm is a deduction by the T R inference system. Let D0

and Dn be the first and last states of that derivation, respectively. Then, Dn con-
tains literals of the form chosen(α, j), where 1 ≤ j ≤ i and start level(i) ∈ D0.
For 1 ≤ j ≤ i, let σj = {α | chosen(α, j) ∈ Dn}. We will call 〈σ1, . . . , σi〉
the pivoting sequence of sets of independent actions. It can be shown using the
techniques of previous sections that the pivoting sequence of sets of independent
actions is a solution produced GraphPlan. Since GraphPlan is sound [17], this
means that T R∗GraphPlan is also sound. We believe that T R∗GraphPlan is also
complete but proving this is a future work.

71

Chapter 7

Experiments

In this chapter we report on our experiments that compare STRIPS, fSTRIPS,
STRIPSR, and STRIPSneg. The test environment was a T R interpreter [33] im-
plemented in XSB and running on Intel R©Xeon(R) CPU E5-1650 0 @ 3.20GHz
12 CPU and 64GB memory running under 64-bit Mint Linux 14.

All test cases are taken from [12] and represent so called state modifying
access control policies. A typical use of such a policy is to determine if a par-
ticular access request (say, to play digital contents) should be granted. The first
test case, a Movie Store, is shown in Example 8. The second test case, a Health
Care Authorization example, is too large to be included here and can be found at
http://ewl.cewit.stonybrook.edu/planning/ along with the first test case and all the
necessary items needed to reproduce the results.

Example 8 (State Modifying Policy for a Movie Store). The following represents
a policy that regulates how users buy movies online, try them, and sell them, if not
satisfied.

buy(X,M) ← ¬bought(,M)⊗+bought(X,M)
play1(X,M) ← bought(X,M)⊗ ¬played1(X,M)⊗+played1(X,M)
keep(X,M) ← bought(X,M)⊗ ¬played1(X,M)⊗+played1(X,M)

⊗+ happy(X,M)
play2(X,M) ← played1(X,M)⊗ ¬played2(X,M)⊗+played2(X,M)
play3(X,M) ← played2(X,M)⊗ ¬played3(X,M)⊗+played3(X,M)
sell(X,M) ← played1(X,M)⊗ ¬played3(X,M)⊗ ¬happy(X,M)

⊗+ sold(X,M)⊗−bought(X,M)
(7.1)

72

Size of STRIPS fSTRIPS
goal CPU Mem. CPU Mem.

6 0.0160 1095 0.0080 503
9 0.2760 14936 0.1360 6713
12 9.4120 409293 5.8840 184726

Table 7.1: Results of different goal sizes (number of literals in the goals) for the
movie store case. The initial state is fixed and has 6 extensional atoms.

Size of STRIPS fSTRIPS
goal CPU Mem. CPU Mem.

3 10.0240 246520 0.0400 2011
4 32.9540 774824 0.2040 8647
5 46.1380 1060321 0.3080 13622

Table 7.2: Results of different goal sizes (number of literals in the goals) for the
health-care case. The initial state is fixed and has 6 extensional atoms.

The first rule describes an action of a user, X , buying a movie, M . The action
is possible only if the movie has not already been purchased by somebody. The
second rule says that, to play a movie for the first time, the user must buy it first
and not have played it before. The third rule deals with the case when the user is
happy and decides to keep the movie. The remaining rules are self-explanatory. 2

A reachability query in a state modifying policy is a specification of a target
state (usually an undesirable state), and the administrator typically wants to check
if such a state is reachable by a sequence of actions. The target state specification
consists of a set of literals, and the reachability query is naturally expressed as a
planning problem. For instance, in Example 8, the second rule can be seen as a
STRIPS action whose precondition is {bought(X,M) ⊗ ¬played1(X,M)} and
the effect is {+played1(X,M)}. The initial and the target states in this example
are sets of facts that describe the movies that have been bought, sold, and played
by various customers.

The main difference between the two test cases is that the Health Care exam-
ple has many actions and intensional rules, while the movie store case has only six
actions and no intensional predicates. As seen from Tables 7.1, 7.2, 7.3, and 7.4,
for the relatively simple Movie Store example, fSTRIPS is about twice more ef-

73

initial STRIPS fSTRIPS
state CPU Mem. CPU Mem.
20 9.2560 409293 5.8800 184726
30 9.2600 409293 5.7440 184726
40 9.2520 409293 5.8000 184726
50 9.4120 409293 5.8840 184726
60 9.3720 409293 5.8240 184726

Table 7.3: Results of different sizes (number of facts) in initial states for the movie
store case. The planning goal is fixed: 6 extensional literals in the ”movie store”
case and 3 extensional literals in the ”health care” case.

initial STRIPS fSTRIPS
state CPU Mem. CPU Mem.

3 0.148 5875 0.012 718
6 10.076 246519 0.04 2011
9 689.3750 9791808 0.124 5443
12 >1000 N/A 0.348 14832
18 >1000 N/A 0.94 38810

Table 7.4: Results of different sizes (number of facts) in initial states for the health
care case. The planning goal is fixed: 6 extensional literals in the ”movie store”
case and 3 extensional literals in the ”health care” case.

ficient both in time and space.1 However, in the more complex Health Care ex-
ample, fSTRIPS beats STRIPS by more than two orders of magnitude—both time-
wise and space-wise. While in the Movie Store example the statistics for the two
strategies seem to grow at the same rate, in the Health Care case, the fSTRIPS time
seems to grow at slower rate.

The main goal of the second set of experiments is to demonstrate the bene-
fits of regression analysis in STRIPS planning. In describing the results, we use
tables that compare two different implementations of fSTRIPS: with and without
regression analysis. The improvement in the Movie Store example is not that pro-
nounced, so we do not consider that example here. As shown in Tables 7.5 and 7.6,
in the more complex Health Care example, fSTRIPS with regression analysis can
be two orders of magnitude better both time-and space-wise. Table 7.5 indicates

1Time is measured in seconds and memory in kilobytes.

74

w/o regression with regression
Size of goal CPU Mem. CPU Mem.

3 1.036 42250 0.16 5098
6 22.037 797019 3.324 116513
9 329.72 10755859 54.899 1862270
12 >5000 N/A 809.986 25003988

Table 7.5: Results of different goal sizes (number of literals in the goals) to show
the effect of regression analysis. The initial state is fixed and has 15 extensional
atoms.

w/o regression with regression
Size of init. state CPU Mem. CPU Mem.

6 0.83 38000 0.984 35438
9 2.504 108664 1.668 56492

12 7.556 301403 2.376 80442
15 21.673 797009 3.36 116514
18 61.451 2056640 4.384 150446
21 172.97 5313468 5.576 188573
24 489.582 14047510 6.964 239397
27 >1000 N/A 8.676 314697
30 >1000 N/A 10.228 367817

Table 7.6: Results of different sizes (number of facts) in initial states. The planning
goal is fixed: 6 extensional literals.

that both implementations seem to show growth at the same rate, but regression
analysis still speeds up fSTRIPS by an order of magnitude. Table 7.6 shows an
even stronger effect of regression analysis—again both in time and space. Exam-
ple 6 in Section 4.2 explains how regression analysis accrues such an improve-
ment. First, regression avoids un-achieving already achieved goals during plan-
ning. Second, it causes fewer backtracking and selects more promising actions
at each step. Note that, for planning problems where the chance of un-achieving
already achieved goals is small (e.g., when the initial state is small), regression
analysis may cause some overhead and slow down the planning process. The over-
all conclusion from these experiments is that regression analysis incur relatively
small overheads for small problems, but brings substantial savings for larger prob-
lems and makes them scale better.

75

Number of Blocks fSTRIPS STRIPSneg

CPU Mem CPU Mem
3 0.02 2442 0.004 462
4 0.512 35800 0.028 2324
5 65.264 1396968 0.164 15463
6 > 1000 N/A 1.488 173038
7 > 1000 N/A 27.405 3525475

Table 7.7: Results for the Blocks World test case.

The other difference between the two test cases is that the Health Care ex-
ample has intensional rules, while the Movie Store case does not. Although the
intensional rules in the Health Care example makes it a potential benchmark for
our STRIPSneg planning algorithm, we use Blocks World test case [4], a simpler
example, to compare our STRIPSneg and fSTRIPS planning algorithms.

The next test case compares STRIPSneg and fSTRIPS using the well-known
Blocks World example [4]. We choose Blocks World example for comparison
of STRIPSneg and fSTRIPS because the simplicity of Blocks World test case al-
lows us to illustrate the impact of adding negative derived literals on the per-
formance of planning algorithms. We modified this example so that some exten-
sional literals become intensional, which allows us to reduce the size of spec-
ification. Namely, we replaced the extensional literal handempty with the rule
handempty ← ¬holding(V) and also changed the extensional literal clear(X)
to a literal defined with the following rule:

clear(X)← ¬holding(X)⊗ ¬on(Y,X).

As shown in Table 7.7, in the Blocks World example, using two intensional
literals and STRIPSneg can be two orders of magnitude faster than fSTRIPS with-
out any intensional literals. The reason is that, replacing extensional atoms with
intensional ones reduces not only the size of the problem but also the need to per-
form elementary update operations on predicates that used to be extensional and
now are intensional. As a consequence, the state search space is also reduced.

76

Chapter 8

Discussion

In this chapter, first we briefly compare our technique with some of the recent logic
based planning frameworks. Then, we draw a brief conclusion for the dissertation.

8.1 Related Works
Although several deductive planners have been developed over the last four decades,
only few of them are still being developed and attracting attention of the planning
community. This section briefly overviews those developing deductive planners to
help the reader position our contribution in a proper spot in this area.

Answer set programming is one of the leading logic-based planning tech-
niques [66][37]. The encoding of planning domains in answer set programs re-
sembles the representation of planning domains in situation calculus [35, 36].
Although answer set programming has been shown to be able to compete with
leading non-deductive planners, its encoding is not flexible enough for represent-
ing domain-independent heuristics provided by the AI planning community. In
contrast, as shown in Chapters 3, 4, and 5, T R-based planning is not only flexible
enough to represent complex planning algorithms, but also expressive enough to
facilitate developing novel planning heuristics. A number of search heuristics are
embedded in answer set programming systems, which is largely responsible for
the competitiveness of this approach. However, answer set programming is not
flexible enough to be able to encode the different planning strategies developed
by the mainstream in the planning field. This makes this technique less scalable
and is partly responsible for the skepticism with which it is met by that main-
stream. Also, unlike our T R-based planning, it is unclear how to use answer set

77

programming as an experimentation and prototyping framework.
Planning with satisfiability, called SATPlan, is another dominating approach

among existing deductive planning techniques [59][60][61][58][44][30]. The main
idea in SATPlan is to formulate a planning problem as a propositional satisfiabil-
ity problem, i.e. as the problem of determining whether a propositional formula
is satisfiable. Recent improvements in the performance of general purpose algo-
rithms for propositional satisfiability enables SATPlan to solve relatively large
planning problems. In fact, the ability to exploit the efforts and the results in
a very active field of research in computer science is one of the main advan-
tages of SATPlan. Despite such advantage, SATPlan has the same limitation as
answer set programming. Namely, although there have been works to encode
domain-dependent knowledge and heuristics [62][63], SATPlan still cannot repre-
sent domain-independent heuristics, which is the key advantage of our approach.
Likewise, unlike our T R-based planning formalism, SATPlan cannot be used as
a tool for analyzing, testing, and prototyping of planning algorithms and domain-
independent heuristics. The same limitations apply to planning techniques based
on Constraint Satisfaction Problem (CSP) [84][83][31][54].

Picat is another logic programming framework that relies on forward state
space search planning technique. Due to its novel tabling technique, Picat has
been shown to be an efficient logic-based system for solving planning problems
[7][88][6][87]. Picat’s planner tables every state encountered during search to
avoid repeating the exploration of the same state. It applies various optimizations,
like hash-consing and non-tabled arguments, to avoid certain overheads associated
with tabling [89]. The techniques employed by Picat are orthogonal to the results
presented here and, we believe, this work provides a natural direction for incor-
poration of complex planning strategies, like STRIPS and STRIPSR, into Picat. In
addition, Picat utilizes tabled states to perform efficient resource-bounded search,
which is also used to generate optimal plans. In this dissertation, we did not focus
on resource-bounded and optimal planning. However, it is not too difficult to en-
hance our T R-based planning techniques to enable it to solve resource-bounded
and optimal planning problems.

8.2 Conclusion
This dissertation has demonstrated that the use of Transaction Logic accrues sig-
nificant benefits in the area of planning, especially in showing the way for various
generalizations, analyses, and optimization of planning strategies. It also provides

78

a bridge between traditional mainstream planning and logic based planning.
We have shown that sophisticated planning strategies, such as STRIPS and

GraphPlan, can not only be naturally represented in T R, but also such represen-
tations can yield several benefits. For instance, a T R representation of the STRIPS
planning algorithm can be used to design the non-linear version of STRIPS, which
turns out to be complete. We have also shown that the use of this powerful logic
opens up new possibilities for generalizations and devising new, more efficient al-
gorithms. As an example, we have shown that once the STRIPS algorithm is cast
as a set of rules in T R, the framework can be extended, almost for free, to support
such advanced aspects as action ramification and negation.

By tweaking these rules just slightly, we obtained a new, much more efficient
planner, which we dubbed fSTRIPS (fast STRIPS), which is also proven to be com-
plete. In addition, we described a non-linear version of regression-based STRIPS,
which we called STRIPSR. This planner generalizes and improves upon RSTRIPS,
the original regression-based off-shot of STRIPS. Again, unlike the original, our
version is provably complete. Moreover, we extended the STRIPS planning strat-
egy with negative intentional literals, which allows us to talk about negative ram-
ifications of actions. Finally, we have also demonstrated the power of our tech-
nique by applying it to GraphPlan, which is significantly different from STRIPS.
We also conjecture that T R representation of GraphPlan can also be extended
with ramification and negation.

These non-trivial insights were acquired merely due to the use of T R and not
much else. The same technique can be used to cast even more advanced strategies
such as ABSTRIPS [73], and HTN [72] as T R rules, and the aforesaid optimiza-
tions and enhancements would still be applicable.

There are several promising directions to continue this work. One is to in-
vestigate other planning strategies and, hopefully, accrue similar benefits. Other
possible directions include heuristics, plans with loops [56, 55, 82], planning with
preferences [25, 5], plan failure analysis [53, 57], and assumption based planning
[27, 1].

79

Bibliography

[1] Albore, A., Bertoli, P.: Generating safe assumption-based plans for partially
observable, nondeterministic domains. In: McGuinness, D.L., Ferguson, G.
(eds.) Proceedings of the Nineteenth National Conference on Artificial In-
telligence, Sixteenth Conference on Innovative Applications of Artificial In-
telligence, July 25-29, 2004, San Jose, California, USA. pp. 495–500. AAAI
Press / The MIT Press (2004)

[2] Alcázar, V., Borrajo, D., Fernández, S., Fuentetaja, R.: Revisiting regression
in planning. In: Rossi, F. (ed.) IJCAI 2013, Proceedings of the 23rd Inter-
national Joint Conference on Artificial Intelligence, Beijing, China, August
3-9, 2013. IJCAI/AAAI (2013)

[3] Alferes, J.J., Pereira, L.M., Przymusinski, T.C.: Strong and explicit nega-
tion in non-monotonic reasoning and logic programming. In: Proceedings of
the European Workshop on Logics in Artificial Intelligence. pp. 143–163.
JELIA ’96, Springer-Verlag, London, UK, UK (1996)

[4] Bacchus, F.: AIPS-00 planning competition (May 2000)

[5] Baier, J.A., McIlraith, S.A.: Planning with preferences. AI Magazine 29(4),
25–36 (2008)

[6] Barták, R., Zhou, N.: On modeling planning problems: Experience from the
petrobras challenge. In: Espinoza, F.C., Gelbukh, A.F., González-Mendoza,
M. (eds.) Advances in Soft Computing and Its Applications - 12th Mexican
International Conference on Artificial Intelligence, MICAI 2013, Mexico
City, Mexico, November 24-30, 2013, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 8266, pp. 466–477. Springer (2013)

[7] Barták, R., Zhou, N.: Using tabled logic programming to solve the petrobras
planning problem. TPLP 14(4-5), 697–710 (2014)

80

[8] Basseda, R.: Doctoral consortium extended abstract: Planning with concur-
rent transaction logic. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.)
Logic Programming and Nonmonotonic Reasoning - 13th International Con-
ference, LPNMR 2015, Lexington, KY, USA, September 27-30, 2015. Pro-
ceedings. Lecture Notes in Computer Science, vol. 9345, pp. 545–551.
Springer (2015)

[9] Basseda, R., Kifer, M.: Planning with regression analysis in transaction
logic. In: ten Cate, B., Mileo, A. (eds.) Web Reasoning and Rule Systems -
9th International Conference, RR 2015, Berlin, Germany, August 4-5, 2015.
Proceedings. Lecture Notes in Computer Science, vol. 8741, pp. 29–44.
Springer (2015)

[10] Basseda, R., Kifer, M.: State space planning using transaction logic. In:
Pontelli, E., Son, T.C. (eds.) Practical Aspects of Declarative Languages -
17th International Symposium, PADL 2015, Portland, OR, USA, June 18-
19, 2015. Proceedings. Lecture Notes in Computer Science, vol. 9131, pp.
17–33. Springer (2015)

[11] Basseda, R., Kifer, M., Bonner, A.J.: Planning with transaction logic. In:
Kontchakov, R., Mugnier, M. (eds.) Web Reasoning and Rule Systems -
8th International Conference, RR 2014, Athens, Greece, September 15-17,
2014. Proceedings. Lecture Notes in Computer Science, vol. 8741, pp. 29–
44. Springer (2014)

[12] Becker, M.Y., Nanz, S.: A logic for state-modifying authorization policies.
ACM Trans. Inf. Syst. Secur. 13(3), 20:1–20:28 (Jul 2010)

[13] Bibel, W.: A deductive solution for plan generation. New Generation Com-
puting 4(2), 115–132 (1986)

[14] Bibel, W.: A deductive solution for plan generation. In: Schmidt, J.W.,
Thanos, C. (eds.) Foundations of Knowledge Base Management, pp. 453–
473. Topics in Information Systems, Springer Berlin Heidelberg (1989)

[15] Bibel, W., del Cerro, L.F., Fronhfer, B., Herzig, A.: Plan generation by linear
proofs: On semantics. In: Metzing, D. (ed.) GWAI-89 13th German Work-
shop on Artificial Intelligence, Informatik-Fachberichte, vol. 216, pp. 49–62.
Springer Berlin Heidelberg (1989)

81

[16] Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Ar-
tificial Intelligence 90(12), 281 – 300 (1997)

[17] Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Ar-
tif. Intell. 90(1-2), 281–300 (Feb 1997)

[18] Bonet, B., Geffner, H.: Planning as heuristic search: New results. In: Biundo,
S., Fox, M. (eds.) Recent Advances in AI Planning, Lecture Notes in Com-
puter Science, vol. 1809, pp. 360–372. Springer Berlin Heidelberg (2000)

[19] Bonner, A., Kifer, M.: Transaction logic programming. In: Int’l Conference
on Logic Programming. pp. 257–282. MIT Press, Budapest, Hungary (June
1993)

[20] Bonner, A., Kifer, M.: Applications of transaction logic to knowledge rep-
resentation. In: Proceedings of the International Conference on Tempo-
ral Logic. pp. 67–81. No. 827 in Lecture Notes in Artificial Inteligence,
Springer-Verlag, Bonn, Germany (July 1994)

[21] Bonner, A., Kifer, M.: Transaction logic programming (or a logic of
declarative and procedural knowledge). Tech. Rep. CSRI-323, Univer-
sity of Toronto (November 1995), http://www.cs.toronto.edu/
˜bonner/transaction-logic.html

[22] Bonner, A., Kifer, M.: Concurrency and communication in transaction logic.
In: Joint Int’l Conference and Symposium on Logic Programming. pp. 142–
156. MIT Press, Bonn, Germany (September 1996)

[23] Bonner, A., Kifer, M.: A logic for programming database transactions. In:
Chomicki, J., Saake, G. (eds.) Logics for Databases and Information Sys-
tems, chap. 5, pp. 117–166. Kluwer Academic Publishers (March 1998)

[24] Bonner, A.J., Kifer, M.: An overview of transaction logic. Theoretical Com-
puter Science 133 (1994)

[25] Brafman, R.I., Chernyavsky, Y.: Planning with goal preferences and con-
straints. In: Biundo, S., Myers, K.L., Rajan, K. (eds.) Proceedings of the
Fifteenth International Conference on Automated Planning and Scheduling
(ICAPS 2005), June 5-10 2005, Monterey, California, USA. pp. 182–191.
AAAI (2005)

82

[26] Cresswell, S., Smaill, A., Richardson, J.: Deductive synthesis of recursive
plans in linear logic. In: Biundo, S., Fox, M. (eds.) Recent Advances in
AI Planning, Lecture Notes in Computer Science, vol. 1809, pp. 252–264.
Springer Berlin Heidelberg (2000)

[27] Davis-Mendelow, S., Baier, J.A., McIlraith, S.A.: Assumption-based plan-
ning: Generating plans and explanations under incomplete knowledge. In:
desJardins, M., Littman, M.L. (eds.) Proceedings of the Twenty-Seventh
AAAI Conference on Artificial Intelligence, July 14-18, 2013, Bellevue,
Washington, USA. AAAI Press (2013)

[28] Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming
approach to knowledge-state planning, ii: The {DLVK} system. Artificial
Intelligence 144(12), 157 – 211 (2003)

[29] Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming
approach to knowledge-state planning: Semantics and complexity. ACM
Trans. Comput. Log. 5(2), 206–263 (2004)

[30] Ernst, M.D., Millstein, T.D., Weld, D.S.: Automatic sat-compilation of plan-
ning problems. In: Proceedings of the Fifteenth International Joint Confer-
ence on Artifical Intelligence - Volume 2. pp. 1169–1176. IJCAI’97, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (1997)

[31] Erol, K., Hendler, J.A., Nau, D.S.: UMCP: A sound and complete procedure
for hierarchical task-network planning. In: Hammond, K.J. (ed.) Proceedings
of the Second International Conference on Artificial Intelligence Planning
Systems, University of Chicago, Chicago, Illinois, USA, June 13-15, 1994.
pp. 249–254. AAAI (1994)

[32] Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence 2(34), 189 – 208
(1971)

[33] Fodor, P., Kifer, M.: Tabling for transaction logic. In: Proceedings of the
12th International ACM SIGPLAN Symposium on Principles and Practice
of Declarative Programming. pp. 199–208. PPDP ’10, ACM, New York, NY,
USA (2010)

[34] Fox, M., Long, D.: Pddl2.1: An extension to pddl for expressing temporal
planning domains. J. Artif. Int. Res. 20(1), 61–124 (Dec 2003)

83

[35] Gebser, M., Kaminski, R., Knecht, M., Schaub, T.: plasp: A prototype for
PDDL-based planning in ASP. In: Delgrande, J., Faber, W. (eds.) Proceed-
ings of the Eleventh International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’11). Lecture Notes in Artificial Intelli-
gence, vol. 6645, pp. 358–363. Springer-Verlag (2011)

[36] Gebser, M., Kaminski, R., Knecht, M., Schaub, T.: plasp: A prototype for
pddl-based planning in ASP. In: Delgrande, J.P., Faber, W. (eds.) Logic Pro-
gramming and Nonmonotonic Reasoning - 11th International Conference,
LPNMR 2011, Vancouver, Canada, May 16-19, 2011. Proceedings. Lecture
Notes in Computer Science, vol. 6645, pp. 358–363. Springer (2011)

[37] Gebser, M., Kaufmann, R., Schaub, T.: Correct reasoning. chap. Gearing Up
for Effective ASP Planning, pp. 296–310. Springer-Verlag, Berlin, Heidel-
berg (2012)

[38] Geffner, H.: Pddl 2.1: Representation vs. computation. J. Artif. Int. Res.
20(1), 139–144 (Dec 2003)

[39] Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunc-
tive databases. New Generation Computing 9(3-4), 365–385 (1991)

[40] Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. Artif. Intell.
2, 193–210 (1998)

[41] Gerevini, A., Haslum, P., Long, D., Saetti, A., Dimopoulos, Y.: Deterministic
planning in the fifth international planning competition: PDDL3 and experi-
mental evaluation of the planners. Artif. Intell. 173(5-6), 619–668 (2009)

[42] Ghallab, M., Isi, C.K., Penberthy, S., Smith, D.E., Sun, Y., Weld, D.:
PDDL - The Planning Domain Definition Language. Tech. rep., CVC TR-
98-003/DCS TR-1165, Yale Center for Computational Vision and Control
(1998)

[43] Giunchiglia, E., Lifschitz, V.: Dependent fluents. In: Proceedings of Inter-
national Joint Conference on Artificial Intelligence (IJCAI). pp. 1964–1969
(1995)

[44] Giunchiglia, E., Massarotto, A., Sebastiani, R.: Act, and the rest will follow:
Exploiting determinism in planning as satisfiability. In: Proceedings of the
Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative

84

Applications of Artificial Intelligence. pp. 948–953. AAAI ’98/IAAI ’98,
American Association for Artificial Intelligence, Menlo Park, CA, USA
(1998)

[45] Givan, R., Dean, T.L.: Model minimization, regression, and propositional
STRIPS planning. In: Proceedings of the Fifteenth International Joint Con-
ference on Artificial Intelligence, IJCAI 97, Nagoya, Japan, August 23-29,
1997, 2 Volumes. pp. 1163–1168. Morgan Kaufmann (1997)

[46] Green, C.: Application of theorem proving to problem solving. In: Proceed-
ings of the 1st International Joint Conference on Artificial Intelligence. pp.
219–239. IJCAI’69, Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA (1969)

[47] Gregory, P., Long, D., Fox, M.: Constraint based planning with compos-
able substate graphs. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI
2010 - 19th European Conference on Artificial Intelligence, Lisbon, Portu-
gal, August 16-20, 2010, Proceedings. Frontiers in Artificial Intelligence and
Applications, vol. 215, pp. 453–458. IOS Press (2010)

[48] Gupta, P., Stoller, S.D., Xu, Z.: Abductive analysis of administrative policies
in rule-based access control. IEEE Trans. Dependable Sec. Comput. 11(5),
412–424 (2014)

[49] Haslum, P.: Improving heuristics through relaxed search: An analysis of tp4
and hspa* in the 2004 planning competition. J. Artif. Int. Res. 25(1), 233–
267 (Feb 2006)

[50] Haslum, P., Bonet, B., Geffner, H.: New admissible heuristics for domain-
independent planning. In: Proceedings of the 20th National Conference on
Artificial Intelligence - Volume 3. pp. 1163–1168. AAAI’05, AAAI Press
(2005)

[51] Hoffmann, J., Porteous, J., Sebastia, L.: Ordered landmarks in planning. J.
Artif. Int. Res. 22(1), 215–278 (Nov 2004)

[52] Hölldobler, S., Schneeberger, J.: A new deductive approach to planning. New
Generation Computing 8(3), 225–244 (1990)

85

[53] Howe, A.E.: Improving the reliability of artificial intelligence planning sys-
tems by analyzing their failure recovery. IEEE Trans. on Knowl. and Data
Eng. 7(1), 14–25 (Feb 1995)

[54] Joslin, D., Pollack, M.E.: Is ”early commitment” in plan generation ever a
good idea? In: Clancey, W.J., Weld, D.S. (eds.) Proceedings of the Thirteenth
National Conference on Artificial Intelligence and Eighth Innovative Appli-
cations of Artificial Intelligence Conference, AAAI 96, IAAI 96, Portland,
Oregon, August 4-8, 1996, Volume 2. pp. 1188–1193. AAAI Press / The
MIT Press (1996)

[55] Kahramanogullari, O.: Towards planning as concurrency. In: Hamza, M.H.
(ed.) Artificial Intelligence and Applications. pp. 387–393. IASTED/ACTA
Press (2005)

[56] Kahramanogullari, O.: On linear logic planning and concurrency. Informa-
tion and Computation 207(11), 1229 – 1258 (2009), special Issue: 2nd Inter-
national Conference on Language and Automata Theory and Applications
(LATA 2008)

[57] Kambhampati, S., Hendler, J.A.: A validation-structure-based theory of plan
modification and reuse. Artif. Intell. 55(2-3), 193–258 (Jun 1992)

[58] Kautz, H., Selman, B.: Planning as satisfiability. In: Proceedings of the 10th
European Conference on Artificial Intelligence. pp. 359–363. ECAI ’92,
John Wiley & Sons, Inc., New York, NY, USA (1992)

[59] Kautz, H.A., McAllester, D.A., Selman, B.: Encoding plans in propositional
logic. In: Aiello, L.C., Doyle, J., Shapiro, S.C. (eds.) Proceedings of the
Fifth International Conference on Principles of Knowledge Representation
and Reasoning (KR’96), Cambridge, Massachusetts, USA, November 5-8,
1996. pp. 374–384. Morgan Kaufmann (1996)

[60] Kautz, H.A., Selman, B.: Planning as satisfiability. In: ECAI. pp. 359–363
(1992)

[61] Kautz, H.A., Selman, B.: Pushing the envelope: Planning, propositional
logic and stochastic search. In: Clancey, W.J., Weld, D.S. (eds.) Proceed-
ings of the Thirteenth National Conference on Artificial Intelligence and
Eighth Innovative Applications of Artificial Intelligence Conference, AAAI

86

96, IAAI 96, Portland, Oregon, August 4-8, 1996, Volume 2. pp. 1194–1201.
AAAI Press / The MIT Press (1996)

[62] Kautz, H.A., Selman, B.: The role of domain-specific knowledge in the plan-
ning as satisfiability framework. In: Simmons, R.G., Veloso, M.M., Smith,
S.F. (eds.) Proceedings of the Fourth International Conference on Artificial
Intelligence Planning Systems, Pittsburgh, Pennsylvania, USA, 1998. pp.
181–189. AAAI (1998)

[63] Kautz, H.A., Selman, B.: Unifying sat-based and graph-based planning. In:
Dean, T. (ed.) Proceedings of the Sixteenth International Joint Conference
on Artificial Intelligence, IJCAI 99, Stockholm, Sweden, July 31 - August
6, 1999. 2 Volumes, 1450 pages. pp. 318–325. Morgan Kaufmann (1999)

[64] Koehler, J., Hoffmann, J.: On reasonable and forced goal orderings and their
use in an agenda-driven planning algorithm. J. Artif. Int. Res. 12(1), 339–
386 (Jun 2000)

[65] Korf, R.E.: Planning as search: A quantitative approach. Artif. Intell. 33(1),
65–88 (1987)

[66] Lifschitz, V.: Answer set programming and plan generation. Artificial In-
telligence 138(12), 39 – 54 (2002), knowledge Representation and Logic
Programming

[67] Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag New
York, Inc., New York, NY, USA (1984)

[68] McAllester, D., Rosenblitt, D.: Systematic nonlinear planning. In: Proceed-
ings of the Ninth National Conference on Artificial Intelligence - Volume 2.
pp. 634–639. AAAI’91, AAAI Press (1991)

[69] McDermott, D.V.: A heuristic estimator for means-ends analysis in planning.
In: Drabble, B. (ed.) Proceedings of the Third International Conference on
Artificial Intelligence Planning Systems, Edinburgh, Scotland, May 29-31,
1996. pp. 142–149. AAAI (1996)

[70] McDermott, D.V.: The 1998 AI planning systems competition. AI Magazine
21(2), 35–55 (2000)

87

[71] McDermott, D.V.: PDDL2.1 - the art of the possible? commentary on fox
and long. J. Artif. Intell. Res. (JAIR) 20, 145–148 (2003)

[72] Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2004)

[73] Nilsson, N.: Principles of Artificial Intelligence. Tioga Publ. Co., Paolo Alto,
CA (1980)

[74] Pednault, E.P.D.: Adl: Exploring the middle ground between strips and the
situation calculus. In: Proceedings of the First International Conference on
Principles of Knowledge Representation and Reasoning. pp. 324–332. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA (1989)

[75] Penberthy, S.J., Weld, D.S.: Ucpop: A sound, complete, partial order planner
for ADL. In: Nebel, B., Rich, C., Swartout, W. (eds.) KR’92. Principles of
Knowledge Representation and Reasoning: Proceedings of the Third Inter-
national Conference, pp. 103–114. Morgan Kaufmann (1992)

[76] Przymusinski, T.C.: Foundations of deductive databases and logic program-
ming. chap. On the Declarative Semantics of Deductive Databases and Logic
Programs, pp. 193–216. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA (1988)

[77] Rezk, M., Kifer, M.: Transaction logic with partially defined actions. J. Data
Semantics 1(2), 99–131 (2012)

[78] Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pear-
son Education, 2 edn. (2003)

[79] Sacerdoti, E.D.: Planning in a hierarchy of abstraction spaces. Artif. Intell.
5(2), 115–135 (1974)

[80] Sacerdoti, E.D.: The nonlinear nature of plans. In: Proceedings of the 4th
International Joint Conference on Artificial Intelligence - Volume 1. pp. 206–
214. IJCAI’75, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(1975)

[81] Smith, D.E.: The case for durative actions: A commentary on PDDL2.1. J.
Artif. Intell. Res. (JAIR) 20, 149–154 (2003)

88

[82] Srivastava, S., Immerman, N., Zilberstein, S., Zhang, T.: Directed search
for generalized plans using classical planners. In: Proceedings of the 21st
International Conference on Automated Planning and Scheduling (ICAPS-
2011). AAAI (June 2011)

[83] Stefik, M.: Planning with constraints (MOLGEN: part 1). Artif. Intell. 16(2),
111–140 (1981)

[84] Stefik, M.J.: Planning with Constraints. Ph.D. thesis, Stanford, CA, USA
(1980), aAI8016868

[85] Sussman, G.J.: A Computer Model of Skill Acquisition. Elsevier Science
Inc., New York, NY, USA (1975)

[86] Swift, T., Warren, D.: Xsb: Extending the power of prolog using tabling.
Theory and Practice of Logic Programming (2011)

[87] Zhou, N., Dovier, A.: A tabled prolog program for solving sokoban. In: IEEE
23rd International Conference on Tools with Artificial Intelligence, ICTAI
2011, Boca Raton, FL, USA, November 7-9, 2011. pp. 896–897. IEEE Com-
puter Society (2011)

[88] Zhou, N., Dovier, A.: A tabled prolog program for solving sokoban. Fundam.
Inform. 124(4), 561–575 (2013)

[89] Zhou, N.f., Have, C.t.: Efficient tabling of structured data with enhanced
hash-consing. Theory Pract. Log. Program. 12(4-5), 547–563 (Sep 2012)

89

